Science.gov

Sample records for actual growth conditions

  1. Actual measurement, hygrothermal response experiment and growth prediction analysis of microbial contamination of central air conditioning system in Dalian, China

    PubMed Central

    Lv, Yang; Hu, Guangyao; Wang, Chunyang; Yuan, Wenjie; Wei, Shanshan; Gao, Jiaoqi; Wang, Boyuan; Song, Fangchao

    2017-01-01

    The microbial contamination of central air conditioning system is one of the important factors that affect the indoor air quality. Actual measurement and analysis were carried out on microbial contamination in central air conditioning system at a venue in Dalian, China. Illumina miseq method was used and three fungal samples of two units were analysed by high throughput sequencing. Results showed that the predominant fungus in air conditioning unit A and B were Candida spp. and Cladosporium spp., and two fungus were further used in the hygrothermal response experiment. Based on the data of Cladosporium in hygrothermal response experiment, this paper used the logistic equation and the Gompertz equation to fit the growth predictive model of Cladosporium genera in different temperature and relative humidity conditions, and the square root model was fitted based on the two environmental factors. In addition, the models were carried on the analysis to verify the accuracy and feasibility of the established model equation. PMID:28367963

  2. Establishing seasonal chronicles of actual evapotranspiration under sloping conditions

    NASA Astrophysics Data System (ADS)

    Zitouna Chebbi, R.; Prévot, L.; Jacob, F.; Voltz, M.

    2012-04-01

    Estimation of daily and seasonal actual evapotranspiration (ETa) is strongly needed for hydrological and agricultural purposes. Although the eddy covariance method is well suited for such estimation of land surface fluxes, this method suffers from limitations when establishing long time series. Missing data are often encountered, resulting from bad meteorological conditions, rejection by quality control tests, power failures… Numerous gap fill techniques have been proposed in the literature but there applicability in sloping conditions is not well known. In order to estimate ETa over long periods (agricultural cycle) on crops cultivated in sloping areas, a pluri-annual experiment was conducted in the Kamech catchment, located in North-eastern Tunisia. This Mediterranean site is characterized by a large heterogeneity in topography, soils and crops. Land surface fluxes were measured using eddy covariance systems. Measurements were collected on the two opposite sides of the Kamech V-shaped catchment, within small fields having slopes steeper than 5%. During three different years, four crops were studied: durum wheat, oat, fava bean and pasture. The topography of the catchment and the wind regime induced upslope and downslope flows over the study fields. In this study, we showed that gap filling of the turbulent fluxes (sensible and latent heat) can be obtained through linear regressions against net radiation. To account for the effect of the topography, linear regressions were calibrated by distinguishing upslope and downslope flows. This significantly improved the quality of the reconstructed data over 30 minute intervals. This gap filling technique also improved the energy balance closure at the daily time scale. As a result, seasonal chronicles of daily ETa throughout the growth cycle of the study crops in the Kamech watershed were established, thus providing useful information about the water use of annual crops in a semi-arid rainfed and hilly area.

  3. Experimental study on the regenerator under actual operating conditions

    NASA Astrophysics Data System (ADS)

    Nam, Kwanwoo; Jeong, Sangkwon

    2002-05-01

    An experimental apparatus was prepared to investigate thermal and hydrodynamic characteristics of the regenerator under its actual operating conditions. The apparatus included a compressor to pressurize and depressurize regenerator with various operating frequencies. Cold end of the regenerator was maintained around 100 K by means of liquid nitrogen container and heat exchanger. Instantaneous gas temperature and mass flow rate were measured at both ends of the regenerator during the whole pressure cycle. Pulsating pressure and pressure drop across the regenerator were also measured. The operating frequency of the pressure cycle was varied between 3 and 60 Hz, which are typical operating frequencies of Gifford-McMahon, pulse tube, and Stirling cryocoolers. First, friction factor for the wire screen mesh was directly determined from room temperature experiments. When the operating frequency was less than 9 Hz, the oscillating flow friction factor was nearly same as the steady flow friction factor for Reynolds number up to 100. For 60 Hz operations, the ratio of oscillating flow friction factor to steady flow one was increased as hydraulic Reynolds number became high. When the Reynolds number was 100, this ratio was about 1.6. Second, ineffectiveness of the regenerator was obtained when the cold-end was maintained around 100 K and the warm-end at 300 K to simulate the actual operating condition of the regenerator in cryocooler. Effect of the operating frequency on ineffectiveness of regenerator was discussed at low frequency range.

  4. Self-Actualization Effects Of A Marathon Growth Group

    ERIC Educational Resources Information Center

    Jones, Dorothy S.; Medvene, Arnold M.

    1975-01-01

    This study examined the effects of a marathon group experience on university student's level of self-actualization two days and six weeks after the experience. Gains in self-actualization as a result of marathon group participation depended upon an individual's level of ego strength upon entering the group. (Author)

  5. The Survey and Analysis of Excellent Senior High School Physics Teachers' Professional Growth Actuality

    ERIC Educational Resources Information Center

    Sun, Haibin; Liu, Tingting

    2010-01-01

    Excellent senior high school physics teachers are the backbone power in the new course reform of physics in China. The excellent senior high school physics teachers' professional growth actuality in Shandong is surveyed in this article by the self-made "Questionnaire of Excellent Senior High School Physics Teachers' Professional Growth",…

  6. Teachers' Perceptions of Their Working Conditions: How Predictive of Planned and Actual Teacher Movement?

    ERIC Educational Resources Information Center

    Ladd, Helen F.

    2011-01-01

    This quantitative study examines the relationship between teachers' perceptions of their working conditions and their intended and actual departures from schools. Based on rich administrative data for North Carolina combined with a 2006 statewide survey administered to all teachers in the state, the study documents that working conditions are…

  7. Conditioning biomass for microbial growth

    DOEpatents

    Bodie, Elizabeth A; England, George

    2015-03-31

    The present invention relates to methods for improving the yield of microbial processes that use lignocellulose biomass as a nutrient source. The methods comprise conditioning a composition comprising lignocellulose biomass with an enzyme composition that comprises a phenol oxidizing enzyme. The conditioned composition can support a higher rate of growth of microorganisms in a process. In one embodiment, a laccase composition is used to condition lignocellulose biomass derived from non-woody plants, such as corn and sugar cane. The invention also encompasses methods for culturing microorganisms that are sensitive to inhibitory compounds in lignocellulose biomass. The invention further provides methods of making a product by culturing the production microorganisms in conditioned lignocellulose biomass.

  8. Self-Actualization in a Marathon Growth Group: Do the Strong Get Stronger?

    ERIC Educational Resources Information Center

    Kimball, Ronald; Gelso, Charles J.

    1974-01-01

    This study examined the effects of a weekend marathon on the level of self-actualization of college students and the relationship between ego strength and extent of change in self-actualization. The group experience did increase self-actualization, but participants' initial level of ego strength was unrelated to changes in self-actualization.…

  9. Flow modeling of actual human nasal cavity for various breathing conditions

    NASA Astrophysics Data System (ADS)

    Mokhtar, Nur Hazwani; Yaakob, Muhammad Syauki; Osman, Kahar; Kadir, Mohammed Rafiq Abdul; Abdullah, Wan Kamil Wan; Haron, Juhara

    2012-06-01

    Flow in the human nasal cavity varies when the body is under various physical activities. However, in order to visualize the flow pattern, traditional in-vivo technique may disturb the flow patterns. In this study, computational method was used to model the flow in the nasal cavity under various breathing conditions. Image from CT-Scan was used to mimic the actual cavity geometry. The image was computationally constructed and EFD. Lab was used to predict the flow behavior. Steady incompressible flow was considered for all case studies. The result shows that, for all breathing conditions, vortices were observed in the turbinate region which confirms the turbinate functions as a filter before the flow reaches the olfactory area. Larger vortices were detected when the flow rates were higher. In the olfactory region, the flow velocities were shown to be dramatically dropped to the ideal odorant uptake velocity range for all cases studied. This study had successfully produced visual description of air flow pattern in the nasal cavity.

  10. Cesium adsorption/desorption behavior of clay minerals considering actual contamination conditions in Fukushima

    PubMed Central

    Mukai, Hiroki; Hirose, Atsushi; Motai, Satoko; Kikuchi, Ryosuke; Tanoi, Keitaro; Nakanishi, Tomoko M.; Yaita, Tsuyoshi; Kogure, Toshihiro

    2016-01-01

    Cesium adsorption/desorption experiments for various clay minerals, considering actual contamination conditions in Fukushima, were conducted using the 137Cs radioisotope and an autoradiography using imaging plates (IPs). A 50 μl solution containing 0.185 ~ 1.85 Bq of 137Cs (10−11 ~ 10−9 molL−1 of 137Cs) was dropped onto a substrate where various mineral particles were arranged. It was found that partially-vermiculitized biotite, which is termed “weathered biotite” (WB) in this study, from Fukushima sorbed 137Cs far more than the other clay minerals (fresh biotite, illite, smectite, kaolinite, halloysite, allophane, imogolite) on the same substrate. When WB was absent on the substrate, the amount of 137Cs sorbed to the other clay minerals was considerably increased, implying that selective sorption to WB caused depletion of radiocesium in the solution and less sorption to the coexisting minerals. Cs-sorption to WB continued for about one day, whereas that to ferruginous smectite was completed within one hour. The sorbed 137Cs in WB was hardly leached with hydrochloric acid at pH 1, particularly in samples with a longer sorption time. The presence/absence of WB sorbing radiocesium is a key factor affecting the dynamics and fate of radiocesium in Fukushima. PMID:26868138

  11. Cesium adsorption/desorption behavior of clay minerals considering actual contamination conditions in Fukushima

    NASA Astrophysics Data System (ADS)

    Mukai, Hiroki; Hirose, Atsushi; Motai, Satoko; Kikuchi, Ryosuke; Tanoi, Keitaro; Nakanishi, Tomoko M.; Yaita, Tsuyoshi; Kogure, Toshihiro

    2016-02-01

    Cesium adsorption/desorption experiments for various clay minerals, considering actual contamination conditions in Fukushima, were conducted using the 137Cs radioisotope and an autoradiography using imaging plates (IPs). A 50 μl solution containing 0.185 ~ 1.85 Bq of 137Cs (10-11 ~ 10-9 molL-1 of 137Cs) was dropped onto a substrate where various mineral particles were arranged. It was found that partially-vermiculitized biotite, which is termed “weathered biotite” (WB) in this study, from Fukushima sorbed 137Cs far more than the other clay minerals (fresh biotite, illite, smectite, kaolinite, halloysite, allophane, imogolite) on the same substrate. When WB was absent on the substrate, the amount of 137Cs sorbed to the other clay minerals was considerably increased, implying that selective sorption to WB caused depletion of radiocesium in the solution and less sorption to the coexisting minerals. Cs-sorption to WB continued for about one day, whereas that to ferruginous smectite was completed within one hour. The sorbed 137Cs in WB was hardly leached with hydrochloric acid at pH 1, particularly in samples with a longer sorption time. The presence/absence of WB sorbing radiocesium is a key factor affecting the dynamics and fate of radiocesium in Fukushima.

  12. Do we know the actual magnetopause position for typical solar wind conditions?

    NASA Astrophysics Data System (ADS)

    Samsonov, A. A.; Gordeev, E.; Tsyganenko, N. A.; Å afránková, J.; Němeček, Z.; Å imůnek, J.; Sibeck, D. G.; Tóth, G.; Merkin, V. G.; Raeder, J.

    2016-07-01

    We compare predicted magnetopause positions at the subsolar point and four reference points in the terminator plane obtained from several empirical and numerical MHD models. Empirical models using various sets of magnetopause crossings and making different assumptions about the magnetopause shape predict significantly different magnetopause positions (with a scatter >1 RE) even at the subsolar point. Axisymmetric magnetopause models cannot reproduce the cusp indentations or the changes related to the dipole tilt effect, and most of them predict the magnetopause closer to the Earth than nonaxisymmetric models for typical solar wind conditions and zero tilt angle. Predictions of two global nonaxisymmetric models do not match each other, and the models need additional verification. MHD models often predict the magnetopause closer to the Earth than the nonaxisymmetric empirical models, but the predictions of MHD simulations may need corrections for the ring current effect and decreases of the solar wind pressure that occur in the foreshock. Comparing MHD models in which the ring current magnetic field is taken into account with the empirical Lin et al. model, we find that the differences in the reference point positions predicted by these models are relatively small for Bz=0. Therefore, we assume that these predictions indicate the actual magnetopause position, but future investigations are still needed.

  13. Self-Actualization in a Marathon Growth Group: Do the Strong Get Stronger?

    ERIC Educational Resources Information Center

    Kimball, Ronald; Gelso, Charles J.

    This study examined the effects of a weekend marathon on the level of self-actualization of college students one and four weeks following their group experience. It also studied the relationship between ego strength and extent of change in self-actualization during a marathon. Generally, the group experience did increase self-actualization and the…

  14. Divergence of actual and reference evapotranspiration observations for irrigated sugarcane with windy tropical conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Standardized reference evapotranspiration (ET) and ecosystem-specific vegetation coefficients are frequently used to estimate actual ET. However, equations for calculating reference ET have not been well validated in more humid environments. We measured ET (ETEC) using Eddy Covariance (EC) towers a...

  15. Comparative analysis of operational forecasts versus actual weather conditions in airline flight planning, volume 2

    NASA Technical Reports Server (NTRS)

    Keitz, J. F.

    1982-01-01

    The impact of more timely and accurate weather data on airline flight planning with the emphasis on fuel savings is studied. This volume of the report discusses the results of Task 2 of the four major tasks included in the study. Task 2 compares various catagories of flight plans and flight tracking data produced by a simulation system developed for the Federal Aviation Administrations by SRI International. (Flight tracking data simulate actual flight tracks of all aircraft operating at a given time and provide for rerouting of flights as necessary to resolve traffic conflicts.) The comparisons of flight plans on the forecast to flight plans on the verifying analysis confirm Task 1 findings that wind speeds are generally underestimated. Comparisons involving flight tracking data indicate that actual fuel burn is always higher than planned, in either direction, and even when the same weather data set is used. Since the flight tracking model output results in more diversions than is known to be the case, it was concluded that there is an error in the flight tracking algorithm.

  16. Actual Change and Inaccurate Recall Contribute to Posttraumatic Growth following Radiotherapy

    ERIC Educational Resources Information Center

    Ransom, Sean; Sheldon, Kennon M.; Jacobsen, Paul B.

    2008-01-01

    People with cancer often report that they experience personal growth as a result of the disease, but such reports have unclear validity. Some suggest such growth results from Rogers's (1951) hypothesized organismic valuing process (OVP), an innate tendency for people to gravitate toward well-being; others suggest this growth may be a positive…

  17. Rheological investigation of body cream and body lotion in actual application conditions

    NASA Astrophysics Data System (ADS)

    Kwak, Min-Sun; Ahn, Hye-Jin; Song, Ki-Won

    2015-08-01

    The objective of the present study is to systematically evaluate and compare the rheological behaviors of body cream and body lotion in actual usage situations. Using a strain-controlled rheometer, the steady shear flow properties of commercially available body cream and body lotion were measured over a wide range of shear rates, and the linear viscoelastic properties of these two materials in small amplitude oscillatory shear flow fields were measured over a broad range of angular frequencies. The temperature dependency of the linear viscoelastic behaviors was additionally investigated over a temperature range most relevant to usual human life. The main findings obtained from this study are summarized as follows: (1) Body cream and body lotion exhibit a finite magnitude of yield stress. This feature is directly related to the primary (initial) skin feel that consumers usually experience during actual usage. (2) Body cream and body lotion exhibit a pronounced shear-thinning behavior. This feature is closely connected with the spreadability when cosmetics are applied onto the human skin. (3) The linear viscoelastic behaviors of body cream and body lotion are dominated by an elastic nature. These solid-like properties become a criterion to assess the selfstorage stability of cosmetic products. (4) A modified form of the Cox-Merz rule provides a good ability to predict the relationship between steady shear flow and dynamic viscoelastic properties for body cream and body lotion. (5) The storage modulus and loss modulus of body cream show a qualitatively similar tendency to gradually decrease with an increase in temperature. In the case of body lotion, with an increase in temperature, the storage modulus is progressively decreased while the loss modulus is slightly increased and then decreased. This information gives us a criterion to judge how the characteristics of cosmetic products are changed by the usual human environments.

  18. CTOD for slow stable crack growth conditions

    NASA Astrophysics Data System (ADS)

    Perez Ipina, J. E.

    1992-11-01

    An incremental method is developed for calculating values of CTOD under slow stable crack growth conditions. The method, which only needs the data required for an R-curve test, gives more accurate CTOD values than those obtained using existing standards.

  19. Comparative analysis of operational forecasts versus actual weather conditions in airline flight planning: Summary report

    NASA Technical Reports Server (NTRS)

    Keitz, J. F.

    1982-01-01

    The impact of more timely and accurate weather data on airline flight planning with the emphasis on fuel savings is studied. This summary report discusses the results of each of the four major tasks of the study. Task 1 compared airline flight plans based on operational forecasts to plans based on the verifying analyses and found that average fuel savings of 1.2 to 2.5 percent are possible with improved forecasts. Task 2 consisted of similar comparisons but used a model developed for the FAA by SRI International that simulated the impact of ATc diversions on the flight plans. While parts of Task 2 confirm the Task I findings, inconsistency with other data and the known impact of ATC suggests that other Task 2 findings are the result of errors in the model. Task 3 compares segment weather data from operational flight plans with the weather actually observed by the aircraft and finds the average error could result in fuel burn penalties (or savings) of up to 3.6 percent for the average 8747 flight. In Task 4 an in-depth analysis of the weather forecast for the 33 days included in the study finds that significant errors exist on 15 days. Wind speeds in the area of maximum winds are underestimated by 20 to 50 kts., a finding confirmed in the other three tasks.

  20. Comparative analysis of operational forecasts versus actual weather conditions in airline flight planning, volume 3

    NASA Technical Reports Server (NTRS)

    Keitz, J. F.

    1982-01-01

    The impact of more timely and accurate weather data on airline flight planning with the emphasis on fuel savings is studied. This volume of the report discusses the results of Task 3 of the four major tasks included in the study. Task 3 compares flight plans developed on the Suitland forecast with actual data observed by the aircraft (and averaged over 10 degree segments). The results show that the average difference between the forecast and observed wind speed is 9 kts. without considering direction, and the average difference in the component of the forecast wind parallel to the direction of the observed wind is 13 kts. - both indicating that the Suitland forecast underestimates the wind speeds. The Root Mean Square (RMS) vector error is 30.1 kts. The average absolute difference in direction between the forecast and observed wind is 26 degrees and the temperature difference is 3 degree Centigrade. These results indicate that the forecast model as well as the verifying analysis used to develop comparison flight plans in Tasks 1 and 2 is a limiting factor and that the average potential fuel savings or penalty are up to 3.6 percent depending on the direction of flight.

  1. A review of the actual knowledge of the processes governing growth and development of long bones.

    PubMed

    Pazzaglia, Ugo Ernesto; Beluffi, Giampiero; Benetti, Anna; Bondioni, Maria Pia; Zarattini, Guido

    2011-01-01

    Autoptic samples of human bones (from 8 weeks of gestation to 12 years of age) and a second group of serial, skeletal x-rays (required for pathologies not related to bone dysplasia in children from 4 months to 17 years of age) provided the material for the analysis of the physes normal growth mechanism presented in this review. Before the appearance of the ossification centers epiphyseal growth rests exclusively on chondrocytes proliferation (interstitial growth), without any detectable differentiated cellular organization. When endochondral ossification starts a defined spatial disposition of chondrocytes and a corresponding organization of the intercellular matrix is set up, so that it is possible to identify a growth vector corresponding to the columns of piled chondrocytes with direction from hypertrophic toward the proliferative cell layers. The complexity of the tubular bones growth process is well represented by the spatial arrangement of the growth vectors. In the late epiphyseal growth another mechanism is active in addition to endochondral ossification, namely, articular cartilage interstitial growth and subchondral remodelling. The knowledge of the normal mode of organization of the physis and its temporal sequence can help to better understand of the deviaton from the normal development of metaphyseal and epiphyseal dysplasias.

  2. Perceived and Actual Change in Religion/Spirituality in Cancer Survivors: Longitudinal Relationships With Distress and Perceived Growth

    PubMed Central

    Trevino, Kelly M.; Naik, Aanand D.; Moye, Jennifer

    2016-01-01

    This observational cohort study examined the relationships between actual and perceived R/S change at 12 months post cancer diagnosis with depression, anxiety, and perceived growth 6 months later. Older adult military veteran cancer survivors (n = 111) completed self-report surveys at 6, 12, and 18 months post cancer diagnosis. Perceived R/S change was assessed at 12 months postdiagnosis with “Have your religious or spiritual beliefs changed as a result of your cancer” (more R/S, less R/S, other). Actual R/S change was assessed at 6 and 12 months postdiagnosis on a single item, “I have faith in God or a Higher Power” (no, somewhat, yes). A notable minority reported perceived (18.9%) and actual (14.4%) change. Greater perceived R/S change predicted more severe symptoms of depression and anxiety and greater perceived growth at 18 months postdiagnosis; perceived growth was positively associated with anxiety. Cancer survivors who report R/S changes may benefit from spiritual and/or psychological support. PMID:27453768

  3. Perceived and Actual Change in Religion/Spirituality in Cancer Survivors: Longitudinal Relationships With Distress and Perceived Growth.

    PubMed

    Trevino, Kelly M; Naik, Aanand D; Moye, Jennifer

    2016-08-01

    This observational cohort study examined the relationships between actual and perceived R/S change at 12 months post cancer diagnosis with depression, anxiety, and perceived growth 6 months later. Older adult military veteran cancer survivors (n = 111) completed self-report surveys at 6, 12, and 18 months post cancer diagnosis. Perceived R/S change was assessed at 12 months postdiagnosis with "Have your religious or spiritual beliefs changed as a result of your cancer" (more R/S, less R/S, other). Actual R/S change was assessed at 6 and 12 months postdiagnosis on a single item, "I have faith in God or a Higher Power" (no, somewhat, yes). A notable minority reported perceived (18.9%) and actual (14.4%) change. Greater perceived R/S change predicted more severe symptoms of depression and anxiety and greater perceived growth at 18 months postdiagnosis; perceived growth was positively associated with anxiety. Cancer survivors who report R/S changes may benefit from spiritual and/or psychological support.

  4. Impact of age and cognitive demand on lane choice and changing under actual highway conditions.

    PubMed

    Reimer, Bryan; Donmez, Birsen; Lavallière, Martin; Mehler, Bruce; Coughlin, Joseph F; Teasdale, Normand

    2013-03-01

    Previous research suggests that drivers change lanes less frequently during periods of heightened cognitive load. However, lane changing behavior of different age groups under varying levels of cognitive demand is not well understood. The majority of studies which have evaluated lane changing behavior under cognitive workload have been conducted in driving simulators. Consequently, it is unclear if the patterns observed in these simulation studies carry over to actual driving. This paper evaluates data from an on-road study to determine the effects of age and cognitive demand on lane choice and lane changing behavior. Three age groups (20-29, 40-49, and 60-69) were monitored in an instrumented vehicle. The 40's age group had 147% higher odds of exhibiting a lane change than the 60's group. In addition, drivers in their 60's were less likely to drive on the leftmost lane compared to drivers in their 20's and 40's. These results could be interpreted as evidence that older adults adopt a more conservative driving style as reflected in being less likely to choose the leftmost lane than the younger groups and less likely to change lanes than drivers in their 40's. Regardless of demand level, cognitive workload reduced the frequency of lane changes for all age groups. This suggests that in general drivers of all ages attempt to regulate their behavior in a risk reducing direction when under added cognitive demand. The extent to which such self-regulation fully compensates for the impact of added cognitive demand remains an open question.

  5. Experimental investigation of panel radiator heat output enhancement for efficient thermal use under actual operating conditions

    NASA Astrophysics Data System (ADS)

    Calisir, Tamer; Baskaya, Senol; Onur Yazar, Hakan; Yucedag, Sinan

    2015-05-01

    In this study the heat output of a panel-convector-convector-panel radiator (PCCP) under controlled laboratory conditions under Turkish household and especially Ankara conditions was investigated experimentally. In this sense, investigations were performed for different heating water mass flow rates, water inlet temperatures and radiator inlet and outlet connection positions, which are most commonly used in Turkey. An experimental setup was built for this purpose in a test room where temperature was controlled and held constant during the experiments. Inlet and outlet water temperatures and mass flow rates were measured and heat output of the radiator was calculated. Infrared thermal camera visualizations of the steel panel radiator front surface were also performed.

  6. The effect of actual and imaginary handgrip on postural stability during different balance conditions.

    PubMed

    VanderHill, M S; Wolf, E E; Langenderfer, J E; Ustinova, K I

    2014-09-01

    The stabilizing effect of holding an object on upright posture has been demonstrated in a variety of settings. The mechanism of this effect is unknown but could be attributed to either additional sensorimotor activity triggered by a hand contact or cognitive efforts related to performance of a supra-postural task. A potential mechanism was investigated by comparing postural stability in young healthy individuals while gripping a custom instrumented wooden stick with a 5N force and while imagining holding the same stick in the hand. Twenty subjects were tested during three standing balance conditions: on a stationary surface, on a freely moving rockerboard, and with an unexpected perturbation of 10° forward rockerboard tipping. Postural stability was evaluated as velocity of the center of mass (COM) and center of pressure (COP) compared across all experimental conditions. COM and COP velocities were equally reduced when subjects gripped the stick and imagined gripping while standing stationary and on the rockerboard. When perturbed, subjects failed to show any postural stability improvements regardless of handgrip task. Results indicate a stabilizing effect of focusing attention on motor task performance. This cognitive strategy does not appear to contribute any additional stabilization when subjects are perturbed. This study adds to the current understanding of postural stabilization strategies.

  7. Microaerophilic Conditions Promote Growth of Mycobacterium genavense

    PubMed Central

    Realini, L.; De Ridder, K.; Palomino, J.-C.; Hirschel, B.; Portaels, F.

    1998-01-01

    Our studies show that microaerophilic conditions promote the growth of Mycobacterium genavense in semisolid medium. The growth of M. genavense at 2.5 or 5% oxygen was superior to that obtained at 21% oxygen in BACTEC primary cultures (Middlebrook 7H12, pH 6.0, without additives). By using nondecontaminated specimens, it was possible to detect growth with very small inocula (25 bacilli/ml) of 12 different M. genavense strains (from nude mice) within 6 weeks of incubation under low oxygen tension; conversely, with 21% oxygen, no growth of 8 of 12 (66.7%) M. genavense strains was detected (growth index, <10). The same beneficial effect of 2.5 or 5% oxygen was observed in primary cultures of a decontaminated clinical specimen. Low oxygen tension (2.5 or 5%) is recommended for the primary isolation of M. genavense. Microaerophilic cultivation of other atypical mycobacteria, especially slow-growing (e.g., Mycobacterium avium) and difficult-to-grow (e.g., Mycobacterium ulcerans) species, is discussed. PMID:9705393

  8. [THE ACTUAL APPROACHES TO PROBLEM OF IMPORT SUBSTITUTION IN TH FIELD OF PRODUCTION GROWTH MEDIUM].

    PubMed

    Shepelin, A P; Domotenko, L V; Diatlov, I A; Mironov, A Yu; Aleshkin, V A

    2015-06-01

    The import substitution becomes one of strategic tasks of Russian economy as a result of imposition of economic sanctions on part of the USA, EU countries, Japan and number of other states. The development of structure and technology of production of national import substituted growth mediums permits satisfying needs of laboratory service of Russia inactive storage and to secure appropriate response to occurring challenges and new biological menaces and support bio-security of state at proper level. The presented data concerning substantiation of nomenclature of growth mediums and transport system permit satisfying in fullness the needs of clinical and sanitary microbiology in growth mediums of national production and to give up of import deliveries without decreasing of quality of microbiological studies.

  9. Human STEAP3 maintains tumor growth under hypoferric condition

    SciTech Connect

    Isobe, Taichi; Baba, Eishi; Arita, Shuji; Komoda, Masato; Tamura, Shingo; Shirakawa, Tsuyoshi; Ariyama, Hiroshi; Takaishi, Shigeo; Kusaba, Hitoshi; and others

    2011-11-01

    Iron is essential in cellular proliferation and survival based on its crucial roles in DNA and ATP synthesis. Tumor cells proliferate rapidly even in patients with low serum iron, although their actual mechanisms are not well known. To elucidate molecular mechanisms of efficient tumor progression under the hypoferric condition, we studied the roles of six-transmembrane epithelial antigen of the prostate family member 3 (STEAP3), which was reported to facilitate iron uptake. Using Raji cells with low STEAP3 mRNA expression, human STEAP3-overexpressing cells were established. The impact of STEAP3 expression was analyzed about the amount of iron storage, the survival under hypoferric conditions in vitro and the growth of tumor in vivo. STEAP3 overexpression increased ferritin, an indicator of iron storage, in STEAP3-overexpressing Raji cells. STEAP3 gave Raji cells the resistance to iron deprivation-induced apoptosis. These STEAP3-overexpressing Raji cells preserved efficient growth even in hypoferric mice, while parental Raji cells grew less rapidly. In addition, iron deficiency enhanced STEAP3 mRNA expression in tumor cells. Furthermore, human colorectal cancer tissues exhibited more STEAP3 mRNA expression and iron storage compared with normal colon mucosa. These findings indicate that STEAP3 maintains iron storage in human malignant cells and tumor proliferation under the hypoferric condition. -- Highlights: {yields} STEAP3 expression results in increment of stored intracellular iron. {yields} Iron deprivation induces expression of STEAP3. {yields} Colorectal cancer expresses STEAP3 highly and stores iron much. {yields} STEAP3 expressing tumors preserves growth even in mice being hypoferremia.

  10. Plant growth conditions alter phytolith carbon

    PubMed Central

    Gallagher, Kimberley L.; Alfonso-Garcia, Alba; Sanchez, Jessica; Potma, Eric O.; Santos, Guaciara M.

    2015-01-01

    Many plants, including grasses and some important human food sources, accumulate, and precipitate silica in their cells to form opaline phytoliths. These phytoliths contain small amounts of organic matter (OM) that are trapped during the process of silicification. Previous work has suggested that plant silica is associated with compounds such as proteins, lipids, lignin, and carbohydrate complexes. It is not known whether these compounds are cellular components passively encapsulated as the cell silicifies, polymers actively involved in the precipitation process or random compounds assimilated by the plant and discarded into a “glass wastebasket.” Here, we used Raman spectroscopy to map the distribution of OM in phytoliths, and to analyze individual phytoliths isolated from Sorghum bicolor plants grown under different laboratory treatments. Using mapping, we showed that OM in phytoliths is distributed throughout the silica and is not related to dark spots visible in light microscopy, previously assumed to be the repository for phytolith OM. The Raman spectra exhibited common bands indicative of C-H stretching modes of general OM, and further more diagnostic bands consistent with carbohydrates, lignins, and other OM. These Raman spectra exhibited variability of spectral signatures and of relative intensities between sample treatments indicating that differing growth conditions altered the phytolith carbon. This may have strong implications for understanding the mechanism of phytolith formation, and for use of phytolith carbon isotope values in dating or paleoclimate reconstruction. PMID:26442066

  11. Plant growth conditions alter phytolith carbon.

    PubMed

    Gallagher, Kimberley L; Alfonso-Garcia, Alba; Sanchez, Jessica; Potma, Eric O; Santos, Guaciara M

    2015-01-01

    Many plants, including grasses and some important human food sources, accumulate, and precipitate silica in their cells to form opaline phytoliths. These phytoliths contain small amounts of organic matter (OM) that are trapped during the process of silicification. Previous work has suggested that plant silica is associated with compounds such as proteins, lipids, lignin, and carbohydrate complexes. It is not known whether these compounds are cellular components passively encapsulated as the cell silicifies, polymers actively involved in the precipitation process or random compounds assimilated by the plant and discarded into a "glass wastebasket." Here, we used Raman spectroscopy to map the distribution of OM in phytoliths, and to analyze individual phytoliths isolated from Sorghum bicolor plants grown under different laboratory treatments. Using mapping, we showed that OM in phytoliths is distributed throughout the silica and is not related to dark spots visible in light microscopy, previously assumed to be the repository for phytolith OM. The Raman spectra exhibited common bands indicative of C-H stretching modes of general OM, and further more diagnostic bands consistent with carbohydrates, lignins, and other OM. These Raman spectra exhibited variability of spectral signatures and of relative intensities between sample treatments indicating that differing growth conditions altered the phytolith carbon. This may have strong implications for understanding the mechanism of phytolith formation, and for use of phytolith carbon isotope values in dating or paleoclimate reconstruction.

  12. Growth of single crystals under hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    Popolitov, Vladislav Ivanovich; Litvin, Boris Nikolaevich

    The book summarizes the available theoretical, methodological, and experimental data on the hydrothermal growth of inorganic compounds, such as simple and complex oxides, sulfides, silicates, germanates, phosphates, niobates, and tantalates. Attention is given to the physicochemical, hydrodynamic, and kinetic characteristics of the growth of these compounds, as well as hydrothermal growth techniques and equipment. The discussion also covers the morphogenetic characteristics of hydrothermally grown single crystals, their principal physical properties, and X-ray diffraction and structural data.

  13. Growth of Corophium volutator under laboratory conditions.

    PubMed

    Kater, Belinda J; Jol, Johan G; Smit, Mathijs G D

    2008-04-01

    Temperature-dependent growth is an important factor in the population model of Corophium volutator that was developed to translate responses in a 10-day acute bioassay to ecological consequences for the population. The growth rate, however, was estimated from old data, based on a Swedish population. Therefore, new growth rates are estimated herein from two experiments using Corophium volutator. To save time, a tool was developed to use image analysis to measure Corophium volutator. The experiments show that Corophium volutator has a low growth rate at low temperatures (5-10 degrees C). At higher temperatures no difference in growth rate between 15 degrees C and 25 degrees C was found. The growth rate from these experiments is comparable to data found in literature. A new relationship between temperature and individual growth was estimated, and incorporated into the Corophium population model. As the model also uses the same temperature relationship for reproduction, the modelled population growth rate at different temperatures changes as a result of the new data. The new growth rate and the updated temperature relationship result in reduced tolerance to external stressors, as previously predicted by the model.

  14. Solidification under microgravity conditions - Dendritic growth

    NASA Technical Reports Server (NTRS)

    Glicksman, M. E.; Hahn, R. C.; Lograsso, T. A.; Rubinstein, E. R.; Winsa, E.

    1987-01-01

    The experimental approach and apparatus of a zero-gravity active crystal growth experiment to test dendritic growth theory at low supercoolings are discussed. The experiment consists of 20 experimental cycles. Estimates have been made as to how low gravitational accelerations would have to be reduced to observe convection-free dendritic growth at supercoolings from 0.01-1.0 K. The experiment requires temperature control of + or - 2 mK and photographic resolution of a few microns with a depth of field of + or - 6 mm. The thermostatic bath and temperature control system, photographic system, growth chamber, and dendrite detection system are described in detail.

  15. Modelling mould growth under suboptimal environmental conditions and inoculum size.

    PubMed

    Garcia, Daiana; Ramos, Antonio J; Sanchis, Vicente; Marín, Sonia

    2010-10-01

    Predictive models can be a tool to develop strategies to prevent mould development and consequently mycotoxin production. The aims of this work were to assess the impact of a) high/low levels of inoculum and b) optimal/suboptimal environmental conditions on fungal responses based on both kinetic and probabilistic models. Different levels of spore suspensions of Aspergillus carbonarius and Penicillium expansum were prepared and inoculated centrally with a needlepoint load on malt extract agar (MEA) with 50 replicates. While optimum conditions led to a colony diameter increase which followed Baranyi's function, suboptimal conditions led to different grow functions. In general, growth rate (mu) and lag phase (lambda) were normally distributed. Specifically, the growth rate (mu) showed similar distributions under optimal growth conditions, regardless of the inoculum level, while suboptimal a(w) and temperature conditions led to higher kurtosis distributions, mainly when the inoculum levels were low. Regarding lambda, more skewed distributions were observed, mainly when the inoculum levels were low. Probability models were not much affected by the inoculum size. Lower probabilities of growth were in general predicted under marginal conditions at a given time for both strains. The slopes of the probability curves were smaller under suboptimal growth conditions due to wider distributions. Results showed that a low inoculum level and suboptimal conditions lead to high variability of the estimated growth parameters and growth probability.

  16. Human Impacts to Coastal Ecosystems in Puerto Rico (HICE-PR): Actual Condition of Coral Reefs Associated with the Guanica and Manati Watersheds in Puerto Rico

    NASA Astrophysics Data System (ADS)

    Torres-Perez, J. L.; Barreto, M.; Guild, L. S.; Ortiz, J.; Setegn, S. G.; Ramos-Scharron, C. E.; Armstrong, R.; Santiago, L.

    2015-12-01

    For several decades Puerto Rico's coastal and marine ecosystems (CMEs), particularly coral reefs, have suffered the effects of anthropogenic stresses associated to population growth and varying land use. Here we present an overview of the first year of findings of a NASA-funded project that studies human impacts in two priority watersheds (Manatí and Guánica). The project includes remote sensing analysis and hydrological, ecological and socio-economic modeling to provide a multi-decadal assessment of change of CMEs. The project's main goal is to evaluate the impacts of land use/land cover changes on the quality and extent of CMEs in priority watersheds in the north and south coasts of Puerto Rico. This project will include imagery from Landsat 8 to assess coastal ecosystems extent. Habitat and species distribution maps will be created by incorporating field and remotely-sensed data into an Ecological Niche Factor Analysis. The social component will allow us to study the valuation of specific CMEs attributes from the stakeholder's point of view. Field data was collected through a series of phototransects at the main reefs associated with these two priority watersheds. A preliminary assessment shows a range in coral cover from 0.2-30% depending on the site (Guánica) whereas apparently healthy corals dominate the reef in the north coast (Manatí). Reefs on the southwest coast of PR (Guánica) show an apparent shift from hard corals to a more algae and soft corals dominance after decades of anthropogenic impacts (sedimentation, eutrophication, mechanical damage through poorly supervised recreational activities, etc.). Additionally preliminary results from land cover/land use changes analyses show dynamic historical shoreline changes in beaches located west of the Manatí river mouth and a degradation of water quality in Guánica possibly being one of the main factors affecting the actual condition of its CMEs.

  17. [The Red Cross System for War Relief during the Second World War and Actual Conditions of Its Efforts in Burma].

    PubMed

    Kawahara, Yukari

    2015-12-01

    This paper aims to show the system for relief provided by the Japanese Red Cross relief units during the Second World War, as well as the actual activities of sixteen of its relief units dispatched to Burma. The Red Cross wartime relief efforts involved using personnel and funding prepared beforehand to provide aid to those injured in war, regardless of their status as ally or enemy. Thus they were able to receive support from the army in order to ensure safety and provide supplies. Nurses dispatched to Burma took care of many patients who suffered from malnutrition and physical injuries amidst the outbreak of infectious diseases typical of tropical areas, without sufficient replacement members. Base hospitals not meant for the front lines also came under attack, and the nurses' lives were thus in mortal danger. Of the 374 original members, 29 died or went missing in action.

  18. Effect of boundary conditions on thermal plume growth

    NASA Astrophysics Data System (ADS)

    Kondrashov, A.; Sboev, I.; Rybkin, K.

    2016-07-01

    We have investigated the influence of boundary conditions on the growth rate of convective plumes. Temperature and rate fields were studied in a rectangular convective cell heated by a spot heater. The results of the full-scale test were compared with the numerical data calculated using the ANSYS CFX software package. The relationship between the heat plume growth rate and heat boundary conditions, the width and height of the cell, size of heater for different kinds of liquid was established.

  19. Metabolic network modularity in archaea depends on growth conditions.

    PubMed

    Takemoto, Kazuhiro; Borjigin, Suritalatu

    2011-01-01

    Network modularity is an important structural feature in metabolic networks. A previous study suggested that the variability in natural habitat promotes metabolic network modularity in bacteria. However, since many factors influence the structure of the metabolic network, this phenomenon might be limited and there may be other explanations for the change in metabolic network modularity. Therefore, we focus on archaea because they belong to another domain of prokaryotes and show variability in growth conditions (e.g., trophic requirement and optimal growth temperature), but not in habitats because of their specialized growth conditions (e.g., high growth temperature). The relationship between biological features and metabolic network modularity is examined in detail. We first show the absence of a relationship between network modularity and habitat variability in archaea, as archaeal habitats are more limited than bacterial habitats. Although this finding implies the need for further studies regarding the differences in network modularity, it does not contradict previous work. Further investigations reveal alternative explanations. Specifically, growth conditions, trophic requirement, and optimal growth temperature, in particular, affect metabolic network modularity. We have discussed the mechanisms for the growth condition-dependant changes in network modularity. Our findings suggest different explanations for the changes in network modularity and provide new insights into adaptation and evolution in metabolic networks, despite several limitations of data analysis.

  20. Ice Particle Growth Rates Under Upper Troposphere Conditions

    NASA Technical Reports Server (NTRS)

    Peterson, Harold; Bailey, Matthew; Hallett, John

    2010-01-01

    Atmospheric conditions for growth of ice crystals (temperature and ice supersaturation) are often not well constrained and it is necessary to simulate such conditions in the laboratory to investigate such growth under well controlled conditions over many hours. The growth of ice crystals from the vapour in both prism and basal planes was observed at temperatures of -60 C and -70 C under ice supersaturation up to 100% (200% relative humidity) at pressures derived from the standard atmosphere in a static diffusion chamber. Crystals grew outward from a vertical glass filament, thickening in the basal plane by addition of macroscopic layers greater than 2 m, leading to growth in the prism plane by passing of successive layers conveniently viewed by time lapse video.

  1. Ice Particle Growth Under Conditions of the Upper Troposphere

    NASA Technical Reports Server (NTRS)

    Peterson, Harold S.; Bailey, Matthew; Hallett, John

    2010-01-01

    Atmospheric conditions for growth of ice crystals (temperature and ice supersaturation) are often not well constrained and it is necessary to simulate such conditions in the laboratory to investigate such growth under well controlled conditions over many hours. The growth of ice crystals from the vapour in both prism and basal planes was observed at temperatures of -60 C and -70 C under ice supersaturation up to 100% (200% relative humidity) at pressures derived from the standard atmosphere in a static diffusion chamber. Crystals grew outward from a vertical glass filament, thickening in the basal plane by addition of macroscopic layers greater than 2 microns, leading to growth in the prism plane by passing of successive layers conveniently viewed by time lapse video.

  2. Ice Crystal Growth Rates Under Upper Troposphere Conditions

    NASA Technical Reports Server (NTRS)

    Peterson, Harold S.; Bailey, Matthew; Hallett, John

    2010-01-01

    Atmospheric conditions for growth of ice crystals (temperature and ice supersaturation) are often not well constrained and it is necessary to simulate such conditions in the laboratory to investigate such growth under well controlled conditions over many hours. The growth of ice crystals from the vapour in both prism and basal planes was observed at temperatures of -60 C and -70 C under ice supersaturation up to 100% (200% relative humidity) at pressures derived from the standard atmosphere in a static diffusion chamber. Crystals grew outward from a vertical glass filament, thickening in the basal plane by addition of macroscopic layers greater than 2 m, leading to growth in the prism plane by passing of successive layers conveniently viewed by time lapse video.

  3. Growth rate changes of sodium chlorate crystals independent of growth conditions

    NASA Astrophysics Data System (ADS)

    Mitrović, M. M.; Žekić, A. A.; Baroš, Z. Z.

    2008-10-01

    Results of investigations of the growth rate changes inherent to the crystal are presented. It is shown that, in initial growth stage, there exist crystal growth rate changes independent of experimental conditions, with tendency to level during the time. Time evolution of sodium chlorate crystals growth rate dispersion is also presented. The results obtained show that these changes must be included in the interpretations of the growth rate changes affected by various parameters (supersaturation, temperature, fields, stress, impurities, etc.), which have not previously been taken into account. These results may improve the current crystal growth theories.

  4. Indium antimonide crystal growth experiment M562. [Skylab weightless conditions

    NASA Technical Reports Server (NTRS)

    Gatos, H. C.; Witt, A. F.

    1974-01-01

    It was established that ideal diffusion controlled steady state conditions, never accomplished on earth, were achieved during the growth of Te-doped InSb crystals in Skylab. Surface tension effects led to nonwetting conditions under which free surface solidification took place in confined geometry. It was further found that, under forced contact conditions, surface tension effects led to the formation of surface ridges (not previously observed on earth) which isolated the growth system from its container. In addition, it was possible, for the first time, to identify unambiguously: the origin of segregation discontinuities associated with facet growth, the mode of nucleation and propagation of rotational twin boundaries, and the specific effect of mechanical-shock perturbations on segregation. The results obtained prove the advantageous conditions provided by outer space. Thus, fundamental data on solidification thought to be unattainable because of gravity-induced interference on earth are now within reach.

  5. Optimal Culture Conditions for Mycelial Growth of Lignosus rhinocerus.

    PubMed

    Lai, W H; Siti Murni, M J; Fauzi, D; Abas Mazni, O; Saleh, N M

    2011-06-01

    Lignosus rhinocerus is a macrofungus that belongs to Polyporaceae and is native to tropical regions. This highly priced mushroom has been used as folk medicine to treat diseases by indigenous people. As a preliminary study to develop a culture method for edible mushrooms, the cultural characteristics of L. rhinocerus were investigated in a range of culture media under different environmental conditions. Mycelial growth of this mushroom was compared on culture media composed of various carbon and nitrogen sources in addition to C/N ratios. The optimal conditions for mycelial growth were 30℃ at pH 6 and 7. Rapid mycelial growth of L. rhinocerus was observed on glucose-peptone and yeast extract peptone dextrose media. Carbon and nitrogen sources promoting mycelial growth of L. rhinocerus were glucose and potassium nitrate, respectively. The optimum C/N ratio was approximately 10 : 1 using 2% glucose supplemented as a carbon source in the basal media.

  6. The framing effect with rectangular and trapezoidal surfaces: actual and pictorial surface slant, frame orientation, and viewing condition.

    PubMed

    Reinhardt-Rutland, A H

    1999-01-01

    The perceived slant of a surface relative to the frontal plane can be reduced when the surface is viewed through a frame between the observer and the surface. Aspects of this framing effect were investigated in three experiments in which observers judged the orientations-in-depth of rectangular and trapezoidal surfaces which were matched for pictorial depth. In experiments 1 and 2, viewing was stationary-monocular. In experiment 1, a frontal rectangular frame was present or absent during viewing. The perceived slants of the surfaces were reduced in the presence of the frame; the reduction for the trapezoidal surface was greater, suggesting that conflict in stimulus information contributes to the phenomenon. In experiment 2, the rectangular frame was either frontal or slanted; in a third condition, a frame was trapezoidal and frontal. The conditions all elicited similar results, suggesting that the framing effect is not explained by pictorial perception of the display, or by assimilation of the surface orientation to the frame orientation. In experiment 3, viewing was moving-monocular to introduce motion parallax; the framing effect was reduced, being appreciable only for a trapezoidal surface. The results are related to other phenomena in which depth perception of points in space tends towards a frontal plane; this frontal-plane tendency is attributed to heavy experimental demands, mainly concerning impoverished, conflicting, and distracting information.

  7. Growth Factor Liberation and DPSC Response Following Dentine Conditioning.

    PubMed

    Sadaghiani, L; Gleeson, H B; Youde, S; Waddington, R J; Lynch, C D; Sloan, A J

    2016-10-01

    Liberation of the sequestrated bioactive molecules from dentine by the action of applied dental materials has been proposed as an important mechanism in inducing a dentinogenic response in teeth with viable pulps. Although adhesive restorations and dentine-bonding procedures are routinely practiced, clinical protocols to improve pulp protection and dentine regeneration are not currently driven by biological knowledge. This study investigated the effect of dentine (powder and slice) conditioning by etchants/conditioners relevant to adhesive restorative systems on growth factor solubilization and odontoblast-like cell differentiation of human dental pulp progenitor cells (DPSCs). The agents included ethylenediaminetetraacetic acid (EDTA; 10%, pH 7.2), phosphoric acid (37%, pH <1), citric acid (10%, pH 1.5), and polyacrylic acid (25%, pH 3.9). Growth factors were detected in dentine matrix extracts drawn by EDTA, phosphoric acid, and citric acid from powdered dentine. The dentine matrix extracts were shown to be bioactive, capable of stimulating odontogenic/osteogenic differentiation as observed by gene expression and phenotypic changes in DPSCs cultured in monolayer on plastic. Polyacrylic acid failed to solubilize proteins from powdered dentine and was therefore considered ineffective in triggering a growth factor-mediated response in cells. The study went on to investigate the effect of conditioning dentine slices on growth factor liberation and DPSC behavior. Conditioning by EDTA, phosphoric acid, and citric acid exposed growth factors on dentine and triggered an upregulation in genes associated with mineralized differentiation, osteopontin, and alkaline phosphatase in DPSCs cultured on dentine. The cells demonstrated odontoblast-like appearances with elongated bodies and long extracellular processes extending on dentine surface. However, phosphoric acid-treated dentine appeared strikingly less populated with cells, suggesting a detrimental impact on cell

  8. Comparative transcriptomics of the response of Escherichia coli to the disinfectant monochloramine and to growth conditions inducing monochloramine resistance.

    PubMed

    Berry, David; Holder, Diane; Xi, Chuanwu; Raskin, Lutgarde

    2010-09-01

    Escherichia coli growth in biofilms and growth at a suboptimal temperature of 20 °C have been shown to decrease sensitivity to monochloramine (Berry, D., C. Xi, L. Raskin. 2009. Environ. Sci. Technol. 43, 884-889). In order to better understand why growth conditions affect sensitivity to monochloramine, a comparative transcriptomic approach was used to identify common patterns of differentially-expressed genes under these growth conditions and during monochloramine exposure. This approach revealed a set of differentially-expressed genes shared under multiple conditions (planktonic growth at 20 °C, biofilm growth, and exposure of planktonic cells to monochloramine), with nine genes shared under all three conditions. Functional gene categories enriched in the shared gene sets included: general metabolic inhibition, redox and oxidoreductase response, cell envelope integrity response, control of iron and sulfur transport metabolism and several genes of unknown function. Single gene deletion mutant analyses verified that loss of 15 of the 24 genes up-regulated during monochloramine exposure as well as during other tested conditions increased E. coli sensitivity to monochloramine up to two fold. Constitutive expression of down-regulated genes in single gene mutants yielded mixed results, indicating that the expression of some down-regulated genes actually decreases sensitivity to monochloramine. These results contribute to the understanding of the bacterial response to disinfectants by characterizing the overlap between growth condition associated stress responses and monochloramine-associated stress responses. This characterization highlights the bacterial responses responsible for decreased sensitivity to monochloramine under different growth conditions.

  9. Investigation of the Best Saccharomyces cerevisiae Growth Condition

    PubMed Central

    Salari, Roshanak; Salari, Rosita

    2017-01-01

    Introduction Saccharomyces cerevisiae is known as one of the useful yeasts which are utilized in baking and other industries. It can be easily cultured at an economic price. Today the introduction of safe and efficient carriers is being considered. Due to its generally round shape, and the volume that is enclosed by its membrane and cell wall, it is used to encapsulate active materials to protect them from degradation or to introduce a sustained release drug delivery system. Providing the best conditions in order to achieve the best morphological properties of Saccharomyces cerevisiae as a carrier. Methods In this research, the most suitable growth condition of yeast cells which provides the best size for use as drug carriers was found by a bioreactor in a synthetic culture medium. Yeast cell reproduction and growth curves were obtained, based on pour plate colony counting data and UV/Visible sample absorption at 600 nm. Yeast cell growth patterns and growth rates were determined by Matlab mathematical software. Results Results showed that pH=4 and dissolving oxygen (DO) 5% was the best condition for yeast cells to grow and reproduce. This condition also provided the largest size (2 × 3 μ) yeast cells. Conclusion Owing to the yeast cells’ low-cost production and their structural characteristics, they could be used as potent drug carriers. Funding This work was supported by a grant from the Vice Chancellor of Research of Mashhad University of Medical Sciences. PMID:28243411

  10. Stability of melt crystal growth under microgravity conditions

    NASA Astrophysics Data System (ADS)

    Tatarchenko, V. A.

    The conception of dynamic stability of melt crystal growth has been developed. The method based on the Lyapunov stability theory has been used to the study stability of crystallization by capillary shaping techniques including Czokhralsky, Stepanov, Kiropoulos, Verneuil and floating zone methods. Preliminary results of the stability analysis of crystallization by floating zone technique under microgravity conditions are presented here.

  11. EFFECT OF CATALASE AND CULTURAL CONDITIONS ON GROWTH OF BEGGIATOA.

    PubMed

    BURTON, S D; MORITA, R Y

    1964-12-01

    Burton, Sheril D. (Oregon State University, Corvallis), and Richard Y. Morita. Effect of catalase and cultural conditions on growth of Beggiatoa. J. Bacteriol. 88:1755-1761. 1964.-The addition of catalase to culture medium increased the period of viability of Beggiatoa from 1 week to 2 months. Addition of catalase also produced a marked increase in cell yield and enzyme activity. Cultures grown without catalase exhibited an absorption peak characteristic of peroxides. This absorption peak was removed by addition of catalase during or after growth. Oxygen was required for growth, but carbon dioxide was not produced. Malate and acetate stimulated growth at low concentrations. Glucose and thiosulfate were not oxidized, and cytochromes were not detectable by spectrophotometric analysis.

  12. Degenerate nonlinear programming with a quadratic growth condition.

    SciTech Connect

    Anitescu, M.; Mathematics and Computer Science

    2000-01-01

    We show that the quadratic growth condition and the Mangasarian-Fromovitz constraint qualification (MFCQ) imply that local minima of nonlinear programs are isolated stationary points. As a result, when started sufficiently close to such points, an L1 exact penalty sequential quadratic programming algorithm will induce at least R-linear convergence of the iterates to such a local minimum. We construct an example of a degenerate nonlinear program with a unique local minimum satisfying the quadratic growth and the MFCQ but for which no positive semidefinite augmented Lagrangian exists. We present numerical results obtained using several nonlinear programming packages on this example and discuss its implications for some algorithms.

  13. Paradox of plant growth promotion potential of rhizobacteria and their actual promotion effect on growth of barley (Hordeum vulgare L.) under salt stress.

    PubMed

    Cardinale, Massimiliano; Ratering, Stefan; Suarez, Christian; Zapata Montoya, Ana Maria; Geissler-Plaum, Rita; Schnell, Sylvia

    2015-12-01

    From the rhizosphere of two salt tolerant plant species, Hordeum secalinum and Plantago winteri growing in a naturally salt meadow, 100 strains were isolation on enrichment media for various plant growth-promoting (PGP) functions (ACC deaminase activity, auxin synthesis, calcium phosphate mobilization and nitrogen fixation). Based on the taxonomic affiliation of the isolated bacteria and their enrichment medium 22 isolates were selected to test their growth promotion effect on the crop barley (Hordeum vulgare) under salt stress in pot experiment. In parallel the isolates were characterized in pure culture for their plant growth-promoting activities. Surprisingly the best promotors did not display a promising set of PGP activities. Isolates with multiple PGP-activities in pure culture like Microbacterium natoriense strain E38 and Pseudomonas brassicacearum strain E8 did not promote plant growth. The most effective isolate was strain E108 identified as Curtobacterium flaccumfaciens, which increased barley growth up to 300%. In pure culture strain E108 showed only two out of six plant growth promoting activities and would have been neglected. Our results highlight that screening based on pure culture assays may not be suitable for recognition of best plant growth promotion candidates and could preclude the detection of both new PGPR and new plant promotion mechanisms.

  14. Antimicrobial Treatment Improves Mycobacterial Survival in Nonpermissive Growth Conditions

    PubMed Central

    Turapov, Obolbek; Waddell, Simon J.; Burke, Bernard; Glenn, Sarah; Sarybaeva, Asel A.; Tudo, Griselda; Labesse, Gilles; Young, Danielle I.; Young, Michael; Andrew, Peter W.; Butcher, Philip D.; Cohen-Gonsaud, Martin

    2014-01-01

    Antimicrobials targeting cell wall biosynthesis are generally considered inactive against nonreplicating bacteria. Paradoxically, we found that under nonpermissive growth conditions, exposure of Mycobacterium bovis BCG bacilli to such antimicrobials enhanced their survival. We identified a transcriptional regulator, RaaS (for regulator of antimicrobial-assisted survival), encoded by bcg1279 (rv1219c) as being responsible for the observed phenomenon. Induction of this transcriptional regulator resulted in reduced expression of specific ATP-dependent efflux pumps and promoted long-term survival of mycobacteria, while its deletion accelerated bacterial death under nonpermissive growth conditions in vitro and during macrophage or mouse infection. These findings have implications for the design of antimicrobial drug combination therapies for persistent infectious diseases, such as tuberculosis. PMID:24590482

  15. Butyrate production under aerobic growth conditions by engineered Escherichia coli.

    PubMed

    Kataoka, Naoya; Vangnai, Alisa S; Pongtharangkul, Thunyarat; Yakushi, Toshiharu; Matsushita, Kazunobu

    2017-01-11

    Butyrate is an important industrial platform chemical. Although several groups have reported butyrate production under oxygen-limited conditions by a native producer, Clostridium tyrobutylicum, and by a metabolically engineered Escherichia coli, efforts to produce butyrate under aerobic growth conditions have met limited success. Here, we constructed a novel butyrate synthetic pathway that functions under aerobic growth conditions in E. coli, by modifying the 1-butanol synthetic pathway reported previously. The pathway consists of phaA (acetyltransferase) and phaB (NADPH-dependent acetoacetyl-CoA reductase) from Ralstonia eutropha, phaJ ((R)-specific enoyl-CoA hydratase) from Aeromonas caviae, ter (trans-enoyl-CoA reductase) from Treponema denticola, and endogenous thioesterase(s) of E. coli. To evaluate the potential of this pathway for butyrate production, culture conditions, including pH, oxygen supply, and concentration of inorganic nitrogen sources, were optimized in a mini-jar fermentor. Under the optimal conditions, butyrate was produced at a concentration of up to 140 mM (12.3 g/L in terms of butyric acid) after 54 h of fed-batch culture.

  16. Effect of lighting conditions on zebrafish growth and development.

    PubMed

    Villamizar, Natalia; Vera, Luisa María; Foulkes, Nicholas Simon; Sánchez-Vázquez, Francisco Javier

    2014-04-01

    In the underwater environment, the properties of light (intensity and spectrum) change rapidly with depth and water quality. In this article, we have described how and to what extent lighting conditions can influence the development, growth, and survival of zebrafish. Fertilized eggs and the corresponding larvae were exposed to different visible light wavelengths (violet, blue, green, yellow, red, and white) in a 12-h light-12-h dark (LD) cycle until 30 days posthatching (dph), when the expression of morphometric parameters and growth (igf1a, igf2a)- and stress-related (crh and pomca) genes were examined. Another group of larvae was raised under constant darkness (DD) until 5 or 10 dph, after which they were transferred to a LD of white light. A third group remained under DD to investigate the effects of light deprivation upon zebrafish development. The results revealed that the hatching rate was highest under blue and violet light, while total length at 30 dph was greatest under blue, white, and violet light. Red light led to reduced feeding activity and poor survival (100% mortality). Larvae raised under constant white light (LL) showed a higher proportion of malformations, as did larvae raised under LD violet light. The expression of growth and stress factors was upregulated in the violet (igf1a, igf2a, pomca, and chr) and blue (igf2a) groups, which is consistent with the higher growth recorded and the higher proportion of malformations detected under the violet light. All larvae kept under DD died before 18 dph, but the survival rates improved in larvae transferred to LD at 5 dph and at 10 dph. In summary, these findings revealed that lighting conditions are crucial factors influencing zebrafish larval development and growth.

  17. The Culture Conditions for the Mycelial Growth of Phellinus spp.

    PubMed Central

    Rew, Young-Hyun; Choi, Sung-Guk; Seo, Geon-Sik; Sung, Jae-Mo; Uhm, Jae-Youl

    2006-01-01

    Phellinus genus belonged to Hymenochaetaceae of Basidiomycetes and has been well known as one of the most popular medicinal mushrooms due to high antitumor activity. This study was carried out to obtain the basic information for mycelial culture conditions of Phellinus linteus, P. baumii, and P. gilvus. According to colony diameter and mycelial density, the media for suitable mycelial growth of them were shown in MEA, glucose peptone, and MCM. The optimum temperature for mycelial growth was 30℃. Carbon and nitrogen sources were mannose and malt extract, respectively. The optimum C/N ratio was 10 : 1 to 5 : 1 with 2% glucose concentration, vitamin was thiamine-HCl, organic acid was succinic acid, and mineral salt was MgSO4·7H2O. PMID:24039499

  18. The Culture Conditions for the Mycelial Growth of Phellinus spp.

    PubMed

    Jo, Woo-Sik; Rew, Young-Hyun; Choi, Sung-Guk; Seo, Geon-Sik; Sung, Jae-Mo; Uhm, Jae-Youl

    2006-12-01

    Phellinus genus belonged to Hymenochaetaceae of Basidiomycetes and has been well known as one of the most popular medicinal mushrooms due to high antitumor activity. This study was carried out to obtain the basic information for mycelial culture conditions of Phellinus linteus, P. baumii, and P. gilvus. According to colony diameter and mycelial density, the media for suitable mycelial growth of them were shown in MEA, glucose peptone, and MCM. The optimum temperature for mycelial growth was 30℃. Carbon and nitrogen sources were mannose and malt extract, respectively. The optimum C/N ratio was 10 : 1 to 5: 1 with 2% glucose concentration, vitamin was thiamine-HCl, organic acid was succinic acid, and mineral salt was MgSO4·7H2O.

  19. The Critical Conditions for the Growth of Silicon Dioxide on Silicon.

    NASA Astrophysics Data System (ADS)

    Ghidini, Gabriella

    The use of thermally grown SiO(,2) as a coating on Si is wide spread in the modern technology of semiconductor devices. The properties and methods of preparation of SiO(,2) have been studied for many years, but for the increasing importance of high quality thin films of oxide (less than 200 (ANGSTROM)), a better understanding of the initial growth of SiO(,2) will be helpful for the improvement of the actual methods of growing thin films. The subject of this thesis is the study of the critical conditions for the nucleation and growth of SiO(,2) on Si at low oxidant gas (O(,2) gas and H(,2)O vapor) pressures and high temperatures. For O(,2) pressures between 5 x 10('-5) and 5 x 10('-2) Torr and substrate temperatures between 890-1150(DEGREES)C, the critical O(,2) pressure for the nucleation and growth of SiO(,2) was determined as a function of the substrate temperature. The observed critical conditions for growth are consistent with a theoretical model which focuses on the kinetics of SiO(,2) cluster growth and on the thermodynamics of the competing etching reaction leading to the production of SiO. With H(,2)O vapor between 7 x 10('-5) and 3 x 10('-1) Torr and substrate temperature between 890-1280(DEGREES)C two critical behaviours were observed, indicating both the coverage of the surface by some compound (SiO(,x) + H) not passivating completely the surface and the subsequent growth of SiO(,2). A study of the SiO(,2) growth features has also been carried out and evidence for epitaxial growth of cubic (beta)-cristobalite on Si(100) is found. The influence of doping of the Si substrate on the critical conditions for P, B, As heavily-doped samples is also determined. The critical oxygen pressure is only influenced by P atoms, which seem to enhance the nucleation and growth of SiO(,2).

  20. Bacterial populations growth under co- and counter-flow condition

    NASA Astrophysics Data System (ADS)

    Tesser, Francesca; Zeegers, Jos C. H.; Clercx, Herman J. H.; Toschi, Federico

    2014-11-01

    For organisms living in a liquid ecosystem, flow and flow gradients play a major role on the population level: the flow has a dual role as it transports the nutrient while dispersing the individuals. In absence of flow and under homogeneous conditions, the growth of a population towards an empty region is usually described by a reaction diffusion equation. The solution predicts the expansion as a wave front (Fisher wave) proceeding at constant speed, till the carrying capacity is reached everywhere. The effect of fluid flow, however, is not well understood and the interplay between transport of individuals and nutrient opens a wide scenario of possible behaviors. In this work, we experimentally observe non-motile E. coli bacteria spreading inside rectangular channels in a PDMS microfluidic device. By use of a fluorescent microscope we analyze the dynamics of the population density subjected to different co- and counter-flow conditions and shear rates.

  1. Simulation of fatigue crack growth under large scale yielding conditions

    NASA Astrophysics Data System (ADS)

    Schweizer, Christoph; Seifert, Thomas; Riedel, Hermann

    2010-07-01

    A simple mechanism based model for fatigue crack growth assumes a linear correlation between the cyclic crack-tip opening displacement (ΔCTOD) and the crack growth increment (da/dN). The objective of this work is to compare analytical estimates of ΔCTOD with results of numerical calculations under large scale yielding conditions and to verify the physical basis of the model by comparing the predicted and the measured evolution of the crack length in a 10%-chromium-steel. The material is described by a rate independent cyclic plasticity model with power-law hardening and Masing behavior. During the tension-going part of the cycle, nodes at the crack-tip are released such that the crack growth increment corresponds approximately to the crack-tip opening. The finite element analysis performed in ABAQUS is continued for so many cycles until a stabilized value of ΔCTOD is reached. The analytical model contains an interpolation formula for the J-integral, which is generalized to account for cyclic loading and crack closure. Both simulated and estimated ΔCTOD are reasonably consistent. The predicted crack length evolution is found to be in good agreement with the behavior of microcracks observed in a 10%-chromium steel.

  2. Growth management of vetiver (Vetiveria zizanioides) under Mediterranean conditions.

    PubMed

    Dudai, N; Putievsky, E; Chaimovitch, D; Ben-Hur, M

    2006-10-01

    In spite of the advantages of Vetiver grass in light of environmental aspects, this plant is not used in the Mediterranean region. The objectives of the present study were: (i) to elucidate growth parameters and establishment of Vetiver under Mediterranean conditions suitable for its various environmental applications; and (ii) to develop management practices for growing vetiver under Mediterranean conditions. In greenhouse experiments conducted under controlled conditions it was found that, in general, increasing the minimum/maximum temperatures to 21-29 degrees C significantly increased plant height. In the Mediterranean region, this range of air temperatures is obtained mainly during the summer, from June to September. For air temperatures up to 15-23 degrees C the effect of day length on plant height was insignificant, whereas in air temperature >15-23 degrees C, the plant heights under long day conditions were significantly higher than under short day. The number of sprouts per plant increased exponentially with increasing air temperature, and was not significantly affected by the day length at any air temperature range. In open fields, the heights of irrigated vetiver plants were significantly higher than those of rain-fed plants. It was concluded that, once they were established, vetiver plants could survive the dry summer of the Mediterranean region under rain-fed conditions, but they would be shorter than under irrigation. Cutting or burning of the plant foliage during the spring did not improve the survival of vetiver during the dry summer. In order to obtain fast growth of vetiver and to increase the possibility of its using the rainwater, the plants should be planted in the winter, during February and March. However, under this regime, the vetiver plant cannot be used as a soil stabilizer during the first winter, because the plant is still small. In contrast, under irrigation it is advantageous to plant vetiver at the beginning of the summer; the plant

  3. Actual Condition of Paddy Field Levee Maintenance by Various Farm Households including Large-scale Farming in the Developed Land Renting Area

    NASA Astrophysics Data System (ADS)

    Sakata, Yasuyo

    The survey of interview, resource acquisition, photographic operation, and questionnaire were carried out in the “n” Community in the “y” District in Hakusan City in Ishikawa Prefecture to investigate the actual condition of paddy field levee maintenance in the area where land-renting market was proceeding, large-scale farming was dominant, and the problems of geographically scattered farm-land existed. In the study zone, 1) an agricultural production legal person rent-cultivated some of the paddy fields and maintained the levees, 2) another agricultural production legal person rent-cultivated some of the soy bean fields for crop changeover and land owners maintained the levees. The results indicated that sufficient maintenance was executed on the levees of the paddy fields cultivated by the agricultural production legal person, the soy bean fields for crop changeover, and the paddy fields cultivated by the land owners. Each reason is considered to be the managerial strategy, the economic incentive, the mutual monitoring and cross-regulatory mechanism, etc.

  4. The onset condition of equatorial plasma bubbles - the role of seeding mechanism and growth condition

    NASA Astrophysics Data System (ADS)

    Kil, H.; Choi, J. M.; Kwak, Y. S.; Lee, W. K.; Park, J.

    2015-12-01

    We investigate the role of seeding mechanism and growth condition of perturbations in the creation of equatorial plasma bubbles by analyzing the C/NOFS and ROCSAT-1 satellite observations. The initial development times of bubbles were identified by manual processing of the data, and the periodic characteristics in the occurrence of bubbles were investigated using periodograms obtained from segments of bubble chains. Our preliminary results show that bubbles initiate at the time that the pre-reversal enhancement (PRE) ends. This time corresponds to the time that the F region reaches the highest altitude where the growth rate of the Rayleigh-Taylor (R-T) instability is large. The initial onset time of bubbles varies with season and longitude in accordance with the variation of the PRE ending time. Our investigation of the periodicity in the occurrence of bubbles (spacing between bubbles) shows that a dominant periodicity does not exist; the spacing between bubbles ranges from 100 km to over 1000 km. A pronounced periodicity occurs in some series of bubbles, but, in general, multiple periodicity co-exists. The initiation of bubbles at a specific local time but the absence of a preferential wave property in the occurrence of bubbles lead to the conclusion that the onset of bubbles is controlled by the growth condition of the R-T instability.

  5. Escherichia coli growth and transport in the presence of nanosilver under variable growth conditions.

    PubMed

    Xie, Weijie; Vu, Kien; Yang, Guang; Tawfiq, Kamal; Chen, Gang

    2014-01-01

    Nanosilver (silver nanoparticles) has the ability to anchor to the bacterial cell membrane and subsequently penetrate it, thereby causing structural changes (i.e., permeability) in the cell membrane and death of the cell. The bacterial responses to the presence of nanosilver usually vary depending on the concentration of nanosilver particles, exposure time and the bacterial physiological stage. Since bacterial anabolism dependents upon a stoichiometric ratio of carbon and inorganic elements (nutrients), the macronutrient ratio, i.e. carbon to nitrogen ratio (C/N) thus plays an important role of bacterial responses to the exposure of nanosilver. This study investigated the responses of Escherichia coli to the exposure of nanosilver under variable growth conditions. It was discovered that E. coli grown under different growth conditions had different responses to the presence of nanosilver. E. coli had least resistance to the toxicity of nanosilver when cultured under carbon-limited conditions. However, the presence of rhamnolipid, a commonly utilized biosurfactant for soil remediation increased the resistance of E. coli to nanosilver. The transport of E. coli cultured under carbon-limited conditions was further studied in silica sand columns. E. coli adsorption in silica sand increased when cultured in the presence of nanosilver. On the contrary, E. coli adsorption in silica sand was significantly reduced when cultured in the presence of rhamnolipid.

  6. Sustained Load Crack Growth in Inconel 718 Under Non-Isothermal Conditions.

    DTIC Science & Technology

    1983-12-01

    Center-cracked specimens of Inconel 718 are used. The isothermal baseline data are used to predict crack growth rates for the non-isothermal tests using...Non-isothermal creep crack growth testing was conducted using centercracked specimens of Inconel 718 . Specimens were subjected to low frequency thermal...temperature change rates are used. \\-* ->he predicted creep crack growth rates were within a factor of two of the actual test data . The time-to-failure

  7. The first actual record of deep open-ocean conditions in the Ediacaran: Fe speciation in pelagic deep-sea sediments in accretionary complexes in Wales, UK

    NASA Astrophysics Data System (ADS)

    Sato, T.; Asanuma, H.; Okada, Y.; Maruyama, S.; Shozugawa, K.; Matsuo, M.; Windley, B. F.

    2014-12-01

    The first oxidation of a deep ocean in Earth history is considered to have occurred in the Neoproterozoic, coincident with the metazoan diversification; however, the Neoproterozoic geological record has so far been limited to only continental shelves, slopes, or basins at the deepest. Here, we document Neoproterozoic pelagic deep-sea sediments in reconstructed oceanic plate stratigraphy (OPS) in accretionary complexes (ACs) in Anglesey and Lleyn, Wales, UK. The OPS mostly consists of mid-ocean ridge basalts, pelagic red-bedded cherts, hemipelagic siliceous mudstones and turbidite sandstones, in ascending order. Only at Porth Felen in Lleyn Peninsula does the OPS contain black mudstones (ca. 10 m-thick) instead of pelagic red-bedded cherts. Based on the tectonic reconstruction of these ACs, the OPS at Porth Felen has the oldest depositional age. Our new U-Pb date of detrital zircons separated from the turbidite sandstones at Porth Felen has the youngest age of 580±13 Ma. These results suggest that the black mudstones at Porth Felen were deposited no later than the early Ediacaran. We have analyzed these black mudstones by 57Fe Mössbauer spectroscopy, and found that about a quarter of their iron content is contained in pyrite, while the other components are paramagnetic Fe2+ or occasionally paramagnetic Fe3+ in clay minerals. The red cherts in the younger OPS contain hematite as the main iron mineral, paramagnetic Fe3+, and paramagnetic Fe2+. The occurrence of hematite in a deep-sea chert essentially indicates a primary oxidizing depositional condition, whereas pyrite is indicative of a reducing environment. The present data confirm that a reducing deep-sea existed in the early Ediacaran during the black mudstone deposition, and that an oxidizing deep-sea had been established by the late Ediacaran. In conclusion, our results provide the first direct evidence of an actual deep open-ocean in the Ediacaran to clarify the timing and extent of the Neoproterozoic

  8. Stability of antibiotics under growth conditions for thermophilic anaerobes

    SciTech Connect

    Peteranderl, R.; Shotts, E.B. Jr.; Wiegel, J. )

    1990-06-01

    It was shown that the inhibitory effect of kanamycin and streptomycin in a growing culture of Clostridium thermohydrosulfuricum JW 102 is of limited duration. To screen a large number of antibiotics, their stability during incubation under the growth conditions of thermophilic clostridia was determined at 72 and 50C by using a 0.2% yeast extract-amended prereduced mineral medium with a pH of 7.3 or 5.0. Half-lives were determined in a modified MIC test with Escherichia coli, Staphylococcus aureus, and Bacillus megaterium as indicator strains. All compounds tested were similar at the two temperatures or more stable at 50 than at 72C. The half-life (t{sub 1/2}) at pH 7.3 and 72C ranged from 3.3 h (k = 7.26 day{sup {minus}1}, where k (degradation constant) = 1/t{sub 1/2}) for ampicillin to no detectable loss of activity for kanamycin, neomycin, and other antibiotics. Apparently some compounds became more potent during incubation. A change to pH 5.0 caused some compounds to become more labile to become more stable than at pH 7.3.

  9. Growth conditions determine different melatonin levels in Lupinus albus L.

    PubMed

    Arnao, Marino B; Hernández-Ruiz, Josefa

    2013-09-01

    Melatonin, an indoleamine, which has recently been assigned several roles in plant physiology as a growth promoter, as rooting agent, and as antioxidant in senescence delay and cytoprotection, seems to have a relevant function in plant stress situations. The presence of melatonin increases the resistance of lupin plant tissues (Lupinus albus L.) against natural or artificially induced adverse situations. In this work, we studied the response of lupin plants in controlled stress situations (drought-, anaerobic-, pH-, and cold stress and using ZnSO4 , NaCl, and H2 O2 as chemical stressors) and measured the changes in endogenous melatonin levels in lupin plants. Also, the effect of abscisic acid, ethylene, and natural environmental conditions were evaluated. In general, nearly all stressful factors caused an increase in melatonin in the investigated organs. The chemical stress provoked by ZnSO4 or NaCl caused the most pronounced changes in the endogenous level of melatonin, followed by cold and drought stressors. In some cases, the level of melatonin increased 12-fold with respect to the levels in control plants, indicating that melatonin biosynthesis is upregulated in common stress situations, in which it may serve as a signal molecule and/or as a direct antistress agent due to its well-known antioxidative properties.

  10. Dynamics of Deinococcus radiodurans under Controlled Growth Conditions

    PubMed Central

    Jena, Sidhartha S.; Joshi, Hiren M.; Sabareesh, K. P. V.; Tata, B. V. R.; Rao, T. S.

    2006-01-01

    Deinococcus radiodurans is a potent radiation resistant bacterium with immense potential in nuclear waste treatment. In this investigation, the translational and rotational dynamics of dilute suspensions of D. radiodurans cultured under controlled growth conditions was studied by the polarized and depolarized dynamic light-scattering (DLS) techniques. Additionally, confocal laser scanning microscopy was used for characterizing the cultured samples and also for identification of D. radiodurans dimer, tetramer, and multimer morphologies. The data obtained showed translational diffusion coefficients (DT) of 1.2 × 10−9, 1.97 × 10−9, and 2.12 × 10−9 cm2 /s, corresponding to an average size of 3.61, 2.22, and 2.06 μm, respectively, for live multimer, tetramer, and dimer forms of D. radiodurans. Depolarized DLS experiments showed very slow rotational diffusion coefficients (DR) of 0.182/s for dimer and 0.098/s for tetramer morphologies. No measurable rotational diffusion was observed for multimer form. Polarized DLS measurements on live D. radiodurans confirmed that the bacterium is nonmotile in nature. The dynamics of the dead dimer and tetramer D. radiodurans were also studied using polarized and depolarized DLS experiments and compared with the dynamics of live species. The dead cells were slightly smaller in size when compared to the live cells. However, no additional information could be obtained for dead cells from the polarized and depolarized dynamic light-scattering studies. PMID:16829564

  11. A Comparison of Three Conditional Growth Percentile Methods: Student Growth Percentiles, Percentile Rank Residuals, and a Matching Method

    ERIC Educational Resources Information Center

    Wyse, Adam E.; Seo, Dong Gi

    2014-01-01

    This article provides a brief overview and comparison of three conditional growth percentile methods; student growth percentiles, percentile rank residuals, and a nonparametric matching method. These approaches seek to describe student growth in terms of the relative percentile ranking of a student in relationship to students that had the same…

  12. Deformation and crack growth response under cyclic creep conditions

    SciTech Connect

    Brust, F.W. Jr.

    1995-12-31

    To increase energy efficiency, new plants must operate at higher and higher temperatures. Moreover, power generation equipment continues to age and is being used far beyond its intended original design life. Some recent failures which unfortunately occurred with serious consequences have clearly illustrated that current methods for insuring safety and reliability of high temperature equipment is inadequate. Because of these concerns, an understanding of the high-temperature crack growth process is very important and has led to the following studies of the high temperature failure process. This effort summarizes the results of some recent studies which investigate the phenomenon of high temperature creep fatigue crack growth. Experimental results which detail the process of creep fatigue, analytical studies which investigate why current methods are ineffective, and finally, a new approach which is based on the T{sup *}-integral and its ability to characterize the creep-fatigue crack growth process are discussed. The potential validity of this new predictive methodology is illustrated.

  13. Influence of growth conditions on bacteriocin production by Brevibacterium linens.

    PubMed

    Motta, A S; Brandelli, A

    2003-08-01

    The influence of temperature, NaCl concentration and cheese whey media on growth of Brevibacterium linens ATCC 9175 and production of bacteriocin-like antimicrobial activity was studied. Bacteriocin production and activity were higher at 25 degrees C than at 30 degrees C. No significant growth or production of bacteriocins was observed at 37 degrees C. When bacteriocin production was investigated in media containing different concentrations of NaCl, increased activity was observed in media containing 40 or 80 g l(-1), but not 120 g l(-1) NaCl. The addition of NaCl resulted in a significant increase in specific production rates of bacteriocin-like activity. Antimicrobial activity was also observed by cultivation of B. linens at 25 degrees C in cheese whey media.

  14. Growth of Heterostegina depressa under natural and laboratory conditions

    PubMed Central

    Eder, Wolfgang; Briguglio, Antonino; Hohenegger, Johann

    2016-01-01

    The use of micro-computed tomography (μCT) provides a unique opportunity to look inside the shells of larger benthic foraminifera to investigate their structure by measuring linear and volumetric parameters. For this study, gamonts/schizonts and agamonts of the species Heterostegina depressa d'Orbigny were examined by μCT; each single chamber's volume was digitally measured. This approach enables cell growth to be recognised in terms of chamber volume sequence, which progressively increases until reproduction occurs. This sequence represents the ontogeny of the foraminiferal cell and has been used here to investigate controlling factors potentially affecting the process of chamber formation. This is manifested as instantaneous or periodic deviations of the realised chamber volumes derived from modelled growth functions. The results obtained on naturally grown specimens show oscillations in chamber volumes which can be modelled by sums of sinusoidal functions. A set of functions with similar periods in all investigated specimens points to lunar and tidal cycles. To determine whether such cyclic signals are genuine and not the effects of a theoretical model, the same analysis was conducted on specimens held in a closed laboratory facility, as they should not be affected by natural environmental effects. Surprisingly, similar cyclicities were observed in such samples. However, a solely genetic origin of these cycles couldn't be verified either. Therefore, detailed analysis on the phase equality of these growth oscillations have been done. This approach is pivotal for proving that the oscillatory patterns discovered in LBF are indeed genuine signals, and on how chamber growth might be influenced by tidal currents or lunar months. PMID:28100933

  15. Conditions for super-adiabatic droplet growth after entrainment mixing

    DOE PAGES

    Yang, Fan; Shaw, Raymond; Xue, Huiwen

    2016-07-29

    Cloud droplet response to entrainment and mixing between a cloud and its environment is considered, accounting for subsequent droplet growth during adiabatic ascent following a mixing event. The vertical profile for liquid water mixing ratio after a mixing event is derived analytically, allowing the reduction to be predicted from the mixing fraction and from the temperature and humidity for both the cloud and environment. It is derived for the limit of homogeneous mixing. The expression leads to a critical height above the mixing level: at the critical height the cloud droplet radius is the same for both mixed and unmixedmore » parcels, and the critical height is independent of the updraft velocity and mixing fraction. Cloud droplets in a mixed parcel are larger than in an unmixed parcel above the critical height, which we refer to as the “super-adiabatic” growth region. Analytical results are confirmed with a bin microphysics cloud model. Using the model, we explore the effects of updraft velocity, aerosol source in the environmental air, and polydisperse cloud droplets. Results show that the mixed parcel is more likely to reach the super-adiabatic growth region when the environmental air is humid and clean. It is also confirmed that the analytical predictions are matched by the volume-mean cloud droplet radius for polydisperse size distributions. The findings have implications for the origin of large cloud droplets that may contribute to onset of collision–coalescence in warm clouds.« less

  16. Plant Growth and Morphogenesis under Different Gravity Conditions: Relevance to Plant Life in Space

    PubMed Central

    Hoson, Takayuki

    2014-01-01

    The growth and morphogenesis of plants are entirely dependent on the gravitational acceleration of earth. Under microgravity conditions in space, these processes are greatly modified. Recent space experiments, in combination with ground-based studies, have shown that elongation growth is stimulated and lateral expansion suppressed in various shoot organs and roots under microgravity conditions. Plant organs also show automorphogenesis in space, which consists of altered growth direction and spontaneous curvature in the dorsiventral (back and front) directions. Changes in cell wall properties are responsible for these modifications of growth and morphogenesis under microgravity conditions. Plants live in space with interesting new sizes and forms. PMID:25370193

  17. Automated Diagnosis Of Conditions In A Plant-Growth Chamber

    NASA Technical Reports Server (NTRS)

    Clinger, Barry R.; Damiano, Alfred L.

    1995-01-01

    Biomass Production Chamber Operations Assistant software and hardware constitute expert system that diagnoses mechanical failures in controlled-environment hydroponic plant-growth chamber and recommends corrective actions to be taken by technicians. Subjects of continuing research directed toward development of highly automated closed life-support systems aboard spacecraft to process animal (including human) and plant wastes into food and oxygen. Uses Microsoft Windows interface to give technicians intuitive, efficient access to critical data. In diagnostic mode, system prompts technician for information. When expert system has enough information, it generates recovery plan.

  18. Therapeutic potential of growth factors in pulmonary emphysematous condition.

    PubMed

    Muyal, Jai Prakash; Muyal, Vandana; Kotnala, Sudhir; Kumar, Dhananjay; Bhardwaj, Harsh

    2013-04-01

    Pulmonary emphysema is a major manifestation of chronic obstructive pulmonary disease (COPD), which is characterized by progressive destruction of alveolar parenchyma with persistent inflammation of the small airways. Such destruction in the distal respiratory tract is irreversible and irreparable. All-trans-retinoic acid was suggested as a novel therapy for regeneration of lost alveoli in emphysema. However, profound discrepancies were evident between studies. At present, no effective therapeutic options are available that allow for the regeneration of lost alveoli in emphysematous human lungs. Recently, some reports on rodent's models have suggested the beneficial effects of various growth factors toward alveolar maintenance and repair processes.

  19. Effects of social housing condition and behavior on growth of the Shionogi mouse mammary carcinoma.

    PubMed

    Grimm, M S; Emerman, J T; Weinberg, J

    1996-01-01

    We have demonstrated marked effects of social housing condition on the growth rate of the androgen-responsive Shionogi mouse mammary carcinoma. The present study investigated the possible role of psychosocial variables in modulating the differential tumor growth rates observed. Male DD/S mice were reared individually housed (I) or in groups (G) of three or five siblings or nonsiblings. Following tumor cell injection, mice either remained in their rearing conditions (II, GG) or were rehoused (IG, GI). Effects of group size, sibling relationship, dominance status, change vs. no change in housing condition, and direction of change (individual to group or group to individual) were examined. Home cage behaviors were monitored both prior to and following tumor cell injection and rehousing. Overall, mice in the GI conditions showed faster tumor growth rates than mice in the IG conditions. Mice in the II and GG conditions showed intermediate tumor growth rates. Differences in group size and sibling relationship prior to and following tumor cell injection and rehousing had no significant influence on tumor growth rates. However, both change in housing condition and direction of change following tumor cell injection/rehousing were significant variables in modulating differential tumor growth rates. Dominance status differentially influenced tumor growth depending on whether mice experienced a change in housing; in the IG conditions, dominant mice showed faster tumor growth whereas in the GG conditions, dominant mice showed slower tumor growth than subordinate mice. Increased fighting among mice in IG compared to mice in GG conditions may play a role in modulating differential tumor growth rates.

  20. Hydrothermal growth of ZnO nanoparticles under different conditions

    NASA Astrophysics Data System (ADS)

    Yilmaz, Mehmet; Bozkurt Cirak, Burcu; Cirak, Cagri; Aydogan, Sakir

    2016-02-01

    In this study, a simple low-temperature hydrothermal method was used to synthesize ZnO nanoparticles. The structural, morphological and optical characterizations of the nanoparticles were evaluated with regard to the zinc content. To achieve this, the molar ratios of the precursors were changed from 0.05 to 0.1 M. The structural and morphological analyses showed that all samples had a polycrystalline hexangular wurtzite crystal structure and the shape of the ZnO nanoparticles changed with increasing zinc content. A possible growth mechanism of the ZnO nanoparticles is explained in terms of the zinc content. Optical measurement revealed that the shape of the nanoparticles affects the position of the band-edge emission as well as the shape of the luminescence spectrum.

  1. Influence of growth conditions on barley starch properties.

    PubMed

    Tester, R F

    1997-08-01

    Air equilibrated barley starch comprises amylopectin, amylose, lipid and water. The structure of amylose and amylopectin, and the proportion of amylose in granules is under genetic control and is therefore subject to genotypic variation. The amount of lipid (which is essentially all lysophospholipid) is similarly under genetic control. Environment and especially environmental temperature do, however, have a regulatory effect on the size of starch granules, the amylose to amylopectin ratio and the amount of lipid (which is essentially all complexed with amylose) within barley starch. High growth temperatures probably facilitate amylopectin crystallisation and increase gelatinisation temperatures, (and to some extent the enthalpy of gelatinisation), but delay the onset and depress the extent of swelling of granules when heated in water.

  2. Growth conditions influence the melatonin content of tomato plants.

    PubMed

    Arnao, Marino Bañón; Hernández-Ruiz, Josefa

    2013-06-01

    Melatonin (N-acetyl-5-methoxytryptamine) is an interesting molecule with well-known functions in vertebrates. Since its discovery in plants in 1995, many data indicate that its role as a cellular antioxidant is very relevant. Agents that induce stress cause increased melatonin levels in plant organs and melatonin levels fluctuate over the light:dark cycle; there are also conflicting data on the influence of environmental conditions on the melatonin content of plants. In this contribution we describe how cultivation conditions decisively influence melatonin levels in roots, stems and leaves of tomato plants, and we establish some guidelines for interpreting data with the intention of opening up new discussion options, given the lack of data on the place/s of melatonin biosynthesis and its mode of action in plant cells as an antioxidant.

  3. Performing Comparative Peptidomics Analyses of Salmonella from Different Growth Conditions

    SciTech Connect

    Adkins, Joshua N.; Mottaz, Heather; Metz, Thomas O.; Ansong, Charles K.; Manes, Nathan P.; Smith, Richard D.; Heffron, Fred

    2010-01-08

    Host–pathogen interactions are complex competitions during which both the host and the pathogen adapt rapidly to each other in order for one or the other to survive. Salmonella enterica serovar Typhimurium is a pathogen with a broad host range that causes a typhoid fever-like disease in mice and severe food poisoning in humans. The murine typhoid fever is a systemic infection in which S.typhimurium evades part of the immune system by replicating inside macrophages and other cells. The transition from a foodborne contaminant to an intracellular pathogen must occur rapidly in multiple,ordered steps in order for S. typhimurium to thrive within its host environment. Using S. typhimurium isolated from rich culture conditions and from conditions that mimic the hostile intracellular environment of the host cell, a native low molecular weight protein fraction, or peptidome, was enriched from cell lysates by precipitation with organic solvents. The enriched peptidome was analyzed by both LC–MS/MS and LC–MS-based methods, although several other methods are possible. Pre-fractionation of peptides allowed identification of small proteins and protein degradation products that would normally be overlooked. Comparison of peptides present in lysates prepared from Salmonella grown under different conditions provided a unique insight into cellular degradation processes as well as identification of novel peptides encoded in the genome but not annotated. The overall approach is detailed here as applied to Salmonella and is adaptable to a broad range of biological systems.

  4. Evaluation of condition indices for estimation of growth of largemouth bass and white crappie

    USGS Publications Warehouse

    Gutreuter, Steve; Childress, W. Michael

    1990-01-01

    We evaluated the ability of three condition indices-condition factor (K), relative condition (Kn), and relative weight (Wr)-to estimate annual growth rates of largemouth bass Micropterus salmoides and white crappies Pomoxis annularis collected during standardized autumn electrofishing and trap-net surveys of Texas reservoirs. Multiple-regression models for estimation of length increments from initial length (at the start of the growing season) and condition indices had R2 values of 0.63-0.76 for largemouth bass and 0.46-0.83 for white crappie. However, these models are not useful for indirect estimation ofgrowth rates because growth must be known (initial length equals length at capture minus estimated annual growth). Models based on length at capture and condition indices had R2 values of 0.22-0.68 for largemouth bass and less than 0.45 for white crappie. The low precision of models based on length at capture indicates that condition provides a weak basis for indirect estimation of growth rates from Texas reservoirs sampled during autumn and, therefore, is unreliable for detection of size-related growth phenomena such as "stockpiling" (size specific, density-dependent growth depression). Direct estimates of growth rates based on back-calculations or tagging data seem necessary for reliable detection of size-related growth patterns for largemouth bass and white crappies from Texas reservoirs.

  5. Systemic regulation of soybean nodulation by acidic growth conditions.

    PubMed

    Lin, Meng-Han; Gresshoff, Peter M; Ferguson, Brett J

    2012-12-01

    Mechanisms inhibiting legume nodulation by low soil pH, although highly prevalent and economically significant, are poorly understood. We addressed this in soybean (Glycine max) using a combination of physiological and genetic approaches. Split-root and grafting studies using an autoregulation-of-nodulation-deficient mutant line, altered in the autoregulation-of-nodulation receptor kinase GmNARK, determined that a systemic, shoot-controlled, and GmNARK-dependent mechanism was critical for facilitating the inhibitory effect. Acid inhibition was independent of aluminum ion concentration and occurred early in nodule development, between 12 and 96 h post inoculation with Bradyrhizobium japonicum. Biological effects were confirmed by measuring transcript numbers of known early nodulation genes. Transcripts decreased on both sides of split-root systems, where only one side was subjected to low-pH conditions. Our findings enhance the present understanding of the innate mechanisms regulating legume nodulation control under acidic conditions, which could benefit future attempts in agriculture to improve nodule development and biological nitrogen fixation in acid-stressed soils.

  6. Development of a predictive program for Vibrio parahaemolyticus growth under various environmental conditions.

    PubMed

    Fujikawa, Hiroshi; Kimura, Bon; Fujii, Tateo

    2009-09-01

    In this study, we developed a predictive program for Vibrio parahaemolyticus growth under various environmental conditions. Raw growth data was obtained with a V. parahaemolyticus O3:K6 strain cultured at a variety of broth temperatures, pH, and salt concentrations. Data were analyzed with our logistic model and the parameter values of the model were analyzed with polynomial equations. A prediction program consisting of the growth model and the polynomial equations was then developed. After the range of the growth environments was modified, the program successfully predicted the growth for all environments tested. The program could be a useful tool to ensure the bacteriological safety of seafood.

  7. Evaluation of [3H]thymidine uptake method for studying growth of spiroplasmas under various conditions.

    PubMed Central

    Bastian, F O; Baliga, B S; Pollock, H M

    1988-01-01

    [3H]thymidine uptake and colony counts are quantitative and inexpensive methods for studying Spiroplasma growth. Using these techniques, we demonstrated subtle effects on the growth of suckling mouse cataract agent of medium alterations, inoculum size, and freezing of cultures. In addition, suckling mouse cataract agent multiplied more actively under aerobic than under anaerobic conditions. These techniques have wide application for the study of Spiroplasma growth and will be useful for the development of a defined medium. PMID:3182999

  8. Bacillus spp. from rainforest soil promote plant growth under limited nitrogen conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aims: The aim of this study was to evaluate effects of PGPR (Plant Growth Promoting Rhizobacteria) isolated from rainforest on different plants under limited nitrogen conditions. Methods and Results: Bacterial isolates from a Peruvian rainforest soil were screened for plant growth promoting effects...

  9. Estimation of Actual Crop ET of Paddy Using the Energy Balance Model SMARET and Validation with Field Water Balance Measurements and a Crop Growth Model (ORYZA)

    NASA Astrophysics Data System (ADS)

    Nallasamy, N. D.; Muraleedharan, B. V.; Kathirvel, K.; Narasimhan, B.

    2014-12-01

    Sustainable management of water resources requires reliable estimates of actual evapotranspiration (ET) at fine spatial and temporal resolution. This is significant in the case of rice based irrigation systems, one of the major consumers of surface water resources and where ET forms a major component of water consumption. However huge tradeoff in the spatial and temporal resolution of satellite images coupled with lack of adequate number of cloud free images within a growing season act as major constraints in deriving ET at fine spatial and temporal resolution using remote sensing based energy balance models. The scale at which ET is determined is decided by the spatial and temporal scale of Land Surface Temperature (LST) and Normalized Difference Vegetation Index (NDVI), which form inputs to energy balance models. In this context, the current study employed disaggregation algorithms (NL-DisTrad and DisNDVI) to generate time series of LST and NDVI images at fine resolution. The disaggregation algorithms aimed at generating LST and NDVI at finer scale by integrating temporal information from concurrent coarse resolution data and spatial information from a single fine resolution image. The temporal frequency of the disaggregated images is further improved by employing composite images of NDVI and LST in the spatio-temporal disaggregation method. The study further employed half-hourly incoming surface insolation and outgoing long wave radiation obtained from the Indian geostationary satellite (Kalpana-1) to convert the instantaneous ET into daily ET and subsequently to the seasonal ET, thereby improving the accuracy of ET estimates. The estimates of ET were validated with field based water balance measurements carried out in Gadana, a subbasin predominated by rice paddy fields, located in Tamil Nadu, India.

  10. Effect of growth conditions on inactivation of Escherichia coli with monochloramine.

    PubMed

    Berry, David; Xi, Chuanwu; Raskin, Lutgarde

    2009-02-01

    Reduced susceptibility of bacteria to disinfection is a serious concern in drinking water distribution systems (DWDS), yet the mechanisms and conditions governing reduced susceptibility are not well characterized. The effects of growth temperature, growth rate, and growth mode (suspended growth versus growth in biofilms) on inactivation kinetics of Escherichia coli exposed to monochloramine were studied in order to understand growth conditions that may reduce susceptibility of bacteria to disinfectants in DWDS. Cells grown at a suboptimal temperature (20 degrees C) were significantly less sensitive to monochloramine inactivation (using 0.5 and 5.0 mg/L monochloramine (as Cl2)) than cells grown at an optimal temperature (37 degrees C). Cells grown in biofilms were also significantly less sensitive than cells grown in suspension. No difference in inactivation kinetics was observed for cells grown in monolayer versus multilayer biofilms and between cells grown at different growth rates in chemostat bioreactors. Biofilm cells were estimated to grow at specific growth rates (mu) averaging between mu = 0.08 and 0.13 h(-1), which were approximately within the range of tested suspended growth conditions (mu = 0.04-0.10 h(-1)) using fluorescence in situ hybridizations targeting 16S rRNA. This result indicates that the reduced susceptibility of biofilm cells to monochloramine inactivation is not related to their specific growth rate within the range tested in this study. This work suggests that growth at suboptimal temperatures and growth in biofilms are important factors contributing to reduced susceptibility of bacteria to inactivation with monochloramine.

  11. Influence of culture conditions on growth and protective antigenicity of Clostridium chauvoei.

    PubMed

    Cortiñas, T I; Micalizzi, B; de Guzman, A M

    1994-10-01

    The effect of culture conditions on growth and immunogenicity of Clostridium chauvoei were examined. The pH control and partial feeding of the carbon source at high concentrations were beneficial for growth. The biomass yield was significatively improved, however the butanol concentration reached toxic levels hampering further growth. For each experimental condition the immunogenicity of cells was tested. No differences were found with cells obtained at different temperatures, but it decreased significatively with the partial supply of the carbon source and pH control.

  12. Evaluation of transport conditions during physical vapor transport growth of opto-electronic crystals

    NASA Technical Reports Server (NTRS)

    Singh, N. B.; Mazelsky, R.; Glicksman, M. E.

    1989-01-01

    Transport conditions were evaluated during the vapor phase growth of mercurous chloride crystals in a closed tube. Experimentally observed growth rates were much smaller than those calculated by the Hertz-Knudsen (H-K) equation. The Arrhenius behavior of growth rate with the temperature was used to derive the sticking coefficient. A one-dimensional diffusion model was used to calculate the total mass flux and was compared with the condensing flux. It was predicted that growth occurred in the convecto-diffusive range.

  13. Relationships among condition indices, feeding and growth of walleye in Lake Erie

    USGS Publications Warehouse

    Hartman, K.J.; Margraf, F.J.

    2006-01-01

    Condition indices are often used as surrogates of fish health, growth, and feeding and to compare ecological well-being among fish populations. In an effort to identify easily measured indices, growth and food consumption were compared with gonadal-somatic index, liver-somatic index (LSI), fat-somatic index and relative weight (Wr) for ages 1-3 walleye, Sander vitreus (Mitchill), in Lake Erie from 1986 to 1988. The LSI and Wr were significantly correlated with growth rate or food consumption, but correlations were too small to be considered biologically meaningful. Furthermore, no consistent relationships between condition indices and growth or consumption were found among combinations of fish age and season. None of the indices are considered reliable surrogates for more laborious estimates of growth and food consumption for Lake Erie walleye. Significant relationships between Wr and relative abundance of key prey species warrant further investigation. ?? 2006 Blackwell Publishing Ltd.

  14. A water use and growth model for Eucalyptus plantation in water-limited conditions

    SciTech Connect

    Calder, I.R.

    1992-12-31

    To investigate the environmental impact of plantation forestry using fast-growing tree species in southern India, a program of field studies was initiated in 1987 specifically to measure the water use, nutrient uptake and growth rates of the plantations. A water use and growth (WAG) model is proposed for calculating transpiration and growth of Eucalyptus plantation in water-limited conditions. The model is based on the measured relationships between transpiration rate and basal cross-sectional area and soil moisture availability. The volume growth rate (in water-limited conditions) is assumed to be proportional to the volume of water transpired. The model is calibrated using (deuterium tracing) measurements of transpiration and measurements of growth recorded at the Puradal experimental plantation, Karnataka, southern India.

  15. Theoretical investigation of crystal growth shaping process with the wetting boundary condition

    NASA Astrophysics Data System (ADS)

    Tatarchenko, V. A.; Uspenski, V. S.; Tatarchenko, E. V.; Roux, B.

    2000-12-01

    A theoretical investigation of crystal growth shaping process (to elaborate crystals in the form of tubes or rods with different cross sections, and other complicated forms) is carried out on the basis of the dynamic stability concept. The capillary dynamic stability of shaped crystal growth from the melt is analyzed using a mathematical model based on the proposal of axisymmetry of crystal and setup geometry. The study is carried out for the different conditions of growth and various configurations of melt meniscus. We study shapers with complex geometry for which a wetting boundary condition has to be considered. A general method is proposed to design the shaper geometry that satisfies the capillary stability conditions of the melt meniscus during the whole crystal growth process. The static stability of the liquid-free surface is analyzed by means of the Jacobi equation.

  16. Growth kinetics of coliform bacteria under conditions relevant to drinking water distribution systems.

    PubMed

    Camper, A K; McFeters, G A; Characklis, W G; Jones, W L

    1991-08-01

    The growth of environmental and clinical coliform bacteria under conditions typical of drinking water distribution systems was examined. Four coliforms (Klebsiella pneumoniae, Escherichia coli, Enterobacter aerogenes, and Enterobacter cloacae) were isolated from an operating drinking water system for study; an enterotoxigenic E. coli strain and clinical isolates of K. pneumoniae and E. coli were also used. All but one of the coliforms tested were capable of growth in unsupplemented mineral salts medium; the environmental isolates had greater specific growth rates than did the clinical isolates. This trend was maintained when the organisms were grown with low levels (less than 1 mg liter-1) of yeast extract. The environmental K. pneumoniae isolate had a greater yield, higher specific growth rates, and a lower Ks value than the other organisms. The environmental E. coli and the enterotoxigenic E. coli strains had comparable yield, growth rate, and Ks values to those of the environmental K. pneumoniae strain, and all three showed significantly more successful growth than the clinical isolates. The environmental coliforms also grew well at low temperatures on low concentrations of yeast extract. Unsupplemented distribution water from the collaborating utility supported the growth of the environmental isolates. Growth of the K. pneumoniae water isolate was stimulated by the addition of autoclaved biofilm but not by tubercle material. These findings indicate that growth of environmental coliforms is possible under the conditions found in operating municipal drinking water systems and that these bacteria could be used in tests to determine assimilable organic carbon in potable water.

  17. Environmental Growth Conditions of Trichoderma spp. Affects Indole Acetic Acid Derivatives, Volatile Organic Compounds, and Plant Growth Promotion.

    PubMed

    Nieto-Jacobo, Maria F; Steyaert, Johanna M; Salazar-Badillo, Fatima B; Nguyen, Dianne Vi; Rostás, Michael; Braithwaite, Mark; De Souza, Jorge T; Jimenez-Bremont, Juan F; Ohkura, Mana; Stewart, Alison; Mendoza-Mendoza, Artemio

    2017-01-01

    Trichoderma species are soil-borne filamentous fungi widely utilized for their many plant health benefits, such as conferring improved growth, disease resistance and abiotic stress tolerance to their hosts. Many Trichoderma species are able to produce the auxin phytohormone indole-3-acetic acid (IAA), and its production has been suggested to promote root growth. Here we show that the production of IAA is strain dependent and diverse external stimuli are associated with its production. In in vitro assays, Arabidopsis primary root length was negatively affected by the interaction with some Trichoderma strains. In soil experiments, a continuum effect on plant growth was shown and this was also strain dependent. In plate assays, some strains of Trichoderma spp. inhibited the expression of the auxin reporter gene DR5 in Arabidopsis primary roots but not secondary roots. When Trichoderma spp. and A. thaliana were physically separated, enhancement of both shoot and root biomass, increased root production and chlorophyll content were observed, which strongly suggested that volatile production by the fungus influenced the parameters analyzed. Trichoderma strains T. virens Gv29.8, T. atroviride IMI206040, T. sp. "atroviride B" LU132, and T. asperellum LU1370 were demonstrated to promote plant growth through volatile production. However, contrasting differences were observed with LU1370 which had a negative effect on plant growth in soil but a positive effect in plate assays. Altogether our results suggest that the mechanisms and molecules involved in plant growth promotion by Trichoderma spp. are multivariable and are affected by the environmental conditions.

  18. Radiative defects in GaN nanocolumns: Correlation with growth conditions and sample morphology

    SciTech Connect

    Lefebvre, P.; Fernandez-Garrido, S.; Grandal, J.; Ristic, J.; Sanchez-Garcia, M.-A.; Calleja, E.

    2011-02-21

    Low-temperature photoluminescence is studied in detail in GaN nanocolumns (NCs) grown by plasma-assisted molecular beam epitaxy under various conditions (substrate temperature and impinging Ga/N flux ratio). The relative intensities of the different emission lines, in particular those related to structural defects, appear to be correlated with the growth conditions, and clearly linked to the NC sample morphology. We demonstrate, in particular, that all lines comprised between 3.10 and 3.42 eV rapidly lose intensity when the growth conditions are such that the NC coalescence is reduced. The well-known line around 3.45 eV, characteristic of GaN NC samples, shows, however, a behavior that is exactly the opposite of the other lines, namely, for growth conditions leading to reduced NC coalescence, this line tends to become more prominent, thus proving to be intrinsic to individual GaN NCs.

  19. Effect of antecedent growth conditions on sensitivity of Escherichia coli to chlorine dioxide.

    PubMed Central

    Berg, J D; Matin, A; Roberts, P V

    1982-01-01

    Bacterial resistance to inactivation by antibacterial agents that is induced by the growth environment was studied. Escherichia coli was grown in batch culture and in a chemostat, and the following parameters were varied: type of substrate, growth rate, temperature, and cell density during growth. Low doses (0.75 mg/liter) of chlorine dioxide were used to inactivate the cultures. The results demonstrated that populations grown under conditions that more closely approximated natural aquatic environments were more resistant than those grown under commonly employed batch culture conditions. In particular, bacteria grown at submaximal rates were more resistant than their counterparts grown at mumax. The most resistant populations encountered in this study were those grown at D values of 0.02 h-1 and 0.06 h-1 at 25 degrees C. Growth at 15 degrees C led to greater resistance than did growth at 37 degrees C. The conditions that produced relatively resistant phenotypes were much closer to those found in most natural environments than are the typical conditions of batch culture methods. The importance of major physiological changes that can be induced by the antecedent growth environment is discussed in light of the possible modes of action of several disinfectants. PMID:6756305

  20. Influence of beaver activity on summer growth and condition of age-2 Atlantic salmon parr

    USGS Publications Warehouse

    Sigourney, D.B.; Letcher, B.H.; Cunjak, R.A.

    2006-01-01

    The activity of beavers Castor canadensis in freshwater environments can have considerable localized impacts on the physical and biological components of riparian ecosystems. By changing the habitat of a stream, beaver dams can cause spatial variation in growth opportunity that may have direct consequences for the growth of resident fish. In a small stream in eastern Canada, we studied the effects of an ephemeral beaver pond on the growth and maturity of age-2 Atlantic salmon Salmo salar parr tagged with passive integrated transponder tags. Water temperature remained relatively uniform throughout the study site. We found very little movement of recaptured fish in the study site. Fish that were recaptured in the beaver pond displayed faster summer growth rates in both length and mass than fish that were recaptured immediately above or below the pond. We also found that parr in the pond maintained relatively high condition factors, whereas fish above and below the pond appeared to decrease in condition factor throughout the summer. In addition to growth, the maturation rates of age-2 males were higher above the dam than below. This study demonstrates the effect a beaver dam can have on individual growth rates. By influencing growth during sensitive periods, the beaver pond may also influence individual life history pathways. This information could be an important component in ecosystem models that predict the effect of beaver population dynamics on the growth of individual salmonids at the landscape scale. ?? Copyright by the American Fisheries Society 2006.

  1. The Course of Actualization

    ERIC Educational Resources Information Center

    De Smet, Hendrik

    2012-01-01

    Actualization is traditionally seen as the process following syntactic reanalysis whereby an item's new syntactic status manifests itself in new syntactic behavior. The process is gradual in that some new uses of the reanalyzed item appear earlier or more readily than others. This article accounts for the order in which new uses appear during…

  2. Local weather conditions have complex effects on the growth of blue tit nestlings.

    PubMed

    Mainwaring, Mark C; Hartley, Ian R

    2016-08-01

    Adverse weather conditions are expected to result in impaired nestling development in birds, but empirical studies have provided equivocal support for such a relationship. This may be because the negative effects of adverse weather conditions are masked by parental effects. Globally, ambient temperatures, rainfall levels and wind speeds are all expected to increase in a changing climate and so there is a need for a better understanding of the relationship between weather conditions and nestling growth. Here, we describe a correlative study that examined the relationships between local temperatures, rainfall levels and wind speeds and the growth of individual blue tit (Cyanistes caeruleus) nestlings in relation to their hatching order and sex. We found that changes in a range of morphological characters were negatively related to both temperature and wind speed, but positively related to rainfall. These patterns were further influenced by the hatching order of the nestlings but not by nestling sex. This suggests that the predicted changes in local weather conditions may have complex effects on nestling growth, but that parents may be able to mitigate the adverse effects via adaptive parental effects. We therefore conclude that local weather conditions have complex effects on avian growth and the implications for patterns of avian growth in a changing climate are discussed.

  3. Extent of fungal growth on fiberglass duct liners with and without biocides under challenging environmental conditions.

    PubMed

    Samimi, Behzad S; Ross, Kristen

    2003-03-01

    Eight brands of fiberglass duct liners, including three that contained biocides, were exposed to challenging environmental conditions that would promote fungal growth. Twenty-four rectangular sheet metal ducts in three groups of eight ducts per group were lined with the eight selected liners. Each group of ducts was exposed to one of the three test conditions within an environmental chamber for a period of 15 days. These conditions were a) 75 percent RH, b) 75 percent RH plus water spray, c) 75 percent RH plus dry nutrient, and d) 75 percent RH plus water plus nutrient. Viable spores of Aspergillus niger were aerosolized into each duct as seed. On the 16th day, air and surface samples for fungal spores were collected from inside ducts. The results of air sampling using N6 sampler and visual inspection indicated that two out of three biocide-containing liners, Permacote and Toughgard, inhibited fungal growth but only under condition A. The third biocide-containing liner, Aeroflex Plus, was effective even when it was wet (conditions A and B). All three biocide-containing liners failed to inhibit fungal growth under conditions C and D. Among the five other types of liners that did not contain biocides, ATCO Flex with a smooth Mylar coating was more preferable, exhibiting lower fungal activity during conditions A, B, and C. All liners failed under condition D when nutrient and water were added together. Surface sampling using adhesive tape failed to produce representative results, apparently due to rough/porous surface of duct liners. It was concluded that duct liners with biocide treatment could be less promoting to microbial growth under high humidity as long as their surfaces remain clean and water-free. A liner with an impermeable and smooth surface seems to be less subject to microbial growth under most conditions than biocide-containing liners having porous and/or rough surfaces.

  4. Disruption of the lower food web in Lake Ontario: Did it affect alewife growth or condition?

    USGS Publications Warehouse

    O'Gorman, R.; Prindle, S.E.; Lantry, J.R.; Lantry, B.F.

    2008-01-01

    From the early 1980s to the late 1990s, a succession of non-native invertebrates colonized Lake Ontario and the suite of consequences caused by their colonization became known as "food web disruption". For example, the native burrowing amphipod Diporeia spp., a key link in the profundal food web, declined to near absence, exotic predaceous cladocerans with long spines proliferated, altering the zooplankton community, and depth distributions of fishes shifted. These changes had the potential to affect growth and condition of planktivorous alewife Alosa pseudoharengus, the most abundant fish in the lake. To determine if food web disruption affected alewife, we used change-point analysis to examine alewife growth and adult alewife condition during 1976-2006 and analysis-of-variance to determine if values between change points differed significantly. There were no change points in growth during the first year of life. Of three change points in growth during the second year of life, one coincided with the shift in springtime distribution of alewife to deeper water but it was not associated with a significant change in growth. After the second year of life, no change points in growth were evident, although growth in the third year of life spiked in those years when Bythotrephes, the largest of the exotic cladocerans, was abundant suggesting that it was a profitable prey item for age-2 fish. We detected two change points in condition of adult alewife in fall, but the first occurred in 1981, well before disruption began. A second change point occurred in 2003, well after disruption began. After the springtime distribution of alewife shifted deeper during 1992-1994, growth in the first two years of life became more variable, and growth in years of life two and older became correlated (P < 0.05). In conclusion, food web disruption had no negative affect on growth and condition of alewife in Lake Ontario although it appears to have resulted in growth in the first two years of

  5. Intrauterine Growth Retardation (IUGR) as a Novel Condition of Insulin-Like Growth Factor-1 (IGF-1) Deficiency.

    PubMed

    Martín-Estal, I; de la Garza, R G; Castilla-Cortázar, I

    2016-01-01

    Insulin-like growth factor 1 (IGF-1) is an anabolic hormone with several biological activities, such as proliferation, mitochondrial protection, cell survival, tissue growth and development, anti-inflammatory, antioxidant, antifibrogenic and antiaging. This hormone plays an important role in embryological and postnatal states, being essential for normal foetal and placental growth and differentiation. During gestation, the placenta is one of the major sources of IGF-1, among other hormones. This intrauterine organ expresses IGF-1 receptors and IGF-1 binding proteins (IGFBPs), which control IGF-1 activities. Intrauterine growth restriction (IUGR) is the second most frequent cause of perinatal morbidity and mortality, defined as the inability to achieve the expected weight for gestational age. Different studies have revealed that IUGR infants have placental dysfunction and low circulating levels of insulin, IGF-1, IGF-2 and IGFBPs. Such data suggest that IGF-1 deficiency in gestational state may be one of the major causes of foetal growth retardation. The aim of this review is to study the epidemiology, physiopathology and possible causes of IUGR. Also, it intends to study the possible role of the placenta as an IGF-1 target organ. The purpose is to establish if IUGR could be considered as a novel condition of IGF-1 deficiency and if its treatment with low doses of IGF-1 could be a suitable therapeutic strategy.

  6. Biomass and lipid production of a local isolate Chlorella sorokiniana under mixotrophic growth conditions.

    PubMed

    Juntila, D J; Bautista, M A; Monotilla, W

    2015-09-01

    A local Chlorella sp. isolate with 97% rbcL sequence identity to Chlorella sorokiniana was evaluated in terms of its biomass and lipid production under mixotrophic growth conditions. Glucose-supplemented cultures exhibited increasing growth rate and biomass yield with increasing glucose concentration. Highest growth rate and biomass yield of 1.602 day(-1) and 687.5 mg L(-1), respectively, were achieved under 2 g L(-1) glucose. Nitrogen starvation up to 75% in the 1.0 g L(-1) glucose-supplemented culture was done to induce lipid accumulation and did not significantly affect the growth. Lipid content ranges from 20% to 27% dry weight. Nile Red staining showed more prominent neutral lipid bodies in starved mixotrophic cultures. C. sorokiniana exhibited enhanced biomass production under mixotrophy and more prominent neutral lipid accumulation under nitrogen starvation with no significant decrease in growth; hence, this isolate could be further studied to establish its potential for biodiesel production.

  7. [Development of a predictive program for microbial growth under various temperature conditions].

    PubMed

    Fujikawa, Hiroshi; Yano, Kazuyoshi; Morozumi, Satoshi; Kimura, Bon; Fujii, Tateo

    2006-12-01

    A predictive program for microbial growth under various temperature conditions was developed with a mathematical model. The model was a new logistic model recently developed by us. The program predicts Escherichia coli growth in broth, Staphylococcus aureus growth and its enterotoxin production in milk, and Vibrio parahaemolyticus growth in broth at various temperature patterns. The program, which was built with Microsoft Excel (Visual Basic Application), is user-friendly; users can easily input the temperature history of a test food and obtain the prediction instantly on the computer screen. The predicted growth and toxin production can be important indices to determine whether a food is microbiologically safe or not. This program should be a useful tool to confirm the microbial safety of commercial foods.

  8. A microscopy study of hyphal growth of Penicillium rubens on gypsum under dynamic humidity conditions.

    PubMed

    van Laarhoven, Karel A; Huinink, Hendrik P; Adan, Olaf C G

    2016-05-01

    To remediate indoor fungal growth, understanding the moisture relations of common indoor fungi is crucial. Indoor moisture conditions are commonly quantified by the relative humidity (RH). RH is a major determinant of the availability of water in porous indoor surfaces that fungi grow on. The influence of steady-state RH on growth is well understood. Typically, however, the indoor RH constantly changes so that fungi have to endure frequent periods of alternating low and high RH. Knowledge of how common indoor fungi survive and are affected by the low-RH periods is limited. In particular, the specific effects of a drop in RH on the growth of the mycelium remain unclear. In this work, video microscopy was used to monitor hyphal growth of Penicillium rubens on gypsum substrates under controlled dynamic humidity conditions. The effect of a single period of low RH (RH = 50-90%) interrupting favourable conditions (RH = 97%) was tested. It was found that hyphal tips ceased to extend when exposed to any tested decrease in RH. However, new hyphal growth always emerges, seemingly from the old mycelium, suggesting that this indoor fungus does not rely only on conidia to survive the humidity patterns considered. These findings are a fundamental step in unravelling the effect of RH on indoor fungal growth.

  9. The role of the hok/sok locus in bacterial response to stressful growth conditions.

    PubMed

    Chukwudi, Chinwe U; Good, Liam

    2015-02-01

    The hok/sok locus is renowned for its plasmid stabilization effect via post-segregational killing of plasmid-free daughter cells. However, the function(s) of the chromosome-encoded loci, which are more abundant in pathogenic strains of a broad range of enteric bacteria, are yet to be understood. Also, the frequent occurrence of this toxin/antitoxin addiction system in multi-drug resistance plasmids suggests additional roles. In this study, the effects of the hok/sok locus on the growth of bacteria in stressful growth-limiting conditions such as high temperature and antibiotic burden were investigated using hok/sok plasmids. The results showed that the hok/sok locus prolonged the lag phase of host cell cultures, thereby enabling the cells to adapt, respond to the stress and eventually thrive in these growth-limiting conditions by increasing the growth rate at exponential phase. The hok/sok locus also enhanced the survival and growth of cells in low cell density cultures irrespective of unfavourable growth conditions, and may complement existing or defective SOS mechanism. In addition to the plasmid stabilization function, these effects would enhance the ability of pathogenic bacteria to establish infections and propagate the antibiotic resistance elements carried on these plasmids, thereby contributing to the virulence of such bacteria.

  10. Physiological studies of chloramine resistance developed by Klebsiella pneumoniae under low-nutrient growth conditions.

    PubMed Central

    Stewart, M H; Olson, B H

    1992-01-01

    This study investigated the physiological mechanisms of resistance to chloramines developed by Klebsiella pneumoniae grown in a nutrient-limited environment. Growth under these conditions resulted in cells that were smaller than cells grown under high-nutrient conditions and extensively aggregated. Cellular aggregates ranged from 10 to more than 10,000 cells per aggregate, with a mean population aggregate size of 90 cells. This aggregation may have been facilitated by the presence of extracellular polymer material. By using glucose as a reference of capsule content, it was determined that growth under low-nutrient conditions produced cells with 8 x 10(-14) to 41 x 10(-14) g of carbohydrate per cell, with a mean +/- standard deviation of 27 x 10(-14) +/- 16 x 10(-14) g of carbohydrate per cell. In comparison, growth under high-nutrient conditions resulted in 2.7 x 10(-14) to 5.9 x 10(-14) g of carbohydrate per cell, with a mean and standard deviation of 4.3 x 10(-14) +/- 1.2 x 10(-14) g of carbohydrate per cell. Cell wall and cell membrane lipids also varied with growth conditions. The ratio of saturated to unsaturated fatty acids in cells grown under low-nutrient conditions was approximately five times greater than that in cells grown under high-nutrient conditions, suggesting possible differences in membrane permeability. An analysis of sulfhydryl (-SH) groups revealed no quantitative difference with respect to growth conditions. However, upon exposure to chloramines, only 33% of the -SH groups of cells grown under low-nutrient conditions were oxidized, compared with 80% oxidization of -SH groups in cells grown under high-nutrient conditions. The reduced effectiveness of chloramine oxidization of -SH groups in cells grown under low-nutrient conditions may be due to restricted penetration of chloramines into the cells, conformational changes of enzymes, or a combination of both factors. The results of this study suggest that chloramine resistance developed under

  11. A NEW CONDITION FOR THE TRANSITION FROM RUNAWAY TO OLIGARCHIC GROWTH

    SciTech Connect

    Ormel, C. W.; Dullemond, C. P.; Spaans, M. E-mail: dullemon@mpia.de

    2010-05-01

    Accretion among macroscopic bodies of {approx}km size or larger is enhanced significantly due to gravitational focusing. Two regimes can be distinguished. Initially, the system experiences runaway growth, in which the gravitational focusing factors increase, and bodies at the high-mass tail of the distribution grow fastest. However, at some point, the runaway body dynamically heats its environment, gravitational focusing factors decrease, and runaway growth passes into oligarchic growth. Based on the results of recent simulations, we reconsider the runaway growth-oligarchy transition. In contrast to oligarchy, we find that runaway growth cannot be approximated with a two-component model (of small and large bodies) and that the criterion of Ida and Makino, which is frequently adopted as the start of oligarchy, is not a sufficient condition to signify the transition. Instead, we propose a new criterion based on timescale arguments. We then find a larger value for the runaway growth-oligarchy transition: from several hundreds of km in the inner disk regions up to {approx}10{sup 3} km for the outer disk. These findings are consistent with the view that runaway growth has been responsible for the size distribution of the present-day Kuiper Belt objects. Our finding, furthermore, outlines the proper initial conditions at the start of the oligarchy stage.

  12. Oceanographic conditions govern shell growth of Arctica islandica (Bivalvia) in surface waters off Northeast Iceland

    NASA Astrophysics Data System (ADS)

    Marali, Soraya; Schöne, Bernd R.

    2015-04-01

    Shells of the long-lived bivalve Arctica islandica provide absolutely dated, highly resolved archives of environmental variability in the extratropical realm. Shell growth rates of contemporaneous A. islandica specimens are synchronized by one or several environmental factor(s), such as seawater temperature, food supply etc. Based on the growth synchrony, increment width records can be combined to composite chronologies. However, according to existing studies, A. islandica specimens from shallow waters do not show synchronous changes in shell growth and may thus not provide information about environmental conditions such as sea surface temperature. Here, we present the first statistically robust composite chronology of A. islandica from unpolluted surface waters (8-23 m) off Northeast Iceland. The complete record spans the time interval of 1835 to 2012. Times of enhanced shell growth coincide with periods of higher temperature and elevated food supply. Instrumental sea surface temperature (SST) during the growing season explains up to 43% of the variation in relative shell growth. However, the correlation strength varies over time. When the environmental conditions at the sampling site were stable over many consecutive years, i.e. one of the two major surface currents (the warm, nutrient-rich Irminger Current or the cold, nutrient-deficient East Icelandic Current) predominated the area over longer time intervals, the growth synchrony among coeval A. islandica weakened and the correlation between shell growth and SSTs was markedly reduced. Conversely, if the habitat was under the alternating influence of both ocean currents, shell growth was stronger correlated to each other and to SST. Thus, environmental variability is required to synchronize shell growth rates within an A. islandica population. This study further enlightens the relationship between bivalve shell growth and environmental variables.

  13. Cholera toxin expression by El Tor Vibrio cholerae in shallow culture growth conditions.

    PubMed

    Cobaxin, Mayra; Martínez, Haydee; Ayala, Guadalupe; Holmgren, Jan; Sjöling, Asa; Sánchez, Joaquín

    2014-01-01

    Vibrio cholerae O1 classical, El Tor and O139 are the primary biotypes that cause epidemic cholera, and they also express cholera toxin (CT). Although classical V. cholerae produces CT in various settings, the El Tor and O139 strains require specific growth conditions for CT induction, such as the so-called AKI conditions, which consist of growth in static conditions followed by growth under aerobic shaking conditions. However, our group has demonstrated that CT production may also take place in shallow static cultures. How these type of cultures induce CT production has been unclear, but we now report that in shallow culture growth conditions, there is virtual depletion of dissolved oxygen after 2.5 h of growth. Concurrently, during the first three to 4 h, endogenous CO2 accumulates in the media and the pH decreases. These findings may explain CT expression at the molecular level because CT production relies on a regulatory cascade, in which the key regulator AphB may be activated by anaerobiosis and by low pH. AphB activation stimulates TcpP synthesis, which induces ToxT production, and ToxT directly stimulates ctxAB expression, which encodes CT. Importantly, ToxT activity is enhanced by bicarbonate. Therefore, we suggest that in shallow cultures, AphB is activated by initial decreases in oxygen and pH, and subsequently, ToxT is activated by intracellular bicarbonate that has been generated from endogenous CO2. This working model would explain CT production in shallow cultures and, possibly, also in other growth conditions.

  14. Environmental Growth Conditions of Trichoderma spp. Affects Indole Acetic Acid Derivatives, Volatile Organic Compounds, and Plant Growth Promotion

    PubMed Central

    Nieto-Jacobo, Maria F.; Steyaert, Johanna M.; Salazar-Badillo, Fatima B.; Nguyen, Dianne Vi; Rostás, Michael; Braithwaite, Mark; De Souza, Jorge T.; Jimenez-Bremont, Juan F.; Ohkura, Mana; Stewart, Alison

    2017-01-01

    Trichoderma species are soil-borne filamentous fungi widely utilized for their many plant health benefits, such as conferring improved growth, disease resistance and abiotic stress tolerance to their hosts. Many Trichoderma species are able to produce the auxin phytohormone indole-3-acetic acid (IAA), and its production has been suggested to promote root growth. Here we show that the production of IAA is strain dependent and diverse external stimuli are associated with its production. In in vitro assays, Arabidopsis primary root length was negatively affected by the interaction with some Trichoderma strains. In soil experiments, a continuum effect on plant growth was shown and this was also strain dependent. In plate assays, some strains of Trichoderma spp. inhibited the expression of the auxin reporter gene DR5 in Arabidopsis primary roots but not secondary roots. When Trichoderma spp. and A. thaliana were physically separated, enhancement of both shoot and root biomass, increased root production and chlorophyll content were observed, which strongly suggested that volatile production by the fungus influenced the parameters analyzed. Trichoderma strains T. virens Gv29.8, T. atroviride IMI206040, T. sp. “atroviride B” LU132, and T. asperellum LU1370 were demonstrated to promote plant growth through volatile production. However, contrasting differences were observed with LU1370 which had a negative effect on plant growth in soil but a positive effect in plate assays. Altogether our results suggest that the mechanisms and molecules involved in plant growth promotion by Trichoderma spp. are multivariable and are affected by the environmental conditions. PMID:28232840

  15. Laboratory appraisal of optimal gaseous conditions for growth of zoonotic Helicobacter felis ATCC 49179.

    PubMed

    Shiohara, Mayumi; Kawakubo, Masatomo; Matsumoto, Takehisa; Kumagai, Toshiko; Yamauchi, Kazuyoshi; Oana, Kozue; Ota, Hiroyoshi; Kawakami, Yoshiyuki

    2009-05-01

    An attempt was made to assess the hitherto undescribed optimal gaseous conditions for growth of zoonotic Helicobacter felis, focusing on the ratio of spiral-forms amongst the whole cells examined. The largest mean colony diameter was obtained under the gaseous condition of O(2) 12% and CO(2) 10%. In analyzing the five day old colonies, the highest percentage of spiral forms (85.5%) was observed under the condition of O(2) 18% and CO(2) 5%. In contrast, the lowest percentage of spiral forms (2.3%) was demonstrated under the condition of O(2) 1% and CO(2) 10%. The condition of O(2) 12% and CO(2) 10% was concluded to be optimal for obtaining cells with the largest colony sizes, although colonies proliferated under such conditions definitely contain many more coccoid cells than spiral forms. In culturing H. felis strains, optimal gaseous conditions should be employed according to the purposes or preferences of study designs.

  16. Modelling growth of Penicillium expansum and Aspergillus niger at constant and fluctuating temperature conditions.

    PubMed

    Gougouli, Maria; Koutsoumanis, Konstantinos P

    2010-06-15

    The growth of Penicillium expansum and Aspergillus niger, isolated from yogurt production environment, was investigated on malt extract agar with pH=4.2 and a(w)=0.997, simulating yogurt, at isothermal conditions ranging from -1.3 to 35 degrees C and from 5 to 42.3 degrees C, respectively. The growth rate (mu) and (apparent) lag time (lambda) of the mycelium growth were modelled as a function of temperature using a Cardinal Model with Inflection (CMI). The results showed that the CMI can describe successfully the effect of temperature on fungal growth within the entire biokinetic range for both isolates. The estimated values of the CMI for mu were T(min)=-5.74 degrees C, T(max)=30.97 degrees C, T(opt)=22.08 degrees C and mu(opt)=0.221 mm/h for P. expansum and T(min)=10.13 degrees C, T(max)=43.13 degrees C, T(opt)=31.44 degrees C, and mu(opt)=0.840 mm/h for A. niger. The cardinal values for lambda were very close to the respective values for mu indicating similar temperature dependence of the growth rate and the lag time of the mycelium growth. The developed models were further validated under fluctuating temperature conditions using various dynamic temperature scenarios. The time-temperature conditions studied included single temperature shifts before or after the end of the lag time and continuous periodic temperature fluctuations. The prediction of growth at changing temperature was based on the assumption that after a temperature shift the growth rate is adopted instantaneously to the new temperature, while the lag time was predicted using a cumulative lag approach. The results showed that when the temperature shifts occurred before the end of the lag, they did not cause any significant additional lag and the observed total lag was very close to the cumulative lag predicted by the model. In experiments with temperature shifts after the end of the lag time, accurate predictions were obtained when the temperature profile included temperatures which were inside the

  17. Growth of Geobacter sulfurreducens under nutrient-limiting conditions in continuous culture.

    PubMed

    Esteve-Núñez, Abraham; Rothermich, Mary; Sharma, Manju; Lovley, Derek

    2005-05-01

    A system for growing Geobacter sulfurreducens under anaerobic conditions in chemostats was developed in order to study the physiology of this organism under conditions that might more closely approximate those found in the subsurface than batch cultures. Geobacter sulfurreducens could be cultured under acetate-limiting conditions with fumarate or Fe(III)-citrate as the electron acceptor at growth rates between 0.04 and 0.09 h(-1). The molar growth yield was threefold higher with fumarate as the electron acceptor than with Fe(III), despite the lower mid-point potential of the fumarate/succinate redox couple. When growth was limited by availability of fumarate, high steady-state concentrations were detected, suggesting that fumarate is unlikely to be an important electron acceptor in sedimentary environments. The half-saturation constant, Ks, for acetate in Fe(III)-grown cultures (10 microM) suggested that the growth of Geobacter species is likely to be acetate limited in most subsurface sediments, but that when millimolar quantities of acetate are added to the subsurface in order to promote the growth of Geobacter for bioremediation applications, this should be enough to overcome any acetate limitations. When the availability of electron acceptors, rather than acetate, limited growth, G. sulfurreducens was less efficient in incorporating acetate into biomass but had higher respiration rates, a desirable physiological characteristic when adding acetate to stimulate the activity of Geobacter species during in situ uranium bioremediation. These results demonstrate that the ability to study the growth of G. sulfurreducens under steady-state conditions can provide insights into its physiological characteristics that have relevance for its activity in a diversity of sedimentary environments.

  18. Growth characteristics of Saccharomyces cerevisiae S288C in changing environmental conditions: auxo-accelerostat study.

    PubMed

    Kasemets, Kaja; Nisamedtinov, Ildar; Laht, Tiiu-Maie; Abner, Kristo; Paalme, Toomas

    2007-07-01

    The effect of individual environmental conditions (pH, pO(2), temperature, salinity, concentration of ethanol, propanol, tryptone and yeast extract) on the specific growth rate as well as ethanol and glycerol production rate of Saccharomyces cerevisiae S288C was mapped during the fermentative growth in aerobic auxo-accelerostat cultures. The obtained steady-state values of the glycerol to ethanol formation ratio (0.1 mol mol(-1)) corresponding to those predicted from the stoichiometric model of fermentative yeast growth showed that the complete repression of respiration was obtained in auxostat culture and that the model is suitable for calculation of Y(ATP) and Q(ATP) values for the aerobic fermentative growth. Smooth decrease in the culture pH and dissolved oxygen concentration (pO2) down to the critical values of 2.3 and 0.8%, respectively, resulted in decrease in growth yield (Y(ATP)) and specific growth rate, however the specific ATP production rate (Q(ATP)) stayed almost constant. Increase in the concentration of biomass (>0.8 g dwt l(-1)), propanol (>2 g l(-1)) or NaCl (>15 g l(-1)) lead at first to the decrease in the specific growth rate and Q(ATP), while Y(ATP) was affected only at higher concentrations. The observed decrease in Q(ATP) was caused by indirect rather than direct inhibition of glycolysis. The increase in tryptone concentration resulted in an increase in the specific growth rate from 0.44 to 0.62 h(-1) and Y(ATP) from 12.5 to 18.5 mol ATP g dwt(-1). This study demonstrates that the auxo-accelerostat method, besides being an efficient tool for obtaining the culture characteristics, provides also decent conditions for the experiments elucidating the control mechanisms of cell growth.

  19. Biological control and plant growth promoting capacity of rhizobacteria on pepper under greenhouse and field conditions.

    PubMed

    Hahm, Mi-Seon; Sumayo, Marilyn; Hwang, Ye-Ji; Jeon, Seon-Ae; Park, Sung-Jin; Lee, Jai Youl; Ahn, Joon-Hyung; Kim, Byung-Soo; Ryu, Choong-Min; Ghim, Sa-Youl

    2012-06-01

    Plant growth promoting rhizobacteria Ochrobactrum lupini KUDC1013 and Novosphingobium pentaromativorans KUDC1065 isolated from Dokdo Island, S. Korea are capable of eliciting induced systemic resistance (ISR) in pepper against bacterial spot disease. The present study aimed to determine whether plant growth-promoting rhizobacteria (PGPR) strains including strain KUDC1013, strain KUDC1065, and Paenibacillus polymyxa E681 either singly or in combinations were evaluated to have the capacity for potential biological control and plant growth promotion effect in the field trials. Under greenhouse conditions, the induced systemic resistance (ISR) effect of treatment with strains KUDC1013 and KUDC1065 differed according to pepper growth stages. Drenching of 3-week-old pepper seedlings with the KUDC-1013 strain significantly reduced the disease symptoms. In contrast, treatment with the KUDC1065 strain significantly protected 5-week-old pepper seedlings. Under field conditions, peppers treated with PGPR mixtures containing E681 and KUDC1013, either in a two-way combination, were showed greater effect on plant growth than those treated with an individual treatment. Collectively, the application of mixtures of PGPR strains on pepper might be considered as a potential biological control under greenhouse and field conditions.

  20. Growth and physiological condition of black ducks reared on acidified wetlands

    USGS Publications Warehouse

    Rattner, B.A.; Haramis, G.M.; Chu, D.S.; Bunck, C.M.; Scanes, C.G.

    1987-01-01

    Acid deposition has been identified as one of several possible factors contributing to the decline of some waterfowl populations in North America. In an effort to examine the effects of acidification on black duck (Anas rubripes) recruitment, growth and physiological condition were monitored in ducklings foraging for a 10-day trial (days 10-20 of life) on acidified (pH 5.0) and : circumneutral (pH 6.8) fish-free emergent wetlands. Acidification of these wetlands suppressed phytoplankton and algal growth, and reduced invertebrate biomass. Ducklings maintained on acidified wetlands grew poorly compared with ducklings reared on circumneutral wetlands, as evidenced by lower final body weight and culmen and tarsus length. Plasma growth hormone concentration was elevated and triiodothyronine levels were lower in stunted ducklings, in part substantiating impairment of growth-regulating processes. Ducklings exhibiting poor growth tended to have lower hematocrit, lower plasma protein, glucose, and cholesterol concentrations, and higher uric acid levels, presumably reflecting alterations in metabolism and development due to inanition. These findings suggest that acid deposition may lower food production in wetlands and ultimately impair duckling growth, condition, and survival.

  1. Pseudomonas aeruginosa facilitates Campylobacter jejuni growth in biofilms under oxic flow conditions.

    PubMed

    Culotti, Alessandro; Packman, Aaron I

    2015-12-01

    We investigated the growth of Campylobacter jejuni in biofilms with Pseudomonas aeruginosa under oxic flow conditions. We observed the growth of C. jejuni in mono-culture, deposited on pre-established P. aeruginosa biofilms, and co-inoculated with P. aeruginosa. In mono-culture, C. jejuni was unable to form biofilms. However, deposited C. jejuni continuously grew on pre-established P. aeruginosa biofilms for a period of 3 days. The growth of scattered C. jejuni clusters was strictly limited to the P. aeruginosa biofilm surface, and no intergrowth was observed. Co-culturing of C. jejuni and P. aeruginosa also enabled the growth of both organisms in biofilms, with C. jejuni clusters developing on the surface of the P. aeruginosa biofilm. Dissolved oxygen (DO) measurements in the medium showed that P. aeruginosa biofilms depleted the effluent DO from 9.0 to 0.5 mg L(-1) 24 hours after inoculation. The localized microaerophilic environment generated by P. aeruginosa promoted the persistence and growth of C. jejuni. Our findings show that P. aeruginosa not only prolongs the survival of C. jejuni under oxic conditions, but also enables the growth of C. jejuni on the surface of P. aeruginosa biofilms.

  2. Quantitative Characterization of the Growth of Deinococcus geothermalis DSM-11302: Effect of Inoculum Size, Growth Medium and Culture Conditions

    PubMed Central

    Bornot, Julie; Molina-Jouve, Carole; Uribelarrea, Jean-Louis; Gorret, Nathalie

    2015-01-01

    Due to their remarkable resistance to extreme conditions, Deinococcaceae strains are of great interest to biotechnological prospects. However, the physiology of the extremophile strain Deinococcus geothermalis has scarcely been studied and is not well understood. The physiological behaviour was then studied in well-controlled conditions in flask and bioreactor cultures. The growth of D. geothermalis type strains was compared. Among the strains tested, the strain from the German Collection of Microorganisms (Deutsche Sammlung von Mikroorganismen DSM) DSM-11302 was found to give the highest biomass concentration and growth rate: in a complex medium with glucose, the growth rate reached 0.75 h−1 at 45 °C. Yeast extract concentration in the medium had significant constitutive and catalytic effects. Furthermore, the results showed that the physiological descriptors were not affected by the inoculum preparation steps. A batch culture of D. geothermalis DSM-11302 on defined medium was carried out: cells grew exponentially with a maximal growth rate of 0.28 h−1 and D. geothermalis DSM-11302 biomass reached 1.4 g·L−1 in 20 h. Then, 1.4 gDryCellWeight of biomass (X) was obtained from 5.6 g glucose (Glc) consumed as carbon source, corresponding to a yield of 0.3 CmolX·CmolGlc−1; cell specific oxygen uptake and carbon dioxide production rates reached 216 and 226 mmol.CmolX−1·h−1, respectively, and the respiratory quotient (QR) value varied from 1.1 to 1.7. This is the first time that kinetic parameters and yields are reported for D. geothermalis DSM-11302 grown on a mineral medium in well-controlled batch culture. PMID:27682099

  3. Quantitative Characterization of the Growth of Deinococcus geothermalis DSM-11302: Effect of Inoculum Size, Growth Medium and Culture Conditions.

    PubMed

    Bornot, Julie; Molina-Jouve, Carole; Uribelarrea, Jean-Louis; Gorret, Nathalie

    2015-08-20

    Due to their remarkable resistance to extreme conditions, Deinococcaceae strains are of great interest to biotechnological prospects. However, the physiology of the extremophile strain Deinococcus geothermalis has scarcely been studied and is not well understood. The physiological behaviour was then studied in well-controlled conditions in flask and bioreactor cultures. The growth of D. geothermalis type strains was compared. Among the strains tested, the strain from the German Collection of Microorganisms (Deutsche Sammlung von Mikroorganismen DSM) DSM-11302 was found to give the highest biomass concentration and growth rate: in a complex medium with glucose, the growth rate reached 0.75 h(-1) at 45 °C. Yeast extract concentration in the medium had significant constitutive and catalytic effects. Furthermore, the results showed that the physiological descriptors were not affected by the inoculum preparation steps. A batch culture of D. geothermalis DSM-11302 on defined medium was carried out: cells grew exponentially with a maximal growth rate of 0.28 h(-1) and D. geothermalis DSM-11302 biomass reached 1.4 g·L(-1) in 20 h. Then, 1.4 gDryCellWeight of biomass (X) was obtained from 5.6 g glucose (Glc) consumed as carbon source, corresponding to a yield of 0.3 CmolX·CmolGlc(-1); cell specific oxygen uptake and carbon dioxide production rates reached 216 and 226 mmol.CmolX(-1)·h(-1), respectively, and the respiratory quotient (QR) value varied from 1.1 to 1.7. This is the first time that kinetic parameters and yields are reported for D. geothermalis DSM-11302 grown on a mineral medium in well-controlled batch culture.

  4. Growth and condition of juvenile chum and pink salmon in the northeastern Bering Sea

    NASA Astrophysics Data System (ADS)

    Wechter, Melissa E.; Beckman, Brian R.; Andrews, Alexander G., III; Beaudreau, Anne H.; McPhee, Megan V.

    2017-01-01

    As the Arctic continues to warm, abundances of juvenile Pacific salmon (Oncorhynchus spp.) in the northern Bering Sea are expected to increase. However, information regarding the growth and condition of juvenile salmon in these waters is limited. The first objective of this study was to describe relationships between size, growth, and condition of juvenile chum (O. keta) and pink (O. gorbuscha) salmon and environmental conditions using data collected in the northeastern Bering Sea (NEBS) from 2003-2007 and 2009-2012. Salmon collected at stations with greater bottom depths and cooler sea-surface temperature (SST) were longer, reflecting their movement further offshore out of the warmer Alaska Coastal Water mass, as the season progressed. Energy density, after accounting for fish length, followed similar relationships with SST and bottom depth while greater condition (weight-length residuals) was associated with warm SST and shallower stations. We used insulin-like growth factor-1 (IGF-1) concentrations as an indicator of relative growth rate for fishes sampled in 2009-2012 and that found fish exhibited higher IGF-1 concentrations in 2010-2012 than in 2009, although these differences were not clearly attributable to environmental conditions. Our second objective was to compare size and condition of juvenile chum and pink salmon in the NEBS between warm and cool spring thermal regimes of the southeastern Bering Sea (SEBS). This comparison was based on a hypothesis informed by the strong role of sea-ice retreat in the spring for production dynamics in the SEBS and prevailing northward currents, suggesting that feeding conditions in the NEBS may be influenced by production in the SEBS. We found greater length (both species) and condition (pink salmon) in years with warm thermal regimes; however, both of these responses changed more rapidly with day of year in years with cool springs. Finally, we compared indicators of energy allocation between even and odd brood

  5. Using time-dependent models to investigate body condition and growth rate of the giant gartersnake

    USGS Publications Warehouse

    Coates, P.S.; Wylie, G.D.; Halstead, B.J.; Casazza, M.L.

    2009-01-01

    Identifying links between phenotypic attributes and fitness is a primary goal of reproductive ecology. Differences in within-year patterns of body condition between sexes of gartersnakes in relation to reproduction and growth are not fully understood. We conducted an 11-year field study of body condition and growth rate of the giant gartersnake Thamnophis gigas across 13 study areas in the Central Valley of California, USA. We developed a priori mixed effects models of body condition index (BCI), which included covariates of time, sex and snout-vent length and reported the best-approximating models using an information theoretic approach. Also, we developed models of growth rate index (GRI) using covariates of sex and periods based on reproductive behavior. The largest difference in BCI between sexes, as predicted by a non-linear (cubic) time model, occurred during the mating period when female body condition (0.014??0.001 se) was substantially greater than males (-0.027??0.002 se). Males likely allocated energy to search for mates, while females likely stored energy for embryonic development. We also provided evidence that males use more body energy reserves than females during hibernation, perhaps because of different body temperatures between sexes. We found GRI of male snakes was substantially lower during the mating period than during a non-mating period, which indicated that a trade-off existed between searching for mates and growth. These findings contribute to our understanding of snake ecology in a Mediterranean climate. ?? 2009 The Zoological Society of London.

  6. Individual Differences in the Expression of Conditioned Fear Are Associated with Endogenous Fibroblast Growth Factor 2

    ERIC Educational Resources Information Center

    Graham, Bronwyn M.; Richardson, Rick

    2016-01-01

    These experiments examined the relationship between the neurotrophic factor fibroblast growth factor 2 (FGF2) and individual differences in the expression of conditioned fear. Experiments 1 and 2 demonstrated that rats naturally expressing low levels of contextual or cued fear have higher levels of hippocampal FGF2 relative to rats that express…

  7. Noninvasive Quantitative Measurement of Bacterial Growth in Porous Media Under Unsaturated-Flow Conditions

    SciTech Connect

    Yarwood, Rocky; Rockhold, Mark L. ); Niemet, Mike; Selker, John S.; Bottomley, Peter J.

    2002-07-01

    Glucose-dependent growth of the luxCDABE reporter bacterium Pseudomonas fluorescens HK44 was monitored noninvasively in quartz sand under unsaturated-flow conditions within a 45- by 56- by 1-cm two-dimensional light transmission chamber. The spatial and temporal development of growth were mapped daily over 7 days by quantifying salicylate-induced bioluminescence. A nonlinear model relating the rate of increase in light emission after salicylate exposure to microbial density successfully predicted growth over 4 orders of magnitude (r{sup 2}=0.95). Total model-predicted growth agreed with growth calculated from the mass balance of the system by using previously determined growth parameters of HK44 (predicted, 1.2 x 10{sup 12} cells; calculated, 1.7 x 10{sup 12} cells). Colonization expanded in all directions from the inoculation region, including upward migration against the liquid flow. Both the daily rate of expansion of the colonized zone and the population density of the first day's growth in each newly colonized region remained relatively constant throughout the experiment. Nonetheless, substantial growth continued to occur on subsequent days in the older regions of the colonized zone. The proportion of daily potential growth that remained within the chamber declined progressively between days 2 and 7 (from 97 to 13%). A densely populated, anoxic region developed in the interior of the colonized zone even though the sand was unsaturated and fresh growth medium continued to flow through the colonized zone. These data illustrate the potential of a light transmission chamber, bioluminescent bacteria, and sensitive digital camera technology to noninvasively study real-time hydrology-microbiology interactions associated with unsaturated flow in porous media.

  8. Noninvasive Quantitative Measurement of Bacterial Growth in Porous Media under Unsaturated-Flow Conditions

    PubMed Central

    Yarwood, R. R.; Rockhold, M. L.; Niemet, M. R.; Selker, J. S.; Bottomley, P. J.

    2002-01-01

    Glucose-dependent growth of the luxCDABE reporter bacterium Pseudomonas fluorescens HK44 was monitored noninvasively in quartz sand under unsaturated-flow conditions within a 45- by 56- by 1-cm two-dimensional light transmission chamber. The spatial and temporal development of growth were mapped daily over 7 days by quantifying salicylate-induced bioluminescence. A nonlinear model relating the rate of increase in light emission after salicylate exposure to microbial density successfully predicted growth over 4 orders of magnitude (r2 = 0.95). Total model-predicted growth agreed with growth calculated from the mass balance of the system by using previously established growth parameters of HK44 (predicted, 1.2 × 1012 cells; calculated, 1.7 × 1012 cells). Colonization expanded in all directions from the inoculation region, including upward migration against the liquid flow. Both the daily rate of expansion of the colonized zone and the population density of the first day's growth in each newly colonized region remained relatively constant throughout the experiment. Nonetheless, substantial growth continued to occur on subsequent days in the older regions of the colonized zone. The proportion of daily potential growth that remained within the chamber declined progressively between days 2 and 7 (from 97 to 13%). A densely populated, anoxic region developed in the interior of the colonized zone even though the sand was unsaturated and fresh growth medium continued to flow through the colonized zone. These data illustrate the potential of a light transmission chamber, bioluminescent bacteria, and sensitive digital camera technology to noninvasively study real-time hydrology-microbiology interactions associated with unsaturated flow in porous media. PMID:12089048

  9. Noninvasive quantitative measurement of bacterial growth in porous media under unsaturated-flow conditions.

    PubMed

    Yarwood, R R; Rockhold, M L; Niemet, M R; Selker, J S; Bottomley, P J

    2002-07-01

    Glucose-dependent growth of the luxCDABE reporter bacterium Pseudomonas fluorescens HK44 was monitored noninvasively in quartz sand under unsaturated-flow conditions within a 45- by 56- by 1-cm two-dimensional light transmission chamber. The spatial and temporal development of growth were mapped daily over 7 days by quantifying salicylate-induced bioluminescence. A nonlinear model relating the rate of increase in light emission after salicylate exposure to microbial density successfully predicted growth over 4 orders of magnitude (r(2) = 0.95). Total model-predicted growth agreed with growth calculated from the mass balance of the system by using previously established growth parameters of HK44 (predicted, 1.2 x 10(12) cells; calculated, 1.7 x 10(12) cells). Colonization expanded in all directions from the inoculation region, including upward migration against the liquid flow. Both the daily rate of expansion of the colonized zone and the population density of the first day's growth in each newly colonized region remained relatively constant throughout the experiment. Nonetheless, substantial growth continued to occur on subsequent days in the older regions of the colonized zone. The proportion of daily potential growth that remained within the chamber declined progressively between days 2 and 7 (from 97 to 13%). A densely populated, anoxic region developed in the interior of the colonized zone even though the sand was unsaturated and fresh growth medium continued to flow through the colonized zone. These data illustrate the potential of a light transmission chamber, bioluminescent bacteria, and sensitive digital camera technology to noninvasively study real-time hydrology-microbiology interactions associated with unsaturated flow in porous media.

  10. Growth and Modeling of Staphylococcus aureus in Flour Products under Isothermal and Nonisothermal Conditions.

    PubMed

    Cao, Hui; Wang, Tingting; Yuan, Min; Yu, Jingsong; Xu, Fei

    2017-03-01

    This study was conducted to investigate the growth of Staphylococcus aureus in traditional Chinese flour products under isothermal (10, 15, 20, 25, 30, and 37°C) and nonisothermal (10 to 20, 20 to 30, and 25 to 37°C) conditions. Then, models for the growth of S. aureus in flour products as a function of storage temperature, pH, and water activity (aw) were developed, and the goodness of fit of models was evaluated using the determination coefficient (R(2)), root mean square error (RMSE), bias factor (Bf), and accuracy factor (Af). Based on the above information, S. aureus growth in steamed bread under nonisothermal conditions was predicted from experiments performed under isothermal conditions. It was shown that different combinations of temperature and aw in flour products have a strong influence on the growth of S. aureus . The modified Gompertz model was found to be more suitable for describing the growth data of S. aureus in flour products, with an R(2) of >0.99 and an RMSE of <0.37. The newly developed secondary models were validated, and for the specific growth rate and the lag time, the R(2) values were 0.96 and 0.97, Af was 1.12 and 1.06, and Bf was 1.13 and 1.05, respectively. The predicted nonisothermal growth curves of S. aureus were in agreement with the reported experimental ones, with RMSE <0.29, Af value 1.02 to 1.09, and Bf value 0.92 to 0.99. These results indicated that the predictive models provided useful information for the establishment of safety standards and a risk assessment for S. aureus in flour products.

  11. Incorporating temporal heterogeneity in environmental conditions into a somatic growth model

    USGS Publications Warehouse

    Dzul, Maria C.; Yackulic, Charles B.; Korman, Josh; Yard, Michael D.; Muehlbauer, Jeffrey D.

    2017-01-01

    Evaluating environmental effects on fish growth can be challenging because environmental conditions may vary at relatively fine temporal scales compared to sampling occasions. Here we develop a Bayesian state-space growth model to evaluate effects of monthly environmental data on growth of fish that are observed less frequently (e.g., from mark-recapture data where time between captures can range from months to years). We assess effects of temperature, turbidity duration, food availability, flow variability, and trout abundance on subadult humpback chub (Gila cypha) growth in two rivers, the Colorado River (CR) and the Little Colorado River (LCR), and we use out-of-sample prediction to rank competing models. Environmental covariates explained a high proportion of the variation in growth in both rivers; however, the best growth models were river-specific and included either positive temperature and turbidity duration effects (CR) or positive temperature and food availability effects (LCR). Our approach to analyzing environmental controls on growth should be applicable in other systems where environmental data vary over relatively short time scales compared to animal observations.

  12. Growth and cell wall changes in stem organs under microgravity and hypergravity conditions

    NASA Astrophysics Data System (ADS)

    Hoson, Takayuki; Soga, Kouichi; Wakabayashi, Kazuyuki; Kamisaka, Seiichiro

    Gravity strongly influences plant growth and development, which is fundamentally brought about by modifications to the properties of the cell wall. We have examined the changes in growth and cell wall properties in seedling organs under hypergravity conditions produced by centrifugation and under microgravity conditions in space. Hypergravity stimuli have been shown to decrease the growth rate of various seedling organs. When hypergravity suppressed elongation growth, a decrease in cell wall extensibility (an increase in cell wall rigidity) was induced. Hypergravity has also been shown to increase cell wall thickness in various mate-rials. In addition, a polymerization of certain matrix polysaccharides was brought about by hypergravity: in dicotyledons hypergravity increased the molecular size of xyloglucans, whereas hypergravity increased that of 1,3,1,4-β-glucans in monocotyledonous Gramineae. These mod-ifications to cell wall metabolism may be responsible for a decrease in cell wall extensibility, leading to growth suppression under hypergravity conditions. How then does microgravity in-fluence growth and cell wall properties? Here, there was a possibility that microgravity might induce changes similar to those by hypergravity, because plants have evolved and adapted to 1 g condition for more than 400 million years. However, the changes observed under microgravity conditions in space were just opposite to those induced by hypergravity: stimulation of elonga-tion growth, an increase in cell wall extensibility, and a decrease in cell wall thickness as well as depolymerization of cell wall polysaccharides were brought about in space. Furthermore, growth and cell wall properties varied in proportion to the logarithm of the magnitude of grav-ity in the range from microgravity to hypergravity, as shown in the dose-response relation in light and hormonal responses. Thus, microgravity may be a `stress-less' environment for plant seedlings to grow and develop

  13. Kinetic modeling of growth and lipid body induction in Chlorella pyrenoidosa under heterotrophic conditions.

    PubMed

    Sachdeva, Neha; Kumar, G Dinesh; Gupta, Ravi Prakash; Mathur, Anshu Shankar; Manikandan, B; Basu, Biswajit; Tuli, Deepak Kumar

    2016-10-01

    The aim of the present work was to develop a mathematical model to describe the biomass and (total) lipid productivity of Chlorella pyrenoidosa NCIM 2738 under heterotrophic conditions. Biomass growth rate was predicted by Droop's cell quota model, while changes observed in cell quota (utilization) under carbon excess conditions were used for the modeling and predicting the lipid accumulation rate. The model was simulated under non-limiting (excess) carbon and limiting nitrate concentration and validated with experimental data for the culture grown in batch (flask) mode under different nitrate concentrations. The present model incorporated two modes (growth and stressed) for the prediction of endogenous lipid synthesis/induction and aimed to predict the effect and response of the microalgae under nutrient starvation (stressed) conditions. MATLAB and Genetic Algorithm were employed for the prediction and validation of the model parameters.

  14. Development of a Fatigue Crack Growth Coupon for Highly Plastic Stress Conditions

    NASA Technical Reports Server (NTRS)

    Allen, Phillip A.; Aggarwal, Pravin K.; Swanson, Gregory R.

    2003-01-01

    The analytical approach used to develop a novel fatigue crack growth coupon for highly plastic stress field condition is presented in this paper. The flight hardware investigated is a large separation bolt that has a deep notch, which produces a large plastic zone at the notch root when highly loaded. Four test specimen configurations are analyzed in an attempt to match the elastic-plastic stress field and crack constraint conditions present in the separation bolt. Elastic-plastic finite element analysis is used to compare the stress fields and critical fracture parameters. Of the four test specimens analyzed, the modified double-edge notch tension - 3 (MDENT-3) most closely approximates the stress field, J values, and crack constraint conditions found in the flight hardware. The MDENT-3 is also most insensitive to load misalignment and/or load redistribution during crack growth.

  15. Clinically Relevant Growth Conditions Alter Acinetobacter baumannii Antibiotic Susceptibility and Promote Identification of Novel Antibacterial Agents

    PubMed Central

    Colquhoun, Jennifer M.; Wozniak, Rachel A. F.; Dunman, Paul M.

    2015-01-01

    Biological processes that govern bacterial proliferation and survival in the host-environment(s) are likely to be vastly different from those that are required for viability in nutrient-rich laboratory media. Consequently, growth-based antimicrobial screens performed in conditions modeling aspects of bacterial disease states have the potential to identify new classes of antimicrobials that would be missed by screens performed in conventional laboratory media. Accordingly, we performed screens of the Selleck library of 853 FDA approved drugs for agents that exhibit antimicrobial activity toward the Gram-negative bacterial pathogen Acinetobacter baumannii during growth in human serum, lung surfactant, and/or the organism in the biofilm state and compared those results to that of conventional laboratory medium. Results revealed that a total of 90 compounds representing 73 antibiotics and 17 agents that were developed for alternative therapeutic indications displayed antimicrobial properties toward the test strain in at least one screening condition. Of the active library antibiotics only four agents, rifampin, rifaximin, ciprofloxacin and tetracycline, exhibited antimicrobial activity toward the organism during all screening conditions, whereas the remainder were inactive in ≥ 1 condition; 56 antibiotics were inactive during serum growth, 25 and 38 were inactive toward lung surfactant grown and biofilm-associated cells, respectively, suggesting that subsets of antibiotics may outperform others in differing infection settings. Moreover, 9 antibiotics that are predominantly used for the treatment Gram-positive pathogens and 10 non-antibiotics lacked detectable antimicrobial activity toward A. baumannii grown in conventional medium but were active during ≥ 1 alternative growth condition(s). Such agents may represent promising anti-Acinetobacter agents that would have likely been overlooked by antimicrobial whole cell screening assays performed in traditional

  16. Auxin polar transport in arabidopsis under simulated microgravity conditions - relevance to growth and development

    NASA Astrophysics Data System (ADS)

    Miyamoto, K.; Oka, M.; Yamamoto, R.; Masuda, Y.; Hoson, T.; Kamisaka, S.; Ueda, J.

    1999-01-01

    Activity of auxin polar transport in inflorescence axes of Arabidopsis thaliana grown under simulated microgravity conditions was studied in relation to the growth and development. Seeds were germinated and allowed to grow on an agar medium in test tubes on a horizontal clinostat. Horizontal clinostat rotation substantially reduced the growth of inflorescence axes and the productivity of seeds of Arabidopsis thaliana (ecotypes Landsberg erecta and Columbia), although it little affected seed germination, development of rosette leaves and flowering. The activity of auxin polar transport in inflorescence axes decreased when Arabidopsis plants were grown on a horizontal clinostat from germination stage, being ca. 60% of 1 g control. On the other hand, the auxin polar transport in inflorescence axes of Arabidopsis grown in 1 g conditions was not affected when the segments were exposed to various gravistimuli, including 3-dimensional clinorotation, during transport experiments. Pin-formed mutant of Arabidopsis, having a unique structure of the inflorescence axis with no flower and extremely low levels of the activity of auxin polar transport in inflorescence axes and endogenous auxin, did not continue its vegetative growth under clinostat rotation. These facts suggest that the development of the system of auxin polar transport in Arabidopsis is affected by microgravity, resulting in the inhibition of growth and development, especially during reproductive growth.

  17. Conditional expression of constitutively active estrogen receptor {alpha} in chondrocytes impairs longitudinal bone growth in mice

    SciTech Connect

    Ikeda, Kazuhiro; Tsukui, Tohru; Imazawa, Yukiko; Horie-Inoue, Kuniko; Inoue, Satoshi

    2012-09-07

    Highlights: Black-Right-Pointing-Pointer Conditional transgenic mice expressing constitutively active estrogen receptor {alpha} (caER{alpha}) in chondrocytes were developed. Black-Right-Pointing-Pointer Expression of caER{alpha} in chondrocytes impaired longitudinal bone growth in mice. Black-Right-Pointing-Pointer caER{alpha} affects chondrocyte proliferation and differentiation. Black-Right-Pointing-Pointer This mouse model is useful for understanding the physiological role of ER{alpha}in vivo. -- Abstract: Estrogen plays important roles in the regulation of chondrocyte proliferation and differentiation, which are essential steps for longitudinal bone growth; however, the mechanisms of estrogen action on chondrocytes have not been fully elucidated. In the present study, we generated conditional transgenic mice, designated as caER{alpha}{sup ColII}, expressing constitutively active mutant estrogen receptor (ER) {alpha} in chondrocytes, using the chondrocyte-specific type II collagen promoter-driven Cre transgenic mice. caER{alpha}{sup ColII} mice showed retardation in longitudinal growth, with short bone lengths. BrdU labeling showed reduced proliferation of hypertrophic chondrocytes in the proliferating layer of the growth plate of tibia in caER{alpha}{sup ColII} mice. In situ hybridization analysis of type X collagen revealed that the maturation of hypertrophic chondrocytes was impaired in caER{alpha}{sup ColII} mice. These results suggest that ER{alpha} is a critical regulator of chondrocyte proliferation and maturation during skeletal development, mediating longitudinal bone growth in vivo.

  18. High-throughput dental biofilm growth analysis for multiparametric microenvironmental biochemical conditions using microfluidics.

    PubMed

    Lam, Raymond H W; Cui, Xin; Guo, Weijin; Thorsen, Todd

    2016-04-26

    Dental biofilm formation is not only a precursor to tooth decay, but also induces more serious systematic health problems such as cardiovascular disease and diabetes. Understanding the conditions promoting colonization and subsequent biofilm development involving complex bacteria coaggregation is particularly important. In this paper, we report a high-throughput microfluidic 'artificial teeth' device offering controls of multiple microenvironmental factors (e.g. nutrients, growth factors, dissolved gases, and seeded cell populations) for quantitative characteristics of long-term dental bacteria growth and biofilm development. This 'artificial teeth' device contains multiple (up to 128) incubation chambers to perform parallel cultivation and analyses (e.g. biofilm thickness, viable-dead cell ratio, and spatial distribution of multiple bacterial species) of bacteria samples under a matrix of different combinations of microenvironmental factors, further revealing possible developmental mechanisms of dental biofilms. Specifically, we applied the 'artificial teeth' to investigate the growth of two key dental bacteria, Streptococci species and Fusobacterium nucleatum, in the biofilm under different dissolved gas conditions and sucrose concentrations. Together, this high-throughput microfluidic platform can provide extended applications for general biofilm research, including screening of the biofilm properties developing under combinations of specified growth parameters such as seeding bacteria populations, growth medium compositions, medium flow rates and dissolved gas levels.

  19. Growth of Continuous Monolayer Graphene with Millimeter-sized Domains Using Industrially Safe Conditions

    PubMed Central

    Wu, Xingyi; Zhong, Guofang; D'Arsié, Lorenzo; Sugime, Hisashi; Esconjauregui, Santiago; Robertson, Alex W.; Robertson, John

    2016-01-01

    We demonstrate the growth of continuous monolayer graphene films with millimeter-sized domains on Cu foils under intrinsically safe, atmospheric pressure growth conditions, suitable for application in roll-to-roll reactors. Previous attempts to grow large domains in graphene have been limited to isolated graphene single crystals rather than as part of an industrially useable continuous film. With both appropriate pre-treatment of the Cu and optimization of the CH4 supply, we show that it is possible to grow continuous films of monolayer graphene with millimeter scale domains within 80 min by chemical vapour deposition. The films are grown under industrially safe conditions, i.e., the flammable gases (H2 and CH4) are diluted to well below their lower explosive limit. The high quality, spatial uniformity, and low density of domain boundaries are demonstrated by charge carrier mobility measurements, scanning electron microscope, electron diffraction study, and Raman mapping. The hole mobility reaches as high as ~5,700 cm2 V−1 s−1 in ambient conditions. The growth process of such high-quality graphene with a low H2 concentration and short growth times widens the possibility of industrial mass production. PMID:26883292

  20. Growth and development in higher plants under simulated microgravity conditions on a 3-dimensional clinostat

    NASA Astrophysics Data System (ADS)

    Shimazu, T.; Yuda, T.; Miyamoto, K.; Yamashita, M.; Ueda, J.

    Growth and development of etiolated pea (Pisum sativum L. cv. Alaska) and maize (Zea mays L. cv. Golden Cross Bantam) seedlings grown under simulated microgravity conditions were intensively studied using a 3-dimensional clinostat as a simulator of weightlessness. Epicotyls of etiolated pea seedlings grown on the clinostat were the most oriented toward the direction far from cotyledons. Mesocotyls of etiolated maize seedlings grew at random and coleoptiles curved slightly during clinostat rotation. Clinostat rotation promoted the emergence of the 3rd internodes in etiolated pea seedlings, while it significantly inhibited the growth of the 1st internodes. In maize seedlings, the growth of coleoptiles was little affected by clinostat rotation, but that of mesocotyls was suppressed, and therefore, the emergence of the leaf out of coleoptile was promoted. Clinostat rotation reduced the osmotic concentration in the 1st internodes of pea seedlings, although it has little effect on the 2nd and the 3rd internodes. Clinostat rotation also reduced the osmotic concentrations in both coleoptiles and mesocotyls of maize seedlings. Cell-wall extensibilities of the 1st and the 3rd internodes of pea seedlings grown on the clinostat were significantly lower and higher as compared with those on 1 g conditions, respectively. Cell-wall extensibility of mesocotyls in seedlings grown on the clinostat also decreased. Changes in cell wall properties seem to be well correlated to the growth of each organ in pea and maize seedlings. These results suggest that the growth and development of plants is controlled under gravity on earth, and that the growth responses of higher plants to microgravity conditions are regulated by both cell-wall mechanical properties and osmotic properties of stem cells.

  1. Using Gambusia affinis growth and condition to assess estuarine habitat quality: A comparison of indices

    USGS Publications Warehouse

    Piazza, Bryan P.; La Peyre, M.K.

    2010-01-01

    Numerous indices have been used to estimate fish growth and condition however, differences in sensitivity and reliability of the methods have hampered efforts to identify appropriate indicators for routine evaluation of habitat quality in the field. We compared common morphometric (length, weight, somatic growth, length-weight condition) and biochemical (RNA:DNA ratio, relative DNA content, energy density) growth indices on the same wild-caught mosquitofish Gambusia affinis to examine their usefulness as indicators of habitat quality. A laboratory experiment was used to quantify growth rates of wild-caught G. affinis under different feeding treatments. Field studies consisted of both a short-term enclosure experiment (10 d) and weekly (7 wk) fish collections to compare growth indices in managed inflow and reference marshes during a winter/spring freshwater pulse event in upper Breton Sound, Louisiana, USA. Marshes flooded by restored freshwater pulses were capable of producing optimum growth (0.001 g DW d-1 DW = dry weight) and energetically valuable habitat (>6000 cal g-1 DW) for trophic transport. Because of differences in timing of response, morphometric and biochemical indices were generally not directly correlated, but there was clear agreement in direction and magnitude of response. The most striking difference in timing was that biochemical indices (RNA:DNA) responded more slowly to treatments than did morphometric growth indices. While gross patterns are comparable between indicators, differences in sensitivity and response time between indicators suggest that choice of indicator needs to be accounted for in interpretation and analysis of effects. ?? Inter-Research 2010, www.int-res.com.

  2. Bulk water phase and biofilm growth in drinking water at low nutrient conditions.

    PubMed

    Boe-Hansen, Rasmus; Albrechtsen, Hans-Jørgen; Arvin, Erik; Jørgensen, Claus

    2002-11-01

    In this study, the bacterial growth dynamics of a drinking water distribution system at low nutrient conditions was studied in order to determine bacterial growth rates by a range of methods, and to compare growth rates in the bulk water phase and the biofilm. A model distribution system was used to quantify the effect of retention times at hydraulic conditions similar to those in drinking water distribution networks. Water and pipe wall samples were taken and examined during the experiment. The pipes had been exposed to drinking water at approximately 13 degrees C, for at least 385 days to allow the formation of a mature quasi-stationary biofilm. At retention times of 12 h, total bacterial counts increased equivalent to a net bacterial growth rate of 0.048 day(-1). The bulk water phase bacteria exhibited a higher activity than the biofilm bacteria in terms of culturability, cell-specific ATP content, and cell-specific leucine incorporation rate. Bacteria in the bulk water phase incubated without the presence of biofilm exhibited a bacterial growth rate of 0.30 day(-1). The biofilm was radioactively labelled by the addition of 14C-benzoic acid. Subsequently, a biofilm detachment rate of 0.013 day(-1) was determined by measuring the release of 14C-labelled bacteria of the biofilm. For the quasi-stationary phase biofilm, the detachment rate was equivalent to the net growth rate. The growth rates determined in this study by different independent experimental approaches were comparable and within the range of values reported in the literature.

  3. Controlling the site density of multiwall carbon nanotubes via growth conditions

    NASA Astrophysics Data System (ADS)

    Siegal, M. P.; Overmyer, D. L.; Kaatz, F. H.

    2004-06-01

    We present two complementary methods for controlling the site density of multiwall carbon nanotubes (CNTs) directly as a function of growth conditions from 1011to107CNTs/cm2. Several potential applications require significant spacing between individual CNTs. The first method shows that the site density varies with the heat of formation of the hydrocarbon gas used during CNT growth by thermal chemical vapor deposition. The second method demonstrates that the site density decreases with increasing residual stress of the metal catalyst/diffusion barrier layers. These methods are combined for wide-range control of CNT site density.

  4. Condensational Droplet Growth in Rarefied Quiescent Vapor and Forced Convective Conditions

    NASA Astrophysics Data System (ADS)

    Anand, Sushant

    Multiphase Heat transfer is ubiquitous in diverse fields of application such as cooling systems, micro and mini power systems and many chemical processes. By now, single phase dynamics are mostly understood in their applications in vast fields, however multiphase systems especially involving phase changes are still a challenge. Present study aims to enhance understanding in this domain especially in the field of condensation heat transfer. Of special relevance to present studies is study of condensation phenomenon for detection of airborne nanoparticles using heterogeneous nucleation. Detection of particulate matter in the environment via heterogeneous condensation is based on the droplet growth phenomenon where seeding particles in presence of supersaturated vapor undergo condensation on their surface and amplify in size to micrometric ranges, thereby making them optically visible. Previous investigations show that condensation is a molecular exchange process affected by mean free path of vapor molecules (lambda) in conjunction with size of condensing droplet (d), which is measured in terms of Knudsen number (Kn=lambda/ d). In an event involving heterogeneous nucleation with favorable thermodynamic conditions for condensation to take place, the droplet growth process begins with accretion of vapor molecules on a surface through random molecular collision (Kn>1) until diffusive forces start dominating the mass transport process (Kn<<1). Knowledge of droplet growth thus requires understanding of mass transport in both of these regimes. Present study aims to understand the dynamics of the Microthermofluidic sensor which has been developed, based on above mentioned fundamentals. Using continuum approach, numerical modeling was carried to understand the effect of various system parameters for improving the device performance to produce conditions which can lead to conditions abetting condensational growth. The study reveals that the minimum size of nanoparticle which

  5. 3-D simulations to investigate initial condition effects on the growth of Rayleigh-Taylor mixing

    SciTech Connect

    Andrews, Malcolm J

    2008-01-01

    The effect of initial conditions on the growth rate of turbulent Rayleigh-Taylor (RT) mixing has been studied using carefully formulated numerical simulations. An integrated large-eddy simulation (ILES) that uses a finite-volume technique was employed to solve the three-dimensional incompressible Euler equations with numerical dissipation. The initial conditions were chosen to test the dependence of the RT growth parameters ({alpha}{sub b}, {alpha}{sub s}) on variations in (a) the spectral bandwidth, (b) the spectral shape, and (c) discrete banded spectra. Our findings support the notion that the overall growth of the RT mixing is strongly dependent on initial conditions. Variation in spectral shapes and bandwidths are found to have a complex effect of the late time development of the RT mixing layer, and raise the question of whether we can design RT transition and turbulence based on our choice of initial conditions. In addition, our results provide a useful database for the initialization and development of closures describing RT transition and turbulence.

  6. Bioreactor aeration conditions modulate growth and antigen expression during Erysipelothrix rhusiopathiae cultivation.

    PubMed

    da Silva, Adilson José; de Baptista-Neto, Alvaro; do Carmo Cilento, Maria; de Campos Giordano, Roberto; Zangirolami, Teresa Cristina

    2008-05-01

    Erysipelothrix rhusiopathiae, the causative agent of swine erysipelas, was cultivated in a 5-L stirred and aerated bioreactor under different dissolved oxygen tensions (0%, 5%, and 30% of saturation) for evaluation of the influence of oxygen on cell growth as well as on the production of the main antigenic component of the vaccine against erysipelas, a 64-69 kDa protein (SpaA). The microorganism presented different growth profiles for different aeration conditions. However, at the end of the batch cultivations, similar cell concentrations were obtained under the studied conditions. In order to maximize biomass titers and antigen production, the microorganism was cultivated in fed-batch operation mode under aerobic conditions. Under this condition, there was a fivefold increase in biomass production in comparison to the results attained in batch cultivations. To follow up antigen expression, samples collected during batch cultivations were concentrated and treated with choline for antigen extraction. Antigen expression was then assessed by sodium dodecyl sulfate polyacrylamide gel electrophoresis and by murine immunization tests. It was observed a direct influence of oxygen availability upon antigen expression, which is favored in the presence of oxygen. Analysis of the samples collected throughout the fed-batch process also revealed that antigen production is growth associated.

  7. Seed storage conditions change the germination pattern of clonal growth plants in Mediterranean salt marshes

    USGS Publications Warehouse

    Espinar, J.L.; Garcia, L.V.; Clemente, L.

    2005-01-01

    The effect of salinity level and extended exposure to different salinity and flooding conditions on germination patterns of three saltmarsh clonal growth plants (Juncus subulatus, Scirpus litoralis, and S. maritimus) was studied. Seed exposure to extended flooding and saline conditions significantly affected the outcome of the germination process in a different, though predictable, way for each species, after favorable conditions for germination were restored. Tolerance of the germination process was related to the average salinity level measured during the growth/germination season at sites where established individuals of each species dominated the species cover. No relationship was found between salinity tolerance of the germination process and seed response to extended exposure to flooding and salinity conditions. The salinity response was significantly related to the conditions prevailing in the habitats of the respective species during the unfavorable (nongrowth/nongermination) season. Our results indicate that changes in salinity and hydrology while seeds are dormant affect the outcome of the seed-bank response, even when conditions at germination are identical. Because these environmental-history-dependent responses differentially affect seed germination, seedling density, and probably sexual recruitment in the studied and related species, these influences should be considered for wetland restoration and management.

  8. Influence of growth conditions on the performance of InP nanowire solar cells.

    PubMed

    Cavalli, Alessandro; Cui, Yingchao; Kölling, Sebastian; Verheijen, Marcel A; Plissard, Sebastien R; Wang, Jia; Koenraad, Paul M; Haverkort, Jos E M; Bakkers, Erik P A M

    2016-11-11

    Nanowire based solar cells have attracted great attention due to their potential for high efficiency and low device cost. Photovoltaic devices based on InP nanowires now have characteristics comparable to InP bulk solar cells. A detailed and direct correlation of the influence of growth conditions on performance is necessary to improve efficiency further. We explored the effects of the growth temperature, and of the addition of HCl during growth, on the efficiency of nanowire array based solar cell devices. By increasing HCl, the saturation dark current was reduced, and thereby the nanowire solar cell efficiency was enhanced from less than 1% to 7.6% under AM 1.5 illumination at 1 sun. At the same time, we observed that the solar cell efficiency decreased by increasing the tri-methyl-indium content, strongly suggesting that these effects are carbon related.

  9. Growth and Survival of Some Probiotic Strains in Simulated Ice Cream Conditions

    NASA Astrophysics Data System (ADS)

    Homayouni, A.; Ehsani, M. R.; Azizi, A.; Razavi, S. H.; Yarmand, M. S.

    A Completely Randomized Design (CRD) experiment was applied in triplicates to evaluate the survival of four probiotic strains in simulated ice cream conditions. The growth and survival rate of these probiotic strains (Lactobacillus acidophilus, Lactobacillus casei, Bifidobacterium bifidum and Bifidobacterium longum) in varying amount of sucrose (10, 15, 20 and 25%), oxygen scavenging components (0.05% L-cysteine and 0.05% L-ascorbate) and temperatures (4 and -20°C) during different periods of time (1, 2 and 3 months) were evaluated in MRS-broth medium. Optical density at 580 nm was used to measure growth. Lactobacilli strains proved to be highly resistant in comparison with Biffidobacteria strains. The viable cell number of Lactobacillus casei in different sucrose concentrations, different oxidoreduction potentials and refrigeration temperature was 1x1010, 2x108 and 5x107 cfu mL-1, respectively. Growth and survival rate of Lactobacillus casei showed to be the highest.

  10. The exploring root--root growth responses to local environmental conditions.

    PubMed

    Monshausen, Gabriele B; Gilroy, Simon

    2009-12-01

    Because of their sessile lifestyle, the areas which plants can access to forage for resources are confined to those which can be explored by growth. High sensitivity to environmental conditions coupled to the appropriate readjustment of growth and developmental responses are thus critical to plant survival. In this review, we focus on how roots perceive physical cues such as soil water status and mechanical properties and translate them into physiological signals to redirect organ growth and modulate root system architecture. Because the precise molecular identity of most of the sensors used by the root to sample the soil environment remain to be determined, the mechanisms underlying similar processes in microbes are providing important models for how these receptor systems may be functioning in plants.

  11. Influence of growth conditions on the performance of InP nanowire solar cells

    NASA Astrophysics Data System (ADS)

    Cavalli, Alessandro; Cui, Yingchao; Kölling, Sebastian; Verheijen, Marcel A.; Plissard, Sebastien R.; Wang, Jia; Koenraad, Paul M.; Haverkort, Jos E. M.; Bakkers, Erik P. A. M.

    2016-11-01

    Nanowire based solar cells have attracted great attention due to their potential for high efficiency and low device cost. Photovoltaic devices based on InP nanowires now have characteristics comparable to InP bulk solar cells. A detailed and direct correlation of the influence of growth conditions on performance is necessary to improve efficiency further. We explored the effects of the growth temperature, and of the addition of HCl during growth, on the efficiency of nanowire array based solar cell devices. By increasing HCl, the saturation dark current was reduced, and thereby the nanowire solar cell efficiency was enhanced from less than 1% to 7.6% under AM 1.5 illumination at 1 sun. At the same time, we observed that the solar cell efficiency decreased by increasing the tri-methyl-indium content, strongly suggesting that these effects are carbon related.

  12. Nutritional modulation of IGF-1 in relation to growth and body condition in Sceloporus lizards.

    PubMed

    Duncan, Christine A; Jetzt, Amanda E; Cohick, Wendie S; John-Alder, Henry B

    2015-05-15

    Nutrition and energy balance are important regulators of growth and the growth hormone/insulin-like growth factor (GH/IGF) axis. However, our understanding of these functions does not extend uniformly to all classes of vertebrates and is mainly limited to controlled laboratory conditions. Lizards can be useful models to improve our understanding of the nutritional regulation of the GH/IGF-1 axis because many species are relatively easy to observe and manipulate both in the laboratory and in the field. In the present study, the effects of variation in food intake on growth, body condition, and hepatic IGF-1 mRNA levels were measured in (1) juveniles of Sceloporus jarrovii maintained on a full or 1/3 ration and (2) hatchlings of Sceloporus undulatus subjected to full or zero ration with or without re-feeding. These parameters plus plasma IGF-1 were measured in a third experiment using adults of S. undulatus subjected to full or zero ration with or without re-feeding. In all experiments, plasma corticosterone was measured as an anticipated indicator of nutritional stress. In S. jarrovii, growth and body condition were reduced but lizards remained in positive energy balance on 1/3 ration, and hepatic IGF-1 mRNA and plasma corticosterone were not affected in comparison to full ration. In S. undulatus, growth, body condition, hepatic IGF-1 mRNA, and plasma IGF-1 were all reduced by zero ration and restored by refeeding. Plasma corticosterone was increased in response to zero ration and restored by full ration in hatchlings but not adults of S. undulatus. These data indicate that lizards conform to the broader vertebrate model in which severe food deprivation and negative energy balance is required to attenuate systemic IGF-1 expression. However, when animals remain in positive energy balance, reduced food intake does not appear to affect systemic IGF-1. Consistent with other studies on lizards, the corticosterone response to reduced food intake is an unreliable indicator

  13. Talc based exopolysaccharides formulation enhancing growth and production of Hellianthus annuus under saline conditions.

    PubMed

    Tewari, S; Arora, K

    2014-12-24

    Stress tolerating strain of Pseudomonas aeruginosa PF07 possessing plant growth promoting activity was screened for the production of exopolysaccharides (EPS). EPS production was monitored in the cell free culture supernatant (CFCS) and extracted EPS was further purified by thin layer chromatography. EPS producing cells were taken to design talc based formulation and its efficacy was checked on oilseed crop sunflower (Hellianthus annuus), under in vivo saline conditions (soil irrigated with 125 mM of saline water). Application of bioformulation significantly enhanced the yield and growth attributes of the plant in comparison to control (untreated seeds) under stress and non—stress conditions. Germination rate, plant length, dry weight and seed weight increased remarkably. The above findings suggest the application and benefits of utilizing EPS formulation in boosting early seedling emergence, enhancing plant growth parameters, increasing seed weight and mitigating stress in saline affected regions. Such bioformulation may enhance RAS/RT (Root Adhering Soil to Root Tissue ratio), texture of the soil, increase porosity, improve uptake of nutrients, and hence may be considered as commercially important formulation for renovation of stressed sites and enhancing plant growth.

  14. Siderophore production by Bacillus megaterium: effect of growth phase and cultural conditions.

    PubMed

    Santos, Sofia; Neto, Isabel F F; Machado, Manuela D; Soares, Helena M V M; Soares, Eduardo V

    2014-01-01

    Siderophore production by Bacillus megaterium was detected, in an iron-deficient culture medium, during the exponential growth phase, prior to the sporulation, in the presence of glucose; these results suggested that the onset of siderophore production did not require glucose depletion and was not related with the sporulation. The siderophore production by B. megaterium was affected by the carbon source used. The growth on glycerol promoted the very high siderophore production (1,182 μmol g(-1) dry weight biomass); the opposite effect was observed in the presence of mannose (251 μmol g(-1) dry weight biomass). The growth in the presence of fructose, galactose, glucose, lactose, maltose or sucrose, originated similar concentrations of siderophore (546-842 μmol g(-1) dry weight biomass). Aeration had a positive effect on the production of siderophore. Incubation of B. megaterium under static conditions delayed and reduced the growth and the production of siderophore, compared with the incubation in stirred conditions.

  15. Effects of environmental conditions on growth and survival of Salmonella in pasteurized whole egg.

    PubMed

    Jakočiūnė, Džiuginta; Bisgaard, Magne; Hervé, Gaëlle; Protais, Jocelyne; Olsen, John Elmerdahl; Chemaly, Marianne

    2014-08-01

    This study investigated the influence of three parameters (time, temperature and NaCl concentration) on survival and four parameters (temperature, NaCl and lysozyme concentrations and pH) on growth of Salmonella enterica serovar Enteritidis (S. Enteritidis) in pasteurized whole egg (PWE). Doehlert uniform shell design was employed to choose conditions for trials and data was fitted to polynomial models and were presented as estimated response surfaces. A model for prediction of reduction of S. Enteritidis in PWE within temperatures between 50 and 58°C, NaCl concentrations of 0-12%, and heating times between 30 and 210s and a model for prediction of growth rate of S. Enteritidis in PWE in the temperature range of 1-25°C, NaCl concentration of 0-12%, pH between 5 and 9, and lysozyme concentrations of 107-1007 U/mg proteins were developed. The maximum reduction condition was 58°C, 0% of NaCl at a fixed heating time of 120s, while maximum growth rate was estimated at 25°C and 0% of NaCl. pH and lysozyme concentration were shown not to influence growth performance significantly in the range of values studied. Results inform industry of the optimal pasteurization and storage parameters for liquid whole egg.

  16. Optimization of photobioreactor growth conditions for a cyanobacterium expressing mosquitocidal Bacillus thuringiensis Cry proteins.

    PubMed

    Ketseoglou, Irene; Bouwer, Gustav

    2013-08-10

    An Anabaena strain (PCC 7120#11) that was genetically engineered to express Bacillus thuringiensis subsp. israelensis cry genes has shown good larvicidal activity against Anopheles arabiensis, a major vector of malaria in Africa. Response surface methodology was used to evaluate the relationship between key growth factors and the volumetric productivity of PCC 7120#11 in an indoor, flat-plate photobioreactor. The interaction of input CO₂ concentration and airflow rate had a statistically significant effect on the volumetric productivity of PCC 7120#11, as did the interaction of airflow rate and photosynthetic photon flux density. Model-based numerical optimization indicated that the optimal factor level combination for maximizing PCC 7120#11 volumetric productivity was a photosynthetic photon flux density of 154 μmol m⁻² s⁻¹ and air enriched with 3.18% (v/v) CO₂ supplied at a flow rate of 1.02 vessel volumes per minute. At the levels evaluated in the study, none of the growth factors had a significant effect on the median lethal concentration of PCC 7120#11 against An. arabiensis larvae. This finding is important because loss of mosquitocidal activity under growth conditions that maximize volumetric productivity would impact on the feasibility of using PCC 7120#11 in malaria vector control programs. The study showed the usefulness of response surface methodology for determination of the optimal growth conditions for a cyanobacterium that is genetically engineered to have larvicidal activity against malaria vectors.

  17. Effects of growth conditions on archaellation and N-glycosylation in Methanococcus maripaludis.

    PubMed

    Ding, Yan; Lau, Zoe; Logan, Susan M; Kelly, John F; Berezuk, Alison; Khursigara, Cezar M; Jarrell, Ken F

    2016-02-01

    In this study, the effects of growth conditions on archaellation in Methanococcus maripaludis were examined. Cells were grown in a variety of media, including complex, minimal and with formate as the electron donor, with different nitrogen sources, varied salinities and at a variety of growth temperatures. Of the conditions tested, Western blot results showed that major archaellin FlaB2 levels only varied detectably as a result of growth temperature. Whilst the amount of FlaB2 was similar for cells grown at < 35 °C, protein levels decreased at 38 °C and were barely detectable at 42 °C. Quantitative reverse transcription PCR experiments demonstrated that the flaB2 transcript levels were almost undetectable at 42 °C. Electron microscopy confirmed that the FlaB2 levels detected by Western blots corresponded to the state of archaellation, with cells grown at 42 °C being mostly non-archaellated. Unexpectedly, a lower apparent molecular mass for FlaB2 was observed in Western blots of cells grown at temperatures >38 °C, suggestive of a truncation in the attached N-linked tetrasaccharide at higher growth temperatures. MS analysis of archaella isolated from cells grown at 40 °C confirmed that FlaB2 was now decorated with a trisaccharide in which the third sugar was also lacking the attached threonine and acetamidino modifications found in the WT glycan.

  18. Monoraphidium sp. as an algal feedstock for biodiesel: Determining optimal growth conditions in wastewater

    NASA Astrophysics Data System (ADS)

    Davidson, Zachary William

    This thesis set out to investigate different conditions for growth of the freshwater algal species Monoraphidium sp. for use as a feedstock for biodiesel. The algae was inoculated into effluent gathered from a local water treatment plant and placed into 50gal mesocosms. Cells were grown at large scale in wastewater, harvested, and run through extractions to collect lipids (26%DW). The lipids were then turned into biodiesel. The algae also removed most of the pollutants in the wastewater, lowering nitrate and phosphate levels usually to less than 1mg/L. Erlenmeyer flask cultures (1L) were used to determine optimal growth conditions for temperature (10°C), light intensity (30microE/m2/sec with a 10 hour photoperiod), and initial inoculation density (1x104cells/mL). The addition of bicarbonate during the initial or exponential growth phase had no effect on growth. It was concluded that Monoraphidium sp. grown in USDA Hardiness Zone 5 is capable of producing biodiesel.

  19. Growth, morphology and mechanism of rare earth vanadate crystals under mild hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    Byrappa, K.; Chandrashekar, C. K.; Basavalingu, B.; LokanathaRai, K. M.; Ananda, S.; Yoshimura, M.

    2007-08-01

    Single crystals of RVO 4 (R=Y,Gd) doped with optically active element like Nd have been obtained under mild hydrothermal conditions ( T=240 °C, P˜80 bars). A detailed mechanism of the crystallization process, which helps in the considerable reduction of the PT conditions of the growth of these high-melting (m.p.>1800 °C) crystals has been formulated. The crystals obtained have been subjected to morphological, X-ray powder diffraction and infrared spectroscopic studies.

  20. Identification of sRNAs expressed by the human pathogen Neisseria gonorrhoeae under disparate growth conditions.

    PubMed

    McClure, Ryan; Tjaden, Brian; Genco, Caroline

    2014-01-01

    In the last several years, bacterial gene regulation via small RNAs (sRNAs) has been recognized as an important mechanism controlling expression of essential proteins that are critical to bacterial growth and metabolism. Technologies such as RNA-seq are rapidly expanding the field of sRNAs and are enabling a global view of the "sRNAome" of several bacterial species. While numerous sRNAs have been identified in a variety of both Gram-negative and Gram-positive bacteria, only a very small number have been fully characterized in the human pathogen Neisseria gonorrhoeae, the etiological agent of the STD gonorrhea. Here we present the first analysis of N. gonorrhoeae specifically focused on the identification of sRNAs through RNA-seq analysis of the organism cultured under different in vitro growth conditions. Using a new computational program, Rockhopper, to analyze prokaryotic RNA-seq data obtained from N. gonorrhoeae we identified several putative sRNAs and confirmed their expression and size through Northern blot analysis. In addition, RNA was collected from four different growth conditions (iron replete and deplete, as well as with and without co-culture with human endocervical cells). Many of the putative sRNAs identified shoed varying expression levels relative to the different growth conditions examine or were detected only under certain conditions but not others. Comparisons of identified sRNAs with the regulatory pattern of putative mRNA targets revealed possible functional roles for these sRNAs. These studies are the first to carry out a global analysis of N. gonorrhoeae specifically focused on sRNAs and show that RNA-mediated regulation may be an important mechanism of gene control in this human pathogen.

  1. Growth conditions, compact perturbations and operator subdecomposability, with applications to generalized Cesàro operators

    NASA Astrophysics Data System (ADS)

    Miller, T. L.; Miller, V. G.; Neumann, M. M.

    2005-01-01

    We adapt recent results of Albrecht and Ricker to obtain conditions under which growth constraints on the left resolvent of a Banach space operator are preserved under suitable perturbations. As an application, we establish Bishop's property ([beta]) for certain generalized Cesàro operators on the classical Hardy spaces Hp, 1

  2. Features of Scots pine radial growth in conditions of provenance trial

    NASA Astrophysics Data System (ADS)

    Kuzmin, S.

    2012-12-01

    Provenance trial of Scots pine in Boguchany forestry of Krasnoyarsk krai is conducted on two different soils - dark-grey loam forest soil and sod-podzol sandy soil. Complex of negative factors for plant growth and development appears in dry conditions of sandy soil. It could results in decrease of resistance to diseases. Sandy soils in different climatic zones have such common traits as low absorbing capacity, poorness of elemental nutrition, low microbiological activity and moisture capacity, very high water permeability. But Scots pine trees growing in such conditions could have certain advantages and perspectives of use. In the scope of climate change (global warming) the study of Scots pine growth on sandy soil become urgent because of more frequent appearance of dry seasons. Purpose of the work is revelation of radial growth features of Scots pine with different origin in dry conditions of sandy soil and assessment of external factors influence. The main feature of radial growth of majority of studied pine provenances in conditions of sandy soil is presence of significant variation of increment with distinct decline in 25-years old with loss of tree rings in a number of cases. The reason of it is complex of factors: deficit of June precipitation and next following outbreak of fungal disease. Found «frost rings» for all trees of studied clymatypes in 1992 are the consequence of temperature decline from May 21 to June 2 - from 23 C degrees up to 2 C. Perspective climatypes with biggest radial increments and least sensitivity to fungal disease were revealed.

  3. Group Counseling for Self-Actualization.

    ERIC Educational Resources Information Center

    Streich, William H.; Keeler, Douglas J.

    Self-concept, creativity, growth orientation, an integrated value system, and receptiveness to new experiences are considered to be crucial variables to the self-actualization process. A regular, year-long group counseling program was conducted with 85 randomly selected gifted secondary students in the Farmington, Connecticut Public Schools. A…

  4. Microbial growth and transport in porous media under denitrification conditions: experiments and simulations

    NASA Astrophysics Data System (ADS)

    Clement, T. P.; Peyton, B. M.; Skeen, R. S.; Jennings, D. A.; Petersen, J. N.

    1997-01-01

    Soil column experiments were conducted to study bacterial growth and transport in porous media under denitrifying conditions. The study used a denitrifying microbial consortium isolated from aquifer sediments sampled at the U.S. Department of Energy's Hanford site. One-dimensional, packed-column transport studies were conducted under two substrate loading conditions. A detailed numerical model was developed to predict the measured effluent cell and substrate concentration profiles. First-order attachment and detachment models described the interphase exchange processes between suspended and attached biomass. Insignificantly different detachment coefficient values of 0.32 and 0.43 day -1, respectively, were estimated for the high and low nitrate loading conditions (48 and 5 mg l -1 NO 3, respectively). Comparison of these values with those calculated from published data for aerobically growing organisms shows that the denitrifying consortium had lower detachment rate coefficients. This suggests that, similar to detachment rates in reactor-grown biofilms, detachment in porous media may increase with microbial growth rate. However, available literature data are not sufficient to confirm a specific analytical model for predicting this growth dependence.

  5. Characteristics of bacterial and fungal growth in plastic bottled beverages under a consuming condition model.

    PubMed

    Watanabe, Maiko; Ohnishi, Takahiro; Araki, Emiko; Kanda, Takashi; Tomita, Atsuko; Ozawa, Kazuhiro; Goto, Keiichi; Sugiyama, Kanji; Konuma, Hirotaka; Hara-Kudo, Yukiko

    2014-01-01

    Microbial contamination in unfinished beverages can occur when drinking directly from the bottle. Various microorganisms, including foodborne pathogens, are able to grow in these beverages at room temperature or in a refrigerator. In this study, we elucidated the characteristics of microorganism growth in bottled beverages under consuming condition models. Furthermore, we provide insight into the safety of partially consumed bottled beverages with respect to food hygiene. We inoculated microorganisms, including foodborne pathogens, into various plastic bottled beverages and analysed the dynamic growth of microorganisms as well as bacterial toxin production in the beverages. Eight bottled beverage types were tested in this study, namely green tea, apple juice drink, tomato juice, carbonated drink, sport drink, coffee with milk, isotonic water and mineral water, and in these beverages several microorganism types were used: nine bacteria including three toxin producers, three yeasts, and five moulds. Following inoculation, the bottles were incubated at 35°C for 48 h for bacteria, 25°C for 48 h for yeasts, and 25°C for 28 days for moulds. During the incubation period, the number of bacteria and yeasts and visible changes in mould-growth were determined over time. Our results indicated that combinations of the beverage types and microorganism species correlated with the degree of growth. Regarding factors that affect the growth and toxin-productivity of microorganisms in beverages, it is speculated that the pH, static/shaking culture, temperature, additives, or ingredients, such as carbon dioxide or organic matter (especially of plant origin), may be important for microorganism growth in beverages. Our results suggest that various types of unfinished beverages have microorganism growth and can include food borne pathogens and bacterial toxins. Therefore, our results indicate that in terms of food hygiene it is necessary to consume beverages immediately after opening

  6. Spherulitic Growth of Hematite Under Hydrothermal Conditions: Insights into the Growth Mechanism of Hematite Spherules at Meridiani Planum Mars.

    NASA Technical Reports Server (NTRS)

    Ming, Douglas W.; Golden, D. C.; Morris, R. V.

    2010-01-01

    Hematite-rich spherules were discovered embedded in sulfate-rich outcrop rock and as lag deposits of whole and broken spherules by the Opportunity rover at Meridiani Planem [1-6]. The Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES), which has a wider spectral range compared to the Mars Exploration Rover Mini-TES, provided an important constraint that hematite-rich spherules are dominated by emission along the crystallographic c-axis [7-10]. We have previously synthesized hematite spherules whose mineralogic, chemical, and crystallographic properties are strikingly similar to those for the hematite-rich spherules at Meridiani Planum [11]. The spherules were synthesized in the laboratory along with hydronium jarosite and minor hydronium alunite from Fe-Al-Mg-S-Cl acid sulfate solutions under hydrothermal conditions. The reaction sequence was (1) precipitation of hydronium jarosite, (2) jarosite dissolution and precipitation of hematite spherules, and (3) precipitation of hydronium alunite upon depletion of hydronium jarosite. The spherules exhibit a radial growth texture with the crystallographic c-axis aligned along the radial direction, so that thermal emission spectra have no hematite emissivity minimum at approx.390/cm similar to the emission spectra returned by MGS TES. The objective of this paper is to expand on our initial studies [11] to examine the morphological evolution during growth of spherules starting from sub-micrometer crystals to spherules many orders of magnitude in size.

  7. Growth condition dependency is the major cause of non-responsiveness upon genetic perturbation

    PubMed Central

    Amini, Saman; Holstege, Frank C. P.

    2017-01-01

    Investigating the role and interplay between individual proteins in biological processes is often performed by assessing the functional consequences of gene inactivation or removal. Depending on the sensitivity of the assay used for determining phenotype, between 66% (growth) and 53% (gene expression) of Saccharomyces cerevisiae gene deletion strains show no defect when analyzed under a single condition. Although it is well known that this non-responsive behavior is caused by different types of redundancy mechanisms or by growth condition/cell type dependency, it is not known what the relative contribution of these different causes is. Understanding the underlying causes of and their relative contribution to non-responsive behavior upon genetic perturbation is extremely important for designing efficient strategies aimed at elucidating gene function and unraveling complex cellular systems. Here, we provide a systematic classification of the underlying causes of and their relative contribution to non-responsive behavior upon gene deletion. The overall contribution of redundancy to non-responsive behavior is estimated at 29%, of which approximately 17% is due to homology-based redundancy and 12% is due to pathway-based redundancy. The major determinant of non-responsiveness is condition dependency (71%). For approximately 14% of protein complexes, just-in-time assembly can be put forward as a potential mechanistic explanation for how proteins can be regulated in a condition dependent manner. Taken together, the results underscore the large contribution of growth condition requirement to non-responsive behavior, which needs to be taken into account for strategies aimed at determining gene function. The classification provided here, can also be further harnessed in systematic analyses of complex cellular systems. PMID:28257504

  8. Mathematical modeling of growth of Salmonella in raw ground beef under isothermal conditions from 10 to 45 Degree C

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to develop primary and secondary models to describe the growth of Salmonella in raw ground beef. Primary and secondary models can be integrated into a dynamic model that can predict the microbial growth under varying environmental conditions. Growth data of Salmonel...

  9. Growth condition-dependent Esp expression by Enterococcus faecium affects initial adherence and biofilm formation.

    PubMed

    Van Wamel, Willem J B; Hendrickx, Antoni P A; Bonten, Marc J M; Top, Janetta; Posthuma, George; Willems, Rob J L

    2007-02-01

    A genetic subpopulation of Enterococcus faecium, called clonal complex 17 (CC-17), is strongly associated with hospital outbreaks and invasive infections. Most CC-17 strains contain a putative pathogenicity island encoding the E. faecium variant of enterococcal surface protein (Esp). Western blotting, flow cytometric analyses, and electron microscopy showed that Esp is expressed and exposed on the surface of E. faecium, though Esp expression and surface exposure are highly varied among different strains. Furthermore, Esp expression depends on growth conditions like temperature and anaerobioses. When grown at 37 degrees C, five of six esp-positive E. faecium strains showed significantly increased levels of surface-exposed Esp compared to bacteria grown at 21 degrees C, which was confirmed at the transcriptional level by real-time PCR. In addition, a significant increase in surface-exposed Esp was found in half of these strains when grown at 37 degrees C under anaerobic conditions compared to the level in bacteria grown under aerobic conditions. Finally, amounts of surface-exposed Esp correlated with initial adherence to polystyrene (R(2) = 0.7146) and biofilm formation (R(2) = 0.7535). Polystyrene adherence was competitively inhibited by soluble recombinant N-terminal Esp. This study demonstrates that Esp expression on the surface of E. faecium (i) varies consistently between strains, (ii) is growth condition dependent, and (iii) is quantitatively correlated with initial adherence and biofilm formation. These data indicate that E. faecium senses and responds to changing environmental conditions, which might play a role in the early stages of infection when bacteria transit from oxygen-rich conditions at room temperature to anaerobic conditions at body temperature. In addition, variation of surface exposure may explain the contrasting findings reported on the role of Esp in biofilm formation.

  10. Increased expression of fibroblast growth factors in a rabbit skeletal muscle model of exercise conditioning.

    PubMed Central

    Morrow, N G; Kraus, W E; Moore, J W; Williams, R S; Swain, J L

    1990-01-01

    Increased tonic contractile activity from exercise or electrical stimulation induces a variety of changes in skeletal muscle, including vascular growth, myoblast proliferation, and fast to slow fiber type conversion. Little is known about the cellular control of such changes, but pleiotropic biochemical modulators such as fibroblast growth factors (FGFs) may be involved in this response and thus may be regulated in response to such stimuli. We examined the regulation of FGF expression in an in vivo model of exercise conditioning previously shown to exhibit vascular growth and fast to slow fiber conversion. FGFs were extracted by heparin-affinity chromatography from extensor digitorum longus muscles of adult rabbits subjected to chronic motor nerve stimulation at 10 Hz. Growth factor activity (expressed in growth factor units [GFUs]) of muscle stimulated for 3 and 21 d was assayed by [3H]thymidine incorporation in 3T3 fibroblasts and compared with that present in the contralateral unstimulated muscle. A small increase in heparin-binding mitogenic activity was observed as early as 3 d of stimulation, and by 21 d mitogenic activity increased significantly when normalized to either wet weight (stimulated, 287 +/- 61 GFU/g; unstimulated, 145 +/- 39 GFU/g) or to protein (stimulated, 5.3 +/- 1.1 GFU/mg; unstimulated, 2.2 +/- 0.6 GFU/mg) (+/- SE, P less than 0.05). Western analysis demonstrated increased amounts of peptides with immunological identity to acidic and basic FGFs in stimulated muscle. The increase in FGF content observed in this study is synchronous with neovascularization, myoblast proliferation, and fast to slow fiber type conversion previously shown in this model. These results demonstrate that increased expression of FGFs is associated with motor nerve stimulation and increased tonic contractile activity of skeletal muscle, and suggests that these proteins may play a regulatory role in the cellular changes that occur during exercise conditioning. Images

  11. Rates of Root and Organism Growth, Soil Conditions, and Temporal and Spatial Development of the Rhizosphere

    PubMed Central

    WATT, MICHELLE; SILK, WENDY K.; PASSIOURA, JOHN B.

    2006-01-01

    • Background Roots growing in soil encounter physical, chemical and biological environments that influence their rhizospheres and affect plant growth. Exudates from roots can stimulate or inhibit soil organisms that may release nutrients, infect the root, or modify plant growth via signals. These rhizosphere processes are poorly understood in field conditions. • Scope and Aims We characterize roots and their rhizospheres and rates of growth in units of distance and time so that interactions with soil organisms can be better understood in field conditions. We review: (1) distances between components of the soil, including dead roots remnant from previous plants, and the distances between new roots, their rhizospheres and soil components; (2) characteristic times (distance2/diffusivity) for solutes to travel distances between roots and responsive soil organisms; (3) rates of movement and growth of soil organisms; (4) rates of extension of roots, and how these relate to the rates of anatomical and biochemical ageing of root tissues and the development of the rhizosphere within the soil profile; and (5) numbers of micro-organisms in the rhizosphere and the dependence on the site of attachment to the growing tip. We consider temporal and spatial variation within the rhizosphere to understand the distribution of bacteria and fungi on roots in hard, unploughed soil, and the activities of organisms in the overlapping rhizospheres of living and dead roots clustered in gaps in most field soils. • Conclusions Rhizosphere distances, characteristic times for solute diffusion, and rates of root and organism growth must be considered to understand rhizosphere development. Many values used in our analysis were estimates. The paucity of reliable data underlines the rudimentary state of our knowledge of root–organism interactions in the field. PMID:16551700

  12. Temperature dependent growth, feeding, nutritional condition and aerobic metabolism of juvenile spiny lobster, Sagmariasus verreauxi.

    PubMed

    Fitzgibbon, Quinn P; Simon, Cedric J; Smith, Gregory G; Carter, Chris G; Battaglene, Stephen C

    2017-05-01

    We examined the effects of temperature on the growth, feeding, nutritional condition and aerobic metabolism of juvenile spiny lobster, Sagmariasus verreauxi, in order to determine if temperature acclimated aerobic scope correlates with optimum for growth and to establish the thermal tolerance window for this emerging aquaculture species. Juvenile lobsters (initial weight=10.95±0.47g) were reared (n=7) at temperatures from 11.0 to 28.5°C for 145days. All lobsters survived from 14.5 to 25.0°C while survival was reduced at 11.0°C (86%) and all lobsters died at 28.5°C. Lobster specific growth rate and specific feed consumption displayed a unimodal response with temperature, peaking at 21.5°C. Lobster standard, routine and maximum metabolic rates, and aerobic scope all increased exponentially up to maximum non-lethal temperature. Optimum temperature for growth did not correspond to that for maximum aerobic scope suggesting that aerobic scope is not an effective predictor of the thermal optimum of spiny lobsters. Plateauing of specific feed consumption beyond 21.5°C suggests that temperature dependent growth of lobsters is limited by capacity to ingest or digest sufficient food to meet increasing maintenance metabolic demands at high temperatures. The nutritional condition of lobsters was not influenced by temperature and feed conversion ratio was improved at lower temperatures. These findings add to a growing body of evidence questioning the generality of aerobic scope to describe the physiological thermal boundaries of aquatic ectotherms and suggest that feed intake plays a crucial role in regulating performance at thermal extremes.

  13. Simulating crop growth with Expert-N-GECROS under different site conditions in Southwest Germany

    NASA Astrophysics Data System (ADS)

    Poyda, Arne; Ingwersen, Joachim; Demyan, Scott; Gayler, Sebastian; Streck, Thilo

    2016-04-01

    When feedbacks between the land surface and the atmosphere are investigated by Atmosphere-Land surface-Crop-Models (ALCM) it is fundamental to accurately simulate crop growth dynamics as plants directly influence the energy partitioning at the plant-atmosphere interface. To study both the response and the effect of intensive agricultural crop production systems on regional climate change in Southwest Germany, the crop growth model GECROS (YIN & VAN LAAR, 2005) was calibrated based on multi-year field data from typical crop rotations in the Kraichgau and Swabian Alb regions. Additionally, the SOC (soil organic carbon) model DAISY (MÜLLER et al., 1998) was implemented in the Expert-N model tool (ENGEL & PRIESACK, 1993) and combined with GECROS. The model was calibrated based on a set of plant (BBCH, LAI, plant height, aboveground biomass, N content of biomass) and weather data for the years 2010 - 2013 and validated with the data of 2014. As GECROS adjusts the root-shoot partitioning in response to external conditions (water, nitrogen, CO2), it is suitable to simulate crop growth dynamics under changing climate conditions and potentially more frequent stress situations. As C and N pools and turnover rates in soil as well as preceding crop effects were expected to considerably influence crop growth, the model was run in a multi-year, dynamic way. Crop residues and soil mineral N (nitrate, ammonium) available for the subsequent crop were accounted for. The model simulates growth dynamics of winter wheat, winter rape, silage maize and summer barley at the Kraichgau and Swabian Alb sites well. The Expert-N-GECROS model is currently parameterized for crops with potentially increasing shares in future crop rotations. First results will be shown.

  14. High-quality and high-purity homoepitaxial diamond (100) film growth under high oxygen concentration condition

    SciTech Connect

    Teraji, Tokuyuki

    2015-09-21

    Defect formation during diamond homoepitaxial growth was sufficiently inhibited by adding oxygen simultaneously in the growth ambient with high concentration of 2%. A 30-μm thick diamond films with surface roughness of <2 nm were homoepitaxially deposited on the (100) diamond single crystal substrates with reasonable growth rate of approximately 3 μm h{sup −1} under the conditions of higher methane concentration of 10%, higher substrate temperature of ∼1000 °C, and higher microwave power density condition of >100 W cm{sup −3}. Surface characteristic patterns moved to an identical direction with growth thickness, indicating that lateral growth was dominant growth mode. High chemical purity represented by low nitrogen concentration of less than 1 ppb and the highest {sup 12}C isotopic ratio of 99.998% of the obtained homoepitaxial diamond (100) films suggest that the proposed growth condition has high ability of impurity control.

  15. Effect of ocean acidification on growth and otolith condition of juvenile scup, Stenotomus chrysops.

    PubMed

    Perry, Dean M; Redman, Dylan H; Widman, James C; Meseck, Shannon; King, Andrew; Pereira, Jose J

    2015-09-01

    Increasing amounts of atmospheric carbon dioxide (CO2) from human industrial activities are causing changes in global ocean carbonate chemistry, resulting in a reduction in pH, a process termed "ocean acidification." It is important to determine which species are sensitive to elevated levels of CO2 because of potential impacts to ecosystems, marine resources, biodiversity, food webs, populations, and effects on economies. Previous studies with marine fish have documented that exposure to elevated levels of CO2 caused increased growth and larger otoliths in some species. This study was conducted to determine whether the elevated partial pressure of CO2 (pCO2) would have an effect on growth, otolith (ear bone) condition, survival, or the skeleton of juvenile scup, Stenotomus chrysops, a species that supports both important commercial and recreational fisheries. Elevated levels of pCO2 (1200-2600 μatm) had no statistically significant effect on growth, survival, or otolith condition after 8 weeks of rearing. Field data show that in Long Island Sound, where scup spawn, in situ levels of pCO2 are already at levels ranging from 689 to 1828 μatm due to primary productivity, microbial activity, and anthropogenic inputs. These results demonstrate that ocean acidification is not likely to cause adverse effects on the growth and survivability of every species of marine fish. X-ray analysis of the fish revealed a slightly higher incidence of hyperossification in the vertebrae of a few scup from the highest treatments compared to fish from the control treatments. Our results show that juvenile scup are tolerant to increases in seawater pCO2, possibly due to conditions this species encounters in their naturally variable environment and their well-developed pH control mechanisms.

  16. Winter feeding, growth and condition of brown trout Salmo trutta in a groundwater-dominated stream

    USGS Publications Warehouse

    French, William E.; Vondracek, Bruce C.; Ferrington, Leonard C.; Finlay, Jacques C.; Dieterman, Douglas J.

    2014-01-01

    Winter can be a stressful period for stream-dwelling salmonid populations, often resulting in reduced growth and survival. Stream water temperatures have been identified as a primary mechanism driving reductions in fitness during winter. However, groundwater inputs can moderate water temperature and may reduce winter severity. Additionally, seasonal reductions in prey availability may contribute to decreased growth and survival, although few studies have examined food webs supporting salmonids under winter conditions. This study employed diet, stable isotope, and mark-recapture techniques to examine winter (November through March) feeding, growth, and condition of brown troutSalmo trutta in a groundwater-dominated stream (Badger Creek, Minnesota, USA). Growth was greater for fish ≤ 150 mm (mean = 4.1 mg g−1 day−1) than for those 151–276 mm (mean = 1.0 mg g−1 day−1) during the winter season. Overall condition from early winter to late winter did not vary for fish ≤150 mm (mean relative weight (Wr) = 89.5) and increased for those 151–276 mm (mean Wr = 85.8 early and 89.4 late). Although composition varied both temporally and by individual, brown trout diets were dominated by aquatic invertebrates, primarily Amphipods, Dipterans, and Trichopterans. Stable isotope analysis supported the observations of the dominant prey taxa in stomach contents and indicated the winter food web was supported by a combination of allochthonous inputs and aquatic macrophytes. Brown trout in Badger Creek likely benefited from the thermal regime and increased prey abundance present in this groundwater-dominated stream during winter.

  17. Optimization of plant mineral nutrition under growth-limiting conditions in a lunar greenhouse

    NASA Astrophysics Data System (ADS)

    Zaets, I.; Voznyuk, T.; Kovalchuk, M.; Rogutskyy, I.; Lukashov, D.; Mytrokhyn, O.; Mashkovska, S.; Foing, B.; Kozyrovska, N.

    It may be assumed that the first plants in a lunar base will play a main role in forming a protosoil of acceptable fertility needed for purposively growing second generation plants like wheat, rice, tulips, etc. The residues of the first-generation plants could be composted and transformed by microorganisms into a soil-like substrate within a loop of regenerative life support system. The lunar regolith may be used as a substrate for plant growth at the very beginning of a mission to reduce its cost. The use of microbial communities for priming plants will allow one to facilitate adaption to stressful conditions and to support the plant development under growth limiting conditions. Well-defined plant-associated bacteria were used for growing three cultivars to colonize French marigold (Tagetes patula L.) in anorthosite, a substrate of low bioavailability, analogous to a lunar rock. The consortium was composed of plant growth promoting rhizobacteria and the bacterium Paenibacillus sp. IMBG156 which stimulated seed germination, better plant development, and finally, the flowering of inoculated tagetes. In contrast, control plants grew poorly in the anorthosite and practically did not survive until flowering. Analysis of bacterial community composition showed that all species colonized plant roots, however, the rate of colonization depended on the allelopatic characteristics of marigold varieties. Bacteria of consortium were able to liberate some elements (Ca, Fe, Mn, Si, Ni, Cu, Zn) from substrate anorthosite. Plant colonization by mixed culture of bacterial strains resulted in the increase of accumulation of K, Mg, Mn by the plant and in the lowering of the level of toxic metal accumulation. It was assumed that a rationally assembled consortium of bacterial strains promoted germination of marygold seeds and supported the plant development under growth limiting conditions by means of bioleaching plant essential nutritional elements and by protecting the plant against

  18. Effects of developmental conditions on growth, stress, and telomeres in black-legged kittiwake chicks.

    PubMed

    Young, Rebecca C; Welcker, Jorg; Barger, Christopher P; Hatch, Scott A; Merkling, Thomas; Kitaiskaia, Evgenia V; Haussmann, Mark F; Kitaysky, Alexander S

    2017-03-30

    Early-life conditions can drive ageing patterns and life history strategies throughout the lifespan. Certain social, genetic, and nutritional developmental conditions are more likely to produce high-quality offspring: those with good likelihood of recruitment and productivity. Here we call such conditions "favored states" and explore their relationship with physiological variables during development in a long-lived seabird, the black-legged kittiwake (Rissa tridactyla). Two favored states were experimentally generated by manipulation of food availability and brood size, while hatching order and sex were also explored as naturally generating favored states. Thus, the favored states we explored were high food availability, lower levels of sibling competition, hatching first, and male sex. We tested the effects of favored developmental conditions on growth, stress, telomere length (a molecular marker associated with lifespan), and nestling survival. Generation of favored states through manipulation of both the nutritional and social environments furthered our understanding of their relative contributions to development and phenotype: increased food availability led to larger body size, reduced stress, and higher antioxidant status, while lower sibling competition (social environment) led to lower telomere loss and longer telomere lengths in fledglings. Telomere length predicted nestling survival, and wing growth was also positively correlated with telomere length, supporting the idea that telomeres may indicate individual quality, mediated by favored states. This article is protected by copyright. All rights reserved.

  19. Influence of storage conditions on the growth of Pseudomonas species in refrigerated raw milk.

    PubMed

    De Jonghe, Valerie; Coorevits, An; Van Hoorde, Koenraad; Messens, Winy; Van Landschoot, Anita; De Vos, Paul; Heyndrickx, Marc

    2011-01-01

    The refrigerated storage of raw milk throughout the dairy chain prior to heat treatment creates selective conditions for growth of psychrotolerant bacteria. These bacteria, mainly belonging to the genus Pseudomonas, are capable of producing thermoresistant extracellular proteases and lipases, which can cause spoilage and structural defects in pasteurized and ultra-high-temperature-treated milk (products). To map the influence of refrigerated storage on the growth of these pseudomonads, milk samples were taken after the first milking turn and incubated laboratory scale at temperatures simulating optimal and suboptimal preprocessing storage conditions. The outgrowth of Pseudomonas members was monitored over time by means of cultivation-independent denaturing gradient gel electrophoresis (DGGE). Isolates were identified by a polyphasic approach. These incubations revealed that outgrowth of Pseudomonas members occurred from the beginning of the dairy chain (farm tank) under both optimal and suboptimal storage conditions. An even greater risk for outgrowth, as indicated by a vast increase of about 2 log CFU per ml raw milk, existed downstream in the chain, especially when raw milk was stored under suboptimal conditions. This difference in Pseudomonas outgrowth between optimal and suboptimal storage was already statistically significant within the farm tank. The predominant taxa were identified as Pseudomonas gessardii, Pseudomonas gessardii-like, Pseudomonas fluorescens-like, Pseudomonas lundensis, Pseudomonas fragi, and Pseudomonas fragi-like. Those taxa show an important spoilage potential as determined on elective media for proteolysis and lipolysis.

  20. Modeling of Macroscopic/Microscopic Transport and Growth Phenomena in Zeolite Crystal Solutions Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Gatsonis, Nikos A.; Alexandrou, Andreas; Shi, Hui; Ongewe, Bernard; Sacco, Albert, Jr.

    1999-01-01

    Crystals grown from liquid solutions have important industrial applications. Zeolites, for instance, a class of crystalline aluminosilicate materials, form the backbone of the chemical process industry worldwide, as they are used as adsorbents and catalysts. Many of the phenomena associated with crystal growth processes are not well understood due to complex microscopic and macroscopic interactions. Microgravity could help elucidate these phenomena and allow the control of defect locations, concentration, as well as size of crystals. Microgravity in an orbiting spacecraft could help isolate the possible effects of natural convection (which affects defect formation) and minimize sedimentation. In addition, crystals will stay essentially suspended in the nutrient pool under a diffusion-limited growth condition. This is expected to promote larger crystals by allowing a longer residence time in a high-concentration nutrient field. Among other factors, the crystal size distribution depends on the nucleation rate and crystallization. These two are also related to the "gel" polymerization/depolymerization rate. Macroscopic bulk mass and flow transport and especially gravity, force the crystals down to the bottom of the reactor, thus forming a sedimentation layer. In this layer, the growth rate of the crystals slows down as crystals compete for a limited amount of nutrients. The macroscopic transport phenomena under certain conditions can, however, enhance the nutrient supply and therefore, accelerate crystal growth. Several zeolite experiments have been performed in space with mixed results. The results from our laboratory have indicated an enhancement in size of 30 to 70 percent compared to the best ground based controls, and a reduction of lattice defects in many of the space grown crystals. Such experiments are difficult to interpret, and cannot be easily used to derive empirical or other laws since many physical parameters are simultaneously involved in the process

  1. Effect of growth conditions on microbial activity and iron-sulfide production by Desulfovibrio vulgaris.

    PubMed

    Zhou, Chen; Vannela, Raveender; Hayes, Kim F; Rittmann, Bruce E

    2014-05-15

    Sulfate-reducing bacteria (SRB) can produce iron sulfide (FeS) solids with mineralogical characteristics that may be beneficial for a variety of biogeochemical applications, such as long-term immobilization of uranium. In this study, the growth and metabolism of Desulfovibrio vulgaris, one of the best-studied SRB species, were comprehensively monitored in batch studies, and the biogenic FeS solids were characterized by X-ray diffraction. Controlling the pH by varying the initial pH, the iron-to-sulfate ratio, or the electron donor - affected the growth of D. vulgaris and strongly influenced the formation and growth of FeS solids. In particular, lower pH (from initial conditions or a decrease caused by less sulfate reduction, FeS precipitation, or using pyruvate as the electron donor) produced larger-sized mackinawite (Fe1+xS). Greater accumulation of free sulfide, from more sulfate reduction by D. vulgaris, also led to larger-sized mackinawite and particularly stimulated mackinawite transformation to greigite (Fe3S4) when the free sulfide concentration was 29.3mM. Furthermore, sufficient free Fe(2+) led to the additional formation of vivianite [Fe3(PO4)2·8(H2O)]. Thus, microbially relevant conditions (initial pH, choice of electron donor, and excess or deficiency of sulfide) are tools to generate biogenic FeS solids of different characteristics.

  2. Survival, growth and condition of freshwater mussels: effects of municipal wastewater effluent.

    PubMed

    Nobles, Trey; Zhang, Yixin

    2015-01-01

    Freshwater mussels (Family Unionidae) are among the most imperiled group of organisms in the world, with nearly 65% of North American species considered endangered. Anthropogenic disturbances, including altered flow regimes, habitat alteration, and pollution, are the major driver of this group's decline. We investigated the effects of tertiary treated municipal wastewater effluent on survivorship, growth, and condition of freshwater mussels in experimental cages in a small Central Texas stream. We tested the effluent effects by measuring basic physical parameters of native three ridge mussels (Amblema plicata) and of non-native Asian clams (Corbicula fluminea), before and after 72-day exposure at four sites above and below a municipal wastewater treatment plant outfall. Survivorship and growth of the non-native Asian clams and growth and condition indices of the native three ridge mussels were significantly higher at the reference site above the outfall than in downstream sites. We attribute this reduction in fitness below the outfall to elevated nutrient and heavy metal concentrations, and the potential presence of other untested-for compounds commonly found in municipal effluent. These results, along with an absence of native mussels below the discharge, indicate a significant negative impact of wastewater effluent on both native and non-native mussels in the stream.

  3. Survival, Growth and Condition of Freshwater Mussels: Effects of Municipal Wastewater Effluent

    PubMed Central

    Nobles, Trey; Zhang, Yixin

    2015-01-01

    Freshwater mussels (Family Unionidae) are among the most imperiled group of organisms in the world, with nearly 65% of North American species considered endangered. Anthropogenic disturbances, including altered flow regimes, habitat alteration, and pollution, are the major driver of this group's decline. We investigated the effects of tertiary treated municipal wastewater effluent on survivorship, growth, and condition of freshwater mussels in experimental cages in a small Central Texas stream. We tested the effluent effects by measuring basic physical parameters of native three ridge mussels (Amblema plicata) and of non-native Asian clams (Corbicula fluminea), before and after 72-day exposure at four sites above and below a municipal wastewater treatment plant outfall. Survivorship and growth of the non-native Asian clams and growth and condition indices of the native three ridge mussels were significantly higher at the reference site above the outfall than in downstream sites. We attribute this reduction in fitness below the outfall to elevated nutrient and heavy metal concentrations, and the potential presence of other untested-for compounds commonly found in municipal effluent. These results, along with an absence of native mussels below the discharge, indicate a significant negative impact of wastewater effluent on both native and non-native mussels in the stream. PMID:26042840

  4. Seeding conditions of the halophyte Atriplex patula for optimal growth on a salt impacted site.

    PubMed

    Young, Michelle A; Rancier, Doug G; Roy, Julie L; Lunn, Stuart R; Armstrong, Sarah A; Headley, John V

    2011-08-01

    Salt-impacted soils resulting from oilfield brine spills are increasingly becoming a significant problem in oil-producing areas of Canada such as Alberta and Saskatchewan. The native halophyte Atriplex patula is being considered a potential species for phytoremediation of brine-impacted sites in these hemiboreal climactic zones. The objective of this study was to investigate the optimal seeding conditions under field conditions (with no irrigation) of A. patula for phytoremediation of salt from a brine-impacted site. Atriplex patula was identified in preliminary greenhouse trials to have one of the highest salt accumulations in relation to plant yields. Different seeding methods of A. patula were assessed in an attempt to achieve reproducible growth of this species. While plant yields for A. patula were improved on compacted soil by approximately 30-50%, growth was uneven with regard to density and height. The uneven growth may be due to seed quality and low precipitation during the field season, while improvements in plant yield on compact soil might be due to a lack of competition with other species.

  5. Exploring the optimum conditions for maximizing the microbial growth of Candida intermedia by response surface methodology.

    PubMed

    Yönten, Vahap; Aktaş, Nahit

    2014-01-01

    Exploring optimum and cost-efficient medium composition for microbial growth of Candida intermedia Y-1981 yeast culture growing on whey was studied by applying a multistep response surface methodology. In the first step, Plackett-Burman (PB) design was utilized to determine the most significant fermentation medium factors on microbial growth. The medium temperature, sodium chloride and lactose concentrations were determined as the most important factors. Subsequently, the optimum combinations of the selected factors were explored by steepest ascent (SA) and central composite design (CCD). The optimum values for lactose and sodium chloride concentrations and medium temperature were found to be 18.4 g/L, 0.161 g/L, and 32.4°C, respectively. Experiments carried out at the optimum conditions revealed a maximum specific growth rate of 0.090 1/hr; 42% of total lactose removal was achieved in 24 h of fermentation time. The obtained results were finally verified with batch reactor experiments carried out under the optimum conditions evaluated.

  6. A spectroscopy-based detector to monitor tomato growth condition in greenhouse

    NASA Astrophysics Data System (ADS)

    Yang, Ce; Li, Minzan; Cui, Di

    2008-12-01

    A spectroscopy-based detector is developed to measure the nitrogen and chlorophyll content of tomato leaves and then to predict the growth condition of tomato plants in greenhouse. The detector uses two wavebands, 527 nm and 762 nm, since it is proved that these wavebands are sensitive to nitrogen and chlorophyll content in plant leaves by previous field test. The detector contains: A Y-type optic fiber, two silicon photocells, a signal processing unit, and a MCU. Light reflection from tomato leaves is transmitted by the Y-type optic fiber to the surface of the silicon photo cells, which transfer optical signal into electrical signal. Then the analog signal is amplified to conform to the TTL level signal standard and finally converted to digital signal by MAX186. After that, the MCU carries on a series of actions, including data calculating, displaying and storage. Using the measured data, the Normalized Difference Vegetation Index (NDVI) is calculated to estimate the nitrogen and chlorophyll content in plant leaves. The result is directly displayed on an LCD screen. Users have an option in saving data, either into a USB-memory stick or into a database over the PC serial port. The detector is portable, inexpensive, and convenient, which make it meet farmers' need in China. The performance test shows that the growth model works very well, and the device has high accuracy in predicting the growth condition of tomato plants in greenhouse.

  7. Analyses of Fatigue Crack Growth and Closure Near Threshold Conditions for Large-Crack Behavior

    NASA Technical Reports Server (NTRS)

    Newman, J. C., Jr.

    1999-01-01

    A plasticity-induced crack-closure model was used to study fatigue crack growth and closure in thin 2024-T3 aluminum alloy under constant-R and constant-K(sub max) threshold testing procedures. Two methods of calculating crack-opening stresses were compared. One method was based on a contact-K analyses and the other on crack-opening-displacement (COD) analyses. These methods gave nearly identical results under constant-amplitude loading, but under threshold simulations the contact-K analyses gave lower opening stresses than the contact COD method. Crack-growth predictions tend to support the use of contact-K analyses. Crack-growth simulations showed that remote closure can cause a rapid rise in opening stresses in the near threshold regime for low-constraint and high applied stress levels. Under low applied stress levels and high constraint, a rise in opening stresses was not observed near threshold conditions. But crack-tip-opening displacement (CTOD) were of the order of measured oxide thicknesses in the 2024 alloy under constant-R simulations. In contrast, under constant-K(sub max) testing the CTOD near threshold conditions were an order-of-magnitude larger than measured oxide thicknesses. Residual-plastic deformations under both constant-R and constant-K(sub max) threshold simulations were several times larger than the expected oxide thicknesses. Thus, residual-plastic deformations, in addition to oxide and roughness, play an integral part in threshold development.

  8. Effects of low-oxygen conditions on embryo growth in the painted turtle, Chrysemys picta.

    PubMed

    Cordero, Gerardo A; Karnatz, Matthew L; Svendsen, Jon C; Gangloff, Eric J

    2017-03-01

    Low-oxygen conditions (hypoxia; <21% O2 ) are considered unfavorable for growth; yet, embryos of many vertebrate taxa develop successfully in hypoxic subterranean environments. Although enhanced tolerance to hypoxia has been demonstrated in adult reptiles, such as in the painted turtle (Chrysemys picta), its effects on sensitive embryo life stages warrant attention. We tested the hypothesis that short-term hypoxia negatively affects growth during day 40 of development in C. picta, when O2 demands are highest in embryos. A brief, but severe, hypoxic event (5% O2 for 0.5 h) moderately affected embryo growth, causing a 13% reduction in mass (relative to a normoxic control). The same condition had no effect during day 27; instead, a nearly anoxic event (1% O2 for 72 h) caused a 5% mass reduction. All embryos survived the egg incubation period. Our study supports the assumption that reptilian embryos are resilient to intermittently low O2 in subterranean nests. Further work is needed to ascertain responses to suboptimal O2 levels while undergoing dynamic changes in developmental physiology.

  9. Heterogeneous nucleation and growth of water vapor on meteoric smoke particle analogues at mesospheric conditions

    NASA Astrophysics Data System (ADS)

    Nachbar, Mario; Duft, Denis; Leisner, Thomas

    2016-04-01

    Sub 2 nm meteoric smoke particles (MSP) produced from the ablation and recondensation of meteoric material are believed to be the major kind of nuclei causing the formation of water ice particles in the mesopause of Earth at heights of 80-90 km. These so called noctiLucent clouds (NLC) are frequently detected during polar summer, whereas the microphysical nucleation process and subsequent growth on such small particles are understood only poorly. Parameterizing these processes results in large uncertainties especially due to a lack of experimental data on desorption energies and critical saturation for the activation of nucleation under realistic mesospheric conditions, which states the need of laboratory measurements. We produce charged nanometer sized (2-3 nm) MSP analogues in a microwave plasma particle source and transfer them to a novel linear ion trap which allows us to trap the particles under typical mesospheric temperatures and H2O concentrations. The adsorption of H2O molecules on the particles surface followed by nucleation and growth can be examined by analyzing the mass distribution of the particles with a time-of-flight mass spectrometer as function of the residence time under supersaturated conditions. In this contribution we present such measurements for single positively as well as negatively charged particles which allow us to determine the desorption energy of water vapor on the investigated nanoparticles as well as the critical saturation needed to activate nucleation and subsequent growth.

  10. Growth condition dependence of unintentional oxygen incorporation in epitaxial GaN

    PubMed Central

    Schubert, Felix; Wirth, Steffen; Zimmermann, Friederike; Heitmann, Johannes; Mikolajick, Thomas; Schmult, Stefan

    2016-01-01

    Abstract Growth conditions have a tremendous impact on the unintentional background impurity concentration in gallium nitride (GaN) synthesized by molecular beam epitaxy and its resulting chemical and physical properties. In particular for oxygen identified as the dominant background impurity we demonstrate that under optimized growth stoichiometry the growth temperature is the key parameter to control its incorporation and that an increase by 55 °C leads to an oxygen reduction by one order of magnitude. Quantitatively this reduction and the resulting optical and electrical properties are analyzed by secondary ion mass spectroscopy, photoluminescence, capacitance versus voltage measurements, low temperature magneto-transport and parasitic current paths in lateral transistor test structures based on two-dimensional electron gases. At a growth temperature of 665 °C the residual charge carrier concentration is decreased to below 1015 cm−3, resulting in insulating behavior and thus making the material suitable for beyond state-of-the-art device applications. PMID:27877874

  11. Growth of oil accumulating microalga Neochloris oleoabundans under alkaline-saline conditions.

    PubMed

    Santos, A M; Janssen, M; Lamers, P P; Evers, W A C; Wijffels, R H

    2012-01-01

    The effect of elevated pH and salt concentration on the growth of the freshwater microalga Neochloris oleoabundans was investigated. A study was conducted in 24-well plates on the design of a growth medium and subsequently applied in a photobioreactor. An artificial seawater medium with reduced Ca(2+) and PO(4)(3-) could prevent mineral precipitation at high pH levels. Growth was characterized in this new medium at pH 8.1 and at pH 10.0, with 420 mM of total salts. Specific growth rates of 0.08 h(-1) at pH 8.1 and 0.04 h(-1) at pH 10.0 were obtained under controlled turbidostat cultivation. The effect of nitrogen starvation on lipid accumulation was also investigated. Fatty acids content increased not only with nitrogen limitation but also with a pH increase (up to 35% in the dry biomass). Fluorescence microscopy gave visual proof that N. oleoabundans accumulates oil bodies when growing in saline conditions at high pH.

  12. Mathematical model of Chlorella minutissima UTEX2341 growth and lipid production under photoheterotrophic fermentation conditions

    PubMed Central

    Yang, JinShui; Rasa, Ehsan; Tantayotai, Prapakorn; Scow, Kate M.; Yuan, HongLi; Hristova, Krassimira R.

    2012-01-01

    To reduce the cost of algal biomass production, mathematical model was developed for the first time to describe microalgae growth, lipid production and glycerin consumption under photoheterotrophic conditions based on logistic, Luedeking–Piret and Luedeking–Piret-like equations. All experiments were conducted in a 2 L batch reactor without considering CO2 effect on algae’s growth and lipid production. Biomass and lipid production increased with glycerin as carbon source and were well described by the logistic and Luedeking–Piret equations respectively. Model predictions were in satisfactory agreement with measured data and the mode of lipid production was growth-associated. Sensitivity analysis was applied to examine the effects of certain important parameters on model performance. Results showed that S0, the initial concentration of glycerin, was the most significant factor for algae growth and lipid production. This model is applicable for prediction of other single cell algal species but model testing is recommended before scaling up the fermentation of process. PMID:21115343

  13. Respiration, growth and grazing rates of three ciliate species in hypoxic conditions.

    PubMed

    Rocke, Emma; Liu, Hongbin

    2014-08-30

    Marine hypoxic episodes are affecting both marine and freshwater bodies all over the world. Yet, limited data exists with regard to the effects of decreasing oxygen on protist metabolism. Three ciliate species were therefore isolated from Hong Kong coastal waters. Controlled hypoxic conditions were simulated in the lab environment, during which time growth, respiration and grazing rates were measured. Euplotes sp. and a Oxytrichidae-like ciliate showed decreased growth and respiration below 2.5 mg O2 L(-1), however Uronema marinum kept steady growth and respiration until below 1.5 mg O2 L(-1). Euplotes sp. and the Oxytrichidae-like ciliate had the highest ingestion rate, which dropped significantly below 3.0 mg O2 L(-1). U.marinum grazing rates were affected at and below 1.5 mg O2 L(-1), correlating with their drop in growth and respiration at this lower concentration. This study illustrates the slowing metabolism of key grazing protists, as well as species-specific tolerance in response to hypoxia.

  14. Residual Gases in Crystal Growth Systems: Their Origin, Magnitude, and Dependence on the Processing Conditions

    NASA Technical Reports Server (NTRS)

    Palosz, W.

    2003-01-01

    Residual gases present in closed ampoules may affect different crystal growth processes. Their presence may affect techniques requiring low pressures and affect the crystal quality in different ways. For that reason a good understanding and control of formation of residual gases may be important for an optimum design and meaningful interpretation of crystal growth experiments. Our extensive experimental and theoretical study includes degassing of silica glass and generation of gases from various source materials. Different materials processing conditions, like outgassing under vacuum, annealing in hydrogen, resublimation, different material preparation procedures, multiple annealings, different processing times, and others were applied and their effect on the amount and composition of gas were analyzed. The experimental results were interpreted based on theoretical calculations on diffusion in silica glass and source materials and thermochemistry of the system. Procedures for a reduction of the amount of gas are also discussed.

  15. Thermal and solutal conditions at the tips of a directional dendritic growth front

    NASA Technical Reports Server (NTRS)

    Mccay, T. D.; Mccay, Mary H.; Hopkins, John A.

    1991-01-01

    The line-of-sight averaged, time-dependent dendrite tip concentrations for the diffusion dominated vertical directional solidification of a metal model (ammonium chloride and water) were obtained by extrapolating exponentially fit diffusion layer profiles measured using a laser interferometer. The tip concentrations were shown to increase linearly with time throughout the diffusion dominated growth process for an initially stagnant dendritic array. The process was terminated for the cases chosen by convective breakdown suffered when the conditionally stable diffusion layer exceeded the critical Rayleigh criteria. The transient tip concentrations were determined to significantly exceed the values predicted for steady state, thus producing much larger constitutional undercoolings. This has ramifications for growth speeds, arm spacings and the dendritic structure itself.

  16. Crystal Growth of Hen Egg-White Lysozyme (HEWL) under Various Gravity Conditions

    NASA Astrophysics Data System (ADS)

    Pan, Weichun; Xu, Jin; Tsukamoto, Katsuo; Koizumi, Masako; Yamazaki, Tomoya; Zhou, Ru; Li, Ang; Fu, Yuying

    2013-08-01

    Motivated by the enhancement of protein quality under microgravity condition, the behaviors of crystal growth under various gravity conditions have been monitored via Foton Satellite and parabolic flight. We found that the normal growth rate and the step velocity would be enhanced only at high protein concentration. Although the difference of diffusion between monomer lysozyme molecule and main impurity species in HWEL dimer may be able to explain this enhancement in long period at high protein concentration, it is not valid at low lysozyme concentration and it can't explain the results obtained by parabolic flight, in which microgravity condition maintained only about 20 s. In order to compromise this contradiction, cluster, universal existing in protein solution, has been picked up. The dynamic light scattering technique figured out dimer is served as the seed for cluster formation. Due to its large size, cluster keeps still under microgravity. Via this mechanism, the purification of lysozyme above crystal surface has been achieved. We also found the two supergravity (˜1.5 g) periods immediately before and after microgravity period have different effects on the step velocity. The pre-MG period depresses the step velocity while the post-MG enhances it. This odd phenomenon ascribes to two factors: (1) the flow rate modification and (2) the purity of protein solution immediate above crystal surface.

  17. Optimizing pentacene thin-film transistor performance: Temperature and surface condition induced layer growth modification.

    PubMed

    Lassnig, R; Hollerer, M; Striedinger, B; Fian, A; Stadlober, B; Winkler, A

    2015-11-01

    In this work we present in situ electrical and surface analytical, as well as ex situ atomic force microscopy (AFM) studies on temperature and surface condition induced pentacene layer growth modifications, leading to the selection of optimized deposition conditions and entailing performance improvements. We prepared p(++)-silicon/silicon dioxide bottom-gate, gold bottom-contact transistor samples and evaluated the pentacene layer growth for three different surface conditions (sputtered, sputtered + carbon and unsputtered + carbon) at sample temperatures during deposition of 200 K, 300 K and 350 K. The AFM investigations focused on the gold contacts, the silicon dioxide channel region and the highly critical transition area. Evaluations of coverage dependent saturation mobilities, threshold voltages and corresponding AFM analysis were able to confirm that the first 3-4 full monolayers contribute to the majority of charge transport within the channel region. At high temperatures and on sputtered surfaces uniform layer formation in the contact-channel transition area is limited by dewetting, leading to the formation of trenches and the partial development of double layer islands within the channel region instead of full wetting layers. By combining the advantages of an initial high temperature deposition (well-ordered islands in the channel) and a subsequent low temperature deposition (continuous film formation for low contact resistance) we were able to prepare very thin (8 ML) pentacene transistors of comparably high mobility.

  18. Optimizing pentacene thin-film transistor performance: Temperature and surface condition induced layer growth modification

    PubMed Central

    Lassnig, R.; Hollerer, M.; Striedinger, B.; Fian, A.; Stadlober, B.; Winkler, A.

    2015-01-01

    In this work we present in situ electrical and surface analytical, as well as ex situ atomic force microscopy (AFM) studies on temperature and surface condition induced pentacene layer growth modifications, leading to the selection of optimized deposition conditions and entailing performance improvements. We prepared p++-silicon/silicon dioxide bottom-gate, gold bottom-contact transistor samples and evaluated the pentacene layer growth for three different surface conditions (sputtered, sputtered + carbon and unsputtered + carbon) at sample temperatures during deposition of 200 K, 300 K and 350 K. The AFM investigations focused on the gold contacts, the silicon dioxide channel region and the highly critical transition area. Evaluations of coverage dependent saturation mobilities, threshold voltages and corresponding AFM analysis were able to confirm that the first 3–4 full monolayers contribute to the majority of charge transport within the channel region. At high temperatures and on sputtered surfaces uniform layer formation in the contact–channel transition area is limited by dewetting, leading to the formation of trenches and the partial development of double layer islands within the channel region instead of full wetting layers. By combining the advantages of an initial high temperature deposition (well-ordered islands in the channel) and a subsequent low temperature deposition (continuous film formation for low contact resistance) we were able to prepare very thin (8 ML) pentacene transistors of comparably high mobility. PMID:26543442

  19. Optimal growth of Dunaliella primolecta in axenic conditions to assay herbicides.

    PubMed

    Santín-Montanyá, I; Sandín-España, P; García Baudín, J M; Coll-Morales, J

    2007-01-01

    To develop an assay for herbicides in marine environments using microalgae, we have optimized the specie, cell culture media and physical conditions to obtain maximal cellular densities in a 96 well micro format to allow mass assays. We first surveyed several species of 7 unicellular eukaryotic algae genera (Dunaliella, Tetraselmis, Chlorella, Ellipsoidon, Isochrysis, Nannochloropsis, and Phaeodactylum) for vigorous in vitro axenic growth. Once the genus Dunaliella was selected, Dunaliella primolecta was preferred among 9 species (bioculata, minuta, parva, peircei, polymorpha, primolecta, quartolecta, salina and tertiolecta) because it showed the highest growth rates. The components (oligo elements, sugars, amino acids and vitamins) and conditions (light, CO(2), temperature) of the culture media were further optimized to obtain the highest cellular densities (up to 60x10(6)cellsml(-1)) and the shortest cell cycle duration ( approximately 12h) for D. primolecta. Then the toxicity of four representative herbicides, alloxydim, and sethoxydim (inhibitors of acetyl-coA carboxilase), metamitron (inhibitor of photosynthesis) and clopyralid (inhibitor of respiration), were assayed on the optimal culture conditions for D. primolecta during 96h. The results showed that D. primolecta was susceptible to those herbicides in the following order: metamitron > sethoxydim > alloxydim. In contrast, clopyralid did not have any effects. Therefore, D. primolecta microcultures can be used to assay a large number of samples for the presence of herbicides under a saline environment.

  20. Growth of lignocellulosic-fermenting fungi on different substrates under low oxygenation conditions.

    PubMed

    Pavarina, Erika C; Durrant, Lucia R

    2002-01-01

    Four soil fungi able to grow under low oxygenation conditions were selected and used in studies to determine the production of enzymes that promote the degradation of lignocellulosic materials. The capacity of these fungi to ferment such materials was also investigated. The fungi were grown in sugarcane bagasse and sawdust at final concentrations of 4 and 10%, as the carbon sources. The strains were cultivated under microaerophilic and combined conditions of oxygenation (aerobic followed by microaerophilic conditions). The results obtained with the basidiomycete specie, Trichocladium canadense, Geotrichum sp., and Fusarium sp. suggest that they prefer lower oxygen concentration for growth and enzyme production. Lignocellulolytic activities were detected in all strains but varied with the carbon source used. The highest levels of these activities were produced by the Basidiomycete specie and Fusarium sp. Ethanol and other nongaseous fermentation products were detected following high-performance liquid chromatography analysis using a supelcogel C-610H column, demonstrating the fermentative capability of these strains. In view of their ability to produce enzymes necessary for the breakdown of lignocellulosic materials and to utilize most of the degradation products for growth, these strains have a great potential for biotechnological application.

  1. Human conditions of insulin-like growth factor-I (IGF-I) deficiency

    PubMed Central

    2012-01-01

    Insulin-like growth factor I (IGF-I) is a polypeptide hormone produced mainly by the liver in response to the endocrine GH stimulus, but it is also secreted by multiple tissues for autocrine/paracrine purposes. IGF-I is partly responsible for systemic GH activities although it possesses a wide number of own properties (anabolic, antioxidant, anti-inflammatory and cytoprotective actions). IGF-I is a closely regulated hormone. Consequently, its logical therapeutical applications seems to be limited to restore physiological circulating levels in order to recover the clinical consequences of IGF-I deficiency, conditions where, despite continuous discrepancies, IGF-I treatment has never been related to oncogenesis. Currently the best characterized conditions of IGF-I deficiency are Laron Syndrome, in children; liver cirrhosis, in adults; aging including age-related-cardiovascular and neurological diseases; and more recently, intrauterine growth restriction. The aim of this review is to summarize the increasing list of roles of IGF-I, both in physiological and pathological conditions, underlying that its potential therapeutical options seem to be limited to those proven states of local or systemic IGF-I deficiency as a replacement treatment, rather than increasing its level upper the normal range. PMID:23148873

  2. Impact of growth conditions on susceptibility of five microbial species to alkaline stress.

    PubMed

    Brändle, Nathalie; Zehnder, Matthias; Weiger, Roland; Waltimo, Tuomas

    2008-05-01

    The effects of different growth conditions on the susceptibility of five taxa to alkaline stress were investigated. Enterococcus faecalis ATCC 29212, Streptococcus sobrinus OMZ 176, Candida albicans ATCC 90028, Actinomyces naeslundii ATCC 12104, and Fusobacterium nucleatum ATCC 10953 were grown as planktonic cells, allowed to adhere to dentin for 24 hours, grown as monospecies or multispecies biofilms on dentin under anaerobic conditions with a serum-enriched nutrient supply at 37 degrees C for 5 days. In addition, suspended biofilm microorganisms and 5-day old planktonic multispecies cultures were used. Microbial recovery upon direct exposure to saturated calcium hydroxide solution (pH 12.5) for 10 and 100 minutes was compared with control exposure to physiologic saline. Planktonic microorganisms were most susceptible; only E. faecalis and C. albicans survived in saturated solution for 10 minutes, the latter also for 100 minutes. Dentin adhesion was the major factor in improving the resistance of E. faecalis and A. naeslundii to calcium hydroxide, whereas the multispecies context in a biofilm was the major factor in promoting resistance of S. sobrinus to the disinfectant. In contrast, the C. albicans response to calcium hydroxide was not influenced by the growth condition. Adherence to dentin and interspecies interactions in a biofilm appear to differentially affect the sensitivity of microbial species to calcium hydroxide.

  3. Analysis of uropathogenic Escherichia coli biofilm formation under different growth conditions.

    PubMed

    Adamus-Białek, Wioletta; Kubiak, Anna; Czerwonka, Grzegorz

    2015-01-01

    The ability to form different types of biofilm enables bacteria to survive in a harsh or toxic environment. Different structures of biofilms are related to different surfaces and environment of bacterial growth. The aim of this study was analysis of the biofilm formation of 115 clinical uropathogenic Escherichia coli strains under different growth conditions: surface for biofilm formation, medium composition and time of incubation. The biofilm formation after 24 h, 48 h, 72 h and 96 h was determined spectrophotometrically (A531) after crystal violet staining and it was correlated with bacterial growth (A600). The live and dead cells in biofilm structures was also observed on the glass surface by an epi-fluorescence microscope. Additionally, the presence of rpoS, sdiA and rscA genes was analyzed. The statistical significance was estimated by paired T-test. The observed biofilms were different for each particular strain. The biofilm formation was the highest in the rich medium (LB) after 24 h and its level hasn't changed in time. When biofilm level was compared to bacterial growth (relative biofilm) - it was higher in a minimal medium in comparison to enriched medium. These results suggest that most of the bacterial cells prefer to live in a biofilm community under the difficult environmental conditions. Moreover, biofilm formation on polyurethane surface did not correlate with biofilm formation on glass. It suggests that mechanisms of biofilm formation can be correlated with other bacterial properties. This phenomenon may explain different types of biofilm formation among one species and even one pathotype - uropathogenic Escherichia coli.

  4. Growth conditions of 0-group plaice Pleuronectes platessa in the western Wadden Sea as revealed by otolith microstructure analysis

    NASA Astrophysics Data System (ADS)

    Cardoso, Joana F. M. F.; Freitas, Vânia; de Paoli, Hélène; Witte, Johannes IJ.; van der Veer, Henk W.

    2016-05-01

    Growth studies based on population-based growth estimates are limited by the fact that they do not take into account differences in age/size structure within the population. To overcome these problems, otolith microstructure analysis is often used to estimate individual growth. Here, we analyse growth of 0-group plaice in the western Wadden Sea in two years: a year preceded by a mild winter (1995) and a year preceded by a severe winter (1996). Growth was analysed by combining information on individual growth based on otolith analysis with predictions of maximum growth (= under optimal food conditions) based on a Dynamic Energy Budget model. Otolith analysis revealed that settlement occurred earlier in 1995 than in 1996. In both years, one main cohort was found, followed by a group of late settlers. No differences in mean length-at-age were found between these groups. DEB modelling suggested that growth was not maximal during the whole growing season: realized growth (the fraction of maximum growth realized by 0-group plaice) declined in the summer, although this decline was relatively small. In addition, late settling individuals exhibited lower realized growth than individuals from the main cohort. This study confirms that growth conditions for 0-group plaice are not optimal and that a growth reduction occurs in summer, as suggested in previous studies.

  5. Large-scale changes in bloater growth and condition in Lake Huron

    USGS Publications Warehouse

    Prichard, Carson G.; Roseman, Edward F.; Keeler, Kevin M.; O'Brien, Timothy P.; Riley, Stephen C.

    2016-01-01

    Native Bloaters Coregonus hoyi have exhibited multiple strong year-classes since 2005 and now are the most abundant benthopelagic offshore prey fish in Lake Huron, following the crash of nonnative AlewivesAlosa pseudoharengus and substantial declines in nonnative Rainbow Smelt Osmerus mordax. Despite recent recoveries in Bloater abundance, marketable-size (>229 mm) Bloaters remain scarce. We used annual survey data to assess temporal and spatial dynamics of Bloater body condition and lengths at age in the main basin of Lake Huron from 1973 to 2014. Basinwide lengths at age were modeled by cohort for the 1973–2003 year-classes using a von Bertalanffy growth model with time-varying Brody growth coefficient (k) and asymptotic length () parameters. Median Bloater weights at selected lengths were estimated to assess changes in condition by modeling weight–length relations with an allometric growth model that allowed growth parameters to vary spatially and temporally. Estimated Bloater lengths at age declined 14–24% among ages 4–8 for all year-classes between 1973 and 2004. Estimates of  declined from a peak of 394 mm (1973 year-class) to a minimum of 238 mm (1998 year-class). Observed mean lengths at age in 2014 were at all-time lows, suggesting that year-classes comprising the current Bloater population would have to follow growth trajectories unlike those characterizing the 1973–2003 year-classes to attain marketable size. Furthermore, estimated weights of 250-mm Bloaters (i.e., a large, commercially valuable size-class) declined 17% among all regions from 1976 to 2007. Decreases in body condition of large Bloaters are associated with lower lipid content and may be linked to marked declines in abundance of the amphipodsDiporeia spp. in Lake Huron. We hypothesize that since at least 1976, large Bloaters have become more negatively buoyant and may have incurred an increasingly greater metabolic cost performing diel vertical migrations to prey upon the opossum

  6. Selecting Native Arbuscular Mycorrhizal Fungi to Promote Cassava Growth and Increase Yield under Field Conditions

    PubMed Central

    Séry, D. Jean-Marc; Kouadjo, Z. G. Claude; Voko, B. R. Rodrigue; Zézé, Adolphe

    2016-01-01

    The use of arbuscular mycorrhizal fungal (AMF) inoculation in sustainable agriculture is now widespread worldwide. Although the use of inoculants consisting of native AMF is highly recommended as an alternative to commercial ones, there is no strategy to allow the selection of efficient fungal species from natural communities. The objective of this study was (i) to select efficient native AMF species (ii) evaluate their impact on nematode and water stresses, and (iii) evaluate their impact on cassava yield, an important food security crop in tropical and subtropical regions. Firstly, native AMF communities associated with cassava rhizospheres in fields were collected from different areas and 7 AMF species were selected, based upon their ubiquity and abundance. Using these criteria, two morphotypes (LBVM01 and LBVM02) out of the seven AMF species selected were persistently dominant when cassava was used as a trap plant. LBVM01 and LBVM02 were identified as Acaulospora colombiana (most abundant) and Ambispora appendicula, respectively, after phylogenetic analyses of LSU-ITS-SSU PCR amplified products. Secondly, the potential of these two native AMF species to promote growth and enhance tolerance to root-knot nematode and water stresses of cassava (Yavo variety) was evaluated using single and dual inoculation in greenhouse conditions. Of the two AMF species, it was shown that A. colombiana significantly improved the growth of the cassava and enhanced tolerance to water stress. However, both A. colombiana and A. appendicula conferred bioprotective effects to cassava plants against the nematode Meloidogyne spp., ranging from resistance (suppression or reduction of the nematode reproduction) or tolerance (low or no suppression in cassava growth). Thirdly, the potential of these selected native AMF to improve cassava growth and yield was evaluated under field conditions, compared to a commercial inoculant. In these conditions, the A. colombiana single inoculation and the

  7. Growth kinetics and energetics of a deep-sea hyperthermophilic methanogen under varying environmental conditions.

    PubMed

    Ver Eecke, Helene C; Akerman, Nancy H; Huber, Julie A; Butterfield, David A; Holden, James F

    2013-10-01

    A hyperthermophilic deep-sea methanogen, Methanocaldococcus strain JH146, was isolated from 26°C hydrothermal fluid at Axial Volcano to model high temperature methanogenesis in the subseafloor. Emphasis was placed on defining growth kinetics, cell yields and growth energy demand (GE) across a range of conditions. The organism uses H2 and CO2 as its sole carbon and energy sources. At various temperatures, pHs, and chlorinities, its growth rates and cell yields co-varied while GE remained uniform at 1.69 × 10(-11) J cell(-1)s(-1) ± 0.68 × 10(-11) J cell(-1)s(-1) (s.d., n = 23). An exception was at superoptimal growth temperatures where GE increased to 7.25 × 10(-11) J cell(-1)s(-1) presumably due to heat shock. GE also increased from 5.1 × 10(-12) J cell(-1)s(-1) to 7.61 × 10(-11) J cell(-1)s(-1) as NH4 (+) concentrations decreased from 9.4 mM to 0.14 mM. JH146 did not fix N2 or assimilate NO3 (-), lacked the N2-fixing (cluster II) nifH gene, and became nitrogen limited below 0.14 mM NH4Cl. Nitrogen availability may impact growth in situ since ammonia concentrations at Axial Volcano are < 18 μM. Our approach contributes to refining bioenergetic and carbon flux models for methanogens and other organisms in hydrothermal vents and other environments.

  8. OPTIMAL GROWTH CONDITIONS AND ANTIOXIDATIVE ACTIVITIES OF CYLINDROTHECA CLOSTERIUM (BACILLARIOPHYCEAE)(1).

    PubMed

    Affan, Abu; Heo, Soo-Jin; Jeon, You-Jin; Lee, Joon-Baek

    2009-12-01

    We isolated the unialgal strain of Cylindotheca closterium (Ehrenb.) Reimann et J. C. Lewin and produced an axenic strain using an antibiotic cocktail of enriched f/2 artificial seawater medium. The optimal growth conditions were estimated under 27 different combinations of temperature, salinity, and nutrients, and mass culture was performed based on the best specific growth conditions. Its antioxidant activities were determined from the extracts of methanol, water, and enzymes (proteases and carbohydrases). The maximum specific growth rate (μmax ) varied from 0.63 to 0.97 · d(-1) . The maximum cell density was 7.20 × 10(4) cells · mL(-1) , while the μmax was 0.82 · d(-1) in culture conditions of 20°C, 30 psu (practical salinity unit), and "F" nutrient concentrations on day 10 of the culture period. The scavenging rates for 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical were 72.5% and 69.4% from Viscozyme and methanol extracts, respectively. The enzymatic extracts of C. closterium prepared by the hydrolyses of Amyloglucosidase (AMG) and Viscozyme showed 45.8% and 45.5% nitric-oxide-scavenging rates, slightly lower than the activity of alpha-tocopherol (α-tocopherol) but similar to butylated hydroxytoluene (BHT). The extract from methanol and water showed 44.8% and 44.4% scavenging rates, statistically similar with BHT. The metal-chelating activities of the Kojizyme, Alcalase, methanol, Viscozyme, and Neutrase extracts were 67.1, 53.9, 53.2, 52.1, and 50.2 %, respectively, five to six times higher than the commercial antioxidants. The AMG, Viscozyme, and Neutrase extracts showed a remarkable linoleic acid peroxidation inhibition, which was higher than BHT and statistically similar with α-tocopherol.

  9. Enhancement of nitrate uptake and growth of barley seedlings by calcium under saline conditions

    NASA Technical Reports Server (NTRS)

    Ward, M. R.; Aslam, M.; Huffaker, R. C.

    1986-01-01

    The effect of Ca2+ on NO3- assimilation in young barley (Hordeum vulgare L. var CM 72) seedlings in the presence and absence of NaCl was studied. Calcium increased the activity of the NO3- transporter under saline conditions, but had little effect under nonsaline conditions. Calcium decreased the induction period for the NO3- transporter under both saline and nonsaline conditions but had little effect on its apparent Km for NO3- both in the presence and absence of NaCl. The enhancement of NO3- transport by Ca2+ under saline conditions was dependent on the presence of Ca2+ in the uptake solution along with the salt, since Ca2+ had no effect when supplied before or after salinity stress. Although Mn2+ and Mg2+ enhanced NO3- uptake under saline conditions, neither was as effective as Ca2+. In longer studies, increasing the Ca2+ concentration in saline nutrient solutions resulted in increases in NO3- assimilation and seedling growth.

  10. Optimization of GaN Nanorod Growth Conditions for Coalescence Overgrowth

    DTIC Science & Technology

    2016-02-04

    serves as the catalyst for precipitating GaN below the droplet when its absorption of N atoms reaches the super-saturation condition. In this vapor-liquid...C. Chèze, L. Geelhaar, B. Jenichen, H. Riechert, Different growth rates for catalyst -induced and self-induced GaN nanowires, Appl. Phys. Lett. 97...15] W. Guo, M. Zhang, A. Banerjee, P. Bhattacharya, Catalyst -free InGaN/GaN DISTRIBUTION A: Distribution approved for public release. 9

  11. Features of Scots pine radial growth in conditions of provenance trial.

    NASA Astrophysics Data System (ADS)

    Kuzmin, Sergey; Kuzmina, Nina

    2013-04-01

    Provenance trial of Scots pine in Boguchany forestry of Krasnoyarsk krai is conducted on two different soils - dark-grey loam forest soil and sod-podzol sandy soil. Complex of negative factors for plant growth and development appears in dry conditions of sandy soil. It could results in decrease of resistance to diseases. Sandy soils in different climatic zones have such common traits as low absorbing capacity, poorness of elemental nutrition, low microbiological activity and moisture capacity, very high water permeability. But Scots pine trees growing in such conditions could have certain advantages and perspectives of use. In the scope of climate change (global warming) the study of Scots pine growth on sandy soil become urgent because of more frequent appearance of dry seasons. Purpose of the work is revelation of radial growth features of Scots pine with different origin in dry conditions of sandy soil and assessment of external factors influence. The main feature of radial growth of majority of studied pine provenances in conditions of sandy soil is presence of significant variation of increment with distinct decline in 25-years old with loss of tree rings in a number of cases. The reason of it is complex of factors: deficit of June precipitation and next following outbreak of fungal disease. Found «frost rings» for all trees of studied clymatypes in 1992 are the consequence of temperature decline from May 21 to June 2 - from 23 down to 2 degree Celsius. Perspective climatypes with biggest radial increments and least sensitivity to fungal disease were revealed. Eniseysk and Vikhorevka (from Krasnoyarsk krai and Irkutsk oblast)provenances of pine have the biggest radial increments, the least sensitivity to Cenangium dieback and smallest increments decline. These climatypes are in the group of perspective provenances and in present time they are recommended for wide trial in the region for future use in plantation forest growing. Kandalaksha (Murmansk oblast

  12. Engineering Synechococcus elongatus PCC 7942 for Continuous Growth under Diurnal Conditions

    PubMed Central

    McEwen, Jordan T.; Machado, Iara M. P.; Connor, Michael R.

    2013-01-01

    Synechococcus elongatus strain PCC 7942 strictly depends upon the generation of photosynthetically derived energy for growth and is incapable of biomass increase in the absence of light energy. Obligate phototrophs' core metabolism is very similar to that of heterotrophic counterparts exhibiting diverse trophic behavior. Most characterized cyanobacterial species are obligate photoautotrophs under examined conditions. Here we determine that sugar transporter systems are the necessary genetic factors in order for a model cyanobacterium, Synechococcus elongatus PCC 7942, to grow continuously under diurnal (light/dark) conditions using saccharides such as glucose, xylose, and sucrose. While the universal causes of obligate photoautotrophy may be diverse, installing sugar transporters provides new insight into the mode of obligate photoautotrophy for cyanobacteria. Moreover, cyanobacterial chemical production has gained increased attention. However, this obligate phototroph is incapable of product formation in the absence of light. Thus, converting an obligate photoautotroph to a heterotroph is desirable for more efficient, economical, and controllable production systems. PMID:23275509

  13. Effect of Growth Conditions and Trehalose Content on Cryotolerance of Bakers' Yeast in Frozen Doughs

    PubMed Central

    Gélinas, Pierre; Fiset, Gisèle; LeDuy, Anh; Goulet, Jacques

    1989-01-01

    The cryotolerance in frozen doughs and in water suspensions of bakers' yeast (Saccharomyces cerevisiae) previously grown under various industrial conditions was evaluated on a laboratory scale. Fed-batch cultures were very superior to batch cultures, and strong aeration enhanced cryoresistance in both cases for freezing rates of 1 to 56°C min−1. Loss of cell viability in frozen dough or water was related to the duration of the dissolved-oxygen deficit during fed-batch growth. Strongly aerobic fed-batch cultures grown at a reduced average specific rate (μ = 0.088 h−1 compared with 0.117 h−1) also showed greater trehalose synthesis and improved frozen-dough stability. Insufficient aeration (dissolved-oxygen deficit) and lower growth temperature (20°C instead of 30°C) decreased both fed-batch-grown yeast cryoresistance and trehalose content. Although trehalose had a cryoprotective effect in S. cerevisiae, its effect was neutralized by even a momentary lack of excess dissolved oxygen in the fed-batch growth medium. PMID:16348024

  14. Refining the alkenone-pCO2 method: The role of algal growth conditions

    NASA Astrophysics Data System (ADS)

    Pearson, A.; Zhang, Y.; Huybers, P. J.; Pagani, M.

    2015-12-01

    The alkenone-pCO2 method based on carbon isotope fractionation during growth of haptophyte algae is one of the most widely used approaches to reconstruct atmospheric CO2 level in the Cenozoic. Based on the fractionation of stable carbon isotopes between dissolved CO2 and phytoplankton biomass, as represented by alkenone lipid biomarkers, this relationship (known as ɛp37:2) scales inversely with growth rate and cell volume to surface area ratio, and positively with CO2. Recently-published estimates for late Pleistocene CO2 levels, however, are poorly correlated with ice core CO2 records, suggesting that alkenone paleobarometry needs to be refined. Here we compiled published records over recent glacial-interglcial (G-IG) cycles and revised the relationship between algal growth rate, as expressed by the physiological parameter 'b', and dissolved phosphate concentration. We further show that the magnitude of change in ɛp37:2 over glacial-interglacial cycles at different sites is dependent on local nutrient conditions, highlighting the importance of constraining b for accurate CO2 estimates. The correlation between GDGT-2/3 ratio and back-calculated b at Ceara Rise (ODP Site 925) suggests that archaeal lipids could be used as proxies to calibrate b. Application of our variable-b method to reported data yields pCO2 estimates that are similar in both trends and magnitude to ice core-derived records.

  15. Conditions affecting growth and developmental competence of mammalian oocytes in vitro.

    PubMed

    Hirao, Yuji

    2011-04-01

    Mammalian ovaries contain a large number of oocytes at different stages of growth. To utilize potential female gametes, it is important to develop culture systems that permit oocytes to achieve full growth and competence in order to undergo maturation, fertilization and development. The desired culture systems should meet at least the following three conditions: (i) oocytes remain healthy and functional so that they can execute intrinsic programs that direct their growth and development; (ii) granulosa cells that are adjacent to oocytes proliferate efficiently to prevent oocytes from becoming denuded; and (iii) granulosa cells maintain (and develop) appropriate associations with oocytes during the culture period. For this reason, several systems have been developed, and they can be classified into four categories based on the structure and components of the follicle/oocyte-granulosa cell complex and the location of the oocyte in the physical organization of the complex. The resultant diverse morphologies are due to multiple factors, including the method for initial isolation of follicles, the culture substrate, and hormones and other factors added into the medium. It is important to find an optimal combination of such factors involved in the process to facilitate future research efforts.

  16. Diffusion-induced growth of nanowires: Generalized boundary conditions and self-consistent kinetic equation

    NASA Astrophysics Data System (ADS)

    Dubrovskii, V. G.; Hervieu, Yu. Yu.

    2014-09-01

    In this work, we present a theoretical analysis of the diffusion-induced growth of "vapor-liquid-solid" nanowires, based on the stationary equations with generalized boundary conditions. We discuss why and how the earlier results are modified when the adatom chemical potential is discontinuous at the nanowire base. Several simplified models for the adatom diffusion flux are discussed, yielding the 1 /Rp radius dependence of the length, with p ranging from 0.5 to 2. The self-consistent approach is used to couple the diffusion transport with the kinetics of 2D nucleation under the droplet. This leads to a new growth equation that contains only two dimensional parameters and the power exponents p and q, where q=1 or 2 depends on the nucleus position. We show that this equation describes the size-dependent depression of the growth rate of narrow nanowires much better than the Gibbs-Thomson correction in several important cases. Overall, our equation fits very well the experimental data on the length-radius correlations of III-V and group IV nanowires obtained by different epitaxy techniques.

  17. Carcass analog addition enhances juvenile Atlantic salmon (Salmo salar) growth and condition

    USGS Publications Warehouse

    Guyette, Margaret Q.; Loftin, Cynthia S.; Zydlewski, Joseph

    2013-01-01

    Our study used historic marine-derived nutrient (MDN) delivery timing to simulate potential effects of restored connectivity on juvenile Atlantic salmon (ATS; Salmo salar) growth and condition. Four headwater streams were stocked with ATS young of the year (YOY) and received carcass analog additions (0.10 kg·m–2 wetted area) in treatment reaches to match the timing of sea lamprey (Petromyzon marinus) spawning. Individual ATS mass was 33%–48% greater and standard length was 9%–15% greater in treatment reaches relative to control reaches for 4 months following nutrient additions. Percent total lipids in YOY ATS were twice as great in treatment reaches 1 month following carcass analog additions and remained elevated in treatment fish for 2 more months. Absolute growth rates, based on otolith microstructure analysis, correlated with water temperature fluctuations in all reaches and were elevated by an average of 0.07 mm·day–1 in treatment reaches for 1 month following carcass analog additions. Simulated sea lamprey MDNs increased juvenile ATS growth, which, via potential increases in overwinter survival and decreases in smolt age, may contribute to population persistence and ecosystem productivity.

  18. Organic acids induce tolerance to zinc- and copper-exposed fungi under various growth conditions.

    PubMed

    Sazanova, Katerina; Osmolovskaya, Natalia; Schiparev, Sergey; Yakkonen, Kirill; Kuchaeva, Ludmila; Vlasov, Dmitry

    2015-04-01

    Heavy metals, Zn and Cu, in high concentration (2 mM for Zn and 0.5 mM for Cu) have some inhibiting effect on the growth of Aspergillus niger and Penicillium citrinum. Toxic effects of these metals considerably depend on cultivation conditions including nitrogen sources, pH of nutrient media, and its consistency (presence or absence of agar). In general, nitrate media provides less inhibiting effect on fungal growth under heavy metal exposure than ammonium-containing media. Adding of Zn in nitrate media induces oxalic acid production by fungi. Importance of oxalic acid production in detoxification of heavy metals is confirmed by the formation of Zn-containing crystals in fungal cultures. Cu bringing to the cultural media had no stimulating effect on oxalic acid production as well as no copper-containing crystals were observed. But proceeding from essential increase in oxalic acid production during a long-term fungi adaptation to Cu, it may be proposed that oxalic acid plays some functional role in Cu tolerance of fungi as well. It may be concluded that the role of organic acids and oxalate, in particular, in fungi tolerance and adaptation to heavy metals can be determined by the nature of the metal and its ability to form stable complexes with an acid anion. Stimulating effect of metals on acid production is not universal for all species of fungi and largely depends on metal concentration, nitrogen form in a medium, and other cultivation conditions.

  19. Growth condition study of algae function in ecosystem for CO2 bio-fixation.

    PubMed

    Tsai, David Dah-Wei; Ramaraj, Rameshprabu; Chen, Paris Honglay

    2012-02-06

    Algae niche play a crucial role on carbon cycle and have great potential for CO(2) sequestration. This study was to investigate the CO(2) bio-fixation by the high rate pond (HRP) to mimic the algae function of nature. All the reactors can keep CO(2) consumption efficiencies over 100%. The statistical analyses proved HRPs were close to the natural system from all the growth conditions. The HRP could show the "natural optimization as nature" to perform as well as the artificial reactor of continuously stirred tank reactor (CSTR). In the nutrition study, the carbon mass balance indicated CO(2) was the main carbon source. Accordingly, the HRPs can keep a neutral pH range to provide dissolved oxygen (DO), to promote total nitrogen (TN)/total phosphorous (TP) removal efficiencies and to demonstrate self-purification process. Furthermore, the observations of different nitrogen species in the reactors demonstrated that the major nitrogen source was decided by pH. This finding logically explained the complex nitrogen uptake by algae in nature. Consequently, this study took advantage of HRP to explore the processes of efficient CO(2) uptake with the corresponding growth condition in the ecosystem. Those results contributed the further understanding of the role of CO(2) bio-fixation in nature and demonstrated HRP could be a potential ecological engineering alternative.

  20. Proposal of a Simple Plant Growth System under Microgravity Conditions in Space

    NASA Astrophysics Data System (ADS)

    Hirai, Hiroaki; Kitaya, Yoshiaki; Hirai, Takehiro; Tsukamoto, Koya; Yamashita, Youichirou

    2012-07-01

    Plant culture in space has multiple functions for human life support such as providing food and purifying air and water. It is also suggested that crew can relieve their stress by watching growing plants and by enjoying fresh vegetable food during staying for several months in the International Space Station. Under such circumstances, it is an utmost importance to develop plant culture equipment that can be handled more easily by crew. This study aims to develop an easy-to-use plant growth system with modification of commercial household plant culture equipment. The item is equipped with a peltier device for cooling air and collecting water vapor in the growth room. The study was conducted to examine the performance of the equipment under microgravity conditions that were created by the parabolic airplane flights. As a result, the temperature of the peltier device was affected under the microgravity conditions due to the absence of heat convection. When an air flow was made with an air circulation fan, the temperature of the peltier device was stable to gravity changes. The water recycling method for an automatic nutrient solution supply system in the closed plant culture equipment under microgravity is proposed. In addition, a high output white LEDs showing a good performance for growing leafy vegetables will be introduced.

  1. Plasticity of Streptomyces coelicolor Membrane Composition Under Different Growth Conditions and During Development

    PubMed Central

    Sandoval-Calderón, Mario; Nguyen, Don D.; Kapono, Clifford A.; Herron, Paul; Dorrestein, Pieter C.; Sohlenkamp, Christian

    2015-01-01

    Streptomyces coelicolor is a model actinomycete that is well known for the diversity of its secondary metabolism and its complex life cycle. As a soil inhabitant, it is exposed to heterogeneous and frequently changing environmental circumstances. In the present work, we studied the effect of diverse growth conditions and phosphate depletion on its lipid profile and the relationship between membrane lipid composition and development in S. coelicolor. The lipid profile from cultures grown on solid media, which is closer to the natural habitat of this microorganism, does not resemble the previously reported lipid composition from liquid grown cultures of S. coelicolor. Wide variations were also observed across different media, growth phases, and developmental stages indicating active membrane remodeling. Ornithine lipids (OL) are phosphorus-free polar lipids that were accumulated mainly during sporulation stages, but were also major components of the membrane under phosphorus limitation. In contrast, phosphatidylethanolamine, which had been reported as one of the major polar lipids in the genus Streptomyces, is almost absent under these conditions. We identified one of the genes responsible for the synthesis of OL (SCO0921) and found that its inactivation causes the absence of OL, precocious morphological development and actinorhodin production. Our observations indicate a remarkable plasticity of the membrane composition in this bacterial species, reveal a higher metabolic complexity than expected, and suggest a relationship between cytoplasmic membrane components and the differentiation programs in S. coelicolor. PMID:26733994

  2. Survival, food consumption and growth of Norway lobster (Nephrops norvegicus) kept in laboratory conditions.

    PubMed

    Mente, Elena

    2010-09-01

    Successful commercial aquaculture of crustacean species is dependent on satisfying their nutritional requirements and on producing rapidly growing and healthy animals. The results of the present study provide valuable information for feeding habits and growth of Nephrops norvegicus L., 1758) under laboratory conditions. The aim of the present study was to examine food consumption, growth and physiology of the Norway lobster N. norvegicus under laboratory conditions. N. norvegicus (15 g wet weight) were distributed into 1001 tanks consisting of five numbered compartments each. They were fed the experimental diets (frozen mussels and pellets) for a period of 6 months. A group of starved Nephrops was stocked and fasted for 8 months. Although Nephrops grew well when fed the frozen mussels diet, feeding on a dry pellet feed was unsatisfactory. The starvation group, despite the fact that showed the highest mortality (50%), exhibited a remarkable tolerance to the lack of food supply. The study offers further insight by correlating the amino acid profiles of Nephrops tail muscle with the two diets. The deviations from the mussel's diet for asparagine, alanine and glutamic acid suggest a deficiency of these amino acids in this diet. The results of the present study showed that the concentrations of free amino acids are lower in relative amount than those of protein-bound amino acids, except for arginine, proline and glycine. The present study contributes to the improvement of our knowledge on nutritional requirements of the above species.

  3. Influence of Growth Conditions on Magnetite Nanoparticles Electro-Crystallized in the Presence of Organic Molecules

    PubMed Central

    Mosivand, Saba; Monzon, Lorena M. A.; Kazeminezhad, Iraj; Coey, J. Michael D.

    2013-01-01

    Magnetite nanoparticles were synthesized by electrocrystallization in the presence of thiourea or sodium butanoate as an organic stabilizer. The synthesis was performed in a thermostatic electrochemical cell containing two iron electrodes with an aqueous solution of sodium sulfate as electrolyte. The effects of organic concentration, applied potential and growth temperature on particle size, morphology, structure and magnetic properties were investigated. The magnetite nanoparticles were characterized by X-ray diffraction, electron microscopy, magnetometry and Mössbauer spectrometry. When the synthesis is performed in the presence of sodium butanoate at 60 °C, a paramagnetic ferric salt is obtained as a second phase; it is possible to avoid formation of this phase, increase the specific magnetization and improve the structure of the oxide particles by tuning the growth conditions. Room-temperature magnetization values range from 45 to 90 Am2kg−1, depending on the particle size, type of surfactant and synthesis conditions. Mössbauer spectra, which were recorded at 290 K for all the samples, are typical of nonstoichiometric Fe3−δO4, with a small excess of Fe3+, 0.05 ≤ δ ≤ 0.15. PMID:23685871

  4. Investigation of crop growth condition with hyperspectral reflectance based on ground-based remote sensing

    NASA Astrophysics Data System (ADS)

    Li, Minzan; Zhang, Xijie; Zhang, Yane; Zhao, Peng; Zhang, Jianping

    2005-01-01

    Cucumber was selected as the experimental crop in greenhouse, and a spectroradiometer (ASD FieldSpec HH, 325-1075 nm measurable range with 1 nm resolution) was used to acquire hyperspectral reflectance of whole plants and leaves in growing status. The seedlings were grown in compound substrate composed of vermiculite and straw charcoal. In order to create nutrient stress to cucumber, five kinds of compound substrates were prepared with mixing vermiculite and straw charcoal in the ratios of 10:0, 8:2, 6:4, 4:6, and 2:8, respectively. Thirteen measurements were conducted in testing period continued from May to July in 2003. The correlation coefficient between hyperspectral reflectance and N-content of leaves and that between hyperspectral reflectance and growth condition of whole plants were analyzed in all wavelength bands. The results show that the hyperspectral reflectance based on ground-based remote sensing is available to predict N-content of leaves and to determine growth condition of whole plants.

  5. Influence of Crystal Growth Cooling Conditions on Thermoelectric Properties of Aurivillius Phase Bi-V-O

    NASA Astrophysics Data System (ADS)

    Kohri, Hitoshi; Segawa, Mizuki; Yagasaki, Takayoshi

    2016-11-01

    Aurivillius phase Bi2VO5.5 is known as an oxygen ion conductor. In previous studies on Bi2VO5.5, the Seebeck coefficient of the sintered body was about 10 mVK-1 at 800 K. However, the resistivity was 103 Ω m at 800 K. It seemed that this high resistivity was caused by high grain boundary resistance because of cracks at boundaries. In this study, specimens have been prepared by a melting method, aimed at reducing the boundaries. The influence of crystal growth cooling conditions on the thermoelectric properties of Aurivillius phase Bi-V-O is discussed. The crystal growth cooling conditions investigated were slow cooling with cooling rate of 9 K h-1, furnace cooling, and quenching. The surface and cross-section of the sample were observed by scanning electron microscopy (SEM). The crystalline phase was identified by x-ray diffraction (XRD) analysis. The resistivity was measured by the direct current (DC) two or four terminals method. The Seebeck coefficient was measured by the small temperature difference method. The transgranular resistance and grain boundary resistance were evaluated by the complex impedance method. All samples consisted of layered grains. The grain thickness at cross section decreased with increasing cooling rate. The resistivity of the quenched and slowly cooled specimens was approximately 1000 times lower compared with the furnace cooled specimen and sintered body over the measured temperature range.

  6. Network growth with arbitrary initial conditions: Degree dynamics for uniform and preferential attachment

    NASA Astrophysics Data System (ADS)

    Fotouhi, Babak; Rabbat, Michael G.

    2013-12-01

    This paper provides time-dependent expressions for the expected degree distribution of a given network that is subject to growth. We consider both uniform attachment, where incoming nodes form links to existing nodes selected uniformly at random, and preferential attachment, where probabilities are assigned proportional to the degrees of the existing nodes. We consider the cases of single and multiple links being formed by each newly introduced node. The initial conditions are arbitrary, that is, the solution depends on the degree distribution of the initial graph which is the substrate of the growth. Previous work in the literature focuses on the asymptotic state, that is, when the number of nodes added to the initial graph tends to infinity, rendering the effect of the initial graph negligible. Our contribution provides a solution for the expected degree distribution as a function of time, for arbitrary initial condition. Previous results match our results in the asymptotic limit. The results are discrete in the degree domain and continuous in the time domain, where the addition of new nodes to the graph are approximated by a continuous arrival rate.

  7. Is ragweed pollen allergenicity governed by environmental conditions during plant growth and flowering?

    PubMed Central

    Ghiani, Alessandra; Ciappetta, Silvia; Gentili, Rodolfo; Asero, Riccardo; Citterio, Sandra

    2016-01-01

    Pollen allergenicity is one of the main factors influencing the prevalence and/or severity of allergic diseases. However, how genotype and environment contribute to ragweed pollen allergenicity has still to be established. To throw some light on the factors governing allergenicity, in this work 180 ragweed plants from three Regions (Canada, France, Italy) were grown in both controlled (constant) and standard environmental conditions (seasonal changes in temperature, relative humidity and light). Pollen from single plants was characterized for its allergenic potency and for the underlying regulation mechanisms by studying the qualitative and quantitative variations of the main isoforms of the major ragweed allergen Amb a 1. Results showed a statistically higher variability in allergenicity of pollen from standard conditions than from controlled conditions growing plants. This variability was due to differences among single plants, regardless of their origin, and was not ascribed to differences in the expression and IgE reactivity of individual Amb a 1 isoforms but rather to quantitative differences involving all the studied isoforms. It suggests that the allergenic potency of ragweed pollen and thus the severity of ragweed pollinosis mainly depends on environmental conditions during plant growth and flowering, which regulate the total Amb a 1 content. PMID:27457754

  8. A novel nucleoid protein of Escherichia coli induced under anaerobiotic growth conditions

    PubMed Central

    Teramoto, Jun; Yoshimura, Shige H.; Takeyasu, Kunio; Ishihama, Akira

    2010-01-01

    A systematic search was performed for DNA-binding sequences of YgiP, an uncharacterized transcription factor of Escherichia coli, by using the Genomic SELEX. A total of 688 YgiP-binding loci were identified after genome-wide profiling of SELEX fragments with a high-density microarray (SELEX-chip). Gel shift and DNase-I footprinting assays indicated that YgiP binds to multiple sites along DNA probes with a consensus GTTNATT sequence. Atomic force microscope observation indicated that at low concentrations, YgiP associates at various sites on DNA probes, but at high concentrations, YgiP covers the entire DNA surface supposedly through protein–protein contact. The intracellular concentration of YgiP is very low in growing E. coli cells under aerobic conditions, but increases more than 100-fold to the level as high as the major nucleoid proteins under anaerobic conditions. An E. coli mutant lacking ygiP showed retarded growth under anaerobic conditions. High abundance and large number of binding sites together indicate that YgiP is a nucleoid-associated protein with both architectural and regulatory roles as the nucleoid proteins Fis and IHF. We then propose that YgiP is a novel nucleoid protein of E. coli under anaerobiosis and propose to rename it Dan (DNA-binding protein under anaerobic conditions). PMID:20156994

  9. Nanoparticle growth and surface chemistry changes in cell-conditioned culture medium

    PubMed Central

    Kendall, Michaela; Hodges, Nikolas J.; Whitwell, Harry; Tyrrell, Jess; Cangul, Hakan

    2015-01-01

    When biomolecules attach to engineered nanoparticle (ENP) surfaces, they confer the particles with a new biological identity. Physical format may also radically alter, changing ENP stability and agglomeration state within seconds. In order to measure which biomolecules are associated with early ENP growth, we studied ENPs in conditioned medium from A549 cell culture, using dynamic light scattering (DLS) and linear trap quadrupole electron transfer dissociation mass spectrometry. Two types of 100 nm polystyrene particles (one uncoated and one with an amine functionalized surface) were used to measure the influence of surface type. In identically prepared conditioned medium, agglomeration was visible in all samples after 1 h, but was variable, indicating inter-sample variability in secretion rates and extracellular medium conditions. In samples conditioned for 1 h or more, ENP agglomeration rates varied significantly. Agglomerate size measured by DLS was well correlated with surface sequestered peptide number for uncoated but not for amine coated polystyrene ENPs. Amine-coated ENPs grew much faster and into larger agglomerates associated with fewer sequestered peptides, but including significant sequestered lactose dehydrogenase. We conclude that interference with extracellular peptide balance and oxidoreductase activity via sequestration is worthy of further study, as increased oxidative stress via this new mechanism may be important for cell toxicity. PMID:25533102

  10. Is ragweed pollen allergenicity governed by environmental conditions during plant growth and flowering?

    NASA Astrophysics Data System (ADS)

    Ghiani, Alessandra; Ciappetta, Silvia; Gentili, Rodolfo; Asero, Riccardo; Citterio, Sandra

    2016-07-01

    Pollen allergenicity is one of the main factors influencing the prevalence and/or severity of allergic diseases. However, how genotype and environment contribute to ragweed pollen allergenicity has still to be established. To throw some light on the factors governing allergenicity, in this work 180 ragweed plants from three Regions (Canada, France, Italy) were grown in both controlled (constant) and standard environmental conditions (seasonal changes in temperature, relative humidity and light). Pollen from single plants was characterized for its allergenic potency and for the underlying regulation mechanisms by studying the qualitative and quantitative variations of the main isoforms of the major ragweed allergen Amb a 1. Results showed a statistically higher variability in allergenicity of pollen from standard conditions than from controlled conditions growing plants. This variability was due to differences among single plants, regardless of their origin, and was not ascribed to differences in the expression and IgE reactivity of individual Amb a 1 isoforms but rather to quantitative differences involving all the studied isoforms. It suggests that the allergenic potency of ragweed pollen and thus the severity of ragweed pollinosis mainly depends on environmental conditions during plant growth and flowering, which regulate the total Amb a 1 content.

  11. Temperature governs the inactivation rate of vegetative bacteria under growth-preventing conditions.

    PubMed

    Ross, Tom; Zhang, Donglai; McQuestin, Olivia J

    2008-11-30

    Novel studies, in combination with a meta-analysis of available data, were undertaken to explore the kinetics of non-thermal inactivation of Escherichia coli with particular attention to inactivation in fermented meats and including analogous broth-based model systems. The analyses were based on rates of inactivation and specifically investigated the influence of temperature, pH and water activity at levels that alone, or in combination, prevented growth. When independently-derived inactivation data, obtained using different test conditions and diverse E. coli strains, were presented as Arrhenius plots, temperature was found to have a strong effect on the rate of inactivation, explaining 60% of the variance in the data. The slope of the Arrhenius plot changed, however, at temperatures above approximately 47 degrees C, corresponding to the maximum for growth of E. coli. A strong and consistent effect of pH or water activity on inactivation rate was not observed upon meta-analysis of collated data, but the relative effect of both factors was quantified in an analogous broth-based system. We also observed that inactivation rates of three strains of Listeria monocytogenes in the range 5 to 40 degrees C did not differ systematically from those of four strains of E. coli when growth was prevented by low pH and water activity. The observations of a consistent slope of Arrhenius plots for non-thermal inactivation rate of bacteria under diverse environmental conditions and for different strains and species, but which differ from slopes associated with thermal inactivation, raise the intriguing possibility of a mechanism of inactivation at sub-lethal temperatures, distinct from thermal inactivation, that is common to many vegetative bacteria.

  12. Effects of climatic conditions and soil properties on Cabernet Sauvignon berry growth and anthocyanin profiles.

    PubMed

    Cheng, Guo; He, Yan-Nan; Yue, Tai-Xin; Wang, Jun; Zhang, Zhen-Wen

    2014-09-02

    Climatic conditions and soil type have significant influence on grape ripening and wine quality. The reported study was conducted in two "Cabernet Sauvignon (Vitis vinifera L.V)" vineyards located in Xinjiang, a semiarid wine-producing region of China during two vintages (2011 and 2012). The results indicate that soil and climate affected berry growth and anthocyanin profiles. These two localities were within a distance of 5 km from each other and had soils of different physical and chemical composition. For each vineyard, the differences of anthocyanin concentrations, and parameters concerning berry growth and composition between the two years could be explained by different climatic conditions. Soil effect was studied by investigation of differences in berry composition and anthocyanin profiles between the two vineyards in the same year, which could be explained mainly by the different soil properties, vine water and nitrogen status. Specifically, the soils with less water and organic matter produced looser clusters, heavier berry skins and higher TSS, which contributed to the excellent performance of grapes. Compared with 2011, the increases in anthocyanin concentrations for each vineyard in 2012 could be attributed to smaller number of extreme temperature (>35 °C) days and rainfall, lower vine water status and N level. The explanation for higher anthocyanin concentrations in grape skins from the soils with less water and organic matter could be the vine status differences, lighter berry weight and heavier skin weight at harvest. In particular, grapes from the soils with less water and organic matter had higher levels of 3'5'-substituded, O-methylated and acylated anthocyanins, which represented a positive characteristic conferring more stable pigmentation to the corresponding wine in the future. The present work clarifies the effects of climate and soil on berry growth and anthocyanin profiles, thus providing guidance for production of high-quality wine grapes

  13. Growth of praseodymium oxide on Si(111) under oxygen-deficient conditions

    SciTech Connect

    Schaefer, A.; Zielasek, V.; Baeumer, M.; Schmidt, Th.; Schowalter, M.; Schulz, Ch.; Rosenauer, A.; Falta, J.; Sandell, A.; Seifarth, O.; Schroeder, T.; Wollschlaeger, J.

    2009-07-15

    Surface science studies of thin praseodymium oxide films grown on silicon substrates are of high interest in view of applications in such different fields as microelectronics and heterogeneous catalysis. In particular, a detailed characterization of the growth and the final structure of the films are mandatory to achieve a fundamental understanding of such topics as oxygen mobility and defect structure, and their role for the electronic and chemical properties. In this paper, the MBE growth of praseodymium oxide films on Si(111) substrates was investigated at low-deposition rates (0.06 nm/min) and low-oxygen partial pressures (p(O{sub 2})<1x10{sup -10} mbar). To obtain insight into the structure and chemical composition of the growing film, spot profile analyzing low-energy electron diffraction (SPA-LEED), transmission electron microscopy, and synchrotron radiation-based x-ray photoelectron spectroscopy (XPS) and x-ray absorption spectroscopy (XAS) were applied. SPA-LEED reveals the formation of an initial closed layer followed by continuous roughening and formation of ordered three-dimensional structures. This result is in contrast to observations at higher-deposition rates, were a layer-by-layer growth was reported. XAS and XPS provide evidence that a continuous reaction takes place in the growing Pr{sub 2}O{sub 3} film leading to the formation of silicate and silicide structures within the film. Combining all data, a consistent picture of the deposition of praseodymium oxide on Si(111) emerges which clearly shows that in contrast to higher-throughput molecular beam epitaxy conditions the reactivity of the growing film strongly influences the growth behavior at low-deposition rates and low pressures.

  14. Growth response of Casuarina equisetifolia Forst. rooted stem cuttings to Frankia in nursery and field conditions.

    PubMed

    Karthikeyan, A; Chandrasekaran, K; Geetha, M; Kalaiselvi, R

    2013-11-01

    Casuarina equisetifolia Forst. is a tree crop that provides fuel wood, land reclamation, dune stabilization, and scaffolding for construction, shelter belts, and pulp and paper production. C. equisetifolia fixes atmospheric nitrogen through a symbiotic relationship with Frankia, a soil bacterium of the actinobacteria group. The roots of C. equisetifolia produce root nodules where the bacteria fix atmospheric nitrogen, which is an essential nutrient for all plant metabolic activities. However, rooted stem cuttings of elite clones of C. equisetifolia by vegetative propagation is being planted by the farmers of Pondicherry as costeffective method. As the vegetative propagation method uses inert material (vermiculite) for rooting there is no chance for Frankia association. Therefore after planting of these stocks the farmers are applying 150 kg of di-ammonium phosphate (DAP)/acre/year. To overcome this fertilizer usage, the Frankia-inoculated rooted stem cuttings were propagated under nursery conditions and transplanted in the nutrient-deficient soils of Karaikal, Pondicherry (India), in this study. Under nursery experiments the growth and biomass of C. equisetifolia rooted stem cuttings inoculated with Frankia showed 3 times higher growth and biomass than uninoculated control. These stocks were transplanted and monitored for their growth and survival for 1 year in the nutrient-deficient farm land. The results showed that the rooted stem cuttings of C. equisetifolia significantly improved growth in height (8.8 m), stem girth (9.6 cm) and tissue nitrogen content (3.3 mg g-1) than uninoculated controls. The soil nutrient status was also improved due to inoculation of Frankia.

  15. A comparison of hydrogen photoproduction by sulfur-deprived Chlamydomonas reinhardtii under different growth conditions.

    PubMed

    Kosourov, Sergey; Patrusheva, Elena; Ghirardi, Maria L; Seibert, Michael; Tsygankov, Anatoly

    2007-03-10

    Continuous photoproduction of H(2) by the green alga, Chlamydomonas reinhardtii, is observed after incubating the cultures for about a day in the absence of sulfate and in the presence of acetate. Sulfur deprivation causes the partial and reversible inactivation of photosynthetic O(2) evolution in algae, resulting in the light-induced establishment of anaerobic conditions in sealed photobioreactors, expression of two [FeFe]-hydrogenases in the cells, and H(2) photoproduction for several days. We have previously demonstrated that sulfur-deprived algal cultures can produce H(2) gas in the absence of acetate, when appropriate experimental protocols were used (Tsygankov, A.A., Kosourov, S.N., Tolstygina, I.V., Ghirardi, M.L., Seibert, M., 2006. Hydrogen production by sulfur-deprived Chlamydomonas reinhardtii under photoautotrophic conditions. Int. J. Hydrogen Energy 31, 1574-1584). We now report the use of an automated photobioreactor system to compare the effects of photoautotrophic, photoheterotrophic and photomixotrophic growth conditions on the kinetic parameters associated with the adaptation of the algal cells to sulfur deprivation and H(2) photoproduction. This was done under the experimental conditions outlined in the above reference, including controlled pH. From this comparison we show that both acetate and CO(2) are required for the most rapid inactivation of photosystem II and the highest yield of H(2) gas production. Although, the presence of acetate in the system is not critical for the process, H(2) photoproduction under photoautotrophic conditions can be increased by optimizing the conditions for high starch accumulation. These results suggest ways of engineering algae to improve H(2) production, which in turn may have a positive impact on the economics of applied systems for H(2) production.

  16. Effects of simulated Mars conditions on the survival and growth of Escherichia coli and Serratia liquefaciens.

    PubMed

    Berry, Bonnie J; Jenkins, David G; Schuerger, Andrew C

    2010-04-01

    Escherichia coli and Serratia liquefaciens, two bacterial spacecraft contaminants known to replicate under low atmospheric pressures of 2.5 kPa, were tested for growth and survival under simulated Mars conditions. Environmental stresses of high salinity, low temperature, and low pressure were screened alone and in combination for effects on bacterial survival and replication, and then cells were tested in Mars analog soils under simulated Mars conditions. Survival and replication of E. coli and S. liquefaciens cells in liquid medium were evaluated for 7 days under low temperatures (5, 10, 20, or 30 degrees C) with increasing concentrations (0, 5, 10, or 20%) of three salts (MgCl(2), MgSO(4), NaCl) reported to be present on the surface of Mars. Moderate to high growth rates were observed for E. coli and S. liquefaciens at 30 or 20 degrees C and in solutions with 0 or 5% salts. In contrast, cell densities of both species generally did not increase above initial inoculum levels under the highest salt concentrations (10 and 20%) and the four temperatures tested, with the exception that moderately higher cell densities were observed for both species at 10% MgSO(4) maintained at 20 or 30 degrees C. Growth rates of E. coli and S. liquefaciens in low salt concentrations were robust under all pressures (2.5, 10, or 101.3 kPa), exhibiting a general increase of up to 2.5 orders of magnitude above the initial inoculum levels of the assays. Vegetative E. coli cells were maintained in a Mars analog soil for 7 days under simulated Mars conditions that included temperatures between 20 and -50 degrees C for a day/night diurnal period, UVC irradiation (200 to 280 nm) at 3.6 W m(-2) for daytime operations (8 h), pressures held at a constant 0.71 kPa, and a gas composition that included the top five gases found in the martian atmosphere. Cell densities of E. coli failed to increase under simulated Mars conditions, and survival was reduced 1 to 2 orders of magnitude by the interactive

  17. Increased water-use efficiency does not lead to enhanced tree growth under xeric and mesic conditions.

    PubMed

    Lévesque, Mathieu; Siegwolf, Rolf; Saurer, Matthias; Eilmann, Britta; Rigling, Andreas

    2014-07-01

    Higher atmospheric CO2 concentrations (c(a)) can under certain conditions increase tree growth by enhancing photosynthesis, resulting in an increase of intrinsic water-use efficiency (i WUE) in trees. However, the magnitude of these effects and their interactions with changing climatic conditions are still poorly understood under xeric and mesic conditions. We combined radial growth analysis with intra- and interannual δ(13)C and δ(18)O measurements to investigate growth and physiological responses of Larix decidua, Picea abies, Pinus sylvestris, Pinus nigra and Pseudotsuga menziesii in relation to rising c(a) and changing climate at a xeric site in the dry inner Alps and at a mesic site in the Swiss lowlands. (i)WUE increased significantly over the last 50 yr by 8-29% and varied depending on species, site water availability, and seasons. Regardless of species and increased (i)WUE, radial growth has significantly declined under xeric conditions, whereas growth has not increased as expected under mesic conditions. Overall, drought-induced stomatal closure has reduced transpiration at the cost of reduced carbon uptake and growth. Our results indicate that, even under mesic conditions, the temperature-induced drought stress has overridden the potential CO2 'fertilization' on tree growth, hence challenging today's predictions of improved forest productivity of temperate forests.

  18. MYB10 and MYB72 Are Required for Growth under Iron-Limiting Conditions

    PubMed Central

    Palmer, Christine M.; Hindt, Maria N.; Schmidt, Holger; Clemens, Stephan; Guerinot, Mary Lou

    2013-01-01

    Iron is essential for photosynthesis and is often a limiting nutrient for plant productivity. Plants respond to conditions of iron deficiency by increasing transcript abundance of key genes involved in iron homeostasis, but only a few regulators of these genes have been identified. Using genome-wide expression analysis, we searched for transcription factors that are induced within 24 hours after transferring plants to iron-deficient growth conditions. Out of nearly 100 transcription factors shown to be up-regulated, we identified MYB10 and MYB72 as the most highly induced transcription factors. Here, we show that MYB10 and MYB72 are functionally redundant and are required for plant survival in alkaline soil where iron availability is greatly restricted. myb10myb72 double mutants fail to induce transcript accumulation of the nicotianamine synthase gene NAS4. Both myb10myb72 mutants and nas4-1 mutants have reduced iron concentrations, chlorophyll levels, and shoot mass under iron-limiting conditions, indicating that these genes are essential for proper plant growth. The double myb10myb72 mutant also showed nickel and zinc sensitivity, similar to the nas4 mutant. Ectopic expression of NAS4 rescues myb10myb72 plants, suggesting that loss of NAS4 is the primary defect in these plants and emphasizes the importance of nicotianamine, an iron chelator, in iron homeostasis. Overall, our results provide evidence that MYB10 and MYB72 act early in the iron-deficiency regulatory cascade to drive gene expression of NAS4 and are essential for plant survival under iron deficiency. PMID:24278034

  19. Stochastic modeling of crack initiation and short-crack growth under creep and creep-fatigue conditions

    NASA Technical Reports Server (NTRS)

    Kitamura, Takayuki; Ghosn, Louis J.; Ohtani, Ryuichi

    1989-01-01

    A simplified stochastic model is proposed for crack initiation and short-crack growth under creep and creep-fatigue conditions. Material inhomogeneity provides the random nature of crack initiation and early growth. In the model, the influence of microstructure is introduced by the variability of: (1) damage accumulation along grain boundaries, (2) critical damage required for crack initiation or growth, and (3) the grain-boundary length. The probabilities of crack initiation and growth are derived by using convolution integrals. The model is calibrated and used to predict the crack density and crack-growth rate of short cracks of 304 stainless steel under creep and creep-fatigue conditions. The mean-crack initiation lives are predicted to be within an average deviation of about 10 percent from the experimental results. The predicted cumulative distributions of crack-growth rate follow the experimental data closely. The applicability of the simplified stochastic model is discussed and the future research direction is outlined.

  20. Evaluation of (/sup 3/H)thymidine uptake method for studying growth of spiroplasmas under various conditions

    SciTech Connect

    Bastian, F.O.; Baliga, B.S.; Pollock, H.M.

    1988-10-01

    (/sup 3/H)thymidine uptake and colony counts are quantitative and inexpensive methods for studying Spiroplasma growth. Using these techniques, we demonstrated subtle effects on the growth of suckling mouse cataract agent of medium alterations, inoculum size, and freezing of cultures. In addition, suckling mouse cataract agent multiplied more actively under aerobic than under anaerobic conditions. These techniques have wide application for the study of Spiroplasma growth and will be useful for the development of a defined medium.

  1. FIS-dependent trans activation of stable RNA operons of Escherichia coli under various growth conditions.

    PubMed

    Nilsson, L; Verbeek, H; Vijgenboom, E; van Drunen, C; Vanet, A; Bosch, L

    1992-02-01

    In Escherichia coli transcription of the tRNA operon thrU (tufB) and the rRNA operon rrnB is trans-activated by the protein FIS. This protein, which stimulates the inversion of various viral DNA segments, binds specifically to a cis-acting sequence (designated UAS) upstream of the promoter of thrU (tufB) and the P1 promoter of the rrnB operon. There are indications that this type of regulation is representative for the regulation of more stable RNA operons. In the present investigation we have studied UAS-dependent transcription activation of the thrU (tufB) operon in the presence and absence of FIS during a normal bacterial growth cycle and after a nutritional shift-up. In early log phase the expression of the operon rises steeply in wild-type cells, whereafter it declines. Concomitantly, a peak of the cellular FIS concentration is observed. Cells in the stationary phase are depleted of FIS. The rather abrupt increase of transcription activation depends on the nutritional quality of the medium. It is not seen in minimal medium. After a shift from minimal to rich medium, a peak of transcription activation and of FIS concentration is measured. This peak gets higher as the medium gets more strongly enriched. We conclude that a correlation between changes of the UAS-dependent activation of the thrU (tufB) operon and changes of the cellular FIS concentration under a variety of experimental conditions exists. This correlation strongly suggests that the production of FIS responds to environmental signals, thereby trans-activating the operon. Cells unable to produce FIS (fis cells) also show an increase of operon transcription in the early log phase and after a nutritional shift-up, albeit less pronounced than that wild-type cells. Presumably it is controlled by the ribosome feedback regulatory system. cis activation of the operon by the upstream activator sequence is apparent in the absence of FIS. This activation is constant throughout the entire growth cycle and is

  2. Soil texture and climatc conditions for biocrust growth limitation: a meta analysis

    NASA Astrophysics Data System (ADS)

    Fischer, Thomas; Subbotina, Mariia

    2015-04-01

    Along with afforestation, attempts have been made to combat desertification by managing soil crusts, and is has been reported that recovery rates of biocrusts are dependent on many factors, including the type, severity, and extent of disturbance; structure of the vascular plant community; conditions of adjoining substrates; availability of inoculation material; and climate during and after disturbance (Belnap & Eldridge 2001). Because biological soil crusts are known to be more stable on and to prefer fine substrates (Belnap 2001), the question arises as to how successful crust management practices can be applied to coarser soil. In previous studies we observed similar crust biomasses on finer soils under arid and on coarser soils under temperate conditions. We hypothesized that the higher water holding capacity of finer substrates would favor crust development, and that the amount of silt and clay in the substrate that is required for enhanced crust development would vary with changes in climatic conditions. In a global meta study, climatic and soil texture threshold values promoting BSC growth were derived. While examining literature sources, it became evident that the amount of studies to be incorporated into this meta analysis was reversely related to the amount of common environmental parameters they share. We selected annual mean precipitaion, mean temperature and the amount of silt and clay as driving variables for crust growth. Response variable was the "relative crust biomass", which was computed per literature source as the ratio between each individual crust biomass value of the given study to the study maximum value reported. We distinguished lichen, green algal, cyanobacterial and moss crusts. To quantify threshold conditions at which crust biomass responded to differences in texture and climate, we (I) determined correlations between bioclimatic variables, (II) calculated linear models to determine the effect of typical climatic variables with soil

  3. Estimating geographic variation on allometric growth and body condition of Blue Suckers with quantile regression

    USGS Publications Warehouse

    Cade, B.S.; Terrell, J.W.; Neely, B.C.

    2011-01-01

    Increasing our understanding of how environmental factors affect fish body condition and improving its utility as a metric of aquatic system health require reliable estimates of spatial variation in condition (weight at length). We used three statistical approaches that varied in how they accounted for heterogeneity in allometric growth to estimate differences in body condition of blue suckers Cycleptus elongatus across 19 large-river locations in the central USA. Quantile regression of an expanded allometric growth model provided the most comprehensive estimates, including variation in exponents within and among locations (range = 2.88–4.24). Blue suckers from more-southerly locations had the largest exponents. Mixed-effects mean regression of a similar expanded allometric growth model allowed exponents to vary among locations (range = 3.03–3.60). Mean relative weights compared across selected intervals of total length (TL = 510–594 and 594–692 mm) in a multiplicative model involved the implicit assumption that allometric exponents within and among locations were similar to the exponent (3.46) for the standard weight equation. Proportionate differences in the quantiles of weight at length for adult blue suckers (TL = 510, 594, 644, and 692 mm) compared with their average across locations ranged from 1.08 to 1.30 for southern locations (Texas, Mississippi) and from 0.84 to 1.00 for northern locations (Montana, North Dakota); proportionate differences for mean weight ranged from 1.13 to 1.17 and from 0.87 to 0.95, respectively, and those for mean relative weight ranged from 1.10 to 1.18 and from 0.86 to 0.98, respectively. Weights for fish at longer lengths varied by 600–700 g within a location and by as much as 2,000 g among southern and northern locations. Estimates for the Wabash River, Indiana (0.96–1.07 times the average; greatest increases for lower weights at shorter TLs), and for the Missouri River from Blair, Nebraska, to Sioux City, Iowa (0.90

  4. Growth Conditions Control the Elastic and Electrical Properties of ZnO Nanowires.

    PubMed

    Wang, Xiaoguang; Chen, Kai; Zhang, Yongqiang; Wan, Jingchun; Warren, Oden L; Oh, Jason; Li, Ju; Ma, Evan; Shan, Zhiwei

    2015-12-09

    Great efforts have been made to synthesize ZnO nanowires (NWs) as building blocks for a broad range of applications because of their unique mechanical and mechanoelectrical properties. However, little attention has been paid to the correlation between the NWs synthesis condition and these properties. Here we demonstrate that by slightly adjusting the NW growth conditions, the cross-sectional shape of the NWs can be tuned from hexagonal to circular. Room temperature photoluminescence spectra suggested that NWs with cylindrical geometry have a higher density of point defects. In situ transmission electron microscopy (TEM) uniaxial tensile-electrical coupling tests revealed that for similar diameter, the Young's modulus and electrical resistivity of hexagonal NWs is always larger than that of cylindrical NWs, whereas the piezoresistive coefficient of cylindrical NWs is generally higher. With decreasing diameter, the Young's modulus and the resistivity of NWs increase, whereas their piezoresistive coefficient decreases, regardless of the sample geometry. Our findings shed new light on understanding and advancing the performance of ZnO-NW-based devices through optimizing the synthesis conditions of the NWs.

  5. Differences in morphogenesis of 3D cultured primary human osteoblasts under static and microfluidic growth conditions.

    PubMed

    Altmann, Brigitte; Löchner, Anne; Swain, Michael; Kohal, Ralf-Joachim; Giselbrecht, Stefan; Gottwald, Eric; Steinberg, Thorsten; Tomakidi, Pascal

    2014-03-01

    As information on osteoblast mechanosensitivity response to biomechanical cues in three-dimensional (3D) in vitro microenvironments is sparse, the present study compared morphogenesis of primary human alveolar bone osteoblasts (PHABO) under microchip-based 3D-static conditions, and 3D-fluid flow-mediated biomechanical stimulation in perfusion bioreactors. Discrimination of the respective microenvironment by differential morphogenesis was evident from fluid flow-induced PHABO reorganization into rotund bony microtissue, comprising more densely packed multicellular 3D-aggregates, while viability of microtissues was flow rate dependent. Time-lapse microscopy and simple modeling of biomechanical conditions revealed that physiologically relevant fluid flow-mediated PHABO stimulation was associated with formation of mulberry-like PHABO aggregates within the first 24 h. Differential extracellular matrix deposition patterns and gene expression modulation in PHABO aggregates at day 7 further indicates progressive osteoblast differentiation exclusively in perfusion culture-developed bony microtissues. The results of our study strongly suggest PHABO morphogenesis as discriminator of microenvironmental growth conditions, which in case of the microfluidic 3D microchip-bioreactor are substantiated by triggering in vitro bone microtissue formation concomitant with progressive osteoblastic differentiation. Such microtissue outcomes provide unique insight for mechanobiological studies in response to biomechanical fluid flow cues, and clinically appear promising for in vitro PHABO preconditioning, enabling innovative bone augmentation procedures.

  6. Salmonella Modulates Metabolism During Growth under Conditions that Induce Expression of Virulence Genes

    SciTech Connect

    Kim, Young-Mo; Schmidt, Brian; Kidwai, Afshan S.; Jones, Marcus B.; Deatherage, Brooke L.; Brewer, Heather M.; Mitchell, Hugh D.; Palsson, Bernhard O.; McDermott, Jason E.; Heffron, Fred; Smith, Richard D.; Peterson, Scott N.; Ansong, Charles; Hyduke, Daniel R.; Metz, Thomas O.; Adkins, Joshua N.

    2013-04-05

    Salmonella enterica serovar Typhimurium (S. Typhimurium) is a facultative pathogen that uses complex mechanisms to invade and proliferate within mammalian host cells. To investigate possible contributions of metabolic processes in S. Typhimurium grown under conditions known to induce expression of virulence genes, we used a metabolomics-driven systems biology approach coupled with genome scale modeling. First, we identified distinct metabolite profiles associated with bacteria grown in either rich or virulence-inducing media and report the most comprehensive coverage of the S. Typhimurium metabolome to date. Second, we applied an omics-informed genome scale modeling analysis of the functional consequences of adaptive alterations in S. Typhimurium metabolism during growth under our conditions. Excitingly, we observed possible sequestration of metabolites recently suggested to have immune modulating roles. Modeling efforts highlighted a decreased cellular capability to both produce and utilize intracellular amino acids during stationary phase culture in virulence conditions, despite significant abundance increases for these molecules as observed by our metabolomics measurements. Model-guided analysis suggested that alterations in metabolism prioritized other activities necessary for pathogenesis instead, such as lipopolysaccharide biosynthesis.

  7. Differential Carbohydrate Recognition by Campylobacter jejuni Strain 11168: Influences of Temperature and Growth Conditions

    PubMed Central

    Day, Christopher J.; Tiralongo, Joe; Hartnell, Regan D.; Logue, Carie-Anne; Wilson, Jennifer C.; von Itzstein, Mark; Korolik, Victoria

    2009-01-01

    The pathogenic clinical strain NCTC11168 was the first Campylobacter jejuni strain to be sequenced and has been a widely used laboratory model for studying C. jejuni pathogenesis. However, continuous passaging of C. jejuni NCTC11168 has been shown to dramatically affect its colonisation potential. Glycan array analysis was performed on C. jejuni NCTC11168 using the frequently passaged, non-colonising, genome sequenced (11168-GS) and the infrequently passaged, original, virulent (11168-O) isolates grown or maintained under various conditions. Glycan structures recognised and bound by C. jejuni included terminal mannose, N-acetylneuraminic acid, galactose and fucose. Significantly, it was found that only when challenged with normal oxygen at room temperature did 11168-O consistently bind to sialic acid or terminal mannose structures, while 11168-GS bound these structures regardless of growth/maintenance conditions. Further, binding of un-capped galactose and fucosylated structures was significantly reduced when C. jejuni was maintained at 25°C under atmospheric oxygen conditions. These binding differences identified through glycan array analysis were confirmed by the ability of specific lectins to competitively inhibit the adherence of C. jejuni to a Caco-2 intestinal cell line. Our data suggests that the binding of mannose and/or N-acetylneuraminic acid may provide the initial interactions important for colonisation following environmental exposure. PMID:19290056

  8. MIZ1-regulated hydrotropism functions in the growth and survival of Arabidopsis thaliana under natural conditions

    PubMed Central

    Iwata, Satoru; Miyazawa, Yutaka; Fujii, Nobuharu; Takahashi, Hideyuki

    2013-01-01

    Background and Aims Root hydrotropism is a response to water-potential gradients that makes roots bend towards areas of higher water potential. The gene MIZU-KUSSEI1 (MIZ1) that is essential for hydrotropism in Arabidopsis roots has previously been identified. However, the role of root hydrotropism in plant growth and survival under natural conditions has not yet been proven. This study assessed how hydrotropic response contributes to drought avoidance in nature. Methods An experimental system was established for the study of Arabidopsis hydrotropism in soil. Characteristics of hydrotropism were analysed by comparing the responses of the miz1 mutant, transgenic plants overexpressing MIZ1 (MIZ1OE) and wild-type plants. Key Results Wild-type plants developed root systems in regions with higher water potential, whereas the roots of miz1 mutant plants did not show a similar response. This pattern of root distribution induced by hydrotropism was more pronounced in MIZ1OE plants than in wild-type plants. In addition, shoot biomass and the number of plants that survived under drought conditions were much greater in MIZ1OE plants. Conclusions These results show that hydrotropism plays an important role in root system development in soil and contributes to drought avoidance, which results in a greater yield and plant survival under water-limited conditions. The results also show that MIZ1 overexpression can be used for improving plant productivity in arid areas. PMID:23658369

  9. Effects of strigolactone signaling on Arabidopsis growth under nitrogen deficient stress condition.

    PubMed

    Ito, Shinsaku; Ito, Ken; Abeta, Naoko; Takahashi, Ryo; Sasaki, Yasuyuki; Yajima, Shunsuke

    2016-01-01

    Strigolactones (SLs) are a group of terpenoid lactones found in plants that regulate diverse developmental phenomena. SLs are thought to be involved in the maintenance of phosphate homeostasis. In addition, SL signaling is required for the regulation of shoot branching by nitrogen supply in Arabidopsis. In this study, we evaluated the effects of SLs on nitrogen deficient-inducing phenomena (leaf senescence and reduction of plant weight) in Arabidopsis. SL-biosynthesis (max1-1) and SL-insensitive (atd14-1) mutants showed altered responses to nitrogen deficient in comparison with wild-type (WT) plants. Nitrogen deficient conditions led to alterations in the expression levels of SL biosynthesis genes (MAX3 and MAX4). These results indicate that SLs could be key mediators of plant growth response to nitrogen supply.

  10. Effects of strigolactone signaling on Arabidopsis growth under nitrogen deficient stress condition

    PubMed Central

    Ito, Shinsaku; Ito, Ken; Abeta, Naoko; Takahashi, Ryo; Sasaki, Yasuyuki; Yajima, Shunsuke

    2016-01-01

    ABSTRACT Strigolactones (SLs) are a group of terpenoid lactones found in plants that regulate diverse developmental phenomena. SLs are thought to be involved in the maintenance of phosphate homeostasis. In addition, SL signaling is required for the regulation of shoot branching by nitrogen supply in Arabidopsis. In this study, we evaluated the effects of SLs on nitrogen deficient-inducing phenomena (leaf senescence and reduction of plant weight) in Arabidopsis. SL-biosynthesis (max1-1) and SL-insensitive (atd14-1) mutants showed altered responses to nitrogen deficient in comparison with wild-type (WT) plants. Nitrogen deficient conditions led to alterations in the expression levels of SL biosynthesis genes (MAX3 and MAX4). These results indicate that SLs could be key mediators of plant growth response to nitrogen supply. PMID:26653175

  11. A new fungal endophyte, Scolecobasidium humicola, promotes tomato growth under organic nitrogen conditions.

    PubMed

    Mahmoud, Rola S; Narisawa, Kazuhiko

    2013-01-01

    A new fungal endophyte, Scolecobasidium humicola, was identified as a common dark septate endophytic fungal (DSE) species under both natural and agricultural conditions. This fungus was found to grow endophylically in the roots of tomato seedlings. Light microscopy of cross-sections of colonized tomato roots showed that the intercellular, pigmented hyphae of the fungus were mostly limited to the epidermal layer and formed outer mantle-like structures. Two isolates of S. humicola, H2-2 and F1-3, have shown the ability to increase plant biomass with an organic nitrogen source. This finding is the first report of S. humicola as an endophyte and could help to improve plant growth with organic nitrogen sources.

  12. Growth responses of the mangrove Avicennia marina to salinity: development and function of shoot hydraulic systems require saline conditions

    PubMed Central

    Nguyen, Hoa T.; Stanton, Daniel E.; Schmitz, Nele; Farquhar, Graham D.; Ball, Marilyn C.

    2015-01-01

    Background and Aims Halophytic eudicots are characterized by enhanced growth under saline conditions. This study combines physiological and anatomical analyses to identify processes underlying growth responses of the mangrove Avicennia marina to salinities ranging from fresh- to seawater conditions. Methods Following pre-exhaustion of cotyledonary reserves under optimal conditions (i.e. 50 % seawater), seedlings of A. marina were grown hydroponically in dilutions of seawater amended with nutrients. Whole-plant growth characteristics were analysed in relation to dry mass accumulation and its allocation to different plant parts. Gas exchange characteristics and stable carbon isotopic composition of leaves were measured to evaluate water use in relation to carbon gain. Stem and leaf hydraulic anatomy were measured in relation to plant water use and growth. Key Results Avicennia marina seedlings failed to grow in 0–5 % seawater, whereas maximal growth occurred in 50–75 % seawater. Relative growth rates were affected by changes in leaf area ratio (LAR) and net assimilation rate (NAR) along the salinity gradient, with NAR generally being more important. Gas exchange characteristics followed the same trends as plant growth, with assimilation rates and stomatal conductance being greatest in leaves grown in 50–75 % seawater. However, water use efficiency was maintained nearly constant across all salinities, consistent with carbon isotopic signatures. Anatomical studies revealed variation in rates of development and composition of hydraulic tissues that were consistent with salinity-dependent patterns in water use and growth, including a structural explanation for low stomatal conductance and growth under low salinity. Conclusions The results identified stem and leaf transport systems as central to understanding the integrated growth responses to variation in salinity from fresh- to seawater conditions. Avicennia marina was revealed as an obligate halophyte

  13. Impact of PGPR inoculation on growth and antioxidant status of wheat under saline conditions.

    PubMed

    Upadhyay, Sudhir Kumar; Singh, Jay Shankar; Saxena, Anil Kumar; Singh, Devendra Pratap

    2012-07-01

    Two plant growth-promoting rhizobacterial (PGPR) strains, Bacillus subtilis SU47 and Arthrobacter sp. SU18, were found to tolerate 8% NaCl. Wheat co-inoculated with these two PGPR strains, and grown under different salinity regimes (2-6 dS m(-1) ), showed an increase in dry biomass, total soluble sugars and proline content. Wheat sodium content was reduced under co-inoculated conditions but not after single inoculation with either strain or in the control. The activity of antioxidant enzymes in wheat leaves decreased under salinity stress after PGPR co-inoculation, suggesting these PGPR species could be used for amelioration of stress in wheat plants. Activity of three antioxidant enzymes in wheat grown with both PGPR strains was reduced, most notably that of catalase activity at a salinity of 6 dS m(-1) , when compared with the control. The results indicate that co-inoculation with B. subtilis and Arthrobacter sp. could alleviate the adverse effects of soil salinity on wheat growth.

  14. Enhancement of growth and yield of tomato by Rhodopseudomonas sp. under greenhouse conditions.

    PubMed

    Lee, Kang-Hyeong; Koh, Rae-Hyun; Song, Hong-Gyu

    2008-12-01

    A greenhouse test was carried out to examine the effects on tomato growth of application of purple non-sulfur bacterium Rhodopseudomonas sp. which had enhanced germination and growth of tomato seed under axenic conditions. The shoot length of tomato plant inoculated by Rhodopseudomonas sp. KL9 increased by 34.6% compared to that of control in 8 weeks of cultivation. During the same period, this strain increased 120.6 and 78.6% of dry weight of shoot and root of tomato plants, respectively. The formation ratio of tomato fruit from flower was also raised by inoculation of KL9. In addition, Rhodopseudomonas sp. KL9 treatment enhanced the fresh weight and lycopene content in the harvested tomato fruits by 98.3 and 48.3%, respectively compared to those of the uninoculated control. When the effect on the indigenous bacterial community and fate of the inoculated Rhodopseudomonas sp. KL9 were monitored by denaturing gradient gel electrophoresis analysis, its application did not affect the native bacterial community in tomato rhizosphere soil, but should be repeated to maintain its population size. This bacterial capability may be applied as an environment-friendly biofertilizer to cultivation of high quality tomato and other crops including lycopene-containing vegetables and fruits.

  15. Carnitine palmitoyltransferase 1C promotes cell survival and tumor growth under conditions of metabolic stress

    PubMed Central

    Zaugg, Kathrin; Yao, Yi; Reilly, Patrick T.; Kannan, Karuppiah; Kiarash, Reza; Mason, Jacqueline; Huang, Ping; Sawyer, Suzanne K.; Fuerth, Benjamin; Faubert, Brandon; Kalliomäki, Tuula; Elia, Andrew; Luo, Xunyi; Nadeem, Vincent; Bungard, David; Yalavarthi, Sireesha; Growney, Joseph D.; Wakeham, Andrew; Moolani, Yasmin; Silvester, Jennifer; Ten, Annick You; Bakker, Walbert; Tsuchihara, Katsuya; Berger, Shelley L.; Hill, Richard P.; Jones, Russell G.; Tsao, Ming; Robinson, Murray O.; Thompson, Craig B.; Pan, Guohua; Mak, Tak W.

    2011-01-01

    Tumor cells gain a survival/growth advantage by adapting their metabolism to respond to environmental stress, a process known as metabolic transformation. The best-known aspect of metabolic transformation is the Warburg effect, whereby cancer cells up-regulate glycolysis under aerobic conditions. However, other mechanisms mediating metabolic transformation remain undefined. Here we report that carnitine palmitoyltransferase 1C (CPT1C), a brain-specific metabolic enzyme, may participate in metabolic transformation. CPT1C expression correlates inversely with mammalian target of rapamycin (mTOR) pathway activation, contributes to rapamycin resistance in murine primary tumors, and is frequently up-regulated in human lung tumors. Tumor cells constitutively expressing CPT1C show increased fatty acid (FA) oxidation, ATP production, and resistance to glucose deprivation or hypoxia. Conversely, cancer cells lacking CPT1C produce less ATP and are more sensitive to metabolic stress. CPT1C depletion via siRNA suppresses xenograft tumor growth and metformin responsiveness in vivo. CPT1C can be induced by hypoxia or glucose deprivation and is regulated by AMPKα. Cpt1c-deficient murine embryonic stem (ES) cells show sensitivity to hypoxia and glucose deprivation and altered FA homeostasis. Our results indicate that cells can use a novel mechanism involving CPT1C and FA metabolism to protect against metabolic stress. CPT1C may thus be a new therapeutic target for the treatment of hypoxic tumors. PMID:21576264

  16. Development of a Fatigue Crack Growth Coupon for Highly Plastic Stress Conditions

    NASA Technical Reports Server (NTRS)

    Allen, Phillip A.; Aggarwal, Pravin K.; Swanson, Gregory R.

    2003-01-01

    This paper presents an analytical approach used to develop a novel fatigue crack growth coupon for a highly plastic 3-D stress field condition. The flight hardware investigated in this paper is a large separation bolt that fractures using pyrotechnics at the appointed time during the flight sequence. The separation bolt has a deep notch that produces a severe stress concentration and a large plastic zone when highly loaded. For this geometry, linear-elastic fracture mechanics (LEFM) techniques are not valid due to the large nonlinear stress field. Unfortunately, industry codes that are generally available for fracture mechanics analysis and fatigue crack growth (e.g. NASGRO (11) are limited to LEFM and are available for only a limited number of geometries. The results of LEFM based codes are questionable when used on geometries with significant plasticity. Therefore elastic-plastic fracture mechanics (EPFM) techniques using the finite element method (FEM) were used to analyze the bolt and test coupons. scale flight hardware is very costly in t e r n of assets, laboratory resources, and schedule. Therefore to alleviate some of these problems, a series of novel test coupons were developed to simulate the elastic-plastic stress field present in the bolt.

  17. Influence of packaging conditions on natural microbial population growth of endive.

    PubMed

    Charles, Florence; Rugani, Nathalie; Gontard, Nathalie

    2005-05-01

    The influence of three packaging conditions, i.e., unmodified atmosphere packaging (UAP), passive modified atmosphere packaging (MAP), and active MAP, on the natural microbial population growth of endive was investigated at 20 degrees C. For UAP, endive was placed in macroperforated oriented polypropylene pouches that maintained gas composition close to that of air (21 kPa O2 and 0 kPa CO2) but also limited superficial product dehydration. For MAP, endive was placed in low-density polyethylene pouches that induced a 3 kPa O2 and 5 kPa CO2 equilibrium atmosphere composition. Steady state was reached after 25 h of storage with an oxygen absorbing packet (active MAP) compared with 100 h without the packet (passive MAP) and was maintained for 200 h. After 312 h of storage, both active and passive MAP reduced total aerobic mesophile, yeast, and mold population growth compared with endive in UAP. Active MAP accelerated and improved the inhibition of Pseudomonas spp. and Enterobacteriaceae, respectively, probably because of the rapid O2 depletion during the transition period. A shift in the Enterobacteriaceae subpopulation from Rhanella aquatilis to Enterobacter agglomerans was observed for both passive and active MAP.

  18. Arabidopsis alcohol dehydrogenase expression in both shoots and roots is conditioned by root growth environment

    NASA Technical Reports Server (NTRS)

    Chung, H. J.; Ferl, R. J.

    1999-01-01

    It is widely accepted that the Arabidopsis Adh (alcohol dehydrogenase) gene is constitutively expressed at low levels in the roots of young plants grown on agar media, and that the expression level is greatly induced by anoxic or hypoxic stresses. We questioned whether the agar medium itself created an anaerobic environment for the roots upon their growing into the gel. beta-Glucuronidase (GUS) expression driven by the Adh promoter was examined by growing transgenic Arabidopsis plants in different growing systems. Whereas roots grown on horizontal-positioned plates showed high Adh/GUS expression levels, roots from vertical-positioned plates had no Adh/GUS expression. Additional results indicate that growth on vertical plates closely mimics the Adh/GUS expression observed for soil-grown seedlings, and that growth on horizontal plates results in induction of high Adh/GUS expression that is consistent with hypoxic or anoxic conditions within the agar of the root zone. Adh/GUS expression in the shoot apex is also highly induced by root penetration of the agar medium. This induction of Adh/GUS in shoot apex and roots is due, at least in part, to mechanisms involving Ca2+ signal transduction.

  19. Exploring growth conditions and Eu2+ concentration effects for KSr2I5:Eu scintillator crystals

    NASA Astrophysics Data System (ADS)

    Stand, L.; Zhuravleva, M.; Camarda, G.; Lindsey, A.; Johnson, J.; Hobbs, C.; Melcher, C. L.

    2016-04-01

    Our current research is focused on understanding dopant optimization, growth rate, homogeneity and their impact on the overall performance of KSr2I5:Eu2+ single crystal scintillators. In this work we have investigated the effects of Eu2+ concentration in the potassium strontium iodide matrix, and we found that the concentration needed to maximize the light yield was 4 mol%. In order to assess the effects of the pulling rate, we grew single crystals at 12, 24 and 120 mm/day via the vertical Bridgman technique. For the sample sizes measured (5×5×5 mm3), we found that the crystal grown at the fastest rate of 120 mm/day showed a light yield within ~7% of the more slowly grown boules, and no significant change was observed in the energy resolution. Therefore, light yields from 88,000 to 96,000 ph/MeV and energy resolutions from 2.4 to 3.0% (at 662 keV) were measured for KSr2I5:Eu 4% over a relatively wide range of growth conditions. In order to assess the homogeneity of KSr2I5:Eu 4%, a newly developed micro-resolution X-ray technique was used to map the light yield as a function of excitation position. In the crystals that we studied, we did not observe any significant inhomogeneity other than a smooth gradient due to light collection and self absorption effects.

  20. Influence of intra-amoebic and other growth conditions on the surface properties of Legionella pneumophila.

    PubMed Central

    Barker, J; Lambert, P A; Brown, M R

    1993-01-01

    The surface properties of Legionella pneumophila were examined by analyzing outer membrane (OM) proteins, lipopolysaccharides (LPS), and cellular fatty acids after growth within Acanthamoeba polyphaga and in vitro under various nutrient-depleted conditions. Intra-amoeba-grown legionellae were found to differ in several respects from cells grown in vitro; most notably, they contained a 15-kDa OM protein and a monounsaturated straight-chain fatty acid (18:1(9)). These compounds were also found in abundant quantities in the host amoeba. Immunoblot analysis of intra-amoeba-grown legionellae with antiacanthamoebic serum revealed that both the bacterial whole cells and Sarkosyl-extracted OMs contained amoebic antigens. The findings suggest that the 15-kDa OM protein is likely to be of amoebic origin and associates with the OM of the bacterium. It is proposed that disruption of amoebic membranes, as a result of intra-amoebic infection, may liberate macromolecules, including a 15-kDa polypeptide, a major constituent of the amoebic membrane, which adhere to the surface of the legionellae. Growth under specific nutrient depletions also had a significant effect on the surface composition of L. pneumophila. Cells grown under phosphate depletion were markedly sensitive to protease K digestion and contained lower levels of LPS, as observed by silver staining of the digests on polyacrylamide gels. Intra-amoeba-grown cells contained more bands than the in vitro-grown organisms, reflecting further differences in the nature of the LPS. The whole-cell fatty acids of the phosphate-depleted cells were appreciably different from those of cells grown under other nutritional conditions. We found no evidence for expression of iron-regulated OM proteins under iron depletion. Images PMID:8335382

  1. Excess production of phage lambda delayed early proteins under conditions supporting high Escherichia coli growth rates.

    PubMed

    Gabig, M; Obuchowski, M; Wegrzyn, A; Szalewska-Pałasz, A; Thomas, M S; Wegrzyn, G

    1998-08-01

    Bacteriophage lambda is unable to lysogenize Escherichia coli hosts harbouring the rpoA341 mutation due to a drastic reduction in transcription from CII-activated lysogenic promoters (pE, pI and paQ). In addition, the level of early transcripts involved in the lytic pathway of lambda development is also decreased in this genetic background due to impaired N-dependent antitermination. Here, it is demonstrated that despite the reduced level of early lytic pL- and pR-derived transcripts, lytic growth of bacteriophage lambda is not affected in rich media. The level of the late lytic, pR-derived transcripts also remains unaffected by the rpoA341 mutation under these conditions. However, it was found that whilst there is no significant difference in the phage burst size in rpoA+ and rpoA341 hosts growing in rich media, phage lambda is not able to produce progeny in the rpoA341 mutant growing in minimal medium, in contrast to otherwise isogenic rpoA+ bacteria. Provision of an excess of the phage replication proteins O and P in trans or overproduction of the antitermination protein N restore the ability of phage lambda to produce progeny in the rpoA341 mutant under the latter conditions. These results suggest that in rich media phage lambda produces some early proteins in excess of that needed for its effective propagation and indicate that replication proteins may be limiting factors for phage lytic growth in poor media.

  2. Temporal Evolution of Magma Flow Conditions during Dome Growth, Insights from Numerical Modelling.

    NASA Astrophysics Data System (ADS)

    Chevalier, L. A. C.; Collombet, M.; Pinel, V.

    2015-12-01

    Transitions from effusive to explosive regime at andesitic volcanoes are almost unpredictable at the moment. The reliability of empirical methods based on geophysical precursory patterns is still debated. A better understanding of the physical processes happening in the volcanic system before explosions and associated geophysical signals is needed. At andesitic volcanoes, dome building is often observed during the effusive phase. The weight of a forming dome is expected to have several effects: 1) It obviously induces a ground subsidence in the near field; 2) pressure increase at the top of the conduit causes magma properties and flow conditions evolution; 3) it increases pressure in the surrounding rock such decreasing rock permeability and thus gas loss through the conduit walls, possibly leading to gas pressurisation. Here we use numerical models that couple realistic magma flow conditions in the upper conduit with solid deformation, in 2D axisymmetry, to investigate all these effects. Subsiding effect due to the dome emplacement is simulated by a pressure loading of the rock surrounding the conduit. From realistic initial magma flow conditions in effusive regime (Collombet, 2009), we apply increasing pressure at the conduit top. Volatile solubility increases with pressure, then dome growth causes a decrease of magma porosity and permeability at the top of the conduit. This also causes a decrease of magma viscosity. From magma flow model, we extract pressure and shear stress conditions at the conduit wall, and apply them to the surrounding rock for ground deformation calculation . Darcy flow model is used to study the impacts of permeability decrease inside the conduit and in the surrounding rock on gas loss cinematics. Permeability decrease in the conduit and pressure increase in the surrounding rock cause gas pressurisation.

  3. Die another day: Fate of heat-treated Geobacillus stearothermophilus ATCC 12980 spores during storage under growth-preventing conditions.

    PubMed

    Mtimet, Narjes; Trunet, Clément; Mathot, Anne-Gabrielle; Venaille, Laurent; Leguérinel, Ivan; Coroller, Louis; Couvert, Olivier

    2016-06-01

    Geobacillus stearothermophilus spores are recognized as one of the most wet-heat resistant among aerobic spore-forming bacteria and are responsible for 35% of canned food spoilage after incubation at 55 °C. The purpose of this study was to investigate and model the fate of heat-treated survivor spores of G. stearothermophilus ATCC 12980 in growth-preventing environment. G. stearothermophilus spores were heat-treated at four different conditions to reach one or two decimal reductions. Heat-treated spores were stored in nutrient broth at different temperatures and pH under growth-preventing conditions. Spore survival during storage was evaluated by count plating over a period of months. Results reveal that G. stearothermophilus spores surviving heat treatment lose their viability during storage under growth-preventing conditions. Two different subpopulations were observed during non-thermal inactivation. They differed according to the level of their resistance to storage stress, and the proportion of each subpopulation can be modulated by heat treatment conditions. Finally, tolerance to storage stress under growth-preventing conditions increases at refrigerated temperature and neutral pH regardless of heat treatment conditions. Such results suggest that spore inactivation due to heat treatment could be completed by storage under growth-preventing conditions.

  4. How do sink and source activities influence the reproduction and vegetative growth of spring ephemeral herbs under different light conditions?

    PubMed

    Sunmonu, Ninuola; Kudo, Gaku

    2014-07-01

    Spring ephemeral herbs inhabiting deciduous forests commonly complete reproduction and vegetative growth before canopy closure in early summer. Effects of shading by early canopy closure on reproductive output and vegetative growth, however, may vary depending on the seasonal allocation patterns of photosynthetic products between current reproduction and storage for future growth in each species. To clarify the effects of sink-source balance on seed production and bulb growth in a spring ephemeral herb, Gagea lutea, we performed a bract removal treatment (source reduction) and a floral-bud removal treatment (sink reduction) under canopy and open conditions. Leaf carbon fixations did not differ between the forest and open sites and among treatments. Bract carbon fixations were also similar between sites but tended to decrease when floral buds were removed. Seed production was higher under open condition but decreased by the bract-removal treatment under both light conditions. In contrast, bulb growth was independent of light conditions and the bract-removal treatment but increased greatly by the bud-removal treatment. Therefore, leaves and bracts acted as specialized source organs for vegetative and reproductive functions, respectively, but photosynthetic products by bracts were flexibly used for bulb growth when plants failed to set fruits. Extension of bright period was advantageous for seed production (i.e., source limited) but not for vegetative growth (i.e., sink limited) in this species.

  5. Effect of rhizobacterial consortia from undisturbed arid- and agro-ecosystems on wheat growth under different conditions.

    PubMed

    Inostroza, N G; Barra, P J; Wick, L Y; Mora, M L; Jorquera, M A

    2017-02-01

    Plant growth-promoting rhizobacteria (PGPR) are studied as complements/alternatives to chemical fertilizers used in agriculture. However, poor information exists on the potential of PGPR from undisturbed ecosystems. Here, we have evaluated the plant growth-promoting (PGP) effect of rhizobacterial consortia from undisturbed Chilean arid ecosystems (Consortium C1) and agro-ecosystems (Consortium C2) on plant biomass production. The PGP effects of C1 and C2 were assayed in wheat seedlings (Triticum aestivum L.) grown in pots under growth chamber conditions and in pots placed in an open greenhouse under natural conditions, using two different Chilean Andisols (Piedras Negras and Freire series) kept either at 30 or 60% of their maximum water holding capacity (MWHC). PGP effects depended on the soil type, MWHC and the growth conditions tested. Although both consortia showed PGB effects in artificial soils relative to controls in growth chambers, only C1 provoked a PGP effect at 60% MWHC in phosphorus-poor soil of the 'Piedras Negras' series. At natural conditions, however, only C1 exhibited statistically significant PGP effects at 30% MWHC in 'Piedras Negras', yet and most importantly allowed to maintain similar plant biomass as at 60% MWHC. Our results support possible applications of rhizobacterial consortia from arid ecosystems to improve wheat growth in Chilean Andisols under water shortage conditions.

  6. Distinct 5′ UTRs regulate XIAP expression under normal growth conditions and during cellular stress

    PubMed Central

    Riley, Alura; Jordan, Lindsay E.; Holcik, Martin

    2010-01-01

    X-chromosome linked inhibitor of apoptosis, XIAP, is cellular caspase inhibitor and a key regulator of apoptosis. We and others have previously shown that XIAP expression is regulated primarily at the level of protein synthesis; the 5′ untranslated region (UTR) of XIAP mRNA contains an Internal Ribosome Entry Site (IRES) that supports cap-independent expression of XIAP protein during conditions of pathophysiological stress, such as serum deprivation or gamma irradiation. Here, we show that XIAP is encoded by two distinct mRNAs that differ in their 5′ UTRs. We further show that the dominant, shorter, 5′ UTR promotes a basal level of XIAP expression under normal growth conditions. In contrast, the less abundant longer 5′ UTR contains an IRES and supports cap-independent translation during stress. Our data suggest that the combination of alternate regulatory regions and distinct translational initiation modes is critical in maintaining XIAP levels in response to cellular stress and may represent a general mechanism of cellular adaptation. PMID:20385593

  7. Bridgman Crystal Growth of an Alloy with Thermosolutal Convection Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Simpson, James E.; Garimella, Suresh V.; deGroh, Henry C., III; Abbaschian, Reza

    2000-01-01

    The solidification of a dilute alloy (bismuth-tin) under Bridgman crystal growth conditions is investigated. Computations are performed in two dimensions with a uniform grid. The simulation includes the species concentration, temperature and flow fields, as well as conduction in the ampoule. Fully transient simulations have been performed, with no simplifying steady state approximations. Results are obtained under microgravity conditions for pure bismuth, and for Bi-0.1 at.%Sn and Bi-1.0 at.%Sn alloys, and compared with experimental results obtained from crystals grown in the microgravity environment of space. For the Bi-1.0 at.%Sn case the results indicate that a secondary convective cell, driven by solutal gradients, forms near the interface. The magnitude of the velocities in this cell increases with time, causing increasing solute segregation at the solid/liquid interface. The concentration-dependence of the melting temperature is incorporated in the model for the Bi-1.0 at.%Sn alloy. Satisfactory correspondence is obtained between the predicted and experimental results in terms of solute concentrations in the solidified crystal.

  8. Melt Convection Effects in the Bridgman Crystal Growth of an Alloy Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Simpson James E.; Garimella, Suresh V.; deGroh, Henry C., III; Abbaschian, Reza

    1998-01-01

    The solidification of a dilute bismuth-tin alloy under Bridgman crystal growth conditions is investigated in support of NASA's MEPHISTO space shuttle flight experiment. Computations are performed in two-dimensions with a uniform grid. The simulation includes the species-concentration, temperature and flow fields, as well as conduction in the ampoule. Fully transient simulations have been performed; no simplifying steady state approximations are used. Results are obtained under microgravity conditions for pure bismuth, and Bismuth-0.1 at.% Sn and Bi-1.0 at.% Sn alloys. The concentration dependence of the melting temperature is neglected; the solid/liquid interface temperature is assumed to be the melting temperature of pure bismuth for all cases studied. For the Bi-1.0 at.% Sn case the results indicate that a secondary convective cell, driven by solutal gradients, forms near the interface. The magnitude of the velocities in this cell increases with time; this causes increasing solute segregation at the liquid/solid interface.

  9. Inverted initial conditions: Exploring the growth of cosmic structure and voids

    DOE PAGES

    Pontzen, Andrew; Roth, Nina; Peiris, Hiranya V.; ...

    2016-05-18

    We introduce and explore “paired” cosmological simulations. A pair consists of an A and B simulation with initial conditions related by the inversion δA(x,tinitial) = –δB(x,tinitial) (underdensities substituted for overdensities and vice versa). We argue that the technique is valuable for improving our understanding of cosmic structure formation. The A and B fields are by definition equally likely draws from ΛCDM initial conditions, and in the linear regime evolve identically up to the overall sign. As nonlinear evolution takes hold, a region that collapses to form a halo in simulation A will tend to expand to create a void inmore » simulation B. Applications include (i) contrasting the growth of A-halos and B-voids to test excursion-set theories of structure formation, (ii) cross-correlating the density field of the A and B universes as a novel test for perturbation theory, and (iii) canceling error terms by averaging power spectra between the two boxes. Furthermore, generalizations of the method to more elaborate field transformations are suggested.« less

  10. Inverted initial conditions: Exploring the growth of cosmic structure and voids

    SciTech Connect

    Pontzen, Andrew; Roth, Nina; Peiris, Hiranya V.; Slosar, Anze

    2016-05-18

    We introduce and explore “paired” cosmological simulations. A pair consists of an A and B simulation with initial conditions related by the inversion δA(x,tinitial) = –δB(x,tinitial) (underdensities substituted for overdensities and vice versa). We argue that the technique is valuable for improving our understanding of cosmic structure formation. The A and B fields are by definition equally likely draws from ΛCDM initial conditions, and in the linear regime evolve identically up to the overall sign. As nonlinear evolution takes hold, a region that collapses to form a halo in simulation A will tend to expand to create a void in simulation B. Applications include (i) contrasting the growth of A-halos and B-voids to test excursion-set theories of structure formation, (ii) cross-correlating the density field of the A and B universes as a novel test for perturbation theory, and (iii) canceling error terms by averaging power spectra between the two boxes. Furthermore, generalizations of the method to more elaborate field transformations are suggested.

  11. Device and method for screening crystallization conditions in solution crystal growth

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor)

    1995-01-01

    A device and method for detecting optimum protein crystallization conditions and for growing protein crystals in either 1g or microgravity environments comprising a housing, defining at least one pair of chambers for containing crystallization solutions is presented. The housing further defines an orifice therein for providing fluid communication between the chambers. The orifice is adapted to receive a tube which contains a gelling substance for limiting the rate of diffusive mixing of the crystallization solutions. The solutions are diffusively mixed over a period of time defined by the quantity of gelling substance sufficient to achieve equilibration and to substantially reduce density driven convection disturbances therein. The device further includes endcaps to seal the first and second chambers. One of the endcaps includes a dialysis chamber which contains protein solution in which protein crystals are grown. Once the endcaps are in place, the protein solution is exposed to the crystallization solutions wherein the solubility of the protein solution is reduced at a rate responsive to the rate of diffusive mixing of the crystallization solutions. This allows for a controlled approach to supersaturation and allows for screening of crystal growth conditions at preselected intervals.

  12. Device and Method for Screening Crystallization Conditions in Solution Crystal Growth

    NASA Technical Reports Server (NTRS)

    Carter, Daniel C. (Inventor)

    1997-01-01

    A device and method for detecting optimum protein crystallization conditions and for growing protein crystals in either 1 g or microgravity environments comprising a housing defining at least one pair of chambers for containing crystallization solutions. The housing further defines an orifice therein for providing fluid communication between the chambers. The orifice is adapted to receive a tube which contains a gelling substance for limiting the rate of diffusive mixing of the crystallization solutions. The solutions are diffusively mixed over a period of time defined by the quantity of gelling substance sufficient to achieve equilibration and to substantially reduce density driven convection disturbances therein. The device further includes endcaps to seal the first and second chambers. One of the endcaps includes a dialysis chamber which contains protein solution in which protein crystals are grown. Once the endcaps are in place. the protein solution is exposed to the crystallization solutions wherein the solubility of the protein solution is reduced at a rate responsive to the rate of diffusive mixing of the crystallization solutions. This allows for a controlled approach to supersaturation and allows for screening of crystal growth conditions at preselected intervals.

  13. Growth and physiology of Thiobacillus novellus under nutrient-limited mixotrophic conditions.

    PubMed Central

    Leefeldt, R H; Matin, A

    1980-01-01

    Thiobacillus novellus was cultivated in a chemostate under the individual limitations of thiosulfate, glucose, and thiosulfate plus glucose. At dilution rate (D) of 0.05 h-1 or lower, the steady-state biomass concentration in mixotrophic medium was additive of the heterotrophic and autotrophic biomass at corresponding D values. The ambient concentrations of thiosulfate, glucose, or both in the various cultures were low and were very similar in mixotrophic, heterotrophic, and autotrophic environments at a given D value. At D = 0.05 h-1, mixotrophic cells possessed higher activities of sulfite oxidase and thiosulfate oxidation compared to autotrophic cells, as well as higher activities of glucose enzymes and glucose oxidation than heterotrophic cells. Thus, in contrast to nutrient-excess conditions, in nutrient-limited mixotrophic environments at these D values, T. novellus did not exhibit characteristics of uncoupled substrate oxidation, inhibition of substrate utilization, and repression of enzymes of energy metabolism. It is concluded that T. novellus responds to mixotrophic growth conditions differently in environments of different nutritional status, and the ecological and physiological significance of this finding is discussed. PMID:7380804

  14. Optimum scratch assay condition to evaluate connective tissue growth factor expression for anti-scar therapy.

    PubMed

    Moon, Heekyung; Yong, Hyeyoung; Lee, Ae-Ri Cho

    2012-02-01

    To evaluate a potential anti-scar therapy, we first need to have a reliable in vitro wound model to understand dermal fibroblast response upon cell injury and how cytokine levels are changed upon different wound heal phases. An in vitro wound model with different scratch assay conditions on primary human foreskin fibroblast monolayer cultures was prepared and cytokine levels and growth properties were evaluated with the aim of determining optimum injury conditions and observation time. Morphological characteristics of differently scratched fibroblasts from 0 to 36 h post injury (1 line, 2 lines and 3 lines) were investigated. The expression of connective tissue growth factor, CTGF, which is a key mediator in hyper-tropic scarring, and relative intensity of CTGF as a function of time were determined by western blot and gelatin Zymography. After injury (1 line), CTGF level was increased more than 2-fold within 1 h and continuously increased up to 3-fold at 6 h and was leveled down to reach normal value at 36 h, at which cell migration was complete. In more serious injury (2 lines), higher expression of CTGF was observed. The down regulation of CTGF expression after CTGF siRNA/lipofectamine transfection in control, 1 line and 2 lines scratch conditions were 40%, 75% and 55%, respectively. As a model anti-CTGF based therapy, CTGF siRNA with different ratios of linear polyethyleneimine (PEI) complexes (1:1, 1:5, 1:10, 1:20 and 1:30) were prepared and down-regulation efficacy of CTGF was evaluated with our optimized scratch assay, which is 1 line injury at 6 h post injury observation time. As the cationic linear PEI ratio increased, the down regulation efficacy was increased from 20% (1:20) to 55% (1:30). As CTGF level was increased to the highest at 6 h and leveled down afterwards, CTGF level at 6 h could provide the most sensitive response upon CTGF siRNA transfection. The scratch assay in the present study can be employed as a useful experimental tool to differentiate

  15. Selenium (Se) seed priming induced growth and biochemical changes in wheat under water deficit conditions.

    PubMed

    Nawaz, Fahim; Ashraf, M Yasin; Ahmad, Rashid; Waraich, Ejaz Ahmad

    2013-02-01

    Insufficient stand establishment at early growth stages in wheat (Triticum aestivum L.) due to drought stress is a major problem that limits overall efficiency and yield of crop. Priming of seed is an effective method for raising seed performance and improving tolerance of crops to abiotic stresses especially drought. The seeds of two local wheat cultivars (Kohistan-97 and Pasban-90) were soaked in distilled water or sodium selenate solutions of 25, 50, 75, and 100 μM for 1/2 or 1 h at 25 °C and later re-dried to their original moisture levels before sowing. One-hour priming significantly increased root length stress tolerance index, dry matter stress tolerance index, and total biomass of seedlings; however, no significant effect of changing duration of Se seed priming was observed on plant height stress tolerance index and shoot/root ratio. Among cultivars, Kohistan-97 was found to be more responsive to Se seed treatment as 1 h priming at 100 μM significantly increased its total biomass by 43 % as compared to control treatment. Although biomass of seedlings was not affected with Se seed priming under normal conditions, but it increased significantly with increase in rates of Se under drought stress conditions. One-hour priming at 75 μM increased the total sugar content and total free amino acids in both wheat cultivars. A more significant decrease in soluble proteins of seedlings was observed by 1 h priming than 1/2 h priming under drought stress conditions.

  16. Influence of salt tolerant Trichoderma spp. on growth of maize (Zea mays) under different salinity conditions.

    PubMed

    Kumar, Krishna; Manigundan, K; Amaresan, Natarajan

    2017-02-01

    In the present study, a total of 70 Trichoderma spp. were isolated from the rhizosphere soils of vegetable and spice crops that were grown in Andaman and Nicobar Islands, India. Initial screening of Trichoderma spp. for salt tolerant properties showed 32 isolates were able to tolerate 10% NaCl. Furthermore, these isolates were screened for their potential plant growth-promoting characteristics such as IAA production, phosphate solubilization, and siderophore production. Among 32 isolates, nine isolates were able to produce IAA, siderophore, and solubilize phosphate. Jar trial was carried out on maize under axenic conditions at 1.67, 6.25, 11.25, 17.2, and 22.9 dS m(-1) salt stress using the best nine isolates. Three isolates (TRC3, NRT2, and THB3) were effective in improving germination percentage, reducing reduction percentage of germination (RPG) and also in increasing the shoot and root length under axenic conditions. These three isolates were further tested under pot trial at 52 (sea water), 27, 15, 7, and 1.67 dS m(-1) . TRC3 was found to be the most effective isolate compared to the other isolates and significantly increased the physiological parameters like shoot, root length, leaf area, total biomass, and stem and leaf fresh weight at all stress levels. Similarly, total chlorophyll content also increased by TRC3 over control. All three isolates, NRT2, TRC3, and THB3 showed lower accumulation of malondialdehyde (MDA) content whereas, proline and phenol content were higher than the uninoculated control plants under both normal and saline conditions. The results suggest that these isolates could be utilized for the alleviation of salinity stress in maize.

  17. Are oysters being bored to death? Influence of Cliona celata on Crassostrea virginica condition, growth and survival.

    PubMed

    Carroll, John M; O'Shaughnessy, Kathryn A; Diedrich, Grant A; Finelli, Christopher M

    2015-11-17

    The boring sponge Cliona celata is a nuisance species that can have deleterious effects on eastern oyster Crassostrea virginica growth, condition, and survival. Surprisingly, however, these effects have not been well documented and when examined, results have been equi-vocal. In this study, we provide a direct comparison of growth, condition, and survival of sponge-colonized and uncolonized oysters in southeast North Carolina in 2 separate experiments. In the first experiment, sponge-colonized oysters exhibited significantly slower growth rates, reduced condition, and lower survival relative to uncolonized oysters, although results may have been confounded by oyster source. In the second experiment, using smaller oysters from the same source population, growth rate was again significantly reduced in colonized oysters relative to uncolonized oysters, however neither condition nor survival differed. In field surveys of the same population, colonized individuals across a range of sizes demonstrated significantly reduced condition. Further, condition index was negatively correlated with sponge biomass, which was positively correlated with oyster size, suggesting that the impact of the sponge changes with ontogeny. By investigating clearance rates, tissue isotopic and nutrient content, as well as caloric value, this study provides further evidence that sponge presence causes the oysters to divert energy into costly shell maintenance and repair at the expense of shell and somatic growth. Thus, although variable, our results demonstrate negative impacts of sponge infestation on oyster demographics, particularly as oysters grow larger.

  18. Comparison of faecal and optimal growth conditions on in vitro pharmacodynamic activity of marbofloxacin against Escherichia coli.

    PubMed

    Pellet, T; Gicquel-Bruneau, M; Sanders, P; Laurentie, M

    2006-06-01

    The objective of the study was to compare the in vitro activity of marbofloxacin against Escherichia coli (E. coli) strains with differing marbofloxacin susceptibility levels under optimal growth conditions and under condition mimicking faecal environment in time-kill kinetic studies. Under optimal growth conditions, marbofloxacin exerted a bactericidal concentration-dependent activity against all E. coli strains with bactericidal concentrations equal to 1 or 4 times MIC. Under faecal growth conditions, marbofloxacin maintained a bactericidal concentration-dependent activity but a 4- to 16-fold increase in bactericidal concentration was required to produce a similar magnitude of effect at 8 h. The bactericidal activity decreased between 8 and 24 h and allowed a residual bacterial population to subsist with a significant regrowth for some of them. Under no-growth conditions, marbofloxacin produced a very low decrease of non-dividing bacteria during a short time. No concentration produced a reduction > or = 3log10 in viable count excepted for two susceptible strains at concentration > or = 64 x MIC after 4 h exposure. The pharmacodynamic parameters from time-kill kinetic studies provide a useful means of studying antimicrobial activity. The importance of using different growth conditions is indicated by the difference in the killing of E. coli in the absence of active dividing cells and in the presence of autoclaved faecal content, both of which have a detrimental effect on the activity of marbofloxacin.

  19. How do soil physical conditions for crop growth vary over time under established contrasting tillage regimes?

    NASA Astrophysics Data System (ADS)

    Hallett, Paul; Stobart, Ron; Valentine, Tracy; George, Timothy; Morris, Nathan; Newton, Adrian; McKenzie, Blair

    2014-05-01

    -throughput. Samples are taken over the rooting zone in the topsoil, plough pan and subsoil. The first year's dataset from this comprehensive project will be presented. Early data identified plough pans under shallow non-inversion tillage that will limit root growth at all sites. Aggregate stabilities vary as expected, with plough soils at shallow depth being less stable than non-inversion tillage, but greater stability in plough soils at greater depth due to incorporated organic matter. Very rapidly following cultivation, the seedbeds coalesce, resulting in a more challenging physical environment for crop growth. We are exploring the mechanisms in soil structure temporal dynamics in greater detail, including the resilience of seedbeds to structural degradation through natural weathering and the action of plants. These profound differences in soil conditions will impact the root ideotype of crops for these different conditions. This has implications for the way in which breeding and genotype selection is performed in the future. Ultimately, we aim to identify crop varieties suited to local soil conditions and management, possibly with root traits that boost yields and soil physical quality.

  20. Nucleation and growth of crystals under cirrus and polar stratospheric cloud conditions

    NASA Technical Reports Server (NTRS)

    Hallett, John; Queen, Brian; Teets, Edward; Fahey, James

    1995-01-01

    Laboratory studies examine phase changes of hygroscopic substances which occur as aerosol in stratosphere and troposphere (sodium chloride, ammonium sulfate, ammonium bisulfate, nitric acid, sulfuric acid), under controlled conditions, in samples volume 1 to 10(exp -4) ml. Crystallization of salts from supersaturated solutions is examined by slowly evaporating a solution drop on a substrate, under controlled relative humidity, until self nucleation occurs; controlled nucleation of ice in a mm capillary U-tube gives a measured ice crystallization velocity at known supercooling. Two states of crystallization occur for regions where hydrates exist. It is inferred that all of the materials readily exist as supersaturated/supercooled solutions; the degree of metastability appears to be slightly enhanced by inclusion of aircraft produced soot. The crystallization velocity is taken as a measure of viscosity. Results suggest an approach to a glass transition at high molality, supersaturation and/or supercooling within the range of atmospheric interest. It is hypothesized that surface reactions occur more readily on solidified particles - either crystalline or glass, whereas volume reactions are more important on droplets with sufficiently low viscosity and volume diffusivity. Implications are examined for optical properties of such particles in the atmosphere. In a separate experiment, crystal growth was examined in a modified thermal vapor diffusion chamber over the range of cirrus temperature (-30 to -70 C) and under controlled supersaturation and air pressure. The crystals grew at a velocity of 1-2 microns/s, thickness 60-70 micron, in the form of thin column crystals. Design criteria are given for a system to investigate particle growth down to -100 C, (PSC temperatures) where nitric acid particles can be grown under similar control and in the form of hydrate crystals.

  1. Growth and development, and auxin polar transport of transgenic Arabidopsis under simulated microgravity conditions on a three-dimensional clinostat.

    PubMed

    Shimazu, Toru; Miyamoto, Kensuke; Ueda, Junichi

    2003-12-01

    Growth and development, and auxin polar transport in Arabidopsis thaliana transformed with iaaH gene were studied under simulated microgravity conditions on a three-dimensional (3-D) clinostat. Simulated microgravity conditions on a 3-D clinostat did not affect the number of rosette leaves but promoted the growth and development (fresh weight of plant and the elongation of flower stalk) of transformants. Final growth of transformants under simulated microgravity conditions on a 3-D clinostat was almost equivalent to that grown on 1 g conditions in the presence of 1 micromoles IAM (indole-3-acetamide). The activities of auxin polar transport in the segments of flower stalk (inflorescence axis) of transformants grown on 1 g conditions were significantly promoted by the addition of IAM. Interestingly, simulated microgravity conditions on a 3-D clinostat also promoted the activities of auxin polar transport of transformants grown on the medium with or without IAM. Based on the results in this study, transgenic plants may not have an efficient homeostatic mechanism for the control of growth and development, and auxin polar transport activity in microgravity conditions in space.

  2. Unsaturated fatty acids from food and in the growth medium improve growth of Bacillus cereus under cold and anaerobic conditions.

    PubMed

    de Sarrau, Benoît; Clavel, Thierry; Zwickel, Nicolas; Despres, Jordane; Dupont, Sébastien; Beney, Laurent; Tourdot-Maréchal, Raphaëlle; Nguyen-The, Christophe

    2013-12-01

    In a chemically defined medium and in Luria broth, cold strongly reduced maximal population density of Bacillus cereus ATCC 14579 in anaerobiosis and caused formation of filaments. In cooked spinach, maximal population density of B. cereus in anaerobiosis was the same at cold and optimal temperatures, with normal cell divisions. The lipid containing fraction of spinach, but not the hydrophilic fraction, restored growth of B. cereus under cold and anaerobiosis when added to the chemically defined medium. This fraction was rich in unsaturated, low melting point fatty acids. Addition of phosphatidylcholine containing unsaturated, low melting point, fatty acids similarly improved B. cereus anaerobic growth at cold temperature. Addition of hydrogenated phosphatidylcholine containing saturated, high melting point, fatty acids did not modify growth. Fatty acids from phospholipids, from spinach and from hydrogenated phosphatidylcholine, although normally very rare in B. cereus, were inserted in the bacterium membrane. Addition of phospholipids rich in unsaturated fatty acids to cold and anaerobic cultures, increased fluidity of B. cereus membrane lipids, to the same level as those from B. cereus normally cold adapted, i.e. grown aerobically at 15 °C. B. cereus is therefore able to use external fatty acids from foods or from the growth medium to adapt its membrane to cold temperature under anaerobiosis, and to recover the maximal population density achieved at optimal temperature.

  3. Growth curve analysis of placental and fetal growth influenced by adjacent fetal sex status under crowded uterine conditions in pigs

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Intrauterine position and sex of adjacent fetuses in litter bearing species have been implicated in physiological and behavioral differences in males and females. Our objective was to establish growth curves for fetal and placental weight gain as influenced by sex status of flanking fetuses under cr...

  4. Growth of the acidophilic iron-sulfur bacterium Acidithiobacillus ferrooxidans under Mars-like geochemical conditions

    NASA Astrophysics Data System (ADS)

    Bauermeister, Anja; Rettberg, Petra; Flemming, Hans-Curt

    2014-08-01

    The question of life on Mars has been in focus of astrobiological research for several decades, and recent missions in orbit or on the surface of the planet are constantly expanding our knowledge on Martian geochemistry. For example, massive stratified deposits have been identified on Mars containing sulfate minerals and iron oxides, which suggest the existence of acidic aqueous conditions in the past, similar to acidic iron- and sulfur-rich environments on Earth. Acidophilic organisms thriving in such habitats could have been an integral part of a possibly widely extinct Martian ecosystem, but remains might possibly even exist today in protected subsurface niches. The chemolithoautotrophic strain Acidithiobacillus ferrooxidans was selected as a model organism to study the metabolic capacities of acidophilic iron-sulfur bacteria, especially regarding their ability to grow with in situ resources that could be expected on Mars. The experiments were not designed to accurately simulate Martian physical conditions (except when certain single parameters such as oxygen partial pressure were considered), but rather the geochemical environment that can be found on Mars. A. ferrooxidans could grow solely on the minerals contained in synthetic Mars regolith mixtures with no added nutrients, using either O2 as an external electron acceptor for iron oxidation, or H2 as an external electron donor for iron reduction, and thus might play important roles in the redox cycling of iron on Mars. Though the oxygen partial pressure of the Martian atmosphere at the surface was not sufficient for detectable iron oxidation and growth of A. ferrooxidans during short-term incubation (7 days), alternative chemical O2-generating processes in the subsurface might yield microhabitats enriched in oxygen, which principally are possible under such conditions. The bacteria might also contribute to the reductive dissolution of Fe3+-containing minerals like goethite and hematite, which are

  5. Evaluation of viability and growth of Acetobacter senegalensis under different stress conditions.

    PubMed

    Shafiei, Rasoul; Delvigne, Frank; Babanezhad, Manoochehr; Thonart, Philippe

    2013-05-15

    Acetic acid bacteria (AAB) are used in production of vinegars. During acetic acid fermentation, AAB encounter various aggressive conditions which may lead to a variety of cellular disorders. Previous researches mainly studied the influences of different carbon sources on tolerance of AAB to ethanol and acetic acid. In this study, different techniques were used comparatively to investigate the effects of preadaptation on the ability of A. senegalensis to tolerate ethanol and acetic acid. In general, the carbon sources used for preadaptation of A. senegalensis exhibited significant effects on the tolerance of cells to stressors. Flow-cytometric assessments of preadapted cells in ethanol showed that 87.3% of the cells perform respiration after exposure to a stress medium containing 5% (v/v) ethanol and 3% (w/v) acetic acid. However, 58.4% of these preadapted cells could keep their envelope integrity under the stress condition. They could also grow rapidly (μmax=0.39/h) in the stress medium (E5A3) with a high yield (>80%). A. senegalensis grown in glucose exhibited a low tolerance to acetic acid. Analysis of their respiration capacity, membrane integrity and culturability revealed that almost all the population were dead after exposure to 5% (v/v) ethanol and 3% (w/v) acetic acid. In contrast, exposure of A. senegalensis preadapted in a mixture of glucose and acetic acid to a stress medium containing 5% (v/v) ethanol and 3% (w/v) acetic acid, exhibited an intact respiration system and cellular membrane integrity in 80.3% and 50.01% of cells, respectively. Moreover, just 24% of these cells could keep their culturability under that stress condition. In summary, cell envelope integrity, growth and culturability are more susceptible to pH and acetic acid stresses whereas respiration system is less subjected to damages under stress condition. In addition, preadaptation of A. senegalensis in a mixture of glucose and acetic acid enables it to tolerate and grow in ethanol and

  6. Modelling the growth/no growth boundary of Zygosaccharomyces bailii in acidic conditions: a contribution to the alternative method to preserve foods without using chemical preservatives.

    PubMed

    Dang, T D T; Mertens, L; Vermeulen, A; Geeraerd, A H; Van Impe, J F; Debevere, J; Devlieghere, F

    2010-01-31

    The aim of the study was to develop mathematical models describing growth/no growth (G/NG) boundaries of the highly resistant food spoilage yeast-Zygosaccharomyces bailii-in different environmental conditions, taking acidified sauces as the target product. By applying these models, the stability of products with characteristics within the investigated pH, a(w) and acetic acid ranges can be evaluated. Besides, the well-defined no growth regions can be used in the development of guidelines regarding formulation of new shelf-stable foods without using chemical preservatives, which would facilitate the innovation of additive-free products. Experiments were performed at different temperatures and periods (22 degrees C for 45 and 60days, 30 degrees C for 45days) in 150 modified Sabouraud media characterized by high amount of sugars (glucose and fructose, 15% (w/v)), acetic acid (0.0-2.5% (v/v), 6 levels), pH (3.0-5.0, 5 levels) and a(w) (0.93-0.97, 5 levels). These time and temperature combinations were chosen as they are commonly applied for shelf-stable foods. The media were inoculated with ca. 4.5 log CFU/ml and yeast growth was monitored daily using optical density measurements. Every condition was examined in 20 replicates in order to yield accurate growth probabilities. Three separate ordinary logistic regression models were developed for different tested temperatures and incubation time. The total acetic acid concentration was considered as variable for all models. In general, when one intrinsic inhibitory factor became more stringent, the G/NG boundary shifted to less stressful conditions of the other two factors, resulting in enlarged no growth zones. Abrupt changes of growth probability often occurred around the transition zones (between growth and no growth regions), which indicates that minor variations in environmental conditions near the G/NG boundaries can cause a significant impact on the growth probability. When comparing growth after 45days between the

  7. [Comparison of growth and field microclimate characteristics of broomcorn millet under different fertilization conditions].

    PubMed

    Zhang, Pan-pan; Zhou, Yu; Song, Hui; Qiao, Zhi-jun; Wang, Hai-gang; Zheng, Dian-feng; Feng, Bai-li

    2015-02-01

    A field experiment with two broomcorn millet varieties Longmi 8 (strong drought-resistant variety) and Jinmi 4 (drought-sensitive variety) was conducted to compare their differences in growth, field microclimate and photosynthetic capacity from anthesis to maturity under different fertility conditions. The results showed that, fertilization decreased canopy temperature, air temperature, soil temperature, illumination, but improved the relative humidity among broomcorn millet plants compared with the non-fertilization treatment. With an increase of the fertilizer level, the plant height, SPAD, LAI, net photosynthetic rate, transpiration rate, stomatal conductance, intercellular CO2 concentration in broomcorn millet showed an increasing trend, which of the high fertilization treatment were 9.2%, 15.1%, 56.6%, 17.8%, 24.6%, 14.2%, 29.7% higher than those of non-fertilization treatment, respectively. Compared with Jinmi 4, Longmi 8 showed a cold wet characteristic, with lower canopy temperature, air temperature, soil temperature; illumination, and higher plant height, LAI, SPAD and relative humidity during grain filling. Moreover, each photosynthetic index of Longmi 8 slowly decreased and extended the period of leaf photosynthetic function so as to accumulate more photosynthetic products.

  8. Effects of mycorrhizal colonization on growth parameters of onion under different irrigation and soil conditions.

    PubMed

    Bolandnazar, Saheb Ali; Neyshabouri, Mohammad Reza; Aliasgharzad, Nasser; Chaparzadeh, Nader

    2007-05-01

    The effects of three Arbuscular Mycorrhizal Fungi (AMF), Glomus versiforme, G. intraradices and G. etonicatum) and three irrigation intervals (7, 9 and 11 days) on growth of onion (Allium cepa L.) cv. Red Azar Shahr were studied under two soil conditions (sterilized and non-sterilized). The results indicated that, AMF colonization improved plant height, Leaf Area Index (LAI), total biomass, bulb dry mass and diameter, Harvest Index (HI) and chlorophyll content (p < 0.001). Bulbing occurred 10-15 days earlier in mycorrhizal plants. Irrigation interval decreased biomass, LAI, Leaf Area Ratio (LAR), bulb diameter and dry mass and chlorophyll content (b and total) at 11 day irrigation interval. In term of interaction, G. versiforme at 9 day and non-mycorrhizal plants at 11 day produced the greatest and the lowest LAI (8.56 vs. 1.57), respectively. Mycorrhizal onions in contrary to non-mycorrhizal ones produced more LAI and biomass in sterilized soil and inoculation with G. etonicatum and the non-mycorrhizal onions in sterilized soil had the highest and the lowest biomass, respectively.

  9. Growth, differentiation and development of Arabidopsis thaliana under microgravity conditions (7-IML-1)

    NASA Technical Reports Server (NTRS)

    Maher, E. P.; Briarty, L. G.

    1992-01-01

    The aim of this set of experiments is to quantify the structural and behavioral changes taking place in germinating seeds of the small plant Arabidopsis thaliana. The protocol to be used will involve germination of the seeds in orbit. Their growth will be followed by fixing and photographing samples of microgravity grown and 1 g control seedlings at intervals over 4 days. The different studies which will then be performed can be classified in relation to the parts of the plants involved. The first study will be an examination of the ultrastructure of the root statocytes, the cells containing gravity sensors, to determine whether their development proceeds normally under microgravity conditions. A second study will examine the differences in root and shoot development and orientation between normal wild type seedlings and those of an agravitropic mutant (aux-1) - one that does not respond normally to gravity. A third set of observations will be made on the structural changes occurring during reserve breakdown and utilization in the cells of the cotyledons, the storage organs of the seed. The fourth part of the work will be an examination of the statocytes present in the shoot and their development in microgravity. The final part of the study will give an answer to the debated question of whether the formation of the hypocotyl hook in seedlings is gravity dependent.

  10. Local Heterozygosity Effects on Nestling Growth and Condition in the Great Cormorant.

    PubMed

    Minias, Piotr; Wojczulanis-Jakubas, Katarzyna; Rutkowski, Robert; Kaczmarek, Krzysztof

    Under inbreeding, heterozygosity at neutral genetic markers is likely to reflect genome-wide heterozygosity and, thus, is expected to correlate with fitness. There is, however, growing evidence that some of heterozygosity-fitness correlations (HFCs) can be explained by 'local effects', where noncoding loci are at linkage disequilibrium with functional genes. The aim of this study was to investigate correlations between heterozygosity at seven microsatellite loci and two fitness-related traits, nestling growth rate and nutritional condition, in a recently bottlenecked population of great cormorant Phalacrocorax carbo sinensis. We found that heterozygosity was positively associated with both nestling traits at the between-brood level, but the individual (within-brood) effects of heterozygosity were non-significant. We also found that only one locus per trait was primarily responsible for the significant multi-locus HFCs, suggesting a linkage disequilibrium with non-identified functional loci. The results give support for 'local effect' hypothesis, confirming that HFCs may not only be interpreted as evidence of inbreeding and that genetic associations between functional and selectively neutral markers could be much more common in natural populations than previously thought.

  11. Direct measurement of asperity contact growth in quartz at hydrothermal conditions

    NASA Astrophysics Data System (ADS)

    Beeler, N. M.; Hickman, S. H.

    2008-12-01

    wetted. The contact is bounded by small regions of high aperture, reflecting local free-face dissolution as the source for the overgrowth, a definitive indication of diffusion-limited growth. Diffusion-limited growth is also consistent with the inverse squared aperture dependence. However, the apparent activation energy is ~125 kJ/mol, much higher than expected for silica diffusion in bulk water; at present we do not have a complete explanation for the high activation energy. When our lab-measured overgrowth rates are extrapolated to the 5 to 30 micron radius contacts inferred from near-field recordings of M-2 sized earthquakes in deep drill holes and mines (i.e., SAFOD and NELSAM), we predict rates of contact area increase that are orders of magnitude faster than seen in dry, room-temperature friction experiments. This suggests that natural strength recovery should be dominated by fluid-assisted processes at hypocentral conditions near the base of the seismogenic zone.

  12. Growth rate, organic carbon and nutrient removal rates of Chlorella sorokiniana in autotrophic, heterotrophic and mixotrophic conditions.

    PubMed

    Kim, Sunjin; Park, Jeong-eun; Cho, Yong-Beom; Hwang, Sun-Jin

    2013-09-01

    This study sought to investigate the growth rate and organic carbon and nutrient removal efficiency of Chlorella sorokiniana under autotrophic, heterotrophic and mixotrophic conditions. Growth rates of the microalgae were 0.24 d(-1), 0.53 d(-1) and 0.44 d(-1) in autotrophic, heterotrophic and mixotrophic conditions, respectively. The growth rate of C. sorokiniana was significantly higher for that grown under heterotrophic conditions. The nitrogen removal rates were 13.1 mg-N/L/day, 23.9 mg-N/L/day and 19.4 mg-N/L/day, respectively. The phosphorus removal rates reached to 3.4 mg-P/L/day, 5.6 mg-P/L/day and 5.1 mg-P/L/day, respectively. Heterotrophic conditions were superior in terms of the microalgae growth and removal of nitrogen and phosphorus compared to autotrophic and mixotrophic conditions, suggesting that microalgae cultured under this condition would be most useful for application in wastewater treatment systems.

  13. Cold-water coral growth under extreme environmental conditions, the Cape Lookout area, NW Atlantic

    NASA Astrophysics Data System (ADS)

    Mienis, F.; Duineveld, G. C. A.; Davies, A. J.; Lavaleye, M. M. S.; Ross, S. W.; Seim, H.; Bane, J.; van Haren, H.; Bergman, M. J. N.; de Haas, H.; Brooke, S.; van Weering, T. C. E.

    2014-05-01

    day, which is the largest temperature variability as measured so far in a cold-water coral habitat. Warm events, related to Gulf Stream meanders, had the duration of roughly 1 week and the current during these events was directed to the NNE. The consequences of such events must be significant given the strong effects of temperature on the metabolism of cold-water corals. Furthermore, elevated acoustic backscatter values and high mass fluxes were also recorded during these events, indicating a second stressor that may affect the corals. The abrasive nature of sand in combination with strong currents might sand blast the corals. We conclude that cold-water corals near Cape Lookout live under extreme conditions that limit mound growth at present.

  14. Shewanella baltica Ecotypes Have Wide Transcriptional Variation under the Same Growth Conditions

    PubMed Central

    Hambright, W. S.; Deng, Jie; Tiedje, James M.; Brettar, Ingrid

    2016-01-01

    ABSTRACT In bacterial populations, subtle expressional differences may promote ecological specialization through the formation of distinct ecotypes. In a barrier-free habitat, this process most likely precedes population divergence and may predict speciation events. To examine this, we used four sequenced strains of the bacterium Shewanella baltica, OS155, OS185, OS195, and OS223, as models to assess transcriptional variation and ecotype formation within a prokaryotic population. All strains were isolated from different depths throughout a water column of the Baltic Sea, occupying different ecological niches characterized by various abiotic parameters. Although the genome sequences are nearly 100% conserved, when grown in the laboratory under standardized conditions, all strains exhibited different growth rates, suggesting significant expressional variation. Using the Ecotype Simulation algorithm, all strains were considered to be discrete ecotypes when compared to 32 other S. baltica strains isolated from the same water column, suggesting ecological divergence. Next, we employed custom microarray slides containing oligonucleotide probes representing the core genome of OS155, OS185, OS195, and OS223 to detect natural transcriptional variation among strains grown under identical conditions. Significant transcriptional variation was noticed among all four strains. Differentially expressed gene profiles seemed to coincide with the metabolic signatures of the environment at the original isolation depth. Transcriptional pattern variations such as the ones highlighted here may be used as indicators of short-term evolution emerging from the formation of bacterial ecotypes. IMPORTANCE Eukaryotic studies have shown considerable transcriptional variation among individuals from the same population. It has been suggested that natural variation in eukaryotic gene expression may have significant evolutionary consequences and may explain large-scale phenotypic divergence of

  15. Shewanella baltica Ecotypes Have Wide Transcriptional Variation under the Same Growth Conditions.

    PubMed

    Hambright, W S; Deng, Jie; Tiedje, James M; Brettar, Ingrid; Rodrigues, Jorge L M

    2016-01-01

    In bacterial populations, subtle expressional differences may promote ecological specialization through the formation of distinct ecotypes. In a barrier-free habitat, this process most likely precedes population divergence and may predict speciation events. To examine this, we used four sequenced strains of the bacterium Shewanella baltica, OS155, OS185, OS195, and OS223, as models to assess transcriptional variation and ecotype formation within a prokaryotic population. All strains were isolated from different depths throughout a water column of the Baltic Sea, occupying different ecological niches characterized by various abiotic parameters. Although the genome sequences are nearly 100% conserved, when grown in the laboratory under standardized conditions, all strains exhibited different growth rates, suggesting significant expressional variation. Using the Ecotype Simulation algorithm, all strains were considered to be discrete ecotypes when compared to 32 other S. baltica strains isolated from the same water column, suggesting ecological divergence. Next, we employed custom microarray slides containing oligonucleotide probes representing the core genome of OS155, OS185, OS195, and OS223 to detect natural transcriptional variation among strains grown under identical conditions. Significant transcriptional variation was noticed among all four strains. Differentially expressed gene profiles seemed to coincide with the metabolic signatures of the environment at the original isolation depth. Transcriptional pattern variations such as the ones highlighted here may be used as indicators of short-term evolution emerging from the formation of bacterial ecotypes. IMPORTANCE Eukaryotic studies have shown considerable transcriptional variation among individuals from the same population. It has been suggested that natural variation in eukaryotic gene expression may have significant evolutionary consequences and may explain large-scale phenotypic divergence of closely

  16. Effects of luxCDABEG induction in Vibrio fischeri: Enhancement of symbiotic colonization and conditional attenuation of growth in culture

    PubMed Central

    Bose, Jeffrey L.; Rosenberg, Charles S.; Stabb, Eric V.

    2014-01-01

    Production of bioluminescence theoretically represents a cost, energetic or otherwise, that could slow Vibrio fischeri growth; however, bioluminescence is also thought to enable full symbiotic colonization of the Euprymna scolopes light organ by V. fischeri. Previous tests of these models have proven inconclusive, partly because they compared nonisogenic strains, or undefined and/or pleiotropic mutants. To test the influence of the bioluminescence-producing lux operon on growth and symbiotic competence, we generated dark ΔluxCDABEG mutants in strains MJ1 and ES114 without disrupting the luxR-luxI regulatory circuit. The MJ1 ΔluxCDABEG mutant out-competed its visibly luminescent parent ~26% per generation in a carbon-limited chemostat. Similarly, induction of luminescence in the otherwise dim ES114 strain slowed growth relative to ΔluxCDABEG mutants. Some culture conditions yielded no detectable effect of luminescence on growth, indicating that luminescence is not always growth limiting; however, luminescence was never found to confer an advantage in culture. In contrast to this conditional disadvantage of lux expression, ES114 achieved ~4-fold higher populations than its ΔluxCDABEG mutant in the light organ of E. scolopes. These results demonstrate that induction of luxCDABEG can slow V. fischeri growth under certain culture conditions and is a positive symbiotic colonization factor. PMID:18521572

  17. Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31.

    PubMed

    Yeh, Kuei-Ling; Chang, Jo-Shu

    2012-02-01

    The growth and lipid productivity of an isolated microalga Chlorella vulgaris ESP-31 were investigated under different media and cultivation conditions, including phototrophic growth (NaHCO(3) or CO(2), with light), heterotrophic growth (glucose, without light), photoheterotrophic growth (glucose, with light) and mixotrophic growth (glucose and CO(2), with light). C. vulgaris ESP-31 preferred to grow under phototrophic (CO(2)), photoheterotrophic and mixotrophic conditions on nitrogen-rich medium (i.e., Basal medium and Modified Bristol's medium), reaching a biomass concentration of 2-5 g/l. The growth on nitrogen-limiting MBL medium resulted in higher lipid accumulation (20-53%) but slower growth rate. Higher lipid content (40-53%) and higher lipid productivity (67-144 mg/l/d) were obtained under mixotrophic cultivation with all the culture media used. The fatty acid composition of the microalgal lipid comprises over 60-68% of saturated fatty acids (i.e., palmitic acid (C16:0), stearic acid (C18:0)) and monounsaturated acids (i.e., oleic acid (C18:1)). This lipid composition is suitable for biodiesel production.

  18. Enhanced MET translation and signaling sustains K-Ras driven proliferation under anchorage-independent growth conditions

    PubMed Central

    Fujita-Sato, Saori; Galeas, Jacqueline; Truitt, Morgan; Pitt, Cameron; Urisman, Anatoly; Bandyopadhyay, Sourav; Ruggero, Davide; McCormick, Frank

    2015-01-01

    Oncogenic K-Ras mutation occurs frequently in several types of cancers including pancreatic and lung cancers. Tumors with K-Ras mutation are resistant to chemotherapeutic drugs as well as molecular targeting agents. Although numerous approaches are ongoing to find effective ways to treat these tumors, there are still no effective therapies for K-Ras mutant cancer patients. Here we report that K-Ras mutant cancers are more dependent on K-Ras in anchorage independent culture conditions than in monolayer culture conditions. In seeking to determine mechanisms that contribute to the K-Ras dependency in anchorage independent culture conditions, we discovered the involvement of Met in K-Ras-dependent, anchorage independent cell growth. The Met signaling pathway is enhanced and plays an indispensable role in anchorage independent growth even in cells in which Met is not amplified. Indeed, Met expression is elevated under anchorage-independent growth conditions and is regulated by K-Ras in a MAPK/ERK kinase (MEK)-dependent manner. Remarkably, in spite of a global down-regulation of mRNA translation during anchorage independent growth, we find that Met mRNA translation is specifically enhanced under these conditions. Importantly, ectopic expression of an active Met mutant rescues K-Ras ablation-derived growth suppression, indicating that K-Ras mediated Met expression drives “K-Ras addiction” in anchorage independent conditions. Our results indicate that enhanced Met expression and signaling is essential for anchorage independent growth of K-Ras mutant cancer cells and suggests that pharmacological inhibitors of Met could be effective for K-Ras mutant tumor patients. PMID:25977330

  19. Laboratory Measurements on Heterogeneous Nucleation and Growth of Water Vapor on Meteor Smoke Particle Analogues under Conditions of the Mesopause

    NASA Astrophysics Data System (ADS)

    Duft, D.; Nachbar, M.; Wilms, H.; Rapp, M.; Leisner, T.

    2014-12-01

    Heterogeneous nucleation of water vapor on charged nanometer sized (radius< 2nm) meteor smoke particles (MSP) is believed to be the dominating nucleation process in the mesopause region leading to the formation of polar mesospheric clouds (PMC). However, application of classical nucleation theory to the cold conditions of the polar summer mesopause comprises large uncertainties giving rise to strongly variant model predictions of PMC formation. To reduce these uncertainties laboratory measurements of nucleation and growth rates are required. We use an electrodynamic trap to investigate the nucleation and growth of water vapor on singly charged sub-3nm MSP analogues in the laboratory under mesospheric conditions typical during PMC growth initiation. The particles are created in a microwave plasma particle source and stored in a quadrupole ion trap under mesospheric pressure and temperature, where they are subjected to the high supersaturation necessary for nucleation and growth on nanometer sized particles. The particle mass and mass change by water accretion is monitored with a time-of-flight mass spectrometer as a function of residence time under supersaturated conditions. In this contribution we present for the first time measurements of nucleation and growth rates of water vapor on MSP analogues with an initial radius between 1.5nm and 3 nm. Contact parameter, sticking coefficient as well as charge effects on vapor pressure of small particles at mesospheric conditions are presented. These parameters are essential for the microphysical understanding and further global model calculations of PMC formation.

  20. Modeling the lag period and exponential growth of Listeria monocytogenes under conditions of fluctuating temperature and water activity values.

    PubMed

    Muñoz-Cuevas, Marina; Fernández, Pablo S; George, Susan; Pin, Carmen

    2010-05-01

    The dynamic model for the growth of a bacterial population described by Baranyi and Roberts (J. Baranyi and T. A. Roberts, Int. J. Food Microbiol. 23:277-294, 1994) was applied to model the lag period and exponential growth of Listeria monocytogenes under conditions of fluctuating temperature and water activity (a(w)) values. To model the duration of the lag phase, the dependence of the parameter h(0), which quantifies the amount of work done during the lag period, on the previous and current environmental conditions was determined experimentally. This parameter depended not only on the magnitude of the change between the previous and current environmental conditions but also on the current growth conditions. In an exponentially growing population, any change in the environment requiring a certain amount of work to adapt to the new conditions initiated a lag period that lasted until that work was finished. Observations for several scenarios in which exponential growth was halted by a sudden change in the temperature and/or a(w) were in good agreement with predictions. When a population already in a lag period was subjected to environmental fluctuations, the system was reset with a new lag phase. The work to be done during the new lag phase was estimated to be the workload due to the environmental change plus the unfinished workload from the uncompleted previous lag phase.

  1. Modeling the Lag Period and Exponential Growth of Listeria monocytogenes under Conditions of Fluctuating Temperature and Water Activity Values▿

    PubMed Central

    Muñoz-Cuevas, Marina; Fernández, Pablo S.; George, Susan; Pin, Carmen

    2010-01-01

    The dynamic model for the growth of a bacterial population described by Baranyi and Roberts (J. Baranyi and T. A. Roberts, Int. J. Food Microbiol. 23:277-294, 1994) was applied to model the lag period and exponential growth of Listeria monocytogenes under conditions of fluctuating temperature and water activity (aw) values. To model the duration of the lag phase, the dependence of the parameter h0, which quantifies the amount of work done during the lag period, on the previous and current environmental conditions was determined experimentally. This parameter depended not only on the magnitude of the change between the previous and current environmental conditions but also on the current growth conditions. In an exponentially growing population, any change in the environment requiring a certain amount of work to adapt to the new conditions initiated a lag period that lasted until that work was finished. Observations for several scenarios in which exponential growth was halted by a sudden change in the temperature and/or aw were in good agreement with predictions. When a population already in a lag period was subjected to environmental fluctuations, the system was reset with a new lag phase. The work to be done during the new lag phase was estimated to be the workload due to the environmental change plus the unfinished workload from the uncompleted previous lag phase. PMID:20208022

  2. Walking dead: Permeabilization of heat-treated Geobacillus stearothermophilus ATCC 12980 spores under growth-preventing conditions.

    PubMed

    Mtimet, Narjes; Trunet, Clément; Mathot, Anne-Gabrielle; Venaille, Laurent; Leguérinel, Ivan; Coroller, Louis; Couvert, Olivier

    2017-06-01

    Although heat treatment is probably the oldest and the most common method used to inactivate spores in food processes, the specific mechanism of heat killing of spores is still not fully understood. The purpose of this study is to investigate the evolution of the permeabilization and the viability of heat-treated spores during storage under growth-preventing conditions. Geobacillus stearothermophilus spores were heat-treated under various conditions of temperature and pH, and then stored under conditions of temperature and pH that prevent growth. Spore survival was evaluated by count plating immediately after heat treatment, and then during storage over a period of months. Flow cytometry analyses were performed to investigate the Syto 9 permeability of heat-treated spores. Sub-lethally heat-treated spores of G. stearothermophilus were physically committed to permeabilization after heat treatment. However, prolonged heat treatment may abolish the spore permeabilization and block heat-treated spores in the refractive state. However, viability loss and permeabilization during heat treatment seem to be two different mechanisms that occur independently, and the loss of permeabilization properties takes place at a much slower rate than spore killing. Under growth-preventing conditions, viable heat-treated spores presumably lose their viability due to the permeabilization phenomena, which makes them more susceptible to the action of adverse conditions precluding growth.

  3. Linguistic Theory and Actual Language.

    ERIC Educational Resources Information Center

    Segerdahl, Par

    1995-01-01

    Examines Noam Chomsky's (1957) discussion of "grammaticalness" and the role of linguistics in the "correct" way of speaking and writing. It is argued that the concern of linguistics with the tools of grammar has resulted in confusion, with the tools becoming mixed up with the actual language, thereby becoming the central…

  4. The Effects of Temperature and Nutritional Conditions on Mycelium Growth of Two Oyster Mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus)

    PubMed Central

    Hoa, Ha Thi

    2015-01-01

    The influences of temperature and nutritional conditions on the mycelium growth of oyster mushroom Pleurotus ostreatus (PO) and Pleurotus cystidiosus (PC) were investigated in laboratory experiment during the summer season of 2014. The results of the experiment indicated that potato dextrose agar (PDA) and yam dextrose agar (YDA) were the most suitable media for the mycelium growth of oyster mushroom PO while four media (PDA, YDA, sweet potato dextrose agar, and malt extract agar medium) were not significantly different in supporting mycelium growth of oyster mushroom PC. The optimal temperature for mycelium growth of both oyster mushroom species was obtained at 28℃. Mycelium growth of oyster mushroom PO was improved by carbon sources such as glucose, molasses, and at 1~5% sucrose concentration, mycelium colony diameter of mushroom PO was achieved the highest value. Whereas glucose, dextrose, and sucrose as carbon sources gave the good mycelium growth of oyster mushroom PC, and at 1~3% sucrose concentration, mycelium colony diameter of PC was achieved the maximum value. Ammonium chloride concentrations at 0.03~0.09% and 0.03~0.05% also gave the greatest values in mycelium colony diameter of mushroom PO and PC. Brown rice was found to be the most favourable for mycelium growth of two oyster mushroom species. In addition, sugarcane residue, acasia sawdust and corn cob were selected as favourable lignocellulosic substrate sources for mycelium growth of both oyster mushrooms. PMID:25892910

  5. The Effects of Temperature and Nutritional Conditions on Mycelium Growth of Two Oyster Mushrooms (Pleurotus ostreatus and Pleurotus cystidiosus).

    PubMed

    Hoa, Ha Thi; Wang, Chun-Li

    2015-03-01

    The influences of temperature and nutritional conditions on the mycelium growth of oyster mushroom Pleurotus ostreatus (PO) and Pleurotus cystidiosus (PC) were investigated in laboratory experiment during the summer season of 2014. The results of the experiment indicated that potato dextrose agar (PDA) and yam dextrose agar (YDA) were the most suitable media for the mycelium growth of oyster mushroom PO while four media (PDA, YDA, sweet potato dextrose agar, and malt extract agar medium) were not significantly different in supporting mycelium growth of oyster mushroom PC. The optimal temperature for mycelium growth of both oyster mushroom species was obtained at 28℃. Mycelium growth of oyster mushroom PO was improved by carbon sources such as glucose, molasses, and at 1~5% sucrose concentration, mycelium colony diameter of mushroom PO was achieved the highest value. Whereas glucose, dextrose, and sucrose as carbon sources gave the good mycelium growth of oyster mushroom PC, and at 1~3% sucrose concentration, mycelium colony diameter of PC was achieved the maximum value. Ammonium chloride concentrations at 0.03~0.09% and 0.03~0.05% also gave the greatest values in mycelium colony diameter of mushroom PO and PC. Brown rice was found to be the most favourable for mycelium growth of two oyster mushroom species. In addition, sugarcane residue, acasia sawdust and corn cob were selected as favourable lignocellulosic substrate sources for mycelium growth of both oyster mushrooms.

  6. Cold-water coral growth under extreme environmental conditions, the Cape Lookout area, NW Atlantic

    NASA Astrophysics Data System (ADS)

    Mienis, F.; Duineveld, G.; Davies, A. J.; Lavaleye, M. J. N.; Ross, S. W.; Seim, H.; Bane, J.; van Haren, H.; Bergman, M.; de Haas, H.; Brooke, S.; van Weering, T.

    2013-12-01

    far in a cold-water coral habitat. Warm events, related to Gulf Stream meanders, had the duration of roughly one week and the current during these events was directed to the NNE. The consequences of such events must be significant given the strong effects of temperature on the metabolism of cold-water corals. Furthermore, elevated acoustic backscatter values and high mass fluxes were also recorded during these events, indicating a second stressor that may affect the corals. The abrasive nature of sand in combination with strong currents might sand blast the corals. We conclude that cold-water corals near Cape Lookout live under extreme conditions that limit mound growth at present.

  7. High-salinity growth conditions promote Tat-independent secretion of Tat substrates in Bacillus subtilis.

    PubMed

    van der Ploeg, René; Monteferrante, Carmine G; Piersma, Sjouke; Barnett, James P; Kouwen, Thijs R H M; Robinson, Colin; van Dijl, Jan Maarten

    2012-11-01

    The Gram-positive bacterium Bacillus subtilis contains two Tat translocases, which can facilitate transport of folded proteins across the plasma membrane. Previous research has shown that Tat-dependent protein secretion in B. subtilis is a highly selective process and that heterologous proteins, such as the green fluorescent protein (GFP), are poor Tat substrates in this organism. Nevertheless, when expressed in Escherichia coli, both B. subtilis Tat translocases facilitated exclusively Tat-dependent export of folded GFP when the twin-arginine (RR) signal peptides of the E. coli AmiA, DmsA, or MdoD proteins were attached. Therefore, the present studies were aimed at determining whether the same RR signal peptide-GFP precursors would also be exported Tat dependently in B. subtilis. In addition, we investigated the secretion of GFP fused to the full-length YwbN protein, a strict Tat substrate in B. subtilis. Several investigated GFP fusion proteins were indeed secreted in B. subtilis, but this secretion was shown to be completely Tat independent. At high-salinity growth conditions, the Tat-independent secretion of GFP as directed by the RR signal peptides from the E. coli AmiA, DmsA, or MdoD proteins was significantly enhanced, and this effect was strongest in strains lacking the TatAy-TatCy translocase. This implies that high environmental salinity has a negative influence on the avoidance of Tat-independent secretion of AmiA-GFP, DmsA-GFP, and MdoD-GFP. We conclude that as-yet-unidentified control mechanisms reject the investigated GFP fusion proteins for translocation by the B. subtilis Tat machinery and, at the same time, set limits to their Tat-independent secretion, presumably via the Sec pathway.

  8. Cefpodoxime: comparative antibacterial activity, influence of growth conditions, and bactericidal activity.

    PubMed

    Knothe, H; Shah, P M; Eckardt, O

    1991-01-01

    The antimicrobial activity of cefpodoxime, the active metabolite of the new cephalosporin ester cefpodoxime proxetil, in comparison to cefixime, cefotiam, cefuroxime, and cefotaxime was determined against a broad spectrum of freshly isolated gram-positive and gram-negative bacterial strains. Cefpodoxime was demonstrated to be inhibitory at concentrations of less than or equal to 1 mg/l against 90% of strains of Moraxella catarrhalis, Haemophilus influenzae, Escherichia coli (beta-lactamase- negative strains), Klebsiella spp., Serratia spp., Proteus mirabilis, Proteus vulgaris, Providencia spp., and Salmonella spp. This antimicrobial activity of cefpodoxime was generally superior to that of cefuroxime and similar to that of cefixime. Cefpodoxime was active at less than or equal to 1 mg/l against 50% of the members of beta-lactamase-producing Escherichia coli, Enterobacter cloacae, Enterobacter aerogenes, Citrobacter spp., and Morganella morganii. Cefpodoxime proved to be highly inhibitory against group A, B, and G streptococci and Streptococcus pneumoniae (MIC90 less than 0.015 mg/l). The MICs of cefpodoxime and those of the other cephalosporins were less than 2 mg/l for greater than or equal to 90% of the strains of Staphylococcus aureus and Staphylococcus epidermidis, with the exception of cefixime which had no activity with MICs below 8 mg/l against these bacteria. Pseudomonas spp., Acinetobacter spp., and Enterococcus spp. were resistant to cefpodoxime. The antibacterial activity of cefpodoxime was only to a minor degree influenced by different growth conditions with the exception of high inoculum sizes against some beta-lactamase producing strains of gram-negative bacilli.(ABSTRACT TRUNCATED AT 250 WORDS)

  9. Growth of Caragana korshinskii using runoff-collecting microcatchments under semiarid condition

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Yan; Gao, Shang-Yu; Xu, He-Ye; Liu, Lian-You

    2006-08-01

    SummaryA field study was conducted to explore the effectiveness of using microcatchment water harvesting to grow Caragana korshinskii in the semiarid loess region of China between 2002 and 2004. The experiment involved four different size microcatchments (5, 15, 30 and 50 m 2) and the control (0 m 2) with six replications to supply runoff water for C. korshinskii. For the microcatchments, runoff volume (m 3) increased with increasing catchment size, following a positive linear function, whereas runoff depth (mm) decreased with increasing catchment size, following a negative power function. Runoff efficiency was 3.09-13.69%, 1.05-6.25%, 0.39-4.49% and 0.30-3.25% for the 5, 15, 30 and 50 m 2 microcatchments, respectively, and varied between years. Microcatchment rainwater harvesting treatments supplied additional runoff water to the infiltration basin occupied by C. korshinskii tree. Total rainfall and runoff water collected in the plant area was significantly higher for the rainwater harvesting treatments than the control, and total runoff to the planted area increased with the size of the microcatchment, thus resulting in significant higher soil water storage and evapotranspiration in the water harvesting treatments. Water harvesting treatments had a pronounced effect on the growth of C. korshinskii. Tree height, crown diameter, collar girth, above-ground biomass and water use efficiency were significantly higher for the water harvesting treatments than the controls. This demonstrates that C. korshinskii can be grown successfully using microcatchments on rainfed lands. From the perspective of soil water storage efficiency and the minimum acceptable slope length, catchment/planted area ratio of 19-38 for the catchment area between 15 and 30 m 2 was most suitable to grow C. korshinskii under semiarid condition.

  10. Metabolomic Profiling of 13 Diatom Cultures and Their Adaptation to Nitrate-Limited Growth Conditions.

    PubMed

    Bromke, Mariusz A; Sabir, Jamal S; Alfassi, Fahad A; Hajarah, Nahid H; Kabli, Saleh A; Al-Malki, Abdulrahman L; Ashworth, Matt P; Méret, Michaël; Jansen, Robert K; Willmitzer, Lothar

    2015-01-01

    Diatoms are very efficient in their use of available nutrients. Changes in nutrient availability influence the metabolism and the composition of the cell constituents. Since diatoms are valuable candidates to search for oil producing algae, measurements of diatom-produced compounds can be very useful for biotechnology. In order to explore the diversity of lipophilic compounds produced by diatoms, we describe the results from an analysis of 13 diatom strains. With the help of a lipidomics platform, which combines an UPLC separation with a high resolution/high mass accuracy mass spectrometer, we were able to measure and annotate 142 lipid species. Out of these, 32 were present in all 13 cultures. The annotated lipid features belong to six classes of glycerolipids. The data obtained from the measurements were used to create lipidomic profiles. The metabolomic overview of analysed cultures is amended by the measurement of 96 polar compounds. To further increase the lipid diversity and gain insight into metabolomic adaptation to nitrogen limitation, diatoms were cultured in media with high and low concentrations of nitrate. The growth in nitrogen-deplete or nitrogen-replete conditions affects metabolite accumulation but has no major influence on the species-specific metabolomic profile. Thus, the genetic component is stronger in determining metabolic patterns than nitrogen levels. Therefore, lipid profiling is powerful enough to be used as a molecular fingerprint for diatom cultures. Furthermore, an increase of triacylglycerol (TAG) accumulation was observed in low nitrogen samples, although this trend was not consistent across all 13 diatom strains. Overall, our results expand the current understanding of metabolomics diversity in diatoms and confirm their potential value for producing lipids for either bioenergy or as feed stock.

  11. Plant Growth-Promoting Rhizobacteria Inoculation to Enhance Vegetative Growth, Nitrogen Fixation and Nitrogen Remobilisation of Maize under Greenhouse Conditions

    PubMed Central

    Kuan, Khing Boon; Othman, Radziah; Abdul Rahim, Khairuddin; Shamsuddin, Zulkifli H.

    2016-01-01

    Plant growth-promoting rhizobacteria (PGPR) may provide a biological alternative to fix atmospheric N2 and delay N remobilisation in maize plant to increase crop yield, based on an understanding that plant-N remobilisation is directly correlated to its plant senescence. Thus, four PGPR strains were selected from a series of bacterial strains isolated from maize roots at two locations in Malaysia. The PGPR strains were screened in vitro for their biochemical plant growth-promoting (PGP) abilities and plant growth promotion assays. These strains were identified as Klebsiella sp. Br1, Klebsiella pneumoniae Fr1, Bacillus pumilus S1r1 and Acinetobacter sp. S3r2 and a reference strain used was Bacillus subtilis UPMB10. All the PGPR strains were tested positive for N2 fixation, phosphate solubilisation and auxin production by in vitro tests. In a greenhouse experiment with reduced fertiliser-N input (a third of recommended fertiliser-N rate), the N2 fixation abilities of PGPR in association with maize were determined by 15N isotope dilution technique at two harvests, namely, prior to anthesis (D50) and ear harvest (D65). The results indicated that dry biomass of top, root and ear, total N content and bacterial colonisations in non-rhizosphere, rhizosphere and endosphere of maize roots were influenced by PGPR inoculation. In particular, the plants inoculated with B. pumilus S1r1 generally outperformed those with the other treatments. They produced the highest N2 fixing capacity of 30.5% (262 mg N2 fixed plant−1) and 25.5% (304 mg N2 fixed plant−1) of the total N requirement of maize top at D50 and D65, respectively. N remobilisation and plant senescence in maize were delayed by PGPR inoculation, which is an indicative of greater grain production. This is indicated by significant interactions between PGPR strains and time of harvests for parameters on N uptake and at. % 15Ne of tassel. The phenomenon is also supported by the lower N content in tassels of maize treated

  12. Plant Growth-Promoting Rhizobacteria Inoculation to Enhance Vegetative Growth, Nitrogen Fixation and Nitrogen Remobilisation of Maize under Greenhouse Conditions.

    PubMed

    Kuan, Khing Boon; Othman, Radziah; Abdul Rahim, Khairuddin; Shamsuddin, Zulkifli H

    2016-01-01

    Plant growth-promoting rhizobacteria (PGPR) may provide a biological alternative to fix atmospheric N2 and delay N remobilisation in maize plant to increase crop yield, based on an understanding that plant-N remobilisation is directly correlated to its plant senescence. Thus, four PGPR strains were selected from a series of bacterial strains isolated from maize roots at two locations in Malaysia. The PGPR strains were screened in vitro for their biochemical plant growth-promoting (PGP) abilities and plant growth promotion assays. These strains were identified as Klebsiella sp. Br1, Klebsiella pneumoniae Fr1, Bacillus pumilus S1r1 and Acinetobacter sp. S3r2 and a reference strain used was Bacillus subtilis UPMB10. All the PGPR strains were tested positive for N2 fixation, phosphate solubilisation and auxin production by in vitro tests. In a greenhouse experiment with reduced fertiliser-N input (a third of recommended fertiliser-N rate), the N2 fixation abilities of PGPR in association with maize were determined by 15N isotope dilution technique at two harvests, namely, prior to anthesis (D50) and ear harvest (D65). The results indicated that dry biomass of top, root and ear, total N content and bacterial colonisations in non-rhizosphere, rhizosphere and endosphere of maize roots were influenced by PGPR inoculation. In particular, the plants inoculated with B. pumilus S1r1 generally outperformed those with the other treatments. They produced the highest N2 fixing capacity of 30.5% (262 mg N2 fixed plant-1) and 25.5% (304 mg N2 fixed plant-1) of the total N requirement of maize top at D50 and D65, respectively. N remobilisation and plant senescence in maize were delayed by PGPR inoculation, which is an indicative of greater grain production. This is indicated by significant interactions between PGPR strains and time of harvests for parameters on N uptake and at. % 15Ne of tassel. The phenomenon is also supported by the lower N content in tassels of maize treated with

  13. Potassium Management for Improving Growth and Grain Yield of Maize (Zea mays L.) under Moisture Stress Condition

    PubMed Central

    Amanullah; Iqbal, Asif; Irfanullah; Hidayat, Zeeshan

    2016-01-01

    Potassium (K) fertilizer management is beneficial for improving growth, yield and yield components of field crops under moisture stress condition in semiarid climates. Field experiments were conducted to study the response of maize (Zea mays L., cv. Azam) to foliar and soil applied K during summer 2013 and 2014. The experiments were carried out at the Agronomy Research Farm of The University of Agriculture Peshawar, Northwest Pakistan under limited irrigation (moisture stress) condition. It was concluded from the results that application of foliar K at the rate of 1–3% and foliar Zn at the rate of 0.1–0.2% was more beneficial in terms of better growth, higher yield and yield components of maize under moisture stress condition. Early spray (vegetative stage) resulted in better growth and higher yield than late spray (reproductive stage). Soil K treated plots (rest) plots performed better than control (K not applied) in terms of improved growth, higher yield and yield components of maize crop. The results further demonstrated that increasing the rate of soil applied K up to 90 kg P ha−1 in two equal splits (50% each at sowing and knee height) improve growth and maize productivity under semiarid climates. PMID:27694964

  14. Coordinated regulation of photosynthetic and respiratory components is necessary to maintain chloroplast energy balance in varied growth conditions.

    PubMed

    Dahal, Keshav; Martyn, Greg D; Alber, Nicole A; Vanlerberghe, Greg C

    2016-12-23

    Mitochondria have a non-energy-conserving alternative oxidase (AOX) proposed to support photosynthesis, perhaps by promoting energy balance under varying growth conditions. To investigate this, wild-type (WT) Nicotiana tabacum were compared with AOX knockdown and overexpression lines. In addition, the amount of AOX protein in WT plants was compared with that of chloroplast light-harvesting complex II (LHCB2), whose amount is known to respond to chloroplast energy status. With increased growth irradiance, WT leaves maintained higher rates of respiration in the light (R L), but no differences in R L or photosynthesis were seen between the WT and transgenic lines, suggesting that, under non-stress conditions, AOX was not critical for leaf metabolism, regardless of growth irradiance. However, under drought, the AOX amount became an important determinant of R L, which in turn was an important determinant of chloroplast energy balance (measured as photosystem II excitation pressure, EP), and photosynthetic performance. In the WT, the AOX amount increased and the LHCB2 amount decreased with increased growth irradiance or drought severity. These changes in protein amounts correlated strongly, in opposing ways, with growth EP. This suggests that a signal deriving from the photosynthetic electron transport chain status coordinately controls the amounts of AOX and LHCB2, which then both contribute to maintaining chloroplast energy balance, particularly under stress conditions.

  15. Potassium Management for Improving Growth and Grain Yield of Maize (Zea mays L.) under Moisture Stress Condition.

    PubMed

    Amanullah; Iqbal, Asif; Irfanullah; Hidayat, Zeeshan

    2016-10-03

    Potassium (K) fertilizer management is beneficial for improving growth, yield and yield components of field crops under moisture stress condition in semiarid climates. Field experiments were conducted to study the response of maize (Zea mays L., cv. Azam) to foliar and soil applied K during summer 2013 and 2014. The experiments were carried out at the Agronomy Research Farm of The University of Agriculture Peshawar, Northwest Pakistan under limited irrigation (moisture stress) condition. It was concluded from the results that application of foliar K at the rate of 1-3% and foliar Zn at the rate of 0.1-0.2% was more beneficial in terms of better growth, higher yield and yield components of maize under moisture stress condition. Early spray (vegetative stage) resulted in better growth and higher yield than late spray (reproductive stage). Soil K treated plots (rest) plots performed better than control (K not applied) in terms of improved growth, higher yield and yield components of maize crop. The results further demonstrated that increasing the rate of soil applied K up to 90 kg P ha(-1) in two equal splits (50% each at sowing and knee height) improve growth and maize productivity under semiarid climates.

  16. Optimization of culture conditions to improve Helicobacter pylori growth in Ham's F-12 medium by response surface methodology.

    PubMed

    Bessa, L J; Correia, D M; Cellini, L; Azevedo, N F; Rocha, I

    2012-01-01

    Helicobacter pylori is a gastroduodenal pathogen that colonizes the human stomach and is the causal agent of gastric diseases. From the clinical and epidemiological point of view, enhancing and improving the growth of this bacterium in liquid media is an important goal to achieve in order to allow the performance of accurate physiological studies. The aim of this work was to optimize three culture conditions that influence the growth of H. pylori in the defined medium Ham s F-12 supplemented with 5 percent fetal bovine serum by using response surface methodology as a statistical technique to obtain the optimal conditions. The factors studied in this experimental design (Box-Behnken design) were the pH of the medium, the shaking speed (rpm) and the percentage of atmospheric oxygen, in a total of 17 experiments. The biomass specific growth rate was the response measured. The model was validated for pH and shaking speed. The percentage of atmospheric oxygen did not influence the growth for the range of values studied. At the optimal values found for pH and shaking speed, 8 and 130 rpm, respectively, a specific growth rate value of 0.164 h-1, corresponding to a maximal concentration of approximately 1.5x108 CFU/ml, was reached after 8 h. The experimental design strategy allowed, for the first time, the optimization of H. pylori growth in a semi-synthetic medium, which may be important to improve physiological and metabolic studies of this fastidious bacterium.

  17. Arbuscular mycorrhizal fungi increased growth, nutrient uptake and tolerance to salinity in olive trees under nursery conditions.

    PubMed

    Porras-Soriano, Andrés; Soriano-Martín, María Luisa; Porras-Piedra, Andrés; Azcón, Rosario

    2009-09-01

    Inoculating olive plantlets with the arbuscular mycorrhizal fungi (AMF) Glomus mosseae, Glomus intraradices or Glomus claroideum increased plant growth and the ability to acquire nitrogen, phosphorus, and potassium from non-saline as well as saline media. AMF-colonized plants also increased in survival rate after transplant. Osmotic stress caused by NaCl supply reduced stem diameter, number of shoots, shoot length and nutrients in olive plants, but AMF colonization alleviated all of these negative effects on growth. G. mosseae was the most efficient fungus in reducing the detrimental effects of salinity; it increased shoot growth by 163% and root growth by 295% in the non-saline medium, and by 239% (shoot) and by 468% (root) under the saline conditions. AMF colonization enhanced salt tolerance in terms of olive growth and nutrient acquisition. Mycorrhizal olive plants showed the lowest biomass reduction under salinity (34%), while growth was reduced by 78% in control plants. This G. mosseae effect seems to be due to increased K acquisition; K content was enhanced under salt conditions by 6.4-fold with G. mosseae, 3.4-fold with G. intraradices, and 3.7-fold with G. claroideum. Potassium, as the most prominent inorganic solute, plays a key role in the osmoregulation processes and the highest salinity tolerance of G. mosseae-colonized olive trees was concomitant with an enhanced K concentration in olive plants.

  18. Conditions associated with Clostridium sporogenes growth as a surrogate for Clostridium botulinum in nonthermally processed canned butter.

    PubMed

    Taylor, R H; Dunn, M L; Ogden, L V; Jefferies, L K; Eggett, D L; Steele, F M

    2013-05-01

    The objective of this study was to better understand the effect of butter composition and emulsion structure on growth and survival of Clostridium sporogenes, used as a surrogate for C. botulinum in canned butter. The lack of a thermal process step in commercially available canned butter raises questions of potential safety, because it is hermetically sealed and generally exhibits anaerobic growth conditions, which are optimal for Clostridium botulinum growth. Without thermal processing, low-acid canned foods must have inhibitory factors present to prevent C. botulinum growth. Some potential intrinsic inhibitory factors, or hurdles, within butter include: reduced water activity, acidity in cultured products, elevated salt content, and the micro-droplet nature of the aqueous phase in the butter emulsion. It was hypothesized that a normal, intact butter emulsion would have sufficient hurdles to prevent C. botulinum growth, whereas a broken butter emulsion would result in a coalesced aqueous phase that would allow for C. botulinum growth. Batch-churned butter was inoculated with C. sporogenes; butter samples with varying salt contents (0, 0.8, 1.6, and 2.4% wt/wt NaCl) were prepared and stored in coated steel cans for varying times (1 or 2 wk) and temperatures (22 or 41°C) to determine temperature and emulsion structure effects on C. sporogenes growth. Samples stored at 41°C showed a significant increase in C. sporogenes growth compared with those stored at 22°C. Furthermore, NaCl addition was found to have a significant effect on C. sporogenes growth, with 0.8% NaCl promoting more growth than 0%, but with decreases in growth observed at 1.6 and 2.4%. Uninoculated control plates were also found to have bacterial growth; this growth was attributed to other anaerobic bacteria present within the cream. It was concluded that removal of the hurdle created by the micro-droplet size of the emulsion aqueous phase could result in C. botulinum growth even at elevated salt

  19. Growth Regulator Herbicides Prevent Invasive Annual grass Seed Production Under Field Conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Growth regulator herbicides, such as 2,4-D, dicamba, picloram, and aminopyralid, are commonly used to control broadleaf weeds in grasslands, non-croplands and cereal crops (e.g. wheat, barley). If applied to cereals at late growth stages, while the grasses are developing reproductive parts, the her...

  20. Modeling potato root growth and water uptake under water stress conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Potato (Solanum tuberosum L.) growth and yield are sensitive to drought starting at mild stress levels. Accurate simulation of root growth is critical for estimating water and nutrient uptake dynamics of major crops and improving agricultural decision support tools for natural resource management. ...

  1. Influence of Bacillus spp. strains on seedling growth and physiological parameters of sorghum under moisture stress conditions.

    PubMed

    Grover, Minakshi; Madhubala, R; Ali, Sk Z; Yadav, S K; Venkateswarlu, B

    2014-09-01

    Microorganisms isolated from stressed ecosystem may prove as ideal candidates for development of bio-inoculants for stressed agricultural production systems. In the present study, moisture stress tolerant rhizobacteria were isolated from the rhizosphere of sorghum, pigeonpea, and cowpea grown under semiarid conditions in India. Four isolates KB122, KB129, KB133, and KB142 from sorghum rhizosphere exhibited plant growth promoting traits and tolerance to salinity, high temperature, and moisture stress. These isolates were identified as Bacillus spp. by 16S rDNA sequence analysis. The strains were evaluated for growth promotion of sorghum seedlings under two different moisture stress conditions (set-I, continuous 50% soil water holding capacity (WHC) throughout the experiment and set-II, 75% soil WHC for 27 days followed by no irrigation for 5 days) under greenhouse conditions. Plate count and scanning electron microscope studies indicated successful root surface colonization by inoculated bacteria. Plants inoculated with Bacillus spp. strains showed better growth in terms of shoot length and root biomass with dark greenish leaves due to high chlorophyll content while un-inoculated plants showed rolling of the leaves, stunted appearance, and wilting under both stress conditions. Inoculation also improved leaf relative water content and soil moisture content. However, variation in proline and sugar content in the different treatments under two stress conditions indicated differential effect of microbial treatments on plant physiological parameters under stress conditions.

  2. Linking Metabolism, Elemental Cycles, and Environmental Conditions in the Deep Biosphere: Growth of a Model Extremophile, Archaeoglobus fulgidus, Under High-Pressure Conditions

    NASA Astrophysics Data System (ADS)

    Oliver, G. C. M.; Cario, A.; Rogers, K. L.

    2015-12-01

    A majority of Earth's biosphere is hosted in subsurface environments where global-scale biogeochemical and energy cycles are driven by diverse microbial communities that operate on and are influenced by micro-scale environmental variables. While the subsurface hosts a variety of geochemical and geothermal conditions, elevated pressures are common to all subsurface ecosystems. Understanding how microbes adapt to and thrive in high-pressure environments is essential to linking microbial subsurface processes with global-scale cycles. Here we are using a model extremophile, Archaeoglobus fulgidus, to determine how elevated pressures affect the growth, metabolism, and physiology of subsurface microorganisms. A. fulgidus cycles carbon and sulfur via heterotrophic and autotrophic sulfate reduction in various high temperature and high-pressure niches including shallow marine vents, deep-sea hydrothermal vents, and deep oil reservoirs. Here we report the results of A. fulgidus growth experiments at optimum temperature, 83°C, and pressures up to 600 bars. Exponential growth was observed over the entire pressure range, though growth rates were diminished at 500 and 600 bars compared to ambient pressure experimental controls. At pressures up to 400 bars, cell density yields and growth rates were at least as high as ambient pressure controls. Elevated pressures and extended incubation times stimulated cell flocculation, a common stress response in this strain, and cellular morphology was affected at pressures exceeding 400 bars. These results suggest that A. fulgidus continues carbon, sulfur and energy cycling unaffected by elevated pressures up to 400 bars, representing a variety of subsurface environments. The ability of subsurface organisms to drive biogeochemical cycles at elevated pressures is a critical link between the surface and subsurface biospheres and understanding how species-scale processes operate under these conditions is a vital part of global

  3. EVALUATION OF FUNGAL GROWTH ON FIBERGLASS DUCT MATERIALS FOR VARIOUS MOISTURE, SOIL, USE, AND TEMPERATURE CONDITIONS (JOURNAL)

    EPA Science Inventory

    The paper gives results of a series of experiments, each lasing 6 weeks, conducted in static environmental chambers to assess some of the conditions that may impact the ability of a variety of fiberglass materials to support the growth of a fungus, Penicillium chrysogenum. (NOTE:...

  4. A Miniature Condition in Brahman Cattle is Associated with a Single Nucleotide Mutation Within the Growth Hormone Gene

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Miniature Brahman cattle at the USDA ARS in Brooksville, FL have normal proportioned growth but are approximately 70% of normal mature height and weight when compared with Brahman cattle in the same heard. Pedigree analyses suggest that the condition is inherited as a recessive allele. The miniature...

  5. Growth condition dependence of photoluminescence polarization in (100) GaAs/AlGaAs quantum wells at room temperature

    SciTech Connect

    Iba, Satoshi; Saito, Hidekazu; Yuasa, Shinji; Watanabe, Ken; Ohno, Yuzo

    2015-08-28

    We conducted systematic measurements on the carrier lifetime (τ{sub c}), spin relaxation time (τ{sub s}), and circular polarization of photoluminescence (P{sub circ}) in (100) GaAs/AlGaAs multiple quantum wells grown by molecular beam epitaxy (MBE). The τ{sub c} values are strongly affected by MBE growth conditions (0.4–9 ns), whereas the τ{sub s} are almost constant at about 0.13 ns. The result suggests that spin detection efficiency [τ{sub s}/(τ{sub c} + τ{sub s})], which is expected to be proportional to a steady-state P{sub circ}, is largely dependent on growth condition. We confirmed that the P{sub circ} has similar dependence on growth condition to those of τ{sub s}/(τ{sub c} + τ{sub s}) values. The study thus indicates that choosing the appropriate growth condition of the QW is indispensable for obtaining a high P{sub circ} from a spin-polarized light-emitting diode (spin-LED)

  6. Comment on 'Shang S. 2012. Calculating actual crop evapotranspiration under soil water stress conditions with appropriate numerical methods and time step. Hydrological Processes 26: 3338-3343. DOI: 10.1002/hyp.8405'

    NASA Technical Reports Server (NTRS)

    Yatheendradas, Soni; Narapusetty, Balachandrudu; Peters-Lidard, Christa; Funk, Christopher; Verdin, James

    2014-01-01

    A previous study analyzed errors in the numerical calculation of actual crop evapotranspiration (ET(sub a)) under soil water stress. Assuming no irrigation or precipitation, it constructed equations for ET(sub a) over limited soil-water ranges in a root zone drying out due to evapotranspiration. It then used a single crop-soil composite to provide recommendations about the appropriate usage of numerical methods under different values of the time step and the maximum crop evapotranspiration (ET(sub c)). This comment reformulates those ET(sub a) equations for applicability over the full range of soil water values, revealing a dependence of the relative error in numerical ET(sub a) on the initial soil water that was not seen in the previous study. It is shown that the recommendations based on a single crop-soil composite can be invalid for other crop-soil composites. Finally, a consideration of the numerical error in the time-cumulative value of ET(sub a) is discussed besides the existing consideration of that error over individual time steps as done in the previous study. This cumulative ET(sub a) is more relevant to the final crop yield.

  7. Impact of superabsorbent polymer on yield and growth analysis of soybean (Glycine max L.) under drought stress condition.

    PubMed

    Yazdani, Firouzeh; Allahdadi, Iraj; Akbari, Gholam Abas

    2007-12-01

    The aim of present study is evaluation of the effect of four rates of superabsorbent polymer (0, 75, 150 and 225 kg ha(-1)) and three irrigation intervals (6, 8 and 10 days) on growth and yield of soybean (cult. L11) under field conditions. The results of this study showed that there was a significant effect among irrigation intervals on seed yield, Total Dry Matter (TDM), Leaf Area Index (LAI), Crop Growth Rate (CGR), plant height and Harvest Index (HI). Moreover, The highest increase in seed yield, Total Dry Matter (TDM), Leaf Area Index (LAI), Crop Growth Rate (CGR) and Harvest Index (HI) were achieved at 225 kg ha(-1) polymer compared with the control (without polymer). These results indicate that application of superabsorbent polymer at 225 kg ha(-1) appeared to increase all the above growth and yield attributes.

  8. Propagule Pressure, Habitat Conditions and Clonal Integration Influence the Establishment and Growth of an Invasive Clonal Plant, Alternanthera philoxeroides.

    PubMed

    You, Wen-Hua; Han, Cui-Min; Fang, Long-Xiang; Du, Dao-Lin

    2016-01-01

    Many notorious invasive plants are clonal, spreading mainly by vegetative propagules. Propagule pressure (the number of propagules) may affect the establishment, growth, and thus invasion success of these clonal plants, and such effects may also depend on habitat conditions. To understand how propagule pressure, habitat conditions and clonal integration affect the establishment and growth of the invasive clonal plants, an 8-week greenhouse with an invasive clonal plant, Alternanthera philoxeroides was conducted. High (five fragments) or low (one fragment) propagule pressure was established either in bare soil (open habitat) or dense native vegetation of Jussiaea repens (vegetative habitat), with the stolon connections either severed from or connected to the relatively older ramets. High propagule pressure greatly increased the establishment and growth of A. philoxeroides, especially when it grew in vegetative habitats. Surprisingly, high propagule pressure significantly reduced the growth of individual plants of A. philoxeroides in open habitats, whereas it did not affect the individual growth in vegetative habitats. A shift in the intraspecific interaction on A. philoxeroides from competition in open habitats to facilitation in vegetative habitats may be the main reason. Moreover, clonal integration significantly improved the growth of A. philoxeroides only in open habitats, especially with low propagule pressure, whereas it had no effects on the growth and competitive ability of A. philoxeroides in vegetative habitats, suggesting that clonal integration may be of most important for A. philoxeroides to explore new open space and spread. These findings suggest that propagule pressure may be crucial for the invasion success of A. philoxeroides, and such an effect also depends on habitat conditions.

  9. Propagule Pressure, Habitat Conditions and Clonal Integration Influence the Establishment and Growth of an Invasive Clonal Plant, Alternanthera philoxeroides

    PubMed Central

    You, Wen-Hua; Han, Cui-Min; Fang, Long-Xiang; Du, Dao-Lin

    2016-01-01

    Many notorious invasive plants are clonal, spreading mainly by vegetative propagules. Propagule pressure (the number of propagules) may affect the establishment, growth, and thus invasion success of these clonal plants, and such effects may also depend on habitat conditions. To understand how propagule pressure, habitat conditions and clonal integration affect the establishment and growth of the invasive clonal plants, an 8-week greenhouse with an invasive clonal plant, Alternanthera philoxeroides was conducted. High (five fragments) or low (one fragment) propagule pressure was established either in bare soil (open habitat) or dense native vegetation of Jussiaea repens (vegetative habitat), with the stolon connections either severed from or connected to the relatively older ramets. High propagule pressure greatly increased the establishment and growth of A. philoxeroides, especially when it grew in vegetative habitats. Surprisingly, high propagule pressure significantly reduced the growth of individual plants of A. philoxeroides in open habitats, whereas it did not affect the individual growth in vegetative habitats. A shift in the intraspecific interaction on A. philoxeroides from competition in open habitats to facilitation in vegetative habitats may be the main reason. Moreover, clonal integration significantly improved the growth of A. philoxeroides only in open habitats, especially with low propagule pressure, whereas it had no effects on the growth and competitive ability of A. philoxeroides in vegetative habitats, suggesting that clonal integration may be of most important for A. philoxeroides to explore new open space and spread. These findings suggest that propagule pressure may be crucial for the invasion success of A. philoxeroides, and such an effect also depends on habitat conditions. PMID:27200041

  10. Effect of ambient conditions on simultaneous growth and bioaccumulation of mercuric ion by genetically engineered E. coli JM109.

    PubMed

    Deng, Xu; Zheng, Yangchun; Li, Qingbiao

    2006-08-21

    Genetically engineered E. coli JM109, namely M1, which expressed both Hg(2+) transport system and metallothionein, was tested for its capability of simultaneous growth and bioaccumulation of Hg(2+) under low nutritional circumstances. The influential factors of ambient conditions, e.g. initial concentrations of mercuric ion, ionic strength, the presence of metal chelators and other coexisting metal ions were investigated. Hg(2+) bioaccumulation behavior of M1 proved to be well coupled with its growth. NaCl was essential to the growth of M1. Of all tested NaCl concentrations, 0.04 mol/L was optimal. The presence of 0.1 mol/L CaCl(2) or MgCl(2) could promote the growth of M1 and keep the Hg(2+) removal ratio high, but the growth of M1 was inhibited seriously as the concentration of CaCl(2) or MgCl(2) reached 0.3 mol/L. Chelator EDTA had a significant influence on M1 growth and Hg(2+) bioaccumulation, while the effect of citration was little. The presence of other coexisting metal ions inhibited the growth of M1. The influential order was as follows: Cd(2+)>Zn(2+)> or =Cu(2+)>Pb(2+)>Ni(2+). However, only Cd(2+) and Cu(2+) posed obviously adverse effects on Hg(2+) bioaccumulation during the SG&B process.

  11. Conditioning sulfidic mine waste for growth of Agrostis capillaris--impact on solution chemistry.

    PubMed

    Sjöberg, Viktor; Karlsson, Stefan; Grandin, Anna; Allard, Bert

    2014-01-01

    Contamination of the environment due to mining and mineral processing is an urgent problem worldwide. It is often desirable to establish a grass cover on old mine waste since it significantly decreases the production of leachates. To obtain sustainable growth, it is often necessary to improve several properties of the waste such as water-holding capacity, nutrient status, and toxicity. This can be done by addition of organic materials such as wood residues, e.g., compost. In this study, we focus on the solution chemistry of the leachates when a substrate containing historic sulfidic mine waste mixed with 30 % (volume) bark compost is overgrown by Agrostis capillaris. The pot experiments also included other growth-promoting additives (alkaline material, mycorrhiza, and metabolizable carbon) to examine whether a more sustainable growth could be obtained. Significant changes in the plant growth and in the leachates composition were observed during 8 weeks of growth. It was concluded that in this time span, the growth of A. capillaris did not affect the composition of the leachates from the pots. Instead, the composition of the leachates was determined by interactions between the bark compost and the mine waste. Best growth of A. capillaris was obtained when alkaline material and mycorrhiza or metabolizable carbon was added to the substrate.

  12. Variability in growth/no growth boundaries of 188 different Escherichia coli strains reveals that approximately 75% have a higher growth probability under low pH conditions than E. coli O157:H7 strain ATCC 43888.

    PubMed

    Haberbeck, L U; Oliveira, R C; Vivijs, B; Wenseleers, T; Aertsen, A; Michiels, C; Geeraerd, A H

    2015-02-01

    This study investigated the variation in growth/no growth boundaries of 188 Escherichia coli strains. Experiments were conducted in Luria-Bertani media under 36 combinations of lactic acid (LA) (0 and 25 mM), pH (3.8, 3.9, 4.0, 4.1, 4.2 and 4.3 for 0 mM LA and 4.3, 4.4, 4.5, 4.6, 4.7 and 4.8 for 25 mM LA) and temperature (20, 25 and 30 °C). After 3 days of incubation, growth was monitored through optical density measurements. For each strain, a so-called purposeful selection approach was used to fit a logistic regression model that adequately predicted the likelihood for growth. Further, to assess the growth/no growth variability for all the strains at once, a generalized linear mixed model was fitted to the data. Strain was fitted as a fixed factor and replicate as a random blocking factor. E. coli O157:H7 strain ATCC 43888 was used as reference strain allowing a comparison with the other strains. Out of the 188 strains tested, 140 strains (∼75%) presented a significantly higher probability of growth under low pH conditions than the O157:H7 strain ATCC 43888, whereas 20 strains (∼11%) showed a significantly lower probability of growth under high pH conditions.

  13. Germination and Growth of a Vegetable Exposed to Very Severe Environmental Conditions Experimentally Induced by High Voltage

    NASA Astrophysics Data System (ADS)

    Aoki, Takashi; Ikezawa, Shunjiro

    1982-09-01

    Ultra-high-voltage (UHV) transmission power lines are required in order to reduce transmission energy losses, and to transfer more power across long distances. However, the ecological and biological influence of UHV lines has not been documented well. Possible influences of UHV lines are: electro-magnetic field, ozone, NOx, and ion shower. The purpose of this study was to obtain information on the germination and growth of Raphanus sativus L.cv. Kaiware-daikon exposed to an experimental environment in which all the above influences at very severe intensity levels were working simultaneously. Several environmental conditions severer than those predicted for future UHV lines were set up, using a high voltage at 60 Hz. The germination and growth of this plant were suppressed under the experimental conditions used, the suppression being greater the severer the conditions. When the electric field is strong, corona discharge occurs at the tip of the plant.

  14. Recent advances in the modelling of crack growth under fatigue loading conditions

    NASA Technical Reports Server (NTRS)

    Dekoning, A. U.; Tenhoeve, H. J.; Henriksen, T. K.

    1994-01-01

    Fatigue crack growth associated with cyclic (secondary) plastic flow near a crack front is modelled using an incremental formulation. A new description of threshold behaviour under small load cycles is included. Quasi-static crack extension under high load excursions is described using an incremental formulation of the R-(crack growth resistance)- curve concept. The integration of the equations is discussed. For constant amplitude load cycles the results will be compared with existing crack growth laws. It will be shown that the model also properly describes interaction effects of fatigue crack growth and quasi-static crack extension. To evaluate the more general applicability the model is included in the NASGRO computer code for damage tolerance analysis. For this purpose the NASGRO program was provided with the CORPUS and the STRIP-YIELD models for computation of the crack opening load levels. The implementation is discussed and recent results of the verification are presented.

  15. Impact on growth and aflatoxin B1 accumulation by Kluyveromyces isolates at different water activity conditions.

    PubMed

    Penna, Mariángeles La; Etcheverry, Miriam

    2006-11-01

    This study showed the impact on germination, mycelial growth and aflatoxin B(1) accumulation when interacting Aspergillus aflatoxigenic strains with Kluyveromyces isolates and the effect of water activity on this relationship. Isolates Y(14) and Y(16) reduced the percentage of germination of all Aspergillus strains and decrease germ tube elongation rate at majority of water activity assayed. Similarly they produced an increase of germination lag phase and lag phase of growth beside decreased growth rate of all Aspergillus strains. At water activities 0.994, 0.982, 0.955 and 0.937, no aflatoxins were produced in paired cultures with isolates Y(25,) Y(22), Y(16), and Y(14), and Kluyveromyces isolates Y(14) and Y(16) impact both growth and aflatoxin accumulation at wide range of water activity.

  16. Whisker growth studies under conditions which resemble those available on an orbiting space station

    NASA Technical Reports Server (NTRS)

    Hobbs, Herman H.

    1992-01-01

    Minimal funding was provided by NASA with one designated 'mission' being the clear demonstration of the relevance of previously supported whisker growth studies to microgravity research. While in one sense this work has shown the converse, namely, that ambient gravitational fields as high as 1 Earth normal have no relevance to growth of whiskers by hydrogen reduction of metal halides, a case is made that this does not demonstrate lack of relevance to microgravity research. On the contrary, the driving forces for this growth are precisely those which must be understood in order to understand growth in microgravity. The results described suggest that knowledge gained from this work may be highly fundamental to our understanding of the genesis of metal crystals. Time and money ran out before this work could be considered complete. At least another year's study and analysis will be required before publications could be justified.

  17. Favourable culture conditions for mycelial growth of Hydnum repandum, a medicinal mushroom.

    PubMed

    Peksen, Aysun; Kibar, Beyhan; Yakupoglu, Gokcen

    2013-01-01

    In this study, factors such as pH, temperature, carbon and nitrogen sources that affect mycelial growth of Hydnum repandum, a medicinal mushroom, were investigated. Different inoculum media for vegetative inoculum production were also examined. The best suitable pH for mycelial growth was found to be 5.5. Among constant temperatures, the best mycelial growth was obtained at 20 and 25°C. The mycelial growth drastically decreased at 15°C, and no mycelia were obtained at 30°C. Glucose and mannitol were found to be the most suitable carbon sources. Ca(NO3)2 as a nitrogen source gave the best results for mycelial growth. The poorest mycelial growth was noted in sucrose and xylose as carbon sources and in NH4NO3 and (NH4)2HPO4 as nitrogen sources. Peat and peat: vermiculite mixtures (1:4, 1:6, 1:8 and 1:10, v:v) were the best media to use in producing the vegetative inoculum of H. repandum.

  18. Effect of pre-incubation conditions on growth and survival of Staphylococcus aureus in sliced cooked chicken breast.

    PubMed

    Rodriguez-Caturla, Magdevis Y; Valero Díaz, Antonio; Vallejo, Juan Luis Reyes; García-Gimeno, Rosa Ma; Cosano, Gonzalo Zurera

    2012-12-01

    In this work, the effect of pre-incubation conditions (temperature: 10, 15, 37 °C; pH 5.5, 6.5 and water activity, a(w): 0.997, 0.960) was evaluated on the subsequent growth, survival and enterotoxin production (SE) of Staphylococcus aureus in cooked chicken breast incubated at 10 and 20 °C. Results showed the ability of S. aureus to survive at 10 °C when pre-incubated at low a(w) (0.960) what could constitute a food risk if osmotic stressed cells of S. aureus which form biofilms survive on dried surfaces, and they are transferred to cooked meat products by cross-contamination. Regarding growth at 20 °C, cells pre-incubated at pH 5.5 and a(w) 0.960 had a longer lag phase and a slower maximum growth rate. On the contrary, it was highlighted that pre-incubation at optimal conditions (37 °C/pH 6.5/a(w) 0.997) produced a better adaptation and a faster growth in meat products what would lead to a higher SE production. These findings can support the adoption of management strategies and preventive measures in food industries leading to avoid growth and SE production in meat products.

  19. Modeling the impact of vapor thymol concentration, temperature, and modified atmosphere condition on growth behavior of Salmonella on raw shrimp.

    PubMed

    Zhou, Siyuan; Sheen, Shiowshuh; Pang, Yu-Hsin; Liu, Linshu; Yam, Kit L

    2015-02-01

    Salmonella is a microorganism of concern on a global basis for raw shrimp. This research modeled the impact of vapor thymol concentration (0, 0.8, and 1.6 mg/liter), storage temperature (8, 12, and 16°C), and modified atmosphere condition (0.04 as in the natural atmosphere and 59.5% CO2) against the growth behavior of a Salmonella cocktail (six strains) on raw shrimp. Lag time (hour) and maximum growth rate (log CFU per gram per hour), chosen as two growth indicators, were obtained through DMFit software and then developed into polynomial as well as nonlinear modified secondary models (dimensional and/or dimensionless), consisting of two or even three impact factors in the equations. The models were validated, and results showed that the predictive values from both models demonstrated good matches to the observed experimental values, yet the prediction based on lag time was more accurate than maximum growth rate. The information will provide the food industry with insight into the potential safety risk of Salmonella growth on raw shrimp under stressed conditions.

  20. X-ray diffraction study of the optimization of MgO growth conditions for magnetic tunnel junctions

    NASA Astrophysics Data System (ADS)

    O, Se Young; Lee, Chan-Gyu; Shapiro, Alexander J.; Egelhoff, William F.; Vaudin, Mark D.; Ruglovsky, Jennifer L.; Mallett, Jonathan; Pong, Philip W. T.

    2008-04-01

    We have carried out a systematic study optimizing the MgO growth via preparation and sputtering conditions and underlayer structures. It was found that to prevent water vapor which is detrimental to MgO (200) growth, the chamber pressure needs to be reduced below 10-8Torr. Simple underlayers such as 5nm CoFeB tend to give better MgO, but we have also succeeded in growing MgO on more complicated underlayers such as 1 Ta/20 Au/5 Co40Fe40B20 and 1 Ta/20 conetic (Ni77Fe14Cu5Mo4)/1.5 Co40Fe40B20 (units in nanometers). We accomplished this by extensive baking of the deposition chamber and use of Ti-getter films. Short sputtering distance and high sputtering power were found to optimize MgO deposition. We found that both preparation and sputtering conditions have important effects on the MgO growth. X-ray diffraction analysis was used as the characterization tool for optimizing the MgO growth conditions.

  1. Inoculation of Brassica oxyrrhina with plant growth promoting bacteria for the improvement of heavy metal phytoremediation under drought conditions.

    PubMed

    Ma, Ying; Rajkumar, Mani; Zhang, Chang; Freitas, Helena

    2016-12-15

    The aim of this study was to investigate the effects of drought resistant serpentine rhizobacteria on plant growth and metal uptake by Brassica oxyrrhina under drought stress (DS) condition. Two drought resistant serpentine rhizobacterial strains namely Pseudomonas libanensis TR1 and Pseudomonas reactans Ph3R3 were selected based on their ability to stimulate seedling growth in roll towel assay. Further assessment on plant growth promoting (PGP) parameters revealed their ability to produce indole-3-acetic acid, siderophore and 1-aminocyclopropane-1-carboxylate deaminase. Moreover, both strains exhibited high resistance to various heavy metals, antibiotics, salinity and extreme temperature. Inoculation of TR1 and Ph3R3 significantly increased plant growth, leaf relative water and pigment content of B. oxyrrhina, whereas decreased concentrations of proline and malondialdehyde in leaves under metal stress in the absence and presence of DS. Regardless of soil water conditions, TR1 and Ph3R3 greatly improved organ metal concentrations, translocation and bioconcentration factors of Cu and Zn. The successful colonization and metabolic activities of P. libanensis TR1 and P. reactans Ph3R3 represented positive effects on plant development and metal phytoremediation under DS. These results indicate that these strains could be used as bio-inoculants for the improvement of phytoremediation of metal polluted soils under semiarid conditions.

  2. Growth response and toxin concentration of cultured Pyrodinium bahamense var. compressum to varying salinity and temperature conditions.

    PubMed

    Gedaria, Alice Ilaya; Luckas, Bernd; Reinhardt, Katrin; Azanza, Rhodora V

    2007-09-15

    The growth and toxin production of a Philippine Pyrodinium bahamense isolate in nutrient replete batch cultures were investigated under conditions affected by varying salinity, temperature and combined effects of salinity and temperature. Early exponential growth stage was reached after 7 days with a cell division rate of 0.26 div day(-1). The toxin content reached a peak of 298 fmol cell-1 at mid exponential phase and rapidly declined to 54 fmol cell-1 as it approached the death phase. Only three sets of toxins composed of STX, dcSTX and B1 were detected in which STX made up to 85-98 mol%toxincell-1. P. bahamense was able to grow in salinities and temperatures ranging from 26 per thousand to 36 per thousand and 23 to 36 degrees C, respectively. The optimum growth under varying salinity and temperature conditions was observed at 36 per thousand and 25 degrees C. Toxin content reached a peak of 376 fmol cell-1 at 25 degrees C and was lower (80-116 fmol cell-1) at higher temperatures (32-35 degrees C). Combined effects of salinity and temperature showed that P. bahamense was not able to grow at low salinity and temperature (i.e. below 26 per thousand-28 degrees C). Optimum growth was observed in higher salinities at all temperature conditions.

  3. Joint use of soil moisture and vegetation growth condition by remote sensing on the agricultural drought monitoring

    NASA Astrophysics Data System (ADS)

    Liu, Ming; Yang, Siquan; Huang, He; He, Haixia; Li, Suju; Cui, Yan

    2015-12-01

    Remote sensing is one of important methods on the agricultural drought monitoring for its long-term and wide-area observations. The detection of soil moisture and vegetation growth condition are two widely used remote sensing methods on that. However, because of the time lag in the impact of water deficit on the crop growth, it is difficulty to indicate the severity of drought by once monitoring. It also cannot distinguish other negative impact on crop growth such as low temperature or solar radiation. In this paper, the joint use of soil moisture and vegetation growth condition detections was applied on the drought management during the summer of 2013 in Liaoning province, China, in which 84 counties were affected by agricultural drought. MODIS vegetation indices and land surface temperature (LST) were used to extract the drought index. Vegetation Condition Index (VCI), which only contain the change in vegetation index, and Vegetation Supply Water Index (VSWI), which combined the information of vegetation index and land surface temperature, were selected to compare the monitoring ability on drought during the drought period in Liaoning, China in 2014. It was found that VCI could be a good method on the loss assessment. VSWI has the information on the change in LST, which can indicate the spatial pattern of drought and can also be used as the early warning method in the study.

  4. Growth and survival of blowfly Lucilia sericata larvae under simulated wound conditions: implications for maggot debridement therapy.

    PubMed

    Čičková, H; Kozánek, M; Takáč, P

    2015-12-01

    Maggot debridement therapy has become a well-established method of wound debridement. Despite its success, little information is available about the optimum duration of the treatment cycle and larval growth in wounds. This study examines the development of Lucilia sericata (Diptera: Calliphoridae) larvae under two containment conditions (bagged and free range) under simulated wound conditions and assesses the impact of transport and further storage of larvae on their survival and growth. There was no significant difference in size between bagged and free-range larvae over the 72-h experimental period. Larvae grew fastest 8-24 h after inoculation and completed their growth at 40-48 h. Mortality rates were similar (0.12-0.23% per hour) in both containment conditions and did not differ significantly (P = 0.3212). Survival of free-range larvae was on average 16% lower than survival of bagged larvae. Refrigeration of larvae upon simulated delivery for > 1 day reduced their survival to < 50% and caused a reduction in growth of up to 30% at 12 h, but not at 48 h, of incubation. Therefore, it is recommended that free-range larvae are left in the wound for a maximum of 40-48 h, and bagged larvae for 48-72 h. Larvae should be used within 24 h of delivery to avoid high mortality caused by prolonged refrigeration.

  5. Changes in the Cytoplasmic Composition of Amino Acids and Proteins Observed in Staphylococcus aureus during Growth under Variable Growth Conditions Representative of the Human Wound Site

    PubMed Central

    Alreshidi, Mousa M.; Dunstan, R. Hugh; Gottfries, Johan; Macdonald, Margaret M.; Crompton, Marcus J.; Ang, Ching-Seng; Williamson, Nicholas A.; Roberts, Tim K.

    2016-01-01

    Staphylococcus aureus is an opportunistic pathogen responsible for a high proportion of nosocomial infections. This study was conducted to assess the bacterial responses in the cytoplasmic composition of amino acids and ribosomal proteins under various environmental conditions designed to mimic those on the human skin or within a wound site: pH6-8, temperature 35–37°C, and additional 0–5% NaCl. It was found that each set of environmental conditions elicited substantial adjustments in cytoplasmic levels of glutamic acid, aspartic acid, proline, alanine and glycine (P< 0.05). These alterations generated characteristic amino acid profiles assessed by principle component analysis (PCA). Substantial alterations in cytoplasmic amino acid and protein composition occurred during growth under conditions of higher salinity stress implemented via additional levels of NaCl in the growth medium. The cells responded to additional NaCl at pH 6 by reducing levels of ribosomal proteins, whereas at pH 8 there was an upregulation of ribosomal proteins compared with the reference control. The levels of two ribosomal proteins, L32 and S19, remained constant across all experimental conditions. The data supported the hypothesis that the bacterium was continually responding to the dynamic environment by modifying the proteome and optimising metabolic homeostasis. PMID:27442022

  6. Characterization of the Bridgman crystal growth process by radiographic imaging

    NASA Technical Reports Server (NTRS)

    Fripp, Archibald L.; Debnam, W. J.; Woodell, G. W.; Berry, R. F.; Simchick, R. T.; Sorokach, S. K.; Barber, P. G.

    1991-01-01

    Elemental (Ge) and alloy (PbSnTe) crystal growth that is monitored via radiography to reveal both the interface position and the shape in real time is discussed for both seeded and unseeded growth. It is concluded that the interface position and the actual growth rate of a Bridgman grown crystal is dependent on the growth conditions. The actual growth rate which is a strong function of the degree of supercooling exceeded the pull rate by a factor of greater than two. The interface shape changed from concave to flat to convex during the growth.

  7. Effect of growth conditions and substratum composition on the persistence of coliforms in mixed-population biofilms.

    PubMed Central

    Camper, A K; Jones, W L; Hayes, J T

    1996-01-01

    Laboratory reactors operated under oligotrophic conditions were used to evaluate the importance of initial growth rate and substratum composition on the long-term persistence of coliforms in mixed-population biofilms. The inoculum growth rate had a dramatic effect on the ability of coliforms to remain on surfaces. The most slowly grown coliforms (mu = 0.05/h) survived at the highest cell concentration. Antibody staining revealed that Klebsiella pneumoniae existed primarily as discrete microcolonies on the surface. Both coliforms and heterotrophic plate count bacteria were supported in larger numbers on a reactive substratum, mild steel, than on polycarbonate. PMID:8899991

  8. Inoculation of Schizolobium parahyba with Mycorrhizal Fungi and Plant Growth-Promoting Rhizobacteria Increases Wood Yield under Field Conditions.

    PubMed

    Cely, Martha V T; Siviero, Marco A; Emiliano, Janaina; Spago, Flávia R; Freitas, Vanessa F; Barazetti, André R; Goya, Erika T; Lamberti, Gustavo de Souza; Dos Santos, Igor M O; De Oliveira, Admilton G; Andrade, Galdino

    2016-01-01

    Schizolobium parahyba var. amazonicum (Huber ex Ducke) occurs naturally in the Brazilian Amazon. Currently, it is being planted extensively because of its fast growth and excellent use in forestry. Consequently, there is great interest in new strategies to increase wood production. The interaction between soil microorganisms and plants, specifically in the roots, provides essential nutrients for plant growth. These interactions can have growth-promoting effects. In this way, this study assessed the effect of the inoculation with arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) on growth of S. parahyba var. amazonicum under field conditions. We used two native species of arbuscular mycorrhizal fungi, Claroideoglomus etunicatum (Ce), and Acaulospora sp. (Ac); two native strains of Rhizobium sp. (Rh1 and Rh2); and a non-native strain of Burkholderia sp. Different combinations of microorganisms were supplemented with chemical fertilizers (doses D1 and D2) in two planting methods, seed sowing and seedling planting. In seed sowing, the results showed that treatments with Ce/Rh1/Fertilizer D2 and Ac/No PGPR/Fertilizer D2 increased wood yield. In seedling planting, two combinations (Ac/Rh2/Fertilizer D1 and Ac/Rh1/Fertilizer D1) were more effective in increasing seedling growth. In these experiments, inoculation with AMF and PGPR increased wood yield by about 20% compared to the application of fertilizer alone.

  9. Inoculation of Schizolobium parahyba with Mycorrhizal Fungi and Plant Growth-Promoting Rhizobacteria Increases Wood Yield under Field Conditions

    PubMed Central

    Cely, Martha V. T.; Siviero, Marco A.; Emiliano, Janaina; Spago, Flávia R.; Freitas, Vanessa F.; Barazetti, André R.; Goya, Erika T.; Lamberti, Gustavo de Souza; dos Santos, Igor M. O.; De Oliveira, Admilton G.; Andrade, Galdino

    2016-01-01

    Schizolobium parahyba var. amazonicum (Huber ex Ducke) occurs naturally in the Brazilian Amazon. Currently, it is being planted extensively because of its fast growth and excellent use in forestry. Consequently, there is great interest in new strategies to increase wood production. The interaction between soil microorganisms and plants, specifically in the roots, provides essential nutrients for plant growth. These interactions can have growth-promoting effects. In this way, this study assessed the effect of the inoculation with arbuscular mycorrhizal fungi (AMF) and plant growth-promoting rhizobacteria (PGPR) on growth of S. parahyba var. amazonicum under field conditions. We used two native species of arbuscular mycorrhizal fungi, Claroideoglomus etunicatum (Ce), and Acaulospora sp. (Ac); two native strains of Rhizobium sp. (Rh1 and Rh2); and a non-native strain of Burkholderia sp. Different combinations of microorganisms were supplemented with chemical fertilizers (doses D1 and D2) in two planting methods, seed sowing and seedling planting. In seed sowing, the results showed that treatments with Ce/Rh1/Fertilizer D2 and Ac/No PGPR/Fertilizer D2 increased wood yield. In seedling planting, two combinations (Ac/Rh2/Fertilizer D1 and Ac/Rh1/Fertilizer D1) were more effective in increasing seedling growth. In these experiments, inoculation with AMF and PGPR increased wood yield by about 20% compared to the application of fertilizer alone. PMID:27920781

  10. Site condition, structure, and growth of baldcypress along tidal/non-tidal salinity gradients

    USGS Publications Warehouse

    Krauss, K.W.; Duberstein, J.A.; Doyle, T.W.; Conner, W.H.; Day, Richard H.; Inabinette, L.W.; Whitbeck, J.L.

    2009-01-01

    This report documents changes in forest structure and growth potential of dominant trees in salt-impacted tidal and non-tidal baldcypress wetlands of the southeastern United States. We inventoried basal area and tree height, and monitored incremental growth (in basal area) of codominant baldcypress (Taxodium distichum) trees monthly, for over four years, to examine the inter-relationships among growth, site fertility, and soil physico-chemical characteristics. We found that salinity, soil total nitrogen (TN), flood duration, and flood frequency affected forest structure and growth the greatest. While mean annual site salinity ranged from 0.1 to 3.4 ppt, sites with salinity concentrations of 1.3 ppt or greater supported a basal area of less than 40 m2/ha. Where salinity was < 0.7 ppt, basal area was as high as 87 m2/ha. Stand height was also negatively affected by higher salinity. However, salinity related only to soil TN concentrations or to the relative balance between soil TN and total phosphorus (TP), which reached a maximum concentration between 1.2 and 2.0 ppt salinity. As estuarine influence shifts inland with sea-level rise, forest growth may become more strongly linked to salinity, not only due to salt effects but also as a consequence of site nitrogen imbalance.

  11. MediaDB: a database of microbial growth conditions in defined media.

    PubMed

    Richards, Matthew A; Cassen, Victor; Heavner, Benjamin D; Ajami, Nassim E; Herrmann, Andrea; Simeonidis, Evangelos; Price, Nathan D

    2014-01-01

    Isolating pure microbial cultures and cultivating them in the laboratory on defined media is used to more fully characterize the metabolism and physiology of organisms. However, identifying an appropriate growth medium for a novel isolate remains a challenging task. Even organisms with sequenced and annotated genomes can be difficult to grow, despite our ability to build genome-scale metabolic networks that connect genomic data with metabolic function. The scientific literature is scattered with information about defined growth media used successfully for cultivating a wide variety of organisms, but to date there exists no centralized repository to inform efforts to cultivate less characterized organisms by bridging the gap between genomic data and compound composition for growth media. Here we present MediaDB, a manually curated database of defined media that have been used for cultivating organisms with sequenced genomes, with an emphasis on organisms with metabolic network models. The database is accessible online, can be queried by keyword searches or downloaded in its entirety, and can generate exportable individual media formulation files. The data assembled in MediaDB facilitate comparative studies of organism growth media, serve as a starting point for formulating novel growth media, and contribute to formulating media for in silico investigation of metabolic networks. MediaDB is freely available for public use at https://mediadb.systemsbiology.net.

  12. The inner-mitochondrial distribution of Oxa1 depends on the growth conditions and on the availability of substrates.

    PubMed

    Stoldt, Stefan; Wenzel, Dirk; Hildenbeutel, Markus; Wurm, Christian A; Herrmann, Johannes M; Jakobs, Stefan

    2012-06-01

    The Oxa1 protein is a well-conserved integral protein of the inner membrane of mitochondria. It mediates the insertion of both mitochondrial- and nuclear-encoded proteins from the matrix into the inner membrane. We investigated the distribution of budding yeast Oxa1 between the two subdomains of the contiguous inner membrane--the cristae membrane (CM) and the inner boundary membrane (IBM)--under different physiological conditions. We found that under fermentable growth conditions, Oxa1 is enriched in the IBM, whereas under nonfermentable (respiratory) growth conditions, it is predominantly localized in the CM. The enrichment of Oxa1 in the CM requires mitochondrial translation; similarly, deletion of the ribosome-binding domain of Oxa1 prevents an enrichment of Oxa1 in the CM. The predominant localization in the IBM under fermentable growth conditions is prevented by inhibiting mitochondrial protein import. Furthermore, overexpression of the nuclear-encoded Oxa1 substrate Mdl1 shifts the distribution of Oxa1 toward the IBM. Apparently, the availability of nuclear- and mitochondrial-encoded substrates influences the inner-membrane distribution of Oxa1. Our findings show that the distribution of Oxa1 within the inner membrane is dynamic and adapts to different physiological needs.

  13. Is intraspecific variability of growth and mycotoxin production dependent on environmental conditions? A study with Aspergillus carbonarius isolates.

    PubMed

    Garcia, Daiana; Ramos, Antonio J; Sanchis, Vicente; Marín, Sonia

    2011-01-05

    The aim of this study was to assess the impact of suboptimal environmental conditions on the intraspecific variability of A. carbonarius growth and OTA production using thirty isolates of A. carbonarius. Three a(w)/temperature conditions were tested, one optimal (0.98a(w)/25°C) and two suboptimal: 0.90a(w)/25°C and 0.98a(w)/37°C as suboptimal water activity and temperature, respectively, which might take place through over ripening and dehydration of grapes. For each condition, 12 Petri dishes were inoculated, and colony growth and OTA production were measured over time. ANOVA revealed significant differences among μ and λ within the 30 assayed isolates. Coefficients of variation (CV%) revealed a wider dispersion of growth rates at 0.90a(w)/25°C compared to 0.98a(w)/25°C, and a more than 4-fold higher CV at 0.98a(w)/37°C compared to 0.98a(w)/25°C. However, dispersion of lag phases was similar at 0.98a(w)/25°C and 0.90a(w)/25°C and wider at 0.98a(w)/37°C. There were significant differences (p<0.05) among OTA levels (ng/mm(2)) for the different conditions, values being lower under marginal conditions, and particularly at 0.98a(w)/37°C. Coefficients of variation (CV%) revealed a wider dispersion of OTA production at 0.90a(w)/25°C compared to 0.98a(w)/25°C, while CV at 0.98a(w)/37°C was similar to that at 0.98a(w)/25°C. In order to address the strain variability in growth initiation and prove the well-established notion of reducing OTA in foods by preventing fungal growth, a greater number of strains should be included when developing models for conditions that are suboptimal both for a(w) for OTA production and temperature levels for growth.

  14. [Growth patterns of Leymus chinensis clones under different habitat conditions in Songnen Plain of China].

    PubMed

    Yang, Yunfei; Zhang, Baotian

    2006-08-01

    A tracking investigation was conducted in the Songnen Plain of China on the experimental clones of Leymus chinensis under cultivation, and the natural clones of this grass in the succession process of vegetation restoration after meadow flooding. The results showed that on aeolian sandy soil where existed enough growth space but no interspecific competition, there was a month interval between the transplanting of two experimental clones, and the sizes of these clones had a one-fold difference by the end of next growth season. During the whole growth season, the vegetative reproduction of the two experimental clones followed the same exponential pattern. After 6 years restoration succession on flooded meadow, the vegetative reproduction of clonal populations in L. chinensis + Carex duriuscula and L. chinensis + weed communities were all accorded with power function. On flooded alkaline meadow where existed interspecific competition, the natural clones could still increase their offspring numbers exponentially, and quickly expand their niche space at the same time.

  15. Defects in silicon effect on device performance and relationship to crystal growth conditions

    NASA Technical Reports Server (NTRS)

    Jastrzebski, L.

    1985-01-01

    A relationship between material defects in silicon and the performance of electronic devices will be described. A role which oxygen and carbon in silicon play during the defects generation process will be discussed. The electronic properties of silicon are a strong function of the oxygen state in the silicon. This state controls mechanical properties of silicon efficiency for internal gettering and formation of defects in the device's active area. In addition, to temperature, time, ambience, and the cooling/heating rates of high temperature treatments, the oxygen state is a function of the crystal growth process. The incorporation of carbon and oxygen into silicon crystal is controlled by geometry and rotation rates applied to crystal and crucible during crystal growths. Also, formation of nucleation centers for oxygen precipitation is influenced by the growth process, although there is still a controversy which parameters play a major role. All these factors will be reviewed with special emphasis on areas which are still ambiguous and controversial.

  16. Shape control from thermodynamic growth conditions: the case of hcp ruthenium hourglass nanocrystals.

    PubMed

    Watt, John; Yu, Chenlong; Chang, Shery L Y; Cheong, Soshan; Tilley, Richard D

    2013-01-16

    Recent successes in forming different shaped face centered cubic (fcc) metal nanostructures has enabled a greater understanding of nanocrystal growth mechanisms. Here we extend this understanding to the synthesis of hexagonally close packed (hcp) metal nanostructures, to form uniquely faceted ruthenium nanocrystals with a well-defined hourglass shape. The hourglass nanocrystals are formed in a three-step thermodynamic growth process with dodecylamine as the organic stabilizer. The hourglass nanocrystals are then shown to readily self-assemble to form a new type of nanocrystal superlattice.

  17. How People Actually Use Thermostats

    SciTech Connect

    Meier, Alan; Aragon, Cecilia; Hurwitz, Becky; Mujumdar, Dhawal; Peffer, Therese; Perry, Daniel; Pritoni, Marco

    2010-08-15

    Residential thermostats have been a key element in controlling heating and cooling systems for over sixty years. However, today's modern programmable thermostats (PTs) are complicated and difficult for users to understand, leading to errors in operation and wasted energy. Four separate tests of usability were conducted in preparation for a larger study. These tests included personal interviews, an on-line survey, photographing actual thermostat settings, and measurements of ability to accomplish four tasks related to effective use of a PT. The interviews revealed that many occupants used the PT as an on-off switch and most demonstrated little knowledge of how to operate it. The on-line survey found that 89% of the respondents rarely or never used the PT to set a weekday or weekend program. The photographic survey (in low income homes) found that only 30% of the PTs were actually programmed. In the usability test, we found that we could quantify the difference in usability of two PTs as measured in time to accomplish tasks. Users accomplished the tasks in consistently shorter times with the touchscreen unit than with buttons. None of these studies are representative of the entire population of users but, together, they illustrate the importance of improving user interfaces in PTs.

  18. Experimental evidence for growth advantage and metabolic shift stimulated by photophosphorylation of proteorhodopsin expressed in Escherichia coli at anaerobic condition.

    PubMed

    Wang, Ying; Li, Yan; Xu, Tuan; Shi, Zhenyu; Wu, Qiong

    2015-05-01

    Since solar light energy is the source of all renewable biological energy, the direct usage of light energy by bacterial cell factory has been a very attractive concept, especially using light energy to promote anaerobic fermentation growth and even recycle low-energy carbon source when energy is the limiting factor. Proteorhodopsin(PR), a light-driven proton pump proven to couple with ATP synthesis when expressed heterogeneously, is an interesting and simple option to enable light usage in engineered strains. However, although it was reported to influence fermentation in some cases, heterogeneous proteorhodopsin expression was never shown to support growth advantage or cause metabolic shift by photophosphorylation so far. Hereby, we presented the first experimental evidence that heterogeneously expressed proteorhodopsin can provide growth advantage and cause ATP-dependent metabolism shift of acetate and lactate changes in Escherichia coli at anaerobic condition. Those discoveries suggest further application potential of PR in anaerobic fermentation where energy is a limiting factor.

  19. Effects of selenium supplemented diets on growth and condition indexes in juvenile red swamp crayfish, Procambarus clarkii.

    PubMed

    Dörr, Ambrosius Josef Martin; Abete, Maria Cesarina; Prearo, Marino; Pacini, Nicole; La Porta, Gianandrea; Natali, Mauro; Elia, Antonia Concetta

    2013-09-01

    Effects of selenium diets (Se, 0.3 and 1.2mgkg(-1)) on juvenile red swamp crayfish Procambarus clarkii were observed for eight weeks. Growth, condition factors and Se levels in exoskeleton and hepatopancreas for both sexes and diets were evaluated at three endpoints. The specific growth rate (SGR) showed a faster, but not statistically significant growth in Se exposed specimens. Se levels were higher in exoskeleton and hepatopancreas of both Se exposed males and females, when compared to controls. The abdomen-total weight relationship (Tw/B) showed no significant differences between Se exposed and control groups. A constant decline of HI values was recorded in both Se exposed sexes and the same trend was observed in control males. Se exposed females evidenced lower HI after 4 and 8 weeks when compared to controls. Therefore, evident reductions of the health indicator values HI suggested that selenium can deplete the hepatopancreas energy reserves, mainly in juvenile male crayfish.

  20. Life histories have a history: effects of past and present conditions on adult somatic growth rates in wild Trinidadian guppies.

    PubMed

    Auer, Sonya K; Lopez-Sepulcre, Andrés; Heatherly, Thomas; Kohler, Tyler J; Bassar, Ronald D; Thomas, Steven A; Reznick, David N

    2012-07-01

    1. Environmental conditions in the present, more recent past and during the juvenile stage can have significant effects on adult performance and population dynamics, but their relative importance and potential interactions remain unexplored. 2. We examined the influence of food availability at the time of sampling, 2 months prior and during the juvenile stage on adult somatic growth rates in wild Trinidadian guppies (Poecilia reticulata). 3. We found that food availability during both the early and later parts of an individual's ontogeny had important consequences for adult growth strategies, but the direction of these effects differed among life stages and their magnitude, in some cases, depended on food levels experienced during other life stages. Current food levels and those 2 months prior to growth measurements had positive effects on adult growth rate; though, food levels 2 months prior had a greater effect on growth than current food levels. In contrast, the effects of food availability during the juvenile stage were higher in magnitude but opposite in direction to current food levels and those 2 months prior to growth rate measurements. Individuals recruiting under low food levels grew faster as adults than individuals recruiting during periods of high food availability. There was also a positive interaction between food levels experienced during the juvenile stage and 2 months prior such that the effects of juvenile food level diminished as the food level experienced 2 months prior increased. 4. These results suggest that the similar conditions occurring at different life stages can have different effects on short- and long-term growth strategies of individuals within a population. They also demonstrate that, while juvenile conditions can have lasting effects on adult performance, the strength of that effect can be dampened by environmental conditions experienced as an adult. 5. A simultaneous consideration of past events in both the

  1. Using Nitrogen Limiting Growth Conditions to Remove Atrazine from Groundwater: Laboratory Studies

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the past microbial redox reactions have been the driving mechanism behind in situ bioremediations that use a carbon substrate. This is because subsurface microbial activity is generally restricted by electron (e-) donor availability and microbial activity, growth and respiration, can be stimulat...

  2. Using N-Limiting Growth Conditions to Remove Atrazine from Groundwater: Laboratory Studies.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Typically, respiratory redox reactions are the driving mechanism behind in situ bioremediations that use a carbon substrate. This is because electron (e-) donor availability generally restricts subsurface microbial activity. Thus, microbial growth and respiration can be greatly stimulated by the a...

  3. Influence of free forging conditions on austenitic grain growth in constructional steel

    NASA Astrophysics Data System (ADS)

    Zagulyaeva, S. V.; Potanina, V. S.; Vinograd, M. I.

    1984-02-01

    The initial period of austenitic grain growth in heating of a hot forged billet of 50G-SSh steel and of forgings after free forging is characterized by the formation of a mixed grain structure of No. 8 fine grains and No. 3-0 coarse.

  4. Factors affecting growth and survival of the asiatic clam Corbicula sp. under controlled laboratory conditions

    SciTech Connect

    Double, D.D.; Daly, D.S.; Abernethy, C.S.

    1983-04-01

    Growth of Corbicula sp. was determined in relation to food supply, water temperature, and clam size as an aid to researchers conducting chronic effects toxicity studies. Water temperatures for the two 84-day test series were 10, 20, and 30/sup 0/C. Linear models provided good relationships (r/sup 2/ > 0.90) between clam shell length (SL), total weight (TW), and wet/dry tissue weights. Clam growth was minimal during low phytoplankton densities (approx. 300 cells/ml), and all three size groups lost weight at 20 and 30/sup 0/C. Mortality of small clams at 30/sup 0/C was 100% after 71 days. At phytoplankton densities > 1000 cells/ml, overall differences in growth with respect to clam size and temperature were detectable at p < 0.01; growth of all clam groups was greatest at 30/sup 0/C. Small clams exhibited the greatest absolute increase in mean shell length at all test temperatures, and weight gains were similar to those of medium and large clams.

  5. Use of nonlinear models for describing scrotal circumference growth in Guzerat bulls raised under grazing conditions.

    PubMed

    Loaiza-Echeverri, A M; Bergmann, J A G; Toral, F L B; Osorio, J P; Carmo, A S; Mendonça, L F; Moustacas, V S; Henry, M

    2013-03-15

    The objective was to use various nonlinear models to describe scrotal circumference (SC) growth in Guzerat bulls on three farms in the state of Minas Gerais, Brazil. The nonlinear models were: Brody, Logistic, Gompertz, Richards, Von Bertalanffy, and Tanaka, where parameter A is the estimated testis size at maturity, B is the integration constant, k is a maturating index and, for the Richards and Tanaka models, m determines the inflection point. In Tanaka, A is an indefinite size of the testis, and B and k adjust the shape and inclination of the curve. A total of 7410 SC records were obtained every 3 months from 1034 bulls with ages varying between 2 and 69 months (<240 days of age = 159; 241-365 days = 451; 366-550 days = 1443; 551-730 days = 1705; and >731 days = 3652 SC measurements). Goodness of fit was evaluated by coefficients of determination (R(2)), error sum of squares, average prediction error (APE), and mean absolute deviation. The Richards model did not reach the convergence criterion. The R(2) were similar for all models (0.68-0.69). The error sum of squares was lowest for the Tanaka model. All models fit the SC data poorly in the early and late periods. Logistic was the model which best estimated SC in the early phase (based on APE and mean absolute deviation). The Tanaka and Logistic models had the lowest APE between 300 and 1600 days of age. The Logistic model was chosen for analysis of the environmental influence on parameters A and k. Based on absolute growth rate, SC increased from 0.019 cm/d, peaking at 0.025 cm/d between 318 and 435 days of age. Farm, year, and season of birth significantly affected size of adult SC and SC growth rate. An increase in SC adult size (parameter A) was accompanied by decreased SC growth rate (parameter k). In conclusion, SC growth in Guzerat bulls was characterized by an accelerated growth phase, followed by decreased growth; this was best represented by the Logistic model. The inflection point occurred at

  6. Impaired growth under iron-limiting conditions associated with the acquisition of colistin resistance in Acinetobacter baumannii.

    PubMed

    López-Rojas, Rafael; García-Quintanilla, Meritxell; Labrador-Herrera, Gema; Pachón, Jerónimo; McConnell, Michael J

    2016-06-01

    Acquisition of colistin resistance in Acinetobacter baumannii has been associated with reduced bacterial fitness and virulence, although the mechanisms underlying this fitness loss have not been well characterised. In this study, the role played by environmental iron levels on the growth and survival of colistin-resistant strains of A. baumannii was assessed. Growth assays with the colistin-susceptible ATCC 19606 strain and its colistin-resistant derivative RC64 [colistin minimum inhibitory concentration (MIC) of 64 mg/L] demonstrated that the strains grew similarly in rich laboratory medium (Mueller-Hinton broth), whereas RC64 demonstrated impaired growth compared with ATCC 19606 in human serum (>100-fold at 24 h). Compared with RC64, ATCC 19606 grew in the presence of higher concentrations of the iron-specific chelator 2,2'-bipyridine and grew more readily under iron-limiting conditions in solid and liquid media. In addition, iron supplementation of human serum increased the growth of RC64 compared with unsupplemented human serum to a greater extent than ATCC 19606. The ability of 11 colistin-resistant clinical isolates with mutations in the pmrB gene to grow in iron-replete and iron-limiting conditions was assessed, demonstrating that eight of the strains showed reduced growth under iron limitation. Individual mutations in the pmrB gene did not directly correlate with a decreased capacity for growth under iron limitation, suggesting that mutations in pmrB may not directly produce this phenotype. Together these results indicate that acquisition of colistin resistance in A. baumannii can be associated with a decreased ability to grow in low-iron environments.

  7. Growth of the calcium carbonate polymorph vaterite in mixtures of water and ethylene glycol at conditions of gas processing

    NASA Astrophysics Data System (ADS)

    Flaten, Ellen Marie; Seiersten, Marion; Andreassen, Jens-Petter

    2010-03-01

    Long subsea tie-ins for transportation of moist gas and condensate require corrosion and hydrate control. The combination of alkalinity for corrosion mitigation and monoethylene glycol (MEG) for hydrate inhibition strongly affects the tolerance for produced formation water. The elevated alkalinity downstream of the injection point increases the risk of carbonate formation. Calcium carbonate is the most common precipitate at such conditions. Our previous findings (Flaten et al., 2009) [1] show that MEG governs calcium carbonate precipitation and promotes formation of the metastable polymorph vaterite. This paper describes crystal growth of vaterite in mixed MEG water solvent with 0-70 wt% MEG at temperatures of 40 and 70 °C in solutions with high calcium to carbonate ratios representative of the production conditions. Results of some experiments in solutions with stoichiometric amounts of the reactants are included for comparison. The growth rate of vaterite can be described by second-order kinetics in most of the investigated supersaturation range. The growth order is lower at high MEG contents and high calcium concentrations when the carbonate activity is reduced in order to maintain comparable supersaturation values. It is then probable that the low carbonate activity makes the reaction diffusion limited. MEG reduces the growth rate constant of vaterite when the reaction is second order. Increasing the MEG concentration from 0 to 50 wt%, decreases the growth rate constant kr from 1.9 to 0.7 nm/s at 40 °C and from 2.6 to 1.2 nm/s at 70 °C. The growth reduction can be explained by a change of either de-hydration or diffusion rate along the surface when the ions are incorporated into the crystal lattice. Further investigations into which of the two mechanisms that is rate determining is outside the scope of this work.

  8. Non-limiting food conditions for growth and production of the copepod community in a highly productive upwelling zone

    NASA Astrophysics Data System (ADS)

    Escribano, Rubén; Bustos-Ríos, Evelyn; Hidalgo, Pamela; Morales, Carmen E.

    2016-09-01

    Zooplankton production is critical for understanding marine ecosystem dynamics. This work estimates copepod growth and production in the coastal upwelling and coastal transition zones off central-southern Chile (~35 to 37°S) during a 3-year time series (2004, 2005, and 2006) at a fixed shelf station, and from spring-summer spatial surveys during the same period. To estimate copepod production (CP), we used species-biomasses and associated C-specific growth rates from temperature dependent equations (food-saturated) for the dominant species, which we assumed were maximal growth rates (gmax). Using chlorophyll-a concentrations as a proxy for food conditions, we determined a size-dependent half-saturation constant with the Michaelis-Menten equation to derive growth rates (g) under the effect of food limitation. These food-dependent C-specific growth rates were much lower (<0.1 d-1) than those observed in the field for the dominant species, while gmax for same species, in the range of 0.19-0.23 d-1 better represented the necessary growth to attain observed adult sizes of at least two copepods, Paracalanus cf. indicus and Calanus chilensis. Copepod biomass (CB) and rates of maximal copepod production (CPmax) obtained with gmax were higher in the coastal upwelling zone (<50 km from shore), and correlated significantly to oceanographic variables associated with upwelling conditions. Both CPmax and gmax exhibited negative trends at the fixed station from 2004 to 2006 in association with increased duration of upwelling in the latter year. Annual CPmax ranged between 24 and 52 g C m-2 y-1 with a mean annual P/B ratio of 7.3. We concluded that interannual variation in copepod production resulted from factors and processes regulating copepod abundance and biomass in the absence of bottom-up control, allowing copepods to grow without limitation due to food resources.

  9. Candida-streptococcal mucosal biofilms display distinct structural and virulence characteristics depending on growth conditions and hyphal morphotypes.

    PubMed

    Bertolini, M M; Xu, H; Sobue, T; Nobile, C J; Del Bel Cury, A A; Dongari-Bagtzoglou, A

    2015-08-01

    Candida albicans and streptococci of the mitis group form communities in multiple oral sites, where moisture and nutrient availability can change spatially or temporally. This study evaluated structural and virulence characteristics of Candida-streptococcal biofilms formed on moist or semidry mucosal surfaces, and tested the effects of nutrient availability and hyphal morphotype on dual-species biofilms. Three-dimensional models of the oral mucosa formed by immortalized keratinocytes on a fibroblast-embedded collagenous matrix were used. Infections were carried out using Streptococcus oralis strain 34, in combination with a C. albicans wild-type strain, or pseudohyphal-forming mutant strains. Increased moisture promoted a homogeneous surface biofilm by C. albicans. Dual biofilms had a stratified structure, with streptococci growing in close contact with the mucosa and fungi growing on the bacterial surface. Under semidry conditions, Candida formed localized foci of dense growth, which promoted focal growth of streptococci in mixed biofilms. Candida biofilm biovolume was greater under moist conditions, albeit with minimal tissue invasion, compared with semidry conditions. Supplementing the infection medium with nutrients under semidry conditions intensified growth, biofilm biovolume and tissue invasion/damage, without changing biofilm structure. Under these conditions, the pseudohyphal mutants and S. oralis formed defective superficial biofilms, with most bacteria in contact with the epithelial surface, below a pseudohyphal mass, resembling biofilms growing in a moist environment. The presence of S. oralis promoted fungal invasion and tissue damage under all conditions. We conclude that moisture, nutrient availability, hyphal morphotype and the presence of commensal bacteria influence the architecture and virulence characteristics of mucosal fungal biofilms.

  10. Biogenic Growth of Alloys and Core-Shell Nanostructures Using Urease as a Nanoreactor at Ambient Conditions

    PubMed Central

    Sharma, Bhagwati; Mandani, Sonam; Sarma, Tridib K.

    2013-01-01

    Biomineralization is an extremely efficient biologically guided process towards the advancement of nano-bio integrated materials. As a prime module of the natural world, enzymes are expected to play a major role in biogenic growth of inorganic nanostructures. Although there have been developments in designing enzyme-responsive nanoparticle systems or generation of inorganic nanostructures in an enzyme-stimulated environment, reports regarding action of enzymes as reducing agents themselves for the growth of inorganic nanoparticles still remains elusive. Here we present a mechanistic investigation towards the synthesis of metal and metallic alloy nanoparticles using a commonly investigated enzyme, Jack bean urease (JBU), as a reducing as well as stabilizing agent under physiological conditions. The catalytic functionality of urease was taken advantage of towards the development of metal-ZnO core-shell nanocomposites, making urease an ideal bionanoreactor for synthesizing higher order nanostructures such as alloys and core- shell under ambient conditions. PMID:24018831

  11. Media Compositions for Three Dimensional Mammalian Tissue Growth Under Microgravity Culture Conditions

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor)

    1998-01-01

    Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue. The cells are grown in vitro under microgravity culture conditions and form three dimensional cells aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.

  12. Media Compositions for Three-Dimensional Mammalian Tissue Growth under Microgravity Culture Conditions

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor)

    1998-01-01

    Normal mammalian tissue and the culturing process has been developed for the three groups of organ, structural and blood tissue.The cells are grown in vitro under microgravity culture conditions and form three dimensional cells aggregates with normal cell function. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.

  13. When bigger is not better: selection against large size, high condition and fast growth in juvenile lemon sharks.

    PubMed

    Dibattista, J D; Feldheim, K A; Gruber, S H; Hendry, A P

    2007-01-01

    Selection acting on large marine vertebrates may be qualitatively different from that acting on terrestrial or freshwater organisms, but logistical constraints have thus far precluded selection estimates for the former. We overcame these constraints by exhaustively sampling and repeatedly recapturing individuals in six cohorts of juvenile lemon sharks (450 age-0 and 255 age-1 fish) at an enclosed nursery site (Bimini, Bahamas). Data on individual size, condition factor, growth rate and inter-annual survival were used to test the 'bigger is better', 'fatter is better' and 'faster is better' hypotheses of life-history theory. For age-0 sharks, selection on all measured traits was weak, and generally acted against large size and high condition. For age-1 sharks, selection was much stronger, and consistently acted against large size and fast growth. These results suggest that selective pressures at Bimini may be constraining the evolution of large size and fast growth, an observation that fits well with the observed small size and low growth rate of juveniles at this site. Our results support those of some other recent studies in suggesting that bigger/fatter/faster is not always better, and may often be worse.

  14. Growth, condition factor, and bioenergetics modeling link warmer stream temperatures below a small dam to reduced performance of juvenile steelhead

    USGS Publications Warehouse

    Sauter, S.T.; Connolly, P.J.

    2010-01-01

    We investigated the growth and feeding performance of juvenile steelhead Oncorhynchus mykiss using field measures and bioenergetics modeling. Juvenile steelhead populations were sampled from mid-June through August 2004 at study sites upstream and downstream of Hemlock Dam. The growth and diet of juvenile steelhead were determined for a warm (summer) and subsequent (late summer) transitional period at each study site. Empirical data on the growth and diet of juvenile steelhead and mean daily temperatures were used in a bioenergetics model to estimate the proportion of maximum consumption achieved by juvenile steelhead by site and period. Modeled estimates of feeding performance were better for juvenile steelhead at the upstream compared to the downstream site during both periods. The median condition factor of juvenile steelhead did not change over the summer at the upstream site, but showed a significant decline over time at the downstream site. A negative trend in median condition factor at the downstream site supported bioenergetics modeling results that suggested the warmer stream temperatures had a negative impact on juvenile steelhead. Bioenergetics modeling predicted a lower feeding performance for juvenile steelhead rearing downstream compared to upstream of Hemlock Dam although food availability appeared to be limited at both study sites during the warm period. Warmer water temperatures, greater diel variation, and change in diel pattern likely led to the reduced feeding performance and reduced growth, which could have affected the overall survival of juvenile steelhead downstream of Hemlock Dam. ?? 2010 by the Northwest Scientific Association.

  15. Transcriptomic, proteomic and metabolomic analysis of maize responses to UV-B: comparison of greenhouse and field growth conditions.

    PubMed

    Casati, Paula; Campi, Mabel; Morrow, Darren J; Fernandes, John; Walbot, Virginia

    2011-08-01

    UV-B radiation from normal solar fluence elicits physiological and developmental changes in plants under fluctuating environmental conditions. Most UV photobiology studies in plants utilize controlled greenhouse and growth chamber environments in which few conditions vary except the brief presence of UV-B radiation. Our purpose was to compare responses to UV-B in irradiated and shielded maize organs in field (natural solar plus 2x solar supplementation for defined periods) and greenhouse (2x solar supplementation only) conditions during a 4 hour exposure. Three parameters were assessed--transcripts, proteins, and metabolites--to determine the degree of overlap in maize responses in field and greenhouse conditions. We assessed irradiated leaves, and both shielded leaves and immature ears. After comparing transcriptome, proteome and metabolome profiles, we find there are more differences than similarities between field and greenhouse responses.

  16. Growth and formation of the foreleg skeleton inbred mice and rats under conditions of hypo-, normo- and hyperdynamia

    NASA Technical Reports Server (NTRS)

    Kogan, B. I.; Antipov, Y. S.

    1980-01-01

    Inbred 1 month old males of C57B 1/6, CBA, CC57Br/Mw interlinear hybrid mice of the first generation and rats of the August and Wistar lines were subjected to conditions of hypo-, normo- and hyperdynamia for 2 months. The statistically reliable dependence is shown between mechanical underloadings and overloadings and macro microscopic changes in the hind limb skeleton of animals. Genetic determination of growth and formation of the forelimb skeleton is established. Hereditary susceptibility and the phenomenon of heterosis are preserved under all motor conditions.

  17. Treatment of “Bacterial Cystitis” in Fully Automatic Mechanical Models Simulating Conditions of Bacterial Growth in the Urinary Bladder

    PubMed Central

    O'Grady, F.; Mackintosh, I. P.; Greenwood, D.; Watson, B. W.

    1973-01-01

    Two fully automatic models are described in which growing cultures can be continuously diluted and periodically discharged producing conditions of growth resembling those of the infected urinary bladder. Both models generate a continuous record of the opacity of the growing culture and the second model also generates a record of the Eh. The effect of adding ampicillin to a sensitive strain of Escherichia coli growing in these conditions is described and the relation of the results to human therapy is discussed. ImagesFig. 1 PMID:4577943

  18. Crack growth behavior under creep-fatigue conditions using compact and double edge notch tension-compression specimens

    NASA Astrophysics Data System (ADS)

    Narasimha Chary, Santosh Balaji

    The American Society for Testing and Materials (ASTM) has recently developed a new standard for creep-fatigue crack growth testing, E 2760-10, that supports testing compact specimens, C(T), under load controlled conditions. C(T) specimens are commonly used for fatigue and creep-fatigue crack growth testing under constant-load-amplitude conditions. The use of these specimens is limited to positive load ratios. They are also limited in the amount of crack growth data that can be developed at high stress intensity values due to accumulation of plastic and/or creep strains leading to ratcheting in the specimen. Testing under displacement control can potentially address these shortcomings of the load-controlled tests for which the C(T) geometry is unsuitable. A double edge notch tension-compression, DEN(T-C), specimen to perform displacement controlled creep-fatigue crack growth testing is developed and optimized with the help of finite element and boundary element analyses. Accurate expressions for estimating the fracture mechanics crack tip parameters such as the stress intensity parameter, K, the crack mouth opening displacement (CMOD), and the load-line displacement (LLD) are developed over a wide range of crack sizes for the DEN(T-C) specimen. A new compliance relationship for use in experimental testing has been developed by using the compliance form available in ASTM E-647 standard. Experimentally determined compliance value compared well with the new relation for C15 steel (AISI 1015) and P91 steel tested at room and elevated temperature conditions respectively. Fatigue crack growth rate data generated using the DEN(T-C) specimens on the two metallic materials are in good agreement with the data generated using standard compact specimens; thus validating the stress-intensity factor and the compliance equation for the double edge notch tension-compression specimen. The testing has shown that the DEN(T-C) specimen is prone to crack asymmetry issues. Through

  19. High Temperature Slow Crack Growth of Si3N4 Specimens Subjected to Uniaxial and Biaxial Dynamic Fatigue Loading Conditions

    NASA Technical Reports Server (NTRS)

    Choi, Sung R.; Nemeth, Noel N.; Salem, Jonathan A.; Powers, Lynn M.; Gyekenyesi, John P.

    1995-01-01

    The slow crack growth of a hot-pressed silicon nitride was determined at 1300 C in air using dynamic fatigue testing under both uniaxial and biaxial stress states. Good agreement in fatigue parameter exists between the data obtained from uniaxial and biaxial loading conditions. A reasonable prediction of dynamic fatigue from one stress state to another was made using the recently developed CARES/LIFE computer code.

  20. A novel liquid medium for the efficient growth of the salmonid pathogen Piscirickettsia salmonis and optimization of culture conditions.

    PubMed

    Henríquez, Mirtha; González, Ernesto; Marshall, Sergio H; Henríquez, Vitalia; Gómez, Fernando A; Martínez, Irene; Altamirano, Claudia

    2013-01-01

    Piscirickettsia salmonis is the bacterium that causes Piscirickettsiosis, a systemic disease of salmonid fish responsible for significant economic losses within the aquaculture industry worldwide. The growth of the bacterium for vaccine formulation has been traditionally accomplished by infecting eukaryotic cell lines, a process that involves high production costs and is time-consuming. Recent research has demonstrated that it is possible to culture pure P. salmonis in a blood containing (cell-free) medium. In the present work we demonstrate the growth of P. salmonis in a liquid medium free from blood and serum components, thus establishing a novel and simplified bacteriological medium. Additionally, the new media reported provides improved growth conditions for P. salmonis, where biomass concentrations of approximately 800 mg cell dry weight L(-1) were obtained, about eight times higher than those reported for the blood containing medium. A 2- level full factorial design was employed to evaluate the significance of the main medium components on cell growth and an optimal temperature range of 23-27°C was determined for the microorganism to grow in the novel liquid media. Therefore, these results represent a breakthrough regarding P. salmonis research in order to optimize pure P. salmonis growth in liquid blood and serum free medium.

  1. Effect of Commercial Cyanobacteria Products on the Growth and Antagonistic Ability of Some Bioagents under Laboratory Conditions

    PubMed Central

    El-Mougy, Nehal S.; Abdel-Kader, Mokhtar M.

    2013-01-01

    Evaluation of the efficacy of blue-green algal compounds against the growth of either pathogenic or antagonistic microorganisms as well as their effect on the antagonistic ability of bioagents was studied under in vitro conditions. The present study was undertaken to explore the inhibitory effect of commercial algal compounds, Weed-Max and Oligo-Mix, against some soil-borne pathogens. In growth medium supplemented with these algal compounds, the linear growth of pathogenic fungi decreased by increasing tested concentrations of the two algal compounds. Complete reduction in pathogenic fungal growth was observed at 2% of both Weed-Max and Oligo-Mix. Gradual significant reduction in the pathogenic fungal growth was caused by the two bioagents and by increasing the concentrations of algal compounds Weed-Max and Oligo-Mix. The present work showed that commercial algal compounds, Weed-Max and Oligo-Mix, have potential for the suppression of soil-borne fungi and enhance the antagonistic ability of fungal, bacterial, and yeast bio-agents. PMID:24307948

  2. Dwarf and tiller-enhancing 1 regulates growth and development by influencing boron uptake in boron limited conditions in rice.

    PubMed

    Liu, Kai; Liu, Ling-Long; Ren, Yu-Long; Wang, Zhi-Quan; Zhou, Kun-Neng; Liu, Xi; Wang, Dan; Zheng, Ming; Cheng, Zhi-Jun; Lin, Qi-Bing; Wang, Jiu-Lin; Wu, Fu-Qing; Zhang, Xin; Guo, Xiu-Ping; Wang, Chun-Ming; Zhai, Hu-Qu; Jiang, Ling; Wan, Jian-Min

    2015-07-01

    Boron (B) is essential for plant growth, and B deficiency causes severe losses in crop yield. Here we isolated and characterized a rice (Oryza sativa L.) mutant named dwarf and tiller-enhancing 1 (dte1), which exhibits defects under low-B conditions, including retarded growth, increased number of tillers and impaired pollen fertility. Map-based cloning revealed that dte1 encodes a NOD26-LIKE INTRINSIC PROTEIN orthologous to known B channel proteins AtNIP5;1 in Arabidopsis and TASSEL-LESS1 in maize. Its identity was verified by transgenic complementation and RNA-interference. Subcellular localization showed DTE1 is mainly localized in the plasma membrane. The accumulation of DTE1 transcripts both in roots and shoots significantly increased within 3h of the onset of B starvation, but decreased within 1h of B replenishment. GUS staining indicated that DTE1s are expressed abundantly in exodermal cells in roots, as well as in nodal region of adult leaves. Although the dte1 mutation apparently reduces the total B content in plants, it does not affect in vivo B concentrations under B-deficient conditions. These data provide evidence that DTE1 is critical for vegetative growth and reproductive development in rice grown under B-deficient conditions.

  3. Effect of cinnamaldehyde on hyphal growth of C. albicans under various treatment conditions.

    PubMed

    Taguchi, Yuuki; Hasumi, Yayoi; Hayama, Kazumi; Arai, Ryo; Nishiyama, Yayoi; Abe, Shigeru

    2012-01-01

    This study investigated the effects of cinnamaldehyde in combatting the hyphal growth of Candida albicans under varying concentrations, treatment times, and temperatures to determine the potential benefits of applying this substance to anti-Candida foods or gargles. From the results of pretreatment with cinnamaldehyde against Candida hyphae, we found that its inhibitory activity seemed to be strengthened in parallel with prolonged pretreatment time and a rise in temperature, and that pretreatment of 2,000 μg/ml for only 1 minute significantly inhibited the hyphal growth of C. albicans. We also demonstrated by XTT assay that pretreatment with cinnamaldehyde affected the metabolic activity of Candida hyphal cells. These findings suggest that a warm drink or mouthwash containing cinnamaldehyde might be a candidate as a prophylactic or therapeutic tool against oral Candida infection.

  4. Multi-wavelength resonance Raman spectroscopy of bacteria to study the effects of growth condition

    NASA Astrophysics Data System (ADS)

    Kunapareddy, Nagapratima; Grun, Jacob; Lunsford, Robert; Gillis, David; Nikitin, Sergei; Wang, Zheng

    2012-06-01

    We will examine the use of multi-wavelength UV resonance-Raman signatures to identify the effects of growth phase on different types of bacteria. Gram positive and gram-negative species, Escherichia coli, Bacillus cereus, Citrobacter koseri and Citrobacter braakii were grown to logarithmic and stationary phases in different culture media. Raman spectra of bacteria were obtained by sequential illumination of samples between 220 and 260 nm; a range which encompasses the resonance frequencies of cellular components. In addition to the information contained in the single spectrum, this two-dimensional signature contains information reflecting variations in resonance cross sections with illumination wavelength. Results of our algorithms in identifying the differences between these germs are discussed. Preliminary results indicate that growth affects the Raman signature, but not to an extent that would negate identification of the species.

  5. Growth and decay of runaway electrons above the critical electric field under quiescent conditions

    SciTech Connect

    Paz-Soldan, C.; Eidietis, N. W.; Wesley, J. C.; Granetz, R.; Hollmann, E. M.; Moyer, R. A.; Zhang, J.; Crocker, N. A.; Austin, M. E.; Wingen, A.; Zhu, Y.

    2014-02-15

    Extremely low density operation free of error field penetration supports the excitation of trace-level quiescent runaway electron (RE) populations during the flat-top of DIII-D Ohmic discharges. Operation in the quiescent regime allows accurate measurement of all key parameters important to RE excitation, including the internal broadband magnetic fluctuation level. RE onset is characterized and found to be consistent with primary (Dreicer) generation rates. Impurity-free collisional suppression of the RE population is investigated by stepping the late-time main-ion density, until RE decay is observed. The transition from growth to decay is found to occur 3–5 times above the theoretical critical electric field for avalanche growth and is thus indicative of anomalous RE loss. This suggests that suppression of tokamak RE avalanches can be achieved at lower density than previously expected, though extrapolation requires predictive understanding of the RE loss mechanism and magnitude.

  6. Blow-up properties in the parabolic problems with anisotropic nonstandard growth conditions

    NASA Astrophysics Data System (ADS)

    Liu, Bingchen; Yang, Jie

    2016-03-01

    In this paper, we study the parabolic problems with anisotropic nonstandard growth nonlinearities. We first give the existence and uniqueness of weak solutions in variable Sobolev spaces. Second, we use the energy methods to show the existence of blow-up solutions with negative or positive initial energy, respectively. Both the variable exponents and the coefficients make important roles in Fujita blow-up phenomena. Moreover, asymptotic properties of the blow-up solutions are determined.

  7. Persian sturgeon insulin-like growth factor I: molecular cloning and expression during various nutritional conditions.

    PubMed

    Yarmohammadi, Mahtab; Pourkazemi, Mohammad; Kazemi, Rezvanollah; Hallajian, Ali; Soltanloo, Hassan; Hassanzadeh Saber, Mohammad; Abbasalizadeh, Alireza

    2014-05-01

    The effects of different periods of starvation (1, 2, 3, and 4 weeks) and subsequent re-feeding (over a 4 week) on the compensatory growth performance and insulin-like growth factor I (IGF-I) mRNA expression in liver and white muscle were investigated in juvenile Persian sturgeon (Acipenser persicus). First, a fragment of 617 nucleotides coding for IGF-I was cloned from liver, which included an open reading frame of 486 nucleotides, encoding a 162 amino acid preproIGF-I. This is composed of a 45 aa for signal peptide, a 117 aa for the mature peptide comprising the B, C, A, and D domains, and a 47 aa for E domain. The mature Persian sturgeon IGF-I exhibits high sequence identities with other sturgeon species and teleost, ranging between 68 and 95 %. The pattern of IGF-I mRNA expression in the liver and white muscle was measured in response to different periods of starvation and subsequent re-feeding. Nutritional status influenced IGF-I mRNA expression pattern in both liver and muscle. IGF-I mRNA expression in the liver increased during starvation, before decreasing after re-feeding. Furthermore, white muscle IGF-I mRNA expression showed better responses to nutritional status and decreased following starvation and increased by re-feeding. However, changes in the expression of IGF-I mRNA were not significantly different between any of the treatments in both tissues. These data suggest that muscle and liver IGF-I mRNA expression do not have a regulatory role for somatic growth induced by compensatory growth in Persain sturgeon.

  8. Complementarity effects on tree growth are contingent on tree size and climatic conditions across Europe.

    PubMed

    Madrigal-González, Jaime; Ruiz-Benito, Paloma; Ratcliffe, Sophia; Calatayud, Joaquín; Kändler, Gerald; Lehtonen, Aleksi; Dahlgren, Jonas; Wirth, Christian; Zavala, Miguel A

    2016-08-30

    Neglecting tree size and stand structure dynamics might bias the interpretation of the diversity-productivity relationship in forests. Here we show evidence that complementarity is contingent on tree size across large-scale climatic gradients in Europe. We compiled growth data of the 14 most dominant tree species in 32,628 permanent plots covering boreal, temperate and Mediterranean forest biomes. Niche complementarity is expected to result in significant growth increments of trees surrounded by a larger proportion of functionally dissimilar neighbours. Functional dissimilarity at the tree level was assessed using four functional types: i.e. broad-leaved deciduous, broad-leaved evergreen, needle-leaved deciduous and needle-leaved evergreen. Using Linear Mixed Models we show that, complementarity effects depend on tree size along an energy availability gradient across Europe. Specifically: (i) complementarity effects at low and intermediate positions of the gradient (coldest-temperate areas) were stronger for small than for large trees; (ii) in contrast, at the upper end of the gradient (warmer regions), complementarity is more widespread in larger than smaller trees, which in turn showed negative growth responses to increased functional dissimilarity. Our findings suggest that the outcome of species mixing on stand productivity might critically depend on individual size distribution structure along gradients of environmental variation.

  9. Selection of strain, growth conditions, and extraction procedures for optimum production of lactase from Kluyveromyces fragilis.

    PubMed

    Mahoney, R R; Nickerson, T A; Whitaker, J R

    1975-11-01

    Forty-one strains of Kluyveromyces fragilis (Jörgensen) van der Walt 1909 varied 60-fold in ability to produce lactase (beta-galactosidase). The four best strains were UCD No. 55-31 (Northern Regional Research Center NRRL Y-1196), UCD No. C21(-), UCD No. 72-297(-), and UCD No. 55-61 (NRRL Y-1109). Biosynthesis of lactase during the growth of K. fragilis strain UCD No. 55-61 was followed on both lactose and sweet whey media. Maximum enzyme yield was obtained at the beginning of the stationary phase of growth. Bets lactase yields from K. fragilis UCD No. 55-61 were obtained with 15% lactose and an aeration rate of at least .2 mmol oxygen/liter per min. Supplementary growth factors were unneccessary for good lactase yeilds when yeast was grown on whey media. Best extraction of lactase from fresh yeast cells was obtained by toluene autolysis (2% vol/vol) at 37 C in .1 M potassium phosphate buffer, pH 7.0, containing .1 mM manganese chloride and .5 mM magnesium sulfate. The enzyme was concentrated and purified partially by acetone precipitation. At least 95% of the enzyme activity of the concentrated solution was retained after storage for 7 days at 22 C, for 3 wk at 4 C, and for 6 wk at -20 C.

  10. Optimizing conditions for production of high levels of soluble recombinant human growth hormone using Taguchi method.

    PubMed

    Savari, Marzieh; Zarkesh Esfahani, Sayyed Hamid; Edalati, Masoud; Biria, Davoud

    2015-10-01

    Human growth hormone (hGH) is synthesized and stored by somatotroph cells of the anterior pituitary gland and can effect on body metabolism. This protein can be used to treat hGH deficiency, Prader-Willi syndrome and Turner syndrome. The limitations in current technology for soluble recombinant protein production, such as inclusion body formation, decrease its usage for therapeutic purposes. To achieve high levels of soluble form of recombinant human growth hormone (rhGH) we used suitable host strain, appropriate induction temperature, induction time and culture media composition. For this purpose, 32 experiments were designed using Taguchi method and the levels of produced proteins in all 32 experiments were evaluated primarily by ELISA and dot blotting and finally the purified rhGH protein products assessed by SDS-PAGE and Western blotting techniques. Our results indicate that media, bacterial strains, temperature and induction time have significant effects on the production of rhGH. The low cultivation temperature of 25°C, TB media (with 3% ethanol and 0.6M glycerol), Origami strain and a 10-h induction time increased the solubility of human growth hormone.

  11. Complementarity effects on tree growth are contingent on tree size and climatic conditions across Europe

    PubMed Central

    Madrigal-González, Jaime; Ruiz-Benito, Paloma; Ratcliffe, Sophia; Calatayud, Joaquín; Kändler, Gerald; Lehtonen, Aleksi; Dahlgren, Jonas; Wirth, Christian; Zavala, Miguel A.

    2016-01-01

    Neglecting tree size and stand structure dynamics might bias the interpretation of the diversity-productivity relationship in forests. Here we show evidence that complementarity is contingent on tree size across large-scale climatic gradients in Europe. We compiled growth data of the 14 most dominant tree species in 32,628 permanent plots covering boreal, temperate and Mediterranean forest biomes. Niche complementarity is expected to result in significant growth increments of trees surrounded by a larger proportion of functionally dissimilar neighbours. Functional dissimilarity at the tree level was assessed using four functional types: i.e. broad-leaved deciduous, broad-leaved evergreen, needle-leaved deciduous and needle-leaved evergreen. Using Linear Mixed Models we show that, complementarity effects depend on tree size along an energy availability gradient across Europe. Specifically: (i) complementarity effects at low and intermediate positions of the gradient (coldest-temperate areas) were stronger for small than for large trees; (ii) in contrast, at the upper end of the gradient (warmer regions), complementarity is more widespread in larger than smaller trees, which in turn showed negative growth responses to increased functional dissimilarity. Our findings suggest that the outcome of species mixing on stand productivity might critically depend on individual size distribution structure along gradients of environmental variation. PMID:27571971

  12. Growth and development of Brugia pahangi larvae under various in vitro conditions.

    PubMed

    Wisnewski, N; Weinstein, P P

    1993-06-01

    In vitro culture methods were utilized to investigate specific nutritional requirements of Brugia pahangi larvae. Infective third-stage larvae (L3) isolated from Aedes aegypti (Liverpool) mosquitoes were cultured in NCTC 135:IMDM (NI) medium plus various types of serum under 5% CO2/air and 5% CO2/N2 atmospheres. Larvae grew, developed, and molted to the fourth stage (L4); however, further growth and differentiation beyond the mid-L4 were minimal. Serum supplementation was necessary to induce molting of B. pahangi L3s. Iron-supplemented calf serum (FeCS) consistently promoted higher percentages of molting than the other 4 types of serum tested. Specific nutritional requirements for B. pahangi larvae were assessed through testing of supplements known to be important for growth of mammalian cells or other parasites in vitro. Addition of various concentrations and combinations of hemoglobin, insulin, transferrin, selenium, albumin, cholesterol, or a cell feeder layer did not improve larval growth, molting, or survival compared to that obtained with FeCS alone. The L4s derived from in vitro culture, when injected intraperitoneally into jirds, developed to sexually mature, microfilarial-producing adults in a normal in vivo time frame. Developing L4s isolated from jirds molted to young adults in vitro in NI medium plus serum.

  13. Complementarity effects on tree growth are contingent on tree size and climatic conditions across Europe

    NASA Astrophysics Data System (ADS)

    Madrigal-González, Jaime; Ruiz-Benito, Paloma; Ratcliffe, Sophia; Calatayud, Joaquín; Kändler, Gerald; Lehtonen, Aleksi; Dahlgren, Jonas; Wirth, Christian; Zavala, Miguel A.

    2016-08-01

    Neglecting tree size and stand structure dynamics might bias the interpretation of the diversity-productivity relationship in forests. Here we show evidence that complementarity is contingent on tree size across large-scale climatic gradients in Europe. We compiled growth data of the 14 most dominant tree species in 32,628 permanent plots covering boreal, temperate and Mediterranean forest biomes. Niche complementarity is expected to result in significant growth increments of trees surrounded by a larger proportion of functionally dissimilar neighbours. Functional dissimilarity at the tree level was assessed using four functional types: i.e. broad-leaved deciduous, broad-leaved evergreen, needle-leaved deciduous and needle-leaved evergreen. Using Linear Mixed Models we show that, complementarity effects depend on tree size along an energy availability gradient across Europe. Specifically: (i) complementarity effects at low and intermediate positions of the gradient (coldest-temperate areas) were stronger for small than for large trees; (ii) in contrast, at the upper end of the gradient (warmer regions), complementarity is more widespread in larger than smaller trees, which in turn showed negative growth responses to increased functional dissimilarity. Our findings suggest that the outcome of species mixing on stand productivity might critically depend on individual size distribution structure along gradients of environmental variation.

  14. Growth of microorganisms on HVAC filters under controlled temperature and humidity conditions

    SciTech Connect

    Kemp, S.J. |; Kuehn, T.H.; Pui, D.Y.H.; Vesley, D.; Streifel, A.J.

    1995-08-01

    A recirculating duct system was used to challenge a glass fiber media filter, a polymer fiber media filter, and a two-stage electrostatic precipitator (electronic air cleaner) with generated Cladosporium fungal spores and Flavobacterium bacteria. Over a period of a year, the continuous airflow in the ducts was maintained at 70 F (21 C) and 90% relative humidity (RH), but ambient loading was minimal. Filtration efficiency measurements were made, as well as microbial sampling on the surfaces of the filters, to determine filter removal and potential growth of the generated bioaerosols. The electrostatic precipitator demonstrated greater than 90% effectiveness on the fungal and bacterial bioaerosols. The media filters demonstrated initially lower efficiencies, which rose to more than 90% as the filters loaded. At the end of the first year, observable microbial growth took place only on the upstream side of the glass fiber filter. With subsequent nutrient loading and wetting, however, significant microbial growth was found on the downstream side as well as the upstream side of the fiber media filters.

  15. Growth and photosynthesis of Japanese flowering cherry under simulated microgravity conditions

    NASA Technical Reports Server (NTRS)

    Sugano, Mami; Ino, Yoshio; Nakamura, Teruko

    2002-01-01

    The photosynthetic rate, the leaf characteristics related to photosynthesis, such as the chlorophyll content, chlorophyll a/b ratio and density of the stomata, the leaf area and the dry weight in seedlings of Japanese flowering cherry grown under normal gravity and simulated microgravity conditions were examined. No significant differences were found in the photosynthetic rates between the two conditions. Moreover, leaf characteristics such as the chlorophyll content, chlorophyll a/b ratio and density of the stomata in the seedlings grown under the simulated microgravity condition were not affected. However, the photosynthetic product of the whole seedling under the simulated microgravity condition increased compared with the control due to its leaf area increase. The results suggest that dynamic gravitational stimulus controls the partitioning of the products of photosynthesis.

  16. Growth and photosynthesis of Japanese flowering cherry under simulated microgravity conditions.

    PubMed

    Sugano, Mami; Ino, Yoshio; Nakamura, Teruko

    2002-12-01

    The photosynthetic rate, the leaf characteristics related to photosynthesis, such as the chlorophyll content, chlorophyll a/b ratio and density of the stomata, the leaf area and the dry weight in seedlings of Japanese flowering cherry grown under normal gravity and simulated microgravity conditions were examined. No significant differences were found in the photosynthetic rates between the two conditions. Moreover, leaf characteristics such as the chlorophyll content, chlorophyll a/b ratio and density of the stomata in the seedlings grown under the simulated microgravity condition were not affected. However, the photosynthetic product of the whole seedling under the simulated microgravity condition increased compared with the control due to its leaf area increase. The results suggest that dynamic gravitational stimulus controls the partitioning of the products of photosynthesis.

  17. Featherless and feathered broilers under control versus hot conditions. 2. Breast muscle development and growth in pre- and posthatch periods.

    PubMed

    Hadad, Yair; Cahaner, Avigdor; Halevy, Orna

    2014-05-01

    Breast meat yield (% of BW) of featherless broilers (sc/sc) is higher than that of their feathered sibs (+/sc) and contemporary broilers (+/+) under hot temperature (32°C) conditions. This study tested the hypothesis that the advantage to the featherless broiler condition with respect to breast meat yield and quality is due to differences in muscle development during pre- and posthatch periods. Broilers from the 3 genetic groups were reared under normal (26°C) and hot (32°C) conditions and slaughtered on d 29 and 47. Evaluation of myofiber diameter (mean and distribution) and blood-vessel density in breast muscle sections sampled on these days revealed that the fluctuations in breast muscle yields of the different genetic groups under different temperature conditions and the better muscle growth of the featherless broilers are due to changes in muscle hypertrophy and vascularization. In addition, the featherless broilers presented continuous satellite cell proliferation and a slower rate of differentiation compared with the feathered broilers on immediate posthatch period, suggesting a higher reserve of myogenic progeny cells that will contribute to later muscle hypertrophy. In the embryos, breast muscle yield was higher for the featherless versus feathered counterparts between embryonic day (E) 15 and E20. This was manifested in a shift toward higher myofiber diameters in the featherless embryos on E18, and a higher number of myoblasts, which could be explained by higher insulin-like growth factor-I levels in the muscle tissue and lower triiodothyronine levels in the plasma on E17. Together, the data show the advantage of being featherless under hot conditions with regard to breast muscle growth and hypertrophy, and overall performance. Moreover, featherless embryos had increased breast muscle weight compared with their feathered counterparts, likely due to a higher proliferation rate of myoblasts and higher muscle hypertrophy.

  18. Uniformity of environmental conditions and plant growth in a hydroponic culture system for use in a growth room with aerial CO2 control

    NASA Technical Reports Server (NTRS)

    Vessey, J. K.; York, E. K.; Henry, L. T.; Raper, C. D. Jr; Raper CD, J. r. (Principal Investigator)

    1988-01-01

    A portable system of hydroponic culture was developed that maintained temperature, pH, and nutrient concentrations of circulating nutrient solutions. The hydroponic system is used within a controlled-environment room (CER) for control of aerial environment. The CER was equipped with an auto-calibrating system for atmospheric CO2 control. The control systems for the hydroponic chambers were able to maintain acidity within +/- 0.2 pH units and the temperature with +/- 0.5 degree C. Mixing time for the 200-liter volume of solution within a hydroponic chamber was less than 12 min. The CO2 control system was able to maintain aerial concentrations within +/- 10 ppm CO2 during the light period. The only gradient found to occur within the hydroponic chambers or CER was a slight gradient in aerial temperature along the length of hydroponic chambers. Growth of soybeans [Glycine max (L.) Merr.] was characterized during a 3-week period of vegetative development by leaf number and area, plant dry weight, total N content of plants, and N depletion from the nutrient solution. The growth characteristics among populations for three hydroponic chambers within the CER were not significantly different, and the percent standard errors of means of the measurements within populations from each chamber were nearly all less than 10%. Thus, the uniformity of plant growth reflected the uniformity of environmental conditions.

  19. Inoculation effects of Pseudomonas putida, Gluconacetobacter azotocaptans, and Azospirillum lipoferum on corn plant growth under greenhouse conditions.

    PubMed

    Mehnaz, Samina; Lazarovits, George

    2006-04-01

    Alcohol production from corn is gaining importance in Ontario, Canada, and elsewhere. A major cost of corn production is the cost of chemical fertilizers and these continue to increase in price. The competitiveness of alcohol with fossil fuels depends on access to low-cost corn that allows growers to earn a sustainable income. In this study we set out to determine if we can identify root-associated microorganisms from Ontario-grown corn that can enhance the nutrient flow to corn roots, directly or indirectly, and help minimize the use of extraneous fertilizer. Bacteria were isolated from corn rhizosphere and screened for their capacity to enhance corn growth. The bacteria were examined for their ability to fix nitrogen, solubilize phosphate, and produce indole acetic acid (IAA) and antifungal substances on potato dextrose agar. Bacterial suspensions were applied to pregerminated seed of four corn varieties (39D82, 39H84, 39M27, and 39T68) planted in sterilized sand and unsterilized cornfield soil. The plants were grown under greenhouse conditions for 30 days. Three isolates were identified as having growth-promoting effect. These bacteria were identified as to species by biochemical tests, fatty acid profiles, and 16S rDNA sequence analysis. Corn rhizosphere isolates, Gluconacetobacter azotocaptans DS1, Pseudomonas putida CQ179, and Azospirillum lipoferum N7, provided significant plant growth promotion expressed as increased root/shoot weight when compared to uninoculated plants, in sand and/or soil. All strains except P. putida CQ179 were capable of nitrogen fixation and IAA production. Azospirillum brasilense, however, produced significantly more IAA than the other isolates. Although several of the strains were also able to solubilize phosphate and produce metabolites inhibitory to various fungal pathogens, these properties are not considered as contributing to growth promotion under the conditions used in this study. These bacteria will undergo field tests for

  20. The relevance of conditional dispersal for bacterial colony growth and biodegradation.

    PubMed

    Banitz, Thomas; Johst, Karin; Wick, Lukas Y; Fetzer, Ingo; Harms, Hauke; Frank, Karin

    2012-02-01

    Bacterial degradation is an ecosystem service that offers a promising method for the remediation of contaminated soils. To assess the dynamics and efficiency of bacterial degradation, reliable microbial simulation models, along with the relevant processes, are required. We present an approach aimed at improving reliability by studying the relevance and implications of an important concept from theoretical ecology in the context of a bacterial system: conditional dispersal denoting that the dispersal strategy depends on environmental conditions. Different dispersal strategies, which either incorporate or neglect this concept, are implemented in a bacterial model and results are compared to data obtained from laboratory experiments with Pseudomonas putida colonies growing on glucose agar. Our results show that, with respect to the condition of resource uptake, the model's correspondence to experimental data is significantly higher for conditional than for unconditional bacterial dispersal. In particular, these results support the hypothesis that bacteria disperse less when resources are abundant. We also show that the dispersal strategy has a considerable impact on model predictions for bacterial degradation of resources: disregarding conditional bacterial dispersal can lead to overestimations when assessing the performance of this ecosystem service.

  1. Rapid quantitative and qualitative analysis of biofilm production by Staphylococcus epidermidis under static growth conditions.

    PubMed

    Waters, Elaine M; McCarthy, Hannah; Hogan, Siobhan; Zapotoczna, Marta; O'Neill, Eoghan; O'Gara, James P

    2014-01-01

    Rapid screening of biofilm forming capacity by Staphylococcus epidermidis is possible using in vitro assays with 96-well plates. This method first developed by Christensen et al. in 1985 is fast and does not require specialized instruments. Thus, laboratories with standard microbiology infrastructure and a 96-well plate reader can easily use this technique to generate data on the biofilm phenotypes of multiple S. epidermidis strains and clinical isolates. Furthermore, this method can be adapted to gain insights into biofilm regulation and the characteristics of biofilms produced by different S. epidermidis isolates. Although this assay is extremely useful for showing whether individual strains are biofilm-positive or biofilm-negative and distinguishing between form weak, moderate or strong biofilm, it is important to acknowledge that the absolute levels of biofilm produced by an individual strain can vary significantly between experiments meaning that strict adherence to the protocol used is of paramount importance. Furthermore, measuring biofilm under static conditions does not generally reflect in vivo conditions in which bacteria are often subjected to shear stresses under flow conditions. Hence, the biofilm characteristics of some strains are dramatically different under flow and static conditions. Nevertheless, rapid measurement of biofilm production under static conditions is a useful tool in the analysis of the S. epidermidis biofilm phenotype.

  2. Growth, condition, diet, and consumption rates of northern pike in three Arizona reservoirs

    USGS Publications Warehouse

    Flinders, J.M.; Bonar, Scott A.

    2008-01-01

    Northern pike (Esox lucius L.) introductions are controversial in the western United States due to suspected impacts they might have on established sport fisheries and potential illegal introductions. Tbree Arizona reservoirs, Parker Canyon Lake, Upper Lake Mary and Long Lake were sampled to examine the diet, consumption dynamics, and growth of northern pike. Northern pike diets varied by season and reservoir. In Parker Canyon Lake, diets were dominated by rainbow trout in winter and spring and bluegill and green sunfish in the fall. In Long Lake the northern pike ate crayfish in spring and early summer and switched to young of the year common carp in summer and fall. Black crappie, golden shiners, and crayfish were the major prey in Upper Lake Mary during spring, but they switched to stocked rainbow trout in the fall. Northern pike growth was in the high range of growth reported throughout the United States. Estimated northern pike specific consumption rate (scr) of rainbow trout (g/g/d ?? 10-6) was greatest in Upper Lake Mary (scr = 329.1 ?? 23.7 g/g/d ?? 10-6) where stocked fingerling (280 mm TL) rainbow trout stocked in Long Lake (scr = 1.4 ?? 0.1 g/g/d ?? 10-6) and Parker Canyon Lake (scr = 287.2 ?? 15.1 g/g/d ?? 10-6) where catchable-sized rainbow trout were stocked. Managers should consider the cost-benefits of stocking fish >200 mm TL in lakes containing northern pike. ?? Copyright by the North American Lake Management Society 2008.

  3. Growth and development of cultured carrot cells and embryos under spaceflight conditions

    NASA Technical Reports Server (NTRS)

    Krikorian, A. D.; Dutcher, F. R.; Quinn, C. E.; Steward, F. C.

    1981-01-01

    Morphogenetically competent proembryonic cells and well-developed somatic embryos of carrot at two levels of organization were exposed for 18.5 days to a hypogravity environment aboard the Soviet Biosatellite Cosmos 1129. It was confirmed that cultured totipotent cells of carrot can give rise to embryos with well-developed roots and minimally developed shoots. It was also shown that the space hypogravity environment could support the further growth of already-organized, later somatic embryonic stages and give rise to fully developed embryo-plantlets with roots and shoots.

  4. In Situ Monitoring and Characterization of Superhard Thin-Film Growth Under Non-Equilibrium Conditions

    DTIC Science & Technology

    2007-11-02

    We have developed new approaches to synthesize superhard /ultrastrong thin films and coatings by chemical vapor deposition (CVD) of unimolecular...synthesized novel precursors of C3N3P, Si4CN4, LiBC4N4, BC3N3, BeC2N2, MgC2N2 for CVD growth of films with properties of superhardness . We have also...suggesting that films and coatings based on the Zr-B-Si-N system exhibit promising superhard properties.

  5. Options for transpiration water removal in a crop growth system under zero gravity conditions

    NASA Technical Reports Server (NTRS)

    Blackwell, C. C.; Kliss, M.; Yendler, B.; Borchers, B.; Yendler, Boris S.; Nguyen, Thoi K.; Waleh, Ahmad

    1991-01-01

    The operation of a microgravity crop-growth system is a critical feature of NASA's Closed Ecological Life Support System (CELSS) development program. Transpiration-evolved water must be removed from the air that is recirculated in such a system, perhaps supplying potable water in the process. The present consideration of candidate systems for CELSS water removal gives attention to energy considerations and to a mechanical, inertial-operation water-separation system that was chosen due to the depth of current understanding of its operation.

  6. Chloroplast Distribution in Arabidopsis thaliana (L.) Depends on Light Conditions during Growth.

    PubMed Central

    Trojan, A.; Gabrys, H.

    1996-01-01

    Chloroplasts of Arabidopsis thaliana move in response to blue light. Sensitivity to light and the range of fluence rates to which the chloroplasts respond were found to be comparable to those of other higher plants studied. We investigated typical chloroplast distributions in Arabidopsis grown under three different light conditions:standard-light conditions, similar to natural light intensities; weak-light intensities, close to the compensation point of photosynthesis; and strong-light intensities, close to the saturation of the light-response curve of photosynthesis. We observed a striking difference in chloroplast arrangement in darkness between plants grown under weak- and strong-light conditions. There was a slight difference after weak-light pretreatment, and the arrangements of chloroplasts after strong-light pretreatment in both plant groups were very similar. These results support the ecological significance of chloroplast movements. PMID:12226297

  7. Flight Experiments of Physical Vapor Transport of ZnSe: Growth of Crystals in Various Convective Conditions

    NASA Technical Reports Server (NTRS)

    Su, Ching-Hua

    2015-01-01

    A low gravity material experiment will be performed in the Material Science Research Rack (MSRR) on International Space Station (ISS). The flight experiment will conduct crystal growths of ZnSe and related ternary compounds, such as ZnSeS and ZnSeTe, by physical vapor transport (PVT). The main objective of the project is to determine the relative contributions of gravity-driven fluid flows to the compositional distribution, incorporation of impurities and defects, and deviation from stoichiometry observed in the grown crystals as results of buoyancy-driven convection and growth interface fluctuations caused by irregular fluid-flows on Earth. The investigation consists of extensive ground-based experimental and theoretical research efforts and concurrent flight experimentation. The objectives of the ground-based studies are (1) obtain the experimental data and conduct the analyses required to define the optimum growth parameters for the flight experiments, (2) perfect various characterization techniques to establish the standard procedure for material characterization, (3) quantitatively establish the characteristics of the crystals grown on Earth as a basis for subsequent comparative evaluations of the crystals grown in a low-gravity environment and (4) develop theoretical and analytical methods required for such evaluations. ZnSe and related ternary compounds have been grown by vapor transport technique with real time in-situ non-invasive monitoring techniques. The grown crystals have been characterized extensively by various techniques to correlate the grown crystal properties with the growth conditions. This talk will focus on the ground-based studies on the PVT crystal growth of ZnSe and related ternary compounds, especially the effects of different growth orientations related to gravity direction on the grown crystals.

  8. Applying Dynamic Energy Budget (DEB) theory to simulate growth and bio-energetics of blue mussels under low seston conditions

    NASA Astrophysics Data System (ADS)

    Rosland, R.; Strand, Ø.; Alunno-Bruscia, M.; Bacher, C.; Strohmeier, T.

    2009-08-01

    A Dynamic Energy Budget (DEB) model for simulation of growth and bioenergetics of blue mussels ( Mytilus edulis) has been tested in three low seston sites in southern Norway. The observations comprise four datasets from laboratory experiments (physiological and biometrical mussel data) and three datasets from in situ growth experiments (biometrical mussel data). Additional in situ data from commercial farms in southern Norway were used for estimation of biometrical relationships in the mussels. Three DEB parameters (shape coefficient, half saturation coefficient, and somatic maintenance rate coefficient) were estimated from experimental data, and the estimated parameters were complemented with parameter values from literature to establish a basic parameter set. Model simulations based on the basic parameter set and site specific environmental forcing matched fairly well with observations, but the model was not successful in simulating growth at the extreme low seston regimes in the laboratory experiments in which the long period of negative growth caused negative reproductive mass. Sensitivity analysis indicated that the model was moderately sensitive to changes in the parameter and initial conditions. The results show the robust properties of the DEB model as it manages to simulate mussel growth in several independent datasets from a common basic parameter set. However, the results also demonstrate limitations of Chl a as a food proxy for blue mussels and limitations of the DEB model to simulate long term starvation. Future work should aim at establishing better food proxies and improving the model formulations of the processes involved in food ingestion and assimilation. The current DEB model should also be elaborated to allow shrinking in the structural tissue in order to produce more realistic growth simulations during long periods of starvation.

  9. Photo acoustic study of plants exposed to varying light intensity growth conditions: Spectral and morphological changes

    NASA Astrophysics Data System (ADS)

    Mesquita, R. C.; Barja, P. R.; da Silva, E. C.; Mansanares, A. M.

    2005-06-01

    In this paper we describe results of photo acoustic (PA) measurements carried out on various plants exposed to varying light intensity conditions. Depending on the species and light intensity conditions, the PA absorption spectra show differences in peaks associated with pigments and the cuticle. These differences are related to the spatial distribution of the pigments that differs from plant to plant. We have also performed systematic study of oxygen evolution at different wavelengths. The obtained oxygen spectra are equivalent to the action spectra usually acquired by determining the CO2 uptake and energy storage. The intensities of oxygen spectra exhibit differences depending on distinct morphology of plant.

  10. Stable isotope ratios of marijuana. I. Carbon and nitrogen stable isotopes describe growth conditions.

    PubMed

    West, Jason B; Hurley, Janet M; Ehleringer, James R

    2009-01-01

    There remains significant uncertainty in illicit marijuana cultivation. We analyzed the delta(13)C and delta(15)N of 508 domestic samples from known U.S.A. counties, 31 seized from a single location, 5 samples grown in Mexico and Colombia, and 10 northwest border seizures. For a subset, inflorescences and leaves were analyzed separately. These data revealed a strong correspondence, with inflorescences having slightly higher delta(13)C and delta(15)N values than leaves. A framework for interpreting these results is introduced and evaluated. Samples identified as outdoor-grown by delta(13)C were generally recorded as such by the Drug Enforcement Administration (DEA). DEA-classified indoor-grown samples had the most negative delta(13)C values, consistent with indoor cultivation, although many were also in the outdoor-grown domain. Delta(15)N indicated a wide range of fertilizers across the dataset. Samples seized at the single location suggested multiple sources. Northwest border delta(13)C values suggested indoor growth, whereas for the Mexican and Colombian samples they indicated outdoor growth.

  11. [Effect of exogenous sucrose on growth and active ingredient content of licorice seedlings under salt stress conditions].

    PubMed

    Liu, Fu-zhi; Yang, Jun

    2015-11-01

    Licorice seedlings were taken as experimental materials, an experiment was conducted to study the effects of exogenous sucrose on growth and active ingredient content of licorice seedlings under NaCl stress conditions. The results of this study showed that under salt stress conditions, after adding a certain concentration of exogenous sucrose, the licorice seedlings day of relative growth rate was increasing, and this stress can be a significant weakening effect, indicating that exogenous sucrose salt stress-relieving effect. The total flavonoids and phenylalanine ammonia lyase (PAL) activity were significantly increased, the exogenous sucrose can mitigated the seedling roots under salt stress, the licorice flavonoid content in the enhanced growth was largely due to the activity of PAL an increased, when the concentration of exogenous sucrose wae 10 mmol x L(-1), PAL activity reaching a maximum, when the concentration of exogenous sucrose was 15 mmol x L(-1), PAL activity turned into a downward trend, the results indicating that this mitigation has concentration effect. After applying different concentrations of exogenous sugar, the contents of liquiritin changes with the change of flavonoids content was similar. After applying different concentrations of exogenous sucrose, the content of licorice acid under salt stress was higher than the levels were not reached during salt stress, the impact of exogenous sucrose concentration gradient of licorice acid accumulation was not obvious.

  12. Effects of low salinity media on growth, condition, and gill ion transporter expression in juvenile Gulf killifish, Fundulus grandis.

    PubMed

    Patterson, Joshua; Bodinier, Charlotte; Green, Christopher

    2012-04-01

    The Gulf killifish, Fundulus grandis, is a euryhaline teleost which has important ecological roles in the brackish-water marshes of its native range as well as commercial value as live bait for saltwater anglers. Effects of osmoregulation on growth, survival, and body condition at 0.5, 5.0, 8.0 and 12.0‰ salinity were studied in F. grandis juveniles during a 12-week trial. Relative expression of genes encoding the ion transport proteins Na(+)/K(+)-ATPase (NKA), Na(+)/K(+)/2Cl(-) cotransporter(NKCC1), and cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel was analyzed. At 0.5‰, F. grandis showed depressed growth, body condition, and survival relative to higher salinities. NKA relative expression was elevated at 7 days post-transfer but decreased at later time points in fish held at 0.5‰ while other salinities produced no such increase. NKCC1, the isoform associated with expulsion of ions in saltwater, was downregulated from week 1 to week 3 at 0.5‰ while CFTR relative expression produced no significant results across time or salinity. Our results suggest that Gulf killifish have physiological difficulties with osmoregulation at a salinity of 0.5‰ and that this leads to reduced growth performance and survival while salinities in the 5.0-12.0‰ are adequate for normal function.

  13. Effects of FeNi-phosphorus-carbon system on crystal growth of diamond under high pressure and high temperature conditions

    NASA Astrophysics Data System (ADS)

    Hu, Mei-Hua; Bi, Ning; Li, Shang-Sheng; Su, Tai-Chao; Zhou, Ai-Guo; Hu, Qiang; Jia, Xiao-Peng; Ma, Hong-An

    2015-03-01

    This paper reports the crystal growth of diamond from the FeNi-Carbon system with additive phosphorus at high pressures and high temperatures of 5.4-5.8 GPa and 1280-1360 °C. Attributed to the presence of additive phosphorus, the pressure and temperature condition, morphology, and color of diamond crystals change obviously. The pressure and temperature condition of diamond growth increases evidently with the increase of additive phosphorus content and results in the moving up of the V-shape region. The surfaces of the diamonds also become coarse as the additive phosphorus added in the growth system. Raman spectra indicate that diamonds grown from the FeNi-phosphorus-carbon system have more crystal defects and impurities. This work provides a new way to enrich the doping of diamond and improve the experimental exploration for future material applications. Project supported by the Doctoral Fund of Henan Polytechnic University, China (Grant Nos. B2013-013 and B2013-044) and the Research Projects of Science and Technology of the Education Department of Henan Province, China (Grant Nos. 14B430026 and 12A430010).

  14. The arginine deiminase pathway of Lactobacillus fermentum IMDO 130101 responds to growth under stress conditions of both temperature and salt.

    PubMed

    Vrancken, G; Rimaux, T; Wouters, D; Leroy, F; De Vuyst, L

    2009-10-01

    The arginine deiminase (ADI) pathway is a means by which certain sourdough lactic acid bacteria (LAB) convert arginine into ornithine via citrulline while producing ammonia and ATP, thereby coping with acid stress and gaining an energetic advantage. Lactobacillus fermentum IMDO 130101, an isolate from a spontaneous laboratory rye sourdough, possesses an ADI pathway which is modulated by environmental pH. In the present study, a broader view of the activity of the ADI pathway in response to growth under two other commonly encountered stress factors, temperature and added salt, was obtained. In both cases, an increase in ornithine production was observed as a response to growth under both temperature and salt stress conditions. Biokinetic parameters were obtained to describe the kinetics of the ADI pathway as a function of temperature and added salt. The arginine conversion rate increased as a function of added NaCl concentrations but was hardly affected by temperature. In addition, arginine-into-citrulline conversion rate was not affected by temperature but increased with increasing NaCl concentrations. Citrulline-into-ornithine conversion rate increased with increasing temperature, while it dropped to zero with added salt. These findings suggest a more pronounced adaptation of the strain through the ADI pathway to added salt, as compared with different constant temperatures. Furthermore, these results suggest that the ADI pathway in L. fermentum IMDO 130101 is active in adapting to non-optimal growth conditions.

  15. Equivalence of macroscopic and microscopic Griffith conditions for subcritical crack growth

    NASA Technical Reports Server (NTRS)

    Esterling, D. M.

    1981-01-01

    Exact relations are derived for a simple bond-snapping model of fracture and numerical results from a previous work are presented. A lattice model with a nonlinear cohesive force law is then considered. In both cases, the results confirm the equivalence of the microscopic and macroscopic Griffith conditions. The Griffith stress intensity is to be identified with the quiescent stress intensity.

  16. Crop growth and production responses to commercial humic products in U.S. Midwestern rainfed conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Humic products (humic and/or fulvic acids) have been in use for over 100 years, yet published research is scant on crop responses to humics under differing soil and weather conditions. We initiated field research experiments on corn (Zea mays L.) in Iowa in 2009 and have since expanded to multiple U...

  17. Formation of natural gas hydrates in marine sediments. Gas hydrate growth and stability conditioned by host sediment properties

    USGS Publications Warehouse

    Clennell, M.B.; Henry, P.; Hovland, M.; Booth, J.S.; Winters, W.J.; Thomas, M.

    2000-01-01

    The stability conditions of submarine gas hydrates (methane clathrates) are largely dictated by pressure, temperature, gas composition, and pore water salinity. However, the physical properties and surface chemistry of the host sediments also affect the thermodynamic state, growth kinetics, spatial distributions, and growth forms of clathrates. Our model presumes that gas hydrate behaves in a way analogous to ice in the pores of a freezing soil, where capillary forces influence the energy balance. Hydrate growth is inhibited within fine-grained sediments because of the excess internal phase pressure of small crystals with high surface curvature that coexist with liquid water in small pores. Therefore, the base of gas hydrate stability in a sequence of fine sediments is predicted by our model to occur at a lower temperature, and so nearer to the seabed than would be calculated from bulk thermodynamic equilibrium. The growth forms commonly observed in hydrate samples recovered from marine sediments (nodules, sheets, and lenses in muds; cements in sand and ash layers) can be explained by a requirement to minimize the excess of mechanical and surface energy in the system.

  18. Effects of growth conditions on the quality of B-doped graphene films

    NASA Astrophysics Data System (ADS)

    You, Y.; Wang, C.; Xu, Y. L.; Wan, J. X.; Ren, W.; Fang, X. H.; Chen, X. Y.

    2017-01-01

    Boron-doped graphene (B-doped graphene) films with large area, high quality, and good uniformity are successfully prepared by chemical vapor deposition using ethylboronic acid (C2H7BO2) as the sole precursor. The pre-treatment of the copper foil and post-annealing are introduced to the growth process and proved to be greatly influential to the quality of B-doped graphene. The films prepared are mainly monolayer with the transmittance of about 97.1%, the B/C ratio of about 2.3%, the sheet resistance of 1.5-3 kΩ/◻, and the carrier density of 1.13 × 1013 cm-2 at room temperature.

  19. Photoreflectance for in-situ characterization of MOCVD growth of semiconductors under micro-gravity conditions

    NASA Technical Reports Server (NTRS)

    Pollak, Fred H.

    1990-01-01

    A contactless electromodulation technique of photoreflectance (PR) was developed for in-situ monitoring of metal-organic chemical vapor deposition (MOCVD) semiconductor growth for micro-gravity applications. PR can be employed in a real MOCVD reactor including rotating substrate (approximately 500 rev/min) in flowing gases and through a diffuser plate. Measurements on GaAs and Ga(0.82)Al(0.18)As were made up to 690 C. The direct band gaps of In(x)Ga(1-x)As (x = 0.07 and 0.16) were evaluated up to 600 C. In order to address the question of real time measurement, the spectra of the direct gap of GaAs at 650 C was obtained in 30 seconds and 15 seconds seems feasible.

  20. Microbial-enzymatic-hybrid biological fuel cell with optimized growth conditions for Shewanella oneidensis DSP-10.

    PubMed

    Roy, Jared N; Luckarift, Heather R; Sizemore, Susan R; Farrington, Karen E; Lau, Carolin; Johnson, Glenn R; Atanassov, Plamen

    2013-07-10

    In this work we present a biological fuel cell fabricated by combining a Shewanella oneidensis microbial anode and a laccase-modified air-breathing cathode. This concept is devised as an extension to traditional biochemical methods by incorporating diverse biological catalysts with the aim of powering small devices. In preparing the biological fuel cell anode, novel hierarchical-structured architectures and biofilm configurations were investigated. A method for creating an artificial biofilm based on encapsulating microorganisms in a porous, thin film of silica was compared with S. oneidensis biofilms that were allowed to colonize naturally. Results indicate comparable current and power densities for artificial and natural biofilm formations, based on growth characteristics. As a result, this work describes methods for creating controllable and reproducible bio-anodes and demonstrates the versatility of hybrid biological fuel cells.

  1. Crystal growth and transport rates of the GeSe-xenon system under microgravity conditions

    NASA Technical Reports Server (NTRS)

    Wiedemeier, H.; Trivedi, S. B.; Zhong, X.-R.; Whiteside, R. C.

    1986-01-01

    The analysis of the STS-7 flight experiments of the GeSe-xenon system yielded positive results which surpass the original objectives of these experiments. The mass transport rates of GeSe observed in microgravity environment are in close agreement with theoretically predicted values for diffusion limited mass transport. This supports the earlier proposed hypothesis for the interpretation of flux anomalies observed in previous space experiments. In addition, the STS-7 flight experiments led to the observation of unexpected crystal growth phenomena. The largest GeSe single crystals obtained in microgravity grew in the ampul without direct wall contact which could suggest homogeneous nucleation. The space grown crystals are much larger and have considerably improved surface and bulk morphologies relative to corresponding ground control specimens. The combined results are of basic scientific importance and of technological significance.

  2. [The growth movements of moss protonemata under clinostatic and microgravity conditions].

    PubMed

    Demkiv, O T; Kordium, E L; Tairbekov, M G; Sack, F; Kern, F; Kardash, A R

    1999-01-01

    Populations of dark-grown protonemata of moss Ceratodon purpureus wt-4 (Germany) and wt-U (Ukraine) were rotated on clinostat or flown in space (experiment "Protonema" aboard Bion-11, December 24, 1996-January 7, 1997) to determine the effects of altered gravity on orientation of protonemata growing filaments. Protonemata had been cultivated 8 days in vertical stationary position at dark to be transported to microgravity or placed in clinostat for the period of 14 days. In the ground control, protonemata demonstrated the negatively gravitropic growth (straight upwards in a bundle of compact filaments). The horizontal or circular rotation in clinostat and exposure to microgravity made filaments grow every each way within the substrate plane but with an apparent trend to rightward curling resulting in "spiral galaxies".

  3. Photosynthetic activity and growth analysis of the plant {Costus spicatus} cultivated under different light conditions

    NASA Astrophysics Data System (ADS)

    Campos, V. M.; Pasin, L. A. A. P.; Barja, P. R.

    2008-01-01

    The aim of the present work was to evaluate the effect of different radiance levels (25%, 50% and 100% of full sunlight) in growth (height, leaf area, number of leaves) and photosynthetic activity of the plant Costus spicatus, popularly known in Brazil as Caninha do Brejo. Photoacoustic (PA) measurements were performed in order to evaluate comparatively the photosynthetic activity rate of plants submitted to different light intensity regimes. The results obtained show that plants maintained under low light intensity levels (25% of sunlight) presented higher height, leaf area and number of leaves, while plants grown under full sunlight presented higher radicular length. PA measurements indicated higher photosynthetic rate for plants grown under 50% of full sunlight, but plants developed under 25% of full sunlight (75% shading) presented the fastest response to light incidence (photosynthetic induction).

  4. [The growth movements of moss protonemata under clinostatic and microgravity conditions

    NASA Technical Reports Server (NTRS)

    Demkiv, O. T.; Kordium, E. L.; Tairbekov, M. G.; Sack, F.; Kern, F.; Kardash, A. R.

    1999-01-01

    Populations of dark-grown protonemata of moss Ceratodon purpureus wt-4 (Germany) and wt-U (Ukraine) were rotated on clinostat or flown in space (experiment "Protonema" aboard Bion-11, December 24, 1996-January 7, 1997) to determine the effects of altered gravity on orientation of protonemata growing filaments. Protonemata had been cultivated 8 days in vertical stationary position at dark to be transported to microgravity or placed in clinostat for the period of 14 days. In the ground control, protonemata demonstrated the negatively gravitropic growth (straight upwards in a bundle of compact filaments). The horizontal or circular rotation in clinostat and exposure to microgravity made filaments grow every each way within the substrate plane but with an apparent trend to rightward curling resulting in "spiral galaxies".

  5. Growth conditions affect carotenoid-based plumage coloration of great tit nestlings

    NASA Astrophysics Data System (ADS)

    Hõrak, P.; Vellau, Helen; Ots, Indrek; Møller, Anders Pape

    Carotenoid-based integument colour in animals has been hypothesised to signal individual phenotypic quality because it reliably reflects either foraging efficiency or health status. We investigated whether carotenoid-derived yellow plumage coloration of fledgling great tits (Parus major) reflects their nestling history. Great tit fledglings reared in a poor year (1998) or in the urban habitat were less yellow than these reared in a good year (1999) or in the forest. The origin of nestlings also affected their coloration since nestlings from a city population did not improve their coloration when transferred to the forest. Brood size manipulation affected fledgling colour, but only in the rural population, where nestlings from reduced broods developed more yellow coloration than nestlings from increased and control broods. Effect of brood size manipulation on fledgling plumage colour was independent of the body mass, indicating that growth environment affects fledgling body mass and plumage colour by different pathways.

  6. Influence of abscisic acid on growth, biomass and lipid yield of Scenedesmus quadricauda under nitrogen starved condition.

    PubMed

    Sulochana, Sujitha Balakrishnan; Arumugam, Muthu

    2016-08-01

    Scenedesmus quadricauda, accumulated more lipid but with a drastic reduction in biomass yield during nitrogen starvation. Abscisic acid (ABA) being a stress responsible hormone, its effect on growth and biomass with sustainable lipid yield during nitrogen depletion was studied. The result revealed that the ABA level shoots up at 24h (27.21pmol/L) during the onset of nitrogen starvation followed by a sharp decline. The external supplemented ABA showed a positive effect on growth pattern (38×10(6)cells/ml) at a lower concentration. The dry biomass yield is also increasing up to 2.1 fold compared to nitrogen deficient S. quadricauda. The lipid content sustains in 1 and 2μM concentration of ABA under nitrogen-deficient condition. The fatty acid composition of ABA treated S. quadricauda cultures with respect to nitrogen-starved cells showed 11.17% increment in saturated fatty acid content, the desired lipid composition for biofuel application.

  7. Optimal conditions for mycelial growth of Schizosaccharomyces japonicus cells in liquid medium: it enables the molecular investigation of dimorphism.

    PubMed

    Papp, László; Sipiczki, Matthias; Holb, Imre J; Miklós, Ida

    2014-12-01

    The non-pathogenic dimorphic fission yeast, Schizosaccharomyces japonicus, could be a suitable model organism for investigation of the genetic background of mycelial growth, as it has a haploid chromosome set and its genome is sequenced. Since earlier results have suggested that its morphological transition required solid substrates, but molecular biological experiments would require hyphae production in a liquid medium, we wanted to find circumstances which would enable hyphae production in liquid media. Several external conditions were investigated, but the strongest inducer was fetal bovine serum (FBS). Its positive effect could be hampered by heat and was dependent on pH, temperature and concentration of the serum. Other protein-containing compounds, such as peptone and bovine serum albumin or amino acids, proved to be ineffective or weak. Generally, the uninduced and induced mycelial growth of Sz. japonicus could be improved by lower external pH and higher temperature.

  8. Direct measurement of asperity contact growth in quartz at hydrothermal conditions

    USGS Publications Warehouse

    Beeler, Nicholas M.; Hickman, Stephen H.

    2015-01-01

    Earthquake recurrence requires interseismic fault restrengthening which results from solid state deformation in room-temperature friction and indentation experiments. In contrast exhumed fault zones show solution-transport processes such as pressure solution and contact overgrowths influence fault zone properties . In the absence of fluid flow, overgrowths are driven by gradients in surface curvature where material is dissolved, diffuses, and precipitates at the contact without convergence normal to the contact. To determine the rate of overgrowth for quartz, we conducted single contact experiments in an externally heated pressure vessel. Convergence was continuously monitored using reflected-light interferometry through a long-working-distance microscope. Contact normal force was constant with an initial effective normal stress of 1.7 MPa, temperature was between 350 and 530{degree sign}C, and water pressure was constant at 150 MPa. Two control experiments were conducted: one dry at 425{degree sign}C and one bi-material (sapphire) at 425{degree sign}C and 150 MPa water pressure. No contact growth or convergence was observed in the controls. For wet single-phase contacts, growth was initially rapid and then decreased with time. No convergence was observed. Fluid inclusions indicate that the contact is not uniformly wetted. The contact is bounded by small regions of high aperture, reflecting local free-face dissolution as the source for the overgrowth. The apparent activation energy is ~125 kJ/mol. Extrapolation predicts rates of contact area increase orders of magnitude faster than in dry, room-temperature and hydrothermal friction experiments, suggesting that natural strength recovery near the base of the seismogenic zone could be dominated by contact overgrowth.

  9. Towards lag phase of microbial populations at growth-limiting conditions: The role of the variability in the growth limits of individual cells.

    PubMed

    Aguirre, Juan S; Koutsoumanis, Konstantinos P

    2016-05-02

    The water activity (aw) growth limits of unheated and heat stressed Listeria monocytogenes individual cells were studied. The aw limits varied from 0.940 to 0.997 and 0.951 to 0.997 for unheated and heat stressed cells, respectively. Due to the above variability a decrease in aw results in the presence of a non-growing fraction in the population leading to an additional pseudo-lag in population growth. In this case the total apparent lag of the population is the sum of the physiological lag of the growing cells (time required to adjust to the new environment) and the pseudo-lag. To investigate the effect of aw on the above lag components, the growth kinetics of L. monocytogenes on tryptone soy agar with aw adjusted to values ranging from 0.997 to 0.940 was monitored. The model of B&R was fitted to the data for the estimation of the apparent lag. In order to estimate the physiological lag of the growing fraction of the inoculum, the model was refitted to the growth data using as initial population level the number of cells that were able to grow (estimated from the number of colonies formed on the agar at the end of storage) and excluding the rest data during the lag. The results showed that for the unheated cells the apparent lag was almost identical to the physiological lag for aw values ranging from 0.997 to 0.970, as the majority of the cells in the initial population was able to grow in these conditions. As the aw decreased from 0.970 to 0.940 however, the number of cells in the population which were able to grow, decreased resulting to an increase in the pseudo-lag. The maximum value of pseudo-lag was 13.1h and it was observed at aw=0.940 where 10% of the total inoculated cells were able to grow. For heat stressed populations a pseudo-lag started to increase at higher aw conditions (0.982) compared to unheated cells. In contrast to the apparent lag, a linear relation between physiological lag and aw was observed for both unheated and heat stressed cells.

  10. Interfacial wave theory of dendrite growth - Global mode solution and quantum condition

    NASA Technical Reports Server (NTRS)

    Xu, Jian-Jun

    1990-01-01

    The signal feedback process at the edge of the dendrite tip is investigated, and the global instability mechanism of the system is derived. A mechanism is developed to describe a discrete set of unstable global modes for the system. Called WEASR, the method considers the wave emission at the turning point and signal reflections between the turning point and the front edge of the tip. It is shown that the method can obtain the asymptotic solutions for the unstable global modes and the quantum condition for the corresponding eigenvalues. A turning point called the pattern formation condition is shown to be crucial in the formation of dendritic structure and the choice of the final tip velocity. The wave emission process is outlined, and the importance of a signal feedback process at the edge of the dendrite tip is demonstrated. Parameters such as stability and surface tension can be analyzed in terms of their effects on WEASR modes.

  11. Stability of Interfacial Phase Growth in a Slab with Convective Boundary Conditions

    NASA Astrophysics Data System (ADS)

    Basu, Rahul

    2016-06-01

    The mass transport and energy equations for a semi-infinite porous slab are solved using similarity variables and closed form functions to describe freezing with remelt at the interface. Heat and mass balance analyses give a transcendental equation for the unknown interfacial freezing velocity for solving on the computer. The solutions for the temperature and mass concentration are decoupled and solved analytically. The solution for convective boundary conditions is compared with that for Dirichlet boundary conditions. The progressive development of the solution with material thickness and change of functional time dependence and effect on the stability of nucleation is outlined. A discussion with biological adaptation to extreme cold and possible evolution of molecules in heat transfer regimes is included in light of the above.

  12. The Minitron system for growth of small plants under controlled environment conditions

    NASA Technical Reports Server (NTRS)

    Akers, Carolyn P.; Akers, Stuart W.; Mitchell, Cary A.

    1985-01-01

    The design and operation of a system is described in which small plants can be grown under controlled environment conditions. Important features of this 'Minitron' system include precise control of temperature and CO2 concentration in a flowing atmosphere. Plants can be grown either hydroponically or in solid root support medium. For either culture method, nutrient solution or water is added from an external reservoir, altering neither atmospheric composition nor temperature equilibrium within a closed Minitron chamber.

  13. Effect of heating conditions on flow patterns during the seeding stage of Kyropoulos sapphire crystal growth

    NASA Astrophysics Data System (ADS)

    Timofeev, Vladimir V.; Kalaev, Vladimir V.; Ivanov, Vadim G.

    2016-07-01

    We apply numerical simulation to understand the effect of heating conditions on melt convection in an industrial Ky furnace. The direct numerical simulation (DNS) approach was used to investigate the features of melt flow during the seeding stage. Two different cases of Kyropoulos furnace hot zone design were studied numerically, and results were compared with experimental data to understand the effect of modifications on melt convection.

  14. Effects of egg incubation condition on the post-hatching growth and performance of the snapping turtle, Chelydra serpentina

    SciTech Connect

    Ryan, K.M.

    1990-12-01

    The effect of incubation temperature on the post-hatching growth and performance capacities of the common snapping turtle, Chelydra serpentina was investigated in the laboratory. Turtle eggs were collected from four sites in New York State and randomly assigned to four incubation temperature treatments to produce males (constant 26{degree}C and downshifted 30-26-30{degree}C) and females (constant 30{degree}C and upshifted 26-30-26{degree}C) under constant and altered temperature regimes. The incubation conditions resulted in 92% males from the constant 26{degree}C group and 93% males from the downshifted group. 100% females resulted from both the constant 30{degree}C group and the upshifted group. Turtles hatching from eggs incubated constantly at 26{degree}C were significantly larger than hatchlings from eggs incubated at a constant 30{degree}C or downshifted. Hatchlings were raised in individual aquaria at 25{degree}C and fed earthworms and fish. After a 9-month growth period, turtles which had been incubated at a constant 30{degree}C gained significantly more mass than did turtles from eggs which had been downshifted or upshifted. There was no extended effect of incubation condition on Post-hatching performance and learning ability as measured by righting and feeding responses. Thus, the mass gain differences seen in this study suggest that physiological differences do result as the consequence of incubation condition. However, these physiological differences are not reflected in normal locomotive or feeding behavior.

  15. Effects of egg incubation condition on the post-hatching growth and performance of the snapping turtle, Chelydra serpentina

    SciTech Connect

    Ryan, K.M.

    1990-12-01

    The effect of incubation temperature on the post-hatching growth and performance capacities of the common snapping turtle, Chelydra serpentina was investigated in the laboratory. Turtle eggs were collected from four sites in New York State and randomly assigned to four incubation temperature treatments to produce males (constant 26[degree]C and downshifted 30-26-30[degree]C) and females (constant 30[degree]C and upshifted 26-30-26[degree]C) under constant and altered temperature regimes. The incubation conditions resulted in 92% males from the constant 26[degree]C group and 93% males from the downshifted group. 100% females resulted from both the constant 30[degree]C group and the upshifted group. Turtles hatching from eggs incubated constantly at 26[degree]C were significantly larger than hatchlings from eggs incubated at a constant 30[degree]C or downshifted. Hatchlings were raised in individual aquaria at 25[degree]C and fed earthworms and fish. After a 9-month growth period, turtles which had been incubated at a constant 30[degree]C gained significantly more mass than did turtles from eggs which had been downshifted or upshifted. There was no extended effect of incubation condition on Post-hatching performance and learning ability as measured by righting and feeding responses. Thus, the mass gain differences seen in this study suggest that physiological differences do result as the consequence of incubation condition. However, these physiological differences are not reflected in normal locomotive or feeding behavior.

  16. Survival and growth of Listeria innocua treated by pulsed light technology: impact of post-treatment temperature and illumination conditions.

    PubMed

    Lasagabaster, Amaia; de Marañón, Iñigo Martínez

    2014-08-01

    Inactivation of Listeria innocua by pulsed light (PL) was evaluated at different post-treatment temperature and illumination conditions. The impact of post-PL-treatment temperature on L. innocua culturability was evaluated for cells cultured at 37 °C (optimal growth temperature) and 4 °C (classical refrigerated food temperature). For both culture conditions, significant higher reductions (up to 3 log) were observed after post-PL-treatment temperature of 4 °C than of 37 °C. Contrarily, L. innocua culturability after PL treatment increased up to 2.2 log in presence of daylight illumination in comparison to dark storage. This photorepair mechanism was quickly activated reaching the maximum photoreactivation level after only 30 min of illumination. Moreover, photorepair capacity was rapidly reduced by increasing the time in darkness from PL treatment to samples illumination, being completely lost after time in darkness equal or greater than 5 h. According to these findings, the combination of PL with post-treatment temperature of 4 °C has a synergistic effect on the inactivation of L. innocua, whereas post-treatment daylight illumination has an antagonic effect on PL antimicrobial efficacy. Post-PL-treatment temperature and illumination conditions could be thereby considered important environmental factors to activate, inhibit or control the repair and/or growth of L. innocua survivors after PL treatment.

  17. [Effects of sodium naphthalene acetate on growth and physiological characteristics of tomato seedlings under suboptimal temperature and light condition].

    PubMed

    Guo, Yun-na; Li, Yan-su; He, Chao-xing; Yu, Xian-chang

    2015-10-01

    Taking tomato 'Zhongza 105' as test material, the influences of sodium naphthalene acetate (SNA) on growth and physiological characteristics of tomato seedlings under suboptimal temperature and light condition were investigated. The results showed that the dry mass, vigorous seedling index, root activity, total nitrogen content, net photosynthesis rate (Pn) of tomato seedlings were significantly decreased by suboptimum temperature and light treatment. In addition, the catalase activity and zeatin riboside (ZR) concentration were also reduced. However, the superoxide dismutase, peroxidase activity and the content of abscisic acid (ABA) were increased. Compared with treatment of the same volume distilled water on tomato seedlings under suboptimum temperature and light condition, the dry mass of whole plant and vigorous seedling index of tomato seedlings were significantly increased by 16.4% and 22.9%, as the total N contents in roots and leaves and Pn were also increased by 8.5%, 28.5%and 37.0%, respectively, with the treatment of root application of 10 mg . L-1 SNA. Besides protective enzyme activity and the root activity were improved, the indole acetic acid (IAA) and ZR concentration of tomato were raised, and ABA concentration was reduced. The results indicated that root application of certain concentration of SNA could promote the growth of tomato seedlings by increasing the tomato root activity, protective enzymes activity, Pn and regulating endogenous hormone concentration under suboptimum temperature and light condition.

  18. Temperature and water stress during conditioning and incubation phase affecting Orobanche crenata seed germination and radicle growth

    PubMed Central

    Moral, Juan; Lozano-Baena, María Dolores; Rubiales, Diego

    2015-01-01

    Orobanche crenata is a holoparasitic plant that is potentially devastating to crop yield of legume species. Soil temperature and humidity are known to affect seed germination, however, the extent of their influence on germination and radicle growth of those of O. crenata is largely unknown. In this work, we studied the effects of temperature, water potential (Ψt) and the type of water stress (matric or osmotic) on O. crenata seeds during conditioning and incubation periods. We found that seeds germinated between 5 and 30°C during both periods, with a maximum around 20°C. Germination increased with increasing Ψt from −1.2 to 0 MPa during conditioning and incubation periods. Likewise, seed germination increased logarithmically with length of conditioning period until 40 days. The impact of the type of water stress on seed germination was similar, although the radicle growth of seeds under osmotic stress was lower than under matric stress, what could explain the lowest infestation of Orobanche sp. in regions characterized by saline soil. The data in this study will be useful to forecast infection of host roots by O. crenata. PMID:26089829

  19. Establishment and growth responses of Nile tilapia embryonic stem-like cell lines under feeder-free condition.

    PubMed

    Fan, Zhenhua; Liu, Linyan; Huang, Xiaohuan; Zhao, Yang; Zhou, Linyan; Wang, Deshou; Wei, Jing

    2017-02-01

    Embryonic stem (ES) cells provide an invaluable tool for molecular analysis of vertebrate development and a bridge linking genomic manipulations in vitro and functional analysis of target genes in vivo. Work towards fish ES cells so far has focused on zebrafish (Danio renio) and medaka (Oryzias latipes). Here we describe the derivation, pluripotency, differentiation and growth responses of ES cell lines from Nile tilapia (Oreochromis niloticus), a world-wide commercial farmed fish. These cell lines, designated as TES1-3, were initiated from blastomeres of Nile tilapia middle blastula embryos (MBE). One representative line, TES1, showed stable growth and phenotypic characteristics of ES cells over 200 days of culture with more than 59 passages under feeder-free conditions. They exhibited high alkaline phosphatase activity and expression of pluripotency genes including pou5f3 (the pou5f1/oct4 homologue), sox2, myc and klf4. In suspension culture together with retinoic acid treatment, TES1 cells formed embryoid bodies, which exhibited expression profile of differentiation genes characteristics of all three germ cell layers. Notably, PKH26-labeled TES1 cells introduced into Nile tilapia MBE could contribute to body compartment development and led to hatched chimera formation with an efficacy of 13%. These results suggest that TES1 cells have pluripotency and differentiation potential in vitro and in vivo. In the conditioned DMEM, all of the supplements including the fetal bovine serum, fish embryonic extract, fish serum, basic fibroblast growth factor and non-protein supplement combination 5N were mitogenic for TES1 cell growth. This study will promote ES-based biotechnology in commercial fish.

  20. Linking atmospheric synoptic transport, cloud phase, surface energy fluxes, and sea-ice growth: observations of midwinter SHEBA conditions

    NASA Astrophysics Data System (ADS)

    Persson, P. Ola G.; Shupe, Matthew D.; Perovich, Don; Solomon, Amy

    2016-10-01

    Observations from the Surface Heat Budget of the Arctic Ocean (SHEBA) project are used to describe a sequence of events linking midwinter long-range advection of atmospheric heat and moisture into the Arctic Basin, formation of supercooled liquid water clouds, enhancement of net surface energy fluxes through increased downwelling longwave radiation, and reduction in near-surface conductive heat flux loss due to a warming of the surface, thereby leading to a reduction in sea-ice bottom growth. The analyses provide details of two events during Jan. 1-12, 1998, one entering the Arctic through Fram Strait and the other from northeast Siberia; winter statistics extend the results. Both deep, precipitating frontal clouds and post-frontal stratocumulus clouds impact the surface radiation and energy budget. Cloud liquid water, occurring preferentially in stratocumulus clouds extending into the base of the inversion, provides the strongest impact on surface radiation and hence modulates the surface forcing, as found previously. The observations suggest a minimum water vapor threshold, likely case dependent, for producing liquid water clouds. Through responses to the radiative forcing and surface warming, this cloud liquid water also modulates the turbulent and conductive heat fluxes, and produces a thermal wave penetrating into the sea ice. About 20-33 % of the observed variations of bottom ice growth can be directly linked to variations in surface conductive heat flux, with retarded ice growth occurring several days after these moisture plumes reduce the surface conductive heat flux. This sequence of events modulate pack-ice wintertime environmental conditions and total ice growth, and has implications for the annual sea-ice evolution, especially for the current conditions of extensive thinner ice.

  1. Comparison of germination, growth, photosynthetic responses and metal uptake between three populations of Spartina densiflora under different soil pollution conditions.

    PubMed

    Mateos-Naranjo, E; Andrades-Moreno, L; Redondo-Gómez, S

    2011-10-01

    Spartina densiflora has demonstrated a high tolerance to heavy metal contamination and a high capacity for accumulating metal in its tissues. In the Gulf of Cadiz this species has colonized habitats with different degrees of metal pollution. The aim of this study is to analyse the responses of populations of Spartina densiflora to this pollution. Germination, growth, photosynthesis and metal uptake of two populations of Spartina densiflora collected from contaminated sites (Odiel and Tinto marshes) and of one population from a clean site (Piedras marshes) were examined through two reciprocal experiments, in which seeds and adult plants were exposed to metal-contaminated and uncontaminated soil under greenhouse conditions. The seeds of Spartina densiflora were able to germinate in all sediments with little differences between populations, even in more contaminated soils. However, these conditions decreased the growth and survival of the seedlings to a similar degree for all populations. Likewise, no differences were recorded in relation to physiological and metal uptake. Contrarily, in the adult experiment, we found that the Odiel population differed from the other populations in growth and metal uptake, with overall greater values. These differences in growth were strongly supported by lower photosynthetic rates and stomatal conductance in the Piedras and Tinto populations. The reduction in photosynthetic performance was largely due to the reduction in photosynthetic pigment concentration in both populations. Despite these differences, there was insufficient evidence to support that Spartina has evolved to heavy-tolerant ecotypes, since all Spartina densiflora populations proved to have a great capacity for accumulating heavy metals in its roots. Nonetheless, this finding suggests that the Odiel population could have a greater phytoremediation potential.

  2. Bacterial Epimerization as a Route for Deoxynivalenol Detoxification: the Influence of Growth and Environmental Conditions.

    PubMed

    He, Jian Wei; Hassan, Yousef I; Perilla, Norma; Li, Xiu-Zhen; Boland, Greg J; Zhou, Ting

    2016-01-01

    Deoxynivalenol (DON) is a toxic secondary metabolite produced by several Fusarium species that infest wheat and corn. Food and feed contaminated with DON pose a health risk to both humans and livestock and form a major barrier for international trade. Microbial detoxification represents an alternative approach to the physical and chemical detoxification methods of DON-contaminated grains. The present study details the characterization of a novel bacterium, Devosia mutans 17-2-E-8, that is capable of transforming DON to a non-toxic stereoisomer, 3-epi-deoxynivalenol under aerobic conditions, mild temperature (25-30°C), and neutral pH. The biotransformation takes place in the presence of rich sources of organic nitrogen and carbon without the need of DON to be the sole carbon source. The process is enzymatic in nature and endures a high detoxification capacity (3 μg DON/h/10(8) cells). The above conditions collectively suggest the possibility of utilizing the isolated bacterium as a feed treatment to address DON contamination under empirical field conditions.

  3. Bacterial Epimerization as a Route for Deoxynivalenol Detoxification: the Influence of Growth and Environmental Conditions

    PubMed Central

    He, Jian Wei; Hassan, Yousef I.; Perilla, Norma; Li, Xiu-Zhen; Boland, Greg J.; Zhou, Ting

    2016-01-01

    Deoxynivalenol (DON) is a toxic secondary metabolite produced by several Fusarium species that infest wheat and corn. Food and feed contaminated with DON pose a health risk to both humans and livestock and form a major barrier for international trade. Microbial detoxification represents an alternative approach to the physical and chemical detoxification methods of DON-contaminated grains. The present study details the characterization of a novel bacterium, Devosia mutans 17-2-E-8, that is capable of transforming DON to a non-toxic stereoisomer, 3-epi-deoxynivalenol under aerobic conditions, mild temperature (25–30°C), and neutral pH. The biotransformation takes place in the presence of rich sources of organic nitrogen and carbon without the need of DON to be the sole carbon source. The process is enzymatic in nature and endures a high detoxification capacity (3 μg DON/h/108 cells). The above conditions collectively suggest the possibility of utilizing the isolated bacterium as a feed treatment to address DON contamination under empirical field conditions. PMID:27148248

  4. The actual goals of geoethics

    NASA Astrophysics Data System (ADS)

    Nemec, Vaclav

    2014-05-01

    The most actual goals of geoethics have been formulated as results of the International Conference on Geoethics (October 2013) held at the geoethics birth-place Pribram (Czech Republic): In the sphere of education and public enlightenment an appropriate needed minimum know how of Earth sciences should be intensively promoted together with cultivating ethical way of thinking and acting for the sustainable well-being of the society. The actual activities of the Intergovernmental Panel of Climate Changes are not sustainable with the existing knowledge of the Earth sciences (as presented in the results of the 33rd and 34th International Geological Congresses). This knowledge should be incorporated into any further work of the IPCC. In the sphere of legislation in a large international co-operation following steps are needed: - to re-formulate the term of a "false alarm" and its legal consequences, - to demand very consequently the needed evaluation of existing risks, - to solve problems of rights of individuals and minorities in cases of the optimum use of mineral resources and of the optimum protection of the local population against emergency dangers and disasters; common good (well-being) must be considered as the priority when solving ethical dilemmas. The precaution principle should be applied in any decision making process. Earth scientists presenting their expert opinions are not exempted from civil, administrative or even criminal liabilities. Details must be established by national law and jurisprudence. The well known case of the L'Aquila earthquake (2009) should serve as a serious warning because of the proven misuse of geoethics for protecting top Italian seismologists responsible and sentenced for their inadequate superficial behaviour causing lot of human victims. Another recent scandal with the Himalayan fossil fraud will be also documented. A support is needed for any effort to analyze and to disclose the problems of the deformation of the contemporary

  5. The effects of aquaculture production noise on the growth, condition factor, feed conversion, and survival of rainbow trout, Oncorhynchus mykiss

    USGS Publications Warehouse

    Davidson, J.; Bebak, J.; Mazik, P.

    2009-01-01

    Intensive aquaculture systems, particularly recirculating systems, utilize equipment such as aerators, air and water pumps, blowers, and filtration systems that inadvertently increase noise levels in fish culture tanks. Sound levels and frequencies measured within intensive aquaculture systems are within the range of fish hearing, but species-specific effects of aquaculture production noise are not well defined. Field and laboratory studies have shown that fish behavior and physiology can be negatively impacted by intense sound. Therefore, chronic exposure to aquaculture production noise could cause increased stress, reduced growth rates and feed conversion efficiency, and decreased survival. The objective of this study was to provide an in-depth evaluation of the long term effects of aquaculture production noise on the growth, condition factor, feed conversion efficiency, and survival of cultured rainbow trout, Oncorhynchus mykiss. Rainbow trout were cultured in replicated tanks using two sound treatments: 117??dB re 1????Pa RMS which represented sound levels lower than those recorded in an intensive recycle system and 149??dB re 1????Pa RMS, representing sound levels near the upper limits known to occur in recycle systems. To begin the study mean fish weights in the 117 and 149??dB tanks were 40 and 39??g, respectively. After five months of exposure no significant differences were identified between treatments for mean weight, length, specific growth rates, condition factor, feed conversion, or survival (n = 4). Mean final weights for the 117 and 149??dB treatments were 641 ?? 3 and 631 ?? 10??g, respectively. Overall specific growth rates were equal, i.e. 1.84 ?? 0.00 and 1.84 ?? 0.01%/day. Analysis of growth rates of individually tagged rainbow trout indicated that fish from the 149??dB tanks grew slower during the first month of noise exposure (p < 0.05); however, fish acclimated to the noise thereafter. This study further suggests that rainbow trout growth

  6. Variations in water status, gas exchange, and growth in Rosmarinus officinalis plants infected with Glomus deserticola under drought conditions.

    PubMed

    Sánchez-Blanco, Ma Jesús; Ferrández, Trinitario; Morales, Ma Angeles; Morte, Asunción; Alarcón, Juan José

    2004-06-01

    The influence of the arbuscular mycorrhizal fungus Glomus deserticola on the water relations, gas exchange parameters, and vegetative growth of Rosmarinus officinalis plants under water stress was studied. Plants were grown with and without the mycorrhizal fungus under glasshouse conditions and subjected to water stress by withholding irrigation water for 14 days. Along the experimental period, a significant effect of the fungus on the plant growth was observed, and under water stress, mycorrhizal plants showed an increase in aerial and root biomass compared to non-mycorrhizal plants. The decrease in the soil water potential generated a decrease in leaf water potential (psi(l)) and stem water potential (psi(x)) of mycorrhizal and non-mycorrhizal plants, with this decrease being lower in mycorrhizal water-stressed plants. Mycorrhization also had positive effects on the root hydraulic conductivity (Lp) of water stressed plants. Furthermore, mycorrhizal-stressed plants showed a more important decrease in osmotic potential at full turgor (psi(os)) than did non-mycorrhizal-stressed plants, indicating the capacity of osmotic adjustment. Mycorrhizal infection also improved photosynthetic activity (Pn) and stomatal conductance (g(s)) in plants under water stress compared to the non-mycorrhizal-stressed plants. A similar behaviour was observed in the photochemical efficiency of PSII (Fv/Fm) with this parameter being lower in non-mycorrhizal plants than in mycorrhizal plants under water stress conditions. In the same way, under water restriction, mycorrhizal plants showed higher values of chlorophyll content than did non-mycorrhizal plants. Thus, the results obtained indicated that the mycorrhizal symbiosis had a beneficial effect on the water status and growth of Rosmarinus officinalis plants under water-stress conditions.

  7. Generic conditions for suppressing the coherent synchrotron radiation induced emittance growth in a two-dipole achromat

    NASA Astrophysics Data System (ADS)

    Jiao, Yi; Cui, Xiaohao; Huang, Xiyang; Xu, Gang

    2014-06-01

    The effect of the coherent synchrotron radiation (CSR) becomes evident, and leads to increased beam energy spread and transverse emittance dilution, as both the emittance and bunch length of the electron beams are continuously pushed down in present and forthcoming high-brightness light sources and linear colliders. Suppressing this effect is important to preserve the expected machine performance. Methods of the R-matrix analysis and the Courant-Snyder formalism analysis have been proposed to evaluate and to suppress the emittance growth due to CSR in achromatic cells. In this paper a few important modifications are made on these two methods, which enable us to prove that these two methods are equivalent to each other. With the modified analysis, we obtain explicit and generic conditions of cancelling the CSR-driven emittance excitation in a single achromat consisting of two dipoles of arbitrary bending angles. In spite of the fact that the analysis constrains itself in a linear regime, based on the assumption that CSR-induced particle energy deviation is proportional to both θ and ρ1/3, with θ being the bending angle and ρ the bending radius, it is demonstrated through ELEGANT simulations that the conditions derived from this analysis are still effective in suppressing the emittance growth when a more detailed one-dimensional CSR model is considered. In addition, it illustrates that the emittance growth can be reduced to a lower level with the proposed conditions than with the other two approaches, such as matching the beam envelope to the CSR kick and setting the cell-to-cell betatron phase advance to an appropriate value.

  8. Influence of Different Filling, Cooling, and Storage Conditions on the Growth of Alicyclobacillus acidoterrestris CRA7152 in Orange Juice▿

    PubMed Central

    Spinelli, Ana Cláudia N. F.; Sant'Ana, Anderson S.; Rodrigues-Junior, Salatir; Massaguer, Pilar R.

    2009-01-01

    The prevention of spoilage by Alicyclobacillus acidoterrestris is a current challenge for fruit juice and beverage industries worldwide due to the bacterium's acidothermophilic growth capability, heat resistance, and spoilage potential. This study examined the effect of storage temperature on A. acidoterrestris growth in hot-filled orange juice. The evolution of the A. acidoterrestris population was monitored under six different storage conditions after pasteurization (at 92°C for 10 s), maintenance at 85°C for 150 s, and cooling with water spray to 35°C in about 30 min and using two inoculum levels: <101 and 101 spores/ml. Final cooling and storage conditions were as follows: treatment 1, 30°C for the bottle cold point and storage at 35°C; treatment 2, 30°C for 48 h and storage at 35°C; treatment 3, 25°C for the bottle cold point and storage at 35°C; treatment 4, 25°C for 48 h and storage at 35°C; treatment 5, storage at 20°C (control); and treatment 6, filling and storage at 25°C. It was found that only in treatment 5 did the population remain inhibited during the 6 months of orange juice shelf life. By examining treatments 1 to 4, it was observed that A. acidoterrestris predicted growth parameters were significantly influenced (P < 0.05) either by inoculum level or cooling and storage conditions. The time required to reach a 104 CFU/ml population of A. acidoterrestris was considered to be an adequate parameter to indicate orange juice spoilage by A. acidoterrestris. Therefore, hot-filled orange juice should be stored at or below 20°C to avoid spoilage by this microorganism. This procedure can be considered a safe and inexpensive alternative to other treatments proposed earlier. PMID:19801469

  9. The influence of the growth conditions of the plague microbe vaccine strain colonies on the fractal dimension of biospeckles

    SciTech Connect

    Ul'yanov, A S; Lyapina, A M; Ulianova, O V; Fedorova, V A; Uianov, S S

    2011-04-30

    Specific statistical characteristics of biospeckles, emerging under the diffraction of coherent beams on the bacterial colonies, are studied. The dependence of the fractal dimensions of biospeckles on the conditions of both illumination and growth of the colonies is studied theoretically and experimentally. Particular attention is paid to the fractal properties of biospeckles, emerging under the scattering of light by the colonies of the vaccinal strain of the plague microbe. The possibility in principle to classify the colonies of Yersinia pestis EV NIIEG using the fractal dimension analysis is demonstrated. (optical technologies in biophysics and medicine)

  10. Effect of deposition condition and post growth irradiation treatment on the physical properties of diamond-like carbon films

    SciTech Connect

    Semenovich, V.A.; Dub, S.N.; Klyui, N.I.

    1995-12-31

    Effect of the RF (13.56 MHz) amplitude (Usa) bias voltage on the physical properties of the films has been examined. Relation between the properties of the films and growth conditions were obtained. Bias voltage and gas composition have a marked influence on the properties of prepared films. Nitrogen implantation of diamond-like carbon (DLC) films improves essentially mechanical properties (increasing of the hardness and Young`s modulus more than two times), which correlates with changes of the optical properties, namely, decreasing of optical band gap and increasing of refractive index of the implanted layer.

  11. Luminescence probe study of the conditions affecting colloidal semiconductor growth in reverse micelles and water-in-oil microemulsions

    SciTech Connect

    Modes, S.; Lianos, P. )

    1989-07-27

    A series or reverse AOT micelles and w/o microemulsions have been studied by analyzing the luminescence decay of ruthenium tri(2,2{prime}-bipyridine) in the presence of quencher. The analysis was based both on the established model for luminescence decay in micelles and on the recently developed fractal model of microemulsions. Colloidal cadmium sulfide has then been produced in the microemulsions and the conditions for the particle size growth and size polydispersity have been related with the data of the luminescence decay analysis.

  12. The Importance of Cash in Conditional Cash Transfer Programs for Child Health, Growth and Development:

    PubMed Central

    Fernald, Lia C. H.; Gertler, Paul J.; Neufeld, Lynnette M.

    2009-01-01

    Background Many governments around the world have implemented conditional cash transfer (CCT) programs with the goal of improving options for poor families through interventions in health, nutrition and education. Families enrolled in CCT programs receive cash in exchange for complying with “conditionalities” – preventive health requirements and nutrition supplementation, education and monitoring designed to improve health outcomes and promote positive behavior change. A great challenge in evaluating the effectiveness of CCT programs has been disaggregating the effects of the cash transfer component from that of the conditionalities. Methods In an intervention that began in 1998 in Mexico, low-income communities (n=506) were randomly assigned to be enrolled in a CCT program (Oportunidades, formerly Progresa) immediately or 18 months later. In 2003, children (n=3793), aged 24–72 months who had been enrolled in the program their entire lives, were assessed for a wide variety of outcomes. The analyses reported here separated out the association of the cash transfer component of Oportunidades with several outcomes in children from the program conditionalities, while controlling for a wide range of covariates including many measures of household socio-economic status. Findings An increase in the cash transfer to the household was associated with higher height-for-age z-score and hemoglobin concentration, lower prevalence of stunting, and lower prevalence of overweight. Children in families whose households received a greater quantity of cash also performed better on a scale of motor development (McCarthy Test of Children’s Abilities), three scales of cognitive development (sub-scales of the Woodcock-Muñoz, including working memory), and receptive language (Test de Vocabulario en Imágenes Peabody). Interpretation The results suggest that the cash transfer component of Oportunidades is associated with better outcomes in child health and development. PMID

  13. Genetic analysis of post-weaning growth traits of Thalli sheep under tropical conditions.

    PubMed

    Hussain, Asghar; Akhtar, Pervez; Ali, Safdar; Javed, Khalid; Younas, Muhammad; Shakoor, Abdul; Waheed, Usman

    2014-12-01

    Present investigation was carried out to study the influence of genetic and non-genetic factors affecting post-weaning performance traits in Thalli sheep. Data on post-weaning growth of Thalli sheep maintained at Livestock Experiment Station, Rakh Ghulaman, District Bhakkar-Punjab, Pakistan during 1977-2003 were subjected to genetic analysis. The average values for weight at 180 and 270 days of age, yearling weight and post-weaning average daily gain were 22.37 ± 4.21, 25.96 ± 4.90 and 28.93 ± 5.20 kg and 28 ± 0.01 g/day, respectively. Weight at 180, 270 and 365 days of age and post-weaning average daily gain were significantly affected by year of birth, sex, type of birth and weaning weight (covariable) whereas season of birth was a significant source of variation for 180 and 270 days of age. The heritability estimates for 180 and 270 days, yearling weight and post-weaning average daily gain were 0.07 ± 0.02, 0.08 ± 0.02, 0.07 ± 0.02 and 0.07 ± 0.02, respectively.

  14. Halophilic archaea on Earth and in space: growth and survival under extreme conditions.

    PubMed

    Oren, Aharon

    2014-12-13

    Salts are abundant on Mars, and any liquid water that is present or may have been present on the planet is expected to be hypersaline. Halophilic archaea (family Halobacteriaceae) are the microorganisms best adapted to life at extremes of salinity on Earth. This paper reviews the properties of the Halobacteriaceae that may make the group good candidates for life also on Mars. Many species resist high UV and gamma radiation levels; one species has survived exposure to vacuum and radiation during a space flight; and there is at least one psychrotolerant species. Halophilic archaea may survive for millions of years within brine inclusions in salt crystals. Many species have different modes of anaerobic metabolism, and some can use light as an energy source using the light-driven proton pump bacteriorhodopsin. They are also highly tolerant to perchlorate, recently shown to be present in Martian soils, and some species can even use perchlorate as an electron acceptor to support anaerobic growth. The presence of characteristic carotenoid pigments (α-bacterioruberin and derivatives) makes the Halobacteriaceae easy to identify by Raman spectroscopy. Thus, if present on Mars, such organisms may be detected by Raman instrumentation planned to explore Mars during the upcoming ExoMars mission.

  15. Silicon: a duo synergy for regulating crop growth and hormonal signaling under abiotic stress conditions.

    PubMed

    Kim, Yoon-Ha; Khan, Abdul Latif; Lee, In-Jung

    2016-12-01

    Abiotic stresses, such as salinity, heavy metals and drought, are some of the most devastating factors hindering sustainable crop production today. Plants use their own defensive strategies to cope with the adverse effects of these stresses, via the regulation of the expression of essential phytohormones, such as gibberellins (GA), salicylic acid (SA), jasmonates (JA), abscisic acid (ABA) and ethylene (ET). However, the efficacy of the endogenous defensive arsenals of plants often falls short if the stress persists over an extended period. Various strategies are developed to improve stress tolerance in plants. For example, silicon (Si) is widely considered to possess significant potential as a substance which ameliorate the negative effects of abiotic stresses, and improves plant growth and biomass accumulation. This review aims to explain how Si application influences the signaling of the endogenous hormones GA, SA, ABA, JA and ET during salinity, wounding, drought and metal stresses in crop plants. Phytohormonal cross talk plays an important role in the regulation of induced defences against stress. However, detailed molecular and proteomic research into these interactions is needed in order to identify the underlying mechanisms of stress tolerance that is imparted by Si application and uptake.

  16. Fecundity, growth, and survival of the angelfish Pterophyllum scalare (Perciformes: Cichlidae) under laboratory conditions.

    PubMed

    Ortega-Salas, Armando A; Cortés G, Isabel; Reyes-Bustamante, Hugo

    2009-09-01

    The freshwater angelfishes (Pterophyllum) are South American cichlids that have become very popular among aquarists, yet scarce information on their culture and aquarium husbandry exists. We studied Pterophyllum scalare to analyze dietary effects on fecundity, growth, and survival of eggs and larvae during 135 days. Three diets were used: A) decapsulated cysts of Artemia, B) commercial dry fish food, and C) a mix diet of the rotifer Brachionus plicatilis and the cladoceran Daphnia magna. The initial larval density was 100 organisms in each 40 L aquarium. With diet A, larvae reached a maximum weight of 3.80 g, a total length of 6.3 cm, and a height of 5.8 cm; with diet B: 2.80 g, 4.81 cm, and 4.79 cm, and with diet C: 3.00 g, 5.15 cm, and 5.10 cm, respectively. Significant differences were observed between diet A, and diet B and C, but no significantly differences were observed between diets B and C. Fecundity varied from 234 to 1,082 eggs in 20 and 50 g females, respectively. Egg survival ranged from 87.4% up to 100%, and larvae survival (80 larvae/40 L aquarium) from 50% to 66.3% using diet B and A, respectively. Live food was better for growing fish than the commercial balanced food diet. Fecundity and survival are important factors in planning a good production of angelfish.

  17. Genetic diversity of plant growth promoting rhizobacteria isolated from rhizospheric soil of wheat under saline condition.

    PubMed

    Upadhyay, Sudhir K; Singh, Devendra P; Saikia, Ratul

    2009-11-01

    In this study, a total of 130 rhizobacteria was isolated from a saline infested zone of wheat rhizosphere, and screened for plant growth promoting (PGP) traits at higher salt (NaCl) concentrations (2, 4, 6, and 8%). The results revealed that 24 rhizobacterial isolates were tolerant at 8% NaCl. Although all the 24 salt tolerable isolates produced indole-3-acetic acid (IAA), while 10 isolates solubilized phosphorus, eight produced siderophore, and six produced gibberellin. However, only three isolates showed the production of 1-aminocyclopropane-1-carboxylate (ACC) deaminase. Diversity was analyzed through 16S rDNA-RFLP, and of these isolates with three tetra cutter restriction enzymes (HaeIII, AluI, and MspI), the representative cluster groups were identified by 16S rDNA sequencing. Bacillus and Bacillus-derived genera were dominant which showed PGP attributes at 8% NaCl concentration. Out of 24 isolates, nitrogen fixing ability (nif H gene) was detected in the two isolates, SU18 (Arthrobacter sp.) and SU48.

  18. Conditional overexpression of connective tissue growth factor disrupts postnatal lung development.

    PubMed

    Wu, Shu; Platteau, Astrid; Chen, Shaoyi; McNamara, George; Whitsett, Jeffrey; Bancalari, Eduardo

    2010-05-01

    Connective tissue growth factor (CTGF) is a member of an emerging family of immediate-early gene products that coordinates complex biological processes during development, differentiation, and tissue repair. Overexpression of CTGF is associated with mechanical ventilation with high tidal volume and oxygen exposure in newborn lungs. However, the role of CTGF in postnatal lung development and remodeling is not well understood. In the present study, a double-transgenic mouse model was generated with doxycycline-inducible overexpression of CTGF in respiratory epithelial cells. Overexpression of CTGF from Postnatal Days 1-14 resulted in thicker alveolar septa and decreased secondary septal formation. This is correlated with increased myofibroblast differentiation and disorganized elastic fiber deposition in alveolar septa. Overexpression of CTGF also decreased alveolar capillary network formation. There were increased alpha-smooth muscle actin expression and collagen deposition, and dramatic thickening in the peribronchial/peribronchiolar and perivascular regions in the double-transgenic lungs. Furthermore, overexpression of CTGF increased integrin-linked kinase expression, activated its downstream signaling target, Akt, as well as increased mRNA expression of fibronectin. These data demonstrate that overexpression of CTGF disrupts alveologenesis and capillary formation, and induces fibrosis during the critical period of alveolar development. These histologic changes are similar to those observed in lungs of infants with bronchopulmonary dysplasia.

  19. Effects of postharvest handling conditions on internalization and growth of Salmonella enterica in tomatoes.

    PubMed

    Zhou, Bin; Luo, Yaguang; Nou, Xiangwu; Yang, Yang; Wu, Yunpeng; Wang, Qin

    2014-03-01

    Salmonella internalization in tomatoes during postharvest handling is a major food safety concern. This study was conducted to determine the effect of immersion time, immersion depth, and temperature differential between bacterial suspension and tomato pulp on the internalization of Salmonella enterica in tomato fruits. The effect of storage temperature and duration on the survival and growth of internalized Salmonella cells was also evaluated. Overall, immersion time significantly affected the incidence and extent of S. enterica internalization (P < 0.0001), with a linear correlation between immersion time and Salmonella internalization. The depth of Salmonella internalization in tomato tissues also increased with increasing immersion time. Immersion time also significantly influenced the degree to which the temperature differential affected Salmonella internalization. With an immersion time of 2 min, the temperature differential had no significant effect on Salmonella internalization (P = 0.2536). However, with an immersion time of 15 min, a significantly larger Salmonella population became internalized in tomatoes immersed in solutions with a -30°F (-16.7°C) temperature differential. Internalized S. enterica cells persisted in the core tissues during 14 days of storage. Strain type and storage duration significantly affected (P < 0.05) both the frequency detected and the population of internalized Salmonella recovered, but storage temperatures of 55 to 70°F (12.8 to 21.1°C) did not (P > 0.05). These findings indicate the importance of preventing pathogen internalization during postharvest handling.

  20. Numerical Simulations of Crystal Growth of an Alloy Under Microgravity Conditions

    NASA Technical Reports Server (NTRS)

    Simpson, James E.; deGroh, Henry C., III; Garimella, Suresh V.; Abbaschian, Reza

    1999-01-01

    The directional solidification of a dilute binary alloy (Bi-1.0 at.%Sn)is investigated. Results are obtained at a gravity level of I pg. Computations are performed in two dimensions with a fixed, non-uniform grid. The simulation involves a solution of the species concentration equation (modified to account for solute rejection at the interface) and energy equation (modified to account for phase-change) for both the solid and liquid phases, in addition to the constitutive equations for describing convective flow in the melt. The effects of conductive heat transfer in the ampoule and in a capillary tube in the sample are included. To gauge the effects of including this growth capillary tube in the apparatus, simulations both with and without the capillary tube are presented and compared. Fully transient simulations have been performed; no simplifying steady-state approximations are used, however, the influence of solute on the melting temperature at the interface is not included. Both thermal and solutal convective cells are seen to form. Convective velocities are significantly damped inside the capillary, causing less segregation due to convection. As solidification proceeds beyond the capillary tube, longitudinal segregation arises as a result of the change in cross-sectional area of solidifying material. The magnitudes of the velocities in this cell increase significantly once the solid/liquid front passes beyond the end of the capillary tube; this causes a corresponding increase in the level of radial solute segregation in the solidified material.

  1. Growth of the Ectomycorrhizal Fungus Pisolithus Microcarpus in different nutritional conditions

    PubMed Central

    Rossi, Márcio José; Oliveira, Vetúria L.

    2011-01-01

    The most important plant species employed in reforestation programs depend on ectomycorrhizal fungi for their establishment and growth. The exploitation of this symbiosis to improve forest productivity requires fungal inoculants in a large scale level. To develop such a technology it is necessary to define the optimal composition of the culture medium for each fungus. With these objectives in mind, the effect of the composition of the culture medium on biomass production of the ectomycorrhizal fungus Pisolithus microcarpus (isolate UFSC-Pt116) was studied. The original composition of two culture media, already employed for cultivation of ectomycorrhizal fungi, was submitted to several variations with the C/N ratio as the main variable. A variation of the Pridham-Gottlieb medium was the most efficient for the production of biomass. Therefore, it was submitted to a factorial assay where glucose, peptone and yeast extract components were the factors analyzed. Results showed that the glucose concentration may be increased up to 40 % in order to promote higher biomass production. Peptone had a positive effect on this variable, whereas yeast extract promoted a deleterious effect. These results indicate that it is advisable to eliminate yeast extract from the medium and replace it with peptone prior to use. PMID:24031674

  2. Neuroprotection by Cocktails of Dietary Antioxidants under Conditions of Nerve Growth Factor Deprivation.

    PubMed

    Amara, Flavio; Berbenni, Miluscia; Fragni, Martina; Leoni, Giampaolo; Viggiani, Sandra; Ippolito, Vita Maria; Larocca, Marilena; Rossano, Rocco; Alberghina, Lilia; Riccio, Paolo; Colangelo, Anna Maria

    2015-01-01

    Dietary antioxidants may be useful in counteracting the chronic inflammatory status in neurodegenerative diseases by reducing oxidative stress due to accumulation of reactive oxygen species (ROS). In this study, we newly described the efficacy of a number of dietary antioxidants (polyphenols, carotenoids, thiolic compounds, and oligoelements) on viability of neuronal PC12 cells following Nerve Growth Factor (NGF) deprivation, a model of age-related decrease of neurotrophic support that triggers neuronal loss. Neuroprotection by antioxidants during NGF deprivation for 24 h was largely dependent on their concentrations: all dietary antioxidants were able to efficiently support cell viability by reducing ROS levels and restoring mitochondrial function, while preserving the neuronal morphology. Moreover, ROS reduction and neuroprotection during NGF withdrawal were also achieved with defined cocktails of 3-6 different antioxidants at concentrations 5-60 times lower than those used in single treatments, suggesting that their antioxidant activity was preserved also at very low concentrations. Overall, these data indicate the beneficial effects of antioxidants against oxidative stress induced by decreased NGF availability and suggest that defined cocktails of dietary factors at low concentrations might be a suitable strategy to reduce oxidative damage in neurodegenerative diseases, while limiting possible side effects.

  3. Characterization of human epidermal growth factor in human serum and urine under native conditions.

    PubMed

    Aybay, Cemalettin; Karakus, Resul; Yucel, Aysegul

    2006-07-01

    The objective of this study was to investigate the molecular nature of the human epidermal growth factor (EGF) in serum and urine samples of normal subjects. Recombinant EGF emerged as a single peak and did not interact with human IgG1 and albumin up to the concentration of 12 microg/ml. Freshly separated human serum contained only trace amounts of EGF. However, EGF appeared and increased in serum separated from blood after spontaneous overnight clotting. The authentic 6 kDa form of EGF made up nearly 40% of the total EGF in serum and revealed relatively homogeneous feature. The remaining immunoreactive fractions corresponded to 160 kDa proEGF. Immunoreactive EGF in blood seemed to be associated with the EGF release from platelets. TSKgel G3000SW chromatography of freshly-voided morning and day urines revealed that urine samples mainly contained two major form of EGF; a high-molecular-weight (HMW) and low-molecular-weight (LMW) forms. In the sense of molecular nature of EGF contents, morning urine was more heterogeneous than day urine of the same individuals. The LMW form of EGF in morning urine, in which its proportion was more than 90% of the total EGF, revealed further heterogeneous feature generally containing three to four different components.

  4. New MOEMS based systems appropriate for spectroscopic investigations on agricultural growth and perishable food conditions

    NASA Astrophysics Data System (ADS)

    Grueger, Heinrich; Schenk, Harald; Heberer, Andreas; Zimmer, Fabian; Scherff, Werner; Kenda, Andreas; Frank, Albert

    2005-11-01

    Further optimization of the agricultural growth process and quality control of perishable food which can be fruits and vegetables as well as every kind of meat or milk product requires new approaches for the sensitive front end. One possibility is reflectance or fluorescence spectroscopy in a wide wavelength range. By now broad usage is hindered by costs, size and performance of existing systems. MOEMS scanning gratings for spectrometers and translational mirrors for Fourier Transform spectroscopy enable small robust systems working in a range from 200nm to 5μm. Both types use digital signal processors (DSPs) capable to compute the spectra and execute complex evaluation and decision algorithms. The MOEMS chips are realized by anisotropic etching of a silicon on insulator (SOI) substrate. First the backside silicon and buried oxide is removed by a wet process then the front side structure is realized by dry etching. Depending on the bearing springs a silicon plate up to 3 x 3 mm2 wide and typically 30μm thick can be driven resonantly to rotational or translational movement. Combined with additional optical components and appropriate detectors handheld Czerny-Turner or Fourier Transform spectrometers have been realized and tested. Results of first measurements of reflection spectroscopy on model substances have been performed with both system types in the NIR range. Measurements on real objects like tomatoes or apples are intended for a wider wavelength range. Future systems may contain displays and light sources as well as data storage cards or additional interfaces.

  5. Influence of taro (Colocasia esculenta L. Shott) growth conditions on the phenolic composition and biological properties.

    PubMed

    Gonçalves, Rui F; Silva, Artur M S; Silva, Ana Margarida; Valentão, Patrícia; Ferreres, Federico; Gil-Izquierdo, Angel; Silva, João B; Santos, Delfim; Andrade, Paula B

    2013-12-15

    Colocasia esculenta (L.) Shott, commonly known as taro, is an essential food for millions of people. The leaves are consumed in sauces, purees, stews, and soups, being also used in wound healing treatment. Nowadays, the consumers' demand for bioactive compounds from the diet led to the development of new agricultural strategies for the production of health-promoting constituents in vegetables. In this work, two strategies (variety choice and irrigation conditions) were considered in the cultivation of C. esculenta. The effect on the phenolic composition of the leaves was evaluated. Furthermore, a correlation between the biological activity of the different varieties and their chemical composition was established. Qualitative and quantitative differences in the phenolic composition were observed between varieties; furthermore, the irrigation conditions also influenced the composition. C. esculenta varieties were able to scavenge several oxidant species and to inhibit hyaluronidase, but data suggest that metabolites other than phenolics are involved. The results show that cultivation strategies can effectively modulate the accumulation of these types of bioactive compounds. Furthermore C. esculenta wound healing potential can be attributed, at least in part, to the protection of the wound site against oxidative/nitrosative damage and prevention of hyaluronic acid degradation.

  6. Effect of different growth conditions on biomass increase in kefir grains.

    PubMed

    Guzel-Seydim, Z; Kok-Tas, T; Ertekin-Filiz, B; Seydim, A C

    2011-03-01

    Kefir is a functional dairy product and the effects of kefir consumption on health have been well documented. Kefir grains have naturally high numbers of lactic acid bacteria and yeasts and are used in manufacturing kefir. The biomass of kefir grains slowly increases after successive fermentations. The effects of adding whey protein isolate, modified whey protein (MWP, fat replacer; Carbery Inc., Cork, Ireland), or inulin to milk and different atmospheric conditions (ambient or 6% CO(2)) during fermentation on the increase in biomass of kefir grains were investigated. Reconstituted milks (10% milk powder) enriched with whey protein isolate (2%), MWP (2%), and inulin (2%) were inoculated with kefir grains and fermented in ambient and 6% CO(2) incubators at 25°C until a final pH of 4.6 was reached. Biomass increments of kefir grains were determined weekly over 30 d. Lactic acid bacteria and yeast contents of kefir grains were also determined. The highest biomass increase (392%) was found in kefir grains grown in milk supplemented with whey protein isolate under ambient atmospheric conditions. Application of CO(2) did not provide a significant supporting effect on the biomass of kefir grains. Addition of MWP significantly accelerated the formation of kefir grain biomass (223%). The use of whey protein isolate, MWP, or inulin in milk did not cause any adverse effects on the microbial flora of kefir grains.

  7. Cadmium removal by Euglena gracilis is enhanced under anaerobic growth conditions.

    PubMed

    Santiago-Martínez, M Geovanni; Lira-Silva, Elizabeth; Encalada, Rusely; Pineda, Erika; Gallardo-Pérez, Juan Carlos; Zepeda-Rodriguez, Armando; Moreno-Sánchez, Rafael; Saavedra, Emma; Jasso-Chávez, Ricardo

    2015-05-15

    The facultative protist Euglena gracilis, a heavy metal hyper-accumulator, was grown under photo-heterotrophic and extreme conditions (acidic pH, anaerobiosis and with Cd(2+)) and biochemically characterized. High biomass (8.5×10(6)cellsmL(-1)) was reached after 10 days of culture. Under anaerobiosis, photosynthetic activity built up a microaerophilic environment of 0.7% O₂, which was sufficient to allow mitochondrial respiratory activity: glutamate and malate were fully consumed, whereas 25-33% of the added glucose was consumed. In anaerobic cells, photosynthesis but not respiration was activated by Cd(2+) which induced higher oxidative stress. Malondialdehyde (MDA) levels were 20 times lower in control cells under anaerobiosis than in aerobiosis, although Cd(2+) induced a higher MDA production. Cd(2+) stress induced increased contents of chelating thiols (cysteine, glutathione and phytochelatins) and polyphosphate. Biosorption (90%) and intracellular accumulation (30%) were the mechanisms by which anaerobic cells removed Cd(2+) from medium, which was 36% higher versus aerobic cells. The present study indicated that E. gracilis has the ability to remove Cd(2+) under anaerobic conditions, which might be advantageous for metal removal in sediments from polluted water bodies or bioreactors, where the O₂ concentration is particularly low.

  8. Endophyte-Mediated Effects on the Growth and Physiology of Achnatherum sibiricum Are Conditional on Both N and P Availability

    PubMed Central

    Li, Xia; Ren, Anzhi; Han, Rong; Yin, Lijia; Wei, Maoying; Gao, Yubao

    2012-01-01

    The interaction of endophyte–grass associations are conditional on nitrogen (N) availability, but the reported responses of these associations to N are inconsistent. We hypothesized that this inconsistency is caused, at least in part, by phosphorus (P) availability. In this experiment, we compared the performance of endophyte-infected (EI) and endophyte-free (EF) Achnatherum sibiricum subjected to four treatments comprising a factorial combination of two levels of N (N+ vs. N−, i.e. N supply vs. N deficiency) and two levels of P (P+ vs. P−, i.e. P supply vs. P deficiency) availability. The results showed that A. sibiricum–Neotyphodium associations were conditional on both N and P availability, but more conditional on N than P. Under N+P− conditions, endophyte infection significantly improved acid phosphatase activity of EI plants, such that the biomass of EI plants was not affected by P deficiency (i.e. similar growth to N+P+ conditions), and resulted in more biomass in EI than EF plants. Under N−P+ conditions, biomass of both EI and EF decreased compared with N+P+; however, EI biomass decreased slowly by decreasing leaf N concentration more rapidly but allocating higher fractions of N to photosynthetic machinery compared with EF plants. This change of N allocation not only improved photosynthetic ability of EI plants but also significantly increased their biomass. Under N−P− conditions, EI plants allocated higher fractions of N to photosynthesis and had greater P concentrations in roots, but there was no significant difference in biomass between EI and EF plants. Our results support the hypothesis that endophyte–grass interactions are dependent on both N and P availability. However, we did not find a clear cost of endophyte infection in A. sibiricum. PMID:23185245

  9. Correlation between Strawberry (Fragaria ananassa Duch.) Productivity and Photosynthesis-Related Parameters under Various Growth Conditions

    PubMed Central

    Choi, Hyo G.; Moon, Byoung Y.; Kang, Nam J.

    2016-01-01

    In the present study, we investigated changes in chlorophyll fluorescence, photosynthetic parameters and fruit yields, as well as fruit phytochemical accumulation of strawberry (Fragaria ananassa Duch.) that had been cultivated in a greenhouse under different combinations of light intensity and temperature. In plants grown with low light (LL) photosystem II chlorophyll fluorescence was found to increase as compared with those grown under high light (HL). When strawberry plants were grown with temperature higher than 5°C in addition to LL, they showed decrease in non-photochemical quenching (NPQ), photochemical quenching (qP), as well as chlorophyll fluorescence decrease ratio (RFd) when compared with other combinations of light and temperature. Moreover, fruit yield of strawberry was closely correlated with chlorophyll fluorescence-related parameters such as NPQ, qP, and RFd, but not with the maximum efficiency of PS II (Fv/