Science.gov

Sample records for actual flight segments

  1. The IBEX Flight Segment

    NASA Astrophysics Data System (ADS)

    Scherrer, J.; Carrico, J.; Crock, J.; Cross, W.; Delossantos, A.; Dunn, A.; Dunn, G.; Epperly, M.; Fields, B.; Fowler, E.; Gaio, T.; Gerhardus, J.; Grossman, W.; Hanley, J.; Hautamaki, B.; Hawes, D.; Holemans, W.; Kinaman, S.; Kirn, S.; Loeffler, C.; McComas, D. J.; Osovets, A.; Perry, T.; Peterson, M.; Phillips, M.; Pope, S.; Rahal, G.; Tapley, M.; Tyler, R.; Ungar, B.; Walter, E.; Wesley, S.; Wiegand, T.

    2009-08-01

    IBEX provides the observations needed for detailed modeling and in-depth understanding of the interstellar interaction (McComas et al. in Physics of the Outer Heliosphere, Third Annual IGPP Conference, pp. 162-181, 2004; Space Sci. Rev., 2009a, this issue). From mission design to launch and acquisition, this goal drove all flight system development. This paper describes the management, design, testing and integration of IBEX’s flight system, which successfully launched from Kwajalein Atoll on October 19, 2008. The payload is supported by a simple, Sun-pointing, spin-stabilized spacecraft with no deployables. The spacecraft bus consists of the following subsystems: attitude control, command and data handling, electrical power, hydrazine propulsion, RF, thermal, and structures. A novel 3-step orbit approach was employed to put IBEX in its highly elliptical, 8-day final orbit using a Solid Rocket Motor, which provided large delta-V after IBEX separated from the Pegasus launch vehicle; an adapter cone, which interfaced between the SRM and Pegasus; Motorized Lightbands, which performed separation from the Pegasus, ejection of the adapter cone, and separation of the spent SRM from the spacecraft; a ShockRing isolation system to lower expected launch loads; and the onboard Hydrazine Propulsion System. After orbit raising, IBEX transitioned from commissioning to nominal operations and science acquisition. At every phase of development, the Systems Engineering and Mission Assurance teams supervised the design, testing and integration of all IBEX flight elements.

  2. Pilot Eye Scanning under Actual Single Pilot Instrument Flight

    NASA Astrophysics Data System (ADS)

    Rinoie, Kenichi; Sunada, Yasuto

    Operations under single pilot instrument flight rules for general aviation aircraft is known to be one of the most demanding pilot tasks. Scanning numerous instruments plays a key role for perception and decision-making during flight. Flight experiments have been done by a single engine light airplane to investigate the pilot eye scanning technique for IFR flights. Comparisons between the results by an actual flight and those by a PC-based flight simulator are made. The experimental difficulties of pilot eye scanning measurements during the actual IFR flight are discussed.

  3. The GMES Sentinels Flight Operations Segment

    NASA Astrophysics Data System (ADS)

    Bargellini, P.; Emanuelli, P. P.; Shurmer, I.; Marchese, F.; Morales, J.; Moeller, H. L.

    2010-12-01

    The Global Monitoring for Environment and Security (GMES) programme main objective is to support Europe's goals regarding sustainable development and global governance of the environment by providing timely and quality data, information, services and knowledge. To achieve this objective, the GMES programme features a Space Segment component comprising five Sentinels mission families. Scheduled for launch in 2012 and 2013, Sentinels 1, 2 and 3 represent the first step in the deployment of the GMES Space Segment. They are regarded as operational missions and as such require a high degree of reliability and availability also at the level of the ground segment while minimising the operational effort associated to the routine mission phase. This paper will describe the Operational Concept applied across the 3 missions highlighting the innovative aspects, in particular the automated payload mission planning and handling of user emergency orders. In addition, the approach applied for supporting TT&C station scheduling and orbit maintenance activities will be presented. Finally, a summary of the overall ground segment will be provided and the Sentinels Flight Operations Segment specific facilities, based on extensive use of ESA/ESOC ground software infrastructure, presented.

  4. The ASAC Flight Segment and Network Cost Models

    NASA Technical Reports Server (NTRS)

    Kaplan, Bruce J.; Lee, David A.; Retina, Nusrat; Wingrove, Earl R., III; Malone, Brett; Hall, Stephen G.; Houser, Scott A.

    1997-01-01

    To assist NASA in identifying research art, with the greatest potential for improving the air transportation system, two models were developed as part of its Aviation System Analysis Capability (ASAC). The ASAC Flight Segment Cost Model (FSCM) is used to predict aircraft trajectories, resource consumption, and variable operating costs for one or more flight segments. The Network Cost Model can either summarize the costs for a network of flight segments processed by the FSCM or can be used to independently estimate the variable operating costs of flying a fleet of equipment given the number of departures and average flight stage lengths.

  5. Comparative analysis of operational forecasts versus actual weather conditions in airline flight planning: Summary report

    NASA Technical Reports Server (NTRS)

    Keitz, J. F.

    1982-01-01

    The impact of more timely and accurate weather data on airline flight planning with the emphasis on fuel savings is studied. This summary report discusses the results of each of the four major tasks of the study. Task 1 compared airline flight plans based on operational forecasts to plans based on the verifying analyses and found that average fuel savings of 1.2 to 2.5 percent are possible with improved forecasts. Task 2 consisted of similar comparisons but used a model developed for the FAA by SRI International that simulated the impact of ATc diversions on the flight plans. While parts of Task 2 confirm the Task I findings, inconsistency with other data and the known impact of ATC suggests that other Task 2 findings are the result of errors in the model. Task 3 compares segment weather data from operational flight plans with the weather actually observed by the aircraft and finds the average error could result in fuel burn penalties (or savings) of up to 3.6 percent for the average 8747 flight. In Task 4 an in-depth analysis of the weather forecast for the 33 days included in the study finds that significant errors exist on 15 days. Wind speeds in the area of maximum winds are underestimated by 20 to 50 kts., a finding confirmed in the other three tasks.

  6. Comparative analysis of operational forecasts versus actual weather conditions in airline flight planning, volume 3

    NASA Technical Reports Server (NTRS)

    Keitz, J. F.

    1982-01-01

    The impact of more timely and accurate weather data on airline flight planning with the emphasis on fuel savings is studied. This volume of the report discusses the results of Task 3 of the four major tasks included in the study. Task 3 compares flight plans developed on the Suitland forecast with actual data observed by the aircraft (and averaged over 10 degree segments). The results show that the average difference between the forecast and observed wind speed is 9 kts. without considering direction, and the average difference in the component of the forecast wind parallel to the direction of the observed wind is 13 kts. - both indicating that the Suitland forecast underestimates the wind speeds. The Root Mean Square (RMS) vector error is 30.1 kts. The average absolute difference in direction between the forecast and observed wind is 26 degrees and the temperature difference is 3 degree Centigrade. These results indicate that the forecast model as well as the verifying analysis used to develop comparison flight plans in Tasks 1 and 2 is a limiting factor and that the average potential fuel savings or penalty are up to 3.6 percent depending on the direction of flight.

  7. Caloric balance during simulated and actual space flight

    NASA Technical Reports Server (NTRS)

    Rambaut, P. C.; Heidelbaugh, N. D.; Smith, M. C., Jr.; Reid, J. M.

    1973-01-01

    The in-flight caloric intakes of all Apollo astronauts are examined and shown to average about 25 kcal per kg per day. Measurement of weight changes following recovery indicates that about 0.15 kg of fat was lost per man per day in-flight for an average deficit of about 19 kcal per kg per day. Measurement of the caloric intake of astronauts under ground-based conditions and during hypobaric exposure indicated a caloric requirement which was not significantly different from the in-flight requirement adjusted for weight loss. Partial metabolic balance data and measurements of bone loss and body volume revealed that protein and mineral losses also occurred to an extent which would reduce the size of estimated in-flight caloric deficits.

  8. Comparative analysis of operational forecasts versus actual weather conditions in airline flight planning, volume 2

    NASA Technical Reports Server (NTRS)

    Keitz, J. F.

    1982-01-01

    The impact of more timely and accurate weather data on airline flight planning with the emphasis on fuel savings is studied. This volume of the report discusses the results of Task 2 of the four major tasks included in the study. Task 2 compares various catagories of flight plans and flight tracking data produced by a simulation system developed for the Federal Aviation Administrations by SRI International. (Flight tracking data simulate actual flight tracks of all aircraft operating at a given time and provide for rerouting of flights as necessary to resolve traffic conflicts.) The comparisons of flight plans on the forecast to flight plans on the verifying analysis confirm Task 1 findings that wind speeds are generally underestimated. Comparisons involving flight tracking data indicate that actual fuel burn is always higher than planned, in either direction, and even when the same weather data set is used. Since the flight tracking model output results in more diversions than is known to be the case, it was concluded that there is an error in the flight tracking algorithm.

  9. Agreement between Actual Height and Estimated Height Using Segmental Limb Lengths for Individuals with Cerebral Palsy

    PubMed Central

    Haapala, Heidi; Peterson, Mark D.; Daunter, Alecia; Hurvitz, Edward A.

    2016-01-01

    Objective The purpose of this study was to determine the agreement between actual height or segmental length, and estimated height from segmental measures among individuals cerebral palsy (CP). Design A convenience sample of 137 children and young adults with CP (age 2–25 years) was recruited from a tertiary care center. Height, body mass, recumbent length, knee height, tibia length and ulna length were measured. Estimated height was calculated using several common prediction equations. Agreement between measured and estimated height was determined using the Bland-Altman method. Results Limits of agreement were wide for all equations, usually in the range of ± 10 cm. Repeatability of the individual measures was high, with a coefficient of variation of 1–2% for all measures. The equation using knee height demonstrated a non-uniform difference where height estimation worsened as overall height increased. Conclusions Accurate measurement of height is important, but very difficult in individuals with CP. Segmental measures are highly repeatable, and thus may be used on their own to monitor growth. However, when an accurate measure of height is needed to monitor nutritional status (i.e. for body mass index calculation), caution is warranted as there is only fair to poor agreement between actual height and estimated height. PMID:25299521

  10. Comparative analysis of operational forecasts versus actual weather conditions in airline flight planning, volume 4

    NASA Technical Reports Server (NTRS)

    Keitz, J. F.

    1982-01-01

    The impact of more timely and accurate weather data on airline flight planning with the emphasis on fuel savings is studied. This volume of the report discusses the results of Task 4 of the four major tasks included in the study. Task 4 uses flight plan segment wind and temperature differences as indicators of dates and geographic areas for which significant forecast errors may have occurred. An in-depth analysis is then conducted for the days identified. The analysis show that significant errors occur in the operational forecast on 15 of the 33 arbitrarily selected days included in the study. Wind speeds in an area of maximum winds are underestimated by at least 20 to 25 kts. on 14 of these days. The analysis also show that there is a tendency to repeat the same forecast errors from prog to prog. Also, some perceived forecast errors from the flight plan comparisons could not be verified by visual inspection of the corresponding National Meteorological Center forecast and analyses charts, and it is likely that they are the result of weather data interpolation techniques or some other data processing procedure in the airlines' flight planning systems.

  11. Comparisons of pilot performance in simulated and actual flight. [effects of ingested barbiturates

    NASA Technical Reports Server (NTRS)

    Billings, C. E.; Gerke, R. J.; Wick, R. L., Jr.

    1975-01-01

    Five highly experienced professional pilots performed instrument landing system approaches under simulated instrument flight conditions in a Cessna 172 airplane and in a Link-Singer GAT-1 simulator while under the influence of orally administered secobarbital (0, 100, and 200 mg). Tracking performance in two axes and airspeed control were evaluated continuously during each approach. Error and RMS variability were about half as large in the simulator as in the airplane. The observed data were more strongly associated with the drug level in the simulator than in the airplane. Further, the drug-related effects were more consistent in the simulator. Improvement in performance suggestive of learning effects were seen in the simulator, but not in actual flight.

  12. A Segmented Time-of-Flight Mass Spectrometer

    NASA Technical Reports Server (NTRS)

    Srivastava, S. K.; Iga, I.; Rao, M. V. V. S.

    1995-01-01

    The present paper describes the design of a time-of-flight mass spectrometer (TOFMS) in which the single flight tube of a conventional TOFMS has been replaced by several cylindrical electrostatic lenses in tandem. By a judicious choice of voltages on these lenses, an improved TOFMS has been realized which has a superior mass and energy resolution, shorter flight lengths, excellent signal-to-noise ratio and less stringent requirements on the bias voltages.

  13. Highly segmented, high resolution time-of-flight system

    SciTech Connect

    Nayak, T.K.; Nagamiya, S.; Vossnack, O.; Wu, Y.D.; Zajc, W.A.; Miake, Y.; Ueno, S.; Kitayama, H.; Nagasaka, Y.; Tomizawa, K.; Arai, I.; Yagi, K

    1991-12-31

    The light attenuation and timing characteristics of time-of-flight counters constructed of 3m long scintillating fiber bundles of different shapes and sizes are presented. Fiber bundles made of 5mm diameter fibers showed good timing characteristics and less light attenuation. The results for a 1.5m long scintillator rod are also presented.

  14. Alterations in calcium homeostasis and bone during actual and simulated space flight

    NASA Technical Reports Server (NTRS)

    Wronski, T. J.; Morey, E. R.

    1983-01-01

    Skeletal alteration in experimental animals induced by actual and simulated spaceflight are discussed, noting that the main factor contributing to bone loss in growing rats placed in orbit aboard Soviet Cosmos biosatellites appears to be diminished bone formation. Mechanical unloading is seen as the most obvious cause of bone loss in a state of weightlessness. Reference is made to a study by Roberts et al. (1981), which showed that osteoblast differentiation in the periodontal ligament of the maxilla was suppressed in rats flown in space. Since the maxilla lacks a weight-bearing function, this finding indicates that the skeletal alterations associated with orbital flight may be systemic rather than confined to weight-bearing bones. In addition, the skeletal response to simulated weightlessness may also be systemic (wronski and Morey, 1982). In suspended rats, the hindlimbs lost all weight-bearing functions, while the forelimbs maintained contact with the floor of the hypokinetic model. On this basis, it was to be expected that there would be different responses at the two skeletal sites if the observed abnormalities were due to mechanical unloading alone. The changes induced by simulated weightlessness in the proximal tibia and humerus, however, were generally comparable. This evidence for systemic skeletal responses has drawn attention to endocrine factors.

  15. Robust real time extraction of plane segments from time-of-flight camera images

    NASA Astrophysics Data System (ADS)

    Dalbah, Yosef; Koltermann, Dirk; Wahl, Friedrich M.

    2014-04-01

    We present a method that extracts plane segments from images of a time-of-flight camera. Future driver assistance systems rely on an accurate description of the vehicle's environment. Time-of-flight cameras can be used for environment perception and for the reconstruction of the environment. Since most structures in urban environments are planar, extracted plane segments from single camera images can be used for the creation of a global map. We present a method for real time detection of planar surface structures from time-of-flight camera data. The concept is based on a planar surface segmentation that serves as the fundament for a subsequent global planar surface extraction. The evaluation demonstrates the ability of the described algorithm to detect planar surfaces form depth data of complex scenarios in real time. We compare our methods to state of the art planar surface extraction algorithms.

  16. SILEX ground segment control facilities and flight operations

    NASA Astrophysics Data System (ADS)

    Demelenne, Benoit; Tolker-Nielsen, Toni; Guillen, Jean-Claude

    1999-04-01

    The European Space Agency is going to conduct an inter orbit link experiment which will connect a low Earth orbiting satellite and a Geostationary satellite via optical terminals. This experiment has been called SILEX (Semiconductor Inter satellite Link Experiment). Two payloads have been built. One called PASTEL (PASsager de TELecommunication) has been embarked on the French Earth observation satellite SPOT4 which has been launched successfully in March 1998. The future European experimental data relay satellite ARTEMIS (Advanced Relay and TEchnology MISsion), which will route the data to ground, will carry the OPALE terminal (Optical Payload Experiment). The European Space Agency is responsible for the operation of both terminals. Due to the complexity and experimental character of this new optical technology, the development, preparation and validation of the ground segment control facilities required a long series of technical and operational qualification tests. This paper is presenting the operations concept and the early results of the PASTEL in orbit operations.

  17. Loads analysis and testing of flight configuration solid rocket motor outer boot ring segments

    NASA Technical Reports Server (NTRS)

    Ahmed, Rafiq

    1990-01-01

    The loads testing on in-house-fabricated flight configuration Solid Rocket Motor (SRM) outer boot ring segments. The tests determined the bending strength and bending stiffness of these beams and showed that they compared well with the hand analysis. The bending stiffness test results compared very well with the finite element data.

  18. Flight evaluation of two segment approaches for jet transport noise abatement

    NASA Technical Reports Server (NTRS)

    Rogers, R. A.; Wohl, B.; Gale, C. M.

    1973-01-01

    A 75 flight-hour operational evaluation was conducted with a representative four-engine fan-jet transport in a representative airport environment. The flight instrument systems were modified to automatically provide pilots with smooth and continuous pitch steering command information during two-segment approaches. Considering adverse weather, minimum ceiling and flight crew experience criteria, a transition initiation altitude of approximately 800 feet AFL would have broadest acceptance for initiating two-segment approach procedures in scheduled service. The profile defined by the system gave an upper glidepath of approximately 6 1/2 degrees. This was 1/2 degree greater than inserted into the area navigation system. The glidepath error is apparently due to an erroneous along-track, distance-to-altitude profile.

  19. Axon outgrowth along segmental nerves in the leech. II. Identification of actual guidance cells

    SciTech Connect

    Braun, J.; Stent, G.S.

    1989-04-01

    Some peripheral neurons, previously identified as candidate guidance cells for axonal outgrowth along the segmental nerves in embryos of the glossiphoniid leech Helobdella triserialis, were photoablated by laser illumination to ascertain whether their presence is necessary for generation of the normal axonal growth pattern. These experiments showed that focal photoablation of peripheral neurons nz3 or pz8 prevents normal axonal outgrowth along the ultraposterior nerve path or along the distal sector of the medial-anterior nerve path, respectively, in conformance with the inference that these two neurons do function as guidance cells. However, ablation of these neurons affects axon outgrowth only if the neurons are illuminated prior to the end of a sensitive period in segmental development. By contrast, photoablation of previously identified candidate guidance cells situated on the anterior-anterior and posterior-posterior nerve paths, among them peripheral neurons nz1, nz2, oz1, oz2, pz6, and LD1, does not prevent normal axonal outgrowth. It is possible that the guidance role, if any, of these neurons is facultative rather than necessary, since each of the several neurons that lies on either of these nerve paths may provide an alternative axon guidance cue.

  20. Flight velocity influence on jet noise of conical ejector, annular plug and segmented suppressor nozzles

    NASA Technical Reports Server (NTRS)

    Brausch, J. F.

    1972-01-01

    An F106 aircraft with a J85-13 engine was used for static and flight acoustic and aerodynamic tests of a conical ejector, an unsuppressed annular plug, and three segmented suppressor nozzles. Static 100 ft. arc data, corrected for influences other than jet noise, were extrapolated to a 300 ft. sideline for comparison to 300 ft. altitude flyover data at M = 0.4. Data at engine speeds of 80 to 100% (max dry) static and 88 to 100% flight are presented. Flight velocity influence on noise is shown on peak OASPL and PNL, PNL directivity, EPNL and chosen spectra. Peak OASPL and PNL plus EPNL suppression levels are included showing slightly lower flight than static peak PNL suppression but greater EPNL than peak PNL suppression. Aerodynamic performance was as anticipated and closely matched model work for the 32-spoke nozzle.

  1. Alterations in calcium homeostasis and bone during actual and simulated space flight.

    PubMed

    Wronski, T J; Morey, E R

    1983-01-01

    The weightlessness experienced in space produces alterations in calcium homeostasis. Gemini, Apollo, and Skylab astronauts exhibited a negative calcium balance due primarily to hypercalciuria. In addition, the bone mineral density of the calcaneus declined by approximately 4% in Skylab crew members after 84 d of orbital flight. The negative calcium balance and loss of calcaneal bone mineral in normal adults subjected to prolonged bed rest was comparable to that observed in space. The pathogenesis of bone loss during space flight and bed rest is not well understood due to the lack of histomorphometric data. It is also uncertain whether osteoporotic changes in astronauts are corrected postflight. The observed bone loss would be reversible and of no long-term consequence if the only abnormality was an increased remodeling rate. However, altered bone cell activity would probably result in irreversible bone loss with the premature development of senile osteoporosis many years after space flight. The main skeletal defect in growing rats placed in orbit aboard Soviet Cosmos biosatellites appears to be diminished bone formation. Bone resorption was not elevated during weightlessness. Although cortical bone returned to normal postflight, the decline in trabecular bone mass was somewhat persistent. These studies established that the modeling of a growing skeleton was altered in a weightless environment, but do not necessarily imply that a remodeling imbalance occurs in adults during space flight. However, various forms of simulated space flight inhibited bone formation during both skeletal modeling and the remodeling of adult bone.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:6645871

  2. Comparative analysis of operational forecasts versus actual weather conditions in airline flight planning, volume 1

    NASA Technical Reports Server (NTRS)

    Keitz, J. F.

    1982-01-01

    The impact of more timely and accurate weather data on airline flight planning with the emphasis on fuel savings is studied. This volume of the report discusses the results of Task 1 of the four major tasks included in the study. Task 1 compares flight plans based on forecasts with plans based on the verifying analysis from 33 days during the summer and fall of 1979. The comparisons show that: (1) potential fuel savings conservatively estimated to be between 1.2 and 2.5 percent could result from using more timely and accurate weather data in flight planning and route selection; (2) the Suitland forecast generally underestimates wind speeds; and (3) the track selection methodology of many airlines operating on the North Atlantic may not be optimum resulting in their selecting other than the optimum North Atlantic Organized Track about 50 percent of the time.

  3. Operational flight evaluation of the two-segment approach for use in airline service

    NASA Technical Reports Server (NTRS)

    Schwind, G. K.; Morrison, J. A.; Nylen, W. E.; Anderson, E. B.

    1975-01-01

    United Airlines has developed and evaluated a two-segment noise abatement approach procedure for use on Boeing 727 aircraft in air carrier service. In a flight simulator, the two-segment approach was studied in detail and a profile and procedures were developed. Equipment adaptable to contemporary avionics and navigation systems was designed and manufactured by Collins Radio Company and was installed and evaluated in B-727-200 aircraft. The equipment, profile, and procedures were evaluated out of revenue service by pilots representing government agencies, airlines, airframe manufacturers, and professional pilot associations. A system was then placed into scheduled airline service for six months during which 555 two-segment approaches were flown at three airports by 55 airline pilots. The system was determined to be safe, easy to fly, and compatible with the airline operational environment.

  4. Flight evaluation of two-segment approaches using area navigation guidance equipment

    NASA Technical Reports Server (NTRS)

    Schwind, G. K.; Morrison, J. A.; Nylen, W. E.; Anderson, E. B.

    1976-01-01

    A two-segment noise abatement approach procedure for use on DC-8-61 aircraft in air carrier service was developed and evaluated. The approach profile and procedures were developed in a flight simulator. Full guidance is provided throughout the approach by a Collins Radio Company three-dimensional area navigation (RNAV) system which was modified to provide the two-segment approach capabilities. Modifications to the basic RNAV software included safety protection logic considered necessary for an operationally acceptable two-segment system. With an aircraft out of revenue service, the system was refined and extensively flight tested, and the profile and procedures were evaluated by representatives of the airlines, airframe manufacturers, the Air Line Pilots Association, and the Federal Aviation Adminstration. The system was determined to be safe and operationally acceptable. It was then placed into scheduled airline service for an evaluation during which 180 approaches were flown by 48 airline pilots. The approach was determined to be compatible with the airline operational environment, although operation of the RNAV system in the existing terminal area air traffic control environment was difficult.

  5. The CYGNSS flight segment; A major NASA science mission enabled by micro-satellite technology

    NASA Astrophysics Data System (ADS)

    Rose, R.; Ruf, C.; Rose, D.; Brummitt, M.; Ridley, A.

    While hurricane track forecasts have improved in accuracy by ~50% since 1990, there has been essentially no improvement in the accuracy of intensity prediction. This lack of progress is thought to be caused by inadequate observations and modeling of the inner core due to two causes: 1) much of the inner core ocean surface is obscured from conventional remote sensing instruments by intense precipitation in the inner rain bands and 2) the rapidly evolving stages of the tropical cyclone (TC) life cycle are poorly sampled in time by conventional polar-orbiting, wide-swath surface wind imagers. NASA's most recently awarded Earth science mission, the NASA EV-2 Cyclone Global Navigation Satellite System (CYGNSS) has been designed to address these deficiencies by combining the all-weather performance of GNSS bistatic ocean surface scatterometry with the sampling properties of a satellite constellation. This paper provides an overview of the CYGNSS flight segment requirements, implementation, and concept of operations for the CYGNSS constellation; consisting of 8 microsatellite-class spacecraft (<; 100kg) each hosting a GNSS receiver, operating in a 500 km orbit, inclined at 35° to provide 70% coverage of the historical TC track. The CYGNSS mission is enabled by modern electronic technology; it is an example of how nanosatellite technology can be applied to replace traditional "old school" solutions at significantly reduced cost while providing an increase in performance. This paper provides an overview of how we combined a reliable space-flight proven avionics design with selected microsatellite components to create an innovative, low-cost solution for a mainstream science investigation.

  6. Segments.

    ERIC Educational Resources Information Center

    Zemsky, Robert; Shaman, Susan; Shapiro, Daniel B.

    2001-01-01

    Presents a market taxonomy for higher education, including what it reveals about the structure of the market, the model's technical attributes, and its capacity to explain pricing behavior. Details the identification of the principle seams separating one market segment from another and how student aspirations help to organize the market, making…

  7. A comparison of landing maneuver piloting technique based on measurements made in an airline training simulator and in actual flight

    NASA Technical Reports Server (NTRS)

    Heffley, R. K.; Schulman, T. M.

    1981-01-01

    An emphasis is placed on developing a mathematical model in order to identify useful metrics, quantify piloting technique, and define simulator fidelity. On the basis of DC-10 flight measurements recorded for 32 pilots, 13 flight-trained and the remainder simulator trained, a revised model of the landing flare is hypothesized which accounts for reduction of sink rate and perference for touchdown point along the runway. The flare maneuver and touchdown point adjustment can be described by a pitch attitude command pilot guidance law consisting of altitude and vertical velocity feedbacks. In flight pilots exhibit a significant vertical velocity feedback which is essential for well controlled sink rate reduction at the desired level of response (bandwidth). In the simulator, however, the vertical velocity feedback appears ineffectual and leads to substantially inferior landing performance.

  8. Optimized Performance of FlightPlan during Chemoembolization for Hepatocellular Carcinoma: Importance of the Proportion of Segmented Tumor Area

    PubMed Central

    Joo, Seung-Moon; Kim, Yong Pyo; Yum, Tae Jun; Eun, Na Lae; Lee, Dahye

    2016-01-01

    Objective To evaluate retrospectively the clinical effectiveness of FlightPlan for Liver (FPFL), an automated tumor-feeding artery detection software in cone-beam CT angiography (CBCTA), in identifying tumor-feeding arteries for the treatment of hepatocellular carcinoma (HCC) using three different segmentation sensitivities. Materials and Methods The study included 50 patients with 80 HCC nodules who received transarterial chemoembolization. Standard digital subtracted angiography (DSA) and CBCTA were systematically performed and analyzed. Three settings of the FPFL software for vascular tree segmentation were tested for each tumor: the default, Group D; adjusting the proportion of segmented tumor area between 30 to 50%, Group L; and between 50 to 80%, Group H. Results In total, 109 feeder vessels supplying 80 HCC nodules were identified. The negative predictive value of DSA, FPFL in groups D, L, and H was 56.8%, 87.7%, 94.2%, 98.5%, respectively. The accuracy of DSA, FPFL in groups D, L, and H was 62.6%, 86.8%, 93.4%, 95.6%, respectively. The sensitivity, negative predictive value (NPV), and accuracy of FPFL were higher in Group H than in Group D (p = 0.041, 0.034, 0.005). All three segmentation sensitivity groups showed higher specificity, positive predictive value, NPV, and accuracy of FPFL, as compared to DSA. Conclusion FlightPlan for Liver is a valuable tool for increasing detection of HCC tumor feeding vessels, as compared to standard DSA analysis, particularly in small HCC. Manual adjustment of segmentation sensitivity improves the accuracy of FPFL. PMID:27587967

  9. LANDSAT-D flight segment operations manual. Appendix B: OBC software operations

    NASA Technical Reports Server (NTRS)

    Talipsky, R.

    1981-01-01

    The LANDSAT 4 satellite contains two NASA standard spacecraft computers and 65,536 words of memory. Onboard computer software is divided into flight executive and applications processors. Both applications processors and the flight executive use one or more of 67 system tables to obtain variables, constants, and software flags. Output from the software for monitoring operation is via 49 OBC telemetry reports subcommutated in the spacecraft telemetry. Information is provided about the flight software as it is used to control the various spacecraft operations and interpret operational OBC telemetry. Processor function descriptions, processor operation, software constraints, processor system tables, processor telemetry, and processor flow charts are presented.

  10. Flight test investigation of the vortex wake characteristics behind a Boeing 727 during two-segment and normal ILS approaches

    NASA Technical Reports Server (NTRS)

    Garodz, L. J.

    1975-01-01

    A series of flight tests were performed to evaluate the vortex wake characteristics of a Boeing 727 (B727-200) aircraft during conventional and two-segment ILS approaches. Flights of the B727, equipped with smoke generators for vortex marking, were flown wherein its vortex wake was intentionally encountered by a Lear Jet model 23 (LR-23) or a Piper Twin Comanche (Pa-30); and its vortex location during landing approach was measured using a system of photo-theodolites. The tests showed that at a given separation distance there were no differences in the upsets resulting from deliberate vortex encounters during the two types of approaches. Timed mappings of the position of the landing configuration vortices showed that they tended to descend approximately 91 meters (300 feet) below the flight path of the B727. The flaps of the B727 have a dominant effect on the character of the trailed wake vortex. The clean wing produces a strong, concentrated vortex. As the flaps are lowered, the vortex system becomes more diffuse. Pilot opinion and roll acceleration data indicate that 4.5 nautical miles would be a minimum separation distance at which roll control could be maintained during parallel encounters of the B727's landing configuration wake by small aircraft.

  11. Engineering simulation development and evaluation of the two-segment noise abatement approach conducted in the B-727-222 flight simulator

    NASA Technical Reports Server (NTRS)

    Nylen, W. E.

    1974-01-01

    Profile modification as a means of reducing ground level noise from jet aircraft in the landing approach is evaluated. A flight simulator was modified to incorporate the cockpit hardware which would be in the prototype airplane installation. The two-segment system operational and aircraft interface logic was accurately emulated in software. Programs were developed to permit data to be recorded in real time on the line printer, a 14-channel oscillograph, and an x-y plotter. The two-segment profile and procedures which were developed are described with emphasis on operational concepts and constraints. The two-segment system operational logic and the flight simulator capabilities are described. The findings influenced the ultimate system design and aircraft interface.

  12. New Flight Opportunities Outside the Russian ISS Segment: Universal Working Platform URM-D

    NASA Astrophysics Data System (ADS)

    Hofmann, P.; Griethe, W.; Lebedev, O.; Panchenkov, V.; Silenchikov, M.

    2002-01-01

    As an important step to start the commercial utilization of the International Space Station, direct access by means of an external payload platform on the Russian segment is provided. Kayser-Threde has negotiated an agreement with the Russian Space Agency Rosaviakosmos and its Russian joint venture partner RSC Energia to jointly build a multi-purpose platform. During the first stage a total of three payloads can be mounted to the platform. This exciting experimental possibility will be available as early as at the end of 2003. The first industrial contract has been signed with the German Aerospace Center DLR at the end of November. Technology experiments involving a state-of-the-art light weight robot arm will be performed. The robot can be controlled directly from earth (i.e. from DLR's control center in Oberpfaffenhofen near Munich). Apart from robot technology demonstration a telepresence mode is foreseen mimicking in-orbit repair actions. Public outreach experiments (e.g. earth observation) are planned, too, using cameras mounted on top of the robot. The multi-purpose platform is characterized as follows:

  13. Analysis of the Quality of Parabolic Flight

    NASA Technical Reports Server (NTRS)

    Lambot, Thomas; Ord, Stephan F.

    2016-01-01

    Parabolic flights allow researchers to conduct several 20 second micro-gravity experiments in the course of a single day. However, the measurement can have large variations over the course of a single parabola, requiring the knowledge of the actual flight environment as a function of time. The NASA Flight Opportunities program (FO) reviewed the acceleration data of over 400 parabolic flights and investigated the quality of micro-gravity for scientific purposes. It was discovered that a parabolic flight can be segmented into multiple parts of different quality and duration, a fact to be aware of when planning an experiment.

  14. Analysis and Monte Carlo simulation of near-terminal aircraft flight paths

    NASA Technical Reports Server (NTRS)

    Schiess, J. R.; Matthews, C. G.

    1982-01-01

    The flight paths of arriving and departing aircraft at an airport are stochastically represented. Radar data of the aircraft movements are used to decompose the flight paths into linear and curvilinear segments. Variables which describe the segments are derived, and the best fitting probability distributions of the variables, based on a sample of flight paths, are found. Conversely, given information on the probability distribution of the variables, generation of a random sample of flight paths in a Monte Carlo simulation is discussed. Actual flight paths at Dulles International Airport are analyzed and simulated.

  15. Flight test investigation of the vortex wake characteristics behind a Boeing 727 during two-segment and normal ILS approaches (A joint NASA/FAA report)

    NASA Technical Reports Server (NTRS)

    Barber, M. R.; Kurkowski, R. L.; Garodz, L. J.; Robinson, G. H.; Smith, H. J.; Jacobsen, R. A.; Stinnett, G. W., Jr.; Mcmurtry, T. C.; Tymczyszyn, J. J.; Devereaux, R. L.

    1975-01-01

    Flight tests were performed to evaluate the vortex wake characteristics of a Boeing 727 aircraft during conventional and two-segment instrument landing approaches. Smoke generators were used for vortex marking. The vortex was intentionally intercepted by a Lear Jet and a Piper Comanche aircraft. The vortex location during landing approach was measured using a system of phototheodolites. The tests showed that at a given separation distance there are no readily apparent differences in the upsets resulting from deliberate vortex encounters during the two types of approaches. The effect of the aircraft configuration on the extent and severity of the vortices is discussed.

  16. Analysis of the Quality of Parabolic Flight

    NASA Technical Reports Server (NTRS)

    Lambot, Thomas; Ord, Stephan F.

    2016-01-01

    Parabolic flight allows researchers to conduct several micro-gravity experiments, each with up to 20 seconds of micro-gravity, in the course of a single day. However, the quality of the flight environment can vary greatly over the course of a single parabola, thus affecting the experimental results. Researchers therefore require knowledge of the actual flight environment as a function of time. The NASA Flight Opportunities program (FO) has reviewed the acceleration data for over 400 parabolas and investigated the level of micro-gravity quality. It was discovered that a typical parabola can be segmented into multiple phases with different qualities and durations. The knowledge of the microgravity characteristics within the parabola will prove useful when planning an experiment.

  17. NOSS flight segment concept study

    NASA Technical Reports Server (NTRS)

    1979-01-01

    An 11 ft wide by 26.5 ft long flat structure weighing almost 14,469 pounds evolved during a low level, inhouse conceptual design study for a national oceanic satellite system spacecraft that would stow directly in the space shuttle. Following STS launch to a 300 Km mission orbit inclination, transfer will be effected to a 800 Km Sun synchronous circular orbit. The instrument completement includes 2 altimeters, 1 scatterometer, 1 large antenna multichannel microwave radiometer, and a coastal zone scanner. The spacecraft, its instruments, and interfaces with STS and TDRSS are described. The mission timeline, potential problem areas, system drivers, and recommended study areas are discussed. Drawings and system block diagrams are included.

  18. Java for flight software

    NASA Technical Reports Server (NTRS)

    Benowitz, E.; Niessner, A.

    2003-01-01

    This work involves developing representative mission-critical spacecraft software using the Real-Time Specification for Java (RTSJ). This work currently leverages actual flight software used in the design of actual flight software in the NASA's Deep Space 1 (DSI), which flew in 1998.

  19. STS-113 Post Flight Presentation

    NASA Astrophysics Data System (ADS)

    2002-01-01

    The STS-113 post-flight presentation begins with a view of Mission Specialists Michael E. Lopez-Alegria and John B. Herrington getting suited for the space mission. The STS-113 crew consists of: Commander James D. Wetherbee, Pilot Paul Lockhart, Mission Specialists Michael Lopez-Alegria and John Herrington. Cosmonauts Valery Korzun, and Sergei Treschev, and astronaut Peggy Whitson who are all members of the expedition five crew, and Commander Kenneth Bowersox, Flight Engineers Nikolai Budarin and Donald Pettit, members of Expedition Six. The main goal of this mission is to take Expedition Six up to the International Space Station and Return Expedition Five to the Earth. The second objective is to install the P(1) Truss segment. Three hours prior to launch, the crew of Expedition Six along with James Wetherbee, Paul Lockhart, Michael Lopez-Alegria and John Herrington are shown walking to an astrovan, which takes them to the launch pad. The actual liftoff is presented. Three Extravehicular Activities (EVA)'s are performed on this mission. Michael Lopez-Alegria and John Herrington are shown performing EVA 1 and EVA 2 which include making connections between the P1 and S(0) Truss segments, and installing fluid jumpers. A panoramic view of the ISS with the Earth in the background is shown. The grand ceremony of the crew exchange is presented. The astronauts performing everyday duties such as brushing teeth, washing hair, sleeping, and eating pistachio nuts are shown. The actual landing of the Space Shuttle is presented.

  20. A Segmental Framework for Representing Signs Phonetically

    ERIC Educational Resources Information Center

    Johnson, Robert E.; Liddell, Scott K.

    2011-01-01

    The arguments for dividing the signing stream in signed languages into sequences of phonetic segments are compelling. The visual records of instances of actually occurring signs provide evidence of two basic types of segments: postural segments and trans-forming segments. Postural segments specify an alignment of articulatory features, both manual…

  1. Ozone Hole Airborne Arctic Stratospheric Expedition (Pre-Flight)

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The first segment of this video gives an overview of the Ozone Hole Airborne Arctic Stratospheric Expedition, an international effort using balloon payloads, ground based instruments, and airborne instruments to study ozone depletion and the hole in the ozone over Antarctica which occurs every spring. False color imagery taken from NASA's Nimbus 7 satellite which documents daily changes in ozone is also shown. The second segment of this video shows actual take-off and flight footage of the two aircraft used in the experiment: the DC-8 Flying Laboratory and the high flying ER-2.

  2. Flight code validation simulator

    SciTech Connect

    Sims, B.A.

    1995-08-01

    An End-To-End Simulation capability for software development and validation of missile flight software on the actual embedded computer has been developed utilizing a 486 PC, i860 DSP coprocessor, embedded flight computer and custom dual port memory interface hardware. This system allows real-time interrupt driven embedded flight software development and checkout. The flight software runs in a Sandia Digital Airborne Computer (SANDAC) and reads and writes actual hardware sensor locations in which IMU (Inertial Measurements Unit) data resides. The simulator provides six degree of freedom real-time dynamic simulation, accurate real-time discrete sensor data and acts on commands and discretes from the flight computer. This system was utilized in the development and validation of the successful premier flight of the Digital Miniature Attitude Reference System (DMARS) in January 1995 at the White Sands Missile Range on a two stage attitude controlled sounding rocket.

  3. Miracle Flights

    MedlinePlus

    ... the perfect solution for your needs. Book A Flight Request a flight now Click on the link ... Now Make your donation today Saving Lives One Flight At A Time Miracle Flights provides free flights ...

  4. A design of 30/20 GHz flight communications experiment for NASA. [satellite and earth segments for high data rate commercial service

    NASA Technical Reports Server (NTRS)

    Kawamoto, Y.

    1982-01-01

    The objective of the 30/20 GHz Flight Experiment System is to develop the required technology and to experiment with the communication technique for an operational communication satellite system. The system uses polarization, spatial, and frequency isolations to maximize the spectrum utilization. The key spacecraft technologies required for the concept are the scan beam antenna, the baseband processor, the IF switch matrix, TWTA, SSPA, and LNA. The spacecraft communication payload information will be telemetered and monitored closely so that these technologies and performances can be verified. Two types of services, a trunk service and a customer premise service, are demonstrated in the system. Many experiments associated with these services, such as synchronization, demand assignment, link control, and network control will be performed to provide important information on the operational aspect of the system.

  5. Flight experience with flight control redundancy management

    NASA Technical Reports Server (NTRS)

    Szalai, K. J.; Larson, R. R.; Glover, R. D.

    1980-01-01

    Flight experience with both current and advanced redundancy management schemes was gained in recent flight research programs using the F-8 digital fly by wire aircraft. The flight performance of fault detection, isolation, and reconfiguration (FDIR) methods for sensors, computers, and actuators is reviewed. Results of induced failures as well as of actual random failures are discussed. Deficiencies in modeling and implementation techniques are also discussed. The paper also presents comparison off multisensor tracking in smooth air, in turbulence, during large maneuvers, and during maneuvers typical of those of large commercial transport aircraft. The results of flight tests of an advanced analytic redundancy management algorithm are compared with the performance of a contemporary algorithm in terms of time to detection, false alarms, and missed alarms. The performance of computer redundancy management in both iron bird and flight tests is also presented.

  6. Engineering flight evaluation report

    NASA Technical Reports Server (NTRS)

    Morrison, J. A.

    1973-01-01

    The primary objective was to determine if the two-segment profile equipment, and operational procedures as defined by the B-727 Simulation Evaluation are operationally sound under all flight conditions expected to be encountered in line service. The evaluation was divided into the following areas: (1) to verify that the two-segment system operates as it was designed; (2) to conduct sufficient tests to secure a supplemental type certificate for line operation of the system; (3) to evaluate the normal operation of the equipment and procedures; (4) to evaluate the need for an autothrottle system for two-segment approaches; (5) to investigate abnormal operation of the equipment and procedures, including abused approaches and malfunctions of airborne and ground components; (6) to determine the accuracy and ease of flying the two-segment approach; (7) to determine the improvement in ground noise levels; and (8) to develop a guest pilot flight test syllabus.

  7. The Self Actualized Reader.

    ERIC Educational Resources Information Center

    Marino, Michael; Moylan, Mary Elizabeth

    A study examined the commonalities that "voracious" readers share, and how their experiences can guide parents, teachers, and librarians in assisting children to become self-actualized readers. Subjects, 25 adults ranging in age from 20 to 67 years, completed a questionnaire concerning their reading histories and habits. Respondents varied in…

  8. Time Domain Tool Validation Using ARES I-X Flight Data

    NASA Technical Reports Server (NTRS)

    Hough, Steven; Compton, James; Hannan, Mike; Brandon, Jay

    2011-01-01

    The ARES I-X vehicle was launched from NASA's Kennedy Space Center (KSC) on October 28, 2009 at approximately 11:30 EDT. ARES I-X was the first test flight for NASA s ARES I launch vehicle, and it was the first non-Shuttle launch vehicle designed and flown by NASA since Saturn. The ARES I-X had a 4-segment solid rocket booster (SRB) first stage and a dummy upper stage (US) to emulate the properties of the ARES I US. During ARES I-X pre-flight modeling and analysis, six (6) independent time domain simulation tools were developed and cross validated. Each tool represents an independent implementation of a common set of models and parameters in a different simulation framework and architecture. Post flight data and reconstructed models provide the means to validate a subset of the simulations against actual flight data and to assess the accuracy of pre-flight dispersion analysis. Post flight data consists of telemetered Operational Flight Instrumentation (OFI) data primarily focused on flight computer outputs and sensor measurements as well as Best Estimated Trajectory (BET) data that estimates vehicle state information from all available measurement sources. While pre-flight models were found to provide a reasonable prediction of the vehicle flight, reconstructed models were generated to better represent and simulate the ARES I-X flight. Post flight reconstructed models include: SRB propulsion model, thrust vector bias models, mass properties, base aerodynamics, and Meteorological Estimated Trajectory (wind and atmospheric data). The result of the effort is a set of independently developed, high fidelity, time-domain simulation tools that have been cross validated and validated against flight data. This paper presents the process and results of high fidelity aerospace modeling, simulation, analysis and tool validation in the time domain.

  9. Segmental neurofibromatosis.

    PubMed

    Galhotra, Virat; Sheikh, Soheyl; Jindal, Sanjeev; Singla, Anshu

    2014-07-01

    Segmental neurofibromatosis is a rare disorder, characterized by neurofibromas or cafι-au-lait macules limited to one region of the body. Its occurrence on the face is extremely rare and only few cases of segmental neurofibromatosis over the face have been described so far. We present a case of segmental neurofibromatosis involving the buccal mucosa, tongue, cheek, ear, and neck on the right side of the face. PMID:25565748

  10. Technical Seminar: "Flight Deck Technologies"""

    NASA Video Gallery

    Reduced visibility affects the safety and efficiency of nearly all flight operations. As a result, researchers are improving ways to give pilots a vision capability that is independent of actual vi...

  11. Segmental neurofibromatosis.

    PubMed

    Toy, Brian

    2003-10-01

    Segmental neurofibromatosis is a rare variant of neurofibromatosis in which skin lesions are confined to a circumscribed body segment. A case of a 72-year-old woman with this condition is presented. Clinical features and genetic evidence are reviewed. PMID:14594599

  12. Active Segmentation

    PubMed Central

    Mishra, Ajay; Aloimonos, Yiannis

    2009-01-01

    The human visual system observes and understands a scene/image by making a series of fixations. Every fixation point lies inside a particular region of arbitrary shape and size in the scene which can either be an object or just a part of it. We define as a basic segmentation problem the task of segmenting that region containing the fixation point. Segmenting the region containing the fixation is equivalent to finding the enclosing contour- a connected set of boundary edge fragments in the edge map of the scene - around the fixation. This enclosing contour should be a depth boundary. We present here a novel algorithm that finds this bounding contour and achieves the segmentation of one object, given the fixation. The proposed segmentation framework combines monocular cues (color/intensity/texture) with stereo and/or motion, in a cue independent manner. The semantic robots of the immediate future will be able to use this algorithm to automatically find objects in any environment. The capability of automatically segmenting objects in their visual field can bring the visual processing to the next level. Our approach is different from current approaches. While existing work attempts to segment the whole scene at once into many areas, we segment only one image region, specifically the one containing the fixation point. Experiments with real imagery collected by our active robot and from the known databases 1 demonstrate the promise of the approach. PMID:20686671

  13. Implementation of Joint Multi-Segment Training

    NASA Technical Reports Server (NTRS)

    Reagan, Marc; Smith, Wyatt; Bugrova, Skella; Silkov, Sergei

    2000-01-01

    The highest level of training for ISS flight is Joint Multi-Segment Training (JMST) simulations. These simulations allow two or more partners to conduct multi-segment training for their respective Mission Control Centers (MCC), include actual crew members, and usually include training facilities in each of the participating International Partner (IP) locations. It is the dress rehearsal for those events that exercise the interface between different IP modules and/or the decision making process between the different MCCs involved. This presentation will describe the challenge of successfully implementing JMST. It will start with a brief overview of who is involved, where they are located, and when JMSTs are required. Finally, it will illustrate many of the complications involved in just running a JMST between MCC-M and MCC-H. The viewer will leave with a much better appreciation for the complexities involved in successfully conducting a JMST of this nature, as well as an idea of how the picture will change as the other partners and payloads become involved.

  14. Miscarriage Among Flight Attendants

    PubMed Central

    Grajewski, Barbara; Whelan, Elizabeth A.; Lawson, Christina C.; Hein, Misty J.; Waters, Martha A.; Anderson, Jeri L.; MacDonald, Leslie A.; Mertens, Christopher J.; Tseng, Chih-Yu; Cassinelli, Rick T.; Luo, Lian

    2015-01-01

    Background Cosmic radiation and circadian disruption are potential reproductive hazards for flight attendants. Methods Flight attendants from 3 US airlines in 3 cities were interviewed for pregnancy histories and lifestyle, medical, and occupational covariates. We assessed cosmic radiation and circadian disruption from company records of 2 million individual flights. Using Cox regression models, we compared respondents (1) by levels of flight exposures and (2) to teachers from the same cities, to evaluate whether these exposures were associated with miscarriage. Results Of 2654 women interviewed (2273 flight attendants and 381 teachers), 958 pregnancies among 764 women met study criteria. A hypothetical pregnant flight attendant with median firsttrimester exposures flew 130 hours in 53 flight segments, crossed 34 time zones, and flew 15 hours during her home-base sleep hours (10 pm–8 am), incurring 0.13 mGy absorbed dose (0.36 mSv effective dose) of cosmic radiation. About 2% of flight attendant pregnancies were likely exposed to a solar particle event, but doses varied widely. Analyses suggested that cosmic radiation exposure of 0.1 mGy or more may be associated with increased risk of miscarriage in weeks 9–13 (odds ratio = 1.7 [95% confidence interval = 0.95–3.2]). Risk of a first-trimester miscarriage with 15 hours or more of flying during home-base sleep hours was increased (1.5 [1.1–2.2]), as was risk with high physical job demands (2.5 [1.5–4.2]). Miscarriage risk was not increased among flight attendants compared with teachers. Conclusions Miscarriage was associated with flight attendant work during sleep hours and high physical job demands and may be associated with cosmic radiation exposure. PMID:25563432

  15. Optimal segmentation and packaging process

    DOEpatents

    Kostelnik, Kevin M.; Meservey, Richard H.; Landon, Mark D.

    1999-01-01

    A process for improving packaging efficiency uses three dimensional, computer simulated models with various optimization algorithms to determine the optimal segmentation process and packaging configurations based on constraints including container limitations. The present invention is applied to a process for decontaminating, decommissioning (D&D), and remediating a nuclear facility involving the segmentation and packaging of contaminated items in waste containers in order to minimize the number of cuts, maximize packaging density, and reduce worker radiation exposure. A three-dimensional, computer simulated, facility model of the contaminated items are created. The contaminated items are differentiated. The optimal location, orientation and sequence of the segmentation and packaging of the contaminated items is determined using the simulated model, the algorithms, and various constraints including container limitations. The cut locations and orientations are transposed to the simulated model. The contaminated items are actually segmented and packaged. The segmentation and packaging may be simulated beforehand. In addition, the contaminated items may be cataloged and recorded.

  16. Segmented combustor

    NASA Technical Reports Server (NTRS)

    Halila, Ely E. (Inventor)

    1994-01-01

    A combustor liner segment includes a panel having four sidewalls forming a rectangular outer perimeter. A plurality of integral supporting lugs are disposed substantially perpendicularly to the panel and extend from respective ones of the four sidewalls. A plurality of integral bosses are disposed substantially perpendicularly to the panel and extend from respective ones of the four sidewalls, with the bosses being shorter than the lugs. In one embodiment, the lugs extend through supporting holes in an annular frame for mounting the liner segments thereto, with the bosses abutting the frame for maintaining a predetermined spacing therefrom.

  17. [Segmental neurofibromatosis].

    PubMed

    Zulaica, A; Peteiro, C; Pereiro, M; Pereiro Ferreiros, M; Quintas, C; Toribio, J

    1989-01-01

    Four cases of segmental neurofibromatosis (SNF) are reported. It is a rare entity considered to be a localized variant of neurofibromatosis (NF)-Riccardi's type V. Two cases are male and two female. The lesions are located to the head in a patient and the other three cases in the trunk. No family history nor transmission to progeny were manifested. The rest of the organs are undamaged. PMID:2502696

  18. The Envisat-1 ground segment

    NASA Astrophysics Data System (ADS)

    Harris, Ray; Ashton, Martin

    1995-03-01

    The European Space Agency (ESA) Earth Remote Sensing Satellite (ERS-1 and ERS-2) missions will be followed by the Polar Orbit Earth Mission (POEM) program. The first of the POEM missions will be Envisat-1. ESA has completed the design phase of the ground segment. This paper presents the main elements of that design. The main part of this paper is an overview of the Payload Data Segment (PDS) which is the core of the Envisat-1 ground segment, followed by two further sections which describe in more detail the facilities to be offered by the PDS for archiving and for user servcies. A further section describes some future issues for ground segment development. Logica was the prime contractor of a team of 18 companies which undertook the ESA financed architectural design study of the Envisat-1 ground segment. The outputs of the study included detailed specifications of the components that will acquire, process, archive and disseminate the payload data, together with the functional designs of the flight operations and user data segments.

  19. Segmental neurofibromatosis.

    PubMed

    Sobjanek, Michał; Dobosz-Kawałko, Magdalena; Michajłowski, Igor; Pęksa, Rafał; Nowicki, Roman

    2014-12-01

    Segmental neurofibromatosis or type V neurofibromatosis is a rare genodermatosis characterized by neurofibromas, café-au-lait spots and neurofibromas limited to a circumscribed body region. The disease may be associated with systemic involvement and malignancies. The disorder has not been reported yet in the Polish medical literature. A 63-year-old Caucasian woman presented with a 20-year history of multiple, flesh colored, dome-shaped, soft to firm nodules situated in the right lumbar region. A histopathologic evaluation of three excised tumors revealed neurofibromas. No neurological and ophthalmologic symptoms of neurofibromatosis were diagnosed. PMID:25610358

  20. Segmental neurofibromatosis.

    PubMed

    Adigun, Chris G; Stein, Jennifer

    2011-01-01

    A 59-year-old man presented for evaluation and excision of non-tender, fleshy nodules that were arranged in a dermatomal distribution from the left side of the chest to the left axilla. A biopsy specimen of a nodule was consistent with a neurofibroma. Owing to the lack of other cutaneous findings, the lack of a family history of neurofibromatosis, and the dermatomal distribution of the neurofibromas, this patient met the criteria for a diagnosis of segmental neurofibromatosis (SNF) according to Riccardi's definition of SNF and classification of neurofibromatosis. Because the patient has no complications of neurofibromatosis 1 no medical treatment is required. PMID:22031651

  1. Segmental neurofibromatosis

    PubMed Central

    Dobosz-Kawałko, Magdalena; Michajłowski, Igor; Pęksa, Rafał; Nowicki, Roman

    2014-01-01

    Segmental neurofibromatosis or type V neurofibromatosis is a rare genodermatosis characterized by neurofibromas, café-au-lait spots and neurofibromas limited to a circumscribed body region. The disease may be associated with systemic involvement and malignancies. The disorder has not been reported yet in the Polish medical literature. A 63-year-old Caucasian woman presented with a 20-year history of multiple, flesh colored, dome-shaped, soft to firm nodules situated in the right lumbar region. A histopathologic evaluation of three excised tumors revealed neurofibromas. No neurological and ophthalmologic symptoms of neurofibromatosis were diagnosed. PMID:25610358

  2. 14 CFR 142.59 - Flight simulators and flight training devices.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... to satisfy any requirement of 14 CFR chapter I. (b) The approval required by paragraph (a)(2) of this... shall not be restricted to specific— (1) Route segments during line-oriented flight training...

  3. RSRM Segment Train Derailment and Recovery

    NASA Technical Reports Server (NTRS)

    Taylor Jr., Robert H.; McConnaugghey, Paul K.; Beaman, David E.; Moore, Dennis R.; Reed, Harry

    2008-01-01

    On May 2, 2007, a freight train carrying segments of the space shuttle's solid rocket boosters derailed in Myrtlewood, Alabama, after a rail trestle collapsed. The train was carrying Reusable Solid Rocket Motors (RSRM) 98 center and forward segments (STS-120) and RSRM 99 aft segments (STS-122). Initially, it was not known if the segments had been seriously damaged. Four segments dropped approximately 10 feet when the trestle collapsed and one of those four rolled off the track onto its side. The exit cones and the other four segments, not yet on the trestle, remained on solid ground. ATK and NASA immediately dispatched an investigation and recovery team to determine the safety of the situation and eventually the usability of the segments and exit cones for flight. Instrumentation on each segment provided invaluable data to determine the acceleration loads imparted into each loaded segment and exit cone. This paper details the incident, recovery plan and the team work that created a success story that ended with the safe launch of STS120 using the four center segments and the launch of STS122 using the Aft exit cones assemblies.

  4. Flight test and evaluation of Omega navigation in a general aviation aircraft. Volume 2: Appendices

    NASA Technical Reports Server (NTRS)

    Howell, J. D.; Hoffman, W. C.; Hwoschinsky, P. V.; Wischmeyer, C. E.

    1975-01-01

    Detailed documentation for each flight of the Omega Flight Evaluation study is presented, including flight test description sheets and actual flight data plots. Computer programs used for data processing and flight planning are explained and the data formats utilized by the Custom Interface Unit are summarized.

  5. Flight performance of Galileo and Ulysses RTGs

    NASA Astrophysics Data System (ADS)

    Hemler, Richard J.; Kelly, Charles E.

    1993-01-01

    Flight performance data of the GPHS-RTGs (General Purpose Heat Source—Radioisotope Thermoelectric Generators) on the Galileo and Ulysses spacecraft are reported. Comparison of the flight data with analytical predictions is preformed. Differences between actual flight telemetry data and analytical predictions are addressed including the degree of uncertainty associated with the telemetry data. End of mission power level predictions are included for both missions with an overall assessment of RTG mission performances.

  6. Flight performance of Galileo and Ulysses RTGs

    SciTech Connect

    Hemler, R.J.; Kelly, C.E. )

    1993-01-10

    Flight performance data of the GPHS-RTGs (General Purpose Heat Source---Radioisotope Thermoelectric Generators) on the Galileo and Ulysses spacecraft are reported. Comparison of the flight data with analytical predictions is preformed. Differences between actual flight telemetry data and analytical predictions are addressed including the degree of uncertainty associated with the telemetry data. End of mission power level predictions are included for both missions with an overall assessment of RTG mission performances.

  7. X-2 in flight

    NASA Technical Reports Server (NTRS)

    1956-01-01

    killed. The aircraft suffered little damage in the crash, resulting in proposals (never implemented) from the Langley Memorial Aeronautical Laboratory, Hampton, Virginia, to rebuild it for use in a hypersonic (Mach 5+) test program. In 1953, X-2 Number 2 was lost in an in-flight explosion while at the Bell Aircraft Company during captive flight trials and was jettisoned into Lake Ontario. The Air Force had previously flown the aircraft on three glide flights at Edwards Air Force Base, California, in 1952. Although the NACA's High-Speed Flight Station, Edwards, California, (predecessor of NASA's Dryden Flight Research Center) never actually flew the X-2 aircraft, the NACA did support the program primarily through Langley Memorial Aeronautical Laboratory wind-tunnel tests and Wallops Island, Virginia, rocket-model tests. The NACA High-Speed Flight Station also provided stability and control recording instrumentation and simulator support for the Air Force flights. In the latter regard, the NACA worked with the Air Force in using a special computer to extrapolate and predict aircraft behavior from flight data.

  8. Understanding Flight

    SciTech Connect

    Anderson, David

    2001-01-31

    Through the years the explanation of flight has become mired in misconceptions that have become dogma. Wolfgang Langewiesche, the author of 'Stick and Rudder' (1944) got it right when he wrote: 'Forget Bernoulli's Theorem'. A wing develops lift by diverting (from above) a lot of air. This is the same way that a propeller produces thrust and a helicopter produces lift. Newton's three laws and a phenomenon called the Coanda effect explain most of it. With an understanding of the real physics of flight, many things become clear. Inverted flight, symmetric wings, and the flight of insects are obvious. It is easy to understand the power curve, high-speed stalls, and the effect of load and altitude on the power requirements for lift. The contribution of wing aspect ratio on the efficiency of a wing, and the true explanation of ground effect will also be discussed.

  9. Comparison of simulated and actual wind shear radar data products

    NASA Technical Reports Server (NTRS)

    Britt, Charles L.; Crittenden, Lucille H.

    1992-01-01

    Prior to the development of the NASA experimental wind shear radar system, extensive computer simulations were conducted to determine the performance of the radar in combined weather and ground clutter environments. The simulation of the radar used analytical microburst models to determine weather returns and synthetic aperture radar (SAR) maps to determine ground clutter returns. These simulations were used to guide the development of hazard detection algorithms and to predict their performance. The structure of the radar simulation is reviewed. Actual flight data results from the Orlando and Denver tests are compared with simulated results. Areas of agreement and disagreement of actual and simulated results are shown.

  10. STS-113 Flight Day 1 Highlights

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The first flight day of the STS-113 begins with a live shot of the Space Shuttle Endeavor at the Kennedy Space Center. The STS-113 crew consists of Commander Jim Wetherbee, Pilot Paul Lockhart, and Mission Specialists Michael Lopez-Alegria, and John Herrington. The STS-113 crewmembers are accompanied Expedition 6 astronauts Kenneth Bowersox, Donald Pettit and Nikolai Budarin. The purpose of this flight is to carry the P1 truss segment to the International Space Station along with the Expedition 6 flight crew. The crewmembers are shown getting suited for the space flight. Countdown and lift off of the Space Shuttle Endeavor is also shown.

  11. Optimal segmentation and packaging process

    DOEpatents

    Kostelnik, K.M.; Meservey, R.H.; Landon, M.D.

    1999-08-10

    A process for improving packaging efficiency uses three dimensional, computer simulated models with various optimization algorithms to determine the optimal segmentation process and packaging configurations based on constraints including container limitations. The present invention is applied to a process for decontaminating, decommissioning (D and D), and remediating a nuclear facility involving the segmentation and packaging of contaminated items in waste containers in order to minimize the number of cuts, maximize packaging density, and reduce worker radiation exposure. A three-dimensional, computer simulated, facility model of the contaminated items are created. The contaminated items are differentiated. The optimal location, orientation and sequence of the segmentation and packaging of the contaminated items is determined using the simulated model, the algorithms, and various constraints including container limitations. The cut locations and orientations are transposed to the simulated model. The contaminated items are actually segmented and packaged. The segmentation and packaging may be simulated beforehand. In addition, the contaminated items may be cataloged and recorded. 3 figs.

  12. Integrated segmentation of cellular structures

    NASA Astrophysics Data System (ADS)

    Ajemba, Peter; Al-Kofahi, Yousef; Scott, Richard; Donovan, Michael; Fernandez, Gerardo

    2011-03-01

    Automatic segmentation of cellular structures is an essential step in image cytology and histology. Despite substantial progress, better automation and improvements in accuracy and adaptability to novel applications are needed. In applications utilizing multi-channel immuno-fluorescence images, challenges include misclassification of epithelial and stromal nuclei, irregular nuclei and cytoplasm boundaries, and over and under-segmentation of clustered nuclei. Variations in image acquisition conditions and artifacts from nuclei and cytoplasm images often confound existing algorithms in practice. In this paper, we present a robust and accurate algorithm for jointly segmenting cell nuclei and cytoplasm using a combination of ideas to reduce the aforementioned problems. First, an adaptive process that includes top-hat filtering, Eigenvalues-of-Hessian blob detection and distance transforms is used to estimate the inverse illumination field and correct for intensity non-uniformity in the nuclei channel. Next, a minimum-error-thresholding based binarization process and seed-detection combining Laplacian-of-Gaussian filtering constrained by a distance-map-based scale selection is used to identify candidate seeds for nuclei segmentation. The initial segmentation using a local maximum clustering algorithm is refined using a minimum-error-thresholding technique. Final refinements include an artifact removal process specifically targeted at lumens and other problematic structures and a systemic decision process to reclassify nuclei objects near the cytoplasm boundary as epithelial or stromal. Segmentation results were evaluated using 48 realistic phantom images with known ground-truth. The overall segmentation accuracy exceeds 94%. The algorithm was further tested on 981 images of actual prostate cancer tissue. The artifact removal process worked in 90% of cases. The algorithm has now been deployed in a high-volume histology analysis application.

  13. Linguistic Theory and Actual Language.

    ERIC Educational Resources Information Center

    Segerdahl, Par

    1995-01-01

    Examines Noam Chomsky's (1957) discussion of "grammaticalness" and the role of linguistics in the "correct" way of speaking and writing. It is argued that the concern of linguistics with the tools of grammar has resulted in confusion, with the tools becoming mixed up with the actual language, thereby becoming the central element in a metaphysical…

  14. Miracle Flights for Kids

    MedlinePlus

    ... today Saving Lives One Flight At A Time Miracle Flights provides free flights to distant specialized care and valuable second opinions. Miracle Flights Through June 2016 Flights Coordinated: 101,862 ...

  15. Flight (Children's Books).

    ERIC Educational Resources Information Center

    Matthews, Susan; Reid, Rebecca; Sylvan, Anne; Woolard, Linda; Freeman, Evelyn B.

    1997-01-01

    Presents brief annotations of 43 children's books, grouped around the theme of flight: flights of imagination, flights across time and around the globe, flights of adventure, and nature's flight. (SR)

  16. Metabolic energy required for flight

    NASA Technical Reports Server (NTRS)

    Lane, H. W.; Gretebeck, R. J.

    1994-01-01

    This paper reviews data available from U.S. and U.S.S.R. studies on energy metabolism in the microgravity of space flight. Energy utilization and energy availability in space seem to be similar to those on Earth. However, negative nitrogen balances in space in the presence of adequate energy and protein intakes and in-flight exercise, suggest that lean body mass decreases in space. Metabolic studies during simulated (bed rest) and actual microgravity have shown changes in blood glucose, fatty acids, and insulin levels, suggesting that energy metabolism may be altered during flight. Future research should focus on the interactions of lean body mass, diet, and exercise in spaced and their roles in energy metabolism during space flight.

  17. DAST in Flight

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The modified BQM-34 Firebee II drone with Aeroelastic Research Wing (ARW-1), a supercritical airfoil, during a 1980 research flight. The remotely-piloted vehicle, which was air launched from NASA's NB-52B mothership, participated in the Drones for Aerodynamic and Structural Testing (DAST) program which ran from 1977 to 1983. The DAST 1 aircraft (Serial #72-1557), pictured, crashed on 12 June 1980 after its right wing ripped off during a test flight near Cuddeback Dry Lake, California. The crash occurred on the modified drone's third free flight. These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for conducting in-flight experiments from a remote ground site. DAST explored the technology required to build wing structures with less than normal stiffness. This was done because stiffness requires structural weight but ensures freedom from flutter-an uncontrolled, divergent oscillation of

  18. Instrumentation for investigation of the depth-dose distribution by the Liulin-5 instrument of a human phantom on the Russian segment of ISS for estimation of the radiation risk during long term space flights

    NASA Technical Reports Server (NTRS)

    Semkova, J.; Koleva, R.; Todorova, G.; Kanchev, N.; Petrov, V.; Shurshakov, V.; Tchhernykh, I.; Kireeva, S.

    2004-01-01

    Described is the Liulin-5 experiment and instrumentation, developed for investigation of the space radiation doses depth distribution in a human phantom on the Russian Segment of the International Space Station (ISS). Liulin-5 experiment is a part of the international project MATROSHKA-R on ISS. The experiment MATROSHKA-R is aimed to study the depth dose distribution at the sites of critical organs of the human body, using models of human body-anthropomorphic and spherical tissue-equivalent phantoms. The aim of Liulin-5 experiment is long term (4-5 years) investigation of the radiation environment dynamics inside the spherical tissue-equivalent phantom, mounted in different places of the Russian Segment of ISS. Energy deposition spectra, linear energy transfer spectra, flux and dose rates for protons and the biologically-relevant heavy ion components of the galactic cosmic radiation will be measured simultaneously with near real time resolution at different depths of the phantom by a telescope of silicon detectors. Data obtained together with data from other active and passive dosimeters will be used to estimate the radiation risk to the crewmembers, verify the models of radiation environment in low Earth orbit, validate body transport model and correlate organ level dose to skin dose. Presented are the test results of the prototype unit. The spherical phantom will be flown on the ISS in 2004 year and Liulin-5 experiment is planned for 2005 year. c2004 COSPAR. Published by Elsevier Ltd. All rights reserved.

  19. Instrumentation for investigation of the depth-dose distribution by the Liulin-5 instrument of a human phantom on the Russian segment of ISS for estimation of the radiation risk during long term space flights.

    PubMed

    Semkova, J; Koleva, R; Todorova, G; Kanchev, N; Petrov, V; Shurshakov, V; Tchhernykh, I; Kireeva, S

    2004-01-01

    Described is the Liulin-5 experiment and instrumentation, developed for investigation of the space radiation doses depth distribution in a human phantom on the Russian Segment of the International Space Station (ISS). Liulin-5 experiment is a part of the international project MATROSHKA-R on ISS. The experiment MATROSHKA-R is aimed to study the depth dose distribution at the sites of critical organs of the human body, using models of human body-anthropomorphic and spherical tissue-equivalent phantoms. The aim of Liulin-5 experiment is long term (4-5 years) investigation of the radiation environment dynamics inside the spherical tissue-equivalent phantom, mounted in different places of the Russian Segment of ISS. Energy deposition spectra, linear energy transfer spectra, flux and dose rates for protons and the biologically-relevant heavy ion components of the galactic cosmic radiation will be measured simultaneously with near real time resolution at different depths of the phantom by a telescope of silicon detectors. Data obtained together with data from other active and passive dosimeters will be used to estimate the radiation risk to the crewmembers, verify the models of radiation environment in low Earth orbit, validate body transport model and correlate organ level dose to skin dose. Presented are the test results of the prototype unit. The spherical phantom will be flown on the ISS in 2004 year and Liulin-5 experiment is planned for 2005 year. PMID:15880917

  20. Activity Tracking for Pilot Error Detection from Flight Data

    NASA Technical Reports Server (NTRS)

    Callantine, Todd J.; Ashford, Rose (Technical Monitor)

    2002-01-01

    This report presents an application of activity tracking for pilot error detection from flight data, and describes issues surrounding such an application. It first describes the Crew Activity Tracking System (CATS), in-flight data collected from the NASA Langley Boeing 757 Airborne Research Integrated Experiment System aircraft, and a model of B757 flight crew activities. It then presents an example of CATS detecting actual in-flight crew errors.

  1. Flight Evaluation of Center-TRACON Automation System Trajectory Prediction Process

    NASA Technical Reports Server (NTRS)

    Williams, David H.; Green, Steven M.

    1998-01-01

    Two flight experiments (Phase 1 in October 1992 and Phase 2 in September 1994) were conducted to evaluate the accuracy of the Center-TRACON Automation System (CTAS) trajectory prediction process. The Transport Systems Research Vehicle (TSRV) Boeing 737 based at Langley Research Center flew 57 arrival trajectories that included cruise and descent segments; at the same time, descent clearance advisories from CTAS were followed. Actual trajectories of the airplane were compared with the trajectories predicted by the CTAS trajectory synthesis algorithms and airplane Flight Management System (FMS). Trajectory prediction accuracy was evaluated over several levels of cockpit automation that ranged from a conventional cockpit to performance-based FMS vertical navigation (VNAV). Error sources and their magnitudes were identified and measured from the flight data. The major source of error during these tests was found to be the predicted winds aloft used by CTAS. The most significant effect related to flight guidance was the cross-track and turn-overshoot errors associated with conventional VOR guidance. FMS lateral navigation (LNAV) guidance significantly reduced both the cross-track and turn-overshoot error. Pilot procedures and VNAV guidance were found to significantly reduce the vertical profile errors associated with atmospheric and airplane performance model errors.

  2. How People Actually Use Thermostats

    SciTech Connect

    Meier, Alan; Aragon, Cecilia; Hurwitz, Becky; Mujumdar, Dhawal; Peffer, Therese; Perry, Daniel; Pritoni, Marco

    2010-08-15

    Residential thermostats have been a key element in controlling heating and cooling systems for over sixty years. However, today's modern programmable thermostats (PTs) are complicated and difficult for users to understand, leading to errors in operation and wasted energy. Four separate tests of usability were conducted in preparation for a larger study. These tests included personal interviews, an on-line survey, photographing actual thermostat settings, and measurements of ability to accomplish four tasks related to effective use of a PT. The interviews revealed that many occupants used the PT as an on-off switch and most demonstrated little knowledge of how to operate it. The on-line survey found that 89% of the respondents rarely or never used the PT to set a weekday or weekend program. The photographic survey (in low income homes) found that only 30% of the PTs were actually programmed. In the usability test, we found that we could quantify the difference in usability of two PTs as measured in time to accomplish tasks. Users accomplished the tasks in consistently shorter times with the touchscreen unit than with buttons. None of these studies are representative of the entire population of users but, together, they illustrate the importance of improving user interfaces in PTs.

  3. Flight 20 (STS-45) polysulfide gas path investigation

    NASA Technical Reports Server (NTRS)

    Bjorkman, Rey C.; Bown, Charles W.; Smith, Scott D.; Walters, Jerry L.; Kulkarni, Suresh B.; Cook, Roger V.; Sebahar, David A.; Walker, Craig S.; Haddock, M. Reed; Lindstrom, Robert E.

    1992-01-01

    This report documents the results of the investigation into causes of gas paths on the 20A and 20B case-to-nozzle joints on STS-42. The investigation was conducted by the Investigation Board appointed by the senior vice president and general manager of Space Operations, Mr. R. E. Lindstrom, on 7 Feb. 1992. The probability of gas path occurrence in the nozzle-to-case-joint polysulfide had been identified during joint redesign. However, actual flight gas path incidence has been limited to RSRM-11 and the 20A and 20B segments. The blow-by condition on the 20A segment was a first time occurrence which was a special concern. The investigation covered all technical aspects associated with the gas path and blow-by conditions: materials and processing history, design requirements and as-built compliance to the design, thermal and structural analyses, computer modeling, and laboratory experimentation with the materials involved. The investigation was coordinated with Mr. Ken Jones at NASA Marshall in bi-weekly teleconferences. The Board also supported Dr. James C. Blair's independent NASA investigation team by providing copies of collected data, conducting requested analyses, and supporting several all-day teleconferences to provide understanding and resolve issues. The Dr. Blair support requirement was successfully concluded on 4 Mar. 1992.

  4. Monitoring Change Through Hierarchical Segmentation of Remotely Sensed Image Data

    NASA Technical Reports Server (NTRS)

    Tilton, James C.; Lawrence, William T.

    2005-01-01

    NASA's Goddard Space Flight Center has developed a fast and effective method for generating image segmentation hierarchies. These segmentation hierarchies organize image data in a manner that makes their information content more accessible for analysis. Image segmentation enables analysis through the examination of image regions rather than individual image pixels. In addition, the segmentation hierarchy provides additional analysis clues through the tracing of the behavior of image region characteristics at several levels of segmentation detail. The potential for extracting the information content from imagery data based on segmentation hierarchies has not been fully explored for the benefit of the Earth and space science communities. This paper explores the potential of exploiting these segmentation hierarchies for the analysis of multi-date data sets, and for the particular application of change monitoring.

  5. Segment alignment control system

    NASA Technical Reports Server (NTRS)

    Aubrun, JEAN-N.; Lorell, Ken R.

    1988-01-01

    The segmented primary mirror for the LDR will require a special segment alignment control system to precisely control the orientation of each of the segments so that the resulting composite reflector behaves like a monolith. The W.M. Keck Ten Meter Telescope will utilize a primary mirror made up of 36 actively controlled segments. Thus the primary mirror and its segment alignment control system are directly analogous to the LDR. The problems of controlling the segments in the face of disturbances and control/structures interaction, as analyzed for the TMT, are virtually identical to those for the LDR. The two systems are briefly compared.

  6. TRL-6 Qualification of JWST Mirror Segments

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip

    2009-01-01

    Since 1996, all key mirror technology for a JWST Primary Mirror Segment Assembly (PMSA), as defined directly from the JWST Level 1 Science Requirements, have been developed and matured from a Technology Readiness Level (TRL) of 3 to 6. This has occurred as the result of a highly successful technology development program including sub-scale Beryllium Mirror Demonstrator (SBMD), Advanced Mirror System Demonstrator (AMSD), and JWST flight mirror fabrication. Directly traceable prototypes (and in some cases the flight hardware itself) has been built, tested and operated in a relevant environment.

  7. Aid For Simulating Digital Flight Control Systems

    NASA Technical Reports Server (NTRS)

    Hartman, Richard M.

    1991-01-01

    DIVERS translator is computer program to convert descriptions of digital flight-control systems (DFCS) into computer program. Language developed to represent design charts of DFCS. Translator converts DIVERS source code into easily transportable language, while minimizing probability that results are affected by interpretation of programmer. Final translated program used as standard of comparison to verify operation of actual flight-control systems. Applicable to simulation of other control systems; for example, electrical circuits and logic processes. Written in C.

  8. A psychophysiological assessment of operator workload during simulated flight missions

    NASA Technical Reports Server (NTRS)

    Kramer, Arthur F.; Sirevaag, Erik J.; Braune, Rolf

    1987-01-01

    The applicability of the dual-task event-related (brain) potential (ERP) paradigm to the assessment of an operator's mental workload and residual capacity in a complex situation of a flight mission was demonstrated using ERP measurements and subjective workload ratings of student pilots flying a fixed-based single-engine simulator. Data were collected during two separate 45-min flights differing in difficulty; flight demands were examined by dividing each flight into four segments: takeoff, straight and level flight, holding patterns, and landings. The P300 ERP component in particular was found to discriminate among the levels of task difficulty in a systematic manner, decreasing in amplitude with an increase in task demands. The P300 amplitude is shown to be negatively correlated with deviations from command headings across the four flight segments.

  9. Sipunculans and segmentation

    PubMed Central

    Kristof, Alen; Brinkmann, Nora

    2009-01-01

    Comparative molecular, developmental and morphogenetic analyses show that the three major segmented animal groups—Lophotrochozoa, Ecdysozoa and Vertebrata—use a wide range of ontogenetic pathways to establish metameric body organization. Even in the life history of a single specimen, different mechanisms may act on the level of gene expression, cell proliferation, tissue differentiation and organ system formation in individual segments. Accordingly, in some polychaete annelids the first three pairs of segmental peripheral neurons arise synchronously, while the metameric commissures of the ventral nervous system form in anterior-posterior progression. Contrary to traditional belief, loss of segmentation may have occurred more often than commonly assumed, as exemplified in the sipunculans, which show remnants of segmentation in larval stages but are unsegmented as adults. The developmental plasticity and potential evolutionary lability of segmentation nourishes the controversy of a segmented bilaterian ancestor versus multiple independent evolution of segmentation in respective metazoan lineages. PMID:19513266

  10. Segmented trapped vortex cavity

    NASA Technical Reports Server (NTRS)

    Grammel, Jr., Leonard Paul (Inventor); Pennekamp, David Lance (Inventor); Winslow, Jr., Ralph Henry (Inventor)

    2010-01-01

    An annular trapped vortex cavity assembly segment comprising includes a cavity forward wall, a cavity aft wall, and a cavity radially outer wall there between defining a cavity segment therein. A cavity opening extends between the forward and aft walls at a radially inner end of the assembly segment. Radially spaced apart pluralities of air injection first and second holes extend through the forward and aft walls respectively. The segment may include first and second expansion joint features at distal first and second ends respectively of the segment. The segment may include a forward subcomponent including the cavity forward wall attached to an aft subcomponent including the cavity aft wall. The forward and aft subcomponents include forward and aft portions of the cavity radially outer wall respectively. A ring of the segments may be circumferentially disposed about an axis to form an annular segmented vortex cavity assembly.

  11. [Bilateral segmental neurofibromatosis].

    PubMed

    Rose, I; Vakilzadeh, F

    1991-12-01

    Segmental neurofibromatosis is a rare type of neurofibromatosis. We report a case of bilateral manifestation, review the literature on this extremely uncommon variant, and discuss the possible causative mechanisms and the genetic risk of segmental neurofibromatosis. PMID:1765491

  12. Station Tour: Russian Segment

    NASA Video Gallery

    Expedition 33 Commander Suni Williams concludes her tour of the International Space Station with a visit to the Russian segment, which includes Zarya, the first segment of the station launched in 1...

  13. Iterative Vessel Segmentation of Fundus Images.

    PubMed

    Roychowdhury, Sohini; Koozekanani, Dara D; Parhi, Keshab K

    2015-07-01

    This paper presents a novel unsupervised iterative blood vessel segmentation algorithm using fundus images. First, a vessel enhanced image is generated by tophat reconstruction of the negative green plane image. An initial estimate of the segmented vasculature is extracted by global thresholding the vessel enhanced image. Next, new vessel pixels are identified iteratively by adaptive thresholding of the residual image generated by masking out the existing segmented vessel estimate from the vessel enhanced image. The new vessel pixels are, then, region grown into the existing vessel, thereby resulting in an iterative enhancement of the segmented vessel structure. As the iterations progress, the number of false edge pixels identified as new vessel pixels increases compared to the number of actual vessel pixels. A key contribution of this paper is a novel stopping criterion that terminates the iterative process leading to higher vessel segmentation accuracy. This iterative algorithm is robust to the rate of new vessel pixel addition since it achieves 93.2-95.35% vessel segmentation accuracy with 0.9577-0.9638 area under ROC curve (AUC) on abnormal retinal images from the STARE dataset. The proposed algorithm is computationally efficient and consistent in vessel segmentation performance for retinal images with variations due to pathology, uneven illumination, pigmentation, and fields of view since it achieves a vessel segmentation accuracy of about 95% in an average time of 2.45, 3.95, and 8 s on images from three public datasets DRIVE, STARE, and CHASE_DB1, respectively. Additionally, the proposed algorithm has more than 90% segmentation accuracy for segmenting peripapillary blood vessels in the images from the DRIVE and CHASE_DB1 datasets. PMID:25700436

  14. Possible and Impossible Segments.

    ERIC Educational Resources Information Center

    Walker, Rachel; Pullum, Geoffrey K.

    1999-01-01

    Examines the relationship between phonetic possibility and phonological permissibility of segment types. Specific focus is on whether there are any phonetically impossible segments phonologically permissible, and whether there are any phonetically possible segments phonologically impermissable. Examines the case of nasality spreading in Sudanese…

  15. STS-113 Flight Day 4 Highlights

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The fourth day of the STS-113 space mission begins with NASA ISS Science Officers Peggy Whitson and Don Pettit inside of the Destiny Laboratory Module. The first spacewalk of the STS-113 is presented. The purpose of this spacewalk is to make connections of the P1 and the S0 truss segments. An actual view of Robot Arm operator Peggy Whitson grasping the P1 is shown. The actual connection of the S0 with the P1 truss is presented.

  16. The actual goals of geoethics

    NASA Astrophysics Data System (ADS)

    Nemec, Vaclav

    2014-05-01

    The most actual goals of geoethics have been formulated as results of the International Conference on Geoethics (October 2013) held at the geoethics birth-place Pribram (Czech Republic): In the sphere of education and public enlightenment an appropriate needed minimum know how of Earth sciences should be intensively promoted together with cultivating ethical way of thinking and acting for the sustainable well-being of the society. The actual activities of the Intergovernmental Panel of Climate Changes are not sustainable with the existing knowledge of the Earth sciences (as presented in the results of the 33rd and 34th International Geological Congresses). This knowledge should be incorporated into any further work of the IPCC. In the sphere of legislation in a large international co-operation following steps are needed: - to re-formulate the term of a "false alarm" and its legal consequences, - to demand very consequently the needed evaluation of existing risks, - to solve problems of rights of individuals and minorities in cases of the optimum use of mineral resources and of the optimum protection of the local population against emergency dangers and disasters; common good (well-being) must be considered as the priority when solving ethical dilemmas. The precaution principle should be applied in any decision making process. Earth scientists presenting their expert opinions are not exempted from civil, administrative or even criminal liabilities. Details must be established by national law and jurisprudence. The well known case of the L'Aquila earthquake (2009) should serve as a serious warning because of the proven misuse of geoethics for protecting top Italian seismologists responsible and sentenced for their inadequate superficial behaviour causing lot of human victims. Another recent scandal with the Himalayan fossil fraud will be also documented. A support is needed for any effort to analyze and to disclose the problems of the deformation of the contemporary

  17. A suggested classification system for standard on-orbit shuttle flight phases

    NASA Technical Reports Server (NTRS)

    Wilson, S. W.

    1976-01-01

    The definition of standard flight segments of phases, representing flight profile components which can be combined in various sequences to satisfy particular objectives, is a necessity for simplifying operational procedures and for minimizing the cost of flight planning, software development, and training. The critical elements are (1) a greater variety of generic segment types that may be incorporated into a given flight profile, (2) a greater variability of the order in which segments may be combined to construct a particular flight profile, and (3) a greater variation of detail within a given generic segment type. All of these variations arise basically from shuttle payload characteristics. They are manifested in a number of ways, including changes in the shuttle configuration from one flight to another.

  18. Multi-segment detector

    NASA Technical Reports Server (NTRS)

    George, Peter K. (Inventor)

    1978-01-01

    A plurality of stretcher detector segments are connected in series whereby detector signals generated when a bubble passes thereby are added together. Each of the stretcher detector segments is disposed an identical propagation distance away from passive replicators wherein bubbles are replicated from a propagation path and applied, simultaneously, to the stretcher detector segments. The stretcher detector segments are arranged to include both dummy and active portions thereof which are arranged to permit the geometry of both the dummy and active portions of the segment to be substantially matched.

  19. Residual Stress Measurements After Proof and Flight: ETP-0403

    NASA Technical Reports Server (NTRS)

    Webster, Ronald L..

    1997-01-01

    The intent of this testing was to evaluate the residual stresses that occur in and around the attachment details of a case stiffener segment that has been subjected to flight/recovery followed by proof loading. Not measured in this test were stresses relieved at joint disassembly due to out-of-round and interference effects, and those released by cutting the specimens out of the case segment. The test article was lightweight case stiffener segment 1U50715, S/N L023 which was flown in the forward stiffener position on flight SRM 14A and in the aft position on flight SRM24A. Both of these flights were flown with the 3 stiffener ring configuration. Stiffener L023 had a stiffener ring installed only on the aft stub in its first flight, and it had both rings installed on its second flight. No significant post flight damage was found on either flight. Finally, the segment was used on the DM-8 static test motor in the forward position. No stiffener rings were installed. It had only one proof pressurization prior to assignment to its first use, and it was cleaned and proof tested after each flight. Thus, the segment had seen 3 proof tests, two flight pressurizations, and two low intensity water impacts prior to manufacturing for use on DM-8. On DM-8 it received one static firing pressurization in the horizontal configuration. Residual stresses at the surface and in depth were evaluated by both the x-ray diffraction and neutron beam diffraction methods. The x-ray diffraction evaluations were conducted by Technology for Energy Corporation (TEC) at their facilities in Knoxville, TN. The neutron beam evaluations were done by Atomic Energy of Canada Limited (AECL) at the Chalk River Nuclear Laboratories in Ontario. The results showed general agreement with relatively high compressive residual stresses on the surface and moderate to low subsurface tensile residual stresses.

  20. Color image segmentation

    NASA Astrophysics Data System (ADS)

    McCrae, Kimberley A.; Ruck, Dennis W.; Rogers, Steven K.; Oxley, Mark E.

    1994-03-01

    The most difficult stage of automated target recognition is segmentation. Current segmentation problems include faces and tactical targets; previous efforts to segment these objects have used intensity and motion cues. This paper develops a color preprocessing scheme to be used with the other segmentation techniques. A neural network is trained to identify the color of a desired object, eliminating all but that color from the scene. Gabor correlations and 2D wavelet transformations will be performed on stationary images; and 3D wavelet transforms on multispectral data will incorporate color and motion detection into the machine visual system. The paper will demonstrate that color and motion cues can enhance a computer segmentation system. Results from segmenting faces both from the AFIT data base and from video taped television are presented; results from tactical targets such as tanks and airplanes are also given. Color preprocessing is shown to greatly improve the segmentation in most cases.

  1. A new piston control strategy for segmented mirrors

    NASA Technical Reports Server (NTRS)

    Olivier, Philip D.

    1994-01-01

    One approach to the adaptive control of large segmented mirrors involves sending tilt commands to each segment and allowing each segment to minimize the distance between its edges and those of (all or some of) its neighbors. This approach has been adopted in the Phased Array Mirror, Extendible Large Aperture (PAMELA) testbed now located at NASA's Marshall Space Flight Center, Huntsville, AL. This approach minimizes (1) the communication between the sensors and the segment actuators and (2) computations required by the central controlling computer. This report discusses issues that large segmented mirrors built around the PAMELA concept (such as SELENE) will face when they migrate to integrated, and presumably to digital, on-segment computational ability and high bandwidth response.

  2. Saturn 5 launch vehicle flight evaluation report-AS-509 Apollo 14 mission

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A postflight analysis of the Apollo 14 flight is presented. The basic objective of the flight evaluation is to acquire, reduce, analyze, and report on flight data to the extent required to assure future mission success and vehicle reliability. Actual flight failures are identified, their causes are determined and corrective actions are recommended. Summaries of launch operations and spacecraft performance are included. The significant events for all phases of the flight are analyzed.

  3. Green Flight Challenge

    NASA Video Gallery

    The CAFE Green Flight Challenge sponsored by Google will be held at the CAFE Foundation Flight Test Center at Charles M. Schulz Sonoma County Airport in Santa Rosa, Calif. The Green Flight Challeng...

  4. International Space Station Bacteria Filter Element Post-Flight Testing and Service Life Prediction

    NASA Technical Reports Server (NTRS)

    Perry, J. L.; von Jouanne, R. G.; Turner, E. H.

    2003-01-01

    The International Space Station uses high efficiency particulate air (HEPA) filters to remove particulate matter from the cabin atmosphere. Known as Bacteria Filter Elements (BFEs), there are 13 elements deployed on board the ISS's U.S. Segment. The pre-flight service life prediction of 1 year for the BFEs is based upon performance engineering analysis of data collected during developmental testing that used a synthetic dust challenge. While this challenge is considered reasonable and conservative from a design perspective, an understanding of the actual filter loading is required to best manage the critical ISS Program resources. Thus testing was conducted on BFEs returned from the ISS to refine the service life prediction. Results from this testing and implications to ISS resource management are discussed. Recommendations for realizing significant savings to the ISS Program are presented.

  5. Transfer of Training with Formation Flight Trainer.

    ERIC Educational Resources Information Center

    Reid, Gary B.; Cyrus, Michael L.

    The present research was conducted to determine transfer of practice from a formation simulator to actual aircraft flight for the wing aircraft component of the formation flying task. Evidence in support of positive transfer was obtained by comparing students trained in the formation simulator with students who were essentially untrained and with…

  6. NASA's Flight Opportunities Program

    NASA Video Gallery

    NASA's Flight Opportunities Program is facilitating low-cost access to suborbital space, where researchers can test technologies using commercially developed vehicles. Suborbital flights can quickl...

  7. Impact assisted segmented cutterhead

    DOEpatents

    Morrell, Roger J.; Larson, David A.; Ruzzi, Peter L.

    1992-01-01

    An impact assisted segmented cutterhead device is provided for cutting various surfaces from coal to granite. The device comprises a plurality of cutting bit segments deployed in side by side relationship to form a continuous cutting face and a plurality of impactors individually associated with respective cutting bit segments. An impactor rod of each impactor connects that impactor to the corresponding cutting bit segment. A plurality of shock mounts dampening the vibration from the associated impactor. Mounting brackets are used in mounting the cutterhead to a base machine.

  8. Kinematics of chiropteran shoulder girdle in flight.

    PubMed

    Panyutina, A A; Kuznetsov, A N; Korzun, L P

    2013-03-01

    New data on the mechanisms of movements of the shoulder girdle and humerus of bats are described; potential mobility is compared to the movements actually used in flight. The study was performed on the basis of morphological and functional analysis of anatomical specimens of 15 species, high speed and high definition filming of two species and X-ray survey of Rousettus aegyptiacus flight. Our observations indicate that any excursions of the shoulder girdle in bats have relatively small input in the wing amplitude. Shoulder girdle movements resemble kinematics of a crank mechanism: clavicle plays the role of crank, and scapula-the role of connecting rod. Previously described osseous "locking mechanisms" in shoulder joint of advanced bats do not affect the movements, actually used in flight. The wing beats in bats are performed predominantly by movements of humerus relative to shoulder girdle, although these movements occupy the caudal-most sector of available shoulder mobility. PMID:23381941

  9. Effect of space flight on cytokine production

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, Gerald

    Space flight has been shown to alter many immunological responses. Among those affected are the production of cytokines, Cytokines are the messengers of the immune system that facilitate communication among cells that allow the interaction among cells leading to the development of immune responses. Included among the cytokines are the interferons, interleukins, and colony stimulating factors. Cytokines also facilitate communication between the immune system and other body systems, such as the neuroendocrine and musculoskeletal systems. Some cytokines also have direct protective effects on the host, such as interferon, which can inhibit the replication of viruses. Studies in both humans and animals indicate that models of space flight as well as actual space flight alter the production and action of cytokines. Included among these changes are altered interferon production, altered responsiveness of bone marrow cells to granulocyte/monocyte-colony stimulating factor, but no alteration in the production of interleukin-3. This suggests that there are selective effects of space flight on immune responses, i.e. not all cytokines are affected in the same fashion by space flight. Tissue culture studies also suggest that there may be direct effects of space flight on the cells responsible for cytokine production and action. The results of the above study indicate that the effects of space flight on cytokines may be a fundamental mechanism by which space flight not only affects immune responses, but also other biological systems of the human.

  10. Space flight and neurovestibular adaptation

    NASA Technical Reports Server (NTRS)

    Reschke, M. F.; Bloomberg, J. J.; Harm, D. L.; Paloski, W. H.

    1994-01-01

    Space flight represents a form of sensory stimulus rearrangement requiring modification of established terrestrial response patterns through central reinterpretation. Evidence of sensory reinterpretation is manifested as postflight modifications of eye/head coordination, locomotor patterns, postural control strategies, and illusory perceptions of self or surround motion in conjunction with head movements. Under normal preflight conditions, the head is stabilized during locomotion, but immediately postflight reduced head stability, coupled with inappropriate eye/head coordination, results in modifications of gait. Postflight postural control exhibits increased dependence on vision which compensates for inappropriate interpretation of otolith and proprioceptive inputs. Eye movements compensatory for perceived self motion, rather than actual head movements have been observed postflight. Overall, the in-flight adaptive modification of head stabilization strategies, changes in head/eye coordination, illusionary motion, and postural control are maladaptive for a return to the terrestrial environment.

  11. Flight Test Series 3: Flight Test Report

    NASA Technical Reports Server (NTRS)

    Marston, Mike; Sternberg, Daniel; Valkov, Steffi

    2015-01-01

    This document is a flight test report from the Operational perspective for Flight Test Series 3, a subpart of the Unmanned Aircraft System (UAS) Integration in the National Airspace System (NAS) project. Flight Test Series 3 testing began on June 15, 2015, and concluded on August 12, 2015. Participants included NASA Ames Research Center, NASA Armstrong Flight Research Center, NASA Glenn Research Center, NASA Langley Research center, General Atomics Aeronautical Systems, Inc., and Honeywell. Key stakeholders analyzed their System Under Test (SUT) in two distinct configurations. Configuration 1, known as Pairwise Encounters, was subdivided into two parts: 1a, involving a low-speed UAS ownship and intruder(s), and 1b, involving a high-speed surrogate ownship and intruder. Configuration 2, known as Full Mission, involved a surrogate ownship, live intruder(s), and integrated virtual traffic. Table 1 is a summary of flights for each configuration, with data collection flights highlighted in green. Section 2 and 3 of this report give an in-depth description of the flight test period, aircraft involved, flight crew, and mission team. Overall, Flight Test 3 gathered excellent data for each SUT. We attribute this successful outcome in large part from the experience that was acquired from the ACAS Xu SS flight test flown in December 2014. Configuration 1 was a tremendous success, thanks to the training, member participation, integration/testing, and in-depth analysis of the flight points. Although Configuration 2 flights were cancelled after 3 data collection flights due to various problems, the lessons learned from this will help the UAS in the NAS project move forward successfully in future flight phases.

  12. Response to actual and simulated recordings of conventional takeoff and landing jet aircraft

    NASA Technical Reports Server (NTRS)

    Mabry, J. E.; Sullivan, B. M.

    1978-01-01

    Comparability between noise characteristics of synthesized recordings of aircraft in flight and actual recordings were investigated. Although the synthesized recordings were more smoothly time-varying than the actual recordings and the synthesizer could not produce a comb-filter effect that was present in the actual recordings, results supported the conclusion that annoyance response is comparable to the synthesized and actual recordings. A correction for duration markedly improved the validity of engineering calculation procedures designed to measure noise annoyance. Results led to the conclusion that the magnitude estimation psychophysical method was a highly reliable approach for evaluating engineering calculation procedures designed to measure noise annoyance. For repeated presentations of pairs of actual recordings, differences between judgment results for identical signals ranged from 0.0 to 0.5 db.

  13. Marshall Space Flight Center Autumn 2005

    NASA Technical Reports Server (NTRS)

    Allen, Mike; Clar, Harry E.

    2006-01-01

    The East Test Area at Marshall Space Flight Center has five major test stands, each of which has two or more test positions, not counting the SSME and RD-180 engine test facilities in the West Test Area. These research and development facilities are capable of testing high pressure pumps, both fuel and oxidizer, injectors, chambers and sea-level engine assemblies, as well as simulating deep space environments in the 12, 15 and 20 foot vacuum chambers. Liquid propellant capabilities are high pressure hydrogen (liquid and gas), methane (liquid and gas), and RP-1 and high pressure LOX. Solid propellant capability includes thrust measurement and firing capability up to 1/6 scale Shuttle SRB segment. In the past six months MSFC supported multiple space access and exploration programs in the previous six months. Major programs were Space Exploration, Shuttle External Tank research, Reusable Solid Rocket Motor (RSRM) development, as well as research programs for NASA and other customers. At Test Stand 115 monopropellant ignition testing was conducted on one position. At the second position multiple ignition/variable burn time cycles were conducted on Vacuum Plasma Spatter (VPS) coated injectors. Each injector received fifty cycles; the propellants were LOX Hydrogen and the ignition source was TEA. Following completion of the monopropellant test series the stand was reconfigured to support ignition testing on a LOX Methane injector system. At TS 116 a thrust stand used to test Booster Separation Motors from the Shuttle SRB system was disassembled and moved from Chemical Systems Division s Coyote Canyon plant to MSFC. The stand was reassembled and readied for BSM testing. Also, a series of tests was run on a Pratt & Whitney Rocketdyne Low Element Density (LED) injector engine. The propellants for this engine are LOX and LH2. At TS 300 the 20 foot vacuum chamber was configured to support hydrogen testing in the Multipurpose Hydrogen Test Bed (MHTB) test article. This testing

  14. LANDSAT-D flight segment operations manual, volume 1

    NASA Technical Reports Server (NTRS)

    Varhola, J.

    1982-01-01

    Hardware, systems, and subsystems for the multimission modular spacecraft used for LANDSAT 4 are described and depicted in block diagrams and schematics. Components discussed include the modular attitude control system; the communication and data handling subsystem; the narrowband tape recorder; the on-board computer; the propulsion module subsystem; the signal conditioning and control unit; the modular power subsystem; the solar array drive and power transmission assembly; the power distribution unit; the digital processing unit; and the wideband communication subsystem.

  15. LANDSAT-D flight segment operations manual, volume 2

    NASA Technical Reports Server (NTRS)

    Varhola, J.

    1981-01-01

    Functions, performance capabilities, modes of operation, constraints, redundancy, commands, and telemetry are described for the thematic mapper; the global positioning system; the direct access S-band; the multispectral scanner; the payload correction; the thermal control subsystem; the solar array retention, deployment, and jettison assembly; and the boom antenna retention, deployment, and jettison assembly for LANDSAT 4.

  16. STS-109 Post Flight Presentation

    NASA Astrophysics Data System (ADS)

    2002-04-01

    The STS-109 Post Flight presentation begins with Mission Specialists Nancy J. Currie, Michael J. Massimino, James H. Newman, and Richard M. Linnehan shown getting suited on launch day. Actual footage of the liftoff of the Space Shuttle Columbia is shown. Five spacewalks are performed to service the Hubble Space Telescope. Richard Linnehan and John Grunsfield are replacing solar arrays, connectors and power control units on the Hubble Space Telescope. Mission Specialist Nancy Currie will use Space Shuttle Columbia's robotic arm to grab the telescope, move it away from the orbiter and release it. A look at the coast of South America is also presented.

  17. STS-110 Flight Day 2 Highlights

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The second flight day of the STS-110 mission begins with Pilot Stephen Frick, and Mission Specialists Ellen Ochoa and Jerry Ross shown in the flight deck of the Space Shuttle Atlantis. Ellen Ochoa answers questions about the goals of the mission which are to install the S(0) truss segment on the International Space Station. Television cameras are attached to the robotic arm to take pictures of the truss in orbit. Commander Mike Bloomfield and Stephen Frick talks about the physical condition of the robotic arm.

  18. Size Optimization for Mirror Segments for X-Ray Optics

    NASA Technical Reports Server (NTRS)

    Biskach, Michael P.; McClelland, Ryan S.; Saha, Timo; Zhang, William W.

    2011-01-01

    The flight mirror assemblies (FMA) for X-ray telescopes similar to that of the International X-ray Observatory (IXO) concept consist of several thousands of individual mirror segments. The size, shape, and location of these mirrors affect many characteristics of the telescope design. Mission requirements among other factors in turn restrict mirror segment parameters such as thickness, axial- length, azimuthal span, and mass density. This paper provides an overview of the critical relationships relating to mirror segment size and configuration throughout the design and analysis of an X-ray mirror assembly. A computational analysis is presented in the form of ray tracing pairs of thin X-ray mirror segments of varying sizes aligned in gravity and supported using kinematic constraints with corresponding self weight distortions calculated using finite element analysis (FEA). The work in this paper may be used as a starting point for determining mirror segment sizes for X-ray missions like that of IXO and beyond.

  19. Segment Alignment Maintenance System for the Hobby-Eberly Telescope

    NASA Technical Reports Server (NTRS)

    Rakoczy, John; Burdine, Robert (Technical Monitor)

    2001-01-01

    NASA's Marshall Space Flight Center, in collaboration with Blue Line Engineering of Colorado Springs, Colorado, is developing a Segment Alignment Maintenance System (SAMS) for McDonald Observatory's Hobby-Eberly Telescope (HET). The SAMS shall sense motions of the 91 primary mirror segments and send corrections to HET's primary mirror controller as the mirror segments misalign due to thermo -elastic deformations of the mirror support structure. The SAMS consists of inductive edge sensors. All measurements are sent to the SAMS computer where mirror motion corrections are calculated. In October 2000, a prototype SAMS was installed on a seven-segment cluster of the HET. Subsequent testing has shown that the SAMS concept and architecture are a viable practical approach to maintaining HET's primary mirror figure, or the figure of any large segmented telescope. This paper gives a functional description of the SAMS sub-array components and presents test data to characterize the performance of the subarray SAMS.

  20. Comparing Future Options for Human Space Flight

    NASA Technical Reports Server (NTRS)

    Sherwood, Brent

    2010-01-01

    The paper analyzes the "value proposition" for government-funded human space flight, a vexing question that persistently dogs efforts to justify its $10(exp 10)/year expense in the U.S. The original Mercury/Gemini/Apollo value proposition is not valid today. Neither was it the value proposition actually promoted by von Braun, which the post-Apollo 80% of human space flight history has persistently attempted to fulfill. Divergent potential objectives for human space flight are captured in four strategic options - Explore Mars; accelerate Space Passenger Travel; enable Space Power for Earth; and Settle the Moon - which are then analyzed for their Purpose, societal Myth, Legacy benefits, core Needs, and result as measured by the number and type of humans they would fly in space. This simple framework is proposed as a way to support productive dialogue with public and other stakeholders, to determine a sustainable value proposition for human space flight.

  1. 14 CFR 61.57 - Recent flight experience: Pilot in command.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ..., and flight time, and the instrument currency must have been performed in actual weather conditions or under simulated weather conditions— (A) One hour of instrument flight time in a glider or in a single... the use of navigation electronic systems. (B) Two hours of instrument flight time in a glider or...

  2. 14 CFR 61.57 - Recent flight experience: Pilot in command.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ..., and flight time, and the instrument currency must have been performed in actual weather conditions or under simulated weather conditions— (A) One hour of instrument flight time in a glider or in a single... the use of navigation electronic systems. (B) Two hours of instrument flight time in a glider or...

  3. 14 CFR 61.57 - Recent flight experience: Pilot in command.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ..., and flight time, and the instrument currency must have been performed in actual weather conditions or under simulated weather conditions— (A) One hour of instrument flight time in a glider or in a single... the use of navigation electronic systems. (B) Two hours of instrument flight time in a glider or...

  4. Moral Reasoning in Hypothetical and Actual Situations.

    ERIC Educational Resources Information Center

    Sumprer, Gerard F.; Butter, Eliot J.

    1978-01-01

    Results of this investigation suggest that moral reasoning of college students, when assessed using the DIT format, is the same whether the dilemmas involve hypothetical or actual situations. Subjects, when presented with hypothetical situations, become deeply immersed in them and respond as if they were actual participants. (Author/BEF)

  5. Factors Related to Self-Actualization.

    ERIC Educational Resources Information Center

    Hogan, H. Wayne; McWilliams, Jettie M.

    1978-01-01

    Provides data to further support the notions that females score higher in self-actualization measures and that self-actualization scores correlate inversely to the degree of undesirability individuals assign to their heights and weights. Finds that, contrary to predictions, greater androgyny was related to lower, not higher, self-actualization…

  6. 14 CFR 121.493 - Flight time limitations: Flight engineers and flight navigators.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 3 2014-01-01 2014-01-01 false Flight time limitations: Flight engineers... Limitations: Flag Operations § 121.493 Flight time limitations: Flight engineers and flight navigators. (a) In any operation in which one flight engineer or flight navigator is required, the flight...

  7. NASA Today - Mars Observer Segment (Part 4 of 6)

    NASA Technical Reports Server (NTRS)

    1993-01-01

    This videotape consists of eight segments from the NASA Today News program. The first segment is an announcement that there was no date set for the launch of STS-51, which had been postponed due to mechanical problems. The second segment describes the MidDeck Dynamic Experiment Facility. The third segment is about the scheduled arrival of the Mars Observer at Mars, it shows an image of Mars as seen from the approaching Observer spacecraft, and features an animation of the approach to Mars, including the maneuvers that are planned to put the spacecraft in the desired orbit. The fourth segment describes a discovery from an infrared spectrometer that there is nitrogen ice on Pluto. The fifth segment discusses the Aerospace for Kids (ASK) program at the Goddard Space Flight Center (GSFC). The sixth segment is about the high school and college summer internship programs at GSFC. The seventh segment announces a science symposium being held at Johnson Space Center. The last segment describes the National Air and Space Museum and NASA's cooperation with the Smithsonian Institution.

  8. Pancreas and cyst segmentation

    NASA Astrophysics Data System (ADS)

    Dmitriev, Konstantin; Gutenko, Ievgeniia; Nadeem, Saad; Kaufman, Arie

    2016-03-01

    Accurate segmentation of abdominal organs from medical images is an essential part of surgical planning and computer-aided disease diagnosis. Many existing algorithms are specialized for the segmentation of healthy organs. Cystic pancreas segmentation is especially challenging due to its low contrast boundaries, variability in shape, location and the stage of the pancreatic cancer. We present a semi-automatic segmentation algorithm for pancreata with cysts. In contrast to existing automatic segmentation approaches for healthy pancreas segmentation which are amenable to atlas/statistical shape approaches, a pancreas with cysts can have even higher variability with respect to the shape of the pancreas due to the size and shape of the cyst(s). Hence, fine results are better attained with semi-automatic steerable approaches. We use a novel combination of random walker and region growing approaches to delineate the boundaries of the pancreas and cysts with respective best Dice coefficients of 85.1% and 86.7%, and respective best volumetric overlap errors of 26.0% and 23.5%. Results show that the proposed algorithm for pancreas and pancreatic cyst segmentation is accurate and stable.

  9. Development and Flight Testing of a Neural Network Based Flight Control System on the NF-15B Aircraft

    NASA Technical Reports Server (NTRS)

    Bomben, Craig R.; Smolka, James W.; Bosworth, John T.; Silliams-Hayes, Peggy S.; Burken, John J.; Larson, Richard R.; Buschbacher, Mark J.; Maliska, Heather A.

    2006-01-01

    The Intelligent Flight Control System (IFCS) project at the NASA Dryden Flight Research Center, Edwards AFB, CA, has been investigating the use of neural network based adaptive control on a unique NF-15B test aircraft. The IFCS neural network is a software processor that stores measured aircraft response information to dynamically alter flight control gains. In 2006, the neural network was engaged and allowed to learn in real time to dynamically alter the aircraft handling qualities characteristics in the presence of actual aerodynamic failure conditions injected into the aircraft through the flight control system. The use of neural network and similar adaptive technologies in the design of highly fault and damage tolerant flight control systems shows promise in making future aircraft far more survivable than current technology allows. This paper will present the results of the IFCS flight test program conducted at the NASA Dryden Flight Research Center in 2006, with emphasis on challenges encountered and lessons learned.

  10. Segmented ion thruster

    NASA Technical Reports Server (NTRS)

    Brophy, John R. (Inventor)

    1993-01-01

    Apparatus and methods for large-area, high-power ion engines comprise dividing a single engine into a combination of smaller discharge chambers (or segments) configured to operate as a single large-area engine. This segmented ion thruster (SIT) approach enables the development of 100-kW class argon ion engines for operation at a specific impulse of 10,000 s. A combination of six 30-cm diameter ion chambers operating as a single engine can process over 100 kW. Such a segmented ion engine can be operated from a single power processor unit.

  11. F-8 SCW in flight

    NASA Technical Reports Server (NTRS)

    1971-01-01

    The F-8A Supercritical Wing (SCW) aircraft in flight. Dr. Richard T. Whitcomb began work on the supercritical wing in the early 1960s. Although the design was highly efficient in wind-tunnel testing, it was so unusual that few accepted the concept as practical. Larry Loftin of NASA's Langley Research Center in Hampton, VA, said, 'We're going to have a flight demonstration. This thing is so different from anything that we've ever done before that nobody's going to touch it with a ten foot pole without somebody going out and flying it.' The Navy supplied NASA with an F-8A (Navy Bureau Number 141353/NASA tail number 810), while North American Aviation built the supercritical wing. The SCW team attached it to the stock F-8 fuselage. This 1971 photo shows its original paint finish. Tom McMurtry, who was the lead project pilot, recalled that there was no time or money for a fancier finish. In fact, on the first flight, made on March 9, 1971, the 'SCW' on the tail was actually taped on. The F-8 Supercritical Wing was a flight research project designed to test a new wing concept designed by Dr. Richard Whitcomb, chief of the Transonic Aerodynamics Branch, Langley Research Center, Hampton, Virginia. Compared to a conventional wing, the supercritical wing (SCW) is flatter on the top and rounder on the bottom with a downward curve at the trailing edge. The Supercritical Wing was designed to delay the formation of and reduce the shock wave over the wing just below and above the speed of sound (transonic region of flight). Delaying the shock wave at these speeds results in less drag. Results of the NASA flight research at the Flight Research Center, Edwards, California, (later renamed the Dryden Flight Research Center) demonstrated that aircraft using the supercritical wing concept would have increased cruising speed, improved fuel efficiency, and greater flight range than those using conventional wings. As a result, supercritical wings are now commonplace on virtually every

  12. Multi-Exciter Vibroacoustic Simulation of Hypersonic Flight Vibration

    SciTech Connect

    GREGORY,DANNY LYNN; CAP,JEROME S.; TOGAMI,THOMAS C.; NUSSER,MICHAEL A.; HOLLINGSHEAD,JAMES RONALD

    1999-11-11

    Many aerospace structures must survive severe high frequency, hypersonic, random vibration during their flights. The random vibrations are generated by the turbulent boundary layer developed along the exterior of the structures during flight. These environments have not been simulated very well in the past using a fixed-based, single exciter input with an upper frequency range of 2 kHz. This study investigates the possibility of using acoustic ardor independently controlled multiple exciters to more accurately simulate hypersonic flight vibration. The test configuration, equipment, and methodology are described. Comparisons with actual flight measurements and previous single exciter simulations are also presented.

  13. The dynamics of parabolic flight: flight characteristics and passenger percepts.

    PubMed

    Karmali, Faisal; Shelhamer, Mark

    2008-09-01

    Flying a parabolic trajectory in an aircraft is one of the few ways to create freefall on Earth, which is important for astronaut training and scientific research. Here we review the physics underlying parabolic flight, explain the resulting flight dynamics, and describe several counterintuitive findings, which we corroborate using experimental data. Typically, the aircraft flies parabolic arcs that produce approximately 25 seconds of freefall (0 g) followed by 40 seconds of enhanced force (1.8 g), repeated 30-60 times. Although passengers perceive gravity to be zero, in actuality acceleration, and not gravity, has changed, and thus we caution against the terms "microgravity" and "zero gravity. " Despite the aircraft trajectory including large (45°) pitch-up and pitch-down attitudes, the occupants experience a net force perpendicular to the floor of the aircraft. This is because the aircraft generates appropriate lift and thrust to produce the desired vertical and longitudinal accelerations, respectively, although we measured moderate (0.2 g) aft-ward accelerations during certain parts of these trajectories. Aircraft pitch rotation (average 3°/s) is barely detectable by the vestibular system, but could influence some physics experiments. Investigators should consider such details in the planning, analysis, and interpretation of parabolic-flight experiments. PMID:19727328

  14. The dynamics of parabolic flight: Flight characteristics and passenger percepts

    NASA Astrophysics Data System (ADS)

    Karmali, Faisal; Shelhamer, Mark

    2008-09-01

    Flying a parabolic trajectory in an aircraft is one of the few ways to create freefall on Earth, which is important for astronaut training and scientific research. Here we review the physics underlying parabolic flight, explain the resulting flight dynamics, and describe several counterintuitive findings, which we corroborate using experimental data. Typically, the aircraft flies parabolic arcs that produce approximately 25 s of freefall (0 g) followed by 40 s of enhanced force (1.8 g), repeated 30-60 times. Although passengers perceive gravity to be zero, in actuality acceleration, and not gravity, has changed, and thus we caution against the terms "microgravity" and "zero gravity." Despite the aircraft trajectory including large (45°) pitch-up and pitch-down attitudes, the occupants experience a net force perpendicular to the floor of the aircraft. This is because the aircraft generates appropriate lift and thrust to produce the desired vertical and longitudinal accelerations, respectively, although we measured moderate (0.2 g) aft-ward accelerations during certain parts of these trajectories. Aircraft pitch rotation (average 3°/s) is barely detectable by the vestibular system, but could influence some physics experiments. Investigators should consider such details in the planning, analysis, and interpretation of parabolic-flight experiments.

  15. The dynamics of parabolic flight: flight characteristics and passenger percepts

    PubMed Central

    Karmali, Faisal; Shelhamer, Mark

    2008-01-01

    Flying a parabolic trajectory in an aircraft is one of the few ways to create freefall on Earth, which is important for astronaut training and scientific research. Here we review the physics underlying parabolic flight, explain the resulting flight dynamics, and describe several counterintuitive findings, which we corroborate using experimental data. Typically, the aircraft flies parabolic arcs that produce approximately 25 seconds of freefall (0 g) followed by 40 seconds of enhanced force (1.8 g), repeated 30–60 times. Although passengers perceive gravity to be zero, in actuality acceleration, and not gravity, has changed, and thus we caution against the terms "microgravity" and "zero gravity. " Despite the aircraft trajectory including large (45°) pitch-up and pitch-down attitudes, the occupants experience a net force perpendicular to the floor of the aircraft. This is because the aircraft generates appropriate lift and thrust to produce the desired vertical and longitudinal accelerations, respectively, although we measured moderate (0.2 g) aft-ward accelerations during certain parts of these trajectories. Aircraft pitch rotation (average 3°/s) is barely detectable by the vestibular system, but could influence some physics experiments. Investigators should consider such details in the planning, analysis, and interpretation of parabolic-flight experiments. PMID:19727328

  16. Image segmentation survey

    NASA Technical Reports Server (NTRS)

    Haralick, R. M.

    1982-01-01

    The methodologies and capabilities of image segmentation techniques are reviewed. Single linkage schemes, hybrid linkage schemes, centroid linkage schemes, histogram mode seeking, spatial clustering, and split and merge schemes are addressed.

  17. Segmentation of SAR images

    NASA Technical Reports Server (NTRS)

    Kwok, Ronald

    1989-01-01

    The statistical characteristics of image speckle are reviewed. Existing segmentation techniques that have been used for speckle filtering, edge detection, and texture extraction are sumamrized. The relative effectiveness of each technique is briefly discussed.

  18. I-FORCAST: Rapid Flight Planning Tool

    NASA Technical Reports Server (NTRS)

    Oaida, Bogdan; Khan, Mohammed; Mercury, Michael B.

    2012-01-01

    I-FORCAST (Instrument - Field of Regard Coverage Analysis and Simulation Tool) is a flight planning tool specifically designed for quickly verifying the feasibility and estimating the cost of airborne remote sensing campaigns (see figure). Flights are simulated by being broken into three predefined routing algorithms as necessary: mapping in a snaking pattern, mapping the area around a point target (like a volcano) with a star pattern, and mapping the area between a list of points. The tool has been used to plan missions for radar, lidar, and in-situ atmospheric measuring instruments for a variety of aircraft. It has also been used for global and regional scale campaigns and automatically includes landings when refueling is required. The software has been compared to the flight times of known commercial aircraft route travel times, as well as a UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar) campaign, and was within 15% of the actual flight time. Most of the discrepancy is due to non-optimal flight paths taken by actual aircraft to avoid restricted airspace and used to follow landing and take-off corridors.

  19. Automated Flight Routing Using Stochastic Dynamic Programming

    NASA Technical Reports Server (NTRS)

    Ng, Hok K.; Morando, Alex; Grabbe, Shon

    2010-01-01

    Airspace capacity reduction due to convective weather impedes air traffic flows and causes traffic congestion. This study presents an algorithm that reroutes flights in the presence of winds, enroute convective weather, and congested airspace based on stochastic dynamic programming. A stochastic disturbance model incorporates into the reroute design process the capacity uncertainty. A trajectory-based airspace demand model is employed for calculating current and future airspace demand. The optimal routes minimize the total expected traveling time, weather incursion, and induced congestion costs. They are compared to weather-avoidance routes calculated using deterministic dynamic programming. The stochastic reroutes have smaller deviation probability than the deterministic counterpart when both reroutes have similar total flight distance. The stochastic rerouting algorithm takes into account all convective weather fields with all severity levels while the deterministic algorithm only accounts for convective weather systems exceeding a specified level of severity. When the stochastic reroutes are compared to the actual flight routes, they have similar total flight time, and both have about 1% of travel time crossing congested enroute sectors on average. The actual flight routes induce slightly less traffic congestion than the stochastic reroutes but intercept more severe convective weather.

  20. Adjacent segment disease.

    PubMed

    Virk, Sohrab S; Niedermeier, Steven; Yu, Elizabeth; Khan, Safdar N

    2014-08-01

    EDUCATIONAL OBJECTIVES As a result of reading this article, physicians should be able to: 1. Understand the forces that predispose adjacent cervical segments to degeneration. 2. Understand the challenges of radiographic evaluation in the diagnosis of cervical and lumbar adjacent segment disease. 3. Describe the changes in biomechanical forces applied to adjacent segments of lumbar vertebrae with fusion. 4. Know the risk factors for adjacent segment disease in spinal fusion. Adjacent segment disease (ASD) is a broad term encompassing many complications of spinal fusion, including listhesis, instability, herniated nucleus pulposus, stenosis, hypertrophic facet arthritis, scoliosis, and vertebral compression fracture. The area of the cervical spine where most fusions occur (C3-C7) is adjacent to a highly mobile upper cervical region, and this contributes to the biomechanical stress put on the adjacent cervical segments postfusion. Studies have shown that after fusion surgery, there is increased load on adjacent segments. Definitive treatment of ASD is a topic of continuing research, but in general, treatment choices are dictated by patient age and degree of debilitation. Investigators have also studied the risk factors associated with spinal fusion that may predispose certain patients to ASD postfusion, and these data are invaluable for properly counseling patients considering spinal fusion surgery. Biomechanical studies have confirmed the added stress on adjacent segments in the cervical and lumbar spine. The diagnosis of cervical ASD is complicated given the imprecise correlation of radiographic and clinical findings. Although radiological and clinical diagnoses do not always correlate, radiographs and clinical examination dictate how a patient with prolonged pain is treated. Options for both cervical and lumbar spine ASD include fusion and/or decompression. Current studies are encouraging regarding the adoption of arthroplasty in spinal surgery, but more long

  1. Segmented pyroelector detector

    DOEpatents

    Stotlar, S.C.; McLellan, E.J.

    1981-01-21

    A pyroelectric detector is described which has increased voltage output and improved responsivity over equivalent size detectors. The device comprises a plurality of edge-type pyroelectric detectors which have a length which is much greater than the width of the segments between the edge-type electrodes. External circuitry connects the pyroelectric detector segments in parallel to provide a single output which maintains 50 ohm impedance characteristics.

  2. Squaring a Circular Segment

    ERIC Educational Resources Information Center

    Gordon, Russell

    2008-01-01

    Consider a circular segment (the smaller portion of a circle cut off by one of its chords) with chord length c and height h (the greatest distance from a point on the arc of the circle to the chord). Is there a simple formula involving c and h that can be used to closely approximate the area of this circular segment? Ancient Chinese and Egyptian…

  3. Segmenting Images for a Better Diagnosis

    NASA Technical Reports Server (NTRS)

    2004-01-01

    NASA's Hierarchical Segmentation (HSEG) software has been adapted by Bartron Medical Imaging, LLC, for use in segmentation feature extraction, pattern recognition, and classification of medical images. Bartron acquired licenses from NASA Goddard Space Flight Center for application of the HSEG concept to medical imaging, from the California Institute of Technology/Jet Propulsion Laboratory to incorporate pattern-matching software, and from Kennedy Space Center for data-mining and edge-detection programs. The Med-Seg[TM] united developed by Bartron provides improved diagnoses for a wide range of medical images, including computed tomography scans, positron emission tomography scans, magnetic resonance imaging, ultrasound, digitized Z-ray, digitized mammography, dental X-ray, soft tissue analysis, and moving object analysis. It also can be used in analysis of soft-tissue slides. Bartron's future plans include the application of HSEG technology to drug development. NASA is advancing it's HSEG software to learn more about the Earth's magnetosphere.

  4. Flight Test Engineering

    NASA Technical Reports Server (NTRS)

    Pavlock, Kate Maureen

    2013-01-01

    Although the scope of flight test engineering efforts may vary among organizations, all point to a common theme: flight test engineering is an interdisciplinary effort to test an asset in its operational flight environment. Upfront planning where design, implementation, and test efforts are clearly aligned with the flight test objective are keys to success. This chapter provides a top level perspective of flight test engineering for the non-expert. Additional research and reading on the topic is encouraged to develop a deeper understanding of specific considerations involved in each phase of flight test engineering.

  5. Preliminary Flight Results of a Fly-by-throttle Emergency Flight Control System on an F-15 Airplane

    NASA Technical Reports Server (NTRS)

    Burcham, Frank W., Jr.; Maine, Trindel A.; Fullerton, C. Gordon; Wells, Edward A.

    1993-01-01

    A multi-engine aircraft, with some or all of the flight control system inoperative, may use engine thrust for control. NASA Dryden has conducted a study of the capability and techniques for this emergency flight control method for the F-15 airplane. With an augmented control system, engine thrust, along with appropriate feedback parameters, is used to control flightpath and bank angle. Extensive simulation studies were followed by flight tests. The principles of throttles only control, the F-15 airplane, the augmented system, and the flight results including actual landings with throttles-only control are discussed.

  6. Analysis of image thresholding segmentation algorithms based on swarm intelligence

    NASA Astrophysics Data System (ADS)

    Zhang, Yi; Lu, Kai; Gao, Yinghui; Yang, Bo

    2013-03-01

    Swarm intelligence-based image thresholding segmentation algorithms are playing an important role in the research field of image segmentation. In this paper, we briefly introduce the theories of four existing image segmentation algorithms based on swarm intelligence including fish swarm algorithm, artificial bee colony, bacteria foraging algorithm and particle swarm optimization. Then some image benchmarks are tested in order to show the differences of the segmentation accuracy, time consumption, convergence and robustness for Salt & Pepper noise and Gaussian noise of these four algorithms. Through these comparisons, this paper gives qualitative analyses for the performance variance of the four algorithms. The conclusions in this paper would give a significant guide for the actual image segmentation.

  7. Segmental neurofibromatosis and malignancy.

    PubMed

    Dang, Julie D; Cohen, Philip R

    2010-01-01

    Segmental neurofibromatosis is an uncommon variant of neurofibromatosis type I characterized by neurofibromas and/or café-au-lait macules localized to one sector of the body. Although patients with neurofibromatosis type I have an associated increased risk of certain malignancies, malignancy has only occasionally been reported in patients with segmental neurofibromatosis. The published reports of patients with segmental neurofibromatosis who developed malignancy were reviewed and the characteristics of these patients and their cancers were summarized. Ten individuals (6 women and 4 men) with segmental neurofibromatosis and malignancy have been reported. The malignancies include malignant peripheral nerve sheath tumor (3), malignant melanoma (2), breast cancer (1), colon cancer (1), gastric cancer (1), lung cancer (1), and Hodgkin lymphoma (1). The most common malignancies in patients with segmental neurofibromatosis are derived from neural crest cells: malignant peripheral nerve sheath tumor and malignant melanoma. The incidence of malignancy in patients with segmental neurofibromatosis may approach that of patients with neurofibromatosis type I. PMID:21137621

  8. Improvements in flight table dynamic transparency for hardware-in-the-loop facilities

    NASA Astrophysics Data System (ADS)

    DeMore, Louis A.; Mackin, Rob; Swamp, Michael; Rusterholtz, Roger

    2000-07-01

    Flight tables are a 'necessary evil' in the Hardware-In-The- Loop (HWIL) simulation. Adding the actual or prototypic flight hardware to the loop, in order to increase the realism of the simulation, forces us to add motion simulation to the process. Flight table motion bases bring unwanted dynamics, non- linearities, transport delays, etc to an already difficult problem sometimes requiring the simulation engineer to compromise the results. We desire that the flight tables be 'dynamically transparent' to the simulation scenario. This paper presents a State Variable Feedback (SVF) control system architecture with feed-forward techniques that improves the flight table's dynamic transparency by significantly reducing the table's low frequency phase lag. We offer some actual results with existing flight tables that demonstrate the improved transparency. These results come from a demonstration conducted on a flight table in the KHILS laboratory at Eglin AFB and during a refurbishment of a flight table for the Boeing Company of St. Charles, Missouri.

  9. Continuous ECG monitoring on civil air crews during flight operations.

    PubMed

    Sekiguchi, C; Yamaguchi, O; Kitajima, T; Ueda, Y

    1977-09-01

    Cardiovascular disease is one of the disorders resulting in sudden incapacitation and is the most common malady leading to medical retirement. It is very important for us to control this disease among pilots. Generally, pilots undergo medical checkups at health control service on the ground, but they do not undergo these checkups during flight operations. We obtained a continuous ECG recording on four pilots to assess cardiac reserve capacity for mental load during flight operation. Results show that no significant ischemic changes of ST-segment and T-wave during flight were noticed except in one case of atrial fibrillation in which significant depression of ST-segment occurred while walking up a stairway after flight. An increased number of ectopic beats was found in another normal case. In general, it was suspected that mental load is greater at landing than takeoff. PMID:907598

  10. Space flight nutrition research: platforms and analogs

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Uchakin, Peter N.; Tobin, Brian W.

    2002-01-01

    Conducting research during actual or simulated weightlessness is a challenging endeavor, where even the simplest activities may present significant challenges. This article reviews some of the potential obstacles associated with performing research during space flight and offers brief descriptions of current and previous space research platforms and ground-based analogs, including those for human, animal, and cell-based research. This review is intended to highlight the main issues of space flight research analogs and leave the specifics for each physiologic system for the other papers in this section.

  11. Space flight nutrition research: platforms and analogs.

    PubMed

    Smith, Scott M; Uchakin, Peter N; Tobin, Brian W

    2002-10-01

    Conducting research during actual or simulated weightlessness is a challenging endeavor, where even the simplest activities may present significant challenges. This article reviews some of the potential obstacles associated with performing research during space flight and offers brief descriptions of current and previous space research platforms and ground-based analogs, including those for human, animal, and cell-based research. This review is intended to highlight the main issues of space flight research analogs and leave the specifics for each physiologic system for the other papers in this section. PMID:12361789

  12. Descent and Landing Triggers for the Orion Multi-Purpose Crew Vehicle Exploration Flight Test-1

    NASA Technical Reports Server (NTRS)

    Bihari, Brian D.; Semrau, Jeffrey D.; Duke, Charity J.

    2013-01-01

    The Orion Multi-Purpose Crew Vehicle (MPCV) will perform a flight test known as Exploration Flight Test-1 (EFT-1) currently scheduled for 2014. One of the primary functions of this test is to exercise all of the important Guidance, Navigation, Control (GN&C), and Propulsion systems, along with the flight software for future flights. The Descent and Landing segment of the flight is governed by the requirements levied on the GN&C system by the Landing and Recovery System (LRS). The LRS is a complex system of parachutes and flight control modes that ensure that the Orion MPCV safely lands at its designated target in the Pacific Ocean. The Descent and Landing segment begins with the jettisoning of the Forward Bay Cover and concludes with sensing touchdown. This paper discusses the requirements, design, testing, analysis and performance of the current EFT-1 Descent and Landing Triggers flight software.

  13. STS 63: Post flight presentation

    NASA Astrophysics Data System (ADS)

    1995-02-01

    At a post flight conference, Captain Jim Wetherbee, of STS Flight 63, introduces each of the other members of the STS 63 crew (Eileen Collins, Pilot; Dr. Bernard Harris, Payload Commander; Dr. Michael Foale, Mission Specialist from England; Dr. Janice Voss, Mission Specialist; and Colonel Vladimir Titor, Mission Specialist from Russia), gave a short autobiography of each member and a brief description of their assignment during this mission. A film was shown that included the preflight suit-up, a view of the launch site, the actual night launch, a tour of the Space Shuttle and several of the experiment areas, several views of earth and the MIR Space Station and cosmonauts, the MlR-Space Shuttle rendezvous, the deployment of the Spartan Ultraviolet Telescope, Foale and Harris's EVA and space walk, the retrieval of Spartan, and the night entry home, including the landing. Several spaceborne experiments were introduced: the radiation monitoring experiment, environment monitoring experiment, solid surface combustion experiment, and protein crystal growth and plant growth experiments. This conference ended with still, color pictures, taken by the astronauts during the entire STS 63 flight, being shown.

  14. STS 63: Post Flight Presentation

    NASA Technical Reports Server (NTRS)

    1995-01-01

    At a post flight conference, Captain Jim Wetherbee, of STS Flight 63, introduces each of the other members of the STS 63 crew (Eileen Collins, Pilot; Dr. Bernard Harris, Payload Commander; Dr. Michael Foale, Mission Specialist from England; Dr. Janice Voss, Misssion Specialist; and Colonel Vladimir Titor, Misssion Specialist from Russia. A short biography of each member and a brief description of their assignment during this mission is given. A film was shown that included the preflight suit-up, a view of the launch site, the actual night launch, a tour of the Space Shuttle and several of the experiment areas, several views of earth and the MIR Space Station and cosmonauts, the MIR-Space Shuttle rendezvous, the deployment of the Spartan Ultraviolet Telescope, Foale and Harris's EVA and space walk, the retrieval of Spartan, and the night entry home, including the landing. Several spaceborne experiments were introduced: the radiation monitoring experiment, environment monitoring experiment, solid surface combustion experiment, and protein crystal growth and plant growth experiments. This conference ended with still, color pictures, taken by the astronauts during the entire STS 63 flight, being shown.

  15. STS-113 Flight Day 7 Highlights

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The STS-113 seventh flight day begins with a view of the Russian Segment of the International Space Station from a camera at the end of the S1 truss. Live footage of Michael Lopez-Alegria and John Herrington are shown aboard the International Space Station. A change of command ceremony is presented to welcome the Expedition Six Crew and to say farewell to the Expedition Five crew. Commander Valery Korzun, Flight Engineer Sergei Treschev, NASA ISS Science Officer Peggy Whitson, Expedition Six Commander Ken Bowersox, Flight Engineer Nikolai Budarin, NASA ISS Science Officer Don Pettit, Commander Jim Wetherbee, Pilot Paul Lockhart and Mission Specialists Michael Lopez-Alegria and John Herrington are all are shown during the ceremony.

  16. Saturn 5 Launch Vehicle Flight Evaluation Report-AS-512 Apollo 17 Mission

    NASA Technical Reports Server (NTRS)

    1973-01-01

    An evaluation of the launch vehicle and lunar roving vehicle performance for the Apollo 17 flight is presented. The objective of the evaluation is to acquire, reduce, analyze, and report on flight data to the extent required to assure future mission success and vehicle reliability. Actual flight problems are identified, their causes are determined, and recommendations are made for corrective action. Summaries of launch operations and spacecraft performance are included. The significant events for all phases of the flight are analyzed.

  17. Saturn 5 launch vehicle flight evaluation report-AS-511 Apollo 16 mission

    NASA Technical Reports Server (NTRS)

    1972-01-01

    A postflight analysis of the Apollo 16 mission is presented. The basic objective of the flight evaluation is to acquire, reduce, analyze, and report on flight data to the extent required to assure future mission success and vehicle reliability. Actual flight problems are identified, their causes are deet determined, and recommendations are made for corrective actions. Summaries of launch operations and spacecraft performance are included. Significant events for all phases of the flight are provide in tabular form.

  18. Technical Progress on the Ares I-X Flight Test

    NASA Technical Reports Server (NTRS)

    Davis, S.R.; Robinson, K.F.; Flynn, K.C.

    2008-01-01

    Ares I-X will be NASA's first test flight for a new human-rated launch vehicle since 1981, and the team is well on its way toward completing the vehicle's design and hardware fabrication for an April 2009 launch. This uncrewed suborbital development test flight gives NASA its first opportunities to: gather critical data about the flight dynamics of the integrated launch vehicle; understand how to control its roll during flight; better characterize the stage separation environments during future flight; and demonstrate the first stage recovery system. The Ares I-X Flight Test Vehicle (FTV) incorporates a mix of flight and mockup hardware. It is powered by a four-segment solid rocket booster, and will be modified to include a fifth, spacer segment; the upper stage, Orion crew exploration vehicle, and launch abort system are simulator hardware to make the FTV aerodynamically similar to the same size, shape, and weight of Ares I. The Ares IX first stage includes an existing Shuttle solid rocket motor and thrust vector control system controlled by an Ascent Thrust Vector Controller (ATVC) designed and built by Honeywell International. The avionics system will be tested in a dedicated System Integration Laboratory located at Lockheed Martin Space Systems (LMSS) in Denver, Colorado. The Upper Stage Simulator (USS) is made up of cylindrical segments that will be stacked and integrated at Kennedy Space Center (KSC) for launch. Glenn Research Center is already building these segments, along with their internal access structures. The active Roll Control System (RoCS) includes two thruster units harvested from Peacekeeper missiles. Duty cycle testing for RoCS was conducted, and fuel tanking and detanking tests will occur at KSC in early 2008. This important flight will provide valuable experience for the ground operations team in integrating, stacking, and launching Ares I. Data from Ares I-X will ensure the safety and reliability of America's newest launch vehicle.

  19. 'Mighty Eagle' Takes Flight

    NASA Video Gallery

    The "Mighty Eagle," a NASA robotic prototype lander, had a successful first untethered flight Aug. 8 at the Marshall Center. During the 34-second flight, the Mighty Eagle soared and hovered at 30 f...

  20. Autonomous Soaring Flight Results

    NASA Technical Reports Server (NTRS)

    Allen, Michael J.

    2006-01-01

    A viewgraph presentation on autonomous soaring flight results for Unmanned Aerial Vehicles (UAV)'s is shown. The topics include: 1) Background; 2) Thermal Soaring Flight Results; 3) Autonomous Dolphin Soaring; and 4) Future Plans.

  1. Rediscovering market segmentation.

    PubMed

    Yankelovich, Daniel; Meer, David

    2006-02-01

    In 1964, Daniel Yankelovich introduced in the pages of HBR the concept of nondemographic segmentation, by which he meant the classification of consumers according to criteria other than age, residence, income, and such. The predictive power of marketing studies based on demographics was no longer strong enough to serve as a basis for marketing strategy, he argued. Buying patterns had become far better guides to consumers' future purchases. In addition, properly constructed nondemographic segmentations could help companies determine which products to develop, which distribution channels to sell them in, how much to charge for them, and how to advertise them. But more than 40 years later, nondemographic segmentation has become just as unenlightening as demographic segmentation had been. Today, the technique is used almost exclusively to fulfill the needs of advertising, which it serves mainly by populating commercials with characters that viewers can identify with. It is true that psychographic types like "High-Tech Harry" and "Joe Six-Pack" may capture some truth about real people's lifestyles, attitudes, self-image, and aspirations. But they are no better than demographics at predicting purchase behavior. Thus they give corporate decision makers very little idea of how to keep customers or capture new ones. Now, Daniel Yankelovich returns to these pages, with consultant David Meer, to argue the case for a broad view of nondemographic segmentation. They describe the elements of a smart segmentation strategy, explaining how segmentations meant to strengthen brand identity differ from those capable of telling a company which markets it should enter and what goods to make. And they introduce their "gravity of decision spectrum", a tool that focuses on the form of consumer behavior that should be of the greatest interest to marketers--the importance that consumers place on a product or product category. PMID:16485810

  2. Fault rupture segmentation

    NASA Astrophysics Data System (ADS)

    Cleveland, Kenneth Michael

    A critical foundation to earthquake study and hazard assessment is the understanding of controls on fault rupture, including segmentation. Key challenges to understanding fault rupture segmentation include, but are not limited to: What determines if a fault segment will rupture in a single great event or multiple moderate events? How is slip along a fault partitioned between seismic and seismic components? How does the seismicity of a fault segment evolve over time? How representative are past events for assessing future seismic hazards? In order to address the difficult questions regarding fault rupture segmentation, new methods must be developed that utilize the information available. Much of the research presented in this study focuses on the development of new methods for attacking the challenges of understanding fault rupture segmentation. Not only do these methods exploit a broader band of information within the waveform than has traditionally been used, but they also lend themselves to the inclusion of even more seismic phases providing deeper understandings. Additionally, these methods are designed to be fast and efficient with large datasets, allowing them to utilize the enormous volume of data available. Key findings from this body of work include demonstration that focus on fundamental earthquake properties on regional scales can provide general understanding of fault rupture segmentation. We present a more modern, waveform-based method that locates events using cross-correlation of the Rayleigh waves. Additionally, cross-correlation values can also be used to calculate precise earthquake magnitudes. Finally, insight regarding earthquake rupture directivity can be easily and quickly exploited using cross-correlation of surface waves.

  3. Reliability Block Diagram (RBD) Analysis of NASA Dryden Flight Research Center (DFRC) Flight Termination System and Power Supply

    NASA Technical Reports Server (NTRS)

    Morehouse, Dennis V.

    2006-01-01

    In order to perform public risk analyses for vehicles containing Flight Termination Systems (FTS), it is necessary for the analyst to know the reliability of each of the components of the FTS. These systems are typically divided into two segments; a transmitter system and associated equipment, typically in a ground station or on a support aircraft, and a receiver system and associated equipment on the target vehicle. This analysis attempts to analyze the reliability of the NASA DFRC flight termination system ground transmitter segment for use in the larger risk analysis and to compare the results against two established Department of Defense availability standards for such equipment.

  4. Flight control experiences

    NASA Technical Reports Server (NTRS)

    Musgrave, F. S.

    1977-01-01

    A multidisciplinary medical-management team at mission control provided Skylab crew support by monitoring health, retrieving and compiling experimental data, assisting in the development of flight plans, and by contributing to in-flight procedures and checklists. Real time computers assisted the flight crews in performing medical and other experiments.

  5. In Flight, Online

    ERIC Educational Resources Information Center

    Lucking, Robert A.; Wighting, Mervyn J.; Christmann, Edwin P.

    2005-01-01

    The concept of flight for human beings has always been closely tied to imagination. To fly like a bird requires a mind that also soars. Therefore, good teachers who want to teach the scientific principles of flight recognize that it is helpful to share stories of their search for the keys to flight. The authors share some of these with the reader,…

  6. Bootstrapping structured page segmentation

    NASA Astrophysics Data System (ADS)

    Ma, Huanfeng; Doermann, David S.

    2003-01-01

    In this paper, we present an approach to the bootstrap learning of a page segmentation model. The idea evolves from attempts to segment dictionaries that often have a consistent page structure, and is extended to the segmentation of more general structured documents. In cases of highly regular structure, the layout can be learned from examples of only a few pages. The system is first trained using a small number of samples, and a larger test set is processed based on the training result. After making corrections to a selected subset of the test set, these corrected samples are combined with the original training samples to generate bootstrap samples. The newly created samples are used to retrain the system, refine the learned features and resegment the test samples. This procedure is applied iteratively until the learned parameters are stable. Using this approach, we do not need to initially provide a large set of training samples. We have applied this segmentation to many structured documents such as dictionaries, phone books, spoken language transcripts, and obtained satisfying segmentation performance.

  7. Scorpion image segmentation system

    NASA Astrophysics Data System (ADS)

    Joseph, E.; Aibinu, A. M.; Sadiq, B. A.; Bello Salau, H.; Salami, M. J. E.

    2013-12-01

    Death as a result of scorpion sting has been a major public health problem in developing countries. Despite the high rate of death as a result of scorpion sting, little report exists in literature of intelligent device and system for automatic detection of scorpion. This paper proposed a digital image processing approach based on the floresencing characteristics of Scorpion under Ultra-violet (UV) light for automatic detection and identification of scorpion. The acquired UV-based images undergo pre-processing to equalize uneven illumination and colour space channel separation. The extracted channels are then segmented into two non-overlapping classes. It has been observed that simple thresholding of the green channel of the acquired RGB UV-based image is sufficient for segmenting Scorpion from other background components in the acquired image. Two approaches to image segmentation have also been proposed in this work, namely, the simple average segmentation technique and K-means image segmentation. The proposed algorithm has been tested on over 40 UV scorpion images obtained from different part of the world and results obtained show an average accuracy of 97.7% in correctly classifying the pixel into two non-overlapping clusters. The proposed 1system will eliminate the problem associated with some of the existing manual approaches presently in use for scorpion detection.

  8. Retina Lesion and Microaneurysm Segmentation using Morphological Reconstruction Methods with Ground-Truth Data

    SciTech Connect

    Karnowski, Thomas Paul; Govindaswamy, Priya; Tobin Jr, Kenneth William; Chaum, Edward; Abramoff, M.D.

    2008-01-01

    In this work we report on a method for lesion segmentation based on the morphological reconstruction methods of Sbeh et. al. We adapt the method to include segmentation of dark lesions with a given vasculature segmentation. The segmentation is performed at a variety of scales determined using ground-truth data. Since the method tends to over-segment imagery, ground-truth data was used to create post-processing filters to separate nuisance blobs from true lesions. A sensitivity and specificity of 90% of classification of blobs into nuisance and actual lesion was achieved on two data sets of 86 images and 1296 images.

  9. Cooperative processes in image segmentation

    NASA Technical Reports Server (NTRS)

    Davis, L. S.

    1982-01-01

    Research into the role of cooperative, or relaxation, processes in image segmentation is surveyed. Cooperative processes can be employed at several levels of the segmentation process as a preprocessing enhancement step, during supervised or unsupervised pixel classification and, finally, for the interpretation of image segments based on segment properties and relations.

  10. Fused Reality for Enhanced Flight Test Capabilities

    NASA Technical Reports Server (NTRS)

    Bachelder, Ed; Klyde, David

    2011-01-01

    The feasibility of using Fused Reality-based simulation technology to enhance flight test capabilities has been investigated. In terms of relevancy to piloted evaluation, there remains no substitute for actual flight tests, even when considering the fidelity and effectiveness of modern ground-based simulators. In addition to real-world cueing (vestibular, visual, aural, environmental, etc.), flight tests provide subtle but key intangibles that cannot be duplicated in a ground-based simulator. There is, however, a cost to be paid for the benefits of flight in terms of budget, mission complexity, and safety, including the need for ground and control-room personnel, additional aircraft, etc. A Fused Reality(tm) (FR) Flight system was developed that allows a virtual environment to be integrated with the test aircraft so that tasks such as aerial refueling, formation flying, or approach and landing can be accomplished without additional aircraft resources or the risk of operating in close proximity to the ground or other aircraft. Furthermore, the dynamic motions of the simulated objects can be directly correlated with the responses of the test aircraft. The FR Flight system will allow real-time observation of, and manual interaction with, the cockpit environment that serves as a frame for the virtual out-the-window scene.

  11. Flight Control Overview of STS-88, the First Space Station Assembly Flight

    NASA Technical Reports Server (NTRS)

    Hall, Robert; Kirchwey, Kim; Martin, Michael; Rosch, Gene; Zimpfer, Douglas

    1999-01-01

    When the Space Shuttle Endeavour undocked from the Zarya/Unity configuration on STS-88 it marked the completion of the most challenging shuttle mission to date and the beginning of an enormous task of assembling the International Space Station. The flight offered an array of complex dynamics and control related challenges to mate the American module 'Unity' to the Russian module 'Zarya'. Capability demonstrated on the flight included closed-loop thruster control in the presence of low frequency structural dynamics and mated-vehicle translational maneuvers in the presence of structural loads and thruster hardware constraints. The flight was a complete success from all aspects. This paper will give an overview of the flight control challenges encountered and the actual control performance observed for the on-orbit operations. Included will be the shuttle analysis and filtering strategies to ensure control system stability in the presence of low frequency flex-body dynamics.

  12. X-37 Flight Demonstrator: X-40A Flight Test Approach

    NASA Technical Reports Server (NTRS)

    Mitchell, Dan

    2004-01-01

    The flight test objectives are: Evaluate calculated air data system (CADS) experiment. Evaluate Honeywell SIGI (GPS/INS) under flight conditions. Flight operation control center (FOCC) site integration and flight test operations. Flight test and tune GN&C algorithms. Conduct PID maneuvers to improve the X-37 aero database. Develop computer air date system (CADS) flight data to support X-37 system design.

  13. Phasing a segmented telescope

    NASA Astrophysics Data System (ADS)

    Paykin, Irina; Yacobi, Lee; Adler, Joan; Ribak, Erez N.

    2015-02-01

    A crucial part of segmented or multiple-aperture systems is control of the optical path difference between the segments or subapertures. In order to achieve optimal performance we have to phase subapertures to within a fraction of the wavelength, and this requires high accuracy of positioning for each subaperture. We present simulations and hardware realization of a simulated annealing algorithm in an active optical system with sparse segments. In order to align the optical system we applied the optimization algorithm to the image itself. The main advantage of this method over traditional correction methods is that wave-front-sensing hardware and software are no longer required, making the optical and mechanical system much simpler. The results of simulations and laboratory experiments demonstrate the ability of this optimization algorithm to correct both piston and tip-tilt errors.

  14. Segmented annular combustor

    DOEpatents

    Reider, Samuel B.

    1979-01-01

    An industrial gas turbine engine includes an inclined annular combustor made up of a plurality of support segments each including inner and outer walls of trapezoidally configured planar configuration extents and including side flanges thereon interconnected by means of air cooled connector bolt assemblies to form a continuous annular combustion chamber therebetween and wherein an air fuel mixing chamber is formed at one end of the support segments including means for directing and mixing fuel within a plenum and a perforated header plate for directing streams of air and fuel mixture into the combustion chamber; each of the outer and inner walls of each of the support segments having a ribbed lattice with tracks slidably supporting porous laminated replaceable panels and including pores therein for distributing combustion air into the combustion chamber while cooling the inner surface of each of the panels by transpiration cooling thereof.

  15. Phasing a segmented telescope.

    PubMed

    Paykin, Irina; Yacobi, Lee; Adler, Joan; Ribak, Erez N

    2015-02-01

    A crucial part of segmented or multiple-aperture systems is control of the optical path difference between the segments or subapertures. In order to achieve optimal performance we have to phase subapertures to within a fraction of the wavelength, and this requires high accuracy of positioning for each subaperture. We present simulations and hardware realization of a simulated annealing algorithm in an active optical system with sparse segments. In order to align the optical system we applied the optimization algorithm to the image itself. The main advantage of this method over traditional correction methods is that wave-front-sensing hardware and software are no longer required, making the optical and mechanical system much simpler. The results of simulations and laboratory experiments demonstrate the ability of this optimization algorithm to correct both piston and tip-tilt errors. PMID:25768631

  16. Head segmentation in vertebrates

    PubMed Central

    Kuratani, Shigeru; Schilling, Thomas

    2008-01-01

    Classic theories of vertebrate head segmentation clearly exemplify the idealistic nature of comparative embryology prior to the 20th century. Comparative embryology aimed at recognizing the basic, primary structure that is shared by all vertebrates, either as an archetype or an ancestral developmental pattern. Modern evolutionary developmental (Evo-Devo) studies are also based on comparison, and therefore have a tendency to reduce complex embryonic anatomy into overly simplified patterns. Here again, a basic segmental plan for the head has been sought among chordates. We convened a symposium that brought together leading researchers dealing with this problem, in a number of different evolutionary and developmental contexts. Here we give an overview of the outcome and the status of the field in this modern era of Evo-Devo. We emphasize the fact that the head segmentation problem is not fully resolved, and we discuss new directions in the search for hints for a way out of this maze. PMID:20607135

  17. Ariane flight testing

    NASA Astrophysics Data System (ADS)

    Vedrenne, M.

    1983-11-01

    The object of this paper is to present the way in which the flight development tests of the Ariane launch vehicle have enabled the definition to be frozen and its qualification to be demonstrated before the beginning of the operational phase. A first part is devoted to the in-flight measurement facilities, the acquisition and evaluation systems, and to the organization of the in-flight results evaluation. The following part consists of the comparison between ground predictions and flight results for the main parameters as classified by system (stages, trajectory, propulsion, flight mechanics, auto pilot and guidance). The corrective actions required are then identified and the corresponding results shown.

  18. Preliminary Report on Free Flight Tests

    NASA Technical Reports Server (NTRS)

    Warner, E P; Norton, F H

    1920-01-01

    Results are presented for a series of tests made by the Advisory Committee's staff at Langley Field during the summer of 1919 with the objectives of determining the characteristics of airplanes in flight and the extent to which the actual characteristics differ from those predicted from tests on models in the wind tunnel, and of studying the balance of the machines and the forces which must be applied to the controls in order to maintain longitudinal equilibrium.

  19. Realizing actual feedback control of complex network

    NASA Astrophysics Data System (ADS)

    Tu, Chengyi; Cheng, Yuhua

    2014-06-01

    In this paper, we present the concept of feedbackability and how to identify the Minimum Feedbackability Set of an arbitrary complex directed network. Furthermore, we design an estimator and a feedback controller accessing one MFS to realize actual feedback control, i.e. control the system to our desired state according to the estimated system internal state from the output of estimator. Last but not least, we perform numerical simulations of a small linear time-invariant dynamics network and a real simple food network to verify the theoretical results. The framework presented here could make an arbitrary complex directed network realize actual feedback control and deepen our understanding of complex systems.

  20. Automatic brain tumor segmentation

    NASA Astrophysics Data System (ADS)

    Clark, Matthew C.; Hall, Lawrence O.; Goldgof, Dmitry B.; Velthuizen, Robert P.; Murtaugh, F. R.; Silbiger, Martin L.

    1998-06-01

    A system that automatically segments and labels complete glioblastoma-multiform tumor volumes in magnetic resonance images of the human brain is presented. The magnetic resonance images consist of three feature images (T1- weighted, proton density, T2-weighted) and are processed by a system which integrates knowledge-based techniques with multispectral analysis and is independent of a particular magnetic resonance scanning protocol. Initial segmentation is performed by an unsupervised clustering algorithm. The segmented image, along with cluster centers for each class are provided to a rule-based expert system which extracts the intra-cranial region. Multispectral histogram analysis separates suspected tumor from the rest of the intra-cranial region, with region analysis used in performing the final tumor labeling. This system has been trained on eleven volume data sets and tested on twenty-two unseen volume data sets acquired from a single magnetic resonance imaging system. The knowledge-based tumor segmentation was compared with radiologist-verified `ground truth' tumor volumes and results generated by a supervised fuzzy clustering algorithm. The results of this system generally correspond well to ground truth, both on a per slice basis and more importantly in tracking total tumor volume during treatment over time.

  1. [Toxic anterior segment syndrome].

    PubMed

    Cornut, P-L; Chiquet, C

    2011-01-01

    Toxic anterior segment syndrome (TASS) is a general term used to describe acute, sterile postoperative inflammation due to a non-infectious substance that accidentally enters the anterior segment at the time of surgery and mimics infectious endophthalmitis. TASS most commonly occurs acutely following anterior segment surgery, typically 12-72h after cataract extraction. Anterior segment inflammation is usually quite severe with hypopyon. Endothelial cell damage is common, resulting in diffuse corneal edema. No bacterium is isolated from ocular samples. The causes of TASS are numerous and difficult to isolate. Any device or substance used during the surgery or in the immediate postoperative period may be implicated. The major known causes include: preservatives in ophthalmic solutions, denatured ophthalmic viscosurgical devices, bacterial endotoxin, and intraocular lens-induced inflammation. Clinical features of infectious and non-infectious inflammation are initially indistinguishable and TASS is usually diagnosed and treated as acute endophthalmitis. It usually improves with local steroid treatment but may result in chronic elevation of intraocular pressure or irreversible corneal edema due to permanent damage of trabecular meshwork or endothelial cells. PMID:21176994

  2. Simulation to Flight Test for a UAV Controls Testbed

    NASA Technical Reports Server (NTRS)

    Motter, Mark A.; Logan, Michael J.; French, Michael L.; Guerreiro, Nelson M.

    2006-01-01

    The NASA Flying Controls Testbed (FLiC) is a relatively small and inexpensive unmanned aerial vehicle developed specifically to test highly experimental flight control approaches. The most recent version of the FLiC is configured with 16 independent aileron segments, supports the implementation of C-coded experimental controllers, and is capable of fully autonomous flight from takeoff roll to landing, including flight test maneuvers. The test vehicle is basically a modified Army target drone, AN/FQM-117B, developed as part of a collaboration between the Aviation Applied Technology Directorate (AATD) at Fort Eustis, Virginia and NASA Langley Research Center. Several vehicles have been constructed and collectively have flown over 600 successful test flights, including a fully autonomous demonstration at the Association of Unmanned Vehicle Systems International (AUVSI) UAV Demo 2005. Simulations based on wind tunnel data are being used to further develop advanced controllers for implementation and flight test.

  3. Pegasus Air-Launched Space Booster Flight Test Program

    NASA Technical Reports Server (NTRS)

    Elias, Antonio L.; Knutson, Martin A.

    1995-01-01

    Pegasus is a satellite-launching space rocket dropped from a B52 carrier aircraft instead of launching vertically from a ground pad. Its three-year, privately-funded accelerated development was carried out under a demanding design-to-nonrecurring cost methodology, which imposed unique requirements on its flight test program, such as the decision not to drop an inert model from the carrier aircraft; the number and type of captive and free-flight tests; the extent of envelope exploration; and the decision to combine test and operational orbital flights. The authors believe that Pegasus may be the first vehicle where constraints in the number and type of flight tests to be carried out actually influenced the design of the vehicle. During the period November 1989 to February of 1990 a total of three captive flight tests were conducted, starting with a flutter clearing flight and culminating in a complete drop rehearsal. Starting on April 5, 1990, two combination test/operational flights were conducted. A unique aspect of the program was the degree of involvement of flight test personnel in the early design of the vehicle and, conversely, of the design team in flight testing and early flight operations. Various lessons learned as a result of this process are discussed throughout this paper.

  4. 50 CFR 253.16 - Actual cost.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Actual cost. 253.16 Section 253.16 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE AID TO FISHERIES FISHERIES ASSISTANCE PROGRAMS Fisheries Finance Program §...

  5. 50 CFR 253.16 - Actual cost.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 11 2013-10-01 2013-10-01 false Actual cost. 253.16 Section 253.16 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE AID TO FISHERIES FISHERIES ASSISTANCE PROGRAMS Fisheries Finance Program §...

  6. Humanistic Education and Self-Actualization Theory.

    ERIC Educational Resources Information Center

    Farmer, Rod

    1984-01-01

    Stresses the need for theoretical justification for the development of humanistic education programs in today's schools. Explores Abraham Maslow's hierarchy of needs and theory of self-actualization. Argues that Maslow's theory may be the best available for educators concerned with educating the whole child. (JHZ)

  7. Children's Rights and Self-Actualization Theory.

    ERIC Educational Resources Information Center

    Farmer, Rod

    1982-01-01

    Educators need to seriously reflect upon the concept of children's rights. Though the idea of children's rights has been debated numerous times, the idea remains vague and shapeless; however, Maslow's theory of self-actualization can provide the children's rights idea with a needed theoretical framework. (Author)

  8. Culture Studies and Self-Actualization Theory.

    ERIC Educational Resources Information Center

    Farmer, Rod

    1983-01-01

    True citizenship education is impossible unless students develop the habit of intelligently evaluating cultures. Abraham Maslow's theory of self-actualization, a theory of innate human needs and of human motivation, is a nonethnocentric tool which can be used by teachers and students to help them understand other cultures. (SR)

  9. Group Counseling for Self-Actualization.

    ERIC Educational Resources Information Center

    Streich, William H.; Keeler, Douglas J.

    Self-concept, creativity, growth orientation, an integrated value system, and receptiveness to new experiences are considered to be crucial variables to the self-actualization process. A regular, year-long group counseling program was conducted with 85 randomly selected gifted secondary students in the Farmington, Connecticut Public Schools. A…

  10. Racial Discrimination in Occupations: Perceived and Actual.

    ERIC Educational Resources Information Center

    Turner, Castellano B.; Turner, Barbara F.

    The relationship between the actual representation of Blacks in certain occupations and individual perceptions of the occupational opportunity structure were examined. A scale which rated the degree of perceived discrimination against Blacks in 21 occupations was administered to 75 black male, 70 black female, 1,429 white male and 1,457 white…

  11. Developing Human Resources through Actualizing Human Potential

    ERIC Educational Resources Information Center

    Clarken, Rodney H.

    2012-01-01

    The key to human resource development is in actualizing individual and collective thinking, feeling and choosing potentials related to our minds, hearts and wills respectively. These capacities and faculties must be balanced and regulated according to the standards of truth, love and justice for individual, community and institutional development,…

  12. Biomechanics of bird flight.

    PubMed

    Tobalske, Bret W

    2007-09-01

    Power output is a unifying theme for bird flight and considerable progress has been accomplished recently in measuring muscular, metabolic and aerodynamic power in birds. The primary flight muscles of birds, the pectoralis and supracoracoideus, are designed for work and power output, with large stress (force per unit cross-sectional area) and strain (relative length change) per contraction. U-shaped curves describe how mechanical power output varies with flight speed, but the specific shapes and characteristic speeds of these curves differ according to morphology and flight style. New measures of induced, profile and parasite power should help to update existing mathematical models of flight. In turn, these improved models may serve to test behavioral and ecological processes. Unlike terrestrial locomotion that is generally characterized by discrete gaits, changes in wing kinematics and aerodynamics across flight speeds are gradual. Take-off flight performance scales with body size, but fully revealing the mechanisms responsible for this pattern awaits new study. Intermittent flight appears to reduce the power cost for flight, as some species flap-glide at slow speeds and flap-bound at fast speeds. It is vital to test the metabolic costs of intermittent flight to understand why some birds use intermittent bounds during slow flight. Maneuvering and stability are critical for flying birds, and design for maneuvering may impinge upon other aspects of flight performance. The tail contributes to lift and drag; it is also integral to maneuvering and stability. Recent studies have revealed that maneuvers are typically initiated during downstroke and involve bilateral asymmetry of force production in the pectoralis. Future study of maneuvering and stability should measure inertial and aerodynamic forces. It is critical for continued progress into the biomechanics of bird flight that experimental designs are developed in an ecological and evolutionary context. PMID:17766290

  13. 14 CFR 121.493 - Flight time limitations: Flight engineers and flight navigators.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 3 2013-01-01 2013-01-01 false Flight time limitations: Flight engineers... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Flag Operations § 121.493 Flight time limitations: Flight engineers and flight navigators. (a)...

  14. 14 CFR 121.493 - Flight time limitations: Flight engineers and flight navigators.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 3 2012-01-01 2012-01-01 false Flight time limitations: Flight engineers... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Flag Operations § 121.493 Flight time limitations: Flight engineers and flight navigators. (a)...

  15. 14 CFR 121.493 - Flight time limitations: Flight engineers and flight navigators.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 3 2011-01-01 2011-01-01 false Flight time limitations: Flight engineers... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight Time Limitations: Flag Operations § 121.493 Flight time limitations: Flight engineers and flight navigators. (a)...

  16. Whiteheadian Actual Entitities and String Theory

    NASA Astrophysics Data System (ADS)

    Bracken, Joseph A.

    2012-06-01

    In the philosophy of Alfred North Whitehead, the ultimate units of reality are actual entities, momentary self-constituting subjects of experience which are too small to be sensibly perceived. Their combination into "societies" with a "common element of form" produces the organisms and inanimate things of ordinary sense experience. According to the proponents of string theory, tiny vibrating strings are the ultimate constituents of physical reality which in harmonious combination yield perceptible entities at the macroscopic level of physical reality. Given that the number of Whiteheadian actual entities and of individual strings within string theory are beyond reckoning at any given moment, could they be two ways to describe the same non-verifiable foundational reality? For example, if one could establish that the "superject" or objective pattern of self- constitution of an actual entity vibrates at a specific frequency, its affinity with the individual strings of string theory would be striking. Likewise, if one were to claim that the size and complexity of Whiteheadian 'societies" require different space-time parameters for the dynamic interrelationship of constituent actual entities, would that at least partially account for the assumption of 10 or even 26 instead of just 3 dimensions within string theory? The overall conclusion of this article is that, if a suitably revised understanding of Whiteheadian metaphysics were seen as compatible with the philosophical implications of string theory, their combination into a single world view would strengthen the plausibility of both schemes taken separately. Key words: actual entities, subject/superjects, vibrating strings, structured fields of activity, multi-dimensional physical reality.

  17. Program verification document for the ASTP flight program

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The various segments of the Apollo Soyuz Test Project (ASTP) flight program were verified. This included checks on the following: general verification, reference systems and transformations, launch preparations, boost navigation and guidance, orbital navigation and guidance, time bases, discretes, and interrupts, launch vehicle attitude control, switch selector processing, digital command system, real time telemetry and data compression, and algorithms.

  18. In-flight crew training

    NASA Technical Reports Server (NTRS)

    Gott, Charles; Galicki, Peter; Shores, David

    1990-01-01

    The Helmet Mounted Display system and Part Task Trainer are two projects currently underway that are closely related to the in-flight crew training concept. The first project is a training simulator and an engineering analysis tool. The simulator's unique helmet mounted display actually projects the wearer into the simulated environment of 3-D space. Miniature monitors are mounted in front of the wearers eyes. Partial Task Trainer is a kinematic simulator for the Shuttle Remote Manipulator System. The simulator consists of a high end graphics workstation with a high resolution color screen and a number of input peripherals that create a functional equivalent of the RMS control panel in the back of the Orbiter. It is being used in the training cycle for Shuttle crew members. Activities are underway to expand the capability of the Helmet Display System and the Partial Task Trainer.

  19. Flight control actuation system

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2004-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  20. Pilot's Desk Flight Station

    NASA Technical Reports Server (NTRS)

    Sexton, G. A.

    1984-01-01

    Aircraft flight station designs have generally evolved through the incorporation of improved or modernized controls and displays. In connection with a continuing increase in the amount of information displayed, this process has produced a complex and cluttered conglomeration of knobs, switches, and electromechanical displays. The result was often high crew workload, missed signals, and misinterpreted information. Advances in electronic technology have now, however, led to new concepts in flight station design. An American aerospace company in cooperation with NASA has utilized these concepts to develop a candidate conceptual design for a 1995 flight station. The obtained Pilot's Desk Flight Station is a unique design which resembles more an operator's console than today's cockpit. Attention is given to configuration, primary flight controllers, front panel displays, flight/navigation display, approach charts and weather display, head-up display, and voice command and response systems.

  1. X-38 in Flight during Second Free Flight

    NASA Technical Reports Server (NTRS)

    1999-01-01

    will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil

  2. X-38 in Flight during Second Free Flight

    NASA Technical Reports Server (NTRS)

    1999-01-01

    will be used on the X-38 thermal tiles to make them more durable than those used on the space shuttles. The X-38 itself was an unpiloted lifting body designed at 80 percent of the size of a projected emergency crew return vehicle for the International Space Station, although two later versions were planned at 100 percent of the CRV size. The X-38 and the actual CRV are patterned after a lifting-body shape first employed in the Air Force-NASA X-24 lifting-body project in the early to mid-1970s. The current vehicle design is base lined with life support supplies for about nine hours of orbital free flight from the space station. It's landing will be fully automated with backup systems which allow the crew to control orientation in orbit, select a deorbit site, and steer the parafoil, if necessary. The X-38 vehicles (designated V131, V132, and V-131R) are 28.5 feet long, 14.5 feet wide, and weigh approximately 16,000 pounds on average. The vehicles have a nitrogen-gas-operated attitude control system and a bank of batteries for internal power. The actual CRV to be flown in space was expected to be 30 feet long. The X-38 project is a joint effort between the Johnson Space Center, Houston, Texas (JSC), Langley Research Center, Hampton, Virginia (LaRC) and Dryden Flight Research Center, Edwards, California (DFRC) with the program office located at JSC. A contract was awarded to Scaled Composites, Inc., Mojave, California, for construction of the X-38 test airframes. The first vehicle was delivered to the JSC in September 1996. The vehicle was fitted with avionics, computer systems and other hardware at Johnson. A second vehicle was delivered to JSC in December 1996. Flight research with the X-38 at Dryden began with an unpiloted captive-carry flight in which the vehicle remained attached to its future launch vehicle, Dryden's B-52 008. There were four captive flights in 1997 and three in 1998, plus the first drop test on March 12, 1998, using the parachutes and parafoil

  3. Space Adaptation of Active Mirror Segment Concepts

    NASA Technical Reports Server (NTRS)

    Ames, Gregory H.

    1999-01-01

    This report summarizes the results of a three year effort by Blue Line Engineering Co. to advance the state of segmented mirror systems in several separate but related areas. The initial set of tasks were designed to address the issues of system level architecture, digital processing system, cluster level support structures, and advanced mirror fabrication concepts. Later in the project new tasks were added to provide support to the existing segmented mirror testbed at Marshall Space Flight Center (MSFC) in the form of upgrades to the 36 subaperture wavefront sensor. Still later, tasks were added to build and install a new system processor based on the results of the new system architecture. The project was successful in achieving a number of important results. These include the following most notable accomplishments: 1) The creation of a new modular digital processing system that is extremely capable and may be applied to a wide range of segmented mirror systems as well as many classes of Multiple Input Multiple Output (MIMO) control systems such as active structures or industrial automation. 2) A new graphical user interface was created for operation of segmented mirror systems. 3) The development of a high bit rate serial data loop that permits bi-directional flow of data to and from as many as 39 segments daisy-chained to form a single cluster of segments. 4) Upgrade of the 36 subaperture Hartmann type Wave Front Sensor (WFS) of the Phased Array Mirror, Extendible Large Aperture (PAMELA) testbed at MSFC resulting in a 40 to 5OX improvement in SNR which in turn enabled NASA personnel to achieve many significant strides in improved closed-loop system operation in 1998. 5) A new system level processor was built and delivered to MSFC for use with the PAMELA testbed. This new system featured a new graphical user interface to replace the obsolete and non-supported menu system originally delivered with the PAMELA system. The hardware featured Blue Line's new stackable

  4. Segmentation of stereo terrain images

    NASA Astrophysics Data System (ADS)

    George, Debra A.; Privitera, Claudio M.; Blackmon, Theodore T.; Zbinden, Eric; Stark, Lawrence W.

    2000-06-01

    We have studied four approaches to segmentation of images: three automatic ones using image processing algorithms and a fourth approach, human manual segmentation. We were motivated toward helping with an important NASA Mars rover mission task -- replacing laborious manual path planning with automatic navigation of the rover on the Mars terrain. The goal of the automatic segmentations was to identify an obstacle map on the Mars terrain to enable automatic path planning for the rover. The automatic segmentation was first explored with two different segmentation methods: one based on pixel luminance, and the other based on pixel altitude generated through stereo image processing. The third automatic segmentation was achieved by combining these two types of image segmentation. Human manual segmentation of Martian terrain images was used for evaluating the effectiveness of the combined automatic segmentation as well as for determining how different humans segment the same images. Comparisons between two different segmentations, manual or automatic, were measured using a similarity metric, SAB. Based on this metric, the combined automatic segmentation did fairly well in agreeing with the manual segmentation. This was a demonstration of a positive step towards automatically creating the accurate obstacle maps necessary for automatic path planning and rover navigation.

  5. STS-114 Flight Day 10 Highlights

    NASA Technical Reports Server (NTRS)

    2005-01-01

    On Flight Day 10 of the STS-114 mission the International Space Station (ISS) is seen in low lighting while the Space Station Remote Manipulator System (SSRMS), also known as Canadarm 2 grapples the Raffaello Multipurpose Logistics Module (MPLM) in preparation for its undocking the following day. Members of the shuttle crew (Commander Eileen Collins, Pilot James Kelly, Mission Specialists Soichi Noguchi, Stephen Robinson, Andrew Thomas, Wendy Lawrence, and Charles Camarda) and the Expedition 11 crew (Commander Sergei Krikalev and NASA ISS Science Officer and Flight Engineer John Phillips) of the ISS read statements in English and Russian in a ceremony for astronauts who gave their lives. Interview segments include one of Collins, Robinson, and Camarda, wearing red shirts to commemorate the STS-107 Columbia crew, and one of Collins and Noguchi on board the ISS, which features voice over from an interpreter translating questions from the Japanese prime minister. The video also features a segment showing gap fillers on board Discovery after being removed from underneath the orbiter, and another segment which explains an experimental plug for future shuttle repairs being tested onboard the mid deck.

  6. YF-17 in Flight

    NASA Technical Reports Server (NTRS)

    1976-01-01

    The Northrop Aviation YF-17 technology demonstrator aircraft in flight during a 1976 flight research program at NASA's Dryden Flight Research Center, Edwards, California. From May 27 to July 14, 1976, the Dryden Flight Research Center, Edwards, California, flew the Northrop Aviation YF-17 technology demonstrator to test the high-performance U.S. Air Force fighter at transonic speeds. The objectives of the seven-week flight test program included the study of maneuverability of this aircraft at transonic speeds and the collection of in-flight pressure data from around the afterbody of the aircraft to improve wind-tunnel predictions for future fighter aircraft. Also studied were stability and control and buffeting at high angles of attack as well as handling qualities at high load factors. Another objective of this program was to familiarize center pilots with the operation of advanced high-performance fighter aircraft. During the seven-week program, all seven of the center's test pilots were able to fly the aircraft with Gary Krier serving as project pilot. In general the pilots reported no trouble adapting to the aircraft and reported that it was easy to fly. There were no familiarization flights. All 25 research flights were full-data flights. They obtained data on afterbody pressures, vertical-fin dynamic loads, agility, pilot physiology, and infrared signatures. Average flight time was 45 minutes, although two flights involving in-flight refueling lasted approximately one hour longer than usual. Dryden Project Manager Roy Bryant considered the program a success. Center pilots felt that the aircraft was generations ahead of then current active military aircraft. Originally built for the Air Force's lightweight fighter program, the YF-17 Cobra left Dryden to support the Northrop/Navy F-18 Program. The F-18 Hornet evolved from the YF-17.

  7. Flight Checklists And Interruptions

    NASA Technical Reports Server (NTRS)

    Linde, C.; Goguen, J.

    1991-01-01

    Report examines relation between performances of flight checklists and interruptions. Based on study of simulated flights of Boeing 707 Airplane. During each flight series of overlapping problems introduced. Study investigated patterns of communication that in carrying out checklists, may contribute to accidents. Showed good crews had high continuity in following checklists and it is not number of interruptions but rather duration of interruptions associated with quality of performance. Suggests greater burden placed on memory by one long interruption than by several short ones.

  8. Autonomous Flight Safety System

    NASA Technical Reports Server (NTRS)

    Simpson, James

    2010-01-01

    The Autonomous Flight Safety System (AFSS) is an independent self-contained subsystem mounted onboard a launch vehicle. AFSS has been developed by and is owned by the US Government. Autonomously makes flight termination/destruct decisions using configurable software-based rules implemented on redundant flight processors using data from redundant GPS/IMU navigation sensors. AFSS implements rules determined by the appropriate Range Safety officials.

  9. Unified powered flight guidance

    NASA Technical Reports Server (NTRS)

    Brand, T. J.; Brown, D. W.; Higgins, J. P.

    1973-01-01

    A complete revision of the orbiter powered flight guidance scheme is presented. A unified approach to powered flight guidance was taken to accommodate all phases of exo-atmospheric orbiter powered flight, from ascent through deorbit. The guidance scheme was changed from the previous modified version of the Lambert Aim Point Maneuver Mode used in Apollo to one that employs linear tangent guidance concepts. This document replaces the previous ascent phase equation document.

  10. Bat flight: aerodynamics, kinematics and flight morphology.

    PubMed

    Hedenström, Anders; Johansson, L Christoffer

    2015-03-01

    Bats evolved the ability of powered flight more than 50 million years ago. The modern bat is an efficient flyer and recent research on bat flight has revealed many intriguing facts. By using particle image velocimetry to visualize wake vortices, both the magnitude and time-history of aerodynamic forces can be estimated. At most speeds the downstroke generates both lift and thrust, whereas the function of the upstroke changes with forward flight speed. At hovering and slow speed bats use a leading edge vortex to enhance the lift beyond that allowed by steady aerodynamics and an inverted wing during the upstroke to further aid weight support. The bat wing and its skeleton exhibit many features and control mechanisms that are presumed to improve flight performance. Whereas bats appear aerodynamically less efficient than birds when it comes to cruising flight, they have the edge over birds when it comes to manoeuvring. There is a direct relationship between kinematics and the aerodynamic performance, but there is still a lack of knowledge about how (and if) the bat controls the movements and shape (planform and camber) of the wing. Considering the relatively few bat species whose aerodynamic tracks have been characterized, there is scope for new discoveries and a need to study species representing more extreme positions in the bat morphospace. PMID:25740899

  11. Insect segmentation: Genes, stripes and segments in "Hoppers".

    PubMed

    French, V

    2001-11-13

    Recent work has revealed that orthologues of several segmentation genes are expressed in the grasshopper embryo, in patterns resembling those shown in Drosophila. This suggests that, despite great differences between the embryos, a hierarchy of gap/pair-rule/segment polarity gene function may be a shared and ancestral feature of insect segmentation. PMID:11719236

  12. Globus pallidus internal segment.

    PubMed

    Nambu, Atsushi

    2007-01-01

    The internal segment of the globus pallidus (GP(i)) gathers many bits of information including movement-related activity from the striatum, external segment of the globus pallidus (GP(e)), and subthalamic nucleus (STN), and integrates them. The GP(i) receives rich GABAergic inputs from the striatum and GP(e), and gamma-aminobutyric acid (GABA) receptors are distributed in the GP(i) in a specific manner. Thus, inputs from the striatum and GP(e) may control GP(i) activity in a different way. The GP(i) finally conveys processed information outside the basal ganglia. Changes in GABAergic neurotransmission have been reported in movement disorders and suggested to play an important role in the pathophysiology of the symptoms. PMID:17499112

  13. Segmented vortex flaps

    NASA Technical Reports Server (NTRS)

    Rao, D. M.

    1983-01-01

    Segmented vortex flaps were suggested as a means of delaying the vortex spill-over causing thrust loss over the outboard region of single-panel flaps. Also proposed was hinge-line setback for exploiting leading-edge suction in conjunction with vortex flaps to improve the overall thrust per unit flap area. These two concepts in combination were tested on a 60-deg cropped delta wing model. Significant improvement in flap efficiency was indicated by a reduction of the flap/wing area from 11.4% of single-panel flap to 6.3% of a two segment delta flap design, with no lift/drag penalty at lift coefficients between 0.5 and 0.7. The more efficient vortex flap arrangement of this study should benefit the performance attainable with flaps of given area on wings of moderate leading-edge sweep.

  14. Segmented Thermal Barrier Coating

    NASA Technical Reports Server (NTRS)

    Smialek, James L. (Inventor)

    2001-01-01

    The article has a macro-segmented thermal barrier coating due to the presence of a pattern of three-dimensional features. The features may be a series of raised ribs formed on the substrate surface and being spaced from 0.05 inches to 0.30 apart. The ribs have a width ranging from 0.005 inches to 0.02 inches, and a height ranging from 25% to 100% of the thickness of the barrier coating. Alternately, the features may be a similar pattern of grooves formed in the surface of the substrate. Other embodiments provide segmentation by grooves or ribs in the bond coat or alternately grooves formed in the thermal barrier layer.

  15. Flight Guidance System Requirements Specification

    NASA Technical Reports Server (NTRS)

    Miller, Steven P.; Tribble, Alan C.; Carlson, Timothy M.; Danielson, Eric J.

    2003-01-01

    This report describes a requirements specification written in the RSML-e language for the mode logic of a Flight Guidance System of a typical regional jet aircraft. This model was created as one of the first steps in a five-year project sponsored by the NASA Langley Research Center, Rockwell Collins Inc., and the Critical Systems Research Group of the University of Minnesota to develop new methods and tools to improve the safety of avionics designs. This model will be used to demonstrate the application of a variety of methods and techniques, including safety analysis of system and subsystem requirements, verification of key properties using theorem provers and model checkers, identification of potential sources mode confusion in system designs, partitioning of applications based on the criticality of system hazards, and autogeneration of avionics quality code. While this model is representative of the mode logic of a typical regional jet aircraft, it does not describe an actual or planned product. Several aspects of a full Flight Guidance System, such as recovery from failed sensors, have been omitted, and no claims are made regarding the accuracy or completeness of this specification.

  16. Central East Pacific Flight Routing

    NASA Technical Reports Server (NTRS)

    Grabbe, Shon; Sridhar, Banavar; Kopardekar, Parimal; Cheng, Nadia

    2006-01-01

    With the introduction of the Federal Aviation Administration s Advanced Technology and Oceanic Procedures system at the Oakland Oceanic Center, a level of automation now exists in the oceanic environment to potentially begin accommodating increased user preferred routing requests. This paper presents the results of an initial feasibility assessment which examines the potential benefits of transitioning from the fixed Central East Pacific routes to user preferred routes. As a surrogate for the actual user-provided routing requests, a minimum-travel-time, wind-optimal dynamic programming algorithm was developed and utilized in this paper. After first describing the characteristics (e.g., origin airport, destination airport, vertical distribution and temporal distribution) of the westbound flights utilizing the Central East Pacific routes on Dec. 14-16 and 19-20, the results of both a flight-plan-based simulation and a wind-optimal-based simulation are presented. Whereas the lateral and longitudinal distribution of the aircraft trajectories in these two simulations varied dramatically, the number of simulated first-loss-of-separation events remained relatively constant. One area of concern that was uncovered in this initial analysis was a potential workload issue associated with the redistribution of traffic in the oceanic sectors due to thc prevailing wind patterns.

  17. The flight from physics teaching

    NASA Astrophysics Data System (ADS)

    Wellington, Jerry

    1986-03-01

    The author starts with some recruitment statistics, and then looks at some actual case studies. Recruitment to initial teacher training in physics, as many people know, in not healthy. Previous articles have discussed trends, possible remedies, and underlying causes (Wellington 1980, 1982a, 1982b). Two problems in the supply of physics teachers have been identified so far: the trickle of graduates into initial teacher training, and the off-putting effect of low morale currently encountered in staff and preparation rooms. A third problem has in recent months become the most serious of the three. This is the flight of well-qualified, competent and experienced physics teachers from teaching into other professions. The crisis facing physics teaching clearly has three dimensions: the sharp decline of recruitment into teacher training since the tiny peak of 1982; the first encounters of physics graduates with the teaching profession during their training year; and the flight of practising physics teachers into industry. The author would not venture to suggest remedies for the situation now facing physics education. These surely need to come from a central source. However, he does hazard a few predictions on the consequences of the three crises discussed above.

  18. Technology review of flight crucial flight controls

    NASA Technical Reports Server (NTRS)

    Rediess, H. A.; Buckley, E. C.

    1984-01-01

    The results of a technology survey in flight crucial flight controls conducted as a data base for planning future research and technology programs are provided. Free world countries were surveyed with primary emphasis on the United States and Western Europe because that is where the most advanced technology resides. The survey includes major contemporary systems on operational aircraft, R&D flight programs, advanced aircraft developments, and major research and technology programs. The survey was not intended to be an in-depth treatment of the technology elements, but rather a study of major trends in systems level technology. The information was collected from open literature, personal communications and a tour of several companies, government organizations and research laboratories in the United States, United Kingdom, France, and the Federal Republic of Germany.

  19. The Actual Apollo 13 Prime Crew

    NASA Technical Reports Server (NTRS)

    1970-01-01

    The actual Apollo 13 lunar landing mission prime crew from left to right are: Commander, James A. Lovell Jr., Command Module pilot, John L. Swigert Jr.and Lunar Module pilot, Fred W. Haise Jr. The original Command Module pilot for this mission was Thomas 'Ken' Mattingly Jr. but due to exposure to German measles he was replaced by his backup, Command Module pilot, John L. 'Jack' Swigert Jr.

  20. Development and testing of a mouse simulated space flight model

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald

    1987-01-01

    The development and testing of a mouse model for simulating some aspects of weightlessness that occurs during space flight, and the carrying out of immunological experiments on animals undergoing space flight is examined. The mouse model developed was an antiorthostatic, hypokinetic, hypodynamic suspension model similar to one used with rats. The study was divided into two parts. The first involved determination of which immunological parameters should be observed on animals flown during space flight or studied in the suspension model. The second involved suspending mice and determining which of those immunological parameters were altered by the suspension. Rats that were actually flown in Space Shuttle SL-3 were used to test the hypotheses.

  1. Example based lesion segmentation

    NASA Astrophysics Data System (ADS)

    Roy, Snehashis; He, Qing; Carass, Aaron; Jog, Amod; Cuzzocreo, Jennifer L.; Reich, Daniel S.; Prince, Jerry; Pham, Dzung

    2014-03-01

    Automatic and accurate detection of white matter lesions is a significant step toward understanding the progression of many diseases, like Alzheimer's disease or multiple sclerosis. Multi-modal MR images are often used to segment T2 white matter lesions that can represent regions of demyelination or ischemia. Some automated lesion segmentation methods describe the lesion intensities using generative models, and then classify the lesions with some combination of heuristics and cost minimization. In contrast, we propose a patch-based method, in which lesions are found using examples from an atlas containing multi-modal MR images and corresponding manual delineations of lesions. Patches from subject MR images are matched to patches from the atlas and lesion memberships are found based on patch similarity weights. We experiment on 43 subjects with MS, whose scans show various levels of lesion-load. We demonstrate significant improvement in Dice coefficient and total lesion volume compared to a state of the art model-based lesion segmentation method, indicating more accurate delineation of lesions.

  2. Vision-based range estimation using helicopter flight data

    NASA Technical Reports Server (NTRS)

    Smith, Phillip N.; Sridhar, Banavar; Hussein, Bassam

    1992-01-01

    Pilot aiding during low-altitude flight depends on the ability to detect and locate obstacles near the helicopter's intended flightpath. Computer-vision-based methods provide one general approach for obstacle detection and range estimation. Several algorithms have been developed for this purpose, but have not been tested with actual flight data. This paper presents results obtained using helicopter flight data with a feature-based range estimation algorithm. A method for recursively estimating range using a Kalman filter with a monocular sequence of images and knowledge of the camera's motion is described. The helicopter flight experiment and one of four resulting datasets is briefly discussed. Finally the performance of the range estimation algorithm is explored based on comparison of the range estimates with true range measurements collected during the flight experiment.

  3. Vision-based range estimation using helicopter flight data

    NASA Technical Reports Server (NTRS)

    Smith, Philip N.; Sridhar, Banavar; Hussien, Bassam

    1992-01-01

    Pilot aiding during low-altitude flight depends on the ability to detect and locate obstacles near the helicopter's intended flightpath. Computer-vision-based methods provide one general approach for obstacle detection and range estimation. Several algorithms have been developed for this purpose, but have not been tested with actual flight data. This paper presents results obtained using helicopter flight data with a feature-based range estimation algorithm. A method for recursively estimating range using a Kalman filter with a monocular sequence of images and knowledge of the camera's motion is described. The helicopter flight experiment and four resulting datasets are discussed. Finally the performance of the range estimation algorithm is explored in detail based on comparison of the range estimates with true range measurements collected during the flight experiment.

  4. Shuttle Upgrade Using 5-Segment Booster (FSB)

    NASA Technical Reports Server (NTRS)

    Sauvageau, Donald R.; Huppi, Hal D.; McCool, A. A. (Technical Monitor)

    2000-01-01

    In support of NASA's continuing effort to improve the over-all safety and reliability of the Shuttle system- a 5-segment booster (FSB) has been identified as an approach to satisfy that overall objective. To assess the feasibility of a 5-segment booster approach, NASA issued a feasibility study contract to evaluate the potential of a 5-segment booster to improve the overall capability of the Shuttle system, especially evaluating the potential to increase the system reliability and safety. In order to effectively evaluate the feasibility of the 5-segment concept, a four-member contractor team was established under the direction of NASA Marshall Space Flight Center (MSFC). MSFC provided the overall program oversight and integration as well as program contractual management. The contractor team consisted of Thiokol, Boeing North American Huntington Beach (BNA), Lockheed Martin Michoud Space Systems (LMMSS) and United Space Alliance (USA) and their subcontractor bd Systems (Control Dynamics Division, Huntsville, AL). United Space Alliance included the former members of United Space Booster Incorporated (USBI) who managed the booster element portion of the current Shuttle solid rocket boosters. Thiokol was responsible for the overall integration and coordination of the contractor team across all of the booster elements. They were also responsible for all of the motor modification evaluations. Boeing North American (BNA) was responsible for all systems integration analyses, generation of loads and environments. and performance and abort mode capabilities. Lockheed Martin Michoud Space Systems (LMMSS) was responsible for evaluating the impacts of any changes to the booster on the external tank (ET), and evaluating any design changes on the external tank necessary to accommodate the FSB. USA. including the former USBI contingent. was responsible for evaluating any modifications to facilities at the launch site as well as any booster component design modifications.

  5. Segmenting the Adult Education Market.

    ERIC Educational Resources Information Center

    Aurand, Tim

    1994-01-01

    Describes market segmentation and how the principles of segmentation can be applied to the adult education market. Indicates that applying segmentation techniques to adult education programs results in programs that are educationally and financially satisfying and serve an appropriate population. (JOW)

  6. Market Segmentation for Information Services.

    ERIC Educational Resources Information Center

    Halperin, Michael

    1981-01-01

    Discusses the advantages and limitations of market segmentation as strategy for the marketing of information services made available by nonprofit organizations, particularly libraries. Market segmentation is defined, a market grid for libraries is described, and the segmentation of information services is outlined. A 16-item reference list is…

  7. Functional Segments in Tongue Movement

    ERIC Educational Resources Information Center

    Stone, Maureen; Epstein, Melissa A.; Iskarous, Khalil

    2004-01-01

    The tongue is a deformable object, and moves by compressing or expanding local functional segments. For any single phoneme, these functional tongue segments may move in similar or opposite directions, and may reach target maximum synchronously or not. This paper will discuss the independence of five proposed segments in the production of speech.…

  8. Flight testing of a luminescent surface pressure sensor

    NASA Technical Reports Server (NTRS)

    Mclachlan, B. G.; Bell, J. H.; Espina, J.; Gallery, J.; Gouterman, M.; Demandante, C. G. N.; Bjarke, L.

    1992-01-01

    NASA ARC has conducted flight tests of a new type of aerodynamic pressure sensor based on a luminescent surface coating. Flights were conducted at the NASA ARC-Dryden Flight Research Facility. The luminescent pressure sensor is based on a surface coating which, when illuminated with ultraviolet light, emits visible light with an intensity dependent on the local air pressure on the surface. This technique makes it possible to obtain pressure data over the entire surface of an aircraft, as opposed to conventional instrumentation, which can only make measurements at pre-selected points. The objective of the flight tests was to evaluate the effectiveness and practicality of a luminescent pressure sensor in the actual flight environment. A luminescent pressure sensor was installed on a fin, the Flight Test Fixture (FTF), that is attached to the underside of an F-104 aircraft. The response of one particular surface coating was evaluated at low supersonic Mach numbers (M = 1.0-1.6) in order to provide an initial estimate of the sensor's capabilities. This memo describes the test approach, the techniques used, and the pressure sensor's behavior under flight conditions. A direct comparison between data provided by the luminescent pressure sensor and that produced by conventional pressure instrumentation shows that the luminescent sensor can provide quantitative data under flight conditions. However, the test results also show that the sensor has a number of limitations which must be addressed if this technique is to prove useful in the flight environment.

  9. Flight costs of long, sexually selected tails in hummingbirds

    PubMed Central

    James Clark, Christopher; Dudley, Robert

    2009-01-01

    The elongated tails adorning many male birds have traditionally been thought to degrade flight performance by increasing body drag. However, aerodynamic interactions between the body and tail can be substantial in some contexts, and a short tail may actually reduce rather than increase overall drag. To test how tail length affects flight performance, we manipulated the tails of Anna's hummingbirds (Calypte anna) by increasing their length with the greatly elongated tail streamers of the red-billed streamertail (Trochilus polytmus) and reducing their length by removing first the rectrices and then the entire tail (i.e. all rectrices and tail covert feathers). Flight performance was measured in a wind tunnel by measuring (i) the maximum forward speed at which the birds could fly and (ii) the metabolic cost of flight while flying at airspeeds from 0 to 14 m s−1. We found a significant interaction effect between tail treatment and airspeed: an elongated tail increased the metabolic cost of flight by up to 11 per cent, and this effect was strongest at higher flight speeds. Maximum flight speed was concomitantly reduced by 3.4 per cent. Also, removing the entire tail decreased maximum flight speed by 2 per cent, suggesting beneficial aerodynamic effects for tails of normal length. The effects of elongation are thus subtle and airspeed-specific, suggesting that diversity in avian tail morphology is associated with only modest flight costs. PMID:19324747

  10. Engineering flight and guest pilot evaluation report, phase 2. [DC 8 aircraft

    NASA Technical Reports Server (NTRS)

    Morrison, J. A.; Anderson, E. B.; Brown, G. W.; Schwind, G. K.

    1974-01-01

    Prior to the flight evaluation, the two-segment profile capabilities of the DC-8-61 were evaluated and flight procedures were developed in a flight simulator at the UA Flight Training Center in Denver, Colorado. The flight evaluation reported was conducted to determine the validity of the simulation results, further develop the procedures and use of the area navigation system in the terminal area, certify the system for line operation, and obtain evaluations of the system and procedures by a number of pilots from the industry. The full area navigation capabilities of the special equipment installed were developed to provide terminal area guidance for two-segment approaches. The objectives of this evaluation were: (1) perform an engineering flight evaluation sufficient to certify the two-segment system for the six-month in-service evaluation; (2) evaluate the suitability of a modified RNAV system for flying two-segment approaches; and (3) provide evaluation of the two-segment approach by management and line pilots.

  11. Plasma interaction experiment 2 (PIX 2): Laboratory and flight results

    NASA Technical Reports Server (NTRS)

    Grier, N. T.

    1985-01-01

    The Plasma Interaction Experiments 1 and 2 (PIX 1 and 2) were designed as first steps toward understanding interactions between high-voltage solar arrays and the surrounding plasma. The PIX 2 consisted of an approximately 2000-sq cm array divided into four equal segments. Each of the segments could be biased independently and the current measured separately. In addition to the solar array segments, PIX 2 had a hot-wire-filament electron emitter and a spherical Langmuir probe. The emitter was operated when the array segments were biased positively bove 125 V. Thermal electrons from the emitter aided in balancing the electron currents collected by the array. Laboratory and flight results of PIX 2 are presented. At high positive voltages on the solar array segments, the flight currents were approximately an order of magnitude larger than the ground test currents. This is attributed to the tank walls in the laboratory interfering with the electron currents to the array segments. From previous tests it is known that the tank walls limit the electron currents at high voltages. This was the first verification of the extent of the laboratory tank effect on the plasma coupling current.

  12. Ares I-X Flight Test Vehicle Modal Test

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Templeton, Justin D.; Reaves, Mercedes C.; Horta, Lucas G.; Gaspar, James L.; Bartolotta, Paul A.; Parks, Russel A.; Lazor, Daniel R.

    2010-01-01

    The first test flight of NASA's Ares I crew launch vehicle, called Ares I-X, was launched on October 28, 2009. Ares I-X used a 4-segment reusable solid rocket booster from the Space Shuttle heritage with mass simulators for the 5th segment, upper stage, crew module and launch abort system. Flight test data will provide important information on ascent loads, vehicle control, separation, and first stage reentry dynamics. As part of hardware verification, a series of modal tests were designed to verify the dynamic finite element model (FEM) used in loads assessments and flight control evaluations. Based on flight control system studies, the critical modes were the first three free-free bending mode pairs. Since a test of the free-free vehicle was not practical within project constraints, modal tests for several configurations during vehicle stacking were defined to calibrate the FEM. Test configurations included two partial stacks and the full Ares I-X flight test vehicle on the Mobile Launcher Platform. This report describes the test requirements, constraints, pre-test analysis, test execution and results for the Ares I-X flight test vehicle modal test on the Mobile Launcher Platform. Initial comparisons between pre-test predictions and test data are also presented.

  13. Nuclear Shuttle in Flight

    NASA Technical Reports Server (NTRS)

    1970-01-01

    This 1970 artist's concept shows a Nuclear Shuttle in flight. As envisioned by Marshall Space Flight Center Program Development engineers, the Nuclear Shuttle would deliver payloads to lunar orbit or other destinations then return to Earth orbit for refueling and additional missions.

  14. Electromechanical flight control actuator

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The feasibility of using an electromechanical actuator (EMA) as the primary flight control equipment in aerospace flight is examined. The EMA motor design is presented utilizing improved permanent magnet materials. The necessary equipment to complete a single channel EMA using the single channel power electronics breadboard is reported. The design and development of an improved rotor position sensor/tachometer is investigated.

  15. Space Flight. Teacher Resources.

    ERIC Educational Resources Information Center

    2001

    This teacher's guide contains information, lesson plans, and diverse student learning activities focusing on space flight. The guide is divided into seven sections: (1) "Drawing Activities" (Future Flight; Space Fun; Mission: Draw); (2) "Geography" (Space Places); (3) "History" (Space and Time); (4) "Information" (Space Transportation System;…

  16. Exploring flight crew behaviour

    NASA Technical Reports Server (NTRS)

    Helmreich, R. L.

    1987-01-01

    A programme of research into the determinants of flight crew performance in commercial and military aviation is described, along with limitations and advantages associated with the conduct of research in such settings. Preliminary results indicate significant relationships among personality factors, attitudes regarding flight operations, and crew performance. The potential theoretical and applied utility of the research and directions for further research are discussed.

  17. Autonomous Flight Safety System

    NASA Technical Reports Server (NTRS)

    Ferrell, Bob; Santuro, Steve; Simpson, James; Zoerner, Roger; Bull, Barton; Lanzi, Jim

    2004-01-01

    Autonomous Flight Safety System (AFSS) is an independent flight safety system designed for small to medium sized expendable launch vehicles launching from or needing range safety protection while overlying relatively remote locations. AFSS replaces the need for a man-in-the-loop to make decisions for flight termination. AFSS could also serve as the prototype for an autonomous manned flight crew escape advisory system. AFSS utilizes onboard sensors and processors to emulate the human decision-making process using rule-based software logic and can dramatically reduce safety response time during critical launch phases. The Range Safety flight path nominal trajectory, its deviation allowances, limit zones and other flight safety rules are stored in the onboard computers. Position, velocity and attitude data obtained from onboard global positioning system (GPS) and inertial navigation system (INS) sensors are compared with these rules to determine the appropriate action to ensure that people and property are not jeopardized. The final system will be fully redundant and independent with multiple processors, sensors, and dead man switches to prevent inadvertent flight termination. AFSS is currently in Phase III which includes updated algorithms, integrated GPS/INS sensors, large scale simulation testing and initial aircraft flight testing.

  18. Interactive explorations of hierarchical segmentations

    NASA Technical Reports Server (NTRS)

    Tilton, James C.

    1992-01-01

    The authors report on the implementation of an interactive tool, called HSEGEXP, to interactively explore the hierarchical segmentation produced by the iterative parallel region growing (IPRG) algorithm to select the best segmentation result. This combination of the HSEGEXP tool with the IPRG algorithm amounts to a computer-assisted image segmentation system guided by human interaction. The initial application of the HSEGEXP tool is in the refinement of ground reference data based on the IPRG/HSEGEXP segmentation of the corresponding remotely sensed image data. The HSEGEXP tool is being used to help evaluate the effectiveness of an automatic 'best' segmentation process under development.

  19. STS-110 Flight Day 9 Highlights

    NASA Astrophysics Data System (ADS)

    2002-04-01

    The STS-110 ninth flight day begins with a live television view of the International Space Station's Quest Airlock. Astronauts Jerry Ross and Lee Morin are preparing for their forth spacewalk while Space Shuttle Atlantis is docked with the International Space Station. Jerry Ross and Lee Morin are breathing Oxygen inside of the Quest Airlock. Live footage of Jerry Ross at the tip of the Robotic Arm is shown. Jerry Ross and Lee Morin are entering the airlock module after the work on the S(0) Truss segment is finished.

  20. STS-110 Flight Day 9 Highlights

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The STS-110 ninth flight day begins with a live television view of the International Space Station's Quest Airlock. Astronauts Jerry Ross and Lee Morin are preparing for their forth spacewalk while Space Shuttle Atlantis is docked with the International Space Station. Jerry Ross and Lee Morin are breathing Oxygen inside of the Quest Airlock. Live footage of Jerry Ross at the tip of the Robotic Arm is shown. Jerry Ross and Lee Morin are entering the airlock module after the work on the S(0) Truss segment is finished.

  1. Air resistance measurements on actual airplane parts

    NASA Technical Reports Server (NTRS)

    Weiselsberger, C

    1923-01-01

    For the calculation of the parasite resistance of an airplane, a knowledge of the resistance of the individual structural and accessory parts is necessary. The most reliable basis for this is given by tests with actual airplane parts at airspeeds which occur in practice. The data given here relate to the landing gear of a Siemanms-Schuckert DI airplane; the landing gear of a 'Luftfahrzeug-Gesellschaft' airplane (type Roland Dlla); landing gear of a 'Flugzeugbau Friedrichshafen' G airplane; a machine gun, and the exhaust manifold of a 269 HP engine.

  2. 14 CFR 91.109 - Flight instruction; Simulated instrument flight and certain flight tests.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 2 2011-01-01 2011-01-01 false Flight instruction; Simulated instrument flight and certain flight tests. 91.109 Section 91.109 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION (CONTINUED) AIR TRAFFIC AND GENERAL OPERATING RULES GENERAL OPERATING AND FLIGHT RULES Flight Rules General...

  3. Optimal Flight for Ground Noise Reduction in Helicopter’s Landing Approach

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Takeshi; Ishii, Hirokazu; Uchida, Junichi; Gomi, Hiromi; Matayoshi, Naoki; Okuno, Yoshinori

    This study aims to obtain the optimal flights of a helicopter that reduce ground noise in its landing approach with an optimization technique and to conduct flight tests for confirming the effectiveness of the optimal solutions. Past experiments of JAXA (Japan Aerospace Exploration Agency) shows the noise of the helicopter varies significantly according to its flight conditions, especially depending on the flight path angle. We therefore build a simple noise model of the helicopter, in which the level of the noise generated from a point sound source is a function only of the flight path angle. By using equations of motion for flight in a vertical plane, we define optimal control problems for minimizing noise levels measured at points on the ground surface, and obtain optimal controls for specified initial altitudes, flight constraints, and wind conditions. The obtained optimal flights avoid the flight path angle which generates the large noise and decrease the flight time, which are different from the conventional flight. Finally, we verify the validity of the optimal flight patterns by the flight experiments. The actual flights following the optimal ones also result in the noise reduction, which shows the effectiveness of the optimization.

  4. Optimal Flight for Ground Noise Reduction in Helicopter Landing Approach: Optimal Altitude and Velocity Control

    NASA Astrophysics Data System (ADS)

    Tsuchiya, Takeshi; Ishii, Hirokazu; Uchida, Junichi; Gomi, Hiromi; Matayoshi, Naoki; Okuno, Yoshinori

    This study aims to obtain the optimal flights of a helicopter that reduce ground noise during landing approach with an optimization technique, and to conduct flight tests for confirming the effectiveness of the optimal solutions. Past experiments of Japan Aerospace Exploration Agency (JAXA) show that the noise of a helicopter varies significantly according to its flight conditions, especially depending on the flight path angle. We therefore build a simple noise model for a helicopter, in which the level of the noise generated from a point sound source is a function only of the flight path angle. Using equations of motion for flight in a vertical plane, we define optimal control problems for minimizing noise levels measured at points on the ground surface, and obtain optimal controls for specified initial altitudes, flight constraints, and wind conditions. The obtained optimal flights avoid the flight path angle which generates large noise and decrease the flight time, which are different from conventional flight. Finally, we verify the validity of the optimal flight patterns through flight experiments. The actual flights following the optimal paths resulted in noise reduction, which shows the effectiveness of the optimization.

  5. Segmentation of Unstructured Datasets

    NASA Technical Reports Server (NTRS)

    Bhat, Smitha

    1996-01-01

    Datasets generated by computer simulations and experiments in Computational Fluid Dynamics tend to be extremely large and complex. It is difficult to visualize these datasets using standard techniques like Volume Rendering and Ray Casting. Object Segmentation provides a technique to extract and quantify regions of interest within these massive datasets. This thesis explores basic algorithms to extract coherent amorphous regions from two-dimensional and three-dimensional scalar unstructured grids. The techniques are applied to datasets from Computational Fluid Dynamics and from Finite Element Analysis.

  6. Development of Fast, Segmented Trigger Detector for Decay Studies

    NASA Astrophysics Data System (ADS)

    Alshudifat, Mohammad; Grzywacz, Robert; Paulauskas, Stan

    2013-10-01

    Segmented scintillation detector was developed for decay studies. The detector is build with use of position sensitive photo-multiplier (PSPMT) Hamamatsu H8500 coupled with fast (16 × 16) pixelated plastic scintillator (Eljen EJ-204). The PSPMT anodes form a (8 × 8) two dimensional matrix which is used for position reconstruction, position resolution with average FWHM of ~ 1 . 1 mm was achieved with 137Cs gamma-source. Signals derived from non-segmented dynode are used for timing. Digital pulse shape analysis algorithm was used for this analysis and the 500 ps timing resolution was achieved. This detector is intended to use in fragmentation type experiments which require segmented detectors in order to enable recoil-decay correlations for applications requiring good timing resolution, e.g. for the neutron time-of-flight experiments using VANDLE array.

  7. Rigid ultralight primary mirror segments for space telescopes

    NASA Astrophysics Data System (ADS)

    Zito, Richard R.

    2000-10-01

    The development of ultra-light fibrous substrate mirrors allows serious contemplation of large multi-mirror space telescopes using rigid segments. Mirrors made of silica and alumina fibers have a small coefficient of thermal expansion and a density competitive with inflatable structures. Furthermore, they are without the imagery problems caused by non parabolic figures, gaseous expansion and contraction, tidal distortion of large gas filled structures, leaks, and long lived transient mirror perturbations caused by intentional pointing and tracking movements, micrometeor and space debris impacts, and mechanical vibrations. Fibrous substrate primary mirrors also have logistical advantages, since segments can be fabricated in orbit from small amounts of dense raw materials. One space shuttle flight, lifting about half its payload capacity, is adequate to transport all the material necessary to fabricate substrates for a one hundred meter telescope whose primary mirror consists of 12,086 hexagonal segments, each having a diameter of 1 meter and an area of 0.6495 square meters.

  8. Passive range sensor refinement using texture and segmentation

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar; Phatak, Anil; Chatterji, Gano

    1991-01-01

    Electrooptical sensors provide a covert way of computing range during helicopter flight. The optical flow-based computation of range provides range information only in certain distinguishable parts of the image. The regions where range information is available can be increased by performing texture analysis and object segmentation in the image. This paper reviews some of the literature on texture segmentation methods with a view towards applying them to images containing both man-made and natural objects at varying ranges. Two algorithmic approaches are given and their application to a real image is demonstrated. Results indicate that it will be necessary to combine several different texture measures and methods in a hierarchical way in order to achieve an object segmentation which is useful in enhancing range information.

  9. Numerical CFD Simulation and Test Correlation in a Flight Project Environment

    NASA Technical Reports Server (NTRS)

    Gupta, K. K.; Lung, S. F.; Ibrahim, A. H.

    2015-01-01

    This paper presents detailed description of a novel CFD procedure and comparison of its solution results to that obtained by other available CFD codes as well as actual flight and wind tunnel test data pertaining to the GIII aircraft, currently undergoing flight testing at AFRC.

  10. Chemical research projects office fuel tank sealants review. [flight testing of fluorosilicone sealants

    NASA Technical Reports Server (NTRS)

    Rosser, R. W.; Parker, J. A.

    1974-01-01

    The status of high-temperature fuel tank sealants for military and potentially commercial supersonic aircraft is examined. The interrelationships of NASA's sealants program comprise synthesis and development of new fluoroether elastomers, sealant prediction studies, flight simulation and actual flight testing of best state-of-the-art fluorosilicone sealants. The technical accomplishments of these projects are reviewed.

  11. Automatic segmentation of overlapping and touching chromosomes

    NASA Astrophysics Data System (ADS)

    Yuan, Zhiqiang; Chen, Xiaohua; Zhang, Renli; Yu, Chang

    2001-09-01

    reaches to another boundary or tracing route. For overlapping chromosomes, the searching algorithm fails. We proposed a topology information based method for analyzing overlapping and touching chromosomes. Mihail Popescu adopts Cross Section Sequence Graph (CSSG) method for shape analyzing. Gady Agam proposed Discrete Curvature Function for splitting touching and overlapping chromosomes. But due to the non-rigid property of chromosomes, it is hard to determine the actual topology structure of chromosomes. In this paper we proposed a new method to produce topology information of chromosomes and had got good results in chromosome segmentation.

  12. Magnesium and Space Flight

    NASA Technical Reports Server (NTRS)

    Smith, Scott M.; Zwart, Sara R.

    2016-01-01

    Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in astronauts before, during, and after space missions, in 43 astronauts (34 male, 9 female) on 4-6 month space flight missions. We also studied individuals participating in a ground analog of space flight, (head-down tilt bed rest, n=27, 35 +/- 7 y). We evaluated serum concentration and 24-hour urinary excretion of magnesium along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-d space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4- to 6-month space missions.

  13. Future Flight Decks

    NASA Technical Reports Server (NTRS)

    Arbuckle, P. Douglas; Abbott, Kathy H.; Abbott, Terence S.; Schutte, Paul C.

    1998-01-01

    The evolution of commercial transport flight deck configurations over the past 20-30 years and expected future developments are described. Key factors in the aviation environment are identified that the authors expect will significantly affect flight deck designers. One of these is the requirement for commercial aviation accident rate reduction, which is probably required if global commercial aviation is to grow as projected. Other factors include the growing incrementalism in flight deck implementation, definition of future airspace operations, and expectations of a future pilot corps that will have grown up with computers. Future flight deck developments are extrapolated from observable factors in the aviation environment, recent research results in the area of pilot-centered flight deck systems, and by considering expected advances in technology that are being driven by other than aviation requirements. The authors hypothesize that revolutionary flight deck configuration changes will be possible with development of human-centered flight deck design methodologies that take full advantage of commercial and/or entertainment-driven technologies.

  14. The Communicative Relevancies of Instrument Flight; A Technologically Contingent World.

    ERIC Educational Resources Information Center

    McCoy, Claire Elaine

    The success and safety of flight in actual instrument conditions is dependent upon the communicative competency of the individuals involved. The more obvious elements of communication involved include crew coordination and communication both verbal and nonverbal, aircraft and ground communication links, pilot interpretation of verbally and…

  15. Seafloor in the Malaysia Airlines Flight MH370 Search Area

    NASA Astrophysics Data System (ADS)

    Smith, Walter H. F.; Marks, Karen M.

    2014-05-01

    On the morning of 8 March 2014, Malaysia Airlines flight MH370, from Kuala Lumpur to Beijing, lost contact with air traffic control shortly after takeoff and vanished. While the world waited for any sign of the missing aircraft and the 239 people on board, authorities and scientists began to investigate what little information was known about the plane's actual movements.

  16. Software conversion history of the Flight Dynamics System (FDS)

    NASA Technical Reports Server (NTRS)

    Liu, K.

    1984-01-01

    This report summarizes the overall history of the Flight Dynamics System (FDS) applications software conversion project. It describes the background and nature of the project; traces the actual course of conversion; assesses the process, product, and personnel involved; and offers suggestions for future projects. It also contains lists of pertinent reference material and examples of supporting data.

  17. Simulation Method for Wind Tunnel Based Virtual Flight Testing

    NASA Astrophysics Data System (ADS)

    Li, Hao; Zhao, Zhong-Liang; Fan, Zhao-Lin

    The Wind Tunnel Based Virtual Flight Testing (WTBVFT) could replicate the actual free flight and explore the aerodynamics/flight dynamics nonlinear coupling mechanism during the maneuver in the wind tunnel. The basic WTBVFT concept is to mount the test model on a specialized support system which allows for the model freely rotational motion, and the aerodynamic loading and motion parameters are measured simultaneously during the model motion. The simulations of the 3-DOF pitching motion of a typical missile in the vertical plane are performed with the openloop and closed-loop control methods. The objective is to analyze the effect of the main differences between the WTBVFT and the actual free flight, and study the simulation method for the WTBVFT. Preliminary simulation analyses have been conducted with positive results. These results indicate that the WTBVFT that uses closed-loop autopilot control method with the pitch angular rate feedback signal is able to replicate the actual free flight behavior within acceptable differences.

  18. Segmented Target Design

    NASA Astrophysics Data System (ADS)

    Merhi, Abdul Rahman; Frank, Nathan; Gueye, Paul; Thoennessen, Michael; MoNA Collaboration

    2013-10-01

    A proposed segmented target would improve decay energy measurements of neutron-unbound nuclei. Experiments like this have been performed at the National Superconducting Cyclotron Laboratory (NSCL) located at Michigan State University. Many different nuclei are produced in such experiments, some of which immediately decay into a charged particle and neutron. The charged particles are bent by a large magnet and measured by a suite of charged particle detectors. The neutrons are measured by the Modular Neutron Array (MoNA) and Large Multi-Institutional Scintillation Array (LISA). With the current target setup, a nucleus in a neutron-unbound state is produced with a radioactive beam impinged upon a beryllium target. The resolution of these measurements is very dependent on the target thickness since the nuclear interaction point is unknown. In a segmented target using alternating layers of silicon detectors and Be-targets, the Be-target in which the nuclear reaction takes place would be determined. Thus the experimental resolution would improve. This poster will describe the improvement over the current target along with the status of the design. Work supported by Augustana College and the National Science Foundation grant #0969173.

  19. Automated flight test management system

    NASA Technical Reports Server (NTRS)

    Hewett, M. D.; Tartt, D. M.; Agarwal, A.

    1991-01-01

    The Phase 1 development of an automated flight test management system (ATMS) as a component of a rapid prototyping flight research facility for artificial intelligence (AI) based flight concepts is discussed. The ATMS provides a flight engineer with a set of tools that assist in flight test planning, monitoring, and simulation. The system is also capable of controlling an aircraft during flight test by performing closed loop guidance functions, range management, and maneuver-quality monitoring. The ATMS is being used as a prototypical system to develop a flight research facility for AI based flight systems concepts at NASA Ames Dryden.

  20. Intelligent flight control systems

    NASA Technical Reports Server (NTRS)

    Stengel, Robert F.

    1993-01-01

    The capabilities of flight control systems can be enhanced by designing them to emulate functions of natural intelligence. Intelligent control functions fall in three categories. Declarative actions involve decision-making, providing models for system monitoring, goal planning, and system/scenario identification. Procedural actions concern skilled behavior and have parallels in guidance, navigation, and adaptation. Reflexive actions are spontaneous, inner-loop responses for control and estimation. Intelligent flight control systems learn knowledge of the aircraft and its mission and adapt to changes in the flight environment. Cognitive models form an efficient basis for integrating 'outer-loop/inner-loop' control functions and for developing robust parallel-processing algorithms.

  1. Flight Dynamics Analysis Branch

    NASA Technical Reports Server (NTRS)

    Stengle, Tom; Flores-Amaya, Felipe

    2000-01-01

    This report summarizes the major activities and accomplishments carried out by the Flight Dynamics Analysis Branch (FDAB), Code 572, in support of flight projects and technology development initiatives in fiscal year 2000. The report is intended to serve as a summary of the type of support carried out by the FDAB, as well as a concise reference of key accomplishments and mission experience derived from the various mission support roles. The primary focus of the FDAB is to provide expertise in the disciplines of flight dynamics, spacecraft trajectory, attitude analysis, and attitude determination and control. The FDAB currently provides support for missions and technology development projects involving NASA, government, university, and private industry.

  2. Optimal trajectories for the aeroassisted flight experiment. Part 4: Data, tables, and graphs

    NASA Technical Reports Server (NTRS)

    Miele, A.; Wang, T.; Lee, W. Y.; Wang, H.; Wu, G. D.

    1989-01-01

    The determination of optimal trajectories for the aeroassisted flight experiment (AFE) is discussed. Data, tables, and graphs relative to the following transfers are presented: (IA) indirect ascent to a 178 NM perigee via a 197 NM apogee; and (DA) direct ascent to a 178 NM apogee. For both transfers, two cases are investigated: (1) the bank angle is continuously variable; and (2) the trajectory is divided into segments along which the bank angle is constant. For case (2), the following subcases are studied: two segments, three segments, four segments, and five segments; because the time duration of each segment is optimized, the above subcases involve four, six, eight, and ten parameters, respectively. Presented here are systematic data on a total of ten optimal trajectories (OT), five for Transfer IA and five for Transfer DA. For comparison purposes and only for Transfer IA, a five-segment reference trajectory RT is also considered.

  3. Initial Flight Test of the Production Support Flight Control Computers at NASA Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Carter, John; Stephenson, Mark

    1999-01-01

    The NASA Dryden Flight Research Center has completed the initial flight test of a modified set of F/A-18 flight control computers that gives the aircraft a research control law capability. The production support flight control computers (PSFCC) provide an increased capability for flight research in the control law, handling qualities, and flight systems areas. The PSFCC feature a research flight control processor that is "piggybacked" onto the baseline F/A-18 flight control system. This research processor allows for pilot selection of research control law operation in flight. To validate flight operation, a replication of a standard F/A-18 control law was programmed into the research processor and flight-tested over a limited envelope. This paper provides a brief description of the system, summarizes the initial flight test of the PSFCC, and describes future experiments for the PSFCC.

  4. Speech Recognition Interfaces Improve Flight Safety

    NASA Technical Reports Server (NTRS)

    2013-01-01

    "Alpha, Golf, November, Echo, Zulu." "Sierra, Alpha, Golf, Echo, Sierra." "Lima, Hotel, Yankee." It looks like some strange word game, but the combinations of words above actually communicate the first three points of a flight plan from Albany, New York to Florence, South Carolina. Spoken by air traffic controllers and pilots, the aviation industry s standard International Civil Aviation Organization phonetic alphabet uses words to represent letters. The first letter of each word in the series is combined to spell waypoints, or reference points, used in flight navigation. The first waypoint above is AGNEZ (alpha for A, golf for G, etc.). The second is SAGES, and the third is LHY. For pilots of general aviation aircraft, the traditional method of entering the letters of each waypoint into a GPS device is a time-consuming process. For each of the 16 waypoints required for the complete flight plan from Albany to Florence, the pilot uses a knob to scroll through each letter of the alphabet. It takes approximately 5 minutes of the pilot s focused attention to complete this particular plan. Entering such a long flight plan into a GPS can pose a safety hazard because it can take the pilot s attention from other critical tasks like scanning gauges or avoiding other aircraft. For more than five decades, NASA has supported research and development in aviation safety, including through its Vehicle Systems Safety Technology (VSST) program, which works to advance safer and more capable flight decks (cockpits) in aircraft. Randy Bailey, a lead aerospace engineer in the VSST program at Langley Research Center, says the technology in cockpits is directly related to flight safety. For example, "GPS navigation systems are wonderful as far as improving a pilot s ability to navigate, but if you can find ways to reduce the draw of the pilot s attention into the cockpit while using the GPS, it could potentially improve safety," he says.

  5. Comparison of predicted and actual orbital lifetimes for the SEDS-2 mission

    NASA Technical Reports Server (NTRS)

    Evans, Steven W.

    1994-01-01

    This paper documents a series of estimates of the orbital lifetime of the SEDS-2 flight configuration made prior to the mission. These estimates were made with program LTIME, which has been in use at MSFC for a number of years. Because of the unusual configuration of upper-stage/tether/endmass flown on this mission, and the type of assumptions and inputs used in LTIME, the effective area used in the drag calculation had to be estimated in an unusual way. The final pre-flight predicted lifetime was 28.35 days. In the actual flight, the tether was cut approximately 5 days into the mission. The instrumented endmass plus about 12 km of tether rapidly reentered the atmosphere, and the Delta II Second Stage plus the remaining 8 km of tether reentered on mission day 60. Tracking data was used to reconstruct reentry sequences for the two parts of the configuration after the cut. The predicted lifetimes for the endmass plus tether-fragment were in the range of 0.2 to 2.8 days, depending on the perigee altitudes assumed. The predicted lifetime of the upper-stage plus tether was 56.4 days, which corresponds to reentry on mission day 61, in good agreement with the actual reentry on day 60.

  6. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The...

  7. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The...

  8. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The...

  9. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The...

  10. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The...

  11. Digital Fly-By-Wire Flight Control Validation Experience

    NASA Technical Reports Server (NTRS)

    Szalai, K. J.; Jarvis, C. R.; Krier, G. E.; Megna, V. A.; Brock, L. D.; Odonnell, R. N.

    1978-01-01

    The experience gained in digital fly-by-wire technology through a flight test program being conducted by the NASA Dryden Flight Research Center in an F-8C aircraft is described. The system requirements are outlined, along with the requirements for flight qualification. The system is described, including the hardware components, the aircraft installation, and the system operation. The flight qualification experience is emphasized. The qualification process included the theoretical validation of the basic design, laboratory testing of the hardware and software elements, systems level testing, and flight testing. The most productive testing was performed on an iron bird aircraft, which used the actual electronic and hydraulic hardware and a simulation of the F-8 characteristics to provide the flight environment. The iron bird was used for sensor and system redundancy management testing, failure modes and effects testing, and stress testing in many cases with the pilot in the loop. The flight test program confirmed the quality of the validation process by achieving 50 flights without a known undetected failure and with no false alarms.

  12. NSEG, a segmented mission analysis program for low and high speed aircraft. Volume 1: Theoretical development

    NASA Technical Reports Server (NTRS)

    Hague, D. S.; Rozendaal, H. L.

    1977-01-01

    A rapid mission analysis code based on the use of approximate flight path equations of motion is presented. Equation form varies with the segment type, for example, accelerations, climbs, cruises, descents, and decelerations. Realistic and detailed characteristics were specified in tabular form. The code also contains extensive flight envelope performance mapping capabilities. Approximate take off and landing analyses were performed. At high speeds, centrifugal lift effects were accounted for. Extensive turbojet and ramjet engine scaling procedures were incorporated in the code.

  13. The actual status of Astronomy in Moldova

    NASA Astrophysics Data System (ADS)

    Gaina, A.

    The astronomical research in the Republic of Moldova after Nicolae Donitch (Donici)(1874-1956(?)) were renewed in 1957, when a satellites observations station was open in Chisinau. Fotometric observations and rotations of first Soviet artificial satellites were investigated under a program SPIN put in action by the Academy of Sciences of former Socialist Countries. The works were conducted by Assoc. prof. Dr. V. Grigorevskij, which conducted also research in variable stars. Later, at the beginning of 60-th, an astronomical Observatory at the Chisinau State University named after Lenin (actually: the State University of Moldova), placed in Lozovo-Ciuciuleni villages was open, which were coordinated by Odessa State University (Prof. V.P. Tsesevich) and the Astrosovet of the USSR. Two main groups worked in this area: first conducted by V. Grigorevskij (till 1971) and second conducted by L.I. Shakun (till 1988), both graduated from Odessa State University. Besides this research areas another astronomical observations were made: Comets observations, astroclimate and atmospheric optics in collaboration with the Institute of the Atmospheric optics of the Siberian branch of the USSR (V. Chernobai, I. Nacu, C. Usov and A.F. Poiata). Comets observations were also made since 1988 by D. I. Gorodetskij which came to Chisinau from Alma-Ata and collaborated with Ukrainean astronomers conducted by K.I. Churyumov. Another part of space research was made at the State University of Tiraspol since the beggining of 70-th by a group of teaching staff of the Tiraspol State Pedagogical University: M.D. Polanuer, V.S. Sholokhov. No a collaboration between Moldovan astronomers and Transdniestrian ones actually exist due to War in Transdniestria in 1992. An important area of research concerned the Radiophysics of the Ionosphere, which was conducted in Beltsy at the Beltsy State Pedagogical Institute by a group of teaching staff of the University since the beginning of 70-th: N. D. Filip, E

  14. What Galvanic Vestibular Stimulation Actually Activates

    PubMed Central

    Curthoys, Ian S.; MacDougall, Hamish Gavin

    2012-01-01

    In a recent paper in Frontiers Cohen et al. (2012) asked “What does galvanic vestibular stimulation actually activate?” and concluded that galvanic vestibular stimulation (GVS) causes predominantly otolithic behavioral responses. In this Perspective paper we show that such a conclusion does not follow from the evidence. The evidence from neurophysiology is very clear: galvanic stimulation activates primary otolithic neurons as well as primary semicircular canal neurons (Kim and Curthoys, 2004). Irregular neurons are activated at lower currents. The answer to what behavior is activated depends on what is measured and how it is measured, including not just technical details, such as the frame rate of video, but the exact experimental context in which the measurement took place (visual fixation vs total darkness). Both canal and otolith dependent responses are activated by GVS. PMID:22833733

  15. MODIS Solar Diffuser: Modelled and Actual Performance

    NASA Technical Reports Server (NTRS)

    Waluschka, Eugene; Xiong, Xiao-Xiong; Esposito, Joe; Wang, Xin-Dong; Krebs, Carolyn (Technical Monitor)

    2001-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument's solar diffuser is used in its radiometric calibration for the reflective solar bands (VIS, NTR, and SWIR) ranging from 0.41 to 2.1 micron. The sun illuminates the solar diffuser either directly or through a attenuation screen. The attenuation screen consists of a regular array of pin holes. The attenuated illumination pattern on the solar diffuser is not uniform, but consists of a multitude of pin-hole images of the sun. This non-uniform illumination produces small, but noticeable radiometric effects. A description of the computer model used to simulate the effects of the attenuation screen is given and the predictions of the model are compared with actual, on-orbit, calibration measurements.

  16. Identification of atypical flight patterns

    NASA Technical Reports Server (NTRS)

    Statler, Irving C. (Inventor); Ferryman, Thomas A. (Inventor); Amidan, Brett G. (Inventor); Whitney, Paul D. (Inventor); White, Amanda M. (Inventor); Willse, Alan R. (Inventor); Cooley, Scott K. (Inventor); Jay, Joseph Griffith (Inventor); Lawrence, Robert E. (Inventor); Mosbrucker, Chris (Inventor)

    2005-01-01

    Method and system for analyzing aircraft data, including multiple selected flight parameters for a selected phase of a selected flight, and for determining when the selected phase of the selected flight is atypical, when compared with corresponding data for the same phase for other similar flights. A flight signature is computed using continuous-valued and discrete-valued flight parameters for the selected flight parameters and is optionally compared with a statistical distribution of other observed flight signatures, yielding atypicality scores for the same phase for other similar flights. A cluster analysis is optionally applied to the flight signatures to define an optimal collection of clusters. A level of atypicality for a selected flight is estimated, based upon an index associated with the cluster analysis.

  17. Numerical study of insect free hovering flight

    NASA Astrophysics Data System (ADS)

    Wu, Di; Yeo, Khoon Seng; Lim, Tee Tai; Fluid lab, Mechanical Engineering, National University of Singapore Team

    2012-11-01

    In this paper we present the computational fluid dynamics study of three-dimensional flow field around a free hovering fruit fly integrated with unsteady FSI analysis and the adaptive flight control system for the first time. The FSI model being specified for fruitfly hovering is achieved by coupling a structural problem based on Newton's second law with a rigorous CFD solver concerning generalized finite difference method. In contrast to the previous hovering flight research, the wing motion employed here is not acquired from experimental data but governed by our proposed control systems. Two types of hovering control strategies i.e. stroke plane adjustment mode and paddling mode are explored, capable of generating the fixed body position and orientation characteristic of hovering flight. Hovering flight associated with multiple wing kinematics and body orientations are shown as well, indicating the means by which fruitfly actually maintains hovering may have considerable freedom and therefore might be influenced by many other factors beyond the physical and aerodynamic requirements. Additionally, both the near- and far-field flow and vortex structure agree well with the results from other researchers, demonstrating the reliability of our current model.

  18. Space flight and changes in spatial orientation

    NASA Technical Reports Server (NTRS)

    Reschke, Millard F.; Bloomberg, Jacob J.; Harm, Deborah L.; Paloski, William H.

    1992-01-01

    From a sensory point of view, space flight represents a form of stimulus rearrangement requiring modification of established terrestrial response patterns through central reinterpretation. Evidence of sensory reinterpretation is manifested as postflight modifications of eye/head coordination, locomotor patterns, postural control strategies, and illusory perceptions of self or surround motion in conjunction with head movements. Under normal preflight conditions, the head is stabilized during locomotion, but immediately postflight reduced head stability, coupled with inappropriate eye/head coordination, results in modifications of gait. Postflight postural control exhibits increased dependence on vision which compensates for inappropriate interpretation of otolith and proprioceptive inputs. Eye movements compensatory for perceived self motion, rather than actual head movements have been observed postflight. Overall, the in-flight adaptive modification of head stabilization strategies, changes in head/eye coordination, illusionary motion, and postural control are maladaptive for a return to the terrestrial environment. Appropriate countermeasures for long-duration flights will rely on preflight adaptation and in-flight training.

  19. Aerodynamic effect of alula in avian flight

    NASA Astrophysics Data System (ADS)

    Lee, Sang-Im; Lee, Jaemyoung; Park, Hyungmin; Jablonski, Piotr; Choi, Haecheon

    2012-11-01

    Alula is a small structure located at the joint between handwing and armwing of birds and has been suggested to function as a leading-edge slot. In this study, we investigated the functional aspect of alula in bird flight with experimental conditions that reflect the flow characteristics used by birds in their actual flight using magpies as the model species. The presence of alula enabled the bird to perform steeper descending flights with greater lateral angle changes. Force measurements showed that alula presence increased the lift when the angle of attack was high (higher than 20-45 deg), which resulted in the stall delay by 5 deg. The wake width was significantly thinner when alula was present, suggesting that boundary layer separation is delayed when alula is used. This result was corroborated by PIV; accelerated streamwise velocity over the wing surface was recovered faster and separation point was pushed downstream when alula was present. To conclude, the lift enhancement and stall delay by alula are closely related to the downstream movement of separation point and faster recovery of accelerated flow over the wing surface, which endows greater flight maneuverability to the birds. This work was supported by the Korea Research Foundation Grants (2011-0030744, 2010-0009006, and 2012-K001368).

  20. Flight testing an integrated synthetic vision system

    NASA Astrophysics Data System (ADS)

    Kramer, Lynda J.; Arthur, Jarvis J., III; Bailey, Randall E.; Prinzel, Lawrence J., III

    2005-05-01

    NASA's Synthetic Vision Systems (SVS) project is developing technologies with practical applications to eliminate low visibility conditions as a causal factor to civil aircraft accidents while replicating the operational benefits of clear day flight operations, regardless of the actual outside visibility condition. A major thrust of the SVS project involves the development/demonstration of affordable, certifiable display configurations that provide intuitive out-the-window terrain and obstacle information with advanced pathway guidance for transport aircraft. The SVS concept being developed at NASA encompasses the integration of tactical and strategic Synthetic Vision Display Concepts (SVDC) with Runway Incursion Prevention System (RIPS) alerting and display concepts, real-time terrain database integrity monitoring equipment (DIME), and Enhanced Vision Systems (EVS) and/or improved Weather Radar for real-time object detection and database integrity monitoring. A flight test evaluation was jointly conducted (in July and August 2004) by NASA Langley Research Center and an industry partner team under NASA's Aviation Safety and Security, Synthetic Vision System project. A Gulfstream G-V aircraft was flown over a 3-week period in the Reno/Tahoe International Airport (NV) local area and an additional 3-week period in the Wallops Flight Facility (VA) local area to evaluate integrated Synthetic Vision System concepts. The enabling technologies (RIPS, EVS and DIME) were integrated into the larger SVS concept design. This paper presents experimental methods and the high level results of this flight test.

  1. Flight Testing an Integrated Synthetic Vision System

    NASA Technical Reports Server (NTRS)

    Kramer, Lynda J.; Arthur, Jarvis J., III; Bailey, Randall E.; Prinzel, Lawrence J., III

    2005-01-01

    NASA's Synthetic Vision Systems (SVS) project is developing technologies with practical applications to eliminate low visibility conditions as a causal factor to civil aircraft accidents while replicating the operational benefits of clear day flight operations, regardless of the actual outside visibility condition. A major thrust of the SVS project involves the development/demonstration of affordable, certifiable display configurations that provide intuitive out-the-window terrain and obstacle information with advanced pathway guidance for transport aircraft. The SVS concept being developed at NASA encompasses the integration of tactical and strategic Synthetic Vision Display Concepts (SVDC) with Runway Incursion Prevention System (RIPS) alerting and display concepts, real-time terrain database integrity monitoring equipment (DIME), and Enhanced Vision Systems (EVS) and/or improved Weather Radar for real-time object detection and database integrity monitoring. A flight test evaluation was jointly conducted (in July and August 2004) by NASA Langley Research Center and an industry partner team under NASA's Aviation Safety and Security, Synthetic Vision System project. A Gulfstream GV aircraft was flown over a 3-week period in the Reno/Tahoe International Airport (NV) local area and an additional 3-week period in the Wallops Flight Facility (VA) local area to evaluate integrated Synthetic Vision System concepts. The enabling technologies (RIPS, EVS and DIME) were integrated into the larger SVS concept design. This paper presents experimental methods and the high level results of this flight test.

  2. The Flight Track Noise Impact Model

    NASA Technical Reports Server (NTRS)

    Burn, Melissa; Carey, Jeffrey; Czech, Joseph; Wingrove, Earl R., III

    1997-01-01

    To meet its objective of assisting the U.S. aviation industry with the technological challenges of the future, NASA must identify research areas that have the greatest potential for improving the operation of the air transportation system. To accomplish this, NASA is building an Aviation System Analysis Capability (ASAC). The Flight Track Noise Impact Model (FTNIM) has been developed as part of the ASAC. Its primary purpose is to enable users to examine the impact that quieter aircraft technologies and/or operations might have on air carrier operating efficiency at any one of 8 selected U.S. airports. The analyst selects an airport and case year for study, chooses a set of flight tracks for use in the case, and has the option of reducing the noise of the aircraft by 3, 6, or 10 decibels. Two sets of flight tracks are available for each airport: one that represents actual current conditions, including noise abatement tracks, which avoid flying over noise-sensitive areas; and a second set that offers more efficient routing. FTNIM computes the resultant noise impact and the time and distance saved for each operation on the more efficient, alternate tracks. Noise impact is characterized in three ways: the size of the noise contour footprint, the number of people living within the contours, and the number of homes located in the same contours. Distance and time savings are calculated by comparing the noise abatement flight path length to the more efficient alternate routing.

  3. Human Space Flight

    NASA Technical Reports Server (NTRS)

    Woolford, Barbara; Mount, Frances

    2004-01-01

    The first human space flight, in the early 1960s, was aimed primarily at determining whether humans could indeed survive and function in micro-gravity. Would eating and sleeping be possible? What mental and physical tasks could be performed? Subsequent programs increased the complexity of the tasks the crew performed. Table 1 summarizes the history of U.S. space flight, showing the projects, their dates, crew sizes, and mission durations. With over forty years of experience with human space flight, the emphasis now is on how to design space vehicles, habitats, and missions to produce the greatest returns to human knowledge. What are the roles of the humans in space flight in low earth orbit, on the moon, and in exploring Mars?

  4. Beta experiment flight report

    NASA Technical Reports Server (NTRS)

    1982-01-01

    A focused laser Doppler velocimeter system was developed for the measurement of atmospheric backscatter (beta) from aerosols at infrared wavelengths. The system was flight tested at several different locations and the results of these tests are summarized.

  5. Space flight hazards catalog

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The most significant hazards identified on manned space flight programs are listed. This summary is of special value to system safety engineers in developing safety checklists and otherwise tailoring safety tasks to specific systems and subsystems.

  6. SR-71 Flight

    NASA Video Gallery

    Two SR-71A aircraft were loaned from the U.S. Air Force for use for high-speed, high-altitude research at the NASA Dryden Flight Research Center, Edwards, California. One of them was later returned...

  7. Reflecting Random Flights

    NASA Astrophysics Data System (ADS)

    De Gregorio, Alessandro; Orsingher, Enzo

    2015-09-01

    We consider random flights in reflecting on the surface of a sphere with center at the origin and with radius R, where reflection is performed by means of circular inversion. Random flights studied in this paper are motions where the orientation of the deviations are uniformly distributed on the unit-radius sphere . We obtain the explicit probability distributions of the position of the moving particle when the number of changes of direction is fixed and equal to . We show that these distributions involve functions which are solutions of the Euler-Poisson-Darboux equation. The unconditional probability distributions of the reflecting random flights are obtained by suitably randomizing n by means of a fractional-type Poisson process. Random flights reflecting on hyperplanes according to the optical reflection form are considered and the related distributional properties derived.

  8. Image segmentation using random features

    NASA Astrophysics Data System (ADS)

    Bull, Geoff; Gao, Junbin; Antolovich, Michael

    2014-01-01

    This paper presents a novel algorithm for selecting random features via compressed sensing to improve the performance of Normalized Cuts in image segmentation. Normalized Cuts is a clustering algorithm that has been widely applied to segmenting images, using features such as brightness, intervening contours and Gabor filter responses. Some drawbacks of Normalized Cuts are that computation times and memory usage can be excessive, and the obtained segmentations are often poor. This paper addresses the need to improve the processing time of Normalized Cuts while improving the segmentations. A significant proportion of the time in calculating Normalized Cuts is spent computing an affinity matrix. A new algorithm has been developed that selects random features using compressed sensing techniques to reduce the computation needed for the affinity matrix. The new algorithm, when compared to the standard implementation of Normalized Cuts for segmenting images from the BSDS500, produces better segmentations in significantly less time.

  9. Orion Abort Flight Test

    NASA Technical Reports Server (NTRS)

    Hayes, Peggy Sue

    2010-01-01

    The purpose of NASA's Constellation project is to create the new generation of spacecraft for human flight to the International Space Station in low-earth orbit, the lunar surface, as well as for use in future deep-space exploration. One portion of the Constellation program was the development of the Orion crew exploration vehicle (CEV) to be used in spaceflight. The Orion spacecraft consists of a crew module, service module, space adapter and launch abort system. The crew module was designed to hold as many as six crew members. The Orion crew exploration vehicle is similar in design to the Apollo space capsules, although larger and more massive. The Flight Test Office is the responsible flight test organization for the launch abort system on the Orion crew exploration vehicle. The Flight Test Office originally proposed six tests that would demonstrate the use of the launch abort system. These flight tests were to be performed at the White Sands Missile Range in New Mexico and were similar in nature to the Apollo Little Joe II tests performed in the 1960s. The first flight test of the launch abort system was a pad abort (PA-1), that took place on 6 May 2010 at the White Sands Missile Range in New Mexico. Primary flight test objectives were to demonstrate the capability of the launch abort system to propel the crew module a safe distance away from a launch vehicle during a pad abort, to demonstrate the stability and control characteristics of the vehicle, and to determine the performance of the motors contained within the launch abort system. The focus of the PA-1 flight test was engineering development and data acquisition, not certification. In this presentation, a high level overview of the PA-1 vehicle is given, along with an overview of the Mobile Operations Facility and information on the White Sands tracking sites for radar & optics. Several lessons learned are presented, including detailed information on the lessons learned in the development of wind

  10. 1999 Flight Mechanics Symposium

    NASA Technical Reports Server (NTRS)

    Lynch, John P. (Editor)

    1999-01-01

    This conference publication includes papers and abstracts presented at the Flight Mechanics Symposium held on May 18-20, 1999. Sponsored by the Guidance, Navigation and Control Center of Goddard Space Flight Center, this symposium featured technical papers on a wide range of issues related to orbit-attitude prediction, determination, and control; attitude sensor calibration; attitude determination error analysis; attitude dynamics; and orbit decay and maneuver strategy. Government, industry, and the academic community participated in the preparation and presentation of these papers.

  11. The flight robotics laboratory

    NASA Technical Reports Server (NTRS)

    Tobbe, Patrick A.; Williamson, Marlin J.; Glaese, John R.

    1988-01-01

    The Flight Robotics Laboratory of the Marshall Space Flight Center is described in detail. This facility, containing an eight degree of freedom manipulator, precision air bearing floor, teleoperated motion base, reconfigurable operator's console, and VAX 11/750 computer system, provides simulation capability to study human/system interactions of remote systems. The facility hardware, software and subsequent integration of these components into a real time man-in-the-loop simulation for the evaluation of spacecraft contact proximity and dynamics are described.

  12. Dexterous manipulator flight demonstration

    NASA Technical Reports Server (NTRS)

    Carter, Edward L.

    1989-01-01

    The Dexterous Manipulator Flight Experiment, an outgrowth of the Dexterous End Effector project, is an experiment to demonstrate newly developed equipment and methods that make for a dexterous manipulator which can be used on the Space Shuttle or other space missions. The goals of the project, the objectives of the flight experiment, the experiment equipment, and the tasks to be performed during the demonstration are discussed.

  13. Adaptive Structures Flight Experiments

    NASA Technical Reports Server (NTRS)

    Martin, Maurice

    1992-01-01

    The topics are presented in viewgraph form and include the following: adaptive structures flight experiments; enhanced resolution using active vibration suppression; Advanced Controls Technology Experiment (ACTEX); ACTEX program status; ACTEX-2; ACTEX-2 program status; modular control patch; STRV-1b Cryocooler Vibration Suppression Experiment; STRV-1b program status; Precision Optical Bench Experiment (PROBE); Clementine Spacecraft Configuration; TECHSAT all-composite spacecraft; Inexpensive Structures and Materials Flight Experiment (INFLEX); and INFLEX program status.

  14. Adaptive structures flight experiments

    NASA Astrophysics Data System (ADS)

    Martin, Maurice

    The topics are presented in viewgraph form and include the following: adaptive structures flight experiments; enhanced resolution using active vibration suppression; Advanced Controls Technology Experiment (ACTEX); ACTEX program status; ACTEX-2; ACTEX-2 program status; modular control patch; STRV-1b Cryocooler Vibration Suppression Experiment; STRV-1b program status; Precision Optical Bench Experiment (PROBE); Clementine Spacecraft Configuration; TECHSAT all-composite spacecraft; Inexpensive Structures and Materials Flight Experiment (INFLEX); and INFLEX program status.

  15. Heat pipe flight experiments

    NASA Technical Reports Server (NTRS)

    Ollendorf, S.

    1973-01-01

    OAO 3 heat pipe flight experiments to check out weightlessness behavior are reported. Tested were a hollow channel screen system with helical grooves, a heat pipe with a wicking system of horizontal grooves, and a spiral artery pipe with multichannel fluid return to the evaporator. Flight experiment data proved that all heat pipe geometries containing wicking systems provided uninterrupted fluid return to the condensators during weightlessness and sufficient cooling for isothermalizing optical instruments onboard OAO.

  16. Alignment and Integration of Lightweight Mirror Segments

    NASA Technical Reports Server (NTRS)

    Evans, Tyler; Biskach, Michael; Mazzarella, Jim; McClelland, Ryan; Saha, Timo; Zhang, Will; Chan, Kai-Wing

    2011-01-01

    The optics for the International X-Ray Observatory (IXO) require alignment and integration of about fourteen thousand thin mirror segments to achieve the mission goal of 3.0 square meters of effective area at 1.25 keV with an angular resolution of five arc-seconds. These mirror segments are 0.4 mm thick, and 200 to 400 mm in size, which makes it difficult not to impart distortion at the sub-arc-second level. This paper outlines the precise alignment, permanent bonding, and verification testing techniques developed at NASA's Goddard Space Flight Center (GSFC). Improvements in alignment include new hardware and automation software. Improvements in bonding include two module new simulators to bond mirrors into, a glass housing for proving single pair bonding, and a Kovar module for bonding multiple pairs of mirrors. Three separate bonding trials were x-ray tested producing results meeting the requirement of sub ten arc-second alignment. This paper will highlight these recent advances in alignment, testing, and bonding techniques and the exciting developments in thin x-ray optic technology development.

  17. Evaluation of flight spoilers for vortex alleviation. [on wide-bodied jets

    NASA Technical Reports Server (NTRS)

    Croom, D. R.

    1977-01-01

    The paper describes the facilities and test procedures used in a series of wind-tunnel and full-scale flight investigations of the effectiveness of flight spoilers currently existing on wide-bodied transport jet aircraft when used as trailing vortex hazard alleviation devices. Examples of the results of such studies include the variation of trailing wing rolling-moment coefficient with downstream distance behind a B-747 airplane model with various segments of its flight spoilers deflected 45 deg, and comparisons with models without spoilers deflected. It is concluded that the existing flight spoilers on the B-747 are effective as trailing vortex attenuators.

  18. Segmented rail linear induction motor

    DOEpatents

    Cowan, Jr., Maynard; Marder, Barry M.

    1996-01-01

    A segmented rail linear induction motor has a segmented rail consisting of a plurality of nonferrous electrically conductive segments aligned along a guideway. The motor further includes a carriage including at least one pair of opposed coils fastened to the carriage for moving the carriage. A power source applies an electric current to the coils to induce currents in the conductive surfaces to repel the coils from adjacent edges of the conductive surfaces.

  19. Segmented rail linear induction motor

    DOEpatents

    Cowan, M. Jr.; Marder, B.M.

    1996-09-03

    A segmented rail linear induction motor has a segmented rail consisting of a plurality of nonferrous electrically conductive segments aligned along a guideway. The motor further includes a carriage including at least one pair of opposed coils fastened to the carriage for moving the carriage. A power source applies an electric current to the coils to induce currents in the conductive surfaces to repel the coils from adjacent edges of the conductive surfaces. 6 figs.

  20. Multiple-Segment Climbing Robots

    NASA Technical Reports Server (NTRS)

    Kerley, James; May, Edward; Eklund, Wayne

    1994-01-01

    Multiple-segment climbing robots developed to perform such tasks as inspection, sandblasting, welding, and painting on towers and other structures. Look and move like caterpillars. Video camera mounted on one of segments rotated to desired viewing angle. Used in remote inspection of structure, to view motion of robot and/or provides video feedback for control of motion, and/or to guide operation of head mounted on foremost segment with motorized actuators.

  1. Partially segmented deformable mirror

    DOEpatents

    Bliss, Erlan S.; Smith, James R.; Salmon, J. Thaddeus; Monjes, Julio A.

    1991-01-01

    A partially segmented deformable mirror is formed with a mirror plate having a smooth and continuous front surface and a plurality of actuators to its back surface. The back surface is divided into triangular areas which are mutually separated by grooves. The grooves are deep enough to make the plate deformable and the actuators for displacing the mirror plate in the direction normal to its surface are inserted in the grooves at the vertices of the triangular areas. Each actuator includes a transducer supported by a receptacle with outer shells having outer surfaces. The vertices have inner walls which are approximately perpendicular to the mirror surface and make planar contacts with the outer surfaces of the outer shells. The adhesive which is used on these contact surfaces tends to contract when it dries but the outer shells can bend and serve to minimize the tendency of the mirror to warp.

  2. Partially segmented deformable mirror

    DOEpatents

    Bliss, E.S.; Smith, J.R.; Salmon, J.T.; Monjes, J.A.

    1991-05-21

    A partially segmented deformable mirror is formed with a mirror plate having a smooth and continuous front surface and a plurality of actuators to its back surface. The back surface is divided into triangular areas which are mutually separated by grooves. The grooves are deep enough to make the plate deformable and the actuators for displacing the mirror plate in the direction normal to its surface are inserted in the grooves at the vertices of the triangular areas. Each actuator includes a transducer supported by a receptacle with outer shells having outer surfaces. The vertices have inner walls which are approximately perpendicular to the mirror surface and make planar contacts with the outer surfaces of the outer shells. The adhesive which is used on these contact surfaces tends to contract when it dries but the outer shells can bend and serve to minimize the tendency of the mirror to warp. 5 figures.

  3. Segmented field OFFGEL® electrophoresis.

    PubMed

    Tobolkina, Elena; Cortés-Salazar, Fernando; Momotenko, Dmitry; Maillard, Julien; Girault, Hubert H

    2012-11-01

    A multielectrode setup for protein OFFGEL electrophoresis that significantly improves protein separation efficiency has been developed. Here, the electric field is applied by segments between seven electrodes connected in series to six independent power supplies. The aim of this strategy is to distribute evenly the electric field along the multiwell system, and as a consequence to enhance electrophoresis in terms of separation time, resolution, and protein collection efficiency, while minimizing the overall potential difference and therefore the Joule heating. The performances were compared to a standard two-electrode setup for OFFGEL fractionation of a protein mixture, using UV-Vis spectroscopy for quantification and MALDI-MS for identification. The electrophoretic separation process was simulated, and optimized by solving the time-dependent Nernst-Planck differential equation. PMID:23086720

  4. Probabilistic retinal vessel segmentation

    NASA Astrophysics Data System (ADS)

    Wu, Chang-Hua; Agam, Gady

    2007-03-01

    Optic fundus assessment is widely used for diagnosing vascular and non-vascular pathology. Inspection of the retinal vasculature may reveal hypertension, diabetes, arteriosclerosis, cardiovascular disease and stroke. Due to various imaging conditions retinal images may be degraded. Consequently, the enhancement of such images and vessels in them is an important task with direct clinical applications. We propose a novel technique for vessel enhancement in retinal images that is capable of enhancing vessel junctions in addition to linear vessel segments. This is an extension of vessel filters we have previously developed for vessel enhancement in thoracic CT scans. The proposed approach is based on probabilistic models which can discern vessels and junctions. Evaluation shows the proposed filter is better than several known techniques and is comparable to the state of the art when evaluated on a standard dataset. A ridge-based vessel tracking process is applied on the enhanced image to demonstrate the effectiveness of the enhancement filter.

  5. Segmented heat exchanger

    DOEpatents

    Baldwin, Darryl Dean; Willi, Martin Leo; Fiveland, Scott Byron; Timmons, Kristine Ann

    2010-12-14

    A segmented heat exchanger system for transferring heat energy from an exhaust fluid to a working fluid. The heat exchanger system may include a first heat exchanger for receiving incoming working fluid and the exhaust fluid. The working fluid and exhaust fluid may travel through at least a portion of the first heat exchanger in a parallel flow configuration. In addition, the heat exchanger system may include a second heat exchanger for receiving working fluid from the first heat exchanger and exhaust fluid from a third heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the second heat exchanger in a counter flow configuration. Furthermore, the heat exchanger system may include a third heat exchanger for receiving working fluid from the second heat exchanger and exhaust fluid from the first heat exchanger. The working fluid and exhaust fluid may travel through at least a portion of the third heat exchanger in a parallel flow configuration.

  6. Magnesium and Space Flight

    PubMed Central

    Smith, Scott M.; Zwart, Sara R.

    2015-01-01

    Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD) before, during, and after 4–6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female), 35 ± 7 years old). We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4–6-month space missions. PMID:26670248

  7. Designing Flight Deck Procedures

    NASA Technical Reports Server (NTRS)

    Degani, Asaf; Wiener, Earl

    2005-01-01

    Three reports address the design of flight-deck procedures and various aspects of human interaction with cockpit systems that have direct impact on flight safety. One report, On the Typography of Flight- Deck Documentation, discusses basic research about typography and the kind of information needed by designers of flight deck documentation. Flight crews reading poorly designed documentation may easily overlook a crucial item on the checklist. The report surveys and summarizes the available literature regarding the design and typographical aspects of printed material. It focuses on typographical factors such as proper typefaces, character height, use of lower- and upper-case characters, line length, and spacing. Graphical aspects such as layout, color coding, fonts, and character contrast are discussed; and several cockpit conditions such as lighting levels and glare are addressed, as well as usage factors such as angular alignment, paper quality, and colors. Most of the insights and recommendations discussed in this report are transferable to paperless cockpit systems of the future and computer-based procedure displays (e.g., "electronic flight bag") in aerospace systems and similar systems that are used in other industries such as medical, nuclear systems, maritime operations, and military systems.

  8. Interprofessional Flight Camp.

    PubMed

    Alfes, Celeste M; Rowe, Amanda S

    2016-01-01

    The Dorothy Ebersbach Academic Center for Flight Nursing in Cleveland, OH, holds an annual flight camp designed for master's degree nursing students in the acute care nurse practitioner program, subspecializing in flight nursing at the Frances Payne Bolton School of Nursing at Case Western Reserve University. The weeklong interprofessional training is also open to any health care provider working in an acute care setting and focuses on critical care updates, trauma, and emergency care within the critical care transport environment. This year, 29 graduate nursing students enrolled in a master's degree program from Puerto Rico attended. Although the emergency department in Puerto Rico sees and cares for trauma patients, there is no formal trauma training program. Furthermore, the country only has 1 rotor wing air medical transport service located at the Puerto Rico Medical Center in San Juan. Flight faculty and graduate teaching assistants spent approximately 9 months planning for their participation in our 13th annual flight camp. Students from Puerto Rico were extremely pleased with the learning experiences at camp and expressed particular interest in having more training time within the helicopter flight simulator. PMID:27021671

  9. Student Parabolic Flight Campaign

    NASA Astrophysics Data System (ADS)

    Sentse, N. S. M.; Ockels, W. J.

    2002-01-01

    After the successful Student Parabolic Flight Campaigns held in 1994 and 1995, the European Space Agency resumed their organisation of parabolic flight campaigns, dedicated to students of all ESA member states on an annual basis. The Student Parabolic Flight Campaigns are in order to promote microgravity research among students, tomorrow's scientists, since students can bring new ideas and initiatives to the space industry. Already four parabolic flight campaigns have flown and the 2002 student parabolic flight campaign has just flown in September. Thirty experiments are selected to fly in each campaign using the criteria of originality, demonstration of zero G, technical complexity and outreach performed by the team. Each experiment team consists of four university students. This is the chance for students to have the real weightlessness experience on board of the A300 ZERO-G aircraft. In addition, for one or two of the very best student experiments from each campaign, there will be the possibility to re-fly themselves and their experiment on ESA's Professional Parabolic Flight Campaigns. Eventually, one student experiment will be flying to the International Space Station. Conclusively, students' experiments can get fundamentally new and exciting results!

  10. Magnesium and Space Flight.

    PubMed

    Smith, Scott M; Zwart, Sara R

    2015-12-01

    Magnesium is an essential nutrient for muscle, cardiovascular, and bone health on Earth, and during space flight. We sought to evaluate magnesium status in 43 astronauts (34 male, 9 female; 47 ± 5 years old, mean ± SD) before, during, and after 4-6-month space missions. We also studied individuals participating in a ground analog of space flight (head-down-tilt bed rest; n = 27 (17 male, 10 female), 35 ± 7 years old). We evaluated serum concentration and 24-h urinary excretion of magnesium, along with estimates of tissue magnesium status from sublingual cells. Serum magnesium increased late in flight, while urinary magnesium excretion was higher over the course of 180-day space missions. Urinary magnesium increased during flight but decreased significantly at landing. Neither serum nor urinary magnesium changed during bed rest. For flight and bed rest, significant correlations existed between the area under the curve of serum and urinary magnesium and the change in total body bone mineral content. Tissue magnesium concentration was unchanged after flight and bed rest. Increased excretion of magnesium is likely partially from bone and partially from diet, but importantly, it does not come at the expense of muscle tissue stores. While further study is needed to better understand the implications of these findings for longer space exploration missions, magnesium homeostasis and tissue status seem well maintained during 4-6-month space missions. PMID:26670248

  11. Asteroid Redirect Mission: Robotic Segment

    NASA Video Gallery

    This concept animation illustrates the robotic segment of NASA's Asteroid Redirect Mission. The Asteroid Redirect Vehicle, powered by solar electric propulsion, travels to a large asteroid to robot...

  12. Compatibility of segmented thermoelectric generators

    NASA Technical Reports Server (NTRS)

    Snyder, J.; Ursell, T.

    2002-01-01

    It is well known that power generation efficiency improves when materials with appropriate properties are combined either in a cascaded or segmented fashion across a temperature gradient. Past methods for determining materials used in segmentation weremainly concerned with materials that have the highest figure of merit in the temperature range. However, the example of SiGe segmented with Bi2Te3 and/or various skutterudites shows a marked decline in device efficiency even though SiGe has the highest figure of merit in the temperature range. The origin of the incompatibility of SiGe with other thermoelectric materials leads to a general definition of compatibility and intrinsic efficiency. The compatibility factor derived as = (Jl+zr - 1) a is a function of only intrinsic material properties and temperature, which is represented by a ratio of current to conduction heat. For maximum efficiency the compatibility factor should not change with temperature both within a single material, and in the segmented leg as a whole. This leads to a measure of compatibility not only between segments, but also within a segment. General temperature trends show that materials are more self compatible at higher temperatures, and segmentation is more difficult across a larger -T. The compatibility factor can be used as a quantitative guide for deciding whether a material is better suited for segmentation orcascading. Analysis of compatibility factors and intrinsic efficiency for optimal segmentation are discussed, with intent to predict optimal material properties, temperature interfaces, and/or currentheat ratios.

  13. Automated medical image segmentation techniques

    PubMed Central

    Sharma, Neeraj; Aggarwal, Lalit M.

    2010-01-01

    Accurate segmentation of medical images is a key step in contouring during radiotherapy planning. Computed topography (CT) and Magnetic resonance (MR) imaging are the most widely used radiographic techniques in diagnosis, clinical studies and treatment planning. This review provides details of automated segmentation methods, specifically discussed in the context of CT and MR images. The motive is to discuss the problems encountered in segmentation of CT and MR images, and the relative merits and limitations of methods currently available for segmentation of medical images. PMID:20177565

  14. Constellation's First Flight Test: Ares I-X

    NASA Technical Reports Server (NTRS)

    Davis, Stephan R.; Askins, Bruce R.

    2010-01-01

    On October 28, 2009, NASA launched Ares I-X, the first flight test of the Constellation Program that will send human beings to the Moon and beyond. This successful test is the culmination of a three-and-a-half-year, multi-center effort to design, build, and fly the first demonstration vehicle of the Ares I crew launch vehicle, the successor vehicle to the Space Shuttle. The suborbital mission was designed to evaluate the atmospheric flight characteristics of a vehicle dynamically similar to Ares I; perform a first stage separation and evaluate its effects; characterize and control roll torque; stack, fly, and recover a solid-motor first stage testing the Ares I parachutes; characterize ground, flight, and reentry environments; and develop and execute new ground hardware and procedures. Built from existing flight and new simulator hardware, Ares I-X integrated a Shuttle-heritage four-segment solid rocket booster for first stage propulsion, a spacer segment to simulate a five-segment booster, Peacekeeper axial engines for roll control, and Atlas V avionics, as well as simulators for the upper stage, crew module, and launch abort system. The mission leveraged existing logistical and ground support equipment while also developing new ones to accommodate the first in-line rocket for flying astronauts since the Saturn IB last flew from Kennedy Space Center (KSC) in 1975. This paper will describe the development and integration of the various vehicle and ground elements, from conception to stacking in KSC s Vehicle Assembly Building; hardware performance prior to, during, and after the launch; and preliminary lessons and data gathered from the flight. While the Constellation Program is currently under review, Ares I-X has and will continue to provide vital lessons for NASA personnel in taking a vehicle concept from design to flight.

  15. X-1A in flight with flight data superimposed

    NASA Technical Reports Server (NTRS)

    1953-01-01

    for heat transfer research while the X-1C was intended as a high-speed armament systems test bed. All of these aircraft like the original X-1s, were launched from a Boeing B-29 or Boeing B-50 'mothership' to take maximum advantage of their limited flying time with a rocket engine. Most launches were made from the JTB-29A (45-21800). The other launch aircraft was EB-50A (46-006). X-1A The Bell X-1A was similar to the Bell X-1, except for having turbo-driven fuel pumps (instead of a system using nitrogen under pressure), a new cockpit canopy, longer fuselage and increased fuel capacity. The X-1A arrived at Edwards Air Force Base, California on January 7, 1953, with the first glide flight being successfully completed by Bell pilot, Jean 'Skip' Ziegler. The airplane also made five powered flights with Ziegler at the controls. The USAF was attempting a Mach 2 flight and USAF test pilot Charles 'Chuck' Yeager was eager. He reached speed of Mach 2.435, at a altitude of 75,000 feet on December 12, 1953, a speed record at the time. But all was not well, the aircraft encountered an inertial coupling phenomenon and went out of control. Once the X-1A had entered the denser atmosphere (35,000 feet) it slowly stabilized and Yeager was able to return to Edwards. The aircraft had experienced high-speed roll-coupling, something aerodynamicists had predicted, but this was the first actual encounter. On August 26, 1954, Major Arthur Murray, USAF test pilot flew the X-1A to an altitude record of 90,440 feet. NACA High-Speed Flight Station received the aircraft in September 1954 and returned it to Bell for the installation of an ejection seat. NACA test pilot Joseph Walker made a familiarization flight on July 20, 1955 followed by another scheduled flight on August 8, 1955. Shortly before launch the X-1A suffered an explosion. The extent of the damage prohibited landing the crippled aircraft. The X-1A was jettisoned into the desert, exploding and burning on impact. Walker and the B-29

  16. 14 CFR 61.56 - Flight review.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... flight review. (i) A flight simulator or flight training device may be used to meet the flight review requirements of this section subject to the following conditions: (1) The flight simulator or flight training... under part 142 of this chapter. (2) Unless the flight review is undertaken in a flight simulator that......

  17. Advanced Free Flight Planner and Dispatcher's Workstation: Preliminary Design Specification

    NASA Technical Reports Server (NTRS)

    Wilson, J.; Wright, C.; Couluris, G. J.

    1997-01-01

    The National Aeronautics and Space Administration (NASA) has implemented the Advanced Air Transportation Technology (AATT) program to investigate future improvements to the national and international air traffic management systems. This research, as part of the AATT program, developed preliminary design requirements for an advanced Airline Operations Control (AOC) dispatcher's workstation, with emphasis on flight planning. This design will support the implementation of an experimental workstation in NASA laboratories that would emulate AOC dispatch operations. The work developed an airline flight plan data base and specified requirements for: a computer tool for generation and evaluation of free flight, user preferred trajectories (UPT); the kernel of an advanced flight planning system to be incorporated into the UPT-generation tool; and an AOC workstation to house the UPT-generation tool and to provide a real-time testing environment. A prototype for the advanced flight plan optimization kernel was developed and demonstrated. The flight planner uses dynamic programming to search a four-dimensional wind and temperature grid to identify the optimal route, altitude and speed for successive segments of a flight. An iterative process is employed in which a series of trajectories are successively refined until the LTPT is identified. The flight planner is designed to function in the current operational environment as well as in free flight. The free flight environment would enable greater flexibility in UPT selection based on alleviation of current procedural constraints. The prototype also takes advantage of advanced computer processing capabilities to implement more powerful optimization routines than would be possible with older computer systems.

  18. Segmenting Words from Natural Speech: Subsegmental Variation in Segmental Cues

    ERIC Educational Resources Information Center

    Rytting, C. Anton; Brew, Chris; Fosler-Lussier, Eric

    2010-01-01

    Most computational models of word segmentation are trained and tested on transcripts of speech, rather than the speech itself, and assume that speech is converted into a sequence of symbols prior to word segmentation. We present a way of representing speech corpora that avoids this assumption, and preserves acoustic variation present in speech. We…

  19. Emissions from heavy-duty vehicles under actual on-road driving conditions

    NASA Astrophysics Data System (ADS)

    Durbin, Thomas D.; Johnson, Kent; Miller, J. Wayne; Maldonado, Hector; Chernich, Don

    Emission measurements of five 1996-2005 heavy-duty diesel vehicles (HDDVs), representing three engine certification levels, were made using a Mobile Emissions Laboratory under actual on-road driving conditions on surface streets and highways. The results show that emissions depend on the emission component, the age/certification of vehicle/engine, as well as driving condition. For NO x emissions, there was a trend of decreasing emissions in going from older to newer model years and certification standards. Some vehicles showed a tendency toward higher NO x emissions per mile for the higher speed events (⩾55 mph) as compared to the 40 mph cruise and the other surface street driving, while others did not show large differences between different types of driving. For particulate matter (PM), the three oldest trucks had the highest emissions for surface street driving, while the two newest trucks had the highest PM emissions for highway driving. For total hydrocarbons (THC) emissions, some vehicles showed a tendency for higher emissions for the surface street segments compared to the steady-state segments, while others showed a tendency for higher emissions for the 40 mph cruise segments compared to the highway cruise segments. CO emissions under steady-state driving conditions were relatively low (1-3 g mile -1).

  20. Caustic-Side Solvent Extraction: Prediction of Cesium Extraction for Actual Wastes and Actual Waste Simulants

    SciTech Connect

    Delmau, L.H.; Haverlock, T.J.; Sloop, F.V., Jr.; Moyer, B.A.

    2003-02-01

    This report presents the work that followed the CSSX model development completed in FY2002. The developed cesium and potassium extraction model was based on extraction data obtained from simple aqueous media. It was tested to ensure the validity of the prediction for the cesium extraction from actual waste. Compositions of the actual tank waste were obtained from the Savannah River Site personnel and were used to prepare defined simulants and to predict cesium distribution ratios using the model. It was therefore possible to compare the cesium distribution ratios obtained from the actual waste, the simulant, and the predicted values. It was determined that the predicted values agree with the measured values for the simulants. Predicted values also agreed, with three exceptions, with measured values for the tank wastes. Discrepancies were attributed in part to the uncertainty in the cation/anion balance in the actual waste composition, but likely more so to the uncertainty in the potassium concentration in the waste, given the demonstrated large competing effect of this metal on cesium extraction. It was demonstrated that the upper limit for the potassium concentration in the feed ought to not exceed 0.05 M in order to maintain suitable cesium distribution ratios.

  1. F-14 in flight

    NASA Technical Reports Server (NTRS)

    1982-01-01

    NASA 991, an F-14 Navy Tomcat designated the F-14 (1X), cruises over the desert on a research flight at NASA's Dryden Flight Research Center, Edwards, California. The F-14 was used at Dryden between 1979 and 1985 in extensive high-angle-of-attack and spin-control-and-recovery tests. The NASA/Navy program, which included 212 total flights, achieved considerable improvement in the F-14 high-angle-of-attack flying qualities, improved departure and spin resistance, and contributed to substantial improvements in reducing 'wing rock,' (i.e., tilting from one side to another), at high angles of attack. NASA 991 had numerous special additions for high-angle-of-attack and spin-recovery research. These included a battery-powered auxiliary power unit, a flight test nose boom, and a special spin recovery system, consisting of forward mounted, hydraulically actuated canards and an emergency spin chute. NASA's F-14 was first flown by NASA research pilots, but was later flown by Grumman, and by Navy test pilots from Patuxent River Naval Air Station (NAS). The Navy test flights with the spin research vehicle constituted the first program that incorporated air combat maneuvering in its test flights at Dryden. The Navy brought F-14s from Point Mugu and Miramar NAS in San Diego to test the new spin control laws in combat situations. Although the new control laws proved valuable, the Navy did not incorporate them into production F-14s until the F-14D, nearly 15 years later. Among the 212 flights completed for this research project, the F-14 also tested a flush air data system, for gathering data about air speed; provided an updated aeromodel, which is currently in use on Navy F-14 training simulators; created natural laminar flow baseline data for many of NASA's later laminar flow programs; and tested low altitude, asymetric thrust.

  2. DAST Being Calibrated for Flight in Hangar

    NASA Technical Reports Server (NTRS)

    1982-01-01

    DAST-2, a modified BQM-34 Firebee II drone, undergoes calibration in a hangar at the NASA Dryden Flight Research Center. After the crash of the first DAST vehicle, project personnel fitted a second Firebee II (serial # 72-1558) with the rebuilt ARW-1 (ARW-1R) wing. The DAST-2 made a captive flight aboard the B-52 on October 29, 1982, followed by a free flight on November 3, 1982. During January and February of 1983, three launch attempts from the B-52 had to be aborted due to various problems. Following this, the project changed the launch aircraft to a DC-130A. Two captive flights occurred in May 1983. The first launch attempt from the DC-130 took place on June 1, 1983. The mothership released the DAST-2, but the recovery system immediately fired without being commanded. The parachute then disconnected from the vehicle, and the DAST-2 crashed into a farm field near Harper Dry Lake. Wags called this the 'Alfalfa Field Impact Test.' These are the image contact sheets for each image resolution of the NASA Dryden Drones for Aerodynamic and Structural Testing (DAST) Photo Gallery. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and

  3. DAST in Flight Showing Diverging Wingtip Oscillations

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Two BQM-34 Firebee II drones were modified with supercritical airfoils, called the Aeroelastic Research Wing (ARW), for the Drones for Aerodynamic and Structural Testing (DAST) program, which ran from 1977 to 1983. In this view of DAST-1 (Serial # 72-1557), taken on June 12, 1980, severe wingtip flutter is visible. Moments later, the right wing failed catastrophically and the vehicle crashed near Cuddeback Dry Lake. Before the drone was lost, it had made two captive and two free flights. Its first free flight, on October 2, 1979, was cut short by an uplink receiver failure. The drone was caught in midair by an HH-3 helicopter. The second free flight, on March 12, 1980, was successful, ending in a midair recovery. The third free flight, made on June 12, was to expand the flutter envelope. All of these missions launched from the NASA B-52. From 1977 to 1983, the Dryden Flight Research Center, Edwards, California, (under two different names) conducted the DAST Program as a high-risk flight experiment using a ground-controlled, pilotless aircraft. Described by NASA engineers as a 'wind tunnel in the sky,' the DAST was a specially modified Teledyne-Ryan BQM-34E/F Firebee II supersonic target drone that was flown to validate theoretical predictions under actual flight conditions in a joint project with the Langley Research Center, Hampton, Virginia. The DAST Program merged advances in electronic remote control systems with advances in airplane design. Drones (remotely controlled, missile-like vehicles initially developed to serve as gunnery targets) had been deployed successfully during the Vietnamese conflict as reconnaissance aircraft. After the war, the energy crisis of the 1970s led NASA to seek new ways to cut fuel use and improve airplane efficiency. The DAST Program's drones provided an economical, fuel-conscious method for conducting in-flight experiments from a remote ground site. DAST explored the technology required to build wing structures with less than

  4. Current flight test experience related to structural divergence of forward-swept wings

    NASA Technical Reports Server (NTRS)

    Schuster, Lawrence S.; Lokos, William A.

    1988-01-01

    Flight testing the X-29A forward-swept wing aircraft has required development of new flight test techniques to accomplish subcritical extrapolations to the actual structural divergence dynamic pressure of the aircraft. This paper provides current experience related to applying these techniques to analysis of flight data from the forward-swept wing in order to assess the applicability of these techniques to flight test data. The measurements required, maneuvers flown, and flight test conditions are described. Supporting analytical predictions for the techniques are described and the results using flight data are compared to these predictions. Use of the results during envelope expansion and the resulting modifications to the techniques are discussed. Some of the analysis challenges that occurred are addressed and some preliminary conclusions and recommendations are made relative to the usefulness of these techniques in the flight test environment.

  5. Flight test and evaluation of Omega navigation in a general aviation aircraft. Volume 1: Technical

    NASA Technical Reports Server (NTRS)

    Howell, J. D.; Hoffman, W. C.; Hwoschinsky, P. V.; Wischmeyer, C. E.

    1975-01-01

    A low cost flight research program was conducted to evaluate the performance of differential Omega navigation in a general aviation aircraft. The flight program consisted of two distinct parts corresponding to the two major objectives of the study. The Wallops Flight Program was conducted to obtain Omega signal and phase data in the Wallops Flight Center vicinity to provide preliminary technical information and experience in preparation for a comprehensive NASA/FAA flight test program of an experimental differential Omega system. The Northeast Corridor Flight Program was conducted to examine Omega operational suitability and performance on low altitude area navigation (RNAV) routes for city-center to city-center VTOL commercial operations in the Boston-New York-Washington corridor. The development, execution and conclusions of the flight research program are discribed. The results of the study provide both quantitative and qualitative data on the Omega Navigation System under actual operating conditions.

  6. Segmentation: Slicing the Urban Pie.

    ERIC Educational Resources Information Center

    Keim, William A.

    1981-01-01

    Explains market segmentation and defines undifferentiated, concentrated, and differentiated marketing strategies. Describes in detail the marketing planning process at the Metropolitan Community Colleges. Focuses on the development and implementation of an ongoing recruitment program designed for the market segment composed of business employees.…

  7. Market Segmentation: An Instructional Module.

    ERIC Educational Resources Information Center

    Wright, Peter H.

    A concept-based introduction to market segmentation is provided in this instructional module for undergraduate and graduate transportation-related courses. The material can be used in many disciplines including engineering, business, marketing, and technology. The concept of market segmentation is primarily a transportation planning technique by…

  8. The Importance of Marketing Segmentation

    ERIC Educational Resources Information Center

    Martin, Gillian

    2011-01-01

    The rationale behind marketing segmentation is to allow businesses to focus on their consumers' behaviors and purchasing patterns. If done effectively, marketing segmentation allows an organization to achieve its highest return on investment (ROI) in turn for its marketing and sales expenses. If an organization markets its products or services to…

  9. 14 CFR 91.109 - Flight instruction; Simulated instrument flight and certain flight tests.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...-command flight time in the make and model of airplane; and (4) The pilot in command and the instructor... 14 Aeronautics and Space 2 2013-01-01 2013-01-01 false Flight instruction; Simulated instrument flight and certain flight tests. 91.109 Section 91.109 Aeronautics and Space FEDERAL...

  10. 14 CFR 91.109 - Flight instruction; Simulated instrument flight and certain flight tests.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...-command flight time in the make and model of airplane; and (4) The pilot in command and the instructor... 14 Aeronautics and Space 2 2012-01-01 2012-01-01 false Flight instruction; Simulated instrument flight and certain flight tests. 91.109 Section 91.109 Aeronautics and Space FEDERAL...

  11. 14 CFR 121.493 - Flight time limitations: Flight engineers and flight navigators.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Flight time limitations: Flight engineers and flight navigators. 121.493 Section 121.493 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION... AND OPERATIONS OPERATING REQUIREMENTS: DOMESTIC, FLAG, AND SUPPLEMENTAL OPERATIONS Flight...

  12. Method and apparatus for distinguishing actual sparse events from sparse event false alarms

    DOEpatents

    Spalding, Richard E.; Grotbeck, Carter L.

    2000-01-01

    Remote sensing method and apparatus wherein sparse optical events are distinguished from false events. "Ghost" images of actual optical phenomena are generated using an optical beam splitter and optics configured to direct split beams to a single sensor or segmented sensor. True optical signals are distinguished from false signals or noise based on whether the ghost image is presence or absent. The invention obviates the need for dual sensor systems to effect a false target detection capability, thus significantly reducing system complexity and cost.

  13. System dynamic simulation of precision segmented reflector

    NASA Technical Reports Server (NTRS)

    Shih, Choon-Foo; Lou, Michael C.

    1991-01-01

    A joint effort was undertaken on a Precision Segmented Reflector (PSR) Project. The missions in which the PSR is to be used will use large (up to 20 m in diameter) telescopes. The essential requirement for the telescopes is that the reflector surface of the primary mirror must be made extremely precise to allow no more than a few microns of errors and, additionally, this high surface precision must be maintained when the telescope is subjected to on-orbital mechanical and thermal disturbances. Based on the mass, size, and stability considerations, reflector surface formed by segmented, probably actively or passively controlled, composite panels are regarded as most suitable for future space based astronomical telescope applications. In addition to the design and fabrication of composite panels with a surface error of less than 3 microns RMS, PSR also develops related reflector structures, materials, control, and sensing technologies. As part of the planning effort for PSR Technology Demonstration, a system model which couples the reflector, consisting of panels, support truss and actuators, and the optical bench was assembled for dynamic simulations. Random vibration analyses using seismic data obtained from actual measurements at the test site designated for PSR Technology Demonstration are described.

  14. Automatic scale selection for medical image segmentation

    NASA Astrophysics Data System (ADS)

    Bayram, Ersin; Wyatt, Christopher L.; Ge, Yaorong

    2001-07-01

    The scale of interesting structures in medical images is space variant because of partial volume effects, spatial dependence of resolution in many imaging modalities, and differences in tissue properties. Existing segmentation methods either apply a single scale to the entire image or try fine-to-coarse/coarse-to-fine tracking of structures over multiple scales. While single scale approaches fail to fully recover the perceptually important structures, multi-scale methods have problems in providing reliable means to select proper scales and integrating information over multiple scales. A recent approach proposed by Elder and Zucker addresses the scale selection problem by computing a minimal reliable scale for each image pixel. The basic premise of this approach is that, while the scale of structures within an image vary spatially, the imaging system is fixed. Hence, sensor noise statistics can be calculated. Based on a model of edges to be detected, and operators to be used for detection, one can locally compute a unique minimal reliable scale at which the likelihood of error due to sensor noise is less than or equal to a predetermined threshold. In this paper, we improve the segmentation method based on the minimal reliable scale selection and evaluate its effectiveness with both simulated and actual medical data.

  15. Flight Planning in the Cloud

    NASA Technical Reports Server (NTRS)

    Flores, Sarah L.; Chapman, Bruce D.; Tung, Waye W.; Zheng, Yang

    2011-01-01

    This new interface will enable Principal Investigators (PIs), as well as UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar) members to do their own flight planning and time estimation without having to request flight lines through the science coordinator. It uses an all-in-one Google Maps interface, a JPL hosted database, and PI flight requirements to design an airborne flight plan. The application will enable users to see their own flight plan being constructed interactively through a map interface, and then the flight planning software will generate all the files necessary for the flight. Afterward, the UAVSAR team can then complete the flight request, including calendaring and supplying requisite flight request files in the expected format for processing by NASA s airborne science program. Some of the main features of the interface include drawing flight lines on the map, nudging them, adding them to the current flight plan, and reordering them. The user can also search and select takeoff, landing, and intermediate airports. As the flight plan is constructed, all of its components are constantly being saved to the database, and the estimated flight times are updated. Another feature is the ability to import flight lines from previously saved flight plans. One of the main motivations was to make this Web application as simple and intuitive as possible, while also being dynamic and robust. This Web application can easily be extended to support other airborne instruments.

  16. Lessons from dragonfly flight

    NASA Astrophysics Data System (ADS)

    Wang, Z. Jane

    2005-11-01

    I will describe two lessons we learned from analyzing dragonfly flight using computers and table-top experiments. Part I: The role of drag in insect flight. Airplanes and helicopters are airborne via aerodynamic lift, not drag. However, it is not a priori clear that insects use only lift to fly. We find that dragonfly uses mainly drag to hover, which explains an anomalous factor of four in previous estimates of dragonfly lift coefficients, where drag was assumed to be negligible. Moreover, we show that the use of drag for flight is efficient at insect size. This suggests a re-consideration of the hovering efficiency of flapping flight, which is no longer described by the lift to drag ratio. Part II. Fore-hind wing interaction in dragonfly flight. A distinctive feature of dragonflies is their use of two pairs of wings which are driven by separate direct muscles. Dragonflies can actively modulate the phase delay between fore-hind wings during different maneuver. We compute the Navier-Stokes equation around two wings following the motion measured from our tethered dragonfly experiments, and find an explanation of the advantage of counter-stroking during hovering.

  17. Aerodynamics of bird flight

    NASA Astrophysics Data System (ADS)

    Dvořák, Rudolf

    2016-03-01

    Unlike airplanes birds must have either flapping or oscillating wings (the hummingbird). Only such wings can produce both lift and thrust - two sine qua non attributes of flying.The bird wings have several possibilities how to obtain the same functions as airplane wings. All are realized by the system of flight feathers. Birds have also the capabilities of adjusting the shape of the wing according to what the immediate flight situation demands, as well as of responding almost immediately to conditions the flow environment dictates, such as wind gusts, object avoidance, target tracking, etc. In bird aerodynamics also the tail plays an important role. To fly, wings impart downward momentum to the surrounding air and obtain lift by reaction. How this is achieved under various flight situations (cruise flight, hovering, landing, etc.), and what the role is of the wing-generated vortices in producing lift and thrust is discussed.The issue of studying bird flight experimentally from in vivo or in vitro experiments is also briefly discussed.

  18. Measurement and Characterization of Helicopter Noise in Steady-State and Maneuvering Flight

    NASA Technical Reports Server (NTRS)

    Schmitz, Fredric H.; Greenwood, Eric; Sickenberger, Richard D.; Gopalan, Gaurav; Sim, Ben Well-C; Conner, David; Moralez, Ernesto; Decker, William A.

    2007-01-01

    A special acoustic flight test program was performed on the Bell 206B helicopter outfitted with an in-flight microphone boom/array attached to the helicopter while simultaneous acoustic measurements were made using a linear ground array of microphones arranged to be perpendicular to the flight path. Air and ground noise measurements were made in steady-state longitudinal and steady turning flight, and during selected dynamic maneuvers. Special instrumentation, including direct measurement of the helicopter s longitudinal tip-path-plane (TPP) angle, Differential Global Positioning System (DGPS) and Inertial Navigation Unit (INU) measurements, and a pursuit guidance display were used to measure important noise controlling parameters and to make the task of flying precise operating conditions and flight track easier for the pilot. Special care was also made to test only in very low winds. The resulting acoustic data is of relatively high quality and shows the value of carefully monitoring and controlling the helicopter s performance state. This paper has shown experimentally, that microphones close to the helicopter can be used to estimate the specific noise sources that radiate to the far field, if the microphones are positioned correctly relative to the noise source. Directivity patterns for steady, turning flight were also developed, for the first time, and connected to the turning performance of the helicopter. Some of the acoustic benefits of combining normally separated flight segments (i.e. an accelerated segment and a descending segment) were also demonstrated.

  19. Risk segmentation: goal or problem?

    PubMed

    Feldman, R; Dowd, B

    2000-07-01

    This paper traces the evolution of economists' views about risk segmentation in health insurance markets. Originally seen as a desirable goal, risk segmentation has come to be viewed as leading to abnormal profits, wasted resources, and inefficient limitations on coverage and services. We suggest that risk segmentation may be efficient if one takes an ex post view (i.e., after consumers' risks are known). From this perspective, managed care may be a much better method for achieving risk segmentation than limitations on coverage. The most serious objection to risk segmentation is the ex ante concern that it undermines long-term insurance contracts that would protect consumers against changes in lifetime risk. PMID:11010237

  20. Flight control system development and flight test experience with the F-111 mission adaptive wing aircraft

    NASA Technical Reports Server (NTRS)

    Larson, R. R.

    1986-01-01

    The wing on the NASA F-111 transonic aircraft technology airplane was modified to provide flexible leading and trailing edge flaps. This wing is known as the mission adaptive wing (MAW) because aerodynamic efficiency can be maintained at all speeds. Unlike a conventional wing, the MAW has no spoilers, external flap hinges, or fairings to break the smooth contour. The leading edge flaps and three-segment trailing edge flaps are controlled by a redundant fly-by-wire control system that features a dual digital primary system architecture providing roll and symmetric commands to the MAW control surfaces. A segregated analog backup system is provided in the event of a primary system failure. This paper discusses the design, development, testing, qualification, and flight test experience of the MAW primary and backup flight control systems.

  1. The LOFT ground segment

    NASA Astrophysics Data System (ADS)

    Bozzo, E.; Antonelli, A.; Argan, A.; Barret, D.; Binko, Pavel; Brandt, S.; Cavazzuti, E.; Courvoisier, T.; den Herder, J. W.; Feroci, M.; Ferrigno, C.; Giommi, P.; Götz, D.; Guy, L.; Hernanz, M.; in't Zand, J. J. M.; Klochkov, D.; Kuulkers, Erik; Motch, C.; Lumb, D.; Papitto, A.; Pittori, Carlotta; Rohlfs, R.; Santangelo, A.; Schmid, C.; Schwope, A. D.; Smith, P. J.; Webb, N. A.; Wilms, J.; Zane, S.

    2014-07-01

    LOFT, the Large Observatory For X-ray Timing, was one of the ESA M3 mission candidates that completed their assessment phase at the end of 2013. LOFT is equipped with two instruments, the Large Area Detector (LAD) and the Wide Field Monitor (WFM). The LAD performs pointed observations of several targets per orbit (~90 minutes), providing roughly ~80 GB of proprietary data per day (the proprietary period will be 12 months). The WFM continuously monitors about 1/3 of the sky at a time and provides data for about ~100 sources a day, resulting in a total of ~20 GB of additional telemetry. The LOFT Burst alert System additionally identifies on-board bright impulsive events (e.g., Gamma-ray Bursts, GRBs) and broadcasts the corresponding position and trigger time to the ground using a dedicated system of ~15 VHF receivers. All WFM data are planned to be made public immediately. In this contribution we summarize the planned organization of the LOFT ground segment (GS), as established in the mission Yellow Book1. We describe the expected GS contributions from ESA and the LOFT consortium. A review is provided of the planned LOFT data products and the details of the data flow, archiving and distribution. Despite LOFT was not selected for launch within the M3 call, its long assessment phase ( >2 years) led to a very solid mission design and an efficient planning of its ground operations.

  2. Eclipse program QF-106 aircraft in flight

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This photo shows one of the QF-106s used in the Eclipse project in flight. In 1997 and 1998, the Dryden Flight Research Center at Edwards, California, supported and hosted a Kelly Space & Technology, Inc. project called Eclipse, which sought to demonstrate the feasibility of a reusable tow-launch vehicle concept. The project goal was to successfully tow, inflight, a modified QF-106 delta-wing aircraft with an Air Force C-141A transport aircraft. This would demonstrate the possibility of towing and launching an actual launch vehicle from behind a tow plane. Dryden was the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden provided engineering, instrumentation, simulation, modification, maintenance, range support, and research pilots for the test program. The Air Force Flight Test Center (AFFTC), Edwards, California, supplied the C-141A transport aircraft and crew and configured the aircraft as needed for the tests. The AFFTC also provided the concept and detail design and analysis as well as hardware for the tow system and QF-106 modifications. Dryden performed the modifications to convert the QF-106 drone into the piloted EXD-01 (Eclipse eXperimental Demonstrator-01) experimental aircraft. Kelly Space & Technology hoped to use the results gleaned from the tow test in developing a series of low-cost, reusable launch vehicles. These tests demonstrated the validity of towing a delta-wing aircraft having high wing loading, validated the tow simulation model, and demonstrated various operational procedures, such as ground processing of in-flight maneuvers and emergency abort scenarios.

  3. Consequences of Predicted or Actual Asteroid Impacts

    NASA Astrophysics Data System (ADS)

    Chapman, C. R.

    2003-12-01

    Earth impact by an asteroid could have enormous physical and environmental consequences. Impactors larger than 2 km diameter could be so destructive as to threaten civilization. Since such events greatly exceed any other natural or man-made catastrophe, much extrapolation is necessary just to understand environmental implications (e.g. sudden global cooling, tsunami magnitude, toxic effects). Responses of vital elements of the ecosystem (e.g. agriculture) and of human society to such an impact are conjectural. For instance, response to the Blackout of 2003 was restrained, but response to 9/11 terrorism was arguably exaggerated and dysfunctional; would society be fragile or robust in the face of global catastrophe? Even small impacts, or predictions of impacts (accurate or faulty), could generate disproportionate responses, especially if news media reports are hyped or inaccurate or if responsible entities (e.g. military organizations in regions of conflict) are inadequately aware of the phenomenology of small impacts. Asteroid impact is the one geophysical hazard of high potential consequence with which we, fortunately, have essentially no historical experience. It is thus important that decision makers familiarize themselves with the hazard and that society (perhaps using a formal procedure, like a National Academy of Sciences study) evaluate the priority of addressing the hazard by (a) further telescopic searches for dangerous but still-undiscovered asteroids and (b) development of mitigation strategies (including deflection of an oncoming asteroid and on- Earth civil defense). I exemplify these issues by discussing several representative cases that span the range of parameters. Many of the specific physical consequences of impact involve effects like those of other geophysical disasters (flood, fire, earthquake, etc.), but the psychological and sociological aspects of predicted and actual impacts are distinctive. Standard economic cost/benefit analyses may not

  4. Calculation Method for Flight Limit Load of V-band Clamp Separation Shock

    NASA Astrophysics Data System (ADS)

    Iwasa, Takashi; Shi, Qinzhong

    A simplified calculation method for estimating a flight limit load of the V-band clamp separation shock was established. With this method, the flight limit load is estimated through addition of an appropriate envelope margin to the results acquired with the simplified analysis method proposed in our previous paper. The envelope margin used in the method was calculated based on the reviews on the differences observed between the results of a pyroshock test and the analysis. Using the derived envelope margin, a calculating formula of the flight limit load, which envelopes the actual pyroshock responses with a certain probability, was developed. Based on the formula, flight limit loads for several actual satellites were estimated and compared to the test results. The comparative results showed that the estimated flight limit loads appropriately envelope the test results, which confirmed the effectiveness of the proposed method.

  5. Effects of the space flight environment on the immune system

    NASA Technical Reports Server (NTRS)

    Sonnenfeld, Gerald; Butel, Janet S.; Shearer, William T.

    2003-01-01

    Space flight conditions have a dramatic effect on a variety of physiologic functions of mammals, including muscle, bone, and neurovestibular function. Among the physiological functions that are affected when humans or animals are exposed to space flight conditions is the immune response. The focus of this review is on the function of the immune system in space flight conditions during actual space flights, as well as in models of space flight conditions on the earth. The experiments were carried out in tissue culture systems, in animal models, and in human subjects. The results indicate that space flight conditions alter cell-mediated immune responses, including lymphocyte proliferation and subset distribution, and cytokine production. The mechanism(s) of space flight-induced alterations in immune system function remain(s) to be established. It is likely, however, that multiple factors, including microgravity, stress, neuroendocrine factors, sleep disruption, and nutritional factors, are involved in altering certain functions of the immune system. Such alterations could lead to compromised defenses against infections and tumors.

  6. Application of Artificial Intelligence Techniques in Unmanned Aerial Vehicle Flight

    NASA Technical Reports Server (NTRS)

    Bauer, Frank H. (Technical Monitor); Dufrene, Warren R., Jr.

    2003-01-01

    This paper describes the development of an application of Artificial Intelligence for Unmanned Aerial Vehicle (UAV) control. The project was done as part of the requirements for a class in Artificial Intelligence (AI) at Nova southeastern University and as an adjunct to a project at NASA Goddard Space Flight Center's Wallops Flight Facility for a resilient, robust, and intelligent UAV flight control system. A method is outlined which allows a base level application for applying an AI method, Fuzzy Logic, to aspects of Control Logic for UAV flight. One element of UAV flight, automated altitude hold, has been implemented and preliminary results displayed. A low cost approach was taken using freeware, gnu, software, and demo programs. The focus of this research has been to outline some of the AI techniques used for UAV flight control and discuss some of the tools used to apply AI techniques. The intent is to succeed with the implementation of applying AI techniques to actually control different aspects of the flight of an UAV.

  7. Decision Model of Flight Safety Based on Flight Event

    NASA Astrophysics Data System (ADS)

    Xiao-yu, Zhang; Jiu-sheng, Chen

    To improve the management of flight safety for airline company, the hierarchy model is established about the evaluation of flight safety by flight event. Flight safety is evaluated by improved analytical hierarchy process (AHP). The method to rectify the consistency judgment matrix is given to improve the AHP. Then the weight can be given directly without consistency judgment matrix. It ensures absolute consistent of judgment matrix. By statistic of flight event incidence history data, the flight safety analysis is processed by means of static evaluation and dynamic evaluation. The hierarchy structure model is implemented based on .NET, and the simulation result proves the validity of the method.

  8. Pathfinder aircraft in flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The unique Pathfinder solar-powered flying wing, is shown during a checkout flight from the Dryden Flight Research Center, Edwards, California. This two-hour low-altitude flight over Rogers Dry Lake, Nov. 19, 1996, served to test aircraft systems and functional procedures, according to officials of AeroVironment, Inc., Pathfinder's developer and operator. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus configuration. (See the Pathfinder Plus photos and project description.)

  9. Ares I-X Flight Test Vehicle:Stack 1 Modal Test

    NASA Technical Reports Server (NTRS)

    Buehrle, Ralph D.; Templeton, Justin D.; Reaves, Mercedes C.; Horta, Lucas G.; Gaspar, James L.; Bartolotta, Paul A.; Parks, Russel A.; Lazor, Daniel R.

    2010-01-01

    Ares I-X was the first flight test vehicle used in the development of NASA s Ares I crew launch vehicle. The Ares I-X used a 4-segment reusable solid rocket booster from the Space Shuttle heritage with mass simulators for the 5th segment, upper stage, crew module and launch abort system. Three modal tests were defined to verify the dynamic finite element model of the Ares I-X flight test vehicle. Test configurations included two partial stacks and the full Ares I-X flight test vehicle on the Mobile Launcher Platform. This report focuses on the second modal test that was performed on the middle section of the vehicle referred to as Stack 1, which consisted of the subassembly from the 5th segment simulator through the interstage. This report describes the test requirements, constraints, pre-test analysis, test operations and data analysis for the Ares I-X Stack 1 modal test.

  10. 2001 Flight Mechanics Symposium

    NASA Technical Reports Server (NTRS)

    Lynch, John P. (Editor)

    2001-01-01

    This conference publication includes papers and abstracts presented at the Flight Mechanics Symposium held on June 19-21, 2001. Sponsored by the Guidance, Navigation and Control Center of Goddard Space Flight Center, this symposium featured technical papers on a wide range of issues related to attitude/orbit determination, prediction and control; attitude simulation; attitude sensor calibration; theoretical foundation of attitude computation; dynamics model improvements; autonomous navigation; constellation design and formation flying; estimation theory and computational techniques; Earth environment mission analysis and design; and, spacecraft re-entry mission design and operations.

  11. ATIC Flight Data Processing

    NASA Technical Reports Server (NTRS)

    Ahn, H. S.; Adams, James H., Jr.; Bashindzhagyan, G.; Ampe, J.; Case, G.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The first flight of the Advanced Thin Ionization Calorimeter (ATIC) experiment from McMurdo, Antarctica lasted for 16 days, starting on December 28, 2000. The ATIC instrument consists of a fully active 320-crystal, 960-channel Bismuth Germanate (BGO) calorimeter, 202 scintillator strips (808 channels) in 3 hodoscopes, interleaved with graphite target layers, and a 4480-pixel silicon matrix charge detector. We have developed an object-oriented data processing package based on ROOT. In this paper, we describe the data processing scheme used in handling the accumulated 45 GB of flight data. We discuss calibration issues, particularly the time-dependence of housekeeping information.

  12. Theory of flapping flight

    NASA Technical Reports Server (NTRS)

    Lippisch, Alexander

    1925-01-01

    Before attempting to construct a human-powered aircraft, the aviator will first try to post himself theoretically on the possible method of operating the flapping wings. This report will present a graphic and mathematical method, which renders it possible to determine the power required, so far as it can be done on the basis of the wing dimensions. We will first consider the form of the flight path through the air. The simplest form is probably the curve of ordinary wave motion. After finding the flight curve, we must next determine the change in the angle of attack while passing through the different phases of the wave.

  13. Soaring flight in Guinea

    NASA Technical Reports Server (NTRS)

    Idrac, P

    1920-01-01

    The term soaring is applied here to the flight of certain large birds which maneuver in the air without moving their wings. The author explains the methods of his research and here gives approximate figures for the soaring flight of the Egyptian Vulture and the African White backed Vulture. Figures are given in tabular form for relative air speed per foot per second, air velocity per foot per second, lift/drag ratio, and selected coefficients. The author argues that although the figures given were taken from a very limited series of observations, they have nevertheless thrown some light on the use by birds of the internal energy of the air.

  14. C-47 in Flight

    NASA Technical Reports Server (NTRS)

    1963-01-01

    NASA Flight Research Center's Douglas R4D-5/C-47H (Bu. No. 17136) in flight, with its landing gear extended, in 1963. The R4D Skytrain was one of the early workhorses for NACA and NASA at Edwards Air Force Base, California, from 1952 to 1984. Designated the R4D by the U.S. Navy, the aircraft was called the C-47 by the U.S. Army and U.S. Air Force and the DC-3 by its builder, Douglas Aircraft. Nearly everyone called it the 'Gooney Bird.' In 1962, Congress consolidated the military-service designations and called all of them the C-47. After that date, the R4D at NASA's Flight Research Center (itself redesignated the Dryden Flight Research Center in 1976) was properly called a C-47. Over the 32 years it was used at Edwards, three different R4D/C-47s were used to shuttle personnel and equipment between NACA/NASA Centers and test locations throughout the country and for other purposes. One purpose was landing on 'dry' lakebeds used as alternate landing sites for the X-15, to determine whether their surfaces were hard (dry) enough for the X-15 to land on in case an emergency occurred after its launch and before it could reach Rogers Dry Lake at Edwards Air Force Base. The R4D/C-47 served a variety of needs, including serving as the first air-tow vehicle for the M2-F1 lifting body (which was built of mahogany plywood). The C-47 (as it was then called) was used for 77 tows before the M2-F1 was retired for more advanced lifting bodies that were dropped from the NASA B-52 'Mothership.' The R4D also served as a research aircraft. It was used to conduct early research on wing-tip-vortex flow visualization as well as checking out the NASA Uplink Control System. The first Gooney Bird was at the NACA High-Speed Flight Research Station (now the Dryden Flight Research Center) from 1952 to 1956 and flew at least one cross-country flight to the Langley Research Center, Hampton, Virginia. The second R4D, used from 1956 to 1979, made many flights to the Ames Research Center, Mountain

  15. ASTRID rocket flight test

    SciTech Connect

    Whitehead, J.C.; Pittenger, L.C.; Colella, N.J.

    1994-07-01

    On February 4, 1994, we successfully flight tested the ASTRID rocket from Vandenberg Air Force Base. The technology for this rocket originated in the Brilliant Pebbles program and represents a five-year development effort. This rocket demonstrated how our new pumped-propulsion technology-which reduced the total effective engine mass by more than one half and cut the tank mass to one fifth previous requirements-would perform in atmospheric flight. This demonstration paves the way for potential cost-effective uses of the new propulsion system in commercial aerospace vehicles, exploration of the planets, and defense applications.

  16. Saturn 5 launch vehicle flight evaluation report, AS-510, Apollo 15 mission

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A postflight analysis of the Apollo 15 flight is presented. The performance of the launch vehicle, spacecraft, and lunar roving vehicle are discussed. The objective of the evaluation is to acquire, reduce, analyze, and report on flight data to the extent required to assure future mission success and vehicle reliability. Actual flight problems are identified, their causes are determined, and recommendations are made for corrective actions. Summaries of launch operations and spacecraft performance are included. Significant events for all phases of the flight are tabulated.

  17. Optimization and simulation of flight control laws under parameter uncertainty and external disturbances

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Several tasks pertinent to flight control in parameter uncertainty and wind-gust loading were successfully completed. Identification algorithms for extracting stability and control derivatives from flight data taking gust loading into account were developed. They were verified by simulation and evaluated throughly on actual flight data taken on a Lockheed Jet Star flying in turbulence. In particular the need for automatically generated dither-like inputs was studied. Criteria for performance evaluation using stochastic models were developed for gust alleviation as well as handling quantities. Algorithms for assessing degradation in performance due to parameter uncertainty were developed and evaluated using flight test data.

  18. Modeling of current characteristics of Segmented Langmuir Probe on DEMETER

    NASA Astrophysics Data System (ADS)

    Imtiaz, Nadia; Marchand, Richard

    2012-10-01

    We model current characteristics of a Segmented Langmuir probe mounted on DEMETER satellite. The probe is used to measure electron density and temperature in the ionosphere on DEMETER at altitudes of 700 km.It also serves as a Mach probe and used to measure the plasma flow velocities in satellite frame of reference.The probe is partitioned into seven segments: six electrically insulated spherical caps and a Guard electrode (sphere). Comparisons are made between the model predictions and measurements for characteristics of various segments for actual ionospheric plasma conditions encountered along DEMETER orbit. Segment characteristics are computed numerically with PTetra, a 3 D PIC simulation code. The model accounts for several physical effects of importance in the interaction of spacecraft with the space environment e.g. satellite charging, photoelectron and secondary electron emission. The supersonic flow of plasma results in different characteristics for different segments of the probe. This anisotropy in turn can be used to infer the velocity of the background plasma. It is observed in that a positive bias can significantly modify plasma sheath region and wake formation around the probe.Computed characteristics and their angular anisotropy are compared with measurements.

  19. Audio-guided audiovisual data segmentation, indexing, and retrieval

    NASA Astrophysics Data System (ADS)

    Zhang, Tong; Kuo, C.-C. Jay

    1998-12-01

    While current approaches for video segmentation and indexing are mostly focused on visual information, audio signals may actually play a primary role in video content parsing. In this paper, we present an approach for automatic segmentation, indexing, and retrieval of audiovisual data, based on audio content analysis. The accompanying audio signal of audiovisual data is first segmented and classified into basic types, i.e., speech, music, environmental sound, and silence. This coarse-level segmentation and indexing step is based upon morphological and statistical analysis of several short-term features of the audio signals. Then, environmental sounds are classified into finer classes, such as applause, explosions, bird sounds, etc. This fine-level classification and indexing step is based upon time- frequency analysis of audio signals and the use of the hidden Markov model as the classifier. On top of this archiving scheme, an audiovisual data retrieval system is proposed. Experimental results show that the proposed approach has an accuracy rate higher than 90 percent for the coarse-level classification, and higher than 85 percent for the fine-level classification. Examples of audiovisual data segmentation and retrieval are also provided.

  20. Flight summaries and temperature climatology at airliner cruise altitudes from GASP (Global Atmospheric Sampling Program) data

    NASA Technical Reports Server (NTRS)

    Nastrom, G. D.; Jasperson, W. H.

    1983-01-01

    Temperature data obtained by the Global Atmospheric Sampling Program (GASP) during the period March 1975 to July 1979 are compiled to form flight summaries of static air temperature and a geographic temperature climatology. The flight summaries include the height and location of the coldest observed temperature and the mean flight level, temperature and the standard deviation of temperature for each flight as well as for flight segments. These summaries are ordered by route and month. The temperature climatology was computed for all statistically independent temperture data for each flight. The grid used consists of 5 deg latitude, 30 deg longitude and 2000 feet vertical resolution from FL270 to FL430 for each month of the year. The number of statistically independent observations, their mean, standard deviation and the empirical 98, 50, 16, 2 and .3 probability percentiles are presented.

  1. Comparison of Commercial Aircraft Fuel Requirements in Regards to FAR, Flight Profile Simulation, and Flight Operational Techniques

    NASA Astrophysics Data System (ADS)

    Heitzman, Nicholas

    There are significant fuel consumption consequences for non-optimal flight operations. This study is intended to analyze and highlight areas of interest that affect fuel consumption in typical flight operations. By gathering information from actual flight operators (pilots, dispatch, performance engineers, and air traffic controllers), real performance issues can be addressed and analyzed. A series of interviews were performed with various individuals in the industry and organizations. The wide range of insight directed this study to focus on FAA regulations, airline policy, the ATC system, weather, and flight planning. The goal is to highlight where operational performance differs from design intent in order to better connect optimization with actual flight operations. After further investigation and consensus from the experienced participants, the FAA regulations do not need any serious attention until newer technologies and capabilities are implemented. The ATC system is severely out of date and is one of the largest limiting factors in current flight operations. Although participants are pessimistic about its timely implementation, the FAA's NextGen program for a future National Airspace System should help improve the efficiency of flight operations. This includes situational awareness, weather monitoring, communication, information management, optimized routing, and cleaner flight profiles like Required Navigation Performance (RNP) and Continuous Descent Approach (CDA). Working off the interview results, trade-studies were performed using an in-house flight profile simulation of a Boeing 737-300, integrating NASA legacy codes EDET and NPSS with a custom written mission performance and point-performance "Skymap" calculator. From these trade-studies, it was found that certain flight conditions affect flight operations more than others. With weather, traffic, and unforeseeable risks, flight planning is still limited by its high level of precaution. From this

  2. Position sensors for segmented mirror

    NASA Astrophysics Data System (ADS)

    Rozière, Didier; Buous, Sébastien; Courteville, Alain

    2004-09-01

    There are currently several projects for giant telescopes with segmented mirrors under way. These future telescopes will have their primary mirror made of several thousand segments. The main advantage of segmentation is that it enables the active control of the whole mirror, so as to suppress the deformations of the support structure due to the wind, gravity, thermal inhomogeneities etc. ..., thus getting the best possible stigmatism. However, providing active control of segmented mirrors requires numerous accurate edges sensors. It is acknowledged that capacitance-based technology nowadays offers the best metrological performances-to-cost ratio. As the leader in capacitive technology, FOGALE nanotech offers an original concept which reduces the cost of instrumentation, sensors and electronics, while keeping a very high level of performances with a manufacturing process completely industrialised. We present here the sensors developed for the Segment Alignment Measurement System (SAMS) of the Southern African Large Telescope (SALT). This patented solution represents an important improvement in terms of cost, to market the Position Sensors for Segmented Mirrors of ELTs, whilst maintaining a very high performance level. We present here the concept, the laboratory qualification, and the first trials on the 7 central segments of SALT. The laboratory results are good, and we are now working on the on-site implementation to improve the immunity of the sensors to environment.

  3. Multiatlas segmentation as nonparametric regression.

    PubMed

    Awate, Suyash P; Whitaker, Ross T

    2014-09-01

    This paper proposes a novel theoretical framework to model and analyze the statistical characteristics of a wide range of segmentation methods that incorporate a database of label maps or atlases; such methods are termed as label fusion or multiatlas segmentation. We model these multiatlas segmentation problems as nonparametric regression problems in the high-dimensional space of image patches. We analyze the nonparametric estimator's convergence behavior that characterizes expected segmentation error as a function of the size of the multiatlas database. We show that this error has an analytic form involving several parameters that are fundamental to the specific segmentation problem (determined by the chosen anatomical structure, imaging modality, registration algorithm, and label-fusion algorithm). We describe how to estimate these parameters and show that several human anatomical structures exhibit the trends modeled analytically. We use these parameter estimates to optimize the regression estimator. We show that the expected error for large database sizes is well predicted by models learned on small databases. Thus, a few expert segmentations can help predict the database sizes required to keep the expected error below a specified tolerance level. Such cost-benefit analysis is crucial for deploying clinical multiatlas segmentation systems. PMID:24802528

  4. Direct volume estimation without segmentation

    NASA Astrophysics Data System (ADS)

    Zhen, X.; Wang, Z.; Islam, A.; Bhaduri, M.; Chan, I.; Li, S.

    2015-03-01

    Volume estimation plays an important role in clinical diagnosis. For example, cardiac ventricular volumes including left ventricle (LV) and right ventricle (RV) are important clinical indicators of cardiac functions. Accurate and automatic estimation of the ventricular volumes is essential to the assessment of cardiac functions and diagnosis of heart diseases. Conventional methods are dependent on an intermediate segmentation step which is obtained either manually or automatically. However, manual segmentation is extremely time-consuming, subjective and highly non-reproducible; automatic segmentation is still challenging, computationally expensive, and completely unsolved for the RV. Towards accurate and efficient direct volume estimation, our group has been researching on learning based methods without segmentation by leveraging state-of-the-art machine learning techniques. Our direct estimation methods remove the accessional step of segmentation and can naturally deal with various volume estimation tasks. Moreover, they are extremely flexible to be used for volume estimation of either joint bi-ventricles (LV and RV) or individual LV/RV. We comparatively study the performance of direct methods on cardiac ventricular volume estimation by comparing with segmentation based methods. Experimental results show that direct estimation methods provide more accurate estimation of cardiac ventricular volumes than segmentation based methods. This indicates that direct estimation methods not only provide a convenient and mature clinical tool for cardiac volume estimation but also enables diagnosis of cardiac diseases to be conducted in a more efficient and reliable way.

  5. Orbiter Boundary Layer Transition Stability Modeling at Flight Entry Conditions

    NASA Technical Reports Server (NTRS)

    Bartkowicz, Matt; Johnson, Heath; Candler, Graham; Campbell, Charles H.

    2009-01-01

    State of the art boundary layer stability modeling capabilities are increasingly seeing application to entry flight vehicles. With the advent of user friendly and robust implementations of two-dimensional chemical nonequilibrium stability modeling with the STABL/PSE-CHEM software, the need for flight data to calibrate such analyses capabilities becomes more critical. Recent efforts to perform entry flight testing with the Orbiter geometry related to entry aerothermodynamics and boundary layer transition is allowing for a heightened focus on the Orbiter configuration. A significant advancement in the state of the art can likely be achieved by establishing a basis of understanding for the occurrence of boundary layer transition on the Orbiter due to discrete protruding gap fillers and the nominal distributed roughness of the actual thermal protection system. Recent success in demonstrating centerline two-dimensional stability modeling on the centerline of the Orbiter at flight entry conditions provides a starting point for additional investigations. The more detailed paper will include smooth Orbiter configuration boundary layer stability results for several typical orbiter entry conditions. In addition, the numerical modeling approach for establishing the mean laminar flow will be reviewed and the method for determining boundary layer disturbance growth will be overviewed. In addition, if actual Orbiter TPS surface data obtained via digital surface scans become available, it may be possible to investigate the effects of an as-flown flight configuration on boundary layer transition compared to a smooth CAD reference.

  6. Evaluating Flight Crew Operator Manual Documentation

    NASA Technical Reports Server (NTRS)

    Sherry, Lance; Feary, Michael

    1998-01-01

    Aviation and cognitive science researchers have identified situations in which the pilot s expectations for the behavior of the avionics are not matched by the actual behavior of the avionics. Researchers have attributed these "automation surprises" to the complexity of the avionics mode logic, the absence of complete training, limitations in cockpit displays, and ad-hoc conceptual models of the avionics. Complete canonical rule-based descriptions of the behavior of the autopilot provide the basis for understanding the perceived complexity of the autopilots, the differences between the pilot s and autopilot s conceptual models, and the limitations in training materials and cockpit displays. This paper compares the behavior of the autopilot Vertical Speed/Flight Path Angle (VS-FPA) mode as described in the Flight Crew Operators Manual (FCOM) and the actual behavior of the VS-FPA mode defined in the autopilot software. This example demonstrates the use of the Operational Procedure Model (OPM) as a method for using the requirements specification for the design of the software logic as information requirements for training.

  7. Ares I-X Flight Test - On the Fast Track to the Future

    NASA Technical Reports Server (NTRS)

    Davis, Stephan R.; Robinson, Kimberly F.

    2008-01-01

    In less than two years, the National Aeronautics and Space Administration (NASA) will launch the Ares I-X mission. This will be the first flight of the Ares I crew launch vehicle, which, together with the Ares V cargo launch vehicle, will send humans to the Moon and beyond. Personnel from the Ares I-X Mission Management Office (MMO) are finalizing designs and fabricating vehicle hardware for an April 2009 launch. Ares I-X will be a suborbital development flight test that will gather critical data about the flight dynamics of the integrated launch vehicle stack; understand how to control its roll during flight; better characterize the severe stage separation environments that the upper stage engine will experience during future flights; and demonstrate the first stage recovery system. NASA also will modify the launch infrastructure and ground and mission operations. The Ares I-X Flight Test Vehicle (FTV) will incorporate flight and mockup hardware similar in mass and weight to the operational vehicle. It will be powered by a four-segment Solid Rocket Booster (SRB), which is currently in Shuttle inventory, and will include a fifth spacer segment and new forward structures to make the booster approximately the same size and weight as the five-segment SRB. The Ares I-X flight profile will closely approximate the flight conditions that the Ares I will experience through Mach 4.5, up to approximately130,OOO feet and through maximum dynamic pressure ("Max Q") of approximately 800 pounds per square foot. Data from the Ares I-X flight will support the Ares I Critical Design Review (CDR), scheduled for 2010. Work continues on Ares I-X design and hardware fabrication. All of the individual elements are undergoing CDRs, followed by an integrated vehicle CDR in March 2008. The various hardware elements are on schedule to begin deliveries to Kennedy Space Center (KSC) in early September 2008.

  8. Shuttle Abort Flight Management (SAFM) - Application Overview

    NASA Technical Reports Server (NTRS)

    Hu, Howard; Straube, Tim; Madsen, Jennifer; Ricard, Mike

    2002-01-01

    One of the most demanding tasks that must be performed by the Space Shuttle flight crew is the process of determining whether, when and where to abort the vehicle should engine or system failures occur during ascent or entry. Current Shuttle abort procedures involve paging through complicated paper checklists to decide on the type of abort and where to abort. Additional checklists then lead the crew through a series of actions to execute the desired abort. This process is even more difficult and time consuming in the absence of ground communications since the ground flight controllers have the analysis tools and information that is currently not available in the Shuttle cockpit. Crew workload specifically abort procedures will be greatly simplified with the implementation of the Space Shuttle Cockpit Avionics Upgrade (CAU) project. The intent of CAU is to maximize crew situational awareness and reduce flight workload thru enhanced controls and displays, and onboard abort assessment and determination capability. SAFM was developed to help satisfy the CAU objectives by providing the crew with dynamic information about the capability of the vehicle to perform a variety of abort options during ascent and entry. This paper- presents an overview of the SAFM application. As shown in Figure 1, SAFM processes the vehicle navigation state and other guidance information to provide the CAU displays with evaluations of abort options, as well as landing site recommendations. This is accomplished by three main SAFM components: the Sequencer Executive, the Powered Flight Function, and the Glided Flight Function, The Sequencer Executive dispatches the Powered and Glided Flight Functions to evaluate the vehicle's capability to execute the current mission (or current abort), as well as more than IS hypothetical abort options or scenarios. Scenarios are sequenced and evaluated throughout powered and glided flight. Abort scenarios evaluated include Abort to Orbit (ATO), Transatlantic

  9. CLVTOPS Liftoff and Separation Analysis Validation Using Ares I-X Flight Data

    NASA Technical Reports Server (NTRS)

    Burger, Ben; Schwarz, Kristina; Kim, Young

    2011-01-01

    CLVTOPS is a multi-body time domain flight dynamics simulation tool developed by NASA s Marshall Space Flight Center (MSFC) for a space launch vehicle and is based on the TREETOPS simulation tool. CLVTOPS is currently used to simulate the flight dynamics and separation/jettison events of the Ares I launch vehicle including liftoff and staging separation. In order for CLVTOPS to become an accredited tool, validation against other independent simulations and real world data is needed. The launch of the Ares I-X vehicle (first Ares I test flight) on October 28, 2009 presented a great opportunity to provide validation evidence for CLVTOPS. In order to simulate the Ares I-X flight, specific models were implemented into CLVTOPS. These models include the flight day environment, reconstructed thrust, reconstructed mass properties, aerodynamics, and the Ares I-X guidance, navigation and control models. The resulting simulation output was compared to Ares I-X flight data. During the liftoff region of flight, trajectory states from the simulation and flight data were compared. The CLVTOPS results were used to make a semi-transparent animation of the vehicle that was overlaid directly on top of the flight video to provide a qualitative measure of the agreement between the simulation and the actual flight. During ascent, the trajectory states of the vehicle were compared with flight data. For the stage separation event, the trajectory states of the two stages were compared to available flight data. Since no quantitative rotational state data for the upper stage was available, the CLVTOPS results were used to make an animation of the two stages to show a side-by-side comparison with flight video. All of the comparisons between CLVTOPS and the flight data show good agreement. This paper documents comparisons between CLVTOPS and Ares I-X flight data which serve as validation evidence for the eventual accreditation of CLVTOPS.

  10. Autonomous Formation Flight

    NASA Technical Reports Server (NTRS)

    Schkolnik, Gerard S.; Cobleigh, Brent

    2004-01-01

    NASA's Strategic Plan for the Aerospace Technology Enterprise includes ambitious objectives focused on affordable air travel, reduced emissions, and expanded aviation-system capacity. NASA Dryden Flight Research Center, in cooperation with NASA Ames Research Center, the Boeing Company, and the University of California, Los Angeles, has embarked on an autonomous-formation-flight project that promises to make significant strides towards these goals. For millions of years, birds have taken advantage of the aerodynamic benefit of flying in formation. The traditional "V" formation flown by many species of birds (including gulls, pelicans, and geese) enables each of the trailing birds to fly in the upwash flow field that exists just outboard of the bird immediately ahead in the formation. The result for each trailing bird is a decrease in induced drag and thus a reduction in the energy needed to maintain a given speed. Hence, for migratory birds, formation flight extends the range of the system of birds over the range of birds flying solo. The Autonomous Formation Flight (AFF) Project is seeking to extend this symbiotic relationship to aircraft.

  11. F-104 in flight

    NASA Technical Reports Server (NTRS)

    1993-01-01

    F-104G N826NA during a 1993 flight over the Mojave desert, outfitted with an experiment pylon under the center fuselage and wing racks. The F-104 was originally designed by Kelly Johnson of the Lockheed Skunk Works as a day fighter. The aircraft soon proved ideal for both research and training. For instance, a modified F-104 tested the reaction control jets for the X-15. The F-104's short wings and low lift to drag ratio made it ideal to simulate the X-15 landing profile, which the F-104s often undertook before X-15 flights in order to acquaint pilots with the rocket plane's landing characteristics. This training role continued with the lifting bodies. NASA F-104s were also used for high-speed research after the X-1E was retired. Finally, the F-104s were also used as chase planes for research missions. The F-104G was a late model designed as a fighter bomber for low-level strike missions. It was built for use by the West German Air Force and other foreign governments. N826NA accomplished a wide-range of research activities, including tests of the Space Shuttle's Thermal Protection System (TPS) tiles. The aircraft made 1,415 flights before being retired. It is now on display at the Dryden Flight Research Center.

  12. Weather and Flight Testing

    NASA Technical Reports Server (NTRS)

    Wiley, Scott

    2007-01-01

    This viewgraph document reviews some of the weather hazards involved with flight testing. Some of the hazards reviewed are: turbulence, icing, thunderstorms and winds and windshear. Maps, pictures, satellite pictures of the meteorological phenomena and graphs are included. Also included are pictures of damaged aircraft.

  13. F-106 in flight

    NASA Technical Reports Server (NTRS)

    1987-01-01

    Convair NF-106B designated #816 in level flight over cloud cover. This side view shows the tandem seating arrangement in the cockpit for two pilots and the relationship of the inlet to the cockpit area and leading edge of the wing.

  14. Overbooking Airline Flights.

    ERIC Educational Resources Information Center

    Austin, Joe Dan

    1982-01-01

    The problems involved in making reservations for airline flights is discussed in creating a mathematical model designed to maximize an airline's income. One issue not considered in the model is any public relations problem the airline may have. The model does take into account the issue of denied boarding compensation. (MP)

  15. Pegasus hypersonic flight research

    NASA Technical Reports Server (NTRS)

    Curry, Robert E.; Meyer, Robert R., Jr.; Budd, Gerald D.

    1992-01-01

    Hypersonic aeronautics research using the Pegasus air-launched space booster is described. Two areas are discussed in the paper: previously obtained results from Pegasus flights 1 and 2, and plans for future programs. Proposed future research includes boundary-layer transition studies on the airplane-like first stage and also use of the complete Pegasus launch system to boost a research vehicle to hypersonic speeds. Pegasus flight 1 and 2 measurements were used to evaluate the results of several analytical aerodynamic design tools applied during the development of the vehicle as well as to develop hypersonic flight-test techniques. These data indicated that the aerodynamic design approach for Pegasus was adequate and showed that acceptable margins were available. Additionally, the correlations provide insight into the capabilities of these analytical tools for more complex vehicles in which design margins may be more stringent. Near-term plans to conduct hypersonic boundary-layer transition studies are discussed. These plans involve the use of a smooth metallic glove at about the mid-span of the wing. Longer-term opportunities are proposed which identify advantages of the Pegasus launch system to boost large-scale research vehicles to the real-gas hypersonic flight regime.

  16. Flight performance of Skylab attitude and pointing control system

    NASA Technical Reports Server (NTRS)

    Chubb, W. B.; Kennel, H. F.; Rupp, C. C.; Seltzer, S. M.

    1975-01-01

    The Skylab attitude and pointing control system (APCS) requirements are briefly reviewed and the way in which they became altered during the prelaunch phase of development is noted. The actual flight mission (including mission alterations during flight) is described. The serious hardware failures that occurred, beginning during ascent through the atmosphere, also are described. The APCS's ability to overcome these failures and meet mission changes are presented. The large around-the-clock support effort on the ground is discussed. Salient design points and software flexibility that should afford pertinent experience for future spacecraft attitude and pointing control system designs are included.

  17. Centurion in Flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The lightweight structure of the Centurion remotely piloted flying wing can be seen clearly in this photo from beneath the vehicle. The photo was taken during an initial series of low-altitude, battery-powered test flights conducted in late 1998 at NASA's Dryden Flight Research Center, Edwards, California. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds

  18. Centurion in Flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The long, narrow wing design and lightweight structure of the Centurion remotely piloted flying wing is clearly visible in this photo, taken during an initial series of low-altitude, battery-powered flight tests with the aircraft at NASA's Dryden Flight Research Center in late 1998. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the

  19. Centurion in Banked Flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Centurion remotely piloted flying wing during an initial series of low-altitude, battery-powered test flights in late 1998 at NASA's Dryden Flight Research Center, Edwards, California. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft

  20. Centurion in Flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The Centurion remotely piloted flying wing during an initial series of low-altitude, battery-powered test flights in late 1998 at NASA's Dryden Flight Research Center, Edwards, California. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight. John Del Frate, Dryden's project manager for solar-powered aircraft

  1. Centurion in Flight

    NASA Technical Reports Server (NTRS)

    1998-01-01

    The long, curved wing of the Centurion remotely piloted flying wing is clearly visible in this photo, taken during an initial series of low-altitude, battery-powered test flights in late 1998 at NASA's Dryden Flight Research Center, Edwards, California. Centurion was a unique remotely piloted, solar-powered airplane developed under NASA's Environmental Research Aircraft and Sensor (ERAST) Program at the Dryden Flight Research Center, Edwards, California. Dryden joined with AeroVironment, Inc., Monrovia, California, under an ERAST Joint Sponsored Research Agreement, to design, develop, manufacture, and conduct flight development tests for the Centurion. The airplane was believed to be the first aircraft designed to achieve sustained horizontal flight at altitudes of 90,000 to 100,000 feet. Achieving this capability would meet the ERAST goal of developing an ultrahigh-altitude airplane that could meet the needs of the science community to perform upper-atmosphere environmental data missions. Much of the technology leading to the Centurion was developed during the Pathfinder and Pathfinder-Plus projects. However, in the course of its development, the Centurion became a prototype technology demonstration aircraft designed to validate the technology for the Helios, a planned future high-altitude, solar-powered aircraft that could fly for weeks or months at a time on science or telecommunications missions. Centurion had 206-foot-long wings and used batteries to supply power to the craft's 14 electric motors and electronic systems. Centurion first flew at Dryden Nov. 10, 1998, and followed up with a second test flight Nov. 19. On its third and final flight on Dec. 3, the craft was aloft for 31 minutes and reached an altitude of about 400 feet. All three flights were conducted over a section of Rogers Dry Lake adjacent to Dryden. For its third flight, the Centurion carried a simulated payload of more than 600 pounds--almost half the lightweight aircraft's empty weight

  2. Eclipse - tow flight closeup and release

    NASA Technical Reports Server (NTRS)

    1998-01-01

    flight brought the project to a successful completion. Preliminary flight results determined that the handling qualities of the QF-106 on tow were very stable; actual flight-measured values of tow rope tension were well within predictions made by the simulation, aerodynamic characteristics and elastic properties of the tow rope were a significant component of the towing system; and the Dryden high-fidelity simulation provided a representative model of the performance of the QF-106 and C-141A airplanes in tow configuration. Total time on tow for the entire project was 5 hours, 34 minutes, and 29 seconds. All six flights were highly productive, and all project objectives were achieved. All three of the project objectives were successfully accomplished. The objectives were: demonstration of towed takeoff, climb-out, and separation of the EXD-01 from the towing aircraft; validation of simulation models of the towed aircraft systems; and development of ground and flight procedures for towing and launching a delta-winged airplane configuration safely behind a transport-type aircraft. NASA Dryden served as the responsible test organization and had flight safety responsibility for the Eclipse project. Dryden also supplied engineering, simulation, instrumentation, range support, research pilots, and chase aircraft for the test series. Dryden personnel also performed the modifications to convert the QF-106 into the piloted EXD-01 aircraft. During the early flight phase of the project, Tracor, Inc. provided maintenance and ground support for the two QF-106 airplanes.The Air Force Flight Test Center (AFFTC), Edwards, California, provided the C-141A transport aircraft for the project, its flight and engineering support, and the aircrew. Kelly Space and Technology provided the modification design and fabrication of the hardware that was installed on the EXD-01 aircraft. Kelly Space and Technology hopes to use the data gleaned from the tow tests to develop a series of low-cost reusable

  3. Quasi-satellite dynamics in formation flight

    NASA Astrophysics Data System (ADS)

    Mikkola, Seppo; Prioroc, Claudiu-Lucian

    2016-04-01

    The quasi-satellite phenomenon makes two celestial bodies to fly near each other (Mikkola et al.) and that effect can be used also to make artificial satellites move in tandem. We consider formation flight of two or three satellites in low eccentricity near Earth orbits. With the help of weak ion thrusters, it is possible to accomplish tandem flight. With ion thrusters, it is also possible to mimic many kinds of mutual force laws between the satellites. We found that both a constant repulsive force or an attractive force that decreases with the distance are able to preserve the formation in which the eccentricities cause the actual relative motion and the weak thrusters keep the mean longitude difference small. Initial values are important for the formation flight but very exact adjustment of orbital elements is not important. Simplicity is one of our goals in this study and this result is achieved at least in the way that, when constant force thrusters are used, the satellites only need to detect the directions of the other ones to fly in tandem. A repulsive acceleration of the order of 10-6 times the Earth attraction, is enough to effectively eliminate the disruptive effects of all the perturbations at least for a time-scale of years.

  4. Designing to Control Flight Crew Errors

    NASA Technical Reports Server (NTRS)

    Schutte, Paul C.; Willshire, Kelli F.

    1997-01-01

    It is widely accepted that human error is a major contributing factor in aircraft accidents. There has been a significant amount of research in why these errors occurred, and many reports state that the design of flight deck can actually dispose humans to err. This research has led to the call for changes in design according to human factors and human-centered principles. The National Aeronautics and Space Administration's (NASA) Langley Research Center has initiated an effort to design a human-centered flight deck from a clean slate (i.e., without constraints of existing designs.) The effort will be based on recent research in human-centered design philosophy and mission management categories. This design will match the human's model of the mission and function of the aircraft to reduce unnatural or non-intuitive interfaces. The product of this effort will be a flight deck design description, including training and procedures, and a cross reference or paper trail back to design hypotheses, and an evaluation of the design. The present paper will discuss the philosophy, process, and status of this design effort.

  5. Algorithme d'optimisation du profil vertical pour un segment de vol en croisiere avec une contrainte d'heure d'arrivee requise

    NASA Astrophysics Data System (ADS)

    Dancila, Radu Ioan

    This thesis presents the development of an algorithm that determines the optimal vertical navigation (VNAV) profile for an aircraft flying a cruise segment, along a given lateral navigation (LNAV) profile, with a required time of arrival (RTA) constraint. The algorithm is intended for implementation into a Flight Management System (FMS) as a new feature that gives advisory information regarding the optimal VNAV profile. The optimization objective is to minimize the total cost associated with flying the cruise segment while arriving at the end of the segment within an imposed time window. For the vertical navigation profiles yielding a time of arrival within the imposed limits, the degree of fulfillment of the RTA constraint is quantified by a cost proportional with the absolute value of the difference between the actual time of arrival and the RTA. The VNAV profiles evaluated in this thesis are characterized by identical altitudes at the beginning and at the end of the profile, they have no more than one step altitude and are flown at constant speed. The acceleration and deceleration segments are not taken into account. The altitude and speed ranges to be used for the VNAV profiles are specified as input parameters for the algorithm. The algorithm described in this thesis is developed in MATLAB. At each altitude, in the range of altitudes considered for the VNAV profiles, a binary search is performed in order to identify the speed interval that yields a time of arrival compatible with the RTA constraint and the profile that produces a minimum total cost is retained. The performance parameters that determine the total cost for flying a particular VNAV profile, the fuel burn and the flight time, are calculated based on the aircraft's specific performance data and configuration, climb/descent profile, the altitude at the beginning of the VNAV profile, the VNAV and LNAV profiles and the atmospheric conditions. These calculations were validated using data generated by a

  6. Pathfinder aircraft flight

    NASA Technical Reports Server (NTRS)

    1996-01-01

    The Pathfinder research aircraft's wing structure is clearly defined as it soars under a clear blue sky during a test flight from Dryden Flight Research Center, Edwards, California, in November of 1996. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus configuration. (See the Pathfinder Plus photos and project description.)

  7. The reliability and validity of flight task workload ratings

    NASA Technical Reports Server (NTRS)

    Childress, M. E.; Hart, S. G.; Bortolussi, M. R.

    1982-01-01

    Twelve instrument-rated general aviation pilots each flew two scenarios in a motion-base simulator. During each flight, the pilots verbally estimated their workload every three minutes. Following each flight, they again estimated workload for each flight segment and also rated their overall workload, perceived performance, and 13 specific factors on a bipolar scale. The results indicate that time (a priori, inflight, or postflight) of eliciting ratings, period to be covered by the ratings (a specific moment in time or a longer period), type of rating scale, and rating method (verbal, written, or other) may be important variables. Overall workload ratings appear to be predicted by different specific scales depending upon the situation, with activity level the best predictor. Perceived performance seems to bear little relationship to observer-rated performance when pilots rate their overall performance and an observer rates specific behaviors. Perceived workload and performance also seem unrelated.

  8. Metrology of IXO Mirror Segments

    NASA Technical Reports Server (NTRS)

    Chan, Kai-Wing

    2011-01-01

    For future x-ray astrophysics mission that demands optics with large throughput and excellent angular resolution, many telescope concepts build around assembling thin mirror segments in a Wolter I geometry, such as that originally proposed for the International X-ray Observatory. The arc-second resolution requirement posts unique challenges not just for fabrication, mounting but also for metrology of these mirror segments. In this paper, we shall discuss the metrology of these segments using normal incidence metrological method with interferometers and null lenses. We present results of the calibration of the metrology systems we are currently using, discuss their accuracy and address the precision in measuring near-cylindrical mirror segments and the stability of the measurements.

  9. Morphing of Segmented Bimorph Mirrors

    NASA Astrophysics Data System (ADS)

    Rodrigues, Gonçalo; Bastaits, Renaud; Preumont, André

    2010-08-01

    Atmospheric turbulence compensation for the next generation of terrestrial telescopes (30-40 m diameter) will require deformable mirrors of increasing size and a number of actuators reaching several thousands. However, the mere extrapolation of existing designs leads to complicated and extremely expensive mirrors. This article discusses an alternative solution based on the use of segmented identical hexagonal bimorph mirrors. This allows to indefinitely increase the degree of correction while maintaining the first mechanical resonance at the level of a single segment, and shows an increase in price only proportional to the number of segments. Extensive simulations using random turbulent screens show that the segmentation produces only moderate reductions of the Strehl number, compared to a monolithic bimorph mirror with the same number of actuators (S = 0.86 instead of S = 0.89 in this study).

  10. Segmentation Of Polarimetric SAR Data

    NASA Technical Reports Server (NTRS)

    Rignot, Eric J. M.; Chellappa, Rama

    1994-01-01

    Report presents one in continuing series of studies of segmentation of polarimetric synthetic-aperture-radar, SAR, image data into regions. Studies directed toward refinement of method of automated analysis of SAR data.

  11. Bayesian segmentation of hyperspectral images

    NASA Astrophysics Data System (ADS)

    Mohammadpour, Adel; Féron, Olivier; Mohammad-Djafari, Ali

    2004-11-01

    In this paper we consider the problem of joint segmentation of hyperspectral images in the Bayesian framework. The proposed approach is based on a Hidden Markov Modeling (HMM) of the images with common segmentation, or equivalently with common hidden classification label variables which is modeled by a Potts Markov Random Field. We introduce an appropriate Markov Chain Monte Carlo (MCMC) algorithm to implement the method and show some simulation results.

  12. Segmental neurofibromatosis [NF type - v].

    PubMed

    Arfan-ul-Bari; Simeen-ber-Rahman

    2003-12-01

    Segmental neurofibromatosis is a rare variant of neurofibromatosis in which skin lesions are confined to a circumscribed body segment. A case of a 39-year-old man with this condition is presented, who was having multiple soft skin tumours over a localized area of back with no associated cafe au lait spots, axillary freckles or lish nodules. Histology confirmed the diagnosis of neurofibroma. PMID:15569561

  13. Boeing flight deck design philosophy

    NASA Technical Reports Server (NTRS)

    Stoll, Harty

    1990-01-01

    Information relative to Boeing flight deck design philosophy is given in viewgraph form. Flight deck design rules, design considerations, functions allocated to the crew, redundancy and automation concerns, and examples of accident data that were reviewed are listed.

  14. Development of a Segmented Scintillator for Decay Studies

    NASA Astrophysics Data System (ADS)

    Alshudifat, Mohammad; Grzywacz, R.; Paulauskas, S. V.

    A new detector was developed, which will enable future studies of neutron-rich isotopes. It is intended for use in fragmentation type experiments, which require segmentation in order to enable implantation-decay correlations. In addition, the detector requires good timing resolution for neutron time-of-flight experiments. A Position Sensitive Photo-Multiplier Tube (PSPMT) from Hamamatsu coupled with a fast pixelated plastic scintillator was used. Position localization of the nuclear radiation interaction with the detector has been achieved for energies up to 5 MeV. The detector provides sub-nanosecond time resolution through the use of a pulse-shape analysis algorithm, which is sufficient for time-of-flight experiments. The detector was tested with a laser pulserin order to simulate 1 GeV implantation energy and found to be capable to be used with high-energy heavy ions.

  15. Efficient threshold for volumetric segmentation

    NASA Astrophysics Data System (ADS)

    Burdescu, Dumitru D.; Brezovan, Marius; Stanescu, Liana; Stoica Spahiu, Cosmin; Ebanca, Daniel

    2015-07-01

    Image segmentation plays a crucial role in effective understanding of digital images. However, the research on the existence of general purpose segmentation algorithm that suits for variety of applications is still very much active. Among the many approaches in performing image segmentation, graph based approach is gaining popularity primarily due to its ability in reflecting global image properties. Volumetric image segmentation can simply result an image partition composed by relevant regions, but the most fundamental challenge in segmentation algorithm is to precisely define the volumetric extent of some object, which may be represented by the union of multiple regions. The aim in this paper is to present a new method to detect visual objects from color volumetric images and efficient threshold. We present a unified framework for volumetric image segmentation and contour extraction that uses a virtual tree-hexagonal structure defined on the set of the image voxels. The advantage of using a virtual tree-hexagonal network superposed over the initial image voxels is that it reduces the execution time and the memory space used, without losing the initial resolution of the image.

  16. YF-12 in flight

    NASA Technical Reports Server (NTRS)

    1972-01-01

    The Flight Research Center's involvement with the YF-12A, an interceptor version of the Lockheed A-12, began in 1967. Ames Research Center was interested in using wind tunnel data that had been generated at Ames under extreme secrecy. Also, the Office of Advanced Research and Technology (OART) saw the YF-12A as a means to advance high-speed technology, which would help in designing the Supersonic Transport (SST). The Air Force needed technical assistance to get the latest reconnaissance version of the A-12 family, the SR-71A, fully operational. Eventually, the Air Force offered NASA the use of two YF-12A aircraft, 60-6935 and 60-6936. A joint NASA-USAF program was mapped out in June 1969. NASA and Air Force technicians spent three months readying 935 for flight. On 11 December 1969, the flight program got underway with a successful maiden flight piloted by Col. Joe Rogers and Maj. Gary Heidelbaugh of the SR-71/F-12 Test Force. During the program, the Air Force concentrated on military applications, and NASA pursued a loads research program. NASA studies included inflight heating, skin-friction cooling, 'coldwall' research (a heat transfer experiment), flowfield studies, shaker vane research, and tests in support of the Space Shuttle landing program. Ultimately, 935 became the workhorse of the program, with 146 flights between 11 December 1969 and 7 November 1979. The second YF-12A, 936, made 62 flights. It was lost in a non-fatal crash on 24 June 1971. It was replaced by the so-called YF-12C (SR-71A 61-7951, modified with YF-12A inlets and engines and a bogus tail number 06937). The Lockheed A-12 family, known as the Blackbirds, were designed by Clarence 'Kelly' Johnson. They were constructed mostly of titanium to withstand aerodynamic heating. Fueled by JP-7, the Blackbirds were capable of cruising at Mach 3.2 and attaining altitudes in excess of 80,000 feet. The first version, a CIA reconnaissance aircraft that first flew in April 1962 was called the A-12. An

  17. Segmentation of endpoint trajectories does not imply segmented control.

    PubMed

    Sternad, D; Schaal, S

    1999-01-01

    While it is generally assumed that complex movements consist of a sequence of simpler units, the quest to define these units of action, or movement primitives, remains an open question. In this context, two hypotheses of movement segmentation of endpoint trajectories in three-dimensional human drawing movements are reexamined: (1) the stroke-based segmentation hypothesis based on the results that the proportionality coefficient of the two-thirds power law changes discontinuously with each new "stroke," and (2) the segmentation hypothesis inferred from the observation of piecewise planar endpoint trajectories of three-dimensional drawing movements. In two experiments human subjects performed a set of elliptical and figure eight patterns of different sizes and orientations using their whole arm in three dimensions. The kinematic characteristics of the endpoint trajectories and the seven joint angles of the arm were analyzed. While the endpoint trajectories produced similar segmentation features to those reported in the literature, analyses of the joint angles show no obvious segmentation but rather continuous oscillatory patterns. By approximating the joint angle data of human subjects with sinusoidal trajectories, and by implementing this model on a 7-degree-of-freedom (DOF) anthropomorphic robot arm, it is shown that such a continuous movement strategy can produce exactly the same features as observed by the above segmentation hypotheses. The origin of this apparent segmentation of endpoint trajectories is traced back to the nonlinear transformations of the forward kinematics of human arms. The presented results demonstrate that principles of discrete movement generation may not be reconciled with those of rhythmic movement as easily as has been previously suggested, while the generalization of nonlinear pattern generators to arm movements can offer an interesting alternative to approach the question of units of action. PMID:9928796

  18. Cardiovascular physiology in space flight

    NASA Technical Reports Server (NTRS)

    Charles, John B.; Bungo, Michael W.

    1991-01-01

    The effects of space flight on the cardiovascular system have been studied since the first manned flights. In several instances, the results from these investigations have directly contradicted the predictions based on established models. Results suggest associations between space flight's effects on other organ systems and those on the cardiovascular system. Such findings provide new insights into normal human physiology. They must also be considered when planning for the safety and efficiency of space flight crewmembers.

  19. Bisphosphonate ISS Flight Experiment

    NASA Technical Reports Server (NTRS)

    LeBlanc, Adrian; Matsumoto, Toshio; Jones, Jeffrey; Shapiro, Jay; Lang, Thomas; Shackleford, Linda; Smith, Scott M.; Evans, Harlan; Spector, Elizabeth; Ploutz-Snyder, Robert; Sibonga, Jean; Keyak, Joyce; Nakamura, Toshitaka; Kohri, Kenjiro; Ohshima, Hiroshi; Moralez, Gilbert

    2014-01-01

    The bisphosphonate study is a collaborative effort between the NASA and JAXA space agencies to investigate the potential for antiresorptive drugs to mitigate bone changes associated with long-duration spaceflight. Elevated bone resorption is a hallmark of human spaceflight and bed rest (common zero-G analog). We tested whether an antiresorptive drug in combination with in-flight exercise would ameliorate bone loss and hypercalcuria during longduration spaceflight. Measurements include DXA, QCT, pQCT, and urine and blood biomarkers. We have completed analysis of 7 crewmembers treated with alendronate during flight and the immediate postflight (R+<2 week) data collection in 5 of 10 controls without treatment. Both groups used the advanced resistive exercise device (ARED) during their missions. We previously reported the pre/postflight results of crew taking alendronate during flight (Osteoporosis Int. 24:2105-2114, 2013). The purpose of this report is to present the 12-month follow-up data in the treated astronauts and to compare these results with preliminary data from untreated crewmembers exercising with ARED (ARED control) or without ARED (Pre-ARED control). Results: the table presents DXA and QCT BMD expressed as percentage change from preflight in the control astronauts (18 Pre-ARED and the current 5 ARED-1-year data not yet available) and the 7 treated subjects. As shown previously the combination of exercise plus antiresorptive is effective in preventing bone loss during flight. Bone measures for treated subjects, 1 year after return from space remain at or near baseline values. Except in one region, the treated group maintained or gained bone 1 year after flight. Biomarker data are not currently available for either control group and therefore not presented. However, data from other studies with or without ARED show elevated bone resorption and urinary Ca excretion while bisphosphonate treated subjects show decreases during flight. Comparing the two control

  20. UAVSAR Flight-Planning System

    NASA Technical Reports Server (NTRS)

    2008-01-01

    A system of software partly automates planning of a flight of the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) -- a polarimetric synthetic-aperture radar system aboard an unpiloted or minimally piloted airplane. The software constructs a flight plan that specifies not only the intended flight path but also the setup of the radar system at each point along the path.

  1. NASA Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Navarro, Robert

    2009-01-01

    This DVD has several short videos showing some of the work that Dryden is involved in with experimental aircraft. These are: shots showing the Active AeroElastic Wing (AAW) loads calibration tests, AAW roll maneuvers, AAW flight control surface inputs, Helios flight, and takeoff, and Pathfinder takeoff, flight and landing.

  2. Flight crew health stabilization program

    NASA Technical Reports Server (NTRS)

    Wooley, B. C.; Mccollum, G. W.

    1975-01-01

    The flight crew health stabilization program was developed to minimize or eliminate the possibility of adverse alterations in the health of flight crews during immediate preflight, flight, and postflight periods. The elements of the program, which include clinical medicine, immunology, exposure prevention, and epidemiological surveillance, are discussed briefly. No crewmember illness was reported for the missions for which the program was in effect.

  3. Hyper-X Mach 7 Scramjet Design, Ground Test and Flight Results

    NASA Technical Reports Server (NTRS)

    Ferlemann, Shelly M.; McClinton, Charles R.; Rock, Ken E.; Voland, Randy T.

    2005-01-01

    The successful Mach 7 flight test of the Hyper-X (X-43) research vehicle has provided the major, essential demonstration of the capability of the airframe integrated scramjet engine. This flight was a crucial first step toward realizing the potential for airbreathing hypersonic propulsion for application to space launch vehicles. However, it is not sufficient to have just achieved a successful flight. The more useful knowledge gained from the flight is how well the prediction methods matched the actual test results in order to have confidence that these methods can be applied to the design of other scramjet engines and powered vehicles. The propulsion predictions for the Mach 7 flight test were calculated using the computer code, SRGULL, with input from computational fluid dynamics (CFD) and wind tunnel tests. This paper will discuss the evolution of the Mach 7 Hyper-X engine, ground wind tunnel experiments, propulsion prediction methodology, flight results and validation of design methods.

  4. Muscle Efficiency and Elastic Storage in the Flight Motor of Drosophila

    NASA Astrophysics Data System (ADS)

    Dickinson, Michael H.; Lighton, John R. B.

    1995-04-01

    Insects could minimize the high energetic costs of flight in two ways: by employing high-efficiency muscles and by using elastic elements within the thorax to recover energy expended accelerating the wings. However, because muscle efficiency and elastic storage have proven difficult variables to measure, it is not known which of these strategies is actually used. By comparison of mechanical power measurements based on gas exchange with simultaneously measured flight kinematics in Drosophila, a method was developed for determining both the mechanical efficiency and the minimum degree of elastic storage within the flight motor. Muscle efficiency values of 10 percent suggest that insects may minimize energy use in flight by employing an elastic flight motor rather than by using extraordinarily efficient muscles. Further, because of the trade-off between inertial and aerodynamic power throughout the wing stroke, an elastic storage capacity as low as 10 percent may be enough to minimize the energetic costs of flight.

  5. Man-vehicle systems research facility advanced aircraft flight simulator throttle mechanism

    NASA Technical Reports Server (NTRS)

    Kurasaki, S. S.; Vallotton, W. C.

    1985-01-01

    The Advanced Aircraft Flight Simulator is equipped with a motorized mechanism that simulates a two engine throttle control system that can be operated via a computer driven performance management system or manually by the pilots. The throttle control system incorporates features to simulate normal engine operations and thrust reverse and vary the force feel to meet a variety of research needs. While additional testing to integrate the work required is principally now in software design, since the mechanical aspects function correctly. The mechanism is an important part of the flight control system and provides the capability to conduct human factors research of flight crews with advanced aircraft systems under various flight conditions such as go arounds, coupled instrument flight rule approaches, normal and ground operations and emergencies that would or would not normally be experienced in actual flight.

  6. ATIC Flight Data Processing

    NASA Technical Reports Server (NTRS)

    Ahn, H. S.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    The first flight of the Advanced Thin Ionization Calorimeter (ATIC) experiment from McMurdo, Antarctica lasted for 16 days, starting in December, 2000. The ATIC instrument consists of a fully active 320-crystal, 960-channel Bismuth Germanate (BGO) calorimeter, 202 scintillator strips in 3 hodoscopes interleaved with a graphite target, and a 4480-pixel silicon matrix charge detector. We have developed an Object Oriented data processing package based on ROOT. In this paper, we will describe the data processing scheme used in handling the accumulated 45 GB of flight data. We will also discuss trigger issues by comparing the measured energy-dependent trigger efficiency with its simulation and calibration issues by considering the time-dependence of housekeeping information, etc.

  7. Optimal symmetric flight studies

    NASA Technical Reports Server (NTRS)

    Weston, A. R.; Menon, P. K. A.; Bilimoria, K. D.; Cliff, E. M.; Kelley, H. J.

    1985-01-01

    Several topics in optimal symmetric flight of airbreathing vehicles are examined. In one study, an approximation scheme designed for onboard real-time energy management of climb-dash is developed and calculations for a high-performance aircraft presented. In another, a vehicle model intermediate in complexity between energy and point-mass models is explored and some quirks in optimal flight characteristics peculiar to the model uncovered. In yet another study, energy-modelling procedures are re-examined with a view to stretching the range of validity of zeroth-order approximation by special choice of state variables. In a final study, time-fuel tradeoffs in cruise-dash are examined for the consequences of nonconvexities appearing in the classical steady cruise-dash model. Two appendices provide retrospective looks at two early publications on energy modelling and related optimal control theory.

  8. Daedalus - Last Dryden flight

    NASA Technical Reports Server (NTRS)

    1988-01-01

    The Daedalus 88, with Glenn Tremml piloting, is seen here on its last flight for the NASA Dryden Flight Research Center, Edwards, California. The Light Eagle and Daedalus human powered aircraft were testbeds for flight research conducted at Dryden between January 1987 and March 1988. These unique aircraft were designed and constructed by a group of students, professors, and alumni of the Massachusetts Institute of Technology within the context of the Daedalus project. The construction of the Light Eagle and Daedalus aircraft was funded primarily by the Anheuser Busch and United Technologies Corporations, respectively, with additional support from the Smithsonian Air and Space Museum, MIT, and a number of other sponsors. To celebrate the Greek myth of Daedalus, the man who constructed wings of wax and feathers to escape King Minos, the Daedalus project began with the goal of designing, building and testing a human-powered aircraft that could fly the mythical distance, 115 km. To achieve this goal, three aircraft were constructed. The Light Eagle was the prototype aircraft, weighing 92 pounds. On January 22, 1987, it set a closed course distance record of 59 km, which still stands. Also in January of 1987, the Light Eagle was powered by Lois McCallin to set the straight distance, the distance around a closed circuit, and the duration world records for the female division in human powered vehicles. Following this success, two more aircraft were built, the Daedalus 87 and Daedalus 88. Each aircraft weighed approximately 69 pounds. The Daedalus 88 aircraft was the ship that flew the 199 km from the Iraklion Air Force Base on Crete in the Mediterranean Sea, to the island of Santorini in 3 hours, 54 minutes. In the process, the aircraft set new records in distance and endurance for a human powered aircraft. The specific areas of flight research conducted at Dryden included characterizing the rigid body and flexible dynamics of the Light Eagle, investigating sensors for an

  9. Flight loads and control

    NASA Technical Reports Server (NTRS)

    Mowery, D. K.; Winder, S. W.

    1972-01-01

    The prediction of flight loads and their potential reduction, using various control logics for the space shuttle vehicles, is very complex. Some factors, not found on previous launch vehicles, that increase the complexity are large lifting surfaces, unsymmetrical structure, unsymmetrical aerodynamics, trajectory control system coupling, and large aeroelastic effects. Discussed are these load producing factors and load reducing techniques. Identification of potential technology areas is included.

  10. Flight Crew Health Maintenance

    NASA Technical Reports Server (NTRS)

    Gullett, C. C.

    1970-01-01

    The health maintenance program for commercial flight crew personnel includes diet, weight control, and exercise to prevent heart disease development and disability grounding. The very high correlation between hypertension and overweight in cardiovascular diseases significantly influences the prognosis for a coronary prone individual and results in a high rejection rate of active military pilots applying for civilian jobs. In addition to physical fitness the major items stressed in pilot selection are: emotional maturity, glucose tolerance, and family health history.

  11. Infrared Thermography Flight Experimentation

    NASA Technical Reports Server (NTRS)

    Blanchard, Robert C.; Carter, Matthew L.; Kirsch, Michael

    2003-01-01

    Analysis was done on IR data collected by DFRC on May 8, 2002. This includes the generation of a movie to initially examine the IR flight data. The production of the movie was challenged by the volume of data that needed to be processed, namely 40,500 images with each image (256 x 252) containing over 264 million points (pixel depth 4096). It was also observed during the initial analysis that the RTD surface coating has a different emissivity than the surroundings. This fact added unexpected complexity in obtaining a correlation between RTD data and IR data. A scheme was devised to generate IR data near the RTD location which is not affected by the surface coating This scheme is valid as long as the surface temperature as measured does not change too much over a few pixel distances from the RTD location. After obtaining IR data near the RTD location, it is possible to make a direct comparison with the temperature as measured during the flight after adjusting for the camera s auto scaling. The IR data seems to correlate well to the flight temperature data at three of the four RID locations. The maximum count intensity occurs closely to the maximum temperature as measured during flight. At one location (RTD #3), there is poor correlation and this must be investigated before any further progress is possible. However, with successful comparisons at three locations, it seems there is great potential to be able to find a calibration curve for the data. Moreover, as such it will be possible to measure temperature directly from the IR data in the near future.

  12. Flight Software Math Library

    NASA Technical Reports Server (NTRS)

    McComas, David

    2013-01-01

    The flight software (FSW) math library is a collection of reusable math components that provides typical math utilities required by spacecraft flight software. These utilities are intended to increase flight software quality reusability and maintainability by providing a set of consistent, well-documented, and tested math utilities. This library only has dependencies on ANSI C, so it is easily ported. Prior to this library, each mission typically created its own math utilities using ideas/code from previous missions. Part of the reason for this is that math libraries can be written with different strategies in areas like error handling, parameters orders, naming conventions, etc. Changing the utilities for each mission introduces risks and costs. The obvious risks and costs are that the utilities must be coded and revalidated. The hidden risks and costs arise in miscommunication between engineers. These utilities must be understood by both the flight software engineers and other subsystem engineers (primarily guidance navigation and control). The FSW math library is part of a larger goal to produce a library of reusable Guidance Navigation and Control (GN&C) FSW components. A GN&C FSW library cannot be created unless a standardized math basis is created. This library solves the standardization problem by defining a common feature set and establishing policies for the library s design. This allows the libraries to be maintained with the same strategy used in its initial development, which supports a library of reusable GN&C FSW components. The FSW math library is written for an embedded software environment in C. This places restrictions on the language features that can be used by the library. Another advantage of the FSW math library is that it can be used in the FSW as well as other environments like the GN&C analyst s simulators. This helps communication between the teams because they can use the same utilities with the same feature set and syntax.

  13. Flight Day 2 Highlights

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The STS-107 second flight day begins with a shot of the Spacehab Research Double Module. Live presentations of experiments underway inside of the Spacehab Module are presented. Six experiments are shown. As part of the Space Technology and Research Student Payload, students from Australia, China, Israel, Japan, New York, and Liechtenstein are studying the effect that microgravity has on ants, spiders, silkworms, fish, bees, granular materials, and crystals. Mission Specialist Kalpana Chawla is seen working with the zeolite crystal growth experiment.

  14. Neural Flight Control System

    NASA Technical Reports Server (NTRS)

    Gundy-Burlet, Karen

    2003-01-01

    The Neural Flight Control System (NFCS) was developed to address the need for control systems that can be produced and tested at lower cost, easily adapted to prototype vehicles and for flight systems that can accommodate damaged control surfaces or changes to aircraft stability and control characteristics resulting from failures or accidents. NFCS utilizes on a neural network-based flight control algorithm which automatically compensates for a broad spectrum of unanticipated damage or failures of an aircraft in flight. Pilot stick and rudder pedal inputs are fed into a reference model which produces pitch, roll and yaw rate commands. The reference model frequencies and gains can be set to provide handling quality characteristics suitable for the aircraft of interest. The rate commands are used in conjunction with estimates of the aircraft s stability and control (S&C) derivatives by a simplified Dynamic Inverse controller to produce virtual elevator, aileron and rudder commands. These virtual surface deflection commands are optimally distributed across the aircraft s available control surfaces using linear programming theory. Sensor data is compared with the reference model rate commands to produce an error signal. A Proportional/Integral (PI) error controller "winds up" on the error signal and adds an augmented command to the reference model output with the effect of zeroing the error signal. In order to provide more consistent handling qualities for the pilot, neural networks learn the behavior of the error controller and add in the augmented command before the integrator winds up. In the case of damage sufficient to affect the handling qualities of the aircraft, an Adaptive Critic is utilized to reduce the reference model frequencies and gains to stay within a flyable envelope of the aircraft.

  15. MARS Flight Engineering Status

    SciTech Connect

    Fast, James E.; Dorow, Kevin E.; Morris, Scott J.; Thompson, Robert C.; Willett, Jesse A.

    2010-04-06

    The Multi-sensor Airborne Radiation Survey Flight Engineering project (MARS FE) has designed a high purity germanium (HPGe) crystal array for conducting a wide range of field measurements. In addition to the HPGe detector system, a platform-specific shock and vibration isolation system and environmental housing have been designed to support demonstration activities in a maritime environment on an Unmanned Surface Vehicle (USV). This report describes the status of the equipment as of the end of FY09.

  16. ATS-6 - Flight accelerometers

    NASA Technical Reports Server (NTRS)

    Mattson, R.; Honeycutt, G.; Lindner, F.

    1975-01-01

    The Applications Technology Satellite-6 (ATS-6) flight accelerometers were designed to provide data for verifying the basic spacecraft vibration modes during launch, to update the analytical model of the ATA structure, and to provide a capability for detection and diagnosis of inflight and anomalies. The experiment showed accelerations less than 2.5 g during liftoff and 1.1 g or less during staging with frequencies below 80 Hz. Measured values were generally within 1 g of predicted.

  17. IXV re-entry demonstrator: Mission overview, system challenges and flight reward

    NASA Astrophysics Data System (ADS)

    Angelini, Roberto; Denaro, Angelo

    2016-07-01

    The Intermediate eXperimental Vehicle (IXV) is an advanced re-entry demonstrator vehicle aimed to perform in-flight experimentation of atmospheric re-entry enabling systems and technologies. The IXV integrates key technologies at the system level, with significant advancements on Europe's previous flying test-beds. The project builds on previous achievements at system and technology levels, and provides a unique and concrete way of establishing and consolidating Europe's autonomous position in the strategic field of atmospheric re-entry. The IXV mission and system objectives are the design, development, manufacturing, assembling and on-ground to in-flight verification of an autonomous European lifting and aerodynamically controlled reentry system, integrating critical re-entry technologies at system level. Among such critical technologies of interest, special attention is paid to aerodynamic and aerothermodynamics experimentation, including advanced instrumentation for aerothermodynamics phenomena investigations, thermal protections and hot-structures, guidance, navigation and flight control through combined jets and aerodynamic surfaces (i.e. flaps), in particular focusing on the technologies integration at system level for flight. Following the extensive detailed design, manufacturing, qualification, integration and testing of the flight segment and ground segment elements, IXV has performed a full successful flight on February 11th 2015. After the launch with the VEGA launcher form the CSG spaceport in French Guyana, IXV has performed a full nominal mission ending with a successful splashdown in the Pacific Ocean. During Flight Phase, the IXV space and ground segments worked perfectly, implementing the whole flight program in line with the commanded maneuvers and trajectory prediction, performing an overall flight of 34.400 km including 7.600 km with hot atmospheric re-entry in automatic guidance, concluding with successful precision landing at a distance of ~1

  18. Optimal trajectories for the aeroassisted flight experiment

    NASA Technical Reports Server (NTRS)

    Miele, A.; Wang, T.; Lee, W. Y.; Zhao, Z. G.

    1989-01-01

    The optimal trajectories of the aeroassisted flight experiment (AFE) spacecraft are analyzed in a three-dimensional space using the full system of six ODEs describing the atmospheric pass. The optimal trajectories are computed for two possible transfers: indirect ascent to a 178 NM perigee via a 197 NM apogee and direct ascent to a 178 NM apogee. For each transfer, two cases are investigated: (1) the bank angle is continuously variable, and (2) the trajectory is divided into segments along which the bank angle is constant. It is shown that the optimal trajectories for both cases coalesce into a two subarc trajectory, with the bank angle constant in each subarc. It is also shown that, during the atmospheric pass, the peak values of the changes of the orbital inclination and the longitude of the ascending node are nearly zero.

  19. Flight Project Data Book

    NASA Technical Reports Server (NTRS)

    1992-01-01

    The Office of Space Science and Applications (OSSA) is responsible for the overall planning, directing, executing, and evaluating that part of the overall NASA program that has the goal of using the unique characteristics of the space environment to conduct a scientific study of the universe, to understand how the Earth works as an integrated system, to solve practical problems on Earth, and to provide the scientific and technological research foundation for expanding human presence beyond Earth orbit into the solar system. OSSA guides its program toward leadership through its pursuit of excellence across the full spectrum of disciplines. OSSA pursues these goals through an integrated program of ground-based laboratory research and experimentation, suborbital flight of instruments on airplanes, balloons, and sounding rockets; flight of instruments and the conduct of research on the Shuttle/Spacelab system and on Space Station Freedom; and development and flight of automated Earth-orbiting and interplanetary spacecraft. The OSSA program is conducted with the participation and support of other Government agencies and facilities, universities throughout the United States, the aerospace contractor community, and all of NASA's nine Centers. In addition, OSSA operates with substantial international participation in many aspects of our Space Science and Applications Program. OSSA's programs currently in operation, those approved for development, and those planned for future missions are described.

  20. Radioastron flight operations

    NASA Technical Reports Server (NTRS)

    Altunin, V. I.; Sukhanov, K. G.; Altunin, K. R.

    1993-01-01

    Radioastron is a space-based very-long-baseline interferometry (VLBI) mission to be operational in the mid-90's. The spacecraft and space radio telescope (SRT) will be designed, manufactured, and launched by the Russians. The United States is constructing a DSN subnet to be used in conjunction with a Russian subnet for Radioastron SRT science data acquisition, phase link, and spacecraft and science payload health monitoring. Command and control will be performed from a Russian tracking facility. In addition to the flight element, the network of ground radio telescopes which will be performing co-observations with the space telescope are essential to the mission. Observatories in 39 locations around the world are expected to participate in the mission. Some aspects of the mission that have helped shaped the flight operations concept are: separate radio channels will be provided for spacecraft operations and for phase link and science data acquisition; 80-90 percent of the spacecraft operational time will be spent in an autonomous mode; and, mission scheduling must take into account not only spacecraft and science payload constraints, but tracking station and ground observatory availability as well. This paper will describe the flight operations system design for translating the Radioastron science program into spacecraft executed events. Planning for in-orbit checkout and contingency response will also be discussed.

  1. Space flight visual simulation.

    PubMed

    Xu, L

    1985-01-01

    In this paper, based on the scenes of stars seen by astronauts in their orbital flights, we have studied the mathematical model which must be constructed for CGI system to realize the space flight visual simulation. Considering such factors as the revolution and rotation of the Earth, exact date, time and site of orbital injection of the spacecraft, as well as its orbital flight and attitude motion, etc., we first defined all the instantaneous lines of sight and visual fields of astronauts in space. Then, through a series of coordinate transforms, the pictures of the scenes of stars changing with time-space were photographed one by one mathematically. In the procedure, we have designed a method of three-times "mathematical cutting." Finally, we obtained each instantaneous picture of the scenes of stars observed by astronauts through the window of the cockpit. Also, the dynamic conditions shaded by the Earth in the varying pictures of scenes of stars could be displayed. PMID:11542842

  2. Solar array flight experiment

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Emerging satellite designs require increasing amounts of electrical power to operate spacecraft instruments and to provide environments suitable for human habitation. In the past, electrical power was generated by covering rigid honeycomb panels with solar cells. This technology results in unacceptable weight and volume penalties when large amounts of power are required. To fill the need for large-area, lightweight solar arrays, a fabrication technique in which solar cells are attached to a copper printed circuit laminated to a plastic sheet was developed. The result is a flexible solar array with one-tenth the stowed volume and one-third the weight of comparably sized rigid arrays. An automated welding process developed to attack the cells to the printed circuit guarantees repeatable welds that are more tolerant of severe environments than conventional soldered connections. To demonstrate the flight readiness of this technology, the Solar Array Flight Experiment (SAFE) was developed and flown on the space shuttle Discovery in September 1984. The tests showed the modes and frequencies of the array to be very close to preflight predictions. Structural damping, however, was higher than anticipated. Electrical performance of the active solar panel was also tested. The flight performance and postflight data evaluation are described.

  3. Ares I-X Test Flight Reference Trajectory Development

    NASA Technical Reports Server (NTRS)

    Starr, Brett R.; Gumbert, Clyde R.; Tartabini, Paul V.

    2011-01-01

    Ares I-X was the first test flight of NASA's Constellation Program's Ares I crew launch vehicle. Ares I is a two stage to orbit launch vehicle that provides crew access to low Earth orbit for NASA's future manned exploration missions. The Ares I first stage consists of a Shuttle solid rocket motor (SRM) modified to include an additional propellant segment and a liquid propellant upper stage with an Apollo J2X engine modified to increase its thrust capability. The modified propulsion systems were not available for the first test flight, thus the test had to be conducted with an existing Shuttle 4 segment reusable solid rocket motor (RSRM) and an inert Upper Stage. The test flight's primary objective was to demonstrate controllability of an Ares I vehicle during first stage boost and the ability to perform a successful separation. In order to demonstrate controllability, the Ares I-X ascent control algorithms had to maintain stable flight throughout a flight environment equivalent to Ares I. The goal of the test flight reference trajectory development was to design a boost trajectory using the existing RSRM that results in a flight environment equivalent to Ares I. A trajectory similarity metric was defined as the integrated difference between the Ares I and Ares I-X Mach versus dynamic pressure relationships. Optimization analyses were performed that minimized the metric by adjusting the inert upper stage weight and the ascent steering profile. The sensitivity of the optimal upper stage weight and steering profile to launch month was also investigated. A response surface approach was used to verify the optimization results. The analyses successfully defined monthly ascent trajectories that matched the Ares I reference trajectory dynamic pressure versus Mach number relationship to within 10% through Mach 3.5. The upper stage weight required to achieve the match was found to be feasible and varied less than 5% throughout the year. The paper will discuss the flight

  4. Advanced flight control system study

    NASA Technical Reports Server (NTRS)

    Hartmann, G. L.; Wall, J. E., Jr.; Rang, E. R.; Lee, H. P.; Schulte, R. W.; Ng, W. K.

    1982-01-01

    A fly by wire flight control system architecture designed for high reliability includes spare sensor and computer elements to permit safe dispatch with failed elements, thereby reducing unscheduled maintenance. A methodology capable of demonstrating that the architecture does achieve the predicted performance characteristics consists of a hierarchy of activities ranging from analytical calculations of system reliability and formal methods of software verification to iron bird testing followed by flight evaluation. Interfacing this architecture to the Lockheed S-3A aircraft for flight test is discussed. This testbed vehicle can be expanded to support flight experiments in advanced aerodynamics, electromechanical actuators, secondary power systems, flight management, new displays, and air traffic control concepts.

  5. Flight experience with windshear detection

    NASA Technical Reports Server (NTRS)

    Zweifel, Terry

    1990-01-01

    Windshear alerts resulting from the Honeywell Windshear Detection and Guidance System are presented based on data from approximately 248,000 revenue flights at Piedmont Airlines. The data indicate that the detection system provides a significant benefit to the flight crew of the aircraft. In addition, nuisance and false alerts were found to occur at an acceptably low rate to maintain flight crew confidence in the system. Data from a digital flight recorder is also presented which shows the maximum and minimum windshear magnitudes recorded for a representative number of flights in February, 1987. The effect of the boundary layer of a steady state wind is also discussed.

  6. 14 CFR 91.109 - Flight instruction; Simulated instrument flight and certain flight tests.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 2 2014-01-01 2014-01-01 false Flight instruction; Simulated instrument flight and certain flight tests. 91.109 Section 91.109 Aeronautics and Space FEDERAL AVIATION... throwover control wheel that controls the elevator and ailerons, in place of fixed, dual controls, when—...

  7. Modeling of current characteristics of segmented Langmuir probe on DEMETER

    SciTech Connect

    Imtiaz, Nadia; Marchand, Richard; Lebreton, Jean-Pierre

    2013-05-15

    We model the current characteristics of the DEMETER Segmented Langmuir probe (SLP). The probe is used to measure electron density and temperature in the ionosphere at an altitude of approximately 700 km. It is also used to measure the plasma flow velocity in the satellite frame of reference. The probe is partitioned into seven collectors: six electrically insulated spherical segments and a guard electrode (the rest of the sphere and the small post). Comparisons are made between the predictions of the model and DEMETER measurements for actual ionospheric plasma conditions encountered along the satellite orbit. Segment characteristics are computed numerically with PTetra, a three-dimensional particle in cell simulation code. In PTetra, space is discretized with an unstructured tetrahedral mesh, thus, enabling a good representation of the probe geometry. The model also accounts for several physical effects of importance in the interaction of spacecraft with the space environment. These include satellite charging, photoelectron, and secondary electron emissions. The model is electrostatic, but it accounts for the presence of a uniform background magnetic field. PTetra simulation results show different characteristics for the different probe segments. The current collected by each segment depends on its orientation with respect to the ram direction, the plasma composition, the magnitude, and the orientation of the magnetic field. It is observed that the presence of light H{sup +} ions leads to a significant increase in the ion current branch of the I-V curves of the negatively polarized SLP. The effect of the magnetic field is demonstrated by varying its magnitude and direction with respect to the reference magnetic field. It is found that the magnetic field appreciably affects the electron current branch of the I-V curves of certain segments on the SLP, whereas the ion current branch remains almost unaffected. PTetra simulations are validated by comparing the computed

  8. Flight software memory sizing and CPU loading estimates

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Estimates of the AP101 memory and central processing unit (CPU) requirements for the space shuttle orbiter are presented. The resource estimates reflect OASCAB approved change requests for Release 18 and Release 19. Memory sizes are presented in 32 bit full words, CPU loading is listed by percentage. Memory and CPU information was obtained from actual AP101 code where available, and from estimates provided by flight software development programmers.

  9. Microplitis demolitor bracovirus genome segments vary in abundance and are individually packaged in virions

    SciTech Connect

    Beck, Markus H.; Inman, Ross B.; Strand, Michael R. . E-mail: mrstrand@bugs.ent.uga.edu

    2007-03-01

    Polydnaviruses (PDVs) are distinguished by their unique association with parasitoid wasps and their segmented, double-stranded (ds) DNA genomes that are non-equimolar in abundance. Relatively little is actually known, however, about genome packaging or segment abundance of these viruses. Here, we conducted electron microscopy (EM) and real-time polymerase chain reaction (PCR) studies to characterize packaging and segment abundance of Microplitis demolitor bracovirus (MdBV). Like other PDVs, MdBV replicates in the ovaries of females where virions accumulate to form a suspension called calyx fluid. Wasps then inject a quantity of calyx fluid when ovipositing into hosts. The MdBV genome consists of 15 segments that range from 3.6 (segment A) to 34.3 kb (segment O). EM analysis indicated that MdBV virions contain a single nucleocapsid that encapsidates one circular DNA of variable size. We developed a semi-quantitative real-time PCR assay using SYBR Green I. This assay indicated that five (J, O, H, N and B) segments of the MdBV genome accounted for more than 60% of the viral DNAs in calyx fluid. Estimates of relative segment abundance using our real-time PCR assay were also very similar to DNA size distributions determined from micrographs. Analysis of parasitized Pseudoplusia includens larvae indicated that copy number of MdBV segments C, B and J varied between hosts but their relative abundance within a host was virtually identical to their abundance in calyx fluid. Among-tissue assays indicated that each viral segment was most abundant in hemocytes and least abundant in salivary glands. However, the relative abundance of each segment to one another was similar in all tissues. We also found no clear relationship between MdBV segment and transcript abundance in hemocytes and fat body.

  10. Pathfinder Aircraft in Flight

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Pathfinder research aircraft's wing structure was clearly defined as it soared under a clear blue sky during a test flight July 27, 1995, from Dryden Flight Research Center, Edwards, California. The center section and outer wing panels of the aircraft had ribs constructed of thin plastic foam, while the ribs in the inner wing panels are fabricated from lightweight composite material. Developed by AeroVironment, Inc., the Pathfinder was one of several unmanned aircraft being evaluated under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long- duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar- powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus

  11. Pathfinder aircraft in flight

    NASA Technical Reports Server (NTRS)

    1995-01-01

    The Pathfinder research aircraft's wing structure was clearly defined as it soared under a clear blue sky during a test flight July 27, 1995, from Dryden Flight Research Center, Edwards, California. The center section and outer wing panels of the aircraft had ribs constructed of thin plastic foam, while the ribs in the inner wing panels are fabricated from lightweight composite material. Developed by AeroVironment, Inc., the Pathfinder was one of several unmanned aircraft being evaluated under NASA's Environmental Research Aircraft and Sensor Technology (ERAST) program. Pathfinder was a lightweight, solar-powered, remotely piloted flying wing aircraft used to demonstrate the use of solar power for long-duration, high-altitude flight. Its name denotes its mission as the 'Pathfinder' or first in a series of solar-powered aircraft that will be able to remain airborne for weeks or months on scientific sampling and imaging missions. Solar arrays covered most of the upper wing surface of the Pathfinder aircraft. These arrays provided up to 8,000 watts of power at high noon on a clear summer day. That power fed the aircraft's six electric motors as well as its avionics, communications, and other electrical systems. Pathfinder also had a backup battery system that could provide power for two to five hours, allowing for limited-duration flight after dark. Pathfinder flew at airspeeds of only 15 to 20 mph. Pitch control was maintained by using tiny elevators on the trailing edge of the wing while turns and yaw control were accomplished by slowing down or speeding up the motors on the outboard sections of the wing. On September 11, 1995, Pathfinder set a new altitude record for solar-powered aircraft of 50,567 feet above Edwards Air Force Base, California, on a 12-hour flight. On July 7, 1997, it set another, unofficial record of 71,500 feet at the Pacific Missile Range Facility, Kauai, Hawaii. In 1998, Pathfinder was modified into the longer-winged Pathfinder Plus

  12. Flight controls/avionics research - Impact on future civil helicopter operating efficiency and mission reliability

    NASA Technical Reports Server (NTRS)

    Snyder, W. J.; Christensen, J. V.

    1979-01-01

    Operational efficiency and mission reliability are key capabilities which will impact the future use of helicopters in the civil segment and areas where flight control/avionics research can play a major role. The present paper reviews flight control/avionics system needs for each major area of civil helicopter use. Technology requirements to meet civil needs are discussed. The review points up the need for the development of all-weather flight control concepts and the validation of cost effective active control/fly-by-wire/fly-by-light system concepts with modular architecture which can be tailored to specific mission requirements.

  13. Design of a Mission Data Storage and Retrieval System for NASA Dryden Flight Research Center

    NASA Technical Reports Server (NTRS)

    Lux, Jessica; Downing, Bob; Sheldon, Jack

    2007-01-01

    The Western Aeronautical Test Range (WATR) at the NASA Dryden Flight Research Center (DFRC) employs the WATR Integrated Next Generation System (WINGS) for the processing and display of aeronautical flight data. This report discusses the post-mission segment of the WINGS architecture. A team designed and implemented a system for the near- and long-term storage and distribution of mission data for flight projects at DFRC, providing the user with intelligent access to data. Discussed are the legacy system, an industry survey, system operational concept, high-level system features, and initial design efforts.

  14. Volume Segmentation and Ghost Particles

    NASA Astrophysics Data System (ADS)

    Ziskin, Isaac; Adrian, Ronald

    2011-11-01

    Volume Segmentation Tomographic PIV (VS-TPIV) is a type of tomographic PIV in which images of particles in a relatively thick volume are segmented into images on a set of much thinner volumes that may be approximated as planes, as in 2D planar PIV. The planes of images can be analysed by standard mono-PIV, and the volume of flow vectors can be recreated by assembling the planes of vectors. The interrogation process is similar to a Holographic PIV analysis, except that the planes of image data are extracted from two-dimensional camera images of the volume of particles instead of three-dimensional holographic images. Like the tomographic PIV method using the MART algorithm, Volume Segmentation requires at least two cameras and works best with three or four. Unlike the MART method, Volume Segmentation does not require reconstruction of individual particle images one pixel at a time and it does not require an iterative process, so it operates much faster. As in all tomographic reconstruction strategies, ambiguities known as ghost particles are produced in the segmentation process. The effect of these ghost particles on the PIV measurement is discussed. This research was supported by Contract 79419-001-09, Los Alamos National Laboratory.

  15. Automatic segmentation of psoriasis lesions

    NASA Astrophysics Data System (ADS)

    Ning, Yang; Shi, Chenbo; Wang, Li; Shu, Chang

    2014-10-01

    The automatic segmentation of psoriatic lesions is widely researched these years. It is an important step in Computer-aid methods of calculating PASI for estimation of lesions. Currently those algorithms can only handle single erythema or only deal with scaling segmentation. In practice, scaling and erythema are often mixed together. In order to get the segmentation of lesions area - this paper proposes an algorithm based on Random forests with color and texture features. The algorithm has three steps. The first step, the polarized light is applied based on the skin's Tyndall-effect in the imaging to eliminate the reflection and Lab color space are used for fitting the human perception. The second step, sliding window and its sub windows are used to get textural feature and color feature. In this step, a feature of image roughness has been defined, so that scaling can be easily separated from normal skin. In the end, Random forests will be used to ensure the generalization ability of the algorithm. This algorithm can give reliable segmentation results even the image has different lighting conditions, skin types. In the data set offered by Union Hospital, more than 90% images can be segmented accurately.

  16. In-situ model analysis of STARS missile flight data and comparison to per-flight predictions from test-reconciled models

    SciTech Connect

    James, G.H.; Carne, T.G.; Marek, E.L.

    1994-08-01

    The Natural Excitation Technique (NExT) was used to analyze STARS launch data during first and second stage flight using telemetered acceleration data. A continuous track of modal frequencies and modal damping was acquired for the first and second elastic modes of the system during first stage flight and for the first mode during second stage flight. Generally, the first mode was predicted to be lower than seen in actual flight. The second mode predictions were very close to those seen in flight. Damping values were found to be within the range estimated by ground testing or slightly less. The results from this modal analysis of launch data allowed a final quantification of the inherent bias errors which resulted from the STARS ground-based modal tests as well as pointing out structures which were in need of further test/analysis correlation.

  17. X-4 in flight

    NASA Technical Reports Server (NTRS)

    1951-01-01

    In the early days of transonic flight research, many aerodynamicists believed that eliminating conventional tail surfaces could reduce the problems created by shock wave interaction with the tail's lifting surfaces. To address this issue, the Army Air Forces's Air Technical Service awarded a contract to Northrop Aircraft Corporation on 5 April 1946 to build a piloted 'flying laboratory.' Northrop already had experience with tailless flying wing designs such as the N-1M, N-9M, XB-35, and YB-49. Subsequently, the manufacturer built two semi-tailless X-4 research aircraft, the first of which flew half a century ago. The X-4 was designed to investigate transonic compressibility effects at speeds near Mach 0.85 to 0.88, slightly below the speed of sound. Northrop project engineer Arthur Lusk designed the aircraft with swept wings and a conventional fuselage that housed two turbojet engines. It had a vertical stabilizer, but no horizontal tail surfaces. It was one of the smallest X-planes ever built, and every bit of internal space was used for systems and instrumentation. The first X-4 arrived at Muroc Air Force Base by truck on 15 November 1948. Over the course of several weeks, engineers conducted static tests, and Northrop test pilot Charles Tucker made initial taxi runs. Although small of stature, he barely fit into the diminutive craft. Tucker, a veteran Northrop test pilot, had previously flown the XB-35 and YB-49 flying wing bomber prototypes. Prior to flying for Northrop, he had logged 400 hours in jet airplanes as a test pilot for Lockheed and the Air Force. He would now be responsible for completing the contractor phase of the X-4 flight test program. Finally, all was ready. Tucker climbed into the cockpit, and made the first flight on 15 December 1948. It only lasted 18 minutes, allowing just enough time for the pilot to become familiar with the basic handling qualities of the craft. The X-4 handled well, but Tucker noted some longitudinal instability at all

  18. X-4 in flight

    NASA Technical Reports Server (NTRS)

    1951-01-01

    In the early days of transonic flight research, many aerodynamicists believed that eliminating conventional tail surfaces could reduce the problems created by shock wave interaction with the tail's lifting surfaces. To address this issue, the Army Air Forces's Air Technical Service awarded a contract to Northrop Aircraft Corporation on 5 April 1946 to build a piloted 'flying laboratory.' Northrop already had experience with tailless flying wing designs such as the N-1M, N-9M, XB-35, and YB-49. Subsequently, the manufacturer built two semi-tailless X-4 research aircraft, the first of which flew half a century ago. The X-4 was designed to investigate transonic compressibility effects at speeds near Mach 0.85 to 0.88, slightly below the speed of sound. Northrop project engineer Arthur Lusk designed the aircraft with swept wings and a conventional fuselage that housed two turbojet engines. It had a vertical stabilizer, but no horizontal tail surfaces. It was one of the smallest X-planes ever built, and every bit of internal space was used for systems and instrumentation. The first X-4 arrived at Muroc Air Force Base by truck on 15 November 1948. Over the course of several weeks, engineers conducted static tests, and Northrop test pilot Charles Tucker made initial taxi runs. Although small of stature, he barely fit into the diminutive craft. Tucker, a veteran Northrop test pilot, had previously flown the XB-35 and YB-49 flying wing bomber prototypes. Prior to flying for Northrop, he had logged 400 hours in jet airplanes as a test pilot for Lockheed and the Air Force. He would now be responsible for completing the contractor phase of the X-4 flight test program. Finally, all was ready. Tucker climbed into the cockpit, and made the first flight on 15 December 1948. It only lasted 18 minutes, allowing just enough time for the pilot to become familiar with the basic handling qualities of the craft. The X-4 handled well, but Tucker noted some longitudinal instability at all

  19. Identifying Benefit Segments among College Students.

    ERIC Educational Resources Information Center

    Brown, Joseph D.

    1991-01-01

    Using concept of market segmentation (dividing market into distinct groups requiring different product benefits), surveyed 398 college students to determine benefit segments among students selecting a college to attend and factors describing each benefit segment. Identified one major segment of students (classroomers) plus three minor segments…

  20. 47 CFR 95.853 - Frequency segments.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Frequency segments. 95.853 Section 95.853... SERVICES 218-219 MHz Service Technical Standards § 95.853 Frequency segments. There are two frequency segments available for assignment to the 218-219 MHz Service in each service area. Frequency segment A...

  1. 47 CFR 95.853 - Frequency segments.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Frequency segments. 95.853 Section 95.853... SERVICES 218-219 MHz Service Technical Standards § 95.853 Frequency segments. There are two frequency segments available for assignment to the 218-219 MHz Service in each service area. Frequency segment A...

  2. 47 CFR 95.853 - Frequency segments.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Frequency segments. 95.853 Section 95.853... SERVICES 218-219 MHz Service Technical Standards § 95.853 Frequency segments. There are two frequency segments available for assignment to the 218-219 MHz Service in each service area. Frequency segment A...

  3. 47 CFR 95.853 - Frequency segments.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Frequency segments. 95.853 Section 95.853... SERVICES 218-219 MHz Service Technical Standards § 95.853 Frequency segments. There are two frequency segments available for assignment to the 218-219 MHz Service in each service area. Frequency segment A...

  4. 47 CFR 95.853 - Frequency segments.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Frequency segments. 95.853 Section 95.853... SERVICES 218-219 MHz Service Technical Standards § 95.853 Frequency segments. There are two frequency segments available for assignment to the 218-219 MHz Service in each service area. Frequency segment A...

  5. Image Information Mining Utilizing Hierarchical Segmentation

    NASA Technical Reports Server (NTRS)

    Tilton, James C.; Marchisio, Giovanni; Koperski, Krzysztof; Datcu, Mihai

    2002-01-01

    The Hierarchical Segmentation (HSEG) algorithm is an approach for producing high quality, hierarchically related image segmentations. The VisiMine image information mining system utilizes clustering and segmentation algorithms for reducing visual information in multispectral images to a manageable size. The project discussed herein seeks to enhance the VisiMine system through incorporating hierarchical segmentations from HSEG into the VisiMine system.

  6. The preferred walk to run transition speed in actual lunar gravity.

    PubMed

    De Witt, John K; Edwards, W Brent; Scott-Pandorf, Melissa M; Norcross, Jason R; Gernhardt, Michael L

    2014-09-15

    Quantifying the preferred transition speed (PTS) from walking to running has provided insight into the underlying mechanics of locomotion. The dynamic similarity hypothesis suggests that the PTS should occur at the same Froude number across gravitational environments. In normal Earth gravity, the PTS occurs at a Froude number of 0.5 in adult humans, but previous reports found the PTS occurred at Froude numbers greater than 0.5 in simulated lunar gravity. Our purpose was to (1) determine the Froude number at the PTS in actual lunar gravity during parabolic flight and (2) compare it with the Froude number at the PTS in simulated lunar gravity during overhead suspension. We observed that Froude numbers at the PTS in actual lunar gravity (1.39±0.45) and simulated lunar gravity (1.11±0.26) were much greater than 0.5. Froude numbers at the PTS above 1.0 suggest that the use of the inverted pendulum model may not necessarily be valid in actual lunar gravity and that earlier findings in simulated reduced gravity are more accurate than previously thought. PMID:25232195

  7. Shuttle orbiter flash evaporator operational flight test performance

    NASA Technical Reports Server (NTRS)

    Nason, J. R.; Behrend, A. F., Jr.

    1982-01-01

    The Flash evaporator System (FES is part of the Shuttle Orbiter Active Thermal Control Subsystem. The FES provides total heat rejection for the vehicle Freon Coolant Loops during ascent and entry and supplementary heat rejection during orbital mission phases. This paper reviews the performance of the FES during the first two Shuttle orbital missions (STS-1 and STS-2). A comparison of actual mission performance against design requirements is presented. Mission profiles (including Freon inlet temperature and feedwater pressure transients), control temperature, and heat load variations are evaluated. Anomalies that occurred during STS-2 are discussed along with the procedures conducted, both in-flight and post-flight, to isolate the causes. Finally, the causes of the anomalies and resulting corrective action taken for STS-3 and subsequent flights are presented.

  8. Crew Factors in Flight Operations X: Alertness Management in Flight Operations

    NASA Technical Reports Server (NTRS)

    Rosekind, Mark R.; Gander, Philippa H.; Connell, Linda J.; Co, Elizabeth L.

    2001-01-01

    In response to a 1980 congressional request, NASA Ames Research Center initiated a Fatigue/Jet Lag Program to examine fatigue, sleep loss, and circadian disruption in aviation. Research has examined fatigue in a variety of flight environments using a range of measures (from self-report to performance to physiological). In 1991, the program evolved into the Fatigue Countermeasures Program, emphasizing the development and evaluation of strategies to maintain alertness and performance in operational settings. Over the years, the Federal Aviation Administration (FAA) has become a collaborative partner in support of fatigue research and other Program activities. From the inception of the Program, a principal goal was to return the information learned from research and other Program activities to the operational community. The objectives of this Education and Training Module are to explain what has been learned about the physiological mechanisms that underlie fatigue, demonstrate the application of this information in flight operations, and offer some specific fatigue countermeasure recommendations. It is intended for all segments of the aeronautics industry, including pilots, flight attendants, managers, schedulers, safety and policy personnel, maintenance crews, and others involved in an operational environment that challenges human physiological capabilities because of fatigue, sleep loss, and circadian disruption.

  9. Crew Factors in Flight Operations X: Alertness Management in Flight Operations

    NASA Technical Reports Server (NTRS)

    Rosekind, Mark R.; Gander, Philippa H.; Connell, Linda J.; Co, Elizabeth L.

    1999-01-01

    In response to a 1980 congressional request, NASA Ames Research Center initiated a Fatigue/Jet Lag Program to examine fatigue, sleep loss, and circadian disruption in aviation. Research has examined fatigue in a variety of flight environments using a range of measures (from self-report to performance to physiological). In 1991, the program evolved into the Fatigue Countermeasures Program, emphasizing the development and evaluation of strategies to maintain alertness and performance in operational settings. Over the years, the Federal Aviation Administration (FAA) has become a collaborative partner in support of fatigue research and other Program activities. From the inception of the Program, a principal goal was to return the information learned from research and other Program activities to the operational community. The objectives of this Education and Training Module are to explain what has been learned about the physiological mechanisms that underlie fatigue, demonstrate the application of this information in flight operations, and offer some specific fatigue counter-measure recommendations. It is intended for all segments of the aeronautics industry, including pilots, flight attendants, managers, schedulers, safety and policy personnel, maintenance crews, and others involved in an operational environment that challenges human physiological capabilities because of fatigue, sleep loss, and circadian disruption.

  10. Liver segmentation for CT images using GVF snake

    SciTech Connect

    Liu Fan; Zhao Binsheng; Kijewski, Peter K.; Wang Liang; Schwartz, Lawrence H.

    2005-12-15

    Accurate liver segmentation on computed tomography (CT) images is a challenging task especially at sites where surrounding tissues (e.g., stomach, kidney) have densities similar to that of the liver and lesions reside at the liver edges. We have developed a method for semiautomatic delineation of the liver contours on contrast-enhanced CT images. The method utilizes a snake algorithm with a gradient vector flow (GVF) field as its external force. To improve the performance of the GVF snake in the segmentation of the liver contour, an edge map was obtained with a Canny edge detector, followed by modifications using a liver template and a concavity removal algorithm. With the modified edge map, for which unwanted edges inside the liver were eliminated, the GVF field was computed and an initial liver contour was formed. The snake algorithm was then applied to obtain the actual liver contour. This algorithm was extended to segment the liver volume in a slice-by-slice fashion, where the result of the preceding slice constrained the segmentation of the adjacent slice. 551 two-dimensional liver images from 20 volumetric images with colorectal metastases spreading throughout the livers were delineated using this method, and also manually by a radiologist for evaluation. The difference ratio, which is defined as the percentage ratio of mismatching volume between the computer and the radiologist's results, ranged from 2.9% to 7.6% with a median value of 5.3%.

  11. Midbrain volume segmentation using active shape models and LBPs

    NASA Astrophysics Data System (ADS)

    Olveres, Jimena; Nava, Rodrigo; Escalante-Ramírez, Boris; Cristóbal, Gabriel; García-Moreno, Carla María.

    2013-09-01

    In recent years, the use of Magnetic Resonance Imaging (MRI) to detect different brain structures such as midbrain, white matter, gray matter, corpus callosum, and cerebellum has increased. This fact together with the evidence that midbrain is associated with Parkinson's disease has led researchers to consider midbrain segmentation as an important issue. Nowadays, Active Shape Models (ASM) are widely used in literature for organ segmentation where the shape is an important discriminant feature. Nevertheless, this approach is based on the assumption that objects of interest are usually located on strong edges. Such a limitation may lead to a final shape far from the actual shape model. This paper proposes a novel method based on the combined use of ASM and Local Binary Patterns for segmenting midbrain. Furthermore, we analyzed several LBP methods and evaluated their performance. The joint-model considers both global and local statistics to improve final adjustments. The results showed that our proposal performs substantially better than the ASM algorithm and provides better segmentation measurements.

  12. Segmented saddle-shaped passive stabilization conductors for toroidal plasmas

    DOEpatents

    Leuer, James A.

    1990-05-01

    A large toroidal vacuum chamber for plasma generation and confinement is lined with a toroidal blanket for shielding using modules segmented in the toroidal direction. To provide passive stabilization in the same manner as a conductive vacuum chamber wall, saddle-shaped conductor loops are provided on blanket modules centered on a midplane of the toroidal chamber with horizontal conductive bars above and below the midplane, and vertical conductive legs on opposite sides of each module to provide return current paths between the upper and lower horizontal conductive bars. The close proximity of the vertical legs provided on adjacent modules without making physical contact cancel the electromagnetic field of adjacent vertical legs. The conductive bars spaced equally above and below the midplane simulate toroidal conductive loops or hoops that are continuous, for vertical stabilization of the plasma even though they are actually segmented.

  13. Segmented saddle-shaped passive stabilization conductors for toroidal plasmas

    DOEpatents

    Leuer, J.A.

    1990-05-01

    A large toroidal vacuum chamber for plasma generation and confinement is lined with a toroidal blanket for shielding using modules segmented in the toroidal direction. To provide passive stabilization in the same manner as a conductive vacuum chamber wall, saddle-shaped conductor loops are provided on blanket modules centered on a midplane of the toroidal chamber with horizontal conductive bars above and below the midplane, and vertical conductive legs on opposite sides of each module to provide return current paths between the upper and lower horizontal conductive bars. The close proximity of the vertical legs provided on adjacent modules without making physical contact cancel the electromagnetic field of adjacent vertical legs. The conductive bars spaced equally above and below the midplane simulate toroidal conductive loops or hoops that are continuous, for vertical stabilization of the plasma even though they are actually segmented. 5 figs.

  14. Neurosphere segmentation in brightfield images

    NASA Astrophysics Data System (ADS)

    Cheng, Jierong; Xiong, Wei; Chia, Shue Ching; Lim, Joo Hwee; Sankaran, Shvetha; Ahmed, Sohail

    2014-03-01

    The challenge of segmenting neurospheres (NSPs) from brightfield images includes uneven background illumination (vignetting), low contrast and shadow-casting appearance near the well wall. We propose a pipeline for neurosphere segmentation in brightfield images, focusing on shadow-casting removal. Firstly, we remove vignetting by creating a synthetic blank field image from a set of brightfield images of the whole well. Then, radial line integration is proposed to remove the shadow-casting and therefore facilitate automatic segmentation. Furthermore, a weighted bi-directional decay function is introduced to prevent undesired gradient effect of line integration on NSPs without shadow-casting. Afterward, multiscale Laplacian of Gaussian (LoG) and localized region-based level set are used to detect the NSP boundaries. Experimental results show that our proposed radial line integration method (RLI) achieves higher detection accuracy over existing methods in terms of precision, recall and F-score with less computational time.

  15. Distribution Metrics and Image Segmentation

    PubMed Central

    Georgiou, Tryphon; Michailovich, Oleg; Rathi, Yogesh; Malcolm, James; Tannenbaum, Allen

    2007-01-01

    The purpose of this paper is to describe certain alternative metrics for quantifying distances between distributions, and to explain their use and relevance in visual tracking. Besides the theoretical interest, such metrics may be used to design filters for image segmentation, that is for solving the key visual task of separating an object from the background in an image. The segmenting curve is represented as the zero level set of a signed distance function. Most existing methods in the geometric active contour framework perform segmentation by maximizing the separation of intensity moments between the interior and the exterior of an evolving contour. Here one can use the given distributional metric to determine a flow which minimizes changes in the distribution inside and outside the curve. PMID:18769529

  16. Initial SVS Integrated Technology Evaluation Flight Test Requirements and Hardware Architecture

    NASA Technical Reports Server (NTRS)

    Harrison, Stella V.; Kramer, Lynda J.; Bailey, Randall E.; Jones, Denise R.; Young, Steven D.; Harrah, Steven D.; Arthur, Jarvis J.; Parrish, Russell V.

    2003-01-01

    This document presents the flight test requirements for the Initial Synthetic Vision Systems Integrated Technology Evaluation flight Test to be flown aboard NASA Langley's ARIES aircraft and the final hardware architecture implemented to meet these requirements. Part I of this document contains the hardware, software, simulator, and flight operations requirements for this light test as they were defined in August 2002. The contents of this section are the actual requirements document that was signed for this flight test. Part II of this document contains information pertaining to the hardware architecture that was realized to meet these requirements as presented to and approved by a Critical Design Review Panel prior to installation on the B-757 Airborne Research Integrated Experiments Systems (ARIES) airplane. This information includes a description of the equipment, block diagrams of the architecture, layouts of the workstations, and pictures of the actual installations.

  17. Modification to area navigation equipment for instrument two-segment approaches

    NASA Technical Reports Server (NTRS)

    1975-01-01

    A two-segment aircraft landing approach concept utilizing an area random navigation (RNAV) system to execute the two-segment approach and eliminate the requirements for co-located distance measuring equipment (DME) was investigated. This concept permits non-precision approaches to be made to runways not equipped with ILS systems, down to appropriate minima. A hardware and software retrofit kit for the concept was designed, built, and tested on a DC-8-61 aircraft for flight evaluation. A two-segment approach profile and piloting procedure for that aircraft that will provide adequate safety margin under adverse weather, in the presence of system failures, and with the occurrence of an abused approach, was also developed. The two-segment approach procedure and equipment was demonstrated to line pilots under conditions which are representative of those encountered in air carrier service.

  18. Design implications from AFTI/F-16 flight test

    NASA Technical Reports Server (NTRS)

    Ishmael, S. D.; Regenie, V. A.; Mackall, D. A.

    1984-01-01

    Advanced fighter technologies are evolving into highly complex systems. Flight controls are being integrated with advanced avionics to achieve a total system. The advanced fighter technology integration (AFTI) F-16 aircraft is an example of a highly complex digital flight control system integrated with advanced avionics and cockpit. The architecture of these new systems involves several general issues. The use of dissimilar backup modes if the primary system fails requires the designer to trade off system simplicity and capability. This tradeoff is evident in the AFTI/F-16 aircraft with its limited stability and fly-by-wire digital flight control systems. In case of a generic software failure, the backup or normal mode must provide equivalent envelope protection during the transition to degraded flight control. The complexity of systems like the AFTI/F-16 system defines a second design issue, which can be divided into two segments: the effect on testing, and the pilot's ability to act correctly in the limited time available for cockpit decisions. The large matrix of states possible with the AFTI/F-16 flight control system illustrates the difficulty of both testing the system and choosing real-time pilot actions.

  19. System Would Keep Telescope Reflector Segments Aligned

    NASA Technical Reports Server (NTRS)

    Mettler, Edward; Eldred, Daniel B.; Briggs, Hugh C.; Agronin, Michael L.; Kiceniuk, Taras

    1991-01-01

    Proposed actuation system maintains alignments of reflector segments of large telescope. Sensors measure positions and orientations of segments. Figure-control computer calculates orientation and figure of overall reflector surface from sensor data. Responding to computer output, servocontroller for each actuator corrects piston and tilt errors of each segment. Actuators adjust segments in response to sensed positions. Concept applicable to such large segmented space-based reflectors as those used in communication and in collection of solar energy.

  20. Generation of the Ares I-X Flight Test Vehicle Aerodynamic Data Book and Comparison To Flight

    NASA Technical Reports Server (NTRS)

    Bauer, Steven X.; Krist, Steven E.; Compton, William B.

    2011-01-01

    A 3.5-year effort to characterize the aerodynamic behavior of the Ares I-X Flight Test Vehicle (AIX FTV) is described in this paper. The AIX FTV was designed to be representative of the Ares I Crew Launch Vehicle (CLV). While there are several differences in the outer mold line from the current revision of the CLV, the overall length, mass distribution, and flight systems of the two vehicles are very similar. This paper briefly touches on each of the aerodynamic databases developed in the program, describing the methodology employed, experimental and computational contributions to the generation of the databases, and how well the databases and underlying computations compare to actual flight test results.

  1. Document segmentation via oblique cuts

    NASA Astrophysics Data System (ADS)

    Svendsen, Jeremy; Branzan-Albu, Alexandra

    2013-01-01

    This paper presents a novel solution for the layout segmentation of graphical elements in Business Intelligence documents. We propose a generalization of the recursive X-Y cut algorithm, which allows for cutting along arbitrary oblique directions. An intermediate processing step consisting of line and solid region removal is also necessary due to presence of decorative elements. The output of the proposed segmentation is a hierarchical structure which allows for the identification of primitives in pie and bar charts. The algorithm was tested on a database composed of charts from business documents. Results are very promising.

  2. Nanofiber-segment ring resonator

    NASA Astrophysics Data System (ADS)

    Jones, D. E.; Hickman, G. T.; Franson, J. D.; Pittman, T. B.

    2016-08-01

    We describe a fiber ring resonator comprised of a relatively long loop of standard single-mode fiber with a short nanofiber segment. The evanescent mode of the nanofiber segment allows the cavity-enhanced field to interact with atoms in close proximity to the nanofiber surface. We report on an experiment using a warm atomic vapor and low-finesse cavity, and briefly discuss the potential for reaching the strong coupling regime of cavity QED by using trapped atoms and a high-finesse cavity of this kind.

  3. Scene segmentation through region growing

    NASA Technical Reports Server (NTRS)

    Latty, R. S.

    1984-01-01

    A computer algorithm to segment Landsat Thematic Mapper (TM) images into areas representing surface features is described. The algorithm is based on a region growing approach and uses edge elements and edge element orientation to define the limits of the surface features. Adjacent regions which are not separated by edges are linked to form larger regions. Some of the advantages of scene segmentation over conventional TM image extraction algorithms are discussed, including surface feature analysis on a pixel-by-pixel basis, and faster identification of the pixels in each region. A detailed flow diagram of region growing algorithm is provided.

  4. Dynamic flight stability of a model dronefly in vertical flight

    NASA Astrophysics Data System (ADS)

    Shen, Chong; Sun, Mao

    2014-12-01

    The dynamic flight stability of a model dronefly in hovering and upward flight is studied. The method of computational fluid dynamics is used to compute the stability derivatives and the techniques of eigenvalue and eigenvector used to solve the equations of motion. The major finding is as following. Hovering flight of the model dronefly is unstable because of the existence of an unstable longitudinal and an unstable lateral natural mode of motion. Upward flight of the insect is also unstable, and the instability increases as the upward flight speed increases. Inertial force generated by the upward flight velocity coupled with the disturbance in pitching angular velocity is responsible for the enhancement of the instability.

  5. Flight Test of an Intelligent Flight-Control System

    NASA Technical Reports Server (NTRS)

    Davidson, Ron; Bosworth, John T.; Jacobson, Steven R.; Thomson, Michael Pl; Jorgensen, Charles C.

    2003-01-01

    The F-15 Advanced Controls Technology for Integrated Vehicles (ACTIVE) airplane (see figure) was the test bed for a flight test of an intelligent flight control system (IFCS). This IFCS utilizes a neural network to determine critical stability and control derivatives for a control law, the real-time gains of which are computed by an algorithm that solves the Riccati equation. These derivatives are also used to identify the parameters of a dynamic model of the airplane. The model is used in a model-following portion of the control law, in order to provide specific vehicle handling characteristics. The flight test of the IFCS marks the initiation of the Intelligent Flight Control System Advanced Concept Program (IFCS ACP), which is a collaboration between NASA and Boeing Phantom Works. The goals of the IFCS ACP are to (1) develop the concept of a flight-control system that uses neural-network technology to identify aircraft characteristics to provide optimal aircraft performance, (2) develop a self-training neural network to update estimates of aircraft properties in flight, and (3) demonstrate the aforementioned concepts on the F-15 ACTIVE airplane in flight. The activities of the initial IFCS ACP were divided into three Phases, each devoted to the attainment of a different objective. The objective of Phase I was to develop a pre-trained neural network to store and recall the wind-tunnel-based stability and control derivatives of the vehicle. The objective of Phase II was to develop a neural network that can learn how to adjust the stability and control derivatives to account for failures or modeling deficiencies. The objective of Phase III was to develop a flight control system that uses the neural network outputs as a basis for controlling the aircraft. The flight test of the IFCS was performed in stages. In the first stage, the Phase I version of the pre-trained neural network was flown in a passive mode. The neural network software was running using flight data

  6. Automatic segmentation and classification of human brain image based on a fuzzy brain atlas

    NASA Astrophysics Data System (ADS)

    Tan, Ou; Jia, Chunguang; Duan, Huilong; Lu, Weixue

    1998-09-01

    It is difficult to automatically segment and classify tomograph images of actual patient's brain. Therefore, many interactive operations are performed. It is very time consuming and its precision is much depended on the user. In this paper, we combine a brain atlas and 3D fuzzy image segmentation into the image matching. It can not only find out the precise boundary of anatomic structure but also save time of the interactive operation. At first, the anatomic information of atlas is mapped into tomograph images of actual brain with a two step image matching method. Then, based on the mapping result, a 3D fuzzy structure mask is calculated. With the fuzzy information of anatomic structure, a new method of fuzzy clustering based on genetic algorithm is used to segment and classify the real brain image. There is only a minimum requirement of interaction in the whole process, including removing the skull and selecting some intrinsic point pairs.

  7. Automatic Coronary Artery Segmentation Using Active Search for Branches and Seemingly Disconnected Vessel Segments from Coronary CT Angiography

    PubMed Central

    Shim, Hackjoon; Jeon, Byunghwan; Jang, Yeonggul; Hong, Youngtaek; Jung, Sunghee; Ha, Seongmin; Chang, Hyuk-Jae

    2016-01-01

    We propose a Bayesian tracking and segmentation method of coronary arteries on coronary computed tomographic angiography (CCTA). The geometry of coronary arteries including lumen boundary is estimated in Maximum A Posteriori (MAP) framework. Three consecutive sphere based filtering is combined with a stochastic process that is based on the similarity of the consecutive local neighborhood voxels and the geometric constraint of a vessel. It is also founded on the prior knowledge that an artery can be seen locally disconnected and consist of branches which may be seemingly disconnected due to plaque build up. For such problem, an active search method is proposed to find branches and seemingly disconnected but actually connected vessel segments. Several new measures have been developed for branch detection, disconnection check and planar vesselness measure. Using public domain Rotterdam CT dataset, the accuracy of extracted centerline is demonstrated and automatic reconstruction of coronary artery mesh is shown. PMID:27536939

  8. Lifting Body Flight Vehicles

    NASA Technical Reports Server (NTRS)

    Barret, Chris

    1998-01-01

    NASA has a technology program in place to build the X-33 test vehicle and then the full sized Reusable Launch Vehicle, VentureStar. VentureStar is a Lifting Body (LB) flight vehicle which will carry our future payloads into orbit, and will do so at a much reduced cost. There were three design contenders for the new Reusable Launch Vehicle: a Winged Vehicle, a Vertical Lander, and the Lifting Body(LB). The LB design won the competition. A LB vehicle has no wings and derives its lift solely from the shape of its body, and has the unique advantages of superior volumetric efficiency, better aerodynamic efficiency at high angles-of-attack and hypersonic speeds, and reduced thermal protection system weight. Classically, in a ballistic vehicle, drag has been employed to control the level of deceleration in reentry. In the LB, lift enables the vehicle to decelerate at higher altitudes for the same velocity and defines the reentry corridor which includes a greater cross range. This paper outlines our LB heritage which was utilized in the design of the new Reusable Launch Vehicle, VentureStar. NASA and the U.S. Air Force have a rich heritage of LB vehicle design and flight experience. Eight LB's were built and over 225 LB test flights were conducted through 1975 in the initial LB Program. Three LB series were most significant in the advancement of today's LB technology: the M2-F; HL-1O; and X-24 series. The M2-F series was designed by NASA Ames Research Center, the HL-10 series by NASA Langley Research Center, and the X-24 series by the Air Force. LB vehicles are alive again today.

  9. Orion Pad Abort 1 Flight Test - Ground and Flight Operations

    NASA Technical Reports Server (NTRS)

    Hackenbergy, Davis L.; Hicks, Wayne

    2011-01-01

    This paper discusses the ground and flight operations aspects to the Pad Abort 1 launch. The paper details the processes used to plan all operations. The paper then discussions the difficulties of integration and testing, while detailing some of the lessons learned throughout the entire launch campaign. Flight operational aspects of the launc are covered in order to provide the listener with the full suite of operational issues encountered in preparation for the first flight test of the Orion Launch Abort System.

  10. The 737 graphite composite flight spoiler flight service evaluation

    NASA Technical Reports Server (NTRS)

    Coggeshall, R. L.

    1985-01-01

    The flight service experience of 111 graphite-epoxy spoilers on 737 transport aircraft and related ground based environmental exposure of graphite-epoxy material specimens is covered. Spoilers have been installed on 28 aircraft representing seven major airlines operating throughout the world. An extended flight service evaluation program of 15 years is presently underway. As of December 1984, a total of 2,092, 155 spoiler flight hours and 2,954,814 spoiler landings had been accumulated by this fleet.

  11. Flight investigation of piloting techniques and crosswind limitations using a research type crosswind landing gear

    NASA Technical Reports Server (NTRS)

    Fisher, B. D.; Deal, P. L.; Champine, R. A.; Patton, J. M., Jr.

    1979-01-01

    A research-type crosswind landing gear was tested in a flight program which used a light STOL transport in strong crosswind conditions. The research-type crosswind landing gear used enabled the airplane to land to crosswinds up to a magnitude of 25 to 30 knots. Three modes of landing-gear operation were investigated: preset, automatic, and castor (passive self-alignment). Actual test data and histograms are given for the 195 'visual flight rules' crosswind landings made.

  12. Scientific experiments in the flight of the 1977 biological satellite (draft plan)

    NASA Technical Reports Server (NTRS)

    1977-01-01

    The physiological, biological, radiobiological and radiophysical experiments planned for the 1977 biological satellite are described. The biological experiments will involve rats, higher and lower plants, insects and other biological specimens carried on the biosatellite. The responses of these organisms to weightlessness, artificial gravity, cosmic radiation particles and general flight factors will be studied. The radiophysical experiments will investigate certain properties of cosmic radiation as well as the possibility of creating electrostatic and dielectric radiation shields under actual space-flight conditions.

  13. Pregnant Guppy in Flight

    NASA Technical Reports Server (NTRS)

    1960-01-01

    The Pregnant Guppy is a modified Boeing B-377 Stratocruiser used to transport the S-IV (second) stage for the Saturn I launch vehicle between manufacturing facilities on the West coast, and testing and launch facilities in the Southeast. The fuselage of the B-377 was lengthened to accommodate the S-IV stage and the plane's cabin section was enlarged to approximately double its normal volume. The idea was originated by John M. Conroy of Aero Spaceliners, Incorporated, in Van Nuys, California. The former Stratocruiser became a B-377 PG: the Pregnant Guppy. This photograph depicts the Pregnant Guppy in flight.

  14. Flight Mechanics Project

    NASA Technical Reports Server (NTRS)

    Steck, Daniel

    2009-01-01

    This report documents the generation of an outbound Earth to Moon transfer preliminary database consisting of four cases calculated twice a day for a 19 year period. The database was desired as the first step in order for NASA to rapidly generate Earth to Moon trajectories for the Constellation Program using the Mission Assessment Post Processor. The completed database was created running a flight trajectory and optimization program, called Copernicus, in batch mode with the use of newly created Matlab functions. The database is accurate and has high data resolution. The techniques and scripts developed to generate the trajectory information will also be directly used in generating a comprehensive database.

  15. The Third Flight Magnet

    NASA Technical Reports Server (NTRS)

    McGhee, R. Wayne

    1998-01-01

    A self-shielded superconducting magnet was designed for the NASA Goddard Space Flight Center Adiabatic Demagnetization Refrigerator Program. This is the third magnet built from this design. The magnets utilize Cryomagnetics' patented ultra-low current technology. The magnetic system is capable of reaching a central field of two tesla at slightly under two amperes and has a total inductance of 1068 henries. This final report details the requirements of the magnet, the specifications of the resulting magnet, the test procedures and test result data for the third magnet (Serial # C-654-M), and recommended precautions for use of the magnet.

  16. 26 CFR 1.953-2 - Actual United States risks.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., and water damage risks incurred when property is actually located in the United States and marine... 26 Internal Revenue 10 2014-04-01 2013-04-01 true Actual United States risks. 1.953-2 Section 1... coverage as “.825% plus .3% fire, etc. risks plus .12% water risks = 1.245%”, a reasonable basis exists...

  17. Self-actualization: Its Use and Misuse in Teacher Education.

    ERIC Educational Resources Information Center

    Ivie, Stanley D.

    1982-01-01

    The writings of Abraham Maslow are analyzed to determine the meaning of the psychological term "self-actualization." After pointing out that self-actualization is a rare quality and that it has little to do with formal education, the author concludes that the concept has little practical relevance for teacher education. (PP)

  18. The Self-Actualization of Polk Community College Students.

    ERIC Educational Resources Information Center

    Pearsall, Howard E.; Thompson, Paul V., Jr.

    This article investigates the concept of self-actualization introduced by Abraham Maslow (1954). A summary of Maslow's Needs Hierarchy, along with a description of the characteristics of the self-actualized person, is presented. An analysis of humanistic education reveals it has much to offer as a means of promoting the principles of…

  19. From Self-Awareness to Self-Actualization

    ERIC Educational Resources Information Center

    Cangemi, Joseph P.; Englander, Meryl R.

    1974-01-01

    Highest priority of education is to help students utilize as much of their talent as is possible. Third Force psychologists would interpret this as becoming self-actualized. Self-awareness is required for psychological growth. Without self-awareness there can be no growth, no mental hygiene, and no self-actualization. (Author)

  20. 12 CFR 1806.203 - Selection Process, actual award amounts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 7 2010-01-01 2010-01-01 false Selection Process, actual award amounts. 1806... OF THE TREASURY BANK ENTERPRISE AWARD PROGRAM Awards § 1806.203 Selection Process, actual award... round: (1) To select Applicants not previously selected, using the calculation and selection...

  1. Self-Actualization and the Effective Social Studies Teacher.

    ERIC Educational Resources Information Center

    Farmer, Rodney B.

    1980-01-01

    Discusses a study undertaken to investigate the relationship between social studies teachers' degrees of self-actualization and their teacher effectiveness. Investigates validity of using Maslow's theory of self-actualization as a way of identifying the effective social studies teacher personality. (Author/DB)

  2. Facebook as a Library Tool: Perceived vs. Actual Use

    ERIC Educational Resources Information Center

    Jacobson, Terra B.

    2011-01-01

    As Facebook has come to dominate the social networking site arena, more libraries have created their own library pages on Facebook to create library awareness and to function as a marketing tool. This paper examines reported versus actual use of Facebook in libraries to identify discrepancies between intended goals and actual use. The results of a…

  3. Perceived and Actual Student Support Needs in Distance Education.

    ERIC Educational Resources Information Center

    Visser, Lya; Visser, Yusra Laila

    2000-01-01

    This study sought to determine the academic, affective, and administrative support expectations of distance education students, and to compare actual expectations of distance education students with the instructor's perceptions of such expectations. Results demonstrated divergence between perceived and actual expectations of student support in…

  4. Gebrauchstexte im Fremdsprachenunterricht ("Actual" Texts in Foreign Language Teaching)

    ERIC Educational Resources Information Center

    Ziegesar, Detlef von

    1976-01-01

    Presents for analysis actual texts and texts specially written for teaching, arriving at a basis for a typology of actual texts. Defines teaching aims using such texts, and develops, from a TV program, a teaching unit used in a Karlsruhe school. (Text is in German.) (IFS/WGA)

  5. Self-Actualizing Men and Women: A Comparison Study.

    ERIC Educational Resources Information Center

    Hall, Eleanor G.; Hansen, Jan B.

    1997-01-01

    The self-actualization of 167 women who lived in the Martha Cook (MC) dormitory of the University of Michigan (1950-1970) was compared to that of a group of Ivy League men researched in another study. In addition, two groups of MC women were compared to each other to identify differences which might explain why some self-actualized while other did…

  6. SELF-ACTUALIZATION AND THE UTILIZATION OF TALENT.

    ERIC Educational Resources Information Center

    FRENCH, JOHN R.P.; MILLER, DANIEL R.

    THIS STUDY ATTEMPTED (1) TO DEVELOP A THEORY OF THE CAUSES AND CONSEQUENCES OF SELF-ACTUALIZATION AS RELATED TO THE UTILIZATION OF TALENT, (2) TO FIT THE THEORY TO EXISTING DATA, AND (3) TO PLAN ONE OR MORE RESEARCH PROJECTS TO TEST THE THEORY. TWO ARTICLES ON IDENTITY AND MOTIVATION AND SELF-ACTUALIZATION AND SELF-IDENTITY THEORY REPORTED THE…

  7. Self-Actualization Effects Of A Marathon Growth Group

    ERIC Educational Resources Information Center

    Jones, Dorothy S.; Medvene, Arnold M.

    1975-01-01

    This study examined the effects of a marathon group experience on university student's level of self-actualization two days and six weeks after the experience. Gains in self-actualization as a result of marathon group participation depended upon an individual's level of ego strength upon entering the group. (Author)

  8. 26 CFR 1.962-3 - Treatment of actual distributions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 10 2013-04-01 2013-04-01 false Treatment of actual distributions. 1.962-3... TAX (CONTINUED) INCOME TAXES (CONTINUED) Controlled Foreign Corporations § 1.962-3 Treatment of actual... a foreign corporation. (ii) Treatment of section 962 earnings and profits under § 1.959-3....

  9. School Guidance Counselors' Perceptions of Actual and Preferred Job Duties

    ERIC Educational Resources Information Center

    Edwards, John Dexter

    2010-01-01

    The purpose of this study was to provide process data for school counselors, administrators, and the public, regarding school counselors' actual roles within the guidance counselor preferred job duties and actual job duties. In addition, factors including National Certification or no National Certification, years of counseling experience, and…

  10. Statistical analysis of flight times for space shuttle ferry flights

    NASA Technical Reports Server (NTRS)

    Graves, M. E.; Perlmutter, M.

    1974-01-01

    Markov chain and Monte Carlo analysis techniques are applied to the simulated Space Shuttle Orbiter Ferry flights to obtain statistical distributions of flight time duration between Edwards Air Force Base and Kennedy Space Center. The two methods are compared, and are found to be in excellent agreement. The flights are subjected to certain operational and meteorological requirements, or constraints, which cause eastbound and westbound trips to yield different results. Persistence of events theory is applied to the occurrence of inclement conditions to find their effect upon the statistical flight time distribution. In a sensitivity test, some of the constraints are varied to observe the corresponding changes in the results.

  11. Enhanced Flight Termination System Flight Demonstration and Results

    NASA Technical Reports Server (NTRS)

    Tow, David; Arce, Dennis

    2007-01-01

    This paper discusses the methodology, requirements, tests, and implementation plan for the live demonstration of the Enhanced Flight Termination System (EFTS) using a missile program at two locations in Florida: Eglin Air Force Base (AFB) and Tyndall AFB. The demonstration included the integration of EFTS Flight Termination Receivers (FTRs) onto the missile and the integration of EFTS-program-developed transmitter assets with the mission control system at Eglin and Tyndall AFBs. The initial test stages included ground testing and captive-carry flights, followed by a launch in which EFTS was designated as the primary flight termination system for the launch.

  12. The 737 graphite composite flight spoiler flight service evaluation

    NASA Technical Reports Server (NTRS)

    Coggeshall, Randy L.

    1987-01-01

    The ninth flight service report was prepared in compliance with the requirements of Contract NAS1-11668. It covers the flight service experience of 111 graphite-epoxy spoilers on 737 transport aircraft and related ground-based environmental exposure of graphite epoxy material specimens for the period 1 Jan. 1985 through 31 Dec. 1986. Spoilers have been installed on 28 aircraft representing seven major airlines operating throughout the world. An extended flight service evaluation program of 15 years is presently underway. As of 31 Dec. 1986, a total of 3,339,608 spoiler flight-hours and 3,320,952 spoiler landings had been accumulated by this fleet.

  13. GPS 3-D cockpit displays: Sensors, algorithms, and flight testing

    NASA Astrophysics Data System (ADS)

    Barrows, Andrew Kevin

    Tunnel-in-the-Sky 3-D flight displays have been investigated for several decades as a means of enhancing aircraft safety and utility. However, high costs have prevented commercial development and seriously hindered research into their operational benefits. The rapid development of Differential Global Positioning Systems (DGPS), inexpensive computing power, and ruggedized displays is now changing this situation. A low-cost prototype system was built and flight tested to investigate implementation and operational issues. The display provided an "out the window" 3-D perspective view of the world, letting the pilot see the horizon, runway, and desired flight path even in instrument flight conditions. The flight path was depicted as a tunnel through which the pilot flew the airplane, while predictor symbology provided guidance to minimize path-following errors. Positioning data was supplied, by various DGPS sources including the Stanford Wide Area Augmentation System (WAAS) testbed. A combination of GPS and low-cost inertial sensors provided vehicle heading, pitch, and roll information. Architectural and sensor fusion tradeoffs made during system implementation are discussed. Computational algorithms used to provide guidance on curved paths over the earth geoid are outlined along with display system design issues. It was found that current technology enables low-cost Tunnel-in-the-Sky display systems with a target cost of $20,000 for large-scale commercialization. Extensive testing on Piper Dakota and Beechcraft Queen Air aircraft demonstrated enhanced accuracy and operational flexibility on a variety of complex flight trajectories. These included curved and segmented approaches, traffic patterns flown on instruments, and skywriting by instrument reference. Overlays to existing instrument approaches at airports in California and Alaska were flown and compared with current instrument procedures. These overlays demonstrated improved utility and situational awareness for

  14. 14 CFR 417.219 - Data loss flight time and planned safe flight state analyses.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... Analysis § 417.219 Data loss flight time and planned safe flight state analyses. (a) General. For each launch, a flight safety analysis must establish data loss flight times, as identified by paragraph (b) of...) contains requirements for flight termination rules. (b) Data loss flight times. A flight safety...

  15. 14 CFR 125.297 - Approval of flight simulators and flight training devices.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Approval of flight simulators and flight... Flight Crewmember Requirements § 125.297 Approval of flight simulators and flight training devices. (a) Flight simulators and flight training devices approved by the Administrator may be used in...

  16. Capillary electrophoresis study on segment/segment system for segments based on phase of mixed micelles and its role in transport of particles between the two segments.

    PubMed

    Oszwałdowski, Sławomir; Kubáň, Pavel

    2015-09-18

    Capillary electrophoresis coupled with contactless conductivity detector was applied to characterize BGE/segment/segment/BGE and BGE/segment/electrolyte/segment/BGE systems, where segment is the phase of mixed micelles migrating surrounded by BGE and composition of the first segment≠second segment. It was established that both systems are subject of evolution during electrophoretic run induced by different electrophoretic mobilities of segments and the phenomenon that generates the evolution is exchange of micelles between the two segments. This leads to segments re-equilibration during a run, which generates sub-zones from the two segments in the form of a cumulative zone or two isolated zones, depending on the injection scheme applied. Further analysis based on the system BGE/segment/electrolyte/segment/BGE shows that electrolyte solution between segments can act as a spacer to isolate the two micellar segments, and thereby to control the exchange of micelles between the two segments. Established features for both systems were further implemented towards characterization of the transport of nanocrystals (NCs) between two segments using CE/UV-vis technique and two examples were discussed: (i) on-line coating of NCs with surfactants and (ii) distribution of NCs between segments. The former aspect was found to be useful to discuss the state of particle in micellar media, whereas the latter shows system ability for the transport of NCs from the first segment or BGE based sample to the second segment, controlled by the electrolyte characteristics. It was concluded that transport of micelles and NCs is the subject of the same phenomena since basic electrolyte characteristics, i.e. length and concentration, act in the same way. This means that NCs in these systems can play the role of pseudomicelles, which mimic behaviour of micelles. Definitely, the tools established in the present work can be used to examine dynamic phenomena for pseudophase during electrophoresis

  17. Flight Simulation Model Exchange. Volume 2; Appendices

    NASA Technical Reports Server (NTRS)

    Murri, Daniel G.; Jackson, E. Bruce

    2011-01-01

    The NASA Engineering and Safety Center Review Board sponsored an assessment of the draft Standard, Flight Dynamics Model Exchange Standard, BSR/ANSI-S-119-201x (S-119) that was conducted by simulation and guidance, navigation, and control engineers from several NASA Centers. The assessment team reviewed the conventions and formats spelled out in the draft Standard and the actual implementation of two example aerodynamic models (a subsonic F-16 and the HL-20 lifting body) encoded in the Extensible Markup Language grammar. During the implementation, the team kept records of lessons learned and provided feedback to the American Institute of Aeronautics and Astronautics Modeling and Simulation Technical Committee representative. This document contains the appendices to the main report.

  18. Flight Simulation Model Exchange. Volume 1

    NASA Technical Reports Server (NTRS)

    Murri, Daniel G.; Jackson, E. Bruce

    2011-01-01

    The NASA Engineering and Safety Center Review Board sponsored an assessment of the draft Standard, Flight Dynamics Model Exchange Standard, BSR/ANSI-S-119-201x (S-119) that was conducted by simulation and guidance, navigation, and control engineers from several NASA Centers. The assessment team reviewed the conventions and formats spelled out in the draft Standard and the actual implementation of two example aerodynamic models (a subsonic F-16 and the HL-20 lifting body) encoded in the Extensible Markup Language grammar. During the implementation, the team kept records of lessons learned and provided feedback to the American Institute of Aeronautics and Astronautics Modeling and Simulation Technical Committee representative. This document contains the results of the assessment.

  19. Peacekeeper - Guidance system flight readiness review

    NASA Astrophysics Data System (ADS)

    Knight, D. S.; Harrington, E. V.

    The Ballistic Missile Office (BMO) has developed and employed a procedure to insure the flight readiness of a Peacekeeper guidance system. The goals of this additional review procedure (over and above acceptance testing) are to minimize the risk of the guidance system failure and/or achieving substantially less than the designed accuracy. The roles, mission and interaction of teams of personnel from seven associate contractors are discussed using flow diagrams. The paper also includes methods used to identify and resolve areas of concern as well as examples of actual concerns discovered. The scope is discused, including both the various technical disciplines involved and the lowest level of build and test areas reviewed. Resulting build and test improvements are shown.

  20. In-Flight System Identification

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    1998-01-01

    A method is proposed and studied whereby the system identification cycle consisting of experiment design and data analysis can be repeatedly implemented aboard a test aircraft in real time. This adaptive in-flight system identification scheme has many advantages, including increased flight test efficiency, adaptability to dynamic characteristics that are imperfectly known a priori, in-flight improvement of data quality through iterative input design, and immediate feedback of the quality of flight test results. The technique uses equation error in the frequency domain with a recursive Fourier transform for the real time data analysis, and simple design methods employing square wave input forms to design the test inputs in flight. Simulation examples are used to demonstrate that the technique produces increasingly accurate model parameter estimates resulting from sequentially designed and implemented flight test maneuvers. The method has reasonable computational requirements, and could be implemented aboard an aircraft in real time.