Science.gov

Sample records for actual flight performance

  1. Comparisons of pilot performance in simulated and actual flight.

    PubMed

    Billings, C E; Gerke, R J; Wick, R L

    1975-03-01

    Five highly experienced professional pilots performed instrument landing system approaches under simulated instrument flight conditions in a Cessna 172 airplane and in a Link-Singer GAT-1 simulator while under the influence of orally administered secobarbital (0, 100, and 200 mg). Tracking performance in two axes and airspeed control were evaluated continuously during each approach. The data from the airplane and simulator were compared. Error and RMS variability were about half as large in the simulator as in the airplane. The observed data were more strongly associated with the drug level in the simulator than in the airplane. Further, the drug-related effects were more consistent in the simulator. Improvement in performance suggestive of learning effects were seen in the simulator, but not in actual flight. It is concluded that the GAT-1 simulator is a useful and sensitive device for studies of the effects of mild stress on pilot performance, but extrapolation of simulator data to the flight environment must be approached with considerable caution.

  2. Pilot Eye Scanning under Actual Single Pilot Instrument Flight

    NASA Astrophysics Data System (ADS)

    Rinoie, Kenichi; Sunada, Yasuto

    Operations under single pilot instrument flight rules for general aviation aircraft is known to be one of the most demanding pilot tasks. Scanning numerous instruments plays a key role for perception and decision-making during flight. Flight experiments have been done by a single engine light airplane to investigate the pilot eye scanning technique for IFR flights. Comparisons between the results by an actual flight and those by a PC-based flight simulator are made. The experimental difficulties of pilot eye scanning measurements during the actual IFR flight are discussed.

  3. Flight performance of Galileo and Ulysses RTGs

    SciTech Connect

    Hemler, R.J.; Kelly, C.E. )

    1993-01-10

    Flight performance data of the GPHS-RTGs (General Purpose Heat Source---Radioisotope Thermoelectric Generators) on the Galileo and Ulysses spacecraft are reported. Comparison of the flight data with analytical predictions is preformed. Differences between actual flight telemetry data and analytical predictions are addressed including the degree of uncertainty associated with the telemetry data. End of mission power level predictions are included for both missions with an overall assessment of RTG mission performances.

  4. Caloric balance during simulated and actual space flight

    NASA Technical Reports Server (NTRS)

    Rambaut, P. C.; Heidelbaugh, N. D.; Smith, M. C., Jr.; Reid, J. M.

    1973-01-01

    The in-flight caloric intakes of all Apollo astronauts are examined and shown to average about 25 kcal per kg per day. Measurement of weight changes following recovery indicates that about 0.15 kg of fat was lost per man per day in-flight for an average deficit of about 19 kcal per kg per day. Measurement of the caloric intake of astronauts under ground-based conditions and during hypobaric exposure indicated a caloric requirement which was not significantly different from the in-flight requirement adjusted for weight loss. Partial metabolic balance data and measurements of bone loss and body volume revealed that protein and mineral losses also occurred to an extent which would reduce the size of estimated in-flight caloric deficits.

  5. Comparative analysis of operational forecasts versus actual weather conditions in airline flight planning, volume 2

    NASA Technical Reports Server (NTRS)

    Keitz, J. F.

    1982-01-01

    The impact of more timely and accurate weather data on airline flight planning with the emphasis on fuel savings is studied. This volume of the report discusses the results of Task 2 of the four major tasks included in the study. Task 2 compares various catagories of flight plans and flight tracking data produced by a simulation system developed for the Federal Aviation Administrations by SRI International. (Flight tracking data simulate actual flight tracks of all aircraft operating at a given time and provide for rerouting of flights as necessary to resolve traffic conflicts.) The comparisons of flight plans on the forecast to flight plans on the verifying analysis confirm Task 1 findings that wind speeds are generally underestimated. Comparisons involving flight tracking data indicate that actual fuel burn is always higher than planned, in either direction, and even when the same weather data set is used. Since the flight tracking model output results in more diversions than is known to be the case, it was concluded that there is an error in the flight tracking algorithm.

  6. MODIS Solar Diffuser: Modelled and Actual Performance

    NASA Technical Reports Server (NTRS)

    Waluschka, Eugene; Xiong, Xiao-Xiong; Esposito, Joe; Wang, Xin-Dong; Krebs, Carolyn (Technical Monitor)

    2001-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument's solar diffuser is used in its radiometric calibration for the reflective solar bands (VIS, NTR, and SWIR) ranging from 0.41 to 2.1 micron. The sun illuminates the solar diffuser either directly or through a attenuation screen. The attenuation screen consists of a regular array of pin holes. The attenuated illumination pattern on the solar diffuser is not uniform, but consists of a multitude of pin-hole images of the sun. This non-uniform illumination produces small, but noticeable radiometric effects. A description of the computer model used to simulate the effects of the attenuation screen is given and the predictions of the model are compared with actual, on-orbit, calibration measurements.

  7. NEAR spacecraft flight system performance

    NASA Astrophysics Data System (ADS)

    Santo, Andrew G.

    2002-01-01

    The Near Earth Asteroid Rendezvous (NEAR) spacecraft was built and launched in 29 months. After a 4-year cruise phase the spacecraft was in orbit about the asteroid Eros for 1 year, which enabled the science payload to return unprecedented scientific data. A summary of spacecraft in-flight-performance, including a discussion of the December 1998 aborted orbit insertion burn, is provided. Several minor hardware failures that occurred during the last few years of operations are described. Lessons learned during the cruise phase led to new features being incorporated into several in-flight software uploads. The added innovative features included the capability for the spacecraft to autonomously choose a spacecraft attitude that simultaneously kept the medium-gain antennas pointed at Earth while using solar pressure to control system momentum and a capability to combine a propulsive momentum dump with a trajectory correction maneuver. The spacecraft proved flexible, reliable, and resilient over the 5-year mission.

  8. Orion Flight Performance Design Trades

    NASA Technical Reports Server (NTRS)

    Jackson, Mark C.; Straube, Timothy

    2010-01-01

    A significant portion of the Orion pre-PDR design effort has focused on balancing mass with performance. High level performance metrics include abort success rates, lunar surface coverage, landing accuracy and touchdown loads. These metrics may be converted to parameters that affect mass, such as ballast for stabilizing the abort vehicle, propellant to achieve increased lunar coverage or extended missions, or ballast to increase the lift-to-drag ratio to improve entry and landing performance. The Orion Flight Dynamics team was tasked to perform analyses to evaluate many of these trades. These analyses not only provide insight into the physics of each particular trade but, in aggregate, they illustrate the processes used by Orion to balance performance and mass margins, and thereby make design decisions. Lessons learned can be gleaned from a review of these studies which will be useful to other spacecraft system designers. These lessons fall into several categories, including: appropriate application of Monte Carlo analysis in design trades, managing margin in a highly mass-constrained environment, and the use of requirements to balance margin between subsystems and components. This paper provides a review of some of the trades and analyses conducted by the Flight Dynamics team, as well as systems engineering lessons learned.

  9. Enhanced vision: flight test and performance measurement

    NASA Astrophysics Data System (ADS)

    Balon, Kevin G.; Connor, Sidney A.

    1997-06-01

    This paper presents a flight test methodology and performance measurement system for evaluation of enhanced vision systems (EVS). The architecture for the performance measurements system used on a low operating cost Cessna 402 EVS flight test aircraft and on the DARPA Autonomous Landing Guidance Boeing 727 flight test aircraft is described. The data collection and analysis system is presented in the context of civil aviation requirements. A summary of the flight test accomplishments with the performance measurements system to data is also presented.

  10. Comparative analysis of operational forecasts versus actual weather conditions in airline flight planning: Summary report

    NASA Technical Reports Server (NTRS)

    Keitz, J. F.

    1982-01-01

    The impact of more timely and accurate weather data on airline flight planning with the emphasis on fuel savings is studied. This summary report discusses the results of each of the four major tasks of the study. Task 1 compared airline flight plans based on operational forecasts to plans based on the verifying analyses and found that average fuel savings of 1.2 to 2.5 percent are possible with improved forecasts. Task 2 consisted of similar comparisons but used a model developed for the FAA by SRI International that simulated the impact of ATc diversions on the flight plans. While parts of Task 2 confirm the Task I findings, inconsistency with other data and the known impact of ATC suggests that other Task 2 findings are the result of errors in the model. Task 3 compares segment weather data from operational flight plans with the weather actually observed by the aircraft and finds the average error could result in fuel burn penalties (or savings) of up to 3.6 percent for the average 8747 flight. In Task 4 an in-depth analysis of the weather forecast for the 33 days included in the study finds that significant errors exist on 15 days. Wind speeds in the area of maximum winds are underestimated by 20 to 50 kts., a finding confirmed in the other three tasks.

  11. Comparative analysis of operational forecasts versus actual weather conditions in airline flight planning, volume 3

    NASA Technical Reports Server (NTRS)

    Keitz, J. F.

    1982-01-01

    The impact of more timely and accurate weather data on airline flight planning with the emphasis on fuel savings is studied. This volume of the report discusses the results of Task 3 of the four major tasks included in the study. Task 3 compares flight plans developed on the Suitland forecast with actual data observed by the aircraft (and averaged over 10 degree segments). The results show that the average difference between the forecast and observed wind speed is 9 kts. without considering direction, and the average difference in the component of the forecast wind parallel to the direction of the observed wind is 13 kts. - both indicating that the Suitland forecast underestimates the wind speeds. The Root Mean Square (RMS) vector error is 30.1 kts. The average absolute difference in direction between the forecast and observed wind is 26 degrees and the temperature difference is 3 degree Centigrade. These results indicate that the forecast model as well as the verifying analysis used to develop comparison flight plans in Tasks 1 and 2 is a limiting factor and that the average potential fuel savings or penalty are up to 3.6 percent depending on the direction of flight.

  12. Effect of flight loads on turbofan engine performance deterioration

    NASA Technical Reports Server (NTRS)

    Stakolich, E. G.; Jay, A.; Todd, E. S.; Kafka, P. G.; White, J. L.

    1979-01-01

    A significant percentage of high-bypass-ratio turbofan engine performance deterioration is caused by an increase in operating clearance between fan/compressor and turbine blades and their outer air seals. These increased clearances result from rubs induced by a combination of engine power transients and aircraft flight loads. An analytical technique for predicting the effect of quasi-steady state aircraft flight loads on engine performance deterioration has been developed and is presented. Thrust, aerodynamic and inertia loads are considered. Analytical results are shown and compared to actual engine test experience.

  13. Effect of flight loads on turbofan engine performance deterioration

    NASA Technical Reports Server (NTRS)

    Stakolich, E. G.; Jay, A.; Todd, E. S.; Kafka, P. G.; White, J. L.

    1978-01-01

    A significant percentage of high bypass ratio, turbofan engine performance deterioration was caused by an increase in operating clearance between fan/compressor and turbine blades and their outer air seals. These increased clearances resulted from rubs induced by a combination of engine power transients and aircraft flight loads. An analytical technique for predicting the effect of quasi-steady state aircraft flight loads on engine performance deterioration was developed and is presented. Thrust, aerodynamic and inertia loads were considered. Analytical results are shown and compared to actual engine test experience.

  14. CHANGES IN FLIGHT TRAINEE PERFORMANCE FOLLOWING SYNTHETIC HELICOPTER FLIGHT TRAINING.

    ERIC Educational Resources Information Center

    CARO, PAUL W., JR.; ISLEY, ROBERT N.

    A STUDY WAS CONDUCTED AT THE U.S. ARMY PRIMARY HELICOPTER SCHOOL, FORT WOLTERS, TEXAS, TO DETERMINE WHETHER THE USE OF A HELICOPTER TRAINING DEVICE WOULD IMPROVE STUDENT PERFORMANCE DURING SUBSEQUENT HELICOPTER CONTACT FLIGHT TRAINING. SUBJECTS WERE TWO EXPERIMENTAL GROUPS AND TWO CONTROL GROUPS OF WARRANT OFFICER CANDIDATES ENROLLED FOR A…

  15. Alterations in calcium homeostasis and bone during actual and simulated space flight

    NASA Technical Reports Server (NTRS)

    Wronski, T. J.; Morey, E. R.

    1983-01-01

    Skeletal alteration in experimental animals induced by actual and simulated spaceflight are discussed, noting that the main factor contributing to bone loss in growing rats placed in orbit aboard Soviet Cosmos biosatellites appears to be diminished bone formation. Mechanical unloading is seen as the most obvious cause of bone loss in a state of weightlessness. Reference is made to a study by Roberts et al. (1981), which showed that osteoblast differentiation in the periodontal ligament of the maxilla was suppressed in rats flown in space. Since the maxilla lacks a weight-bearing function, this finding indicates that the skeletal alterations associated with orbital flight may be systemic rather than confined to weight-bearing bones. In addition, the skeletal response to simulated weightlessness may also be systemic (wronski and Morey, 1982). In suspended rats, the hindlimbs lost all weight-bearing functions, while the forelimbs maintained contact with the floor of the hypokinetic model. On this basis, it was to be expected that there would be different responses at the two skeletal sites if the observed abnormalities were due to mechanical unloading alone. The changes induced by simulated weightlessness in the proximal tibia and humerus, however, were generally comparable. This evidence for systemic skeletal responses has drawn attention to endocrine factors.

  16. Orion Entry Flight Control Stability and Performance

    NASA Technical Reports Server (NTRS)

    Strahan, Alan L.; Loe, Greg R.; Seiler, Pete

    2007-01-01

    The Orion Spacecraft will be required to perform entry and landing functions for both Low Earth Orbit (LEO) and Lunar return missions, utilizing only the Command Module (CM) with its unique systems and GN&C design. This paper presents the current CM Flight Control System (FCS) design to support entry and landing, with a focus on analyses that have supported its development to date. The CM FCS will have to provide for spacecraft stability and control while following guidance or manual commands during exo-atmospheric flight, after Service Module separation, translational powered flight required of the CM, atmospheric flight supporting both direct entry and skip trajectories down to drogue chute deploy, and during roll attitude reorientation just prior to touchdown. Various studies and analyses have been performed or are on-going supporting an overall FCS design with reasonably sized Reaction Control System (RCS) jets, that minimizes fuel usage, that provides appropriate command following but with reasonable stability and control margin. Results from these efforts to date are included, with particular attention on design issues that have emerged, such as the struggle to accommodate sub-sonic pitch and yaw control without using excessively large jets that could have a detrimental impact on vehicle weight. Apollo, with a similar shape, struggled with this issue as well. Outstanding CM FCS related design and analysis issues, planned for future effort, are also briefly be discussed.

  17. Group interaction and flight crew performance

    NASA Technical Reports Server (NTRS)

    Foushee, H. Clayton; Helmreich, Robert L.

    1988-01-01

    The application of human-factors analysis to the performance of aircraft-operation tasks by the crew as a group is discussed in an introductory review and illustrated with anecdotal material. Topics addressed include the function of a group in the operational environment, the classification of group performance factors (input, process, and output parameters), input variables and the flight crew process, and the effect of process variables on performance. Consideration is given to aviation safety issues, techniques for altering group norms, ways of increasing crew effort and coordination, and the optimization of group composition.

  18. Alterations in calcium homeostasis and bone during actual and simulated space flight.

    PubMed

    Wronski, T J; Morey, E R

    1983-01-01

    The weightlessness experienced in space produces alterations in calcium homeostasis. Gemini, Apollo, and Skylab astronauts exhibited a negative calcium balance due primarily to hypercalciuria. In addition, the bone mineral density of the calcaneus declined by approximately 4% in Skylab crew members after 84 d of orbital flight. The negative calcium balance and loss of calcaneal bone mineral in normal adults subjected to prolonged bed rest was comparable to that observed in space. The pathogenesis of bone loss during space flight and bed rest is not well understood due to the lack of histomorphometric data. It is also uncertain whether osteoporotic changes in astronauts are corrected postflight. The observed bone loss would be reversible and of no long-term consequence if the only abnormality was an increased remodeling rate. However, altered bone cell activity would probably result in irreversible bone loss with the premature development of senile osteoporosis many years after space flight. The main skeletal defect in growing rats placed in orbit aboard Soviet Cosmos biosatellites appears to be diminished bone formation. Bone resorption was not elevated during weightlessness. Although cortical bone returned to normal postflight, the decline in trabecular bone mass was somewhat persistent. These studies established that the modeling of a growing skeleton was altered in a weightless environment, but do not necessarily imply that a remodeling imbalance occurs in adults during space flight. However, various forms of simulated space flight inhibited bone formation during both skeletal modeling and the remodeling of adult bone.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:6645871

  19. Comparative analysis of operational forecasts versus actual weather conditions in airline flight planning, volume 1

    NASA Technical Reports Server (NTRS)

    Keitz, J. F.

    1982-01-01

    The impact of more timely and accurate weather data on airline flight planning with the emphasis on fuel savings is studied. This volume of the report discusses the results of Task 1 of the four major tasks included in the study. Task 1 compares flight plans based on forecasts with plans based on the verifying analysis from 33 days during the summer and fall of 1979. The comparisons show that: (1) potential fuel savings conservatively estimated to be between 1.2 and 2.5 percent could result from using more timely and accurate weather data in flight planning and route selection; (2) the Suitland forecast generally underestimates wind speeds; and (3) the track selection methodology of many airlines operating on the North Atlantic may not be optimum resulting in their selecting other than the optimum North Atlantic Organized Track about 50 percent of the time.

  20. Real-time in-flight engine performance and health monitoring techniques for flight research application

    NASA Technical Reports Server (NTRS)

    Ray, Ronald J.; Hicks, John W.; Wichman, Keith D.

    1992-01-01

    Various engine related performance and health monitoring techniques developed in support of flight research are described. Techniques used during flight to enhance safety and to increase flight test productivity are summarized. A description of the NASA range facility is given along with a discussion of the flight data processing. Examples of data processed and the flight data displays are shown. A discussion of current trends and future capabilities is also included.

  1. Comparative analysis of operational forecasts versus actual weather conditions in airline flight planning, volume 4

    NASA Technical Reports Server (NTRS)

    Keitz, J. F.

    1982-01-01

    The impact of more timely and accurate weather data on airline flight planning with the emphasis on fuel savings is studied. This volume of the report discusses the results of Task 4 of the four major tasks included in the study. Task 4 uses flight plan segment wind and temperature differences as indicators of dates and geographic areas for which significant forecast errors may have occurred. An in-depth analysis is then conducted for the days identified. The analysis show that significant errors occur in the operational forecast on 15 of the 33 arbitrarily selected days included in the study. Wind speeds in an area of maximum winds are underestimated by at least 20 to 25 kts. on 14 of these days. The analysis also show that there is a tendency to repeat the same forecast errors from prog to prog. Also, some perceived forecast errors from the flight plan comparisons could not be verified by visual inspection of the corresponding National Meteorological Center forecast and analyses charts, and it is likely that they are the result of weather data interpolation techniques or some other data processing procedure in the airlines' flight planning systems.

  2. Flight test of takeoff performance monitoring system

    NASA Technical Reports Server (NTRS)

    Middleton, David B.; Srivatsan, Raghavachari; Person, Lee H., Jr.

    1994-01-01

    The Takeoff Performance Monitoring System (TOPMS) is a computer software and hardware graphics system that visually displays current runway position, acceleration performance, engine status, and other situation advisory information to aid pilots in their decision to continue or to abort a takeoff. The system was developed at the Langley Research Center using the fixed-base Transport Systems Research Vehicle (TSRV) simulator. (The TSRV is a highly modified Boeing 737-100 research airplane.) Several versions of the TOPMS displays were evaluated on the TSRV B-737 simulator by more than 40 research, United States Air Force, airline and industry and pilots who rated the system satisfactory and recommended further development and testing. In this study, the TOPMS was flight tested on the TSRV. A total of 55 takeoff and 30 abort situations were investigated at 5 airfields. TOPMS displays were observed on the navigation display screen in the TSRV research flight deck during various nominal and off-nominal situations, including normal takeoffs; reduced-throttle takeoffs; induced-acceleration deficiencies; simulated-engine failures; and several gross-weight, runway-geometry, runway-surface, and ambient conditions. All tests were performed on dry runways. The TOPMS software executed accurately during the flight tests and the displays correctly depicted the various test conditions. Evaluation pilots found the displays easy to monitor and understand. The algorithm provides pretakeoff predictions of the nominal distances that are needed to accelerate the airplane to takeoff speed and to brake it to a stop; these predictions agreed reasonably well with corresponding values measured during several fully executed and aborted takeoffs. The TOPMS is operational and has been retained on the TSRV for general use and demonstration.

  3. Photovoltaic performance models: an evaluation with actual field data

    NASA Astrophysics Data System (ADS)

    TamizhMani, Govindasamy; Ishioye, John-Paul; Voropayev, Arseniy; Kang, Yi

    2008-08-01

    Prediction of energy production is crucial to the design and installation of the building integrated photovoltaic systems. This prediction should be attainable based on the commonly available parameters such as system size, orientation and tilt angle. Several commercially available as well as free downloadable software tools exist to predict energy production. Six software models have been evaluated in this study and they are: PV Watts, PVsyst, MAUI, Clean Power Estimator, Solar Advisor Model (SAM) and RETScreen. This evaluation has been done by comparing the monthly, seasonaly and annually predicted data with the actual, field data obtained over a year period on a large number of residential PV systems ranging between 2 and 3 kWdc. All the systems are located in Arizona, within the Phoenix metropolitan area which lies at latitude 33° North, and longitude 112 West, and are all connected to the electrical grid.

  4. Supersonic Flight Dynamics Test 1 - Post-Flight Assessment of Simulation Performance

    NASA Technical Reports Server (NTRS)

    Dutta, Soumyo; Bowes, Angela L.; Striepe, Scott A.; Davis, Jody L.; Queen, Eric M.; Blood, Eric M.; Ivanov, Mark C.

    2015-01-01

    NASA's Low Density Supersonic Decelerator (LDSD) project conducted its first Supersonic Flight Dynamics Test (SFDT-1) on June 28, 2014. Program to Optimize Simulated Trajectories II (POST2) was one of the flight dynamics codes used to simulate and predict the flight performance and Monte Carlo analysis was used to characterize the potential flight conditions experienced by the test vehicle. This paper compares the simulation predictions with the reconstructed trajectory of SFDT-1. Additionally, off-nominal conditions seen during flight are modeled in post-flight simulations to find the primary contributors that reconcile the simulation with flight data. The results of these analyses are beneficial for the pre-flight simulation and targeting of the follow-on SFDT flights currently scheduled for summer 2015.

  5. Thermal control surfaces experiment flight system performance

    NASA Technical Reports Server (NTRS)

    Wilkes, Donald R.; Hummer, Leigh L.; Zwiener, James M.

    1991-01-01

    The Thermal Control Surfaces Experiment (TCSE) is the most complex system, other than the LDEF, retrieved after long term space exposure. The TCSE is a microcosm of complex electro-optical payloads being developed and flow by NASA and the DoD including SDI. The objective of TCSE was to determine the effects of the near-Earth orbital environment and the LDEF induced environment on spacecraft thermal control surfaces. The TCSE was a comprehensive experiment that combined in-space measurements with extensive post flight analyses of thermal control surfaces to determine the effects of exposure to the low earth orbit space environment. The TCSE was the first space experiment to measure the optical properties of thermal control surfaces the way they are routinely measured in a lab. The performance of the TCSE confirms that low cost, complex experiment packages can be developed that perform well in space.

  6. Poor flight performance in deep-diving cormorants.

    PubMed

    Watanabe, Yuuki Y; Takahashi, Akinori; Sato, Katsufumi; Viviant, Morgane; Bost, Charles-André

    2011-02-01

    Aerial flight and breath-hold diving present conflicting morphological and physiological demands, and hence diving seabirds capable of flight are expected to face evolutionary trade-offs regarding locomotory performances. We tested whether Kerguelen shags Phalacrocorax verrucosus, which are remarkable divers, have poor flight capability using newly developed tags that recorded their flight air speed (the first direct measurement for wild birds) with propeller sensors, flight duration, GPS position and depth during foraging trips. Flight air speed (mean 12.7 m s(-1)) was close to the speed that minimizes power requirement, rather than energy expenditure per distance, when existing aerodynamic models were applied. Flights were short (mean 92 s), with a mean summed duration of only 24 min day(-1). Shags sometimes stayed at the sea surface without diving between flights, even on the way back to the colony, and surface durations increased with the preceding flight durations; these observations suggest that shags rested after flights. Our results indicate that their flight performance is physiologically limited, presumably compromised by their great diving capability (max. depth 94 m, duration 306 s) through their morphological adaptations for diving, including large body mass (enabling a large oxygen store), small flight muscles (to allow for large leg muscles for underwater propulsion) and short wings (to decrease air volume in the feathers and hence buoyancy). The compromise between flight and diving, as well as the local bathymetry, shape the three-dimensional foraging range (<26 km horizontally, <94 m vertically) in this bottom-feeding cormorant. PMID:21228200

  7. PARASOL in-flight calibration and performance.

    PubMed

    Fougnie, Bertrand; Bracco, Guillaume; Lafrance, Bruno; Ruffel, Caroline; Hagolle, Olivier; Tinel, Claire

    2007-08-01

    Since 18 December 2004, the PARASOL satellite is a member of the so-called A-train atmospheric orbital observatory, flying together with Aqua, Aura, CALIPSO, CLOUDSAT, and OCO satellites. These satellites combine for the first time a full suite of instruments for observing aerosols and clouds, using passive radiometer complementarily with active lidar and radar sounders. The PARASOL payload is extensively derived from the instrument developed for the POLDER programs that performs measurements of bidirectionality and polarization for a very wide field-of-view and for a visible/near-infrared spectral range. An overview of the results obtained during the commissioning phase and the reevaluation after one year in orbit is presented. In-flight calibration methods are briefly described, and radiometric and geometric performances are both evaluated. All algorithms are based on a panel of methods using mainly natural targets previously developed for POLDER missions and adapted or redeveloped in the PARASOL context. Regarding performances, all mission requirements are met except for band 443 (not recommended for use). After one year in orbit, a perfect geometrical stability was found while a slight decrease of the radiometric sensitivity was observed and corrected through an innovative multitemporal algorithm based on observations of bright and scattered convective clouds. The scientific exploitation of PARASOL has now begun, particularly by coupling these specific observations with other A-train sensor measurements.

  8. Does medical students’ clinical performance affect their actual performance during medical internship?

    PubMed Central

    Han, Eui-Ryoung; Chung, Eun-Kyung

    2016-01-01

    INTRODUCTION This study examines the relationship between the clinical performance of medical students and their performance as doctors during their internships. METHODS This retrospective study involved 63 applicants of a residency programme conducted at Chonnam National University Hospital, South Korea, in November 2012. We compared the performance of the applicants during their internship with their clinical performance during their fourth year of medical school. The performance of the applicants as interns was periodically evaluated by the faculty of each department, while their clinical performance as fourth-year medical students was assessed using the Clinical Performance Examination (CPX) and the Objective Structured Clinical Examination (OSCE). RESULTS The performance of the applicants as interns was positively correlated with their clinical performance as fourth-year medical students, as measured by the CPX and OSCE. The performance of the applicants as interns was moderately correlated with the patient-physician interaction items addressing communication and interpersonal skills in the CPX. CONCLUSION The clinical performance of medical students during their fourth year in medical school was related to their performance as medical interns. Medical students should be trained to develop good clinical skills through actual encounters with patients or simulated encounters using manikins, to enable them to become more competent doctors. PMID:26768172

  9. Post-Flight Analysis of GPSR Performance During Orion Exploration Flight Test 1

    NASA Technical Reports Server (NTRS)

    Barker, Lee; Mamich, Harvey; McGregor, John

    2016-01-01

    On 5 December 2014, the first test flight of the Orion Multi-Purpose Crew Vehicle executed a unique and challenging flight profile including an elevated re-entry velocity and steeper flight path angle to envelope lunar re-entry conditions. A new navigation system including a single frequency (L1) GPS receiver was evaluated for use as part of the redundant navigation system required for human space flight. The single frequency receiver was challenged by a highly dynamic flight environment including flight above low Earth orbit, as well as single frequency operation with ionospheric delay present. This paper presents a brief description of the GPS navigation system, an independent analysis of flight telemetry data, and evaluation of the GPSR performance, including evaluation of the ionospheric model employed to supplement the single frequency receiver. Lessons learned and potential improvements will be discussed.

  10. Calculating Launch Vehicle Flight Performance Reserve

    NASA Technical Reports Server (NTRS)

    Hanson, John M.; Pinson, Robin M.; Beard, Bernard B.

    2011-01-01

    This paper addresses different methods for determining the amount of extra propellant (flight performance reserve or FPR) that is necessary to reach orbit with a high probability of success. One approach involves assuming that the various influential parameters are independent and that the result behaves as a Gaussian. Alternatively, probabilistic models may be used to determine the vehicle and environmental models that will be available (estimated) for a launch day go/no go decision. High-fidelity closed-loop Monte Carlo simulation determines the amount of propellant used with each random combination of parameters that are still unknown at the time of launch. Using the results of the Monte Carlo simulation, several methods were used to calculate the FPR. The final chosen solution involves determining distributions for the pertinent outputs and running a separate Monte Carlo simulation to obtain a best estimate of the required FPR. This result differs from the result obtained using the other methods sufficiently that the higher fidelity is warranted.

  11. Summary of shuttle data processing and aerodynamic performance comparisons for the first 11 flights

    NASA Technical Reports Server (NTRS)

    Findlay, J. T.; Kelly, G. M.; Heck, M. L.; Mcconnell, J. G.

    1984-01-01

    NASA Space Shuttle aerodynamic and aerothermodynamic research is but one part of the most comprehensive end-to-end flight test program ever undertaken considering: the extensive pre-flight experimental data base development; the multitude of spacecraft and remote measurements taken during entry flight; the complexity of the Orbiter aerodynamic configuration; the variety of flight conditions available across the entire speed regime; and the efforts devoted to flight data reduction throughout the aerospace community. Shuttle entry flights provide a wealth of research quality data, in essence a veritable flying wind tunnel, for use by researchers to verify and improve the operational capability of the Orbiter and provide data for evaluations of experimental facilities as well as computational methods. This final report merely summarizes the major activities conducted by the AMA, Inc. under NASA Contract NAS1-16087 as part of that interesting research. Investigators desiring more detailed information can refer to the glossary of AMA publications attached herein as Appendix A. Section I provides background discussion of software and methodology development to enable Best Estimate Trajectory (BET) generation. Actual products generated are summarized in Section II as tables which completely describe the post-flight products available from the first three-year Shuttle flight history. Summary results are presented in Section III, with longitudinal performance comparisons included as Appendices for each of the flights.

  12. Aerodynamic flight performance in flap-gliding birds and bats.

    PubMed

    Muijres, Florian T; Henningsson, Per; Stuiver, Melanie; Hedenström, Anders

    2012-08-01

    Many birds use a flight mode called undulating or flap-gliding flight, where they alternate between flapping and gliding phases, while only a few bats make use of such a flight mode. Among birds, flap-gliding is commonly used by medium to large species, where it is regarded to have a lower energetic cost than continuously flapping flight. Here, we introduce a novel model for estimating the energetic flight economy of flap-gliding animals, by determining the lift-to-drag ratio for flap-gliding based on empirical lift-to-drag ratio estimates for continuous flapping flight and for continuous gliding flight, respectively. We apply the model to flight performance data of the common swift (Apus apus) and of the lesser long-nosed bat (Leptonycteris yerbabuenae). The common swift is a typical flap-glider while-to the best of our knowledge-the lesser long-nosed bat does not use flap-gliding. The results show that, according to the model, the flap-gliding common swift saves up to 15% energy compared to a continuous flapping swift, and that this is primarily due to the exceptionally high lift-to-drag ratio in gliding flight relative to that in flapping flight for common swifts. The lesser long-nosed bat, on the other hand, seems not to be able to reduce energetic costs by flap-gliding. The difference in relative costs of flap-gliding flight between the common swift and the lesser long-nosed bat can be explained by differences in morphology, flight style and wake dynamics. The model presented here proves to be a valuable tool for estimating energetic flight economy in flap-gliding animals. The results show that flap-gliding flight that is naturally used by common swifts is indeed the most economic one of the two flight modes, while this is not the case for the non-flap-gliding lesser long-nosed bat.

  13. PTS performance by flight- and control-group macaques

    NASA Technical Reports Server (NTRS)

    Washburn, D. A.; Rumbaugh, D. M.; Richardson, W. K.; Gulledge, J. P.; Shlyk, G. G.; Vasilieva, O. N.

    2000-01-01

    A total of 25 young monkeys (Macaca mulatta) were trained with the Psychomotor Test System, a package of software tasks and computer hardware developed for spaceflight research with nonhuman primates. Two flight monkeys and two control monkeys were selected from this pool and performed a psychomotor task before and after the Bion 11 flight or a ground-control period. Monkeys from both groups showed significant disruption in performance after the 14-day flight or simulation (plus one anesthetized day of biopsies and other tests), and this disruption appeared to be magnified for the flight animal.

  14. Control Design and Performance Analysis for Autonomous Formation Flight Experimentss

    NASA Astrophysics Data System (ADS)

    Rice, Caleb Michael

    Autonomous Formation Flight is a key approach for reducing greenhouse gas emissions and managing traffic in future high density airspace. Unmanned Aerial Vehicles (UAV's) have made it possible for the physical demonstration and validation of autonomous formation flight concepts inexpensively and eliminates the flight risk to human pilots. This thesis discusses the design, implementation, and flight testing of three different formation flight control methods, Proportional Integral and Derivative (PID); Fuzzy Logic (FL); and NonLinear Dynamic Inversion (NLDI), and their respective performance behavior. Experimental results show achievable autonomous formation flight and performance quality with a pair of low-cost unmanned research fixed wing aircraft and also with a solo vertical takeoff and landing (VTOL) quadrotor.

  15. Flight performance of the largest volant bird

    NASA Astrophysics Data System (ADS)

    Ksepka, Daniel T.

    2014-07-01

    Pelagornithidae is an extinct clade of birds characterized by bizarre tooth-like bony projections of the jaws. Here, the flight capabilities of pelagornithids are explored based on data from a species with the largest reported wingspan among birds. Pelagornis sandersi sp. nov. is represented by a skull and substantial postcranial material. Conservative wingspan estimates (∼6.4 m) exceed theoretical maximums based on extant soaring birds. Modeled flight properties indicate that lift:drag ratios and glide ratios for P. sandersi were near the upper limit observed in extant birds and suggest that pelagornithids were highly efficient gliders, exploiting a long-range soaring ecology.

  16. Flight performance of the largest volant bird

    PubMed Central

    Ksepka, Daniel T.

    2014-01-01

    Pelagornithidae is an extinct clade of birds characterized by bizarre tooth-like bony projections of the jaws. Here, the flight capabilities of pelagornithids are explored based on data from a species with the largest reported wingspan among birds. Pelagornis sandersi sp. nov. is represented by a skull and substantial postcranial material. Conservative wingspan estimates (∼6.4 m) exceed theoretical maximums based on extant soaring birds. Modeled flight properties indicate that lift:drag ratios and glide ratios for P. sandersi were near the upper limit observed in extant birds and suggest that pelagornithids were highly efficient gliders, exploiting a long-range soaring ecology. PMID:25002475

  17. Flight Test Techniques Used to Evaluate Performance Benefits During Formation Flight

    NASA Technical Reports Server (NTRS)

    Ray, Ronald J.; Cobleigh, Brent R.; Vachon, M. Jake; SaintJohn, Clinton

    2002-01-01

    The Autonomous Formation Flight research project has been implemented at the NASA Dryden Flight Research Center to demonstrate the benefits of formation flight and develop advanced technologies to facilitate exploiting these benefits. Two F/A-18 aircraft have been modified to precisely control and monitor relative position, and to determine performance of the trailing airplane. Flight test maneuvers and analysis techniques have been developed to determine the performance advantages, including drag and fuel flow reductions and improvements in range factor. By flying the trailing airplane through a matrix of lateral, longitudinal, and vertical offset positions, a detailed map of the performance benefits has been obtained at two flight conditions. Significant performance benefits have been obtained during this flight test phase. Drag reductions of more than 20 percent and fuel flow reductions of more than 18 percent have been measured at flight conditions of Mach 0.56 and an altitude of 25,000 ft. The results show favorable agreement with published theory and generic predictions. An F/A-18 long-range cruise mission at Mach 0.8 and an altitude of 40,000 ft has been simulated in the optimum formation position and has demonstrated a 14-percent fuel reduction when compared with a controlled chase airplane of similar configuration.

  18. Flight performance of Skylab attitude and pointing control system

    NASA Technical Reports Server (NTRS)

    Chubb, W. B.; Kennel, H. F.; Rupp, C. C.; Seltzer, S. M.

    1975-01-01

    The Skylab attitude and pointing control system (APCS) requirements are briefly reviewed and the way in which they became altered during the prelaunch phase of development is noted. The actual flight mission (including mission alterations during flight) is described. The serious hardware failures that occurred, beginning during ascent through the atmosphere, also are described. The APCS's ability to overcome these failures and meet mission changes are presented. The large around-the-clock support effort on the ground is discussed. Salient design points and software flexibility that should afford pertinent experience for future spacecraft attitude and pointing control system designs are included.

  19. Performance assessment in a flight simulator test—Validation of a space psychology methodology

    NASA Astrophysics Data System (ADS)

    Johannes, B.; Salnitski, Vyacheslav; Soll, Henning; Rauch, Melina; Goeters, Klaus-Martin; Maschke, Peter; Stelling, Dirk; Eißfeldt, Hinnerk

    2007-02-01

    The objective assessment of operator performance in hand controlled docking of a spacecraft on a space station has 30 years of tradition and is well established. In the last years the performance assessment was successfully combined with a psycho-physiological approach for the objective assessment of the levels of physiological arousal and psychological load. These methods are based on statistical reference data. For the enhancement of the statistical power of the evaluation methods, both were actually implemented into a comparable terrestrial task: the flight simulator test of DLR in the selection procedure for ab initio pilot applicants for civil airlines. In the first evaluation study 134 male subjects were analysed. Subjects underwent a flight simulator test including three tasks, which were evaluated by instructors applying well-established and standardised rating scales. The principles of the performance algorithms of the docking training were adapted for the automated flight performance assessment. They are presented here. The increased human errors under instrument flight conditions without visual feedback required a manoeuvre recognition algorithm before calculating the deviation of the flown track from the given task elements. Each manoeuvre had to be evaluated independently of former failures. The expert rated performance showed a highly significant correlation with the automatically calculated performance for each of the three tasks: r=.883, r=.874, r=.872, respectively. An automated algorithm successfully assessed the flight performance. This new method will possibly provide a wide range of other future applications in aviation and space psychology.

  20. Scales affect performance of Monarch butterfly forewings in autorotational flight

    NASA Astrophysics Data System (ADS)

    Demko, Anya; Lang, Amy

    2012-11-01

    Butterfly wings are characterized by rows of scales (approximately 100 microns in length) that create a shingle-like pattern of cavities over the entire surface. It is hypothesized that these cavities influence the airflow around the wing and increase aerodynamic performance. A forewing of the Monarch butterfly (Danus plexippus) naturally undergoes autorotational flight in the laminar regime. Autorotational flight is an accurate representation of insect flight because the rotation induces a velocity gradient similar to that found over a flapping wing. Drop test flights of 22 forewings before and after scale removal were recorded with a high-speed camera and flight behavior was quantified. It was found that removing the scales increased the descent speed and decreased the descent factor, a measure of aerodynamic efficacy, suggesting that scales increased the performance of the forewings. Funded by NSF REU Grant 1062611.

  1. Characterization of in-flight performance of ion propulsion systems

    NASA Technical Reports Server (NTRS)

    Sovey, James S.; Rawlin, Vincent K.

    1993-01-01

    In-flight measurements of ion propulsion performance, ground test calibrations, and diagnostic performance measurements were reviewed. It was found that accelerometers provided the most accurate in-flight thrust measurements compared with four other methods that were surveyed. An experiment has also demonstrated that pre-flight alignment of the thrust vector was sufficiently accurate so that gimbal adjustments and use of attitude control thrusters were not required to counter disturbance torques caused by thrust vector misalignment. The effects of facility background pressure, facility enhanced charge-exchange reactions, and contamination on ground-based performance measurements are also discussed. Vacuum facility pressures for inert-gas ion thruster life tests and flight qualification tests will have to be less than 2 mPa to ensure accurate performance measurements.

  2. Functional equivalence for response programming of actually performing versus imagining movements.

    PubMed

    Ito, M

    1999-06-01

    The present study was conducted to test the hypothesis that response programming occurs when movements are only imagined. 12 subjects were required to react and produce the sequence of same or different force by squeezing a handle as quickly and accurately as possible after the two reaction signals which were separated by the interstimulus interval of 1 sec. The reaction time to initiate the second response was examined when the first response is covertly performed, but the second response is actually performed. The reaction times to initiate the second responses were significantly shorter for imagining and actually performing different movements or the control condition. There was no significant difference in reaction time between the conditions with the same movements. These findings were interpreted as evidence for functional equivalence for response programming of actually performing versus imagining movements. PMID:10407903

  3. ATS-6 - Flight performance of the Advanced Thermal Control Flight Experiment

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, J. P.; Brennan, P. J.

    1975-01-01

    The Advanced Thermal Control Flight Experiment on ATS-6 was designed to demonstrate the thermal control capability of a thermal diode (one-way) heat pipe, a phase-change material for thermal storage, and a feedback-controlled heat pipe. Flight data for the different operational modes are compared to ground test data, and the performance of the components is evaluated on an individual basis and as an integrated temperature-control system.

  4. First-Grade Retention: Effects on Children's Actual and Perceived Performance throughout Elementary Education

    ERIC Educational Resources Information Center

    Goos, Mieke; Van Damme, Jan; Onghena, Patrick; Petry, Katja

    2011-01-01

    This study investigates the effects of repeating first grade on children's further academic growth, by tracking the actual performance and the teacher-rated performance of a cohort of Flemish first-graders until the end of elementary school. Two research questions are raised: (1) How do first-grade repeaters, at the cost of one extra year of…

  5. Aerodynamic flight performance in flap-gliding birds and bats.

    PubMed

    Muijres, Florian T; Henningsson, Per; Stuiver, Melanie; Hedenström, Anders

    2012-08-01

    Many birds use a flight mode called undulating or flap-gliding flight, where they alternate between flapping and gliding phases, while only a few bats make use of such a flight mode. Among birds, flap-gliding is commonly used by medium to large species, where it is regarded to have a lower energetic cost than continuously flapping flight. Here, we introduce a novel model for estimating the energetic flight economy of flap-gliding animals, by determining the lift-to-drag ratio for flap-gliding based on empirical lift-to-drag ratio estimates for continuous flapping flight and for continuous gliding flight, respectively. We apply the model to flight performance data of the common swift (Apus apus) and of the lesser long-nosed bat (Leptonycteris yerbabuenae). The common swift is a typical flap-glider while-to the best of our knowledge-the lesser long-nosed bat does not use flap-gliding. The results show that, according to the model, the flap-gliding common swift saves up to 15% energy compared to a continuous flapping swift, and that this is primarily due to the exceptionally high lift-to-drag ratio in gliding flight relative to that in flapping flight for common swifts. The lesser long-nosed bat, on the other hand, seems not to be able to reduce energetic costs by flap-gliding. The difference in relative costs of flap-gliding flight between the common swift and the lesser long-nosed bat can be explained by differences in morphology, flight style and wake dynamics. The model presented here proves to be a valuable tool for estimating energetic flight economy in flap-gliding animals. The results show that flap-gliding flight that is naturally used by common swifts is indeed the most economic one of the two flight modes, while this is not the case for the non-flap-gliding lesser long-nosed bat. PMID:22726811

  6. Helicopter Pilot Performance for Discrete-maneuver Flight Tasks

    NASA Technical Reports Server (NTRS)

    Heffley, R. K.; Bourne, S. M.; Hindson, W. S.

    1984-01-01

    This paper describes a current study of several basic helicopter flight maneuvers. The data base consists of in-flight measurements from instrumented helicopters using experienced pilots. The analysis technique is simple enough to apply without automatic data processing, and the results can be used to build quantitative matah models of the flight task and some aspects of the pilot control strategy. In addition to describing the performance measurement technqiue, some results are presented which define the aggressiveness and amplitude of maneuvering for several lateral maneuvers including turns and sidesteps.

  7. Consistency across repeated eyewitness interviews: contrasting police detectives' beliefs with actual eyewitness performance.

    PubMed

    Krix, Alana C; Sauerland, Melanie; Lorei, Clemens; Rispens, Imke

    2015-01-01

    In the legal system, inconsistencies in eyewitness accounts are often used to discredit witnesses' credibility. This is at odds with research findings showing that witnesses frequently report reminiscent details (details previously unrecalled) at an accuracy rate that is nearly as high as for consistently recalled information. The present study sought to put the validity of beliefs about recall consistency to a test by directly comparing them with actual memory performance in two recall attempts. All participants watched a film of a staged theft. Subsequently, the memory group (N = 84) provided one statement immediately after the film (either with the Self-Administered Interview or free recall) and one after a one-week delay. The estimation group (N = 81) consisting of experienced police detectives estimated the recall performance of the memory group. The results showed that actual recall performance was consistently underestimated. Also, a sharp decline of memory performance between recall attempts was assumed by the estimation group whereas actual accuracy remained stable. While reminiscent details were almost as accurate as consistent details, they were estimated to be much less accurate than consistent information and as inaccurate as direct contradictions. The police detectives expressed a great concern that reminiscence was the result of suggestive external influences. In conclusion, it seems that experienced police detectives hold many implicit beliefs about recall consistency that do not correspond with actual recall performance. Recommendations for police trainings are provided. These aim at fostering a differentiated view on eyewitness performance and the inclusion of more comprehensive classes on human memory structure.

  8. Mariner Mars 1971 attitude control subsystem flight performance

    NASA Technical Reports Server (NTRS)

    Schumacher, L.

    1973-01-01

    The flight performance of the Mariner 71 attitude control subsystem is discussed. Each phase of the mission is delineated and the attitude control subsystem is evaluated within the observed operational environment. Performance anomalies are introduced and discussed within the context of general performance. Problems such as the sun sensor interface incompatibility, gas valve leaks, and scan platform dynamic coupling effects are given analytical considerations.

  9. The role of flight planning in aircrew decision performance

    NASA Technical Reports Server (NTRS)

    Pepitone, Dave; King, Teresa; Murphy, Miles

    1989-01-01

    The role of flight planning in increasing the safety and decision-making performance of the air transport crews was investigated in a study that involved 48 rated airline crewmembers on a B720 simulator with a model-board-based visual scene and motion cues with three degrees of freedom. The safety performance of the crews was evaluated using videotaped replays of the flight. Based on these evaluations, the crews could be divided into high- and low-safety groups. It was found that, while collecting information before flights, the high-safety crews were more concerned with information about alternative airports, especially the fuel required to get there, and were characterized by making rapid and appropriate decisions during the emergency part of the flight scenario, allowing these crews to make an early diversion to other airports. These results suggest that contingency planning that takes into account alternative courses of action enhances rapid and accurate decision-making under time pressure.

  10. Evolution of avian flight: muscles and constraints on performance.

    PubMed

    Tobalske, Bret W

    2016-09-26

    Competing hypotheses about evolutionary origins of flight are the 'fundamental wing-stroke' and 'directed aerial descent' hypotheses. Support for the fundamental wing-stroke hypothesis is that extant birds use flapping of their wings to climb even before they are able to fly; there are no reported examples of incrementally increasing use of wing movements in gliding transitioning to flapping. An open question is whether locomotor styles must evolve initially for efficiency or if they might instead arrive due to efficacy. The proximal muscles of the avian wing output work and power for flight, and new research is exploring functions of the distal muscles in relation to dynamic changes in wing shape. It will be useful to test the relative contributions of the muscles of the forearm compared with inertial and aerodynamic loading of the wing upon dynamic morphing. Body size has dramatic effects upon flight performance. New research has revealed that mass-specific muscle power declines with increasing body mass among species. This explains the constraints associated with being large. Hummingbirds are the only species that can sustain hovering. Their ability to generate force, work and power appears to be limited by time for activation and deactivation within their wingbeats of high frequency. Most small birds use flap-bounding flight, and this flight style may offer an energetic advantage over continuous flapping during fast flight or during flight into a headwind. The use of flap-bounding during slow flight remains enigmatic. Flap-bounding birds do not appear to be constrained to use their primary flight muscles in a fixed manner. To improve understanding of the functional significance of flap-bounding, the energetic costs and the relative use of alternative styles by a given species in nature merit study.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'. PMID:27528773

  11. Evolution of avian flight: muscles and constraints on performance.

    PubMed

    Tobalske, Bret W

    2016-09-26

    Competing hypotheses about evolutionary origins of flight are the 'fundamental wing-stroke' and 'directed aerial descent' hypotheses. Support for the fundamental wing-stroke hypothesis is that extant birds use flapping of their wings to climb even before they are able to fly; there are no reported examples of incrementally increasing use of wing movements in gliding transitioning to flapping. An open question is whether locomotor styles must evolve initially for efficiency or if they might instead arrive due to efficacy. The proximal muscles of the avian wing output work and power for flight, and new research is exploring functions of the distal muscles in relation to dynamic changes in wing shape. It will be useful to test the relative contributions of the muscles of the forearm compared with inertial and aerodynamic loading of the wing upon dynamic morphing. Body size has dramatic effects upon flight performance. New research has revealed that mass-specific muscle power declines with increasing body mass among species. This explains the constraints associated with being large. Hummingbirds are the only species that can sustain hovering. Their ability to generate force, work and power appears to be limited by time for activation and deactivation within their wingbeats of high frequency. Most small birds use flap-bounding flight, and this flight style may offer an energetic advantage over continuous flapping during fast flight or during flight into a headwind. The use of flap-bounding during slow flight remains enigmatic. Flap-bounding birds do not appear to be constrained to use their primary flight muscles in a fixed manner. To improve understanding of the functional significance of flap-bounding, the energetic costs and the relative use of alternative styles by a given species in nature merit study.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'.

  12. Expedition 16 Flight Engineer Tani Performs EVA

    NASA Technical Reports Server (NTRS)

    2007-01-01

    Astronaut Daniel Tani (top center), Expedition 16 flight engineer, participates in the second of five scheduled sessions of extravehicular activity (EVA) as construction continues on the International Space Station (ISS). During the 6-hour and 33-minute space walk, Tani and STS-120 mission specialist Scott Parazynski (out of frame), worked in tandem to disconnect cables from the P6 truss, allowing it to be removed from the Z1 truss. Tani also visually inspected the station's starboard Solar Alpha Rotary Joint (SARJ) and gathered samples of 'shavings' he found under the joint's multilayer insulation covers. The space walkers also outfitted the Harmony module, mated the power and data grapple fixture and reconfigured connectors on the starboard 1 (S1) truss that will allow the radiator on S1 to be deployed from the ground later. The moon is visible at lower center. The STS-120 mission launched from Kennedy Space Center's launch pad 39A at 11:38:19 a.m. (EDT) on October 23, 2007.

  13. Challenges in modeling the X-29A flight test performance

    NASA Technical Reports Server (NTRS)

    Hicks, John W.; Kania, Jan; Pearce, Robert; Mills, Glen

    1987-01-01

    The paper presents the methods, instrumentation, and difficulties associated with drag measurement of the X-29A aircraft. The initial performance objective of the X-29A program emphasized drag polar shapes rather than absolute drag levels. Priorities during the flight envelope expansion restricted the evaluation of aircraft performance. Changes in aircraft configuration, uncertainties in angle-of-attack calibration, and limitations in instrumentation complicated the analysis. Limited engine instrumentation with uncertainties in overall in-flight thrust accuracy made it difficult to obtain reliable values of coefficient of parasite drag. The aircraft was incapable of tracking the automatic camber control trim schedule for optimum wing flaperon deflection during typical dynamic performance maneuvers; this has also complicated the drag polar shape modeling. The X-29A was far enough off the schedule that the developed trim drag correction procedure has proven inadequate. Despite these obstacles, good drag polar shapes have been developed throughout the flight envelope. Preliminary flight results have compared well with wind tunnel predictions. A more comprehensive analysis must be done to complete the performance models. The detailed flight performance program with a calibrated engine will benefit from the experience gained during this preliminary performance phase.

  14. Challenges in modeling the X-29 flight test performance

    NASA Technical Reports Server (NTRS)

    Hicks, John W.; Kania, Jan; Pearce, Robert; Mills, Glen

    1987-01-01

    Presented are methods, instrumentation, and difficulties associated with drag measurement of the X-29A aircraft. The initial performance objective of the X-29A program emphasized drag polar shapes rather than absolute drag levels. Priorities during the flight envelope expansion restricted the evaluation of aircraft performance. Changes in aircraft configuration, uncertainties in angle-of-attack calibration, and limitations in instrumentation complicated the analysis. Limited engine instrumentation with uncertainties in overall in-flight thrust accuracy made it difficult to obtain reliable values of coefficient of parasite drag. The aircraft was incapable of tracking the automatic camber control trim schedule for optimum wing flaperon deflection during typical dynamic performance maneuvers; this has also complicated the drag polar shape modeling. The X-29A was far enough off the schedule that the developed trim drag correction procedure has proven inadequate. However, good drag polar shapes have been developed throughout the flight envelope. Preliminary flight results have compared well with wind tunnel predictions. A more comprehensive analysis must be done to complete performance models. The detailed flight performance program with a calibrated engine will benefit from the experience gained during this preliminary performance phase.

  15. Flight performance during hunting excursions in Eleonora's falcon Falco eleonorae.

    PubMed

    Hedenström, A; Rosén, M; Akesson, S; Spina, F

    1999-08-01

    Among birds, falcons are high-performance flyers, in many cases adapted for aerial hunting and hence suitable targets for investigating limits to flight performance. Using an optical range finder, we measured flight tracks of Eleonora's falcon (Falco eleonorae), a species breeding in the Mediterranean region and specialised for hunting autumn passage bird migrants, when commuting between their nesting colony and offshore hunting areas (straight transportation flight) and when searching for prey (transecting and searching flight). Airspeed during searching flight was significantly slower than during straight transportation and transecting flight, but there was no significant difference in airspeed between the latter two flight modes. Straight transportation flight was significantly faster than predicted minimum power speed. Also, during straight transportation flight, the falcons responded to head- and tailwinds by increasing their airspeed when flying into the wind. However, they did not show any significant airspeed adjustments with respect to the angle between the track and the heading, as would be expected in birds trying to maintain a constant track direction. Mean sustainable climb rate (during (greater than or equal to) 240 s) was 1.4+/-0.31 m s-1 (mean +/- s.d., N=13), which is rather a high rate for a bird the size of an Eleonora's falcon. The climb rate was used to calculate maximum load-carrying capacity and maximum sustained horizontal flapping flight speed. The mean wingbeat frequency during powered climbing flight was 4.68 Hz, which was used to estimate the mass-specific muscle work. When falcons were leaving the colony for offshore hunting, they gained altitude by slope-soaring when there was an onshore wind. We formulated a simple criterion for the required gliding-flight rate of climb during an initial slope-soaring episode when minimizing the energy cost of reaching a certain altitude far out over the sea (which is where the prey is to be found

  16. Forward flight of birds revisited. Part 1: aerodynamics and performance.

    PubMed

    Iosilevskii, G

    2014-10-01

    This paper is the first part of the two-part exposition, addressing performance and dynamic stability of birds. The aerodynamic model underlying the entire study is presented in this part. It exploits the simplicity of the lifting line approximation to furnish the forces and moments acting on a single wing in closed analytical forms. The accuracy of the model is corroborated by comparison with numerical simulations based on the vortex lattice method. Performance is studied both in tethered (as on a sting in a wind tunnel) and in free flights. Wing twist is identified as the main parameter affecting the flight performance-at high speeds, it improves efficiency, the rate of climb and the maximal level speed; at low speeds, it allows flying slower. It is demonstrated that, under most circumstances, the difference in performance between tethered and free flights is small. PMID:26064548

  17. Forward flight of birds revisited. Part 1: aerodynamics and performance.

    PubMed

    Iosilevskii, G

    2014-10-01

    This paper is the first part of the two-part exposition, addressing performance and dynamic stability of birds. The aerodynamic model underlying the entire study is presented in this part. It exploits the simplicity of the lifting line approximation to furnish the forces and moments acting on a single wing in closed analytical forms. The accuracy of the model is corroborated by comparison with numerical simulations based on the vortex lattice method. Performance is studied both in tethered (as on a sting in a wind tunnel) and in free flights. Wing twist is identified as the main parameter affecting the flight performance-at high speeds, it improves efficiency, the rate of climb and the maximal level speed; at low speeds, it allows flying slower. It is demonstrated that, under most circumstances, the difference in performance between tethered and free flights is small.

  18. Aerodynamics and flight performance of flapping wing micro air vehicles

    NASA Astrophysics Data System (ADS)

    Silin, Dmytro

    Research efforts in this dissertation address aerodynamics and flight performance of flapping wing aircraft (ornithopters). Flapping wing aerodynamics was studied for various wing sizes, flapping frequencies, airspeeds, and angles of attack. Tested wings possessed both camber and dihedral. Experimental results were analyzed in the framework of momentum theory. Aerodynamic coefficients and Reynolds number are defined using a reference velocity as a vector sum of a freestream velocity and a strokeaveraged wingtip velocity. No abrupt stall was observed in flapping wings for the angle of attack up to vertical. If was found that in the presence of a freestream lift of a flapping wing in vertical position is higher than the propulsive thrust. Camber and dihedral increased both lift and thrust. Lift-curve slope, and maximum lift coefficient increased with Reynolds number. Performance model of an ornithopter was developed. Parametric studies of steady level flight of ornithopters with, and without a tail were performed. A model was proposed to account for wing-sizing effects during hover. Three micro ornithopter designs were presented. Ornithopter flight testing and data-logging was performed using a telemetry acquisition system, as well as motion capture technology. The ability of ornithopter for a sustained flight and a presence of passive aerodynamic stability were shown. Flight data were compared with performance simulations. Close agreement in terms of airspeed and flapping frequency was observed.

  19. Flight Performance of the Balloon Gondola Solar Pointing System

    NASA Technical Reports Server (NTRS)

    Simpson, Joel; Hall, Kenneth

    1999-01-01

    The NASA Solar Pointing System (SPS) has made two operational flights since its test flight in April of 1997. This pointing device was conceived and designed to provide ultra-low power gondola pointing primarily for directing gondola-fixed solar panels toward the sun. While typically consuming less than 5 watts, the system is capable of suspending and pointing up to 3400 kg, The SPS has logged over 25 days of mostly continuous operation. The performance data, including power consumption and pointing accuracy for these two successful flights is presented and analyzed. The data is compared to predictions and test flight data Suggestions for further developments and applications including Ultra-Long Duration Balloon (ULDB) are discussed.

  20. Preliminary supersonic flight test evaluation of performance seeking control

    NASA Technical Reports Server (NTRS)

    Orme, John S.; Gilyard, Glenn B.

    1993-01-01

    Digital flight and engine control, powerful onboard computers, and sophisticated controls techniques may improve aircraft performance by maximizing fuel efficiency, maximizing thrust, and extending engine life. An adaptive performance seeking control system for optimizing the quasi-steady state performance of an F-15 aircraft was developed and flight tested. This system has three optimization modes: minimum fuel, maximum thrust, and minimum fan turbine inlet temperature. Tests of the minimum fuel and fan turbine inlet temperature modes were performed at a constant thrust. Supersonic single-engine flight tests of the three modes were conducted using varied after burning power settings. At supersonic conditions, the performance seeking control law optimizes the integrated airframe, inlet, and engine. At subsonic conditions, only the engine is optimized. Supersonic flight tests showed improvements in thrust of 9 percent, increases in fuel savings of 8 percent, and reductions of up to 85 deg R in turbine temperatures for all three modes. The supersonic performance seeking control structure is described and preliminary results of supersonic performance seeking control tests are given. These findings have implications for improving performance of civilian and military aircraft.

  1. Flight performance of the Voyager electrical power system

    SciTech Connect

    Packard, L.A.

    1981-01-01

    In this paper the Voyager power subsystem is described, and its flight performance to date is discussed. Of particular interest are the performance of the primary power source radioisotope thermoelectric generators (RTGs), the autonomous operation features of the power system, and the load management strategy.

  2. Orion Launch Abort System Performance During Exploration Flight Test 1

    NASA Technical Reports Server (NTRS)

    McCauley, Rachel; Davidson, John; Gonzalez, Guillo

    2015-01-01

    The Orion Launch Abort System Office is taking part in flight testing to enable certification that the system is capable of delivering the astronauts aboard the Orion Crew Module to a safe environment during both nominal and abort conditions. Orion is a NASA program, Exploration Flight Test 1 is managed and led by the Orion prime contractor, Lockheed Martin, and launched on a United Launch Alliance Delta IV Heavy rocket. Although the Launch Abort System Office has tested the critical systems to the Launch Abort System jettison event on the ground, the launch environment cannot be replicated completely on Earth. During Exploration Flight Test 1, the Launch Abort System was to verify the function of the jettison motor to separate the Launch Abort System from the crew module so it can continue on with the mission. Exploration Flight Test 1 was successfully flown on December 5, 2014 from Cape Canaveral Air Force Station's Space Launch Complex 37. This was the first flight test of the Launch Abort System preforming Orion nominal flight mission critical objectives. The abort motor and attitude control motors were inert for Exploration Flight Test 1, since the mission did not require abort capabilities. Exploration Flight Test 1 provides critical data that enable engineering to improve Orion's design and reduce risk for the astronauts it will protect as NASA continues to move forward on its human journey to Mars. The Exploration Flight Test 1 separation event occurred at six minutes and twenty seconds after liftoff. The separation of the Launch Abort System jettison occurs once Orion is safely through the most dynamic portion of the launch. This paper will present a brief overview of the objectives of the Launch Abort System during a nominal Orion flight. Secondly, the paper will present the performance of the Launch Abort System at it fulfilled those objectives. The lessons learned from Exploration Flight Test 1 and the other Flight Test Vehicles will certainly

  3. Forward flight of birds revisited. Part 1: aerodynamics and performance

    PubMed Central

    Iosilevskii, G.

    2014-01-01

    This paper is the first part of the two-part exposition, addressing performance and dynamic stability of birds. The aerodynamic model underlying the entire study is presented in this part. It exploits the simplicity of the lifting line approximation to furnish the forces and moments acting on a single wing in closed analytical forms. The accuracy of the model is corroborated by comparison with numerical simulations based on the vortex lattice method. Performance is studied both in tethered (as on a sting in a wind tunnel) and in free flights. Wing twist is identified as the main parameter affecting the flight performance—at high speeds, it improves efficiency, the rate of climb and the maximal level speed; at low speeds, it allows flying slower. It is demonstrated that, under most circumstances, the difference in performance between tethered and free flights is small. PMID:26064548

  4. High performance flight simulation at NASA Langley

    NASA Technical Reports Server (NTRS)

    Cleveland, Jeff I., II; Sudik, Steven J.; Grove, Randall D.

    1992-01-01

    The use of real-time simulation at the NASA facility is reviewed specifically with regard to hardware, software, and the use of a fiberoptic-based digital simulation network. The network hardware includes supercomputers that support 32- and 64-bit scalar, vector, and parallel processing technologies. The software include drivers, real-time supervisors, and routines for site-configuration management and scheduling. Performance specifications include: (1) benchmark solution at 165 sec for a single CPU; (2) a transfer rate of 24 million bits/s; and (3) time-critical system responsiveness of less than 35 msec. Simulation applications include the Differential Maneuvering Simulator, Transport Systems Research Vehicle simulations, and the Visual Motion Simulator. NASA is shown to be in the final stages of developing a high-performance computing system for the real-time simulation of complex high-performance aircraft.

  5. Orion Launch Abort System Performance on Exploration Flight Test 1

    NASA Technical Reports Server (NTRS)

    McCauley, R.; Davidson, J.; Gonzalez, Guillermo

    2015-01-01

    This paper will present an overview of the flight test objectives and performance of the Orion Launch Abort System during Exploration Flight Test-1. Exploration Flight Test-1, the first flight test of the Orion spacecraft, was managed and led by the Orion prime contractor, Lockheed Martin, and launched atop a United Launch Alliance Delta IV Heavy rocket. This flight test was a two-orbit, high-apogee, high-energy entry, low-inclination test mission used to validate and test systems critical to crew safety. This test included the first flight test of the Launch Abort System preforming Orion nominal flight mission critical objectives. NASA is currently designing and testing the Orion Multi-Purpose Crew Vehicle (MPCV). Orion will serve as NASA's new exploration vehicle to carry astronauts to deep space destinations and safely return them to earth. The Orion spacecraft is composed of four main elements: the Launch Abort System, the Crew Module, the Service Module, and the Spacecraft Adapter (Fig. 1). The Launch Abort System (LAS) provides two functions; during nominal launches, the LAS provides protection for the Crew Module from atmospheric loads and heating during first stage flight and during emergencies provides a reliable abort capability for aborts that occur within the atmosphere. The Orion Launch Abort System (LAS) consists of an Abort Motor to provide the abort separation from the Launch Vehicle, an Attitude Control Motor to provide attitude and rate control, and a Jettison Motor for crew module to LAS separation (Fig. 2). The jettison motor is used during a nominal launch to separate the LAS from the Launch Vehicle (LV) early in the flight of the second stage when it is no longer needed for aborts and at the end of an LAS abort sequence to enable deployment of the crew module's Landing Recovery System. The LAS also provides a Boost Protective Cover fairing that shields the crew module from debris and the aero-thermal environment during ascent. Although the

  6. Mass distribution and performance of free flight models

    NASA Technical Reports Server (NTRS)

    Scherberg, Max; Rhode, R V

    1927-01-01

    This note deals with the mass distribution and performance of free flight models. An airplane model which is to be used in free flight tests must be balanced dynamically as well as statically, e.g., it must not only have a given weight and the proper center of gravity but also a given ellipsoid of inertia. Equations which relate the motions of an airplane and its model are given. Neglecting scale effect, these equations may be used to predict the performance of an airplane, under the action of gravity alone, from data obtained in making dropping tests of a correctly balanced model.

  7. Preliminary flight evaluation of an engine performance optimization algorithm

    NASA Technical Reports Server (NTRS)

    Lambert, H. H.; Gilyard, G. B.; Chisholm, J. D.; Kerr, L. J.

    1991-01-01

    A performance seeking control (PSC) algorithm has undergone initial flight test evaluation in subsonic operation of a PW 1128 engined F-15. This algorithm is designed to optimize the quasi-steady performance of an engine for three primary modes: (1) minimum fuel consumption; (2) minimum fan turbine inlet temperature (FTIT); and (3) maximum thrust. The flight test results have verified a thrust specific fuel consumption reduction of 1 pct., up to 100 R decreases in FTIT, and increases of as much as 12 pct. in maximum thrust. PSC technology promises to be of value in next generation tactical and transport aircraft.

  8. Flight test and performance of a nongated active television system

    NASA Astrophysics Data System (ADS)

    Miller, John L.; Kelly, John M.; Ehlen, Jon

    1999-07-01

    A series of helicopter flight tests were conducted to test the feasibility and assess the performance of a gimbaled active television system and co-located IR system. The laser light was provided to the gimbal via a fiber optic cable from a remote semiconductor laser. A high power, divergent beam was used to illuminate a scene providing enhanced performance in poor weather, the recording of registry and augmentation to existing night vision devices. The flight tests were conducted in clear-weather conditions over land and water. Additionally, a series of ground test were conducted.

  9. Into rude air: hummingbird flight performance in variable aerial environments.

    PubMed

    Ortega-Jimenez, V M; Badger, M; Wang, H; Dudley, R

    2016-09-26

    Hummingbirds are well known for their ability to sustain hovering flight, but many other remarkable features of manoeuvrability characterize the more than 330 species of trochilid. Most research on hummingbird flight has been focused on either forward flight or hovering in otherwise non-perturbed air. In nature, however, hummingbirds fly through and must compensate for substantial environmental perturbation, including heavy rain, unpredictable updraughts and turbulent eddies. Here, we review recent studies on hummingbirds flying within challenging aerial environments, and discuss both the direct and indirect effects of unsteady environmental flows such as rain and von Kármán vortex streets. Both perturbation intensity and the spatio-temporal scale of disturbance (expressed with respect to characteristic body size) will influence mechanical responses of volant taxa. Most features of hummingbird manoeuvrability remain undescribed, as do evolutionary patterns of flight-related adaptation within the lineage. Trochilid flight performance under natural conditions far exceeds that of microair vehicles at similar scales, and the group as a whole presents many research opportunities for understanding aerial manoeuvrability.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'. PMID:27528777

  10. Bird or bat: comparing airframe design and flight performance.

    PubMed

    Hedenström, Anders; Johansson, L Christoffer; Spedding, Geoffrey R

    2009-03-01

    Birds and bats have evolved powered flight independently, which makes a comparison of evolutionary 'design' solutions potentially interesting. In this paper we highlight similarities and differences with respect to flight characteristics, including morphology, flight kinematics, aerodynamics, energetics and flight performance. Birds' size range is 0.002-15 kg and bats' size range is 0.002-1.5 kg. The wingbeat kinematics differ between birds and bats, which is mainly due to the different flexing of the wing during the upstroke and constraints by having a wing of feathers and a skin membrane, respectively. Aerodynamically, bats appear to generate a more complex wake than birds. Bats may be more closely adapted for slow maneuvering flight than birds, as required by their aerial hawking foraging habits. The metabolic rate and power required to fly are similar among birds and bats. Both groups share many characteristics associated with flight, such as for example low amounts of DNA in cells, the ability to accumulate fat as fuel for hibernation and migration, and parallel habitat-related wing shape adaptations. PMID:19258691

  11. Into rude air: hummingbird flight performance in variable aerial environments.

    PubMed

    Ortega-Jimenez, V M; Badger, M; Wang, H; Dudley, R

    2016-09-26

    Hummingbirds are well known for their ability to sustain hovering flight, but many other remarkable features of manoeuvrability characterize the more than 330 species of trochilid. Most research on hummingbird flight has been focused on either forward flight or hovering in otherwise non-perturbed air. In nature, however, hummingbirds fly through and must compensate for substantial environmental perturbation, including heavy rain, unpredictable updraughts and turbulent eddies. Here, we review recent studies on hummingbirds flying within challenging aerial environments, and discuss both the direct and indirect effects of unsteady environmental flows such as rain and von Kármán vortex streets. Both perturbation intensity and the spatio-temporal scale of disturbance (expressed with respect to characteristic body size) will influence mechanical responses of volant taxa. Most features of hummingbird manoeuvrability remain undescribed, as do evolutionary patterns of flight-related adaptation within the lineage. Trochilid flight performance under natural conditions far exceeds that of microair vehicles at similar scales, and the group as a whole presents many research opportunities for understanding aerial manoeuvrability.This article is part of the themed issue 'Moving in a moving medium: new perspectives on flight'.

  12. Consistency across Repeated Eyewitness Interviews: Contrasting Police Detectives’ Beliefs with Actual Eyewitness Performance

    PubMed Central

    Krix, Alana C.; Sauerland, Melanie; Lorei, Clemens; Rispens, Imke

    2015-01-01

    In the legal system, inconsistencies in eyewitness accounts are often used to discredit witnesses’ credibility. This is at odds with research findings showing that witnesses frequently report reminiscent details (details previously unrecalled) at an accuracy rate that is nearly as high as for consistently recalled information. The present study sought to put the validity of beliefs about recall consistency to a test by directly comparing them with actual memory performance in two recall attempts. All participants watched a film of a staged theft. Subsequently, the memory group (N = 84) provided one statement immediately after the film (either with the Self-Administered Interview or free recall) and one after a one-week delay. The estimation group (N = 81) consisting of experienced police detectives estimated the recall performance of the memory group. The results showed that actual recall performance was consistently underestimated. Also, a sharp decline of memory performance between recall attempts was assumed by the estimation group whereas actual accuracy remained stable. While reminiscent details were almost as accurate as consistent details, they were estimated to be much less accurate than consistent information and as inaccurate as direct contradictions. The police detectives expressed a great concern that reminiscence was the result of suggestive external influences. In conclusion, it seems that experienced police detectives hold many implicit beliefs about recall consistency that do not correspond with actual recall performance. Recommendations for police trainings are provided. These aim at fostering a differentiated view on eyewitness performance and the inclusion of more comprehensive classes on human memory structure. PMID:25695428

  13. Aging Enhances Indirect Flight Muscle Fiber Performance yet Decreases Flight Ability in Drosophila

    SciTech Connect

    Miller, Mark S.; Lekkas, Panagiotis; Braddock, Joan M.; Farman, Gerrie P.; Ballif, Bryan A.; Irving, Thomas C.; Maughan, David W.; Vigoreaux, Jim O.

    2008-10-02

    We investigated the effects of aging on Drosophila melanogaster indirect flight muscle from the whole organism to the actomyosin cross-bridge. Median-aged (49-day-old) flies were flight impaired, had normal myofilament number and packing, barely longer sarcomeres, and slight mitochondrial deterioration compared with young (3-day-old) flies. Old (56-day-old) flies were unable to beat their wings, had deteriorated ultrastructure with severe mitochondrial damage, and their skinned fibers failed to activate with calcium. Small-amplitude sinusoidal length perturbation analysis showed median-aged indirect flight muscle fibers developed greater than twice the isometric force and power output of young fibers, yet cross-bridge kinetics were similar. Large increases in elastic and viscous moduli amplitude under active, passive, and rigor conditions suggest that median-aged fibers become stiffer longitudinally. Small-angle x-ray diffraction indicates that myosin heads move increasingly toward the thin filament with age, accounting for the increased transverse stiffness via cross-bridge formation. We propose that the observed protein composition changes in the connecting filaments, which anchor the thick filaments to the Z-disk, produce compensatory increases in longitudinal stiffness, isometric tension, power and actomyosin interaction in aging indirect flight muscle. We also speculate that a lack of MgATP due to damaged mitochondria accounts for the decreased flight performance.

  14. Thermal control surfaces experiment (SOO69) flight systems performance

    NASA Technical Reports Server (NTRS)

    Wilkes, Donald R.; Hummer, Leigh L.

    1991-01-01

    The thermal control surfaces experiment (TCSE) was the most complex hardware system aboard the Long Duration Exposure Facility (LDEF). The TCSE system consists of a scanning spectroreflectometer that measured test samples mounted on a rotatable carousel assembly. A microprocessor based data system controlled all aspects of TCSE system operation. Power was provided by four primary batteries. Flight measurement and housekeeping data were stored on a tape recorder for postflight analysis. The TCSE is a microcosm of complex electro-optical payloads being developed by NASA, DoD, and the aerospace community. The TCSE provides valuable data on the performance of these systems in space. The TCSE flight system and its excellent performance on the LDEF mission are described. A few operational anomalies were encountered and are discussed. Initial post-flight tests show that the TCSE system remains functional although some degradation in the optical measurements were observed. The results of these tests are also presented.

  15. PHARAO laser source flight model: Design and performances

    SciTech Connect

    Lévèque, T. Faure, B.; Esnault, F. X.; Delaroche, C.; Massonnet, D.; Grosjean, O.; Buffe, F.; Torresi, P.; Bomer, T.; Pichon, A.; Béraud, P.; Lelay, J. P.; Thomin, S.; Laurent, Ph.

    2015-03-15

    In this paper, we describe the design and the main performances of the PHARAO laser source flight model. PHARAO is a laser cooled cesium clock specially designed for operation in space and the laser source is one of the main sub-systems. The flight model presented in this work is the first remote-controlled laser system designed for spaceborne cold atom manipulation. The main challenges arise from mechanical compatibility with space constraints, which impose a high level of compactness, a low electric power consumption, a wide range of operating temperature, and a vacuum environment. We describe the main functions of the laser source and give an overview of the main technologies developed for this instrument. We present some results of the qualification process. The characteristics of the laser source flight model, and their impact on the clock performances, have been verified in operational conditions.

  16. Working memory and acquisition of implicit knowledge by imagery training, without actual task performance.

    PubMed

    Helene, A F; Xavier, G F

    2006-04-28

    This study investigated acquisition of a mirror-reading skill via imagery training, without the actual performance of a mirror-reading task. In experiment I, healthy volunteers simulated writing on an imaginary, transparent screen placed at eye level, which could be read by an experimenter facing the subject. Performance of this irrelevant motor task required the subject to imagine the letters inverted, as if seen in a mirror from their own point of view (imagery training). A second group performed the same imagery training interspersed with a complex, secondary spelling and counting task. A third, control, group simply wrote the words as they would normally appear from their own point of view. After training with 300 words, all subjects were tested in a mirror-reading task using 60 non-words, constructed according to acceptable letter combinations of the Portuguese language. Compared with control subjects, those exposed to imagery training, including those who switched between imagery and the complex task, exhibited shorter reading times in the mirror-reading task. Experiment II employed a 2 x 3 design, including two training conditions (imagery and actual mirror-reading) and three competing task conditions (a spelling and counting switching task, a visual working memory concurrent task, and no concurrent task). Training sessions were interspersed with mirror-reading testing sessions for non-words, allowing evaluation of the mirror-reading acquisition process during training. The subjects exposed to imagery training acquired the mirror-reading skill as quickly as those exposed to the actual mirror-reading task. Further, performance of concurrent tasks together with actual mirror-reading training severely disrupted mirror-reading skill acquisition; this interference effect was not seen in subjects exposed to imagery training and performance of the switching and the concurrent tasks. These results unequivocally show that acquisition of implicit skills by top

  17. Effects of alcohol on pilot performance in simulated flight

    NASA Technical Reports Server (NTRS)

    Billings, C. E.; Demosthenes, T.; White, T. R.; O'Hara, D. B.

    1991-01-01

    Ethyl alcohol's known ability to produce reliable decrements in pilot performance was used in a study designed to evaluate objective methods for assessing pilot performance. Four air carrier pilot volunteers were studied during eight simulated flights in a B727 simulator. Total errors increased linearly and significantly with increasing blood alcohol. Planning and performance errors, procedural errors and failures of vigilance each increased significantly in one or more pilots and in the group as a whole.

  18. Investigating the discrepancy between the predicted and actual energy performance of buildings

    NASA Astrophysics Data System (ADS)

    Demanuele, Christine

    The threat of climate change has increased the demand for energy efficiency in buildings, with various stakeholders requesting more accurate predictions of energy consumption, and energy consultants coming under increased pressure to guarantee the energy performance of buildings. This study aims to investigate the factors causing the discrepancy which currently exists between the predicted and actual energy performance of buildings, which will lead to a deeper understanding of this discrepancy and, ultimately, more accurate energy predictions. As part of this study, a non-domestic building in London was modelled and monitored, so as to identify the main contributors to the discrepancy between the predicted and actual energy consumption. In addition, sensitivity analysis was carried out on a number of input variables to establish the set of influential parameters, and to determine whether using such techniques would successfully predict the range in which building energy consumption is likely to fall. The results show that the uncertainty calculated from differential sensitivity analysis encompasses the actual energy performance of the building. The most variable and influential parameters are those which are controlled by occupants, therefore it is paramount that management and occupants are well-informed about the building operation for energy targets to be achieved. Although the sensitivity analysis methods employed are impractical for commercial use, it is possible to develop simpler methods, encompassing all stages of building design and operation, which would decrease the discrepancy between the actual and predicted energy performance of buildings. Such techniques would be invaluable to energy consultants, for whom the cost resting on uncertainties in predictions is substantial due to more demanding clients and fines liable to be paid if energy predictions go wrong. A better understanding of the discrepancy, together with more accurate predictions, would

  19. Study on Actual Performance and Exhaust Heat of Air-conditioner Concerning Heat Island Problem

    NASA Astrophysics Data System (ADS)

    Shinomiya, Naruaki; Nishimura, Nobuya; Iyota, Hiroyuki; Kurata, Satoru

    A novel simple measuring method of actual performance of room air-conditioners by neural net work analysis (NNW) has been developed. The actual performance for a long term which is difficult to be measured by air enthalpy method is able to be measured easily by this method. In other words, actual performance of room air-conditioners can be measured by the proposed NNW method without measurement of air flow at indoor unit and outdoor unit which changes due to clogging of heat exchanger by dust. In order to gather data for training and testing the proposed NNW method, the room air-conditioner for experiment was set up. Inputs to NNW are outdoor temperature, indoor temperature, indoor wet-bulb temperature, inlet temperature of evaporator, outlet temperature of evaporator, condensation temperature and power consumption. The output from NNW is COP. The COP by NNW method has mean errors under 2.8% in quasi-steady operation condition and has mean errors under 4.6% in unsteady operation condition, compared to the COP of air enthalpy method. Results show that the COP of air conditioners can be measured easily for a long term using NNW within a high degree of accuracy.

  20. Jump-Down Performance Alterations after Space Flight

    NASA Technical Reports Server (NTRS)

    Reschke, M. F.; Kofman, I. S.; Cerisano, J. M.; Fisher, E. A.; Peters, B. T.; Miller, C. A.; Harm, D. L.; Bloomberg, J. J.

    2011-01-01

    INTRODUCTION: Successful jump performance requires functional coordination of visual, vestibular, and somatosensory systems, which are affected by prolonged exposure to microgravity. Astronauts returning from space flight exhibit impaired ability to coordinate effective landing strategies when jumping from a platform to the ground. This study compares jump strategies used by astronauts before and after flight, changes to those strategies within a test session, and recoveries in jump-down performance parameters across several postflight test sessions. These data were obtained as part of an ongoing interdisciplinary study (Functional Task Test, FTT) designed to evaluate both astronaut postflight functional performance and related physiological changes. METHODS: Seven astronauts from short-duration (Shuttle) and three from long-duration (International Space Station) flights performed 3 two-footed jumps from a platform 30 cm high onto a force plate that measured the ground reaction forces and center-of-pressure displacement from the landings. Neuromuscular activation data were collected from the medial gastrocnemius and anterior tibialis of both legs using surface electromyography electrodes. Two load cells in the platform measured the load exerted by each foot during the takeoff phase of the jump. Data were collected in 2 preflight sessions, on landing day (Shuttle only), and 1, 6, and 30 days after flight. RESULTS: Postural settling time was significantly increased on the first postflight test session and many of the astronauts tested were unable to maintain balance on their first jump landing but recovered by the third jump, showing a learning progression in which performance improvements could be attributed to adjustments in takeoff or landing strategy. Jump strategy changes were evident in reduced air time (time between takeoff and landing) and also in increased asymmetry in foot latencies on takeoff. CONCLUSIONS: The test results revealed significant decrements

  1. Update of the IUE battery in-flight performance

    NASA Technical Reports Server (NTRS)

    Tiller, S. E.

    1980-01-01

    The in-flight performance data of two 17-cell, 6-ampere-hour nickel cadmium spacecraft batteries are presented covering 22 months of operation. Fluctuations in the battery voltage and the battery temperature are presented for spacecraft movement throughout a beta range of 0 to 130 deg. The battery discharge voltages during the peak eclipse seasons, daily seasons, and daily eclipse periods are noted. Finally, the spacecraft data are compared to data from a 6-ampere-hour test pack and test flight data.

  2. Simulations on time-of-flight ERDA spectrometer performance

    NASA Astrophysics Data System (ADS)

    Julin, Jaakko; Arstila, Kai; Sajavaara, Timo

    2016-08-01

    The performance of a time-of-flight spectrometer consisting of two timing detectors and an ionization chamber energy detector has been studied using Monte Carlo simulations for the recoil creation and ion transport in the sample and detectors. The ionization chamber pulses have been calculated using Shockley-Ramo theorem and the pulse processing of a digitizing data acquisition setup has been modeled. Complete time-of-flight-energy histograms were simulated under realistic experimental conditions. The simulations were used to study instrumentation related effects in coincidence timing and position sensitivity, such as background in time-of-flight-energy histograms. Corresponding measurements were made and simulated results are compared with data collected using the digitizing setup.

  3. Simulations on time-of-flight ERDA spectrometer performance.

    PubMed

    Julin, Jaakko; Arstila, Kai; Sajavaara, Timo

    2016-08-01

    The performance of a time-of-flight spectrometer consisting of two timing detectors and an ionization chamber energy detector has been studied using Monte Carlo simulations for the recoil creation and ion transport in the sample and detectors. The ionization chamber pulses have been calculated using Shockley-Ramo theorem and the pulse processing of a digitizing data acquisition setup has been modeled. Complete time-of-flight-energy histograms were simulated under realistic experimental conditions. The simulations were used to study instrumentation related effects in coincidence timing and position sensitivity, such as background in time-of-flight-energy histograms. Corresponding measurements were made and simulated results are compared with data collected using the digitizing setup. PMID:27587115

  4. Mir Cooperative Solar Array Flight Performance Data and Computational Analysis

    NASA Technical Reports Server (NTRS)

    Kerslake, Thomas W.; Hoffman, David J.

    1997-01-01

    The Mir Cooperative Solar Array (MCSA) was developed jointly by the United States (US) and Russia to provide approximately 6 kW of photovoltaic power to the Russian space station Mir. The MCSA was launched to Mir in November 1995 and installed on the Kvant-1 module in May 1996. Since the MCSA photovoltaic panel modules (PPMs) are nearly identical to those of the International Space Station (ISS) photovoltaic arrays, MCSA operation offered an opportunity to gather multi-year performance data on this technology prior to its implementation on ISS. Two specially designed test sequences were executed in June and December 1996 to measure MCSA performance. Each test period encompassed 3 orbital revolutions whereby the current produced by the MCSA channels was measured. The temperature of MCSA PPMs was also measured. To better interpret the MCSA flight data, a dedicated FORTRAN computer code was developed to predict the detailed thermal-electrical performance of the MCSA. Flight data compared very favorably with computational performance predictions. This indicated that the MCSA electrical performance was fully meeting pre-flight expectations. There were no measurable indications of unexpected or precipitous MCSA performance degradation due to contamination or other causes after 7 months of operation on orbit. Power delivered to the Mir bus was lower than desired as a consequence of the retrofitted power distribution cabling. The strong correlation of experimental and computational results further bolsters the confidence level of performance codes used in critical ISS electric power forecasting. In this paper, MCSA flight performance tests are described as well as the computational modeling behind the performance predictions.

  5. Hawkmoth flight performance in tornado-like whirlwind vortices.

    PubMed

    Ortega-Jimenez, Victor Manuel; Mittal, Rajat; Hedrick, Tyson L

    2014-06-01

    Vertical vortex systems such as tornadoes dramatically affect the flight control and stability of aircraft. However, the control implications of smaller scale vertically oriented vortex systems for small fliers such as animals or micro-air vehicles are unknown. Here we examined the flapping kinematics and body dynamics of hawkmoths performing hovering flights (controls) and maintaining position in three different whirlwind intensities with transverse horizontal velocities of 0.7, 0.9 and 1.2 m s(-1), respectively, generated in a vortex chamber. The average and standard deviation of yaw and pitch were respectively increased and reduced in comparison with hovering flights. Average roll orientation was unchanged in whirlwind flights but was more variable from wingbeat to wingbeat than in hovering. Flapping frequency remained unchanged. Wingbeat amplitude was lower and the average stroke plane angle was higher. Asymmetry was found in the angle of attack between right and left wings during both downstroke and upstroke at medium and high vortex intensities. Thus, hawkmoth flight control in tornado-like vortices is achieved by a suite of asymmetric and symmetric changes to wingbeat amplitude, stroke plane angle and principally angle of attack.

  6. Hawkmoth flight performance in tornado-like whirlwind vortices.

    PubMed

    Ortega-Jimenez, Victor Manuel; Mittal, Rajat; Hedrick, Tyson L

    2014-06-01

    Vertical vortex systems such as tornadoes dramatically affect the flight control and stability of aircraft. However, the control implications of smaller scale vertically oriented vortex systems for small fliers such as animals or micro-air vehicles are unknown. Here we examined the flapping kinematics and body dynamics of hawkmoths performing hovering flights (controls) and maintaining position in three different whirlwind intensities with transverse horizontal velocities of 0.7, 0.9 and 1.2 m s(-1), respectively, generated in a vortex chamber. The average and standard deviation of yaw and pitch were respectively increased and reduced in comparison with hovering flights. Average roll orientation was unchanged in whirlwind flights but was more variable from wingbeat to wingbeat than in hovering. Flapping frequency remained unchanged. Wingbeat amplitude was lower and the average stroke plane angle was higher. Asymmetry was found in the angle of attack between right and left wings during both downstroke and upstroke at medium and high vortex intensities. Thus, hawkmoth flight control in tornado-like vortices is achieved by a suite of asymmetric and symmetric changes to wingbeat amplitude, stroke plane angle and principally angle of attack. PMID:24855051

  7. Flight performance and competitive displacement of hummingbirds across elevational gradients.

    PubMed

    Altshuler, Douglas L

    2006-02-01

    Hummingbirds, with their impressive flight ability and competitive aerial contests, make ideal candidates for applying a mechanistic approach to studying community structure. Because flight costs are influenced by abiotic factors that change systematically with altitude, elevational gradients provide natural experiments for hummingbird flight ecology. Prior attempts relied on wing disc loading (WDL) as a morphological surrogate for flight performance, but recent analyses indicate this variable does not influence either territorial behavior or competitive ability. Aerodynamic power, by contrast, can be derived from direct measurements of performance and, like WDL, declines across elevations. Here, I demonstrate for a diverse community of Andean hummingbirds that burst aerodynamic power is associated with territorial behavior. Along a second elevational gradient in Colorado, I tested for correlated changes in aerodynamic power and competitive ability in two territorial hummingbirds. This behavioral analysis revealed that short-winged Selasphorus rufus males are dominant over long-winged Selasphorus platycercus males at low elevations but that the roles are reversed at higher elevations. Several lines of evidence support the hypothesis that the burst rather than sustained aerodynamic performance mediates competitive ability at high elevation. A minimum value for burst power may be required for successful competition, but other maneuverability features gain importance when all competitors have sufficient muscle power, as occurs at low elevations.

  8. Performance of a blood chemistry analyzer during parabolic flight

    NASA Technical Reports Server (NTRS)

    Spooner, Brian S.; Claassen, Dale E.; Guikema, James A.

    1990-01-01

    The performance of the Vision System Blood Analyzer during parabolic flight on a KC-135 aircraft (NASA 930) has been tested. This fully automated instrument performed flawlessly in these trials, demonstrating its potential for efficient, reliable use in a microgravity environment. In addition to instrument capability, it is demonstrated that investigators could readily fill specially modified test packs with fluid during zero gravity, and that filled test packs could be easily loaded into VISION during an episode of microgravity.

  9. In-Flight Performance of Wide Field Camera 3

    NASA Technical Reports Server (NTRS)

    Kimble, Randy

    2010-01-01

    Wide Field Camera 3 (WFC3), a powerful new UVNisible/IR imager, was installed into HST during Servicing Mission 4. After a successful commissioning in the Servicing Mission Orbital Verification program, WFC3 has been engaged in an exciting program of scientific observations. I review here the in-flight scientific performance of the instrument, addressing such topics as image quality, sensitivity, detector performance, and stability.

  10. Performance of a blood chemistry analyzer during parabolic flight.

    PubMed

    Spooner, B S; Claassen, D E; Guikema, J A

    1990-01-01

    We have tested the performance of the VISION System Blood Analyzer, produced by Abbott Laboratories, during parabolic flight on a KC-135 aircraft (NASA 930). This fully automated instrument performed flawlessly in these trials, demonstrating its potential for efficient, reliable use in a microgravity environment. In addition to instrument capability, we demonstrated that investigators could readily fill specially modified test packs with fluid during zero gravity, and that filled test packs could be easily loaded into VISION during an episode of microgravity.

  11. Electrolysis Performance Improvement Concept Study (EPICS) Flight Experiment-Reflight

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.

    1997-01-01

    The Electrolysis Performance Improvement Concept Study (EPICS) is a flight experiment to demonstrate and validate in a microgravity environment the Static Feed Electrolyzer (SFE) concept which was selected for the use aboard the International Space Station (ISS) for oxygen (O2) generation. It also is to investigate the impact of microgravity on electrochemical cell performance. Electrochemical cells are important to the space program because they provide an efficient means of generating O2 and hydrogen (H2) in space. Oxygen and H2 are essential not only for the survival of humans in space but also for the efficient and economical operation of various space systems. Electrochemical cells can reduce the mass, volume and logistical penalties associated with resupply and storage by generating and/or consuming these gases in space. An initial flight of the EPICS was conducted aboard STS-69 from September 7 to 8, 1995. A temperature sensor characteristics shift and a missing line of software code resulted in only partial success of this initial flight. Based on the review and recommendations of a National Aeronautics and Space Administration (NASA) Johnson Space Center (JSC) review team a reflight activity was initiated to obtain the remaining desired results, not achieved during the initial flight.

  12. Description and Flight Performance Results of the WASP Sounding Rocket

    NASA Technical Reports Server (NTRS)

    De Pauw, J. F.; Steffens, L. E.; Yuska, J. A.

    1968-01-01

    A general description of the design and construction of the WASP sounding rocket and of the performance of its first flight are presented. The purpose of the flight test was to place the 862-pound (391-kg) spacecraft above 250 000 feet (76.25 km) on free-fall trajectory for at least 6 minutes in order to study the effect of "weightlessness" on a slosh dynamics experiment. The WASP sounding rocket fulfilled its intended mission requirements. The sounding rocket approximately followed a nominal trajectory. The payload was in free fall above 250 000 feet (76.25 km) for 6.5 minutes and reached an apogee altitude of 134 nautical miles (248 km). Flight data including velocity, altitude, acceleration, roll rate, and angle of attack are discussed and compared to nominal performance calculations. The effect of residual burning of the second stage motor is analyzed. The flight vibration environment is presented and analyzed, including root mean square (RMS) and power spectral density analysis.

  13. APMS 3.0 Flight Analyst Guide: Aviation Performance Measuring System

    NASA Technical Reports Server (NTRS)

    Jay, Griff; Prothero, Gary; Romanowski, Timothy; Lynch, Robert; Lawrence, Robert; Rosenthal, Loren

    2004-01-01

    The Aviation Performance Measuring System (APMS) is a method-embodied in software-that uses mathematical algorithms and related procedures to analyze digital flight data extracted from aircraft flight data recorders. APMS consists of an integrated set of tools used to perform two primary functions: a) Flight Data Importation b) Flight Data Analysis.

  14. An insight into actual energy use and its drivers in high-performance buildings

    DOE PAGES

    Li, Cheng; Hong, Tianzhen; Yan, Da

    2014-07-12

    Using portfolio analysis and individual detailed case studies, we studied the energy performance and drivers of energy use in 51 high-performance office buildings in the U.S., Europe, China, and other parts of Asia. Portfolio analyses revealed that actual site energy use intensity (EUI) of the study buildings varied by a factor of as much as 11, indicating significant variation in real energy use in HPBs worldwide. Nearly half of the buildings did not meet the American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) Standard 90.1-2004 energy target, raising questions about whether a building’s certification as high performing accuratelymore » indicates that a building is energy efficient and suggesting that improvement in the design and operation of HPBs is needed to realize their energy-saving potential. We studied the influence of climate, building size, and building technologies on building energy performance and found that although all are important, none are decisive factors in building energy use. EUIs were widely scattered in all climate zones. There was a trend toward low energy use in small buildings, but the correlation was not absolute; some small HPBs exhibited high energy use, and some large HPBs exhibited low energy use. We were unable to identify a set of efficient technologies that correlated directly to low EUIs. In two case studies, we investigated the influence of occupant behavior as well as operation and maintenance on energy performance and found that both play significant roles in realizing energy savings. We conclude that no single factor determines the actual energy performance of HPBs, and adding multiple efficient technologies does not necessarily improve building energy performance; therefore, an integrated design approach that takes account of climate, technology, occupant behavior, and operations and maintenance practices should be implemented to maximize energy savings in HPBs. As a result, these

  15. An insight into actual energy use and its drivers in high-performance buildings

    SciTech Connect

    Li, Cheng; Hong, Tianzhen; Yan, Da

    2014-07-12

    Using portfolio analysis and individual detailed case studies, we studied the energy performance and drivers of energy use in 51 high-performance office buildings in the U.S., Europe, China, and other parts of Asia. Portfolio analyses revealed that actual site energy use intensity (EUI) of the study buildings varied by a factor of as much as 11, indicating significant variation in real energy use in HPBs worldwide. Nearly half of the buildings did not meet the American Society of Heating, Refrigerating, and Air Conditioning Engineers (ASHRAE) Standard 90.1-2004 energy target, raising questions about whether a building’s certification as high performing accurately indicates that a building is energy efficient and suggesting that improvement in the design and operation of HPBs is needed to realize their energy-saving potential. We studied the influence of climate, building size, and building technologies on building energy performance and found that although all are important, none are decisive factors in building energy use. EUIs were widely scattered in all climate zones. There was a trend toward low energy use in small buildings, but the correlation was not absolute; some small HPBs exhibited high energy use, and some large HPBs exhibited low energy use. We were unable to identify a set of efficient technologies that correlated directly to low EUIs. In two case studies, we investigated the influence of occupant behavior as well as operation and maintenance on energy performance and found that both play significant roles in realizing energy savings. We conclude that no single factor determines the actual energy performance of HPBs, and adding multiple efficient technologies does not necessarily improve building energy performance; therefore, an integrated design approach that takes account of climate, technology, occupant behavior, and operations and maintenance practices should be implemented to maximize energy savings in HPBs. As a result, these findings are

  16. Real-time in-flight engine performance and health monitoring techniques for flight research application

    NASA Technical Reports Server (NTRS)

    Ray, Ronald J.; Hicks, John W.; Wichman, Keith D.

    1991-01-01

    Procedures for real time evaluation of the inflight health and performance of gas turbine engines and related systems were developed to enhance flight test safety and productivity. These techniques include the monitoring of the engine, the engine control system, thrust vectoring control system health, and the detection of engine stalls. Real time performance techniques were developed for the determination and display of inflight thrust and for aeroperformance drag polars. These new methods were successfully shown on various research aircraft at NASA-Dryden. The capability of NASA's Western Aeronautical Test Range and the advanced data acquisition systems were key factors for implementation and real time display of these methods.

  17. Post-Flight Analysis of the Guidance, Navigation, and Control Performance During Orion Exploration Flight Test 1

    NASA Technical Reports Server (NTRS)

    Barth, Andrew; Mamich, Harvey; Hoelscher, Brian

    2015-01-01

    The first test flight of the Orion Multi-Purpose Crew Vehicle presented additional challenges for guidance, navigation and control as compared to a typical re-entry from the International Space Station or other Low Earth Orbit. An elevated re-entry velocity and steeper flight path angle were chosen to achieve aero-thermal flight test objectives. New IMU's, a GPS receiver, and baro altimeters were flight qualified to provide the redundant navigation needed for human space flight. The guidance and control systems must manage the vehicle lift vector in order to deliver the vehicle to a precision, coastal, water landing, while operating within aerodynamic load, reaction control system, and propellant constraints. Extensive pre-flight six degree-of-freedom analysis was performed that showed mission success for the nominal mission as well as in the presence of sensor and effector failures. Post-flight reconstruction analysis of the test flight is presented in this paper to show whether that all performance metrics were met and establish how well the pre-flight analysis predicted the in-flight performance.

  18. In-flight performance optimization for rotorcraft with redundant controls

    NASA Astrophysics Data System (ADS)

    Ozdemir, Gurbuz Taha

    A conventional helicopter has limits on performance at high speeds because of the limitations of main rotor, such as compressibility issues on advancing side or stall issues on retreating side. Auxiliary lift and thrust components have been suggested to improve performance of the helicopter substantially by reducing the loading on the main rotor. Such a configuration is called the compound rotorcraft. Rotor speed can also be varied to improve helicopter performance. In addition to improved performance, compound rotorcraft and variable RPM can provide a much larger degree of control redundancy. This additional redundancy gives the opportunity to further enhance performance and handling qualities. A flight control system is designed to perform in-flight optimization of redundant control effectors on a compound rotorcraft in order to minimize power required and extend range. This "Fly to Optimal" (FTO) control law is tested in simulation using the GENHEL model. A model of the UH-60, a compound version of the UH-60A with lifting wing and vectored thrust ducted propeller (VTDP), and a generic compound version of the UH-60A with lifting wing and propeller were developed and tested in simulation. A model following dynamic inversion controller is implemented for inner loop control of roll, pitch, yaw, heave, and rotor RPM. An outer loop controller regulates airspeed and flight path during optimization. A Golden Section search method was used to find optimal rotor RPM on a conventional helicopter, where the single redundant control effector is rotor RPM. The FTO builds off of the Adaptive Performance Optimization (APO) method of Gilyard by performing low frequency sweeps on a redundant control for a fixed wing aircraft. A method based on the APO method was used to optimize trim on a compound rotorcraft with several redundant control effectors. The controller can be used to optimize rotor RPM and compound control effectors through flight test or simulations in order to

  19. The effects of acoustic orientation cues on instrument flight performance in a flight simulator.

    PubMed

    Lyons, T J; Gillingham, K K; Teas, D C; Ercoline, W R; Oakley, C

    1990-08-01

    An initial version of an acoustic orientation instrument (AOI), in which airspeed was displayed as sound frequency, vertical velocity as amplitude modulation rate, and bank angle as right-left lateralization, was evaluated in a T-40 (Link GAT-3) motion-based simulator. In this study, 15 pilots and 3 non-pilots were taught to use the AOI and flew simulated flight profiles under conditions of neither visual nor auditory instrumentation (NO INPUT), AOI signals only (AOI), T-40 simulator instrumentation only (VISUAL), and T-40 simulator instrumentation with AOI signals (BOTH). Bank control under AOI conditions was significantly better than under the NO INPUT condition for all flying tasks. Bank control under VISUAL conditions was significantly better than under the AOI condition only during turning and when performing certain complex secondary tasks. The pilots' ability to use the AOI to control vertical velocity and airspeed was less apparent. However, during straight-and-level flight, turns, and descents the AOI provided the pilots with sufficient information to maintain controlled flight. Factors of potential importance in using sound to convey aircraft attitude and motion information are discussed.

  20. PERFORMANCE TESTING OF THE NEXT-GENERATION CSSX SOLVENT WITH ACTUAL SRS TANK WASTE

    SciTech Connect

    Pierce, R.; Peters, T.; Crowder, M.; Fink, S.

    2011-11-01

    Efforts are underway to qualify the Next-Generation Solvent for the Caustic Side Solvent Extraction (CSSX) process. Researchers at multiple national laboratories have been involved in this effort. As part of the effort to qualify the solvent extraction system at the Savannah River Site (SRS), SRNL performed a number of tests at various scales. First, SRNL completed a series of batch equilibrium, or Extraction-Scrub-Strip (ESS), tests. These tests used {approx}30 mL of Next-Generation Solvent and either actual SRS tank waste, or waste simulant solutions. The results from these cesium mass transfer tests were used to predict solvent behavior under a number of conditions. At a larger scale, SRNL assembled 12 stages of 2-cm (diameter) centrifugal contactors. This rack of contactors is structurally similar to one tested in 2001 during the demonstration of the baseline CSSX process. Assembly and mechanical testing found no issues. SRNL performed a nonradiological test using 35 L of cesium-spiked caustic waste simulant and 39 L of actual tank waste. Test results are discussed; particularly those related to the effectiveness of extraction.

  1. High performance real-time flight simulation at NASA Langley

    NASA Technical Reports Server (NTRS)

    Cleveland, Jeff I., II

    1994-01-01

    In order to meet the stringent time-critical requirements for real-time man-in-the-loop flight simulation, computer processing operations must be deterministic and be completed in as short a time as possible. This includes simulation mathematical model computational and data input/output to the simulators. In 1986, in response to increased demands for flight simulation performance, personnel at NASA's Langley Research Center (LaRC), working with the contractor, developed extensions to a standard input/output system to provide for high bandwidth, low latency data acquisition and distribution. The Computer Automated Measurement and Control technology (IEEE standard 595) was extended to meet the performance requirements for real-time simulation. This technology extension increased the effective bandwidth by a factor of ten and increased the performance of modules necessary for simulator communications. This technology is being used by more than 80 leading technological developers in the United States, Canada, and Europe. Included among the commercial applications of this technology are nuclear process control, power grid analysis, process monitoring, real-time simulation, and radar data acquisition. Personnel at LaRC have completed the development of the use of supercomputers for simulation mathematical model computational to support real-time flight simulation. This includes the development of a real-time operating system and the development of specialized software and hardware for the CAMAC simulator network. This work, coupled with the use of an open systems software architecture, has advanced the state of the art in real time flight simulation. The data acquisition technology innovation and experience with recent developments in this technology are described.

  2. Space shuttle orbiter leading-edge flight performance compared to design goals

    NASA Technical Reports Server (NTRS)

    Curry, D. M.; Johnson, D. W.; Kelly, R. E.

    1983-01-01

    Thermo-structural performance of the Space Shuttle orbiter Columbia's leading-edge structural subsystem for the first five (5) flights is compared with the design goals. Lessons learned from thse initial flights of the first reusable manned spacecraft are discussed in order to assess design maturity, deficiencies, and modifications required to rectify the design deficiencies. Flight data and post-flight inspections support the conclusion that the leading-edge structural subsystem hardware performance was outstanding for the initial five (5) flights.

  3. Integrated Flight Performance Analysis of a Launch Abort System Concept

    NASA Technical Reports Server (NTRS)

    Tartabini, Paul V.

    2007-01-01

    This paper describes initial flight performance analyses conducted early in the Orion Project to support concept feasibility studies for the Crew Exploration Vehicle s Launch Abort System (LAS). Key performance requirements that significantly affect abort capability are presented. These requirements have implications on sizing the Abort Motor, tailoring its thrust profile to meet escape requirements for both launch pad and high drag/high dynamic pressure ascent aborts. Additional performance considerations are provided for the Attitude Control Motor, a key element of the Orion LAS design that eliminates the need for ballast and provides performance robustness over a passive control approach. Finally, performance of the LAS jettison function is discussed, along with implications on Jettison Motor sizing and the timing of the jettison event during a nominal mission. These studies provide an initial understanding of LAS performance that will continue to evolve as the Orion design is matured.

  4. Flight Performance of the Inflatable Reentry Vehicle Experiment 3

    NASA Technical Reports Server (NTRS)

    Dillman, Robert; DiNonno, John; Bodkin, Richard; Gsell, Valerie; Miller, Nathanael; Olds, Aaron; Bruce, Walter

    2013-01-01

    The Inflatable Reentry Vehicle Experiment 3 (IRVE-3) launched July 23, 2012, from NASA Wallops Flight Facility (WFF) on a Black Brant XI suborbital sounding rocket and successfully performed its mission, demonstrating the survivability of a hypersonic inflatable aerodynamic decelerator (HIAD) in the reentry heating environment and also illustrating the effect of an offset center of gravity on the HIAD's lift-to-drag ratio. IRVE-3 was a follow-on to 2009's IRVE-II mission, which demonstrated exo-atmospheric inflation, reentry survivability - without significant heating - and the aerodynamic stability of a HIAD down to subsonic flight conditions. NASA Langley Research Center is leading the development of HIAD technology for use on future interplanetary and Earth reentry missions.

  5. Flight Test Performance of a High Precision Navigation Doppler Lidar

    NASA Technical Reports Server (NTRS)

    Pierrottet, Diego; Amzajerdian, Farzin; Petway, Larry; Barnes, Bruce; Lockard, George

    2009-01-01

    A navigation Doppler Lidar (DL) was developed at NASA Langley Research Center (LaRC) for high precision velocity measurements from a lunar or planetary landing vehicle in support of the Autonomous Landing and Hazard Avoidance Technology (ALHAT) project. A unique feature of this DL is that it has the capability to provide a precision velocity vector which can be easily separated into horizontal and vertical velocity components and high accuracy line of sight (LOS) range measurements. This dual mode of operation can provide useful information, such as vehicle orientation relative to the direction of travel, and vehicle attitude relative to the sensor footprint on the ground. System performance was evaluated in a series of helicopter flight tests over the California desert. This paper provides a description of the DL system and presents results obtained from these flight tests.

  6. Orion Exploration Flight Test-1 (EFT-1) Absolute Navigation Performance

    NASA Technical Reports Server (NTRS)

    Zanetti, Renato

    2015-01-01

    The Orion vehicle, being design to take men back to the Moon and beyond, successfully completed its first flight test, EFT-1 (Exploration Flight Test-1), on December 5th, 2014. The main objective of the test was to demonstrate the capability of re-enter into the Earth's atmosphere and safely splash-down into the pacific ocean. This un-crewed mission completes two orbits around Earth, the second of which is highly elliptical with an apogee of approximately 5908 km, higher than any vehicle designed for humans has been since the Apollo program. The trajectory was designed in order to test a high-energy re-entry similar to those crews will undergo during lunar missions. The mission overview is shown in Figure 1. The objective of this paper is to document the performance of the absolute navigation system during EFT-1 and to present its design.

  7. Expected Navigation Flight Performance for the Magnetospheric Multiscale (MMS) Mission

    NASA Technical Reports Server (NTRS)

    Olson, Corwin; Wright, Cinnamon; Long, Anne

    2012-01-01

    The Magnetospheric Multiscale (MMS) mission consists of four formation-flying spacecraft placed in highly eccentric elliptical orbits about the Earth. The primary scientific mission objective is to study magnetic reconnection within the Earth s magnetosphere. The baseline navigation concept is the independent estimation of each spacecraft state using GPS pseudorange measurements (referenced to an onboard Ultra Stable Oscillator) and accelerometer measurements during maneuvers. State estimation for the MMS spacecraft is performed onboard each vehicle using the Goddard Enhanced Onboard Navigation System, which is embedded in the Navigator GPS receiver. This paper describes the latest efforts to characterize expected navigation flight performance using upgraded simulation models derived from recent analyses.

  8. A variable conductance heat pipe flight experiment - Performance in space

    NASA Technical Reports Server (NTRS)

    Wanous, D. J.; Marcus, B. D.; Kirkpatrick, J. P.

    1975-01-01

    The Ames Heat Pipe Experiment (AHPE) is a variable conductance heat pipe/radiator system which was launched aboard the OAO-C spacecraft in August, 1972. All available flight data was reviewed and those from a few orbits were selected for correlation with predictions from an analytical model of the system. The principal conclusion of this study is that gas controlled variable conductance heat pipes can perform reliably for long time periods in the space environment and can effectively provide temperature stabilization for spacecraft electronics. Furthermore, the performance of such systems can be adequately predicted using existing analysis tools.

  9. Time interval moderates the relationship between psyching-up and actual sprint performance.

    PubMed

    Hammoudi-Nassib, Sarra; Chtara, Moktar; Nassib, Sabri; Briki, Walid; Hammoudi-Riahi, Sabra; Tod, David; Chamari, Karim

    2014-11-01

    This study attempted to test whether the strongest effect of psyching-up (PU) strategy on actual sprint performance can be observed when the strategy is used immediately (or almost) before performance compared with when there is a delay between PU and performance. To do so, 16 male sprinters (age, 20.6 ± 1.3 years; body mass, 77.5 ± 7.1 kg; height, 180.8 ± 5.6 cm) were enrolled in a counterbalanced experimental design in which participants were randomly assigned to 10 sessions (2 [Experimental Condition: imagery vs. distraction] × 5 [Time Intervals: no interval, 1 minute, 2 minutes, 3 minutes, and 5 minutes]). Before performing the experimental tasks, participants rated: (a) the Hooper index, (b) their degree of self-confidence, and (c) after the completion of the experimental test; they rated their perceived effort. Findings showed that the imagery significantly improved sprint performance. Specifically, the imagery enhanced performance on the phase of acceleration (0-10 m) and on the overall sprint (0-30 m) when used immediately before performance and at 1- and 2-minute intervals but not for 3- and 5-minute intervals. These findings support the hypothesis that the potential effect of the PU strategy on performance vanishes over time. The pre-experimental task Hooper and self-efficacy indexes did not change across the 10 experimental sessions, reinforcing the view that the observed performance changes were directly caused by the experimental manipulation and not through any altered status of the athletes (self-efficacy, fatigue/recovery, and stress). The potential mechanisms underlying such a process and practical applications are discussed.

  10. Actual versus design performance of solar systems in the National Solar Data Network

    NASA Astrophysics Data System (ADS)

    Logee, T. L.; Kendall, P. W.

    1984-09-01

    Field measured performance were compared to the designer predicted performance. The field measured data were collected by the National Solar Data Network (NSDN) over a period of 6 years. Data from 25 solar systems were selected from a data pool of some 170 solar systems. Several concerns arose which can be partially allayed by study of the NSDN data. These are: what types of failures occurred and why; how good was the design versus actual performance; why was predicted performance not achieved in the field; and which components should be integrated with a system type for good performance. The measured results were also compared to f-chart 5.1 results. This comparison is a type of normalization in that all systems are modeled with the same process. An added benefit of this normalization is a further validation of the f-Chart model on a fairly large scale. The systems are modeled using equipment design parameters, measured loads, and f-Chart weather data from nearby cities.

  11. SILEX final ground testing and in-flight performance assessment

    NASA Astrophysics Data System (ADS)

    Planche, Gilles; Laurent, Bernard; Guillen, Jean-Claude; Chorvalli, V.; Desplats, Eric

    1999-04-01

    SILEX (Semi-Conductor Inter-satellite Link EXperiment) consists of one optical terminal on-board the French LEO observation satellite SPOT 4, and another on-board the European GEO telecommunication satellite ARTEMIS. While the first part of the SILEX verification plan had been oriented towards verification at equipment and subsystem levels, the final stages have mainly been devoted to terminal and system (terminals coupling effects) verification. During this final stage, a thermal vacuum test was conducted in a class 100- cleanliness environment with optical ground support equipment of outstanding performances. The obtained tests results, used to determine software compensations and verify optical and static pointing performances, have been entered into overall system simulation models to finalize flight performances budgets. In addition, systems tests were performed on each terminal with respective partner simulator to validate system simulation models and assess link performances and robustness and to verify communication bit error rate.

  12. Optimization of CCGT power plant and performance analysis using MATLAB/Simulink with actual operational data.

    PubMed

    Hasan, Naimul; Rai, Jitendra Nath; Arora, Bharat Bhushan

    2014-01-01

    In the Modern scenario, the naturally available resources for power generation are being depleted at an alarming rate; firstly due to wastage of power at consumer end, secondly due to inefficiency of various power system components. A Combined Cycle Gas Turbine (CCGT) integrates two cycles- Brayton cycle (Gas Turbine) and Rankine cycle (Steam Turbine) with the objective of increasing overall plant efficiency. This is accomplished by utilising the exhaust of Gas Turbine through a waste-heat recovery boiler to run a Steam Turbine. The efficiency of a gas turbine which ranges from 28% to 33% can hence be raised to about 60% by recovering some of the low grade thermal energy from the exhaust gas for steam turbine process. This paper is a study for the modelling of CCGT and comparing it with actual operational data. The performance model for CCGT plant was developed in MATLAB/Simulink. PMID:24936394

  13. Optimization of CCGT power plant and performance analysis using MATLAB/Simulink with actual operational data.

    PubMed

    Hasan, Naimul; Rai, Jitendra Nath; Arora, Bharat Bhushan

    2014-01-01

    In the Modern scenario, the naturally available resources for power generation are being depleted at an alarming rate; firstly due to wastage of power at consumer end, secondly due to inefficiency of various power system components. A Combined Cycle Gas Turbine (CCGT) integrates two cycles- Brayton cycle (Gas Turbine) and Rankine cycle (Steam Turbine) with the objective of increasing overall plant efficiency. This is accomplished by utilising the exhaust of Gas Turbine through a waste-heat recovery boiler to run a Steam Turbine. The efficiency of a gas turbine which ranges from 28% to 33% can hence be raised to about 60% by recovering some of the low grade thermal energy from the exhaust gas for steam turbine process. This paper is a study for the modelling of CCGT and comparing it with actual operational data. The performance model for CCGT plant was developed in MATLAB/Simulink.

  14. Flight controller alertness and performance during MOD shiftwork operations

    NASA Technical Reports Server (NTRS)

    Kelly, Sean M.; Rosekind, Mark R.; Dinges, David F.; Miller, Donna L.; Gillen, Kelly A.; Gregory, Kevin B.; Aguilar, Ronald D.; Smith, Roy M.

    1994-01-01

    Decreased alertness and performance associated with fatigue, sleep loss, and circadian disruption are issues faced by a diverse range of shiftwork operations. During STS operations, MOD personnel provide 24 hr. coverage of critical tasks. A joint JSC and ARC project was undertaken to examine these issues in flight controllers during MOD shiftwork operations. An initial operational test of procedures and measures was conducted during STS-53 in Dec. 1992. The study measures included a background questionnaire, a subjective daily logbook completed on a 24 hr. basis (to report sleep patterns, work periods, etc.), and an 8 minute performance and mood test battery administered at the beginning, middle, and end of each shift period. Seventeen Flight controllers representing the 3 Orbit shifts participated. The initial results clearly support further data collection during other STS missions to document baseline levels of alertness and performance during MOD shiftwork operations. These issues are especially pertinent for the night shift operations and the acute phase advance required for the transition of day shift personnel into the night for shuttle launch. Implementation and evaluation of the countermeasure strategies to maximize alertness and performance is planned. As STS missions extend to further extended duration orbiters, timelines and planning for 24 circadian disruption will remain highly relevant in the MOD environment.

  15. Orion Exploration Flight Test-1 Post-Flight Navigation Performance Assessment Relative to the Best Estimated Trajectory

    NASA Technical Reports Server (NTRS)

    Gay, Robert S.; Holt, Greg N.; Zanetti, Renato

    2016-01-01

    This paper details the post-flight navigation performance assessment of the Orion Exploration Flight Test-1 (EFT-1). Results of each flight phase are presented: Ground Align, Ascent, Orbit, and Entry Descent and Landing. This study examines the on-board Kalman Filter uncertainty along with state deviations relative to the Best Estimated Trajectory (BET). Overall the results show that the Orion Navigation System performed as well or better than expected. Specifically, the Global Positioning System (GPS) measurement availability was significantly better than anticipated at high altitudes. In addition, attitude estimation via processing GPS measurements along with Inertial Measurement Unit (IMU) data performed very well and maintained good attitude throughout the mission.

  16. Cognition and the Placebo Effect – Dissociating Subjective Perception and Actual Performance

    PubMed Central

    Schwarz, Katharina A.; Büchel, Christian

    2015-01-01

    The influence of positive or negative expectations on clinical outcomes such as pain relief or motor performance in patients and healthy participants has been extensively investigated for years. Such research promises potential benefit for patient treatment by deliberately using expectations as means to stimulate endogenous regulation processes. Especially regarding recent interest and controversies revolving around cognitive enhancement, the question remains whether mere expectancies might also yield enhancing or impairing effects in the cognitive domain, i.e., can we improve or impair cognitive performance simply by creating a strong expectancy in participants about their performance? Moreover, previous literature suggests that especially subjective perception is highly susceptible to expectancy effects, whereas objective measures can be affected in certain domains, but not in others. Does such a dissociation of objective measures and subjective perception also apply to cognitive placebo and nocebo effects? In this study, we sought to investigate whether placebo and nocebo effects can be evoked in cognitive tasks, and whether these effects influence objective and subjective measures alike. To this end, we instructed participants about alleged effects of different tone frequencies (high, intermediate, low) on brain activity and cognitive functions. We paired each tone with specific success rates in a Flanker task paradigm as a preliminary conditioning procedure, adapted from research on placebo hypoalgesia. In a subsequent test phase, we measured reaction times and success rates in different expectancy conditions (placebo, nocebo, and control) and then asked participants how the different tone frequencies affected their performance. Interestingly, we found no effects of expectation on objective measures, but a strong effect on subjective perception, i.e., although actual performance was not affected by expectancy, participants strongly believed that the placebo

  17. Defining Exercise Performance Metrics for Flight Hardware Development

    NASA Technical Reports Server (NTRS)

    Beyene, Nahon M.

    2004-01-01

    The space industry has prevailed over numerous design challenges in the spirit of exploration. Manned space flight entails creating products for use by humans and the Johnson Space Center has pioneered this effort as NASA's center for manned space flight. NASA Astronauts use a suite of flight exercise hardware to maintain strength for extravehicular activities and to minimize losses in muscle mass and bone mineral density. With a cycle ergometer, treadmill, and the Resistive Exercise Device available on the International Space Station (ISS), the Space Medicine community aspires to reproduce physical loading schemes that match exercise performance in Earth s gravity. The resistive exercise device presents the greatest challenge with the duty of accommodating 20 different exercises and many variations on the core set of exercises. This paper presents a methodology for capturing engineering parameters that can quantify proper resistive exercise performance techniques. For each specified exercise, the method provides engineering parameters on hand spacing, foot spacing, and positions of the point of load application at the starting point, midpoint, and end point of the exercise. As humans vary in height and fitness levels, the methodology presents values as ranges. In addition, this method shows engineers the proper load application regions on the human body. The methodology applies to resistive exercise in general and is in use for the current development of a Resistive Exercise Device. Exercise hardware systems must remain available for use and conducive to proper exercise performance as a contributor to mission success. The astronauts depend on exercise hardware to support extended stays aboard the ISS. Future plans towards exploration of Mars and beyond acknowledge the necessity of exercise. Continuous improvement in technology and our understanding of human health maintenance in space will allow us to support the exploration of Mars and the future of space

  18. Habitability and Performance Issues for Long Duration Space Flights

    NASA Technical Reports Server (NTRS)

    Whitmore, Mihriban; McQuilkin, Meredith L.; Woolford, Barbara J.

    1997-01-01

    Advancing technology, coupled with the desire to explore space has resulted in increasingly longer manned space missions. Although the Long Duration Space Flights (LDSF) have provided a considerable amount of scientific research on human ability to function in extreme environments, findings indicate long duration missions take a toll on the individual, both physiologically and psychologically. These physiological and psychological issues manifest themselves in performance decrements; and could lead to serious errors endangering the mission, spacecraft and crew. The purpose of this paper is to document existing knowledge of the effects of LDSF on performance, habitability, and workload and to identify and assess potential tools designed to address these decrements as well as propose an implementation plan to address the habitability, performance and workload issues.

  19. Flight Performance Feasibility Studies for the Max Launch Abort System

    NASA Technical Reports Server (NTRS)

    Tarabini, Paul V.; Gilbert, Michael G.; Beaty, James R.

    2013-01-01

    In 2007, the NASA Engineering and Safety Center (NESC) initiated the Max Launch Abort System Project to explore crew escape system concepts designed to be fully encapsulated within an aerodynamic fairing and smoothly integrated onto a launch vehicle. One objective of this design was to develop a more compact launch escape vehicle that eliminated the need for an escape tower, as was used in the Mercury and Apollo escape systems and what is planned for the Orion Multi-Purpose Crew Vehicle (MPCV). The benefits for the launch vehicle of eliminating a tower from the escape vehicle design include lower structural weights, reduced bending moments during atmospheric flight, and a decrease in induced aero-acoustic loads. This paper discusses the development of encapsulated, towerless launch escape vehicle concepts, especially as it pertains to the flight performance and systems analysis trade studies conducted to establish mission feasibility and assess system-level performance. Two different towerless escape vehicle designs are discussed in depth: one with allpropulsive control using liquid attitude control thrusters, and a second employing deployable aft swept grid fins to provide passive stability during coast. Simulation results are presented for a range of nominal and off-nominal escape conditions.

  20. Wing Flexion and Aerodynamics Performance of Insect Free Flights

    NASA Astrophysics Data System (ADS)

    Dong, Haibo; Liang, Zongxian; Ren, Yan

    2010-11-01

    Wing flexion in flapping flight is a hallmark of insect flight. It is widely thought that wing flexibility and wing deformation would potentially provide new aerodynamic mechanisms of aerodynamic force productions over completely rigid wings. However, there are lack of literatures on studying fluid dynamics of freely flying insects due to the presence of complex shaped moving boundaries in the flow domain. In this work, a computational study of freely flying insects is being conducted. High resolution, high speed videos of freely flying dragonflies and damselflies is obtained and used as a basis for developing high fidelity geometrical models of the dragonfly body and wings. 3D surface reconstruction technologies are used to obtain wing topologies and kinematics. The wing motions are highly complex and a number of different strategies including singular vector decomposition of the wing kinematics are used to examine the various kinematical features and their impact on the wing performance. Simulations are carried out to examine the aerodynamic performance of all four wings and understand the wake structures of such wings.

  1. Perception and performance in flight simulators: The contribution of vestibular, visual, and auditory information

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The pilot's perception and performance in flight simulators is examined. The areas investigated include: vestibular stimulation, flight management and man cockpit information interfacing, and visual perception in flight simulation. The effects of higher levels of rotary acceleration on response time to constant acceleration, tracking performance, and thresholds for angular acceleration are examined. Areas of flight management examined are cockpit display of traffic information, work load, synthetic speech call outs during the landing phase of flight, perceptual factors in the use of a microwave landing system, automatic speech recognition, automation of aircraft operation, and total simulation of flight training.

  2. Flight performance of TOPEX/POSEIDON star trackers

    NASA Astrophysics Data System (ADS)

    Flynn, David J.; Fowski, Walter J.; Kia, Tooraj

    1993-09-01

    The TOPEX/POSEIDON spacecraft was launched on August 10, 1992. This paper presents data on the measured performance of the ASTRA Star Trackers supplied by Hughes Danbury Optical Systems (HDOS) for this satellite. The HDOS ASTRA Star Tracker is a charge coupled device (CCD), microprocessor based replacement for the NASA Standard Fixed Head Star Tracker. The position and magnitude accuracy of the star trackers computed from measured flight data are compared with ground measurements and system models. The performance of novel transient rejection algorithms implemented in the ASTRA Star Tracker which allows uninterrupted operation in the South Atlantic Anomaly (SAA) where the sensor is subjected to high proton flux levels, also are presented.

  3. Flight Performance of the HEROES Solar Aspect System

    NASA Astrophysics Data System (ADS)

    Shih, Albert Y.; Christe, Steven; Rodriguez, Marcello; Gregory, Kyle; Cramer, Alexander; Edgerton, Melissa; Gaskin, Jessica; O'Connor, Brian; Sobey, Alexander

    2014-06-01

    Hard X-ray (HXR) observations of solar flares reveal the signatures of energetic electrons, and HXR images with high dynamic range and high sensitivity can distinguish between where electrons are accelerated and where they stop. Furthermore, high-sensitivity HXR measurements may be able to detect the presence of electron acceleration in the non-flaring corona. The High Energy Replicated Optics to Explore the Sun (HEROES) balloon mission added the capability of solar observations to an existing astrophysics balloon payload, HERO, which used grazing-incidence optics for direct HXR imaging. The HEROES Solar Aspect System (SAS) was developed and built to provide pointing knowledge during solar observations to better than the ~20 arcsec FWHM angular resolution of the HXR instrument. The SAS consists of two separate systems: the Pitch-Yaw aspect System (PYAS) and the Roll Aspect System (RAS). The PYAS compares the position of an optical image of the Sun relative to precise fiducials to determine the pitch and yaw pointing offsets from the desired solar target. The RAS images the Earth's horizon in opposite directions simultaneously to determine the roll of the gondola. HEROES launched in September 2013 from Fort Sumner, New Mexico, and had a successful one-day flight. We present the detailed analysis of the performance of the SAS for that flight.

  4. Stability and Performance Metrics for Adaptive Flight Control

    NASA Technical Reports Server (NTRS)

    Stepanyan, Vahram; Krishnakumar, Kalmanje; Nguyen, Nhan; VanEykeren, Luarens

    2009-01-01

    This paper addresses the problem of verifying adaptive control techniques for enabling safe flight in the presence of adverse conditions. Since the adaptive systems are non-linear by design, the existing control verification metrics are not applicable to adaptive controllers. Moreover, these systems are in general highly uncertain. Hence, the system's characteristics cannot be evaluated by relying on the available dynamical models. This necessitates the development of control verification metrics based on the system's input-output information. For this point of view, a set of metrics is introduced that compares the uncertain aircraft's input-output behavior under the action of an adaptive controller to that of a closed-loop linear reference model to be followed by the aircraft. This reference model is constructed for each specific maneuver using the exact aerodynamic and mass properties of the aircraft to meet the stability and performance requirements commonly accepted in flight control. The proposed metrics are unified in the sense that they are model independent and not restricted to any specific adaptive control methods. As an example, we present simulation results for a wing damaged generic transport aircraft with several existing adaptive controllers.

  5. High performance flight computer developed for deep space applications

    NASA Technical Reports Server (NTRS)

    Bunker, Robert L.

    1993-01-01

    The development of an advanced space flight computer for real time embedded deep space applications which embodies the lessons learned on Galileo and modern computer technology is described. The requirements are listed and the design implementation that meets those requirements is described. The development of SPACE-16 (Spaceborne Advanced Computing Engine) (where 16 designates the databus width) was initiated to support the MM2 (Marine Mark 2) project. The computer is based on a radiation hardened emulation of a modern 32 bit microprocessor and its family of support devices including a high performance floating point accelerator. Additional custom devices which include a coprocessor to improve input/output capabilities, a memory interface chip, and an additional support chip that provide management of all fault tolerant features, are described. Detailed supporting analyses and rationale which justifies specific design and architectural decisions are provided. The six chip types were designed and fabricated. Testing and evaluation of a brass/board was initiated.

  6. Flight performance using a hyperstereo helmet-mounted display: post-flight debriefing questionnaire

    NASA Astrophysics Data System (ADS)

    Kalich, Melvyn E.; Rash, Clarence E.; Harding, Thomas H.; Jennings, Sion; Craig, Gregory; Stuart, Geoffrey W.

    2009-05-01

    Helmet-mounted display (HMD) designs have faced persistent head-supported mass and center of mass (CM) problems, especially HMD designs like night vision goggles (NVG) that utilize image intensification (I2) sensors mounted forward in front of the user's eyes. Relocating I2 sensors from the front to the sides of the helmet, at or below the transverse plane through the user's head CM, can resolve most of the CM problems. However, the resulting increase in the separation between the two I2 channels effectively increases the user's interpupillary distance (IPD). This HMD design is referred to as a hyperstero design and introduces the phenomenon of hyperstereopsis, a type of visual distortion where stereoscopic depth perception is exaggerated, particularly at distances under 200 feet (~60 meters). The presence of hyperstereopsis has been a concern regarding implementation of hyperstereo HMDs for rotary-wing aircraft. To address this concern, a flight study was conducted to assess the impact of hyperstereopsis on aircraft handling proficiency and pilot acceptance. Three rated aviators with differing levels of I2 and hyperstereo HMD experience conducted a series of flights that concentrated on low-level maneuvers over a two-week period. Initial and final flights were flown with a standard issue I2 device and a production hyperstereo design HMD. Interim flights were flown only with the hyperstereo HMD. Two aviators accumulated 8 hours of flight time with the hyperstereo HMD, while the third accumulated 6.9 hours. This paper presents data collected via written questionnaires completed by the aviators during the post-flight debriefings. These data are compared to questionnaire data from a previous flight investigation in which aviators in a copilot capacity, hands not on the flight controls, accumulated 8 flight hours of flight time using a hyperstereo HMD.

  7. Effect of caffeine on simulator flight performance in sleep-deprived military pilot students.

    PubMed

    Lohi, Jouni J; Huttunen, Kerttu H; Lahtinen, Taija M M; Kilpeläinen, Airi A; Muhli, Arto A; Leino, Tuomo K

    2007-09-01

    Caffeine has been suggested to act as a countermeasure against fatigue in military operations. In this randomized, double-blind, placebo-controlled study, the effect of caffeine on simulator flight performance was examined in 13 military pilots during 37 hours of sleep deprivation. Each subject performed a flight mission in simulator four times. The subjects received either a placebo (six subjects) or 200 mg of caffeine (seven subjects) 1 hour before the simulated flights. A moderate 200 mg intake of caffeine was associated with higher axillary temperatures, but it did not affect subjectively assessed sleepiness. Flight performance was similar in both groups during the four rounds flown under sleep deprivation. However, subjective evaluation of overall flight performance in the caffeine group tended to be too optimistic, indicating a potential flight safety problem. Based on our results, we do not recommend using caffeine pills in military flight operations.

  8. Effect of caffeine on simulator flight performance in sleep-deprived military pilot students.

    PubMed

    Lohi, Jouni J; Huttunen, Kerttu H; Lahtinen, Taija M M; Kilpeläinen, Airi A; Muhli, Arto A; Leino, Tuomo K

    2007-09-01

    Caffeine has been suggested to act as a countermeasure against fatigue in military operations. In this randomized, double-blind, placebo-controlled study, the effect of caffeine on simulator flight performance was examined in 13 military pilots during 37 hours of sleep deprivation. Each subject performed a flight mission in simulator four times. The subjects received either a placebo (six subjects) or 200 mg of caffeine (seven subjects) 1 hour before the simulated flights. A moderate 200 mg intake of caffeine was associated with higher axillary temperatures, but it did not affect subjectively assessed sleepiness. Flight performance was similar in both groups during the four rounds flown under sleep deprivation. However, subjective evaluation of overall flight performance in the caffeine group tended to be too optimistic, indicating a potential flight safety problem. Based on our results, we do not recommend using caffeine pills in military flight operations. PMID:17937364

  9. Detection performance analysis for time-of-flight PET

    NASA Astrophysics Data System (ADS)

    Cao, Nannan; Huesman, Ronald H.; Moses, William W.; Qi, Jinyi

    2010-11-01

    In this paper, we investigate the performance of time-of-flight (TOF) positron emission tomography (PET) in improving lesion detectability. We present a theoretical approach to compare lesion detectability of TOF versus non-TOF systems and perform computer simulations to validate the theoretical prediction. A single-ring TOF PET tomograph is simulated using SimSET software, and images are reconstructed in 2D from list-mode data using a maximum a posteriori method. We use a channelized Hotelling observer to assess the detection performance. Both the receiver operating characteristic (ROC) and localization ROC curves are compared for the TOF and non-TOF PET systems. We first studied the SNR gains for TOF PET with different scatter and random fractions, system timing resolutions and object sizes. We found that the TOF information improves the lesion detectability and the improvement is greater with larger fractions of randoms, better timing resolution and bigger objects. The scatters by themselves have little impact on the SNR gain after correction. Since the true system timing resolution may not be known precisely in practice, we investigated the effect of mismatched timing kernels and showed that using a mismatched kernel during reconstruction always degrades the detection performance, no matter whether it is narrower or wider than the real value. Using the proposed theoretical framework, we also studied the effect of lumpy backgrounds on the detection performance. Our results indicated that with lumpy backgrounds, the TOF PET still outperforms the non-TOF PET, but the improvement is smaller compared with the uniform background case. More specifically, with the same correlation length, the SNR gain reduces with bigger number of lumpy patches and greater lumpy amplitudes. With the same variance, the SNR gain reaches the minimum when the width of the Gaussian lumps is close to the size of the tumor.

  10. Energy extraction from atmospheric turbulence to improve flight vehicle performance

    NASA Astrophysics Data System (ADS)

    Patel, Chinmay Karsandas

    Small 'bird-sized' Unmanned Aerial Vehicles (UAVs) have now become practical due to technological advances in embedded electronics, miniature sensors and actuators, and propulsion systems. Birds are known to take advantage of wind currents to conserve energy and fly long distances without flapping their wings. This dissertation explores the possibility of improving the performance of small UAVs by extracting the energy available in atmospheric turbulence. An aircraft can gain energy from vertical gusts by increasing its lift in regions of updraft and reducing its lift in downdrafts - a concept that has been known for decades. Starting with a simple model of a glider flying through a sinusoidal gust, a parametric optimization approach is used to compute the minimum gust amplitude and optimal control input required for the glider to sustain flight without losing energy. For small UAVs using optimal control inputs, sinusoidal gusts with amplitude of 10--15% of the cruise speed are sufficient to keep the aircraft aloft. The method is then modified and extended to include random gusts that are representative of natural turbulence. A procedure to design optimal control laws for energy extraction from realistic gust profiles is developed using a Genetic Algorithm (GA). A feedback control law is designed to perform well over a variety of random gusts, and not be tailored for one particular gust. A small UAV flying in vertical turbulence is shown to obtain average energy savings of 35--40% with the use of a simple control law. The design procedure is also extended to determine optimal control laws for sinusoidal as well as turbulent lateral gusts. The theoretical work is complemented by experimental validation using a small autonomous UAV. The development of a lightweight autopilot and UAV platform is presented. Flight test results show that active control of the lift of an autonomous glider resulted in approximately 46% average energy savings compared to glides with fixed

  11. In-Flight Performance of the OCO-2 Cryocooler

    NASA Astrophysics Data System (ADS)

    Na-Nakornpanom, Arthur; Naylor, Bret J.; Lee, Richard A. M.

    2015-12-01

    The Orbiting Carbon Observatory-2 (OCO-2) will have completed its first year in space on July 2, 2015. The OCO-2 instrument incorporates three bore-sighted, high-resolution grating spectrometers, designed to measure the near-infrared absorption of reflected sunlight by carbon dioxide and molecular oxygen. The cryocooler system design is coupled with the instrument's thermal control design to maximize the instrument's performance. A single-stage NGAS pulse tube cryocooler provides refrigeration to three focal plane arrays to ∼120 K via a high conductance flexible thermal strap. A variable conductance heat pipe (VCHP) based heat rejection system (HRS) transports waste heat from the instrument located inside the spacecraft to the space-viewing radiators. The HRS provides tight temperature control of the optics to 267 K and maintains the cryocooler at 300 K. Soon after entering the A-Train on August 3, 2014, the optics and focal planes were cooled to their operating temperatures. This paper provides a general overview of the cryogenic system design and reviews the in-flight cryogenic performance during the Observatory's first year.

  12. Performance of the Tachyon Time-of-Flight PET Camera

    DOE PAGES

    Peng, Q.; Choong, W. -S.; Vu, C.; Huber, J. S.; Janecek, M.; Wilson, D.; Huesman, R. H.; Qi, Jinyi; Zhou, Jian; Moses, W. W.

    2015-01-23

    We have constructed and characterized a time-of-flight Positron Emission Tomography (TOF PET) camera called the Tachyon. The Tachyon is a single-ring Lutetium Oxyorthosilicate (LSO) based camera designed to obtain significantly better timing resolution than the ~ 550 ps found in present commercial TOF cameras, in order to quantify the benefit of improved TOF resolution for clinically relevant tasks. The Tachyon's detector module is optimized for timing by coupling the 6.15 ×25 mm2 side of 6.15 ×6.15 ×25 mm3 LSO scintillator crystals onto a 1-inch diameter Hamamatsu R-9800 PMT with a super-bialkali photocathode. We characterized the camera according to the NEMAmore » NU 2-2012 standard, measuring the energy resolution, timing resolution, spatial resolution, noise equivalent count rates and sensitivity. The Tachyon achieved a coincidence timing resolution of 314 ps +/- 20 ps FWHM over all crystal-crystal combinations. Experiments were performed with the NEMA body phantom to assess the imaging performance improvement over non-TOF PET. We find that the results show that at a matched contrast, incorporating 314 ps TOF reduces the standard deviation of the contrast by a factor of about 2.3.« less

  13. Performance of the Tachyon Time-of-Flight PET Camera

    SciTech Connect

    Peng, Q.; Choong, W. -S.; Vu, C.; Huber, J. S.; Janecek, M.; Wilson, D.; Huesman, R. H.; Qi, Jinyi; Zhou, Jian; Moses, W. W.

    2015-01-23

    We have constructed and characterized a time-of-flight Positron Emission Tomography (TOF PET) camera called the Tachyon. The Tachyon is a single-ring Lutetium Oxyorthosilicate (LSO) based camera designed to obtain significantly better timing resolution than the ~ 550 ps found in present commercial TOF cameras, in order to quantify the benefit of improved TOF resolution for clinically relevant tasks. The Tachyon's detector module is optimized for timing by coupling the 6.15 ×25 mm2 side of 6.15 ×6.15 ×25 mm3 LSO scintillator crystals onto a 1-inch diameter Hamamatsu R-9800 PMT with a super-bialkali photocathode. We characterized the camera according to the NEMA NU 2-2012 standard, measuring the energy resolution, timing resolution, spatial resolution, noise equivalent count rates and sensitivity. The Tachyon achieved a coincidence timing resolution of 314 ps +/- 20 ps FWHM over all crystal-crystal combinations. Experiments were performed with the NEMA body phantom to assess the imaging performance improvement over non-TOF PET. We find that the results show that at a matched contrast, incorporating 314 ps TOF reduces the standard deviation of the contrast by a factor of about 2.3.

  14. Performance of the Tachyon Time-of-Flight PET Camera

    PubMed Central

    Peng, Q.; Choong, W.-S.; Vu, C.; Huber, J. S.; Janecek, M.; Wilson, D.; Huesman, R. H.; Qi, Jinyi; Zhou, Jian; Moses, W. W.

    2015-01-01

    We have constructed and characterized a time-of-flight Positron Emission Tomography (TOF PET) camera called the Tachyon. The Tachyon is a single-ring Lutetium Oxyorthosilicate (LSO) based camera designed to obtain significantly better timing resolution than the ~ 550 ps found in present commercial TOF cameras, in order to quantify the benefit of improved TOF resolution for clinically relevant tasks. The Tachyon’s detector module is optimized for timing by coupling the 6.15 × 25 mm2 side of 6.15 × 6.15 × 25 mm3 LSO scintillator crystals onto a 1-inch diameter Hamamatsu R-9800 PMT with a super-bialkali photocathode. We characterized the camera according to the NEMA NU 2-2012 standard, measuring the energy resolution, timing resolution, spatial resolution, noise equivalent count rates and sensitivity. The Tachyon achieved a coincidence timing resolution of 314 ps +/− ps FWHM over all crystal-crystal combinations. Experiments were performed with the NEMA body phantom to assess the imaging performance improvement over non-TOF PET. The results show that at a matched contrast, incorporating 314 ps TOF reduces the standard deviation of the contrast by a factor of about 2.3. PMID:26594057

  15. Development of flight performance in the brown booby.

    PubMed

    Yoda, Ken; Kohno, Hiroyoshi; Naito, Yasuhiko

    2004-05-01

    How do birds acquire flight skills after fledging? This issue is important, as it is closely related to variation in the duration of offspring care, the causes of which remain unknown. In this study, we raised hatchling brown boobies, Sula leucogaster, and attached an acceleration data logger to each bird at fledging to record its movements. This allowed us to quantify precisely the time spent flapping, gliding and resting. The duration of foraging trips and proportion of time spent gliding during flight increased with the number of days since fledging, whereas the proportion of time spent in flight decreased. This indicates that brown boobies gradually acquire efficient flight skills during the post-fledging period, which might be the proximate cause of the long postfledging care period in this species. To the authors' knowledge, this is the first study to record precisely the ontogeny of flight behaviour in birds.

  16. Development of flight performance in the brown booby.

    PubMed

    Yoda, Ken; Kohno, Hiroyoshi; Naito, Yasuhiko

    2004-05-01

    How do birds acquire flight skills after fledging? This issue is important, as it is closely related to variation in the duration of offspring care, the causes of which remain unknown. In this study, we raised hatchling brown boobies, Sula leucogaster, and attached an acceleration data logger to each bird at fledging to record its movements. This allowed us to quantify precisely the time spent flapping, gliding and resting. The duration of foraging trips and proportion of time spent gliding during flight increased with the number of days since fledging, whereas the proportion of time spent in flight decreased. This indicates that brown boobies gradually acquire efficient flight skills during the post-fledging period, which might be the proximate cause of the long postfledging care period in this species. To the authors' knowledge, this is the first study to record precisely the ontogeny of flight behaviour in birds. PMID:15252995

  17. Orion Launch Abort System Jettison Motor Performance During Exploration Flight Test 1

    NASA Technical Reports Server (NTRS)

    McCauley, Rachel J.; Davidson, John B.; Winski, Richard G.

    2015-01-01

    This paper presents an overview of the flight test objectives and performance of the Orion Launch Abort System during Exploration Flight Test-1. Exploration Flight Test-1, the first flight test of the Orion spacecraft, was managed and led by the Orion prime contractor, Lockheed Martin, and launched atop a United Launch Alliance Delta IV Heavy rocket. This flight test was a two-orbit, high-apogee, high-energy entry, low-inclination test mission used to validate and test systems critical to crew safety. This test included the first flight test of the Launch Abort System performing Orion nominal flight mission critical objectives. Although the Orion Program has tested a number of the critical systems of the Orion spacecraft on the ground, the launch environment cannot be replicated completely on Earth. Data from this flight will be used to verify the function of the jettison motor to separate the Launch Abort System from the crew module so it can continue on with the mission. Selected Launch Abort System flight test data is presented and discussed in the paper. Through flight test data, Launch Abort System performance trends have been derived that will prove valuable to future flights as well as the manned space program.

  18. Mars Exploration Rover surface mission flight thermal performance

    NASA Technical Reports Server (NTRS)

    Novak, Keith S.; Phillips, Charles J.; Sunada, Eric T.; Kinsella, Gary M.

    2005-01-01

    NASA launched two rovers in June and July of 2003 as a part of the Mars Exploration Rover (MER) project. MER-A (Spirit) landed on Mars in Gusev Crater at 15 degrees South latitude and 175 degree East longitude on January 4, 2004 (Squyres, et al., Dec. 2004)). MER-B (Opportunity) landed on Mars in Terra Meridiani at 2 degrees South latitude and 354 degrees East longitude on January 25, 2004 (Squyres, et al., August 2004) Both rovers have well exceeded their design lifetime (90 Sols) by more than a factor of 4. Spirit and Opportunity are still healthy and continue to execute their roving science missions at the time of this writing. This paper discusses rover flight thermal performance during the surface missions of both vehicles, covering roughly the time from the MER-A landing in late Southern Summer (Ls = 328, Sol 1A) through the Southern Winter solstice (Ls = 90, Sol 255A) to nearly Southern Vernal equinox (Ls = 160 , Sol 398A).

  19. NEP Early Flight program: System performance and development considerations

    NASA Technical Reports Server (NTRS)

    Doherty, Michael P.; George, Jeffrey A.

    1993-01-01

    A mission/system study of Nuclear Electric Propulsion (NEP) for early robotic planetary science mission applications has been conducted. Subject missions considered included a Mars orbiter with a Phobos and Deimos Rendezvous; a Comet Kopff Rendezvous; a Multiple Mainbelt Asteroid Rendezvous (MMBAR); an Asteroid (Vesta) Sample Return; a Trojan Asteroid (Odysseus) Rendezvous; and a Jupiter mini Grand Tour. The purpose of the study was to determine if 'near-term' NEP technology could be used on an early NEP flight to demonstrate the technologies while conducting a useful science mission. The analysis shows that, depending upon technology readiness date, the missions could be performed with low power NEP. The technology and system development costs associated with vehicle/stage development for a candidate mission are presented. The study assumed relatively mature space electric power and space electric propulsion technologies (more advanced technologies have been already shown by others to be enabling for many outer planetary missions). Thus, a very important first step in using NEP would be taken, which would contribute valuable solar system science, as well as reduce the risks associated with using NEP for more demanding outer planetary science mission applications.

  20. MAP Attitude Control System Design and Flight Performance

    NASA Technical Reports Server (NTRS)

    Andrews, S. F.; ODonnell, J. R.; Bauer, Frank H. (Technical Monitor)

    2002-01-01

    The Microwave Anisotropy Probe (MAP) is a follow-on to the Differential Microwave Radiometer (DMR) instrument on the Cosmic Background Explorer (COBE) spacecraft. To make a full-sky map of cosmic microwave background fluctuations, a combination fast spin and slow precession motion will be used that will cover the entire celestial sphere in six months. The spin rate should be an order of magnitude higher than the precession rate, and each rate should be tightly controlled. The sunline angle should be 22.5 +/- 0.25 deg. Sufficient attitude knowledge must be provided to yield instrument pointing to a standard deviation of 1.3 arc-minutes RSS three axes. In addition, the spacecraft must be able to acquire and hold the sunline at initial acquisition, and in the event of a failure. Finally. the spacecraft must be able to slew to the proper burn orientations and to the proper off-sunline attitude to start the compound spin. The design and flight performance of the Attitude Control System on MAP that meets these requirements will be discussed.

  1. Intraindividual Variability in Basic Reaction Time Predicts Middle-Aged and Older Pilots’ Flight Simulator Performance

    PubMed Central

    2013-01-01

    Objectives. Intraindividual variability (IIV) is negatively associated with cognitive test performance and is positively associated with age and some neurological disorders. We aimed to extend these findings to a real-world task, flight simulator performance. We hypothesized that IIV predicts poorer initial flight performance and increased rate of decline in performance among middle-aged and older pilots. Method. Two-hundred and thirty-six pilots (40–69 years) completed annual assessments comprising a cognitive battery and two 75-min simulated flights in a flight simulator. Basic and complex IIV composite variables were created from measures of basic reaction time and shifting and divided attention tasks. Flight simulator performance was characterized by an overall summary score and scores on communication, emergencies, approach, and traffic avoidance components. Results. Although basic IIV did not predict rate of decline in flight performance, it had a negative association with initial performance for most flight measures. After taking into account processing speed, basic IIV explained an additional 8%–12% of the negative age effect on initial flight performance. Discussion. IIV plays an important role in real-world tasks and is another aspect of cognition that underlies age-related differences in cognitive performance. PMID:23052365

  2. Oxygen and energy availability interact to determine flight performance in the Glanville fritillary butterfly.

    PubMed

    Fountain, Toby; Melvin, Richard G; Ikonen, Suvi; Ruokolainen, Annukka; Woestmann, Luisa; Hietakangas, Ville; Hanski, Ilkka

    2016-05-15

    Flying insects have the highest known mass-specific demand for oxygen, which makes it likely that reduced availability of oxygen might limit sustained flight, either instead of or in addition to the limitation due to metabolite resources. The Glanville fritillary butterfly (Melitaea cinxia) occurs as a large metapopulation in which adult butterflies frequently disperse between small local populations. Here, we examine how the interaction between oxygen availability and fuel use affects flight performance in the Glanville fritillary. Individuals were flown under either normoxic (21 kPa O2) or hypoxic (10 kPa O2) conditions and their flight metabolism was measured. To determine resource use, levels of circulating glucose, trehalose and whole-body triglyceride were recorded after flight. Flight performance was significantly reduced in hypoxic conditions. When flown under normoxic conditions, we observed a positive correlation among individuals between post-flight circulating trehalose levels and flight metabolic rate, suggesting that low levels of circulating trehalose constrains flight metabolism. To test this hypothesis experimentally, we measured the flight metabolic rate of individuals injected with a trehalase inhibitor. In support of the hypothesis, experimental butterflies showed significantly reduced flight metabolic rate, but not resting metabolic rate, in comparison to control individuals. By contrast, under hypoxia there was no relationship between trehalose and flight metabolic rate. Additionally, in this case, flight metabolic rate was reduced in spite of circulating trehalose levels that were high enough to support high flight metabolic rate under normoxic conditions. These results demonstrate a significant interaction between oxygen and energy availability for the control of flight performance.

  3. Bumblebee flight performance in environments of different proximity.

    PubMed

    Linander, Nellie; Baird, Emily; Dacke, Marie

    2016-02-01

    Flying animals are capable of navigating through environments of different complexity with high precision. To control their flight when negotiating narrow tunnels, bees and birds use the magnitude of apparent image motion (known as optic flow) generated by the walls. In their natural habitat, however, these animals would encounter both cluttered and open environments. Here, we investigate how large changes in the proximity of nearby surfaces affect optic flow-based flight control strategies. We trained bumblebees to fly along a flight and recorded how the distance between the walls--from 60 cm to 240 cm--affected their flight control. Our results reveal that, as tunnel width increases, both lateral position and ground speed become increasingly variable. We also find that optic flow information from the ground has an increasing influence on flight control, suggesting that bumblebees measure optic flow flexibly over a large lateral and ventral field of view, depending on where the highest magnitude of optic flow occurs. A consequence of this strategy is that, when flying in narrow spaces, bumblebees use optic flow information from the nearby obstacles to control flight, while in more open spaces they rely primarily on optic flow cues from the ground.

  4. Evaluating the caregiver's intervention in the elder's task performance: capacity versus actual behavior.

    PubMed

    Fulmer, T; Gurland, B

    1997-09-01

    As an elder's functional impairment increases, so in general does the tendency for the caregiver to intervene in the elder's daily activities and initiatives. To a certain extent, such intervention is necessary to compensate for the elder's loss of independent ability, and without such intervention, adverse outcomes for the elder are a possibility. The need for some intervention is usually clear-cut for advanced dementia, given its associated severe disability and handicap, but less clear in elders who are just beginning to show signs of cognitive decline. This study used the paradigm of medication management to look at whether the discrepancy between capacity for self-medication administration and actual self-administration behavior as demonstrated by the Medication Management Test (MMT) is greater for elders with poorer cognitive functioning. A sample of 51 cognitively impaired elders and 74 cognitively normal elders was used to look at the relationship between predicted capacity and actual self-administration of medication, stratifying by level of cognitive status. The highly significant concordance between the MMT score and caregivers' report of medication administration supports the expectation that capacity is influenced by cognitive status. In those discordant cases, further information is needed to interpret help in medication administration as excessive or insufficient intervention. PMID:9309470

  5. Frontoparietal cortex and cerebellum contribution to the update of actual and mental motor performance during the day.

    PubMed

    Bonzano, Laura; Roccatagliata, Luca; Ruggeri, Piero; Papaxanthis, Charalambos; Bove, Marco

    2016-01-01

    Actual and imagined movement speed increases from early morning until mid-afternoon. Here, we investigated the neural correlates of these daily changes. Fifteen subjects performed actual and imagined right finger opposition movement sequences at 8 am and 2 pm. Both actual and imagined movements were significantly faster at 2 pm than 8 am. In the morning, actual movements significantly activated the left primary somatosensory and motor areas, and bilaterally the cerebellum; in the afternoon activations were similar but reduced. Contrast analysis revealed greater activity in the cerebellum, the left primary sensorimotor cortex and parietal lobe in the morning than in the afternoon. Imagined movements in the morning significantly activated the parietal association cortices bilaterally, the left supplementary and premotor areas, and the right orbitofrontal cortex and cerebellum. In the afternoon, the frontal lobe was significantly activated with the right cerebellum. Contrast analysis revealed increased activity in the left parietal lobe in the morning than in the afternoon. For both tasks, speed in the morning was significantly related to the BOLD signal in the brain areas resulted more active. These findings suggest that motor performance is continuously updated on a daily basis with a predominant role of the frontoparietal cortex and cerebellum. PMID:27444783

  6. Frontoparietal cortex and cerebellum contribution to the update of actual and mental motor performance during the day

    PubMed Central

    Bonzano, Laura; Roccatagliata, Luca; Ruggeri, Piero; Papaxanthis, Charalambos; Bove, Marco

    2016-01-01

    Actual and imagined movement speed increases from early morning until mid-afternoon. Here, we investigated the neural correlates of these daily changes. Fifteen subjects performed actual and imagined right finger opposition movement sequences at 8 am and 2 pm. Both actual and imagined movements were significantly faster at 2 pm than 8 am. In the morning, actual movements significantly activated the left primary somatosensory and motor areas, and bilaterally the cerebellum; in the afternoon activations were similar but reduced. Contrast analysis revealed greater activity in the cerebellum, the left primary sensorimotor cortex and parietal lobe in the morning than in the afternoon. Imagined movements in the morning significantly activated the parietal association cortices bilaterally, the left supplementary and premotor areas, and the right orbitofrontal cortex and cerebellum. In the afternoon, the frontal lobe was significantly activated with the right cerebellum. Contrast analysis revealed increased activity in the left parietal lobe in the morning than in the afternoon. For both tasks, speed in the morning was significantly related to the BOLD signal in the brain areas resulted more active. These findings suggest that motor performance is continuously updated on a daily basis with a predominant role of the frontoparietal cortex and cerebellum. PMID:27444783

  7. Bumblebee flight performance in cluttered environments: effects of obstacle orientation, body size and acceleration.

    PubMed

    Crall, James D; Ravi, Sridhar; Mountcastle, Andrew M; Combes, Stacey A

    2015-09-01

    Locomotion through structurally complex environments is fundamental to the life history of most flying animals, and the costs associated with movement through clutter have important consequences for the ecology and evolution of volant taxa. However, few studies have directly investigated how flying animals navigate through cluttered environments, or examined which aspects of flight performance are most critical for this challenging task. Here, we examined how body size, acceleration and obstacle orientation affect the flight of bumblebees in an artificial, cluttered environment. Non-steady flight performance is often predicted to decrease with body size, as a result of a presumed reduction in acceleration capacity, but few empirical tests of this hypothesis have been performed in flying animals. We found that increased body size is associated with impaired flight performance (specifically transit time) in cluttered environments, but not with decreased peak accelerations. In addition, previous studies have shown that flying insects can produce higher accelerations along the lateral body axis, suggesting that if maneuvering is constrained by acceleration capacity, insects should perform better when maneuvering around objects laterally rather than vertically. Our data show that bumblebees do generate higher accelerations in the lateral direction, but we found no difference in their ability to pass through obstacle courses requiring lateral versus vertical maneuvering. In sum, our results suggest that acceleration capacity is not a primary determinant of flight performance in clutter, as is often assumed. Rather than being driven by the scaling of acceleration, we show that the reduced flight performance of larger bees in cluttered environments is driven by the allometry of both path sinuosity and mean flight speed. Specifically, differences in collision-avoidance behavior underlie much of the variation in flight performance across body size, with larger bees

  8. How accurately can students estimate their performance on an exam and how does this relate to their actual performance on the exam?

    NASA Astrophysics Data System (ADS)

    Rebello, N. Sanjay

    2012-02-01

    Research has shown students' beliefs regarding their own abilities in math and science can influence their performance in these disciplines. I investigated the relationship between students' estimated performance and actual performance on five exams in a second semester calculus-based physics class. Students in a second-semester calculus-based physics class were given about 72 hours after the completion of each of five exams, to estimate their individual and class mean score on each exam. Students were given extra credit worth 1% of the exam points for estimating their score correct within 2% of the actual score and another 1% extra credit for estimating the class mean score within 2% of the correct value. I compared students' individual and mean score estimations with the actual scores to investigate the relationship between estimation accuracies and exam performance of the students as well as trends over the semester.

  9. Comparative aerodynamic performance of flapping flight in two bat species using time-resolved wake visualization.

    PubMed

    Muijres, Florian T; Johansson, L Christoffer; Winter, York; Hedenström, Anders

    2011-10-01

    Bats are unique among extant actively flying animals in having very flexible wings, controlled by multi-jointed fingers. This gives the potential for fine-tuned active control to optimize aerodynamic performance throughout the wingbeat and thus a more efficient flight. But how bat wing performance scales with size, morphology and ecology is not yet known. Here, we present time-resolved fluid wake data of two species of bats flying freely across a range of flight speeds using stereoscopic digital particle image velocimetry in a wind tunnel. From these data, we construct an average wake for each bat species and speed combination, which is used to estimate the flight forces throughout the wingbeat and resulting flight performance properties such as lift-to-drag ratio (L/D). The results show that the wake dynamics and flight performance of both bat species are similar, as was expected since both species operate at similar Reynolds numbers (Re) and Strouhal numbers (St). However, maximum L/D is achieved at a significant higher flight speed for the larger, highly mobile and migratory bat species than for the smaller non-migratory species. Although the flight performance of these bats may depend on a range of morphological and ecological factors, the differences in optimal flight speeds between the species could at least partly be explained by differences in their movement ecology.

  10. Comparative aerodynamic performance of flapping flight in two bat species using time-resolved wake visualization

    PubMed Central

    Muijres, Florian T.; Johansson, L. Christoffer; Winter, York; Hedenström, Anders

    2011-01-01

    Bats are unique among extant actively flying animals in having very flexible wings, controlled by multi-jointed fingers. This gives the potential for fine-tuned active control to optimize aerodynamic performance throughout the wingbeat and thus a more efficient flight. But how bat wing performance scales with size, morphology and ecology is not yet known. Here, we present time-resolved fluid wake data of two species of bats flying freely across a range of flight speeds using stereoscopic digital particle image velocimetry in a wind tunnel. From these data, we construct an average wake for each bat species and speed combination, which is used to estimate the flight forces throughout the wingbeat and resulting flight performance properties such as lift-to-drag ratio (L/D). The results show that the wake dynamics and flight performance of both bat species are similar, as was expected since both species operate at similar Reynolds numbers (Re) and Strouhal numbers (St). However, maximum L/D is achieved at a significant higher flight speed for the larger, highly mobile and migratory bat species than for the smaller non-migratory species. Although the flight performance of these bats may depend on a range of morphological and ecological factors, the differences in optimal flight speeds between the species could at least partly be explained by differences in their movement ecology. PMID:21367776

  11. Flight performance effects of thermal stress and two aviator uniforms in a UH-60 helicopter simulator.

    PubMed

    Reardon, M J; Fraser, E B; Omer, J M

    1998-06-01

    The effects on flight performance of the four combinations of an unencumbered mission oriented protective posture (MOPP) aviator battle dress uniform (ABDU) and encumbered MOPP4 over ABDU flight ensemble in cool (70 degrees F or 21.1 degrees C, 50% relative humidity [RH]) and hot (100 degrees F or 37.8 degrees C, 50% RH) UH-60 simulator cockpit conditions were evaluated with a repeated measures, 2 x 2 factorial study using nine crews. The encumbered MOPP4 uniform had the most frequent adverse effect on flight performance followed by heat stress, with less frequent effects from the combination or interaction of these two factors. This study confirmed that heat stress and wearing an encumbered U.S. Army MOPP4 flight uniform significantly reduced endurance and flight performance in a UH-60 simulator.

  12. Combined dynamic inversion and QFT flight control of an unstable high performance aircraft

    NASA Astrophysics Data System (ADS)

    Stout, Perry Walter

    Quantitative Feedback Theory (QFT) is a control system synthesis, technique that directly considers system uncertainties and disturbance magnitudes when formulating closed-loop control algorithms. Dynamic Inversion is a nonlinear control system design technique that relies on accurate mathematical models to compute control inputs producing arbitrary system responses. Both techniques have been applied to unstable high performance aircraft flight control, and produced effective aircraft controllers. Both techniques have certain drawbacks: Nonlinear QFT controllers tend to be unnecessarily conservative (the computed controllers have excessive bandwidth) because known system properties are treated as "unknown" disturbances during loop synthesis. Meanwhile Dynamic Inversion control is sensitive to differences between assumed mathematical models and actual system dynamic properties. Combining the two control techniques provides the benefit of both while suffering the drawbacks of neither, as demonstrated by Single Input, Single Output (SISO) control of a constant airspeed, no roll, no yaw nonlinear model of the F-16 aircraft, and by Multi-Input, Multi-Output (MIMO) control of a full six-degree-of-freedom version. Design performance of the combined controllers is verified by reduced actuator efforts and by reduced sensor noise to actuator input (U( s)/n(s)) transfer function magnitudes compared to standard QFT versions.

  13. Does verbal encouragement actually improve performance in the 6-minute walk test?

    PubMed

    Marinho, Patrícia E M; Raposo, Maria Cristina; Dean, Elizabeth; Guerra, Ricardo O; de Andrade, Arméle Dornelas

    2014-11-01

    The purpose of this study was to evaluate the performance in the 6-minute walk test (6 MWT) of elderly patients with chronic obstructive pulmonary disease (COPD) by comparing to a group of healthy elderly patients, performed with and without verbal encouragement. This cross-sectional study compared 40 patients with COPD (forced expiratory volume in the first second (FEV1%) = 53.7 ± 23.8%; forced vital capacity (FVC%) = 65.5 ± 20.8%; and the FEV1/FVC ratio = 55.4 ± 12.4) and 40 healthy elderly patients (control). The 6 MWT's were performed with and without verbal encouragement according to the American Thoracic Society (ATS), monitoring the distance walked (6 MWD), the duration of walking (TW) and the perceived effort index (PEI) through the Borg scale between the groups. No differences were observed in patients with COPD when the tests were performed with and without verbal encouragement for the 6 MWD, TW and PEI, the same occurring in the control group for the 6 MWD, TW and PEI, respectively. The use of verbal encouragement was not sufficient to promote improvement in the performance of the 6 MWT (6 MWD, TW and PEI) of patients with COPD and healthy elderly patients.

  14. Early life disadvantage strengthens flight performance trade-offs in European starlings, Sturnus vulgaris

    PubMed Central

    O'Hagan, Daniel; Andrews, Clare P.; Bedford, Thomas; Bateson, Melissa; Nettle, Daniel

    2015-01-01

    Developmental stress has been shown to affect adult flight performance in birds, with both negative and positive effects reported in the literature. Previous studies have used developmental manipulations that had substantial effects on patterns of growth. They have also examined mean levels of flight performance per individual, rather than investigating how developmental stress might alter trade-offs between different components of flight performance. We recorded multiple components of escape flight performance in 20 adult European starlings previously subjected to a manipulation likely to have altered levels of developmental stress. Siblings had been cross-fostered to nests where they were either slightly larger (advantaged treatment) or slightly smaller (disadvantaged treatment) than their competitors. The manipulation had no detectable effect on growth. However, developmental treatment affected performance in escape flights a year later by strengthening the trade-offs between different flight parameters. Disadvantaged birds faced a steeper trade-off between take-off speed and take-off angle, and a steeper trade-off between take-off angle and total time in flight, than advantaged birds. The results suggest that even subtle early life adversity that has no obvious effect on growth or size can leave a lasting legacy in the form of constraints on locomotor performance later in life. PMID:25843958

  15. Ride qualities criteria validation/pilot performance study: Flight test results

    NASA Technical Reports Server (NTRS)

    Nardi, L. U.; Kawana, H. Y.; Greek, D. C.

    1979-01-01

    Pilot performance during a terrain following flight was studied for ride quality criteria validation. Data from manual and automatic terrain following operations conducted during low level penetrations were analyzed to determine the effect of ride qualities on crew performance. The conditions analyzed included varying levels of turbulence, terrain roughness, and mission duration with a ride smoothing system on and off. Limited validation of the B-1 ride quality criteria and some of the first order interactions between ride qualities and pilot/vehicle performance are highlighted. An earlier B-1 flight simulation program correlated well with the flight test results.

  16. Predicted versus Actual Performance in Undergraduate Organic Chemistry and Implications for Student Advising

    ERIC Educational Resources Information Center

    Pursell, David P.

    2007-01-01

    Performance as measured by grades in the first and second semesters of organic chemistry was predicted using pre-college measures (SAT scores, high school rank, validation exams) and college measures (general chemistry GPA, overall college GPA prior to beginning organic chemistry, first-semester organic chemistry GPA). Data indicate that overall…

  17. Can medical students accurately predict their learning? A study comparing perceived and actual performance in neuroanatomy.

    PubMed

    Hall, Samuel R; Stephens, Jonny R; Seaby, Eleanor G; Andrade, Matheus Gesteira; Lowry, Andrew F; Parton, Will J C; Smith, Claire F; Border, Scott

    2016-10-01

    It is important that clinicians are able to adequately assess their level of knowledge and competence in order to be safe practitioners of medicine. The medical literature contains numerous examples of poor self-assessment accuracy amongst medical students over a range of subjects however this ability in neuroanatomy has yet to be observed. Second year medical students attending neuroanatomy revision sessions at the University of Southampton and the competitors of the National Undergraduate Neuroanatomy Competition were asked to rate their level of knowledge in neuroanatomy. The responses from the former group were compared to performance on a ten item multiple choice question examination and the latter group were compared to their performance within the competition. In both cohorts, self-assessments of perceived level of knowledge correlated weakly to their performance in their respective objective knowledge assessments (r = 0.30 and r = 0.44). Within the NUNC, this correlation improved when students were instead asked to rate their performance on a specific examination within the competition (spotter, rS = 0.68; MCQ, rS = 0.58). Despite its inherent difficulty, medical student self-assessment accuracy in neuroanatomy is comparable to other subjects within the medical curriculum. Anat Sci Educ 9: 488-495. © 2016 American Association of Anatomists.

  18. NASA's Marshall Space Flight Center Improves Cooling System Performance

    SciTech Connect

    2011-02-22

    National Aeronautics and Space Administration’s (NASA) Marshall Space Flight Center (MSFC) has a longstanding sustainability program that revolves around energy and water efficiency as well as environmental protection. MSFC identified a problematic cooling loop with six separate compressor heat exchangers and a history of poor efficiency. The facility engineering team at MSFC partnered with Flozone Services, Incorporated to implement a comprehensive water treatment platform to improve the overall efficiency of the system.

  19. Maximal horizontal flight performance of hummingbirds: effects of body mass and molt.

    PubMed

    Chai, P; Altshuler, D L; Stephens, D B; Dillon, M E

    1999-01-01

    Hovering and fast forward flapping represent two strenuous types of flight that differ in aerodynamic power requirement. Maximal capabilities of ruby-throated hummingbirds (Archilochus colubris) in hovering and forward flight were compared under varying body mass and wing area. The capability to hover in low-density gas mixtures was adversely affected by body mass, whereas the capability to fly in a wind tunnel did not show any adverse mass effect. Molting birds that lost primary flight feathers and reduced wing area also displayed mass loss and loss of aerodynamic power and flight speed. This suggests that maximal flight speed is insensitive to short-term perturbations of body mass but that molting is stressful and reduces the birds' speed and capacity for chase and escape. Hummingbirds' flight behavior in confined space was also investigated. Birds reduced their speeds flying through a narrow tube to approximately one-fifth of that in the wind tunnel and did not display differences under varying body mass and wing area. Hence, performance in the flight tube was submaximal and did not correlate with performance variation in the wind tunnel. For ruby-throated hummingbirds, both maximal mass-specific aerodynamic power derived from hovering performance in low-density air media and maximal flight velocity measured in the wind tunnel were invariant with body mass.

  20. Verification and Validation Plan for Flight Performance Requirements on the CEV Parachute Assembly System

    NASA Technical Reports Server (NTRS)

    Morris, Aaron L.; Olson, Leah M.

    2011-01-01

    The Crew Exploration Vehicle Parachute Assembly System (CPAS) is engaged in a multi-year design and test campaign aimed at qualifying a parachute recovery system for human use on the Orion Spacecraft. Orion has parachute flight performance requirements that will ultimately be verified through the use of Monte Carlo multi-degree of freedom flight simulations. These simulations will be anchored by real world flight test data and iteratively improved to provide a closer approximation to the real physics observed in the inherently chaotic inflation and steady state flight of the CPAS parachutes. This paper will examine the processes necessary to verify the flight performance requirements of the human rated spacecraft. The focus will be on the requirements verification and model validation planned on CPAS.

  1. Can a glass cockpit display help (or hinder) performance of novices in simulated flight training?

    PubMed

    Wright, Stephen; O'Hare, David

    2015-03-01

    The analog dials in traditional GA aircraft cockpits are being replaced by integrated electronic displays, commonly referred to as glass cockpits. Pilots may be trained on glass cockpit aircraft or encounter them after training on traditional displays. The effects of glass cockpit displays on initial performance and potential transfer effects between cockpit display configurations have yet to be adequately investigated. Flight-naïve participants were trained on either a simulated traditional display cockpit or a simulated glass display cockpit. Flight performance was measured in a test flight using either the same or different cockpit display. Loss of control events and accuracy in controlling altitude, airspeed and heading, workload, and situational awareness were assessed. Preferences for cockpit display configurations and opinions on ease of use were also measured. The results revealed consistently poorer performance on the test flight for participants using the glass cockpit compared to the traditional cockpit. In contrast the post-flight questionnaire data revealed a strong subjective preference for the glass cockpit over the traditional cockpit displays. There was only a weak effect of prior training. The specific glass cockpit display used in this study was subjectively appealing but yielded poorer flight performance in participants with no previous flight experience than a traditional display. Performance data can contradict opinion data. The design of glass cockpit displays may present some difficulties for pilots in the very early stages of training.

  2. Can a glass cockpit display help (or hinder) performance of novices in simulated flight training?

    PubMed

    Wright, Stephen; O'Hare, David

    2015-03-01

    The analog dials in traditional GA aircraft cockpits are being replaced by integrated electronic displays, commonly referred to as glass cockpits. Pilots may be trained on glass cockpit aircraft or encounter them after training on traditional displays. The effects of glass cockpit displays on initial performance and potential transfer effects between cockpit display configurations have yet to be adequately investigated. Flight-naïve participants were trained on either a simulated traditional display cockpit or a simulated glass display cockpit. Flight performance was measured in a test flight using either the same or different cockpit display. Loss of control events and accuracy in controlling altitude, airspeed and heading, workload, and situational awareness were assessed. Preferences for cockpit display configurations and opinions on ease of use were also measured. The results revealed consistently poorer performance on the test flight for participants using the glass cockpit compared to the traditional cockpit. In contrast the post-flight questionnaire data revealed a strong subjective preference for the glass cockpit over the traditional cockpit displays. There was only a weak effect of prior training. The specific glass cockpit display used in this study was subjectively appealing but yielded poorer flight performance in participants with no previous flight experience than a traditional display. Performance data can contradict opinion data. The design of glass cockpit displays may present some difficulties for pilots in the very early stages of training. PMID:25480000

  3. Investigation of the Performance of Thermoelectric Energy Harvesters Under Real Flight Conditions

    NASA Astrophysics Data System (ADS)

    Elefsiniotis, A.; Samson, D.; Becker, Th.; Schmid, U.

    2013-07-01

    Energy-autonomous wireless sensor nodes (WSNs) in aircraft, acting as health monitoring systems (HMS), have the potential to reduce aircraft maintenance costs. Thermoelectric energy harvesting is a solution for self-powered systems, since it captures enough energy to power up a WSN. The energy harvesting device used in this work consists of a thermoelectric generator (TEG) attached to the inner part of the fuselage and to a thermal storage device, in order to artificially enhance the temperature difference between the bottom and the top surface of the TEG during take-off and landing. In this study, the results of 28 flight tests during a 6-month flight campaign of two identical energy harvesting devices are presented. The results are clustered into two different classes, each having its own characteristics. The two classes comprise typical, similar to standard European short/mid-range flights, as well as atypical flight profiles, where specific flight tests have been performed. In addition, for each class, different parameters such as flight altitudes, flight duration, and temperature profiles are investigated. Moreover, a detailed comparison between a typical and an atypical flight profile is given. In general, for a typical flight profile, the experimental results are in good agreement with simulations predicting the energy output. The average energy output is sufficient to power up a wireless sensor.

  4. Synthetic and Enhanced Vision Systems for NextGen (SEVS) Simulation and Flight Test Performance Evaluation

    NASA Technical Reports Server (NTRS)

    Shelton, Kevin J.; Kramer, Lynda J.; Ellis,Kyle K.; Rehfeld, Sherri A.

    2012-01-01

    The Synthetic and Enhanced Vision Systems for NextGen (SEVS) simulation and flight tests are jointly sponsored by NASA's Aviation Safety Program, Vehicle Systems Safety Technology project and the Federal Aviation Administration (FAA). The flight tests were conducted by a team of Honeywell, Gulfstream Aerospace Corporation and NASA personnel with the goal of obtaining pilot-in-the-loop test data for flight validation, verification, and demonstration of selected SEVS operational and system-level performance capabilities. Nine test flights (38 flight hours) were conducted over the summer and fall of 2011. The evaluations were flown in Gulfstream.s G450 flight test aircraft outfitted with the SEVS technology under very low visibility instrument meteorological conditions. Evaluation pilots flew 108 approaches in low visibility weather conditions (600 ft to 2400 ft visibility) into various airports from Louisiana to Maine. In-situ flight performance and subjective workload and acceptability data were collected in collaboration with ground simulation studies at LaRC.s Research Flight Deck simulator.

  5. An improved method for accurate and rapid measurement of flight performance in Drosophila.

    PubMed

    Babcock, Daniel T; Ganetzky, Barry

    2014-01-01

    Drosophila has proven to be a useful model system for analysis of behavior, including flight. The initial flight tester involved dropping flies into an oil-coated graduated cylinder; landing height provided a measure of flight performance by assessing how far flies will fall before producing enough thrust to make contact with the wall of the cylinder. Here we describe an updated version of the flight tester with four major improvements. First, we added a "drop tube" to ensure that all flies enter the flight cylinder at a similar velocity between trials, eliminating variability between users. Second, we replaced the oil coating with removable plastic sheets coated in Tangle-Trap, an adhesive designed to capture live insects. Third, we use a longer cylinder to enable more accurate discrimination of flight ability. Fourth we use a digital camera and imaging software to automate the scoring of flight performance. These improvements allow for the rapid, quantitative assessment of flight behavior, useful for large datasets and large-scale genetic screens. PMID:24561810

  6. Flight test evaluation of a method to determine the level flight performance of a propeller-driven aircraft

    NASA Technical Reports Server (NTRS)

    Bridges, P. G.; Cross, E. J., Jr.; Boatwright, D. W.

    1977-01-01

    The overall drag of the aircraft is expressed in terms of the measured increment of power required to overcome a corresponding known increment of drag, which is generated by a towed drogue. The simplest form of the governing equations, D = delta D SHP/delta SHP, is such that all of the parameters on the right side of the equation can be measured in flight. An evaluation of the governing equations has been performed using data generated by flight test of a Beechcraft T-34B. The simplicity of this technique and its proven applicability to sailplanes and small aircraft is well known. However, the method fails to account for airframe-propulsion system.

  7. Flight test report of the NASA icing research airplane: Performance, stability, and control after flight through natural icing conditions

    NASA Technical Reports Server (NTRS)

    Jordan, J. L.; Platz, S. J.; Schinstock, W. C.

    1986-01-01

    Flight test results are presented documenting the effect of airframe icing on performance and stability and control of a NASA DHC-6 icing research aircraft. Kohlman System Research, Inc., provided the data acquisition system and data analysis under contract to NASA. Performance modeling methods and MMLE techniques were used to determine the effects of natural ice on the aircraft. Results showed that ice had a significant effect on the drag coefficient of the aircraft and a modest effect on the MMLE derived longitudinal stability coefficients (code version MMLE). Data is also presented on asymmetric power sign slip maneuvers showing rudder floating characteristics with and without ice on the vertical stabilizer.

  8. Propensity-matched analysis of the gap between capacity and actual performance of dressing in patients with stroke.

    PubMed

    Fujita, Takaaki; Sato, Atsushi; Yamamoto, Yuichi; Otsuki, Koji; Iokawa, Kazuaki; Sone, Toshimasa; Midorikawa, Manabu; Tsuchiya, Kenji; Bumsuk, Lee; Tozato, Fusae

    2016-06-01

    [Purpose] Dressing is an activity of daily living for which stroke patients often show discrepancies between capacity and actual performance. The aim of this study was to elucidate the physical function and unilateral spatial neglect in stroke patients that reduce their level of actual performance despite having the capacity for dressing independently. [Subjects and Methods] This retrospective study included 60 first-time stroke patients judged by occupational therapists as able to dress independently. The patients were divided into two groups according to their FIM(®) instrument scores for dressing the upper and lower body: an independent group with both scores ≥6 and an assistance group with one or both scores ≤5. After adjusting for confounding factors through propensity score matching, the groups were compared by using Stroke Impairment Assessment Set items, the Simple Test for Evaluating Hand Function of both upper limbs, and the Berg balance scale. [Results] The assistance group had a significantly lower score for the Berg balance scale than the independent dressing group (31.0 ± 12.3 vs. 47.8 ± 7.4). [Conclusion] The results of the present study suggested that the balance function has an effect on the discrepancy between dressing capacity and performance.

  9. Propensity-matched analysis of the gap between capacity and actual performance of dressing in patients with stroke.

    PubMed

    Fujita, Takaaki; Sato, Atsushi; Yamamoto, Yuichi; Otsuki, Koji; Iokawa, Kazuaki; Sone, Toshimasa; Midorikawa, Manabu; Tsuchiya, Kenji; Bumsuk, Lee; Tozato, Fusae

    2016-06-01

    [Purpose] Dressing is an activity of daily living for which stroke patients often show discrepancies between capacity and actual performance. The aim of this study was to elucidate the physical function and unilateral spatial neglect in stroke patients that reduce their level of actual performance despite having the capacity for dressing independently. [Subjects and Methods] This retrospective study included 60 first-time stroke patients judged by occupational therapists as able to dress independently. The patients were divided into two groups according to their FIM(®) instrument scores for dressing the upper and lower body: an independent group with both scores ≥6 and an assistance group with one or both scores ≤5. After adjusting for confounding factors through propensity score matching, the groups were compared by using Stroke Impairment Assessment Set items, the Simple Test for Evaluating Hand Function of both upper limbs, and the Berg balance scale. [Results] The assistance group had a significantly lower score for the Berg balance scale than the independent dressing group (31.0 ± 12.3 vs. 47.8 ± 7.4). [Conclusion] The results of the present study suggested that the balance function has an effect on the discrepancy between dressing capacity and performance. PMID:27390439

  10. The relationship between academic performanceand pilot performance in a collegiate flight training environment

    NASA Astrophysics Data System (ADS)

    Jones, Carolyn A.

    While flight time has commonly been used as a measure of a pilot's skill level, little research has been performed to determine what factors are linked to predicting a pilot's performance, particularly in a training environment. If a dependable link was found, prediction of how well an individual would do in flight training would be possible. Time, money and resources could be focused on individuals who are more likely to succeed in pilot training. Therefore, this study was designed to determine if a relationship between GPA and pilot performance exists, in order to determine if academic performance can serve as a predictor of pilot performance in a training environment. The use of historical records from Middle Tennessee State University's Aerospace Department, which included GPA information and flight training records information, was used evaluate this relationship. Results of the study indicate a statistically significant modest correlation between academic performance and pilot performance between some of the variable pairings.

  11. Visual Earth observation performance in the space environment. Human performance measurement 4: Flight experiments

    NASA Technical Reports Server (NTRS)

    Huth, John F.; Whiteley, James D.; Hawker, John E.

    1993-01-01

    A wide variety of secondary payloads have flown on the Space Transportation System (STS) since its first flight in the 1980's. These experiments have typically addressed specific issues unique to the zero-gravity environment. Additionally, the experiments use the experience and skills of the mission and payload specialist crew members to facilitate data collection and ensure successful completion. This paper presents the results of the Terra Scout experiment, which flew aboard STS-44 in November 1991. This unique Earth Observation experiment specifically required a career imagery analyst to operate the Spaceborne Direct-View Optical System (SpaDVOS), a folded optical path telescope system designed to mount inside the shuttle on the overhead aft flight deck windows. Binoculars and a small telescope were used as backup optics. Using his imagery background, coupled with extensive target and equipment training, the payload specialist was tasked with documenting the following: (1) the utility of the equipment; (2) his ability to acquire and track ground targets; (3) the level of detail he could discern; (4) the atmospheric conditions; and (5) other in-situ elements which contributed to or detracted from his ability to analyze targets. Special emphasis was placed on the utility of a manned platform for research and development of future spaceborne sensors. The results and lessons learned from Terra Scout will be addressed including human performance and equipment design issues.

  12. Correlation of Space Shuttle Landing Performance with Post-Flight Cardiovascular Dysfunction

    NASA Technical Reports Server (NTRS)

    McCluskey, R.

    2004-01-01

    Introduction: Microgravity induces cardiovascular adaptations resulting in orthostatic intolerance on re-exposure to normal gravity. Orthostasis could interfere with performance of complex tasks during the re-entry phase of Shuttle landings. This study correlated measures of Shuttle landing performance with post-flight indicators of orthostatic intolerance. Methods: Relevant Shuttle landing performance parameters routinely recorded at touchdown by NASA included downrange and crossrange distances, airspeed, and vertical speed. Measures of cardiovascular changes were calculated from operational stand tests performed in the immediate post-flight period on mission commanders from STS-41 to STS-66. Stand test data analyzed included maximum standing heart rate, mean increase in maximum heart rate, minimum standing systolic blood pressure, and mean decrease in standing systolic blood pressure. Pearson correlation coefficients were calculated with the null hypothesis that there was no statistically significant linear correlation between stand test results and Shuttle landing performance. A correlation coefficient? 0.5 with a p<0.05 was considered significant. Results: There were no significant linear correlations between landing performance and measures of post-flight cardiovascular dysfunction. Discussion: There was no evidence that post-flight cardiovascular stand test data correlated with Shuttle landing performance. This implies that variations in landing performance were not due to space flight-induced orthostatic intolerance.

  13. SFDT-1 Camera Pointing and Sun-Exposure Analysis and Flight Performance

    NASA Technical Reports Server (NTRS)

    White, Joseph; Dutta, Soumyo; Striepe, Scott

    2015-01-01

    The Supersonic Flight Dynamics Test (SFDT) vehicle was developed to advance and test technologies of NASA's Low Density Supersonic Decelerator (LDSD) Technology Demonstration Mission. The first flight test (SFDT-1) occurred on June 28, 2014. In order to optimize the usefulness of the camera data, analysis was performed to optimize parachute visibility in the camera field of view during deployment and inflation and to determine the probability of sun-exposure issues with the cameras given the vehicle heading and launch time. This paper documents the analysis, results and comparison with flight video of SFDT-1.

  14. Aerodynamic performance of the feathered dinosaur Microraptor and the evolution of feathered flight.

    PubMed

    Dyke, Gareth; de Kat, Roeland; Palmer, Colin; van der Kindere, Jacques; Naish, Darren; Ganapathisubramani, Bharathram

    2013-01-01

    Understanding the aerodynamic performance of feathered, non-avialan dinosaurs is critical to reconstructing the evolution of bird flight. Here we show that the Early Cretaceous five-winged paravian Microraptor is most stable when gliding at high-lift coefficients (low lift/drag ratios). Wind tunnel experiments and flight simulations show that sustaining a high-lift coefficient at the expense of high drag would have been the most efficient strategy for Microraptor when gliding from, and between, low elevations. Analyses also demonstrate that anatomically plausible changes in wing configuration and leg position would have made little difference to aerodynamic performance. Significant to the evolution of flight, we show that Microraptor did not require a sophisticated, 'modern' wing morphology to undertake effective glides. This is congruent with the fossil record and also with the hypothesis that symmetric 'flight' feathers first evolved in dinosaurs for non-aerodynamic functions, later being adapted to form lifting surfaces. PMID:24048346

  15. A Multiple Agent Model of Human Performance in Automated Air Traffic Control and Flight Management Operations

    NASA Technical Reports Server (NTRS)

    Corker, Kevin; Pisanich, Gregory; Condon, Gregory W. (Technical Monitor)

    1995-01-01

    A predictive model of human operator performance (flight crew and air traffic control (ATC)) has been developed and applied in order to evaluate the impact of automation developments in flight management and air traffic control. The model is used to predict the performance of a two person flight crew and the ATC operators generating and responding to clearances aided by the Center TRACON Automation System (CTAS). The purpose of the modeling is to support evaluation and design of automated aids for flight management and airspace management and to predict required changes in procedure both air and ground in response to advancing automation in both domains. Additional information is contained in the original extended abstract.

  16. Flight research and testing

    NASA Technical Reports Server (NTRS)

    Putnam, Terrill W.; Ayers, Theodore G.

    1988-01-01

    Flight research and testing form a critical link in the aeronautic R and D chain. Brilliant concepts, elegant theories, and even sophisticated ground tests of flight vehicles are not sufficient to prove beyond doubt that an unproven aeronautical concept will actually perform as predicted. Flight research and testing provide the ultimate proof that an idea or concept performs as expected. Ever since the Wright brothers, flight research and testing have been the crucible in which aeronautical concepts have advanced and been proven to the point that engineers and companies have been willing to stake their future to produce and design new aircraft. This is still true today, as shown by the development of the experimental X-30 aerospace plane. The Dryden Flight Research Center (Ames-Dryden) continues to be involved in a number of flight research programs that require understanding and characterization of the total airplane in all the aeronautical disciplines, for example the X-29. Other programs such as the F-14 variable-sweep transition flight experiment have focused on a single concept or discipline. Ames-Dryden also continues to conduct flight and ground based experiments to improve and expand the ability to test and evaluate advanced aeronautical concepts. A review of significant aeronautical flight research programs and experiments is presented to illustrate both the progress made and the challenges to come.

  17. Flight research and testing

    NASA Technical Reports Server (NTRS)

    Putnam, Terrill W.; Ayers, Theodore G.

    1989-01-01

    Flight research and testing form a critical link in the aeronautic research and development chain. Brilliant concepts, elegant theories, and even sophisticated ground tests of flight vehicles are not sufficient to prove beyond a doubt that an unproven aeronautical concept will actually perform as predicted. Flight research and testing provide the ultimate proof that an idea or concept performs as expected. Ever since the Wright brothers, flight research and testing were the crucible in which aeronautical concepts were advanced and proven to the point that engineers and companies are willing to stake their future to produce and design aircraft. This is still true today, as shown by the development of the experimental X-30 aerospace plane. The Dryden Flight Research Center (Ames-Dryden) continues to be involved in a number of flight research programs that require understanding and characterization of the total airplane in all the aeronautical disciplines, for example the X-29. Other programs such as the F-14 variable-sweep transition flight experiment have focused on a single concept or discipline. Ames-Dryden also continues to conduct flight and ground based experiments to improve and expand the ability to test and evaluate advanced aeronautical concepts. A review of significant aeronautical flight research programs and experiments is presented to illustrate both the progress being made and the challenges to come.

  18. Nectar resource limitation affects butterfly flight performance and metabolism differently in intensive and extensive agricultural landscapes.

    PubMed

    Lebeau, Julie; Wesselingh, Renate A; Van Dyck, Hans

    2016-05-11

    Flight is an essential biological ability of many insects, but is energetically costly. Environments under rapid human-induced change are characterized by habitat fragmentation and may impose constraints on the energy income budget of organisms. This may, in turn, affect locomotor performance and willingness to fly. We tested flight performance and metabolic rates in meadow brown butterflies (Maniola jurtina) of two contrasted agricultural landscapes: intensively managed, nectar-poor (IL) versus extensively managed, nectar-rich landscapes (EL). Young female adults were submitted to four nectar treatments (i.e. nectar quality and quantity) in outdoor flight cages. IL individuals had better flight capacities in a flight mill and had lower resting metabolic rates (RMR) than EL individuals, except under the severest treatment. Under this treatment, RMR increased in IL individuals, but decreased in EL individuals; flight performance was maintained by IL individuals, but dropped by a factor 2.5 in EL individuals. IL individuals had more canalized (i.e. less plastic) responses relative to the nectar treatments than EL individuals. Our results show significant intraspecific variation in the locomotor and metabolic response of a butterfly to different energy income regimes relative to the landscape of origin. Ecophysiological studies help to improve our mechanistic understanding of the eco-evolutionary impact of anthropogenic environments on rare and widespread species. PMID:27147100

  19. Nectar resource limitation affects butterfly flight performance and metabolism differently in intensive and extensive agricultural landscapes.

    PubMed

    Lebeau, Julie; Wesselingh, Renate A; Van Dyck, Hans

    2016-05-11

    Flight is an essential biological ability of many insects, but is energetically costly. Environments under rapid human-induced change are characterized by habitat fragmentation and may impose constraints on the energy income budget of organisms. This may, in turn, affect locomotor performance and willingness to fly. We tested flight performance and metabolic rates in meadow brown butterflies (Maniola jurtina) of two contrasted agricultural landscapes: intensively managed, nectar-poor (IL) versus extensively managed, nectar-rich landscapes (EL). Young female adults were submitted to four nectar treatments (i.e. nectar quality and quantity) in outdoor flight cages. IL individuals had better flight capacities in a flight mill and had lower resting metabolic rates (RMR) than EL individuals, except under the severest treatment. Under this treatment, RMR increased in IL individuals, but decreased in EL individuals; flight performance was maintained by IL individuals, but dropped by a factor 2.5 in EL individuals. IL individuals had more canalized (i.e. less plastic) responses relative to the nectar treatments than EL individuals. Our results show significant intraspecific variation in the locomotor and metabolic response of a butterfly to different energy income regimes relative to the landscape of origin. Ecophysiological studies help to improve our mechanistic understanding of the eco-evolutionary impact of anthropogenic environments on rare and widespread species.

  20. Comparing aerodynamic efficiency in birds and bats suggests better flight performance in birds.

    PubMed

    Muijres, Florian T; Johansson, L Christoffer; Bowlin, Melissa S; Winter, York; Hedenström, Anders

    2012-01-01

    Flight is one of the energetically most costly activities in the animal kingdom, suggesting that natural selection should work to optimize flight performance. The similar size and flight speed of birds and bats may therefore suggest convergent aerodynamic performance; alternatively, flight performance could be restricted by phylogenetic constraints. We test which of these scenarios fit to two measures of aerodynamic flight efficiency in two passerine bird species and two New World leaf-nosed bat species. Using time-resolved particle image velocimetry measurements of the wake of the animals flying in a wind tunnel, we derived the span efficiency, a metric for the efficiency of generating lift, and the lift-to-drag ratio, a metric for mechanical energetic flight efficiency. We show that the birds significantly outperform the bats in both metrics, which we ascribe to variation in aerodynamic function of body and wing upstroke: Bird bodies generated relatively more lift than bat bodies, resulting in a more uniform spanwise lift distribution and higher span efficiency. A likely explanation would be that the bat ears and nose leaf, associated with echolocation, disturb the flow over the body. During the upstroke, the birds retract their wings to make them aerodynamically inactive, while the membranous bat wings generate thrust and negative lift. Despite the differences in performance, the wake morphology of both birds and bats resemble the optimal wake for their respective lift-to-drag ratio regimes. This suggests that evolution has optimized performance relative to the respective conditions of birds and bats, but that maximum performance is possibly limited by phylogenetic constraints. Although ecological differences between birds and bats are subjected to many conspiring variables, the different aerodynamic flight efficiency for the bird and bat species studied here may help explain why birds typically fly faster, migrate more frequently and migrate longer distances

  1. Comparing aerodynamic efficiency in birds and bats suggests better flight performance in birds.

    PubMed

    Muijres, Florian T; Johansson, L Christoffer; Bowlin, Melissa S; Winter, York; Hedenström, Anders

    2012-01-01

    Flight is one of the energetically most costly activities in the animal kingdom, suggesting that natural selection should work to optimize flight performance. The similar size and flight speed of birds and bats may therefore suggest convergent aerodynamic performance; alternatively, flight performance could be restricted by phylogenetic constraints. We test which of these scenarios fit to two measures of aerodynamic flight efficiency in two passerine bird species and two New World leaf-nosed bat species. Using time-resolved particle image velocimetry measurements of the wake of the animals flying in a wind tunnel, we derived the span efficiency, a metric for the efficiency of generating lift, and the lift-to-drag ratio, a metric for mechanical energetic flight efficiency. We show that the birds significantly outperform the bats in both metrics, which we ascribe to variation in aerodynamic function of body and wing upstroke: Bird bodies generated relatively more lift than bat bodies, resulting in a more uniform spanwise lift distribution and higher span efficiency. A likely explanation would be that the bat ears and nose leaf, associated with echolocation, disturb the flow over the body. During the upstroke, the birds retract their wings to make them aerodynamically inactive, while the membranous bat wings generate thrust and negative lift. Despite the differences in performance, the wake morphology of both birds and bats resemble the optimal wake for their respective lift-to-drag ratio regimes. This suggests that evolution has optimized performance relative to the respective conditions of birds and bats, but that maximum performance is possibly limited by phylogenetic constraints. Although ecological differences between birds and bats are subjected to many conspiring variables, the different aerodynamic flight efficiency for the bird and bat species studied here may help explain why birds typically fly faster, migrate more frequently and migrate longer distances

  2. Thermal Performance of LANDSAT-7 ETM+ Instruments During First Year in Flight

    NASA Technical Reports Server (NTRS)

    Choi, Michael K.

    2000-01-01

    Landsat-7 was successfully launched into orbit on April 15, 1999. After devoting three months to the t bakeout and cool-down of the radiative cooler, and on- t orbit checkout, the Enhanced Thematic Mapper Plus (ETM+) began the normal imaging phase of the mission in mid-July 1999. This paper presents the thermal performance of the ETM+ from mid-July 1999 to mid-May 2000. The flight temperatures are compared to the yellow temperature limits, and worst cold case and worst hot case flight temperature predictions in the 15-orbit mission design profile. The flight temperature predictions were generated by a thermal model, which was correlated to the observatory thermal balance test data. The yellow temperature limits were derived from the flight temperature predictions, plus some margins. The yellow limits work well in flight, so that only several minor changes to them were needed. Overall, the flight temperatures and flight temperature predictions have good agreement. Based on the ETM+ thermal vacuum qualification test, new limits on the imaging time are proposed to increase the average duty cycle, and to resolve the problems experienced by the Mission Operation Team.

  3. In-Flight performance of MESSENGER's Mercury dual imaging system

    USGS Publications Warehouse

    Hawkins, S.E.; Murchie, S.L.; Becker, K.J.; Selby, C.M.; Turner, F.S.; Noble, M.W.; Chabot, N.L.; Choo, T.H.; Darlington, E.H.; Denevi, B.W.; Domingue, D.L.; Ernst, C.M.; Holsclaw, G.M.; Laslo, N.R.; Mcclintock, W.E.; Prockter, L.M.; Robinson, M.S.; Solomon, S.C.; Sterner, R.E.

    2009-01-01

    The Mercury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, launched in August 2004 and planned for insertion into orbit around Mercury in 2011, has already completed two flybys of the innermost planet. The Mercury Dual Imaging System (MDIS) acquired nearly 2500 images from the first two flybys and viewed portions of Mercury's surface not viewed by Mariner 10 in 1974-1975. Mercury's proximity to the Sun and its slow rotation present challenges to the thermal design for a camera on an orbital mission around Mercury. In addition, strict limitations on spacecraft pointing and the highly elliptical orbit create challenges in attaining coverage at desired geometries and relatively uniform spatial resolution. The instrument designed to meet these challenges consists of dual imagers, a monochrome narrow-angle camera (NAC) with a 1.5?? field of view (FOV) and a multispectral wide-angle camera (WAC) with a 10.5?? FOV, co-aligned on a pivoting platform. The focal-plane electronics of each camera are identical and use a 1024??1024 charge-coupled device detector. The cameras are passively cooled but use diode heat pipes and phase-change-material thermal reservoirs to maintain the thermal configuration during the hot portions of the orbit. Here we present an overview of the instrument design and how the design meets its technical challenges. We also review results from the first two flybys, discuss the quality of MDIS data from the initial periods of data acquisition and how that compares with requirements, and summarize how in-flight tests are being used to improve the quality of the instrument calibration. ?? 2009 SPIE.

  4. Performance analysis of mini-propellers based on FlightGear

    NASA Astrophysics Data System (ADS)

    Vogeltanz, Tomáš

    2016-06-01

    This paper presents a performance analysis of three mini-propellers based on the FlightGear flight simulator. Although a basic propeller analysis has to be performed before the use of FlightGear, for a complex and more practical performance analysis, it is advantageous to use a propeller model in cooperation with a particular aircraft model. This approach may determine whether the propeller has sufficient quality in respect of aircraft requirements. In the first section, the software used for the analysis is illustrated. Then, the parameters of the analyzed mini-propellers and the tested UAV are described. Finally, the main section shows and discusses the results of the performance analysis of the mini-propellers.

  5. In-flight sleep, pilot fatigue and Psychomotor Vigilance Task performance on ultra-long range versus long range flights.

    PubMed

    Gander, Philippa H; Signal, T Leigh; van den Berg, Margo J; Mulrine, Hannah M; Jay, Sarah M; Jim Mangie, Captain

    2013-12-01

    This study evaluated whether pilot fatigue was greater on ultra-long range (ULR) trips (flights >16 h on 10% of trips in a 90-day period) than on long range (LR) trips. The within-subjects design controlled for crew complement, pattern of in-flight breaks, flight direction and departure time. Thirty male Captains (mean age = 54.5 years) and 40 male First officers (mean age = 48.0 years) were monitored on commercial passenger flights (Boeing 777 aircraft). Sleep was monitored (actigraphy, duty/sleep diaries) from 3 days before the first study trip to 3 days after the second study trip. Karolinska Sleepiness Scale, Samn-Perelli fatigue ratings and a 5-min Psychomotor Vigilance Task were completed before, during and after every flight. Total sleep in the 24 h before outbound flights and before inbound flights after 2-day layovers was comparable for ULR and LR flights. All pilots slept on all flights. For each additional hour of flight time, they obtained an estimated additional 12.3 min of sleep. Estimated mean total sleep was longer on ULR flights (3 h 53 min) than LR flights (3 h 15 min; P(F) = 0.0004). Sleepiness ratings were lower and mean reaction speed was faster at the end of ULR flights. Findings suggest that additional in-flight sleep mitigated fatigue effectively on longer flights. Further research is needed to clarify the contributions to fatigue of in-flight sleep versus time awake at top of descent. The study design was limited to eastward outbound flights with two Captains and two First Officers. Caution must be exercised when extrapolating to different operations. PMID:23889686

  6. In-flight sleep, pilot fatigue and Psychomotor Vigilance Task performance on ultra-long range versus long range flights.

    PubMed

    Gander, Philippa H; Signal, T Leigh; van den Berg, Margo J; Mulrine, Hannah M; Jay, Sarah M; Jim Mangie, Captain

    2013-12-01

    This study evaluated whether pilot fatigue was greater on ultra-long range (ULR) trips (flights >16 h on 10% of trips in a 90-day period) than on long range (LR) trips. The within-subjects design controlled for crew complement, pattern of in-flight breaks, flight direction and departure time. Thirty male Captains (mean age = 54.5 years) and 40 male First officers (mean age = 48.0 years) were monitored on commercial passenger flights (Boeing 777 aircraft). Sleep was monitored (actigraphy, duty/sleep diaries) from 3 days before the first study trip to 3 days after the second study trip. Karolinska Sleepiness Scale, Samn-Perelli fatigue ratings and a 5-min Psychomotor Vigilance Task were completed before, during and after every flight. Total sleep in the 24 h before outbound flights and before inbound flights after 2-day layovers was comparable for ULR and LR flights. All pilots slept on all flights. For each additional hour of flight time, they obtained an estimated additional 12.3 min of sleep. Estimated mean total sleep was longer on ULR flights (3 h 53 min) than LR flights (3 h 15 min; P(F) = 0.0004). Sleepiness ratings were lower and mean reaction speed was faster at the end of ULR flights. Findings suggest that additional in-flight sleep mitigated fatigue effectively on longer flights. Further research is needed to clarify the contributions to fatigue of in-flight sleep versus time awake at top of descent. The study design was limited to eastward outbound flights with two Captains and two First Officers. Caution must be exercised when extrapolating to different operations.

  7. Actual versus predicted performance of an active solar heating system - A comparison using FCHART 4.0

    NASA Astrophysics Data System (ADS)

    Wetzel, P. E.

    1981-11-01

    The performance of an active solar heating system added to a house in Denver, CO was compared with predictions made by the FCHART 4.0 computer program. The house featured 43.23 sq m of collectors with an ethylene-glycol/water heat transfer fluid, and a 3.23 cu m storage tank. The house hot water was preheated in the storage tank, and home space heat was furnished whenever the storage water was above 32 C. Actual meteorological and heating demand data were used for the comparison, rather than long-term averages. Although monthly predictions by the FCHART program were found to diverge from measured data, the annual demand and supply predictions provided a good fit, i.e. within 9%, and were within 1% of the measured solar energy contributed to storage.

  8. Flight performance of western sandpipers, Calidris mauri, remains uncompromised when mounting an acute phase immune response.

    PubMed

    Nebel, Silke; Buehler, Deborah M; MacMillan, Alexander; Guglielmo, Christopher G

    2013-07-15

    Migratory birds have been implicated in the spread of some zoonotic diseases, but how well infected individuals can fly remains poorly understood. We used western sandpipers, Calidris mauri, to experimentally test whether flight is affected when long-distance migrants are mounting an immune response and whether migrants maintain immune defences during a flight in a wind tunnel. We measured five indicators of innate immunity in 'flown-healthy' birds (flying in a wind tunnel without mounting an immune response), 'flown-sick' birds (flying while mounting an acute phase response, which is part of induced innate immunity), and a non-flying control group ('not-flown'). Voluntary flight duration did not differ between flown-healthy and flown-sick birds, indicating that mounting an acute phase response to simulated infection did not hamper an individual's ability to fly for up to 3 h. However, in comparison to not-flown birds, bacterial killing ability of plasma was significantly reduced after flight in flown-sick birds. In flown-healthy birds, voluntary flight duration was positively correlated with bacterial killing ability and baseline haptoglobin concentration of the blood plasma measured 1-3 weeks before experimental flights, suggesting that high quality birds had strong immune systems and greater flight capacity. Our findings indicate that flight performance is not diminished by prior immune challenge, but that flight while mounting an acute phase response negatively affects other aspects of immune function. These findings have important implications for our understanding of the transmission of avian diseases, as they suggest that birds can still migrate while fighting an infection.

  9. Fluid volume control during short-term space flight and implications for human performance.

    PubMed

    Watenpaugh, D E

    2001-09-01

    Space flight exerts substantial effects on fluid volume control in humans. Cardiac distension occurs during the first 1-2 days of space flight relative to supine and especially upright 1g conditions. Plasma volume contraction occurs quickly in microgravity, probably as a result of transcapillary fluid filtration into upper-body interstitial spaces. No natriuresis or diuresis has been observed in microgravity, such that diuresis cannot explain microgravity-induced hypovolemia. Reduction of fluid intake occurs irrespective of space motion sickness and leads to hypovolemia. The fourfold elevation of urinary antidiuretic hormone (ADH) levels on flight day 1 probably results from acceleration exposures and other stresses of launch. Nevertheless, it is fascinating that elevated ADH levels and reduced fluid intake occur simultaneously early in flight. Extracellular fluid volume decreases by 10-15% in microgravity, and intracellular fluid volume appears to increase. Total red blood cell mass decreases by approximately 10% within 1 week in space. Inflight Na(+) and volume excretory responses to saline infusion are approximately half those seen in pre-flight supine conditions. Fluid volume acclimation to microgravity sets the central circulation to homeostatic conditions similar to those found in an upright sitting posture on Earth. Fluid loss in space contributes to reduced exercise performance upon return to 1g, although not necessarily in flight. In-flight exercise training may help prevent microgravity-induced losses of fluid and, therefore, preserve the capacity for upright exercise post-flight. Protection of orthostatic tolerance during space flight probably requires stimulation of orthostatic blood pressure control systems in addition to fluid maintenance or replacement.

  10. Fluid volume control during short-term space flight and implications for human performance.

    PubMed

    Watenpaugh, D E

    2001-09-01

    Space flight exerts substantial effects on fluid volume control in humans. Cardiac distension occurs during the first 1-2 days of space flight relative to supine and especially upright 1g conditions. Plasma volume contraction occurs quickly in microgravity, probably as a result of transcapillary fluid filtration into upper-body interstitial spaces. No natriuresis or diuresis has been observed in microgravity, such that diuresis cannot explain microgravity-induced hypovolemia. Reduction of fluid intake occurs irrespective of space motion sickness and leads to hypovolemia. The fourfold elevation of urinary antidiuretic hormone (ADH) levels on flight day 1 probably results from acceleration exposures and other stresses of launch. Nevertheless, it is fascinating that elevated ADH levels and reduced fluid intake occur simultaneously early in flight. Extracellular fluid volume decreases by 10-15% in microgravity, and intracellular fluid volume appears to increase. Total red blood cell mass decreases by approximately 10% within 1 week in space. Inflight Na(+) and volume excretory responses to saline infusion are approximately half those seen in pre-flight supine conditions. Fluid volume acclimation to microgravity sets the central circulation to homeostatic conditions similar to those found in an upright sitting posture on Earth. Fluid loss in space contributes to reduced exercise performance upon return to 1g, although not necessarily in flight. In-flight exercise training may help prevent microgravity-induced losses of fluid and, therefore, preserve the capacity for upright exercise post-flight. Protection of orthostatic tolerance during space flight probably requires stimulation of orthostatic blood pressure control systems in addition to fluid maintenance or replacement. PMID:11581336

  11. Effect of steady flight loads on JT9D-7 performance deterioration

    NASA Technical Reports Server (NTRS)

    Jay, A.; Todd, E. S.

    1978-01-01

    Short term engine deterioration occurs in less than 250 flights on a new engine and in the first flights following engine repair; while long term deterioration involves primarily hot section distress and compression system losses which occur at a somewhat slower rate. The causes for short-term deterioration are associated with clearance changes which occur in the flight environment. Analytical techniques utilized to examine the effects of flight loads and engine operating conditions on performance deterioration are presented. The role of gyroscopic, gravitational, and aerodynamic loads are discussed along with the effect of variations in engine build clearances. These analytical results are compared to engine test data along with the correlation between analytically predicted and measured clearances and rub patterns. Conclusions are drawn and important issues are discussed.

  12. The Redder the Better: Wing Color Predicts Flight Performance in Monarch Butterflies

    PubMed Central

    Davis, Andrew K.; Chi, Jean; Bradley, Catherine; Altizer, Sonia

    2012-01-01

    The distinctive orange and black wings of monarchs (Danaus plexippus) have long been known to advertise their bitter taste and toxicity to potential predators. Recent work also showed that both the orange and black coloration of this species can vary in response to individual-level and environmental factors. Here we examine the relationship between wing color and flight performance in captive-reared monarchs using a tethered flight mill apparatus to quantify butterfly flight speed, duration and distance. In three different experiments (totaling 121 individuals) we used image analysis to measure body size and four wing traits among newly-emerged butterflies prior to flight trials: wing area, aspect ratio (length/width), melanism, and orange hue. Results showed that monarchs with darker orange (approaching red) wings flew longer distances than those with lighter orange wings in analyses that controlled for sex and other morphometric traits. This finding is consistent with past work showing that among wild monarchs, those sampled during the fall migration are darker in hue (redder) than non-migratory monarchs. Together, these results suggest that pigment deposition onto wing scales during metamorphosis could be linked with traits that influence flight, such as thorax muscle size, energy storage or metabolism. Our results reinforce an association between wing color and flight performance in insects that is suggested by past studies of wing melansim and seasonal polyphenism, and provide an important starting point for work focused on mechanistic links between insect movement and color. PMID:22848463

  13. Dispersal propensity, but not flight performance, explains variation in dispersal ability.

    PubMed

    Steyn, Vernon M; Mitchell, Katherine A; Terblanche, John S

    2016-08-17

    Enhanced dispersal ability may lead to accelerated range expansion and increased rates of population establishment, thereby affecting population genetic structure and evolutionary potential. Morphological, behavioural and physiological traits that characterize dispersive individuals from residents are poorly understood for many invertebrate systems, especially in non-polymorphic pterygote species. Here we examined phenotypic differences between dispersal-prone and philopatric individuals from repeated mark-release-recapture (MRR) experiments using an invasive agricultural pest, Ceratitis capitata Comprehensive morphometric assessment and subsequent minimal adequate modelling using an information theoretic approach identified thorax mass : body mass ratio as a key predictor of disperser flies under semi-natural conditions. Performance differences in flight ability were then examined under controlled laboratory conditions to assess whether greater thorax mass : body mass ratio was associated with enhanced flight ability. The larger thorax : body mass ratio was associated with measurable differences in mean flight duration, most predominantly in males, and also by their willingness to disperse, scored as the number and duration of voluntary flights. No other measures of whole-animal flight performance (e.g. mean and peak vertical force, total or maximum flight duration) differed. Variation in voluntary behaviour may result in significant alterations of movement behaviour and realized dispersal in nature. This phenomenon may help explain intraspecific variation in the dispersal ability of insects.

  14. The redder the better: wing color predicts flight performance in monarch butterflies.

    PubMed

    Davis, Andrew K; Chi, Jean; Bradley, Catherine; Altizer, Sonia

    2012-01-01

    The distinctive orange and black wings of monarchs (Danaus plexippus) have long been known to advertise their bitter taste and toxicity to potential predators. Recent work also showed that both the orange and black coloration of this species can vary in response to individual-level and environmental factors. Here we examine the relationship between wing color and flight performance in captive-reared monarchs using a tethered flight mill apparatus to quantify butterfly flight speed, duration and distance. In three different experiments (totaling 121 individuals) we used image analysis to measure body size and four wing traits among newly-emerged butterflies prior to flight trials: wing area, aspect ratio (length/width), melanism, and orange hue. Results showed that monarchs with darker orange (approaching red) wings flew longer distances than those with lighter orange wings in analyses that controlled for sex and other morphometric traits. This finding is consistent with past work showing that among wild monarchs, those sampled during the fall migration are darker in hue (redder) than non-migratory monarchs. Together, these results suggest that pigment deposition onto wing scales during metamorphosis could be linked with traits that influence flight, such as thorax muscle size, energy storage or metabolism. Our results reinforce an association between wing color and flight performance in insects that is suggested by past studies of wing melansim and seasonal polyphenism, and provide an important starting point for work focused on mechanistic links between insect movement and color. PMID:22848463

  15. The Effects of Ultra-Long-Range Flights on the Alertness and Performance of Aviators

    NASA Technical Reports Server (NTRS)

    Caldwell, John A.; Mallis, Melissa M.; Colletti, Laura M.; Oyung, Raymond L.; Brandt, Summer L.; Arsintescu, Lucia; DeRoshia, Charlie W.; Reduta-Rojas, Dinah D.; Chapman, Patrick M.

    2006-01-01

    This investigation assessed the impact of ultra-long-range (ULR) simulator flights, departing either in the morning or late evening, on the alertness and performance of 17 commercial aviators. Immediately prior to and throughout each flight, alertness and performance were assessed via a computerized test of sustained attention, subjective questionnaires, and "hand-flying" tasks. There were fatigue-related effects on the majority of assessments, and the nature of these effects was consistent across the vigilance and self-report measures. However, the operational "hand-flying" manuevers proved insensitive to the impact of fatigue probably due to procedural factors. Regardless, the results of the present study suggest that fatigue associated with prolonged wakefulness in ULR flight operations will interact with flight schedules due to circadian and homeostatic influences. In this study, the pilots departing at night were at a greater initial disadvantage (during cruise) than pilots who departed earlier in the day; whereas those who departed earlier tended to be most impaired towards the end of the flight prior to landing. In real-world operations, airlines should consider the ramifications of flight schedules and what is known about human sleep and circadian rhythms to optimize safety.

  16. Static performance tests of a flight-type STOVL ejector

    NASA Technical Reports Server (NTRS)

    Barankiewicz, Wendy S.

    1991-01-01

    The design and development of thrust augmenting STOVL ejectors has typically been based on experimental iteration (i.e., trial and error). Static performance tests of a full scale vertical lift ejector were performed at primary flow temperatures up to 1560 R (1100 F). Flow visualization (smoke generators and yarn tufts) were used to view the inlet air flow, especially around the primary nozzle and end plates. Performance calculations are presented for ambient temperatures close to 480 R (20 F) and 535 R (75 F) which simulate seasonal aircraft operating conditions. Resulting thrust augmentation ratios are presented as functions of nozzle pressure ratio and temperature.

  17. Continuous performance measurement in flight systems. [sequential control model

    NASA Technical Reports Server (NTRS)

    Connelly, E. M.; Sloan, N. A.; Zeskind, R. M.

    1975-01-01

    The desired response of many man machine control systems can be formulated as a solution to an optimal control synthesis problem where the cost index is given and the resulting optimal trajectories correspond to the desired trajectories of the man machine system. Optimal control synthesis provides the reference criteria and the significance of error information required for performance measurement. The synthesis procedure described provides a continuous performance measure (CPM) which is independent of the mechanism generating the control action. Therefore, the technique provides a meaningful method for online evaluation of man's control capability in terms of total man machine performance.

  18. In-flight spectral performance monitoring of the Airborne Prism Experiment.

    PubMed

    D'Odorico, Petra; Alberti, Edoardo; Schaepman, Michael E

    2010-06-01

    Spectral performance of an airborne dispersive pushbroom imaging spectrometer cannot be assumed to be stable over a whole flight season given the environmental stresses present during flight. Spectral performance monitoring during flight is commonly accomplished by looking at selected absorption features present in the Sun, atmosphere, or ground, and their stability. The assessment of instrument performance in two different environments, e.g., laboratory and airborne, using precisely the same calibration reference, has not been possible so far. The Airborne Prism Experiment (APEX), an airborne dispersive pushbroom imaging spectrometer, uses an onboard in-flight characterization (IFC) facility, which makes it possible to monitor the sensor's performance in terms of spectral, radiometric, and geometric stability in flight and in the laboratory. We discuss in detail a new method for the monitoring of spectral instrument performance. The method relies on the monitoring of spectral shifts by comparing instrument-induced movements of absorption features on ground and in flight. Absorption lines originate from spectral filters, which intercept the full field of view (FOV) illuminated using an internal light source. A feature-fitting algorithm is used for the shift estimation based on Pearson's correlation coefficient. Environmental parameter monitoring, coregistered on board with the image and calibration data, revealed that differential pressure and temperature in the baffle compartment are the main driving parameters explaining the trend in spectral performance deviations in the time and the space (across-track) domains, respectively. The results presented in this paper show that the system in its current setup needs further improvements to reach a stable performance. Findings provided useful guidelines for the instrument revision currently under way. The main aim of the revision is the stabilization of the instrument for a range of temperature and pressure conditions

  19. In-Flight Performance of the Cassini Hemispherical Quartz Resonator Gyro Inertial Reference Units

    NASA Technical Reports Server (NTRS)

    Brown, Todd S.

    2013-01-01

    The Cassini-Huygens mission is a flagship class NASA/ESA mission to the planet Saturn. Launched in 1997, Cassini is still successfully operating after 16 years of flight and the telemetry from the attitude control hardware on Cassini has produced an immense dataset that allows the Cassini operations team to report on the long-term performance of several commercially available GNC hardware components in the space environment. This investigation summarizes the in-flight performance of the two inertial reference units aboard Cassini. Each of the two Cassini inertial reference units contains four hemispherical quartz resonator gyros. The Cassini operations team previously reported on the performance of the inertial reference units in 2007, and this paper provides an update with an additional 6 years of flight experience at Saturn.

  20. Mariner 9 data storage subsystem flight performance summary

    NASA Technical Reports Server (NTRS)

    Thomas, N. E.; Larman, B. T.

    1973-01-01

    The performance is summarized of the Mariner 9 Data Storage Subsystem (DSS) throughout the primary and extended missions. Information presented is limited to reporting of anomalies which occurred during the playback sequences. Tables and figures describe the anomalies (dropouts, missing and added bits, in the imaging data) as a function of time (accumulated tape passes). The data results indicate that the performance of the DSS was satisfactory and within specification throughout the mission. The data presented is taken from the Spacecraft Team Incident/Surprise Anomaly Log recorded during the mission. Pertinent statistics concerning the tape transport performance are given. Also presented is a brief description of DSS operation, particularly that related to the recorded anomalies. This covers the video data encoding and how it is interpreted/decoded by ground data processing and the functional operation of the DSS in abnormal conditions such as loss of lock to the playback signal.

  1. Changes in Jump-Down Performance After Space Flight: Short- and Long-Term Adaptation

    NASA Technical Reports Server (NTRS)

    Kofman, I. S.; Reschke, M. F.; Cerisano, J. M.; Fisher, E. A.; Lawrence, E. L.; Peters, B. T.; Bloomberg, J. J.

    2010-01-01

    INTRODUCTION Successful jump performance requires functional coordination of visual, vestibular, and somatosensory systems, which are affected by prolonged exposure to microgravity. Astronauts returning from space flight exhibit impaired ability to coordinate effective landing strategies when jumping from a platform to the ground. This study compares the jump strategies used by astronauts before and after flight, the changes to those strategies within a test session, and the recoveries in jump-down performance parameters across several postflight test sessions. These data were obtained as part of an ongoing interdisciplinary study (Functional Task Test, FTT) designed to evaluate both astronaut postflight functional performance and related physiological changes. METHODS Six astronauts from short-duration (Shuttle) and three from long-duration (International Space Station) flights performed 3 two-footed jumps from a platform 30 cm high. A force plate measured the ground reaction forces and center-of-pressure displacement from the landings. Muscle activation data were collected from the medial gastrocnemius and anterior tibialis of both legs using surface electromyography electrodes. Two load cells in the platform measured the load exerted by each foot during the takeoff phase of the jump. Data were collected in 2 preflight sessions, on landing day (Shuttle only), and 1, 6, and 30 days after flight. RESULTS AND CONCLUSION Many of the astronauts tested were unable to maintain balance on their first postflight jump landing but recovered by the third jump, showing a learning progression in which the performance improvement could be attributed to adjustments of strategy on takeoff, landing, or both. Takeoff strategy changes were evident in air time (time between takeoff and landing), which was significantly reduced after flight, and also in increased asymmetry in foot latencies on takeoff. Landing modifications were seen in changes in ground reaction force curves. The

  2. Is Talk ‘Cheap’? An Initial Investigation of the Equivalence of Alcohol Purchase Task Performance for Hypothetical and Actual Rewards

    PubMed Central

    Amlung, Michael; Acker, John; Stojek, Monika; Murphy, James G.; MacKillop, James

    2011-01-01

    Background Behavioral economic alcohol purchase tasks (APTs) are self-report measures of alcohol demand that assess estimated consumption at escalating levels of price. However, the relationship between estimated performance for hypothetical outcomes and choices for actual outcomes has not been determined. The present study examined both the correspondence between choices for hypothetical and actual outcomes, and the correspondence between estimated alcohol consumption and actual drinking behavior. A collateral goal of the study was to examine the effects of alcohol cues on APT performance. Methods Forty one heavy-drinking adults (56% male) participated in a human laboratory protocol comprising APTs for hypothetical and actual alcohol and money, an alcohol cue reactivity paradigm, an alcohol self-administration period, and a recovery period. Results Pearson correlations revealed very high correspondence between APT performance for hypothetical and actual alcohol (ps < .001). Estimated consumption on the APT was similarly strongly associated with actual consumption during the self-administration period (r = .87, p <.001). Exposure to alcohol cues significantly increased subjective craving and arousal, and had a trend-level effect on intensity of demand, in spite of notable ceiling effects. Associations among motivational indices were highly variable, suggesting multidimensionality. Conclusions These results suggest there may be close correspondence both between value preferences for hypothetical alcohol and actual alcohol, and between estimated consumption and actual consumption. Methodological considerations and priorities for future studies are discussed. PMID:22017303

  3. Cryogenic Optical Performance of the Cassini Composite Infrared Spectrometer (CIRS) Flight Telescope

    NASA Technical Reports Server (NTRS)

    Losch, Patricia; Lyons, James J., III; Hagopian, John

    1998-01-01

    The CIRS half-meter diameter beryllium flight telescope's optical performance was tested at the instrument operating temperature of 170 Kelvin. The telescope components were designed at Goddard Space Flight Center (GSFC) but fabricated out of house and then assembled, aligned and tested upon receipt at GSFC. A 24 inch aperture cryogenic test facility utilizing a 1024 x 1024 CCD array was developed at GSFC specifically for this test. The telescope's image quality (measured as encircled energy), boresight stability and focus stability were measured. The gold coated beryllium design exceeded the image performance requirement of 80% encircled energy within a 432 microns diameter circle.

  4. Analyses of flight model spacecraft performance during thermal-vacuum tests

    NASA Technical Reports Server (NTRS)

    Timmins, A. R.; Heuser, R. E.; Strain, J. C.

    1972-01-01

    Malfunction data from the thermal-vacuum tests of 39 flight-model spacecraft were analyzed. The results are interpreted in terms of the test variables, and in terms of the spacecraft performance. The malfunction data are correlated with the test time as a single variable, and also with the composite variable of time plus temperature. The improvement in spacecraft performance is examined by means of malfunction rates, malfunctions per spacecraft, and the probability of no failure related to test time. The minimum thermal-vacuum test profile required for Goddard Space Flight Center spacecraft is verified, and the probability of a defect remaining undetected is estimated.

  5. Analyses of flight model spacecraft performance during thermal-vacuum tests

    NASA Technical Reports Server (NTRS)

    Timmins, A. R.; Heuser, R. E.; Strain, J. C.

    1973-01-01

    Malfunction data from the thermal-vacuum tests of 39 flight-model spacecraft have been analyzed. The results are interpreted in terms of the test variables and the spacecraft performance. The malfunction data are correlated with the test time as a single variable, and also with the composite variable of time plus temperature. The improvement in spacecraft performance is examined by means of malfunction rates, malfunctions per spacecraft, and the probability of no failure related to test time. The minimum thermal-vacuum test profile required for Goddard Space Flight Center spacecraft is verified, and the probability of a defect remaining undetected is estimated.

  6. Evaluating Nextgen Closely Spaced Parallel Operations Concepts with Validated Human Performance Models: Flight Deck Guidelines

    NASA Technical Reports Server (NTRS)

    Hooey, Becky Lee; Gore, Brian Francis; Mahlstedt, Eric; Foyle, David C.

    2013-01-01

    The objectives of the current research were to develop valid human performance models (HPMs) of approach and land operations; use these models to evaluate the impact of NextGen Closely Spaced Parallel Operations (CSPO) on pilot performance; and draw conclusions regarding flight deck display design and pilot-ATC roles and responsibilities for NextGen CSPO concepts. This document presents guidelines and implications for flight deck display designs and candidate roles and responsibilities. A companion document (Gore, Hooey, Mahlstedt, & Foyle, 2013) provides complete scenario descriptions and results including predictions of pilot workload, visual attention and time to detect off-nominal events.

  7. Cryogenic Optical Performance of the Cassini Composite InfraRed Spectrometer (CIRS) Flight Telescope

    NASA Technical Reports Server (NTRS)

    Losch, Patricia; Lyons, James J., III; Hagopian, John

    1998-01-01

    The CIRS half-meter diameter beryllium flight telescope's optical performance was tested at the instrument operating temperature of 170 Kelvin. The telescope components were designed at Goddard Space Flight Center (GSFC) but fabricated out of house and then assembled, aligned and tested upon receipt at GSFC. A 24 inch aperture cryogenic test facility utilizing a 1024 x 1024 CCD array was developed at GSFC specifically for this test. The telescope,s image quality (measured as encircled energy), boresight stability and focus stability were measured. The gold coated beryllium design exceeded the cold image performance requirement of 80% encircled energy within a 460 micron diameter circle.

  8. Performance deterioration due to acceptance testing and flight loads; JT90 jet engine diagnostic program

    NASA Technical Reports Server (NTRS)

    Olsson, W. J.

    1982-01-01

    The results of a flight loads test of the JT9D-7 engine are presented. The goals of this test program were to: measure aerodynamic and inertia loads on the engine during flight, explore the effects of airplane gross weight and typical maneuvers on these flight loads, simultaneously measure the changes in engine running clearances and performance resulting from the maneuvers, make refinements of engine performance deterioration prediction models based on analytical results of the tests, and make recommendations to improve propulsion system performance retention. The test program included a typical production airplane acceptance test plus additional flights and maneuvers to encompass the range of flight loads in revenue service. The test results indicated that aerodynamic loads, primarily at take-off, were the major cause of rub-indicated that aerodynamic loads, primarily at take-off, were the major cause of rub-induced deterioration in the cold sectin of the engine. Differential thermal expansion between rotating and static parts plus aerodynamic loads combined to cause blade-to-seal rubs in the turbine.

  9. Flight Dynamics Performances of the MetOp A Satellite during the First Months of Operations

    NASA Technical Reports Server (NTRS)

    Righetti, Pier Luigi; Meixner, Hilda; Sancho, Francisco; Damiano, Antimo; Lazaro, David

    2007-01-01

    The 19th of October 2006 at 16:28 UTC the first MetOp satellite (MetOp A) was successfully launched from the Baykonur cosmodrome by a Soyuz/Fregat launcher. After only three days of LEOP operations, performed by ESOC, the satellite was handed over to EUMETSAT, who is since then taking care of all satellite operations. MetOp A is the first European operational satellite for meteorology flying in a Low Earth Orbit (LEO), all previous satellites operated by EUMETSAT, belonging to the METEOSAT family, being located in the Geo-stationary orbit. To ensure safe operations for a LEO satellite accurate and continuous commanding from ground of the on-board AOCS is required. That makes the operational transition at the end of the LEOP quite challenging, as the continuity of the Flight Dynamics operations is to be maintained. That means that the main functions of the Flight Dynamics have to be fully validated on-flight during the LEOP, before taking over the operational responsibility on the spacecraft, and continuously monitored during the entire mission. Due to the nature of a meteorological operational mission, very stringent requirements in terms of overall service availability (99 % of the collected data), timeliness of processing of the observation data (3 hours after sensing) and accuracy of the geo-location of the meteorological products (1 km) are to be fulfilled. That translates in tight requirements imposed to the Flight Dynamics facility (FDF) in terms of accuracy, timeliness and availability of the generated orbit and clock solutions; a detailed monitoring of the quality of these products is thus mandatory. Besides, being the accuracy of the image geo-location strongly related with the pointing performance of the platform and with the on-board timing stability, monitoring from ground of the behaviour of the on-board sensors and clock is needed. This paper presents an overview of the Flight Dynamics operations performed during the different phases of the MetOp A

  10. Ground-to-Flight Handling Qualities Comparisons for a High Performance Airplane

    NASA Technical Reports Server (NTRS)

    Brandon, Jay M.; Glaab, Louis J.; Brown, Philip W.; Phillips, Michael R.

    1995-01-01

    A flight test program was conducted in conjunction with a ground-based piloted simulation study to enable a comparison of handling qualities ratings for a variety of maneuvers between flight and simulation of a modern high performance airplane. Specific objectives included an evaluation of pilot-induced oscillation (PIO) tendencies and a determination of maneuver types which result in either good or poor ground-to-flight pilot handling qualities ratings. A General Dynamics F-16XL aircraft was used for the flight evaluations, and the NASA Langley Differential Maneuvering Simulator was employed for the ground based evaluations. Two NASA research pilots evaluated both the airplane and simulator characteristics using tasks developed in the simulator. Simulator and flight tests were all conducted within approximately a one month time frame. Maneuvers included numerous fine tracking evaluations at various angles of attack, load factors and speed ranges, gross acquisitions involving longitudinal and lateral maneuvering, roll angle captures, and an ILS task with a sidestep to landing. Overall results showed generally good correlation between ground and flight for PIO tendencies and general handling qualities comments. Differences in pilot technique used in simulator evaluations and effects of airplane accelerations and motions are illustrated.

  11. Propulsion system performance resulting from an Integrated Flight/Propulsion Control design

    NASA Technical Reports Server (NTRS)

    Mattern, Duane; Garg, Sanjay

    1992-01-01

    Propulsion system specific results are presented from the application of the Integrated Methodology for Propulsion and Airframe Control (IMPAC) design approach to Integrated Flight/Propulsion Control design for a STOVL aircraft in transition flight. The IMPAC method is briefly discussed and the propulsion system specifications for the integrated control design are examined. The structure of a linear engine controller that results from partitioning a linear centralized controller is discussed. The details of a nonlinear propulsion control system are presented, including a scheme to protect the engine operational limits: the fan surge margin and the acceleration/deceleration schedule which limits the fuel flow. Also, a simple but effective multivariable integrator windup protection scheme is investigated. Nonlinear closed-loop simulation results are presented for two typical pilot commands for transition flight: acceleration while maintaining flight path angle and a change in flight path angle while maintaining airspeed. The simulation nonlinearities include the airframe/engine coupling, the actuator and sensor dynamics and limits, the protection scheme for the engine operational limits, and the integrator windup protection. Satisfactory performance of the total airframe plus engine system for transition flight, as defined by the specifications, is maintained during the limit operation of the closed-loop engine subsystem.

  12. Performance changes and relationship between vertical jump measures and actual sprint performance in elite sprinters with visual impairment throughout a Parapan American games training season

    PubMed Central

    Loturco, Irineu; Winckler, Ciro; Kobal, Ronaldo; Cal Abad, Cesar C.; Kitamura, Katia; Veríssimo, Amaury W.; Pereira, Lucas A.; Nakamura, Fábio Y.

    2015-01-01

    The aims of this study were to estimate the magnitude of variability and progression in actual competitive and field vertical jump test performances in elite Paralympic sprinters with visual impairment in the year leading up to the 2015 Parapan American Games, and to investigate the relationships between loaded and unloaded vertical jumping test results and actual competitive sprinting performance. Fifteen Brazilian Paralympic sprinters with visual impairment attended seven official competitions (four national, two international and the Parapan American Games 2015) between April 2014 and August 2015, in the 100- and 200-m dash. In addition, they were tested in five different periods using loaded (mean propulsive power [MPP] in jump squat [JS] exercise) and unloaded (squat jump [SJ] height) vertical jumps within the 3 weeks immediately prior to the main competitions. The smallest important effect on performances was calculated as half of the within-athlete race-to-race (or test-to-test) variability and a multiple regression analysis was performed to predict the 100- and 200-m dash performances using the vertical jump test results. Competitive performance was enhanced during the Parapan American Games in comparison to the previous competition averages, overcoming the smallest worthwhile enhancement in both the 100- (0.9%) and 200-m dash (1.43%). In addition, The SJ and JS explained 66% of the performance variance in the competitive results. This study showed that vertical jump tests, in loaded and unloaded conditions, could be good predictors of the athletes' sprinting performance, and that during the Parapan American Games the Brazilian team reached its peak competitive performance. PMID:26594181

  13. Calibration procedures for evaluation of in-flight radiometry performance of thermal infrared satellite sensors

    NASA Astrophysics Data System (ADS)

    Schott, John R.; Gallagher, Timothy W.; Barsi, Julia A.

    1997-12-01

    With the impending launch of several new satellite sensors with thermal channels, there is a renewed interest in evaluating the in-flight calibration of these sensors using ground truth or under flight validation techniques. The relatively rapid temporal variation of surface temperatures, coupled with the increased calibration requirements levied by some of the science applications, place a considerable burden on the calibration team. This paper addresses procedures under development to ensure the rigorous in-flight calibration of satellite sensors in the thermal region. These efforts are directed at Landsat 7, but are intended for use with any thermal sensor and particularly address sensors with multiple spectral channels. The paper addresses laboratory calibration techniques for calibration of transfer radiometers, laboratory calibration of reference blackbodies for use in field or under flight applications, calibration of under flight instrumentation and under flight (vicarious) methods for calibration of space-based instrumentation. The methods are presented in the context of the more limited procedures that were used for under flight calibration of the HCMM and Landsat 4 and 5 sensors. A particular emphasis is placed on the importance of spectral structure in the calibration process which is critical for multi-wavelength or narrow wavelength sensors. The calibration facility at RIT for calibration of the modular imaging spectrometer instrument that will under fly Landsat 7 is described in detail, along with full calibration procedures. Issues associated with selection of target surfaces (size, emissivity, and temporal stability) for vicarious calibration also are discussed, along with our approach for addressing these issues to evaluate the in-flight performance of Landsat 7. Previous efforts have demonstrated that calibration using similar approaches could achieve expected errors of approximately 1 K. This paper addresses refinements designed to significantly

  14. Development and in-flight performance of the Mariner 9 spacecraft propulsion system

    NASA Technical Reports Server (NTRS)

    Evans, D. D.; Cannova, R. D.; Cork, M. J.

    1973-01-01

    On November 14, 1971, Mariner 9 was decelerated into orbit about Mars by a 1334 N (300 lbf) liquid bipropellant propulsion system. This paper describes and summarizes the development and in-flight performance of this pressure-fed, nitrogen tetroxide/monomethyl hydrazine bipropellant system. The design of all Mariner propulsion subsystems has been predicted upon the premise that simplicity of approach, coupled with thorough qualification and margin-limits testing, is the key to cost-effective reliability. The qualification test program and analytical modeling are also discussed. Since the propulsion subsystem is modular in nature, it was completely checked, serviced, and tested independent of the spacecraft. Proper prediction of in-flight performance required the development of three significant modeling tools to predict and account for nitrogen saturation of the propellant during the six-month coast period and to predict and statistically analyze in-flight data.

  15. The flight performance of the Galileo orbiter USO

    NASA Technical Reports Server (NTRS)

    Morabito, D. D.; Krisher, T. P.; Asmar, S. W.

    1993-01-01

    Results are presented in this article from an analysis of radio metric data received by the DSN stations from the Galileo spacecraft using an Ultrastable Oscillator (USO) as a signal source. These results allow the health and performance of the Galileo USO to be evaluated, and are used to calibrate this Radio Science instrument and the data acquired for Radio Science experiments such as the Redshift Observation, Solar Conjunction, and Jovian occultations. Estimates for the USO-referenced, spacecraft-transmitted frequency and frequency stability were made for 82 data acquisition passes conducted between launch (Oct. 1989) and Nov. 1991. Analyses of the spacecraft-transmitted frequencies show that the USO is behaving as expected. The USO was powered off and then back on in Aug. 1991 with no adverse effect on its performance. The frequency stabilities measured by Allan deviation are consistent with expected values due to thermal wideband noise and the USO itself at the appropriate time intervals. The Galileo USO appears to be healthy and functioning normally in a reasonable manner.

  16. The flight performance of the Galileo orbiter USO

    NASA Technical Reports Server (NTRS)

    Morabito, D. D.; Krisher, T. P.; Asmar, S. W.

    1993-01-01

    Results are presented from an analysis of radio metric data received by the DSN stations from the Galileo spacecraft using an Ultrastable Oscillator (USO) as a signal source. These results allow the health and performance of the Galileo USO to be evaluated, and are used to calibrate this Radio Science instrument and the data acquired for Radio Science experiments such as the Red-shift Observation, Solar Conjunction, and Jovian occultations. Estimates for the USO-referenced spacecraft-transmitted frequency and frequency stability were made for 82 data acquisition passes conducted between launch (October 1989) and November 1991. Analyses of the spacecraft-transmitted frequencies show that the USO is behaving as expected. The USO was powered off and then back on in August 1991 with no adverse effect on its performance. The frequency stabilities measured by Allan deviation are consistent with expected values due to thermal wideband noise and the USO itself at the appropriate time intervals. The Galileo USO appears to be healthy and functioning normally in a reasonable manner.

  17. Cold rearing improves cold-flight performance in Drosophila via changes in wing morphology.

    PubMed

    Frazier, Melanie R; Harrison, Jon F; Kirkton, Scott D; Roberts, Stephen P

    2008-07-01

    We use a factorial experimental design to test whether rearing at colder temperatures shifts the lower thermal envelope for flight of Drosophila melanogaster Meigen to colder temperatures. D. melanogaster that developed in colder temperatures (15 degrees C) had a significant flight advantage in cold air compared to flies that developed in warmer temperatures (28 degrees C). At 14 degrees C, cold-reared flies failed to perform a take-off flight approximately 47% of the time whereas warm-reared flies failed approximately 94% of the time. At 18 degrees C, cold- and warm-reared flies performed equally well. We also compared several traits in cold- and warm-developing flies to determine if cold-developing flies had better flight performance at cold temperatures due to changes in body mass, wing length, wing loading, relative flight muscle mass or wing-beat frequency. The improved ability to fly at low temperatures was associated with a dramatic increase in wing area and an increase in wing length (after controlling for wing area). Flies that developed at 15 degrees C had approximately 25% more wing area than similarly sized flies that developed at 28 degrees C. Cold-reared flies had slower wing-beat frequencies than similarly sized flies from warmer developmental environments, whereas other traits did not vary with developmental temperature. These results demonstrate that developmental plasticity in wing dimensions contributes to the improved flight performance of D. melanogaster at cold temperatures, and ultimately, may help D. melanogaster live in a wide range of thermal environments.

  18. In-flight adaptive performance optimization (APO) control using redundant control effectors of an aircraft

    NASA Technical Reports Server (NTRS)

    Gilyard, Glenn B. (Inventor)

    1999-01-01

    Practical application of real-time (or near real-time) Adaptive Performance Optimization (APO) is provided for a transport aircraft in steady climb, cruise, turn descent or other flight conditions based on measurements and calculations of incremental drag from a forced response maneuver of one or more redundant control effectors defined as those in excess of the minimum set of control effectors required to maintain the steady flight condition in progress. The method comprises the steps of applying excitation in a raised-cosine form over an interval of from 100 to 500 sec. at the rate of 1 to 10 sets/sec of excitation, and data for analysis is gathered in sets of measurements made during the excitation to calculate lift and drag coefficients C.sub.L and C.sub.D from two equations, one for each coefficient. A third equation is an expansion of C.sub.D as a function of parasitic drag, induced drag, Mach and altitude drag effects, and control effector drag, and assumes a quadratic variation of drag with positions .delta..sub.i of redundant control effectors i=1 to n. The third equation is then solved for .delta..sub.iopt the optimal position of redundant control effector i, which is then used to set the control effector i for optimum performance during the remainder of said steady flight or until monitored flight conditions change by some predetermined amount as determined automatically or a predetermined minimum flight time has elapsed.

  19. Wing wear reduces bumblebee flight performance in a dynamic obstacle course.

    PubMed

    Mountcastle, Andrew M; Alexander, Teressa M; Switzer, Callin M; Combes, Stacey A

    2016-06-01

    Previous work has shown that wing wear increases mortality in bumblebees. Although a proximate mechanism for this phenomenon has remained elusive, a leading hypothesis is that wing wear increases predation risk by reducing flight manoeuvrability. We tested the effects of simulated wing wear on flight manoeuvrability in Bombus impatiens bumblebees using a dynamic obstacle course designed to push bees towards their performance limits. We found that removing 22% wing area from the tips of both forewings (symmetric wear) caused a 9% reduction in peak acceleration during manoeuvring flight, while performing the same manipulation on only one wing (asymmetric wear) did not significantly reduce maximum acceleration. The rate at which bees collided with obstacles was correlated with body length across all treatments, but wing wear did not increase collision rate, possibly because shorter wingspans allow more room for bees to manoeuvre. This study presents a novel method for exploring extreme flight manoeuvres in flying insects, eliciting peak accelerations that exceed those measured during flight through a stationary obstacle course. If escape from aerial predation is constrained by acceleration capacity, then our results offer a potential explanation for the observed increase in bumblebee mortality with wing wear.

  20. Space-flight experience and life test performance of a synthetic hydrocarbon lubricant

    NASA Technical Reports Server (NTRS)

    Bialke, Bill

    1995-01-01

    An alternative wet lubricant known as Pennzane(TM) SHF X-2000 is recommended for some spaceflight bearing systems. The performance characteristics between Pennzane(TM) SHF X-2000 and Bray 815Z were compared. The life tests showed excellent performances with continuous operation approaching three years in conservative operating environments. Space flight performance data are provided for several of the tested mechanisms which are operating in-orbit since February 1994.

  1. Motion Perception and Manual Control Performance During Passive Tilt and Translation Following Space Flight

    NASA Technical Reports Server (NTRS)

    Clement, Gilles; Wood, Scott J.

    2010-01-01

    This joint ESA-NASA study is examining changes in motion perception following Space Shuttle flights and the operational implications of post-flight tilt-translation ambiguity for manual control performance. Vibrotactile feedback of tilt orientation is also being evaluated as a countermeasure to improve performance during a closed-loop nulling task. METHODS. Data has been collected on 5 astronaut subjects during 3 preflight sessions and during the first 8 days after Shuttle landings. Variable radius centrifugation (216 deg/s) combined with body translation (12-22 cm, peak-to-peak) is utilized to elicit roll-tilt perception (equivalent to 20 deg, peak-to-peak). A forward-backward moving sled (24-390 cm, peak-to-peak) with or without chair tilting in pitch is utilized to elicit pitch tilt perception (equivalent to 20 deg, peak-to-peak). These combinations are elicited at 0.15, 0.3, and 0.6 Hz for evaluating the effect of motion frequency on tilt-translation ambiguity. In both devices, a closed-loop nulling task is also performed during pseudorandom motion with and without vibrotactile feedback of tilt. All tests are performed in complete darkness. PRELIMINARY RESULTS. Data collection is currently ongoing. Results to date suggest there is a trend for translation motion perception to be increased at the low and medium frequencies on landing day compared to pre-flight. Manual control performance is improved with vibrotactile feedback. DISCUSSION. The results of this study indicate that post-flight recovery of motion perception and manual control performance is complete within 8 days following short-duration space missions. Vibrotactile feedback of tilt improves manual control performance both before and after flight.

  2. Design and Flight Performance of NOAA-K Spacecraft Batteries

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakrishna M.; Chetty, P. R. K.; Spitzer, Tom; Chilelli, P.

    1998-01-01

    The US National Oceanic and Atmospheric Administration (NOAA) operates the Polar Operational Environmental Satellite (POES) spacecraft (among others) to support weather forecasting, severe storm tracking, and meteorological research by the National Weather Service (NWS). The latest in the POES series of spacecraft, named as NOAA-KLMNN', one is in orbit and four more are in various phases of development. The NOAA-K spacecraft was launched on May 13, 1998. Each of these spacecraft carry three Nickel-Cadmium batteries designed and manufactured by Lockheed Martin. The battery, which consists of seventeen 40 Ah cells manufactured by SAFT, provides the spacecraft power during the ascent phase, orbital eclipse and when the power demand is in excess of the solar array capability. The NOAA-K satellite is in a 98 degree inclination, 7:30AM ascending node orbit. In this orbit the satellite experiences earth occultation only 25% of the year. This paper provides a brief overview of the power subsystem, followed by the battery design and qualification, the cell life cycle test data, and the performance during launch and in orbit.

  3. Design and Flight Performance of NOAA-K Spacecraft Batteries

    NASA Technical Reports Server (NTRS)

    Rao, Gopalakrishna M.; Chetty, P. R. K.; Spitzer, Tom; Chilelli, P.

    1999-01-01

    The US National Oceanic and Atmospheric Administration (NOAA) operates the Polar Operational Environmental Satellite (POES) spacecraft (among others) to support weather forecasting, severe storm tracking, and meteorological research by the National Weather Service (NWS). The latest in the POES series of spacecraft, named as NOAA-KLMNN, is in orbit and four more are in various phases of development. The NOAA-K spacecraft was launched on May 13, 1998. Each of these spacecraft carry three Nickel-Cadmium batteries designed and manufactured by Lockheed Martin. The battery, which consists of seventeen 40 Ah cells manufactured by SAFT, provides the spacecraft power during the ascent phase, orbital eclipse and when the power demand is in excess of the solar array capability. The NOAA-K satellite is in a 98 degree inclination, 7:30AM ascending node orbit. In this orbit the satellite experiences earth occultation only 25% of the year. This paper provides a brief overview of the power subsystem, followed by the battery design and qualification, the cell life cycle test data, and the performance during launch and in orbit.

  4. The measurement of aircraft performance and stability and control after flight through natural icing conditions

    NASA Technical Reports Server (NTRS)

    Ranaudo, R. J.; Mikkelsen, K. L.; Mcknight, R. C.; Ide, R. F.; Reehorst, A. L.; Jordan, J. L.; Schinstock, W. C.; Platz, S. J.

    1986-01-01

    The effects of airframe icing on the performance and stability and control of a twin-engine commuter-class aircraft were measured by the NASA Lewis Research Center. This work consisted of clear air tests with artificial ice shapes attached to the horizontal tail, and natural icing flight tests in measured icing clouds. The clear air tests employed static longitudinal flight test methods to determine degradation in stability margins for four simulated ice shapes. The natural icing flight tests employed a data acquisition system, which was provided under contract to NASA by Kohlman Systems Research Incorporated. This system used a performance modeling method and modified maximum likelihood estimation (MMLE) technique to determine aircraft performance degradation and stability and control. Flight test results with artificial ice shapes showed that longitudinal, stick-fixed, static margins are reduced on the order of 5 percent with flaps up. Natural icing tests with the KSR system corroborated these results and showed degradation in the elevator control derivatives on the order of 8 to 16 percent depending on wing flap configuration. Performance analyses showed the individual contributions of major airframe components to the overall degration in lift and drag.

  5. The measurement of aircraft performance and stability and control after flight through natural icing conditions

    NASA Technical Reports Server (NTRS)

    Ranaudo, R. J.; Mikkelsen, K. L.; Mcknight, R. C.; Ide, R. F.; Reehorst, A. L.

    1986-01-01

    The effects of airframe icing on the performance and stability and control of a twin-engine commuter-class aircraft were measured by the NASA Lewis Research Center. This work consisted of clear air tests with artificial ice shapes attached to the horizontal tail, and natural icing flight tests in measured icing clouds. The clear air tests employed static longitudinal flight test methods to determine degradation in stability margins for four simulated ice shapes. The natural icing flight tests employed a data acquisition system, which was provided under contract to NASA by Kohlman Systems Research Incorporated. This system used a performance modeling method and modified maximum likelihood estimation (MMLE) technique to determine aircraft performance degradation and stability and control. Flight test results with artificial ice shapes showed that longitudinal, stick-fixed, static margins are reduced on the order of 5 percent with flaps up. Natural icing tests with the KSR system corroborated these results and showed degradation in the elevator control derivatives on the order of 8 to 16 percent depending on wing flap configuration. Performance analyses showed the individual contributions of major airframe components to the overall degradation in lift and drag.

  6. Flight Performance of an Advanced Thermal Protection Material: Toughened Uni-Piece Fibrous Insulation

    NASA Technical Reports Server (NTRS)

    Leiser, Daniel B.; Gordon, Michael P.; Rasky, Daniel J. (Technical Monitor)

    1995-01-01

    The flight performance of a new class of low density, high temperature thermal protection materials (TPM) is described and compared to "standard" Space Shuttle TPM. This new functionally gradient material designated as Toughened Uni-Piece Fibrous Insulation (TUFI), was bonded on a removable panel attached to the base heat shield of Orbiter 105, Endeavour.

  7. Flight Performance of an Advanced Thermal Protection Material: Toughened Uni-Piece Fibrous Insulation

    NASA Technical Reports Server (NTRS)

    Leiser, Daniel B.; Gordon, Michael P.; Rasky, Daniel J. (Technical Monitor)

    1995-01-01

    The flight performance of a new class of low density, high temperature, thermal protection materials (TPM), is described and compared to "standard" Space Shuttle TPM. This new functionally gradient material designated as Toughened Uni-Piece Fibrous Insulation (TUFI), was bonded on a removable panel attached to the base heatshield of Orbiter 105, Endeavor.

  8. 14 CFR Appendix A to Part 60 - Qualification Performance Standards for Airplane Full Flight Simulators

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Qualification Performance Standards for Airplane Full Flight Simulators A Appendix A to Part 60 Aeronautics and Space FEDERAL AVIATION... References. (1) 14 CFR part 60. (2) 14 CFR part 61. (3) 14 CFR part 63. (4) 14 CFR part 119. (5) 14 CFR...

  9. 14 CFR Appendix C to Part 60 - Qualification Performance Standards for Helicopter Full Flight Simulators

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Qualification Performance Standards for Helicopter Full Flight Simulators C Appendix C to Part 60 Aeronautics and Space FEDERAL AVIATION... the NSP Web site. d. Related Reading References. (1) 14 CFR part 60. (2) 14 CFR part 61. (3) 14...

  10. Design and Flight Performance of the Orion Pre-Launch Navigation System

    NASA Technical Reports Server (NTRS)

    Zanetti, Renato

    2016-01-01

    Launched in December 2014 atop a Delta IV Heavy from the Kennedy Space Center, the Orion vehicle's Exploration Flight Test-1 (EFT-1) successfully completed the objective to test the prelaunch and entry components of the system. Orion's pre-launch absolute navigation design is presented, together with its EFT-1 performance.

  11. Development and in-flight performance of the Mariner 9 spacecraft propulsion system

    NASA Technical Reports Server (NTRS)

    Evans, D. D.; Cannova, R. D.; Cork, M. J.

    1972-01-01

    On November 14, 1971, Mariner 9 was decelerated into orbit about Mars by a 1334-newton (300-lbf) liquid bipropellant propulsion system. The development and in-flight performance are described and summarized of this pressure-fed, nitrogen tetroxide/monomethyl hydrazine bipropellant system. The design of all Mariner propulsion subsystems has been predicated upon the premise that simplicity of approach, coupled with thorough qualification and margin-limits testing, is the key to cost-effective reliability. The qualification test program and analytical modeling of the Mariner 9 subsystem are discussed. Since the propulsion subsystem is modular in nature, it was completely checked, serviced, and tested independent of the spacecraft. Proper prediction of in-flight performance required the development of three significant modeling tools to predict and account for nitrogen saturation of the propellant during the six-month coast period and to predict and statistically analyze in-flight data. The flight performance of the subsystem was excellent, as were the performance prediction correlations. These correlations are presented.

  12. Development and Evaluation of a Performance Modeling Flight Test Approach Based on Quasi Steady-State Maneuvers

    NASA Technical Reports Server (NTRS)

    Yechout, T. R.; Braman, K. B.

    1984-01-01

    The development, implementation and flight test evaluation of a performance modeling technique which required a limited amount of quasisteady state flight test data to predict the overall one g performance characteristics of an aircraft. The concept definition phase of the program include development of: (1) the relationship for defining aerodynamic characteristics from quasi steady state maneuvers; (2) a simplified in flight thrust and airflow prediction technique; (3) a flight test maneuvering sequence which efficiently provided definition of baseline aerodynamic and engine characteristics including power effects on lift and drag; and (4) the algorithms necessary for cruise and flight trajectory predictions. Implementation of the concept include design of the overall flight test data flow, definition of instrumentation system and ground test requirements, development and verification of all applicable software and consolidation of the overall requirements in a flight test plan.

  13. Effect of wing loading, aspect ratio, and span loading of flight performances

    NASA Technical Reports Server (NTRS)

    Gothert, B

    1940-01-01

    An investigation is made of the possible improvements in maximum, cruising, and climbing speeds attainable through increase in the wing loading. The decrease in wing area was considered for the two cases of constant aspect ratio and constant span loading. For a definite flight condition, an investigation is made to determine what loss in flight performance must be sustained if, for given reasons, certain wing loadings are not to be exceeded. With the aid of these general investigations, the trend with respect to wing loading is indicated and the requirements to be imposed on the landing aids are discussed

  14. Prediction of the pattern performance for the Aeroassist Flight Experiment (AFE) spacecraft

    NASA Technical Reports Server (NTRS)

    Yang, C.; Rudduck, R.; Torres, R.

    1991-01-01

    In order to provide a set of benchmark flight data for a reusable Aeroassisted Orbit Transfer Vehicle (AOTV) application, NASA undertook the development of an Aeroassisted Flight Experiment (AFE) which will be launched from the Space Shuttle. A representative aeroassist trajectory will be flown and sensor measurements of aerodynamic performance, thermal protection response, and plasma ionization reentry effects will be obtained. Discussed here is the spacecraft antenna. Estimates of signal transmissions from the AFE to the Tracking and Data Relay Satellites (TDRS) during the reentry period are given. The computer modeling of the antennas is presented with and without the reentry plasma.

  15. In-Flight Thermal Performance of the Geoscience Laser Altimeter System (GLAS) Instrument

    NASA Technical Reports Server (NTRS)

    Grob, Eric; Baker, Charles; McCarthy, Tom

    2003-01-01

    The Geoscience Laser Altimeter System (GLAS) instrument is NASA Goddard Space Flight Center's first application of Loop Heat Pipe technology that provides selectable/stable temperature levels for the lasers and other electronics over a widely varying mission environment. GLAS was successfully launched as the sole science instrument aboard the Ice, Clouds, and Land Elevation Satellite (ICESat) from Vandenberg AFB at 4:45pm PST on January 12, 2003. After SC commissioning, the LHPs started easily and have provided selectable and stable temperatures for the lasers and other electronics. This paper discusses the thermal development background and testing, along with details of early flight thermal performance data.

  16. Surpassing Mt. Everest: extreme flight performance of alpine bumble-bees.

    PubMed

    Dillon, Michael E; Dudley, Robert

    2014-02-01

    Animal flight at altitude involves substantial aerodynamic and physiological challenges. Hovering at high elevations is particularly demanding from the dual perspectives of lift and power output; nevertheless, some volant insects reside and fly at elevations in excess of 4000 m. Here, we demonstrate that alpine bumble-bees possess substantial aerodynamic reserves, and can sustain hovering flight under hypobaria at effective elevations in excess of 9000 m, i.e. higher than Mt. Everest. Modulation of stroke amplitude and not wingbeat frequency is the primary means of compensation for overcoming the aerodynamic challenge. The presence of such excess capacity in a high-altitude bumble-bee is surprising and suggests intermittent behavioural demands for extreme flight performance supplemental to routine foraging. PMID:24501268

  17. Ride qualities criteria validation/pilot performance study: Flight simulator results

    NASA Technical Reports Server (NTRS)

    Nardi, L. U.; Kawana, H. Y.; Borland, C. J.; Lefritz, N. M.

    1976-01-01

    Pilot performance was studied during simulated manual terrain following flight for ride quality criteria validation. An existing B-1 simulation program provided the data for these investigations. The B-1 simulation program included terrain following flights under varying controlled conditions of turbulence, terrain, mission length, and system dynamics. The flight simulator consisted of a moving base cockpit which reproduced motions due to turbulence and control inputs. The B-1 aircraft dynamics were programmed with six-degrees-of-freedom equations of motion with three symmetric and two antisymmetric structural degrees of freedom. The results provided preliminary validation of existing ride quality criteria and identified several ride quality/handling quality parameters which may be of value in future ride quality/criteria development.

  18. Surpassing Mt. Everest: extreme flight performance of alpine bumble-bees.

    PubMed

    Dillon, Michael E; Dudley, Robert

    2014-02-01

    Animal flight at altitude involves substantial aerodynamic and physiological challenges. Hovering at high elevations is particularly demanding from the dual perspectives of lift and power output; nevertheless, some volant insects reside and fly at elevations in excess of 4000 m. Here, we demonstrate that alpine bumble-bees possess substantial aerodynamic reserves, and can sustain hovering flight under hypobaria at effective elevations in excess of 9000 m, i.e. higher than Mt. Everest. Modulation of stroke amplitude and not wingbeat frequency is the primary means of compensation for overcoming the aerodynamic challenge. The presence of such excess capacity in a high-altitude bumble-bee is surprising and suggests intermittent behavioural demands for extreme flight performance supplemental to routine foraging.

  19. Biplane wing planform and flight performance of the feathered dinosaur Microraptor gui

    PubMed Central

    Chatterjee, Sankar; Templin, R. Jack

    2007-01-01

    Microraptor gui, a four-winged dromaeosaur from the Early Cretaceous of China, provides strong evidence for an arboreal-gliding origin of avian flight. It possessed asymmetric flight feathers not only on the manus but also on the pes. A previously published reconstruction shows that the hindwing of Microraptor supported by a laterally extended leg would have formed a second pair of wings in tetrapteryx fashion. However, this wing design conflicts with known theropod limb joints that entail a parasagittal posture of the hindlimb. Here, we offer an alternative planform of the hindwing of Microraptor that is concordant with its feather orientation for producing lift and normal theropod hindlimb posture. In this reconstruction, the wings of Microraptor could have resembled a staggered biplane configuration during flight, where the forewing formed the dorsal wing and the metatarsal wing formed the ventral one. The contour feathers on the tibia were positioned posteriorly, oriented in a vertical plane for streamlining that would reduce the drag considerably. Leg feathers are present in many fossil dromaeosaurs, early birds, and living raptors, and they play an important role in flight during catching and carrying prey. A computer simulation of the flight performance of Microraptor suggests that its biplane wings were adapted for undulatory “phugoid” gliding between trees, where the horizontal feathered tail offered additional lift and stability and controlled pitch. Like the Wright 1903 Flyer, Microraptor, a gliding relative of early birds, took to the air with two sets of wings. PMID:17242354

  20. Biplane wing planform and flight performance of the feathered dinosaur Microraptor gui.

    PubMed

    Chatterjee, Sankar; Templin, R Jack

    2007-01-30

    Microraptor gui, a four-winged dromaeosaur from the Early Cretaceous of China, provides strong evidence for an arboreal-gliding origin of avian flight. It possessed asymmetric flight feathers not only on the manus but also on the pes. A previously published reconstruction shows that the hindwing of Microraptor supported by a laterally extended leg would have formed a second pair of wings in tetrapteryx fashion. However, this wing design conflicts with known theropod limb joints that entail a parasagittal posture of the hindlimb. Here, we offer an alternative planform of the hindwing of Microraptor that is concordant with its feather orientation for producing lift and normal theropod hindlimb posture. In this reconstruction, the wings of Microraptor could have resembled a staggered biplane configuration during flight, where the forewing formed the dorsal wing and the metatarsal wing formed the ventral one. The contour feathers on the tibia were positioned posteriorly, oriented in a vertical plane for streamlining that would reduce the drag considerably. Leg feathers are present in many fossil dromaeosaurs, early birds, and living raptors, and they play an important role in flight during catching and carrying prey. A computer simulation of the flight performance of Microraptor suggests that its biplane wings were adapted for undulatory "phugoid" gliding between trees, where the horizontal feathered tail offered additional lift and stability and controlled pitch. Like the Wright 1903 Flyer, Microraptor, a gliding relative of early birds, took to the air with two sets of wings.

  1. Assessing Impact of Dual Sensor Enhanced Flight Vision Systems on Departure Performance

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Etherington, Timothy J.; Severance, Kurt; Bailey, Randall E.

    2016-01-01

    Synthetic Vision (SV) and Enhanced Flight Vision Systems (EFVS) may serve as game-changing technologies to meet the challenges of the Next Generation Air Transportation System and the envisioned Equivalent Visual Operations (EVO) concept - that is, the ability to achieve the safety and operational tempos of current-day Visual Flight Rules operations irrespective of the weather and visibility conditions. One significant obstacle lies in the definition of required equipage on the aircraft and on the airport to enable the EVO concept objective. A motion-base simulator experiment was conducted to evaluate the operational feasibility and pilot workload of conducting departures and approaches on runways without centerline lighting in visibility as low as 300 feet runway visual range (RVR) by use of onboard vision system technologies on a Head-Up Display (HUD) without need or reliance on natural vision. Twelve crews evaluated two methods of combining dual sensor (millimeter wave radar and forward looking infrared) EFVS imagery on pilot-flying and pilot-monitoring HUDs. In addition, the impact of adding SV to the dual sensor EFVS imagery on crew flight performance and workload was assessed. Using EFVS concepts during 300 RVR terminal operations on runways without centerline lighting appears feasible as all EFVS concepts had equivalent (or better) departure performance and landing rollout performance, without any workload penalty, than those flown with a conventional HUD to runways having centerline lighting. Adding SV imagery to EFVS concepts provided situation awareness improvements but no discernible improvements in flight path maintenance.

  2. Assessing impact of dual sensor enhanced flight vision systems on departure performance

    NASA Astrophysics Data System (ADS)

    Kramer, Lynda J.; Etherington, Timothy J.; Severance, Kurt; Bailey, Randall E.

    2016-05-01

    Synthetic Vision (SV) and Enhanced Flight Vision Systems (EFVS) may serve as game-changing technologies to meet the challenges of the Next Generation Air Transportation System and the envisioned Equivalent Visual Operations (EVO) concept - that is, the ability to achieve the safety and operational tempos of current-day Visual Flight Rules operations irrespective of the weather and visibility conditions. One significant obstacle lies in the definition of required equipage on the aircraft and on the airport to enable the EVO concept objective. A motion-base simulator experiment was conducted to evaluate the operational feasibility and pilot workload of conducting departures and approaches on runways without centerline lighting in visibility as low as 300 feet runway visual range (RVR) by use of onboard vision system technologies on a Head-Up Display (HUD) without need or reliance on natural vision. Twelve crews evaluated two methods of combining dual sensor (millimeter wave radar and forward looking infrared) EFVS imagery on pilot-flying and pilot-monitoring HUDs. In addition, the impact of adding SV to the dual sensor EFVS imagery on crew flight performance and workload was assessed. Using EFVS concepts during 300 RVR terminal operations on runways without centerline lighting appears feasible as all EFVS concepts had equivalent (or better) departure performance and landing rollout performance, without any workload penalty, than those flown with a conventional HUD to runways having centerline lighting. Adding SV imagery to EFVS concepts provided situation awareness improvements but no discernible improvements in flight path maintenance.

  3. Enhanced flight performance by genetic manipulation of wing shape in Drosophila

    PubMed Central

    Ray, Robert P.; Nakata, Toshiyuki; Henningsson, Per; Bomphrey, Richard J.

    2016-01-01

    Insect wing shapes are remarkably diverse and the combination of shape and kinematics determines both aerial capabilities and power requirements. However, the contribution of any specific morphological feature to performance is not known. Using targeted RNA interference to modify wing shape far beyond the natural variation found within the population of a single species, we show a direct effect on flight performance that can be explained by physical modelling of the novel wing geometry. Our data show that altering the expression of a single gene can significantly enhance aerial agility and that the Drosophila wing shape is not, therefore, optimized for certain flight performance characteristics that are known to be important. Our technique points in a new direction for experiments on the evolution of performance specialities in animals. PMID:26926954

  4. Development of Flight-Test Performance Estimation Techniques for Small Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    McCrink, Matthew Henry

    This dissertation provides a flight-testing framework for assessing the performance of fixed-wing, small-scale unmanned aerial systems (sUAS) by leveraging sub-system models of components unique to these vehicles. The development of the sub-system models, and their links to broader impacts on sUAS performance, is the key contribution of this work. The sub-system modeling and analysis focuses on the vehicle's propulsion, navigation and guidance, and airframe components. Quantification of the uncertainty in the vehicle's power available and control states is essential for assessing the validity of both the methods and results obtained from flight-tests. Therefore, detailed propulsion and navigation system analyses are presented to validate the flight testing methodology. Propulsion system analysis required the development of an analytic model of the propeller in order to predict the power available over a range of flight conditions. The model is based on the blade element momentum (BEM) method. Additional corrections are added to the basic model in order to capture the Reynolds-dependent scale effects unique to sUAS. The model was experimentally validated using a ground based testing apparatus. The BEM predictions and experimental analysis allow for a parameterized model relating the electrical power, measurable during flight, to the power available required for vehicle performance analysis. Navigation system details are presented with a specific focus on the sensors used for state estimation, and the resulting uncertainty in vehicle state. Uncertainty quantification is provided by detailed calibration techniques validated using quasi-static and hardware-in-the-loop (HIL) ground based testing. The HIL methods introduced use a soft real-time flight simulator to provide inertial quality data for assessing overall system performance. Using this tool, the uncertainty in vehicle state estimation based on a range of sensors, and vehicle operational environments is

  5. Functional Sensory-Motor Performance Following Long Term Space Flight: The First Results of "Field Test" Experiment

    NASA Technical Reports Server (NTRS)

    Tomilovskaya, E. S.; Rukavishnikov, I. V.; Kofman, I. S.; Kitov, V. V.; Grishin, A. P.; Yu, N.; Lysova.; Cerisano, J. M.; Kozlovskaya, I. B.; Reschke, M. F.

    2014-01-01

    The effect that extended-duration space flights may have on human space travelers, including exploration missions, is widely discussed at the present time. Specifically, there is an increasing amount of evidence showing that the physical capacity of cosmonauts is significantly reduced after long-duration space flights. It is evident that the most impaired functions are those that rely on gravity, particularly up right posture and gait. Because of the sensorimotor disturbances manifested in the neurology of the posture and gait space flight and postflight changes may also be observed in debilitating motion sickness. While the severity of particular symptoms varies, disturbances in spatial orientation and alterations in the accuracy of voluntary movements are persistently observed after long-duration space flights. At this time most of the currently available data are primarily descriptive and not yet suitable for predicting operational impacts of most sensorimotor decrements observed upon landing on planetary surfaces or asteroids. In particular there are no existing data on the recovery dynamics or functionality of neurological, cardiovascular or muscle performance making it difficult to model or simulate the cosmonauts' activity after landing and develop the appropriate countermeasure that will ensure the rapid and safe recovery of crewmembers immediately after landing in what could be hostile environments. However and as a starting position, the videos we have acquired during recent data collection following the long duration flights of cosmonauts and astronauts walking and performing other tasks shortly after return from space flight speak volumes about their level of deconditioning. A joint Russian-American team has developed a new study specifically to address the changes in crewmembers performance and the recovery of performance with the intent of filling the missing data gaps. The first (pilot) phase of this study includes recording body kinematics and

  6. Body Unloading Associated with Space Flight and Bed-rest Impacts Functional Performance

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Ballard, K. L.; Batson, C. D.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Lee, S. M. C.; Miller, C. A.; Mulavara, A. P.; Peters, B. T.; Phillips, T.; Platts, S. H.; Ploutz-Snyder, L. L.; Reschke, M. F.; Ryder, J. W.; Stenger, M. B.; Taylor, L. C.; Wood, S. J.

    2014-01-01

    The goal of the Functional Task Test study is to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. Ultimately this information will be used to assess performance risks and inform the design of countermeasures for exploration class missions. We are currently conducting studies on both ISS crewmembers and on subjects experiencing 70 days of 6 degrees head-down bed-rest as an analog for space flight. Bed-rest provides the opportunity for us to investigate the role of prolonged axial body unloading in isolation from the other physiological effects produced by exposure to the microgravity environment of space flight. This allows us to parse out the contribution of the body unloading component on functional performance. In this on-going study both ISS crewmembers and bed-rest subjects were tested using an interdisciplinary protocol that evaluated functional performance and related physiological changes before and after 6 months in space and 70 days of 6? head-down bed-rest, respectively. Functional tests included ladder climbing, hatch opening, jump down, manual manipulation of objects and tool use, seat egress and obstacle avoidance, recovery from a fall, and object translation tasks. Crewmembers were tested three times before flight, and on 1, 6 and 30 days after landing. Bed-rest subjects were tested three times before bed-rest and immediately after getting up from bed-rest as well as 1, 6 and 12 days after reambulation. A comparison of bed-rest and space flight data showed a significant concordance in performance changes across all functional tests. Tasks requiring a greater demand for dynamic control of postural equilibrium (i.e. fall recovery, seat egress/obstacle avoidance during walking, object translation, jump down) showed the greatest decrement in performance. Functional tests with

  7. Use of the Marshall Space Flight Center solar simulator in collector performance evaluation

    NASA Technical Reports Server (NTRS)

    Humphries, W. R.

    1978-01-01

    Actual measured values from simulator checkout tests are detailed. Problems encountered during initial startup are discussed and solutions described. Techniques utilized to evaluate collector performance from simulator test data are given. Performance data generated in the simulator are compared to equivalent data generated during natural outdoor testing. Finally, a summary of collector performance parameters generated to date as a result of simulator testing are given.

  8. Performance improvements of an F-15 airplane with an integrated engine-flight control system

    NASA Technical Reports Server (NTRS)

    Myers, Lawrence P.; Walsh, Kevin R.

    1988-01-01

    An integrated flight and propulsion control system has been developed and flight demonstrated on the NASA Ames-Dryden F-15 research aircraft. The highly integrated digital control (HIDEC) system provides additional engine thrust by increasing engine pressure ratio (EPR) at intermediate and afterburning power. The amount of EPR uptrim is modulated based on airplane maneuver requirements, flight conditions, and engine information. Engine thrust was increased as much as 10.5 percent at subsonic flight conditions by uptrimming EPR. The additional thrust significantly improved aircraft performance. Rate of climb was increased 14 percent at 40,000 ft and the time to climb from 10,000 to 40,000 ft was reduced 13 percent. A 14 and 24 percent increase in acceleration was obtained at intermediate and maximum power, respectively. The HIDEC logic performed fault free. No engine anomalies were encountered for EPR increases up to 12 percent and for angles of attack and sideslip of 32 and 11 degrees, respectively.

  9. Optimization of an Active Twist Rotor Blade Planform for Improved Active Response and Forward Flight Performance

    NASA Technical Reports Server (NTRS)

    Sekula, Martin K; Wilbur, Matthew L.

    2014-01-01

    A study was conducted to identify the optimum blade tip planform for a model-scale active twist rotor. The analysis identified blade tip design traits which simultaneously reduce rotor power of an unactuated rotor while leveraging aeromechanical couplings to tailor the active response of the blade. Optimizing the blade tip planform for minimum rotor power in forward flight provided a 5 percent improvement in performance compared to a rectangular blade tip, but reduced the vibration control authority of active twist actuation by 75 percent. Optimizing for maximum blade twist response increased the vibration control authority by 50 percent compared to the rectangular blade tip, with little effect on performance. Combined response and power optimization resulted in a blade tip design which provided similar vibration control authority to the rectangular blade tip, but with a 3.4 percent improvement in rotor performance in forward flight.

  10. F/A-18 Performance Benefits Measured During the Autonomous Formation Flight Project

    NASA Technical Reports Server (NTRS)

    Vachon, M. Jake; Ray, Ronald J.; Walsh, Kevin R.; Ennix, Kimberly

    2003-01-01

    The Autonomous Formation Flight (AFF) project at the NASA Dryden Flight Research Center (Edwards, California) investigated performance benefits resulting from formation flight, such as reduced aerodynamic drag and fuel consumption. To obtain data on performance benefits, a trailing F/A-18 airplane flew within the wing tip-shed vortex of a leading F/A-18 airplane. The pilot of the trail airplane used advanced station-keeping technology to aid in positioning the trail airplane at precise locations behind the lead airplane. The specially instrumented trail airplane was able to obtain accurate fuel flow measurements and to calculate engine thrust and vehicle drag. A maneuver technique developed for this test provided a direct comparison of performance values while flying in and out of the vortex. Based on performance within the vortex as a function of changes in vertical, lateral, and longitudinal positioning, these tests explored design-drivers for autonomous stationkeeping control systems. Observations showed significant performance improvements over a large range of trail positions tested. Calculations revealed maximum drag reductions of over 20 percent, and demonstrated maximum reductions in fuel flow of just over 18 percent.

  11. Astronaut Biography Project for Countermeasures of Human Behavior and Performance Risks in Long Duration Space Flights

    NASA Technical Reports Server (NTRS)

    Banks, Akeem

    2012-01-01

    This final report will summarize research that relates to human behavioral health and performance of astronauts and flight controllers. Literature reviews, data archival analyses, and ground-based analog studies that center around the risk of human space flight are being used to help mitigate human behavior and performance risks from long duration space flights. A qualitative analysis of an astronaut autobiography was completed. An analysis was also conducted on exercise countermeasure publications to show the positive affects of exercise on the risks targeted in this study. The three main risks targeted in this study are risks of behavioral and psychiatric disorders, risks of performance errors due to poor team performance, cohesion, and composition, and risks of performance errors due to sleep deprivation, circadian rhythm. These three risks focus on psychological and physiological aspects of astronauts who venture out into space on long duration space missions. The purpose of this research is to target these risks in order to help quantify, identify, and mature countermeasures and technologies required in preventing or mitigating adverse outcomes from exposure to the spaceflight environment

  12. Entry Atmospheric Flight Control Authority Impacts on GN and C and Trajectory Performance for Orion Exploration Flight Test 1

    NASA Technical Reports Server (NTRS)

    McNamara, Luke W.

    2012-01-01

    One of the key design objectives of NASA's Orion Exploration Flight Test 1 (EFT-1) is to execute a guided entry trajectory demonstrating GN&C capability. The focus of this paper is the ight control authority of the vehicle throughout the atmospheric entry ight to the target landing site and its impacts on GN&C, parachute deployment, and integrated performance. The vehicle's attitude control authority is obtained from thrusting 12 Re- action Control System (RCS) engines, with four engines to control yaw, four engines to control pitch, and four engines to control roll. The static and dynamic stability derivatives of the vehicle are determined to assess the inherent aerodynamic stability. The aerodynamic moments at various locations in the entry trajectory are calculated and compared to the available torque provided by the RCS system. Interaction between the vehicle's RCS engine plumes and the aerodynamic conditions are considered to assess thruster effectiveness. This document presents an assessment of Orion's ight control authority and its effectiveness in controlling the vehicle during critical events in the atmospheric entry trajectory.

  13. AVIRIS performance during the 1987 flight season: An AVIRIS project assessment and summary of the NASA-sponsored performance evaluation

    NASA Technical Reports Server (NTRS)

    Vane, Gregg; Porter, Wallace M.; Reimer, John H.; Chrien, Thomas G.; Green, Robert O.

    1988-01-01

    Results are presented of the assessment of AVIRIS performance during the 1987 flight season by the AVIRIS project and the earth scientists who were chartered by NASA to conduct an independent data quality and sensor performance evaluation. The AVIRIS evaluation program began in late June 1987 with the sensor meeting most of its design requirements except for signal-to-noise ratio in the fourth spectrometer, which was about half of the required level. Several events related to parts failures and design flaws further reduced sensor performance over the flight season. Substantial agreement was found between the assessments by the project and the independent investigators of the effects of these various factors. A summary of the engineering work that is being done to raise AVIRIS performance to its required level is given. In spite of degrading data quality over the flight season, several exciting scientific results were obtained from the data. These include the mapping of the spatial variation of atmospheric precipitable water, detection of environmentally-induced shifts in the spectral red edge of stressed vegetation, detection of spectral features related to pigment, leaf water and ligno-cellulose absorptions in plants, and the identification of many diagnostic mineral absorption features in a variety of geological settings.

  14. Performance Testing of the Astro-H Flight Model 3-stage ADR

    NASA Astrophysics Data System (ADS)

    Shirron, Peter J.; Kimball, Mark O.; DiPirro, Michael J.; Bialas, Thomas G.

    The Soft X-ray Spectrometer (SXS) is one of four instruments that will be flown on the Japanese Astro-H satellite, planned for launch in late 2015/early 2016. The SXS will perform imaging spectroscopy in the soft x-ray band using a 6x6 array of silicon microcalorimeters operated at 50 mK, cooled by an adiabatic demagnetization refrigerator (ADR). NASA/GSFC is providing the detector array and ADR, and Sumitomo Heavy Industries, Inc. is providing the remainder of the cryogenic system (superfluid helium dewar (<1.3 K), Stirling cryocoolers and a 4.5 K Joule-Thomson (JT) cryocooler). The ADR is unique in that it is designed to use both the liquid helium and the JT cryocooler as it heat sink. The flight detector and ADR assembly have successfully undergone vibration and performance testing at GSFC, and have now undergone initial performance testing with the flight dewar at Sumitomo Heavy Industries, Inc. in Japan. This paper summaries the performance of the flight ADR in both cryogen-based and cryogen-free operating modes.

  15. Hover and forward flight acoustics and performance of a small-scale helicopter rotor system

    NASA Technical Reports Server (NTRS)

    Kitaplioglu, C.; Shinoda, P.

    1985-01-01

    A 2.1-m diam., 1/6-scale model helicopter main rotor was tested in hover in the test section of the NASA Ames 40- by 80- Foot Wind Tunnel. Subsequently, it was tested in forward flight in the Ames 7- by 10-Foot Wind Tunnel. The primary objective of the tests was to obtain performance and noise data on a small-scale rotor at various thrust coefficients, tip Mach numbers, and, in the later case, various advance ratios, for comparisons with similar existing data on full-scale helicopter rotors. This comparison yielded a preliminary evaluation of the scaling of helicopter rotor performance and acoustic radiation in hover and in forward flight. Correlation between model-scale and full-scale performance and acoustics was quite good in hover. In forward flight, however, there were significant differences in both performance and acoustic characteristics. A secondary objective was to contribute to a data base that will permit the estimation of facility effects on acoustic testing.

  16. A study of workstation computational performance for real-time flight simulation

    NASA Technical Reports Server (NTRS)

    Maddalon, Jeffrey M.; Cleveland, Jeff I., II

    1995-01-01

    With recent advances in microprocessor technology, some have suggested that modern workstations provide enough computational power to properly operate a real-time simulation. This paper presents the results of a computational benchmark, based on actual real-time flight simulation code used at Langley Research Center, which was executed on various workstation-class machines. The benchmark was executed on different machines from several companies including: CONVEX Computer Corporation, Cray Research, Digital Equipment Corporation, Hewlett-Packard, Intel, International Business Machines, Silicon Graphics, and Sun Microsystems. The machines are compared by their execution speed, computational accuracy, and porting effort. The results of this study show that the raw computational power needed for real-time simulation is now offered by workstations.

  17. LiPo battery energy studies for improved flight performance of unmanned aerial systems

    NASA Astrophysics Data System (ADS)

    Chang, K.; Rammos, P.; Wilkerson, S. A.; Bundy, M.; Gadsden, S. Andrew

    2016-05-01

    Energy storage is one of the most important determinants of how long and far a small electric powered unmanned aerial system (UAS) can fly. For years, most hobby and experimentalists used heavy fuels to power small drone-like systems. Electric motors and battery storage prior to the turn of the century were either too heavy or too inefficient for flight times of any usable duration. However, with the availability of brushless electric motors and lithium-based batteries everything has changed. Systems like the Dragon Eye, Pointer, and Raven are in service performing reconnaissance, intelligence, surveillance, and target acquisition (RISTA) for more than an hour at a time. More recently, multi-rotor vehicles have expanded small UAS capabilities to include activities with hovering and persistent surveillance. Moreover, these systems coupled with the surge of small, low-cost electronics can perform autonomous and semi-autonomous missions not possible just ten years ago. This paper addresses flight time limitation issues by proposing an experimental method with procedures for system identification that may lead to modeling of energy storage in electric UAS'. Consequently, this will allow for energy storage to be used more effectively in planning autonomous missions. To achieve this, a set of baseline experiments were designed to measure the energy consumption of a mid-size UAS multi-rotor. Several different flight maneuvers were considered to include different lateral velocities, climbing, and hovering. Therefore, the goal of this paper is to create baseline flight data for each maneuver to be characterized with a certain rate of energy usage. Experimental results demonstrate the feasibility and robustness of the proposed approach. Future work will include the development of mission planning algorithms that provide realistic estimates of possible mission flight times and distances given specific mission parameters.

  18. Performance Assessment of Counseling Skills Based on Specific Theories: Acquisition, Retention and Transfer to Actual Counseling Sessions

    ERIC Educational Resources Information Center

    Schaefle, Scott; Smaby, Marlowe H.; Packman, Jill; Maddux, Cleborne D.

    2007-01-01

    The purposes of the present study were to determine if (a) students trained to demonstrate specific skills learn these skills and transfer them to actual counseling sessions; (b) mastery of counseling skills differs by students' adherence to one of four general counseling theories; (c) mastery of counseling skills is related to counseling goal…

  19. Direct and Indirect Effects of Completion versus Accuracy Contingencies on Practice-Exam and Actual-Exam Performance

    ERIC Educational Resources Information Center

    Oliver, Renee; Williams, Robert L.

    2005-01-01

    Students in four sections of an undergraduate educational course (two large and two small sections) took out-of-class practice exams prior to actual exams for each of five course units. Each course unit consisted of five class sessions focusing on a specific developmental theme. Some sections received practice-exam credit based on the number of…

  20. Impact of potential and (scintillometer-based) actual evapotranspiration estimates on the performance of a lumped rainfall-runoff model

    NASA Astrophysics Data System (ADS)

    Samain, B.; Pauwels, V. R. N.

    2013-11-01

    Evapotranspiration (ET) plays a key role in hydrological impact studies and operational flood forecasting models as ET represents a loss of water from a catchment. Although ET is a major component of the catchment water balance, the evapotranspiration input for rainfall-runoff models is often simplified in contrast to the detailed estimates of catchment averaged precipitation. In this study, an existing conceptual rainfall-runoff model calibrated for and operational in the Bellebeek catchment in Belgium firstly has been validated and its sensitivity to different available potential ET input has been studied. It has been shown that when applying a calibrated rainfall-runoff model, the model input should be consistent with the input used for the calibration process, not only on the volume of ET, but also on the seasonal pattern. Secondly, estimates of the actual evapotranspiration based on measurements of a large aperture scintillometer (LAS) have been used as model forcing in the rainfall-runoff model. From this analysis, it has been shown that the actual evapotranspiration is a crucial factor in simulating the catchment water balance and the resulting stream flow. Regarding the actual evapotranspiration estimates from the LAS, it has been concluded that they can be considered realistic in summer months. In the months where stable conditions prevail (autumn, winter and (early) spring), an underestimation of the actual evapotranspiration is made, which has an important impact on the catchment's water balance.

  1. Use of high performance networks and supercomputers for real-time flight simulation

    NASA Technical Reports Server (NTRS)

    Cleveland, Jeff I., II

    1993-01-01

    In order to meet the stringent time-critical requirements for real-time man-in-the-loop flight simulation, computer processing operations must be consistent in processing time and be completed in as short a time as possible. These operations include simulation mathematical model computation and data input/output to the simulators. In 1986, in response to increased demands for flight simulation performance, NASA's Langley Research Center (LaRC), working with the contractor, developed extensions to the Computer Automated Measurement and Control (CAMAC) technology which resulted in a factor of ten increase in the effective bandwidth and reduced latency of modules necessary for simulator communication. This technology extension is being used by more than 80 leading technological developers in the United States, Canada, and Europe. Included among the commercial applications are nuclear process control, power grid analysis, process monitoring, real-time simulation, and radar data acquisition. Personnel at LaRC are completing the development of the use of supercomputers for mathematical model computation to support real-time flight simulation. This includes the development of a real-time operating system and development of specialized software and hardware for the simulator network. This paper describes the data acquisition technology and the development of supercomputing for flight simulation.

  2. In-Flight Performance of the Water Vapor Monitor Onboard the Sofia Observatory

    NASA Technical Reports Server (NTRS)

    Roellig, Thomas L.; Yuen, Lunming; Sisson, David; Hang, Richard

    2012-01-01

    NASA's Stratospheric Observatory for Infrared Astronomy (SOFIA) airborne observatory flies in a modified B747-SP aircraft in the lower stratosphere above more than 99.9% of the Earth's water vapor. As low as this residual water vapor is, it will still affect SOFIA's infrared and sub-millimeter astronomical observations. As a result, a heterodyne instrument has been developed to observe the strength and shape of the 1830Hz rotational line of water, allowing measurements of the integrated water vapor overburden in flight. In order to be useful in correcting the astronomical signals, the required measured precipitable water vapor accuracy must be 2 microns or better, 3 sigma, and measured at least once a minute. The Water Vapor Monitor has flown 22 times during the SOFIA Early Science shared-risk period. The instrument water vapor overburden data obtained were then compared with concurrent data from GOES-V satellites to perform a preliminary calibration of the measurements. This presentation will cover the.results of these flights. The final flight calibration necessary to reach the required accuracy will await subsequent flights following the SOFIA observatory upgrade that is taking place during the spring and summer of 2012.

  3. Propulsion system performance resulting from an integrated flight/propulsion control design

    NASA Technical Reports Server (NTRS)

    Mattern, Duane; Garg, Sanjay

    1992-01-01

    Propulsion-system-specific results are presented from the application of the integrated methodology for propulsion and airframe control (IMPAC) design approach to integrated flight/propulsion control design for a 'short takeoff and vertical landing' (STOVL) aircraft in transition flight. The IMPAC method is briefly discussed and the propulsion system specifications for the integrated control design are examined. The structure of a linear engine controller that results from partitioning a linear centralized controller is discussed. The details of a nonlinear propulsion control system are presented, including a scheme to protect the engine operational limits: the fan surge margin and the acceleration/deceleration schedule that limits the fuel flow. Also, a simple but effective multivariable integrator windup protection scheme is examined. Nonlinear closed-loop simulation results are presented for two typical pilot commands for transition flight: acceleration while maintaining flightpath angle and a change in flightpath angle while maintaining airspeed. The simulation nonlinearities include the airframe/engine coupling, the actuator and sensor dynamics and limits, the protection scheme for the engine operational limits, and the integrator windup protection. Satisfactory performance of the total airframe plus engine system for transition flight, as defined by the specifications, was maintained during the limit operation of the closed-loop engine subsystem.

  4. Comparative Flight Performance with an NACA Roots Supercharger and a Turbocentrifugal Supercharger

    NASA Technical Reports Server (NTRS)

    Schey, Oscar W; Young, Alfred W

    1931-01-01

    This report presents the comparative flight results of a roots supercharger and a turbocentrifugal supercharger. The tests were conducted using a modified DH-4M2 airplane. The rate of climb and the high speed in level flight of the airplane were obtained for each supercharger from sea level to the ceiling. The unsupercharged performance with each supercharger mounted in place was also determined. The results of these tests show that the ceiling and rate of climb obtained were nearly the same for each supercharger, but that the high speed obtained with the turbocentrifugal was better than that obtained with the roots. The high-speed performance at 21,000 feet was 122 and 142 miles per hour for the roots and turbocentrifugal, respectively.

  5. Pose Measurement Performance of the Argon Relative Navigation Sensor Suite in Simulated Flight Conditions

    NASA Technical Reports Server (NTRS)

    Galante, Joseph M.; Eepoel, John Van; Strube, Matt; Gill, Nat; Gonzalez, Marcelo; Hyslop, Andrew; Patrick, Bryan

    2012-01-01

    Argon is a flight-ready sensor suite with two visual cameras, a flash LIDAR, an on- board flight computer, and associated electronics. Argon was designed to provide sensing capabilities for relative navigation during proximity, rendezvous, and docking operations between spacecraft. A rigorous ground test campaign assessed the performance capability of the Argon navigation suite to measure the relative pose of high-fidelity satellite mock-ups during a variety of simulated rendezvous and proximity maneuvers facilitated by robot manipulators in a variety of lighting conditions representative of the orbital environment. A brief description of the Argon suite and test setup are given as well as an analysis of the performance of the system in simulated proximity and rendezvous operations.

  6. Suomi National Polar-orbiting Partnership Ozone Mapping Profiler Suite Nadir instruments in-flight performance

    NASA Astrophysics Data System (ADS)

    Pan, Chunhui; Flynn, Larry; Wu, Xiangqian; Buss, Rich

    2014-01-01

    This paper analyzes the in-flight performance of the Suomi National Polar-orbiting Partnership Ozone Mapping & Profiling Suite (OMPS) nadir instruments and evaluates sensors' on-orbit calibrations after sensors' two-year operation. All uncertainty values quoted in this paper are 1-σ values unless stated otherwise. With the data collected from in-flight nominal calibration, our results have demonstrated that sensor performance complies with the system specifications in most cases. The largest term in the wavelength-dependent albedo calibration uncertainty for Nadir Mapper is the cross-track position difference effect of 2.5%. Final adjustments of stray light and wavelength variation are still being made to optimize OMPS sensor data records before reaching the validation mature level.

  7. Failure rate analysis of Goddard Space Flight Center spacecraft performance during orbital life

    NASA Technical Reports Server (NTRS)

    Norris, H. P.; Timmins, A. R.

    1976-01-01

    Space life performance data on 57 Goddard Space Flight Center spacecraft are analyzed from the standpoint of determining an appropriate reliability model and the associated reliability parameters. Data from published NASA reports, which cover the space performance of GSFC spacecraft launched in the 1960-1970 decade, form the basis of the analyses. The results of the analyses show that the time distribution of 449 malfunctions, of which 248 were classified as failures (not necessarily catastrophic), follow a reliability growth pattern that can be described with either the Duane model or a Weibull distribution. The advantages of both mathematical models are used in order to: identify space failure rates, observe chronological trends, and compare failure rates with those experienced during the prelaunch environmental tests of the flight model spacecraft.

  8. The LPSP instrument on OSO 8. II - In-flight performance and preliminary results

    NASA Technical Reports Server (NTRS)

    Bonnet, R. M.; Lemaire, P.; Vial, J. C.; Artzner, G.; Gouttebroze, P.; Jouchoux, A.; Vidal-Madjar, A.; Leibacher, J. W.; Skumanich, A.

    1978-01-01

    The paper describes the in-flight performance for the first 18 months of operation of the LPSP (Laboratoire de Physique Stellaire et Planetaire) instrument incorporated in the OSO 8 launched June 1975. By means of the instrument, an absolute pointing accuracy of nearly one second was achieved in orbit during real-time operations. The instrument uses a Cassegrain telescope and a spectrometer simultaneously observing six wavelengths. In-flight performance is discussed with attention to angular resolution, spectral resolution, dispersion and grating mechanism (spectral scanner) stability, scattered light background and dark current, photometric standardization, and absolute calibration. Real-time operation and problems are considered with reference to pointing system problems, target acquisition, and L-alpha modulation. Preliminary results involving the observational program, quiet sun and chromospheric studies, quiet chromospheric oscillation and transients, sunspots and active regions, prominences, and aeronomy investigations are reported.

  9. What ASRS incident data tell about flight crew performance during aircraft malfunctions

    NASA Technical Reports Server (NTRS)

    Sumwalt, Robert L.; Watson, Alan W.

    1995-01-01

    This research examined 230 reports in NASA's Aviation Safety Reporting System's (ASRS) database to develop a better understanding of factors that can affect flight crew performance when crew are faced with inflight aircraft malfunctions. Each report was placed into one of two categories, based on severity of the malfunction. Report analysis was then conducted to extract information regarding crew procedural issues, crew communications and situational awareness. A comparison of these crew factors across malfunction type was then performed. This comparison revealed a significant difference in ways that crews dealt with serious malfunctions compared to less serious malfunctions. The authors offer recommendations toward improving crew performance when faced with inflight aircraft malfunctions.

  10. Development of low-shock pyrotechnic separation nuts. [design performance of flight type nuts

    NASA Technical Reports Server (NTRS)

    Bement, L. J.; Neubert, V. H.

    1973-01-01

    Performance demonstrations and comparisons were made on six flight type pyrotechnic separation nut designs, two of which are standard designs in current use, and four of which were designed to produce low shock on actuation. Although the shock performances of the four low shock designs are considerably lower than the standard designs, some penalties may be incurred in increased volume, weight, or complexity. These nuts, and how they are installed, can significantly influence the pyrotechnic shock created in spacecraft structures. A high response monitoring system has been developed and demonstrated to provide accurate performance comparisons for pyrotechnic separation nuts.

  11. Mars Science Laboratory Entry, Descent and Landing System Development Challenges and Preliminary Flight Performance

    NASA Technical Reports Server (NTRS)

    Steltzner, Adam D.; San Martin, A. Miguel; Rivellini, Tommaso P.

    2013-01-01

    The Mars Science Laboratory project recently landed the Curiosity rover on the surface of Mars. With the success of the landing system, the performance envelope of entry, descent, and landing capabilities has been extended over the previous state of the art. This paper will present an overview of the MSL entry, descent, and landing system, a discussion of a subset of its development challenges, and include a discussion of preliminary results of the flight reconstruction effort.

  12. The Primary Flight Display and Its Pathway Guidance: Workload, Performance, and Situation Awareness

    NASA Technical Reports Server (NTRS)

    Wickens, Christopher D.; Alexander, Amy L.; Hardy, Thomas J.

    2003-01-01

    In two experiments carried out in a high fidelity general aviation flight simulator, 42 instrument rated pilots flew a pathway-in-the-sky (tunnel) display through a series of multi-leg curved stepdown approaches through mountainous terrain. Both experiments examined how properties of the tunnel influenced flight path tracking performance, traffic awareness, terrain awareness and workload (assessed both by subjective and secondary task performance measures). Experiment 1, flown in simulated VMC, compared high and low intensity tunnels, with a less cluttered follow-me-airplane (FMA). The results revealed that both tunnels supported better flight path tracking than the FMA, because of the availability of more preview information. Increasing tunnel intensity, while reducing subjective workload, had no benefit on tracking, and degraded traffic detection performance. In Experiment 2, flown mostly in IMC, the low intensity tunnel was flown with a large (10 inch x 8 inch) and small (8 inch x 6.5 inch) display, representing a geometric field of view (GFOV) of either 30 degrees or 60 degrees. Most measures of flight path tracking performance favored the smaller display, and particularly the 60 degree GFOV, which presented a smaller appearing tunnel, and a wider range of terrain depiction. The larger GFOV also supported better terrain awareness, and yielded a lower secondary task assessment of workload. In both experiments, the final landing approach was terminated by a runway obstruction, and the tunnel guided pilots on a missed approach. In nearly all cases, pilots failed to notice an air hazard that lay in the missed approach path, but was only depicted in the outside view.

  13. Electrolysis Performance Improvement Concept Study (EPICS) flight experiment phase C/D

    NASA Technical Reports Server (NTRS)

    Schubert, F. H.; Lee, M. G.

    1995-01-01

    The overall purpose of the Electrolysis Performance Improvement Concept Study flight experiment is to demonstrate and validate in a microgravity environment the Static Feed Electrolyzer concept as well as investigate the effect of microgravity on water electrolysis performance. The scope of the experiment includes variations in microstructural characteristics of electrodes and current densities in a static feed electrolysis cell configuration. The results of the flight experiment will be used to improve efficiency of the static feed electrolysis process and other electrochemical regenerative life support processes by reducing power and expanding the operational range. Specific technologies that will benefit include water electrolysis for propulsion, energy storage, life support, extravehicular activity, in-space manufacturing and in-space science in addition to other electrochemical regenerative life support technologies such as electrochemical carbon dioxide and oxygen separation, electrochemical oxygen compression and water vapor electrolysis. The Electrolysis Performance Improvement Concept Study flight experiment design incorporates two primary hardware assemblies: the Mechanical/Electrochemical Assembly and the Control/Monitor Instrumentation. The Mechanical/Electrochemical Assembly contains three separate integrated electrolysis cells along with supporting pressure and temperature control components. The Control/Monitor Instrumentation controls the operation of the experiment via the Mechanical/Electrochemical Assembly components and provides for monitoring and control of critical parameters and storage of experimental data.

  14. Improvements in and actual performance of the Plant Experiment Unit onboard Kibo, the Japanese experiment module on the international space station

    NASA Astrophysics Data System (ADS)

    Yano, Sachiko; Kasahara, Haruo; Masuda, Daisuke; Tanigaki, Fumiaki; Shimazu, Toru; Suzuki, Hiromi; Karahara, Ichirou; Soga, Kouichi; Hoson, Takayuki; Tayama, Ichiro; Tsuchiya, Yoshikazu; Kamisaka, Seiichiro

    2013-03-01

    In 2004, Japan Aerospace Exploration Agency developed the engineered model of the Plant Experiment Unit and the Cell Biology Experiment Facility. The Plant Experiment Unit was designed to be installed in the Cell Biology Experiment Facility and to support the seed-to-seed life cycle experiment of Arabidopsis plants in space in the project named Space Seed. Ground-based experiments to test the Plant Experiment Unit showed that the unit needed further improvement of a system to control the water content of a seedbed using an infrared moisture analyzer and that it was difficult to keep the relative humidity inside the Plant Experiment Unit between 70 and 80% because the Cell Biology Experiment Facility had neither a ventilation system nor a dehumidifying system. Therefore, excess moisture inside the Cell Biology Experiment Facility was removed with desiccant bags containing calcium chloride. Eight flight models of the Plant Experiment Unit in which dry Arabidopsis seeds were fixed to the seedbed with gum arabic were launched to the International Space Station in the space shuttle STS-128 (17A) on August 28, 2009. Plant Experiment Unit were installed in the Cell Biology Experiment Facility with desiccant boxes, and then the Space Seed experiment was started in the Japanese Experiment Module, named Kibo, which was part of the International Space Station, on September 10, 2009 by watering the seedbed and terminated 2 months later on November 11, 2009. On April 19, 2010, the Arabidopsis plants harvested in Kibo were retrieved and brought back to Earth by the space shuttle mission STS-131 (19A). The present paper describes the Space Seed experiment with particular reference to the development of the Plant Experiment Unit and its actual performance in Kibo onboard the International Space Station. Downlinked images from Kibo showed that the seeds had started germinating 3 days after the initial watering. The plants continued growing, producing rosette leaves, inflorescence

  15. Saturn 5 launch vehicle flight evaluation report-AS-509 Apollo 14 mission

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A postflight analysis of the Apollo 14 flight is presented. The basic objective of the flight evaluation is to acquire, reduce, analyze, and report on flight data to the extent required to assure future mission success and vehicle reliability. Actual flight failures are identified, their causes are determined and corrective actions are recommended. Summaries of launch operations and spacecraft performance are included. The significant events for all phases of the flight are analyzed.

  16. Expanded study of feasibility of measuring in-flight 747/JT9D loads, performance, clearance, and thermal data

    NASA Technical Reports Server (NTRS)

    Sallee, G. P.; Martin, R. L.

    1980-01-01

    The JT9D jet engine exhibits a TSFC loss of about 1 percent in the initial 50 flight cycles of a new engine. These early losses are caused by seal-wear induced opening of running clearances in the engine gas path. The causes of this seal wear have been identified as flight induced loads which deflect the engine cases and rotors, causing the rotating blades to rub against the seal surfaces, producing permanent clearance changes. The real level of flight loads encountered during airplane acceptance testing and revenue service and the engine's response in the dynamic flight environment were investigated. The feasibility of direct measurement of these flight loads and their effects by concurrent measurement of 747/JT9D propulsion system aerodynamic and inertia loads and the critical engine clearance and performance changes during 747 flight and ground operations was evaluated. A number of technical options were examined in relation to the total estimated program cost to facilitate selection of the most cost effective option. It is concluded that a flight test program meeting the overall objective of determining the levels of aerodynamic and inertia load levels to which the engine is exposed during the initial flight acceptance test and normal flight maneuvers is feasible and desirable. A specific recommended flight test program, based on the evaluation of cost effectiveness, is defined.

  17. Treadmill Exercise with Increased Body Loading Enhances Post Flight Functional Performance

    NASA Technical Reports Server (NTRS)

    Bloomberg, J. J.; Batson, C. D.; Buxton, R. E.; Feiveson, A. H.; Kofman, I. S.; Laurie, S.; Lee, S. M. C.; Miller, C. A.; Mulavara, A. P.; Peters, B. T.; Phillips, T.; Platts, S. H.; Ploutz-Snyder, L. L.; Reschke, M. F.; Ryder, J. W.; Stenger, M. B.; Taylor, L. C.; Wood, S. J.

    2014-01-01

    The goals of the Functional Task Test (FTT) study were to determine the effects of space flight on functional tests that are representative of high priority exploration mission tasks and to identify the key underlying physiological factors that contribute to decrements in performance. Ultimately this information will be used to assess performance risks and inform the design of countermeasures for exploration class missions. We have previously shown that for Shuttle, ISS and bed rest subjects functional tasks requiring a greater demand for dynamic control of postural equilibrium (i.e. fall recovery, seat egress/obstacle avoidance during walking, object translation, jump down) showed the greatest decrement in performance. Functional tests with reduced requirements for postural stability (i.e. hatch opening, ladder climb, manual manipulation of objects and tool use) showed little reduction in performance. These changes in functional performance were paralleled by similar decrements in sensorimotor tests designed to specifically assess postural equilibrium and dynamic gait control. The bed rest analog allows us to investigate the impact of axial body unloading in isolation on both functional tasks and on the underlying physiological factors that lead to decrements in performance and then compare them with the results obtained in our space flight study. These results indicate that body support unloading experienced during space flight plays a central role in postflight alteration of functional task performance. Given the importance of body-support loading we set out to determine if there is a relationship between the load experienced during inflight treadmill exercise (produced by a harness and bungee system) and postflight functional performance. ISS crewmembers (n=13) were tested using the FTT protocol before and after 6 months in space. Crewmembers were tested three times before flight, and on 1, 6, and 30 days after landing. To determine how differences in body

  18. Test-engine and inlet performance of an aircraft used for investigating flight effects on fan noise

    NASA Astrophysics Data System (ADS)

    Golub, R. A.; Preisser, J. S.

    1984-04-01

    As part of the NASA Flight Effects on Fan Noise Program, a Grumman OV-1B Mohawk aircraft was modified to carry a modified and instrumented Pratt & Whitney JT15D-1 turbofan engine. Onboard flight data, together with simultaneously measured farfield acoustic data, comprise a flight data base to which JT15D-1 static and wind-tunnel data are compared. The overall objective is to improve the ability to use ground-based facilities for the prediction of flight inlet radiated noise. This report describes the hardware and presents performance results for the research engine.

  19. Test-engine and inlet performance of an aircraft used for investigating flight effects on fan noise

    NASA Technical Reports Server (NTRS)

    Golub, R. A.; Preisser, J. S.

    1984-01-01

    As part of the NASA Flight Effects on Fan Noise Program, a Grumman OV-1B Mohawk aircraft was modified to carry a modified and instrumented Pratt & Whitney JT15D-1 turbofan engine. Onboard flight data, together with simultaneously measured farfield acoustic data, comprise a flight data base to which JT15D-1 static and wind-tunnel data are compared. The overall objective is to improve the ability to use ground-based facilities for the prediction of flight inlet radiated noise. This report describes the hardware and presents performance results for the research engine.

  20. Biodegradation of polyacrylamide by anaerobic digestion under mesophilic condition and its performance in actual dewatered sludge system.

    PubMed

    Dai, Xiaohu; Luo, Fan; Yi, Jing; He, Qunbiao; Dong, Bin

    2014-02-01

    Polyacrylamide (PAM) used in sludge dewatering widely exists in high-solid anaerobic digestion. Degradation of polyacrylamide accompanied with accumulation of its toxic monomer is important to disposition of biogas residues. The potential of anaerobic digestion activity in microbial utilization of PAM was investigated in this study. The results indicated that the utilization rate of PAM (as nitrogen source) was influenced by accumulation of ammonia, while cumulative removal of amide group was accorded with zeroth order reaction in actual dewatered system. The adjoining amide group can combined into ether group after biodegradation. PAM can be broken down in different position of its carbon chain backbone. In actual sludge system, the hydrolytic PAM was liable to combined tyrosine-rich protein to form colloid complex, and then consumed as carbon source to form monomer when easily degradable organics were exhausted. The accumulation of acrylamide was leveled off ultimately, accompanied with the yield of methane.

  1. Understanding the Effects of Long-duration Space Flight on Astronant Functional Task Performance

    NASA Technical Reports Server (NTRS)

    Bloomberg, Jacob J.; Batson, Crystal D.; Buxton, Roxanne E.; Feiveson, Al H.; Kofman, Igor S.; Lee, Stuart M. C.; Miller, Chris A.; Mulavara, Ajitkumar P.; Peters, Brian T.; Phillips, Tiffany; Platts, Steven H.; Ploutz-Snyder, Lori L.; Reschke, Millard F.; Ryder, Jeff W.; Stenger, Michael B.; Taylor, Laura C.

    2014-01-01

    Space flight is known to cause alterations in multiple physiological systems including changes in sensorimotor, cardiovascular, and neuromuscular systems. These physiological changes cause balance, gait and visual disturbances, cardiovascular deconditioning, and loss of muscle mass and strength. These changes may affect a crewmember's ability to perform critical mission tasks immediately after landing on a planetary surface. To understand how changes in physiological function affect functional performance, an interdisciplinary pre- and postflight testing regimen, Functional Task Test (FTT), was developed to systematically evaluate both astronaut functional performance and related physiological changes. Ultimately this information will be used to assess performance risks and inform the design of countermeasures for exploration class missions. We are currently conducting the FTT study on International Space Station (ISS) crewmembers before and after 6-month expeditions. Additionally, in a corresponding study we are using the FTT protocol on subjects before and after 70 days of 6deg head-down bed-rest as an analog for space flight. Bed-rest provides the opportunity for us to investigate the role of prolonged axial body unloading in isolation from the other physiological effects produced by exposure to the microgravity environment of space flight. Therefore, the bed rest analog allows us to investigate the impact of body unloading on both functional tasks and on the underlying physiological factors that lead to decrement in performance and then compare them with the results obtained in our space flight study. Functional tests included ladder climbing, hatch opening, jump down, manual manipulation of objects and tool use, seat egress and obstacle avoidance, recovery from a fall and object translation tasks. Physiological measures included assessments of postural and gait control, dynamic visual acuity, fine motor control, plasma volume, heart rate, blood pressure

  2. The influence of flight speed on the ranging performance of bats using frequency modulated echolocation pulses

    NASA Astrophysics Data System (ADS)

    Boonman, Arjan M.; Parsons, Stuart; Jones, Gareth

    2003-01-01

    Many species of bat use ultrasonic frequency modulated (FM) pulses to measure the distance to objects by timing the emission and reception of each pulse. Echolocation is mainly used in flight. Since the flight speed of bats often exceeds 1% of the speed of sound, Doppler effects will lead to compression of the time between emission and reception as well as an elevation of the echo frequencies, resulting in a distortion of the perceived range. This paper describes the consequences of these Doppler effects on the ranging performance of bats using different pulse designs. The consequences of Doppler effects on ranging performance described in this paper assume bats to have a very accurate ranging resolution, which is feasible with a filterbank receiver. By modeling two receiver types, it was first established that the effects of Doppler compression are virtually independent of the receiver type. Then, used a cross-correlation model was used to investigate the effect of flight speed on Doppler tolerance and range-Doppler coupling separately. This paper further shows how pulse duration, bandwidth, function type, and harmonics influence Doppler tolerance and range-Doppler coupling. The influence of each signal parameter is illustrated using calls of several bat species. It is argued that range-Doppler coupling is a significant source of error in bat echolocation, and various strategies bats could employ to deal with this problem, including the use of range rate information are discussed.

  3. Implications of Self-Deception for Self-Reported Intrinsic and Extrinsic Motivational Dispositions and Actual Learning Performance: A Higher Order Structural Model

    ERIC Educational Resources Information Center

    Hirschfeld, Robert R.; Thomas, Christopher H.; McNatt, D. Brian

    2008-01-01

    The authors explored implications of individuals' self-deception (a trait) for their self-reported intrinsic and extrinsic motivational dispositions and their actual learning performance. In doing so, a higher order structural model was developed and tested in which intrinsic and extrinsic motivational dispositions were underlying factors that…

  4. Differences Between Actual Motor Ability and Physical Self-Concept (Perceived Motor Performance/Body Image) of Fifth-Grade Boys.

    ERIC Educational Resources Information Center

    Boling, Robert; Kirk, Pamela

    Differences between high and low perceived physical self-concept and actual motor performance of 120 fifth grade boys were investigated. Self-concept was measured by the Physical Self-Concept Scale. Motor proficiency was measured by a four-item advanced agility/coordination test battery: hand-eye coordination; foot-eye coordination; whole body…

  5. The Role of Teacher and Family Opinions in Identifying Gifted Kindergarten Children and the Consistence of These Views with Children's Actual Performance

    ERIC Educational Resources Information Center

    Daglioglu, H. Elif; Suveren, Senem

    2013-01-01

    This study was conducted in order to identify gifted children attending kindergartens of elementary schools, determine how successful families and teachers were in selecting these children, and see how consistent their opinions were with children's actual performance. Participants were children attending kindergartens of elementary schools,…

  6. Mothers' and Teachers' Estimations of First Graders' Literacy Level and Their Relation to the Children's Actual Performance in Different SES Groups

    ERIC Educational Resources Information Center

    Korat, Ofra

    2011-01-01

    The relationship between mothers' and teachers' estimations of 60 children's literacy level and their actual performance were investigated in two different socio-economic status (SES) groups: low (LSES) and high (HSES). The children's reading (fluency, accuracy and comprehension) and spelling levels were measured. The mothers evaluated their own…

  7. Open-Loop HIRF Experiments Performed on a Fault Tolerant Flight Control Computer

    NASA Technical Reports Server (NTRS)

    Koppen, Daniel M.

    1997-01-01

    During the third quarter of 1996, the Closed-Loop Systems Laboratory was established at the NASA Langley Research Center (LaRC) to study the effects of High Intensity Radiated Fields on complex avionic systems and control system components. This new facility provided a link and expanded upon the existing capabilities of the High Intensity Radiated Fields Laboratory at LaRC that were constructed and certified during 1995-96. The scope of the Closed-Loop Systems Laboratory is to place highly integrated avionics instrumentation into a high intensity radiated field environment, interface the avionics to a real-time flight simulation that incorporates aircraft dynamics, engines, sensors, actuators and atmospheric turbulence, and collect, analyze, and model aircraft performance. This paper describes the layout and functionality of the Closed-Loop Systems Laboratory, and the open-loop calibration experiments that led up to the commencement of closed-loop real-time flight experiments.

  8. The time-of-flight TOFW detector of the HARP experiment: construction and performance

    NASA Astrophysics Data System (ADS)

    Baldo-Ceolin, M.; Barichello, G.; Bobisut, F.; Bonesini, M.; De Min, A.; Ferri, A. F.; Gibin, D.; Guglielmi, A.; Laveder, M.; Menegolli, A.; Mezzetto, M.; Paganoni, M.; Paleari, F.; Pepato, A.; Tonazzo, A.; Vascon, M.

    2004-10-01

    The construction and performance of a large area scintillator-based time-of-flight detector for the HARP experiment at CERN are reported. An intrinsic counter time resolution of ∼160 ps was achieved. The precision on the time calibration and monitoring of the detector was maintained at better than 100 ps by using dedicated cosmic rays runs, a fast laser-based system and calibrations with beam particles. The detector was operated on the T9 PS beamline during 2001 and 2002. A time-of-flight resolution of ∼200 ps was obtained, providing π/p discrimination at more than 3σ up to 4.0 GeV/c momentum.

  9. A new raptorial dinosaur with exceptionally long feathering provides insights into dromaeosaurid flight performance.

    PubMed

    Han, Gang; Chiappe, Luis M; Ji, Shu-An; Habib, Michael; Turner, Alan H; Chinsamy, Anusuya; Liu, Xueling; Han, Lizhuo

    2014-07-15

    Microraptorines are a group of predatory dromaeosaurid theropod dinosaurs with aerodynamic capacity. These close relatives of birds are essential for testing hypotheses explaining the origin and early evolution of avian flight. Here we describe a new 'four-winged' microraptorine, Changyuraptor yangi, from the Early Cretaceous Jehol Biota of China. With tail feathers that are nearly 30 cm long, roughly 30% the length of the skeleton, the new fossil possesses the longest known feathers for any non-avian dinosaur. Furthermore, it is the largest theropod with long, pennaceous feathers attached to the lower hind limbs (that is, 'hindwings'). The lengthy feathered tail of the new fossil provides insight into the flight performance of microraptorines and how they may have maintained aerial competency at larger body sizes. We demonstrate how the low-aspect-ratio tail of the new fossil would have acted as a pitch control structure reducing descent speed and thus playing a key role in landing.

  10. Design and performance of a high spatial resolution, time-of-flight PET detector

    PubMed Central

    Krishnamoorthy, Srilalan; LeGeyt, Benjamin; Werner, Matthew E.; Kaul, Madhuri; Newcomer, F. M.; Karp, Joel S.; Surti, Suleman

    2014-01-01

    This paper describes the design and performance of a high spatial resolution PET detector with time-of-flight capabilities. With an emphasis on high spatial resolution and sensitivity, we initially evaluated the performance of several 1.5 × 1.5 and 2.0 × 2.0 mm2 and 12–15 mm long LYSO crystals read out by several appropriately sized PMTs. Experiments to evaluate the impact of reflector on detector performance were performed and the final detector consisted of a 32 × 32 array of 1.5 × 1.5 × 15 mm3 LYSO crystals packed with a diffuse reflector and read out by a single Hamamatsu 64 channel multi-anode PMT. Such a design made it compact, modular and offered a cost-effective solution to obtaining excellent energy and timing resolution. To minimize the number of readout signals, a compact front-end readout electronics that summed anode signals along each of the orthogonal directions was also developed. Experimental evaluation of detector performance demonstrates clear discrimination of the crystals within the detector. An average energy resolution (FWHM) of 12.7 ± 2.6% and average coincidence timing resolution (FWHM) of 348 ps was measured, demonstrating suitability for use in the development of a high spatial resolution time-of-flight scanner for dedicated breast PET imaging. PMID:25246711

  11. Program for establishing long-time flight service performance of composite materials in the center wing structure of C-130 aircraft. Phase 5: Flight service and inspection

    NASA Technical Reports Server (NTRS)

    Kizer, J. A.

    1981-01-01

    Inspections of the C-130 composite-reinforced center wings were conducted over the flight service monitoring period of more than six years. Twelve inspections were conducted on each of the two C-130H airplanes having composite reinforced center wing boxes. Each inspection consisted of visual and ultrasonic inspection of the selective boron-epoxy reinforced center wings which included the inspection of the boron-epoxy laminates and the boron-epoxy reinforcement/aluminum structure adhesive bondlines. During the flight service monitoring period, the two C-130H aircraft accumulated more than 10,000 flight hours and no defects were detected in the inspections over this period. The successful performance of the C-130H aircraft with composite-reinforced center wings allowed the transfer of the responsibilities of inspecting and maintaining these two aircraft to the U. S. Air Force.

  12. Design and Convergence Performance Analysis of Aspherical Acoustic Lens Applied to Ambient Noise Imaging in Actual Ocean Experiment

    NASA Astrophysics Data System (ADS)

    Mori, Kazuyoshi; Ogasawara, Hanako; Nakamura, Toshiaki; Tsuchiya, Takenobu; Endoh, Nobuyuki

    2011-07-01

    In this study, an aspherical lens with the aperture diameter of 1.0 m was designed for utilization in an actual ocean experiment of ambient noise imaging (ANI). It was expected that this ANI system would realize directional resolution, which is a beam width of 1° at the center frequency of 120 kHz. We analyzed the sound pressure distribution focused by the designed lens using the 3D finite difference time domain method. The frequency dependence of a -3 dB area was then compared between 120 kHz and the higher or lower frequency. The analysis results suggested that the designed lens has fine directional resolution over the center frequency of 120 kHz. We had measured the directivity of the designed lens in an actual ocean experiment in Uchiura Bay in November of 2010. It was verified that the ANI system with this lens realizes a beam width of 1° at 120 kHz.

  13. Ball flight kinematics, release variability and in-season performance in elite baseball pitching.

    PubMed

    Whiteside, D; McGinnis, R S; Deneweth, J M; Zernicke, R F; Goulet, G C

    2016-03-01

    The purpose of this study was to quantify ball flight kinematics (ball speed, spin rate, spin axis orientation, seam orientation) and release location variability in the four most common pitch types in baseball and relate them to in-season pitching performance. Nine NCAA Division I pitchers threw four pitching variations (fastball, changeup, curveball, and slider) while a radar gun measured ball speed and a 600-Hz video camera recorded the ball trajectory. Marks on the ball were digitized to measure ball flight kinematics and release location. Ball speed was highest in the fastball, though spin rate was similar in the fastball and breaking pitches. Two distinct spin axis orientations were noted: one characterizing the fastball and changeup, and another, the curveball and slider. The horizontal release location was significantly more variable than the vertical release location. In-season pitching success was not correlated to any of the measured variables. These findings are instructive for inferring appropriate hand mechanics and spin types in each of the four pitches. Coaches should also be aware that ball flight kinematics might not directly relate to pitching success at the collegiate level. Therefore, talent identification and pitching evaluations should encompass other (e.g., cognitive, psychological, and physiological) factors.

  14. Ball flight kinematics, release variability and in-season performance in elite baseball pitching.

    PubMed

    Whiteside, D; McGinnis, R S; Deneweth, J M; Zernicke, R F; Goulet, G C

    2016-03-01

    The purpose of this study was to quantify ball flight kinematics (ball speed, spin rate, spin axis orientation, seam orientation) and release location variability in the four most common pitch types in baseball and relate them to in-season pitching performance. Nine NCAA Division I pitchers threw four pitching variations (fastball, changeup, curveball, and slider) while a radar gun measured ball speed and a 600-Hz video camera recorded the ball trajectory. Marks on the ball were digitized to measure ball flight kinematics and release location. Ball speed was highest in the fastball, though spin rate was similar in the fastball and breaking pitches. Two distinct spin axis orientations were noted: one characterizing the fastball and changeup, and another, the curveball and slider. The horizontal release location was significantly more variable than the vertical release location. In-season pitching success was not correlated to any of the measured variables. These findings are instructive for inferring appropriate hand mechanics and spin types in each of the four pitches. Coaches should also be aware that ball flight kinematics might not directly relate to pitching success at the collegiate level. Therefore, talent identification and pitching evaluations should encompass other (e.g., cognitive, psychological, and physiological) factors. PMID:25809339

  15. A Modified Lunar Reconnaissance Orbiter (LRO) High Gain Antenna (HGA) Controller Based on Flight Performance

    NASA Technical Reports Server (NTRS)

    Shah, Neerav

    2010-01-01

    The National Aeronautics and Space Administration's (NASA) Lunar Reconnaissance Orbiter (LRO) was launched on June 18, 2009 and is currently in a 50 km mean altitude polar orbit around the Moon. LRO was designed and built by the NASA Goddard Space Flight Center in Greenbelt, MD. The spacecraft is three-axis stabilized via the attitude control system (ACS), which is composed of various control modes using different sets of sensors and actuators. In addition to pointing the spacecraft, the ACS is responsible for pointing LRO s two appendages, the Solar Array (SA) and the High Gain Antenna (HGA). This study reviews LRO s HGA control system. Starting with an overview of the HGA system, the paper delves into the single input single output (SISO) linear analysis followed by the controller design. Based on flight results, an alternate control scheme is devised to address inherent features in the flight control system. The modified control scheme couples the HGA loop with the spacecraft pointing control loop, and through analysis is shown to be stable and improve transient performance. Although proposed, the LRO project decided against implementing this modification.

  16. Heat Capacity Mapping Radiometer (HCMR) data processing algorithm, calibration, and flight performance evaluation

    NASA Technical Reports Server (NTRS)

    Bohse, J. R.; Bewtra, M.; Barnes, W. L.

    1979-01-01

    The rationale and procedures used in the radiometric calibration and correction of Heat Capacity Mapping Mission (HCMM) data are presented. Instrument-level testing and calibration of the Heat Capacity Mapping Radiometer (HCMR) were performed by the sensor contractor ITT Aerospace/Optical Division. The principal results are included. From the instrumental characteristics and calibration data obtained during ITT acceptance tests, an algorithm for post-launch processing was developed. Integrated spacecraft-level sensor calibration was performed at Goddard Space Flight Center (GSFC) approximately two months before launch. This calibration provided an opportunity to validate the data calibration algorithm. Instrumental parameters and results of the validation are presented and the performances of the instrument and the data system after launch are examined with respect to the radiometric results. Anomalies and their consequences are discussed. Flight data indicates a loss in sensor sensitivity with time. The loss was shown to be recoverable by an outgassing procedure performed approximately 65 days after the infrared channel was turned on. It is planned to repeat this procedure periodically.

  17. In-flight performance of the Absolute Scalar Magnetometer vector mode on board the Swarm satellites

    NASA Astrophysics Data System (ADS)

    Léger, Jean-Michel; Jager, Thomas; Bertrand, François; Hulot, Gauthier; Brocco, Laura; Vigneron, Pierre; Lalanne, Xavier; Chulliat, Arnaud; Fratter, Isabelle

    2015-04-01

    The role of the Absolute Scalar Magnetometer (ASM) in the European Space Agency (ESA) Swarm mission is to deliver absolute measurements of the magnetic field's strength for science investigations and in-flight calibration of the Vector Field Magnetometer (VFM). However, the ASM instrument can also simultaneously deliver vector measurements with no impact on the magnetometer's scalar performance, using a so-called vector mode. This vector mode has been continuously operated since the beginning of the mission, except for short periods of time during commissioning. Since both scalar and vector measurements are perfectly synchronous and spatially coherent, a direct assessment of the ASM vector performance can then be carried out at instrument level without need to correct for the various magnetic perturbations generated by the satellites. After a brief description of the instrument's operating principles, a thorough analysis of the instrument's behavior is presented, as well as a characterization of its environment in flight, using an alternative high sampling rate (burst) scalar mode that could be run a few days during commissioning. The ASM vector calibration process is next detailed, with some emphasis on its sensitivity to operational conditions. Finally, the evolution of the instrument's performance during the first year of the mission is presented and discussed in view of the mission's performance requirements for vector measurements.

  18. Subsonic flight test evaluation of a performance seeking control algorithm on an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Gilyard, Glenn B.; Orme, John S.

    1992-01-01

    The subsonic flight test evaluation phase of the NASA F-15 (powered by F 100 engines) performance seeking control program was completed for single-engine operation at part- and military-power settings. The subsonic performance seeking control algorithm optimizes the quasi-steady-state performance of the propulsion system for three modes of operation. The minimum fuel flow mode minimizes fuel consumption. The minimum thrust mode maximizes thrust at military power. Decreases in thrust-specific fuel consumption of 1 to 2 percent were measured in the minimum fuel flow mode; these fuel savings are significant, especially for supersonic cruise aircraft. Decreases of up to approximately 100 degree R in fan turbine inlet temperature were measured in the minimum temperature mode. Temperature reductions of this magnitude would more than double turbine life if inlet temperature was the only life factor. Measured thrust increases of up to approximately 15 percent in the maximum thrust mode cause substantial increases in aircraft acceleration. The system dynamics of the closed-loop algorithm operation were good. The subsonic flight phase has validated the performance seeking control technology, which can significantly benefit the next generation of fighter and transport aircraft.

  19. Subsonic flight test evaluation of a performance seeking control algorithm on an F-15 airplane

    NASA Technical Reports Server (NTRS)

    Gilyard, Glenn B.; Orme, John S.

    1992-01-01

    The subsonic flight test evaluation phase of the NASA4 F-15 (powered by F100 engines) performance-seeking control program was completed for single-engine operation at part- and military-power settings. The subsonic performance-seeking control algorithm optimizes the quasi-steady-state performance of the propulsion system for three modes of operation: the minimum-fuel-flow mode, the minimum-temperature mode, and the maximum-thrust mode. Decreases in thrust-specific fuel consumption of 1 to 2 percent were measured in the minimum-fuel-flow mode; these fuel savings are significant especially for supersonic cruise aircraft. Decreases of up to approximately 100 R in fan turbine inlet temperature were measured in the minimum-temperature mode. Temperature reductions of this magnitude would more than double turbine life if inlet temperature was the only life factor. Measured thrust increases of up to approximately 15 percent in the maximum-thrust mode cause substantial increases in aircraft acceleration. The subsonic flight phase has validated the performance-seeking control technology which can significantly benefit the next generation of fighter and transport aircraft.

  20. Functional Task Test: 3. Skeletal Muscle Performance Adaptations to Space Flight

    NASA Technical Reports Server (NTRS)

    Ryder, Jeffrey W.; Wickwire, P. J.; Buxton, R. E.; Bloomberg, J. J.; Ploutz-Snyder, L.

    2011-01-01

    The functional task test is a multi-disciplinary study investigating how space-flight induced changes to physiological systems impacts functional task performance. Impairment of neuromuscular function would be expected to negatively affect functional performance of crewmembers following exposure to microgravity. This presentation reports the results for muscle performance testing in crewmembers. Functional task performance will be presented in the abstract "Functional Task Test 1: sensory motor adaptations associated with postflight alternations in astronaut functional task performance." METHODS: Muscle performance measures were obtained in crewmembers before and after short-duration space flight aboard the Space Shuttle and long-duration International Space Station (ISS) missions. The battery of muscle performance tests included leg press and bench press measures of isometric force, isotonic power and total work. Knee extension was used for the measurement of central activation and maximal isometric force. Upper and lower body force steadiness control were measured on the bench press and knee extension machine, respectively. Tests were implemented 60 and 30 days before launch, on landing day (Shuttle crew only), and 6, 10 and 30 days after landing. Seven Space Shuttle crew and four ISS crew have completed the muscle performance testing to date. RESULTS: Preliminary results for Space Shuttle crew reveal significant reductions in the leg press performance metrics of maximal isometric force, power and total work on R+0 (p<0.05). Bench press total work was also significantly impaired, although maximal isometric force and power were not significantly affected. No changes were noted for measurements of central activation or force steadiness. Results for ISS crew were not analyzed due to the current small sample size. DISCUSSION: Significant reductions in lower body muscle performance metrics were observed in returning Shuttle crew and these adaptations are likely

  1. Flight Investigation of the Performance of a Two-stage Solid-propellant Nike-deacon (DAN) Meteorological Sounding Rocket

    NASA Technical Reports Server (NTRS)

    Heitkotter, Robert H

    1956-01-01

    A flight investigation of two Nike-Deacon (DAN) two-stage solid-propellant rocket vehicles indicated satisfactory performance may be expected from the DAN meteorological sounding rocket. Peak altitudes of 356,000 and 350,000 feet, respectively, were recorded for the two flight tests when both vehicles were launched from sea level at an elevation angle of 75 degrees. Performance calculations based on flight-test results show that altitudes between 358,000 feet and 487,000 feet may be attained with payloads varying between 60 pounds and 10 pounds.

  2. Comparison of simulated and actual wind shear radar data products

    NASA Technical Reports Server (NTRS)

    Britt, Charles L.; Crittenden, Lucille H.

    1992-01-01

    Prior to the development of the NASA experimental wind shear radar system, extensive computer simulations were conducted to determine the performance of the radar in combined weather and ground clutter environments. The simulation of the radar used analytical microburst models to determine weather returns and synthetic aperture radar (SAR) maps to determine ground clutter returns. These simulations were used to guide the development of hazard detection algorithms and to predict their performance. The structure of the radar simulation is reviewed. Actual flight data results from the Orlando and Denver tests are compared with simulated results. Areas of agreement and disagreement of actual and simulated results are shown.

  3. Wing performance and 3-D vortical structure formation in flapping flight

    NASA Astrophysics Data System (ADS)

    Bos, Frank M.; van Oudheusden, Bas W.; Bijl, Hester

    2013-10-01

    Numerical simulations of the three-dimensional flow around a modelled insect wing were performed to investigate the performance in flapping flight and to provide insight into the vortex dynamics and associated force generation. Different parameters relevant for three-dimensional flapping wing aerodynamics have been studied, notably the angle of attack in mid-stroke, the Rossby number, the Reynolds number and the stroke kinematic pattern. A parametric study has been made for these parameters, notably for the hovering flight regime. The leading-edge vortex is confirmed to be important for the gain in lift, it being larger and more stable at angles of attack larger than about 30°. At smaller angles of attack, the leading-edge vortex development is insufficient to increase the lift, instead the lift decreases. It is observed that the trend of the force development over the cycle and the effect of the angle of attack is similar for revolving and translating wings. However, a flapping wing motion with a revolving character has an important lift-enhancing effect, at a small penalty of drag. Although the variations in lift and drag with Reynolds number are found to be larger at lower Rossby numbers, the lift-enhancing effect of the revolving wing appears not strongly dependent on Reynolds number. Application of a 'trapezoidal angle of attack' pattern with increased angular rotation at stroke reversal showed a significant performance increase. It was further shown how the variation in lift and drag can be significantly influenced by introducing deviation in the stroke pattern. A comparison between the three-dimensional simulations and two-dimensional simulations (for forward flight conditions) displayed similar trends with respect to the influence of the angle of attack. However, the latter do not account for finite wing and tip vortex effects which were found to have an important impact on the LEV development.

  4. Intelligent adaptive nonlinear flight control for a high performance aircraft with neural networks.

    PubMed

    Savran, Aydogan; Tasaltin, Ramazan; Becerikli, Yasar

    2006-04-01

    This paper describes the development of a neural network (NN) based adaptive flight control system for a high performance aircraft. The main contribution of this work is that the proposed control system is able to compensate the system uncertainties, adapt to the changes in flight conditions, and accommodate the system failures. The underlying study can be considered in two phases. The objective of the first phase is to model the dynamic behavior of a nonlinear F-16 model using NNs. Therefore a NN-based adaptive identification model is developed for three angular rates of the aircraft. An on-line training procedure is developed to adapt the changes in the system dynamics and improve the identification accuracy. In this procedure, a first-in first-out stack is used to store a certain history of the input-output data. The training is performed over the whole data in the stack at every stage. To speed up the convergence rate and enhance the accuracy for achieving the on-line learning, the Levenberg-Marquardt optimization method with a trust region approach is adapted to train the NNs. The objective of the second phase is to develop intelligent flight controllers. A NN-based adaptive PID control scheme that is composed of an emulator NN, an estimator NN, and a discrete time PID controller is developed. The emulator NN is used to calculate the system Jacobian required to train the estimator NN. The estimator NN, which is trained on-line by propagating the output error through the emulator, is used to adjust the PID gains. The NN-based adaptive PID control system is applied to control three angular rates of the nonlinear F-16 model. The body-axis pitch, roll, and yaw rates are fed back via the PID controllers to the elevator, aileron, and rudder actuators, respectively. The resulting control system has learning, adaptation, and fault-tolerant abilities. It avoids the storage and interpolation requirements for the too many controller parameters of a typical flight control

  5. Effects of Ice Formations on Airplane Performance in Level Cruising Flight

    NASA Technical Reports Server (NTRS)

    Preston, G. Merritt; Blackman, Calvin C.

    1948-01-01

    A flight investigation in natural icing conditions was conducted by the NACA to determine the effect of ice accretion on airplane performance. The maximum loss in propeller efficiency encountered due to ice formation on the propeller blades was 19 percent. During 87 percent of the propeller icing encounters, losses of 10 percent or less were observed. Ice formations on all of the components of the airplane except the propellers during one icing encounter resulted in an increase in parasite drag of the airplane of 81 percent. The control response of the airplane in this condition was marginal.

  6. A Flight Prediction for Performance of the SWAS Solar Array Deployment Mechanism

    NASA Technical Reports Server (NTRS)

    Seniderman, Gary; Daniel, Walter K.

    1999-01-01

    The focus of this paper is a comparison of ground-based solar array deployment tests with the on-orbit deployment. The discussion includes a summary of the mechanisms involved and the correlation of a dynamics model with ground based test results. Some of the unique characteristics of the mechanisms are explained through the analysis of force and angle data acquired from the test deployments. The correlated dynamics model is then used to predict the performance of the system in its flight application.

  7. Intelligent adaptive nonlinear flight control for a high performance aircraft with neural networks.

    PubMed

    Savran, Aydogan; Tasaltin, Ramazan; Becerikli, Yasar

    2006-04-01

    This paper describes the development of a neural network (NN) based adaptive flight control system for a high performance aircraft. The main contribution of this work is that the proposed control system is able to compensate the system uncertainties, adapt to the changes in flight conditions, and accommodate the system failures. The underlying study can be considered in two phases. The objective of the first phase is to model the dynamic behavior of a nonlinear F-16 model using NNs. Therefore a NN-based adaptive identification model is developed for three angular rates of the aircraft. An on-line training procedure is developed to adapt the changes in the system dynamics and improve the identification accuracy. In this procedure, a first-in first-out stack is used to store a certain history of the input-output data. The training is performed over the whole data in the stack at every stage. To speed up the convergence rate and enhance the accuracy for achieving the on-line learning, the Levenberg-Marquardt optimization method with a trust region approach is adapted to train the NNs. The objective of the second phase is to develop intelligent flight controllers. A NN-based adaptive PID control scheme that is composed of an emulator NN, an estimator NN, and a discrete time PID controller is developed. The emulator NN is used to calculate the system Jacobian required to train the estimator NN. The estimator NN, which is trained on-line by propagating the output error through the emulator, is used to adjust the PID gains. The NN-based adaptive PID control system is applied to control three angular rates of the nonlinear F-16 model. The body-axis pitch, roll, and yaw rates are fed back via the PID controllers to the elevator, aileron, and rudder actuators, respectively. The resulting control system has learning, adaptation, and fault-tolerant abilities. It avoids the storage and interpolation requirements for the too many controller parameters of a typical flight control

  8. Closed-Loop Performance Measures for Flight Controllers Subject to Neutron-Induced Upsets

    NASA Technical Reports Server (NTRS)

    Gray, W. Steven; Zhang, Hong; Gonzalex, Oscar R.

    2003-01-01

    It has been observed that atmospheric neutrons can produce single event upsets in digital flight control hardware. The phenomenon has been studied extensively at the chip level, and now system level experiments are underway. In this paper analytical closed-loop performance measures for the tracking error are developed for a plant that is stabilized by a recoverable computer system subject to neutron induced upsets. The underlying model is a Markov jump-linear system with process noise. The steady-state tracking error is expressed in terms of a generalized observability Gramian.

  9. Saturn 5 Launch Vehicle Flight Evaluation Report-AS-512 Apollo 17 Mission

    NASA Technical Reports Server (NTRS)

    1973-01-01

    An evaluation of the launch vehicle and lunar roving vehicle performance for the Apollo 17 flight is presented. The objective of the evaluation is to acquire, reduce, analyze, and report on flight data to the extent required to assure future mission success and vehicle reliability. Actual flight problems are identified, their causes are determined, and recommendations are made for corrective action. Summaries of launch operations and spacecraft performance are included. The significant events for all phases of the flight are analyzed.

  10. Sleep, performance, circadian rhythms, and light-dark cycles during two space shuttle flights.

    PubMed

    Dijk, D J; Neri, D F; Wyatt, J K; Ronda, J M; Riel, E; Ritz-De Cecco, A; Hughes, R J; Elliott, A R; Prisk, G K; West, J B; Czeisler, C A

    2001-11-01

    Sleep, circadian rhythm, and neurobehavioral performance measures were obtained in five astronauts before, during, and after 16-day or 10-day space missions. In space, scheduled rest-activity cycles were 20-35 min shorter than 24 h. Light-dark cycles were highly variable on the flight deck, and daytime illuminances in other compartments of the spacecraft were very low (5.0-79.4 lx). In space, the amplitude of the body temperature rhythm was reduced and the circadian rhythm of urinary cortisol appeared misaligned relative to the imposed non-24-h sleep-wake schedule. Neurobehavioral performance decrements were observed. Sleep duration, assessed by questionnaires and actigraphy, was only approximately 6.5 h/day. Subjective sleep quality diminished. Polysomnography revealed more wakefulness and less slow-wave sleep during the final third of sleep episodes. Administration of melatonin (0.3 mg) on alternate nights did not improve sleep. After return to earth, rapid eye movement (REM) sleep was markedly increased. Crewmembers on these flights experienced circadian rhythm disturbances, sleep loss, decrements in neurobehavioral performance, and postflight changes in REM sleep.

  11. Sleep, performance, circadian rhythms, and light-dark cycles during two space shuttle flights

    NASA Technical Reports Server (NTRS)

    Dijk, D. J.; Neri, D. F.; Wyatt, J. K.; Ronda, J. M.; Riel, E.; Ritz-De Cecco, A.; Hughes, R. J.; Elliott, A. R.; Prisk, G. K.; West, J. B.; Czeisler, C. A.

    2001-01-01

    Sleep, circadian rhythm, and neurobehavioral performance measures were obtained in five astronauts before, during, and after 16-day or 10-day space missions. In space, scheduled rest-activity cycles were 20-35 min shorter than 24 h. Light-dark cycles were highly variable on the flight deck, and daytime illuminances in other compartments of the spacecraft were very low (5.0-79.4 lx). In space, the amplitude of the body temperature rhythm was reduced and the circadian rhythm of urinary cortisol appeared misaligned relative to the imposed non-24-h sleep-wake schedule. Neurobehavioral performance decrements were observed. Sleep duration, assessed by questionnaires and actigraphy, was only approximately 6.5 h/day. Subjective sleep quality diminished. Polysomnography revealed more wakefulness and less slow-wave sleep during the final third of sleep episodes. Administration of melatonin (0.3 mg) on alternate nights did not improve sleep. After return to earth, rapid eye movement (REM) sleep was markedly increased. Crewmembers on these flights experienced circadian rhythm disturbances, sleep loss, decrements in neurobehavioral performance, and postflight changes in REM sleep.

  12. Performance of Swashplateless Ultralight Helicopter Rotor with Trailing-edge Flaps for Primary Flight Control

    NASA Technical Reports Server (NTRS)

    Shen, Jin-Wei; Chopra, Inderjit

    2003-01-01

    The objective of present study is to evaluate the rotor performance, trailing-edge deflections and actuation requirement of a helicopter rotor with trailing-edge flap system for primary flight control. The swashplateless design is implemented by modifying a two-bladed teetering rotor of an production ultralight helicopter through the use of plain flaps on the blades, and by replacing the pitch link to fixed system control system assembly with a root spring. A comprehensive rotorcraft analysis based on UMARC is carried out to obtain the results for both the swashplateless and a conventional baseline rotor configuration. The predictions show swashplateless configuration achieve superior performance than the conventional rotor attributed from reduction of parasite drag by eliminating swashplate mechanic system. It is indicated that optimal selection of blade pitch index angle, flap location, length, and chord ratio reduces flap deflections and actuation requirements, however, has virtually no effect on rotor performance.

  13. Flight Performance and Laboratory Tests of CZT detectors for Hard X-ray Focal Planes

    NASA Astrophysics Data System (ADS)

    Baumgartner, Wayne; Harrison, F.; Chen, H.; Cook, W.; Craig, B.; Kruse-Madsen, K.; Boggs, S.; Wunderer, C.; Zoglauer, A.

    2006-09-01

    The next generation of hard X-ray instruments will employ focusing telescopes, which can achieve orders of magnitude improvement in sensitivity compared to current instruments on modest sized platforms. Solid state Cadmium Zinc Telluride pixel detectors have recently been developed and implemented as focal plane detectors for these new telescopes, since they can achieve good imaging and spectral performance from X-ray energies of a few keV to greater than 100 keV. We have developed a high-performance Cd(Zn)Te pixel detector for use with the High Energy Focusing Telescope balloon experiment, and the Nuclear Spectroscopic Telescope Array (NuSTAR) Explorer mission. We present laboratory measurement as well as flight data from the HEFT program that demonstrate the spectral resolution, imaging performance, quantum efficiency, and background levels achievable for balloon and space platforms using the HEFT/NuSTAR hybrid configuration.

  14. Flight Performance Evaluation of Three GPS Receivers for Sounding Rocket Tracking

    NASA Technical Reports Server (NTRS)

    Bull, Barton; Diehl, James; Montenbruck, Oliver; Markgraf, Markus; Bauer, Frank (Technical Monitor)

    2002-01-01

    In preparation for the European Space Agency Maxus-4 mission, a sounding rocket test flight was carried out at Esrange, near Kiruna, Sweden on February 19, 2001 to validate existing ground facilities and range safety installations. Due to the absence of a dedicated scientific payload, the flight offered the opportunity to test multiple GPS receivers and assess their performance for the tracking of sounding rockets. The receivers included an Ashtech G12 HDMA receiver, a BAE (Canadian Marconi) Allstar receiver and a Mitel Orion receiver. All of them provide C/A code tracking on the L1 frequency to determine the user position and make use of Doppler measurements to derive the instantaneous velocity. Among the receivers, the G12 has been optimized for use under highly dynamic conditions and has earlier been flown successfully on NASA sounding rockets. The Allstar is representative of common single frequency receivers for terrestrial applications and received no particular modification, except for the disabling of the common altitude and velocity constraints that would otherwise inhibit its use for space application. The Orion receiver, finally, employs the same Mitel chipset as the Allstar, but has received various firmware modifications by DLR to safeguard it against signal losses and improve its tracking performance. While the two NASA receivers were driven by a common wrap-around antenna, the DLR experiment made use of a switchable antenna system comprising a helical antenna in the tip of the rocket and two blade antennas attached to the body of the vehicle. During the boost a peak acceleration of roughly l7g's was achieved which resulted in a velocity of about 1100 m/s at the end of the burn. At apogee, the rocket reached an altitude of over 80 km. A detailed analysis of the attained flight data is given together with a evaluation of different receiver designs and antenna concepts.

  15. Comparison of Controller and Flight Deck Algorithm Performance During Interval Management with Dynamic Arrival Trees (STARS)

    NASA Technical Reports Server (NTRS)

    Battiste, Vernol; Lawton, George; Lachter, Joel; Brandt, Summer; Koteskey, Robert; Dao, Arik-Quang; Kraut, Josh; Ligda, Sarah; Johnson, Walter W.

    2012-01-01

    Managing the interval between arrival aircraft is a major part of the en route and TRACON controller s job. In an effort to reduce controller workload and low altitude vectoring, algorithms have been developed to allow pilots to take responsibility for, achieve and maintain proper spacing. Additionally, algorithms have been developed to create dynamic weather-free arrival routes in the presence of convective weather. In a recent study we examined an algorithm to handle dynamic re-routing in the presence of convective weather and two distinct spacing algorithms. The spacing algorithms originated from different core algorithms; both were enhanced with trajectory intent data for the study. These two algorithms were used simultaneously in a human-in-the-loop (HITL) simulation where pilots performed weather-impacted arrival operations into Louisville International Airport while also performing interval management (IM) on some trials. The controllers retained responsibility for separation and for managing the en route airspace and some trials managing IM. The goal was a stress test of dynamic arrival algorithms with ground and airborne spacing concepts. The flight deck spacing algorithms or controller managed spacing not only had to be robust to the dynamic nature of aircraft re-routing around weather but also had to be compatible with two alternative algorithms for achieving the spacing goal. Flight deck interval management spacing in this simulation provided a clear reduction in controller workload relative to when controllers were responsible for spacing the aircraft. At the same time, spacing was much less variable with the flight deck automated spacing. Even though the approaches taken by the two spacing algorithms to achieve the interval management goals were slightly different they seem to be simpatico in achieving the interval management goal of 130 sec by the TRACON boundary.

  16. Flight Performance Evaluation of Three GPS Receivers for Sounding Rocket Tracking

    NASA Technical Reports Server (NTRS)

    Bull, Barton; Diehl, James; Montenbruck, Oliver; Markgraf, Markus; Bauer, Frank (Technical Monitor)

    2001-01-01

    In preparation for the European Space Agency Maxus-4 mission, a sounding rocket test flight was carried out at Esrange,, near Kiruna, Sweden on February 19, 2001 to validate existing ground facilities and range safety installations. Due to the absence of a dedicated scientific payload, the flight offered the opportunity to test multiple GPS receivers and assess their performance for the tracking of sounding rockets. The receivers included an Ashtech G12 HDMA receiver, a BAE (Canadian Marconi) Allstar receiver and a Mitel Orion receiver. All of them provide CIA code tracking on the L1 frequency to determine the user position and make use of Doppler measurements to derive the instantaneous velocity. Among the receivers, the G12 has been optimized for use under highly dynamic conditions and has earlier been flown successfully on NASA sounding rockets [Bull, ION-GPS-2000]. The Allstar is representative of common single frequency receivers for terrestrial applications and received no particular modification, except for the disabling of the common altitude and velocity constraints that would otherwise inhibit its use for space application. The Orion receiver, finally, employs the same Mitel chipset as the Allstar, but has received various firmware modifications by DLR to safeguard it against signal losses and improve its tracking performance [Montenbruck et al., ION-GPS-2000]. While the two NASA receivers were driven by a common wrap-around antenna, the DLR experiment made use of a switchable antenna system comprising a helical antenna in the tip of the rocket and two blade antennas attached to the body of the vehicle. During the boost a peak acceleration of roughly 17g's was achieved which resulted in a velocity of about 1100 m/s at the end of the burn. At apogee, the rocket reached a maximum altitude of over 80 km. A detailed analysis of the attained flight data will be given in the paper together with a evaluation of different receiver designs and antenna concepts.

  17. On-Orbit Constraints Test - Performing Pre-Flight Tests with Flight Hardware, Astronauts and Ground Support Equipment to Assure On-Orbit Success

    NASA Technical Reports Server (NTRS)

    Haddad, Michael E.

    2008-01-01

    On-Orbit Constraints Test (OOCT's) refers to mating flight hardware together on the ground before they will be mated on-orbit. The concept seems simple but it can be difficult to perform operations like this on the ground when the flight hardware is being designed to be mated on-orbit in a zero-g and/or vacuum environment of space. Also some of the items are manufactured years apart so how are mating tasks performed on these components if one piece is on-orbit before its mating piece is planned to be built. Both the Internal Vehicular Activity (IVA) and Extra-Vehicular Activity (EVA) OOCT's performed at Kennedy Space Center will be presented in this paper. Details include how OOCT's should mimic on-orbit operational scenarios, a series of photographs will be shown that were taken during OOCT's performed on International Space Station (ISS) flight elements, lessons learned as a result of the OOCT's will be presented and the paper will conclude with possible applications to Moon and Mars Surface operations planned for the Constellation Program.

  18. Use of Boundary Layer Transition Detection to Validate Full-Scale Flight Performance Predictions

    NASA Technical Reports Server (NTRS)

    Hamner, Marvine; Owens, L. R., Jr.; Wahls, R. A.; Yeh, David

    1999-01-01

    Full-scale flight performance predictions can be made using CFD or a combination of CFD and analytical skin-friction predictions. However, no matter what method is used to obtain full-scale flight performance predictions knowledge of the boundary layer state is critical. The implementation of CFD codes solving the Navier-Stokes equations to obtain these predictions is still a time consuming, expensive process. In addition, to ultimately obtain accurate performance predictions the transition location must be fixed in the CFD model. An example, using the M2.4-7A geometry, of the change in Navier-Stokes solution with changes in transition and in turbulence model will be shown. Oil flow visualization using the M2.4-7A 4.0% scale model in the 14'x22' wind tunnel shows that fixing transition at 10% x/c in the CFD model best captures the flow physics of the wing flow field. A less costly method of obtaining full-scale performance predictions is the use of non-linear Euler codes or linear CFD codes, such as panel methods, combined with analytical skin-friction predictions. Again, knowledge of the boundary layer state is critical to the accurate determination of full-scale flight performance. Boundary layer transition detection has been performed at 0.3 and 0.9 Mach numbers over an extensive Reynolds number range using the 2.2% scale Reference H model in the NTF. A temperature sensitive paint system was used to determine the boundary layer state for these conditions. Data was obtained for three configurations: the baseline, undeflected flaps configuration; the transonic cruise configuration; and, the high-lift configuration. It was determined that at low Reynolds number conditions, in the 8 to 10 million Reynolds number range, the baseline configuration has extensive regions of laminar flow, in fact significantly more than analytical skin-friction methods predict. This configuration is fully turbulent at about 30 million Reynolds number for both 0.3 and 0.9, Mach numbers

  19. Effects of helicopter noise and vibration on pilot performance (as measured in a fixed-base flight simulator)

    NASA Technical Reports Server (NTRS)

    Stave, A. M.

    1973-01-01

    The effects of noise and vibration on pilot performance are described. Pilot subjects were required to fly VTOL commercial IFR schedules using the computer simulation facilities. The routes flown simulated closely metropolitan routes flown currently by a helicopter airline. The duration of simulator flights ranged from 3 to 8 hours. Subjects were exposed to noise sound pressure levels ranging from 74dB (ambient) to 100dB and 17 Hz vibration stimuli ranging from .1 g to .3 g measured at the floor directly beneath the pilot's seat. Despite subject reports of extreme fatigue in these long flights, performance did not degrade. A curve of performance shows a slow improvement for the first three hours of exposure and a slight loss in performance during the remainder of the flight. As environmental stress conditions (noise, vibration, and time in the simulator) increased, subject performance improved. Within the limits of this study, the higher the stress the better the performance.

  20. The FORCAST mid-infrared facility instrument and in-flight performance on SOFIA

    NASA Astrophysics Data System (ADS)

    Adams, Joseph D.; Herter, Terry L.; Gull, George E.; Schoenwald, Justin; Henderson, Charles P.; Keller, Luke D.; De Buizer, James M.; Stacey, Gordon J.; Nikola, Thomas; Vacca, William D.; Hirsch, Lea; Wang, Jason; Helton, L. Andrew

    2012-09-01

    FORCAST has completed 16 engineering and science flights as the "First Light" U. S. science instrument aboard SOFIA and will be commissioned as a SOFIA facility instrument in 2013. FORCAST offers dual channel imaging (diffractionlimited at wavelengths < 15 microns) using a 256 x 256 pixel Si:As blocked impurity band (BIB) detector at 5 - 28 microns and a 256 x 256 pixel Si:Sb BIB detector at 28 - 40 microns. FORCAST images a 3.4 arcmin × 3.2 arcmin fieldof- view on SOFIA with a rectified plate scale of 0.768 arcsec/pixel. In addition to imaging capability, FORCAST offers a facility mode for grism spectroscopy that will commence during SOFIA Cycle 1. The grism suite enables spectroscopy over nearly the entire FORCAST wavelength range at low resolution (~140 - 300). Optional cross-dispersers boost the spectroscopic resolution to ~1200 at 5 - 8 microns and ~800 at 9.8 - 13.7 microns. Here we describe the FORCAST instrument including observing modes for SOFIA Cycle 1. We also summarize in-flight results, including detector and optical performance, sensitivity performance, and calibration.

  1. Performance of light sources and radiation sensors under low gravity realized by parabolic airplane flights

    NASA Astrophysics Data System (ADS)

    Hirai, Hiroaki; Kitaya, Yoshiaki; Hirai, Takehiro

    A fundamental study was conducted to establish an experimental system for space farming. Since to ensure optimal light for plant cultivation in space is of grave importance, this study examined the performance of light sources and radiation sensors under microgravity conditions created during the parabolic airplane flight. Three kinds of light sources, a halogen bulb, a fluorescent tube, and blue and red LEDs, and ten models of radiation sensors available in the market were used for the experiment. Surface temperature of the light sources, output signals from the radiation sensors, spectroscopic characteristics were measured at the gravity levels of 0.01, 1.0 and 1.8 G for 20 seconds each during parabolic airplane flights. As a result, the performance of the halogen lamp was affected the most by the gravity level among the three light sources. Under the microgravity conditions which do not raise heat convection, the temperature of the halogen lamp rose and the output of the radiation sensors increased. Spectral distributions of the halogen lamp indicated that peak wavelength appeared the highest at the level of 0.01G, which contributed to the increase in light intensity. In the case of red and blue LEDs, which are promising light sources in space farming, the temperature of both LED chips rose but irradiance from red LED increased and that from blue LED decreased under microgravity conditions due to the different thermal characteristics.

  2. Effect of blade planform variation on the forward-flight performance of small-scale rotors

    NASA Technical Reports Server (NTRS)

    Noonan, Kevin W.; Althoff, Susan L.; Samak, Dhananjay K.; Green, Michael D.

    1992-01-01

    An investigation was conducted in the Glenn L. Martin Wind Tunnel to determine the effect of blade planform variation on the forward-flight performance of four small-scale rotors. The rotors were 5.417 ft in diameter and differed only in blade planform geometry. The four planforms were: (1) rectangular; (2) 3:1 linear taper starting at 94 percent radius; (3) 3:1 linear taper starting at 75 percent radius; and (4) 3:1 linear taper starting at 50 percent radius. Each planform had a thrust-weighted solidity of 0.098. The investigation included forward-flight simulation at advance ratios from 0.14 to 0.43 for a range of rotor lift and drag coefficients. Among the four rotors, the rectangular rotor required the highest torque for the entire range of rotor drag coefficients attained at advanced ratios greater than 0.14 for rotor lift coefficients C sub L from 0.004 to 0.007. Among the rotors with tapered blades and for C sub L = 0.004 to 0.007, either the 75 percent tapered rotor or the 50 percent tapered rotor required the least amount of torque for the full range of rotor drag coefficients attained at each advance ratio. The performance of the 94 percent tapered rotor was generally between that of the rectangular rotor and the 75 and 50 percent tapered rotors at each advance ratio for this range of rotor lift coefficients.

  3. Perception Versus Actual Performance in Timely Tissue Plasminogen Activation Administration in the Management of Acute Ischemic Stroke

    PubMed Central

    Lin, Cheryl B; Cox, Margueritte; Olson, DaiWai M; Britz, Gavin W; Constable, Mark; Fonarow, Gregg C; Schwamm, Lee; Peterson, Eric D; Shah, Bimal R

    2015-01-01

    Background Timely thrombolytic therapy can improve stroke outcomes. Nevertheless, the ability of US hospitals to meet guidelines for intravenous tissue plasminogen activator (tPA) remains suboptimal. What is unclear is whether hospitals accurately perceive their rate of tPA “door-to-needle” (DTN) time within 60 minutes and how DTN rates compare across different hospitals. Methods and Results DTN performance was defined by the percentage of treated patients who received tPA within 60 minutes of arrival. Telephone surveys were obtained from staff at 141 Get With The Guidelines hospitals, representing top, middle, and lowDTN performance. Less than one-third (29.1%) of staff accurately identified their DTN performance. Among middle- and low-performing hospitals (n=92), 56 sites (60.9%) overestimated their performance; 42% of middle performers and 85% of low performers overestimated their performance. Sites that overestimated tended to have lower annual volumes of tPA administration (median 8.4 patients [25th to 75th percentile 5.9 to 11.8] versus 10.2 patients [25th to 75th percentile 8.2 to 17.3], P=0.047), smaller percentages of eligible patients receiving tPA (84.7% versus 89.8%, P=0.008), and smaller percentages of DTN ≤60 minutes among treated patients (10.6% versus 16.6%, P=0.002). Conclusions Hospitals often overestimate their ability to deliver timely tPA to treated patients. Our findings indicate the need to routinely provide comparative provider performance rates as a key step to improving the quality of acute stroke care. PMID:26201547

  4. Dietary mercury exposure causes decreased escape takeoff flight performance and increased molt rate in European starlings (Sturnus vulgaris).

    PubMed

    Carlson, Jenna R; Cristol, Daniel; Swaddle, John P

    2014-10-01

    Mercury is a widespread and persistent environmental contaminant that occurs in aquatic and terrestrial habitats. Recently, songbirds that forage from primarily terrestrial sources have shown evidence of bioaccumulation of mercury, but little research has assessed the effects of mercury on their health and fitness. There are many indications that mercury negatively affects neurological functioning, bioenergetics, and behavior through a variety of mechanisms and in a wide array of avian taxa. Effective flight is crucial to avian fitness and feather molt is an energetically expensive life history trait. Therefore, we investigated whether mercury exposure influenced flight performance and molt in a common songbird, the European starling (Sturnus vulgaris). Specifically, we dosed the diet of captive starlings with methylmercury cysteine at 0.0, 0.75, or 1.5 μg/g wet weight and recorded changes in flight performance after 1 year of dietary mercury exposure. We also recorded the annual molt of wing feathers. We found that individuals dosed with mercury exhibited decreased escape takeoff flight performance compared with controls and blood mercury was also correlated with an increased rate of molt, which can reduce flight performance and thermoregulatory ability. This study reveals two novel endpoints, flight performance and molt, that may be affected by dietary mercury exposure. These findings suggest a potential impact on wild songbirds exposed to mercury levels comparable to the high dosage levels in the present study. Any decrease in flight efficiency could reduce fitness due to a direct impact on survival during predation events or by decreased efficiency in other critical activities (such as foraging or migration) that require efficient flight. PMID:25030113

  5. Java for flight software

    NASA Technical Reports Server (NTRS)

    Benowitz, E.; Niessner, A.

    2003-01-01

    This work involves developing representative mission-critical spacecraft software using the Real-Time Specification for Java (RTSJ). This work currently leverages actual flight software used in the design of actual flight software in the NASA's Deep Space 1 (DSI), which flew in 1998.

  6. Detector performances of the BESS-Polar II instrument during the second long-duration balloon flight over Antarctica.

    NASA Astrophysics Data System (ADS)

    Yoshimura, Koji; Sakai, Kenichi; Yamamoto, A.; Mitchell, J. W.; Abe, K.; Fuke, H.; Haino, S.; Hams, T.; Hasegawa, M.; Horikoshi, A.; Itazaki, A.; Kim, K. C.; Lee, T. Kumazawa1, M. H.; Makida, Y.; Matsuda, S.; Matsukawa, Y.; Matsumoto, K.; Moiseev, A. A.; Myers, Z.; Nishimura, J.; Nozaki, M.; Orito, R.; Ormes, J. F.; Sakai, K.; Sasaki, M.; Seo, E. S.; Shikaze, Y.; Shinoda, R.; Streitmatter, R. E.; Suzuki, J.; Takasugi, Y.; Takeuchi, K.; Tanaka, K.; Thakur, N.; Yamagami, T.; Yoshida, T.; Yoshimura, K.

    USA The new balloon-borne instrument was developed for the second long-duration balloon flight over Antarctica (BESS-Polar II) on the basis of the feed back from the results from the first flight in 2004 (BESS-Polar I). Most of the detector components had been redesigned and upgraded to improve their performances and to increase the data taking period and capacity. The BESS-Polar II flight was successfully carried out in December 2007-January 2008. We performed 24.5 days scientific observation just at the solar minimum and recorded about 4.7 billion cosmic-ray enents in the harddisk drives onboard. During the flight, the instrument worked well except for minor problems in some detector components. We have made careful post-flight calibration for all detectors by using cosmic-ray event and house-keeping data. Stable and better performance was obtained for the entire flight. In this presentatation, detector performances for the BESS-Polar II instrument will be presented.

  7. The roles of COMT val158met status and aviation expertise in flight simulator performance and cognitive ability.

    PubMed

    Kennedy, Q; Taylor, J L; Noda, A; Adamson, M; Murphy, G M; Zeitzer, J M; Yesavage, J A

    2011-09-01

    The polymorphic variation in the val158met position of the catechol-O-methyltransferase (COMT) gene is associated with differences in executive performance, processing speed, and attention. The purpose of this study is: (1) replicate previous COMT val158met findings on cognitive performance; (2) determine whether COMT val158met effects extend to a real-world task, aircraft navigation performance in a flight simulator; and (3) determine if aviation expertise moderates any effect of COMT val158met status on flight simulator performance. One hundred seventy two pilots aged 41-69 years, who varied in level of aviation training and experience, completed flight simulator, cognitive, and genetic assessments. Results indicate that although no COMT effect was found for an overall measure of flight performance, a positive effect of the met allele was detected for two aspects of cognitive ability: executive functioning and working memory performance. Pilots with the met/met genotype benefited more from increased levels of expertise than other participants on a traffic avoidance measure, which is a component of flight simulator performance. These preliminary results indicate that COMT val158met polymorphic variation can affect a real-world task.

  8. Stabilization and control of the International Ultraviolet Explorer including a summary of flight performance

    NASA Technical Reports Server (NTRS)

    Moore, J. V.

    1980-01-01

    The paper discusses the International Ultraviolet Explorer Mission sequence, spacecraft equipment, and control laws. Flight data from the precision control modes are presented, to illustrate the performance achieved; the subarc second pointing at sources for 60 min periods is accomplished routinely. Two modes of precision control are available: one is of a bright guide star which is in the vicinity of the target source, so that the guidance mode includes a star tracker for position information and a gyro system for rate damping. When a guide star is not available, precision hold is accomplished solely on a well trimmed gyro reference with low frequency updates from a dim source. The three axis maneuvers, the maneuver angle, and the gyro data used are discussed, concluding that these data used in conjunction with star tracker data provide a good source of information for orbital performance evaluation.

  9. Flight operations and performance of Skylab life support and environmental control systems

    NASA Technical Reports Server (NTRS)

    Hopson, G. D.; Littles, J. W.; Patterson, W. C.

    1974-01-01

    The design and performance of the Skylab thermal and environmental control systems is considered. The Orbital Workshop had a combined active and passive thermal control system. The refrigeration system was designed to store food and biomedical samples and to cool drinking water. The atmosphere control system included active humidity control, molecular sieves and charcoal canisters to control carbon dioxide, odor, and contaminants, and the gas supply system. Mission support preparation, including instrumentation, ground data system, system troubleshooting, and training, is surveyed. Major in-flight anomalies occurred with the thermal control system when the meteoroid shield was lost during SL-1 ascent and when the Airlock Module coolant loop malfunctioned during SL-2 manned operations. The atmosphere control system performed without major anomaly throughout the manned missions.

  10. In-flight performance and calibration of SPICAV SOIR onboard Venus Express.

    PubMed

    Mahieux, Arnaud; Berkenbosch, Sophie; Clairquin, Roland; Fussen, Didier; Mateshvili, Nina; Neefs, Eddy; Nevejans, Dennis; Ristic, Bojan; Vandaele, Ann Carine; Wilquet, Valérie; Belyaev, Denis; Fedorova, Anna; Korablev, Oleg; Villard, Eric; Montmessin, Franck; Bertaux, Jean-Loup

    2008-05-01

    Solar occultation in the infrared, part of the Spectoscopy for Investigation of Characteristics of the Atmosphere of Venus (SPICAV) instrument onboard Venus Express, combines an echelle grating spectrometer with an acousto-optic tunable filter (AOTF). It performs solar occultation measurements in the IR region at high spectral resolution. The wavelength range probed allows a detailed chemical inventory of Venus's atmosphere above the cloud layer, highlighting the vertical distribution of gases. A general description of the instrument and its in-flight performance is given. Different calibrations and data corrections are investigated, in particular the dark current and thermal background, the nonlinearity and pixel-to-pixel variability of the detector, the sensitivity of the instrument, the AOTF properties, and the spectral calibration and resolution.

  11. Crew Alertness Management on the Flight Deck: Cognitive and Vigilance Performance

    NASA Technical Reports Server (NTRS)

    Dinges, David F.

    1998-01-01

    This project had three broad goals: (1) to identify environmental and organismic risks to performance of long-haul cockpit crews; (2) to assess how cognitive and psychomotor vigilance performance, and subjective measures of alertness, were affected by work-rest schedules typical of long-haul cockpit crews; and (3) to determine the alertness-promoting effectiveness of behavioral and technological countermeasures to fatigue on the flight deck. During the course of the research, a number of studies were completed in cooperation with the NASA Ames Fatigue Countermeasures Program. The publications emerging from this project are listed in a bibliography in the appendix. Progress toward these goals will be summarized below according to the period in which it was accomplished.

  12. Objective techniques for psychological assessment, phase 2. [techniques for measuring human performance during space flight stress

    NASA Technical Reports Server (NTRS)

    Wortz, E. C.; Saur, A. J.; Nowlis, D. P.; Kendall, M. P.

    1974-01-01

    Results are presented of an initial experiment in a research program designed to develop objective techniques for psychological assessment of individuals and groups participating in long-duration space flights. Specifically examined is the rationale for utilizing measures of attention as an objective assessment technique. Subjects participating in the experiment performed various tasks (eg, playing matrix games which appeared on a display screen along with auditory stimuli). The psychophysiological reactions of the subjects were measured and are given. Previous research of various performance and psychophysiological methods of measuring attention is also discussed. The experiment design (independent and dependent variables) and apparatus (computers and display devices) are described and shown. Conclusions and recommendations are presented.

  13. ECMWF MACC-II evaluation of performances with MPLNET Lidar network at NASA Goddard Flight Center

    NASA Astrophysics Data System (ADS)

    Lolli, Simone; Welton, Ellsworth J.; Benedetti, Angela; Lewis, Jasper

    2016-04-01

    Aerosol vertical distribution is a critical parameter for most of the common aerosol forecast models. In this study are evaluated the performances of the MACC-II ECMWF aerosol model in forecasting aerosol extinction profiles and planetary boundary layer height versus the new V3 measured MPLNET Lidar extinction retrievals taken as reference at continuous operational site Goddard Space Flight Center, MD, USA. The model is evaluated at different assimilation stages: no assimilation, MODIS Aerosol Optical Depth (AOD) assimilation and MODIS AOD plus lidar CALIPSO assimilation. The sensitivity study of the model is also investigated respect to the assimilation process..Assessing the model performances it is the first step for future near-real time lidar data assimilation into MACC-II aerosol model forecast.

  14. Performance Results from In-Flight Commissioning of the Juno Ultraviolet Spectrograph (Juno-UVS)

    NASA Astrophysics Data System (ADS)

    Greathouse, Thomas K.; Gladstone, G. R.; Davis, M. W.; Slater, D. C.; Versteeg, M. H.; Persson, K. B.; Winters, G. S.; Persyn, S. C.; Eterno, J. S.

    2012-10-01

    We present a description of the Juno ultraviolet spectrograph (Juno-UVS), results from the successful in-flight commissioning performed between December 5th and 13th 2011, and some predictions of future Jupiter observations. Juno-UVS is a modest power (9.0 W) ultraviolet spectrograph based on the Alice instruments now in flight aboard the European Space Agency’s Rosetta spacecraft, NASA’s New Horizons spacecraft, and the LAMP instrument aboard NASA’s Lunar Reconnaissance Orbiter. However, unlike the other Alice spectrographs, Juno-UVS sits aboard a rotationally stabilized spacecraft. The planned 2 rpm rotation rate for the primary mission results in integration times per spatial resolution element per spin of only 17 ms. Thus, data was retrieved from many spins and then remapped and co-added to build up integration times on bright stars to measure the effective area, spatial resolution, map out scan mirror pointing positions, etc. The Juno-UVS scan mirror allows for pointing of the slit approximately ±30° from the spacecraft spin plane. This ability gives Juno-UVS access to half the sky at any given spacecraft orientation. We will describe our process for solving for the pointing of the scan mirror relative to the Juno spacecraft and present our initial half sky survey of UV bright stars complete with constellation overlays. The primary job of Juno-UVS will be to characterize Jupiter’s UV auroral emissions and relate them to in situ particle measurements. The ability to point the slit will facilitate these measurements, allowing Juno-UVS to observe the surface positions of magnetic field lines Juno is flying through giving a direct connection between the particle measurements on the spacecraft to the observed reaction of Jupiter’s atmosphere to those particles. Finally, we will describe planned observations to be made during Earth flyby in October 2013 that will complete the in-flight characterization.

  15. Flight performance of bumble bee as a possible pollinator in space agriculture under partial gravity

    NASA Astrophysics Data System (ADS)

    Yamashita, Masamichi; Hashimoto, Hirofumi; Mitsuhata, Masahiro; Sasaki, Masami; Space Agriculture Task Force, J.

    Space agriculture is an advanced life support concept for habitation on extraterrestrial bodies based on biological and ecological function. Flowering plant species are core member of space agriculture to produce food and revitalize air and water. Selection of crop plant species is made on the basis of nutritional requirements to maintain healthy life of space crew. Species selected for space agriculture have several mode of reproduction. For some of plant species, insect pollination is effective to increase yield and quality of food. In terrestrial agriculture, bee is widely introduced to pollinate flower. For pollinator insect on Mars, working environment is different from Earth. Magnitude of gravity is 0.38G on Mars surface. In order to confirm feasibility of insect pollination for space agriculture, capability of flying pollinator insect under such exotic condition should be examined. Even bee does not possess evident gravity sensory system, gravity dominates flying performance and behavior. During flight or hovering, lifting force produced by wing beat sustains body weight, which is the product of body mass and gravitational acceleration. Flying behavior of bumble bee, Bombus ignitus, was documented under partial or micro-gravity produced by parabolic flight of jet plane. Flying behavior at absence of gravity differed from that under normal gravity. Ability of bee to fly under partial gravity was examined at the level of Mars, Moon and the less, to determine the threshold level of gravity for bee flying maneuver. Adaptation process of bee flying under different gravity level was evaluated as well by successive documentation of parabolic flight experiment.

  16. Flight performance using a hyperstereo helmet-mounted display: aircraft handling

    NASA Astrophysics Data System (ADS)

    Jennings, Sion A.; Craig, Gregory L.; Stuart, Geoffrey W.; Kalich, Melvyn E.; Rash, Clarence E.; Harding, Thomas H.

    2009-05-01

    A flight study was conducted to assess the impact of hyperstereopsis on helicopter handling proficiency, workload and pilot acceptance. Three pilots with varying levels of night vision goggle and hyperstereo helmet-mounted display experience participated in the test. The pilots carried out a series of flights consisting of low-level maneuvers over a period of two weeks. Four of the test maneuvers, The turn around the tail, the hard surface landing, the hover height estimation and the tree-line following were analysed in detail. At the end of the testing period, no significant difference was observed in the performance data, between maneuvers performed with the TopOwl helmet and maneuvers performed with the standard night vision goggle. This study addressed only the image intensification display aspects of the TopOwl helmet system. The tests did not assess the added benefits of overlaid symbology or head slaved infrared camera imagery. These capabilities need to be taken into account when assessing the overall usefulness of the TopOwl system. Even so, this test showed that pilots can utilize the image intensification imagery displayed on the TopOwl to perform benign night flying tasks to an equivalent level as pilots using ANVIS. The study should be extended to investigate more dynamic and aggressive low level flying, slope landings and ship deck landings. While there may be concerns regarding the effect of hyperstereopsis on piloting, this initial study suggests that pilots can either adapt or compensate for hyperstereo effects with sufficient exposure and training. Further analysis and testing is required to determine the extent of training required.

  17. In-flight star tracker SED 12 performances on-board the SIGMA experiment

    NASA Astrophysics Data System (ADS)

    Jouret, M.; Sebbag, I.; Vandermarcq, M. Q.; Krebs, J. P.; Le Goff, R.; Vilaire, D.; Tulet, M. M.

    The multimission SED 12 star tracker using a CCD matrix array has been designed by SODERN in cooperation with Matra-Marconi Space (F), respectively in charge of the optical head and software development for one and processing electronics and associated interfaces for the other. It has been selected for the French SIGMA experiment on board the Soviet GRANAT spacecraft which was launched on December 2, 1989. SIGMA is a French hard X-ray/medium energy gamma ray (30 keV-2 MeV) experiment aimed at imaging selected regions of the sky with a resolution of about one arc minute and has been developed and manufactured under the overall management of CNES (the French National Space Agency). The experiment package demands a pointing stability of a few arc-seconds over periods of several hours corresponding to the long exposure times required to build up images of the target gamma sources. As the GRANAT satellite is not able to maintain such high precision attitude stability, incorporated into the gamma telescope are two SED 12 sensors aligned together with the telescope. The development of this star tracker was started in 1985 under a CNES contract, the qualification was successfully performed in 1987 and the delivery of 2 flight models was completed in 1988. The expected life time of the experiment was 1.5 year and since the launch date the mission is still operating without any significant performance degradation of the star tracker. The purpose of this paper is, on the one hand to present the multimission tracker design trade-offs and the SED 12 device: description, main features, operating modes and performances, and on the other hand, to analyze the on ground and in-flight star tracker data. This analysis has been mainly led according to the following criteria: performance results in angular position and magnitude measurement, dark current evolution versus time and radiation dose, correlation between visual and instrumental magnitudes.

  18. Is less really more: Does a prefrontal efficiency genotype actually confer better performance when working memory becomes difficult?

    PubMed

    Ihne, Jessica L; Gallagher, Natalie M; Sullivan, Marie; Callicott, Joseph H; Green, Adam E

    2016-01-01

    Perhaps the most widely studied effect to emerge from the combination of neuroimaging and human genetics is the association of the COMT-Val(108/158)Met polymorphism with prefrontal activity during working memory. COMT-Val is a putative risk factor in schizophrenia, which is characterized by disordered prefrontal function. Work in healthy populations has sought to characterize mechanisms by which the valine (Val) allele may lead to disadvantaged prefrontal cognition. Lower activity in methionine (Met) carriers has been interpreted as advantageous neural efficiency. Notably, however, studies reporting COMT effects on neural efficiency have generally not reported working memory performance effects. Those studies have employed relatively low/easy working memory loads. Higher loads are known to elicit individual differences in working memory performance that are not visible at lower loads. If COMT-Met confers greater neural efficiency when working memory is easy, a reasonable prediction is that Met carriers will be better able to cope with increasing demand for neural resources when working memory becomes difficult. To our knowledge, this prediction has thus far gone untested. Here, we tested performance on three working memory tasks. Performance on each task was measured at multiple levels of load/difficulty, including loads more demanding than those used in prior studies. We found no genotype-by-load interactions or main effects of COMT genotype on accuracy or reaction time. Indeed, even testing for performance differences at each load of each task failed to find a single significant effect of COMT genotype. Thus, even if COMT genotype has the effects on prefrontal efficiency that prior work has suggested, such effects may not directly impact high-load working memory ability. The present findings accord with previous evidence that behavioral effects of COMT are small or nonexistent and, more broadly, with a growing consensus that substantial effects on phenotype will

  19. The effects of wind and posture on the aerodynamic performance during the flight stage of skiing.

    PubMed

    Chen, Zhifeng; Fang, Haisheng

    2011-09-01

    Numerical simulation is conducted to evaluate the wind and posture effects on the aerodynamic performance of a skier during the flight stage. Both steady and unsteady models are applied on a 2D geometry. Using the Fluent code, the fundamental equations of fluid flow are solved simultaneously. In particular we focus on the influence of wind speed and direction on aerodynamic forces with several different postures of the skier in steady modeling. For a chosen case, the unsteady models are used to predict the transient characteristics of streamline distributions and aerodynamic forces. It is found that the skier's postures, wind speed, and direction play a significant role. The wind condition affects the pressure force (the form drag) on the skier and makes it a resistance or thrust regarding wind directions. The optimized posture with a minimization of resistance under a facing wind is determined as a moving-forward body of the skier. The unsteady modeling reveals that the wake around the skier and aerodynamic forces are strongly dependent on time. This initial study not only provides a qualitative and theoretical basis for the athletes to understand the effects of wind and postures, and then to optimize their postures according to the wind condition during the flight stage of skiing, but also builds the foundation for the systematic study of skiing process with more advanced CFD models in the future.

  20. The effects of wind and posture on the aerodynamic performance during the flight stage of skiing.

    PubMed

    Chen, Zhifeng; Fang, Haisheng

    2011-09-01

    Numerical simulation is conducted to evaluate the wind and posture effects on the aerodynamic performance of a skier during the flight stage. Both steady and unsteady models are applied on a 2D geometry. Using the Fluent code, the fundamental equations of fluid flow are solved simultaneously. In particular we focus on the influence of wind speed and direction on aerodynamic forces with several different postures of the skier in steady modeling. For a chosen case, the unsteady models are used to predict the transient characteristics of streamline distributions and aerodynamic forces. It is found that the skier's postures, wind speed, and direction play a significant role. The wind condition affects the pressure force (the form drag) on the skier and makes it a resistance or thrust regarding wind directions. The optimized posture with a minimization of resistance under a facing wind is determined as a moving-forward body of the skier. The unsteady modeling reveals that the wake around the skier and aerodynamic forces are strongly dependent on time. This initial study not only provides a qualitative and theoretical basis for the athletes to understand the effects of wind and postures, and then to optimize their postures according to the wind condition during the flight stage of skiing, but also builds the foundation for the systematic study of skiing process with more advanced CFD models in the future. PMID:22010736

  1. The Typical Flight Performance of Blowflies: Measuring the Normal Performance Envelope of Calliphora vicina Using a Novel Corner-Cube Arena

    PubMed Central

    Bomphrey, Richard J.; Walker, Simon M.; Taylor, Graham K.

    2009-01-01

    Despite a wealth of evidence demonstrating extraordinary maximal performance, little is known about the routine flight performance of insects. We present a set of techniques for benchmarking performance characteristics of insects in free flight, demonstrated using a model species, and comment on the significance of the performance observed. Free-flying blowflies (Calliphora vicina) were filmed inside a novel mirrored arena comprising a large (1.6 m1.6 m1.6 m) corner-cube reflector using a single high-speed digital video camera (250 or 500 fps). This arrangement permitted accurate reconstruction of the flies' 3-dimensional trajectories without the need for synchronisation hardware, by virtue of the multiple reflections of a subject within the arena. Image sequences were analysed using custom-written automated tracking software, and processed using a self-calibrating bundle adjustment procedure to determine the subject's instantaneous 3-dimensional position. We illustrate our method by using these trajectory data to benchmark the routine flight performance envelope of our flies. Flight speeds were most commonly observed between 1.2 ms−1 and 2.3 ms−1, with a maximum of 2.5 ms−1. Our flies tended to dive faster than they climbed, with a maximum descent rate (−2.4 ms−1) almost double the maximum climb rate (1.2 ms−1). Modal turn rate was around 240°s−1, with maximal rates in excess of 1700°s−1. We used the maximal flight performance we observed during normal flight to construct notional physical limits on the blowfly flight envelope, and used the distribution of observations within that notional envelope to postulate behavioural preferences or physiological and anatomical constraints. The flight trajectories we recorded were never steady: rather they were constantly accelerating or decelerating, with maximum tangential accelerations and maximum centripetal accelerations on the order of 3 g. PMID:19924228

  2. Mars Express and Venus Express Data Retention In-Flight Performance

    NASA Astrophysics Data System (ADS)

    Lebrédonchel, J.; Rombeck, F.-J.

    2007-08-01

    Venus, Mars and Earth, three out of the four inner or 'rocky' planets of the Solar System, have a lot in common: a solid surface you could walk on, a comparable surface composition, an atmosphere and a weather system. European Space Agency (ESA) Mars Express (MEx) and Venus Express (VEx) pioneer scientific missions aim at exploring these two neighbours of the Earth, in order to enrich our knowledge of our planet and of the Solar System. Both projects are based on the same spacecraft bus, and in particular on 'sister' Solid State Mass Memory (SSMM) units, in charge of the acquisition, storage and retrieval of all on board data, relevant both to the platform and to the instruments. This paper recalls the common SSMM design and the inner fault tolerant memory array module architecture based on Computer Off The Shelf (COTS) Samsung 64 Mbit Synchronous Dynamic Random Access Memory (SDRAM) chips, and presents the comparative in-flight data retention performance for both MEx and Vex units, since their respective June 2003 and November 2005 launches. Both units have shown to successfully withstand the radiative deep space environment, including during the outstanding October 2003 solar flare, and no uncorrectable data corruption was ever reported. Beyond this stable retention performance over time, the memory scrubbing correctable error accounting feedback allows evaluating the deep space Single Event Upset (SEU) rates, to be compared with the theoretical SSMM radiation assessment as well as with other previous missions in-flight qualitative reference performance records, and finally enables to derive a couple of recommendations from the lessons' learnt.

  3. Future Challenges in Managing Human Health and Performance Risks for Space Flight

    NASA Technical Reports Server (NTRS)

    Corbin, Barbara J.; Barratt, Michael

    2013-01-01

    The global economy forces many nations to consider their national investments and make difficult decisions regarding their investment in future exploration. To enable safe, reliable, and productive human space exploration, we must pool global resources to understand and mitigate human health & performance risks prior to embarking on human exploration of deep space destinations. Consensus on the largest risks to humans during exploration is required to develop an integrated approach to mitigating risks. International collaboration in human space flight research will focus research on characterizing the effects of spaceflight on humans and the development of countermeasures or systems. Sharing existing data internationally will facilitate high quality research and sufficient power to make sound recommendations. Efficient utilization of ISS and unique ground-based analog facilities allows greater progress. Finally, a means to share results of human research in time to influence decisions for follow-on research, system design, new countermeasures and medical practices should be developed. Although formidable barriers to overcome, International working groups are working to define the risks, establish international research opportunities, share data among partners, share flight hardware and unique analog facilities, and establish forums for timely exchange of results. Representatives from the ISS partnership research and medical communities developed a list of the top ten human health & performance risks and their impact on exploration missions. They also drafted a multilateral data sharing plan to establish guidelines and principles for sharing human spaceflight data. Other working groups are also developing methods to promote international research solicitations. Collaborative use of analog facilities and shared development of space flight research and medical hardware continues. Establishing a forum for exchange of results between researchers, aerospace physicians

  4. A computational study of the aerodynamic performance of a dragonfly wing section in gliding flight.

    PubMed

    Vargas, Abel; Mittal, Rajat; Dong, Haibo

    2008-06-01

    A comprehensive computational fluid-dynamics-based study of a pleated wing section based on the wing of Aeshna cyanea has been performed at ultra-low Reynolds numbers corresponding to the gliding flight of these dragonflies. In addition to the pleated wing, simulations have also been carried out for its smoothed counterpart (called the 'profiled' airfoil) and a flat plate in order to better understand the aerodynamic performance of the pleated wing. The simulations employ a sharp interface Cartesian-grid-based immersed boundary method, and a detailed critical assessment of the computed results was performed giving a high measure of confidence in the fidelity of the current simulations. The simulations demonstrate that the pleated airfoil produces comparable and at times higher lift than the profiled airfoil, with a drag comparable to that of its profiled counterpart. The higher lift and moderate drag associated with the pleated airfoil lead to an aerodynamic performance that is at least equivalent to and sometimes better than the profiled airfoil. The primary cause for the reduction in the overall drag of the pleated airfoil is the negative shear drag produced by the recirculation zones which form within the pleats. The current numerical simulations therefore clearly demonstrate that the pleated wing is an ingenious design of nature, which at times surpasses the aerodynamic performance of a more conventional smooth airfoil as well as that of a flat plate. For this reason, the pleated airfoil is an excellent candidate for a fixed wing micro-aerial vehicle design.

  5. The development of a test system for investigating the performances of personal aerosol samplers under actual workplace conditions.

    PubMed

    Botham, R A; Hughson, G W; Vincent, J H; Mark, D

    1991-10-01

    The performances of new "total" aerosol samplers for use in workplaces are required to match the inhalability criteria as contained in the latest recommendations of the International Standards Organization (ISO) and the American Conference of Governmental Industrial Hygienists (ACGIH). In the past, practical evaluations have been carried out under idealized conditions in wind tunnels, and there is now the need to extend these to more realistic workplace conditions. This paper describes a new test system that was designed and built for this purpose. It consisted of a life-size mannequin mounted on a trolley so that it can be taken to and wheeled around in workplaces. The mannequin itself incorporated a robotic arm so that, under joystick control, it can be made to simulate a range of worker movements, orientations, and attitudes. An electronically controlled, compact breathing machine provided a range of typical breathing parameters for the mannequin. The pump also provided air movement for a number of personal samplers that were mounted on the torso of the mannequin and tested in that position. Sampler performance should be assessed by comparing directly the aerosol collected by the sampler with that inhaled by the mannequin (and collected on filters inside the head).

  6. The STEP model: Characterizing simultaneous time effects on practice for flight simulator performance among middle-aged and older pilots.

    PubMed

    Kennedy, Quinn; Taylor, Joy; Noda, Art; Yesavage, Jerome; Lazzeroni, Laura C

    2015-09-01

    Understanding the possible effects of the number of practice sessions (practice) and time between practice sessions (interval) among middle-aged and older adults in real-world tasks has important implications for skill maintenance. Prior training and cognitive ability may impact practice and interval effects on real-world tasks. In this study, we took advantage of existing practice data from 5 simulated flights among 263 middle-aged and older pilots with varying levels of flight expertise (defined by U.S. Federal Aviation Administration proficiency ratings). We developed a new Simultaneous Time Effects on Practice (STEP) model: (a) to model the simultaneous effects of practice and interval on performance of the 5 flights, and (b) to examine the effects of selected covariates (i.e., age, flight expertise, and 3 composite measures of cognitive ability). The STEP model demonstrated consistent positive practice effects, negative interval effects, and predicted covariate effects. Age negatively moderated the beneficial effects of practice. Additionally, cognitive processing speed and intraindividual variability (IIV) in processing speed moderated the benefits of practice and/or the negative influence of interval for particular flight performance measures. Expertise did not interact with practice or interval. Results indicated that practice and interval effects occur in simulated flight tasks. However, processing speed and IIV may influence these effects, even among high-functioning adults. Results have implications for the design and assessment of training interventions targeted at middle-aged and older adults for complex real-world tasks. PMID:26280383

  7. The STEP model: Characterizing simultaneous time effects on practice for flight simulator performance among middle-aged and older pilots.

    PubMed

    Kennedy, Quinn; Taylor, Joy; Noda, Art; Yesavage, Jerome; Lazzeroni, Laura C

    2015-09-01

    Understanding the possible effects of the number of practice sessions (practice) and time between practice sessions (interval) among middle-aged and older adults in real-world tasks has important implications for skill maintenance. Prior training and cognitive ability may impact practice and interval effects on real-world tasks. In this study, we took advantage of existing practice data from 5 simulated flights among 263 middle-aged and older pilots with varying levels of flight expertise (defined by U.S. Federal Aviation Administration proficiency ratings). We developed a new Simultaneous Time Effects on Practice (STEP) model: (a) to model the simultaneous effects of practice and interval on performance of the 5 flights, and (b) to examine the effects of selected covariates (i.e., age, flight expertise, and 3 composite measures of cognitive ability). The STEP model demonstrated consistent positive practice effects, negative interval effects, and predicted covariate effects. Age negatively moderated the beneficial effects of practice. Additionally, cognitive processing speed and intraindividual variability (IIV) in processing speed moderated the benefits of practice and/or the negative influence of interval for particular flight performance measures. Expertise did not interact with practice or interval. Results indicated that practice and interval effects occur in simulated flight tasks. However, processing speed and IIV may influence these effects, even among high-functioning adults. Results have implications for the design and assessment of training interventions targeted at middle-aged and older adults for complex real-world tasks.

  8. The STEP model: Characterizing simultaneous time effects on practice for flight simulator performance among middle-aged and older pilots

    PubMed Central

    Kennedy, Quinn; Taylor, Joy; Noda, Art; Yesavage, Jerome; Lazzeroni, Laura C.

    2015-01-01

    Understanding the possible effects of the number of practice sessions (practice) and time between practice sessions (interval) among middle-aged and older adults in real world tasks has important implications for skill maintenance. Prior training and cognitive ability may impact practice and interval effects on real world tasks. In this study, we took advantage of existing practice data from five simulated flights among 263 middle-aged and older pilots with varying levels of flight expertise (defined by FAA proficiency ratings). We developed a new STEP (Simultaneous Time Effects on Practice) model to: (1) model the simultaneous effects of practice and interval on performance of the five flights, and (2) examine the effects of selected covariates (age, flight expertise, and three composite measures of cognitive ability). The STEP model demonstrated consistent positive practice effects, negative interval effects, and predicted covariate effects. Age negatively moderated the beneficial effects of practice. Additionally, cognitive processing speed and intra-individual variability (IIV) in processing speed moderated the benefits of practice and/or the negative influence of interval for particular flight performance measures. Expertise did not interact with either practice or interval. Results indicate that practice and interval effects occur in simulated flight tasks. However, processing speed and IIV may influence these effects, even among high functioning adults. Results have implications for the design and assessment of training interventions targeted at middle-aged and older adults for complex real world tasks. PMID:26280383

  9. Monte Carlo study of the performance of a time-of-flight multichopper spectrometer

    SciTech Connect

    Daemen, L.L.; Eckert, J.; Pynn, R.

    1995-12-01

    The Monte Carlo method is a powerful technique for neutron transport studies. While it has been applied for many years to the study of nuclear systems, there are few codes available for neutron transport in the optical regime. The recent surge of interest in so-called next generation spallation neutron sources and the desire to design new and optimized instruments for these facilities has led us to develop a Monte Carlo code geared toward the simulation of neutron scattering instruments. The time-of-flight multichopper spectrometer, of which IN5 at the ILL is the prototypical example, is the first spectrometer studied with the code. Some of the results of a comparison between the IN5 performance at a reactor and at a Long Pulse Spallation Source (LPSS) are summarized here.

  10. Design and Early In-flight Performance of the Tropical Rainfall Measuring Mission (TRMM) Power Subsystem

    NASA Technical Reports Server (NTRS)

    Moran, Vickie Eakin; Flatley, Thomas P.; Shue, John; Gaddy, Edward M.; Manzer, Dominic; Hicks, Edward

    1998-01-01

    Maryland built the spacecraft in-house with four U.S. instruments and one Japanese instrument, the first space flown Precipitation Radar (PR). The TRMM Observatory was successfully launched from Tanegashima Space Center in Japan on an H-2 Expendable Launch Vehicle on November 27, 1997. This paper presents an overview of the TRMM Power System including its design, testing, and in flight performance for the first 70 days. Finally, key lessons learned are presented. The TRMM power system consists of an 18.1 square meter deployed solar array fabricated by TRW with Tecstar GaAs/Ge cells, two (2) Hughes 50 Ampere-Hour (Ah) Super NiCd' batteries, each with 22 Eagle-Picher cells, and three (3) electronics boxes designed to provide power regulation, battery charge control, and command and telemetry interface.

  11. The Performance of a Miniature Plant Cultivation System Designed for Space Flight Application

    NASA Technical Reports Server (NTRS)

    Heyenga, Gerard; Kliss, Mark; Blackford, Cameron

    2005-01-01

    Constraints in both launch opportunities and the availability of in-flight resources for Shuttle and Space Station life science habitat facilities has presented a compelling impetus to improve the operational flexibility, efficiency and miniaturization of many of these systems. Such advances would not only invigorate the level of research being conducted in low Earth orbit but also present the opportunity to expand life science studies to outer space and planetary bodies. Work has been directed towards the development of a miniature plant cultivation module (PCM) capable of supporting the automated and controlled growth and spectral monitoring of small plant species such as Arabidopsis thaliana. This paper will present data on the operational performance and efficiency of the cultivation module, and the extent to which such a system may be used to support plant growth studies in low Earth orbit and beyond.

  12. THE BALLOON-BORNE LARGE APERTURE SUBMILLIMETER TELESCOPE (BLAST) 2006: CALIBRATION AND FLIGHT PERFORMANCE

    SciTech Connect

    Truch, Matthew D. P.; Devlin, Mark J.; Dicker, Simon R.; Klein, Jeff; Ade, Peter A. R.; Griffin, Matthew; Hargrave, Peter C.; Mauskopf, Philip; Moncelsi, Lorenzo; Pascale, Enzo; Bock, James J.; Chapin, Edward L.; Halpern, Mark; Marsden, Gaelen; Gundersen, Joshua O.; Hughes, David H.; Martin, Peter G.; Netterfield, C. Barth; Olmi, Luca; Patanchon, Guillaume

    2009-12-20

    The Balloon-borne Large Aperture Submillimeter Telescope (BLAST) operated successfully during a 250 hr flight over Antarctica in 2006 December (BLAST06). As part of the calibration and pointing procedures, the red hypergiant star VY CMa was observed and used as the primary calibrator. Details of the overall BLAST06 calibration procedure are discussed. The 1sigma uncertainty on the absolute calibration is accurate to 9.5%, 8.7%, and 9.2% at the 250, 350, and 500 mum bands, respectively. The errors are highly correlated between bands resulting in much lower errors for the derived shape of the 250-500 mum continuum. The overall pointing error is < 5'' rms for the 36'', 42'', and 60'' beams. The performance of optics and pointing systems is discussed.

  13. Aerodynamic Parameters of High Performance Aircraft Estimated from Wind Tunnel and Flight Test Data

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav; Murphy, Patrick C.

    1998-01-01

    A concept of system identification applied to high performance aircraft is introduced followed by a discussion on the identification methodology. Special emphasis is given to model postulation using time invariant and time dependent aerodynamic parameters, model structure determination and parameter estimation using ordinary least squares an mixed estimation methods, At the same time problems of data collinearity detection and its assessment are discussed. These parts of methodology are demonstrated in examples using flight data of the X-29A and X-31A aircraft. In the third example wind tunnel oscillatory data of the F-16XL model are used. A strong dependence of these data on frequency led to the development of models with unsteady aerodynamic terms in the form of indicial functions. The paper is completed by concluding remarks.

  14. Aerodynamic Parameters of High Performance Aircraft Estimated from Wind Tunnel and Flight Test Data

    NASA Technical Reports Server (NTRS)

    Klein, Vladislav; Murphy, Patrick C.

    1999-01-01

    A concept of system identification applied to high performance aircraft is introduced followed by a discussion on the identification methodology. Special emphasis is given to model postulation using time invariant and time dependent aerodynamic parameters, model structure determination and parameter estimation using ordinary least squares and mixed estimation methods. At the same time problems of data collinearity detection and its assessment are discussed. These parts of methodology are demonstrated in examples using flight data of the X-29A and X-31A aircraft. In the third example wind tunnel oscillatory data of the F-16XL model are used. A strong dependence of these data on frequency led to the development of models with unsteady aerodynamic terms in the form of indicial functions. The paper is completed by concluding remarks.

  15. Some Aspects of Psychophysiological Support of Crew Member's Performance Reliability in Space Flight

    NASA Astrophysics Data System (ADS)

    Nechaev, A. P.; Myasnikov, V. I.; Stepanova, S. I.; Isaev, G. F.; Bronnikov, S. V.

    The history of cosmonautics demonstrates many instances in which only crewmembers' intervention allowed critical situations to be resolved, or catastrophes to be prevented. However, during "crew-spacecraft" system operation human is exposed by influence of numerous flight factors, and beforehand it is very difficult to predict their effects on his functional state and work capacity. So, the incidents are known when unfavorable alterations of crewmember's psychophysiological state (PPS) provoked errors in task performance. The objective of the present investigation was to substantiate the methodological approach directed to increase reliability of a crewmember performance (human error prevention) by means of management of his/her PPS. The specific aims of the investigation were: 1) to evaluate the statistical significance of the interrelation between crew errors (CE) and crewmember's PPS, and 2) to develop the way of PPS management. At present, there is no conventional method to assess combined effect of flight conditions (microgravity, confinement, psychosocial factors, etc.) on crewmembers' PPS. For this purpose experts of the Medical Support Group (psychoneurologists and psychologists) at the Moscow Mission Control Center analyze information received during radio and TV contacts with crew. Peculiarities of behavior, motor activity, sleep, speech, mood, emotional reactions, well-being and sensory sphere, trend of dominant interests and volitional acts, signs of deprivation phenomena are considered as separate indicators of crewmember's PPS. The set of qualitative symptoms reflecting PPS alterations and corresponding to them ratings (in arbitrary units) was empirically stated for each indicator. It is important to emphasize that symptoms characterizing more powerful PPS alterations have higher ratings. Quantitative value of PPS integral parameter is calculating by adding up the ratings of all separate indicators over a day, a week, or other temporal interval (in

  16. Saturn 5 launch vehicle flight evaluation report-AS-511 Apollo 16 mission

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A postflight analysis of the Apollo 16 mission is presented. The basic objective of the flight evaluation is to acquire, reduce, analyze, and report on flight data to the extent required to assure future mission success and vehicle reliability. Actual flight problems are identified, their causes are deet determined, and recommendations are made for corrective actions. Summaries of launch operations and spacecraft performance are included. Significant events for all phases of the flight are provide in tabular form.

  17. Improving target orientation discrimination performance in air-to-air flight simulation

    NASA Astrophysics Data System (ADS)

    Serfoss, Gary Lee

    Despite significant advances, state-of-the-art image projectors still lack the ability to display object detail equivalent to a 20/20 visual acuity capability. Unfortunately, for proper close-in air combat training in a flight simulator, this level of detail is necessary if a pilot is to accurately determine the orientation of another aircraft at realistic ranges. This investigation evaluates a possible interim solution to this problem that could be implemented until projectors are developed that can provide adequate resolution. The research methodology involves enlarging the "enemy" aircraft by various amounts as a function of distance-resulting in an aircraft that still always gets smaller as it moves farther away, but just not as quickly as a "non-enlarged" target. The results from 20 male F-16 pilots provided the distances where the orientation of aircraft in the simulator could be determined as well as similar aircraft under "real-world" conditions. By using these distances, it was possible to determine the amount of magnification needed to identify necessary details of the simulated aircraft at the same distances as they are under "real-world" conditions. The final product is a magnification curve that can be used to modify how the simulated target changes in size as a function of distance. Results seem to indicate that performance in the simulator might be enhanced to match real flying conditions without unacceptably (or perhaps even noticeably) altering the size of the target. These results should be applicable (with minor modification) to many other aircraft and perhaps ground targets as well. Furthermore, it is anticipated that application can be made beyond flight simulation to other types of simulation where performance is also currently inhibited due to lack of display resolution.

  18. Description and expected performance of flight-model, 12-gigahertz, output stage tube for the communications technology satellite

    NASA Technical Reports Server (NTRS)

    Chomos, G. J.; Curren, A. N.

    1976-01-01

    The flight model output stage tube for the Communications Technology Satellite is described. The output stage tube is a 12-GHz, 200-W, coupled cavity traveling wave tube. The tube has a multistage depressed collector for efficiency enhancement. Collector cooling is accomplished by direct radiation to space. Expected rf performance and factors affecting on orbit performance and life are discussed.

  19. Insight into mechanisms of reduced orthostatic performance after exposure to microgravity: comparison of ground-based and space flight data

    NASA Technical Reports Server (NTRS)

    Convertino, V. A.

    1998-01-01

    assess the adequacy of ground analogs of actual flight for the study of human physiological adaptation to microgravity. Specifically, results from ground and spaceflight will be used to provide insight into mechanisms underlying adaptations of blood pressure regulation and reduced orthostatic performance to the microgravity environment.

  20. Determination of washout performance of various monochrome displays under simulated flight ambient and solar lighting conditions

    NASA Technical Reports Server (NTRS)

    Batson, Vernon M.; Robertson, James B.; Parrish, Russell V.

    1990-01-01

    The aircraft cockpit ambient lighting simulation system (ACALSS) has been developed to study display readability and associated pilot/vehicle performance effects in a part-task simulator cockpit. In the study reported here, the ACALSS was used to determine the illumination levels at which subjects lose the ability to maintain aircraft states when using three display technologies as display media for primary flight displays: a standard monochrome EL (electroluminescent) flat-panel, a laboratory-class monochrome CRT, and an enhanced-brightness EL flat-panel. The multivariate statistical technique of modified profile analysis was used to test for performance differences between display devices as functions of illumination levels. The standard monochrome EL flat-panel display began to washout after the 2500 foot-candle level of illumination. The monochrome CRT began to washout after the 5500 foot-candle level of illumination. No performance decrements by increased illumination up to the 12,000 foot-candle level were found for the enhanced-brightness EL flat-panel display. What was not anticipated was that half the subjects would subjectively prefer the CRT over the enhanced-brightness EL, even though their performance errors would have indicated the opposite.

  1. Flight performance and feather quality: paying the price of overlapping moult and breeding in a tropical highland bird.

    PubMed

    Echeverry-Galvis, Maria Angela; Hau, Michaela

    2013-01-01

    A temporal separation of energetically costly life history events like reproduction and maintenance of the integumentary system is thought to be promoted by selection to avoid trade-offs and maximize fitness. It has therefore remained somewhat of a paradox that certain vertebrate species can undergo both events simultaneously. Identifying potential costs of overlapping two demanding life history stages will further our understanding of the selection pressures that shape the temporal regulation of life history events in vertebrates. We studied free-living tropical Slaty brush-finches (Atlapetes schistaceus), in which individuals spontaneously overlap reproduction and moult or undergo both events in separation. To assess possible costs of such an overlap we quantified feather quality and flight performance of individuals in different states. We determined individual's life history state by measuring gonad size and scoring moult stage, and collected a newly grown 7(th) primary wing feather for later analysis of feather quality. Finally, we quantified flight performance for each individual in the wild. Overlapping individuals produced lighter and shorter wing feathers than individuals just moulting, with females decreasing feather quality more strongly during the overlap than males. Moreover, overlapping individuals had a reduced flight speed during escape flights, while their foraging flight speed was unaffected. Despite overlappers being larger and having a smaller wing area, their lower body mass resulted in a similar wing load as in breeders or moulters. Individuals measured repeatedly in different states also showed significant decreases in feather quality and escape flight speed during the overlap. Reduced escape flight speed may represent a major consequence of the overlap by increasing predation risk. Our data document costs to undergoing two life history stages simultaneously, which likely arise from energetic trade-offs. Impairments in individual quality and

  2. Flight Performance and Feather Quality: Paying the Price of Overlapping Moult and Breeding in a Tropical Highland Bird

    PubMed Central

    Echeverry-Galvis, Maria Angela; Hau, Michaela

    2013-01-01

    A temporal separation of energetically costly life history events like reproduction and maintenance of the integumentary system is thought to be promoted by selection to avoid trade-offs and maximize fitness. It has therefore remained somewhat of a paradox that certain vertebrate species can undergo both events simultaneously. Identifying potential costs of overlapping two demanding life history stages will further our understanding of the selection pressures that shape the temporal regulation of life history events in vertebrates. We studied free-living tropical Slaty brush-finches (Atlapetes schistaceus), in which individuals spontaneously overlap reproduction and moult or undergo both events in separation. To assess possible costs of such an overlap we quantified feather quality and flight performance of individuals in different states. We determined individual’s life history state by measuring gonad size and scoring moult stage, and collected a newly grown 7th primary wing feather for later analysis of feather quality. Finally, we quantified flight performance for each individual in the wild. Overlapping individuals produced lighter and shorter wing feathers than individuals just moulting, with females decreasing feather quality more strongly during the overlap than males. Moreover, overlapping individuals had a reduced flight speed during escape flights, while their foraging flight speed was unaffected. Despite overlappers being larger and having a smaller wing area, their lower body mass resulted in a similar wing load as in breeders or moulters. Individuals measured repeatedly in different states also showed significant decreases in feather quality and escape flight speed during the overlap. Reduced escape flight speed may represent a major consequence of the overlap by increasing predation risk. Our data document costs to undergoing two life history stages simultaneously, which likely arise from energetic trade-offs. Impairments in individual quality and

  3. Flight Stability and Control and Performance Results from the Linear Aerospike SR-71 Experiment (LASRE)

    NASA Technical Reports Server (NTRS)

    Moes, Timothy R.; Cobleigh, Brent R.; Cox, Timothy H.; Conners, Timothy R.; Iliff, Kenneth W.; Powers, Bruce G.

    1998-01-01

    The Linear Aerospike SR-71 Experiment (LASRE) is presently being conducted to test a 20-percent-scale version of the Linear Aerospike rocket engine. This rocket engine has been chosen to power the X-33 Single Stage to Orbit Technology Demonstrator Vehicle. The rocket engine was integrated into a lifting body configuration and mounted to the upper surface of an SR-71 aircraft. This paper presents stability and control results and performance results from the envelope expansion flight tests of the LASRE configuration up to Mach 1.8 and compares the results with wind tunnel predictions. Longitudinal stability and elevator control effectiveness were well-predicted from wind tunnel tests. Zero-lift pitching moment was mispredicted transonically. Directional stability, dihedral stability, and rudder effectiveness were overpredicted. The SR-71 handling qualities were never significantly impacted as a result of the missed predictions. Performance results confirmed the large amount of wind-tunnel-predicted transonic drag for the LASRE configuration. This drag increase made the performance of the vehicle so poor that acceleration through transonic Mach numbers could not be achieved on a hot day without depleting the available fuel.

  4. High-performance computing for flight vehicles; Proceedings of the Symposium, Washington, Dec. 7-9, 1992

    NASA Technical Reports Server (NTRS)

    Noor, Ahmed K. (Editor); Venneri, Samuel L. (Editor)

    1992-01-01

    The present conference discusses high-performance computing systems for flight vehicles, large-scale simulations on high-performance flight computers and software, multidisciplinary and design/optimization applications of computers, computational electromagnetics and acoustics, the simulation of aircraft powerplant turbomachinery and reacting flows, and flow calculations on parallel machines. Also discussed are direct flow simulation Monte Carlo methods, structural mechanics sensitivity and fracture calculations on parallel machines, grid-generation and advanced algorithms for CFD, advanced solid-mechanics and structures applications, and advancements in flow visualization technology and neural networks.

  5. Performance results from in-flight commissioning of the Juno Ultraviolet Spectrograph (Juno-UVS)

    NASA Astrophysics Data System (ADS)

    Greathouse, T. K.; Gladstone, G. R.; Davis, M. W.; Slater, D. C.; Versteeg, M. H.; Persson, K. B.; Walther, B. C.; Winters, G. S.; Persyn, S. C.; Eterno, J. S.

    2013-09-01

    We present a description of the Juno ultraviolet spectrograph (Juno-UVS) and results from its in-flight commissioning performed between December 5th and 13th 2011 and its first periodic maintenance between October 10th and 12th 2012. Juno-UVS is a modest power (9.0 W) ultraviolet spectrograph based on the Alice instruments now in flight aboard the European Space Agency's Rosetta spacecraft, NASA's New Horizons spacecraft, and the LAMP instrument aboard NASA's Lunar Reconnaissance Orbiter. However, unlike the other Alice spectrographs, Juno-UVS sits aboard a spin stabilized spacecraft. The Juno-UVS scan mirror allows for pointing of the slit approximately +/-30° from the spacecraft spin plane. This ability gives Juno-UVS access to half the sky at any given spacecraft orientation. The planned 2 rpm spin rate for the primary mission results in integration times per 0.2° spatial resolution element per spin of only ~17 ms. Thus, for calibration purposes, data were retrieved from many spins and then remapped and co-added to build up exposure times on bright stars to measure the effective area, spatial resolution, scan mirror pointing positions, etc. The primary job of Juno-UVS will be to characterize Jupiter's UV auroral emissions and relate them to in-situ particle measurements. The ability to point the slit will make operations more flexible, allowing Juno-UVS to observe the atmospheric footprints of magnetic field lines through which Juno flies, giving a direct connection between energetic particle measurements on the spacecraft and the far-ultraviolet emissions produced by Jupiter's atmosphere in response to those particles.

  6. Flight assessment of the onboard propulsion system model for the Performance Seeking Control algorithm on an F-15 aircraft

    NASA Technical Reports Server (NTRS)

    Orme, John S.; Schkolnik, Gerard S.

    1995-01-01

    Performance Seeking Control (PSC), an onboard, adaptive, real-time optimization algorithm, relies upon an onboard propulsion system model. Flight results illustrated propulsion system performance improvements as calculated by the model. These improvements were subject to uncertainty arising from modeling error. Thus to quantify uncertainty in the PSC performance improvements, modeling accuracy must be assessed. A flight test approach to verify PSC-predicted increases in thrust (FNP) and absolute levels of fan stall margin is developed and applied to flight test data. Application of the excess thrust technique shows that increases of FNP agree to within 3 percent of full-scale measurements for most conditions. Accuracy to these levels is significant because uncertainty bands may now be applied to the performance improvements provided by PSC. Assessment of PSC fan stall margin modeling accuracy was completed with analysis of in-flight stall tests. Results indicate that the model overestimates the stall margin by between 5 to 10 percent. Because PSC achieves performance gains by using available stall margin, this overestimation may represent performance improvements to be recovered with increased modeling accuracy. Assessment of thrust and stall margin modeling accuracy provides a critical piece for a comprehensive understanding of PSC's capabilities and limitations.

  7. High-performance electronics for time-of-flight PET systems.

    PubMed

    Choong, W-S; Peng, Q; Vu, C Q; Turko, B T; Moses, W W

    2013-01-01

    We have designed and built a high-performance readout electronics system for time-of-flight positron emission tomography (TOF PET) cameras. The electronics architecture is based on the electronics for a commercial whole-body PET camera (Siemens/CPS Cardinal electronics), modified to improve the timing performance. The fundamental contributions in the electronics that can limit the timing resolution include the constant fraction discriminator (CFD), which converts the analog electrical signal from the photo-detector to a digital signal whose leading edge is time-correlated with the input signal, and the time-to-digital converter (TDC), which provides a time stamp for the CFD output. Coincident events are identified by digitally comparing the values of the time stamps. In the Cardinal electronics, the front-end processing electronics are performed by an Analog subsection board, which has two application-specific integrated circuits (ASICs), each servicing a PET block detector module. The ASIC has a built-in CFD and TDC. We found that a significant degradation in the timing resolution comes from the ASIC's CFD and TDC. Therefore, we have designed and built an improved Analog subsection board that replaces the ASIC's CFD and TDC with a high-performance CFD (made with discrete components) and TDC (using the CERN high-performance TDC ASIC). The improved Analog subsection board is used in a custom single-ring LSO-based TOF PET camera. The electronics system achieves a timing resolution of 60 ps FWHM. Prototype TOF detector modules are read out with the electronics system and give coincidence timing resolutions of 259 ps FWHM and 156 ps FWHM for detector modules coupled to LSO and LaBr3 crystals respectively. PMID:24575149

  8. High-performance electronics for time-of-flight PET systems

    NASA Astrophysics Data System (ADS)

    Choong, W.-S.; Peng, Q.; Vu, C. Q.; Turko, B. T.; Moses, W. W.

    2013-01-01

    We have designed and built a high-performance readout electronics system for time-of-flight positron emission tomography (TOF PET) cameras. The electronics architecture is based on the electronics for a commercial whole-body PET camera (Siemens/CPS Cardinal electronics), modified to improve the timing performance. The fundamental contributions in the electronics that can limit the timing resolution include the constant fraction discriminator (CFD), which converts the analog electrical signal from the photo-detector to a digital signal whose leading edge is time-correlated with the input signal, and the time-to-digital converter (TDC), which provides a time stamp for the CFD output. Coincident events are identified by digitally comparing the values of the time stamps. In the Cardinal electronics, the front-end processing electronics are performed by an Analog subsection board, which has two application-specific integrated circuits (ASICs), each servicing a PET block detector module. The ASIC has a built-in CFD and TDC. We found that a significant degradation in the timing resolution comes from the ASIC's CFD and TDC. Therefore, we have designed and built an improved Analog subsection board that replaces the ASIC's CFD and TDC with a high-performance CFD (made with discrete components) and TDC (using the CERN high-performance TDC ASIC). The improved Analog subsection board is used in a custom single-ring LSO-based TOF PET camera. The electronics system achieves a timing resolution of 60 ps FWHM. Prototype TOF detector modules are read out with the electronics system and give coincidence timing resolutions of 259 ps FWHM and 156 ps FWHM for detector modules coupled to LSO and LaBr3 crystals respectively.

  9. High-performance electronics for time-of-flight PET systems.

    PubMed

    Choong, W-S; Peng, Q; Vu, C Q; Turko, B T; Moses, W W

    2013-01-01

    We have designed and built a high-performance readout electronics system for time-of-flight positron emission tomography (TOF PET) cameras. The electronics architecture is based on the electronics for a commercial whole-body PET camera (Siemens/CPS Cardinal electronics), modified to improve the timing performance. The fundamental contributions in the electronics that can limit the timing resolution include the constant fraction discriminator (CFD), which converts the analog electrical signal from the photo-detector to a digital signal whose leading edge is time-correlated with the input signal, and the time-to-digital converter (TDC), which provides a time stamp for the CFD output. Coincident events are identified by digitally comparing the values of the time stamps. In the Cardinal electronics, the front-end processing electronics are performed by an Analog subsection board, which has two application-specific integrated circuits (ASICs), each servicing a PET block detector module. The ASIC has a built-in CFD and TDC. We found that a significant degradation in the timing resolution comes from the ASIC's CFD and TDC. Therefore, we have designed and built an improved Analog subsection board that replaces the ASIC's CFD and TDC with a high-performance CFD (made with discrete components) and TDC (using the CERN high-performance TDC ASIC). The improved Analog subsection board is used in a custom single-ring LSO-based TOF PET camera. The electronics system achieves a timing resolution of 60 ps FWHM. Prototype TOF detector modules are read out with the electronics system and give coincidence timing resolutions of 259 ps FWHM and 156 ps FWHM for detector modules coupled to LSO and LaBr3 crystals respectively.

  10. Post Flight Dynamic Analysis Simulation

    NASA Technical Reports Server (NTRS)

    Gregory, B. R.

    1970-01-01

    Digital six-degrees-of-freedom, open loop Saturn 5 first stage flight evaluation simulation program obtains post flight simulation of the launch vehicle using actual flight data as input. Results are compared with measured data. For preflight analysis, the program uses predicted flight data as input.

  11. Circadian Entrainment, Sleep-Wake Regulation and Neurobehavioral Performance During Extended Duration Space Flight

    NASA Technical Reports Server (NTRS)

    Czeisler, Charles A.

    1999-01-01

    Long-duration manned space flight requires crew members to maintain a high level of cognitive performance and vigilance while operating and monitoring sophisticated instrumentation. However, the reduction in the strength of environmental synchronizers in the space environment leads to misalignment of circadian phase among crew members, coupled with restricted time available to sleep, results in sleep deprivation and consequent deterioration of neurobehavioral function. Crew members are provided, and presently use, long-acting benzodiazepine hypnotics on board the current, relatively brief space shuttle missions to counteract such sleep disruption, a situation that is only likely to worsen during extended duration missions. Given the known carry-over effects of such compounds on daytime performance, together with the reduction in emergency readiness associated with their use at night, NASA has recognized the need to develop effective but safe countermeasures to allow crew members to obtain an adequate amount of sleep. Over the past eight years, we have successfully implemented a new technology for shuttle crew members involving bright light exposure during the pre-launch period to facilitate adaptation of the circadian timing system to the inversions of the sleep-wake schedule often required during dual shift missions. However for long duration space station missions it will be necessary to develop effective and attainable countermeasures that can be used chronically to optimize circadian entrainment. Our current research effort is to study the effects of light-dark cycles with reduced zeitgeber strength, such as are anticipated during long-duration space flight, on the entrainment of the endogenous circadian timing system and to study the effects of a countermeasure that consists of scheduled brief exposures to bright light on the human circadian timing system. The proposed studies are designed to address the following Specific Aims: (1) test the hypothesis that

  12. On the thrust performance of a 2D flapping foil in a forward flight condition

    NASA Astrophysics Data System (ADS)

    Dash, Sunil Manohar; Lua, Kim Boon; Lim, Tee Tai

    2015-11-01

    Past studies have shown that the thrust performance of a 2D airfoil undergoing simple harmonic motion in both pitch and heave in a forward flight condition is dependent on maximum effective angle of attack (αo) and Strouhal number (ST) . For a given αo, it is found that the thrust coefficient (CT) increases with ST until it reaches a peak value at the critical Strouhal number (STc) ; beyond which CT deteriorates considerably. In order to extend STc and therefore increase the max.CT, the airfoil must oscillate at a higher αo. Further, it is found that, regardless of αo thrust degeneration is accompanied by cessation of the induced effective angle of attack profile (α(t)) to exhibit simple harmonic function of time. As to why non simple harmonic function of α(t) is detrimental to thrust generation is not fully understood. In an attempt to better understand this phenomenon, both numerical simulations and comparative experiments are performed on a 2D flapping elliptic foil at Re of 5000. Our results show that the proximity of the leading edge vortex from the previous stroke to the oscillating foil plays a crucial role in the thrust generation. Detailed results will be discussed in the presentation.

  13. Molecular sieve generation of aviator's oxygen: Performance of a prototype system under simulated flight conditions.

    PubMed

    Miller, R L; Ikels, K G; Lamb, M J; Boscola, E J; Ferguson, R H

    1980-07-01

    The molecular sieve method of generating an enriched-oxygen breathing gas is one of several candidate onboard oxygen generation (OBOG) systems under joint Army-Navy-Air Force development for application in tactical aircraft. The performance of a nominal two-man-capacity molecular sieve oxygen generation system was characterized under simulated flight conditions. Data are given on the composition of the molecular sieve-generated breathing gas (oxygen, nitrogen, carbon dioxide, and argon) as a function of inlet air pressure, altitude, breathing gas flow rate, and ambient temperature. The maximum oxygen concentration observed was 95%, with the balance argon. At low demand flow rates and certain conditions of pressure and altitude, the argon enrichment factor exceeded that of oxygen giving a maximum argon concentration of 6.6% with the balance oxygen. The structural integrity of the unit was verified by vibration and centrifuge testing. The performance of the molecular sieve unit is discussed in the context of aircraft operating envelopes using both diluter-demand and 100% delivery subsystems. PMID:6774707

  14. Flight performance of the International Space Station active rack isolation system

    NASA Astrophysics Data System (ADS)

    Bushnell, Glenn S.; Fialho, Ian J.; Allen, James L.; Quraishi, Naveed

    2003-10-01

    Space flight experiment test results of a Space Station Active Rack Isolation System (ARIS) are presented. The purpose of ARIS is to isolate microgravity sensitive science experiments mounted in Space Station racks from structural vibrations present on the large Space Station orbital structure. The ARIS is shown to solve the very difficult and challenging low frequency isolation problem by providing over an order of magnitude reduction in the acceleration at 0.1 Hz. The Station displacement response to crew motion is discussed along with the control method that ARIS employs to maintain microgravity performance while limiting the motion between the Station and the isolated rack. The dramatic difference between the Station acceleration levels during crew awake and sleep periods are presented. Some microgravity experiments are sensitive to angular acceleration, so both the translational and angular accelerations of the isolated rack are presented. The performance at frequencies up to 300 Hz was measured by exciting the Station structure with a proof-mass shaker and a hammer and these results, and the impacts from payload fans are presented. ARIS has been in operation for two years and three Zeolite Crystal Growth Experiments have been supported.

  15. In-flight performance of the Goddard High Resolution Spectrograph of the Hubble Space Telescope

    NASA Astrophysics Data System (ADS)

    Troeltzsch, J.; Ebbets, D.; Garner, H.; Tuffli, A.; Breyer, R.; Kinsey, J.; Peck, C.; Lindler, D.; Feggans, J.

    1991-09-01

    The Goddard High Resolution Spectrograph (GHRS) has completed Orbital Verification and is well into the Science Verification phase of its mission. The instrument performance has been flawless, and many significant early science observations have been completed. The GHRS digicon detectors are well calibrated including the determination of operating parameters, detector geometry, and noise sensitivity. Tests using calibration lamps and standard UV stars have confirmed the instrument sensitivity and spectral resolving powers of Lambda/Delta-Lambda = 2000, 20,000, and 90,000. The sensitivity has not changed since the 1984 baseline ground based calibration. The GHRS flight software has been thoroughly tested, and is controlling all instrument observing as expected. Basic target acquisition testing and GHRS alignment calibrations have been successfully completed, and targets are routinely being located within 2-3 arcsecs of the initial pointing. Observations have been successfully performed using both the 2.0 x 2.0 arcsec aperture, and the smaller 0.25 x 0.25 arcsec aperture. The extended point spread function caused by the spherical aberration of the HST primary mirror has been well measured, and observing methods to deal with it have been developed. The aberrated image allows approximately 70 percent of the total energy into the large science aperture, and 15 percent of the total energy into the smaller aperture. Numerous science assessment observations of interesting astronomical targets have been completed, and indicate the extreme usefulness of the GHRS to the scientific community.

  16. Molecular sieve generation of aviator's oxygen: Performance of a prototype system under simulated flight conditions.

    PubMed

    Miller, R L; Ikels, K G; Lamb, M J; Boscola, E J; Ferguson, R H

    1980-07-01

    The molecular sieve method of generating an enriched-oxygen breathing gas is one of several candidate onboard oxygen generation (OBOG) systems under joint Army-Navy-Air Force development for application in tactical aircraft. The performance of a nominal two-man-capacity molecular sieve oxygen generation system was characterized under simulated flight conditions. Data are given on the composition of the molecular sieve-generated breathing gas (oxygen, nitrogen, carbon dioxide, and argon) as a function of inlet air pressure, altitude, breathing gas flow rate, and ambient temperature. The maximum oxygen concentration observed was 95%, with the balance argon. At low demand flow rates and certain conditions of pressure and altitude, the argon enrichment factor exceeded that of oxygen giving a maximum argon concentration of 6.6% with the balance oxygen. The structural integrity of the unit was verified by vibration and centrifuge testing. The performance of the molecular sieve unit is discussed in the context of aircraft operating envelopes using both diluter-demand and 100% delivery subsystems.

  17. Avionics performance analysis: A historical review and a current assessment of flight instrumentation and control systems in civil aviation

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The role of flight instrumentation and control systems in the advancement of civil aviation to the safest form of commercial transportation is discussed. Safety, cost reduction, and increased capabilities provided by recent developments are emphasized. Cost/performance considerations are considered in terms of determining the relative values of comparable systems or the absolute worth of a system.

  18. Flight performance of the TCV B-737 airplane at Jorge Newberry Airport, Buenos Aires, Argentina using TRSB/MLS guidance

    NASA Technical Reports Server (NTRS)

    White, W. F.; Clark, L.

    1980-01-01

    The flight performance of the Terminal Configured Vehicle airplane is summarized. Demonstration automatic approaches and landings utilizing time reference scanning beam microwave landing system (TRSB/MLS) guidance are presented. The TRSB/MLS was shown to provide the terminal area guidance necessary for flying curved automatic approaches with final legs as short as 2 km.

  19. Examining the Pilot and Controller Performance Data When in a Free Flight with Weather Phenomenon

    NASA Technical Reports Server (NTRS)

    Nituen, Celestine A.; Lozito, Sandra C. (Technical Monitor)

    2002-01-01

    The present study investigated effects of weather related factors on the performance of pilots under free flight. A weather scenario was defined by a combination of precipitation factors (light rain, moderate rain, and heavy rain or snow), visibility (1,4,8 miles), wind conditions (light, medium, or heavy), cloud ceiling (800ft. below, 1800ft above, and 4000ft horizontal). The performance of the aircraft self-separation was evaluated in terms of detection accuracy and detection times for student- and commercial (expert) pilots. Overall, the results obtained from a behavioral analysis showed that in general, the ability to recognize intruder aircraft conflict incidents, followed by the ability to acquire the spatial location of the intruder aircraft relative to ownership aircraft were judged to be the major cognitive tasks as perceived by the participants during self-separation. Further, the participants rarely used cockpit display of traffic information (CDTI) during conflict management related to aircraft separation, but used CDTI highly during decision-making tasks. In all weather scenarios, there were remarkable differences between expert and student pilots in detection times. In summary, weather scenarios were observed to affect intruder aircraft detection performance accuracies. There was interaction effects between weather Scenario-1 and Scenario-2 for climbing task data generated by both expert- and student- pilots at high traffic density. Scenario-3 weather condition provided an opportunity for poor detection accuracy as well as detection time increase. This may be attributed to low visibility. The intruder aircraft detection times were not affected by the weather conditions during climbing and descending tasks. The decision of pilots to fly into certain weather condition was dependent in part on the warning distance to the location of the weather. When pilots were warned of the weather conditions, they were more likely to fly their aircraft into it, but

  20. Post-Flight EDL Entry Guidance Performance of the 2011 Mars Science Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Mendeck, Gavin F.; McGrew, Lynn Craig

    2012-01-01

    The 2011 Mars Science Laboratory was the first successful Mars mission to attempt a guided entry which safely delivered the rover to a final position approximately 2 km from its target within a touchdown ellipse of 19.1 km x 6.9 km. The Entry Terminal Point Controller guidance algorithm is derived from the final phase Apollo Command Module guidance and, like Apollo, modulates the bank angle to control the range flown. For application to Mars landers which must make use of the tenuous Martian atmosphere, it is critical to balance the lift of the vehicle to minimize the range error while still ensuring a safe deploy altitude. An overview of the process to generate optimized guidance settings is presented, discussing improvements made over the last nine years. Key dispersions driving deploy ellipse and altitude performance are identified. Performance sensitivities including attitude initialization error and the velocity of transition from range control to heading alignment are presented. Just prior to the entry and landing of MSL in August 2012, the EDL team examined minute tuning of the reference trajectory for the selected landing site, analyzed whether adjustment of bank reversal deadbands were necessary, the heading alignment velocity trigger was in union with other parameters to balance the EDL risks, and the vertical L/D command limits. This paper details a preliminary postflight assessment of the telemetry and trajectory reconstruction that is being performed, and updates the information presented in the former paper Entry Guidance for the 2011 Mars Science Laboratory Mission (AIAA Atmospheric Flight Mechanics Conference; 8-11 Aug. 2011; Portland, OR; United States)

  1. DC-9 Flight Demonstration Program with Refanned JT8D Engines. Volume 3; Performance and Analysis

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The JT8D-109 engine has a sea level static, standard day bare engine takeoff thrust of 73,840 N. At sea level standard day conditions the additional thrust of the JT8D-109 results in 2,040 kg additional takeoff gross weight capability for a given field length. Range loss of the DC-9 Refan airplane for long range cruise was determined. The Refan airplane demonstrated stall, static longitudinal stability, longitudinal control, longitudinal trim, minimum control speeds, and directional control characteristics similar to the DC-9-30 production airplane and complied with airworthiness requirements. Cruise, climb, and thrust reverser performance were evaluated. Structural and dynamic ground test, flight test and analytical results substantiate Refan Program requirements that the nacelle, thrust reverser hardware, and the airplane structural modifications are flightworthy and certifiable and that the airplane meets flutter speed margins. Estimated unit cost of a DC-9 Refan retrofit program is 1.338 million in mid-1975 dollars with about an equal split in cost between airframe and engine.

  2. Pre-Flight Testing and Performance of a Ka-Band Software Defined Radio

    NASA Technical Reports Server (NTRS)

    Downey, Joseph A.; Reinhart, Richard C.; Kacpura, Thomas

    2012-01-01

    National Aeronautics and Space Administration (NASA) has developed a space-qualified, reprogrammable, Ka-band Software Defined Radio (SDR) to be utilized as part of an on-orbit, reconfigurable testbed. The testbed will operate on the truss of the International Space Station beginning in late 2012. Three unique SDRs comprise the testbed, and each radio is compliant to the Space Telecommunications Radio System (STRS) Architecture Standard. The testbed provides NASA, industry, other Government agencies, and academic partners the opportunity to develop communications, navigation, and networking applications in the laboratory and space environment, while at the same time advancing SDR technology, reducing risk, and enabling future mission capability. Designed and built by Harris Corporation, the Ka-band SDR is NASA's first space-qualified Ka-band SDR transceiver. The Harris SDR will also mark the first NASA user of the Ka-band capabilities of the Tracking Data and Relay Satellite System (TDRSS) for on-orbit operations. This paper describes the testbed's Ka-band System, including the SDR, travelling wave tube amplifier (TWTA), and antenna system. The reconfigurable aspects of the system enabled by SDR technology are discussed and the Ka-band system performance is presented as measured during extensive pre-flight testing.

  3. In-flight Far-Infrared Performance of the CIRS Instrument on Cassini

    NASA Technical Reports Server (NTRS)

    Nixon, Conor A.; Brasunas, John C.; Lakew, Brook; Fettig, Rainer; Jennings, Donald E.; Carlson, Ronald; Kunde, Virgil G.

    2004-01-01

    The Composite Infrared Spectrometer (CIRS) on-board Cassini consists of two interferometers: a conventional Michelson for the mid-infrared; and a Martin-Puplett type in the far-infrared employing wire grid polarizers to split, recombine and analyze the radiation. The far-IR focal plane (FP1) assembly uses two thermopile detectors to measure the final transmitted and reflected beams at the polarizer-analyzer: if one fails, the interferometer can still operate, albeit with a lower efficiency. The combined effect is for good response from 10 to 300/cm, and declining response to 600/cm. This paper will examine in-flight performance of the far-IR interferometer, including NESR and response. Regular noise spikes, resulting from pickup from other electrical sub-systems has been found on the CIRS interferograms, and the removal of these effects is discussed. The radiometric calibration is described, and then we show how the calibration was applied to science data taken during the Jupiter flyby of December 2000. Finally, we discuss signal-to-noise on the calibrated spectra, emphasizing limitations of the current instrument and the potential for improvement in future missions.

  4. Design and Performance of the NASA SCEPTOR Distributed Electric Propulsion Flight Demonstrator

    NASA Technical Reports Server (NTRS)

    Borer, Nicholas K.; Patterson, Michael D.; Viken, Jeffrey K.; Moore, Mark D.; Clarke, Sean; Redifer, Matthew E.; Christie, Robert J.; Stoll, Alex M.; Dubois, Arthur; Bevirt, JoeBen; Gibson, Andrew R.; Foster, Trevor J.; Osterkamp, Philip G.

    2016-01-01

    Distributed Electric Propulsion (DEP) technology uses multiple propulsors driven by electric motors distributed about the airframe to yield beneficial aerodynamic-propulsion interaction. The NASA SCEPTOR flight demonstration project will retrofit an existing internal combustion engine-powered light aircraft with two types of DEP: small "high-lift" propellers distributed along the leading edge of the wing which accelerate the flow over the wing at low speeds, and larger cruise propellers co-located with each wingtip for primary propulsive power. The updated high-lift system enables a 2.5x reduction in wing area as compared to the original aircraft, reducing drag at cruise and shifting the velocity for maximum lift-to-drag ratio to a higher speed, while maintaining low-speed performance. The wingtip-mounted cruise propellers interact with the wingtip vortex, enabling a further efficiency increase that can reduce propulsive power by 10%. A tradespace exploration approach is developed that enables rapid identification of salient trades, and subsequent creation of SCEPTOR demonstrator geometries. These candidates were scrutinized by subject matter experts to identify design preferences that were not modeled during configuration exploration. This exploration and design approach is used to create an aircraft that consumes an estimated 4.8x less energy at the selected cruise point when compared to the original aircraft.

  5. A flight investigation of performance and loads for a helicopter with 10-64C main rotor blade sections

    NASA Technical Reports Server (NTRS)

    Morris, C. E. K.; Tomaine, R. L.; Stevens, D. D.

    1980-01-01

    A flight investigation produced data on performance and rotor loads for a teetering rotor, AH-1G helicopter flown with a main rotor that had the NLR-1T airfoil as the blade section contour. The test envelope included hover, forward flight speeds from 34 to 83 m/sec (65 to 162 knots), and collective fixed maneuvers at about 0.25 tip speed ratio. The data set for each test point describes vehicle flight state, control positions, rotor loads, power requirements, and blade motions. Rotor loads are reviewed primarily in terms of peak to peak and harmonic content. Lower frequency components predominated for most loads and generally increased with increased airspeed, but not necessarily with increased maneuver load factor. Detailed data for an advanced airfoil on an AH-1G are presented.

  6. Operation and performance of the Ciba-Corning 512 coagulation monitor during parabolic flight

    NASA Technical Reports Server (NTRS)

    Gocke, Robyn; Lloyd, Charles W.; Greenthaner, Nancy K.

    1991-01-01

    The goal was to assess the functionality and evaluate the procedures and operations required to operate the Ciba-Corning 512 Coagulation Monitor during parabolic flight. This monitor determines the clotting characteristics of blood. The analyzer operates by laser detection of the cessation of blood flow in a capillary channel within a test cartridge. Test simulator results were excellent for both pre-and post-flight. In-flight results were not obtained due to the warm-up time required for the simulator. Since this is an electronic function only, the expected results on the simulator would be the same in zero-g.

  7. Flight Performance Handbook for Orbital Operations: Orbital Mechanics and Astrodynamics Formulae, Theorems, Techniques, and Applications

    NASA Technical Reports Server (NTRS)

    Ambrosio, Alphonso; Blitzer, Leon; Conte, S.D.; Cooper, Donald H.; Dergarabedian, P.; Dethlefsen, D.G.; Lunn, Richard L.; Ireland, Richard O.; Jensen, Arnold A.; Kang, Garfield; Levy, Ezra C.; Liu, Anthony; Marcus, Silvia R.; Mickelwait, A.B.; Moe, Kenneth; Moe, Mildred M.; Pitton, A.R.; Scheuer, Ernest M.; Tompkins, E.H.; Weiser, Peter B.; Whitford, R.K.; Wolverton, R.W.

    1961-01-01

    This handbook provides parametric data useful both to the space vehicle designer and mission analyst. It provides numerical and analytical relationships between missions and gross vehicle characteristics as a function of performance parameters. The effects of missile constraints and gross guidance limitations plus operational constraints such as launch site location, tracking net location, orbit visibility and mission on trajectory and orbit design parameters are exhibited. The influence of state-of- the-art applications of solar power as compared to future applications of nuclear power on orbit design parameters, such as eclipse time, are among the parameters included in the study. The principal aim, however, is in providing the analyst with useful parametric design information to cover the general area of earth satellite missions in the region of near-earth to cislunar space and beyond and from injection to atmospheric entry and controlled descent. The chapters are organized around the central idea of orbital operations in the 1961-1969 era with emphasis on parametric flight mechanics studies for ascent phase and parking orbits, transfer maneuvers, rendezvous maneuver, operational orbit considerations, and operational orbit control. The results are based almost entirely on the principles of flight and celestial mechanics. Numerous practical examples have been worked out in detail. This is especially important where it has been difficult or impossible to represent all possible variations of the parameters. The handbook contains analytical formulae and sufficient textual material to permit their proper use. The analytic methods consist of both exact and rapid, approximate methods. Scores of tables, working graphs and illustrations amplify the mathematical models which, together with important facts and data, cover the engineering and scientific applications of orbital mechanics. Each of the five major chapters are arranged to provide a rapid review of an entire

  8. Kinematics of chiropteran shoulder girdle in flight.

    PubMed

    Panyutina, A A; Kuznetsov, A N; Korzun, L P

    2013-03-01

    New data on the mechanisms of movements of the shoulder girdle and humerus of bats are described; potential mobility is compared to the movements actually used in flight. The study was performed on the basis of morphological and functional analysis of anatomical specimens of 15 species, high speed and high definition filming of two species and X-ray survey of Rousettus aegyptiacus flight. Our observations indicate that any excursions of the shoulder girdle in bats have relatively small input in the wing amplitude. Shoulder girdle movements resemble kinematics of a crank mechanism: clavicle plays the role of crank, and scapula-the role of connecting rod. Previously described osseous "locking mechanisms" in shoulder joint of advanced bats do not affect the movements, actually used in flight. The wing beats in bats are performed predominantly by movements of humerus relative to shoulder girdle, although these movements occupy the caudal-most sector of available shoulder mobility. PMID:23381941

  9. In-Flight Observations of Long-Term Single-Event Effect (SEE) Performance on X-ray Timing Explorer (XTE) Solid-state Recorders (SSRs)

    NASA Technical Reports Server (NTRS)

    Poivey, Christian; Gee, George; LaBel, Kenneth A.; Barth, Janet L.

    2004-01-01

    We present multi-year Single Event Upset (SEU) flight data on Solid State Recorder (SSR) memories for the X-ray Timing Explorer (XTE) NASA mission. Actual SEU rates are compared to the predicted rates based on ground test data and environment models.

  10. Flight performance, energetics and water turnover of tippler pigeons with a harness and dorsal load

    USGS Publications Warehouse

    Gessaman, J.A.; Workman, G.W.; Fuller, M.R.

    1991-01-01

    We measured carbon dioxide production and water efflux of 12 tippler pigeons (Columba spp.) during seven experimental flights using the doubly labeled water (DLW) method. Prior to the experiment birds were randomly assigned to one of two groups. One group flew as controls (no load or harness) on all seven flights. The other group wore a harness on two flights, a dorsal load/harness package (weighing about 5% of a bird's mass) on two flights, and they were without a load in three flights. Flight duration of pigeons with only a harness and with a dorsal load/harness package was 21 and 26% less, respectively, than the controls. Pigeons wearing a harness, or wearing a dorsal load/harness package lost water 50-90%, and 57-100% faster, respectively, than control pigeons. The mean CO2 production of pigeons wearing a harness or a load/harness package was not significantly different than pigeons without a harness or load. The small sample sizes and large variability in DLW measuremets precluded a good test of the energetic cost of flying with a harness and dorsal load.

  11. Flight Planning

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Seagull Technology, Inc., Sunnyvale, CA, produced a computer program under a Langley Research Center Small Business Innovation Research (SBIR) grant called STAFPLAN (Seagull Technology Advanced Flight Plan) that plans optimal trajectory routes for small to medium sized airlines to minimize direct operating costs while complying with various airline operating constraints. STAFPLAN incorporates four input databases, weather, route data, aircraft performance, and flight-specific information (times, payload, crew, fuel cost) to provide the correct amount of fuel optimal cruise altitude, climb and descent points, optimal cruise speed, and flight path.

  12. CID flight/impact

    NASA Technical Reports Server (NTRS)

    Barber, R.

    1986-01-01

    The planned versus the actual results of the controlled impact demonstration of a transport aircraft are discussed. Remote control systems, site selection, manned flight tests, and wreckage distribution are discussed.

  13. An Electronic Workshop on the Performance Seeking Control and Propulsion Controlled Aircraft Results of the F-15 Highly Integrated Digital Electronic Control Flight Research Program

    NASA Technical Reports Server (NTRS)

    Powers, Sheryll Goecke (Compiler)

    1995-01-01

    Flight research for the F-15 HIDEC (Highly Integrated Digital Electronic Control) program was completed at NASA Dryden Flight Research Center in the fall of 1993. The flight research conducted during the last two years of the HIDEC program included two principal experiments: (1) performance seeking control (PSC), an adaptive, real-time, on-board optimization of engine, inlet, and horizontal tail position on the F-15; and (2) propulsion controlled aircraft (PCA), an augmented flight control system developed for landings as well as up-and-away flight that used only engine thrust (flight controls locked) for flight control. In September 1994, the background details and results of the PSC and PCA experiments were presented in an electronic workshop, accessible through the Dryden World Wide Web (http://www.dfrc.nasa.gov/dryden.html) and as a compact disk.

  14. Team Performance and Error Management in Chinese and American Simulated Flight Crews: The Role of Cultural and Individual Differences

    NASA Technical Reports Server (NTRS)

    Davis, Donald D.; Bryant, Janet L.; Tedrow, Lara; Liu, Ying; Selgrade, Katherine A.; Downey, Heather J.

    2005-01-01

    This report describes results of a study conducted for NASA-Langley Research Center. This study is part of a program of research conducted for NASA-LARC that has focused on identifying the influence of national culture on the performance of flight crews. We first reviewed the literature devoted to models of teamwork and team performance, crew resource management, error management, and cross-cultural psychology. Davis (1999) reported the results of this review and presented a model that depicted how national culture could influence teamwork and performance in flight crews. The second study in this research program examined accident investigations of foreign airlines in the United States conducted by the National Transportation Safety Board (NTSB). The ability of cross-cultural values to explain national differences in flight outcomes was examined. Cultural values were found to covary in a predicted way with national differences, but the absence of necessary data in the NTSB reports and limitations in the research method that was used prevented a clear understanding of the causal impact of cultural values. Moreover, individual differences such as personality traits were not examined in this study. Davis and Kuang (2001) report results of this second study. The research summarized in the current report extends this previous research by directly assessing cultural and individual differences among students from the United States and China who were trained to fly in a flight simulator using desktop computer workstations. The research design used in this study allowed delineation of the impact of national origin, cultural values, personality traits, cognitive style, shared mental model, and task workload on teamwork, error management and flight outcomes. We briefly review the literature that documents the importance of teamwork and error management and its impact on flight crew performance. We next examine teamwork and crew resource management training designed to improve

  15. Improvement of the aerodynamic performance by wing flexibility and elytra--hind wing interaction of a beetle during forward flight.

    PubMed

    Le, Tuyen Quang; Truong, Tien Van; Park, Soo Hyung; Quang Truong, Tri; Ko, Jin Hwan; Park, Hoon Cheol; Byun, Doyoung

    2013-08-01

    In this work, the aerodynamic performance of beetle wing in free-forward flight was explored by a three-dimensional computational fluid dynamics (CFDs) simulation with measured wing kinematics. It is shown from the CFD results that twist and camber variation, which represent the wing flexibility, are most important when determining the aerodynamic performance. Twisting wing significantly increased the mean lift and camber variation enhanced the mean thrust while the required power was lower than the case when neither was considered. Thus, in a comparison of the power economy among rigid, twisting and flexible models, the flexible model showed the best performance. When the positive effect of wing interaction was added to that of wing flexibility, we found that the elytron created enough lift to support its weight, and the total lift (48.4 mN) generated from the simulation exceeded the gravity force of the beetle (47.5 mN) during forward flight. PMID:23740486

  16. Improvement of the aerodynamic performance by wing flexibility and elytra–hind wing interaction of a beetle during forward flight

    PubMed Central

    Le, Tuyen Quang; Truong, Tien Van; Park, Soo Hyung; Quang Truong, Tri; Ko, Jin Hwan; Park, Hoon Cheol; Byun, Doyoung

    2013-01-01

    In this work, the aerodynamic performance of beetle wing in free-forward flight was explored by a three-dimensional computational fluid dynamics (CFDs) simulation with measured wing kinematics. It is shown from the CFD results that twist and camber variation, which represent the wing flexibility, are most important when determining the aerodynamic performance. Twisting wing significantly increased the mean lift and camber variation enhanced the mean thrust while the required power was lower than the case when neither was considered. Thus, in a comparison of the power economy among rigid, twisting and flexible models, the flexible model showed the best performance. When the positive effect of wing interaction was added to that of wing flexibility, we found that the elytron created enough lift to support its weight, and the total lift (48.4 mN) generated from the simulation exceeded the gravity force of the beetle (47.5 mN) during forward flight. PMID:23740486

  17. Improvement of the aerodynamic performance by wing flexibility and elytra--hind wing interaction of a beetle during forward flight.

    PubMed

    Le, Tuyen Quang; Truong, Tien Van; Park, Soo Hyung; Quang Truong, Tri; Ko, Jin Hwan; Park, Hoon Cheol; Byun, Doyoung

    2013-08-01

    In this work, the aerodynamic performance of beetle wing in free-forward flight was explored by a three-dimensional computational fluid dynamics (CFDs) simulation with measured wing kinematics. It is shown from the CFD results that twist and camber variation, which represent the wing flexibility, are most important when determining the aerodynamic performance. Twisting wing significantly increased the mean lift and camber variation enhanced the mean thrust while the required power was lower than the case when neither was considered. Thus, in a comparison of the power economy among rigid, twisting and flexible models, the flexible model showed the best performance. When the positive effect of wing interaction was added to that of wing flexibility, we found that the elytron created enough lift to support its weight, and the total lift (48.4 mN) generated from the simulation exceeded the gravity force of the beetle (47.5 mN) during forward flight.

  18. In-Flight Thermal Performance of the Lidar In-Space Technology Experiment

    NASA Technical Reports Server (NTRS)

    Roettker, William

    1995-01-01

    The Lidar In-Space Technology Experiment (LITE) was developed at NASA s Langley Research Center to explore the applications of lidar operated from an orbital platform. As a technology demonstration experiment, LITE was developed to gain experience designing and building future operational orbiting lidar systems. Since LITE was the first lidar system to be flown in space, an important objective was to validate instrument design principles in such areas as thermal control, laser performance, instrument alignment and control, and autonomous operations. Thermal and structural analysis models of the instrument were developed during the design process to predict the behavior of the instrument during its mission. In order to validate those mathematical models, extensive engineering data was recorded during all phases of LITE's mission. This inflight engineering data was compared with preflight predictions and, when required, adjustments to the thermal and structural models were made to more accurately match the instrument s actual behavior. The results of this process for the thermal analysis and design of LITE are presented in this paper.

  19. Flight code validation simulator

    SciTech Connect

    Sims, B.A.

    1995-08-01

    An End-To-End Simulation capability for software development and validation of missile flight software on the actual embedded computer has been developed utilizing a 486 PC, i860 DSP coprocessor, embedded flight computer and custom dual port memory interface hardware. This system allows real-time interrupt driven embedded flight software development and checkout. The flight software runs in a Sandia Digital Airborne Computer (SANDAC) and reads and writes actual hardware sensor locations in which IMU (Inertial Measurements Unit) data resides. The simulator provides six degree of freedom real-time dynamic simulation, accurate real-time discrete sensor data and acts on commands and discretes from the flight computer. This system was utilized in the development and validation of the successful premier flight of the Digital Miniature Attitude Reference System (DMARS) in January 1995 at the White Sands Missile Range on a two stage attitude controlled sounding rocket.

  20. Flight performance energetics and water turnovers of Tippler Pigeons with a harness and doorsal load

    USGS Publications Warehouse

    Gessaman, James A.; Workman, Gar W.; Fuller, Mark R.

    1991-01-01

    We measured carbon dioxide production and water efflux of 12 tippler pigeons (Columba spp.) during seven experimental flights using the doubly labeled water (DLW) method. Prior to the experiment birds were randomly assigned to one of two groups. One group flew as controls (no load or harness) on all seven flights. The other group wore a harness on two flights, a dorsal load/harness package (weighing about 5% of a birda??s mass) on two flights, and they were without a load in three flights. Plight duration of pigeons with only a harness and with a dorsal load/harness package was 21 and 26% less, respectively, than the controls. Pigeons wearing a harness, or wearing a dorsal load/harness package lost water 50-90%, and 57-100% faster, respectively, than control pigeons. The mean CO, production of pigeons wearing a harness or a load/harness package was not significantly different than pigeons without a harness or load. The small sample sizes and large variability in DLW measurements precluded a good test of the energetic cost of flying with a harness and dorsal load.

  1. A Full Mission Simulator Study of Aircrew Performances: the Measurement of Crew Coordination and Decisionmaking Factors and Their Relationships to Flight Task Performances

    NASA Technical Reports Server (NTRS)

    Murphy, M. R.; Randle, R. J.; Tanner, T. A.; Frankel, R. M.; Goguen, J. A.; Linde, C.

    1984-01-01

    Sixteen three man crews flew a full mission scenario in an airline flight simulator. A high level of verbal interaction during instances of critical decision making was located. Each crew flew the scenario only once, without prior knowledge of the scenario problem. Following a simulator run and in accord with formal instructions, each of the three crew members independently viewed and commented on a videotape of their performance. Two check pilot observers rated pilot performance across all crews and, following each run, also commented on the video tape of the crew's performance. A linguistic analysis of voice transcript is made to provide assessment of crew coordination and decision making qualities. Measures of crew coordination and decision making factors are correlated with flight task performance measures.

  2. Flight Crew Workload, Acceptability, and Performance When Using Data Comm in a High-Density Terminal Area Simulation

    NASA Technical Reports Server (NTRS)

    Norman, R. Michael; Baxley, Brian T.; Adams, Cathy A.; Ellis, Kyle K. E.; Latorella, Kara A.; Comstock, James R., Jr.

    2013-01-01

    This document describes a collaborative FAA/NASA experiment using 22 commercial airline pilots to determine the effect of using Data Comm to issue messages during busy, terminal area operations. Four conditions were defined that span current day to future flight deck equipage: Voice communication only, Data Comm only, Data Comm with Moving Map Display, and Data Comm with Moving Map displaying taxi route. Each condition was used in an arrival and a departure scenario at Boston Logan Airport. Of particular interest was the flight crew response to D-TAXI, the use of Data Comm by Air Traffic Control (ATC) to send taxi instructions. Quantitative data was collected on subject reaction time, flight technical error, operational errors, and eye tracking information. Questionnaires collected subjective feedback on workload, situation awareness, and acceptability to the flight crew for using Data Comm in a busy terminal area. Results showed that 95% of the Data Comm messages were responded to by the flight crew within one minute and 97% of the messages within two minutes. However, post experiment debrief comments revealed almost unanimous consensus that two minutes was a reasonable expectation for crew response. Flight crews reported that Expected D-TAXI messages were useful, and employment of these messages acceptable at all altitude bands evaluated during arrival scenarios. Results also indicate that the use of Data Comm for all evaluated message types in the terminal area was acceptable during surface operations, and during arrivals at any altitude above the Final Approach Fix, in terms of response time, workload, situation awareness, and flight technical performance. The flight crew reported the use of Data Comm as implemented in this experiment as unacceptable in two instances: in clearances to cross an active runway, and D-TAXI messages between the Final Approach Fix and 80 knots during landing roll. Critical cockpit tasks and the urgency of out-the window scan made the

  3. The role of visual perception measures used in sports vision programmes in predicting actual game performance in Division I collegiate hockey players.

    PubMed

    Poltavski, Dmitri; Biberdorf, David

    2015-01-01

    Abstract In the growing field of sports vision little is still known about unique attributes of visual processing in ice hockey and what role visual processing plays in the overall athlete's performance. In the present study we evaluated whether visual, perceptual and cognitive/motor variables collected using the Nike SPARQ Sensory Training Station have significant relevance to the real game statistics of 38 Division I collegiate male and female hockey players. The results demonstrated that 69% of variance in the goals made by forwards in 2011-2013 could be predicted by their faster reaction time to a visual stimulus, better visual memory, better visual discrimination and a faster ability to shift focus between near and far objects. Approximately 33% of variance in game points was significantly related to better discrimination among competing visual stimuli. In addition, reaction time to a visual stimulus as well as stereoptic quickness significantly accounted for 24% of variance in the mean duration of the player's penalty time. This is one of the first studies to show that some of the visual skills that state-of-the-art generalised sports vision programmes are purported to target may indeed be important for hockey players' actual performance on the ice. PMID:25142869

  4. The role of visual perception measures used in sports vision programmes in predicting actual game performance in Division I collegiate hockey players.

    PubMed

    Poltavski, Dmitri; Biberdorf, David

    2015-01-01

    Abstract In the growing field of sports vision little is still known about unique attributes of visual processing in ice hockey and what role visual processing plays in the overall athlete's performance. In the present study we evaluated whether visual, perceptual and cognitive/motor variables collected using the Nike SPARQ Sensory Training Station have significant relevance to the real game statistics of 38 Division I collegiate male and female hockey players. The results demonstrated that 69% of variance in the goals made by forwards in 2011-2013 could be predicted by their faster reaction time to a visual stimulus, better visual memory, better visual discrimination and a faster ability to shift focus between near and far objects. Approximately 33% of variance in game points was significantly related to better discrimination among competing visual stimuli. In addition, reaction time to a visual stimulus as well as stereoptic quickness significantly accounted for 24% of variance in the mean duration of the player's penalty time. This is one of the first studies to show that some of the visual skills that state-of-the-art generalised sports vision programmes are purported to target may indeed be important for hockey players' actual performance on the ice.

  5. Flight take-off performance of Colorado potato beetle in relation to potato phenology.

    PubMed

    Mbungu, Nsitu T; Boiteau, Gilles

    2008-02-01

    The flight take-off frequency of adult Colorado potato beetles, Leptinotarsa decemlineata (Say), from potato plants, Solanum tuberosum L. 'Red Pontiac' at the bloom stage of development was 2.2-2.5-fold that of Colorado potato beetle from plants at the vegetative stage. Tests were conducted in a flight chamber over a period of 3 h. Prefeeding Colorado potato beetles for 48 h on potato plants at the bloom or at the vegetative stage before placing them into the flight chamber resulted in the same significantly higher flight take-off frequency from potato plants at the bloom stage than from plants at the vegetative stage. These results demonstrate that the factor in potato plants in bloom that stimulates the flight take-off of the Colorado potato beetle is independent of the feeding history of the beetles and begins acting only when the beetles are in the presence of the plant. According to these results, the dispersal of adult Colorado potato beetles from potato fields in bloom to younger potato fields with plants at the vegetative stage, previously reported in the literature, is at least partly explained by the effect of plant phenology on the frequency of flight take-off. Results confirm the value of planting potato fields of similar phenology over as wide an area as possible to reduce Colorado potato beetle dispersal between fields. Results also imply that staggering the planting dates of conventional potato refuge areas near Colorado potato beetle transgenic or conventionally resistant potato fields is a sound management practice, because it promotes the movement of wild beetles over to the adjacent younger resistant crops.

  6. Performance of the Components of the XJ34-WE-32 Turbojet Engine over a Range of Engine and Flight Conditions

    NASA Technical Reports Server (NTRS)

    Mcaulay, John E; Sobolewski, Adam E; Smith, Ivan D

    1952-01-01

    Performance of the compressor, combustor, and turbine operating as integral parts of the XJ34-WE-32 turbojet engine was determined in the Lewis altitude wind tunnel over a range of altitudes from 5000 to 55,000 feet and flight Mach numbers from 0.28 to 1.05. Data were obtained for each of four exhaust-nozzle areas and are presented in graphical and tabular form.

  7. Chasing behavior and optomotor following in free-flying male blowflies: flight performance and interactions of the underlying control systems.

    PubMed

    Trischler, Christine; Kern, Roland; Egelhaaf, Martin

    2010-01-01

    The chasing behavior of male blowflies after small targets belongs to the most rapid and virtuosic visually guided behaviors found in nature. Since in a structured environment any turn towards a target inevitably leads to a displacement of the entire retinal image in the opposite direction, it might evoke optomotor following responses counteracting the turn. To analyze potential interactions between the control systems underlying chasing behavior and optomotor following, respectively, we performed behavioral experiments on male blowflies and examined the characteristics of the two flight control systems in isolation and in combination. Three findings are particularly striking. (i) The characteristic saccadic flight and gaze style - a distinctive feature of blowfly cruising flights - is largely abandoned when the entire visual surroundings move around the fly; in this case flies tend to follow the moving pattern in a relatively continuous and smooth way. (ii) When male flies engage in following a small target, they also employ a smooth pursuit strategy. (iii) Although blowflies are reluctant to fly at high background velocities, the performance and dynamical characteristics of the chasing system are not much affected when the background moves in either the same or in the opposite direction as the target. Hence, the optomotor following response is largely suppressed by the chasing system and does not much impair chasing performance.

  8. A Fuzzy Technique for Performing Lateral-Axis Formation Flight Navigation Using Wingtip Vortices

    NASA Technical Reports Server (NTRS)

    Hanson, Curtis E.

    2003-01-01

    Close formation flight involving aerodynamic coupling through wingtip vortices shows significant promise to improve the efficiency of cooperative aircraft operations. Impediments to the application of this technology include internship communication required to establish precise relative positioning. This report proposes a method for estimating the lateral relative position between two aircraft in close formation flight through real-time estimates of the aerodynamic effects imparted by the leading airplane on the trailing airplane. A fuzzy algorithm is developed to map combinations of vortex-induced drag and roll effects to relative lateral spacing. The algorithm is refined using self-tuning techniques to provide lateral relative position estimates accurate to 14 in., well within the requirement to maintain significant levels of drag reduction. The fuzzy navigation algorithm is integrated with a leader-follower formation flight autopilot in a two-ship F/A-18 simulation with no intership communication modeled. It is shown that in the absence of measurements from the leading airplane the algorithm provides sufficient estimation of lateral formation spacing for the autopilot to maintain stable formation flight within the vortex. Formation autopilot trim commands are used to estimate vortex effects for the algorithm. The fuzzy algorithm is shown to operate satisfactorily with anticipated levels of input uncertainties.

  9. 14 CFR Appendix C to Part 60 - Qualification Performance Standards for Helicopter Full Flight Simulators

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... (e) The engine model(s) and its data revision number or reference. (f) The flight control data.... Logging FFS Discrepancies (§ 60.20). 16. Interim Qualification of FFSs for New Helicopter Types or Models..., 30354. Telephone contact numbers for the NSP are: phone, 404-832-4700; fax, 404-761-8906. The general...

  10. In-Flight Anomalies and Radiation Performance of NASA Missions - Selected Lessons Learned

    NASA Technical Reports Server (NTRS)

    LaBel, Kenneth A.

    2008-01-01

    This presentation addresses in-flight electronic disturbances and radiation, specifically anomaly resolution. The process for anomaly review takes into account the environment, selected parts and design, existing and/or new radiation test data, risk probability and actions to be taken. Noise spikes and the meaning of upset in a fiber optic link are also discussed.

  11. Miracle Flights

    MedlinePlus

    ... the perfect solution for your needs. Book A Flight Request a flight now Click on the link ... Now Make your donation today Saving Lives One Flight At A Time Miracle Flights provides free flights ...

  12. [Evaluation of condition and factors affecting activity effectiveness and visual performance of pilots who use night vision goggles during the helicopter flights].

    PubMed

    Aleksandrov, A S; Davydov, V V; Lapa, V V; Minakov, A A; Sukhanov, V V; Chistov, S D

    2014-07-01

    According to analysis of questionnaire authors revealed factors, which affect activity effectiveness, and visual performance of pilots who use night vision goggles during the helicopter flights. These are: difficulty of flight tasks, flying conditions, illusion of attitude. Authors gave possible ways to reduce an impact of these factors.

  13. Space Environment Factors Affecting the Performance of International Space Station Materials: The First Two Years of Flight Operations

    NASA Technical Reports Server (NTRS)

    Koontz, Steven L.; Peldey, Michael; Mayeaux, Brian; Milkatarian, Ronald R.; Golden, John; Boeder, paul; Kern, John; Barsamian, Hagop; Alred, John; Soares, Carlos; Christiansen, Eric; Schneider, Todd; Edwards, Dave

    2003-01-01

    In this paper, the natural and induced space environment factors affecting materials performance on ISS are described in some detail. The emphasis will be on ISS flight experience and the more significant design and development issues of the last two years. The intent is to identify and document the set of space environment factors, affecting materials, that are producing the largest impacts on the ISS flight hardware verification and acceptance process and on ISS flight operations. Orbital inclination (S1.6 ) and altitude (nominal3S0 km to 400 km altitude) determine the set of natural environment factors affecting the functional life of materials and subsystems on ISS. ISS operates in the F2 region of Earth's ionosphere in well-defined fluxes of atomic oxygen, other ionospheric plasma species, and solar UV, VUV, and x-ray radiation, as well as galactic cosmic rays, trapped radiation, and solar cosmic rays (1,2). The high latitude orbital environment also exposes external surfaces to significantly less well-defined or predictable fluxes of higher energy trapped electrons and auroral electrons (3 ,4). The micrometeoroid and orbital debris environment is an important determinant of spacecraft design and operations in any orbital inclination. Environment factors induced by ISS flight operations include ram-wake effects, magnetic induction voltages arising from flight through Earth's magnetic field, hypergolic thruster plume impingement from proximity operations of visiting vehicles, materials outgassing, venting and dumping of fluids, ISS thruster operations, as well as specific electrical power system interactions with the ionospheric plasma (S-7). ISS must fly in a very limited number of approved flight attitudes leading to location specific environmental exposures and extreme local thermal environments (8). ISS is a large vehicle and produces a deep wake structure from which both ionospheric plasma and neutrals (atomic oxygen) are largely excluded (9-11). At high

  14. Visual Performance Challenges to Low-Frequency Perturbations After Long-Duration Space Flight, and Countermeasure Development

    NASA Technical Reports Server (NTRS)

    Mulavara, Ajitkumar; Wood, Scott; Fiedler, Matthew; Kofman, Igor; Kulecz, Walter B.; Miller, Chris; Peters, Brian; Serrador, Jorge; Cohen, Helen; Reschke, Millard; Bloomberg, Jacob

    2010-01-01

    Astronauts experience sensorimotor disturbances after long-duration space flight. After a water landing, crewmembers may need to egress the vehicle within a few minutes for safety and operational reasons in various sea state conditions. Exposure to even low-frequency motions induced by sea conditions surrounding a vessel can cause significant motor control problems affecting critical functions. The first objective of this study was to document human visual performance during simulated wave motion below 2.0 Hz. We examined the changes in accuracy and reaction time when subjects performed a visual target acquisition task in which the location of the target was offset vertically during horizontal rotation at an oscillating frequency of 0.8 Hz. The main finding was that both accuracy and reaction time varied as a function of target location, with greater performance decrements occurring when vertical targets were acquired at perturbing frequencies of 0.8 Hz in the horizontal plane. A second objective was to develop a countermeasure, base d on stochastic resonance (SR), to enhance sensorimotor capabilities with the aim of facilitating rapid adaptation to gravitational transitions after long-duration space flight. SR is a mechanism by which noise can enhance the response of neural systems to relevant sensory signals. Recent studies have shown that applying imperceptible stochastic electrical stimulation to the vestibular system (SVS) significantly improved balance and oculomotor responses. This study examined the effectiveness of SVS on improving balance performance. Subjects performed a standard balance task while bipolar SVS was applied to the vestibular system using constant current stimulation through electrodes placed over the mastoid process. The main finding of this study was that balance performance with the application of SR showed significant improvement in the range of 10%-25%. Ultimately an SR-based countermeasure might be fielded either as preflight training

  15. Application of a Constant Gain Extended Kalman Filter for In-Flight Estimation of Aircraft Engine Performance Parameters

    NASA Technical Reports Server (NTRS)

    Kobayashi, Takahisa; Simon, Donald L.; Litt, Jonathan S.

    2005-01-01

    An approach based on the Constant Gain Extended Kalman Filter (CGEKF) technique is investigated for the in-flight estimation of non-measurable performance parameters of aircraft engines. Performance parameters, such as thrust and stall margins, provide crucial information for operating an aircraft engine in a safe and efficient manner, but they cannot be directly measured during flight. A technique to accurately estimate these parameters is, therefore, essential for further enhancement of engine operation. In this paper, a CGEKF is developed by combining an on-board engine model and a single Kalman gain matrix. In order to make the on-board engine model adaptive to the real engine s performance variations due to degradation or anomalies, the CGEKF is designed with the ability to adjust its performance through the adjustment of artificial parameters called tuning parameters. With this design approach, the CGEKF can maintain accurate estimation performance when it is applied to aircraft engines at offnominal conditions. The performance of the CGEKF is evaluated in a simulation environment using numerous component degradation and fault scenarios at multiple operating conditions.

  16. A flight investigation of performance and loads for a helicopter with NLR-1T main-rotor blade sections

    NASA Technical Reports Server (NTRS)

    Morris, C. E. K., Jr.; Tomaine, R. L.; Stevens, D. D.

    1979-01-01

    Data on performance and rotor loads for a teetering-rotor, AH-1G helicopter flown with a main rotor that had the NLR-1T airfoil as the blade-section contour are presented. The test envelope included hover, forward-flight speed sweeps from 35 to 85 m/sec, and collective-fixed maneuvers at about 0.25 tip-speed ratio. The data set for each test point described vehicle flight state, control positions, rotor loads, power requirements, and blade motions. Rotor loads are reviewed primarily in terms of peak-to-peak and harmonic content. Lower frequency components predominated for most loads and generally increased with increased airspeed, but not necessarily with increased maneuver load factor.

  17. Linear-Parameter-Varying Antiwindup Compensation for Enhanced Flight Control Performance

    NASA Technical Reports Server (NTRS)

    Lu, Bei; Wu, Fen; Kim, Sung Wan

    2005-01-01

    Actuator saturation is one of the major issues of flight control in the high angle-of-attack region. This paper presents a saturation control scheme for linear parameter varyjing (LPV) systems from an antiwindup control perspective. The proposed control approach is advantageous from the implementation standpoint because it can be thought of as an augmented control algorithm to the existing control system. Moreover, the synthesis condition for an antiwindup compensator is formulated as a linear matrix inequality (LMI) optimization problem and can be solved efficiently. We have applied te LPV antiwindup controller to an F-16 longitudinal autopilot control system design and compared it with the thrust vectoring control scheme. The nonlinear simulations show that an LPV antiwindup controller improves flight quality and offers advantages over thrust vectoring in a high angle-of-attack region.

  18. Flight test evaluation of predicted light aircraft drag, performance, and stability

    NASA Technical Reports Server (NTRS)

    Smetana, F. O.; Fox, S. R.

    1979-01-01

    A technique was developed which permits simultaneous extraction of complete lift, drag, and thrust power curves from time histories of a single aircraft maneuver such as a pull up (from V max to V stall) and pushover (to V max for level flight). The technique, which is an extension of nonlinear equations of motion of the parameter identification methods of Iliff and Taylor and includes provisions for internal data compatibility improvement as well, was shown to be capable of correcting random errors in the most sensitive data channel and yielding highly accurate results. Flow charts, listings, sample inputs and outputs for the relevant routines are provided as appendices. This technique was applied to flight data taken on the ATLIT aircraft. Lack of adequate knowledge of the correct full throttle thrust horsepower true airspeed variation and considerable internal data inconsistency made it impossible to apply the trajectory matching features of the technique.

  19. From Research to Flight: Thinking About Implementation While Performing Fundamental Research

    NASA Technical Reports Server (NTRS)

    Johnson, Les

    2010-01-01

    This slide presentation calls for a strategy to implement new technologies. Such a strategy would allow advanced space transportation technologies to mature for exploration beyond Earth orbit. It discusses the difference between technology push versus technology pull. It also reviews the three basic technology readiness levels (TRL). The presentation traces examples of technology development to flight application: the Space Shuttle Main Engine Advanced Health Management System, the Friction Stir Welding technology the (auto-adjustable pin tool). A couple of technologies currently not in flight, but are being reviewed for potential use are: cryogenic fluid management (CFM), and solar sail propulsion. There is also an attempt to explain why new technologies are so difficult to field.

  20. Personalized medicine in human space flight: using Omics based analyses to develop individualized countermeasures that enhance astronaut safety and performance.

    PubMed

    Schmidt, Michael A; Goodwin, Thomas J

    2013-01-01

    Space flight is one of the most extreme conditions encountered by humans. Advances in Omics methodologies (genomics, transcriptomics, proteomics, and metabolomics) have revealed that unique differences exist between individuals. These differences can be amplified in extreme conditions, such as space flight. A better understanding of individual differences may allow us to develop personalized countermeasure packages that optimize the safety and performance of each astronaut. In this review, we explore the role of "Omics" in advancing our ability to: (1) more thoroughly describe the biological response of humans in space; (2) describe molecular attributes of individual astronauts that alter the risk profile prior to entering the space environment; (3) deploy Omics techniques in the development of personalized countermeasures; and (4) develop a comprehensive Omics-based assessment and countermeasure platform that will guide human space flight in the future. In this review, we advance the concept of personalized medicine in human space flight, with the goal of enhancing astronaut safety and performance. Because the field is vast, we explore selected examples where biochemical individuality might significantly impact countermeasure development. These include gene and small molecule variants associated with: (1) metabolism of therapeutic drugs used in space; (2) one carbon metabolism and DNA stability; (3) iron metabolism, oxidative stress and damage, and DNA stability; and (4) essential input (Mg and Zn) effects on DNA repair. From these examples, we advance the case that widespread Omics profiling should serve as the foundation for aerospace medicine and research, explore methodological considerations to advance the field, and suggest why personalized medicine may become the standard of care for humans in space.

  1. Physiologic and anti-G suit performance data from YF-16 flight tests

    NASA Technical Reports Server (NTRS)

    Gillingham, K. K.; Winter, W. R.

    1976-01-01

    Biomedical data were collected during high-G portions of 11 YF-16 test flights. Test pilots monitored revealed increased respiratory rate and volume, decreased tidal volume, and increased heart rate at higher G levels, with one pilot exhibiting various cardiac arrhythmias. Anti-G suit inflation and pressurization lags varied inversely with G-onset rate, and suit pressurization slope was near the design value.

  2. Eclipse takeoff and flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    This 25-second clip shows the QF-106 'Delta Dart' tethered to the USAF C-141A during takeoff and in flight. NASA Dryden Flight Research Center, Edwards, California, supported a Kelly Space and Technology, Inc. (KST)/U.S. Air Force project known as Eclipse, which demonstrated a reusable tow launch vehicle concept. The purpose of the project was to demonstrate a reusable tow launch vehicle concept that had been conceived and patented by KST. Kelly Space obtained a contract with the USAF Research Laboratory for the tow launch demonstration project under the Small Business Innovation Research (SBIR) program. The USAF SBIR contract included the modifications to turn the QF-106 into the Experimental Demonstrator #1 (EXD-01), and the C141A aircraft to incorporate the tow provisions to link the two aircraft, as well as conducting flight tests. The demonstration consisted of ground and flight tests. These tests included a Combined Systems Test of both airplanes joined by a tow rope, a towed taxi test, and six towed flights. The primary goal of the project was demonstrating the tow phase of the Eclipse concept using a scaled-down tow aircraft (C-141A) and a representative aerodynamically-shaped aircraft (QF-106A) as a launch vehicle. This was successfully accomplished. On December 20, 1997, NASA research pilot Mark Stucky flew a QF-106 on the first towed flight behind an Air Force C-141 in the joint Eclipse project with KST to demonstrate the reusable tow launch vehicle concept developed by KST. Kelly hoped to use the data from the tow tests to validate a tow-to-launch procedure for reusable space launch vehicles. Stucky flew six successful tow tests between December 1997 and February 6, 1998. On February 6, 1998, the sixth and final towed flight brought the project to a successful completion. Preliminary flight results determined that the handling qualities of the QF-106 on tow were very stable; actual flight measured values of tow rope tension were well within predictions

  3. Environmental performance of an integrated fixed-film activated sludge (IFAS) reactor treating actual municipal wastewater during start-up phase.

    PubMed

    Singh, Nitin Kumar; Kazmi, Absar Ahmad; Starkl, Markus

    2015-01-01

    The present study summarizes the start-up performance and lessons learned during the start-up and optimization of a pilot-scale plant employing integrated fixed film activated sludge (IFAS) process treating actual municipal wastewater. A comprehensive start-up was tailored and implemented to cater for all the challenges and problems associated with start-up. After attaining desired suspended biomass (2,000-3,000 mg/L) and sludge age (∼7 days), the average biological oxygen demand (BOD) and chemical oxygen demand (COD) removals were observed as 77.3 and 70.9%, respectively, at optimized conditions, i.e. hydraulic retention time (HRT), 6.9 h; return sludge rate, 160%. The influent concentrations of COD, BOD, total suspended solids, NH3-N, total nitrogen and total phosphorus were found to be in the range of 157-476 mg/L, 115-283 mg/L, 152-428 mg/L, 23.2-49.3 mg/L, 30.1-52 mg/L and 3.6-7.8 mg/L, respectively, and the minimum effluent concentrations were achieved as ∼49 mg/L, 23 mg/L, 35 mg/L, 2.2 mg/L, 3.4 mg/L and 2.8 mg/L, respectively, at optimum state. The present system was found effective in the removal of pathogenic bacteria (Escherichia coli, 79%; Salmonella spp., 97.5%; Shigella spp., 92.9%) as well as coliforms (total coliforms, 97.65%; faecal coliforms, 80.35%) without any disinfection unit. Moreover it was observed that the time required for the stabilization of the plant was approximately 3 weeks if other parameters (sludge age, HRT and dissolved oxygen) are set to optimized values. PMID:26540547

  4. The design and flight performance of the PoGOLite Pathfinder balloon-borne hard X-ray polarimeter

    NASA Astrophysics Data System (ADS)

    Chauvin, M.; Florén, H.-G.; Jackson, M.; Kamae, T.; Kawano, T.; Kiss, M.; Kole, M.; Mikhalev, V.; Moretti, E.; Olofsson, G.; Rydström, S.; Takahashi, H.; Lind, J.; Strömberg, J.-E.; Welin, O.; Iyudin, A.; Shifrin, D.; Pearce, M.

    2016-02-01

    In the 50 years since the advent of X-ray astronomy there have been many scientific advances due to the development of new experimental techniques for detecting and characterising X-rays. Observations of X-ray polarisation have, however, not undergone a similar development. This is a shortcoming since a plethora of open questions related to the nature of X-ray sources could be resolved through measurements of the linear polarisation of emitted X-rays. The PoGOLite Pathfinder is a balloon-borne hard X-ray polarimeter operating in the 25-240 keV energy band from a stabilised observation platform. Polarisation is determined using coincident energy deposits in a segmented array of plastic scintillators surrounded by a BGO anticoincidence system and a polyethylene neutron shield. The PoGOLite Pathfinder was launched from the SSC Esrange Space Centre in July 2013. A near-circumpolar flight was achieved with a duration of approximately two weeks. The flight performance of the Pathfinder design is discussed for the three Crab observations conducted. The signal-to-background ratio for the observations is shown to be 0.25 ±0.03 and the Minimum Detectable Polarisation (99 % C.L.) is (28.4 ±2.2) %. A strategy for the continuation of the PoGOLite programme is outlined based on experience gained during the 2013 maiden flight.

  5. Closed-Loop System Identification Experience for Flight Control Law and Flying Qualities Evaluation of a High Performance Fighter Aircraft

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.

    1999-01-01

    This paper highlights some of the results and issues associated with estimating models to evaluate control law design methods and design criteria for advanced high performance aircraft. Experimental fighter aircraft such as the NASA High Alpha Research Vehicle (HARV) have the capability to maneuver at very high angles of attack where nonlinear aerodynamics often predominate. HARV is an experimental F/A-18, configured with thrust vectoring and conformal actuated nose strakes. Identifying closed-loop models for this type of aircraft can be made difficult by nonlinearities and high-order characteristics of the system. In this paper only lateral-directional axes are considered since the lateral-directional control law was specifically designed to produce classical airplane responses normally expected with low-order, rigid-body systems. Evaluation of the control design methodology was made using low-order equivalent systems determined from flight and simulation. This allowed comparison of the closed-loop rigid-body dynamics achieved in flight with that designed in simulation. In flight, the On Board Excitation System was used to apply optimal inputs to lateral stick and pedals at five angles of attack: 5, 20, 30, 45, and 60 degrees. Data analysis and closed-loop model identification were done using frequency domain maximum likelihood. The structure of the identified models was a linear state-space model reflecting classical 4th-order airplane dynamics. Input time delays associated with the high-order controller and aircraft system were accounted for in data preprocessing. A comparison of flight estimated models with small perturbation linear design models highlighted nonlinearities in the system and indicated that the estimated closed-loop rigid-body dynamics were sensitive to input amplitudes at 20 and 30 degrees angle of attack.

  6. Closed-Loop System Identification Experience for Flight Control Law and Flying Qualities Evaluation of a High Performance Fighter Aircraft

    NASA Technical Reports Server (NTRS)

    Murphy, Patrick C.

    1996-01-01

    This paper highlights some of the results and issues associated with estimating models to evaluate control law design methods and design criteria for advanced high performance aircraft. Experimental fighter aircraft such as the NASA-High Alpha Research Vehicle (HARV) have the capability to maneuver at very high angles of attack where nonlinear aerodynamics often predominate. HARV is an experimental F/A-18, configured with thrust vectoring and conformal actuated nose strakes. Identifying closed-loop models for this type of aircraft can be made difficult by nonlinearities and high order characteristics of the system. In this paper, only lateral-directional axes are considered since the lateral-directional control law was specifically designed to produce classical airplane responses normally expected with low-order, rigid-body systems. Evaluation of the control design methodology was made using low-order equivalent systems determined from flight and simulation. This allowed comparison of the closed-loop rigid-body dynamics achieved in flight with that designed in simulation. In flight, the On Board Excitation System was used to apply optimal inputs to lateral stick and pedals at five angles at attack : 5, 20, 30, 45, and 60 degrees. Data analysis and closed-loop model identification were done using frequency domain maximum likelihood. The structure of identified models was a linear state-space model reflecting classical 4th-order airplane dynamics. Input time delays associated with the high-order controller and aircraft system were accounted for in data preprocessing. A comparison of flight estimated models with small perturbation linear design models highlighted nonlinearities in the system and indicated that the closed-loop rigid-body dynamics were sensitive to input amplitudes at 20 and 30 degrees angle of attack.

  7. Tethered Satellite System (TSS-1R)-Post Flight (STS-75) Engineering Performance Report

    NASA Technical Reports Server (NTRS)

    Lavoie, Anthony R.

    1996-01-01

    The first mission of the Tethered Satellite deployer was flown onboard Atlantis in 1992 during the Space Transportation System (STS) flight STS-46. Due to a mechanical interference with the level wind mechanism the satellite was only Deployed to 256 m rather than the planned 20,000 m. Other problems were also experienced during the STS-46 flight and several modifications were made to the Deployer and Satellite. STS-75 was a reflight of the Tethered Satellite System 1 (TSS-1) designated as Tethered Satellite System 1 Reflight (TSS-1 R) onboard Columbia. As on STS-46, the TSS payload consisted of the Deployer, the Satellite, 3 cargo bay mounted experiments: Shuttle Electrodynamic Tether System (SETS), Shuttle Potential and Return Electron Experiment (SPREE), Deployer Core Equipment (DCORE) 4 Satellite mounted experiments: Research on Electrodynamics Tether Effects (RETE), Research on Orbital Plasma Electrodynamics (ROPE), Satellite Core Instruments (SCORE), Tether Magnetic Field Experiment (TEMAG) and an aft flight deck camera: Tether Optical Phenomena Experiment (TOP). Following successful pre-launch, launch and pre-deployment orbital operations, the Deployer deployed the Tethered Satellite to 19,695 m at which point the tether broke within the Satellite Deployment Boom (SDB). The planned length for On-Station I (OST1) was 20,700 m The Satellite flew away from the Orbiter with the tether attached. The satellite was "safed" and placed in a limited power mode via the RF link. The Satellite was contacted periodically during overflights of ground stations. Cargo bay science activities continued for the period of time allocated to TSS-1 R operations.

  8. Assessment of JVX Proprotor Performance Data in Hover and Airplane-Mode Flight Conditions

    NASA Technical Reports Server (NTRS)

    Acree, C. W., Jr.

    2016-01-01

    A 0.656-scale V-22 proprotor, the Joint Vertical Experimental (JVX) rotor, was tested at the NASA Ames Research Center in both hover and airplane-mode (high-speed axial flow) flight conditions, up to an advance ratio of 0.562 (231 knots). This paper examines the two principal data sets generated by those tests, and includes investigations of hub spinner tares, torque/thrust measurement interactions, tunnel blockage effects, and other phenomena suspected of causing erroneous measurements or predictions. Uncertainties in hover and high-speed data are characterized. The results are reported here to provide guidance for future wind tunnel tests, data processing, and data analysis.

  9. Improving Performance of the System Safety Function at Marshall Space Flight Center

    NASA Technical Reports Server (NTRS)

    Kiessling, Ed; Tippett, Donald D.; Shivers, Herb

    2004-01-01

    The Columbia Accident Investigation Board (CAIB) determined that organizational and management issues were significant contributors to the loss of Space Shuttle Columbia. In addition, the CAIB observed similarities between the organizational and management climate that preceded the Challenger accident and the climate that preceded the Columbia accident. To prevent recurrence of adverse organizational and management climates, effective implementation of the system safety function is suggested. Attributes of an effective system safety program are presented. The Marshall Space Flight Center (MSFC) system safety program is analyzed using the attributes. Conclusions and recommendations for improving the MSFC system safety program are offered in this case study.

  10. Space flight nutrition research: platforms and analogs

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Uchakin, Peter N.; Tobin, Brian W.

    2002-01-01

    Conducting research during actual or simulated weightlessness is a challenging endeavor, where even the simplest activities may present significant challenges. This article reviews some of the potential obstacles associated with performing research during space flight and offers brief descriptions of current and previous space research platforms and ground-based analogs, including those for human, animal, and cell-based research. This review is intended to highlight the main issues of space flight research analogs and leave the specifics for each physiologic system for the other papers in this section.

  11. Saturn 5 launch vehicle flight evaluation report, AS-510, Apollo 15 mission

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A postflight analysis of the Apollo 15 flight is presented. The performance of the launch vehicle, spacecraft, and lunar roving vehicle are discussed. The objective of the evaluation is to acquire, reduce, analyze, and report on flight data to the extent required to assure future mission success and vehicle reliability. Actual flight problems are identified, their causes are determined, and recommendations are made for corrective actions. Summaries of launch operations and spacecraft performance are included. Significant events for all phases of the flight are tabulated.

  12. Flight test evaluation of predicted light aircraft drag, performance, and stability

    NASA Technical Reports Server (NTRS)

    Smetana, F. O.; Fox, S. R.

    1979-01-01

    A technique was developed which permits simultaneous extraction of complete lift, drag, and thrust power curves from time histories of a single aircraft maneuver such as a pullup (from V sub max to V sub stall) and pushover (to sub V max for level flight.) The technique is an extension to non-linear equations of motion of the parameter identification methods of lliff and Taylor and includes provisions for internal data compatibility improvement as well. The technique was show to be capable of correcting random errors in the most sensitive data channel and yielding highly accurate results. This technique was applied to flight data taken on the ATLIT aircraft. The drag and power values obtained from the initial least squares estimate are about 15% less than the 'true' values. If one takes into account the rather dirty wing and fuselage existing at the time of the tests, however, the predictions are reasonably accurate. The steady state lift measurements agree well with the extracted values only for small values of alpha. The predicted value of the lift at alpha = 0 is about 33% below that found in steady state tests while the predicted lift slope is 13% below the steady state value.

  13. Performance Measurements of the Flight Detector for SPICE on SolarOrbiter

    NASA Astrophysics Data System (ADS)

    Thompson, W. T.; Davila, J. M.; Caldwell, M.; Siegmund, O.

    2015-12-01

    The Spectral Imaging of the Coronal Environment (SPICE) instrument for theSolar Orbiter mission will make spectroscopic observations of the Sun's lowcorona to characterize the plasma properties of the source regions of the solarwind. The detector package for SPICE, provided by the NASA Goddard SpaceFLight Center, consists of two microchannel-plate (MCP) intensified ActivePixel Sensor (APS) detectors covering the short (702-792 Angstroms) and long(972-1050 Angstroms) wavelength bandpasses. The long wavelength detector willalso provide coverage in second order between 485-525 Angstroms. We previouslyreported on measurements of the engineering model detector. Here, we report onmeasurements made on the flight SPICE detector in the same vacuum tank facilityat the Rutherford Appleton Laboratory in Harwell, UK. These measurementsinclude the detector flat field, sensitivity, resolution, linearity, andstatistical noise. A krypton resonance lamp operating at 1236 Angstroms wasused to stimulate the detector. Results at this wavelength are combined withthe quantum efficiency measurements of the individual MCPs at this and otherwavelengths covering the entire wavelength range to provide a completecalibration curve for the instrument. A calibrated NIST photodiode was used todetermine the absolute brightness of the lamp.

  14. TOFPET 2: A high-performance circuit for PET time-of-flight

    NASA Astrophysics Data System (ADS)

    Di Francesco, Agostino; Bugalho, Ricardo; Oliveira, Luis; Rivetti, Angelo; Rolo, Manuel; Silva, Jose C.; Varela, Joao

    2016-07-01

    We present a readout and digitization ASIC featuring low-noise and low-power for time-of flight (TOF) applications using SiPMs. The circuit is designed in standard CMOS 110 nm technology, has 64 independent channels and is optimized for time-of-flight measurement in Positron Emission Tomography (TOF-PET). The input amplifier is a low impedance current conveyor based on a regulated common-gate topology. Each channel has quad-buffered analogue interpolation TDCs (time binning 20 ps) and charge integration ADCs with linear response at full scale (1500 pC). The signal amplitude can also be derived from the measurement of time-over-threshold (ToT). Simulation results show that for a single photo-electron signal with charge 200 (550) fC generated by a SiPM with (320 pF) capacitance the circuit has 24 (30) dB SNR, 75 (39) ps r.m.s. resolution, and 4 (8) mW power consumption. The event rate is 600 kHz per channel, with up to 2 MHz dark counts rejection.

  15. Flight costs of long, sexually selected tails in hummingbirds

    PubMed Central

    James Clark, Christopher; Dudley, Robert

    2009-01-01

    The elongated tails adorning many male birds have traditionally been thought to degrade flight performance by increasing body drag. However, aerodynamic interactions between the body and tail can be substantial in some contexts, and a short tail may actually reduce rather than increase overall drag. To test how tail length affects flight performance, we manipulated the tails of Anna's hummingbirds (Calypte anna) by increasing their length with the greatly elongated tail streamers of the red-billed streamertail (Trochilus polytmus) and reducing their length by removing first the rectrices and then the entire tail (i.e. all rectrices and tail covert feathers). Flight performance was measured in a wind tunnel by measuring (i) the maximum forward speed at which the birds could fly and (ii) the metabolic cost of flight while flying at airspeeds from 0 to 14 m s−1. We found a significant interaction effect between tail treatment and airspeed: an elongated tail increased the metabolic cost of flight by up to 11 per cent, and this effect was strongest at higher flight speeds. Maximum flight speed was concomitantly reduced by 3.4 per cent. Also, removing the entire tail decreased maximum flight speed by 2 per cent, suggesting beneficial aerodynamic effects for tails of normal length. The effects of elongation are thus subtle and airspeed-specific, suggesting that diversity in avian tail morphology is associated with only modest flight costs. PMID:19324747

  16. Flight costs of long, sexually selected tails in hummingbirds.

    PubMed

    Clark, Christopher James; Dudley, Robert

    2009-06-01

    The elongated tails adorning many male birds have traditionally been thought to degrade flight performance by increasing body drag. However, aerodynamic interactions between the body and tail can be substantial in some contexts, and a short tail may actually reduce rather than increase overall drag. To test how tail length affects flight performance, we manipulated the tails of Anna's hummingbirds (Calypte anna) by increasing their length with the greatly elongated tail streamers of the red-billed streamertail (Trochilus polytmus) and reducing their length by removing first the rectrices and then the entire tail (i.e. all rectrices and tail covert feathers). Flight performance was measured in a wind tunnel by measuring (i) the maximum forward speed at which the birds could fly and (ii) the metabolic cost of flight while flying at airspeeds from 0 to 14 m s(-1). We found a significant interaction effect between tail treatment and airspeed: an elongated tail increased the metabolic cost of flight by up to 11 per cent, and this effect was strongest at higher flight speeds. Maximum flight speed was concomitantly reduced by 3.4 per cent. Also, removing the entire tail decreased maximum flight speed by 2 per cent, suggesting beneficial aerodynamic effects for tails of normal length. The effects of elongation are thus subtle and airspeed-specific, suggesting that diversity in avian tail morphology is associated with only modest flight costs.

  17. Flight test and evaluation of Omega navigation in a general aviation aircraft. Volume 1: Technical

    NASA Technical Reports Server (NTRS)

    Howell, J. D.; Hoffman, W. C.; Hwoschinsky, P. V.; Wischmeyer, C. E.

    1975-01-01

    A low cost flight research program was conducted to evaluate the performance of differential Omega navigation in a general aviation aircraft. The flight program consisted of two distinct parts corresponding to the two major objectives of the study. The Wallops Flight Program was conducted to obtain Omega signal and phase data in the Wallops Flight Center vicinity to provide preliminary technical information and experience in preparation for a comprehensive NASA/FAA flight test program of an experimental differential Omega system. The Northeast Corridor Flight Program was conducted to examine Omega operational suitability and performance on low altitude area navigation (RNAV) routes for city-center to city-center VTOL commercial operations in the Boston-New York-Washington corridor. The development, execution and conclusions of the flight research program are discribed. The results of the study provide both quantitative and qualitative data on the Omega Navigation System under actual operating conditions.

  18. Aerodynamic performance of two-dimensional, chordwise flexible flapping wings at fruit fly scale in hover flight.

    PubMed

    Sridhar, Madhu; Kang, Chang-kwon

    2015-06-01

    Fruit flies have flexible wings that deform during flight. To explore the fluid-structure interaction of flexible flapping wings at fruit fly scale, we use a well-validated Navier-Stokes equation solver, fully-coupled with a structural dynamics solver. Effects of chordwise flexibility on a two dimensional hovering wing is studied. Resulting wing rotation is purely passive, due to the dynamic balance between aerodynamic loading, elastic restoring force, and inertial force of the wing. Hover flight is considered at a Reynolds number of Re = 100, equivalent to that of fruit flies. The thickness and density of the wing also corresponds to a fruit fly wing. The wing stiffness and motion amplitude are varied to assess their influences on the resulting aerodynamic performance and structural response. Highest lift coefficient of 3.3 was obtained at the lowest-amplitude, highest-frequency motion (reduced frequency of 3.0) at the lowest stiffness (frequency ratio of 0.7) wing within the range of the current study, although the corresponding power required was also the highest. Optimal efficiency was achieved for a lower reduced frequency of 0.3 and frequency ratio 0.35. Compared to the water tunnel scale with water as the surrounding fluid instead of air, the resulting vortex dynamics and aerodynamic performance remained similar for the optimal efficiency motion, while the structural response varied significantly. Despite these differences, the time-averaged lift scaled with the dimensionless shape deformation parameter γ. Moreover, the wing kinematics that resulted in the optimal efficiency motion was closely aligned to the fruit fly measurements, suggesting that fruit fly flight aims to conserve energy, rather than to generate large forces. PMID:25946079

  19. Aerodynamic performance of two-dimensional, chordwise flexible flapping wings at fruit fly scale in hover flight.

    PubMed

    Sridhar, Madhu; Kang, Chang-kwon

    2015-05-06

    Fruit flies have flexible wings that deform during flight. To explore the fluid-structure interaction of flexible flapping wings at fruit fly scale, we use a well-validated Navier-Stokes equation solver, fully-coupled with a structural dynamics solver. Effects of chordwise flexibility on a two dimensional hovering wing is studied. Resulting wing rotation is purely passive, due to the dynamic balance between aerodynamic loading, elastic restoring force, and inertial force of the wing. Hover flight is considered at a Reynolds number of Re = 100, equivalent to that of fruit flies. The thickness and density of the wing also corresponds to a fruit fly wing. The wing stiffness and motion amplitude are varied to assess their influences on the resulting aerodynamic performance and structural response. Highest lift coefficient of 3.3 was obtained at the lowest-amplitude, highest-frequency motion (reduced frequency of 3.0) at the lowest stiffness (frequency ratio of 0.7) wing within the range of the current study, although the corresponding power required was also the highest. Optimal efficiency was achieved for a lower reduced frequency of 0.3 and frequency ratio 0.35. Compared to the water tunnel scale with water as the surrounding fluid instead of air, the resulting vortex dynamics and aerodynamic performance remained similar for the optimal efficiency motion, while the structural response varied significantly. Despite these differences, the time-averaged lift scaled with the dimensionless shape deformation parameter γ. Moreover, the wing kinematics that resulted in the optimal efficiency motion was closely aligned to the fruit fly measurements, suggesting that fruit fly flight aims to conserve energy, rather than to generate large forces.

  20. The In-flight Spectroscopic Performance of the Swift XRT CCD Camera During 2006-2007

    NASA Technical Reports Server (NTRS)

    Godet, O.; Beardmore, A.P.; Abbey, A.F.; Osborne, J.P.; Page, K.L.; Evans, P.; Starling, R.; Wells, A.A.; Angelini, L.; Burrows, D.N.; Kennea, J.; Campana, S.; Chincarini, G.; Citterio, O.; Cusumano, G.; LaParola, V.; Mangano, V.; Mineo, T.; Giommi, P.; Perri, M.; Capalbi, M.; Tamburelli, F.

    2007-01-01

    The Swift X-ray Telescope focal plane camera is a front-illuminated MOS CCD, providing a spectral response kernel of 135 eV FWHM at 5.9 keV as measured before launch. We describe the CCD calibration program based on celestial and on-board calibration sources, relevant in-flight experiences, and developments in the CCD response model. We illustrate how the revised response model describes the calibration sources well. Comparison of observed spectra with models folded through the instrument response produces negative residuals around and below the Oxygen edge. We discuss several possible causes for such residuals. Traps created by proton damage on the CCD increase the charge transfer inefficiency (CTI) over time. We describe the evolution of the CTI since the launch and its effect on the CCD spectral resolution and the gain.

  1. Utilizing Commercial Hardware and Open Source Computer Vision Software to Perform Motion Capture for Reduced Gravity Flight

    NASA Technical Reports Server (NTRS)

    Humphreys, Brad; Bellisario, Brian; Gallo, Christopher; Thompson, William K.; Lewandowski, Beth

    2016-01-01

    Long duration space travel to Mars or to an asteroid will expose astronauts to extended periods of reduced gravity. Since gravity is not present to aid loading, astronauts will use resistive and aerobic exercise regimes for the duration of the space flight to minimize the loss of bone density, muscle mass and aerobic capacity that occurs during exposure to a reduced gravity environment. Unlike the International Space Station (ISS), the area available for an exercise device in the next generation of spacecraft is limited. Therefore, compact resistance exercise device prototypes are being developed. The NASA Digital Astronaut Project (DAP) is supporting the Advanced Exercise Concepts (AEC) Project, Exercise Physiology and Countermeasures (ExPC) project and the National Space Biomedical Research Institute (NSBRI) funded researchers by developing computational models of exercising with these new advanced exercise device concepts. To perform validation of these models and to support the Advanced Exercise Concepts Project, several candidate devices have been flown onboard NASAs Reduced Gravity Aircraft. In terrestrial laboratories, researchers typically have available to them motion capture systems for the measurement of subject kinematics. Onboard the parabolic flight aircraft it is not practical to utilize the traditional motion capture systems due to the large working volume they require and their relatively high replacement cost if damaged. To support measuring kinematics on board parabolic aircraft, a motion capture system is being developed utilizing open source computer vision code with commercial off the shelf (COTS) video camera hardware. While the systems accuracy is lower than lab setups, it provides a means to produce quantitative comparison motion capture kinematic data. Additionally, data such as required exercise volume for small spaces such as the Orion capsule can be determined. METHODS: OpenCV is an open source computer vision library that provides the

  2. B747/JT9D flight loads and their effect on engine running clearances and performance deterioration; BCAC NAIL/P and WA JT9D engine diagnostics programs

    NASA Technical Reports Server (NTRS)

    Olsson, W. J.; Martin, R. L.

    1982-01-01

    Flight loads on the 747 propulsion system and resulting JT9D blade to outer airseal running clearances during representative acceptance flight and revenue flight sequences were measured. The resulting rub induced clearance changes, and engine performance changes were then analyzed to validate and refine the JT9D-7A short term performance deterioration model.

  3. Crew factors in flight operations 9: Effects of planned cockpit rest on crew performance and alertness in long-haul operations

    NASA Technical Reports Server (NTRS)

    Rosekind, Mark R.; Graeber, R. Curtis; Dinges, David F.; Connell, Linda J.; Rountree, Michael S.; Spinweber, Cheryl L.; Gillen, Kelly A.

    1994-01-01

    This study examined the effectiveness of a planned cockpit rest period to improve alertness and performance in long-haul flight operations. The Rest Group (12 crew members) was allowed a planned 40 minute rest period during the low workload, cruise portion of the flight, while the No-Rest Group (9 crew members) had a 40 minute planned control period when they maintained usual flight activities. Measures used in the study included continuous ambulatory recordings of brain wave and eye movement activity, a reaction time/vigilance task, a wrist activity monitor, in-flight fatigue and alertness ratings, a daily log for noting sleep periods, meals, exercise, flight and duty periods, and the NASA Background Questionnaire. The Rest Group pilots slept on 93 percent of the opportunities, falling asleep in 5.6 minutes and sleeping for 25.8 minutes. This nap was associated with improved physiological alertness and performance compared to the No-Rest Group. The benefits of the nap were observed through the critical descent and landing phases of flight. The nap did not affect layover sleep or the cumulative sleep debt. The nap procedures were implemented with minimal disruption to usual flight operations and there were no reported or identified concerns regarding safety.

  4. Application of virtual flight vision

    NASA Astrophysics Data System (ADS)

    Yang, Hongyu; Xie, Lixia; Sun, Jizhou

    2004-03-01

    Public perception of flight safety is generally based on the absolute number of accidents and not accident rates. Therefore reduction of the accident rate such that the actual number of accidents decreases must be a primary goal; otherwise the predicted costs and loss of life are not likely to be tolerable by the industry or traveling public. This paper briefs efforts in the virtual flight vision system program to address training pilots avoiding these accidents. The improvement in situational awareness and reduction in pilot workload resulting from the synthetic vision display should allow aircrews to avoid landing short, flying too close to terrain, or blundering onto an active runway. The systems can also aid aircrews in re-planning en route and in the crucial final approach segment, by providing intuitive guidance cues to reduce pilot workload and improve performance.

  5. Form and Actuality

    NASA Astrophysics Data System (ADS)

    Bitbol, Michel

    A basic choice underlies physics. It consists of banishing actual situations from theoretical descriptions, in order to reach a universal formal construct. Actualities are then thought of as mere local appearances of a transcendent reality supposedly described by the formal construct. Despite its impressive success, this method has left major loopholes in the foundations of science. In this paper, I document two of these loopholes. One is the problem of time asymmetry in statistical thermodynamics, and the other is the measurement problem of quantum mechanics. Then, adopting a broader philosophical standpoint, I try to turn the whole picture upside down. Here, full priority is given to actuality (construed as a mode of the immanent reality self-reflectively being itself) over formal constructs. The characteristic aporias of this variety of "Copernican revolution" are discussed.

  6. Development of an Antimicrobial Susceptibility Testing Method Suitable for Performing During Space Flight

    NASA Technical Reports Server (NTRS)

    Jorgensen, James H.; Skweres, Joyce A.; Mishra S. K.; McElmeel, M. Letticia; Maher, Louise A.; Mulder, Ross; Lancaster, Michael V.; Pierson, Duane L.

    1997-01-01

    Very little is known regarding the affects of the microgravity environment of space flight upon the action of antimicrobial agents on bacterial pathogens. This study was undertaken to develop a simple method for conducting antibacterial susceptibility tests during a Space Shuttle mission. Specially prepared susceptibility test research cards (bioMerieux Vitek, Hazelwood, MO) were designed to include 6-11 serial two-fold dilutions of 14 antimicrobial agents, including penicillins, cephalosporins, a Beta-lactamase inhibitor, vancomycin, erythromycin, tetracycline, gentamicin, ciprofloxacin, and trimethoprim/sulfamethoxazole. Minimal inhibitory concentrations (MICS) of the drugs were determined by visual reading of color endpoints in the Vitek research cards made possible by incorporation of a colorimetric growth indicator (alamarBlue(Trademark), Accumed International, Westlake, OH). This study has demonstrated reproducible susceptibility results when testing isolates of Staphylococcus aurezis, Group A Streptococcus, Enterococcusfaecalis, Escherichia coli (beta-lactamase positive and negative strains), Klebsiella pneumoniae, Enterobacter cloacae, and Pseudomoiias aeruginosa. In some instances, the MICs were comparable to those determined using a standard broth microdilution method, while in some cases the unique test media and format yielded slightly different values, that were themselves reproducible. The proposed in-flight experiment will include inoculation of the Vitek cards on the ground prior to launch of the Space Shuttle, storage of inoculated cards at refrigeration temperature aboard the Space Shuttle until experiment initiation, then incubation of the cards for 18-48 h prior to visual interpretation of MICs by the mission's astronauts. Ground-based studies have shown reproducible MICs following storage of inoculated cards for 7 days at 4-8 C to accommodate the mission's time schedule and the astronauts' activities. For comparison, ground-based control

  7. The Performance of a Subsonic Diffuser Designed for High Speed Turbojet-Propelled Flight

    NASA Technical Reports Server (NTRS)

    Biesiadny, Thomas J. (Technical Monitor); Wendt, Bruce J.

    2004-01-01

    An initial-phase subsonic diffuser has been designed for the turbojet flowpath of the hypersonic x43B flight demonstrator vehicle. The diffuser fit into a proposed mixed-compression supersonic inlet system and featured a cross-sectional shape transitioning flowpath (high aspect ratio rectangular throat-to-circular engine face) and a centerline offset. This subsonic diffuser has been fabricated and tested at the W1B internal flow facility at NASA Glenn Research Center. At an operating throat Mach number of 0.79, baseline Pitot pressure recovery was found to be just under 0.9, and DH distortion intensity was about 0.4 percent. The diffuser internal flow stagnated, but did not separate on the offset surface of this initial-phase subsonic diffuser. Small improvements in recovery (+0.4 percent) and DH distortion (-32 percent) were obtained from using vane vortex generator flow control applied just downstream of the diffuser throat. The optimum vortex generator array patterns produced inflow boundary layer divergence (local downwash) on the offset surface centerline of the diffuser, and an inflow boundary layer convergence (local upwash) on the centerline of the opposite surface.

  8. Future dedicated Venus-SGG flight mission: Accuracy assessment and performance analysis

    NASA Astrophysics Data System (ADS)

    Zheng, Wei; Hsu, Houtse; Zhong, Min; Yun, Meijuan

    2016-01-01

    This study concentrates principally on the systematic requirements analysis for the future dedicated Venus-SGG (spacecraft gravity gradiometry) flight mission in China in respect of the matching measurement accuracies of the spacecraft-based scientific instruments and the orbital parameters of the spacecraft. Firstly, we created and proved the single and combined analytical error models of the cumulative Venusian geoid height influenced by the gravity gradient error of the spacecraft-borne atom-interferometer gravity gradiometer (AIGG) and the orbital position error and orbital velocity error tracked by the deep space network (DSN) on the Earth station. Secondly, the ultra-high-precision spacecraft-borne AIGG is propitious to making a significant contribution to globally mapping the Venusian gravitational field and modeling the geoid with unprecedented accuracy and spatial resolution through weighing the advantages and disadvantages among the electrostatically suspended gravity gradiometer, the superconducting gravity gradiometer and the AIGG. Finally, the future dedicated Venus-SGG spacecraft had better adopt the optimal matching accuracy indices consisting of 3 × 10-13/s2 in gravity gradient, 10 m in orbital position and 8 × 10-4 m/s in orbital velocity and the preferred orbital parameters comprising an orbital altitude of 300 ± 50 km, an observation time of 60 months and a sampling interval of 1 s.

  9. Vision-based range estimation using helicopter flight data

    NASA Technical Reports Server (NTRS)

    Smith, Phillip N.; Sridhar, Banavar; Hussien, Bassam

    1992-01-01

    Pilot aiding during low-altitude flight depends on the ability to detect and locate obstacles near the helicopter's intended flightpath. Computer-vision-based methods provide one general approach for obstacle detection and range estimation. Several algorithms have been developed for this purpose, but have not been tested with actual flight data. This paper presents results obtained using helicopter flight data with a feature-based range estimation algorithm. A method for recursively estimating range using a Kalman filter with a monocular sequence of images and knowledge of the camera's motion is described. The helicopter flight experiment and four resulting datasets are discussed. Finally the performance of the range estimation algorithm is explored in detail based on comparison of the range estimates with true range measurements collected during the flight experiment.

  10. Vision-based range estimation using helicopter flight data

    NASA Technical Reports Server (NTRS)

    Smith, Phillip N.; Sridhar, Banavar; Hussein, Bassam

    1992-01-01

    Pilot aiding during low-altitude flight depends on the ability to detect and locate obstacles near the helicopter's intended flightpath. Computer-vision-based methods provide one general approach for obstacle detection and range estimation. Several algorithms have been developed for this purpose, but have not been tested with actual flight data. This paper presents results obtained using helicopter flight data with a feature-based range estimation algorithm. A method for recursively estimating range using a Kalman filter with a monocular sequence of images and knowledge of the camera's motion is described. The helicopter flight experiment and one of four resulting datasets is briefly discussed. Finally the performance of the range estimation algorithm is explored based on comparison of the range estimates with true range measurements collected during the flight experiment.

  11. Performance of a Towed, 48-Inch-Diameter (121.92) Ballute Decelerator Tested in Free-Flight

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Performance of a Towed, 48-Inch-Diameter (121.92) Ballute Decelerator Tested in Free-Flight Mach Numbers from 4.2 to 0.4. A ballute decelerator inflated by ram air was tested in free flight to determine the inflation, drag, and stability characteristics. The decelerator had a 40-inch (101.6-cm) envelope equatorial diameter and a 10-percent burble fence. It was towed 13.5 feet (4.12 m) aft of a cone-cylinder-flare payload with a maximum diameter of 18.21 inches (46.25 cm). The decelerator was deployed at an altitude of 115,000 feet (35.1 km) at a velocity of 4400 ft/sec (1342 m/sec) and inflated at a Mach number of 4.2 and a freestream dynamic pressure of 163 lb/ft(exp 2) (7.8 kN/m(exp 2)). [Entire movie available on DVD from CASI as Doc ID 20070030990. Contact help@sti.nasa.gov

  12. High-precision cryogenic wheel mechanisms of the JWST/MIRI instrument: performance of the flight models

    NASA Astrophysics Data System (ADS)

    Krause, O.; Müller, F.; Birkmann, S.; Böhm, A.; Ebert, M.; Grözinger, U.; Henning, Th.; Hofferbert, R.; Huber, A.; Lemke, D.; Rohloff, R.-R.; Scheithauer, S.; Gross, T.; Fischer, T.; Luichtel, G.; Merkle, H.; Übele, M.; Wieland, H.-U.; Amiaux, J.; Jager, R.; Glauser, A.; Parr-Burman, P.; Sykes, J.

    2010-07-01

    The Mid Infrared Instrument (MIRI) aboard JWST is equipped with one filter wheel and two dichroic-grating wheel mechanisms to reconfigure the instrument between observing modes such as broad/narrow-band imaging, coronagraphy and low/medium resolution spectroscopy. Key requirements for the three mechanisms with up to 18 optical elements on the wheel include: (1) reliable operation at T = 7 K, (2) high positional accuracy of 4 arcsec, (3) low power dissipation, (4) high vibration capability, (5) functionality at 7 K < T < 300 K and (6) long lifetime (5-10 years). To meet these requirements a space-proven wheel concept consisting of a central MoS2-lubricated integrated ball bearing, a central torque motor for actuation, a ratchet system with monolithic CuBe flexural pivots for precise and powerless positioning and a magnetoresistive position sensor has been implemented. We report here the final performance and lessons-learnt from the successful acceptance test program of the MIRI wheel mechanism flight models. The mechanisms have been meanwhile integrated into the flight model of the MIRI instrument, ready for launch in 2014 by an Ariane 5 rocket.

  13. A strategy for in-flight measurements of physiology of pilots of high-performance fighter aircraft.

    PubMed

    West, John B

    2013-07-01

    Some pilots flying modern high-performance fighter aircraft develop "hypoxia-like" incidents characterized by short periods of confusion and cognitive impairment. The problem is serious and recently led to the grounding of a fleet of aircraft. Extensive discussions of the incidents have taken place but some people believe that there is inadequate data to determine the cause. There is a tremendous disconnect between what is known about the function of the aircraft and the function of the pilot. This paper describes a plan for measuring the inspired and expired Po2 and Pco2 in the pilot's mask, the inspiratory flow rate, and pressure in the mask. A critically important requirement is that the interference with the function of the pilot is minimal. Although extensive physiological measurements were previously made on pilots in ground-based experiments such as rapid decompression in an altitude chamber and increased acceleration on a centrifuge, in-flight measurements of gas exchange have not been possible until now primarily because of the lack of suitable equipment. The present paper shows how the recent availability of small, rapidly responding oxygen and carbon dioxide analyzers make sophisticated in-flight measurements feasible. The added information has the potential of greatly improving our knowledge of pilot physiology, which could lead to an explanation for the incidents.

  14. STS-113 Post Flight Presentation

    NASA Astrophysics Data System (ADS)

    2002-01-01

    The STS-113 post-flight presentation begins with a view of Mission Specialists Michael E. Lopez-Alegria and John B. Herrington getting suited for the space mission. The STS-113 crew consists of: Commander James D. Wetherbee, Pilot Paul Lockhart, Mission Specialists Michael Lopez-Alegria and John Herrington. Cosmonauts Valery Korzun, and Sergei Treschev, and astronaut Peggy Whitson who are all members of the expedition five crew, and Commander Kenneth Bowersox, Flight Engineers Nikolai Budarin and Donald Pettit, members of Expedition Six. The main goal of this mission is to take Expedition Six up to the International Space Station and Return Expedition Five to the Earth. The second objective is to install the P(1) Truss segment. Three hours prior to launch, the crew of Expedition Six along with James Wetherbee, Paul Lockhart, Michael Lopez-Alegria and John Herrington are shown walking to an astrovan, which takes them to the launch pad. The actual liftoff is presented. Three Extravehicular Activities (EVA)'s are performed on this mission. Michael Lopez-Alegria and John Herrington are shown performing EVA 1 and EVA 2 which include making connections between the P1 and S(0) Truss segments, and installing fluid jumpers. A panoramic view of the ISS with the Earth in the background is shown. The grand ceremony of the crew exchange is presented. The astronauts performing everyday duties such as brushing teeth, washing hair, sleeping, and eating pistachio nuts are shown. The actual landing of the Space Shuttle is presented.

  15. Performance evaluation of 24 ion exchange materials for removing cesium and strontium from actual and simulated N-Reactor storage basin water

    SciTech Connect

    Brown, G.N.; Carson, K.J.; DesChane, J.R.; Elovich, R.J.

    1997-09-01

    This report describes the evaluation of 24 organic and inorganic ion exchange materials for removing cesium and strontium from actual and simulated waters from the 100 Area 105 N-Reactor fuel storage basin. The data described in this report can be applied for developing and evaluating ion exchange pre-treatment process flowsheets. Cesium and strontium batch distribution ratios (K{sub d}`s), decontamination factors (DF), and material loadings (mmol g{sup -1}) are compared as a function of ion exchange material and initial cesium concentration. The actual and simulated N-Basin waters contain relatively low levels of aluminum, barium, calcium, potassium, and magnesium (ranging from 8.33E-04 to 6.40E-05 M), with slightly higher levels of boron (6.63E-03 M) and sodium (1.62E-03 M). The {sup 137}Cs level is 1.74E-06 Ci L-{sup 1} which corresponds to approximately 4.87E-10 M Cs. The initial Na/Cs ratio was 3.33E+06. The concentration of total strontium is 4.45E-06 M, while the {sup 90}Sr radioactive component was measured to be 6.13E-06 Ci L{sup -1}. Simulant tests were conducted by contacting 0.067 g or each ion exchange material with approximately 100 mL of either the actual or simulated N-Basin water. The simulants contained variable initial cesium concentrations ranging from 1.00E-04 to 2.57E- 10 M Cs while all other components were held constant. For all materials, the average cesium K{sub d} was independent of cesium concentration below approximately 1.0E-06 M. Above this level, the average cesium K{sub d} values decreased significantly. Cesium K{sub d} values exceeding 1.0E+07 mL g{sup -1} were measured in the simulated N-Basin water. However, when measured in the actual N-Basin water the values were several orders of magnitude lower, with a maximum of 1.24E+05 mL g{sup -1} observed.

  16. Advanced flight design systems subsystem performance models. Sample model: Environmental analysis routine library

    NASA Technical Reports Server (NTRS)

    Parker, K. C.; Torian, J. G.

    1980-01-01

    A sample environmental control and life support model performance analysis using the environmental analysis routines library is presented. An example of a complete model set up and execution is provided. The particular model was synthesized to utilize all of the component performance routines and most of the program options.

  17. Automated flight test management system

    NASA Technical Reports Server (NTRS)

    Hewett, M. D.; Tartt, D. M.; Agarwal, A.

    1991-01-01

    The Phase 1 development of an automated flight test management system (ATMS) as a component of a rapid prototyping flight research facility for artificial intelligence (AI) based flight concepts is discussed. The ATMS provides a flight engineer with a set of tools that assist in flight test planning, monitoring, and simulation. The system is also capable of controlling an aircraft during flight test by performing closed loop guidance functions, range management, and maneuver-quality monitoring. The ATMS is being used as a prototypical system to develop a flight research facility for AI based flight systems concepts at NASA Ames Dryden.

  18. Technical Seminar: "Flight Deck Technologies"""

    NASA Video Gallery

    Reduced visibility affects the safety and efficiency of nearly all flight operations. As a result, researchers are improving ways to give pilots a vision capability that is independent of actual vi...

  19. Time and motion, experiment M151. [human performance and space flight stress

    NASA Technical Reports Server (NTRS)

    Kubis, J. F.; Elrod, J. T.; Rusnak, R.; Mcbride, G. H.; Barnes, J. E.; Saxon, S. C.

    1973-01-01

    Astronaut work performance during the preparation and execution of experiments in simulated Skylab tests was analyzed according to time and motion in order to evaluate the efficiency and consistency of performance (adaptation function) for several different types of activity over the course of the mission; to evaluate the procedures to be used by the same experiment in Skylab; to generate characteristic adaptation functions for later comparison with Skylab data; and to examine astronaut performance for any behavioral stress due to the environment. The overall results indicate that the anticipated adaptation function was obtained both for individual and for averaged data.

  20. In-flight performance of the Faint Object Camera of the Hubble Space Telescope

    NASA Technical Reports Server (NTRS)

    Greenfield, P.; Paresce, F.; Baxter, D.; Hodge, P.; Hook, R.; Jakobsen, P.; Jedrzejewski, R.; Nota, A.; Sparks, W. B.; Towers, N.

    1991-01-01

    An overview of the Faint Object Camera and its performance to date is presented. In particular, the detector's efficiency, the spatial uniformity of response, distortion characteristics, detector and sky background, detector linearity, spectrography, and operation are discussed. The effect of the severe spherical aberration of the telescope's primary mirror on the camera's point spread function is reviewed, as well as the impact it has on the camera's general performance. The scientific implications of the performance and the spherical aberration are outlined, with emphasis on possible remedies for spherical aberration, hardware remedies, and stellar population studies.

  1. Flight tests for the assessment of task performance and control activity

    NASA Technical Reports Server (NTRS)

    Pausder, H. J.; Hummes, D.

    1982-01-01

    The tests were performed with the helicopters BO 105 and UH-1D. Closely connected with tactical demands the six test pilots' task was to minimize the time and the altitude over the obstacles. The data reduction yields statistical evaluation parameters describing the control activity of the pilots and the achieved task performance. The results are shown in form of evaluation diagrams. Additionally dolphin tests with varied control strategy were performed to get more insight into the influence of control techniques. From these test results recommendations can be derived to emphasize the direct force control and to reduce the collective to pitch crosscoupling for the dolphin.

  2. Ultra-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry analysis of icariside II metabolites in rats.

    PubMed

    Sun, E; Xu, Fengjuan; Qian, Qian; Cui, Li; Tan, Xiaobin; Jia, Xiaobin

    2014-01-01

    The possible metabolic pathways of icariside II were proposed. An ultra-performance liquid chromatography/quadrupole-time-of-flight mass spectrometry method was used for analysing the faecal, bile, plasma and urine samples of rats administrated with icariside II. In all, 27 metabolites were identified in the biosamples. Of these, 20, including F1-F12, D3, D4, D6, D7-D9 and M3, M4, were, to our knowledge, reported for the first time. The results indicated that icariside II was metabolised via desugarisation, dehydrogenation, hydrogenation, hydroxylation, demethylation, glucuronidation, dehydration and glycosylation pathways in vivo. Specific hydrolysis of 7-O glucosides in the gut lumen and glucuronic acid conjugation in the liver were considered as the main physiologic processes of icariside II. This study revealed the possible metabolite profiles of icariside II in rats. PMID:25076022

  3. In-flight calibration and performance evaluation of the fixed head star trackers for the solar maximum mission

    NASA Technical Reports Server (NTRS)

    Thompson, R. H.; Gambardella, P. J.

    1980-01-01

    The Solar Maximum Mission (SMM) spacecraft provides an excellent opportunity for evaluating attitude determination accuracies achievable with tracking instruments such as fixed head star trackers (FHSTs). As a part of its payload, SMM carries a highly accurate fine pointing Sun sensor (FPSS). The EPSS provides an independent check of the pitch and yaw parameters computed from observations of stars in the FHST field of view. A method to determine the alignment of the FHSTs relative to the FPSS using spacecraft data is applied. Two methods that were used to determine distortions in the 8 degree by 8 degree field of view of the FHSTs using spacecraft data are also presented. The attitude determination accuracy performance of the in flight calibrated FHSTs is evaluated.

  4. The International Space Station's Multi-Purpose Logistics Module, Thermal Performance of the First Five Flights

    NASA Technical Reports Server (NTRS)

    Holladay, Jon; Cho, Frank

    2003-01-01

    The Multi-Purpose Logistics Module is the primary carrier for transport of pressurized payload to the International Space Station. Performing five missions within a thirteen month span provided a unique opportunity to gather a great deal of information toward understanding and verifying the orbital performance of the vehicle. This paper will provide a brief overview of the hardware history and design capabilities followed by a summary of the missions flown, resource requirements and possibilities for the future.

  5. Comparison of Commercial Aircraft Fuel Requirements in Regards to FAR, Flight Profile Simulation, and Flight Operational Techniques

    NASA Astrophysics Data System (ADS)

    Heitzman, Nicholas

    There are significant fuel consumption consequences for non-optimal flight operations. This study is intended to analyze and highlight areas of interest that affect fuel consumption in typical flight operations. By gathering information from actual flight operators (pilots, dispatch, performance engineers, and air traffic controllers), real performance issues can be addressed and analyzed. A series of interviews were performed with various individuals in the industry and organizations. The wide range of insight directed this study to focus on FAA regulations, airline policy, the ATC system, weather, and flight planning. The goal is to highlight where operational performance differs from design intent in order to better connect optimization with actual flight operations. After further investigation and consensus from the experienced participants, the FAA regulations do not need any serious attention until newer technologies and capabilities are implemented. The ATC system is severely out of date and is one of the largest limiting factors in current flight operations. Although participants are pessimistic about its timely implementation, the FAA's NextGen program for a future National Airspace System should help improve the efficiency of flight operations. This includes situational awareness, weather monitoring, communication, information management, optimized routing, and cleaner flight profiles like Required Navigation Performance (RNP) and Continuous Descent Approach (CDA). Working off the interview results, trade-studies were performed using an in-house flight profile simulation of a Boeing 737-300, integrating NASA legacy codes EDET and NPSS with a custom written mission performance and point-performance "Skymap" calculator. From these trade-studies, it was found that certain flight conditions affect flight operations more than others. With weather, traffic, and unforeseeable risks, flight planning is still limited by its high level of precaution. From this

  6. Investigation of possible causes for human-performance degradation during microgravity flight

    NASA Technical Reports Server (NTRS)

    Schroeder, James E.; Tuttle, Megan L.

    1992-01-01

    The results of the first year of a three year study of the effects of microgravity on human performance are given. Test results show support for the hypothesis that the effects of microgravity can be studied indirectly on Earth by measuring performance in an altered gravitational field. The hypothesis was that an altered gravitational field could disrupt performance on previously automated behaviors if gravity was a critical part of the stimulus complex controlling those behaviors. In addition, it was proposed that performance on secondary cognitive tasks would also degrade, especially if the subject was provided feedback about degradation on the previously automated task. In the initial experimental test of these hypotheses, there was little statistical support. However, when subjects were categorized as high or low in automated behavior, results for the former group supported the hypotheses. The predicted interaction between body orientation and level of workload in their joint effect on performance in the secondary cognitive task was significant for the group high in automatized behavior and receiving feedback, but no such interventions were found for the group high in automatized behavior but not receiving feedback, or the group low in automatized behavior.

  7. Theseus in Flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The twin pusher engines of the prototype Theseus research aircraft can be clearly seen in this photo of the aircraft during a 1996 research flight from the Dryden Flight Research Center, Edwards, California. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite

  8. Theseus in Flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The twin pusher propeller-driven engines of the Theseus research aircraft can be clearly seen in this photo, taken during a 1996 research flight at NASA's Dryden Flight Research Center, Edwards, California. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite

  9. Theseus in Flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Theseus research aircraft in flight over Rogers Dry Lake, Edwards, California, during a 1996 research flight. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft. Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite-based global environmental change measurements. Dryden's Project Manager was John Del Frate.

  10. Theseus in Flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Theseus prototype research aircraft shows off its unique design as it flies low over Rogers Dry Lake during a 1996 test flight from NASA's Dryden Flight Research Center, Edwards, California. The Theseus aircraft, built and operated by Aurora Flight Sciences Corporation, Manassas, Virginia, was a unique aircraft flown at NASA's Dryden Flight Research Center, Edwards, California, under a cooperative agreement between NASA and Aurora. Dryden hosted the Theseus program, providing hangar space and range safety for flight testing. Aurora Flight Sciences was responsible for the actual flight testing, vehicle flight safety, and operation of the aircraft. The Theseus remotely piloted aircraft flew its maiden flight on May 24, 1996, at Dryden. During its sixth flight on November 12, 1996, Theseus experienced an in-flight structural failure that resulted in the loss of the aircraft. As of the beginning of the year 2000, Aurora had not rebuilt the aircraft Theseus was built for NASA under an innovative, $4.9 million fixed-price contract by Aurora Flight Sciences Corporation and its partners, West Virginia University, Morgantown, West Virginia, and Fairmont State College, Fairmont, West Virginia. The twin-engine, unpiloted vehicle had a 140-foot wingspan, and was constructed largely of composite materials. Powered by two 80-horsepower, turbocharged piston engines that drove twin 9-foot-diameter propellers, Theseus was designed to fly autonomously at high altitudes, with takeoff and landing under the active control of a ground-based pilot in a ground control station 'cockpit.' With the potential ability to carry 700 pounds of science instruments to altitudes above 60,000 feet for durations of greater than 24 hours, Theseus was intended to support research in areas such as stratospheric ozone depletion and the atmospheric effects of future high-speed civil transport aircraft engines. Instruments carried aboard Theseus also would be able to validate satellite-based global

  11. Preliminary performance of a vertical-attitude takeoff and landing, supersonic cruise aircraft concept having thrust vectoring integrated into the flight control system

    NASA Technical Reports Server (NTRS)

    Robins, A. W.; Beissner, F. L., Jr.; Domack, C. S.; Swanson, E. E.

    1985-01-01

    A performance study was made of a vertical attitude takeoff and landing (VATOL), supersonic cruise aircraft concept having thrust vectoring integrated into the flight control system. Those characteristics considered were aerodynamics, weight, balance, and performance. Preliminary results indicate that high levels of supersonic aerodynamic performance can be achieved. Further, with the assumption of an advanced (1985 technology readiness) low bypass ratio turbofan engine and advanced structures, excellent mission performance capability is indicated.

  12. Method and system for detecting a failure or performance degradation in a dynamic system such as a flight vehicle

    NASA Technical Reports Server (NTRS)

    Miller, Robert H. (Inventor); Ribbens, William B. (Inventor)

    2003-01-01

    A method and system for detecting a failure or performance degradation in a dynamic system having sensors for measuring state variables and providing corresponding output signals in response to one or more system input signals are provided. The method includes calculating estimated gains of a filter and selecting an appropriate linear model for processing the output signals based on the input signals. The step of calculating utilizes one or more models of the dynamic system to obtain estimated signals. The method further includes calculating output error residuals based on the output signals and the estimated signals. The method also includes detecting one or more hypothesized failures or performance degradations of a component or subsystem of the dynamic system based on the error residuals. The step of calculating the estimated values is performed optimally with respect to one or more of: noise, uncertainty of parameters of the models and un-modeled dynamics of the dynamic system which may be a flight vehicle or financial market or modeled financial system.

  13. Flight model performance test results of a helium dewar for the soft X-ray spectrometer onboard ASTRO-H

    NASA Astrophysics Data System (ADS)

    Yoshida, Seiji; Miyaoka, Mikio; Kanao, Ken'ichi; Tsunematsu, Shoji; Otsuka, Kiyomi; Hoshika, Shunji; Mitsuda, Kazuhisa; Yamasaki, Noriko; Takei, Yoh; Fujimoto, Ryuichi; Sato, Yoichi; DiPirro, Mike; Shirron, Peter

    2016-03-01

    ASTRO-H is a Japanese X-ray astronomy satellite, scheduled to be launched in fiscal year 2015. The mission includes a soft X-ray spectrometer instrument (SXS), which contains an X-ray micro calorimeter operating at 50 mK by using an adiabatic demagnetization refrigerator (ADR). The heat sink of the ADR is superfluid liquid helium below 1.3 K. The required lifetime of the superfluid helium is 3 years or more. In order to realize this lifetime, we have improved the thermal performance from the engineering model (EM) while maintaining the mechanical performance. Then, we have performed a thermal test of the flight model (FM). The results were that the heat load to the helium tank was reduced to below 0.8 mW in the FM from 1.2 mW in the EM. Therefore, the lifetime of the superfluid helium is more than 3 years with 30 L of liquid helium. In this paper, the thermal design and thermal test results are described.

  14. Ambient Light Intensity, Actigraphy, Sleep and Respiration, Circadian Temperature and Melatonin Rhythms and Daytime Performance of Crew Members During Space Flight on STS-90 and STS-95 Missions

    NASA Technical Reports Server (NTRS)

    Czeisler, Charles A.; Dijk, D.-J.; Neri, D. F.; Hughes, R. J.; Ronda, J. M.; Wyatt, J. K.; West, J. B.; Prisk, G. K.; Elliott, A. R.; Young, L. R.

    1999-01-01

    Sleep disruption and associated waking sleepiness and fatigue are common during space flight. A survey of 58 crew members from nine space shuttle missions revealed that most suffered from sleep disruption, and reportedly slept an average of only 6.1 hours per day of flight as compared to an average of 7.9 hours per day on the ground. Nineteen percent of crewmembers on single shift missions and 50 percent of the crewmembers in dual shift operations reported sleeping pill usage (benzodiazepines) during their missions. Benzodiazepines are effective as hypnotics, however, not without adverse side effects including carryover sedation and performance impairment, anterograde amnesia, and alterations in sleep EEG. Our preliminary ground-based data suggest that pre-sleep administration of 0.3 mg of the pineal hormone melatonin may have the acute hypnotic properties needed for treating the sleep disruption of space flight without producing the adverse side effects associated with benzodiazepines. We hypothesize that pre-sleep administration of melatonin will result in decreased sleep latency, reduced nocturnal sleep disruption, improved sleep efficiency, and enhanced next-day alertness and cognitive performance both in ground-based simulations and during the space shuttle missions. Specifically, we have carried out experiments in which: (1) ambient light intensity aboard the space shuttle is assessed during flight; (2) the impact of space flight on sleep (assessed polysomnographically and actigraphically), respiration during sleep, circadian temperature and melatonin rhythms, waking neurobehavioral alertness and performance is assessed in crew members of the Neurolab and STS-95 missions; (3) the effectiveness of melatonin as a hypnotic is assessed independently of its effects on the phase of the endogenous circadian pacemaker in ground-based studies, using a powerful experimental model of the dyssomnia of space flight; (4) the effectiveness of melatonin as a hypnotic is

  15. Experimental quadrotor flight performance using computationally efficient and recursively feasible linear model predictive control

    NASA Astrophysics Data System (ADS)

    Jaffery, Mujtaba H.; Shead, Leo; Forshaw, Jason L.; Lappas, Vaios J.

    2013-12-01

    A new linear model predictive control (MPC) algorithm in a state-space framework is presented based on the fusion of two past MPC control laws: steady-state optimal MPC (SSOMPC) and Laguerre optimal MPC (LOMPC). The new controller, SSLOMPC, is demonstrated to have improved feasibility, tracking performance and computation time than its predecessors. This is verified in both simulation and practical experimentation on a quadrotor unmanned air vehicle in an indoor motion-capture testbed. The performance of the control law is experimentally compared with proportional-integral-derivative (PID) and linear quadratic regulator (LQR) controllers in an unconstrained square manoeuvre. The use of soft control output and hard control input constraints is also examined in single and dual constrained manoeuvres.

  16. Theory underlying CRM training: Psychological issues in flight crew performance and crew coordination

    NASA Technical Reports Server (NTRS)

    Helmreich, Robert L.

    1987-01-01

    What psychological theory and research can reveal about training in Cockpit Resource Management (CRM) is summarized. A framework is provided for the critical analysis of current approaches to CRM training. Background factors and definitions critical to evaluating CRM are reviewed, followed by a discussion of issues directly related to CRM training effectiveness. Some of the things not known about the optimization of crew performance and the research needed to make these efforts as effective as possible are described.

  17. Soaring and non-soaring bats of the family pteropodidae (flying foxes, Pteropus spp.): wing morphology and flight performance.

    PubMed

    Lindhe-Norberg, U M; Brooke, A P; Trewhella, W J

    2000-02-01

    On oceanic islands, some large diurnal megachiropteran bat species (flying foxes; Pteropus spp.) frequently use thermal or slope soaring during foraging flights to save energy. We compared the flight morphology and gliding/soaring performance of soaring versus non-soaring Pteropus species, one pair on American Samoa and one pair on the Comoro Islands, and two other soaring/flap-gliding species and one non-soaring species. We predicted that the soaring species should have a lower body mass, longer wings and, hence, lower wing loadings than those species that use mainly flapping flight. This would give a lower sinking speed during gliding, a higher glide ratio, and enable the bats to make tighter turns with lower sinking speeds than in the non-soaring species. We theoretically calculated the gliding and circling performances of both the soaring and non-soaring species. Our results show that there are tendencies towards longer wings and lower wing loadings in relation to body size in the gliding/soaring flying foxes than in the non-soaring ones. In the species-pair comparison of the soaring and non-soaring species on American Samoa and the Comoro Islands, the soarers on both islands turn out to have lower wing loadings than their non-soaring partners in spite of opposite size differences among the pairs. These characteristics are in accordance with our hypothesis on morphological adaptations. Most differences are, however, only significant at a level of P<0.1, which may be due to the small sample size, but overlap also occurs. Therefore, we must conclude that wing morphology does not seem to be a limiting factor preventing the non-soarers from soaring. Instead, diurnality in the soaring species seems to be the ultimate determinant of soaring behaviour. The morphological differences cause visible differences in soaring and gliding performance. The glider/soarers turn out to have lower minimum sinking speeds, lower best glide speeds and smaller turning radii than the

  18. Courtship dives of Anna's hummingbird offer insights into flight performance limits

    PubMed Central

    Clark, Christopher James

    2009-01-01

    Behavioural displays are a common feature of animal courtship. Just as female preferences can generate exaggerated male ornaments, female preferences for dynamic behaviours may cause males to perform courtship displays near intrinsic performance limits. I provide an example of an extreme display, the courtship dive of Anna's hummingbird (Calypte anna). Diving male Anna's hummingbirds were filmed with a combination of high-speed and conventional video cameras. After powering the initial stage of the dive by flapping, males folded their wings by their sides, at which point they reached an average maximum velocity of 385 body lengths s−1 (27.3 m s−1). This is the highest known length-specific velocity attained by any vertebrate. This velocity suggests their body drag coefficient is less than 0.3. They then spread their wings to pull up, and experienced centripetal accelerations nearly nine times greater than gravitational acceleration. This acceleration is the highest reported for any vertebrate undergoing a voluntary aerial manoeuvre, except jet fighter pilots. Stereotyped courtship behaviours offer several advantages for the study of extreme locomotor performance, and can be assessed in a natural context. PMID:19515669

  19. Optimized Performance of FlightPlan during Chemoembolization for Hepatocellular Carcinoma: Importance of the Proportion of Segmented Tumor Area

    PubMed Central

    Joo, Seung-Moon; Kim, Yong Pyo; Yum, Tae Jun; Eun, Na Lae; Lee, Dahye

    2016-01-01

    Objective To evaluate retrospectively the clinical effectiveness of FlightPlan for Liver (FPFL), an automated tumor-feeding artery detection software in cone-beam CT angiography (CBCTA), in identifying tumor-feeding arteries for the treatment of hepatocellular carcinoma (HCC) using three different segmentation sensitivities. Materials and Methods The study included 50 patients with 80 HCC nodules who received transarterial chemoembolization. Standard digital subtracted angiography (DSA) and CBCTA were systematically performed and analyzed. Three settings of the FPFL software for vascular tree segmentation were tested for each tumor: the default, Group D; adjusting the proportion of segmented tumor area between 30 to 50%, Group L; and between 50 to 80%, Group H. Results In total, 109 feeder vessels supplying 80 HCC nodules were identified. The negative predictive value of DSA, FPFL in groups D, L, and H was 56.8%, 87.7%, 94.2%, 98.5%, respectively. The accuracy of DSA, FPFL in groups D, L, and H was 62.6%, 86.8%, 93.4%, 95.6%, respectively. The sensitivity, negative predictive value (NPV), and accuracy of FPFL were higher in Group H than in Group D (p = 0.041, 0.034, 0.005). All three segmentation sensitivity groups showed higher specificity, positive predictive value, NPV, and accuracy of FPFL, as compared to DSA. Conclusion FlightPlan for Liver is a valuable tool for increasing detection of HCC tumor feeding vessels, as compared to standard DSA analysis, particularly in small HCC. Manual adjustment of segmentation sensitivity improves the accuracy of FPFL. PMID:27587967

  20. In-Flight Performance of the TES Loop Heat Pipe Rejection System: Seven Years in Space

    NASA Technical Reports Server (NTRS)

    Rodriguez, Jose I.; Na-Nakornpanom, Arthur

    2012-01-01

    The Tropospheric Emission Spectrometer (TES) instrument heat rejection system has been operating in space for nearly 8 years since launched on NASA's EOS Aura Spacecraft. The instrument is an infrared imaging fourier transform spectrometer with spectral coverage of 3.2 to 15.4 microns. The loop heat pipe (LHP) based heat rejection system manages all of the instrument components waste heat including the two mechanical cryocoolers and their drive electronics. Five propylene LHPs collect and transport the instrument waste heat to the near room temperature nadir viewing radiators. During the early months of the mission, ice contamination of the cryogenic surfaces including the focal planes led to increased cryocooler loads and the need for periodic decontamination cycles. Focal plane decontamination cycles require power cycling both cryocoolers which also requires the two cryocooler LHPs to turn off and on during each cycle. To date, the cryocooler LHPs have undergone 24 start-ups in orbit successfully. This paper reports on the TES cryocooler loop heat pipe based heat rejection system performance. After a brief overview of the instrument thermal design, the paper presents detailed data on the highly successful space operation of the loop heat pipes since instrument turn-on in 2004. The data shows that the steady-state and transient operation of the LHPs has not changed since 2004 and shows consistent and predictable performance. The LHP based heat rejection system has provided a nearly constant heat rejection heat sink for all of its equipment which has led to exceptional overall instrument performance with world class science.

  1. In-Flight Performance of the Mercury Laser Altimeter Laser Transmitter

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Sun, Xiaoli; Li, Steven X.; Cavanaugh, John F.; Neumann, Gregory A.

    2014-01-01

    The Mercury Laser Altimeter (MLA) is one of the payload instruments on the MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft, which was launched on August 3, 2004. MLA maps Mercury's shape and topographic landforms and other surface characteristics using a diode-pumped solid-state laser transmitter and a silicon avalanche photodiode receiver that measures the round-trip time of individual laser pulses. The laser transmitter has been operating nominally during planetary flyby measurements and in orbit about Mercury since March 2011. In this paper, we review the MLA laser transmitter telemetry data and evaluate the performance of solid-state lasers under extended operation in a space environment.

  2. Exploring flight crew behaviour

    NASA Technical Reports Server (NTRS)

    Helmreich, R. L.

    1987-01-01

    A programme of research into the determinants of flight crew performance in commercial and military aviation is described, along with limitations and advantages associated with the conduct of research in such settings. Preliminary results indicate significant relationships among personality factors, attitudes regarding flight operations, and crew performance. The potential theoretical and applied utility of the research and directions for further research are discussed.

  3. Effect of time dependent flight loads on JT9D-7 performance deterioration

    NASA Technical Reports Server (NTRS)

    Jay, A.; Lewis, B. L.

    1979-01-01

    The results of a modal transient analysis of the engine/aircraft system are presented. The response of the JT9D to analytically simulated vertical gusts and landings was predicted using a NASTRAN finite element mathematical model of the JT9D/747 propulsion system. The NASTRAN finite element model of the propulsion system included engine structural models of the fan, low/high pressure compressors, diffuser/turbine cases, and high/low pressure rotors, as well as nacelle models of the inlet cowl, tailcone, and wing pylon. The analysis conducted predicts that an insignificant level of JT9D-7 performance deterioration would occur due to a typical vertical gust encounter or a typical revenue service landing. Analysis of a high sink rate landing with a heavy fuel load indicates the possibility of local wear, however, the lack of an accurate dynamic rotor/seal interference model precludes an accurate quantitative evaluation of performance change for this once-per-airframe-life event.

  4. NASA Marshall Space Flight Center Tri-gas Thruster Performance Characterization

    NASA Technical Reports Server (NTRS)

    Dorado, Vanessa; Grunder, Zachary; Schaefer, Bryce; Sung, Meagan; Pedersen, Kevin

    2013-01-01

    Historically, spacecraft reaction control systems have primarily utilized cold gas thrusters because of their inherent simplicity and reliability. However, cold gas thrusters typically have a low specific impulse. It has been determined that a higher specific impulse can be achieved by passing a monopropellant fluid mixture through a catalyst bed prior to expulsion through the thruster nozzle. This research analyzes the potential efficiency improvements from using tri-gas, a mixture of hydrogen, oxygen, and an inert gas, which in this case is helium. Passing tri-gas through a catalyst causes the hydrogen and oxygen to react and form water vapor, ultimately heating the exiting fluid and generating a higher specific impulse. The goal of this project was to optimize the thruster performance by characterizing the effects of varying several system components including catalyst types, catalyst lengths, and initial catalyst temperatures.

  5. Post-Flight EDL Entry Guidance Performance of the 2011 Mars Science Laboratory Mission

    NASA Technical Reports Server (NTRS)

    Mendeck, Gavin F.; McGrew, Lynn Craig

    2013-01-01

    The 2011 Mars Science Laboratory was the first Mars guided entry which safely delivered the rover to a landing within a touchdown ellipse of 19.1 km x 6.9 km. The Entry Terminal Point Controller guidance algorithm is derived from the final phase Apollo Command Module guidance and, like Apollo, modulates the bank angle to control the range flown. The guided entry performed as designed without any significant exceptions. The Curiosity rover was delivered about 2.2 km from the expected touchdown. This miss distance is attributed to little time to correct the downrange drift from the final bank reversal and a suspected tailwind during heading alignment. The successful guided entry for the Mars Science Laboratory lays the foundation for future Mars missions to improve upon.

  6. Application of smart materials for improved flight performance of military aircraft

    SciTech Connect

    Kudva, J.; Appa, K.; Martin, C.; Jardine, P.

    1995-12-31

    This paper discusses on-going work under an ARPA/WL contract to Northrop Grumman entitled {open_quotes}Smart Structures and Materials Development - Smart Wing.{close_quotes} The contract addresses the application of smart materials and smart Structures concepts to enhance the aerodynamic and maneuver performance of military aircraft. Various concepts for adaptive wing and control surfaces are being studied. Specifically, (a) wing span-wise twist control using built-in shape- memory alloy torquing mechanism and (b) cambered leading edge and trailing edge control surfaces using hybrid piezoelectric and SMA actuation, are being evaluated for a 20% model of a modem day fighter aircraft. The potential benefits of the designs include increased lift for short take-offs, improved high-speed maneuverability, and enhanced control surface effectiveness. These benefits will be quantified by testing the sub-scale model in a transonic wind tunnel next year.

  7. In-Flight Performance of the Polarization Modulator in the CLASP Rocket Experiment

    NASA Technical Reports Server (NTRS)

    Ishikawa, Shin-nosuke; Shimizu, Toshifumi; Kano, Ryohei; Bando, Takamasa; Ishikawa, Ryoko; Giono, Gabriel; Beabout, Dyana L.; Beabout, Brent L.; Nakayama, Satoshi; Tajima, Takao

    2016-01-01

    We developed a polarization modulation unit (PMU), a motor system to rotate a waveplate continuously. In polarization measurements, the continuous rotating waveplate is an important element as well as a polarization analyzer to record the incident polarization in a time series of camera exposures. The control logic of PMU was originally developed for the next Japanese solar observation satellite SOLAR-C by the SOLAR-C working group. We applied this PMU for the Chromospheric Lyman-alpha SpectroPolarimeter (CLASP). CLASP is a sounding rocket experiment to observe the linear polarization of the Lyman-alpha emission (121.6 nm vacuum ultraviolet) from the upper chromosphere and transition region of the Sun with a high polarization sensitivity of 0.1 % for the first time and investigate their vector magnetic field by the Hanle effect. The driver circuit was developed to optimize the rotation for the CLASP waveplate (12.5 rotations per minute). Rotation non-uniformity of the waveplate causes error in the polarization degree (i.e. scale error) and crosstalk between Stokes components. We confirmed that PMU has superior rotation uniformity in the ground test and the scale error and crosstalk of Stokes Q and U are less than 0.01 %. After PMU was attached to the CLASP instrument, we performed vibration tests and confirmed all PMU functions performance including rotation uniformity did not change. CLASP was successfully launched on September 3, 2015, and PMU functioned well as designed. PMU achieved a good rotation uniformity, and the high precision polarization measurement of CLASP was successfully achieved.

  8. In-Flight Observations of Long-Term Single Event Effect(SEE)Performance on Orbview-2 and Xray Timing Explorer(XTE)Solid State Recorders (SSR)

    NASA Technical Reports Server (NTRS)

    Poivey, Christian; Barth, Janet L.; LaBel, Ken A.; Gee, George; Safren, Harvey

    2003-01-01

    This paper presents Single Event Effect (SEE) in-flight data on Solid State Recorders (SSR) that have been collected over a long period of time for two NASA spacecraft: Orbview-2 and XTE. SEE flight data on solid-state memories give an opportunity to study the behavior in space of SEE sensitive commercial devices. The actual Single Event Upset (SEU) rates can be compared with the calculated rates based on environment models and ground test data. The SEE mitigation schemes can also be evaluated in actual implementation. A significant amount of data has already been published concerning observed SEE effects on memories in space. However, most of the data presented cover either a short period of time or a small number of devices. The data presented here has been collected on a large number of devices during several years. This allows statistically significant information about the effect of space weather fluctuations on SEU rates, and the effectiveness of SEE countermeasures used to be analyzed. Only Orbview-2 data is presented in this summary. XTE data will be included in the final paper.

  9. Does Simulator-Based Clinical Performance Correlate with Actual Hospital Behavior? The Effect of Extended Work Hours on Patient Care Provided by Medical Interns

    PubMed Central

    Gordon, James A.; Alexander, Erik K.; Lockley, Steven W.; Flynn-Evans, Erin; Venkatan, Suresh K.; Landrigan, Christopher P.; Czeisler, Charles A.

    2013-01-01

    Purpose The correlation between simulator-based medical performance and real-world behavior remains unclear. The authors conducted this study to explore whether the effects of extended work hours on clinical performance, as reported in prior hospital-based studies, could be observed in a simulator-based testing environment. Method Intern volunteers reported to the simulator laboratory in a rested state and again in a sleep-deprived state (after a traditional 24–30 hour overnight shift [n=17]). A subset also presented after a shortened overnight shift (maximum of 16 scheduled hours [n=8]). During each laboratory visit, participants managed two critically ill patients. An on-site physician scored each case, as did a blinded rater later watching videotapes of the performances (score=1 [worst] to 8 [best]; average of both cases = session score). Results Among all participants, the average simulator session score was 6.0 (95% CI: 5.6–6.4) in the rested state, and declined to 5.0 (95% CI: 4.6–5.4) after the traditional overnight shift (P<0.001). Among those who completed the shortened overnight shift, the average post-shift simulator session score was 5.8 (95% CI: 5.0–6.6) compared to 4.3 [95%CI: 3.8–4.9]) after a traditional extended shift (P<0.001). Conclusions In a clinical simulation test, medical interns performed significantly better after working a shortened overnight shift compared to a traditional extended shift. These findings are consistent with real-time hospital studies using the same shift schedule. Such an independent correlation not only confirms the detrimental impact of extended work hours on medical performance, but also supports the validity of simulation as a clinical performance assessment tool. PMID:20881679

  10. The Antarctic Impulsive Transient Antenna ultra-high energy neutrino detector: Design, performance, and sensitivity for 2006-2007 balloon flight

    SciTech Connect

    Gorham, P. W.; Allison, P.; Barwick, S. W.; Beatty, J. J.; Besson, D. Z.; Binns, W. R.; Chen, C.; Chen, P.; Clem, J. M.; Connolly, A.; Dowkontt, P. F.; DuVernois, M. A.; Field, R. C.; Goldstein, D.; Goodhue, A.; Hast, C.; Hebert, C. L.; Hoover, S.; Israel, M. H.; Learned, J. G.

    2009-05-23

    In this article, we present a comprehensive report on the experimental details of the Antarctic Impulsive Transient Antenna (ANITA) long-duration balloon payload, including the design philosophy and realization, physics simulations, performance of the instrument during its first Antarctic flight completed in January of 2007, and expectations for the limiting neutrino detection sensitivity.

  11. Exploring the Effects of Multimedia Learning on Pre-Service Teachers' Perceived and Actual Learning Performance: The Use of Embedded Summarized Texts in Educational Media

    ERIC Educational Resources Information Center

    Wu, Leon Yufeng; Yamanaka, Akio

    2013-01-01

    In light of the increased usage of instructional media for teaching and learning, the design of these media as aids to convey the content for learning can be crucial for effective learning outcomes. In this vein, the literature has given attention to how concurrent on-screen text can be designed using these media to enhance learning performance.…

  12. Chemical fingerprint of Ganmaoling granule by double-wavelength ultra high performance liquid chromatography and ultra high performance liquid chromatography with quadrupole time-of-flight mass spectrometry.

    PubMed

    Lou, Qiong; Ye, Xiaolan; Zhou, Yingyi; Li, Hua; Song, Fenyun

    2015-06-01

    A method incorporating double-wavelength ultra high performance liquid chromatography with quadrupole time-of-flight mass spectrometry was developed for the investigation of the chemical fingerprint of Ganmaoling granule. The chromatographic separations were performed on an ACQUITY UPLC HSS C18 column (2.1 × 50 mm, 1.8 μm) at 30°C using gradient elution with water/formic acid (1%) and acetonitrile at a flow rate of 0.4 mL/min. A total of 11 chemical constituents of Ganmaoling granule were identified from their molecular weight, UV spectra, tandem mass spectrometry data, and retention behavior by comparing the results with those of the reference standards or literature. And 25 peaks were selected as the common peaks for fingerprint analysis to evaluate the similarities among 25 batches of Ganmaoling granule. The results of principal component analysis and orthogonal projection to latent structures discriminant analysis showed that the important chemical markers that could distinguish the different batches were revealed as 4,5-di-O-caffeoylquinic acid, 3,5-di-O-caffeoylquinic acid, and 4-O-caffeoylquinic acid. This is the first report of the ultra high performance liquid chromatography chemical fingerprint and component identification of Ganmaoling granule, which could lay a foundation for further studies of Ganmaoling granule.

  13. Digital Fly-By-Wire Flight Control Validation Experience

    NASA Technical Reports Server (NTRS)

    Szalai, K. J.; Jarvis, C. R.; Krier, G. E.; Megna, V. A.; Brock, L. D.; Odonnell, R. N.

    1978-01-01

    The experience gained in digital fly-by-wire technology through a flight test program being conducted by the NASA Dryden Flight Research Center in an F-8C aircraft is described. The system requirements are outlined, along with the requirements for flight qualification. The system is described, including the hardware components, the aircraft installation, and the system operation. The flight qualification experience is emphasized. The qualification process included the theoretical validation of the basic design, laboratory testing of the hardware and software elements, systems level testing, and flight testing. The most productive testing was performed on an iron bird aircraft, which used the actual electronic and hydraulic hardware and a simulation of the F-8 characteristics to provide the flight environment. The iron bird was used for sensor and system redundancy management testing, failure modes and effects testing, and stress testing in many cases with the pilot in the loop. The flight test program confirmed the quality of the validation process by achieving 50 flights without a known undetected failure and with no false alarms.

  14. Performance optimisation of a new-generation orthogonal-acceleration quadrupole-time-of-flight mass spectrometer.

    PubMed

    Bristow, Tony; Constantine, Jill; Harrison, Mark; Cavoit, Fabien

    2008-04-01

    Orthogonal-acceleration quadrupole time-of-flight (oa-QTOF) mass spectrometers, employed for accurate mass measurement, have been commercially available for well over a decade. A limitation of the early instruments of this type was the narrow ion abundance range over which accurate mass measurements could be made with a high degree of certainty. Recently, a new generation of oa-QTOF mass spectrometers has been developed and these allow accurate mass measurements to be recorded over a much greater range of ion abundances. This development has resulted from new ion detection technology and improved electronic stability or by accurate control of the number of ions reaching the detector. In this report we describe the results from experiments performed to evaluate the mass measurement performance of the Bruker micrOTOF-Q, a member of the new-generation oa-QTOFs. The relationship between mass accuracy and ion abundance has been extensively evaluated and mass measurement accuracy remained stable (+/-1.5 m m/z units) over approximately 3-4 orders of magnitude of ion abundance. The second feature of the Bruker micrOTOF-Q that was evaluated was the SigmaFit function of the software. This isotope pattern-matching algorithm provides an exact numerical comparison of the theoretical and measured isotope patterns as an additional identification tool to accurate mass measurement. The smaller the value, the closer the match between theoretical and measured isotope patterns. This information is then employed to reduce the number of potential elemental formulae produced from the mass measurements. A relationship between the SigmaFit value and ion abundance has been established. The results from the study for both mass accuracy and SigmaFit were employed to define the performance criteria for the micrOTOF-Q. This provided increased confidence in the selection of elemental formulae resulting from accurate mass measurements.

  15. Performance measurements of a dual-rotor arm mechanism for efficient flight transition of fixed-wing unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    McGill, Karen Ashley Jean

    Reconfigurable systems are a class of systems that can be transformed into different configurations, generally to perform unique functions or to maintain operational efficiency under distinct conditions. A UAV can be considered a reconfigurable system when coupled with various useful features such as vertical take-off and landing (VTOL), hover capability, long-range, and relatively large payload. Currently, a UAV having these capabilities is being designed by the UTSA Mechanical Engineering department. UAVs such as this one have the following potential uses: emergency response/disaster relief, hazard-critical missions, offshore oil rig/wind farm delivery, surveillance, etc. The goal of this thesis is to perform experimental thrust and power measurements for the propulsion system of this fixed-wing UAV. Focus was placed on a rotating truss arm supporting two brushless motors and rotors that will later be integrated to the ends of the UAV wing. These truss arms will rotate via a supporting shaft from 0° to 90° to transition the UAV between a vertical take-off, hover, and forward flight. To make this hover/transition possible, a relationship between thrust, arm angle, and power drawn was established by testing the performance of the arm/motor assembly at arm angles of 0°, 15°, 30°, 45°, 60°, 75°, and 90°. Universal equations for this system of thrust as a function of the arm angle were created by correlating data collected by a load cell. A Solidworks model was created and used to conduct fluid dynamics simulations of the streamlines over the arm/motor assembly.

  16. Design and Performance Calculations of a Propeller for Very High Altitude Flight. Degree awarded by Case Western Univ.

    NASA Technical Reports Server (NTRS)

    Koch, L. Danielle

    1998-01-01

    Reported here is a design study of a propeller for a vehicle capable of subsonic flight in Earth's stratosphere. All propellers presented were required to absorb 63.4 kW (85 hp) at 25.9 km (85,000 ft) while aircraft cruise velocity was maintained at Mach 0.40. To produce the final design, classic momentum and blade-element theories were combined with two and three-dimensional results from the Advanced Ducted Propfan Analysis Code (ADPAC), a numerical Navier-Stokes analysis code. The Eppler 387 airfoil was used for each of the constant section propeller designs compared. Experimental data from the Langley Low-Turbulence Pressure Tunnel was used in the strip theory design and analysis programs written. The experimental data was also used to validate ADPAC at a Reynolds numbers of 60,000 and a Mach number of 0.20. Experimental and calculated surface pressure coefficients are compared for a range of angles of attack. Since low Reynolds number transonic experimental data was unavailable, ADPAC was used to generate two-dimensional section performance predictions for Reynolds numbers of 60,000 and 100,000 and Mach numbers ranging from 0.45 to 0.75. Surface pressure coefficients are presented for selected angles of attack. in addition to the variation of lift and drag coefficients at each flow condition. A three-dimensional model of the final design was made which ADPAC used to calculated propeller performance. ADPAC performance predictions were compared with strip-theory calculations at design point. Propeller efficiency predicted by ADPAC was within 1.5% of that calculated by strip theory methods, although ADPAC predictions of thrust, power, and torque coefficients were approximately 5% lower than the strip theory results. Simplifying assumptions made in the strip theory account for the differences seen.

  17. Performance of the Clouds and the Earth's Radiant Energy System (CERES) Flight Model 5 (FM5) instrument on NPP mission

    NASA Astrophysics Data System (ADS)

    Thomas, Susan; Priestley, Kory J.; Hess, Phillip C.; Wilson, Robert S.; Smith, Nathaniel P.; Timcoe, Mark G.; Shankar, Mohan; Walikainen, Dale R.

    2012-09-01

    Clouds and the Earth's Radiant Energy System (CERES) instrument was designed to provide accurate measurements for the long-term monitoring of Earth's radiation energy budget. Flight Model 5, the sixth of the CERES instrument was launched aboard the NPP spacecraft on October 2011 and it has started the Earth-viewing measurements on January 26, 2012. The CERES instrument with the three scanning sensors measure radiances in 0.3 to 5.0 micron region with Shortwave sensor, 0.3 to <100 microns with Total sensor and 8 to 12 micron region with Window sensor. The pre-launch accuracy goal for the CERES instrument measurements is to have the emitted longwave radiances within 0.5% and the shortwave radiances within 1.0%. An accurate determination of the radiometric gains and spectral responsivity of CERES FM5 sensors was accomplished through rigorous calibrations using the primary sources. Post-launch evaluation of the sensor performance consists of sensor calibrations with the on-board sources and the solar diffuser called Mirror Attenuator Mosaic (MAM). The calibration results using onboard sources are also compared to pre-launch values which serve as a traceability standard to carry the ground determined sensor radiometric gains to orbit. Several validation studies utilising targets such as tropical ocean and deep convective clouds are performed as part of the Cal/Val protocol. The scan elevation offset in the sensor measurement will be determined from the spacecraft pitch manuveur activity viewing the deep space. This paper covers the early-orbit checkout activities and the overall performance of the CERES-FM5 instrument. The postlaunch calibration and the validation results from the instrument are presented.

  18. Actual and 'optimum' flight speeds: field data reassessed

    PubMed

    Pennycuick

    1997-01-01

    Previously published field observations of the air speeds of 36 species of birds, all observed by the same method (ornithodolite), were compared with estimates of the corresponding minimum power speeds, calculated with a default body drag coefficient of 0.1. This value, which was derived from recent wind tunnel studies, represents a downward revision from default values previously used and leads, in turn, to an upward revision of estimated minimum power speeds. The mean observed air speeds are now distributed around the minimum power speed, rather than in between the speeds for minimum power and maximum range, as they were before. Although the field data do not represent migration, examination of the marginal effects of small changes of speed, on power and lift:drag ratio, indicates that flying at the maximum range speed on migration may not represent an 'optimal' or even a practical strategy and that cruising speeds may be limited by the muscle power available or by aerobic capacity. Caution in constructing 'optimisation' theories is indicated.

  19. Biomechanics of bird flight.

    PubMed

    Tobalske, Bret W

    2007-09-01

    Power output is a unifying theme for bird flight and considerable progress has been accomplished recently in measuring muscular, metabolic and aerodynamic power in birds. The primary flight muscles of birds, the pectoralis and supracoracoideus, are designed for work and power output, with large stress (force per unit cross-sectional area) and strain (relative length change) per contraction. U-shaped curves describe how mechanical power output varies with flight speed, but the specific shapes and characteristic speeds of these curves differ according to morphology and flight style. New measures of induced, profile and parasite power should help to update existing mathematical models of flight. In turn, these improved models may serve to test behavioral and ecological processes. Unlike terrestrial locomotion that is generally characterized by discrete gaits, changes in wing kinematics and aerodynamics across flight speeds are gradual. Take-off flight performance scales with body size, but fully revealing the mechanisms responsible for this pattern awaits new study. Intermittent flight appears to reduce the power cost for flight, as some species flap-glide at slow speeds and flap-bound at fast speeds. It is vital to test the metabolic costs of intermittent flight to understand why some birds use intermittent bounds during slow flight. Maneuvering and stability are critical for flying birds, and design for maneuvering may impinge upon other aspects of flight performance. The tail contributes to lift and drag; it is also integral to maneuvering and stability. Recent studies have revealed that maneuvers are typically initiated during downstroke and involve bilateral asymmetry of force production in the pectoralis. Future study of maneuvering and stability should measure inertial and aerodynamic forces. It is critical for continued progress into the biomechanics of bird flight that experimental designs are developed in an ecological and evolutionary context.

  20. Intra-specific variation in wing morphology and its impact on take-off performance in blue tits (Cyanistes caeruleus) during escape flights.

    PubMed

    McFarlane, Laura; Altringham, John D; Askew, Graham N

    2016-05-01

    Diurnal and seasonal increases in body mass and seasonal reductions in wing area may compromise a bird's ability to escape, as less of the power available from the flight muscles can be used to accelerate and elevate the animal's centre of mass. Here, we investigated the effects of intra-specific variation in wing morphology on escape take-off performance in blue tits (Cyanistes caeruleus). Flights were recorded using synchronised high-speed video cameras and take-off performance was quantified as the sum of the rates of change of the kinetic and potential energies of the centre of mass. Individuals with a lower wing loading, WL (WL=body weight/wing area) had higher escape take-off performance, consistent with the increase in lift production expected from relatively larger wings. Unexpectedly, it was found that the total power available from the flight muscles (estimated using an aerodynamic analysis) was inversely related to WL. This could simply be because birds with a higher WL have relatively smaller flight muscles. Alternatively or additionally, variation in the aerodynamic load on the wing resulting from differences in wing morphology will affect the mechanical performance of the flight muscles via effects on the muscle's length trajectory. Consistent with this hypothesis is the observation that wing beat frequency and relative downstroke duration increase with decreasing WL; both are factors that are expected to increase muscle power output. Understanding how wing morphology influences take-off performance gives insight into the potential risks associated with feather loss and seasonal and diurnal fluctuations in body mass. PMID:26994175