Science.gov

Sample records for actual growth rate

  1. Reconciling actual and perceived rates of predation by domestic cats.

    PubMed

    McDonald, Jennifer L; Maclean, Mairead; Evans, Matthew R; Hodgson, Dave J

    2015-07-01

    The predation of wildlife by domestic cats (Felis catus) is a complex problem: Cats are popular companion animals in modern society but are also acknowledged predators of birds, herpetofauna, invertebrates, and small mammals. A comprehensive understanding of this conservation issue demands an understanding of both the ecological consequence of owning a domestic cat and the attitudes of cat owners. Here, we determine whether cat owners are aware of the predatory behavior of their cats, using data collected from 86 cats in two UK villages. We examine whether the amount of prey their cat returns influences the attitudes of 45 cat owners toward the broader issue of domestic cat predation. We also contribute to the wider understanding of physiological, spatial, and behavioral drivers of prey returns among cats. We find an association between actual prey returns and owner predictions at the coarse scale of predatory/nonpredatory behavior, but no correlation between the observed and predicted prey-return rates among predatory cats. Cat owners generally disagreed with the statement that cats are harmful to wildlife, and disfavored all mitigation options apart from neutering. These attitudes were uncorrelated with the predatory behavior of their cats. Cat owners failed to perceive the magnitude of their cats' impacts on wildlife and were not influenced by ecological information. Management options for the mitigation of cat predation appear unlikely to work if they focus on "predation awareness" campaigns or restrictions of cat freedom.

  2. Reconciling actual and perceived rates of predation by domestic cats

    PubMed Central

    McDonald, Jennifer L; Maclean, Mairead; Evans, Matthew R; Hodgson, Dave J

    2015-01-01

    The predation of wildlife by domestic cats (Felis catus) is a complex problem: Cats are popular companion animals in modern society but are also acknowledged predators of birds, herpetofauna, invertebrates, and small mammals. A comprehensive understanding of this conservation issue demands an understanding of both the ecological consequence of owning a domestic cat and the attitudes of cat owners. Here, we determine whether cat owners are aware of the predatory behavior of their cats, using data collected from 86 cats in two UK villages. We examine whether the amount of prey their cat returns influences the attitudes of 45 cat owners toward the broader issue of domestic cat predation. We also contribute to the wider understanding of physiological, spatial, and behavioral drivers of prey returns among cats. We find an association between actual prey returns and owner predictions at the coarse scale of predatory/nonpredatory behavior, but no correlation between the observed and predicted prey-return rates among predatory cats. Cat owners generally disagreed with the statement that cats are harmful to wildlife, and disfavored all mitigation options apart from neutering. These attitudes were uncorrelated with the predatory behavior of their cats. Cat owners failed to perceive the magnitude of their cats’ impacts on wildlife and were not influenced by ecological information. Management options for the mitigation of cat predation appear unlikely to work if they focus on “predation awareness” campaigns or restrictions of cat freedom. PMID:26306163

  3. Self-Actualization Effects Of A Marathon Growth Group

    ERIC Educational Resources Information Center

    Jones, Dorothy S.; Medvene, Arnold M.

    1975-01-01

    This study examined the effects of a marathon group experience on university student's level of self-actualization two days and six weeks after the experience. Gains in self-actualization as a result of marathon group participation depended upon an individual's level of ego strength upon entering the group. (Author)

  4. College Students' Perceived Disease Risk versus Actual Prevalence Rates

    ERIC Educational Resources Information Center

    Smith, Matthew Lee; Dickerson, Justin B.; Sosa, Erica T.; McKyer, E. Lisako J.; Ory, Marcia G.

    2012-01-01

    Objective: To compare college students' perceived disease risk with disease prevalence rates. Methods: Data were analyzed from 625 college students collected with an Internet-based survey. Paired t-tests were used to separately compare participants' perceived 10-year and lifetime disease risk for 4 diseases: heart disease, cancer, diabetes, and…

  5. The Survey and Analysis of Excellent Senior High School Physics Teachers' Professional Growth Actuality

    ERIC Educational Resources Information Center

    Sun, Haibin; Liu, Tingting

    2010-01-01

    Excellent senior high school physics teachers are the backbone power in the new course reform of physics in China. The excellent senior high school physics teachers' professional growth actuality in Shandong is surveyed in this article by the self-made "Questionnaire of Excellent Senior High School Physics Teachers' Professional Growth",…

  6. Growth rate for blackhole instabilities

    NASA Astrophysics Data System (ADS)

    Prabhu, Kartik; Wald, Robert

    2015-04-01

    Hollands and Wald showed that dynamic stability of stationary axisymmetric black holes is equivalent to positivity of canonical energy on a space of linearised axisymmetric perturbations satisfying certain boundary and gauge conditions. Using a reflection isometry of the background, we split the energy into kinetic and potential parts. We show that the kinetic energy is positive. In the case that potential energy is negative, we show existence of exponentially growing perturbations and further obtain a variational formula for the growth rate.

  7. Certification Change versus Actual Behavior Change in Teenage Suicide Rates, 1955-1979.

    ERIC Educational Resources Information Center

    Gist, Richard; Welch, Q. B.

    1989-01-01

    Examined national data on firearm suicides and accidental deaths for 15- through 19-year-olds from 1955-1979. Considered improved accuracy in determination and certification of suicide in equivocal firearm deaths, actual increases in rate of firearm suicides, or combination. Data support hypothesis of certification changes as primary factor…

  8. Dose Rate Analysis Capability for Actual Spent Fuel Transportation Cask Contents

    SciTech Connect

    Radulescu, Georgeta; Lefebvre, Robert A; Peplow, Douglas E.; Williams, Mark L; Scaglione, John M

    2014-01-01

    The approved contents for a U.S. Nuclear Regulatory Commission (NRC) licensed spent nuclear fuel casks are typically based on bounding used nuclear fuel (UNF) characteristics. However, the contents of the UNF canisters currently in storage at independent spent fuel storage installations are considerably heterogeneous in terms of fuel assembly burnup, initial enrichment, decay time, cladding integrity, etc. Used Nuclear Fuel Storage, Transportation & Disposal Analysis Resource and Data System (UNF ST&DARDS) is an integrated data and analysis system that facilitates automated cask-specific safety analyses based on actual characteristics of the as-loaded UNF. The UNF-ST&DARDS analysis capabilities have been recently expanded to include dose rate analysis of as-loaded transportation packages. Realistic dose rate values based on actual canister contents may be used in place of bounding dose rate values to support development of repackaging operations procedures, evaluation of radiation-related transportation risks, and communication with stakeholders. This paper describes the UNF-ST&DARDS dose rate analysis methodology based on actual UNF canister contents and presents sample dose rate calculation results.

  9. Stability of growth rate of sodium chlorate

    NASA Astrophysics Data System (ADS)

    Mitrović, M. M.; Žekić, A. A.; Baroš, Z. Z.

    2009-01-01

    The constancy of stabilized sodium chlorate crystal growth rate is investigated. After the growth rate stabilization, solution supersaturation was altered and then the initial one was restored, which resulted in fast restoring of the growth rate existing prior to the supersaturation change. It is thereby shown that stabilized growth rate is indeed very stable. The majority of crystals decrease the growth rates during the 3-4 growth hours, even if the process develops at the constant experimental conditions all the time. The new crystals introduced into the cell, continue to grow as the already growing crystals, with higher initial growth rates.

  10. Relationship between self-reported activity levels and actual heart rates in teenagers

    SciTech Connect

    Terblanche, A.P.S.; Ozkaynak, H.; Spengler, J.D.; Butler, D.A. )

    1991-08-01

    A study was designed to explore the relationship between self-reported activity levels and actual heart rate (HR) as measured by a portable heart rate monitor. Twenty-two teenagers (8 boys, 14 girls, median age of 16) from Watertown High School, Massachusetts participated in this pilot study which involved continuous monitoring of HR during normal daily activities and simultaneous completion of a time-activity diary. There were 31 successful monitoring sessions ranging from 1.9 to 17 hours with a median monitoring time of 12.6 hours. Four unsuccessful monitoring sessions were experienced due to equipment failure. Apart from participant cooperation, the single most important factor affecting the feasibility of continuous heart rate monitoring was found to be equipment design. Th overall average heart rate observed was 88.4 bpm (SD = 24.3). An individual's correlation coefficient for perceived activity level (documented in half-hour intervals) and heart rate (averaged over the half-hour intervals) varied from 0.24 to 0.89. More than half of the correlation coefficients were below 0.40. There was a significant difference between average heart rate for time spent indoors (90 bpm) versus outdoors (103 bpm) even after correcting for sleeping time. It is concluded that continuous HR monitoring with simultaneous completion of a time/activity dairy is feasible and is a promising source of information for studies on exposure to air pollutants.

  11. Measurements of Protein Crystal Face Growth Rates

    NASA Technical Reports Server (NTRS)

    Gorti, S.

    2014-01-01

    Protein crystal growth rates will be determined for several hyperthermophile proteins.; The growth rates will be assessed using available theoretical models, including kinetic roughening.; If/when kinetic roughening supersaturations are established, determinations of protein crystal quality over a range of supersaturations will also be assessed.; The results of our ground based effort may well address the existence of a correlation between fundamental growth mechanisms and protein crystal quality.

  12. Self-Actualization in a Marathon Growth Group: Do the Strong Get Stronger?

    ERIC Educational Resources Information Center

    Kimball, Ronald; Gelso, Charles J.

    1974-01-01

    This study examined the effects of a weekend marathon on the level of self-actualization of college students and the relationship between ego strength and extent of change in self-actualization. The group experience did increase self-actualization, but participants' initial level of ego strength was unrelated to changes in self-actualization.…

  13. Growth Rates of Microbes in the Oceans

    NASA Astrophysics Data System (ADS)

    Kirchman, David L.

    2016-01-01

    A microbe's growth rate helps to set its ecological success and its contribution to food web dynamics and biogeochemical processes. Growth rates at the community level are constrained by biomass and trophic interactions among bacteria, phytoplankton, and their grazers. Phytoplankton growth rates are approximately 1 d-1, whereas most heterotrophic bacteria grow slowly, close to 0.1 d-1; only a few taxa can grow ten times as fast. Data from 16S rRNA and other approaches are used to speculate about the growth rate and the life history strategy of SAR11, the most abundant clade of heterotrophic bacteria in the oceans. These strategies are also explored using genomic data. Although the methods and data are imperfect, the available data can be used to set limits on growth rates and thus on the timescale for changes in the composition and structure of microbial communities.

  14. Growth Rates of Microbes in the Oceans.

    PubMed

    Kirchman, David L

    2016-01-01

    A microbe's growth rate helps to set its ecological success and its contribution to food web dynamics and biogeochemical processes. Growth rates at the community level are constrained by biomass and trophic interactions among bacteria, phytoplankton, and their grazers. Phytoplankton growth rates are approximately 1 d(-1), whereas most heterotrophic bacteria grow slowly, close to 0.1 d(-1); only a few taxa can grow ten times as fast. Data from 16S rRNA and other approaches are used to speculate about the growth rate and the life history strategy of SAR11, the most abundant clade of heterotrophic bacteria in the oceans. These strategies are also explored using genomic data. Although the methods and data are imperfect, the available data can be used to set limits on growth rates and thus on the timescale for changes in the composition and structure of microbial communities.

  15. Temperature influence on phytoplankton community growth rates

    NASA Astrophysics Data System (ADS)

    Sherman, Elliot; Moore, J. Keith; Primeau, Francois; Tanouye, David

    2016-04-01

    A large database of field estimates of phytoplankton community growth rates in natural populations was compiled and analyzed to determine the apparent temperature effect on phytoplankton community growth rate. We conducted an ordinary least squares regression to optimize the parameters in two commonly used growth-temperature relations (Arrhenius and Q10 models). Both equations fit the observational data equally with the optimized parameter values. The optimum apparent Q10 value was 1.47 ± 0.08 (95% confidence interval, CI). Microzooplankton grazing rates closely matched the temperature trends for phytoplankton growth. This likely reflects a dynamic adjustment of biomass and grazing rates by the microzooplankton to match their available food source, illustrating tight coupling of phytoplankton growth and microzooplankton grazing rates. The field-measured temperature effect and growth rates were compared with estimates from the satellite Carbon-based Productivity Model (CbPM) and three Earth System Models (ESMs), with model output extracted at the same month and sampling locations as the observations. The optimized, apparent Q10 value calculated for the CbPM was 1.51, with overestimation of growth rates. The apparent Q10 value in the Community Earth System Model (V1.0) was 1.65, with modest underestimation of growth rates. The GFDL-ESM2M and GFDL-ESM2G models produced apparent Q10 values of 1.52 and 1.39, respectively. Models with an apparent Q10 that is significantly greater than ~1.5 will overestimate the phytoplankton community growth response to the ongoing climate warming and will have spatial biases in estimated growth rates for the current era.

  16. Dinosaurian growth patterns and rapid avian growth rates.

    PubMed

    Erickson, G M; Rogers, K C; Yerby, S A

    2001-07-26

    Did dinosaurs grow in a manner similar to extant reptiles, mammals or birds, or were they unique? Are rapid avian growth rates an innovation unique to birds, or were they inherited from dinosaurian precursors? We quantified growth rates for a group of dinosaurs spanning the phylogenetic and size diversity for the clade and used regression analysis to characterize the results. Here we show that dinosaurs exhibited sigmoidal growth curves similar to those of other vertebrates, but had unique growth rates with respect to body mass. All dinosaurs grew at accelerated rates relative to the primitive condition seen in extant reptiles. Small dinosaurs grew at moderately rapid rates, similar to those of marsupials, but large species attained rates comparable to those of eutherian mammals and precocial birds. Growth in giant sauropods was similar to that of whales of comparable size. Non-avian dinosaurs did not attain rates like those of altricial birds. Avian growth rates were attained in a stepwise fashion after birds diverged from theropod ancestors in the Jurassic period.

  17. Self-Actualization in a Marathon Growth Group: Do the Strong Get Stronger?

    ERIC Educational Resources Information Center

    Kimball, Ronald; Gelso, Charles J.

    This study examined the effects of a weekend marathon on the level of self-actualization of college students one and four weeks following their group experience. It also studied the relationship between ego strength and extent of change in self-actualization during a marathon. Generally, the group experience did increase self-actualization and the…

  18. 41 CFR 301-11.6 - Where do I find maximum per diem and actual expense rates?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Federal Travel Regulation System TEMPORARY DUTY (TDY) TRAVEL ALLOWANCES ALLOWABLE TRAVEL EXPENSES 11-PER...? Consult this table to find out where to access per diem rates for various types of Government travel: For travel in Rates set by For per diem and actual expense see (a) Continental United States (CONUS)...

  19. Population growth rates: issues and an application.

    PubMed Central

    Godfray, H Charles J; Rees, Mark

    2002-01-01

    Current issues in population dynamics are discussed in the context of The Royal Society Discussion Meeting 'Population growth rate: determining factors and role in population regulation'. In particular, different views on the centrality of population growth rates to the study of population dynamics and the role of experiments and theory are explored. Major themes emerging include the role of modern statistical techniques in bringing together experimental and theoretical studies, the importance of long-term experimentation and the need for ecology to have model systems, and the value of population growth rate as a means of understanding and predicting population change. The last point is illustrated by the application of a recently introduced technique, integral projection modelling, to study the population growth rate of a monocarpic perennial plant, its elasticities to different life-history components and the evolution of an evolutionarily stable strategy size at flowering. PMID:12396521

  20. Growth rate, population entropy, and perturbation theory.

    PubMed

    Demetrius, L

    1989-04-01

    This paper is concerned with the connection between two classes of population variables: measures of population growth rate--the Malthusian parameter, the net reproduction rate, the gross reproduction rate, and the mean life expectancy; and measures of demographic heterogeneity--population entropy. It is shown that the entropy functions predict the response of the growth rate parameters to perturbations in the age-specific fecundity and mortality schedule. These results are invoked to introduce the notion of environmental intensity. The intensity function, expressed in terms of the entropy parameters, is applied to give a comparative study of the effect of environmental factors on the dynamics of Swedish and French populations.

  1. Drift mode growth rates and associated transport

    SciTech Connect

    Redd, A.J.; Kritz, A.H.; Bateman, G.; Rewoldt, G.; Tang, W.M.

    1999-04-01

    Drift mode linear growth rates and quasilinear transport are investigated using the FULL kinetic stability code [Rewoldt {ital et al.}, Phys. Plasmas {bold 5}, 1815 (1998)] and a version of the Weiland transport model [Strand {ital et al.}, Nucl. Fusion {bold 38}, 545 (1998)]. It is shown that the drift mode growth rates (as well as the marginal stability temperature gradient) obtained using the FULL code are dependent on the accuracy of the equilibrium employed. In particular, when an approximate equilibrium model is utilized by the FULL code, the results can differ significantly from those obtained using a more accurate numerical equilibrium. Also investigated are the effects of including full electron physics. It is shown, using both the FULL code and the Weiland model, that the nonadiabatic (e.g., trapped) electron response produces a significant increase in the linear growth rate of the ion-temperature-gradient (ITG) driven branch of the drift instability. Other consequences of the nonadiabatic electron response include a reduction in the marginal temperature gradient for the onset of the ITG mode and an additional contribution to transport due to the excitation of the Trapped Electron Mode (TEM). Physical explanations are given for the sensitivity of the mode growth rates to the equilibrium and the nonadiabatic electron response. Finally, linear growth rates for the ITG mode computed using the FULL code are compared with growth rates obtained using the Weiland model. {copyright} {ital 1999 American Institute of Physics.}

  2. On growth rate hysteresis and catastrophic crystal growth

    NASA Astrophysics Data System (ADS)

    Ferreira, Cecília; Rocha, Fernando A.; Damas, Ana M.; Martins, Pedro M.

    2013-04-01

    Different crystal growth rates as supersaturation is increasing or decreasing in impure media is a phenomenon called growth rate hysteresis (GRH) that has been observed in varied systems and applications, such as protein crystallization or during biomineralization. We have recently shown that the transient adsorption of impurities onto newly formed active sites for growth (or kinks) is sensitive to the direction and rate of supersaturation variation, thus providing a possible explanation for GRH [6]. In the present contribution, we expand on this concept by deriving the analytical expressions for transient crystal growth based on the energetics of growth hillock formation and kink occupation by impurities. Two types of GRH results are described according to the variation of kink density with supersaturation: for nearly constant density, decreasing or increasing supersaturation induce, respectively, growth promoting or inhibiting effects relative to equilibrium conditions. This is the type of GRH measured by us during the crystallization of egg-white lysozyme. For variable kink density, slight changes in the supersaturation level may induce abrupt variations in the crystal growth rate. Different literature examples of this so-called 'catastrophic' crystal growth are discussed in terms of their fundamental consequences.

  3. Ultraslow growth rates of giant gypsum crystals

    PubMed Central

    Van Driessche, A. E. S.; García-Ruíz, J. M.; Tsukamoto, K.; Patiño-Lopez, L. D.; Satoh, H.

    2011-01-01

    Mineralogical processes taking place close to equilibrium, or with very slow kinetics, are difficult to quantify precisely. The determination of ultraslow dissolution/precipitation rates would reveal characteristic timing associated with these processes that are important at geological scale. We have designed an advanced high-resolution white-beam phase-shift interferometry microscope to measure growth rates of crystals at very low supersaturation values. To test this technique, we have selected the giant gypsum crystals of Naica ore mines in Chihuahua, Mexico, a challenging subject in mineral formation. They are thought to form by a self-feeding mechanism driven by solution-mediated anhydrite-gypsum phase transition, and therefore they must be the result of an extremely slow crystallization process close to equilibrium. To calculate the formation time of these crystals we have measured the growth rates of the {010} face of gypsum growing from current Naica waters at different temperatures. The slowest measurable growth rate was found at 55 °C, 1.4 ± 0.2 × 10-5 nm/s, the slowest directly measured normal growth rate for any crystal growth process. At higher temperatures, growth rates increase exponentially because of decreasing gypsum solubility and higher kinetic coefficient. At 50 °C neither growth nor dissolution was observed indicating that growth of giant crystals of gypsum occurred at Naica between 58 °C (gypsum/anhydrite transition temperature) and the current temperature of Naica waters, confirming formation temperatures determined from fluid inclusion studies. Our results demonstrate the usefulness of applying advanced optical techniques in laboratory experiments to gain a better understanding of crystal growth processes occurring at a geological timescale. PMID:21911400

  4. Ultraslow growth rates of giant gypsum crystals.

    PubMed

    Van Driessche, A E S; García-Ruíz, J M; Tsukamoto, K; Patiño-Lopez, L D; Satoh, H

    2011-09-20

    Mineralogical processes taking place close to equilibrium, or with very slow kinetics, are difficult to quantify precisely. The determination of ultraslow dissolution/precipitation rates would reveal characteristic timing associated with these processes that are important at geological scale. We have designed an advanced high-resolution white-beam phase-shift interferometry microscope to measure growth rates of crystals at very low supersaturation values. To test this technique, we have selected the giant gypsum crystals of Naica ore mines in Chihuahua, Mexico, a challenging subject in mineral formation. They are thought to form by a self-feeding mechanism driven by solution-mediated anhydrite-gypsum phase transition, and therefore they must be the result of an extremely slow crystallization process close to equilibrium. To calculate the formation time of these crystals we have measured the growth rates of the {010} face of gypsum growing from current Naica waters at different temperatures. The slowest measurable growth rate was found at 55 °C, 1.4 ± 0.2 × 10(-5) nm/s, the slowest directly measured normal growth rate for any crystal growth process. At higher temperatures, growth rates increase exponentially because of decreasing gypsum solubility and higher kinetic coefficient. At 50 °C neither growth nor dissolution was observed indicating that growth of giant crystals of gypsum occurred at Naica between 58 °C (gypsum/anhydrite transition temperature) and the current temperature of Naica waters, confirming formation temperatures determined from fluid inclusion studies. Our results demonstrate the usefulness of applying advanced optical techniques in laboratory experiments to gain a better understanding of crystal growth processes occurring at a geological timescale.

  5. Learning improves growth rate in grasshoppers.

    PubMed

    Dukas, R; Bernays, E A

    2000-03-14

    To quantify the adaptive significance of insect learning, we documented the behavior and growth rate of grasshoppers (Schistocerca americana) in an environment containing two artificial food types, one providing a balanced diet of protein and carbohydrate, which maximizes growth, and the other being carbohydrate-deficient, which is unsuitable for growth. Grasshoppers in the Learning treatment experienced a predictable environment, where the spatial location, taste, and color of each food source remained constant throughout the experiment. In contrast, grasshoppers of the Random treatment developed in a temporally varying environment, where the spatial location, taste, and color of the balanced and deficient food types randomly alternated twice each day. Our results show that the grasshoppers that could employ associative learning for diet choice experienced higher growth rates than individuals of the Random treatment, demonstrating the adaptive significance of learning in a small short-lived insect.

  6. 41 CFR 301-11.6 - Where do I find maximum per diem and actual expense rates?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., and available on the Internet at http://www.gsa.gov/perdiem. For actual expense, see 41 CFR 301-11.300... or Internet at http://www.defensetravel.dod.mil/site/perdiemCalc.cfm. (Rates also appear in section... State Standardized Regulations (Government Civilians-Foreign Areas) and available on the Internet at...

  7. Determination of relative growth rates of natural quartz crystals

    PubMed

    Ihinger; Zink

    2000-04-20

    Although the theory describing crystal growth in the geological environment is well established, there are few quantitative studies that delimit the absolute time involved in the growth of natural crystals. The actual mechanisms responsible for the variation in size and shape of individual crystal faces are, in fact, not well understood. Here we describe a micro-infrared spectroscopic study of a single, gem-quality quartz crystal that allows us to measure the size, shape and relative growth rate of each of the crystal faces that are active throughout its growth history. We demonstrate that the abundances of hydrogen-bearing impurities can serve as 'speedometers' to monitor the growth rate of advancing crystal faces. Our technique can be applied to crystals from a variety of geological environments to determine their growth histories. Within the electronics industry, the technique might facilitate the production of defect-free synthetic crystals required for high-quality resonators and, ultimately, might allow determination of the absolute time involved in geological processes such as the crystallization of magmas, fluid flow in metamorphism and the sealing of open cracks in earthquake rupture zones.

  8. Revisiting the Estimation of Dinosaur Growth Rates

    PubMed Central

    Myhrvold, Nathan P.

    2013-01-01

    Previous growth-rate studies covering 14 dinosaur taxa, as represented by 31 data sets, are critically examined and reanalyzed by using improved statistical techniques. The examination reveals that some previously reported results cannot be replicated by using the methods originally reported; results from new methods are in many cases different, in both the quantitative rates and the qualitative nature of the growth, from results in the prior literature. Asymptotic growth curves, which have been hypothesized to be ubiquitous, are shown to provide best fits for only four of the 14 taxa. Possible reasons for non-asymptotic growth patterns are discussed; they include systematic errors in the age-estimation process and, more likely, a bias toward younger ages among the specimens analyzed. Analysis of the data sets finds that only three taxa include specimens that could be considered skeletally mature (i.e., having attained 90% of maximum body size predicted by asymptotic curve fits), and eleven taxa are quite immature, with the largest specimen having attained less than 62% of predicted asymptotic size. The three taxa that include skeletally mature specimens are included in the four taxa that are best fit by asymptotic curves. The totality of results presented here suggests that previous estimates of both maximum dinosaur growth rates and maximum dinosaur sizes have little statistical support. Suggestions for future research are presented. PMID:24358133

  9. Enteric bacterial growth rates in river water.

    PubMed

    Hendricks, C W

    1972-08-01

    Enteric bacteria, including stocked strains of pathogenic species and organisms naturally present in the stream, were capable of growth in a chemostat with autoclaved river water taken 750 m below a sewage outfall. Maximal specific growth rates for all organisms occurred at 30 C, whereas culture generation times ranged between 33.3 and 116 hr. Of the six laboratory strains of enteric species used, Escherichia coli and Enterobacter aerogenes grew at generation times of 34.5 and 33.3 hr, respectively, while the remaining Proteus, Arizona, Salmonella, and Shigella spp. reproduced at a rate two to three times slower than the coliforms. Little or no growth occurred in the water at incubation temperatures of 20 and 5 C, and death was observed for Salmonella senftenberg at 20 and 5 C and for E. aerogenes and Proteus rettgeri at 5 C. When enteric bacteria naturally present in the river water were employed in similar experiments, coliform bacteria demonstrated a generation time of approximately 116 hr, whereas fecal coliforms failed to grow. Growth of the bacteria from the river demonstrated a periodicity of approximately 100 hr, which suggests that much of the growth of these organisms in the chemostat may be on the glass surfaces. This phenomenon, however, was not observed with any of the stocked enteric species. Neither the stock cultures nor the aquatic strains were capable of growth in autoclaved river water taken above the sewage outfall at the three temperatures tested.

  10. Actual Change and Inaccurate Recall Contribute to Posttraumatic Growth following Radiotherapy

    ERIC Educational Resources Information Center

    Ransom, Sean; Sheldon, Kennon M.; Jacobsen, Paul B.

    2008-01-01

    People with cancer often report that they experience personal growth as a result of the disease, but such reports have unclear validity. Some suggest such growth results from Rogers's (1951) hypothesized organismic valuing process (OVP), an innate tendency for people to gravitate toward well-being; others suggest this growth may be a positive…

  11. Metabolic rate control during extravehicular activity simulations and measurement techniques during actual EVAS

    NASA Technical Reports Server (NTRS)

    Horrigan, D. J.

    1975-01-01

    A description of the methods used to control and measure metabolic rate during ground simulations is given. Work levels attained at the Space Environment Simulation Laboratory are presented. The techniques and data acquired during ground simulations are described and compared with inflight procedures. Data from both the Skylab and Apollo Program were utilized and emphasis is given to the methodology, both in simulation and during flight. The basic techniques of work rate assessment are described. They include oxygen consumption, which was useful for averages over long time periods, heart rate correlations based on laboratory calibrations, and liquid cooling garment temperature changes. The relative accuracy of these methods as well as the methods of real-time monitoring at the Mission Control Center are discussed. The advantages and disadvantages of each of the metabolic measurement techniques are discussed. Particular emphasis is given to the problem of utilizing oxygen decrement for short time periods and heart rate at low work levels. A summary is given of the effectiveness of work rate control and measurements; and current plans for future EVA monitoring are discussed.

  12. Growth rates of Chinese and American alligators.

    PubMed

    Herbert, J D; Coulson, T D; Coulson, R A

    2002-04-01

    Growth rates in two closely related species, Alligator mississippiensis (American alligator) and Alligator sinensis (Chinese alligator), were compared under identical conditions for at least 1 year after hatching. When hatched, Chinese alligators were approximately 2/3 the length and approximately 1/2 the weight of American alligator hatchlings. At the end of 1 year of growth in captivity in heated chambers, the Chinese alligators were approximately 1/2 as long and weighed approximately 1/10 as much as American alligator yearlings. When the animals were maintained at 31 degrees C, Chinese alligator food consumption and length gain rates dropped to near zero during autumn and winter and body weights decreased slightly, apparently in response to the change in day length. At constant temperature (31 degrees C), food consumption by American alligators remained high throughout the year. Length gain rates in American alligators decreased slowly as size increased, but were not affected by photoperiod. Daily weight gains in American alligators increased steadily throughout the year. In autumn, provision of artificial light for 18 h a day initially stimulated both length and weight gain in Chinese alligators, but did not affect growth in American alligators. Continuation of the artificial light regimen seemed to cause deleterious effects in the Chinese alligators after several months, however, so that animals exposed to the normal light cycle caught up to and then surpassed the extra-light group in size. Even after removal of the artificial light, it was several months before these extra-light animals reverted to a normal growth pattern. These findings may be of interest to those institutions engaged in captive growth programs intended to provide animals for reintroduction to the wild or to protected habitat.

  13. Polymorphic growth rates in myrmecophilous insects.

    PubMed

    Schönrogge, K; Wardlaw, J C; Thomas, J A; Elmes, G W

    2000-04-22

    A polymorphism in growth rates was recently described affecting the larval development of the myrmecophilous butterfly Maculinea rebeli, spanning different years in a single insect population. The close integration of M. rebeli into the host ant colonies, facilitated by adaptations in behaviour and chemical mimicry, make extended larval development a successful strategy. Here we present additional data for M. rebeli and new data for Maculinea alcon (another cuckoo-feeding lycaenid) and the two myrmecophilous predators Maculinea arion and Microdon mutabilis (Diptera: Syrphidae). As predicted, M. alcon shows the same growth pattern as M. rebeli with a proportion of caterpillars developing in one year and the remainder over two years. This pattern holds in both northern and southern European populations, where M. alcon exploits different species of host. Against expectation, the same bimodal distribution of pre-pupation body weights, indicating one and two year developers, was found for the larvae of M. arion and M. mutabilis. As predators, both species are less closely integrated in their host ant colonies, suggesting that the polymorphism in growth rates is a more general adaptation to a myrmecophilous life style, arrived at by convergent evolution between the Maculinea and Microdon species. For predatory species we suggest that biennialism is an adaptation to the migratory behaviour of the host made possible by the predators' ability to fast over extended periods. We also hypothesize that M. arion represents an ancestral strategy in Maculinea butterflies and that the growth polymorphism might have become genetically fixed in the cuckoo-feeding species.

  14. Controlling Growth Rates of Protein Samples

    NASA Technical Reports Server (NTRS)

    Herrmann, Frederick T.; Herren, Blair J.

    1987-01-01

    Apparatus enables control of humidity in chamber to control rates of growth of crystalline samples of protein. Size of drop of solution from which protein is grown made larger or smaller by condensation or evaporation of water. Situated between desiccant and water source, drop of protein solution shrinks or swells, according to which valve operator opens. Growing protein crystal viewed through polarizing film. Readily adapted to automation.

  15. A review of the actual knowledge of the processes governing growth and development of long bones.

    PubMed

    Pazzaglia, Ugo Ernesto; Beluffi, Giampiero; Benetti, Anna; Bondioni, Maria Pia; Zarattini, Guido

    2011-01-01

    Autoptic samples of human bones (from 8 weeks of gestation to 12 years of age) and a second group of serial, skeletal x-rays (required for pathologies not related to bone dysplasia in children from 4 months to 17 years of age) provided the material for the analysis of the physes normal growth mechanism presented in this review. Before the appearance of the ossification centers epiphyseal growth rests exclusively on chondrocytes proliferation (interstitial growth), without any detectable differentiated cellular organization. When endochondral ossification starts a defined spatial disposition of chondrocytes and a corresponding organization of the intercellular matrix is set up, so that it is possible to identify a growth vector corresponding to the columns of piled chondrocytes with direction from hypertrophic toward the proliferative cell layers. The complexity of the tubular bones growth process is well represented by the spatial arrangement of the growth vectors. In the late epiphyseal growth another mechanism is active in addition to endochondral ossification, namely, articular cartilage interstitial growth and subchondral remodelling. The knowledge of the normal mode of organization of the physis and its temporal sequence can help to better understand of the deviaton from the normal development of metaphyseal and epiphyseal dysplasias.

  16. Perceived and Actual Change in Religion/Spirituality in Cancer Survivors: Longitudinal Relationships With Distress and Perceived Growth

    PubMed Central

    Trevino, Kelly M.; Naik, Aanand D.; Moye, Jennifer

    2016-01-01

    This observational cohort study examined the relationships between actual and perceived R/S change at 12 months post cancer diagnosis with depression, anxiety, and perceived growth 6 months later. Older adult military veteran cancer survivors (n = 111) completed self-report surveys at 6, 12, and 18 months post cancer diagnosis. Perceived R/S change was assessed at 12 months postdiagnosis with “Have your religious or spiritual beliefs changed as a result of your cancer” (more R/S, less R/S, other). Actual R/S change was assessed at 6 and 12 months postdiagnosis on a single item, “I have faith in God or a Higher Power” (no, somewhat, yes). A notable minority reported perceived (18.9%) and actual (14.4%) change. Greater perceived R/S change predicted more severe symptoms of depression and anxiety and greater perceived growth at 18 months postdiagnosis; perceived growth was positively associated with anxiety. Cancer survivors who report R/S changes may benefit from spiritual and/or psychological support. PMID:27453768

  17. Perceived and Actual Change in Religion/Spirituality in Cancer Survivors: Longitudinal Relationships With Distress and Perceived Growth.

    PubMed

    Trevino, Kelly M; Naik, Aanand D; Moye, Jennifer

    2016-08-01

    This observational cohort study examined the relationships between actual and perceived R/S change at 12 months post cancer diagnosis with depression, anxiety, and perceived growth 6 months later. Older adult military veteran cancer survivors (n = 111) completed self-report surveys at 6, 12, and 18 months post cancer diagnosis. Perceived R/S change was assessed at 12 months postdiagnosis with "Have your religious or spiritual beliefs changed as a result of your cancer" (more R/S, less R/S, other). Actual R/S change was assessed at 6 and 12 months postdiagnosis on a single item, "I have faith in God or a Higher Power" (no, somewhat, yes). A notable minority reported perceived (18.9%) and actual (14.4%) change. Greater perceived R/S change predicted more severe symptoms of depression and anxiety and greater perceived growth at 18 months postdiagnosis; perceived growth was positively associated with anxiety. Cancer survivors who report R/S changes may benefit from spiritual and/or psychological support.

  18. Speeding up Growth: Selection for Mass-Independent Maximal Metabolic Rate Alters Growth Rates.

    PubMed

    Downs, Cynthia J; Brown, Jessi L; Wone, Bernard W M; Donovan, Edward R; Hayes, Jack P

    2016-03-01

    Investigations into relationships between life-history traits, such as growth rate and energy metabolism, typically focus on basal metabolic rate (BMR). In contrast, investigators rarely examine maximal metabolic rate (MMR) as a relevant metric of energy metabolism, even though it indicates the maximal capacity to metabolize energy aerobically, and hence it might also be important in trade-offs. We studied the relationship between energy metabolism and growth in mice (Mus musculus domesticus Linnaeus) selected for high mass-independent metabolic rates. Selection for high mass-independent MMR increased maximal growth rate, increased body mass at 20 weeks of age, and generally altered growth patterns in both male and female mice. In contrast, there was little evidence that the correlated response in mass-adjusted BMR altered growth patterns. The relationship between mass-adjusted MMR and growth rate indicates that MMR is an important mediator of life histories. Studies investigating associations between energy metabolism and life histories should consider MMR because it is potentially as important in understanding life history as BMR.

  19. Ratings of perceived exertion-lactate association during actual singles tennis match play.

    PubMed

    Mendez-Villanueva, Alberto; Fernandez-Fernández, Jaime; Bishop, David; Fernandez-Garcia, Benjamin

    2010-01-01

    To examine the relationship between metabolic (i.e., blood lactate concentration) and perceptual (ratings of perceived exertion, RPE) responses and their association with variables describing the characteristics of the singles tennis match play. Eight trained and internationally ranked (Association of Tennis Professionals rankings) male tennis players were studied during singles matches (best of 3 sets) played on an outdoor clay court surface during a professional invitational tournament. Ratings of perceived exertion and blood lactate concentrations were determined at selected change overs during the game. The variables describing the characteristics of the matches, (a) duration of rallies (DR), (b) rest time, (c) effective playing time, and (d) strokes per rally (SR), were determined from video recordings. Significant correlations (r = 0.57-0.48; p < 0.01) were found for RPE-blood lactate responses during the games. Both RPE and blood lactate concentration values were significantly correlated with SR and DR (r = 0.80-0.61; p < 0.001) in service games. Average RPE was significantly higher (p < 0.05) following service games (13.5 +/- 1.9; n = 24) than following receiving games (12.2 +/- 2.0; n = 22). Mean blood lactate concentrations were significantly higher (p < 0.05) following service games (4.4 +/- 2.4 mmol.L; n = 24) than following receiving games (3.0 +/- 1.3 mmol.L; n = 22). These results indicate that monitoring RPE may be a useful technique for regulating on-court tennis training intensity. Moreover, blood lactate may mediate the relation between RPE and tennis match play intensity.

  20. Nd isotopes and crustal growth rate

    NASA Technical Reports Server (NTRS)

    Albarede, F.

    1988-01-01

    Sm/Nd isotopic constraints on crustal growth is discussed. In order to constrain Sm/Nd fractionation between continental crust and depleted mantle, an extensive data base of isotopic measurements (assumed to be adequately representative of continental crust) was compiled. The results imply that the evolution of depleted mantles was roughly linear, with no major discontinuities over the course of geologic time. This is different from other determinations of depleting mantle evolution, which show nonlinear behavior. The Sm/Nd evolution lines for continental crust and depleted mantle intersect between 3.8 to 4.0 Ga, which may indicate that the onset of continental growth was later than 4.5 Ga. A mathematical model is described, the results of which imply that time integrated crustal additions from the mantle are about 1.8 to 2.5 cu km/a, whereas crustal subtractions by sediment recycling are about 0.6 to 1.5 cu km/a. This results in a net time integrated crustal growth rate of about 1 cu km/a, which is similar to present day rates determined, for example, by Reymer and Schubert.

  1. [THE ACTUAL APPROACHES TO PROBLEM OF IMPORT SUBSTITUTION IN TH FIELD OF PRODUCTION GROWTH MEDIUM].

    PubMed

    Shepelin, A P; Domotenko, L V; Diatlov, I A; Mironov, A Yu; Aleshkin, V A

    2015-06-01

    The import substitution becomes one of strategic tasks of Russian economy as a result of imposition of economic sanctions on part of the USA, EU countries, Japan and number of other states. The development of structure and technology of production of national import substituted growth mediums permits satisfying needs of laboratory service of Russia inactive storage and to secure appropriate response to occurring challenges and new biological menaces and support bio-security of state at proper level. The presented data concerning substantiation of nomenclature of growth mediums and transport system permit satisfying in fullness the needs of clinical and sanitary microbiology in growth mediums of national production and to give up of import deliveries without decreasing of quality of microbiological studies.

  2. Magnetospheric chorus - Amplitude and growth rate

    NASA Technical Reports Server (NTRS)

    Burtis, W. J.; Helliwell, R. A.

    1975-01-01

    A new study of the amplitude of magnetospheric chorus with 1966-1967 data from the Stanford University/Stanford Research Institute VLF receivers on Ogo 1 and Ogo 3 has confirmed the band-limited character of magnetospheric chorus in general and the double-banding of near-equatorial chorus. Chorus amplitude tended to be inversely correlated with frequency, implying lower intensities at lower L values. Individual chorus emissions often showed a characteristic amplitude variation, with rise times of 10 to 300 ms, a short duration at peak amplitude, and decay times of 100 to 3000 msec. Growth was often approximately exponential, with rates from 200 to nearly 2000 dB/sec. Rate of change of frequency was found in many cases to be independent of emission amplitude, in agreement with the cyclotron feedback theory of chorus (Helliwell, 1967, 1970).

  3. Growth rate modeling for selective tungsten LPCVD

    NASA Astrophysics Data System (ADS)

    Wolf, H.; Streiter, R.; Schulz, S. E.; Gessner, T.

    1995-10-01

    Selective chemical vapor deposition of tungsten plugs on sputtered tungsten was performed in a single-wafer cold-wall reactor using silane (SiH 4) and tungsten hexafluoride (WF 6). Extensive SEM measurements of film thickness were carried out to study the dependence of growth rates on various process conditions, wafer loading, and via dimensions. The results have been interpreted by numerical calculations based on a simulation model which is also presented. Both continuum fluid dynamics and the ballistic line-of-sight approach are used for transport modeling. The reaction rate is described by an empirical rate expression using coefficients fitted from experimental data. In the range 0.2 < p( SiH 4) /p( WF 6) < 0.75 , the reaction order was determined as 1.55 and -0.55 with respect to SiH 4 and WF 6, respectively. For higher partial pressure ratios the second-order rate dependence on p(SiH 4) and the minus first-order dependence on p(WF 6) were confirmed.

  4. Instability growth rates of crossing sea states.

    PubMed

    Laine-Pearson, F E

    2010-03-01

    Crossing sea states can occur during adverse weather conditions. The instability of such wave trains has been suggested as a possible mechanism for the formation of rogue (freak or extreme) waves. One model for crossing sea states is weakly nonlinear and finite-amplitude short-crested waves (SCWs) on deep water. SCWs are the resonant interaction of two wave systems each with a different direction of propagation. Recently, it has been shown that the stability of these wave interactions is closely associated with the stability of the oblique nonresonant interaction between two waves. The long-wave instability of such waves is considered here; SCWs are used as a benchmark. By using a mismatch of amplitudes, it is demonstrated that instability growth rates of two crossing waves can be larger than those given by SCWs. This indicates that only considering true resonant interactions can underestimate the contribution from unstable crossing sea states to the possible formation of rogue waves.

  5. Growth Habits and Growth Rates of Snow Crystals

    NASA Astrophysics Data System (ADS)

    Mason, B. J.

    1993-04-01

    Equations are derived for the growth rates of snow crystals as they fall through the atmosphere in terms of the air temperature, supersaturation and their terminal velocities. The predicted maximum attainable diameters of regular hexagonal plates (0.84 mm), sector plates (ca. 2 mm) and stellar dendrites (3.5 mm) are in good agreement with observations based on Nakaya's large collection of snow crystal photographs. Mason et al. (Phil. Mag. 8, 505 (1963)) determined experimentally the average migration distance xB for water molecules diffusing across the basal surface of ice crystals as a function of temperature. These measurements of xB have now been supplemented by calculations of the corresponding quantity xp for the prism faces from measurements of the limiting c/a ratios of small growing crystals whose shape is largely determined by the values of both xp and xB.A theoretical treatment for the onset of dendritic growth leads to the result that a stationary thin regular hexagonal plate starts to sprout at the corners when its diameter dc exceeds 1.6 × 105 xp2/Dv, where Dv is the diffusion coefficient of water vapour in air. Plates grow in the temperature range -8 degrees C to -23 degrees C, for which dc ranges from 50 μ m at -15 degrees C to 670 μ m at -8 degrees C. For falling ventilated plates the corresponding values of dc are rather larger at 50 μ m and 940 μ m respectively, because the vapour concentration gradients around the crystal are enhanced. These latter values agree respectively with the observed minimum sizes of thin plates found at the centres of stellar dendritic crystals, and with the observed maximum size of regular plates. The observed maximum diameter (1.2 mm) of sector plates at the centre of dendritic crystals agrees well with calculations based on the assumption that these originate at about the -20 degrees C level and develop into dendrites only after falling below the -16 degrees C level. A mechanism, based on the interplay between

  6. Fingernail Growth and Time-Distance Rates in Geology.

    ERIC Educational Resources Information Center

    Rowland, Stephen M.

    1983-01-01

    Fingernail growth rates are easily measured over a period of a few weeks and provide opportunities for students to improve graphing skills. Fingernail growth rates are approximately the same as sea-floor spreading rates and can be used for comparing the rates of other geological processes such as tectonic uplift. (Author/JN)

  7. Actual measurement, hygrothermal response experiment and growth prediction analysis of microbial contamination of central air conditioning system in Dalian, China

    PubMed Central

    Lv, Yang; Hu, Guangyao; Wang, Chunyang; Yuan, Wenjie; Wei, Shanshan; Gao, Jiaoqi; Wang, Boyuan; Song, Fangchao

    2017-01-01

    The microbial contamination of central air conditioning system is one of the important factors that affect the indoor air quality. Actual measurement and analysis were carried out on microbial contamination in central air conditioning system at a venue in Dalian, China. Illumina miseq method was used and three fungal samples of two units were analysed by high throughput sequencing. Results showed that the predominant fungus in air conditioning unit A and B were Candida spp. and Cladosporium spp., and two fungus were further used in the hygrothermal response experiment. Based on the data of Cladosporium in hygrothermal response experiment, this paper used the logistic equation and the Gompertz equation to fit the growth predictive model of Cladosporium genera in different temperature and relative humidity conditions, and the square root model was fitted based on the two environmental factors. In addition, the models were carried on the analysis to verify the accuracy and feasibility of the established model equation. PMID:28367963

  8. Estimation of alga growth stage and lipid content growth rate

    NASA Technical Reports Server (NTRS)

    Embaye, Tsegereda N. (Inventor); Trent, Jonathan D. (Inventor)

    2012-01-01

    Method and system for estimating a growth stage of an alga in an ambient fluid. Measured light beam absorption or reflection values through or from the alga and through an ambient fluid, in each of two or more wavelength sub-ranges, are compared with reference light beam absorption values for corresponding wavelength sub-ranges for in each alga growth stage to determine (1) which alga growth stage, if any, is more likely and (2) whether estimated lipid content of the alga is increasing or has peaked. Alga growth is preferably terminated when lipid content has approximately reached a maximum value.

  9. Calcite crystal growth rate inhibition by polycarboxylic acids

    USGS Publications Warehouse

    Reddy, M.M.; Hoch, A.R.

    2001-01-01

    Calcite crystal growth rates measured in the presence of several polycarboxyclic acids show that tetrahydrofurantetracarboxylic acid (THFTCA) and cyclopentanetetracarboxylic acid (CPTCA) are effective growth rate inhibitors at low solution concentrations (0.01 to 1 mg/L). In contrast, linear polycarbocylic acids (citric acid and tricarballylic acid) had no inhibiting effect on calcite growth rates at concentrations up to 10 mg/L. Calcite crystal growth rate inhibition by cyclic polycarboxyclic acids appears to involve blockage of crystal growth sites on the mineral surface by several carboxylate groups. Growth morphology varied for growth in the absence and in the presence of both THFTCA and CPTCA. More effective growth rate reduction by CPTCA relative to THFTCA suggests that inhibitor carboxylate stereochemical orientation controls calcite surface interaction with carboxylate inhibitors. ?? 20O1 Academic Press.

  10. Economic growth rate management by soft computing approach

    NASA Astrophysics Data System (ADS)

    Maksimović, Goran; Jović, Srđan; Jovanović, Radomir

    2017-01-01

    Economic growth rate management is very important process in order to improve the economic stability of any country. The main goal of the study was to manage the impact of agriculture, manufacturing, industry and services on the economic growth rate prediction. Soft computing methodology was used in order to select the inputs influence on the economic growth rate prediction. It is known that the economic growth may be developed on the basis of combination of different factors. Gross domestic product (GDP) was used as economic growth indicator. It was found services have the highest impact on the GDP growth rate. On the contrary, the manufacturing has the smallest impact on the GDP growth rate.

  11. Measurement of seedling growth rate by machine vision

    NASA Astrophysics Data System (ADS)

    Howarth, M. Scott; Stanwood, Phillip C.

    1993-05-01

    Seed vigor and germination tests have traditionally been used to determine deterioration of seed samples. Vigor tests describe the seed potential to emerge and produce a mature crop under certain field conditions and one measure is seedling growth rate. A machine vision system was developed to measure root growth rate over the entire germination period. The machine vision measurement technique was compared to the manual growth rate technique. The vision system provided similar growth rate measurements as compared to the manual growth rate technique. The average error between the system and a manual measurement was -0.13 for the lettuce test and -0.07 for the sorghum test. This technique also provided an accurate representation of the growth rate as well as percent germination.

  12. Resistive Wall Growth Rate Measurements in the Fermilab Recycler

    SciTech Connect

    Ainsworth, R.; Adamson, P.; Burov, A.; Kourbanis, I.

    2016-10-05

    Impedance could represent a limitation of running high intensity beams in the Fermilab recycler. With high intensity upgrades foreseen, it is important to quantify the impedance. To do this,studies have been performed measuring the growth rate of presumably the resistive wall instability. The growth rates at varying intensities and chromaticities are shown. The measured growth rates are compared to ones calculated with the resistive wall impedance.

  13. Growth rate determinations from radiocarbon in bamboo corals (genus Keratoisis)

    NASA Astrophysics Data System (ADS)

    Farmer, Jesse R.; Robinson, Laura F.; Hönisch, Bärbel

    2015-11-01

    Radiocarbon (14C) measurements are an important tool for determining growth rates of bamboo corals, a cosmopolitan group of calcitic deep-sea corals. Published growth rate estimates for bamboo corals are highly variable, with potential environmental or ecological drivers of this variability poorly constrained. Here we systematically investigate the application of 14C for growth rate determinations in bamboo corals using 55 14C dates on the calcite and organic fractions of six bamboo corals (identified as Keratoisis sp.) from the western North Atlantic Ocean. Calcite 14C measurements on the distal surface of these corals and five previously published bamboo corals exhibit a strong one-to-one relationship with the 14C of dissolved inorganic carbon (DI14C) in ambient seawater (r2=0.98), confirming the use of Keratoisis sp. calcite 14C as a proxy for seawater 14C activity. Radial growth rates determined from 14C age-depth regressions, 14C plateau tuning and bomb 14C reference chronologies range from 12 to 78 μm y-1, in general agreement with previously published radiometric growth rates. We document potential biases to 14C growth rate determinations resulting from water mass variability, bomb radiocarbon, secondary infilling (ontogeny), and growth rate nonlinearity. Radial growth rates for Keratoisis sp. specimens do not correlate with ambient temperature, suggesting that additional biological and/or environmental factors may influence bamboo coral growth rates.

  14. Dinosaur Metabolism and the Allometry of Maximum Growth Rate

    PubMed Central

    Myhrvold, Nathan P.

    2016-01-01

    The allometry of maximum somatic growth rate has been used in prior studies to classify the metabolic state of both extant vertebrates and dinosaurs. The most recent such studies are reviewed, and their data is reanalyzed. The results of allometric regressions on growth rate are shown to depend on the choice of independent variable; the typical choice used in prior studies introduces a geometric shear transformation that exaggerates the statistical power of the regressions. The maximum growth rates of extant groups are found to have a great deal of overlap, including between groups with endothermic and ectothermic metabolism. Dinosaur growth rates show similar overlap, matching the rates found for mammals, reptiles and fish. The allometric scaling of growth rate with mass is found to have curvature (on a log-log scale) for many groups, contradicting the prevailing view that growth rate allometry follows a simple power law. Reanalysis shows that no correlation between growth rate and basal metabolic rate (BMR) has been demonstrated. These findings drive a conclusion that growth rate allometry studies to date cannot be used to determine dinosaur metabolism as has been previously argued. PMID:27828977

  15. Effects of loading on the growth rates of deep stress-corrosion cracks

    SciTech Connect

    Beavers, J.A.; Christman, T.K.

    1990-08-01

    The goal of this research program was to determine the effects of loading on growth of stress-corrosion cracks (SCC) in line pipe steel and whether special loading procedures could actually inhibit crack growth. Of particular interest was the effect of hydrostatic retesting on the subsequent growth of existing cracks. The growth rate experiments showed that the slow-strain rate loading could successfully nucleate a group of fine cracks with depths up to 0.025 inches (0.64 mm). However, the subsequent cyclic loading at typical operating stress levels (lower than experienced during the slow- strain rate loading) produced minimal crack growth and stopped soon after the test was started. The limited growth is believed to be a real phenomenon which means this is not a suitable procedure for the measurement of average crack growth rates. These experiments indicate that cracks grown at high stress (as in the slow-strain rate phase) do not readily propagate at lower stress levels. This may be because of crack closure (compressive crack tip residual stress) induced by the initial higher stress level. If that is true, then hydrostatic retests could inhibit the growth of existing stress-corrosion cracks, especially if the hydrostatic tests are conducted at high stress levels. 15 figures, 3 tabs.

  16. Effect of impurities on crystal growth rate of ammonium pentaborate

    NASA Astrophysics Data System (ADS)

    Şahin, Ö.; Özdemir, M.; Genli, N.

    2004-01-01

    The effect of sodium chloride, borax and boric acid of different concentrations on the growth rate of ammonium pentaborate octahydrate crystals (APBO) was measured and was found to depend on supersaturation in a fluidized bed crystallizer. The presence of impurities in APBO solution increases the growth rate compared with growth from pure solution. It was found that the presence of sodium chloride, borax and boric acid decreases the reaction rate constant kr, while it increases the mass-transfer coefficient, K, of APBO crystals. In pure aqueous solution, the crystal growth rate of APBO is mainly controlled by diffusion. However, both diffusion and integration steps affect the growth rate of APBO crystals in the presence of sodium chloride, borax and boric acid. The mass-transfer coefficient, K, reaction rate constant, kr and reaction order, r were calculated from general mass-transfer equation by using genetic algorithm method making no assumption.

  17. Growth rate changes of sodium chlorate crystals independent of growth conditions

    NASA Astrophysics Data System (ADS)

    Mitrović, M. M.; Žekić, A. A.; Baroš, Z. Z.

    2008-10-01

    Results of investigations of the growth rate changes inherent to the crystal are presented. It is shown that, in initial growth stage, there exist crystal growth rate changes independent of experimental conditions, with tendency to level during the time. Time evolution of sodium chlorate crystals growth rate dispersion is also presented. The results obtained show that these changes must be included in the interpretations of the growth rate changes affected by various parameters (supersaturation, temperature, fields, stress, impurities, etc.), which have not previously been taken into account. These results may improve the current crystal growth theories.

  18. Comparative analysis of animal growth: a primate continuum revealed by a new dimensionless growth rate coefficient.

    PubMed

    Vinicius, Lucio; Mumby, Hannah S

    2013-05-01

    The comparative analysis of animal growth still awaits full integration into life-history studies, partially due to the difficulty of defining a comparable measure of growth rate across species. Using growth data from 50 primate species, we introduce a modified "general growth model" and a dimensionless growth rate coefficient β that controls for size scaling and phylogenetic effects in the distribution of growth rates. Our results contradict the prevailing idea that slow growth characterizes primates as a group: the observed range of β values shows that not all primates grow slowly, with galago species exhibiting growth rates similar or above the mammalian average, while other strepsirrhines and most New World monkeys show limited reduction in growth rates. Low growth rate characterizes apes and some papionines. Phylogenetic regressions reveal associations between β and life-history variables, providing tests for theories of primate growth evolution. We also show that primate slow growth is an exclusively postnatal phenomenon. Our study exemplifies how the dimensionless approach promotes the integration of growth rate data into comparative life-history analysis, and demonstrates its potential applicability to other cases of adaptive diversification of animal growth patterns.

  19. Population growth rate and its determinants: an overview.

    PubMed Central

    Sibly, Richard M; Hone, Jim

    2002-01-01

    We argue that population growth rate is the key unifying variable linking the various facets of population ecology. The importance of population growth rate lies partly in its central role in forecasting future population trends; indeed if the form of density dependence were constant and known, then the future population dynamics could to some degree be predicted. We argue that population growth rate is also central to our understanding of environmental stress: environmental stressors should be defined as factors which when first applied to a population reduce population growth rate. The joint action of such stressors determines an organism's ecological niche, which should be defined as the set of environmental conditions where population growth rate is greater than zero (where population growth rate = r = log(e)(N(t+1)/N(t))). While environmental stressors have negative effects on population growth rate, the same is true of population density, the case of negative linear effects corresponding to the well-known logistic equation. Following Sinclair, we recognize population regulation as occurring when population growth rate is negatively density dependent. Surprisingly, given its fundamental importance in population ecology, only 25 studies were discovered in the literature in which population growth rate has been plotted against population density. In 12 of these the effects of density were linear; in all but two of the remainder the relationship was concave viewed from above. Alternative approaches to establishing the determinants of population growth rate are reviewed, paying special attention to the demographic and mechanistic approaches. The effects of population density on population growth rate may act through their effects on food availability and associated effects on somatic growth, fecundity and survival, according to a 'numerical response', the evidence for which is briefly reviewed. Alternatively, there may be effects on population growth rate of

  20. Allometries of maximum growth rate versus body mass at maximum growth indicate that non-avian dinosaurs had growth rates typical of fast growing ectothermic sauropsids.

    PubMed

    Werner, Jan; Griebeler, Eva Maria

    2014-01-01

    We tested if growth rates of recent taxa are unequivocally separated between endotherms and ectotherms, and compared these to dinosaurian growth rates. We therefore performed linear regression analyses on the log-transformed maximum growth rate against log-transformed body mass at maximum growth for extant altricial birds, precocial birds, eutherians, marsupials, reptiles, fishes and dinosaurs. Regression models of precocial birds (and fishes) strongly differed from Case's study (1978), which is often used to compare dinosaurian growth rates to those of extant vertebrates. For all taxonomic groups, the slope of 0.75 expected from the Metabolic Theory of Ecology was statistically supported. To compare growth rates between taxonomic groups we therefore used regressions with this fixed slope and group-specific intercepts. On average, maximum growth rates of ectotherms were about 10 (reptiles) to 20 (fishes) times (in comparison to mammals) or even 45 (reptiles) to 100 (fishes) times (in comparison to birds) lower than in endotherms. While on average all taxa were clearly separated from each other, individual growth rates overlapped between several taxa and even between endotherms and ectotherms. Dinosaurs had growth rates intermediate between similar sized/scaled-up reptiles and mammals, but a much lower rate than scaled-up birds. All dinosaurian growth rates were within the range of extant reptiles and mammals, and were lower than those of birds. Under the assumption that growth rate and metabolic rate are indeed linked, our results suggest two alternative interpretations. Compared to other sauropsids, the growth rates of studied dinosaurs clearly indicate that they had an ectothermic rather than an endothermic metabolic rate. Compared to other vertebrate growth rates, the overall high variability in growth rates of extant groups and the high overlap between individual growth rates of endothermic and ectothermic extant species make it impossible to rule out either of

  1. Allometries of Maximum Growth Rate versus Body Mass at Maximum Growth Indicate That Non-Avian Dinosaurs Had Growth Rates Typical of Fast Growing Ectothermic Sauropsids

    PubMed Central

    Werner, Jan; Griebeler, Eva Maria

    2014-01-01

    We tested if growth rates of recent taxa are unequivocally separated between endotherms and ectotherms, and compared these to dinosaurian growth rates. We therefore performed linear regression analyses on the log-transformed maximum growth rate against log-transformed body mass at maximum growth for extant altricial birds, precocial birds, eutherians, marsupials, reptiles, fishes and dinosaurs. Regression models of precocial birds (and fishes) strongly differed from Case’s study (1978), which is often used to compare dinosaurian growth rates to those of extant vertebrates. For all taxonomic groups, the slope of 0.75 expected from the Metabolic Theory of Ecology was statistically supported. To compare growth rates between taxonomic groups we therefore used regressions with this fixed slope and group-specific intercepts. On average, maximum growth rates of ectotherms were about 10 (reptiles) to 20 (fishes) times (in comparison to mammals) or even 45 (reptiles) to 100 (fishes) times (in comparison to birds) lower than in endotherms. While on average all taxa were clearly separated from each other, individual growth rates overlapped between several taxa and even between endotherms and ectotherms. Dinosaurs had growth rates intermediate between similar sized/scaled-up reptiles and mammals, but a much lower rate than scaled-up birds. All dinosaurian growth rates were within the range of extant reptiles and mammals, and were lower than those of birds. Under the assumption that growth rate and metabolic rate are indeed linked, our results suggest two alternative interpretations. Compared to other sauropsids, the growth rates of studied dinosaurs clearly indicate that they had an ectothermic rather than an endothermic metabolic rate. Compared to other vertebrate growth rates, the overall high variability in growth rates of extant groups and the high overlap between individual growth rates of endothermic and ectothermic extant species make it impossible to rule out either

  2. Can we estimate bacterial growth rates from ribosomal RNA content?

    SciTech Connect

    Kemp, P.F.

    1995-12-31

    Several studies have demonstrated a strong relationship between the quantity of RNA in bacterial cells and their growth rate under laboratory conditions. It may be possible to use this relationship to provide information on the activity of natural bacterial communities, and in particular on growth rate. However, if this approach is to provide reliably interpretable information, the relationship between RNA content and growth rate must be well-understood. In particular, a requisite of such applications is that the relationship must be universal among bacteria, or alternately that the relationship can be determined and measured for specific bacterial taxa. The RNA-growth rate relationship has not been used to evaluate bacterial growth in field studies, although RNA content has been measured in single cells and in bulk extracts of field samples taken from coastal environments. These measurements have been treated as probable indicators of bacterial activity, but have not yet been interpreted as estimators of growth rate. The primary obstacle to such interpretations is a lack of information on biological and environmental factors that affect the RNA-growth rate relationship. In this paper, the available data on the RNA-growth rate relationship in bacteria will be reviewed, including hypotheses regarding the regulation of RNA synthesis and degradation as a function of growth rate and environmental factors; i.e. the basic mechanisms for maintaining RNA content in proportion to growth rate. An assessment of the published laboratory and field data, the current status of this research area, and some of the remaining questions will be presented.

  3. Population growth rate determinants for Arbacia: Evaluating ecological relevance of toxicity test endpoints

    SciTech Connect

    Nacci, D.; Gleason, T.; Munns, W.R. Jr.

    1995-12-31

    A population dynamics model for the sea urchin, Arbacia punctulata, was recently developed incorporating life stage endpoints frequently measured in acute and chronic toxicity studies. Model elasticity analysis was used to demonstrate that population growth rate was influenced most by adult survival and least by early life stage success, calling into question the ecological relevance of results from standardized Arbacia fertilization and larval development toxicity tests. Two approaches were used to continue this evaluation. Actual and hypothetical dose-response curves for toxicant exposures over multiple life stages were used to evaluate contributions to population growth rate of stage-specific toxicant effects. Additionally, relationships between critical life stages were developed from laboratory data for Arbacia. The results of this analysis underscore the importance of understanding both endpoint sensitivity to toxicants and sensitivity of population growth rate to test endpoints in determining the ecological relevance of toxicity tests results.

  4. ULTRASOUND INCREASES THE RATE OF BACTERIAL CELL GROWTH

    PubMed Central

    Pitt, William G.; Ross, S. Aaron

    2006-01-01

    Ultrasound was employed to increase the growth rate of bacterial cells attached to surfaces. Staphylococcus epidermidis, Pseudomonas aeruginosa and Escherichia coli cells adhered to and grew on a polyethylene surface in the presence of ultrasound. It was found that low frequency ultrasound (70 kHz) of low acoustic intensity (<2 W/cm2) increased the growth rate of the cells compared to growth without ultrasound. However, at high intensity levels, cells were partially removed from the surface. Ultrasound also enhanced planktonic growth of S. epidermidis and other planktonic bacteria. It is hypothesized that ultrasound increases the rate of transport of oxygen and nutrients to the cells and increases the rate of transport of waste products away from the cells, thus enhancing their growth. PMID:12790676

  5. Growth Kinetics and Morphology of Barite Crystals Derived from Face-Specific Growth Rates

    SciTech Connect

    Godinho, Jose R. A.; Stack, Andrew G.

    2015-03-30

    Here we investigate the growth kinetics and morphology of barite (BaSO4) crystals by measuring the growth rates of the (001), (210), (010), and (100) surfaces using vertical scanning interferometry. Solutions with saturation indices 1.1, 2.1, and 3.0 without additional electrolyte, in 0.7 M NaCl, or in 1.3 mM SrCl2 are investigated. Face-specific growth rates are inhibited in the SrCl2 solution relative to a solution without electrolyte, except for (100). Contrarily, growth of all faces is promoted in the NaCl solution. The variation of face-specific rates is solution-specific, which leads to a. change of the crystal morphology and overall growth rate of crystals. The measured face-specific growth rates are used to model the growth of single crystals. Modeled crystals have a morphology and size similar to those grown from solution. Based on the model the time dependence of surface area and growth rates is analyzed. Growth rates change with time due to surface area normalization for small crystals and large growth intervals. By extrapolating rates to crystals with large surfaces areas, time-independent growth rates are 0.783, 2.96, and 0.513 mmol∙m-2∙h-1, for saturation index 2.1 solutions without additional electrolyte, NaCl, and SrCl2, respectively.

  6. Modeling the Growth Rates of Tetragonal Lysozyme Crystal Faces

    NASA Technical Reports Server (NTRS)

    Li, Meirong; Nadarajah, Arunan; Pusey, Marc L.

    1998-01-01

    The measured macroscopic growth rates of the (110) and (101) faces of tetragonal lysozyme show an unexpectedly complex dependence on the supersaturation. The growth rates decay asymptotically to zero when the supersaturation is lowered to zero and increase rapidly when the supersaturation is increased. When supersaturations are increased still further the growth rates attain a maximum before starting to decrease. However, growth of these crystals is known to proceed by the classical dislocation and 2D nucleation growth mechanisms. This anomaly can be explained if growth is assumed to occur not by monomer units but by lysozyme aggregates. Analysis of the molecular packing of these crystals revealed that they were constructed of strongly bonded 4(sub 3) helices, while weaker bonds were responsible for binding the helices to each other. It follows that during crystal growth the stronger bonds are formed before the weaker ones. Thus, the growth of these crystals could be viewed as a two step process: aggregate growth units corresponding to the 4(sub 3) helix are first formed in the bulk solution by stronger intermolecular bonds and then attached to the crystal face by weaker bonds on dislocation hillocks or 2D islands. This will lead to a distribution of aggregates in the solution with monomers and lower order aggregates being predominant at low supersaturations and higher order aggregates being predominant at high supersaturations. If the crystal grows mostly by higher order aggregates, such as tetramers and octamers, it would explain the anomalous dependence of the growth rates on the supersaturation. Besides the analysis of molecular packing, a comprehensive analysis of the measured (110) and (101) growth rates was also undertaken in this study. The distribution of aggregates in lysozyme nutrient solutions at various solution conditions were determined from reversible aggregation reactions at equilibrium. The supersaturation was defined for each aggregate species

  7. Growth and development rates have different thermal responses.

    PubMed

    Forster, Jack; Hirst, Andrew G; Woodward, Guy

    2011-11-01

    Growth and development rates are fundamental to all living organisms. In a warming world, it is important to determine how these rates will respond to increasing temperatures. It is often assumed that the thermal responses of physiological rates are coupled to metabolic rate and thus have the same temperature dependence. However, the existence of the temperature-size rule suggests that intraspecific growth and development are decoupled. Decoupling of these rates would have important consequences for individual species and ecosystems, yet this has not been tested systematically across a range of species. We conducted an analysis on growth and development rate data compiled from the literature for a well-studied group, marine pelagic copepods, and use an information-theoretic approach to test which equations best describe these rates. Growth and development rates were best characterized by models with significantly different parameters: development has stronger temperature dependence than does growth across all life stages. As such, it is incorrect to assume that these rates have the same temperature dependence. We used the best-fit models for these rates to predict changes in organism mass in response to temperature. These predictions follow a concave relationship, which complicates attempts to model the impacts of increasing global temperatures on species body size.

  8. Growth Kinetics and Morphology of Barite Crystals Derived from Face-Specific Growth Rates

    DOE PAGES

    Godinho, Jose R. A.; Stack, Andrew G.

    2015-03-30

    Here we investigate the growth kinetics and morphology of barite (BaSO4) crystals by measuring the growth rates of the (001), (210), (010), and (100) surfaces using vertical scanning interferometry. Solutions with saturation indices 1.1, 2.1, and 3.0 without additional electrolyte, in 0.7 M NaCl, or in 1.3 mM SrCl2 are investigated. Face-specific growth rates are inhibited in the SrCl2 solution relative to a solution without electrolyte, except for (100). Contrarily, growth of all faces is promoted in the NaCl solution. The variation of face-specific rates is solution-specific, which leads to a. change of the crystal morphology and overall growth ratemore » of crystals. The measured face-specific growth rates are used to model the growth of single crystals. Modeled crystals have a morphology and size similar to those grown from solution. Based on the model the time dependence of surface area and growth rates is analyzed. Growth rates change with time due to surface area normalization for small crystals and large growth intervals. By extrapolating rates to crystals with large surfaces areas, time-independent growth rates are 0.783, 2.96, and 0.513 mmol∙m-2∙h-1, for saturation index 2.1 solutions without additional electrolyte, NaCl, and SrCl2, respectively.« less

  9. Prediction of microbial growth rate versus biomass yield by a metabolic network with kinetic parameters.

    PubMed

    Adadi, Roi; Volkmer, Benjamin; Milo, Ron; Heinemann, Matthias; Shlomi, Tomer

    2012-01-01

    Identifying the factors that determine microbial growth rate under various environmental and genetic conditions is a major challenge of systems biology. While current genome-scale metabolic modeling approaches enable us to successfully predict a variety of metabolic phenotypes, including maximal biomass yield, the prediction of actual growth rate is a long standing goal. This gap stems from strictly relying on data regarding reaction stoichiometry and directionality, without accounting for enzyme kinetic considerations. Here we present a novel metabolic network-based approach, MetabOlic Modeling with ENzyme kineTics (MOMENT), which predicts metabolic flux rate and growth rate by utilizing prior data on enzyme turnover rates and enzyme molecular weights, without requiring measurements of nutrient uptake rates. The method is based on an identified design principle of metabolism in which enzymes catalyzing high flux reactions across different media tend to be more efficient in terms of having higher turnover numbers. Extending upon previous attempts to utilize kinetic data in genome-scale metabolic modeling, our approach takes into account the requirement for specific enzyme concentrations for catalyzing predicted metabolic flux rates, considering isozymes, protein complexes, and multi-functional enzymes. MOMENT is shown to significantly improve the prediction accuracy of various metabolic phenotypes in E. coli, including intracellular flux rates and changes in gene expression levels under different growth rates. Most importantly, MOMENT is shown to predict growth rates of E. coli under a diverse set of media that are correlated with experimental measurements, markedly improving upon existing state-of-the art stoichiometric modeling approaches. These results support the view that a physiological bound on cellular enzyme concentrations is a key factor that determines microbial growth rate.

  10. Microtubules Growth Rate Alteration in Human Endothelial Cells

    PubMed Central

    Alieva, Irina B.; Zemskov, Evgeny A.; Kireev, Igor I.; Gorshkov, Boris A.; Wiseman, Dean A.; Black, Stephen M.; Verin, Alexander D.

    2010-01-01

    To understand how microtubules contribute to the dynamic reorganization of the endothelial cell (EC) cytoskeleton, we established an EC model expressing EB3-GFP, a protein that marks microtubule plus-ends. Using this model, we were able to measure microtubule growth rate at the centrosome region and near the cell periphery of a single human EC and in the EC monolayer. We demonstrate that the majority of microtubules in EC are dynamic, the growth rate of their plus-ends is highest in the internal cytoplasm, in the region of the centrosome. Growth rate of microtubule plus-ends decreases from the cell center toward the periphery. Our data suggest the existing mechanism(s) of local regulation of microtubule plus-ends growth in EC. Microtubule growth rate in the internal cytoplasm of EC in the monolayer is lower than that of single EC suggesting the regulatory effect of cell-cell contacts. Centrosomal microtubule growth rate distribution in single EC indicated the presence of two subpopulations of microtubules with “normal” (similar to those in monolayer EC) and “fast” (three times as much) growth rates. Our results indicate functional interactions between cell-cell contacts and microtubules. PMID:20445745

  11. Microtubules growth rate alteration in human endothelial cells.

    PubMed

    Alieva, Irina B; Zemskov, Evgeny A; Kireev, Igor I; Gorshkov, Boris A; Wiseman, Dean A; Black, Stephen M; Verin, Alexander D

    2010-01-01

    To understand how microtubules contribute to the dynamic reorganization of the endothelial cell (EC) cytoskeleton, we established an EC model expressing EB3-GFP, a protein that marks microtubule plus-ends. Using this model, we were able to measure microtubule growth rate at the centrosome region and near the cell periphery of a single human EC and in the EC monolayer. We demonstrate that the majority of microtubules in EC are dynamic, the growth rate of their plus-ends is highest in the internal cytoplasm, in the region of the centrosome. Growth rate of microtubule plus-ends decreases from the cell center toward the periphery. Our data suggest the existing mechanism(s) of local regulation of microtubule plus-ends growth in EC. Microtubule growth rate in the internal cytoplasm of EC in the monolayer is lower than that of single EC suggesting the regulatory effect of cell-cell contacts. Centrosomal microtubule growth rate distribution in single EC indicated the presence of two subpopulations of microtubules with "normal" (similar to those in monolayer EC) and "fast" (three times as much) growth rates. Our results indicate functional interactions between cell-cell contacts and microtubules.

  12. Analysis of Monomer Aggregation and Crystal Growth Rates of Lysozyme

    NASA Technical Reports Server (NTRS)

    Nadarajah, Arunan

    1996-01-01

    This project was originally conceived to analyze the extensive data of tetragonal lysozyme crystal growth rates collected at NASA/MSFC by Dr. Marc L. Pusey's research group. At that time the lack of analysis of the growth rates was hindering progress in understanding the growth mechanism of tetragonal lysozyme and other protein crystals. After the project was initiated our initial analysis revealed unexpected complexities in the growth rate behavior. This resulted in an expansion in the scope of the project to include a comprehensive investigation of the growth mechanisms of tetragonal lysozyme crystals. A discussion of this research is included as well a list of presentations and publications resulting from the research. This project contributed significantly toward the education of several students and fostered extensive collaborations between investigators.

  13. Global evidence on the distribution of GDP growth rates

    NASA Astrophysics Data System (ADS)

    Williams, Michael A.; Baek, Grace; Li, Yiyang; Park, Leslie Y.; Zhao, Wei

    2017-02-01

    We study the size distribution of changes in the gross domestic product (GDP) of 167 countries for the period 1950-2011. A consensus has developed in the literature that the distribution of GDP growth rates can be approximated by the Laplace distribution in the central part and power-law distributions in the tails. Using a richer database than prior studies and testing for more theoretical distributions, we find that the distribution of GDP growth rates can be fitted using the heavy-tailed Cauchy distribution for almost all countries. Significantly, this same finding recently has been demonstrated for (1) the distribution of firm growth rates and (2) the distribution of firm economic profit rates. Together, these three findings suggest the possibility that there exist universal mechanisms that give rise to general laws governing the growth dynamics of firms and economies.

  14. Debris growth sensitivity to launch and cascade rates

    SciTech Connect

    Canavan, G.H.

    1996-10-24

    Two-component models provide a good description of debris growth from the outset of launch to the present, predictions of future trends, and assessments of their sensitivity. Launch rate reductions produce less than proportional reductions in debris, for reasons that are discussed. The shift of debris to higher altitudes is assessed quantitatively, although the details of the growth are discussed elsewhere.

  15. A Simple Device to Measure Root Growth Rates

    ERIC Educational Resources Information Center

    Rauser, Wilfried E.; Horton, Roger F.

    1975-01-01

    Describes construction and use of a simple auxanometer which students can use to accurately measure root growth rates of intact seedlings. Typical time course data are presented for the effect of ethylene and indole acetic acid on pea root growth. (Author/BR)

  16. Improving estimates of tree mortality probability using potential growth rate

    USGS Publications Warehouse

    Das, Adrian J.; Stephenson, Nathan L.

    2015-01-01

    Tree growth rate is frequently used to estimate mortality probability. Yet, growth metrics can vary in form, and the justification for using one over another is rarely clear. We tested whether a growth index (GI) that scales the realized diameter growth rate against the potential diameter growth rate (PDGR) would give better estimates of mortality probability than other measures. We also tested whether PDGR, being a function of tree size, might better correlate with the baseline mortality probability than direct measurements of size such as diameter or basal area. Using a long-term dataset from the Sierra Nevada, California, U.S.A., as well as existing species-specific estimates of PDGR, we developed growth–mortality models for four common species. For three of the four species, models that included GI, PDGR, or a combination of GI and PDGR were substantially better than models without them. For the fourth species, the models including GI and PDGR performed roughly as well as a model that included only the diameter growth rate. Our results suggest that using PDGR can improve our ability to estimate tree survival probability. However, in the absence of PDGR estimates, the diameter growth rate was the best empirical predictor of mortality, in contrast to assumptions often made in the literature.

  17. Growth rates in pediatric dialysis patients and renal transplant recipients.

    PubMed

    Turenne, M N; Port, F K; Strawderman, R L; Ettenger, R B; Alexander, S R; Lewy, J E; Jones, C A; Agodoa, L Y; Held, P J

    1997-08-01

    We compared growth rates by modality over a 6- to 14-month period in 1,302 US pediatric end-stage renal disese (ESRD) patients treated during 1990. Modality comparisons were adjusted for age, sex, race, ethnicity, and ESRD duration using linear regression models by age group (0.5 to 4 years, 5 to 9 years, 10 to 14 years, and 15 to 18 years). Growth rates were higher in young children receiving a transplant compared with those receiving dialysis (ages 0.5 to 4 years, delta = 3.1 cm/yr v continuous cycling peritoneal dialysis [CCPD], P < 0.01; ages 5 to 9 years, delta = 2.0 to 2.6 cm/yr v CCPD, chronic ambulatory peritoneal dialysis (CAPD), and hemodialysis, P < 0.01). In contrast, growth rates in older children were not statistically different when comparing transplantation with each dialysis modality. For most age groups of transplant recipients, we observed faster growth with alternate-day versus daily steroids that was not fully explained by differences in allograft function. Younger patients (<15 years) grew at comparable rates with each dialysis modality, while older CAPD patients grew faster compared with hemodialysis or CCPD patients (P < 0.02). There was no substantial pubertal growth spurt in transplant or dialysis patients. This national US study of pediatric growth rates with dialysis and transplantation shows differences in growth by modality that vary by age group.

  18. Global evidence on the distribution of firm growth rates

    NASA Astrophysics Data System (ADS)

    Williams, Michael A.; Pinto, Brijesh P.; Park, David

    2015-08-01

    The consensus finding in the literature is that the distribution of firm growth rates is best approximated by the Laplace distribution, a particular case of the Subbotin, or exponential power, family of probability distributions. Using a richer database than prior studies and testing for more theoretical distributions, we find that the distribution of firm growth rates is best approximated by the heavier-tailed Cauchy distribution.

  19. Growth rate of Enterobacteriaceae at elevated temperatures: limitation by methionine.

    PubMed

    Ron, E Z

    1975-10-01

    The effect of elevated temperatures on growth rate was studied in five strains of Enterobacteriaceae. In all the strains tested a shift to the elevated temperature resulted in an immediate decrease in growth rate which was due to limitation in the availability of endogenous methionine. The first biosynthetic enzyme of the methionine pathway-homoserine transsuccinylase-was studied in extracts of Aerobacter aerogenes, Salmonella typhimurium, and Escherichia coli and was shown to be temperature sensitive in all of them.

  20. Protein Thermodynamics Can Be Predicted Directly from Biological Growth Rates

    PubMed Central

    Corkrey, Ross; McMeekin, Tom A.; Bowman, John P.; Ratkowsky, David A.; Olley, June; Ross, Tom

    2014-01-01

    Life on Earth is capable of growing from temperatures well below freezing to above the boiling point of water, with some organisms preferring cooler and others hotter conditions. The growth rate of each organism ultimately depends on its intracellular chemical reactions. Here we show that a thermodynamic model based on a single, rate-limiting, enzyme-catalysed reaction accurately describes population growth rates in 230 diverse strains of unicellular and multicellular organisms. Collectively these represent all three domains of life, ranging from psychrophilic to hyperthermophilic, and including the highest temperature so far observed for growth (122°C). The results provide credible estimates of thermodynamic properties of proteins and obtain, purely from organism intrinsic growth rate data, relationships between parameters previously identified experimentally, thus bridging a gap between biochemistry and whole organism biology. We find that growth rates of both unicellular and multicellular life forms can be described by the same temperature dependence model. The model results provide strong support for a single highly-conserved reaction present in the last universal common ancestor (LUCA). This is remarkable in that it means that the growth rate dependence on temperature of unicellular and multicellular life forms that evolved over geological time spans can be explained by the same model. PMID:24787650

  1. Deformation of Platonic foam cells: effect on growth rate.

    PubMed

    Evans, Myfanwy E; Zirkelbach, Johannes; Schröder-Turk, Gerd E; Kraynik, Andrew M; Mecke, Klaus

    2012-06-01

    The diffusive growth rate of a polyhedral cell in dry three-dimensional foams depends on details of shape beyond cell topology, in contrast to the situation in two dimensions, where, by von Neumann's law, the growth rate depends only on the number of cell edges. We analyze the dependence of the instantaneous growth rate on the shape of single foam cells surrounded by uniform pressure; this is accomplished by supporting the cell with films connected to a wire frame and inducing cell distortions by deforming the wire frame. We consider three foam cells with a very simple topology; these are the Platonic foam cells, which satisfy Plateau's laws and are based on the trivalent Platonic solids (tetrahedron, cube, and dodecahedron). The Surface Evolver is used to model cell deformations induced through extension, compression, shear, and torsion of the wire frames. The growth rate depends on the deformation mode and frame size and can increase or decrease with increasing cell distortion. The cells have negative growth rates, in general, but dodecahedral cells subjected to torsion in small wire frames can have positive growth rates. The deformation of cubic cells is demonstrated experimentally.

  2. Deformation of Platonic foam cells: Effect on growth rate

    NASA Astrophysics Data System (ADS)

    Evans, Myfanwy E.; Zirkelbach, Johannes; Schröder-Turk, Gerd E.; Kraynik, Andrew M.; Mecke, Klaus

    2012-06-01

    The diffusive growth rate of a polyhedral cell in dry three-dimensional foams depends on details of shape beyond cell topology, in contrast to the situation in two dimensions, where, by von Neumann's law, the growth rate depends only on the number of cell edges. We analyze the dependence of the instantaneous growth rate on the shape of single foam cells surrounded by uniform pressure; this is accomplished by supporting the cell with films connected to a wire frame and inducing cell distortions by deforming the wire frame. We consider three foam cells with a very simple topology; these are the Platonic foam cells, which satisfy Plateau's laws and are based on the trivalent Platonic solids (tetrahedron, cube, and dodecahedron). The Surface Evolver is used to model cell deformations induced through extension, compression, shear, and torsion of the wire frames. The growth rate depends on the deformation mode and frame size and can increase or decrease with increasing cell distortion. The cells have negative growth rates, in general, but dodecahedral cells subjected to torsion in small wire frames can have positive growth rates. The deformation of cubic cells is demonstrated experimentally.

  3. Protein thermodynamics can be predicted directly from biological growth rates.

    PubMed

    Corkrey, Ross; McMeekin, Tom A; Bowman, John P; Ratkowsky, David A; Olley, June; Ross, Tom

    2014-01-01

    Life on Earth is capable of growing from temperatures well below freezing to above the boiling point of water, with some organisms preferring cooler and others hotter conditions. The growth rate of each organism ultimately depends on its intracellular chemical reactions. Here we show that a thermodynamic model based on a single, rate-limiting, enzyme-catalysed reaction accurately describes population growth rates in 230 diverse strains of unicellular and multicellular organisms. Collectively these represent all three domains of life, ranging from psychrophilic to hyperthermophilic, and including the highest temperature so far observed for growth (122 °C). The results provide credible estimates of thermodynamic properties of proteins and obtain, purely from organism intrinsic growth rate data, relationships between parameters previously identified experimentally, thus bridging a gap between biochemistry and whole organism biology. We find that growth rates of both unicellular and multicellular life forms can be described by the same temperature dependence model. The model results provide strong support for a single highly-conserved reaction present in the last universal common ancestor (LUCA). This is remarkable in that it means that the growth rate dependence on temperature of unicellular and multicellular life forms that evolved over geological time spans can be explained by the same model.

  4. The influence of impurities on the growth rate of calcite

    NASA Astrophysics Data System (ADS)

    Meyer, H. J.

    1984-05-01

    The effects of 34 different additives on the growth rate of calcite were investigated. An initial growth rate of about one crystal monolayer (3 × 10 -8 cm) per minute was adjusted at a constant supersaturation which was maintained by a control circuit. Then the impurity was added step by step and the reduction of the growth rate was measured. The impurity concentration necessary to reduce the initial growth rate by a certain percentage increased in the order Fe 2+, ATP, P 3O 5-10, P 2O 4-7, (PO 3) 6-6, Zn 2+, ADP, Ce 3+, Pb 2+, carbamyl phosphate, Fe 3+, PO 3-4, Co 2+, Mn 2+, Be 2+, β-glycerophosphate, Ni 2+, Cd 2+, "Tris", phenylphosphate, chondroitine sulphate, Ba 2+, citrate, AMP, Sr 2+, tricarballylate, taurine, SO 2-4, Mg 2+ by 4 orders of magnitude. The most effective additives halved the initial growth rate in concentrations of 2 × 10 -8 mol/1. For Fe 2+ the halving concentration was nearly proportional to the initial rate. The mechanism of inhibition by adsorption of the impurities at growth sites (kinks) is discussed.

  5. Seasonal variations in ectotherm growth rates: Quantifying growth as an intermittent non steady state compensatory process

    USGS Publications Warehouse

    Guarini, J.-M.; Chauvaud, Laurent; Cloern, J.E.; Clavier, J.; Coston-Guarini, J.; Patry, Y.

    2011-01-01

    Generally, growth rates of living organisms are considered to be at steady state, varying only under environmental forcing factors. For example, these rates may be described as a function of light for plants or organic food resources for animals and these could be regulated (or not) by temperature or other conditions. But, what are the consequences for an individual's growth (and also for the population growth) if growth rate variations are themselves dynamic and not steady state? For organisms presenting phases of dormancy or long periods of stress, this is a crucial question. A dynamic perspective for quantifying short-term growth was explored using the daily growth record of the scallop Pecten maximus (L.). This species is a good biological model for ectotherm growth because the shell records growth striae daily. Independently, a generic mathematical function representing the dynamics of mean daily growth rate (MDGR) was implemented to simulate a diverse set of growth patterns. Once the function was calibrated with the striae patterns, the growth rate dynamics appeared as a forced damped oscillation during the growth period having a basic periodicity during two transitory phases (mean duration 43. days) and appearing at both growth start and growth end. This phase is most likely due to the internal dynamics of energy transfer within the organism rather than to external forcing factors. After growth restart, the transitory regime represents successive phases of over-growth and regulation. This pattern corresponds to a typical representation of compensatory growth, which from an evolutionary perspective can be interpreted as an adaptive strategy to coping with a fluctuating environment. ?? 2011 Elsevier B.V.

  6. On the growth rate of gallstones in the human gallbladder

    NASA Astrophysics Data System (ADS)

    Nudelman, I.

    1993-05-01

    The growth rate of a single symmetrically oval shaped gallbladder stone weighing 10.8 g was recorded over a period of six years before surgery and removal. The length of the stone was measured by ultrasonography and the growth rate was found to be linear with time, with a value of 0.4 mm/year. A smaller stone growing in the wall of the gallbladder was detected only three years before removal and grew at a rate of ˜ 1.33 mm/year. The morphology and metallic ion chemical composition of the large stone and of a randomly selected small stone weighing about 1.1 g, extracted from another patient, were analyzed and compared. It was found that the large stone contained besides calcium also lead, whereas the small stone contained mainly calcium. It is possible that the lead causes a difference in mechanism between the growth of a single large and growth of multiple small gallstones.

  7. Investigation of growth rate dispersion in lactose crystallisation by AFM

    NASA Astrophysics Data System (ADS)

    Dincer, T. D.; Ogden, M. I.; Parkinson, G. M.

    2014-09-01

    α-Lactose monohydrate crystals have been reported to exhibit growth rate dispersion (GRD). Variation in surface dislocations has been suggested as the cause of GRD, but this has not been further investigated to date. In this study, growth rate dispersion and the change in morphology were investigated in situ and via bottle roller experiments. The surfaces of the (0 1 0) faces of crystals were examined with Atomic Force Microscopy. Smaller, slow growing crystals tend to have smaller (0 1 0) faces with narrow bases and displayed a single double spiral in the centre of the crystal with 2 nm high steps. Additional double spirals in other crystals resulted in faster growth rates. Large, fast growing crystals were observed to have larger (0 1 0) faces with fast growth in both the a and b directions (giving a broader crystal base) with macro steps parallel to the (c direction). The number and location of spirals or existence of macro steps appears to influence the crystal morphology, growth rates and growth rate dispersion in lactose crystals.

  8. The Interrelationship between Promoter Strength, Gene Expression, and Growth Rate

    PubMed Central

    Klesmith, Justin R.; Detwiler, Emily E.; Tomek, Kyle J.; Whitehead, Timothy A.

    2014-01-01

    In exponentially growing bacteria, expression of heterologous protein impedes cellular growth rates. Quantitative understanding of the relationship between expression and growth rate will advance our ability to forward engineer bacteria, important for metabolic engineering and synthetic biology applications. Recently, a work described a scaling model based on optimal allocation of ribosomes for protein translation. This model quantitatively predicts a linear relationship between microbial growth rate and heterologous protein expression with no free parameters. With the aim of validating this model, we have rigorously quantified the fitness cost of gene expression by using a library of synthetic constitutive promoters to drive expression of two separate proteins (eGFP and amiE) in E. coli in different strains and growth media. In all cases, we demonstrate that the fitness cost is consistent with the previous findings. We expand upon the previous theory by introducing a simple promoter activity model to quantitatively predict how basal promoter strength relates to growth rate and protein expression. We then estimate the amount of protein expression needed to support high flux through a heterologous metabolic pathway and predict the sizable fitness cost associated with enzyme production. This work has broad implications across applied biological sciences because it allows for prediction of the interplay between promoter strength, protein expression, and the resulting cost to microbial growth rates. PMID:25286161

  9. Growth-rate influences on coral climate proxies

    NASA Astrophysics Data System (ADS)

    Suzuki, A.; Hayashi, E.; Nakamura, T.; Iwase, A.; Ishimura, T.; Iguchi, A.; Sakai, K.; Okai, T.; Inoue, M.; Araoka, D.; Kawahata, H.

    2011-12-01

    Coral-based climate reconstruction has been increasingly reported from many tropical sites. Potential ambiguity of coral thermometers intrinsic in biomineralization process attracts much attention, including so-called 'vital effects', 'growth-rate-related kinetic effect', '[CO32-] effect' and so on. Here we study growth-rate influences on skeletal oxygen and carbon isotope ratios (δ18O and δ13C), as well as Sr/Ca ratio, based on a long-term culture experiment using Porites australiensis clone colonies. Variation in δ18O showed negligible influence against a large intercolony variation in growth rate based on the comparison of the seasonal minimum δ18O values during summer, while that was relatively sensitive to temporal growth-rate change due to health condition of each colony. Contrary, Sr/Ca ratio was robust against both the inter- and intra- colony variation in growth rate. Positive sift in δ13C for slower-growing corals was found, and it can be attributed to a kinetic behavior of calcification reaction. Seasonal fluctuation pattern in δ13C did not correspond to light intensity nor that in δ13C of dissolved inorganic carbon in seawater. These lines warrant the signal recording ability of coral skeletal Sr/Ca ratio and δ18O from a long-lived colony of clonal growth as paleo-climate archives, and propose practical guideline for the proper interplication of coral records.

  10. Growth-rate-dependent dynamics of a bacterial genetic oscillator

    NASA Astrophysics Data System (ADS)

    Osella, Matteo; Lagomarsino, Marco Cosentino

    2013-01-01

    Gene networks exhibiting oscillatory dynamics are widespread in biology. The minimal regulatory designs giving rise to oscillations have been implemented synthetically and studied by mathematical modeling. However, most of the available analyses generally neglect the coupling of regulatory circuits with the cellular “chassis” in which the circuits are embedded. For example, the intracellular macromolecular composition of fast-growing bacteria changes with growth rate. As a consequence, important parameters of gene expression, such as ribosome concentration or cell volume, are growth-rate dependent, ultimately coupling the dynamics of genetic circuits with cell physiology. This work addresses the effects of growth rate on the dynamics of a paradigmatic example of genetic oscillator, the repressilator. Making use of empirical growth-rate dependencies of parameters in bacteria, we show that the repressilator dynamics can switch between oscillations and convergence to a fixed point depending on the cellular state of growth, and thus on the nutrients it is fed. The physical support of the circuit (type of plasmid or gene positions on the chromosome) also plays an important role in determining the oscillation stability and the growth-rate dependence of period and amplitude. This analysis has potential application in the field of synthetic biology, and suggests that the coupling between endogenous genetic oscillators and cell physiology can have substantial consequences for their functionality.

  11. Modeling Neisseria meningitidis B metabolism at different specific growth rates.

    PubMed

    Baart, Gino J E; Willemsen, Marieke; Khatami, Elnaz; de Haan, Alex; Zomer, Bert; Beuvery, E Coen; Tramper, Johannes; Martens, Dirk E

    2008-12-01

    Neisseria meningitidis is a human pathogen that can infect diverse sites within the human host. The major diseases caused by N. meningitidis are responsible for death and disability, especially in young infants. At the Netherlands Vaccine Institute (NVI) a vaccine against serogroup B organisms is currently being developed. This study describes the influence of the growth rate of N. meningitidis on its macro-molecular composition and its metabolic activity and was determined in chemostat cultures. In the applied range of growth rates, no significant changes in RNA content and protein content with growth rate were observed in N. meningitidis. The DNA content in N. meningitidis was somewhat higher at the highest applied growth rate. The phospholipid and lipopolysaccharide content in N. meningitidis changed with growth rate but no specific trends were observed. The cellular fatty acid composition and the amino acid composition did not change significantly with growth rate. Additionally, it was found that the PorA content in outer membrane vesicles was significantly lower at the highest growth rate. The metabolic fluxes at various growth rates were calculated using flux balance analysis. Errors in fluxes were calculated using Monte Carlo Simulation and the reliability of the calculated flux distribution could be indicated, which has not been reported for this type of analysis. The yield of biomass on substrate (Y(x/s)) and the maintenance coefficient (m(s)) were determined as 0.44 (+/-0.04) g g(-1) and 0.04 (+/-0.02) g g(-1) h(-1), respectively. The growth associated energy requirement (Y(x/ATP)) and the non-growth associated ATP requirement for maintenance (m(ATP)) were estimated as 0.13 (+/-0.04) mol mol(-1) and 0.43 (+/-0.14) mol mol(-1) h(-1), respectively. It was found that the split ratio between the Entner-Doudoroff and the pentose phosphate pathway, the sole glucose utilizing pathways in N. meningitidis, had a minor effect on ATP formation rate but a major

  12. Medium-dependent control of the bacterial growth rate.

    PubMed

    Ehrenberg, Måns; Bremer, Hans; Dennis, Patrick P

    2013-04-01

    By combining results from previous studies of nutritional up-shifts we here re-investigate how bacteria adapt to different nutritional environments by adjusting their macromolecular composition for optimal growth. We demonstrate that, in contrast to a commonly held view the macromolecular composition of bacteria does not depend on the growth rate as an independent variable, but on three factors: (i) the genetic background (i.e. the strain used), (ii) the physiological history of the bacteria used for inoculation of a given growth medium, and (iii) the kind of nutrients in the growth medium. These factors determine the ribosome concentration and the average rate of protein synthesis per ribosome, and thus the growth rate. Immediately after a nutritional up-shift, the average number of ribosomes in the bacterial population increases exponentially with time at a rate which eventually is attained as the final post-shift growth rate of all cell components. After a nutritional up-shift from one minimal medium to another minimal medium of higher nutritional quality, ribosome and RNA polymerase syntheses are co-regulated and immediately increase by the same factor equal to the increase in the final growth rate. However, after an up-shift from a minimal medium to a medium containing all 20 amino acids, RNA polymerase and ribosome syntheses are no longer coregulated; a smaller rate of synthesis of RNA polymerase is compensated by a gradual increase in the fraction of free RNA polymerase, possibly due to a gradual saturation of mRNA promoters. We have also analyzed data from a recent publication, in which it was concluded that the macromolecular composition in terms of RNA/protein and RNA/DNA ratios is solely determined by the effector molecule ppGpp. Our analysis indicates that this is true only in special cases and that, in general, medium adaptation also depends on factors other than ppGpp.

  13. Growth of (101) faces of tetragonal lysozyme crystals: measured growth-rate trends

    NASA Technical Reports Server (NTRS)

    Forsythe, E. L.; Nadarajah, A.; Pusey, M. L.

    1999-01-01

    Previous extensive measurements of the growth rates of the (110) face of tetragonal lysozyme crystals have shown unexpected dependencies on the supersaturation. In this study, similar growth-rate measurements were performed for the (101) faces of the crystals. The data show a similar dependence on the supersaturation, becoming appreciable only at high supersaturations, reaching a maximum value and then decreasing. The (101) growth rates are larger at low supersaturations than the (110) growth rates under the same conditions and are smaller at high supersaturations. These trends suggest that the growth mechanism of the (101) face is similar to that of the (110) face: both processes involve the addition of multimeric growth units formed in solution, but the average size of the units for the (101) face is likely to be smaller than for the (110) face.

  14. Growth of (101) Faces of Tetragonal Lysozyme Crystals: Measured Growth Rate Trends

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth L.; Nadarajah, Arunan; Pusey, Marc L.

    1998-01-01

    Earlier extensive measurements of the growth rates of the (110) face of tetragonal lysozyme crystals had shown unexpected dependencies on the supersaturation. In this study similar growth rate measurements were done for the (101) faces of the crystals. The data show a similar dependence on the supersaturation, becoming appreciable only at high supersaturations, reaching a maximum value and then decreasing. As reported in earlier studies, the (101) growth rates are larger at low supersaturations than the (110) growth rates at the same conditions, and smaller at high supersaturations. These trends suggest that the growth mechanism of the (101) is similar to that of the (110) face, involving the addition of lysozyme aggregates formed in solution, but with a growth unit smaller than that of the (110) face.

  15. Application of a statistical bootstrapping technique to calculate growth rate variance for modelling psychrotrophic pathogen growth.

    PubMed

    Schaffner, D W

    1994-12-01

    The inherent variability or 'variance' of growth rate measurements is critical to the development of accurate predictive models in food microbiology. A large number of measurements are typically needed to estimate variance. To make these measurements requires a significant investment of time and effort. If a single growth rate determination is based on a series of independent measurements, then a statistical bootstrapping technique can be used to simulate multiple growth rate measurements from a single set of experiments. Growth rate variances were calculated for three large datasets (Listeria monocytogenes, Listeria innocua, and Yersinia enterocolitica) from our laboratory using this technique. This analysis revealed that the population of growth rate measurements at any given condition are not normally distributed, but instead follow a distribution that is between normal and Poisson. The relationship between growth rate and temperature was modeled by response surface models using generalized linear regression. It was found that the assumed distribution (i.e. normal, Poisson, gamma or inverse normal) of the growth rates influenced the prediction of each of the models used. This research demonstrates the importance of variance and assumptions about the statistical distribution of growth rates on the results of predictive microbiological models.

  16. A synthesis of growth rates in marine epipelagic invertebrate zooplankton.

    PubMed

    Hirst, A G; Roff, J C; Lampitt, R S

    2003-01-01

    We present the most extensive study to date of globally compiled and analysed weight-specific growth rates in marine epi-pelagic invertebrate metazoan zooplankton. Using specified selection criteria, we analyse growth rates from a variety of zooplanktonic taxa, including both holo- and mero-planktonic forms, from over 110 published studies. Nine principal taxonomic groups are considered, the copepods (number of individual data points (n) = 2,528); crustaceans other than copepods (n = 253); cnidarians (n = 77); ctenophores (n = 27); chaetognaths (n = 87); pteropods (n = 8); polychaetes (n = 12); thaliaceans (n = 88); and larvaceans (n = 91). The copepods are further examined by subdividing them into broadcasters or sac-spawning species, and as nauplii (N1-N6), copepodites (C1-C5) and adults (C6). For each taxonomic group relationships between growth, temperature and body weight are examined using a variety of methods. Weight-specific growth tends to increase with increasing temperature and with decreasing body weight in the crustacean group. Growth does not relate to body weight in the case of chaetognaths and larvaceans, but does increase with temperature. In the cnidarian and ctenophore groups growth does not relate to temperature, but is negatively related to body size. For the thaliceans growth increases with both increasing body weight and temperature. In the entire broadcasting copepod data set, weight-specific growth increases with increasing temperature and decreasing body weight. In sac-spawners, growth increases with increasing temperature, and increases with decreasing body weight at temperatures below 20 degrees C, but decreases with body weight at temperatures above this. Comparison between the different taxa shows important differences and similarities. Our extensive synthesis of data generally confirms that larvaceans, pteropods, cnidarians and ctenophores have rates of weight-specific growth that are typically greater than the copepods, chaetognaths

  17. The effect of size and competition on tree growth rate in old-growth coniferous forests

    USGS Publications Warehouse

    Das, Adrian

    2012-01-01

    Tree growth and competition play central roles in forest dynamics. Yet models of competition often neglect important variation in species-specific responses. Furthermore, functions used to model changes in growth rate with size do not always allow for potential complexity. Using a large data set from old-growth forests in California, models were parameterized relating growth rate to tree size and competition for four common species. Several functions relating growth rate to size were tested. Competition models included parameters for tree size, competitor size, and competitor distance. Competitive strength was allowed to vary by species. The best ranked models (using Akaike’s information criterion) explained between 18% and 40% of the variance in growth rate, with each species showing a strong response to competition. Models indicated that relationships between competition and growth varied substantially among species. The results also suggested that the relationship between growth rate and tree size can be complex and that how we model it can affect not only our ability to detect that complexity but also whether we obtain misleading results. In this case, for three of four species, the best model captured an apparent and unexpected decline in potential growth rate for the smallest trees in the data set.

  18. Evaluating a nursing communication skills training course: The relationships between self-rated ability, satisfaction, and actual performance.

    PubMed

    Mullan, Barbara A; Kothe, Emily J

    2010-11-01

    Effective communication is a vital component of nursing care, however, nurses often lack the skills to communicate with patients, carers and other health care professionals. Communication skills training programs are frequently used to develop these skills. However, there is a paucity of data on how best to evaluate such courses. The aim of the current study was to evaluate the relationship between student self rating of their own ability and their satisfaction with a nurse training course as compared with an objective measure of communication skills. 209 first year nursing students completed a communication skills program. Both qualitative and quantitative data were collected and associations between measures were investigated. Paired samples t-tests showed significant improvement in self-rated ability over the course of the program. Students generally were very satisfied with the course which was reflected in both qualitative and quantitative measures. However, neither self-rated ability nor satisfaction was significantly correlated with the objective measure of performance, but self-rated ability and satisfaction were highly correlated with one another. The importance of these findings is discussed and implications for nurse education are proposed.

  19. Growth rate in the dynamical dark energy models.

    PubMed

    Avsajanishvili, Olga; Arkhipova, Natalia A; Samushia, Lado; Kahniashvili, Tina

    Dark energy models with a slowly rolling cosmological scalar field provide a popular alternative to the standard, time-independent cosmological constant model. We study the simultaneous evolution of background expansion and growth in the scalar field model with the Ratra-Peebles self-interaction potential. We use recent measurements of the linear growth rate and the baryon acoustic oscillation peak positions to constrain the model parameter [Formula: see text] that describes the steepness of the scalar field potential.

  20. Microbial Growth at Ultraslow Rates: Regulation and Genetic Stability.

    DTIC Science & Technology

    1983-03-01

    this taxonomic range of eubacteria , and the understanding we have gained of underlying biochemical and genetic machineries, it is clear that any...to eubacteria and whose effects on mu and Y, in fact, made the Monod-type equations invalid as soon as they were eluci- dated to the level reached by...growth parameters. Thus, we sought specifically: 1) to find if there was a pattern of growth behavior at slow rates common among eubacteria ; 2) to

  1. Influence of corruption on economic growth rate and foreign investment

    NASA Astrophysics Data System (ADS)

    Podobnik, Boris; Shao, Jia; Njavro, Djuro; Ivanov, Plamen Ch.; Stanley, H. E.

    2008-06-01

    We analyze the dependence of the Gross Domestic Product ( GDP) per capita growth rates on changes in the Corruption Perceptions Index ( CPI). For the period 1999 2004 for all countries in the world, we find on average that an increase of CPI by one unit leads to an increase of the annual GDP per capita growth rate by 1.7%. By regressing only the European countries with transition economies, we find that an increase of CPI by one unit generates an increase of the annual GDP per capita growth rate by 2.4%. We also analyze the relation between foreign direct investments received by different countries and CPI, and we find a statistically significant power-law functional dependence between foreign direct investment per capita and the country corruption level measured by the CPI. We introduce a new measure to quantify the relative corruption between countries based on their respective wealth as measured by GDP per capita.

  2. Growth rates in a captive population of Tonkean macaques.

    PubMed

    Sanna, Andrea; De Marco, Arianna; Thierry, Bernard; Cozzolino, Roberto

    2015-07-01

    Measuring variations in body mass is necessary to gain a deeper understanding of the evolution of life-history patterns, and it provides information on the timing of sexual maturity and the development of sexual dimorphism. In this study, we collected longitudinal data on body mass from infancy to adulthood in a captive population of Tonkean macaques (Macaca tonkeana). Tests to evaluate whether social group, maternal age, and dominance rank influenced growth rates showed that they had no significant effect. We investigated the timing and magnitude of breaking points in the growth paths of males and females, and checked whether these breaking points could correspond to specific reproductive and morphological developmental events. We found that male and female Tonkean macaques have roughly equivalent body masses until around the age of four, when males go through an adolescent growth spurt and females continue to grow at a constant rate. Males not only grow faster than females, but they also continue to grow for nearly one and a half years after females have attained their full body mass. Growth rate differences account for approximately two-thirds of the body mass sexual dimorphism; only the remaining third results from continued male growth beyond the age where full body mass is reached in females. We also discovered remarkable correspondences between the timing of testicular enlargement and the adolescent growth spurt in males, and between dental development and slowdown breaking points in both sexes.

  3. Radiocarbon Based Ages and Growth Rates: Hawaiian Deep Sea Corals

    SciTech Connect

    Roark, E B; Guilderson, T P; Dunbar, R B; Ingram, B L

    2006-01-13

    The radial growth rates and ages of three different groups of Hawaiian deep-sea 'corals' were determined using radiocarbon measurements. Specimens of Corallium secundum, Gerardia sp., and Leiopathes glaberrima, were collected from 450 {+-} 40 m at the Makapuu deep-sea coral bed using a submersible (PISCES V). Specimens of Antipathes dichotoma were collected at 50 m off Lahaina, Maui. The primary source of carbon to the calcitic C. secundum skeleton is in situ dissolved inorganic carbon (DIC). Using bomb {sup 14}C time markers we calculate radial growth rates of {approx} 170 {micro}m y{sup -1} and ages of 68-75 years on specimens as tall as 28 cm of C. secundum. Gerardia sp., A. dichotoma, and L. glaberrima have proteinaceous skeletons and labile particulate organic carbon (POC) is their primary source of architectural carbon. Using {sup 14}C we calculate a radial growth rate of 15 {micro}m y{sup -1} and an age of 807 {+-} 30 years for a live collected Gerardia sp., showing that these organisms are extremely long lived. Inner and outer {sup 14}C measurements on four sub-fossil Gerardia spp. samples produce similar growth rate estimates (range 14-45 {micro}m y{sup -1}) and ages (range 450-2742 years) as observed for the live collected sample. Similarly, with a growth rate of < 10 {micro}m y{sup -1} and an age of {approx}2377 years, L. glaberrima at the Makapuu coral bed, is also extremely long lived. In contrast, the shallow-collected A. dichotoma samples yield growth rates ranging from 130 to 1,140 {micro}m y{sup -1}. These results show that Hawaiian deep-sea corals grow more slowly and are older than previously thought.

  4. Brain growth rate abnormalities visualized in adolescents with autism.

    PubMed

    Hua, Xue; Thompson, Paul M; Leow, Alex D; Madsen, Sarah K; Caplan, Rochelle; Alger, Jeffry R; O'Neill, Joseph; Joshi, Kishori; Smalley, Susan L; Toga, Arthur W; Levitt, Jennifer G

    2013-02-01

    Autism spectrum disorder is a heterogeneous disorder of brain development with wide ranging cognitive deficits. Typically diagnosed before age 3, autism spectrum disorder is behaviorally defined but patients are thought to have protracted alterations in brain maturation. With longitudinal magnetic resonance imaging (MRI), we mapped an anomalous developmental trajectory of the brains of autistic compared with those of typically developing children and adolescents. Using tensor-based morphometry, we created 3D maps visualizing regional tissue growth rates based on longitudinal brain MRI scans of 13 autistic and seven typically developing boys (mean age/interscan interval: autism 12.0 ± 2.3 years/2.9 ± 0.9 years; control 12.3 ± 2.4/2.8 ± 0.8). The typically developing boys demonstrated strong whole brain white matter growth during this period, but the autistic boys showed abnormally slowed white matter development (P = 0.03, corrected), especially in the parietal (P = 0.008), temporal (P = 0.03), and occipital lobes (P = 0.02). We also visualized abnormal overgrowth in autism in gray matter structures such as the putamen and anterior cingulate cortex. Our findings reveal aberrant growth rates in brain regions implicated in social impairment, communication deficits and repetitive behaviors in autism, suggesting that growth rate abnormalities persist into adolescence. Tensor-based morphometry revealed persisting growth rate anomalies long after diagnosis, which has implications for evaluation of therapeutic effects.

  5. Crystallographic anisotropy of growth and etch rates of CVD diamond

    SciTech Connect

    Wolfer, M; Biener, J; El-dasher, B S; Biener, M M; Hamza, A V; Kriele, A; Wild, C

    2008-08-05

    The investigation of orientation dependent crystal growth and etch processes can provide deep insights into the underlying mechanisms and thus helps to validate theoretical models. Here, we report on homoepitaxial diamond growth and oxygen etch experiments on polished, polycrystalline CVD diamond wafers by use of electron backscatter diffraction (EBSD) and white-light interferometry (WLI). Atomic force microscopy (AFM) was applied to provide additional atomic scale surface morphology information. The main advantage of using polycrystalline diamond substrates with almost random grain orientation is that it allows determining the orientation dependent growth (etch) rate for different orientations within one experiment. Specifically, we studied the effect of methane concentration on the diamond growth rate, using a microwave plasma CVD process. At 1 % methane concentration a maximum of the growth rate near <100> and a minimum near <111> is detected. Increasing the methane concentration up to 5 % shifts the maximum towards <110> while the minimum stays at <111>. Etch rate measurements in a microwave powered oxygen plasma reveal a pronounced maximum at <111>. We also made a first attempt to interpret our experimental data in terms of local micro-faceting of high-indexed planes.

  6. Analysing the lag-growth rate relationship of Yersinia enterocolitica.

    PubMed

    Pin, Carmen; García, de Fernando Gonzalo D; Ordóñez, Juan A; Baranyi, József

    2002-03-01

    A generalised z-value concept has been applied to analyse the relationship between the lag and the growth rate of Yersinia enterocolitica at a range of temperature, atmospheric carbon dioxide and oxygen percentages. The product of the specific growth rate and the lag (the "work to be done" during the lag phase) is found to be independent of temperature. However, it does depend on the CO2 and O2 concentrations, though the effect of oxygen was less noticeable than the effect of carbon dioxide.

  7. Universality of Thermodynamic Constants Governing Biological Growth Rates

    PubMed Central

    Corkrey, Ross; Olley, June; Ratkowsky, David; McMeekin, Tom; Ross, Tom

    2012-01-01

    Background Mathematical models exist that quantify the effect of temperature on poikilotherm growth rate. One family of such models assumes a single rate-limiting ‘master reaction’ using terms describing the temperature-dependent denaturation of the reaction's enzyme. We consider whether such a model can describe growth in each domain of life. Methodology/Principal Findings A new model based on this assumption and using a hierarchical Bayesian approach fits simultaneously 95 data sets for temperature-related growth rates of diverse microorganisms from all three domains of life, Bacteria, Archaea and Eukarya. Remarkably, the model produces credible estimates of fundamental thermodynamic parameters describing protein thermal stability predicted over 20 years ago. Conclusions/Significance The analysis lends support to the concept of universal thermodynamic limits to microbial growth rate dictated by protein thermal stability that in turn govern biological rates. This suggests that the thermal stability of proteins is a unifying property in the evolution and adaptation of life on earth. The fundamental nature of this conclusion has importance for many fields of study including microbiology, protein chemistry, thermal biology, and ecological theory including, for example, the influence of the vast microbial biomass and activity in the biosphere that is poorly described in current climate models. PMID:22348140

  8. 3D fold growth rates in transpressional tectonic settings

    NASA Astrophysics Data System (ADS)

    Frehner, Marcel

    2015-04-01

    Geological folds are inherently three-dimensional (3D) structures; hence, they also grow in 3D. In this study, fold growth in all three dimensions is quantified numerically using a finite-element algorithm for simulating deformation of Newtonian media in 3D. The presented study is an extension and generalization of the work presented in Frehner (2014), which only considered unidirectional layer-parallel compression. In contrast, the full range from strike slip settings (i.e., simple shear) to unidirectional layer-parallel compression is considered here by varying the convergence angle of the boundary conditions; hence the results are applicable to general transpressional tectonic settings. Only upright symmetrical single-layer fold structures are considered. The horizontal higher-viscous layer exhibits an initial point-like perturbation. Due to the mixed pure- and simple shear boundary conditions a mechanical buckling instability grows from this perturbation in all three dimensions, described by: Fold amplification (vertical growth): Fold amplification describes the growth from a fold shape with low limb-dip angle to a shape with higher limb-dip angle. Fold elongation (growth parallel to fold axis): Fold elongation describes the growth from a dome-shaped (3D) structure to a more cylindrical fold (2D). Sequential fold growth (growth perpendicular to fold axial plane): Sequential fold growth describes the growth of secondary (and further) folds adjacent to the initial isolated fold. The term 'lateral fold growth' is used as an umbrella term for both fold elongation and sequential fold growth. In addition, the orientation of the fold axis is tracked as a function of the convergence angle. Even though the absolute values of all three growth rates are markedly reduced with increasing simple-shear component at the boundaries, the general pattern of the quantified fold growth under the studied general-shear boundary conditions is surprisingly similar to the end

  9. In situ growth rate measurement of selective LPCVD of tungsten

    SciTech Connect

    Holleman, J.; Hasper, A.; Middelhoek, J. )

    1991-04-01

    This paper reports on the reflectance measurement during the selective deposition of W on Si covered with an insulator rating proven to be a convenient method to monitor the W deposition. The reflectance change during deposition allows the in situ measurement of the deposition rate. The influence of surface roughening due to either the W growth or an etching pretreatment of the wafer is modeled, as well as the effect of selectivity loss and lateral overgrowth.

  10. Fishery-induced selection on an Alpine whitefish: quantifying genetic and environmental effects on individual growth rate.

    PubMed

    Nusslé, Sébastien; Bornand, Christophe N; Wedekind, Claus

    2009-05-01

    Size-selective fishing, environmental changes and reproductive strategies are expected to affect life-history traits such as the individual growth rate. The relative contribution of these factors is not clear, particularly whether size-selective fishing can have a substantial impact on the genetics and hence on the evolution of individual growth rates in wild populations. We analysed a 25-year monitoring survey of an isolated population of the Alpine whitefish Coregonus palaea. We determined the selection differentials on growth rate, the actual change of growth rate over time and indicators of reproductive strategies that may potentially change over time. The selection differential can be reliably estimated in our study population because almost all the fish are harvested within their first years of life, i.e. few fish escape fishing mortality. We found a marked decline in average adult growth rate over the 25 years and a significant selection differential for adult growth, but no evidence for any linear change in reproductive strategies over time. Assuming that the heritability of growth in this whitefish corresponds to what was found in other salmonids, about a third of the observed decline in growth rate would be linked to fishery-induced evolution. Size-selective fishing seems to affect substantially the genetics of individual growth in our study population.

  11. Fishery-induced selection on an Alpine whitefish: quantifying genetic and environmental effects on individual growth rate

    PubMed Central

    Nusslé, Sébastien; Bornand, Christophe N; Wedekind, Claus

    2009-01-01

    Size-selective fishing, environmental changes and reproductive strategies are expected to affect life-history traits such as the individual growth rate. The relative contribution of these factors is not clear, particularly whether size-selective fishing can have a substantial impact on the genetics and hence on the evolution of individual growth rates in wild populations. We analysed a 25-year monitoring survey of an isolated population of the Alpine whitefish Coregonus palaea. We determined the selection differentials on growth rate, the actual change of growth rate over time and indicators of reproductive strategies that may potentially change over time. The selection differential can be reliably estimated in our study population because almost all the fish are harvested within their first years of life, i.e. few fish escape fishing mortality. We found a marked decline in average adult growth rate over the 25 years and a significant selection differential for adult growth, but no evidence for any linear change in reproductive strategies over time. Assuming that the heritability of growth in this whitefish corresponds to what was found in other salmonids, about a third of the observed decline in growth rate would be linked to fishery-induced evolution. Size-selective fishing seems to affect substantially the genetics of individual growth in our study population. PMID:25567861

  12. Rapid growth rates of aerobic anoxygenic phototrophs in the ocean.

    PubMed

    Koblízek, Michal; Masín, Michal; Ras, Josephine; Poulton, Alex J; Prásil, Ondrej

    2007-10-01

    We analysed bacteriochlorophyll diel changes to assess growth rates of aerobic anoxygenic phototrophs in the euphotic zone across the Atlantic Ocean. The survey performed during Atlantic Meridional Transect cruise 16 has shown that bacteriochlorophyll in the North Atlantic Gyre cycles at rates of 0.91-1.08 day(-1) and in the South Atlantic at rates of 0.72-0.89 day(-1). In contrast, in the more productive equatorial region and North Atlantic it cycled at rates of up to 2.13 day(-1). These results suggest that bacteriochlorophyll-containing bacteria in the euphotic zone of the oligotrophic gyres grow at rates of about one division per day and in the more productive regions up to three divisions per day. This is in striking contrast with the relatively slow growth rates of the total bacterial community. Thus, aerobic anoxygenic phototrophs appear to be a very dynamic part of the marine microbial community and due to their rapid growth, they are likely to be larger sinks for dissolved organic matter than their abundance alone would predict.

  13. Upscaling Calcite Growth Rates from the Mesoscale to the Macroscale

    SciTech Connect

    Bracco, Jacquelyn N.; Stack, Andrew G.; Steefel, Carl I.

    2013-07-02

    Quantitative prediction of mineral reaction rates in the subsurface remains a daunting task partly because a key parameter for macroscopic models, the reactive site density, is poorly constrained. Here we report atomic force microscopy (AFM) measurements on the calcite surface of monomolecular step densities, treated as equivalent to the reactive site density, as a function of aqueous calcium-to-carbonate ratio and saturation index. Data for the obtuse step orientation are combined with existing step velocity measurements to generate a model that predicts overall macroscopic calcite growth rates. The model is quantitatively consistent with several published macroscopic rates under a range of alkaline solution conditions, particularly for two of the most comprehensive data sets without the need for additional fit parameters. The model reproduces peak growth rates and its functional form is simple enough to be incorporated into reactive transport or other macroscopic models designed for predictions in porous media. However, it currently cannot model equilibrium, pH effects, and may overestimate rates at high aqueous calcium-to-carbonate ratios. The discrepancies in rates at high calcium-to-carbonate ratios may be due to differences in pre-treatment, such as exposing the seed material to SI 1.0 to generate/develop growth hillocks, or other factors.

  14. Age at first reproduction and growth rate are independent of basal metabolic rate in mammals.

    PubMed

    Lovegrove, Barry G

    2009-05-01

    This study tested an emergent prediction from the Metabolic Theory of Ecology (MTE) that the age at first reproduction (alpha) of a mammal is proportional to the inverse of its mass-corrected basal metabolic rate: alpha proportional (B / M)-1 The hypothesis was tested with multiple regression models of conventional species data and phylogenetically independent contrasts of 121 mammal species. Since age at first reproduction is directly influenced by an individual's growth rate, the hypothesis that growth rate is proportional to BMR was also tested. Although the overall multiple regression model was significant, age at first reproduction was not partially correlated with either body mass, growth rate or BMR. Similarly, growth rate was not correlated with BMR. Thus at least for mammals in general, there is no evidence to support the fundamental premise of the MTE that individual metabolism governs the rate at which energy is converted to growth and reproduction at the species level. The exponents of the BMR allometry calculated using phylogenetic generalized least squares regression models were significantly lower than the three-quarter value predicted by the MTE.

  15. Net Assimilation Rate Determines the Growth Rates of 14 Species of Subtropical Forest Trees.

    PubMed

    Li, Xuefei; Schmid, Bernhard; Wang, Fei; Paine, C E Timothy

    2016-01-01

    Growth rates are of fundamental importance for plants, as individual size affects myriad ecological processes. We determined the factors that generate variation in RGR among 14 species of trees and shrubs that are abundant in subtropical Chinese forests. We grew seedlings for two years at four light levels in a shade-house experiment. We monitored the growth of every juvenile plant every two weeks. After one and two years, we destructively harvested individuals and measured their functional traits and gas-exchange rates. After calculating individual biomass trajectories, we estimated relative growth rates using nonlinear growth functions. We decomposed the variance in log(RGR) to evaluate the relationships of RGR with its components: specific leaf area (SLA), net assimilation rate (NAR) and leaf mass ratio (LMR). We found that variation in NAR was the primary determinant of variation in RGR at all light levels, whereas SLA and LMR made smaller contributions. Furthermore, NAR was strongly and positively associated with area-based photosynthetic rate and leaf nitrogen content. Photosynthetic rate and leaf nitrogen concentration can, therefore, be good predictors of growth in woody species.

  16. Growth rate and cell size: a re-examination of the growth law.

    PubMed

    Vadia, Stephen; Levin, Petra Anne

    2015-04-01

    Research into the mechanisms regulating bacterial cell size has its origins in a single paper published over 50 years ago. In it Schaechter and colleagues made the observation that the chemical composition and size of a bacterial cell is a function of growth rate, independent of the medium used to achieve that growth rate, a finding that is colloquially referred to as 'the growth law'. Recent findings hint at unforeseen complexity in the growth law, and suggest that nutrients rather than growth rate are the primary arbiter of size. The emerging picture suggests that size is a complex, multifactorial phenomenon mediated through the varied impacts of central carbon metabolism on cell cycle progression and biosynthetic capacity.

  17. Linear Stability of Binary Alloy Solidification for Unsteady Growth Rates

    NASA Technical Reports Server (NTRS)

    Mazuruk, K.; Volz, M. P.

    2010-01-01

    An extension of the Mullins and Sekerka (MS) linear stability analysis to the unsteady growth rate case is considered for dilute binary alloys. In particular, the stability of the planar interface during the initial solidification transient is studied in detail numerically. The rapid solidification case, when the system is traversing through the unstable region defined by the MS criterion, has also been treated. It has been observed that the onset of instability is quite accurately defined by the "quasi-stationary MS criterion", when the growth rate and other process parameters are taken as constants at a particular time of the growth process. A singular behavior of the governing equations for the perturbed quantities at the constitutional supercooling demarcation line has been observed. However, when the solidification process, during its transient, crosses this demarcation line, a planar interface is stable according to the linear analysis performed.

  18. Slow growth rates of Amazonian trees: consequences for carbon cycling.

    PubMed

    Vieira, Simone; Trumbore, Susan; Camargo, Plinio B; Selhorst, Diogo; Chambers, Jeffrey Q; Higuchi, Niro; Martinelli, Luiz Antonio

    2005-12-20

    Quantifying age structure and tree growth rate of Amazonian forests is essential for understanding their role in the carbon cycle. Here, we use radiocarbon dating and direct measurement of diameter increment to document unexpectedly slow growth rates for trees from three locations spanning the Brazilian Amazon basin. Central Amazon trees, averaging only approximately 1 mm/year diameter increment, grow half as fast as those from areas with more seasonal rainfall to the east and west. Slow growth rates mean that trees can attain great ages; across our sites we estimate 17-50% of trees with diameter >10 cm have ages exceeding 300 years. Whereas a few emergent trees that make up a large portion of the biomass grow faster, small trees that are more abundant grow slowly and attain ages of hundreds of years. The mean age of carbon in living trees (60-110 years) is within the range of or slightly longer than the mean residence time calculated from C inventory divided by annual C allocation to wood growth (40-100 years). Faster C turnover is observed in stands with overall higher rates of diameter increment and a larger fraction of the biomass in large, fast-growing trees. As a consequence, forests can recover biomass relatively quickly after disturbance, whereas recovering species composition may take many centuries. Carbon cycle models that apply a single turnover time for carbon in forest biomass do not account for variations in life strategy and therefore may overestimate the carbon sequestration potential of Amazon forests.

  19. Measuring the growth rate of structure around cosmic voids

    NASA Astrophysics Data System (ADS)

    Hawken, A. J.; Michelett, D.; Granett, B.; Iovino, A.; Guzzo, L.

    2016-10-01

    Using an algorithm based on searching for empty spheres we identified 245 voids in the VIMOS Public Extragalactic Redshift Survey (VIPERS). We show how by modelling the anisotropic void-galaxy cross correlation function we can probe the growth rate of structure.

  20. Jensen's Inequality and the Impact of Short-Term Environmental Variability on Long-Term Population Growth Rates.

    PubMed

    Pickett, Evan J; Thomson, David L; Li, Teng A; Xing, Shuang

    2015-01-01

    It is well established in theory that short-term environmental fluctuations could affect the long-term growth rates of wildlife populations, but this theory has rarely been tested and there remains little empirical evidence that the effect is actually important in practice. Here we develop models to quantify the effects of daily, seasonal, and yearly temperature fluctuations on the average population growth rates, and we apply them to long-term data on the endangered Black-faced Spoonbill (Platalea minor); an endothermic species whose population growth rates follow a concave relationship with temperature. We demonstrate for the first time that the current levels of temperature variability, particularly seasonal variability, are already large enough to substantially reduce long-term population growth rates. As the climate changes, our results highlight the importance of considering the ecological effects of climate variability and not just average conditions.

  1. Jensen’s Inequality and the Impact of Short-Term Environmental Variability on Long-Term Population Growth Rates

    PubMed Central

    Pickett, Evan J.; Thomson, David L.; Li, Teng A.; Xing, Shuang

    2015-01-01

    It is well established in theory that short-term environmental fluctuations could affect the long-term growth rates of wildlife populations, but this theory has rarely been tested and there remains little empirical evidence that the effect is actually important in practice. Here we develop models to quantify the effects of daily, seasonal, and yearly temperature fluctuations on the average population growth rates, and we apply them to long-term data on the endangered Black-faced Spoonbill (Platalea minor); an endothermic species whose population growth rates follow a concave relationship with temperature. We demonstrate for the first time that the current levels of temperature variability, particularly seasonal variability, are already large enough to substantially reduce long-term population growth rates. As the climate changes, our results highlight the importance of considering the ecological effects of climate variability and not just average conditions. PMID:26352857

  2. Winter temperatures limit population growth rate of a migratory songbird

    PubMed Central

    Woodworth, Bradley K.; Wheelwright, Nathaniel T.; Newman, Amy E.; Schaub, Michael; Norris, D. Ryan

    2017-01-01

    Understanding the factors that limit and regulate wildlife populations requires insight into demographic and environmental processes acting throughout the annual cycle. Here, we combine multi-year tracking data of individual birds with a 26-year demographic study of a migratory songbird to evaluate the relative effects of density and weather at the breeding and wintering grounds on population growth rate. Our results reveal clear support for opposing forces of winter temperature and breeding density driving population dynamics. Above-average temperatures at the wintering grounds lead to higher population growth, primarily through their strong positive effects on survival. However, population growth is regulated over the long term by strong negative effects of breeding density on both fecundity and adult male survival. Such knowledge of how year-round factors influence population growth, and the demographic mechanisms through which they act, will vastly improve our ability to predict species responses to environmental change and develop effective conservation strategies for migratory animals. PMID:28317843

  3. Growth rate and transition to turbulence of a gas curtain

    SciTech Connect

    Vorobieff, P.; Rightley, P.; Benjamin, R.

    1997-09-01

    The authors conduct shock-tube experiments to investigate Richtmyer-Meshkov (RM) instability of a narrow curtain of heavy gas (SF{sub 6}) embedded in lighter gas (air). Initial perturbations of the curtain can be varied, producing different flow patterns in the subsequent evolution of the curtain. Multiple-exposure video flow visualization provides images of the growth of the instability and its transition to turbulence, making it possible to extract quantitative information such as the width of the perturbed curtain. They demonstrate that the width of the curtain with initial perturbation on the downstream side is non-monotonic. As the initial perturbation undergoes phase inversion, the width of the curtain actually decreases before beginning to grow as the RM instability evolves.

  4. Molecular Analysis of the In Situ Growth Rates of Subsurface Geobacter Species

    PubMed Central

    Giloteaux, Ludovic; Barlett, Melissa; Chavan, Milind A.; Smith, Jessica A.; Williams, Kenneth H.; Wilkins, Michael; Long, Philip; Lovley, Derek R.

    2013-01-01

    Molecular tools that can provide an estimate of the in situ growth rate of Geobacter species could improve understanding of dissimilatory metal reduction in a diversity of environments. Whole-genome microarray analyses of a subsurface isolate of Geobacter uraniireducens, grown under a variety of conditions, identified a number of genes that are differentially expressed at different specific growth rates. Expression of two genes encoding ribosomal proteins, rpsC and rplL, was further evaluated with quantitative reverse transcription-PCR (qRT-PCR) in cells with doubling times ranging from 6.56 h to 89.28 h. Transcript abundance of rpsC correlated best (r2 = 0.90) with specific growth rates. Therefore, expression patterns of rpsC were used to estimate specific growth rates of Geobacter species during an in situ uranium bioremediation field experiment in which acetate was added to the groundwater to promote dissimilatory metal reduction. Initially, increased availability of acetate in the groundwater resulted in higher expression of Geobacter rpsC, and the increase in the number of Geobacter cells estimated with fluorescent in situ hybridization compared well with specific growth rates estimated from levels of in situ rpsC expression. However, in later phases, cell number increases were substantially lower than predicted from rpsC transcript abundance. This change coincided with a bloom of protozoa and increased attachment of Geobacter species to solid phases. These results suggest that monitoring rpsC expression may better reflect the actual rate that Geobacter species are metabolizing and growing during in situ uranium bioremediation than changes in cell abundance. PMID:23275510

  5. Molecular analysis of the in situ growth rates of subsurface Geobacter species.

    PubMed

    Holmes, Dawn E; Giloteaux, Ludovic; Barlett, Melissa; Chavan, Milind A; Smith, Jessica A; Williams, Kenneth H; Wilkins, Michael; Long, Philip; Lovley, Derek R

    2013-03-01

    Molecular tools that can provide an estimate of the in situ growth rate of Geobacter species could improve understanding of dissimilatory metal reduction in a diversity of environments. Whole-genome microarray analyses of a subsurface isolate of Geobacter uraniireducens, grown under a variety of conditions, identified a number of genes that are differentially expressed at different specific growth rates. Expression of two genes encoding ribosomal proteins, rpsC and rplL, was further evaluated with quantitative reverse transcription-PCR (qRT-PCR) in cells with doubling times ranging from 6.56 h to 89.28 h. Transcript abundance of rpsC correlated best (r(2) = 0.90) with specific growth rates. Therefore, expression patterns of rpsC were used to estimate specific growth rates of Geobacter species during an in situ uranium bioremediation field experiment in which acetate was added to the groundwater to promote dissimilatory metal reduction. Initially, increased availability of acetate in the groundwater resulted in higher expression of Geobacter rpsC, and the increase in the number of Geobacter cells estimated with fluorescent in situ hybridization compared well with specific growth rates estimated from levels of in situ rpsC expression. However, in later phases, cell number increases were substantially lower than predicted from rpsC transcript abundance. This change coincided with a bloom of protozoa and increased attachment of Geobacter species to solid phases. These results suggest that monitoring rpsC expression may better reflect the actual rate that Geobacter species are metabolizing and growing during in situ uranium bioremediation than changes in cell abundance.

  6. Scaling laws in the dynamics of crime growth rate

    NASA Astrophysics Data System (ADS)

    Alves, Luiz G. A.; Ribeiro, Haroldo V.; Mendes, Renio S.

    2013-06-01

    The increasing number of crimes in areas with large concentrations of people have made cities one of the main sources of violence. Understanding characteristics of how crime rate expands and its relations with the cities size goes beyond an academic question, being a central issue for contemporary society. Here, we characterize and analyze quantitative aspects of murders in the period from 1980 to 2009 in Brazilian cities. We find that the distribution of the annual, biannual and triannual logarithmic homicide growth rates exhibit the same functional form for distinct scales, that is, a scale invariant behavior. We also identify asymptotic power-law decay relations between the standard deviations of these three growth rates and the initial size. Further, we discuss similarities with complex organizations.

  7. Inferring time derivatives including cell growth rates using Gaussian processes

    PubMed Central

    Swain, Peter S.; Stevenson, Keiran; Leary, Allen; Montano-Gutierrez, Luis F.; Clark, Ivan B.N.; Vogel, Jackie; Pilizota, Teuta

    2016-01-01

    Often the time derivative of a measured variable is of as much interest as the variable itself. For a growing population of biological cells, for example, the population's growth rate is typically more important than its size. Here we introduce a non-parametric method to infer first and second time derivatives as a function of time from time-series data. Our approach is based on Gaussian processes and applies to a wide range of data. In tests, the method is at least as accurate as others, but has several advantages: it estimates errors both in the inference and in any summary statistics, such as lag times, and allows interpolation with the corresponding error estimation. As illustrations, we infer growth rates of microbial cells, the rate of assembly of an amyloid fibril and both the speed and acceleration of two separating spindle pole bodies. Our algorithm should thus be broadly applicable. PMID:27941811

  8. Inferring time derivatives including cell growth rates using Gaussian processes

    NASA Astrophysics Data System (ADS)

    Swain, Peter S.; Stevenson, Keiran; Leary, Allen; Montano-Gutierrez, Luis F.; Clark, Ivan B. N.; Vogel, Jackie; Pilizota, Teuta

    2016-12-01

    Often the time derivative of a measured variable is of as much interest as the variable itself. For a growing population of biological cells, for example, the population's growth rate is typically more important than its size. Here we introduce a non-parametric method to infer first and second time derivatives as a function of time from time-series data. Our approach is based on Gaussian processes and applies to a wide range of data. In tests, the method is at least as accurate as others, but has several advantages: it estimates errors both in the inference and in any summary statistics, such as lag times, and allows interpolation with the corresponding error estimation. As illustrations, we infer growth rates of microbial cells, the rate of assembly of an amyloid fibril and both the speed and acceleration of two separating spindle pole bodies. Our algorithm should thus be broadly applicable.

  9. Proximate causes of adaptive growth rates: growth efficiency variation among latitudinal populations of Rana temporaria.

    PubMed

    Lindgren, B; Laurila, A

    2005-07-01

    In ectothermic organisms, declining season length and lower temperature towards higher latitudes often select for latitudinal variation in growth and development. However, the energetic mechanisms underlying this adaptive variation are largely unknown. We investigated growth, food intake and growth efficiency of Rana temporaria tadpoles from eight populations along a 1500 km latitudinal gradient across Sweden. To gain an insight into the mechanisms of adaptation at organ level, we also examined variation in tadpole gut length. The tadpoles were raised at two temperatures (16 and 20 degrees C) in a laboratory common garden experiment. We found increased growth rate towards higher latitudes, regardless of temperature treatment. This increase in growth was not because of a higher food intake rate, but populations from higher latitudes had higher growth efficiency, i.e. they were more efficient at converting ingested food into body mass. Low temperature reduced growth efficiency most strongly in southern populations. Relative gut length increased with latitude, and tadpoles at low temperature tended to have longer guts. However, variation in gut length was not the sole adaptive explanation for increased growth efficiency as latitude and body length still explained significant amounts of variation in growth efficiency. Hence, additional energetic adaptations are probably involved in growth efficiency variation along the latitudinal gradient.

  10. Protein Degradation Rate in Arabidopsis thaliana Leaf Growth and Development.

    PubMed

    Li, Lei; Nelson, Clark J; Trösch, Josua; Castleden, Ian; Huang, Shaobai; Millar, A Harvey

    2017-02-01

    We applied (15)N labeling approaches to leaves of the Arabidopsis thaliana rosette to characterize their protein degradation rate and understand its determinants. The progressive labeling of new peptides with (15)N and measuring the decrease in the abundance of >60,000 existing peptides over time allowed us to define the degradation rate of 1228 proteins in vivo. We show that Arabidopsis protein half-lives vary from several hours to several months based on the exponential constant of the decay rate for each protein. This rate was calculated from the relative isotope abundance of each peptide and the fold change in protein abundance during growth. Protein complex membership and specific protein domains were found to be strong predictors of degradation rate, while N-end amino acid, hydrophobicity, or aggregation propensity of proteins were not. We discovered rapidly degrading subunits in a variety of protein complexes in plastids and identified the set of plant proteins whose degradation rate changed in different leaves of the rosette and correlated with leaf growth rate. From this information, we have calculated the protein turnover energy costs in different leaves and their key determinants within the proteome.

  11. Density, ages, and growth rates in old-growth and young-growth forests in coastal Oregon

    USGS Publications Warehouse

    Tappeiner, J. C.; Huffman, D.; Spies, T.; Bailey, John D.

    1997-01-01

    We studied the ages and diameter growth rates of trees in former Douglas-fir (Pseudotsuga menziesii (Mirb.)Franco) old-growth stands on 10 sites and compared them with young-growth stands (50-70 years old, regenerated after timber harvest) in the Coast Range of western Oregon. The diameters and diameter growth rates for the first 100 years of trees in the old-growth stands were significantly greater than those in the young-growth stands. Growth rates in the old stands were comparable with those from long-term studies of young stands in which density is about 100-120 trees/ha; often young-growth stand density is well over 500 trees/ha. Ages of large trees in the old stands ranged from 100 to 420 years; ages in young stands varied by only about 5 to 10 years. Apparently, regeneration of old-growth stands on these sites occurred over a prolonged period, and trees grew at low density with little self-thinning; in contrast, after timber harvest, young stands may develop with high density of trees with similar ages and considerable self-thinning. The results suggest that thinning may be needed in dense young stands where the management objective is to speed development of old-growth characteristics.

  12. Direct Observation of Aggregative Nanoparticle Growth: Kinetic Modeling of the Size Distribution and Growth Rate

    SciTech Connect

    Woehl, Taylor J.; Park, Chiwoo; Evans, James E.; Arslan, Ilke; Ristenpart, William D.; Browning, Nigel D.

    2014-01-08

    Direct observations of solution-phase nanoparticle growth using in situ liquid transmission electron microscopy (TEM) have demonstrated the importance of “non-classical” growth mechanisms, such as aggregation and coalescence, on the growth and final morphology of nanocrystals at the atomic and single nanoparticle scales. To date, groups have quantitatively interpreted the mean growth rate of nanoparticles in terms of the Lifshitz-Slyozov-Wagner (LSW) model for Ostwald ripening, but less attention has been paid to modeling the corresponding particle size distribution. Here we use in situ fluid stage scanning TEM to demonstrate that silver nanoparticles grow by a length-scale dependent mechanism, where individual nanoparticles grow by monomer attachment but ensemble-scale growth is dominated by aggregation. Although our observed mean nanoparticle growth rate is consistent with the LSW model, we show that the corresponding particle size distribution is broader and more symmetric than predicted by LSW. Following direct observations of aggregation, we interpret the ensemble-scale growth using Smoluchowski kinetics and demonstrate that the Smoluchowski model quantitatively captures the mean growth rate and particle size distribution.

  13. In situ growth rate measurements by normal-incidence reflectance during MOVPE growth

    SciTech Connect

    Hou, H.Q.; Breiland, W.G.; Hammons, B.E.; Chui, H.C.

    1996-05-01

    We present an in situ technique for monitoring metal-organic vapor phase epitaxy growth by normal-incidence reflectance. This technique is used to calibrate the growth rate periodically and to monitor the growth process routinely. It is not only a precise tool to measure the growth rate, but also very useful in identifying unusal problems during a growth run, such as depletion of source material, deterioration of surface morphology, and problems associated with an improper growht procedure. We will also present an excellent reproducibility ({+-}0.3% over a course of more than 100 runs) of the cavity wavelength of vertical-cavity surface emitting laser structures with periodic calibration by this in situ technique.

  14. Improvements in plant growth rate using underwater discharge

    NASA Astrophysics Data System (ADS)

    Takaki, K.; Takahata, J.; Watanabe, S.; Satta, N.; Yamada, O.; Fujio, T.; Sasaki, Y.

    2013-03-01

    The drainage water from plant pots was irradiated by plasma and then recycled to irrigate plants for improving the growth rate by supplying nutrients to plants and inactivating the bacteria in the bed-soil. Brassica rapa var. perviridis (Chinese cabbage; Brassica campestris) plants were cultivated in pots filled with artificial soil, which included the use of chicken droppings as a fertiliser. The water was recycled once per day from a drainage water pool and added to the bed-soil in the pots. A magnetic compression type pulsed power generator was used to produce underwater discharge with repetition rate of 250 pps. The plasma irradiation times were set as 10 and 20 minutes per day over 28 days of cultivation. The experimental results showed that the growth rate increased significantly with plasma irradiation into the drainage water. The growth rate increased with the plasma irradiation time. The nitrogen concentration of the leaves increased as a result of plasma irradiation based on chlorophyll content analysis. The bacteria in the drainage water were inactivated by the plasma irradiation.

  15. The effect of growth rate, diameter and impurity concentration on structure in Czochralski silicon crystal growth

    NASA Technical Reports Server (NTRS)

    Digges, T. G., Jr.; Shima, R.

    1980-01-01

    It is demonstrated that maximum growth rates of up to 80% of the theoretical limit can be attained in Czochralski-grown silicon crystals while maintaining single crystal structure. Attaining the other 20% increase is dependent on design changes in the grower, to reduce the temperature gradient in the liquid while increasing the gradient in the solid. The conclusions of Hopkins et al. (1977) on the effect of diameter on the breakdown of structure at fast growth rates are substantiated. Copper was utilized as the test impurity. At large diameters (greater than 7.5 cm), concentrations of greater than 1 ppm copper were attained in the solid (45,000 ppm in the liquid) without breakdown at maximum growth speeds. For smaller diameter crystals, the sensitivity of impurities is much more apparent. For solar cell applications, impurities will limit cell performance before they cause crystal breakdown for fast growth rates of large diameter crystals.

  16. Consequences of complex environments: Temperature and energy intake interact to influence growth and metabolic rate.

    PubMed

    Stahlschmidt, Zachary R; Jodrey, Alicia D; Luoma, Rachel L

    2015-09-01

    The field of comparative physiology has a rich history of elegantly examining the effects of individual environmental factors on performance traits linked to fitness (e.g., thermal performance curves for locomotion). However, animals live in complex environments wherein multiple environmental factors co-vary. Thus, we investigated the independent and interactive effects of temperature and energy intake on the growth and metabolic rate of juvenile corn snakes (Pantherophis guttatus) in the context of shifts in complex environments. Unlike previous studies that imposed constant or fluctuating temperature regimes, we manipulated the availability of preferred thermal microclimates (control vs. relatively warm regimes) for eight weeks and allowed snakes to behaviorally thermoregulate among microclimates. By also controlling for energy intake, we demonstrate an interactive effect of temperature and energy on growth-relevant temperature shifts had no effect on snakes' growth when energy intake was low and a positive effect on growth when energy intake was high. Thus, acclimation to relatively warm thermal options can result in increased rates of growth when food is abundant in a taxon in which body size confers fitness advantages. Temperature and energy also interactively influenced metabolic rate-snakes in the warmer temperature regime exhibited reduced metabolic rate (O2 consumption rate at 25 °C and 30 °C) if they had relatively high energy intake. Although we advocate for continued investigation into the effects of complex environments on other traits, our results indicate that warming may actually benefit important life history traits in some taxa and that metabolic shifts may underlie thermal acclimation.

  17. A rare large right atrial myxoma with rapid growth rate.

    PubMed

    Kelly, Shawn C; Steffen, Kelly; Stys, Adam T

    2014-10-01

    Atrial myxomas are the most common benign intracavitary cardiac neoplasms. They most frequently occur in the left atrium. Right atrial tumors are rare, comprising 20 percent of myxomas achieving an incidence of 0.02 percent. Due to their rarity, right atrial tumor development and associated clinical symptoms has not been well described. The classical clinical triad for the presentation of left atrial myxomas--heart failure, embolic events, and constitutional symptoms--may not be applicable to right sided tumors. Also, natural development of myxoma is not well described, as surgical resection is the common practice. Previously ascribed growth rates of myxomas refer mostly to left atrial ones, as right atrial tumors are rare. We present a case of right atrial myxoma with growth rates exceeding those previously described.

  18. On Growth Rates of Subadditive Functions for Semiflows

    NASA Astrophysics Data System (ADS)

    Schreiber, Sebastian J.

    1998-09-01

    Letφ: X×T+→Xbe a semiflow on a compact metric spaceX. A functionF: X×T+→Xis subadditive with respect toφifF(x, t+s)⩽F(x, t)+F(φ(x, t),nbsp;s). We define the maximal growth rate ofFto be supx∈X lim supt→∞(1/t) F(x, t). This growth rate is shown to equal the maximal growth rate of the subadditive function restricted to the minimal center of attraction of the semiflow. Applications to Birkhoff sums, characteristic exponents of linear skew-product semiflows on Banach bundles, and average Lyapunov functions are developed. In particular, a relationship between the dynamical spectrum and the measurable spectrum of a linear skew-product flow established by R. A. Johnson, K. J. Palmer, and G. R. Sell (SIAM J. Math. Anal.18, 1987, 1-33) is extended to semiflows in an infinite dimensional setting.

  19. Climate forcing growth rates: doubling down on our Faustian bargain

    NASA Astrophysics Data System (ADS)

    Hansen, James; Kharecha, Pushker; Sato, Makiko

    2013-03-01

    Rahmstorf et al 's (2012) conclusion that observed climate change is comparable to projections, and in some cases exceeds projections, allows further inferences if we can quantify changing climate forcings and compare those with projections. The largest climate forcing is caused by well-mixed long-lived greenhouse gases. Here we illustrate trends of these gases and their climate forcings, and we discuss implications. We focus on quantities that are accurately measured, and we include comparison with fixed scenarios, which helps reduce common misimpressions about how climate forcings are changing. Annual fossil fuel CO2 emissions have shot up in the past decade at about 3% yr-1, double the rate of the prior three decades (figure 1). The growth rate falls above the range of the IPCC (2001) 'Marker' scenarios, although emissions are still within the entire range considered by the IPCC SRES (2000). The surge in emissions is due to increased coal use (blue curve in figure 1), which now accounts for more than 40% of fossil fuel CO2 emissions. Figure 1. Figure 1. CO2 annual emissions from fossil fuel use and cement manufacture, an update of figure 16 of Hansen (2003) using data of British Petroleum (BP 2012) concatenated with data of Boden et al (2012). The resulting annual increase of atmospheric CO2 (12-month running mean) has grown from less than 1 ppm yr-1 in the early 1960s to an average ~2 ppm yr-1 in the past decade (figure 2). Although CO2 measurements were not made at sufficient locations prior to the early 1980s to calculate the global mean change, the close match of global and Mauna Loa data for later years suggests that Mauna Loa data provide a good approximation of global change (figure 2), thus allowing a useful estimate of annual global change beginning with the initiation of Mauna Loa measurements in 1958 by Keeling et al (1973). Figure 2. Figure 2. Annual increase of CO2 based on data from the NOAA Earth System Research Laboratory (ESRL 2012). CO2 change

  20. A petroleum discovery-rate forecast revisited-The problem of field growth

    USGS Publications Warehouse

    Drew, L.J.; Schuenemeyer, J.H.

    1992-01-01

    A forecast of the future rates of discovery of crude oil and natural gas for the 123,027-km2 Miocene/Pliocene trend in the Gulf of Mexico was made in 1980. This forecast was evaluated in 1988 by comparing two sets of data: (1) the actual versus the forecasted number of fields discovered, and (2) the actual versus the forecasted volumes of crude oil and natural gas discovered with the drilling of 1,820 wildcat wells along the trend between January 1, 1977, and December 31, 1985. The forecast specified that this level of drilling would result in the discovery of 217 fields containing 1.78 billion barrels of oil equivalent; however, 238 fields containing 3.57 billion barrels of oil equivalent were actually discovered. This underestimation is attributed to biases introduced by field growth and, to a lesser degree, the artificially low, pre-1970's price of natural gas that prevented many smaller gas fields from being brought into production at the time of their discovery; most of these fields contained less than 50 billion cubic feet of producible natural gas. ?? 1992 Oxford University Press.

  1. Salamander growth rates increase along an experimental stream phosphorus gradient.

    PubMed

    Bumpers, Phillip M; Maerz, John C; Rosemond, Amy D; Benstead, Jonathan P

    2015-11-01

    Nutrient-driven perturbations to the resource base of food webs are predicted to attenuate with trophic distance, so it is unclear whether higher-level consumers will generally respond to anthropogenic nutrient loading. Few studies have tested whether nutrient (specifically, nitrogen [N] and phosphorus [P]) enrichment of aquatic ecosystems propagates through multiple trophic levels to affect predators, or whether N vs. P is relatively more important in driving effects on food webs. We conducted two-year whole-stream N and P additions to five streams to generate gradients in N and P concentration and N:P ratio (target N:P = 2, 8, 16, 32, 128). Larval salamanders are vertebrate predators of primary and secondary macroinvertebrate consumers in many heterotrophic headwater streams in which the basal resources are detritus and associated microorganisms. We determined the effects of N and P on the growth rates of caged and free-roaming larval Desmognathus quadramaculatus and the average body size of larval Eurycea wilderae. Growth rates and average body size increased by up to 40% and 60%, respectively, with P concentration and were negatively related to N:P ratio. These findings were consistent across both species of salamanders using different methodologies (cage vs. free-roaming) and at different temporal scales (3 months vs. 2 yr). Nitrogen concentration was not significantly related to increased growth rate or body size of the salamander species tested. Our findings suggest that salamander growth responds to the relaxation of ecosystem-level P limitation and that moderate P enrichment can have relatively large effects on vertebrate predators in detritus-based food webs.

  2. World growth rate slows, but numbers build up.

    PubMed

    Haub, C

    1994-11-01

    In 1992, the UN estimated annual world population growth at 1.68% for 1990-95. Official UN world population estimates and projections were, however, revised in 1994 to reflect the beginning of an apparent fertility transition in a number of sub-Saharan African, Asian, and Middle Eastern countries. This new series of UN estimates and projections reflects the resumption of a trend of declining world population growth rates which began in the mid-1960s, but stalled soon thereafter. UN demographers now calculate that over the period 1990-94, world population grew at 1.57% per year, lower than the 1.68% used in 1992, and significantly below the 1.73% per year growth rate over the period 1975-90 and the peak of 2.0% in the late 1960s. The current rate of population growth is the lowest recorded since World War II. The number of people added to world population will, however, increase annually until at least the year 2000. In mid-1994, there were 5.63 billion people in the world, 4.47 billion in developing countries and 1.16 billion in more developed countries. World population is projected to be 9.8 billion in the year 2050 in the medium series projection, 7.9 billion in the low series, and 11.9 billion in the high series. China, India, the United States, Indonesia, Brazil, Russia, Pakistan, Japan, Bangladesh, and Nigeria are currently the only countries each with more than 100 million people. UN medium projections, however, indicate that by the year 2050 Ethiopia, Zaire, Iran, Mexico, Vietnam, the Philippines, Egypt, and Turkey should enter the 100-million-plus league.

  3. Growth axis maturation is linked to nutrition, growth and developmental rate.

    PubMed

    Hetz, Jennifer A; Menzies, Brandon R; Shaw, Geoffrey; Rao, Alexandra; Clarke, Iain J; Renfree, Marilyn B

    2015-08-15

    Maturation of the mammalian growth axis is thought to be linked to the transition from fetal to post-natal life at birth. However, in an altricial marsupial, the tammar wallaby (Macropus eugenii), this process occurs many months after birth but at a time when the young is at a similar developmental stage to that of neonatal eutherian mammals. Here we manipulate growth rates and demonstrate in slow, normal and fast growing tammar young that nutrition and growth rate affect the time of maturation of the growth axis. Maturation of GH/IGF-I axis components occurred earlier in fast growing young, which had significantly increased hepatic GHR, IGF1 and IGFALS expression, plasma IGF-I concentrations, and significantly decreased plasma GH concentrations compared to age-matched normal young. These data support the hypothesis that the time of maturation of the growth axis depends on the growth rate and maturity of the young, which can be accelerated by changing their nutritional status.

  4. Paradox of plant growth promotion potential of rhizobacteria and their actual promotion effect on growth of barley (Hordeum vulgare L.) under salt stress.

    PubMed

    Cardinale, Massimiliano; Ratering, Stefan; Suarez, Christian; Zapata Montoya, Ana Maria; Geissler-Plaum, Rita; Schnell, Sylvia

    2015-12-01

    From the rhizosphere of two salt tolerant plant species, Hordeum secalinum and Plantago winteri growing in a naturally salt meadow, 100 strains were isolation on enrichment media for various plant growth-promoting (PGP) functions (ACC deaminase activity, auxin synthesis, calcium phosphate mobilization and nitrogen fixation). Based on the taxonomic affiliation of the isolated bacteria and their enrichment medium 22 isolates were selected to test their growth promotion effect on the crop barley (Hordeum vulgare) under salt stress in pot experiment. In parallel the isolates were characterized in pure culture for their plant growth-promoting activities. Surprisingly the best promotors did not display a promising set of PGP activities. Isolates with multiple PGP-activities in pure culture like Microbacterium natoriense strain E38 and Pseudomonas brassicacearum strain E8 did not promote plant growth. The most effective isolate was strain E108 identified as Curtobacterium flaccumfaciens, which increased barley growth up to 300%. In pure culture strain E108 showed only two out of six plant growth promoting activities and would have been neglected. Our results highlight that screening based on pure culture assays may not be suitable for recognition of best plant growth promotion candidates and could preclude the detection of both new PGPR and new plant promotion mechanisms.

  5. Imaging System For Measuring Macromolecule Crystal Growth Rates in Microgravity

    NASA Technical Reports Server (NTRS)

    Corder, Eric L.; Briscoe, Jeri

    2004-01-01

    In order to determine how macromolecule crystal quality improvement in microgravity is related to crystal growth characteristics, a team of scientists and engineers at NASA's Marshal Space Flight Center (MSFC) developed flight hardware capable of measuring the crystal growth rates of a population of crystals growing under the same conditions. As crystal growth rate is defined as the change or delta in a defined dimension or length (L) of crystal over time, the hardware was named Delta-L. Delta-L consists of three sub assemblies: a fluid unit including a temperature-controlled growth cell, an imaging unit, and a control unit (consisting of a Data Acquisition and Control Unit (DACU), and a thermal control unit). Delta-L will be used in connection with the Glovebox Integrated Microgravity Isolation Technology (g-LIMIT) inside the Microgravity Science Glovebox (MSG), onboard the International Space Station. This paper will describe the Delta-L imaging system. The Delta-L imaging system was designed to locate, resolve, and capture images of up to 10 individual crystals ranging in size from 10 to 500 microns with a point-to-point accuracy of +/- 2.0 microns within a quartz growth cell observation area of 20 mm x 10 mm x 1 mm. The optical imaging system is comprised of a video microscope camera mounted on computer controlled translation stages. The 3-axis translation stages and control units provide crewmembers the ability to search throughout the growth cell observation area for crystals forming in size of approximately 10 microns. Once the crewmember has selected ten crystals of interest, the growth of these crystals is tracked until the size reaches approximately 500 microns. In order to resolve these crystals an optical system with a magnification of 10X was designed. A black and white NTSC camera was utilized with a 20X microscope objective and a 0.5X custom designed relay lens with an inline light to meet the magnification requirement. The design allows a 500 pm

  6. Updating Medicare's physician fees: the sustainable growth rate methodology.

    PubMed

    Dummit, Laura A

    2006-11-10

    Medicare's method to annually update the fees it pays physicians has been under fire for some time--specifically, since the method determined that physician fees should be reduced rather than increased. The update method, called the sustainable growth rate (SGR), was implemented to control the growth in Medicare physician spending. Yet Congress, in response to physician concerns about beneficiary access to care, has acted to avert physician fee cuts since 2003. Although this signals dissatisfaction with the SGR methodology, there is yet to be a widely accepted physician fee update proposal that balances federal budgetary realities with the need to ensure beneficiary access. And the cost of changing the update method continues to mount, adding to the difficulties of developing a solution that meets the needs of all stakeholders. This issue brief describes the SGR methodology, the reasons why projected physician fee updates are negative, and some options that have been proposed to remedy the current situation. This issue brief is the second of two related papers on physician spending and Medicare's sustainable growth rate methodology. The companion paper was published on October 9, 2006 (see Issue Brief 815, available at www.nhpf.org/pdfs_ib/IB815_PhysicianSpending_10-09-06.pdf).

  7. Perspectives on massive coral growth rates in a changing ocean.

    PubMed

    Lough, Janice M; Cantin, Neal E

    2014-06-01

    The tropical ocean environment is changing at an unprecedented rate, with warming and severe tropical cyclones creating obvious impacts to coral reefs within the last few decades and projections of acidification raising concerns for the future of these iconic and economically important ecosystems. Documenting variability and detecting change in global and regional climate relies upon high-quality observational records of climate variables supplemented, prior to the mid-19th century, with reconstructions from various sources of proxy climate information. Here we review how annual density banding patterns that are recorded in the skeletons of massive reef-building corals have been used to document environmental change and impacts within coral reefs. Massive corals provide a historical perspective of continuous calcification processes that pre-date most ecological observations of coral reefs. High-density stress bands, abrupt declines in annual linear extension, and evidence of partial mortality within the skeletal growth record reveal signatures of catastrophic stress events that have recently been attributed to mass bleaching events caused by unprecedented thermal stress. Comparison of recent trends in annual calcification with century-scale baseline calcification rates reveals that the frequency of growth anomalies has increased since the late 1990s throughout most of the world's coral reef ecosystems. Continuous coral growth histories provide valuable retrospective information on the coral response to environmental change and the consequences of anthropogenic climate change. Co-ordinated efforts to synthesize and combine global calcification histories will greatly enhance our understanding of current calcification responses to a changing ocean.

  8. Diffusion-controlled growth rate of stepped interfaces

    NASA Astrophysics Data System (ADS)

    Saidi, P.; Hoyt, J. J.

    2015-07-01

    For many materials, the structure of crystalline surfaces or solid-solid interphase boundaries is characterized by an array of mobile steps separated by immobile terraces. Despite the prevalence of step-terraced interfaces a theoretical description of the growth rate has not been completely solved. In this work the boundary element method (BEM) has been utilized to numerically compute the concentration profile in a fluid phase in contact with an infinite array of equally spaced surface steps and, under the assumption that step motion is controlled by diffusion through the fluid phase, the growth rate is computed. It is also assumed that a boundary layer exists between the growing surface and a point in the liquid where complete convective mixing occurs. The BEM results are presented for varying step spacing, supersaturation, and boundary layer width. BEM calculations were also used to study the phenomenon of step bunching during crystal growth, and it is found that, in the absence of elastic strain energy, a sufficiently large perturbation in the position of a step from its regular spacing will lead to a step bunching instability. Finally, an approximate analytic solution using a matched asymptotic expansion technique is presented for the case of a stagnant liquid or equivalently a solid-solid stepped interface.

  9. Diffusion-controlled growth rate of stepped interfaces.

    PubMed

    Saidi, P; Hoyt, J J

    2015-07-01

    For many materials, the structure of crystalline surfaces or solid-solid interphase boundaries is characterized by an array of mobile steps separated by immobile terraces. Despite the prevalence of step-terraced interfaces a theoretical description of the growth rate has not been completely solved. In this work the boundary element method (BEM) has been utilized to numerically compute the concentration profile in a fluid phase in contact with an infinite array of equally spaced surface steps and, under the assumption that step motion is controlled by diffusion through the fluid phase, the growth rate is computed. It is also assumed that a boundary layer exists between the growing surface and a point in the liquid where complete convective mixing occurs. The BEM results are presented for varying step spacing, supersaturation, and boundary layer width. BEM calculations were also used to study the phenomenon of step bunching during crystal growth, and it is found that, in the absence of elastic strain energy, a sufficiently large perturbation in the position of a step from its regular spacing will lead to a step bunching instability. Finally, an approximate analytic solution using a matched asymptotic expansion technique is presented for the case of a stagnant liquid or equivalently a solid-solid stepped interface.

  10. Growth of monosodium urate monohydrate crystals: effect of cartilage and synovial fluid components on in vitro growth rates.

    PubMed Central

    Burt, H M; Dutt, Y C

    1986-01-01

    The effects of cartilage and synovial fluid components such as proteoglycans, chondroitin sulphate, hyaluronic acid, phospholipids, and albumin on the growth kinetics of monosodium urate monohydrate (MSUM) crystals were investigated. MSUM seed crystals were added to supersaturated sodium urate solutions, and the rate of decrease in the concentration of growth medium was used as a measure of the growth rate. A second order dependence of growth rate on supersaturation was found, and growth rate constants were determined with an integrated form of the growth equation. The additives, hyaluronic acid, proteoglycan monomer and aggregate, and phosphatidylserine, had no significant effect on the growth rate constant. Chondroitin sulphate and phosphatidylcholine increased the growth rate constant, possibly by promoting further nucleation in the growth medium. Albumin significantly inhibited MSUM crystallisation. The possible implications of these findings on in vivo MSUM crystallisation are discussed. PMID:3098195

  11. Growth rate, transmission mode and virulence in human pathogens

    PubMed Central

    Cornwallis, Charlie K.; Buckling, Angus; West, Stuart A.

    2017-01-01

    The harm that pathogens cause to hosts during infection, termed virulence, varies across species from negligible to a high likelihood of rapid death. Classic theory for the evolution of virulence is based on a trade-off between pathogen growth, transmission and host survival, which predicts that higher within-host growth causes increased transmission and higher virulence. However, using data from 61 human pathogens, we found the opposite correlation to the expected positive correlation between pathogen growth rate and virulence. We found that (i) slower growing pathogens are significantly more virulent than faster growing pathogens, (ii) inhaled pathogens and pathogens that infect via skin wounds are significantly more virulent than pathogens that are ingested, but (iii) there is no correlation between symptoms of infection that aid transmission (such as diarrhoea and coughing) and virulence. Overall, our results emphasize how virulence can be influenced by mechanistic life-history details, especially transmission mode, that determine how parasites infect and exploit their hosts. This article is part of the themed issue ‘Opening the black box: re-examining the ecology and evolution of parasite transmission’. PMID:28289261

  12. Female promiscuity and maternally dependent offspring growth rates in mammals.

    PubMed

    Garratt, Michael; Brooks, Robert C; Lemaître, Jean-François; Gaillard, Jean-Michel

    2014-04-01

    Conflicts between family members are expected to influence the duration and intensity of parental care. In mammals, the majority of this care occurs as resource transfer from mothers to offspring during gestation and lactation. Mating systems can have a strong influence on the severity of familial conflict--where female promiscuity is prevalent, conflict is expected to be higher between family members, causing offspring to demand more resources. If offspring are capable of manipulating their mothers and receive resources in proportion to their demands, resource transfer should increase with elevated promiscuity. We tested this prediction, unexplored across mammals, using a comparative approach. The total durations of gestation and lactation were not related to testes mass, a reliable proxy of female promiscuity across taxa. Offspring growth during gestation, however, and weaning mass, were positively correlated with testes mass, suggesting that offspring gain resources from their mothers at faster rates when familial conflict is greater. During gestation, the relationship between offspring growth and testes mass was also related to placenta morphology, with a stronger relationship between testes mass and growth observed in species with a less invasive placenta. Familial conflict could have a pervasive influence on patterns of parental care in mammals.

  13. Crystallization of Solids in the Presence of Anisotropic Growth Rates and Gaussian Nucleation Rates

    NASA Astrophysics Data System (ADS)

    Lokovic, Kimberly; Bill, Andreas; Bergmann, Ralf

    2010-10-01

    The grain size distribution allows characterizing quantitatively the microstructure of an amorphous solid at different stages of crystallization. We review the theory developed recently for the grain size distribution (GSD) [1] and present two extensions of the model. In the first generalization, we replace the isotropic growth rate by an anisotropic rate that leads to the formation of ellipsoidal grains. Different anisotropic growth mechanisms are considered. We obtain an analytical expression for the GSD when the growth rate leads to a change of volume leaving the shape of grains invariant [2]. In the second generalization, we study how the GSD is affected by replacing the Dirac-type source term of nuclei by a more physical Gaussian-type source. We use that model to analyze the GSD at early stages of crystallization.[4pt] [1] A.V.Teran, R.B.Bergmann and A.Bill, Phys. Rev. B 81, 075319 (2010).[0pt] [2] K.S.Lokovic, R.B.Bergmann and A.Bill, Mater. Res. Soc. Symp. Proc. 1245, A16-07 (2010).

  14. The Effect of Growth Rate on Interface Morphology

    NASA Technical Reports Server (NTRS)

    Trivedi, R.; Somboonsuk, K.

    1984-01-01

    Since significantly different solidification structures of a given alloy can be obtained by varying experimental growth rates, it is desirable to understand the basic factors which control the formation and stability of these microstructures when conditions are altered. Directional solidification experiments are described and the results obtained in metallic and transparent organic systems are presented. Emphasis is on the characteristics of dendritic structures obtained under different solidification conditions. Specifically, the effect of the growth rate on the primary dendritic spacing, the secondary dendrite spacing, and the dendrite tip radius is discussed. It is shown that significant changes in the primary spacing are observed when a dendrite to cellular transition takes place at lower velocities. It is found that the primary cellular spacing is much smaller than the primary dendrite spacing so that a maximum in the primary spacing occurs as a function of velocity at the dendrite-cellular transition. A theoretical model is also described which quantitatively explains various microstructural features of dendritic and cellular structures.

  15. Non-linear stochastic growth rates and redshift space distortions

    DOE PAGES

    Jennings, Elise; Jennings, David

    2015-04-09

    The linear growth rate is commonly defined through a simple deterministic relation between the velocity divergence and the matter overdensity in the linear regime. We introduce a formalism that extends this to a non-linear, stochastic relation between θ = ∇ ∙ v(x,t)/aH and δ. This provides a new phenomenological approach that examines the conditional mean <θ|δ>, together with the fluctuations of θ around this mean. We also measure these stochastic components using N-body simulations and find they are non-negative and increase with decreasing scale from ~10 per cent at k < 0.2 h Mpc-1 to 25 per cent at kmore » ~ 0.45 h Mpc-1 at z = 0. Both the stochastic relation and non-linearity are more pronounced for haloes, M ≤ 5 × 1012 M⊙ h-1, compared to the dark matter at z = 0 and 1. Non-linear growth effects manifest themselves as a rotation of the mean <θ|δ> away from the linear theory prediction -fLTδ, where fLT is the linear growth rate. This rotation increases with wavenumber, k, and we show that it can be well-described by second-order Lagrangian perturbation theory (2LPT) fork < 0.1 h Mpc-1. Furthermore, the stochasticity in the θ – δ relation is not so simply described by 2LPT, and we discuss its impact on measurements of fLT from two-point statistics in redshift space. Furthermore, given that the relationship between δ and θ is stochastic and non-linear, this will have implications for the interpretation and precision of fLT extracted using models which assume a linear, deterministic expression.« less

  16. Non-linear stochastic growth rates and redshift space distortions

    SciTech Connect

    Jennings, Elise; Jennings, David

    2015-04-09

    The linear growth rate is commonly defined through a simple deterministic relation between the velocity divergence and the matter overdensity in the linear regime. We introduce a formalism that extends this to a non-linear, stochastic relation between θ = ∇ ∙ v(x,t)/aH and δ. This provides a new phenomenological approach that examines the conditional mean <θ|δ>, together with the fluctuations of θ around this mean. We also measure these stochastic components using N-body simulations and find they are non-negative and increase with decreasing scale from ~10 per cent at k < 0.2 h Mpc-1 to 25 per cent at k ~ 0.45 h Mpc-1 at z = 0. Both the stochastic relation and non-linearity are more pronounced for haloes, M ≤ 5 × 1012 M h-1, compared to the dark matter at z = 0 and 1. Non-linear growth effects manifest themselves as a rotation of the mean <θ|δ> away from the linear theory prediction -fLTδ, where fLT is the linear growth rate. This rotation increases with wavenumber, k, and we show that it can be well-described by second-order Lagrangian perturbation theory (2LPT) fork < 0.1 h Mpc-1. Furthermore, the stochasticity in the θ – δ relation is not so simply described by 2LPT, and we discuss its impact on measurements of fLT from two-point statistics in redshift space. Furthermore, given that the relationship between δ and θ is stochastic and non-linear, this will have implications for the interpretation and precision of fLT extracted using models which assume a linear, deterministic expression.

  17. Effects of growth rate and compensatory growth on body composition in lambs.

    PubMed

    Turgeon, O A; Brink, D R; Bartle, S J; Klopfenstein, T J; Ferrell, C L

    1986-09-01

    Fifty lambs were used in a comparative slaughter experiment to determine the effects of growth rates and compensatory growth on body composition. The study consisted of a growing and a finishing phase. During the growing phase, lambs (20 to 30 kg) were fed three different concentrate levels (30, 50 or 70%) to gain at three different rates (slow, medium and rapid). The finishing phase was evaluated in two periods (early, 30 to 38 kg; late, 38 to 45 kg). All lambs received 70% concentrate diets during the finishing phase. Groups of five lambs were sacrificed at 20, 30, 38 and 45 kg fleece-free weights for whole-body chemical analysis. At 30 kg live weight, lambs on a rapid growth diet were the fattest (P less than .01) and contained the least protein (P less than .05) in their empty bodies. The slower the lambs gained during the growing phase, the greater (P less than .05) was the response in rate of gain and feed efficiency during both periods of the finishing phase. Compensatory growth occurred in two stages; a greater proportion of protein gain was made early while a greater proportion of the fat gain was made during the late period of the finishing phase.

  18. [Specific growth rate and the rate of energy metabolism in the ontogenesis of axolotl, Ambystoma mexicanum (Amphibia: Ambystomatidae)].

    PubMed

    Vladimirova, I G; Kleĭmenov, S Iu; Alekseeva, T A; Radzinskaia, L I

    2003-01-01

    Concordant changes in the rate of energy metabolism and specific growth rate of axolotls have been revealed. Several periods of ontogeny are distinguished, which differ in the ratio of energy metabolism to body weight and, therefore, are described by different allometric equations. It is suggested that the specific growth rate of an animal determines the type of dependence of energy metabolism on body weight.

  19. Contributions of vital rates to growth of a protected population of American black bears

    USGS Publications Warehouse

    Mitchell, M.S.; Pacifici, L.B.; Grand, J.B.; Powell, R.A.

    2009-01-01

    Analyses of large, long-lived animals suggest that adult survival generally has the potential to contribute more than reproduction to population growth rate (??), but because survival varies little, high variability in reproduction can have a greater influence. This pattern has been documented for several species of large mammals, but few studies have evaluated such contributions of vital rates to ?? for American black bears (Ursus americanus). We used variance-based perturbation analyses (life table response experiments, LTRE) and analytical sensitivity and elasticity analyses to examine the actual and potential contributions of variation of vital rates to variation in growth rate (??) of a population of black bears inhabiting the Pisgah Bear Sanctuary in the southern Appalachian Mountains of North Carolina, using a 22-year dataset. We found that recruitment varied more than other vital rates; LTRE analyses conducted over several time intervals thus indicated that recruitment generally contributed at least as much as juvenile and adult survival to observed variation in ??, even though the latter 2 vital rates had the greater potential to affect ??. Our findings are consistent with predictions from studies on polar bears (U. maritimus) and grizzly bears (U. arctos), but contrast with the few existing studies on black bears in ways that suggest levels of protection from human-caused mortality might explain whether adult survival or recruitment contribute most to variation in ?? for this species. We hypothesize that ?? is most strongly influenced by recruitment in protected populations where adult survival is relatively high and constant, whereas adult survival will most influence ?? for unprotected populations. ?? 2009 International Association for Bear Research and Management.

  20. [Calculating the intrinsic growth rate: comparison of definition and model].

    PubMed

    Voronov, D A

    2005-01-01

    It was shown that well known equation r = ln[N(t2)/N(t1)]/(t2 - t1) is the definition of the average value of intrinsic growth rate of population r within any given interval of time t2-t1 and changing arbitrarity its numbers N(t). The common opinion considering the equation as suitable only for exponentially growing population was found to be incorrect. The fundamentally different approach is based on the calculation of r within the framework of demographic model, realized as Euler - Lotka equation or population projection matrices. However this model requires simultaneous realization of several assumptions improbable for natural populations: exponential change in population size, stable age structure and maintaining constant age-dependent birth and death rates. The calculation of r by definition requires the data on the dynamics of population numbers, whereas calculation on the basis of the model requires the demographic tables of birth and death rate, but not the population numbers. With the example of American ginseng it was shown that evalution of r by definition and model approaches could produce opposite results.

  1. Growth rate controlled barium partitioning in calcite and aragonite

    NASA Astrophysics Data System (ADS)

    Goetschl, Katja Elisabeth; Mavromatis, Vasileios; Baldermann, Andre; Purgstaller, Bettina; Dietzel, Martin

    2016-04-01

    The barium (Ba) content and the Ba/Ca molar ratios in biogenic and abiotic carbonates have been widely used from the scientific community as a geochemical proxy especially in marine and early diagenetic settings. The Ba content of carbonate minerals has been earlier associated to changes in oceanic circulation that may have been caused by upwelling, changes in weathering regimes and river-runoff as well as melt water discharge. The physicochemical controls of Ba ion incorporation in the two most abundant CaCO3 polymorphs found in Earth's surface environments, i.e. calcite and aragonite, have adequately been studied only for calcite. These earlier studies (i.e. [1]) suggest that at increasing growth rate, Ba partitioning in calcite is increasing as well. In contrast, to date the effect of growth rate on the partitioning of Ba in aragonite remains questionable, despite the fact that this mineral phase is the predominant carbonate-forming polymorph in shallow marine environments. To shed light on the mechanisms controlling Ba ion uptake in carbonates in this study we performed steady-state Ba co-precipitation experiments with calcite and aragonite at 25°C. The obtained results for the partitioning of Ba in calcite are in good agreement with those reported earlier by [1], whereas those for aragonite indicate a reduction of Ba partitioning at elevated aragonite growth rates, with the partitioning coefficient value between solid and fluid to be approaching the unity. This finding is good agreement with the formation of a solid solution in the aragonite-witherite system, owing to the isostructural crystallography of the two mineral phases. Moreover, our data set provides new insights that are required for reconstructing the evolution of the Ba content of pristine marine versus diagenetically altered carbonate minerals commonly occurring in marine subfloor settings, as the thermodynamically less stable aragonite will transform to calcite enriched in Ba, whilst affecting

  2. Investigations of interstitial generations near growth interface depending on crystal pulling rates during CZ silicon growth by detaching from the melt

    NASA Astrophysics Data System (ADS)

    Abe, T.; Takahashi, T.; Shirai, K.; Zhang, X. W.

    2016-01-01

    In conventional CZ crystal growth, since formation of a cone tail takes a long time, from such a crystal to have been subject the long heat treatment it is not possible to observe actual distribution of vacancies (Vs) and interstitial atoms (Is) in a straight body of a crystal during growth. This experiment attempted to observe point defect distribution frozen by rapidly cooling a crystal that had been detached from a melt during growth to eliminate the effect of the time delay. Comparison between the experimental results of these specimens and the defect distributions of a conventionally pulled crystals revealed that Vs are introduced at a growth interface and the concentration of the Vs does not depend on the pulling rate. In addition, when the pulling rate is low, Is are generated by thermal stress which increases with increasing thermal gradient G because the amount of heat transfer by mass transfer is decreased and the crystal surface near the growth interface is cooled for longer period. As a result, the generation of Is due to the increase of the thermal stress is observed in an area referred to as an interstitial generation area (IGA) located above the vacancy region on the growth interface, where the crystal temperature is 1300 °C or more. This paper describes the recombination (Rc) mechanism by which these Is created in the IGA are recombined with Vs transformed through the growth interface, thereby creating an observable Rc area at a location where no defect can be detected.

  3. Age, growth rates, and paleoclimate studies of deep sea corals

    USGS Publications Warehouse

    Prouty, Nancy G; Roark, E. Brendan; Andrews, Allen; Robinson, Laura; Hill, Tessa; Sherwood, Owen; Williams, Branwen; Guilderson, Thomas P.; Fallon, Stewart

    2015-01-01

    Deep-water corals are some of the slowest growing, longest-lived skeletal accreting marine organisms. These habitat-forming species support diverse faunal assemblages that include commercially and ecologically important organisms. Therefore, effective management and conservation strategies for deep-sea corals can be informed by precise and accurate age, growth rate, and lifespan characteristics for proper assessment of vulnerability and recovery from perturbations. This is especially true for the small number of commercially valuable, and potentially endangered, species that are part of the black and precious coral fisheries (Tsounis et al. 2010). In addition to evaluating time scales of recovery from disturbance or exploitation, accurate age and growth estimates are essential for understanding the life history and ecology of these habitat-forming corals. Given that longevity is a key factor for population maintenance and fishery sustainability, partly due to limited and complex genetic flow among coral populations separated by great distances, accurate age structure for these deep-sea coral communities is essential for proper, long-term resource management.

  4. Does seed mass drive the differences in relative growth rate between growth forms?

    PubMed

    Houghton, Jennie; Thompson, Ken; Rees, Mark

    2013-07-07

    The idea that herbaceous plants have higher relative growth rates (RGRs) compared with woody plants is fundamental to many of the most influential theories in plant ecology. This difference in growth rate is thought to reflect systematic variation in physiology, allocation and leaf construction. Previous studies documenting this effect have, however, ignored differences in seed mass. As woody species often have larger seeds and RGR is negatively correlated with seed mass, it is entirely possible the lower RGRs observed in woody species is a consequence of having larger seeds rather than different growth strategies. Using a synthesis of the published literature, we explored the relationship between RGR and growth form, accounting for the effects of seed mass and study-specific effects (e.g. duration of study and pot volume), using a mixed-effects model. The model showed that herbaceous species do indeed have higher RGRs than woody species, and that the difference was independent of seed mass, thus at all seed masses, herbaceous species on average grow faster than woody ones.

  5. A Bayesian analysis of the effect of selection for growth rate on growth curves in rabbits

    PubMed Central

    Blasco, Agustín; Piles, Miriam; Varona, Luis

    2003-01-01

    Gompertz growth curves were fitted to the data of 137 rabbits from control (C) and selected (S) lines. The animals came from a synthetic rabbit line selected for an increased growth rate. The embryos from generations 3 and 4 were frozen and thawed to be contemporary of rabbits born in generation 10. Group C was the offspring of generations 3 and 4, and group S was the contemporary offspring of generation 10. The animals were weighed individually twice a week during the first four weeks of life, and once a week thereafter, until 20 weeks of age. Subsequently, the males were weighed weekly until 40 weeks of age. The random samples of the posterior distributions of the growth curve parameters were drawn by using Markov Chain Monte Carlo (MCMC) methods. As a consequence of selection, the selected animals were heavier than the C animals throughout the entire growth curve. Adult body weight, estimated as a parameter of the Gompertz curve, was 7% higher in the selected line. The other parameters of the Gompertz curve were scarcely affected by selection. When selected and control growth curves are represented in a metabolic scale, all differences disappear. PMID:12605849

  6. Adaptive disturbance attenuation via output feedback for nonlinear systems with polynomial-of-output growth rate

    NASA Astrophysics Data System (ADS)

    Shang, Fang; Liu, Yungang

    2014-03-01

    In this paper, the adaptive disturbance attenuation via output feedback is investigated for a class of nonlinear systems with uncertain control coefficients. Notably, the considered systems depend on unmeasured states with polynomial-of-output growth rate, and hence the systems have severe unknowns. Due to the existence of both the virtual and actual uncertain control coefficients, we first introduce a suitable state transformation, such that the control design becomes convenient. Then, we construct an appropriate and simple state observer with two important gains, and one gain is large enough to handle the constants appeared in the design procedure, and the other is updated on-line to deal with the polynomial-of-output growth rate of the system. After that, an output feedback controller is proposed based on the observer in a step-by-step manner. Finally, it is shown that, by appropriate choice of the design parameters, the states of the closed-loop system are globally bounded, and the disturbance attenuation is achieved in the sense of ?-gain.

  7. Climate Forcing Growth Rates: Doubling Down on Our Faustian Bargain

    NASA Technical Reports Server (NTRS)

    Hansen, James; Kharecha, Pushker; Sato, Makiko

    2013-01-01

    Rahmstorf et al 's (2012) conclusion that observed climate change is comparable to projections, and in some cases exceeds projections, allows further inferences if we can quantify changing climate forcings and compare those with projections. The largest climate forcing is caused by well-mixed long-lived greenhouse gases. Here we illustrate trends of these gases and their climate forcings, and we discuss implications. We focus on quantities that are accurately measured, and we include comparison with fixed scenarios, which helps reduce common misimpressions about how climate forcings are changing. Annual fossil fuel CO2 emissions have shot up in the past decade at about 3/yr, double the rate of the prior three decades (figure 1). The growth rate falls above the range of the IPCC (2001) 'Marker' scenarios, although emissions are still within the entire range considered by the IPCC SRES (2000). The surge in emissions is due to increased coal use (blue curve in figure 1), which now accounts for more than 40 of fossil fuel CO2 emissions.

  8. Effect of compost temperature on oxygen uptake rate, specific growth rate and enzymatic activity of microorganisms in dairy cattle manure.

    PubMed

    Miyatake, Fumihito; Iwabuchi, Kazunori

    2006-05-01

    Investigations were carried out to find out the relationship between temperature and microbial activity in dairy cattle manure composting using oxygen uptake rate, specific growth rate and enzymatic activities during autothermal and isothermal composting experiments. In autothermal composting, oxygen uptake rate and specific growth rate were found to be most intensive in order of 43 degrees C, 60 degrees C and 54 degrees C. Isothermal composting at 54 degrees C resulted highest levels of enzymatic activity and promoted the volatile solids reduction. Based on the maximum enzymatic activity, specific growth rate appeared to be more closely linked with microbial activity in compost than with oxygen uptake rate. The enhancement of specific growth rate, enzymatic activity and volatile solids reduction were induced at 54 degrees C in cattle manure composting.

  9. Growth rate regulation of lac operon expression in Escherichia coli is cyclic AMP dependent.

    PubMed

    Kuo, Jong-Tar; Chang, Yu-Jen; Tseng, Ching-Ping

    2003-10-23

    In contrast to the ribosomal RNA gene expression increasing with growth rate, transcription of the lac operon is downregulated by cell growth rate. In continuous culture, growth rate regulation of lac promoter was independent of carbon substrate used and its location on the chromosome. Since the lac operon is activated by cyclic adenosine monophosphate (cAMP), which decreases with increasing cell growth rate, expression of plac-lacZ reporter fusion was analyzed in cya mutant under various growth conditions. The results demonstrated that expression of plac-lacZ in cya mutant was both lower and growth rate independent. In addition, ppGpp (guanosine tetraphosphate) was not involved in the mechanism of growth rate regulation of the lac promoter. Thus, the results of this study indicate that cAMP mediates the growth rate-dependent regulation of lac operon expression in Escherichia coli.

  10. Estimation of uncertainty for fatigue growth rate at cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Nyilas, Arman; Weiss, Klaus P.; Urbach, Elisabeth; Marcinek, Dawid J.

    2014-01-01

    Fatigue crack growth rate (FCGR) measurement data for high strength austenitic alloys at cryogenic environment suffer in general from a high degree of data scatter in particular at ΔK regime below 25 MPa√m. Using standard mathematical smoothing techniques forces ultimately a linear relationship at stage II regime (crack propagation rate versus ΔK) in a double log field called Paris law. However, the bandwidth of uncertainty relies somewhat arbitrary upon the researcher's interpretation. The present paper deals with the use of the uncertainty concept on FCGR data as given by GUM (Guidance of Uncertainty in Measurements), which since 1993 is a recommended procedure to avoid subjective estimation of error bands. Within this context, the lack of a true value addresses to evaluate the best estimate by a statistical method using the crack propagation law as a mathematical measurement model equation and identifying all input parameters. Each parameter necessary for the measurement technique was processed using the Gaussian distribution law by partial differentiation of the terms to estimate the sensitivity coefficients. The combined standard uncertainty determined for each term with its computed sensitivity coefficients finally resulted in measurement uncertainty of the FCGR test result. The described procedure of uncertainty has been applied within the framework of ITER on a recent FCGR measurement for high strength and high toughness Type 316LN material tested at 7 K using a standard ASTM proportional compact tension specimen. The determined values of Paris law constants such as C0 and the exponent m as best estimate along with the their uncertainty value may serve a realistic basis for the life expectancy of cyclic loaded members.

  11. Body composition of piglets exhibiting different growth rates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The growth and composition of the neonatal pig is of interest because of potential impact on subsequent growth and finally, composition at market weight. The purpose of this study was to compare at weaning the growth and body composition of the largest and smallest pigs (excluding runts) from each o...

  12. Simultaneous identification of growth law and estimation of its rate parameter for biological growth data: a new approach.

    PubMed

    Bhowmick, Amiya Ranjan; Chattopadhyay, Gaurangadeb; Bhattacharya, Sabyasachi

    2014-01-01

    Scientific formalizations of the notion of growth and measurement of the rate of growth in living organisms are age-old problems. The most frequently used metric, "Average Relative Growth Rate" is invariant under the choice of the underlying growth model. Theoretically, the estimated rate parameter and relative growth rate remain constant for all mutually exclusive and exhaustive time intervals if the underlying law is exponential but not for other common growth laws (e.g., logistic, Gompertz, power, general logistic). We propose a new growth metric specific to a particular growth law and show that it is capable of identifying the underlying growth model. The metric remains constant over different time intervals if the underlying law is true, while the extent of its variation reflects the departure of the assumed model from the true one. We propose a new estimator of the relative growth rate, which is more sensitive to the true underlying model than the existing one. The advantage of using this is that it can detect crucial intervals where the growth process is erratic and unusual. It may help experimental scientists to study more closely the effect of the parameters responsible for the growth of the organism/population under study.

  13. Zonal Flow Growth Rates: Modulational Instability vs Statistical Steady States.

    NASA Astrophysics Data System (ADS)

    Krommes, J. A.; Kolesnikov, R. A.

    2002-11-01

    The nonlinear growth rate of zonal flows has been the subject of various investigations. The calculations can be grouped into two major classes: those based on modulational instability of a fixed pump wave;(L. Chen et al., Phys. Plasmas 7), 3129 (2000); P. N. Guzdar et al., Phys. Rev. Lett. 87, 015001 (2001); C. N. Lashmore-Davies et al., Phys. Plasmas 8, 5121 (2001). and those employing statistical formalism to describe a self-consistent, energy-conserving steady state.(J. A. Krommes and C.--B. Kim, Phys. Rev. E 62), 8508 (2000), and references therein. The results from these two approaches do not necessarily agree either in their dependence on parameters like the plasma pressure β, on the threshold for instability, or even, in some cases, on the sign. The reasons for such disagreements are isolated, and it is shown to what extent the steady-state statistical approach can be reconciled with a generic modulational instability calculation. Generalizations of the statistical formalism to the multifield systems appropriate for finite β are described. Specific calculations based on model systems are used to illustrate the general arguments.

  14. The Averaged Face Growth Rates of lysozyme Crystals: The Effect of Temperature

    NASA Technical Reports Server (NTRS)

    Nadarajah, Arunan; Forsythe, Elizabeth L.; Pusey, Marc L.

    1995-01-01

    Measurements of the averaged or macroscopic face growth rates of lysozyme crystals are reported here for the (110) face of tetragonal lysozyme, at three sets of pH and salt concentrations, with temperatures over a 4-22 C range for several protein concentrations. The growth rate trends with supersaturation were similar to previous microscopic growth rate measurements. However, it was found that at high super-saturations the growth rates attain a maximum and then start decreasing. No 'dead zone' was observed but the growth rates were found to approach zero asymptotically at very low super-saturations. The growth rate data also displayed a dependence on pH and salt concentration which could not be characterized solely by the super-saturation. A complete mechanism for lysozyme crystal growth, involving the formation of an aggregate growth unit, mass transport of the growth unit to the crystal interface and faceted crystal growth by growth unit addition, is suggested. Such a mechanism may provide a more consistent explanation for the observed growth rate trends than those suggested by other investigators. The nutrient solution interactions leading to the formation of the aggregate growth unit may, thus, be as important as those occurring at the crystal interface and may account for the differences between small molecule and protein crystal growth.

  15. Evolution of intrinsic growth rate: metabolic costs drive trade-offs between growth and swimming performance in Menidia menidia.

    PubMed

    Arnott, Stephen A; Chiba, Susumu; Conover, David O

    2006-06-01

    There is strong evidence that genetic capacity for growth evolves toward an optimum rather than an absolute maximum. This implies that fast growth has a cost and that trade-offs occur between growth and other life-history traits, but the fundamental mechanisms are poorly understood. Previous work on the Atlantic silverside fish Menidia menidia has demonstrated a trade-off between growth and swimming performance. We hypothesize that the trade-off derives from the competing metabolic demands associated with growth and swimming activity. We tested this by measuring standard metabolic rate (M(STD)), maximum sustainable metabolic rate (M(ACT)) and metabolic scope of laboratory-reared silversides originating from two geographically distinct populations with well-documented differences in genetic capacity for growth. The fast-growth genotype had a significantly greater M(STD) than the slow-growth genotype, but a similar MACT when swum to near exhaustion. The scope for activity of the fast-growth genotype was lower than that of the slow-growth genotype. Furthermore, the fast-growth genotype eats larger meals, thereby incurring a greater postprandial oxygen demand. We conclude that a metabolic trade-off occurs between growth and other metabolic demands and that this trade-off provides a general mechanism underlying the evolution of growth rate.

  16. Developmental transcription of genes putatively associated with growth in two sturgeon species of different growth rate.

    PubMed

    Miandare, Hamed Kolangi; Farahmand, Hamid; Akbarzadeh, Arash; Ramezanpour, Sanaz; Kaiya, Hiroyuki; Miyazato, Mikiya; Rytkönen, Kalle T; Nikinmaa, Mikko

    2013-02-01

    In the present study, we surveyed developmental changes in the transcription of growth hormone (gh), insulin-like growth factor-I (igf-I), ghrelin (ghrl) and vascular endothelial growth factor (vegf) genes in the largest freshwater fish, European sturgeon (Beluga, Huso huso) and compared the same parameters to that of its phylogenically close moderate-sized species, Persian sturgeon (Acipenser persicus). The transcripts of gh, igf-I, ghrl and vegf were detected at all developmental time-points of Persian sturgeon and Beluga from embryos to juvenile fish. Changes in normalized gh, igf-I, ghrl and vegf transcription by using the geometric average of genes encoding ribosomal protein L6 (RPL6) and elongation factor (EF1A) over the time of development of Persian sturgeon and Beluga were statistically significant (P<0.05). Our results showed that the mRNA expression levels of both igf-I and ghrl were low during early larval development and then increased significantly to the late larval time-points when larvae started exogenous feeding. In both Beluga and Persian sturgeon, after a low mRNA expression during the embryonic stage, the transcript levels of vegf displayed an increasing trend during yolk-sac fry, consistent with organogenesis. The vegf level remained constantly high in the time of exogenous feeding. The highest detection of gh transcripts coincided with the end of the embryonic stage (hatching time) in Persian sturgeon and 3 days-post-hatching (dph) in Beluga. In Persian sturgeon, the gh transcript started to decrease to the rest of the developmental time-points, whereas in Beluga gh transcript had a marked second increase from the time of exogenous feeding (20-dph). This Beluga specific increase in gh transcription may be associated with the marked growth rate and extraordinary size of this fish species.

  17. Physiological growth hormone replacement and rate of recurrence of craniopharyngioma: the Genentech National Cooperative Growth Study.

    PubMed

    Smith, Timothy R; Cote, David J; Jane, John A; Laws, Edward R

    2016-10-01

    OBJECTIVE The object of this study was to establish recurrence rates in patients with craniopharyngioma postoperatively treated with recombinant human growth hormone (rhGH) as a basis for determining the risk of rhGH therapy in the development of recurrent tumor. METHODS The study included 739 pediatric patients with craniopharyngioma who were naïve to GH upon entering the Genentech National Cooperative Growth Study (NCGS) for treatment. Reoperation for tumor recurrence was documented as an adverse event. Cox proportional-hazards regression models were developed for time to recurrence, using age as the outcome and enrollment date as the predictor. Patients without recurrence were treated as censored. Multivariate logistic regression was used to examine the incidence of recurrence with adjustment for the amount of time at risk. RESULTS Fifty recurrences in these 739 surgically treated patients were recorded. The overall craniopharyngioma recurrence rate in the NCGS was 6.8%, with a median follow-up time of 4.3 years (range 0.7-6.4 years.). Age at the time of study enrollment was statistically significant according to both Cox (p = 0.0032) and logistic (p < 0.001) models, with patients under 9 years of age more likely to suffer recurrence (30 patients [11.8%], 0.025 recurrences/yr of observation, p = 0.0097) than those ages 9-13 years (17 patients [6.0%], 0.17 recurrences/yr of observation) and children older than 13 years (3 patients [1.5%], 0.005 recurrences/yr of observation). CONCLUSIONS Physiological doses of GH do not appear to increase the recurrence rate of craniopharyngioma after surgery in children, but long-term follow-up of GH-treated patients is required to establish a true natural history in the GH treatment era.

  18. Growth rate effects on the formation of dislocation loops around deep helium bubbles in Tungsten

    DOE PAGES

    Sandoval, Luis; Perez, Danny; Uberuaga, Blas P.; ...

    2016-11-15

    Here, the growth process of spherical helium bubbles located 6 nm below a (100) surface is studied using molecular dynamics and parallel replica dynamics simulations, over growth rates from 106 to 1012 helium atoms per second. Slower growth rates lead to a release of pressure and lower helium content as compared with fast growth cases. In addition, at slower growth rates, helium bubbles are not decorated by multiple dislocation loops, as these tend to merge or emit given sufficient time. At faster rates, dislocation loops nucleate faster than they can emit, leading to a more complicated dislocation structure around themore » bubble.« less

  19. Growth rate effects on the formation of dislocation loops around deep helium bubbles in Tungsten

    SciTech Connect

    Sandoval, Luis; Perez, Danny; Uberuaga, Blas P.; Voter, Arthur Ford

    2016-11-15

    Here, the growth process of spherical helium bubbles located 6 nm below a (100) surface is studied using molecular dynamics and parallel replica dynamics simulations, over growth rates from 106 to 1012 helium atoms per second. Slower growth rates lead to a release of pressure and lower helium content as compared with fast growth cases. In addition, at slower growth rates, helium bubbles are not decorated by multiple dislocation loops, as these tend to merge or emit given sufficient time. At faster rates, dislocation loops nucleate faster than they can emit, leading to a more complicated dislocation structure around the bubble.

  20. Growth rate control of flagellar assembly in Escherichia coli strain RP437

    PubMed Central

    Sim, Martin; Koirala, Santosh; Picton, David; Strahl, Henrik; Hoskisson, Paul A.; Rao, Christopher V.; Gillespie, Colin S.; Aldridge, Phillip D.

    2017-01-01

    The flagellum is a rotary motor that enables bacteria to swim in liquids and swarm over surfaces. Numerous global regulators control flagellar assembly in response to cellular and environmental factors. Previous studies have also shown that flagellar assembly is affected by the growth-rate of the cell. However, a systematic study has not yet been described under controlled growth conditions. Here, we investigated the effect of growth rate on flagellar assembly in Escherichia coli using steady-state chemostat cultures where we could precisely control the cell growth-rate. Our results demonstrate that flagellar abundance correlates with growth rate, where faster growing cells produce more flagella. They also demonstrate that this growth-rate dependent control occurs through the expression of the flagellar master regulator, FlhD4C2. Collectively, our results demonstrate that motility is intimately coupled to the growth-rate of the cell. PMID:28117390

  1. Adoption of multivariate copulae in prognostication of economic growth by means of interest rate

    NASA Astrophysics Data System (ADS)

    Saputra, Dewi Tanasia; Indratno, Sapto Wahyu, Dr.

    2015-12-01

    Inflation, at a healthy rate, is a sign of growing economy. Nonetheless, when inflation rate grows uncontrollably, it will negatively influence economic growth. Many tackle this problem by increasing interest rate to help protecting the value of money which is detained by inflation. There are few, however, who study the effects of interest rate in economic growth. The main purposes of this paper are to find how the change of interest rate affects economic growth and to use the relationship in prognostication of economic growth. By using expenditure model, a linear relationship between economic growth and interest rate is developed. The result is then used for prediction by normal copula and Vine Archimedean copula. It is shown that increasing interest rate to tackle inflation is a poor solution. Whereas implementation of copula in predicting economic growth yields an accurate result, with not more than 0.5% difference.

  2. Ice Particle Growth Rates Under Upper Troposphere Conditions

    NASA Technical Reports Server (NTRS)

    Peterson, Harold; Bailey, Matthew; Hallett, John

    2010-01-01

    Atmospheric conditions for growth of ice crystals (temperature and ice supersaturation) are often not well constrained and it is necessary to simulate such conditions in the laboratory to investigate such growth under well controlled conditions over many hours. The growth of ice crystals from the vapour in both prism and basal planes was observed at temperatures of -60 C and -70 C under ice supersaturation up to 100% (200% relative humidity) at pressures derived from the standard atmosphere in a static diffusion chamber. Crystals grew outward from a vertical glass filament, thickening in the basal plane by addition of macroscopic layers greater than 2 m, leading to growth in the prism plane by passing of successive layers conveniently viewed by time lapse video.

  3. Ice Crystal Growth Rates Under Upper Troposphere Conditions

    NASA Technical Reports Server (NTRS)

    Peterson, Harold S.; Bailey, Matthew; Hallett, John

    2010-01-01

    Atmospheric conditions for growth of ice crystals (temperature and ice supersaturation) are often not well constrained and it is necessary to simulate such conditions in the laboratory to investigate such growth under well controlled conditions over many hours. The growth of ice crystals from the vapour in both prism and basal planes was observed at temperatures of -60 C and -70 C under ice supersaturation up to 100% (200% relative humidity) at pressures derived from the standard atmosphere in a static diffusion chamber. Crystals grew outward from a vertical glass filament, thickening in the basal plane by addition of macroscopic layers greater than 2 m, leading to growth in the prism plane by passing of successive layers conveniently viewed by time lapse video.

  4. Estimation of the growth curve and heritability of the growth rate for giant panda (Ailuropoda melanoleuca) cubs.

    PubMed

    Che, T D; Wang, C D; Jin, L; Wei, M; Wu, K; Zhang, Y H; Zhang, H M; Li, D S

    2015-03-27

    Giant panda cubs have a low survival rate during the newborn and early growth stages. However, the growth and developmental parameters of giant panda cubs during the early lactation stage (from birth to 6 months) are not well known. We examined the growth and development of giant panda cubs by the Chapman growth curve model and estimated the heritability of the maximum growth rate at the early lactation stage. We found that 83 giant panda cubs reached their maximum growth rate at approximately 75-120 days after birth. The body weight of cubs at 75 days was 4285.99 g. Furthermore, we estimated that the heritability of the maximum growth rate was moderate (h(2) = 0.38). Our study describes the growth and development of giant panda cubs at the early lactation stage and provides valuable growth benchmarks. We anticipate that our results will be a starting point for more detailed research on increasing the survival rate of giant panda cubs. Feeding programs for giant panda cubs need further improvement.

  5. Growth rate and resource imbalance interactively control biomass stoichiometry and elemental quotas of aquatic bacteria.

    PubMed

    Godwin, Casey M; Whitaker, Emily A; Cotner, James B

    2017-03-01

    The effects of resource stoichiometry and growth rate on the elemental composition of biomass have been examined in a wide variety of organisms, but the interaction among these effects is often overlooked. To determine how growth rate and resource imbalance affect bacterial carbon (C): nitrogen (N): phosphorus (P) stoichiometry and elemental content, we cultured two strains of aquatic heterotrophic bacteria in chemostats at a range of dilution rates and P supply levels (C:P of 100:1 to 10,000:1). When growing below 50% of their maximum growth rate, P availability and dilution rate had strong interactive effects on biomass C:N:P, elemental quotas, cell size, respiration rate, and growth efficiency. In contrast, at faster growth rates, biomass stoichiometry was strongly homeostatic in both strains (C:N:P of 70:13:1 and 73:14:1) and elemental quotas of C, N, and P were tightly coupled (but not constant). Respiration and cell size increased with both growth rate and P limitation, and P limitation induced C accumulation and excess respiration. These results show that bacterial biomass stoichiometry is relatively constrained when all resources are abundant and growth rates are high, but at low growth rates resource imbalance is relatively more important than growth rate in controlling bacterial biomass composition.

  6. Plasma metabolite levels predict bird growth rates: A field test of model predictive ability.

    PubMed

    Albano, Noelia; Masero, José A; Villegas, Auxiliadora; Abad-Gómez, José María; Sánchez-Guzmán, Juan M

    2011-09-01

    Bird growth rates are usually derived from nonlinear relationships between age and some morphological structure, but this procedure may be limited by several factors. To date, nothing is known about the capacity of plasma metabolite profiling to predict chick growth rates. Based on laboratory-trials, we here develop predictive logistic models of body mass, and tarsus and wing length growth rates in Gull-billed Tern Gelochelidon nilotica chicks from measurements of plasma metabolite levels at different developmental stages. The predictive model obtained during the fastest growth period (at the age of 12 days) explained 65-68% of the chicks' growth rates, with fasting triglyceride level explaining most of the variation in growth rate. At the end of pre-fledging period, β-hydroxybutyrate level was also a good predictor of growth rates. Finally, we carried out a field test to check the predictive capacity of the models in two colonies of wild Gull-billed Tern, comparing field-measured and model-predicted growth rates between groups. Both, measured and predicted growth rates, matched statistically. Plasma metabolite levels can thus be applied in comparative studies of chick growth rates when semi-precocial birds can be captured only once.

  7. Growth rates and interface shapes in germanium and lead tin telluride observed in-situ, real-time in vertical Bridgman furnaces

    NASA Technical Reports Server (NTRS)

    Barber, P. G.; Berry, R. F.; Debnam, W. J.; Fripp, A. L.; Woodell, G.; Simchick, R. T.

    1995-01-01

    Using the advanced technology developed to visualize the melt-solid interface in low Prandtl number materials, crystal growth rates and interface shapes have been measured in germanium and lead tin telluride semiconductors grown in vertical Bridgman furnaces. The experimental importance of using in-situ, real time observations to determine interface shapes, to measure crystal growth rates, and to improve furnace and ampoule designs is demonstrated. The interface shapes observed in-situ, in real-time were verified by quenching and mechanically induced interface demarcation, and they were also confirmed using machined models to ascertain the absence of geometric distortions. Interface shapes depended upon the interface position in the furnace insulation zone, varied with the nature of the crystal being grown, and were dependent on the extent of transition zones at the ends of the ampoule. Actual growth rates varied significantly from the constant translation rate in response to the thermophysical properties of the crystal and its melt and the thermal conditions existing in the furnace at the interface. In the elemental semiconductor germanium the observed rates of crystal growth exceeded the imposed translation rate, but in the compound semiconductor lead tin telluride the observed rates of growth were less than the translation rate. Finally, the extent of ampoule thermal loading influenced the interface positions, the shapes, and the growth rates.

  8. Metabolism correlates with variation in post-natal growth rate among songbirds at three latitudes

    USGS Publications Warehouse

    Ton, Riccardo; Martin, Thomas E.

    2016-01-01

    4. Our results suggest that variation in metabolic rates has an important influence on broad patterns of avian growth rates at a global scale. We suggest further studies that address the ecological and physiological costs and consequences of variation in metabolism and growth rates.

  9. Spatial scaling of avian population dynamics: population abundance, growth rate, and variability.

    PubMed

    Jones, Jason; Doran, Patrick J; Holmes, Richard T

    2007-10-01

    Synchrony in population fluctuations has been identified as an important component of population dynamics. In a previous study, we determined that local-scale (<15-km) spatial synchrony of bird populations in New England was correlated with synchronous fluctuations in lepidopteran larvae abundance and with the North Atlantic Oscillation. Here we address five questions that extend the scope of our earlier study using North American Breeding Bird Survey data. First, do bird populations in eastern North America exhibit spatial synchrony in abundances at scales beyond those we have documented previously? Second, does spatial synchrony depend on what population metric is analyzed (e.g., abundance, growth rate, or variability)? Third, is there geographic concordance in where species exhibit synchrony? Fourth, for those species that exhibit significant geographic concordance, are there landscape and habitat variables that contribute to the observed patterns? Fifth, is spatial synchrony affected by a species' life history traits? Significant spatial synchrony was common and its magnitude was dependent on the population metric analyzed. Twenty-four of 29 species examined exhibited significant synchrony in population abundance: mean local autocorrelation (rho)= 0.15; mean spatial extent (mean distance where rho=0) = 420.7 km. Five of the 29 species exhibited significant synchrony in annual population growth rate (mean local autocorrelation = 0.06, mean distance = 457.8 km). Ten of the 29 species exhibited significant synchrony in population abundance variability (mean local autocorrelation = 0.49, mean distance = 413.8 km). Analyses of landscape structure indicated that habitat variables were infrequent contributors to spatial synchrony. Likewise, we detected no effects of life history traits on synchrony in population abundance or growth rate. However, short-distance migrants exhibited more spatially extensive synchrony in population variability than either year

  10. Silicide layer growth rates in Mo/Si multilayers

    SciTech Connect

    Rosen, R.S.; Stearns, D.G. ); Viliardos, M.A.; Kassner, M.E. ); Vernon, S.P. ); Cheng, Y. )

    1993-12-01

    The thermal stability of sputter-deposited Mo/Si multilayers was investigated by annealing studies at relatively low temperatures ([similar to]250--350 [degree]C) for various times (0.5--3000 h). Two distinct stages of thermally activated Mo/Si interlayer growth were found: a primary surge, followed by a (slower) secondary steady-state growth in which the interdiffusion coefficient is constant. The interdiffusion coefficients for the interlayer formed by deposition of Mo-on-Si are higher than those of the interlayer formed by deposition of Si-on-Mo. Assuming that the activation energy is constant, an extrapolation of our results to ambient temperature finds that interlayer growth is negligible, suggesting long-term thermal stability in soft-x-ray projection lithography applications.

  11. Age class, longevity and growth rate relationships: protracted growth increases in old trees in the eastern United States.

    PubMed

    Johnson, Sarah E; Abrams, Marc D

    2009-11-01

    This study uses data from the International Tree-Ring Data Bank website and tree cores collected in the field to explore growth rate (basal area increment, BAI) relationships across age classes (from young to old) for eight tree species in the eastern US. These species represent a variety of ecological traits and include those in the genera Populus, Quercus, Pinus, Tsuga and Nyssa. We found that most trees in all age classes and species exhibit an increasing BAI throughout their lives. This is particularly unusual for trees in the older age classes that we expected to have declining growth in the later years, as predicted by physiological growth models. There exists an inverse relationship between growth rate and increasing age class. The oldest trees within each species have consistently slow growth throughout their lives, implying an inverse relationship between growth rate and longevity. Younger trees (< 60 years of age) within each species are consistently growing faster than the older trees when they are of the same age resulting from a higher proportion of fast-growing trees in these young age classes. Slow, but increasing, BAI in the oldest trees in recent decades is a continuation of their growth pattern established in previous centuries. The fact that they have not shown a decreasing growth rate in their old age contradicts physiological growth models and may be related to the stimulatory effects of global change phenomenon (climate and land-use history).

  12. Generalised Central Limit Theorems for Growth Rate Distribution of Complex Systems

    NASA Astrophysics Data System (ADS)

    Takayasu, Misako; Watanabe, Hayafumi; Takayasu, Hideki

    2014-04-01

    We introduce a solvable model of randomly growing systems consisting of many independent subunits. Scaling relations and growth rate distributions in the limit of infinite subunits are analysed theoretically. Various types of scaling properties and distributions reported for growth rates of complex systems in a variety of fields can be derived from this basic physical model. Statistical data of growth rates for about 1 million business firms are analysed as a real-world example of randomly growing systems. Not only are the scaling relations consistent with the theoretical solution, but the entire functional form of the growth rate distribution is fitted with a theoretical distribution that has a power-law tail.

  13. Stimulant-Related Reductions of Growth Rates in the PATS

    ERIC Educational Resources Information Center

    Swanson, James; Greenhill, Laurence; Wigal, Tim; Kollins, Scott; Stehli, Annamarie; Davies, Mark; Chuang, Shirley; Vitiello, Benedetto; Skrobala, Anne; Posner, Kelly; Abikoff, Howard; Oatis, Melvin; McCracken, James; McGough, James; Riddle, Mark; Ghuman, Jaswinder; Cunningham, Charles; Wigal, Sharon

    2006-01-01

    Objective: To investigate growth of children with attention-deficit/hyperactivity disorder (ADHD) in the Preschool ADHD Treatment Study (PATS) before and after initiation of treatment with methylphenidate at titrated doses (average, 14.2 mg/day) administered three times daily, 7 days/week for approximately equal to 1 year. Method: The heights and…

  14. Growth of Knowledge of Rate in Four Precalculus Students.

    ERIC Educational Resources Information Center

    Hauger, Garnet Smith

    Several studies have shown the difficulties students encounter in making sense of situations involving rate of change. This study concerns how students discover errors and refine their knowledge when working with rate of change. The part of the study reported here concerns the responses of four precalculus students to a task which asked them to…

  15. The Effect of Load-Line Displacement Rate on the SCC Growth Rate of Nickel Alloys and Mechanistic Implications

    SciTech Connect

    D Morton

    2005-10-19

    A key set of SCC growth experiments was designed to test the hypothesis that deformation/creep is the rate controlling step in LPSCC. These tests were performed on Alloy X-750 AH compact tension specimens at a various constant displacement rates. The deformation/creep rate within the crack tip zone is proportional to the test displacement rate. If crack growth rates were observed to increase with the load-line displacement rate, then this would indicate that deformation/creep is a critical SCC mechanism process. However, results obtained from the load-line displacement tests did not find X-750 AH SCC growth rate to be dependent on the position rate and therefore do not support the assumption that deformation/creep is the rate controlling process in LPSCC. The similarities between the SCC response of X-750, Alloy 600 and EN82H suggests that it is likely that the same SCC process is occurring for all these alloys (i.e., the same rate controlling step) and that deformation based models are also inappropriate for Alloy 600 and EN82H. The strong temperature and coolant hydrogen dependencies exhibited by these alloys make it more likely that nickel alloy LPSCC is controlled by an environmental or corrosion driven process.

  16. Solar effect on the Rayleigh-Taylor instability growth rate as simulated by the NCAR TIEGCM

    NASA Astrophysics Data System (ADS)

    Wu, Qian

    2017-04-01

    The TIEGCM (Thermosphere Ionosphere Electrodynamics General Circulation Model) is used to investigate the solar effect on the equatorial ionospheric Rayleigh-Taylor (R-T) instability growth rate, which is responsible for the occurrence of the plasma bubbles. The R-T growth rate is calculated for the solar maximum year 2003 and minimum 2009. The growth rate is strongly dependent on the solar activity. During solar maximum, the pre-reversal enhancement is much stronger leading to higher R-T growth rate. The R-T growth rates from the TIEGCM follow the same solar dependence as the observed occurrence of equatorial plasma bubbles by DMSP satellites. The R-T growth rate also enhances when the day/night terminator is parallel to the magnetic field line near the equator. The R-T growth rate does not correlate well with the solar F10.7 index on a short time scale ( 10 days) because the field-line integrated electron content gradient cancels out the positive correlation between the vertical ion drift with the F10.7 index. The TIEGCM result shows the importance of the electron content gradient to the R-T growth rate and the plasma bubble occurrence. The bubble occurrence rates were estimated based on the vertical ion drift simulation results.

  17. Geometric analysis and estimation of the growth rate gradient on gastropod shells.

    PubMed

    Noshita, Koji; Shimizu, Keisuke; Sasaki, Takenori

    2016-01-21

    The morphology of gastropod shells provides a record of the growth rate at the aperture of the shell, and molecular biological studies have shown that the growth rate gradient along the aperture of a gastropod shell can be closely related to gene expression at the aperture. Here, we develop a novel method for deriving microscopic growth rates from the macroscopic shapes of gastropod shells. The growth vector map of a shell provides information on the growth rate gradient as a vector field along the aperture, over the growth history. However, it is difficult to estimate the growth vector map directly from the macroscopic shape of a specimen, because the degree of freedom of the growth vector map is very high. In order to overcome this difficulty, we develop a method of estimating the growth vector map based on a growing tube model, where the latter includes fewer parameters to be estimated. In addition, we calculate an aperture map specifying the magnitude of the growth vector at each location, which can be compared with the expression levels of several genes or proteins that are important in morphogenesis. Finally, we show a concrete example of how macroscopic shell shapes evolve in a morphospace when microscopic growth rate gradient changes.

  18. Spatial and directional variation of growth rates in Arabidopsis root apex: a modelling study.

    PubMed

    Nakielski, Jerzy; Lipowczan, Marcin

    2013-01-01

    Growth and cellular organization of the Arabidopsis root apex are investigated in various aspects, but still little is known about spatial and directional variation of growth rates in very apical part of the apex, especially in 3D. The present paper aims to fill this gap with the aid of a computer modelling based on the growth tensor method. The root apex with a typical shape and cellular pattern is considered. Previously, on the basis of two types of empirical data: the published velocity profile along the root axis and dimensions of cell packets formed in the lateral part of the root cap, the displacement velocity field for the root apex was determined. Here this field is adopted to calculate the linear growth rate in different points and directions. The results are interpreted taking principal growth directions into account. The root apex manifests a significant anisotropy of the linear growth rate. The directional preferences depend on a position within the root apex. In the root proper the rate in the periclinal direction predominates everywhere, while in the root cap the predominating direction varies with distance from the quiescent centre. The rhizodermis is distinguished from the neighbouring tissues (cortex, root cap) by relatively high contribution of the growth rate in the anticlinal direction. The degree of growth anisotropy calculated for planes defined by principal growth directions and exemplary cell walls may be as high as 25. The changes in the growth rate variation are modelled.

  19. A Minimalistic Resource Allocation Model to Explain Ubiquitous Increase in Protein Expression with Growth Rate

    PubMed Central

    Keren, Leeat; Segal, Eran; Milo, Ron

    2016-01-01

    Most proteins show changes in level across growth conditions. Many of these changes seem to be coordinated with the specific growth rate rather than the growth environment or the protein function. Although cellular growth rates, gene expression levels and gene regulation have been at the center of biological research for decades, there are only a few models giving a base line prediction of the dependence of the proteome fraction occupied by a gene with the specific growth rate. We present a simple model that predicts a widely coordinated increase in the fraction of many proteins out of the proteome, proportionally with the growth rate. The model reveals how passive redistribution of resources, due to active regulation of only a few proteins, can have proteome wide effects that are quantitatively predictable. Our model provides a potential explanation for why and how such a coordinated response of a large fraction of the proteome to the specific growth rate arises under different environmental conditions. The simplicity of our model can also be useful by serving as a baseline null hypothesis in the search for active regulation. We exemplify the usage of the model by analyzing the relationship between growth rate and proteome composition for the model microorganism E.coli as reflected in recent proteomics data sets spanning various growth conditions. We find that the fraction out of the proteome of a large number of proteins, and from different cellular processes, increases proportionally with the growth rate. Notably, ribosomal proteins, which have been previously reported to increase in fraction with growth rate, are only a small part of this group of proteins. We suggest that, although the fractions of many proteins change with the growth rate, such changes may be partially driven by a global effect, not necessarily requiring specific cellular control mechanisms. PMID:27073913

  20. A Minimalistic Resource Allocation Model to Explain Ubiquitous Increase in Protein Expression with Growth Rate.

    PubMed

    Barenholz, Uri; Keren, Leeat; Segal, Eran; Milo, Ron

    2016-01-01

    Most proteins show changes in level across growth conditions. Many of these changes seem to be coordinated with the specific growth rate rather than the growth environment or the protein function. Although cellular growth rates, gene expression levels and gene regulation have been at the center of biological research for decades, there are only a few models giving a base line prediction of the dependence of the proteome fraction occupied by a gene with the specific growth rate. We present a simple model that predicts a widely coordinated increase in the fraction of many proteins out of the proteome, proportionally with the growth rate. The model reveals how passive redistribution of resources, due to active regulation of only a few proteins, can have proteome wide effects that are quantitatively predictable. Our model provides a potential explanation for why and how such a coordinated response of a large fraction of the proteome to the specific growth rate arises under different environmental conditions. The simplicity of our model can also be useful by serving as a baseline null hypothesis in the search for active regulation. We exemplify the usage of the model by analyzing the relationship between growth rate and proteome composition for the model microorganism E.coli as reflected in recent proteomics data sets spanning various growth conditions. We find that the fraction out of the proteome of a large number of proteins, and from different cellular processes, increases proportionally with the growth rate. Notably, ribosomal proteins, which have been previously reported to increase in fraction with growth rate, are only a small part of this group of proteins. We suggest that, although the fractions of many proteins change with the growth rate, such changes may be partially driven by a global effect, not necessarily requiring specific cellular control mechanisms.

  1. Exploring Latent Class Based on Growth Rates in Number Sense Ability

    ERIC Educational Resources Information Center

    Kim, Dongil; Shin, Jaehyun; Lee, Kijyung

    2013-01-01

    The purpose of this study was to explore latent class based on growth rates in number sense ability by using latent growth class modeling (LGCM). LGCM is one of the noteworthy methods for identifying growth patterns of the progress monitoring within the response to intervention framework in that it enables us to analyze latent sub-groups based not…

  2. Family poverty affects the rate of human infant brain growth.

    PubMed

    Hanson, Jamie L; Hair, Nicole; Shen, Dinggang G; Shi, Feng; Gilmore, John H; Wolfe, Barbara L; Pollak, Seth D

    2013-01-01

    Living in poverty places children at very high risk for problems across a variety of domains, including schooling, behavioral regulation, and health. Aspects of cognitive functioning, such as information processing, may underlie these kinds of problems. How might poverty affect the brain functions underlying these cognitive processes? Here, we address this question by observing and analyzing repeated measures of brain development of young children between five months and four years of age from economically diverse backgrounds (n = 77). In doing so, we have the opportunity to observe changes in brain growth as children begin to experience the effects of poverty. These children underwent MRI scanning, with subjects completing between 1 and 7 scans longitudinally. Two hundred and three MRI scans were divided into different tissue types using a novel image processing algorithm specifically designed to analyze brain data from young infants. Total gray, white, and cerebral (summation of total gray and white matter) volumes were examined along with volumes of the frontal, parietal, temporal, and occipital lobes. Infants from low-income families had lower volumes of gray matter, tissue critical for processing of information and execution of actions. These differences were found for both the frontal and parietal lobes. No differences were detected in white matter, temporal lobe volumes, or occipital lobe volumes. In addition, differences in brain growth were found to vary with socioeconomic status (SES), with children from lower-income households having slower trajectories of growth during infancy and early childhood. Volumetric differences were associated with the emergence of disruptive behavioral problems.

  3. Family Poverty Affects the Rate of Human Infant Brain Growth

    PubMed Central

    Hanson, Jamie L.; Hair, Nicole; Shen, Dinggang G.; Shi, Feng; Gilmore, John H.; Wolfe, Barbara L.; Pollak, Seth D.

    2013-01-01

    Living in poverty places children at very high risk for problems across a variety of domains, including schooling, behavioral regulation, and health. Aspects of cognitive functioning, such as information processing, may underlie these kinds of problems. How might poverty affect the brain functions underlying these cognitive processes? Here, we address this question by observing and analyzing repeated measures of brain development of young children between five months and four years of age from economically diverse backgrounds (n = 77). In doing so, we have the opportunity to observe changes in brain growth as children begin to experience the effects of poverty. These children underwent MRI scanning, with subjects completing between 1 and 7 scans longitudinally. Two hundred and three MRI scans were divided into different tissue types using a novel image processing algorithm specifically designed to analyze brain data from young infants. Total gray, white, and cerebral (summation of total gray and white matter) volumes were examined along with volumes of the frontal, parietal, temporal, and occipital lobes. Infants from low-income families had lower volumes of gray matter, tissue critical for processing of information and execution of actions. These differences were found for both the frontal and parietal lobes. No differences were detected in white matter, temporal lobe volumes, or occipital lobe volumes. In addition, differences in brain growth were found to vary with socioeconomic status (SES), with children from lower-income households having slower trajectories of growth during infancy and early childhood. Volumetric differences were associated with the emergence of disruptive behavioral problems. PMID:24349025

  4. Growth Rate Lags Again in Graduate Schools' International Admissions

    ERIC Educational Resources Information Center

    McCormack, Eugene

    2008-01-01

    The number of foreign students admitted to graduate schools at American colleges and universities grew in 2008 for the fourth straight year, but the rate of increase over the previous year declined for the third consecutive year, according to survey results released by the Council of Graduate Schools. Based on previous years' data, this year's…

  5. Gradient of Growth, Spontaneous Changes in Growth Rate and Response to Auxin of Excised Hypocotyl Segments of Phaseolus aureus 1

    PubMed Central

    Prat, Roger

    1978-01-01

    Spontaneous growth was studied in excised mung bean (Phaseolus aureus Roxb.) hypocotyl segments. Measurements were made with a growth-recording apparatus using displacement transducers on single 5- to 6-millimeter samples excised from the growth zone immediately below the hook. Even for a given zone and under controlled experimental conditions, there are differences in the spontaneous growth of individual explants. Nevertheless, in every case, two phases of endogenous acceleration are found at 15 to 20 minutes, and 120 to 150 minutes after excision. Accelerations were separated by steady growth phases. Knowledge of the spontaneous growth curve appears important for the choice of the time of application of experimental stimuli. Auxin was added at various times after excision (0 to 6 hours). The classical biphasic response to auxin was obtained when the hormone was added during a steady phase of growth. However, the response was difficult to interpret when the hormone was added during an acceleration phase. Spontaneous and indoleacetic acid-induced growth were studied along the hypocotyl. Spontaneous growth rate and growth potential revealed by indoleacetic acid changed markedly along the growth gradient. The nature of spontaneous changes according to experimental time and state of differentiation of the cells is discussed. PMID:16660473

  6. Influence of Polymers on the Crystal Growth Rate of Felodipine: Correlating Adsorbed Polymer Surface Coverage to Solution Crystal Growth Inhibition.

    PubMed

    Schram, Caitlin J; Taylor, Lynne S; Beaudoin, Stephen P

    2015-10-20

    The bioavailability of orally administered drugs that exhibit poor aqueous solubility can be enhanced with the use of supersaturating dosage forms. Stabilization of these forms by preventing or inhibiting crystallization in solution is an important area of study. Polymers can be used to stabilize supersaturated systems; however, the properties that impact their effectiveness as crystal growth rate inhibitors are not yet fully understood. In this study, the impact of various polymers on the crystal growth rate of felodipine and the conformation of these polymers adsorbed to crystalline felodipine was investigated in order to gain a mechanistic understanding of crystal growth inhibition. It was determined that polymer hydrophobicity impacted polymer adsorption as well as adsorbed polymer conformation. Polymer conformation impacts its surface coverage, which was shown to directly correlate to the polymer's effectiveness as a growth rate inhibitor. By modeling this correlation, it is possible to predict polymer effectiveness given the surface coverage of the polymer.

  7. Nucleation kinetics and crystal growth with fluctuating rates at the intermediate stage of phase transitions

    NASA Astrophysics Data System (ADS)

    Alexandrov, D. V.; Malygin, A. P.

    2014-01-01

    Crystal growth kinetics accompanied by particle growth with fluctuating rates at the intermediate stage of phase transitions is analyzed theoretically. The integro-differential model of governing equations is solved analytically for size-independent growth rates and arbitrary dependences of the nucleation frequency on supercooling/supersaturation. Two important cases of Weber-Volmer-Frenkel-Zel'dovich and Mier nucleation kinetics are detailed. A Fokker-Plank type equation for the crystal-size density distribution function is solved explicitly.

  8. The effect of density gradient on the growth rate of relativistic Weibel instability

    SciTech Connect

    Mahdavi, M.; Khodadadi Azadboni, F.

    2014-02-15

    In this paper, the effect of density gradient on the Weibel instability growth rate is investigated. The density perturbations in the near corona fuel, where temperature anisotropy, η, is larger than the critical temperature anisotropy, η{sub c}, (η > η{sub c}), enhances the growth rate of Weibel instability due to the sidebands coupled with the electron oscillatory velocity. But for η < η{sub c}, the thermal spread of the energetic electrons reduces the growth rate. Also, the growth rate can be reduced if the relativistic parameter (Lorentz factor) is sufficiently large, γ > 2. The analysis shows that relativistic effects and density gradient tend to stabilize the Weibel instability. The growth rate can be reduced by 88% by reducing η by a factor of 100 and increasing relativistic parameter by a factor of 3.

  9. Field-level validation of a CLIMEX model for Cactoblastis cactorum (Lepidoptera: Pyralidae) using estimated larval growth rates.

    PubMed

    Legaspi, Benjamin C; Legaspi, Jesusa Crisostomo

    2010-04-01

    Invasive pests, such as the cactus moth, Cactoblastis cactorum (Berg) (Lepidoptera: Pyralidae), have not reached equilibrium distributions and present unique opportunities to validate models by comparing predicted distributions with eventual realized geographic ranges. A CLIMEX model was developed for C. cactorum. Model validation was attempted at the global scale by comparing worldwide distribution against known occurrence records and at the field scale by comparing CLIMEX "growth indices" against field measurements of larval growth. Globally, CLIMEX predicted limited potential distribution in North America (from the Caribbean Islands to Florida, Texas, and Mexico), Africa (South Africa and parts of the eastern coast), southern India, parts of Southeast Asia, and the northeastern coast of Australia. Actual records indicate the moth has been found in the Caribbean (Antigua, Barbuda, Montserrat Saint Kitts and Nevis, Cayman Islands, and U.S. Virgin Islands), Cuba, Bahamas, Puerto Rico, southern Africa, Kenya, Mexico, and Australia. However, the model did not predict that distribution would extend from India to the west into Pakistan. In the United States, comparison of the predicted and actual distribution patterns suggests that the moth may be close to its predicted northern range along the Atlantic coast. Parts of Texas and most of Mexico may be vulnerable to geographic range expansion of C. cactorum. Larval growth rates in the field were estimated by measuring differences in head capsules and body lengths of larval cohorts at weekly intervals. Growth indices plotted against measures of larval growth rates compared poorly when CLIMEX was run using the default historical weather data. CLIMEX predicted a single period conducive to insect development, in contrast to the three generations observed in the field. Only time and more complete records will tell whether C. cactorum will extend its geographical distribution to regions predicted by the CLIMEX model. In terms

  10. Effects of Eucommia ulmoides extract on longitudinal bone growth rate in adolescent female rats.

    PubMed

    Kim, Ji Young; Lee, Jeong-Il; Song, MiKyung; Lee, Donghun; Song, Jungbin; Kim, Soo Young; Park, Juyeon; Choi, Ho-Young; Kim, Hocheol

    2015-01-01

    Eucommia ulmoides is one of the popular tonic herbs for the treatment of low back pain and bone fracture and is used in Korean medicine to reinforce muscles and bones. This study was performed to investigate the effects of E. ulmoides extract on longitudinal bone growth rate, growth plate height, and the expressions of bone morphogenetic protein 2 (BMP-2) and insulin-like growth factor 1 (IGF-1) in adolescent female rats. In two groups, we administered a twice-daily dosage of E. ulmoides extract (at 30 and 100 mg/kg, respectively) per os over 4 days, and in a control group, we administered vehicle only under the same conditions. Longitudinal bone growth rate in newly synthesized bone was observed using tetracycline labeling. Chondrocyte proliferation in the growth plate was observed using cresyl violet dye. In addition, we analyzed the expressions of BMP-2 and IGF-1 using immunohistochemistry. Eucommia ulmoides extract significantly increased longitudinal bone growth rate and growth plate height in adolescent female rats. In the immunohistochemical study, E. ulmoides markedly increased BMP-2 and IGF-1 expressions in the proliferative and hypertrophic zones. In conclusion, E. ulmoides increased longitudinal bone growth rate by promoting chondrogenesis in the growth plate and the levels of BMP-2 and IGF-1. Eucommia ulmoides could be helpful for increasing bone growth in children who have growth retardation.

  11. Mammoth tooth enamel growth rates inferred from stable isotope analysis and histology

    NASA Astrophysics Data System (ADS)

    Metcalfe, Jessica Z.; Longstaffe, Fred J.

    2012-05-01

    Mammoth (Mammuthus sp.) teeth are relatively abundant in Quaternary deposits from Eurasia and North America, and their isotopic compositions can be used to reconstruct past seasonal patterns in precipitation, diet, and migration. Strategies for collecting and interpreting such data, however, are strongly dependent on growth rates, which can vary among species, individuals, and within teeth. In this study, we use histological and isotopic measurements to determine enamel growth rates for a Columbian mammoth (Mammuthus columbi) tooth in two directions. Using histology, the growth rate through the enamel thickness (ET; perpendicular to the height of the tooth) is estimated at 0.8 to 1.5 mm/yr. Isotopic sampling through the innermost 0.36 mm of the ET recovered less than half a period of variation (i.e., half an inferred year of growth), which is consistent with the histological estimate for ET growth rate. A combination of histological and isotopic measurements suggests that the enamel extension rate (growth in the height of the tooth) is 13-14 mm/yr. Knowledge of enamel growth rates should improve the design and interpretation of future isotopic studies of mammoth teeth. The combination of histological and isotopic measurements may also prove useful in determining growth rates for other extinct taxa.

  12. Rate limits in silicon sheet growth - The connections between vertical and horizontal methods

    NASA Technical Reports Server (NTRS)

    Thomas, Paul D.; Brown, Robert A.

    1987-01-01

    Meniscus-defined techniques for the growth of thin silicon sheets fall into two categories: vertical and horizontal growth. The interactions of the temperature field and the crystal shape are analyzed for both methods using two-dimensional finite-element models which include heat transfer and capillarity. Heat transfer in vertical growth systems is dominated by conduction in the melt and the crystal, with almost flat melt/crystal interfaces that are perpendicular to the direction of growth. The high axial temperature gradients characteristic of vertical growth lead to high thermal stresses. The maximum growth rate is also limited by capillarity which can restrict the conduction of heat from the melt into the crystal. In horizontal growth the melt/crystal interface stretches across the surface of the melt pool many times the crystal thickness, and low growth rates are achievable with careful temperature control. With a moderate axial temperature gradient in the sheet a substantial portion of the latent heat conducts along the sheet and the surface of the melt pool becomes supercooled, leading to dendritic growth. The thermal supercooling is surpressed by lowering the axial gradient in the crystal; this configuration is the most desirable for the growth of high quality crystals. An expression derived from scaling analysis relating the growth rate and the crucible temperature is shown to be reliable for horizontal growth.

  13. Growth rate, organic carbon and nutrient removal rates of Chlorella sorokiniana in autotrophic, heterotrophic and mixotrophic conditions.

    PubMed

    Kim, Sunjin; Park, Jeong-eun; Cho, Yong-Beom; Hwang, Sun-Jin

    2013-09-01

    This study sought to investigate the growth rate and organic carbon and nutrient removal efficiency of Chlorella sorokiniana under autotrophic, heterotrophic and mixotrophic conditions. Growth rates of the microalgae were 0.24 d(-1), 0.53 d(-1) and 0.44 d(-1) in autotrophic, heterotrophic and mixotrophic conditions, respectively. The growth rate of C. sorokiniana was significantly higher for that grown under heterotrophic conditions. The nitrogen removal rates were 13.1 mg-N/L/day, 23.9 mg-N/L/day and 19.4 mg-N/L/day, respectively. The phosphorus removal rates reached to 3.4 mg-P/L/day, 5.6 mg-P/L/day and 5.1 mg-P/L/day, respectively. Heterotrophic conditions were superior in terms of the microalgae growth and removal of nitrogen and phosphorus compared to autotrophic and mixotrophic conditions, suggesting that microalgae cultured under this condition would be most useful for application in wastewater treatment systems.

  14. Growth rates are related to production efficiencies in juveniles of the sea urchin Lytechinus variegatus.

    PubMed

    Heflin, L E; Gibbs, V K; Jones, W T; Makowsky, R; Lawrence, A L; Watts, S A

    2013-09-01

    Growth rates of newly-metamorphosed urchins from a single spawning event (three males and three females) were highly variable, despite being held en masse under identical environmental and nutritional conditions. As individuals reached ~5 mm diameter (0.07-0.10 g wet weight), they were placed in growth trials (23 dietary treatments containing various nutrient profiles). Elapsed time from the first individual entering the growth trials to the last individual entering was 121 days (N = 170 individuals). During the five-week growth trials, urchins were held individually and proffered a limiting ration to evaluate growth rate and production efficiency. Growth rates among individuals within each dietary treatment remained highly variable. Across all dietary treatments, individuals with an initially high growth rate (entering the study first) continued to grow at a faster rate than those with an initially low growth rate (entering the study at a later date), regardless of feed intake. Wet weight gain (ranging from 0.13 -3.19 g, P < 0.0001, R(2) = 0.5801) and dry matter production efficiency (ranging from 25.2-180.5%, P = 0.0003, R(2) = 0.6162) were negatively correlated with stocking date, regardless of dietary treatment. Although canalization of growth rate during en masse early post-metamorphic growth is possible, we hypothesize that intrinsic differences in growth rates are, in part, the result of differences (possibly genetic) in production efficiencies of individual Lytechinus variegatus. That is, some sea urchins are more efficient in converting feed to biomass. We further hypothesize that this variation may have evolved as an adaptive response to selective pressure related to food availability.

  15. Growth rates are related to production efficiencies in juveniles of the sea urchin Lytechinus variegatus

    PubMed Central

    Heflin, L.E.; Gibbs, V.K.; Jones, W.T.; Makowsky, R.; Lawrence, A.L.; Watts, S.A.

    2014-01-01

    Growth rates of newly-metamorphosed urchins from a single spawning event (three males and three females) were highly variable, despite being held en masse under identical environmental and nutritional conditions. As individuals reached ~5 mm diameter (0.07–0.10 g wet weight), they were placed in growth trials (23 dietary treatments containing various nutrient profiles). Elapsed time from the first individual entering the growth trials to the last individual entering was 121 days (N = 170 individuals). During the five-week growth trials, urchins were held individually and proffered a limiting ration to evaluate growth rate and production efficiency. Growth rates among individuals within each dietary treatment remained highly variable. Across all dietary treatments, individuals with an initially high growth rate (entering the study first) continued to grow at a faster rate than those with an initially low growth rate (entering the study at a later date), regardless of feed intake. Wet weight gain (ranging from 0.13 −3.19 g, P < 0.0001, R2 = 0.5801) and dry matter production efficiency (ranging from 25.2–180.5%, P = 0.0003, R2 = 0.6162) were negatively correlated with stocking date, regardless of dietary treatment. Although canalization of growth rate during en masse early post-metamorphic growth is possible, we hypothesize that intrinsic differences in growth rates are, in part, the result of differences (possibly genetic) in production efficiencies of individual Lytechinus variegatus. That is, some sea urchins are more efficient in converting feed to biomass. We further hypothesize that this variation may have evolved as an adaptive response to selective pressure related to food availability. PMID:25435593

  16. Modeling of crack initiation, intensity, and growth rates from flaws in welded steel structures

    NASA Astrophysics Data System (ADS)

    Thaxton, Eric Alan

    2000-10-01

    The intent of this dissertation is to develop a method to model the effects of pitting corrosion or mechanical damage on the strength and fatigue life of a welded structure. The problem was first examined when pitting corrosion was discovered in a 5,200 gallon capacity pressure vessel at John F. Kennedy Space Center. Other similar corrosion and mechanical damage is often encountered in service and a general method to model internal defects and crack-like flaws in welded structures is needed. The severity of the defect was modeled by finite element methods. Defect intensity and crack growth rate are both modeled using the finite element method developed here. Existing published solutions and fracture mechanics testing was performed to verify the modeling method. Welded structures such as pressure vessels have a metallurgical discontinuity between the parent metal and the heat affected zone and also between the heat-affected zone and the weld filler material. An added complexity is the fact that, in general, the mechanical and fracture mechanics properties of these three zones are different. The welded area also will have some level of residual stress resulting from the differential cooling and solidification after welding. The residual stresses created by solidification and cooling will be incorporated into the finite element model. The results will be checked by measuring the actual stresses on the test specimen. The unique contribution of this research is a finite element based tool, which provides a numerically efficient method to evaluate strength, resistance to fracture, and remaining life of a welded structure with surface damage. The new method is based on the theoretical square root displacement field, fitted to the local nodal point displacements, in the vicinity of the crack front. A linear finite element formulation is utilized, along with relatively coarse meshes, to accurately predict stress intensities. This new method is accurate for both two and

  17. The effects of temperature and NaCl concentration on tetragonal lysozyme face growth rates

    NASA Technical Reports Server (NTRS)

    Forsythe, Elizabeth; Pusey, Marc Lee

    1994-01-01

    Measurements were made of the (110) and (101) face growth rates of the tetragonal form of hen egg white lysozyme at 0.1M sodium acetate buffer, pH 4.0, from 4 to 22 C and with 3.0%, 5.0%, and 7.0% NaCl used as the precipitating salt. The data were collected at supersaturation ratios ranging from approximately 4 to approximately 63. Both decreasing temperature and increasing salt concentrations shifted plots of the growth rate versus C/C(sat) to the right, i.e. higher supersaturations were required for comparable growth rates. The observed trends in the growth data are counter to those expected from the solubility data. If tetragonal lysozyme crystal growth is by addition of ordered aggregates from the solution, then the observed growth data could be explained as a result of the effects of lowered temperature and increased salt concentration on the kinetics and equilibrium processes governing protein-protein interactions in solution. The data indicate that temperature would be a more tractable means of controlling the growth rate for tetragonal lysozyme crystals contrary to the usual practice in, e.g., vapor diffusion protein crystal growth, where both the precipitant and protein concentrations are simultaneously increased. However, the available range for control is dependent upon the protein concentration, with the greatest growth rate control being at the lower concentration.

  18. Growth rates and energy intake of hand-reared cheetah cubs (Acinonyx jubatus) in South Africa.

    PubMed

    Bell, K M; Rutherfurd, S M; Morton, R H

    2012-04-01

    Growth rate is an important factor in neonatal survival. The aim of this study was to determine growth rates in hand-reared cheetah cubs in South Africa fed a prescribed energy intake, calculated for growth in the domestic cat. Growth was then compared with previously published data from hand-reared cubs in North America and the relationship between growth and energy intake explored. Daily body weight (BW) gain, feed and energy intake data was collected from 18 hand-reared cheetah cubs up to 120 days of age. The average pre-weaning growth rate was 32 g/day, which is lower than reported in mother-reared cubs and hand-reared cubs in North American facilities. However, post-weaning growth increased to an average of 55 g/day. Growth was approximately linear prior to weaning, but over the entire age range it exhibited a sigmoidal shape with an asymptotic plateau averaging 57 kg. Energy intake associated with pre-weaning growth was 481 kJ ME/kg BW(0.75). Regression analysis described the relationship between metabolic BW, metabolisable energy (ME) intake, and hence daily weight gain. This relationship may be useful in predicting energy intake required to achieve growth rates in hand-reared cheetah cubs similar to those observed for their mother-reared counterparts.

  19. Growth-Phase Sterigmatocystin Formation on Lactose Is Mediated via Low Specific Growth Rates in Aspergillus nidulans

    PubMed Central

    Németh, Zoltán; Molnár, Ákos P.; Fejes, Balázs; Novák, Levente; Karaffa, Levente; Keller, Nancy P.; Fekete, Erzsébet

    2016-01-01

    Seed contamination with polyketide mycotoxins such as sterigmatocystin (ST) produced by Aspergilli is a worldwide issue. The ST biosynthetic pathway is well-characterized in A. nidulans, but regulatory aspects related to the carbon source are still enigmatic. This is particularly true for lactose, inasmuch as some ST production mutant strains still synthesize ST on lactose but not on other carbon substrates. Here, kinetic data revealed that on d-glucose, ST forms only after the sugar is depleted from the medium, while on lactose, ST appears when most of the carbon source is still available. Biomass-specified ST production on lactose was significantly higher than on d-glucose, suggesting that ST formation may either be mediated by a carbon catabolite regulatory mechanism, or induced by low specific growth rates attainable on lactose. These hypotheses were tested by d-glucose limited chemostat-type continuous fermentations. No ST formed at a high growth rate, while a low growth rate led to the formation of 0.4 mg·L−1 ST. Similar results were obtained with a CreA mutant strain. We concluded that low specific growth rates may be the primary cause of mid-growth ST formation on lactose in A. nidulans, and that carbon utilization rates likely play a general regulatory role during biosynthesis. PMID:27916804

  20. Growth rate hypothesis and efficiency of protein synthesis under different sulphate concentrations in two green algae.

    PubMed

    Giordano, Mario; Palmucci, Matteo; Raven, John A

    2015-11-01

    The growth rate hypothesis (GRH) predicts a positive correlation between growth rate and RNA content because growth depends upon the protein synthesis machinery. The application of this hypothesis to photoautotrophic organisms has been questioned. We tested the GRH on one prasinophycean, Tetraselmis suecica, and one chlorophycean, Dunaliella salina, grown at three sulphate concentrations. Sulphate was chosen because its concentration in the oceans increased through geological time and apparently had a role in the evolutionary trajectories of phytoplankton. Cell protein content and P quota were positively related to the RNA content (r = 0.62 and r = 0.74, respectively). The correlation of the RNA content with growth rates (r = 0.95) indicates that the GRH was valid for these species when growth rates were below 0.82 d(-1) .

  1. Phytoplankton production and taxon-specific growth rates in the Costa Rica Dome

    PubMed Central

    Selph, Karen E.; Landry, Michael R.; Taylor, Andrew G.; Gutiérrez-Rodríguez, Andrés; Stukel, Michael R.; Wokuluk, John; Pasulka, Alexis

    2016-01-01

    During summer 2010, we investigated phytoplankton production and growth rates at 19 stations in the eastern tropical Pacific, where winds and strong opposing currents generate the Costa Rica Dome (CRD), an open-ocean upwelling feature. Primary production (14C-incorporation) and group-specific growth and net growth rates (two-treatment seawater dilution method) were estimated from samples incubated in situ at eight depths. Our cruise coincided with a mild El Niño event, and only weak upwelling was observed in the CRD. Nevertheless, the highest phytoplankton abundances were found near the dome center. However, mixed-layer growth rates were lowest in the dome center (∼0.5–0.9 day−1), but higher on the edge of the dome (∼0.9–1.0 day−1) and in adjacent coastal waters (0.9–1.3 day−1). We found good agreement between independent methods to estimate growth rates. Mixed-layer growth rates of Prochlorococcus and Synechococcus were largely balanced by mortality, whereas eukaryotic phytoplankton showed positive net growth (∼0.5–0.6 day−1), that is, growth available to support larger (mesozooplankton) consumer biomass. These are the first group-specific phytoplankton rate estimates in this region, and they demonstrate that integrated primary production is high, exceeding 1 g C m−2 day−1 on average, even during a period of reduced upwelling. PMID:27275025

  2. Anthropogenic and biophysical contributions to increasing atmospheric CO2 growth rate and airborne fraction

    NASA Astrophysics Data System (ADS)

    Raupach, M. R.; Canadell, J. G.; Le Quéré, C.

    2008-11-01

    We quantify the relative roles of natural and anthropogenic influences on the growth rate of atmospheric CO2 and the CO2 airborne fraction, considering both interdecadal trends and interannual variability. A combined ENSO-Volcanic Index (EVI) relates most (~75%) of the interannual variability in CO2 growth rate to the El-Niño-Southern-Oscillation (ENSO) climate mode and volcanic activity. Analysis of several CO2 data sets with removal of the EVI-correlated component confirms a previous finding of a detectable increasing trend in CO2 airborne fraction (defined using total anthropogenic emissions including fossil fuels and land use change) over the period 1959 2006, at a proportional growth rate 0.24% y-1 with probability ~0.9 of a positive trend. This implies that the atmospheric CO2 growth rate increased slightly faster than total anthropogenic CO2 emissions. To assess the combined roles of the biophysical and anthropogenic drivers of atmospheric CO2 growth, the increase in the CO2 growth rate (1.9% y-1 over 1959 2006) is expressed as the sum of the growth rates of four global driving factors: population (contributing +1.7% y-1); per capita income (+1.8% y-1); the total carbon intensity of the global economy (-1.7% y-1); and airborne fraction (averaging +0.2% y-1 with strong interannual variability). The first three of these factors, the anthropogenic drivers, have therefore dominated the last, biophysical driver as contributors to accelerating CO2 growth. Together, the recent (post-2000) increase in growth of per capita income and decline in the negative growth (improvement) in the carbon intensity of the economy will drive a significant further acceleration in the CO2 growth rate over coming decades, unless these recent trends reverse.

  3. Growth rate of the lithospheric mantle: variations in time and space

    NASA Astrophysics Data System (ADS)

    Artemieva, I. M.

    2007-05-01

    Two global databases for the continents, (a) for tectono-thermal ages and (b) for lithospheric thermal thickness (Artemieva, Tectonophysics, 2006 and available for download at the web-site), are used to calculate (i) the volume of the preserved continental lithosphere of different ages within the individual cratons, (ii) the lithospheric growth rate for different continents over the past 3.6 Ga, (iii) a global model of lithosphere growth rate since the Archean. The submerged areas with continental crust are excluded from the analysis. On the scale of a craton, significant differences in the rates of lithosphere growth are observed between the individual cratons. These data are compared with independent estimates of growth rate of juvenile crust on different continents as constrained by sedimentary record, geological and isotope data. On the global scale, the results show a general agreement between the global cumulative growth rate of the continental lithosphere and juvenile crust (Condie, 1998). The most pronounced peak in lithosphere growth occurred at 2.1-1.7 Ga, when the volume of lithospheric mantle was increasing with the rate of ca. 10-20 (km3 per year). Contrary to growth models of juvenile crust, the peaks in growth rate of the lithospheric mantle at ca. 2.7- 2.6 Ga and 1.3-1.1 Ga are weak, ca. 5-8 (km3 per year). The differences between the growth rates of the lithosphere and juvenile crust are interpreted as indicator of the preservation rate of the cratonic lithosphere since the Archean.

  4. Different growth rates for catalyst-induced and self-induced GaN nanowires

    NASA Astrophysics Data System (ADS)

    Chèze, C.; Geelhaar, L.; Jenichen, B.; Riechert, H.

    2010-10-01

    The catalyst- and self-induced pathways of GaN nanowire growth by molecular beam epitaxy are compared. The catalyst-induced nanowires elongate faster than the self-induced ones and their growth rate is fully determined by the impinging N rate. The self-induced nanowire growth rate is identical on both Si(111) and Si(001) and approaches the impinging N rate only for the few longest nanowires. This difference is attributed to the presence of the Ni-catalyst which enhances the incorporation of Ga at the nanowire tip while for the self-induced nanowires, growth is limited by the different incorporation rates on the nanowire tip and sidewall facets.

  5. High growth rate 4H-SiC epitaxial growth using dichlorosilane in a hot-wall CVD reactor

    NASA Astrophysics Data System (ADS)

    Chowdhury, Iftekhar; Chandrasekhar, M. V. S.; Klein, Paul B.; Caldwell, Joshua D.; Sudarshan, Tangali

    2011-02-01

    Thick, high quality 4H-SiC epilayers have been grown in a vertical hot-wall chemical vapor deposition system at a high growth rate on (0 0 0 1) 8° off-axis substrates. We discuss the use of dichlorosilane as the Si-precursor for 4H-SiC epitaxial growth as it provides the most direct decomposition route into SiCl 2, which is the predominant growth species in chlorinated chemistries. A specular surface morphology was attained by limiting the hydrogen etch rate until the system was equilibrated at the desired growth temperature. The RMS roughness of the grown films ranged from 0.5-2.0 nm with very few morphological defects (carrots, triangular defects, etc.) being introduced, while enabling growth rates of 30-100 μm/h, 5-15 times higher than most conventional growths. Site-competition epitaxy was observed over a wide range of C/Si ratios, with doping concentrations <1×10 14 cm -3 being recorded. X-ray rocking curves indicated that the epilayers were of high crystallinity, with linewidths as narrow as 7.8 arcsec being observed, while microwave photoconductive decay (μPCD) measurements indicated that these films had high injection (ambipolar) carrier lifetimes in the range of 2 μs.

  6. Longitudinal and seasonal variation of the equatorial flux tube integrated Rayleigh-Taylor instability growth rate

    NASA Astrophysics Data System (ADS)

    Wu, Qian

    2015-09-01

    Using the National Center for Atmospheric Research Thermosphere Ionosphere Electrodynamics General Circulation Model (TIEGCM), the ionospheric Rayleigh-Taylor instability growth rate is calculated. The seasonal and longitudinal variations of the growth rate from the TIEGCM appear to match that of the spread F observed by various satellite missions. The growth rate is strongly dependent on the angle between the sunset terminator and the geomagnetic field line near the magnetic equator. The TIEGCM simulations with nonmigrating tides show the zonal wave number 4 structure in the Rayleigh-Taylor instability due to the inclusion of the nonmigrating diurnal eastward zonal wave number 3 and semidiurnal eastward zonal wave number 2 tides.

  7. A model for scaling in firms’ size and growth rate distribution

    NASA Astrophysics Data System (ADS)

    Metzig, Cornelia; Gordon, Mirta B.

    2014-03-01

    We introduce a simple agent-based model which allows us to analyze three stylized facts: a fat-tailed size distribution of companies, a ‘tent-shaped’ growth rate distribution, the scaling relation of the growth rate variance with firm size, and the causality between them. This is achieved under the simple hypothesis that firms compete for a scarce quantity (either aggregate demand or workforce) which is allocated probabilistically. The model allows us to relate size and growth rate distributions. We compare the results of our model to simulations with other scaling relationships, and to similar models and relate it to existing theory. Effects arising from binning data are discussed.

  8. Sex differentiation in postnatal growth rate: a test in a wild boar population.

    PubMed

    Gaillard, J -M; Pontier, D; Brandt, S; Jullien, J-M; Allainé, D

    1992-05-01

    In wild boar individual growth rate is linear between 0.5 and 6 months after birth, based on successive body weight measurements. Contrary to expectation for a dimorphic and polygynous mammal like wild boar, no sexual dimorphism in growth rate could be detected between 0.5 and 6 months. We argue that high total maternal invesment in offspring due to large litter size and/or strong selection for early reproduction in this population with a short generation time could explain this absence of early differentiation in postnatal growth rate according to offspring sex.

  9. Thin film growth rate effects for primary ion beam deposited diamondlike carbon films

    NASA Technical Reports Server (NTRS)

    Nir, D.; Mirtich, M.

    1986-01-01

    Diamondlike carbon (DLC) films were grown by primary ion beam deposition and the growth rates were measured for various beam energies, types of hydrocarbon gases and their ratio to Ar, and substrate materials. The growth rate had a linear dependence upon hydrocarbon content in the discharge chamber, and only small dependence on other parameters. For given deposition conditions a threshold in the atomic ratio of carbon to argon gas was identified below which films did not grow on fused silica substrate, but grew on Si substrate and on existing DLC films. Ion source deposition parameters and substrate material were found to affect the deposition threshold and film growth rates.

  10. Ecological regime shift drives declining growth rates of sea turtles throughout the West Atlantic.

    PubMed

    Bjorndal, Karen A; Bolten, Alan B; Chaloupka, Milani; Saba, Vincent S; Bellini, Cláudio; Marcovaldi, Maria A G; Santos, Armando J B; Bortolon, Luis Felipe Wurdig; Meylan, Anne B; Meylan, Peter A; Gray, Jennifer; Hardy, Robert; Brost, Beth; Bresette, Michael; Gorham, Jonathan C; Connett, Stephen; Crouchley, Barbara Van Sciver; Dawson, Mike; Hayes, Deborah; Diez, Carlos E; van Dam, Robert P; Willis, Sue; Nava, Mabel; Hart, Kristen M; Cherkiss, Michael S; Crowder, Andrew G; Pollock, Clayton; Hillis-Starr, Zandy; Muñoz Tenería, Fernando A; Herrera-Pavón, Roberto; Labrada-Martagón, Vanessa; Lorences, Armando; Negrete-Philippe, Ana; Lamont, Margaret M; Foley, Allen M; Bailey, Rhonda; Carthy, Raymond R; Scarpino, Russell; McMichael, Erin; Provancha, Jane A; Brooks, Annabelle; Jardim, Adriana; López-Mendilaharsu, Milagros; González-Paredes, Daniel; Estrades, Andrés; Fallabrino, Alejandro; Martínez-Souza, Gustavo; Vélez-Rubio, Gabriela M; Boulon, Ralf H; Collazo, Jaime A; Wershoven, Robert; Hernández, Vicente Guzmán; Stringell, Thomas B; Sanghera, Amdeep; Richardson, Peter B; Broderick, Annette C; Phillips, Quinton; Calosso, Marta; Claydon, John A B; Metz, Tasha L; Gordon, Amanda L; Landry, Andre M; Shaver, Donna J; Blumenthal, Janice; Collyer, Lucy; Godley, Brendan J; McGowan, Andrew; Witt, Matthew J; Campbell, Cathi L; Lagueux, Cynthia J; Bethel, Thomas L; Kenyon, Lory

    2017-04-04

    Somatic growth is an integrated, individual-based response to environmental conditions, especially in ectotherms. Growth dynamics of large, mobile animals are particularly useful as bio-indicators of environmental change at regional scales. We assembled growth rate data from throughout the West Atlantic for green turtles, Chelonia mydas, which are long-lived, highly migratory, primarily herbivorous mega-consumers that may migrate over hundreds to thousands of kilometers. Our dataset, the largest ever compiled for sea turtles, has 9690 growth increments from 30 sites from Bermuda to Uruguay from 1973 to 2015. Using generalized additive mixed models, we evaluated covariates that could affect growth rates; body size, diet, and year have significant effects on growth. Growth increases in early years until 1999, then declines by 26% to 2015. The temporal (year) effect is of particular interest because two carnivorous species of sea turtles - hawksbills, Eretmochelys imbricata, and loggerheads, Caretta caretta - exhibited similar significant declines in growth rates starting in 1997 in the West Atlantic, based on previous studies. These synchronous declines in productivity among three sea turtle species across a trophic spectrum provide strong evidence that an ecological regime shift (ERS) in the Atlantic is driving growth dynamics. The ERS resulted from a synergy of the 1997/1998 El Niño Southern Oscillation (ENSO) - the strongest on record - combined with an unprecedented warming rate over the last two to three decades. Further support is provided by the strong correlations between annualized mean growth rates of green turtles and both sea surface temperatures (SST) in the West Atlantic for years of declining growth rates (r = -0.94) and the Multivariate ENSO Index (MEI) for all years (r = 0.74). Granger-causality analysis also supports the latter finding. We discuss multiple stressors that could reinforce and prolong the effect of the ERS. This study demonstrates the

  11. Patient-derived xenograft (PDX) tumors increase growth rate with time.

    PubMed

    Pearson, Alexander T; Finkel, Kelsey A; Warner, Kristy A; Nör, Felipe; Tice, David; Martins, Manoela D; Jackson, Trachette L; Nör, Jacques E

    2016-02-16

    Patient-derived xenograft (PDX) models are frequently used for translational cancer research, and are assumed to behave consistently as the tumor ages. However, growth rate constancy as a function of time is unclear. Notably, variable PDX growth rates over time might have implications for the interpretation of translational studies. We characterized four PDX models through several in vivo passages from primary human head and neck squamous cell carcinoma and salivary gland adenoid cystic carcinoma. We developed a mathematical approach to merge growth data from different passages into a single measure of relative tumor volume normalized to study initiation size. We analyzed log-relative tumor volume increase with linear mixed effect models. Two oral pathologists analyzed the PDX tissues to determine if histopathological feature changes occurred over in vivo passages. Tumor growth rate increased over time. This was determined by repeated measures linear regression statistical analysis in four different PDX models. A quadratic statistical model for the temporal effect predicted the log-relative tumor volume significantly better than a linear time effect model. We found a significant correlation between passage number and histopathological features of higher tumor grade. Our mathematical treatment of PDX data allows statistical analysis of tumor growth data over long periods of time, including over multiple passages. Non-linear tumor growth in our regression models revealed the exponential growth rate increased over time. The dynamic tumor growth rates correlated with quantifiable histopathological changes that related to passage number in multiple types of cancer.

  12. Patient-derived xenograft (PDX) tumors increase growth rate with time

    PubMed Central

    Pearson, Alexander T.; Finkel, Kelsey A.; Warner, Kristy A.; Nör, Felipe; Tice, David; Martins, Manoela D.; Jackson, Trachette L.; Nör, Jacques E.

    2016-01-01

    Patient-derived xenograft (PDX) models are frequently used for translational cancer research, and are assumed to behave consistently as the tumor ages. However, growth rate constancy as a function of time is unclear. Notably, variable PDX growth rates over time might have implications for the interpretation of translational studies. We characterized four PDX models through several in vivo passages from primary human head and neck squamous cell carcinoma and salivary gland adenoid cystic carcinoma. We developed a mathematical approach to merge growth data from different passages into a single measure of relative tumor volume normalized to study initiation size. We analyzed log-relative tumor volume increase with linear mixed effect models. Two oral pathologists analyzed the PDX tissues to determine if histopathological feature changes occurred over in vivo passages. Tumor growth rate increased over time. This was determined by repeated measures linear regression statistical analysis in four different PDX models. A quadratic statistical model for the temporal effect predicted the log-relative tumor volume significantly better than a linear time effect model. We found a significant correlation between passage number and histopathological features of higher tumor grade. Our mathematical treatment of PDX data allows statistical analysis of tumor growth data over long periods of time, including over multiple passages. Non-linear tumor growth in our regression models revealed the exponential growth rate increased over time. The dynamic tumor growth rates correlated with quantifiable histopathological changes that related to passage number in multiple types of cancer. PMID:26783960

  13. Daily changes in temperature, not the circadian clock, regulate growth rate in Brachypodium distachyon.

    PubMed

    Matos, Dominick A; Cole, Benjamin J; Whitney, Ian P; MacKinnon, Kirk J-M; Kay, Steve A; Hazen, Samuel P

    2014-01-01

    Plant growth is commonly regulated by external cues such as light, temperature, water availability, and internal cues generated by the circadian clock. Changes in the rate of growth within the course of a day have been observed in the leaves, stems, and roots of numerous species. However, the relative impact of the circadian clock on the growth of grasses has not been thoroughly characterized. We examined the influence of diurnal temperature and light changes, and that of the circadian clock on leaf length growth patterns in Brachypodium distachyon using high-resolution time-lapse imaging. Pronounced changes in growth rate were observed under combined photocyles and thermocycles or with thermocycles alone. A considerably more rapid growth rate was observed at 28°C than 12°C, irrespective of the presence or absence of light. In spite of clear circadian clock regulated gene expression, plants exhibited no change in growth rate under conditions of constant light and temperature, and little or no effect under photocycles alone. Therefore, temperature appears to be the primary cue influencing observed oscillations in growth rate and not the circadian clock or photoreceptor activity. Furthermore, the size of the leaf meristem and final cell length did not change in response to changes in temperature. Therefore, the nearly five-fold difference in growth rate observed across thermocycles can be attributed to proportionate changes in the rate of cell division and expansion. A better understanding of the growth cues in B. distachyon will further our ability to model metabolism and biomass accumulation in grasses.

  14. Crack growth rate in core shroud horizontal welds using two models for a BWR

    NASA Astrophysics Data System (ADS)

    Arganis Juárez, C. R.; Hernández Callejas, R.; Medina Almazán, A. L.

    2015-05-01

    An empirical crack growth rate correlation model and a predictive model based on the slip-oxidation mechanism for Stress Corrosion Cracking (SCC) were used to calculate the crack growth rate in a BWR core shroud. In this study, the crack growth rate was calculated by accounting for the environmental factors related to aqueous environment, neutron irradiation to high fluence and the complex residual stress conditions resulting from welding. In estimating the SCC behavior the crack growth measurements data from a Boiling Water Reactor (BWR) plant are referred to, and the stress intensity factor vs crack depth throughout thickness is calculated using a generic weld residual stress distribution for a core shroud, with a 30% stress relaxation induced by neutron irradiation. Quantitative agreement is shown between the measurements of SCC growth rate and the predictions of the slip-oxidation mechanism model for relatively low fluences (5 × 1024 n/m2), and the empirical model predicted better the SCC growth rate than the slip-oxidation model for high fluences (>1 × 1025 n/m2). The relevance of the models predictions for SCC growth rate behavior depends on knowing the model parameters.

  15. Phytoplankton growth rates in a light-limited environment, San Francisco Bay

    USGS Publications Warehouse

    Alpine, Andrea E.; Cloern, James E.

    1988-01-01

    This study was motivated by the need for quantitative measures of phytoplankton population growth rate in an estuarine environment, and was designed around the presumption that growth rates can be related empirically to light exposure. We conducted the study in San Francisco Bay (California, USA), which has large horizontal gradients in light availability (Zp:Zm) typical of many coastal plain estuaries, and nutrient concentrations that often exceed those presumed to limit phytoplankton growth (Cloern et al. 1985). We tested the hypothesis that light availability is the primary control of phytoplankton growth, and that previous estimates of growth rate based on the ratio of productivity to biomass (Cloern et al. 1985) are realistic. Specifically, we wanted to verify that growth rate varies spatially along horizontal gradients of light availability indexed as Zp:Zm, such that phytoplankton turnover rate is rapid in shallow clear areas (high Zp:Zm) and slow in deep turbid areas (low Zp:Zm). We used an in situ incubation technique which simulated vertical mixing, and measured both changes in cell number and carbon production as independent estimates of growth rate across a range of Zp:Zm ratios.

  16. Threshold effect of growth rate on population variability of Escherichia coli cell lengths

    PubMed Central

    2017-01-01

    A long-standing question in biology is the effect of growth on cell size. Here, we estimate the effect of Escherichia coli growth rate (r) on population cell size distributions by estimating the coefficient of variation of cell lengths (CVL) from image analysis of fixed cells in DIC microscopy. We find that the CVL is constant at growth rates less than one division per hour, whereas above this threshold, CVL increases with an increase in the growth rate. We hypothesize that stochastic inhibition of cell division owing to replication stalling by a RecA-dependent mechanism, combined with the growth rate threshold of multi-fork replication (according to Cooper and Helmstetter), could form the basis of such a threshold effect. We proceed to test our hypothesis by increasing the frequency of stochastic stalling of replication forks with hydroxyurea (HU) treatment and find that cell length variability increases only when the growth rate exceeds this threshold. The population effect is also reproduced in single-cell studies using agar-pad cultures and ‘mother machine’-based experiments to achieve synchrony. To test the role of RecA, critical for the repair of stalled replication forks, we examine the CVL of E. coli ΔrecA cells. We find cell length variability in the mutant to be greater than wild-type, a phenotype that is rescued by plasmid-based RecA expression. Additionally, we find that RecA-GFP protein recruitment to nucleoids is more frequent at growth rates exceeding the growth rate threshold and is further enhanced on HU treatment. Thus, we find growth rates greater than a threshold result in increased E. coli cell lengths in the population, and this effect is, at least in part, mediated by RecA recruitment to the nucleoid and stochastic inhibition of division. PMID:28386413

  17. Elevational variation in adult body size and growth rate but not in metabolic rate in the tree weta Hemideina crassidens.

    PubMed

    Bulgarella, Mariana; Trewick, Steven A; Godfrey, A Jonathan R; Sinclair, Brent J; Morgan-Richards, Mary

    2015-04-01

    Populations of the same species inhabiting distinct localities experience different ecological and climatic pressures that might result in differentiation in traits, particularly those related to temperature. We compared metabolic rate (and its thermal sensitivity), growth rate, and body size among nine high- and low-elevation populations of the Wellington tree weta, Hemideina crassidens, distributed from 9 to 1171 m a.s.l across New Zealand. Our results did not indicate elevational compensation in metabolic rates (metabolic cold adaptation). Cold acclimation decreased metabolic rate compared to warm-acclimated individuals from both high- and low-elevation populations. However, we did find countergradient variation in growth rates, with individuals from high-elevation populations growing faster and to a larger final size than individuals from low-elevation populations. Females grew faster to a larger size than males, although as adults their metabolic rates did not differ significantly. The combined physiological and morphological data suggest that high-elevation individuals grow quickly and achieve larger size while maintaining metabolic rates at levels not significantly different from low-elevation individuals. Thus, morphological differentiation among tree weta populations, in concert with genetic variation, might provide the material required for adaptation to changing conditions.

  18. Growth against entropy in bacterial metabolism: the phenotypic trade-off behind empirical growth rate distributions in E. coli

    NASA Astrophysics Data System (ADS)

    De Martino, Daniele; Capuani, Fabrizio; De Martino, Andrea

    2016-06-01

    The solution space of genome-scale models of cellular metabolism provides a map between physically viable flux configurations and cellular metabolic phenotypes described, at the most basic level, by the corresponding growth rates. By sampling the solution space of E. coli's metabolic network, we show that empirical growth rate distributions recently obtained in experiments at single-cell resolution can be explained in terms of a trade-off between the higher fitness of fast-growing phenotypes and the higher entropy of slow-growing ones. Based on this, we propose a minimal model for the evolution of a large bacterial population that captures this trade-off. The scaling relationships observed in experiments encode, in such frameworks, for the same distance from the maximum achievable growth rate, the same degree of growth rate maximization, and/or the same rate of phenotypic change. Being grounded on genome-scale metabolic network reconstructions, these results allow for multiple implications and extensions in spite of the underlying conceptual simplicity.

  19. Delta L: An Apparatus for Measuring Macromolecular Crystal Growth Rates in Microgravity

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    In order to determine how macromolecule crystal quality improvement in microgravity is related to crystal growth characteristics, is was necessary to develop new hardware that could measure the crystal growth rates of a population of crystals growing under the same solution conditions. As crystal growth rate is defined as the change or delta in a defined dimension or length (L) of a crystal over time, the hardware was named Delta L. Delta L consists of fluids, optics, and data acquisition, sub-assemblies. Temperature control is provided for the crystal growth chamber. Delta L will be used in connection with the Glovebox Integrated Microgravity Isolation Technology (g-LIMIT) inside the Microgravity Science Glovebox (MSG), onboard the International Space Station (ISS). Delta L prototype hardware has been assembled. This paper will describe an overview of the design of Delta L and present preliminary crystal growth rate data.

  20. Ab initio determination of the instability growth rate of warm dense beryllium-deuterium interface

    SciTech Connect

    Wang, Cong; Zhang, Ping; Li, Zi; Li, DaFang

    2015-10-15

    Accurate knowledge about the interfacial unstable growth is of great importance in inertial confinement fusion. During implosions, the deuterium-tritium capsule is driven by laser beams or X-rays to access the strongly coupled and partially degenerated warm dense matter regime. At this stage, the effects of dissipative processes, such as diffusion and viscosity, have significant impact on the instability growth rates. Here, we present ab initio molecular dynamics simulations to determine the equations of state and the transport coefficients. Several models are used to estimate the reduction in the growth rate dispersion curves of Rayleigh-Taylor and Richtmyer-Meshkov instabilities with considering the presence of these dissipative effects. We show that these instability growth rates are effectively reduced when considering diffusion. The findings provide significant insights into the microscopic mechanism of the instability growth at the ablator-fuel interface and will refine the models used in the laser-driven hydrodynamic instability experiments.

  1. Growth rate regulation of translation initiation factor IF3 biosynthesis in Escherichia coli.

    PubMed Central

    Liveris, D; Klotsky, R A; Schwartz, I

    1991-01-01

    infC, the gene encoding translation initiation factor IF3 in Escherichia coli, can be transcribed from three promoters. Two of these promoters, PI1 and PI2, are located in the upstream thrS sequence which codes for threonyl-tRNA synthetase. Previous studies had shown that PI2 was the major promoter for infC. In the present study, the extent of transcription from PI1 and/or PI2 at a variety of steady-state growth rates was analyzed by promoter fusion studies. PI2 was the more active promoter (two- to threefold stronger than PI1) at all growth rates tested. A fusion plasmid containing both PI1 and PI2 exhibited a transcription level approximately equal to the sum of those observed with the fusion plasmids containing the individual promoters. The transcriptional activities of PI1 and PI2 did not change as the growth rate was varied from 0.3 to 1.7 doublings per h. In contrast, a fusion plasmid carrying the rrnB P1 promoter displayed the expected growth rate response. The steady-state concentrations of infC mRNA in cells grown at different rates were measured and found not to vary. These results indicate that the previously reported growth rate regulation of IF3 biosynthesis neither is accomplished by transcriptional control nor is a result of differential mRNA stability. In view of these results, the steady-state levels of IF3 in cells grown at a number of different growth rates were determined by quantitative immunoblotting. IF3 levels were found to vary with growth rate in a manner essentially identical to that observed for ribosomes. A model accounting for these results and describing a mechanism for coordinate growth rate-regulated expression of ribosomes and IF3 is presented. Images PMID:2050639

  2. Effects of Phlomis umbrosa Root on Longitudinal Bone Growth Rate in Adolescent Female Rats.

    PubMed

    Lee, Donghun; Kim, Young-Sik; Song, Jungbin; Kim, Hyun Soo; Lee, Hyun Jung; Guo, Hailing; Kim, Hocheol

    2016-04-07

    This study aimed to investigate the effects of Phlomis umbrosa root on bone growth and growth mediators in rats. Female adolescent rats were administered P. umbrosa extract, recombinant human growth hormone or vehicle for 10 days. Tetracycline was injected intraperitoneally to produce a glowing fluorescence band on the newly formed bone on day 8, and 5-bromo-2'-deoxyuridine was injected to label proliferating chondrocytes on days 8-10. To assess possible endocrine or autocrine/paracrine mechanisms, we evaluated insulin-like growth factor-1 (IGF-1), insulin-like growth factor binding protein-3 (IGFBP-3) or bone morphogenetic protein-2 (BMP-2) in response to P. umbrosa administration in either growth plate or serum. Oral administration of P. umbrosa significantly increased longitudinal bone growth rate, height of hypertrophic zone and chondrocyte proliferation of the proximal tibial growth plate. P. umbrosa also increased serum IGFBP-3 levels and upregulated the expressions of IGF-1 and BMP-2 in growth plate. In conclusion, P. umbrosa increases longitudinal bone growth rate by stimulating proliferation and hypertrophy of chondrocyte with the increment of circulating IGFBP-3. Regarding the immunohistochemical study, the effect of P. umbrosa may also be attributable to upregulation of local IGF-1 and BMP-2 expressions in the growth plate, which can be considered as a GH dependent autocrine/paracrine pathway.

  3. Using scale characteristics and water temperature to reconstruct growth rates of juvenile steelhead Oncorhynchus mykiss.

    PubMed

    Beakes, M P; Sharron, S; Charish, R; Moore, J W; Satterthwaite, W H; Sturm, E; Wells, B K; Sogard, S M; Mangel, M

    2014-01-01

    Juvenile steelhead Oncorhynchus mykiss from a northern California Central Valley population were reared in a controlled laboratory experiment. Significantly different rates of growth were observed among fish reared under two ration treatments and three temperature treatments (8, 14 and 20°C). Wider circulus spacing and faster deposition was associated with faster growth. For the same growth rate, however, circulus spacing was two-fold wider and deposited 36% less frequently in the cold compared to the hot temperature treatment. In a multiple linear regression, median circulus spacing and water temperature accounted for 68% of the variation in observed O. mykiss growth. These results corroborate previous research on scale characteristics and growth, while providing novel evidence that highlights the importance of water temperature in these relationships. Thus, this study establishes the utility of using scale analysis as a relatively non-invasive method for inferring growth in salmonids.

  4. The effects of population density on juvenile growth rate in white-tailed deer.

    PubMed

    Barr, Brannon; Wolverton, Steve

    2014-10-01

    Animal body size is driven by habitat quality, food availability, and nutrition. Adult size can relate to birth weight, to length of the ontogenetic growth period, and/or to the rate of growth. Data requirements are high for studying these growth mechanisms, but large datasets exist for some game species. In North America, large harvest datasets exist for white-tailed deer (Odocoileus virginianus), but such data are collected under a variety of conditions and are generally dismissed for ecological research beyond local population and habitat management. We contend that such data are useful for studying the ecology of white-tailed deer growth and body size when analyzed at ordinal scale. In this paper, we test the response of growth rate to food availability by fitting a logarithmic equation that estimates growth rate only to harvest data from Fort Hood, Texas, and track changes in growth rate over time. Results of this ordinal scale model are compared to previously published models that include additional parameters, such as birth weight and adult weight. It is shown that body size responds to food availability by variation in growth rate. Models that estimate multiple parameters may not work with harvest data because they are prone to error, which renders estimates from complex models too variable to detect interannual changes in growth rate that this ordinal scale model captures. This model can be applied to harvest data, from which inferences about factors that influence animal growth and body size (e.g., habitat quality and nutritional availability) can be drawn.

  5. The Effects of Population Density on Juvenile Growth Rate in White-Tailed Deer

    NASA Astrophysics Data System (ADS)

    Barr, Brannon; Wolverton, Steve

    2014-10-01

    Animal body size is driven by habitat quality, food availability, and nutrition. Adult size can relate to birth weight, to length of the ontogenetic growth period, and/or to the rate of growth. Data requirements are high for studying these growth mechanisms, but large datasets exist for some game species. In North America, large harvest datasets exist for white-tailed deer ( Odocoileus virginianus), but such data are collected under a variety of conditions and are generally dismissed for ecological research beyond local population and habitat management. We contend that such data are useful for studying the ecology of white-tailed deer growth and body size when analyzed at ordinal scale. In this paper, we test the response of growth rate to food availability by fitting a logarithmic equation that estimates growth rate only to harvest data from Fort Hood, Texas, and track changes in growth rate over time. Results of this ordinal scale model are compared to previously published models that include additional parameters, such as birth weight and adult weight. It is shown that body size responds to food availability by variation in growth rate. Models that estimate multiple parameters may not work with harvest data because they are prone to error, which renders estimates from complex models too variable to detect interannual changes in growth rate that this ordinal scale model captures. This model can be applied to harvest data, from which inferences about factors that influence animal growth and body size (e.g., habitat quality and nutritional availability) can be drawn.

  6. Reduction of translating ribosomes enables Escherichia coli to maintain elongation rates during slow growth

    PubMed Central

    Dai, Xiongfeng; Zhu, Manlu; Warren, Mya; Balakrishnan, Rohan; Patsalo, Vadim; Okano, Hiroyuki; Williamson, James R.; Fredrick, Kurt; Wang, Yi-Ping; Hwa, Terence

    2017-01-01

    Bacteria growing in different conditions experience a broad range of demand on the rate of protein synthesis which profoundly affects cellular resource allocation. During fast growth, protein synthesis is long known to be modulated by adjusting the ribosome content, with the vast majority of ribosomes engaged at a near-maximal rate of elongation. Here we characterized protein synthesis by E. coli systematically, focusing on slow growth conditions. We establish that the translational elongation rate decreases as growth slows down, exhibiting a Michaelis-Menten dependence on the abundance of the cellular translational apparatus. However, an appreciable elongation rate is maintained even towards zero growth including the stationary phase. This maintenance, critical for timely protein synthesis in harsh environments, is accompanied by a drastic reduction in the fraction of active ribosomes. Interestingly, well-known antibiotics such as chloramphenicol also cause substantial reduction in the pool of active ribosomes, instead of slowing down translational elongation as commonly thought. PMID:27941827

  7. Reduction of translating ribosomes enables Escherichia coli to maintain elongation rates during slow growth.

    PubMed

    Dai, Xiongfeng; Zhu, Manlu; Warren, Mya; Balakrishnan, Rohan; Patsalo, Vadim; Okano, Hiroyuki; Williamson, James R; Fredrick, Kurt; Wang, Yi-Ping; Hwa, Terence

    2016-12-12

    Bacteria growing under different conditions experience a broad range of demand on the rate of protein synthesis, which profoundly affects cellular resource allocation. During fast growth, protein synthesis has long been known to be modulated by adjusting the ribosome content, with the vast majority of ribosomes engaged at a near-maximal rate of elongation. Here, we systematically characterize protein synthesis by Escherichia coli, focusing on slow-growth conditions. We establish that the translational elongation rate decreases as growth slows, exhibiting a Michaelis-Menten dependence on the abundance of the cellular translational apparatus. However, an appreciable elongation rate is maintained even towards zero growth, including the stationary phase. This maintenance, critical for timely protein synthesis in harsh environments, is accompanied by a drastic reduction in the fraction of active ribosomes. Interestingly, well-known antibiotics such as chloramphenicol also cause a substantial reduction in the pool of active ribosomes, instead of slowing down translational elongation as commonly thought.

  8. Crossflow effects on the growth rate of inviscid Goertler vortices in a hypersonic boundary layer

    NASA Technical Reports Server (NTRS)

    Fu, Yibin; Hall, Philip

    1992-01-01

    The effects of crossflow on the growth rate of inviscid Goertler vortices in a hypersonic boundary layer with pressure gradient are studied. Attention is focused on the inviscid mode trapped in the temperature adjustment layer; this mode has greater growth rate than any other mode. The eigenvalue problem which governs the relationship between the growth rate, the crossflow amplitude, and the wavenumber is solved numerically, and the results are then used to clarify the effects of crossflow on the growth rate of inviscid Goertler vortices. It is shown that crossflow effects on Goertler vortices are fundamentally different for incompressible and hypersonic flows. The neutral mode eigenvalue problem is found to have an exact solution, and as a by-product, we have also found the exact solution to a neutral mode eigenvalue problem which was formulated, but unsolved before, by Bassom and Hall (1991).

  9. Theoretical growth rates, periods, and pulsation constants for long-period variables

    NASA Astrophysics Data System (ADS)

    Fox, M. W.; Wood, P. R.

    1982-08-01

    An extensive set of linear, nonadiabatic pulsation models for red giant and supergiant stars is computed, in order that the dependence of pulsation periods (P), pulsation constants (Q), and growth rate on physical input parameters can be determined from the systematic behavior seen in the models. Also investigated is the extent of the dependence of P, Q, and growth rate on uncertain quantities such as atmospheric molecular opacity, surface boundary conditions, and effective temperature. The growth rate for the fundamental mode is found to increase with luminosity on the giant branch while the growth rate for the first overtone decreases. Dynamical instabilities found in previous adiabatic models of extreme red giants do not occur when nonadiabatic effects are included in the models.

  10. The annual cycle in ENSO growth rate as a cause of the spring predictability barrier

    NASA Astrophysics Data System (ADS)

    Levine, Aaron F. Z.; McPhaden, Michael J.

    2015-06-01

    The spring predictability barrier increases the uncertainty in ENSO forecasts starting before and during the boreal spring. Recent work has shown that the annual cycle of ENSO growth rate is responsible for phase locking of peak ENSO development to the boreal winter, suggesting that this annual cycle may play a role in the spring predictability barrier. To test this hypothesis, the annual cycle of ENSO growth rate is added to a damped, noise-driven conceptual recharge oscillator model. When the annual cycle of ENSO growth rate is included, a spring predictability barrier develops, whereas without it ENSO predictability is independent of the forecast start date. When state-dependent noise is included in the simulations in addition to the annual cycle of the growth rate, the spring predictability barrier is enhanced and more realistic.

  11. Density but not climate affects the population growth rate of guanacos ( Lama guanicoe) (Artiodactyla, Camelidae)

    PubMed Central

    Zubillaga, María; Skewes, Oscar; Soto, Nicolás; Rabinovich, Jorge E

    2014-01-01

    We analyzed the effects of population density and climatic variables on the rate of population growth in the guanaco ( Lama guanicoe), a wild camelid species in South America. We used a time series of 36 years (1977-2012) of population sampling in Tierra del Fuego, Chile. Individuals were grouped in three age-classes: newborns, juveniles, and adults; for each year a female population transition matrix was constructed, and the population growth rate (λ) was estimated for each year as the matrix highest positive eigenvalue. We applied a regression analysis with finite population growth rate (λ) as dependent variable, and total guanaco population, sheep population, annual mean precipitation, and winter mean temperature as independent variables, with and without time lags. The effect of guanaco population size was statistically significant, but the effects of the sheep population and the climatic variables on guanaco population growth rate were not statistically significant. PMID:25187878

  12. Initial results of Alloy 600 crack growth rate testing in PWR environments

    SciTech Connect

    Foster, J.P.; Bamford, W.H.; Pathania, R.S.

    1995-12-31

    Initial crack growth rate results on the effects of stress intensity factor, temperature, material heat and experimental methods were studied on Alloy 600 control rod drive head penetrations using fracture mechanics samples. Crack growth rate data were obtained using the reverse DC potential difference crack monitoring method on 1/2T CT samples tested at temperatures of 310 to 330 C in 1200 ppm B + 2 ppm Li + 25 cc/kg H{sub 2} water. The results are consistent with a crack growth rate estimation model developed by Scott. Most of the heats tested to date are consistent with the Scott model; however, enhanced crack growth rates were exhibited by two heats with low grain boundary carbide coverage.

  13. Dependence of growth rate of quartz in fused silica on pressure and impurity content

    NASA Technical Reports Server (NTRS)

    Fratello, V. J.; Hays, J. F.; Turnbull, D.

    1980-01-01

    The effects of pressure, temperature, and some variations in impurity content on the growth rate u of quartz into fused silica were measured. Under all conditions the growth rate was interface controlled and increased exponentially with pressure with an activation volume averaging -21.2 cu cm/mole. The activation enthalpy for all specimens is extrapolated to a zero pressure value of 64 kcal/mole, within the experimental uncertainty. At a given stoichiometry the effect of hydroxyl content on growth rate is described entirely by a linear term C(OH) in the prefactor of the equation for the growth rate. The effect of chlorine impurity can be described similarly. Also u is increased as the ideal stoichiometry is approached from the partially reduced state.

  14. In situ growth rates of deep-water octocorals determined from 3D photogrammetric reconstructions

    NASA Astrophysics Data System (ADS)

    Bennecke, Swaantje; Kwasnitschka, Tom; Metaxas, Anna; Dullo, Wolf-Christian

    2016-12-01

    Growth rates of deep-water corals provide important information on the recovery potential of these ecosystems, for example from fisheries-induced impacts. Here, we present in situ growth dynamics that are currently largely unknown for deep-water octocorals, calculated by applying a non-destructive method. Videos of a boulder harbouring multiple colonies of Paragorgia arborea and Primnoa resedaeformis in the Northeast Channel Coral Conservation Area at the entrance to the Gulf of Maine at 863 m depth were collected in 2006, 2010 and 2014. Photogrammetric reconstructions of the boulder and the fauna yielded georeferenced 3D models for all sampling years. Repeated measurements of total length and cross-sectional area of the same colonies allowed the observation of growth dynamics. Growth rates of total length of Paragorgia arborea decreased over time with higher rates between 2006 and 2010 than between 2010 and 2014, while growth rates of cross-sectional area remained comparatively constant. A general trend of decreasing growth rates of total length with size of the coral colony was documented. While no growth was observed for the largest colony (165 cm in length) between 2010 and 2014, a colony 50-65 cm in length grew 3.7 cm yr-1 between 2006 and 2010. Minimum growth rates of 1.6-2.7 cm yr-1 were estimated for two recruits (<23 cm in 2014) of Primnoa resedaeformis. We successfully extracted biologically meaningful data from photogrammetric models and present the first in situ growth rates for these coral species in the Northwest Atlantic.

  15. Growth rates of rainbow smelt in Lake Champlain: Effects of density and diet

    USGS Publications Warehouse

    Stritzel, Thomson J.L.; Parrish, D.L.; Parker-Stetter, S. L.; Rudstam, L. G.; Sullivan, P.J.

    2011-01-01

    Stritzel Thomson JL, Parrish DL, Parker-Stetter SL, Rudstam LG, Sullivan PJ. Growth rates of rainbow smelt in Lake Champlain: effects of density and diet. Ecology of Freshwater Fish 2010. ?? 2010 John Wiley & Sons A/S Abstract- We estimated the densities of rainbow smelt (Osmerus mordax) using hydroacoustics and obtained specimens for diet analysis and groundtruthed acoustics data from mid-water trawl sampling in four areas of Lake Champlain, USA-Canada. Densities of rainbow smelt cohorts alternated during the 2-year study; age-0 rainbow smelt were very abundant in 2001 (up to 6fish per m2) and age-1 and older were abundant (up to 1.2fish per m2) in 2002. Growth rates and densities varied among areas and years. We used model selection on eight area-year-specific variables to investigate biologically plausible predictors of rainbow smelt growth rates. The best supported model of growth rates of age-0 smelt indicated a negative relationship with age-0 density, likely associated with intraspecific competition for zooplankton. The next best-fit model had age-1 density as a predictor of age-0 growth. The best supported models (N=4) of growth rates of age-1 fish indicated a positive relationship with availability of age-0 smelt and resulting levels of cannibalism. Other plausible models were contained variants of these parameters. Cannibalistic rainbow smelt consumed younger conspecifics that were up to 53% of their length. Prediction of population dynamics for rainbow smelt requires an understanding of the relationship between density and growth as age-0 fish outgrow their main predators (adult smelt) by autumn in years with fast growth rates, but not in years with slow growth rates. ?? 2011 John Wiley & Sons A/S.

  16. Flavonoids Released Naturally from Alfalfa Seeds Enhance Growth Rate of Rhizobium meliloti1

    PubMed Central

    Hartwig, Ueli A.; Joseph, Cecillia M.; Phillips, Donald A.

    1991-01-01

    Alfalfa (Medicago sativa L.) releases different flavonoids from seeds and roots. Imbibing seeds discharge 3′,4′,5,7-substituted flavonoids; roots exude 5-deoxy molecules. Many, but not all, of these flavonoids induce nodulation (nod) genes in Rhizobium meliloti. The dominant flavonoid released from alfalfa seeds is identified here as quercetin-3-O-galactoside, a molecule that does not induce nod genes. Low concentrations (1-10 micromolar) of this compound, as well as luteolin-7-O-glucoside, another major flavonoid released from germinating seeds, and the aglycones, quercetin and luteolin, increase growth rate of R. meliloti in a defined minimal medium. Tests show that the 5,7-dihydroxyl substitution pattern on those molecules was primarily responsible for the growth effect, thus explaining how 5-deoxy flavonoids in root exudates fail to enhance growth of R. meliloti. Luteolin increases growth by a mechanism separate from its capacity to induce rhizobial nod genes, because it still enhanced growth rate of R. meliloti lacking functional copies of the three known nodD genes. Quercetin and luteolin also increased growth rate of Pseudomonas putida. They had no effect on growth rate of Bacillus subtilis or Agrobacterium tumefaciens, but they slowed growth of two fungal pathogens of alfalfa. These results suggest that alfalfa can create ecochemical zones for controlling soil microbes by releasing structurally different flavonoids from seeds and roots. PMID:16668056

  17. The sustainable growth rate: the elephant in the room of deficit reduction.

    PubMed

    Perez, Ken

    2012-05-01

    The sustainable growth rate (SGR) is a formulaic approach intended to restrain the growth of Medicare spending on physician services. Permanently replacing the SGR will cost $300 billion to $400 billion. Ten years of congressional overrides have contributed to higher Medicare spending on physician services. The absence of a replacement for the SGR leaves the federal government with a significant budget deficit exposure.

  18. Anthropogenic and biophysical contributions to increasing atmospheric CO2 growth rate and airborne fraction

    NASA Astrophysics Data System (ADS)

    Raupach, M. R.; Canadell, J. G.; Le Quéré, C.

    2008-07-01

    We quantify the relative roles of natural and anthropogenic influences on the growth rate of atmospheric CO2 and the CO2 airborne fraction, considering both interdecadal trends and interannual variability. A combined ENSO-Volcanic Index (EVI) relates most (~75%) of the interannual variability in CO2 growth rate to the El-Niño-Southern-Oscillation (ENSO) climate mode and volcanic activity. Analysis of several CO2 data sets with removal of the EVI-correlated component confirms a previous finding of a detectable increasing trend in CO2 airborne fraction (defined using total anthropogenic emissions including fossil fuels and land use change) over the period 1959 2006, at a proportional growth rate 0.24% y-1 with probability ~0.9 of a positive trend. This implies that the atmospheric CO2 growth rate increased slightly faster than total anthropogenic CO2 emissions. An extended form of the Kaya identity relates the increase in the CO2 growth rate (1.9% y-1 over 1959 2006) to the growth rates of four global driving factors: population (contributing +1.7% y-1); per capita income (+1.8% y-1); the total carbon intensity of the global economy (-1.7% y-1); and airborne fraction (averaging +0.2% y-1 with strong interannual variability). Together, the recent (post-2000) increase in growth of per capita income and decline in the negative growth (improvement) in the carbon intensity of the economy will drive a significant acceleration in the CO2 growth rate over coming decades, unless these recent trends reverse. To achieve an annual reduction rate in total emissions of -2% y-1 (which would halve emissions in 35 years) in the presence of a per-capita income growth rate of 2% y-1 and a population growth rate of 1% y-1, it is necessary to achieve a decline in total carbon intensity of the economy at a rate of around -5% y-1, three times the 1959 2006 average.

  19. Landscape scale measures of steelhead (Oncorhynchus mykiss) bioenergetic growth rate potential in Lake Michigan and comparison with angler catch rates

    USGS Publications Warehouse

    Hook, T.O.; Rutherford, E.S.; Brines, Shannon J.; Geddes, C.A.; Mason, D.M.; Schwab, D.J.; Fleischer, G.W.

    2004-01-01

    The relative quality of a habitat can influence fish consumption, growth, mortality, and production. In order to quantify habitat quality, several authors have combined bioenergetic and foraging models to generate spatially explicit estimates of fish growth rate potential (GRP). However, the capacity of GRP to reflect the spatial distributions of fishes over large areas has not been fully evaluated. We generated landscape scale estimates of steelhead (Oncorhynchus mykiss) GRP throughout Lake Michigan for 1994-1996, and used these estimates to test the hypotheses that GRP is a good predictor of spatial patterns of steelhead catch rates. We used surface temperatures (measured with AVHRR satellite imagery) and acoustically measured steelhead prey densities (alewife, Alosa pseudoharengus) as inputs for the GRP model. Our analyses demonstrate that potential steelhead growth rates in Lake Michigan are highly variable in both space and time. Steelhead GRP tended to increase with latitude, and mean GRP was much higher during September 1995, compared to 1994 and 1996. In addition, our study suggests that landscape scale measures of GRP are not good predictors of steelhead catch rates throughout Lake Michigan, but may provide an index of interannual variation in system-wide habitat quality.

  20. A hyperspectral image can predict tropical tree growth rates in single-species stands.

    PubMed

    Caughlin, T Trevor; Graves, Sarah J; Asner, Gregory P; van Breugel, Michiel; Hall, Jefferson S; Martin, Roberta E; Ashton, Mark S; Bohlman, Stephanie A

    2016-12-01

    Remote sensing is increasingly needed to meet the critical demand for estimates of forest structure and composition at landscape to continental scales. Hyperspectral images can detect tree canopy properties, including species identity, leaf chemistry and disease. Tree growth rates are related to these measurable canopy properties but whether growth can be directly predicted from hyperspectral data remains unknown. We used a single hyperspectral image and light detection and ranging-derived elevation to predict growth rates for 20 tropical tree species planted in experimental plots. We asked whether a consistent relationship between spectral data and growth rates exists across all species and which spectral regions, associated with different canopy chemical and structural properties, are important for predicting growth rates. We found that a linear combination of narrowband indices and elevation is correlated with standardized growth rates across all 20 tree species (R(2)  = 53.70%). Although wavelengths from the entire visible-to-shortwave infrared spectrum were involved in our analysis, results point to relatively greater importance of visible and near-infrared regions for relating canopy reflectance to tree growth data. Overall, we demonstrate the potential for hyperspectral data to quantify tree demography over a much larger area than possible with field-based methods in forest inventory plots.

  1. Plate Thickness Variation Effects on Crack Growth Rates in 7050-T7451 Alloy Thick Plate

    NASA Astrophysics Data System (ADS)

    Schubbe, Joel J.

    2011-02-01

    A study has been accomplished to characterize the fatigue crack growth rates and mechanisms in thick plate (16.51 cm) commercial grade 7050-T7451 aluminum plate in the L-S orientation. Examination of the effects of potential property gradients in the plate material was accomplished through hardness measurements along the short transverse direction and with compact tension tests. Tests exhibited a distinct trend of reduced center plane hardness in the plates. Compact tension specimens and the compliance method were used to determine crack growth rates for specimens machined from the t/4 and t/2 planar locations and oriented for L-S crack growth. Crack growth rate data (long crack) from the tests highlighted significant growth rate differences between the t/4 and t/2 locations. No significant effect of R-ratio was observed in the 0.05-0.3 range tested. Additionally, crack front splitting was noted in all specimens to differing degrees with data showing significant retardation of growth rate curves for the L-S orientation above 13 MPa √m in the center plane, and 10 MPa √m at quarter plane, where branching and splitting parallel to the load axis are dominant growth mechanisms.

  2. Phylogenetic, functional, and structural components of variation in bone growth rate of amniotes.

    PubMed

    Cubo, Jorge; Legendre, Pierre; de Ricqlès, Armand; Montes, Laëtitia; de Margerie, Emmanuel; Castanet, Jacques; Desdevises, Yves

    2008-01-01

    The biological features observed in every living organism are the outcome of three sets of factors: historical (inherited by homology), functional (biological adaptation), and structural (properties inherent to the materials with which organs are constructed, and the morphogenetic rules by which they grow). Integrating them should bring satisfactory causal explanations of empirical data. However, little progress has been accomplished in practice toward this goal, because a methodologically efficient tool was lacking. Here we use a new statistical method of variation partitioning to analyze bone growth in amniotes. (1) Historical component. The variation of bone growth rates contains a significant phylogenetic signal, suggesting that the observed patterns are partly the outcome of shared ancestry. (2) Functional causation. High growth rates, although energy costly, may be adaptive (i.e., they may increase survival rates) in taxa showing short growth periods (e.g., birds). In ectothermic amniotes, low resting metabolic rates may limit the maximum possible growth rates. (3) Structural constraint. Whereas soft tissues grow through a multiplicative process, growth of mineralized tissues is accretionary (additive, i.e., mineralization fronts occur only at free surfaces). Bone growth of many amniotes partially circumvents this constraint: it is achieved not only at the external surface of the bone shaft, but also within cavities included in the bone cortex as it grows centrifugally. Our approach contributes to the unification of historicism, functionalism, and structuralism toward a more integrated evolutionary biology.

  3. Computation of Growth Rates of Random Sequences with Multi-step Memory

    NASA Astrophysics Data System (ADS)

    Zhang, Chenfei; Lan, Yueheng

    2013-02-01

    We extend the generating function approach to the computation of growth rate of random Fibonacci sequences with long memory. Functional iteration equations are obtained and its general form is conjectured and proved, based on which an asymptotic representation of the growth rate is obtained. The validity of both the derived and the conjectured formula are verified upon comparison with Monte Carlo simulation. A numerical scheme of the functional iteration is designed and implemented successfully.

  4. Rate of head circumference growth as a function of autism diagnosis and history of autistic regression.

    PubMed

    Webb, Sara Jane; Nalty, Theresa; Munson, Jeff; Brock, Catherine; Abbott, Robert; Dawson, Geraldine

    2007-10-01

    Several reports indicate that autism spectrum disorder is associated with increased rate of head growth in early childhood. Increased rate of growth may index aberrant processes during early development, may precede the onset of symptoms, and may predict severity of the disease course. We examined rate of change in occipitofrontal circumference measurements (abstracted from medical records) in 28 boys with autism spectrum disorder and in 8 boys with developmental delay without autism from birth to age 36 months. Only children who had more than 3 occipitofrontal circumference measurements available during this age period were included. All data were converted to z scores based on the Centers for Disease Control and Prevention norms. Rate of growth from birth to age 36 months was statistically significantly higher for the autism spectrum disorder group than the developmental delay group, with children with autism spectrum disorder showing a statistically significant increase in occipitofrontal circumference relative to norms between 7 and 10 months; this group difference in rate of growth was more robust when height was used as a covariate. Rate of growth was not found to be different for children with autism spectrum disorder whose parents reported a history of loss of skills (regression) vs those whose parents reported early onset of autism symptoms. Findings from this study suggest that the aberrant growth is present in the first year of life and precedes the onset and diagnosis in children with autism spectrum disorder with and without a history of autistic regression.

  5. The Modellers' Halting Foray into Ecological Theory: Or, What is This Thing Called 'Growth Rate'?

    PubMed

    Deveau, Michael; Karsten, Richard; Teismann, Holger

    2015-06-01

    This discussion paper describes the attempt of an imagined group of non-ecologists ("Modellers") to determine the population growth rate from field data. The Modellers wrestle with the multiple definitions of the growth rate available in the literature and the fact that, in their modelling, it appears to be drastically model-dependent, which seems to throw into question the very concept itself. Specifically, they observe that six representative models used to capture the data produce growth-rate values, which differ significantly. Almost ready to concede that the problem they set for themselves is ill-posed, they arrive at an alternative point of view that not only preserves the identity of the concept of the growth rate, but also helps discriminate between competing models for capturing the data. This is accomplished by assessing how robustly a given model is able to generate growth-rate values from randomized time-series data. This leads to the proposal of an iterative approach to ecological modelling in which the definition of theoretical concepts (such as the growth rate) and model selection complement each other. The paper is based on high-quality field data of mites on apple trees and may be called a "data-driven opinion piece".

  6. Growth rate of a deep-sea coral using sup 210 Pb and other isotopes

    SciTech Connect

    Druffel, E.R.M.; King, L.I.; Belastock, R.A.; Buesseler, K.O. )

    1990-05-01

    A deep-sea coral was studied to determine its growth rate and to reconstruct time histories of isotope distributions in the deep ocean. The specimen was collected at a depth of 600 m off Little Bahama Banks using the Deep Submergence Vehicle (DSV) Alvin. The growth rate of the calcitic coral trunk was determined using excess {sup 210}Pb measured in concentric bands. Excess {sup 210}Pb was found in the outer half of the coral's radius, and a growth rate of 0.11 {plus minus} 0.02 mm/a is calculated. Assuming a constant growth rate during formation of the entire trunk, an age of 180 {plus minus} 40 a is estimated for the coral. The decrease observed in radiocarbon activities measured on the same bands (Griffin and Druffel, 1989) concurred with the growth rate estimated from excess {sup 210}Pb activity. {sup 239,240}Pu activities measured by mass spectrometry were also detected in the outer two bands of the coral, as expected from the {sup 210}Pb chronology. Stable oxygen and carbon isotopes measured in samples collected by a variety of techniques are positively correlated. This is evidence of a variable kinetic isotope effect most likely caused by variations in the skeletal growth rate. Long-lived corals such as this specimen have the potential for serving as integrators of seawater chemistry in the deep-sea over several century timescales.

  7. SCC crack growth rate of cold worked 316L stainless steel in PWR environment

    NASA Astrophysics Data System (ADS)

    Du, Donghai; Chen, Kai; Yu, Lun; lu, Hui; Zhang, Lefu; Shi, Xiuqiang; Xu, Xuelian

    2015-01-01

    Many component failures in nuclear power plants were found to be caused by stress corrosion cracking (SCC) of cold worked austenitic steels. Some of the pressure boundary component materials are even cold worked up to 35% plastic deformation, leaving high residual stress and inducing high growth rate of corrosion crack. Controlling water chemistry is one of the best counter measure to mitigate this problem. In this work, the effects of temperature (200 up to 325 °C) and dissolved oxygen (0 up to 2000 μg/L) on SCC crack growth rates of cold worked austenitic stainless steel type 316L have been tested by using direct current potential drop (DCPD) method. The results showed that temperature affected SCC crack growth rates more significantly in oxygenated water than in deaerated water. In argon deaerated water, the crack growth rate exhibited a peak at about 250 °C, which needs further verification. At 325 °C, the SCC crack growth rate increased rapidly with the increase of dissolved oxygen concentration within the range from 0 up to 200 μg/L, while when dissolved oxygen was above 200 μg/L, the crack growth rate followed a shallower dependence on dissolved oxygen concentration.

  8. Growth rate of ascites-resistant versus ascites-susceptible broilers in commercial and experimental lines.

    PubMed

    Druyan, S; Hadad, Y; Cahaner, A

    2008-05-01

    The high growth rate (GR) of contemporary broilers is driven by high rate of feed intake and metabolism. Because of the consequent high oxygen demand, especially when coupled with exposure to high altitude or low temperatures, some broilers fail to regulate oxygen supply and develop the ascites syndrome (AS), which leads to mortality and economic losses. Because of the association between high GR, oxygen demand, and AS, it has been suggested that AS is induced by high GR. If true, further GR enhancement should be avoided because it will increase the proportion of AS-susceptible individuals in contemporary stocks. An alternative hypothesis claims that AS is associated with high actual GR only because the latter increases oxygen demand and that there are genetically AS-resistant broilers that do not develop AS, even when exhibiting high GR. These hypotheses were tested in trials in the years 2002 and 2006, with broilers differing in potential GR: contemporary fast-growing commercial lines and an experimental line derived from commercial broilers in 1986, and (in 2002 only) divergently selected AS-susceptible and AS-resistant lines. A protocol of high-challenge ascites-inducing conditions (AIC) from d 19 was used to distinguish between AS-susceptible and AS-resistant individuals and to determine their GR up to this age. The difference in AS incidence between the divergent lines (93.9 vs. 9.5%) was not explained by the 5% difference in their GR, thus indicating a lack of genetic correlation. In the broiler lines, AS incidence was 31 and 47% in 2002 and 2006, respectively, and 32% in the 1986 slow-growing line. Most broilers that remained healthy under the high-challenge AIC exhibited the same early GR and BW as those that later developed AS. These results, and the relatively high incidence of AS in the slow-growing line, indicate that there is very little, if any, direct genetic association between AS and genetic differences in potential GR, and suggest that AS

  9. Anisotropic interpolation method of silicon carbide oxidation growth rates for three-dimensional simulation

    NASA Astrophysics Data System (ADS)

    Šimonka, Vito; Nawratil, Georg; Hössinger, Andreas; Weinbub, Josef; Selberherr, Siegfried

    2017-02-01

    We investigate anisotropical and geometrical aspects of hexagonal structures of Silicon Carbide and propose a direction dependent interpolation method for oxidation growth rates. We compute three-dimensional oxidation rates and perform one-, two-, and three-dimensional simulations for 4H- and 6H-Silicon Carbide thermal oxidation. The rates of oxidation are computed according to the four known growth rate values for the Si- (0 0 0 1) , a- (1 1 2 bar 0) , m- (1 1 bar 0 0) , and C-face (0 0 0 1 bar) . The simulations are based on the proposed interpolation method together with available thermal oxidation models. We additionally analyze the temperature dependence of Silicon Carbide oxidation rates for different crystal faces using Arrhenius plots. The proposed interpolation method is an essential step towards highly accurate three-dimensional oxide growth simulations which help to better understand the anisotropic nature and oxidation mechanism of Silicon Carbide.

  10. Rapid, bilateral changes in growth rate and curvature during gravitropism of cucumber hypocotyls: implications for mechanism of growth control

    NASA Technical Reports Server (NTRS)

    Cosgrove, D. J.

    1990-01-01

    The growth response of etiolated cucumber (Cucumis sativus L.) hypocotyls to gravitropic stimulation was examined by means of time-lapse photography and high-resolution analysis of surface expansion and curvature. In comparison with video analysis, the technique described here has five- to 20-fold better resolution; moreover, the mathematical fitting method (cubic splines) allows direct estimation of local and integrated curvature. After switching seedlings from a vertical to horizontal position, both upper and lower surfaces of the stem reacted after a lag of about 11 min with a two- to three-fold increase in surface expansion rate on the lower side and a cessation of expansion, or slight compression, on the upper surface. This growth asymmetry was initiated simultaneously along the length of the hypocotyl, on both upper and lower surfaces, and did not migrate basipetally from the apex. Later stages in the gravitropic response involved a complex reversal of the growth asymmetry, with the net result being a basipetal migration of the curved region. This secondary growth reversal may reflect oscillatory and/or self-regulatory behaviour of growing cells. With some qualifications, the kinetics and pattern of growth response are consistent with a mechanism involving hormone redistribution, although they do not prove such a mechanism. The growth kinetics require a growth mechanism which can be stimulated by two- to three-fold or completely inhibited within a few minutes.

  11. Effects of climate change on plant population growth rate and community composition change.

    PubMed

    Chang, Xiao-Yu; Chen, Bao-Ming; Liu, Gang; Zhou, Ting; Jia, Xiao-Rong; Peng, Shao-Lin

    2015-01-01

    The impacts of climate change on forest community composition are still not well known. Although directional trends in climate change and community composition change were reported in recent years, further quantitative analyses are urgently needed. Previous studies focused on measuring population growth rates in a single time period, neglecting the development of the populations. Here we aimed to compose a method for calculating the community composition change, and to testify the impacts of climate change on community composition change within a relatively short period (several decades) based on long-term monitoring data from two plots-Dinghushan Biosphere Reserve, China (DBR) and Barro Colorado Island, Panama (BCI)-that are located in tropical and subtropical regions. We proposed a relatively more concise index, Slnλ, which refers to an overall population growth rate based on the dominant species in a community. The results indicated that the population growth rate of a majority of populations has decreased over the past few decades. This decrease was mainly caused by population development. The increasing temperature had a positive effect on population growth rates and community change rates. Our results promote understanding and explaining variations in population growth rates and community composition rates, and are helpful to predict population dynamics and population responses to climate change.

  12. Growth rates, grazing, sinking, and iron limitation of equatorial Pacific phytoplankton

    SciTech Connect

    Chavez, F.P.; Buck, K.R. ); Coale, K.H.; Martin, J.H.; DiTullio, G.R.; Welschmeyer, N.A. ); Barber, R.T. ); Jacobson, A.C.

    1991-12-01

    Concentrations of phytoplankton and NO{sub 3} are consistently low and high in surface waters of the oceanic eastern and central equatorial Pacific, and phytoplankton populations are dominated by small solitary phytoplankton. Growth rates of natural phytoplankton populations, needed to assess the relative importance of many of the processes considered in the equatorial Pacific, were estimated by several methods. The growth rates of natural phytoplankton populations were found to be {approximately}0.7 d{sup {minus}1} or 1 biomass doubling d{sup {minus}1} and were similar for all methods. To keep this system in its observed balance requires that loss rates approximate observed growth rates. Grazing rates, measured with a dilution grazing experiment, were high, accounting for a large fraction of the daily production. Additions of various forms of Fe to 5-7-d incubations utilizing ultraclean techniques resulted in significant shifts in autotrophic and heterotrophic assemblages between initial samples, controls, and Fe enrichments, which were presumably due to Fe, grazing by both protistan and metazoan components, and incubation artifacts. Estimated growth rates of small pennate diatoms showed increases in Fe enrichments with respect to controls. The growth rates of the pennate diatoms were similar to those estimated for the larger size fraction of the natural populations.

  13. Context-specific influence of water temperature on brook trout growth rates in the field

    USGS Publications Warehouse

    Xu, C.; Letcher, B.H.; Nislow, K.H.

    2010-01-01

    1. Modelling the effects of climate change on freshwater fishes requires robust field-based estimates accounting for interactions among multiple factors.2. We used data from an 8-year individual-based study of a wild brook trout (Salvelinus fontinalis) population to test the influence of water temperature on season-specific growth in the context of variation in other environmental (i.e. season, stream flow) or biotic factors (local brook trout biomass density and fish age and size) in West Brook, a third-order stream in western Massachusetts, U.S.A.3. Changes in ambient temperature influenced individual growth rates. In general, higher temperatures were associated with higher growth rates in winter and spring and lower growth rates in summer and autumn. However, the effect of temperature on growth was strongly context-dependent, differing in both magnitude and direction as a function of season, stream flow and fish biomass density.4. We found that stream flow and temperature had strong and complex interactive effects on trout growth. At the coldest temperatures (in winter), high stream flows were associated with reduced trout growth rates. During spring and autumn and in typical summers (when water temperatures were close to growth optima), higher flows were associated with increased growth rates. In addition, the effect of flow at a given temperature (the flow-temperature interaction) differed among seasons.5. Trout density negatively affected growth rate and had strong interactions with temperature in two of four seasons (i.e. spring and summer) with greater negative effects at high temperatures.6. Our study provided robust, integrative field-based estimates of the effects of temperature on growth rates for a species which serves as a model organism for cold-water adapted ectotherms facing the consequences of environmental change. Results of the study strongly suggest that failure to derive season-specific estimates, or to explicitly consider interactions with

  14. A model for predicting crack growth rate for mixed mode fracture under biaxial loads

    NASA Astrophysics Data System (ADS)

    Shliannikov, V. N.; Braude, N. Z.

    1992-09-01

    A model for predicting the crack growth rate of an initially angled crack under biaxial loads of arbitrary direction is suggested. The model is based on a combination of both the Manson-Coffin equation for low cycle fatigue and the Paris equation for fatigue crack propagation. The model takes into consideration the change in material plastic properties in the region around the crack tip due to the stress state, together with the initial orientation of the crack and also its trajectory of growth. Predictions of crack growth rate for any mixed mode fracture is based on the results of uniaxial tension experiments.

  15. 7075-T6 and 2024-T351 Aluminum Alloy Fatigue Crack Growth Rate Data

    NASA Technical Reports Server (NTRS)

    Forth, Scott C.; Wright, Christopher W.; Johnston, William M., Jr.

    2005-01-01

    Experimental test procedures for the development of fatigue crack growth rate data has been standardized by the American Society for Testing and Materials. Over the past 30 years several gradual changes have been made to the standard without rigorous assessment of the affect these changes have on the precision or variability of the data generated. Therefore, the ASTM committee on fatigue crack growth has initiated an international round robin test program to assess the precision and variability of test results generated using the standard E647-00. Crack growth rate data presented in this report, in support of the ASTM roundrobin, shows excellent precision and repeatability.

  16. Quantitative Physiology of Saccharomyces cerevisiae at Near-Zero Specific Growth Rates

    PubMed Central

    Boender, Léonie G. M.; de Hulster, Erik A. F.; van Maris, Antonius J. A.; Daran-Lapujade, Pascale A. S.; Pronk, Jack T.

    2009-01-01

    Growth at near-zero specific growth rates is a largely unexplored area of yeast physiology. To investigate the physiology of Saccharomyces cerevisiae under these conditions, the effluent removal pipe of anaerobic, glucose-limited chemostat culture (dilution rate, 0.025 h−1) was fitted with a 0.22-μm-pore-size polypropylene filter unit. This setup enabled prolonged cultivation with complete cell retention. After 22 days of cultivation, specific growth rates had decreased below 0.001 h−1 (doubling time of >700 h). Over this period, viability of the retentostat cultures decreased to ca. 80%. The viable biomass concentration in the retentostats could be accurately predicted by a maintenance coefficient of 0.50 mmol of glucose g−1 of biomass h−1 calculated from anaerobic, glucose-limited chemostat cultures grown at dilution rates of 0.025 to 0.20 h−1. This indicated that, in contrast to the situation in several prokaryotes, maintenance energy requirements in S. cerevisiae do not substantially change at near-zero specific growth rates. After 22 days of retentostat cultivation, glucose metabolism was predominantly geared toward alcoholic fermentation to meet maintenance energy requirements. The strict correlation between glycerol production and biomass formation observed at higher specific growth rates was not maintained at the near-zero growth rates reached in the retentostat cultures. In addition to glycerol, the organic acids acetate, d-lactate, and succinate were produced at low rates during prolonged retentostat cultivation. This study identifies robustness and by-product formation as key issues in attempts to uncouple growth and product formation in S. cerevisiae. PMID:19592533

  17. Quantitative description for the growth rate of self-induced GaN nanowires

    NASA Astrophysics Data System (ADS)

    Consonni, V.; Dubrovskii, V. G.; Trampert, A.; Geelhaar, L.; Riechert, H.

    2012-04-01

    We determine with high precision the growth rate of self-induced GaN nanowires grown by molecular beam epitaxy under various conditions from scanning electron micrographs by taking into account in situ measurements of the initial incubation time, which is needed before the nanowire growth starts. In order to quantitatively describe the dependence of the growth rate on growth time, gallium flux, and growth temperature, we develop a detailed theoretical model of diffusion-induced nanowire growth specifically for the self-induced approach, i.e., without any droplet at the nanowire top. The theoretical fits are in excellent agreement with the experimental data and allow us to deduce important kinetic parameters of the self-induced GaN nanowire growth. The gallium adatom effective diffusion length on the nanowire sidewalls composed of m-plane facets is only 45 nm, which is consistent with our experimental finding that the growth rate initially decreases drastically as the contribution from the adatoms on the planar substrate surface rapidly vanishes. In contrast, the gallium adatom effective diffusion length on the amorphous silicon nitride substrate surface reaches about 100 nm. Furthermore, the nucleation energy on the nanowire sidewalls is found to be 5.44 eV and is larger than on their top facet accounting for the nanowire elongation.

  18. Trophic interactions and population growth rates: describing patterns and identifying mechanisms.

    PubMed Central

    Hudson, Peter J; Dobson, Andy P; Cattadori, Isabella M; Newborn, David; Haydon, Dan T; Shaw, Darren J; Benton, Tim G; Grenfell, Bryan T

    2002-01-01

    While the concept of population growth rate has been of central importance in the development of the theory of population dynamics, few empirical studies consider the intrinsic growth rate in detail, let alone how it may vary within and between populations of the same species. In an attempt to link theory with data we take two approaches. First, we address the question 'what growth rate patterns does theory predict we should see in time-series?' The models make a number of predictions, which in general are supported by a comparative study between time-series of harvesting data from 352 red grouse populations. Variations in growth rate between grouse populations were associated with factors that reflected the quality and availability of the main food plant of the grouse. However, while these results support predictions from theory, they provide no clear insight into the mechanisms influencing reductions in population growth rate and regulation. In the second part of the paper, we consider the results of experiments, first at the individual level and then at the population level, to identify the important mechanisms influencing changes in individual productivity and population growth rate. The parasitic nematode Trichostrongylus tenuis is found to have an important influence on productivity, and when incorporated into models with their patterns of distribution between individuals has a destabilizing effect and generates negative growth rates. The hypothesis that negative growth rates at the population level were caused by parasites was demonstrated by a replicated population level experiment. With a sound and tested model framework we then explore the interaction with other natural enemies and show that in general they tend to stabilize variations in growth rate. Interestingly, the models show selective predators that remove heavily infected individuals can release the grouse from parasite-induced regulation and allow equilibrium populations to rise. By contrast, a

  19. Stress Ratio Effects on Crack Opening Loads and Crack Growth Rates in Aluminum Alloy 2024

    NASA Technical Reports Server (NTRS)

    Riddell, William T.; Piascik, Robert S.

    1998-01-01

    The effects of stress ratio (R) and crack opening behavior on fatigue crack growth rates (da/dN) for aluminum alloy (AA) 2024-T3 were investigated using constant-delta K testing, closure measurements, and fractography. Fatigue crack growth rates were obtained for a range of delta K and stress ratios. Results show that constant delta K fatigue crack growth for R ranging from near 0 to 1 is divided into three regions. In Region 1, at low R, da/dN increases with increasing R. In Region 2, at intermediate R, fatigue crack growth rates are relatively independent of R. In Region 3, at high R, further increases in da/dN are observed with increasing R.

  20. Effects of nutrients on specific growth rate of bacterioplankton in oligotrophic lake water cultures

    SciTech Connect

    Coveney, M.F.; Wetzel, R.G. )

    1992-01-01

    The effects of organic and inorganic nutrient additions on the specific growth rates of bacterioplankton in oligotrophic lake water cultures were investigated. Lake water was first passed through 0.8-{mu}m-pore-size filters (prescreening) to remove bacterivores and to minimize confounding effects of algae. Specific growth rates were calculated from changes in both bacterial cell numbers and biovolumes over 36 h. Gross specific growth rates in unmanipulated control samples were estimated through separate measurements of grazing losses by use of penicillin. The addition of mixed organic substrates alone to prescreened water did not significantly increase bacterioplankton specific growth rates. The addition of inorganic phosphorus alone significantly increased one or both specific growth rates in three of four experiments, and one experiment showed a secondary stimulation by organic substrates. The stimulatory effects of phosphorus addition were greatest concurrently with the highest alkaline phosphatase activity in the lake water. Because bacteria have been shown to dominate inorganic phosphorus uptake in other P-deficient systems, the demonstration that phosphorus, rather than organic carbon, can limit bacterioplankton growth suggests direct competition between phytoplankton and bacterioplankton for inorganic phosphorus.

  1. Effects of Nutrients on Specific Growth Rate of Bacterioplankton in Oligotrophic Lake Water Cultures †

    PubMed Central

    Coveney, Michael F.; Wetzel, Robert G.

    1992-01-01

    The effects of organic and inorganic nutrient additions on the specific growth rates of bacterioplankton in oligotrophic lake water cultures were investigated. Lake water was first passed through 0.8-μm-pore-size filters (prescreening) to remove bacterivores and to minimize confounding effects of algae. Specific growth rates were calculated from changes in both bacterial cell numbers and biovolumes over 36 h. Gross specific growth rates in unmanipulated control samples were estimated through separate measurements of grazing losses by use of penicillin. The addition of mixed organic substrates alone to prescreened water did not significantly increase bacterioplankton specific growth rates. The addition of inorganic phosphorus alone significantly increased one or both specific growth rates in three of four experiments, and one experiment showed a secondary stimulation by organic substrates. The stimulatory effects of phosphorus addition were greatest concurrently with the highest alkaline phosphatase activity in the lake water. Because bacteria have been shown to dominate inorganic phosphorus uptake in other P-deficient systems, the demonstration that phosphorus, rather than organic carbon, can limit bacterioplankton growth suggests direct competition between phytoplankton and bacterioplankton for inorganic phosphorus. PMID:16348620

  2. Environmental implications of growth rate changes in Montastrea Annularis: Biscayne National Park, Florida

    USGS Publications Warehouse

    Hudson, J. Harold; Hanson, Kirby J.; Halley, Robert B.; Kindinger, Jack G.

    1994-01-01

    Long-term annual growth rates were determined for 25 Montastrea annularis colonies at eight reef sites in Biscayne National Park, Florida. X-radiographs of slabbed coral cores revealed chronologies that averaged 113.5 years in length with a range of 40 to 242 years. A total of 2,837 annual growth increments were identified and measured. Dating of density bands was verified by visually crossdating fluorescent bands within the coral skeleton. Average accretion rates of individual colonies varied from 5.0 mm·yr−1 in the northernmost sector of the Park to 11.3 mm·yr−1 in the southernmost sector. Long-term growth rates of most corals in this study were greatest prior to about 1950 except for a major, 3–5 year, decline in the growth record of older corals centered around 1878. Waxing and waning coral growth rates are discussed in relation to natural and anthropogenic perturbations that impact this high latitude reef ecosystem. Attention is drawn to nutrients from sewage outfalls as a possible contributing factor to observed growth rate decline since 1950.

  3. Measurement of Temperature Fluctuations and Microscopic Growth Rates in a Silicon Floating Zone and Microgravity

    NASA Technical Reports Server (NTRS)

    Schweizer, Markus; Croell, Arne

    1999-01-01

    A silicon crystal growth experiment has been accomplished using the floating-zone technique under microgravity on a sounding rocket (TEXUS 36). Measurements of temperature fluctuations in the silicon melt zone due to time dependent thermocapillary convection (Marangoni convection) and an observation of the microscopic growth rate were simultaneously performed during the experiment. Temperature fluctuations of about 0.5 - 0.7 C with a frequency range < 0.5Hz were detectable. The microscopic growth rate fluctuates considerably around the average growth rate of 1 mm/min: Growth rates up to 3 to 4mm/min, close to zero mm/min, as well as negative values (backmelting) were observed. Dopant striations are clearly visible in the Sb-doped crystal. They were characterized by Spreading Resistance measurements and Differential Interference Contrast microscopy. The frequencies of temperature fluctuations, microscopic growth rates, and the dopant inhomogeneities correspond quite well, with main frequencies between 0.1 and 0.3 Hz. 3D numerical simulations were performed to predict the optimum position of the temperature sensor, and the characteristic temperature amplitudes and frequencies. At a position 3.4mm above the interface and 1.4mm inside the melt, equivalent to the sensor tip position in the experiment, temperature fluctuations up to 1.8 C and frequencies ? 0.25Hz were found in the simulations.

  4. Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers.

    PubMed

    Adesemoye, A O; Torbert, H A; Kloepper, J W

    2009-11-01

    The search for microorganisms that improve soil fertility and enhance plant nutrition has continued to attract attention due to the increasing cost of fertilizers and some of their negative environmental impacts. The objectives of this greenhouse study with tomato were to determine (1) if reduced rates of inorganic fertilizer coupled with microbial inoculants will produce plant growth, yield, and nutrient uptake levels equivalent to those with full rates of the fertilizer and (2) the minimum level to which fertilizer could be reduced when inoculants were used. The microbial inoculants used in the study were a mixture of plant growth-promoting rhizobacteria (PGPR) strains Bacillus amyloliquefaciens IN937a and Bacillus pumilus T4, a formulated PGPR product, and the arbuscular mycorrhiza fungus (AMF), Glomus intraradices. Results showed that supplementing 75% of the recommended fertilizer rate with inoculants produced plant growth, yield, and nutrient (nitrogen and phosphorus) uptake that were statistically equivalent to the full fertilizer rate without inoculants. When inoculants were used with rates of fertilizer below 75% of the recommended rate, the beneficial effects were usually not consistent; however, inoculation with the mixture of PGPR and AMF at 70% fertility consistently produced the same yield as the full fertility rate without inoculants. Without inoculants, use of fertilizer rates lower than the recommended resulted in significantly less plant growth, yield, and nutrient uptake or inconsistent impacts. The results suggest that PGPR-based inoculants can be used and should be further evaluated as components of integrated nutrient management strategies.

  5. Estimates of bacterial growth from changes in uptake rates and biomass.

    PubMed Central

    Kirchman, D; Ducklow, H; Mitchell, R

    1982-01-01

    Rates of nucleic acid synthesis have been used to examine microbiol growth in natural waters. These rates are calculated from the incorporation of [3H]adenine and [3H]thymidine for RNA and DNA syntheses, respectively. Several additional biochemical parameters must be measured or taken from the literature to estimate growth rates from the incorporation of the tritiated compounds. We propose a simple method of estimating a conversion factor which obviates measuring these biochemical parameters. The change in bacterial abundance and incorporation rates of [3H]thymidine was measured in samples from three environments. The incorporation of exogenous [3H]thymidine was closely coupled with growth and cell division as estimated from the increase in bacterial biomass. Analysis of the changes in incorporation rates and initial bacterial abundance yielded a conversion factor for calculating bacterial production rates from incorporation rates. Furthermore, the growth rate of only those bacteria incorporating the compound can be estimated. The data analysis and experimental design can be used to estimate the proportion of nondividing cells and to examine changes in cell volumes. PMID:6760812

  6. Effects of light intensity and temperature on Cryptomonas ovata (Cryptophyceae) growth and nutrient uptake rates

    USGS Publications Warehouse

    Cloern, James E.

    1977-01-01

    Specific growth rate of Cryptomonas ovata var. palustris Pringsheim was measured in batch culture at 14 light-temperature combinations. Both the maximum growth rate (μm) and optimum light intensity (Iopt) fit an empirical function that increases exponentially with temperature up to an optimum (Topt), then declines rapidly as temperature exceeds Topt. Incorporation of these functions into Steele's growth equation gives a good estimate of specific growth rate over a wide range of temperature and light intensity. Rates of phosphate, ammonium and nitrate uptake were measured separately at 16 combinations of irradiance and temperature and following a spike addition of all starved cells initially took up nutrient at a rapid rate. This transitory surge was followed by a period of steady, substrate-saturated uptake that persisted until external nutrient concentration fell. Substrate-saturated NO3−-uptake proceeded at very slow rates in the dark and was stimulated by both increased temperature and irradiance; NH4+-uptake apparently proceeded at a basal rate at 8 and l4 C and was also stimulated by increased temperature and irradiance. Rates of NH4−-uptake were much higher than NO3−-uptake at all light-temperature combinations. Below 20 C, PO4−3-uptake was more rapid in dark than in light, but was light enhanced at 26 C.

  7. Hydrogen Isotope Effect on the Fatigue Crack Growth Rate in Pipeline Steel

    NASA Astrophysics Data System (ADS)

    Connolly, Matthew; Slifka, Andrew; Drexler, Elizabeth; Hydrogen Pipeline Safety Team

    Hydrogen (H2) is desirable for energy storage as it is cleaner burning and can store a larger amount of energy than an equal mass of gasoline. One problem in the development of a hydrogen economy is to find or develop materials that ensure the safe, reliable, and cost-effective flow of energy from the source to the user. It is expected steels will be needed to serve this function. However, the existing network of natural gas pipeline, for example, is constructed of ferrous materials which are susceptible to embrittlement and subsequent increased fatigue crack growth rates after exposure to hydrogen. It is expected that diffusion rates play an important role on fatigue crack growth rates. We report the measurement of the fatigue crack growth rate in a high strength pipeline steel in a gaseous deuterium (D2) environment, in an effort to determine the role of diffusion rate on FCGR, because D2 is chemically identical to H2, but with twice the mass. We found that the D2 fatigue crack growth rate was not enhanced compared to air as is seen in an H2 environment; in fact our D2 rate measurement was slightly slower than in air, a result which is not expected to be due to diffusion rates alone. NIST Materials Measurement Laboratory, Applied Chemicals and Materials Division.

  8. Evolution of juvenile growth rates in female guppies (Poecilia reticulata): predator regime or resource level?

    PubMed

    Arendt, Jeffrey D; Reznick, David N

    2005-02-07

    Recent theoretical and empirical work argues that growth rate can evolve and be optimized, rather than always being maximized. Chronically low resource availability is predicted to favour the evolution of slow growth, whereas attaining a size-refuge from mortality risk is predicted to favour the evolution of rapid growth. Guppies (Poecilia reticulata) evolve differences in behaviour, morphology and life-history traits in response to predation, thus demonstrating that predators are potent agents of selection. Predators in low-predation environments prey preferentially on small guppies, but those in high-predation environments appear to be non-selective. Because guppies can outgrow their main predator in low- but not high-predation localities, we predict that predation will select for higher growth rates in the low-predation environments.However, low-predation localities also tend to have lower productivity than high-predation localities, yield-ing the prediction that guppies from these sites should have slower growth rates. Here we compare the growth rates of the second laboratory-born generation of guppies from paired high- and low-predation localities from four different drainages. In two out of four comparisons, guppies from high-predation sites grew significantly faster than their low-predation counterparts. We also compare laboratory born descendants from a field introduction experiment and show that guppies introduced to a low-predation environment evolved slower growth rates after 13 years, although this was evident only at the high food level. The weight of the evidence suggests that resource availability plays a more important role than predation in shaping the evolution of growth rates.

  9. Fishing directly selects on growth rate via behaviour: implications of growth-selection that is independent of size

    PubMed Central

    Biro, Peter A.; Sampson, Portia

    2015-01-01

    Size-selective harvest of fish and crustacean populations has reduced stock numbers, and led to reduced growth rates and earlier maturation. In contrast to the focus on size-selective effects of harvest, here, we test the hypothesis that fishing may select on life-history traits (here, growth rate) via behaviour, even in the absence of size selection. If true, then traditional size-limits used to protect segments of a population cannot fully protect fast growers, because at any given size, fast-growers will be more vulnerable owing to bolder behaviour. We repeatedly measured individual behaviour and growth of 86 crayfish and found that fast-growing individuals were consistently bold and voracious over time, and were subsequently more likely to be harvested in single- and group-trapping trials. In addition, there was some indication that sex had independent effects on behaviour and trappability, whereby females tended to be less active, shyer, slower-growing and less likely to be harvested, but not all these effects were significant. This study represents, to our knowledge, the first across-individual support for this hypothesis, and suggests that behaviour is an important mechanism for fishing selectivity that could potentially lead to evolution of reduced intrinsic growth rates. PMID:25608882

  10. Fatigue Crack Growth Rate and Stress-Intensity Factor Corrections for Out-of-Plane Crack Growth

    NASA Technical Reports Server (NTRS)

    Forth, Scott C.; Herman, Dave J.; James, Mark A.

    2003-01-01

    Fatigue crack growth rate testing is performed by automated data collection systems that assume straight crack growth in the plane of symmetry and use standard polynomial solutions to compute crack length and stress-intensity factors from compliance or potential drop measurements. Visual measurements used to correct the collected data typically include only the horizontal crack length, which for cracks that propagate out-of-plane, under-estimates the crack growth rates and over-estimates the stress-intensity factors. The authors have devised an approach for correcting both the crack growth rates and stress-intensity factors based on two-dimensional mixed mode-I/II finite element analysis (FEA). The approach is used to correct out-of-plane data for 7050-T7451 and 2025-T6 aluminum alloys. Results indicate the correction process works well for high DeltaK levels but fails to capture the mixed-mode effects at DeltaK levels approaching threshold (da/dN approximately 10(exp -10) meter/cycle).

  11. Maximum growth rate of Mycobacterium avium in continuous culture or chronically infected BALB/c mice.

    PubMed

    McCarthy, C M; Taylor, M A; Dennis, M W

    1987-01-01

    Mycobacterium avium is a human pathogen which may cause either chronic or disseminated disease and the organism exhibits a slow rate of growth. This study provides information on the growth rate of the organism in chronically infected mice and its maximal growth rate in vitro. M. avium was grown in continuous culture, limited for nitrogen with 0.5 mM ammonium chloride and dilution rates that ranged from 0.054 to 0.153 h-1. The steady-state concentration of ammonia nitrogen and M. avium cells for each dilution rate were determined. The bacterial saturation constant for growth-limiting ammonia was 0.29 mM (4 micrograms nitrogen/ml) and, from this, the maximal growth rate for M. avium was estimated to be 0.206 h-1 or a doubling time of 3.4 h. BALB/c mice were infected intravenously with 3 x 10(6) colony-forming units and a chronic infection resulted, typical of virulent M. avium strains. During a period of 3 months, the number of mycobacteria remained constant in the lungs, but increased 30-fold and 8,900-fold, respectively, in the spleen and mesenteric lymph nodes. The latter increase appeared to be due to proliferation in situ. The generation time of M. avium in the mesenteric lymph nodes was estimated to be 7 days.

  12. Effect of cell size and shear stress on bacterium growth rate

    NASA Astrophysics Data System (ADS)

    Fadlallah, Hadi; Jarrahi, Mojtaba; Herbert, Éric; Peerhossaini, Hassan; PEF Team

    2015-11-01

    Effect of shear stress on the growth rate of Synechocystis and Chlamydomonas cells is studied. An experimental setup was prepared to monitor the growth rate of the microorganisms versus the shear rate inside a clean room, under atmospheric pressure and 20 °C temperature. Digital magnetic agitators are placed inside a closed chamber provided with airflow, under a continuous uniform light intensity over 4 weeks. In order to study the effect of shear stress on the growth rate, different frequencies of agitation are tested, 2 vessels filled with 150 ml of each specie were placed on different agitating system at the desired frequency. The growth rate is monitored daily by measuring the optical density and then correlate it to the cellular concentration. The PH was adjusted to 7 in order to maintain the photosynthetic activity. Furthermore, to measure the shear stress distribution, the flow velocity field was measured using PIV. Zones of high and low shear stress were identified. Results show that the growth rate is independent of the shear stress magnitude, mostly for Synechocystis, and with lower independency for Chlamydomonas depending on the cell size for each species.

  13. Systems Level Regulation of Rhythmic Growth Rate and Biomass Accumulation in Grasses

    SciTech Connect

    Kay, Steve A.

    2013-05-02

    Several breakthroughs have been recently made in our understanding of plant growth and biomass accumulation. It was found that plant growth is rhythmically controlled throughout the day by the circadian clock through a complex interplay of light and phytohormone signaling pathways. While plants such as the C4 energy crop sorghum (Sorghum bicolor (L.) Moench) and possibly the C3 grass (Brachypodium distachyon) also exhibit daily rhythms in growth rate, the molecular details of its regulation remain to be explored. A better understanding of diurnally regulated growth behavior in grasses may lead to species-specific mechanisms highly relevant to future strategies to optimize energy crop biomass yield. Here we propose to devise a systems approach to identify, in parallel, regulatory hubs associated with rhythmic growth in C3 and C4 plants. We propose to use rhythmicity in daily growth patterns to drive the discovery of regulatory network modules controlling biomass accumulation.

  14. Effects of growth rate on cell extract performance in cell-free protein synthesis.

    PubMed

    Zawada, James; Swartz, James

    2006-07-05

    Cell-free protein synthesis is a useful research tool and now stands poised to compete with in vivo expression for commercial production of proteins. However, both the extract preparation and protein synthesis procedures must be scaled up. A key challenge is producing the required amount of biomass that also results in highly active cell-free extracts. In this work, we show that the growth rate of the culture dramatically affects extract performance. Extracts prepared from cultures with a specific growth rate of 0.7/h or higher produced approximately 0.9 mg/mL of chloramphenicol acetyl transferase (CAT) in a batch reaction. In contrast, when the source culture growth rate was 0.3/h, the resulting extract produced only 0.5 mg/mL CAT. Examination of the ribosome content in the extracts revealed that the growth rate of the source cells strongly influenced the final ribosome concentration. Polysome analysis of cell-free protein synthesis reactions indicated that about 22% of the total 70S ribosomes are in polysomes for all extracts regardless of growth rate. Furthermore, the overall specific production from the 70S ribosomes is about 22 CAT proteins per ribosome over the course of the reaction in all cases. It appears that rapid culture growth rates are essential for producing a productive extract. However, growth rate does not seem to influence specific ribosome activity. Rather, the increase in extract productivity is a result of a higher ribosome concentration. These results are important for cell-free technology and also suggest an assay for intrinsic in vivo protein synthesis activity.

  15. Taylor's power law of fluctuation scaling and the growth-rate theorem.

    PubMed

    Cohen, Joel E

    2013-09-01

    Taylor's law (TL), a widely verified empirical relationship in ecology, states that the variance of population density is approximately a power-law function of mean density. The growth-rate theorem (GR) states that, in a subdivided population, the rate of change of the overall growth rate is proportional to the variance of the subpopulations' growth rates. We show that continuous-time exponential change implies GR at every time and, asymptotically for large time, TL with power-law exponent 2. We also show why diverse population-dynamic models predict TL in the limit of large time by identifying simple features these models share: If the mean population density and the variance of population density are (exactly or asymptotically) non-constant exponential functions of a parameter (e.g., time), then the variance of density is (exactly or asymptotically) a power-law function of mean density.

  16. Pretreatment Growth Rate Predicts Radiation Response in Vestibular Schwannomas

    SciTech Connect

    Niu, Nina N.; Niemierko, Andrzej; Larvie, Mykol; Curtin, Hugh; Loeffler, Jay S.; McKenna, Michael J.; Shih, Helen A.

    2014-05-01

    Purpose: Vestibular schwannomas (VS) are often followed without initial therapeutic intervention because many tumors do not grow and radiation therapy is associated with potential adverse effects. In an effort to determine whether maximizing initial surveillance predicts for later treatment response, the predictive value of preirradiation growth rate of VS on response to radiation therapy was assessed. Methods and Materials: Sixty-four patients with 65 VS were treated with single-fraction stereotactic radiation surgery or fractionated stereotactic radiation therapy. Pre- and postirradiation linear expansion rates were estimated using volumetric measurements on sequential magnetic resonance images (MRIs). In addition, postirradiation tumor volume change was classified as demonstrating shrinkage (ratio of volume on last follow-up MRI to MRI immediately preceding irradiation <80%), stability (ratio 80%-120%), or expansion (ratio >120%). The median pre- and postirradiation follow-up was 20.0 and 27.5 months, respectively. Seven tumors from neurofibromatosis type 2 (NF2) patients were excluded from statistical analyses. Results: In the 58 non-NF2 patients, there was a trend of correlation between pre- and postirradiation volume change rates (slope on linear regression, 0.29; P=.06). Tumors demonstrating postirradiation expansion had a median preirradiation growth rate of 89%/year, and those without postirradiation expansion had a median preirradiation growth rate of 41%/year (P=.02). As the preirradiation growth rate increased, the probability of postirradiation expansion also increased. Overall, 24.1% of tumors were stable, 53.4% experienced shrinkage, and 22.5% experienced expansion. Predictors of no postirradiation tumor expansion included no prior surgery (P=.01) and slower tumor growth rate (P=.02). The control of tumors in NF2 patients was only 43%. Conclusions: Radiation therapy is an effective treatment for VS, but tumors that grow quickly preirradiation may be

  17. Concurrent Growth Rate and Transcript Analyses Reveal Essential Gene Stringency in Escherichia coli

    PubMed Central

    Goh, Shan; Boberek, Jaroslaw M.; Nakashima, Nobutaka; Stach, Jem; Good, Liam

    2009-01-01

    Background Genes essential for bacterial growth are of particular scientific interest. Many putative essential genes have been identified or predicted in several species, however, little is known about gene expression requirement stringency, which may be an important aspect of bacterial physiology and likely a determining factor in drug target development. Methodology/Principal Findings Working from the premise that essential genes differ in absolute requirement for growth, we describe silencing of putative essential genes in E. coli to obtain a titration of declining growth rates and transcript levels by using antisense peptide nucleic acids (PNA) and expressed antisense RNA. The relationship between mRNA decline and growth rate decline reflects the degree of essentiality, or stringency, of an essential gene, which is here defined by the minimum transcript level for a 50% reduction in growth rate (MTL50). When applied to four growth essential genes, both RNA silencing methods resulted in MTL50 values that reveal acpP as the most stringently required of the four genes examined, with ftsZ the next most stringently required. The established antibacterial targets murA and fabI were less stringently required. Conclusions RNA silencing can reveal stringent requirements for gene expression with respect to growth. This method may be used to validate existing essential genes and to quantify drug target requirement. PMID:19557168

  18. The use of Ampelisca abdita growth rate as an indicator of sediment quality

    SciTech Connect

    Weston, D.P.; Thompson, B.

    1995-12-31

    Acute lethal bioassays with amphipod crustaceans are routinely used to assess toxicity of bulk sediments. A study within the San Francisco Bay Regional Monitoring Program (RMP) is in progress to develop a chronic bioassay with the amphipod Ampelisca abdita, measuring both survivorship and growth rates. This approach is attractive because depression of growth rate is likely to be a more sensitive indicator of toxic effects than acute lethality, and natural populations of A. abdita exist throughout the Bay. Spiked sediment bioassays, using cadmium and crude oil, were used to demonstrate the relative sensitivity of the standard 10-day lethal test vs. the 30-day growth test. Sediments were also collected from 9 sites throughout the Bay, ranging from areas adjacent to municipal wastewater discharges to areas distant from known point source inputs. These samples were then split, and used for side-by-side comparison of acute (lethal) and chronic (growth) toxicity tests. Survivorship exceeded 90% in all tests, including those sediments collected nearest the wastewater outfalls. Growth rates were contrasted among the various treatments to examine the utility of this end point in discriminating the outfall sites. Data on the spatial distribution, abundance, and size-frequency distribution of native populations was examined within the context of using growth rate as an indicator of toxic effects in natural populations as well.

  19. Crystal Growth Rate Dispersion: A Predictor of Crystal Quality in Microgravity?

    NASA Technical Reports Server (NTRS)

    Kephart, Richard D.; Judge, Russell A.; Snell, Edward H.; vanderWoerd, Mark J.

    2003-01-01

    In theory macromolecular crystals grow through a process involving at least two transport phenomena of solute to the crystal surface: diffusion and convection. In absence of standard gravitational forces, the ratio of these two phenomena can change and explain why crystal growth in microgravity is different from that on Earth. Experimental evidence clearly shows, however, that crystal growth of various systems is not equally sensitive to reduction in gravitational forces, leading to quality improvement in microgravity for some crystals but not for others. We hypothesize that the differences in final crystal quality are related to crystal growth rate dispersion. If growth rate dispersion exists on Earth, decreases in microgravity, and coincides with crystal quality improvements then this dispersion is a predictor for crystal quality improvement. In order to test this hypothesis, we will measure growth rate dispersion both in microgravity and on Earth and will correlate the data with previously established data on crystal quality differences for the two environments. We present here the first crystal growth rate measurement data for three proteins (lysozyme, xylose isomerase and human recombinant insulin), collected on Earth, using hardware identical to the hardware to be used in microgravity and show how these data correlate with crystal quality improvements established in microgravity.

  20. Recent Advances in High-Growth Rate Single-Crystal CVD Diamond

    SciTech Connect

    Liang, Q.; Yan, C; Meng, Y; Lai, J; Krasnicki, S; Mao, H; Hemley, R

    2009-01-01

    There have been important advances in microwave plasma chemical vapor deposition (MPCVD) of large single-crystal CVD diamond at high growth rates and applications of this diamond. The types of gas chemistry and growth conditions, including microwave power, pressure, and substrate surface temperatures, have been varied to optimize diamond quality and growth rates. The diamond has been characterized by a variety of spectroscopic and diffraction techniques. We have grown single-crystal CVD diamond over ten carats and above 1 cm in thickness at growth rates of 50-100 {micro}m/h. Colorless and near colorless single crystals up to two carats have been produced by further optimizing the process. The nominal Vickers fracture toughness of this high-growth rate diamond can be tuned to exceed 20 MPa m{sup 1/2} in comparison to 5-10 MPa m{sup 1/2} for conventional natural and CVD diamond. Post-growth high-pressure/high-temperature (HPHT) and low-pressure/high-temperature (LPHT) annealing have been carried out to alter the optical, mechanical, and electronic properties. Most recently, single-crystal CVD diamond has been successfully annealed by LPHT methods without graphitization up to 2200 C and < 300 Torr for periods of time ranging from a fraction of minute to a few hours. Significant changes observed in UV, visible, infrared, and photoluminescence spectra are attributed to changes in various vacancy centers and extended defects.

  1. Lifespan, growth rate, and body size across latitude in marine Bivalvia, with implications for Phanerozoic evolution.

    PubMed

    Moss, David K; Ivany, Linda C; Judd, Emily J; Cummings, Patrick W; Bearden, Claire E; Kim, Woo-Jun; Artruc, Emily G; Driscoll, Jeremy R

    2016-08-17

    Mean body size in marine animals has increased more than 100-fold since the Cambrian, a discovery that brings to attention the key life-history parameters of lifespan and growth rate that ultimately determine size. Variation in these parameters is not well understood on the planet today, much less in deep time. Here, we present a new global database of maximum reported lifespan and shell growth coupled with body size data for 1 148 populations of marine bivalves and show that (i) lifespan increases, and growth rate decreases, with latitude, both across the group as a whole and within well-sampled species, (ii) growth rate, and hence metabolic rate, correlates inversely with lifespan, and (iii) opposing trends in lifespan and growth combined with high variance obviate any demonstrable pattern in body size with latitude. Our observations suggest that the proposed increase in metabolic activity and demonstrated increase in body size of organisms over the Phanerozoic should be accompanied by a concomitant shift towards faster growth and/or shorter lifespan in marine bivalves. This prediction, testable from the fossil record, may help to explain one of the more fundamental patterns in the evolutionary and ecological history of animal life on this planet.

  2. Human disturbance influences reproductive success and growth rate in California sea lions (Zalophus californianus).

    PubMed

    French, Susannah S; González-Suárez, Manuela; Young, Julie K; Durham, Susan; Gerber, Leah R

    2011-03-16

    The environment is currently undergoing changes at both global (e.g., climate change) and local (e.g., tourism, pollution, habitat modification) scales that have the capacity to affect the viability of animal and plant populations. Many of these changes, such as human disturbance, have an anthropogenic origin and therefore may be mitigated by management action. To do so requires an understanding of the impact of human activities and changing environmental conditions on population dynamics. We investigated the influence of human activity on important life history parameters (reproductive rate, and body condition, and growth rate of neonate pups) for California sea lions (Zalophus californianus) in the Gulf of California, Mexico. Increased human presence was associated with lower reproductive rates, which translated into reduced long-term population growth rates and suggested that human activities are a disturbance that could lead to population declines. We also observed higher body growth rates in pups with increased exposure to humans. Increased growth rates in pups may reflect a density dependent response to declining reproductive rates (e.g., decreased competition for resources). Our results highlight the potentially complex changes in life history parameters that may result from human disturbance, and their implication for population dynamics. We recommend careful monitoring of human activities in the Gulf of California and emphasize the importance of management strategies that explicitly consider the potential impact of human activities such as ecotourism on vertebrate populations.

  3. Human Disturbance Influences Reproductive Success and Growth Rate in California Sea Lions (Zalophus californianus)

    PubMed Central

    French, Susannah S.; González-Suárez, Manuela; Young, Julie K.; Durham, Susan; Gerber, Leah R.

    2011-01-01

    The environment is currently undergoing changes at both global (e.g., climate change) and local (e.g., tourism, pollution, habitat modification) scales that have the capacity to affect the viability of animal and plant populations. Many of these changes, such as human disturbance, have an anthropogenic origin and therefore may be mitigated by management action. To do so requires an understanding of the impact of human activities and changing environmental conditions on population dynamics. We investigated the influence of human activity on important life history parameters (reproductive rate, and body condition, and growth rate of neonate pups) for California sea lions (Zalophus californianus) in the Gulf of California, Mexico. Increased human presence was associated with lower reproductive rates, which translated into reduced long-term population growth rates and suggested that human activities are a disturbance that could lead to population declines. We also observed higher body growth rates in pups with increased exposure to humans. Increased growth rates in pups may reflect a density dependent response to declining reproductive rates (e.g., decreased competition for resources). Our results highlight the potentially complex changes in life history parameters that may result from human disturbance, and their implication for population dynamics. We recommend careful monitoring of human activities in the Gulf of California and emphasize the importance of management strategies that explicitly consider the potential impact of human activities such as ecotourism on vertebrate populations. PMID:21436887

  4. Estimation of Actual Crop ET of Paddy Using the Energy Balance Model SMARET and Validation with Field Water Balance Measurements and a Crop Growth Model (ORYZA)

    NASA Astrophysics Data System (ADS)

    Nallasamy, N. D.; Muraleedharan, B. V.; Kathirvel, K.; Narasimhan, B.

    2014-12-01

    Sustainable management of water resources requires reliable estimates of actual evapotranspiration (ET) at fine spatial and temporal resolution. This is significant in the case of rice based irrigation systems, one of the major consumers of surface water resources and where ET forms a major component of water consumption. However huge tradeoff in the spatial and temporal resolution of satellite images coupled with lack of adequate number of cloud free images within a growing season act as major constraints in deriving ET at fine spatial and temporal resolution using remote sensing based energy balance models. The scale at which ET is determined is decided by the spatial and temporal scale of Land Surface Temperature (LST) and Normalized Difference Vegetation Index (NDVI), which form inputs to energy balance models. In this context, the current study employed disaggregation algorithms (NL-DisTrad and DisNDVI) to generate time series of LST and NDVI images at fine resolution. The disaggregation algorithms aimed at generating LST and NDVI at finer scale by integrating temporal information from concurrent coarse resolution data and spatial information from a single fine resolution image. The temporal frequency of the disaggregated images is further improved by employing composite images of NDVI and LST in the spatio-temporal disaggregation method. The study further employed half-hourly incoming surface insolation and outgoing long wave radiation obtained from the Indian geostationary satellite (Kalpana-1) to convert the instantaneous ET into daily ET and subsequently to the seasonal ET, thereby improving the accuracy of ET estimates. The estimates of ET were validated with field based water balance measurements carried out in Gadana, a subbasin predominated by rice paddy fields, located in Tamil Nadu, India.

  5. The Effect of the Laboratory Specimen on Fatigue Crack Growth Rate

    NASA Technical Reports Server (NTRS)

    Forth, S. C.; Johnston, W. M.; Seshadri, B. R.

    2006-01-01

    Over the past thirty years, laboratory experiments have been devised to develop fatigue crack growth rate data that is representative of the material response. The crack growth rate data generated in the laboratory is then used to predict the safe operating envelope of a structure. The ability to interrelate laboratory data and structural response is called similitude. In essence, a nondimensional term, called the stress intensity factor, was developed that includes the applied stresses, crack size and geometric configuration. The stress intensity factor is then directly related to the rate at which cracks propagate in a material, resulting in the material property of fatigue crack growth response. Standardized specimen configurations and experimental procedures have been developed for laboratory testing to generate crack growth rate data that supports similitude of the stress intensity factor solution. In this paper, the authors present laboratory fatigue crack growth rate test data and finite element analyses that show similitude between standard specimen configurations tested using the constant stress ratio test method is unobtainable.

  6. Trace incorporation of heavy water reveals slow and heterogeneous pathogen growth rates in cystic fibrosis sputum

    PubMed Central

    Kopf, Sebastian H.; Sessions, Alex L.; Cowley, Elise S.; Reyes, Carmen; Van Sambeek, Lindsey; Hu, Yang; Orphan, Victoria J.; Kato, Roberta; Newman, Dianne K.

    2016-01-01

    Effective treatment for chronic infections is undermined by a significant gap in understanding of the physiological state of pathogens at the site of infection. Chronic pulmonary infections are responsible for the morbidity and mortality of millions of immunocompromised individuals worldwide, yet drugs that are successful in laboratory culture are far less effective against pathogen populations persisting in vivo. Laboratory models, upon which preclinical development of new drugs is based, can only replicate host conditions when we understand the metabolic state of the pathogens and the degree of heterogeneity within the population. In this study, we measured the anabolic activity of the pathogen Staphylococcus aureus directly in the sputum of pediatric patients with cystic fibrosis (CF), by combining the high sensitivity of isotope ratio mass spectrometry with a heavy water labeling approach to capture the full range of in situ growth rates. Our results reveal S. aureus generation times with a median of 2.1 d, with extensive growth rate heterogeneity at the single-cell level. These growth rates are far below the detection limit of previous estimates of CF pathogen growth rates, and the rates are slowest in acutely sick patients undergoing pulmonary exacerbations; nevertheless, they are accessible to experimental replication within laboratory models. Treatment regimens that include specific antibiotics (vancomycin, piperacillin/tazobactam, tobramycin) further appear to correlate with slow growth of S. aureus on average, but follow-up longitudinal studies must be performed to determine whether this effect holds for individual patients. PMID:26715741

  7. Trace incorporation of heavy water reveals slow and heterogeneous pathogen growth rates in cystic fibrosis sputum

    NASA Astrophysics Data System (ADS)

    Kopf, Sebastian H.; Sessions, Alex L.; Cowley, Elise S.; Reyes, Carmen; Van Sambeek, Lindsey; Hu, Yang; Orphan, Victoria J.; Kato, Roberta; Newman, Dianne K.

    2016-01-01

    Effective treatment for chronic infections is undermined by a significant gap in understanding of the physiological state of pathogens at the site of infection. Chronic pulmonary infections are responsible for the morbidity and mortality of millions of immunocompromised individuals worldwide, yet drugs that are successful in laboratory culture are far less effective against pathogen populations persisting in vivo. Laboratory models, upon which preclinical development of new drugs is based, can only replicate host conditions when we understand the metabolic state of the pathogens and the degree of heterogeneity within the population. In this study, we measured the anabolic activity of the pathogen Staphylococcus aureus directly in the sputum of pediatric patients with cystic fibrosis (CF), by combining the high sensitivity of isotope ratio mass spectrometry with a heavy water labeling approach to capture the full range of in situ growth rates. Our results reveal S. aureus generation times with a median of 2.1 d, with extensive growth rate heterogeneity at the single-cell level. These growth rates are far below the detection limit of previous estimates of CF pathogen growth rates, and the rates are slowest in acutely sick patients undergoing pulmonary exacerbations; nevertheless, they are accessible to experimental replication within laboratory models. Treatment regimens that include specific antibiotics (vancomycin, piperacillin/tazobactam, tobramycin) further appear to correlate with slow growth of S. aureus on average, but follow-up longitudinal studies must be performed to determine whether this effect holds for individual patients.

  8. Size evolution in microorganisms masks trade-offs predicted by the growth rate hypothesis.

    PubMed

    Gounand, Isabelle; Daufresne, Tanguy; Gravel, Dominique; Bouvier, Corinne; Bouvier, Thierry; Combe, Marine; Gougat-Barbera, Claire; Poly, Franck; Torres-Barceló, Clara; Mouquet, Nicolas

    2016-12-28

    Adaptation to local resource availability depends on responses in growth rate and nutrient acquisition. The growth rate hypothesis (GRH) suggests that growing fast should impair competitive abilities for phosphorus and nitrogen due to high demand for biosynthesis. However, in microorganisms, size influences both growth and uptake rates, which may mask trade-offs and instead generate a positive relationship between these traits (size hypothesis, SH). Here, we evolved a gradient of maximum growth rate (μmax) from a single bacterium ancestor to test the relationship among μmax, competitive ability for nutrients and cell size, while controlling for evolutionary history. We found a strong positive correlation between μmax and competitive ability for phosphorus, associated with a trade-off between μmax and cell size: strains selected for high μmax were smaller and better competitors for phosphorus. Our results strongly support the SH, while the trade-offs expected under GRH were not apparent. Beyond plasticity, unicellular populations can respond rapidly to selection pressure through joint evolution of their size and maximum growth rate. Our study stresses that physiological links between these traits tightly shape the evolution of competitive strategies.

  9. Kinetic analysis of growth rate, ATP, and pigmentation suggests an energy-spilling function for the pigment prodigiosin of Serratia marcescens.

    PubMed

    Haddix, Pryce L; Jones, Sarah; Patel, Pratik; Burnham, Sarah; Knights, Kaori; Powell, Joan N; LaForm, Amber

    2008-11-01

    Serratia marcescens is a gram-negative environmental bacterium and opportunistic pathogen. S. marcescens expresses prodigiosin, a bright red and cell-associated pigment which has no known biological function for producing cells. We present here a kinetic model relating cell, ATP, and prodigiosin concentration changes for S. marcescens during cultivation in batch culture. Cells were grown in a variety of complex broth media at temperatures which either promoted or essentially prevented pigmentation. High growth rates were accompanied by large decreases in cellular prodigiosin concentration; low growth rates were associated with rapid pigmentation. Prodigiosin was induced most strongly during limited growth as the population transitioned to stationary phase, suggesting a negative effect of this pigment on biomass production. Mathematically, the combined rate of formation of biomass and bioenergy (as ATP) was shown to be equivalent to the rate of prodigiosin production. Studies with cyanide inhibition of both oxidative phosphorylation and pigment production indicated that rates of biomass and net ATP synthesis were actually higher in the presence of cyanide, further suggesting a negative regulatory role for prodigiosin in cell and energy production under aerobic growth conditions. Considered in the context of the literature, these results suggest that prodigiosin reduces ATP production by a process termed energy spilling. This process may protect the cell by limiting production of reactive oxygen compounds. Other possible functions for prodigiosin as a mediator of cell death at population stationary phase are discussed.

  10. What Does Ratemyprofessors.com Actually Rate?

    ERIC Educational Resources Information Center

    Clayson, Dennis E.

    2014-01-01

    This research looks closely at claims that ratemyprofessors.com creates a valid measure of teaching effectiveness because student responses are consistent with a learning model. While some evidence for this contention was found in three datasets taken from the site, the majority of the evidence indicates that the instrument is biassed by a halo…

  11. Maximising electricity production by controlling the biofilm specific growth rate in microbial fuel cells.

    PubMed

    Ledezma, Pablo; Greenman, John; Ieropoulos, Ioannis

    2012-08-01

    The aim of this work is to study the relationship between growth rate and electricity production in perfusion-electrode microbial fuel cells (MFCs), across a wide range of flow rates by co-measurement of electrical output and changes in population numbers by viable counts and optical density. The experiments hereby presented demonstrate, for the first time to the authors' knowledge, that the anodic biofilm specific growth rate can be determined and controlled in common with other loose matrix perfusion systems. Feeding with nutrient-limiting conditions at a critical flow rate (50.8 mL h(-1)) resulted in the first experimental determination of maximum specific growth rate μ(max) (19.8 day(-1)) for Shewanella spp. MFC biofilms, which is considerably higher than those predicted or assumed via mathematical modelling. It is also shown that, under carbon-energy limiting conditions there is a strong direct relationship between growth rate and electrical power output, with μ(max) coinciding with maximum electrical power production.

  12. The effect of light direction and suspended cell concentrations on algal biofilm growth rates.

    PubMed

    Schnurr, Peter J; Espie, George S; Allen, D Grant

    2014-10-01

    Algae biofilms were grown in a semicontinuous flat plate biofilm photobioreactor to study the effects of light direction and suspended algal cell populations on algal biofilm growth. It was determined that, under the growth conditions and biofilm thicknesses studied, light direction had no effect on long-term algal biofilm growth (26 days); however, light direction did affect the concentration of suspended algal cells by influencing the photon flux density in the growth medium in the photobioreactors. This suspended algal cell population affected short-term (7 days) algae cell recruitment and algal biofilm growth, but additional studies showed that enhanced suspended algal cell populations did not affect biofilm growth rates over the long term (26 days). Studying profiles of light transmittance through biofilms as they grew showed that most of the light became attenuated by the biomass after just a few days of growth (88 % after 3 days). The estimated biofilm thicknesses after these few days of growth were approximately 150 μm. The light attenuation data suggests that, although the biofilms grew to 700-900 μm, under these light intensities, only the first few hundred micrometers of the biofilm is receiving enough light to be photosynthetically active. We postulate that this photosynthetically active layer of the biofilm grows adjacent to the light source, while the rest of the biofilm is in a stationary growth phase. The results of this study have implications for algal biofilm photobioreactor design and operation.

  13. Fatigue Crack Growth Rate of Inconel 718 Sheet at Cryogenic Temperatures

    NASA Technical Reports Server (NTRS)

    Wells, Douglas; Wright, Jonathan; Hastings, Keith

    2005-01-01

    Inconel 718 sheet material was tested to determine fatigue crack growth rate (FCGR) at cryogenic conditions representative of a liquid hydrogen (LH2) environment at -423 degree F. Tests utilized M(T) and ESE(T) specimen geometries and environments were either cold gaseous helium or submersion in LH2. The test results support a significant improvement in the fatigue crack growth threshold at -423 degree F compared to -320 degree F or 70 degree F.

  14. Inhibition of rate of tumour growth in rodent species by inoculation of herpesviruses and encephalomyocarditis virus.

    PubMed

    Cowan, M; Davies, J; Brookes, K; Billstrom, M; McLeish, P; Buchan, A; Skinner, G R

    1990-03-01

    Inoculation of herpesviruses and encephalomyocarditis virus into subcutaneous tumours in hamsters and mice reduced the rate of tumour growth compared to untreated tumours or secondary tumours which had arisen following surgical excision of the primary tumour; in addition, survival times were increased in animals whose tumours were inoculated with virus. It is suggested that the role of virus in the modification of tumour growth merits further exploration.

  15. Calcite growth-rate inhibition by fulvic acid and magnesium ion—Possible influence on biogenic calcite formation

    NASA Astrophysics Data System (ADS)

    Reddy, Michael M.

    2012-08-01

    Increases in ocean surface water dissolved carbon dioxide (CO2) concentrations retard biocalcification by reducing calcite supersaturation (Ωc). Reduced calcification rates may influence growth-rate dependent magnesium ion (Mg) incorporation into biogenic calcite modifying the use of calcifying organisms as paleoclimate proxies. Fulvic acid (FA) at biocalcification sites may further reduce calcification rates. Calcite growth-rate inhibition by FA and Mg, two common constituents of seawater and soil water involved in the formation of biogenic calcite, was measured separately and in combination under identical, highly reproducible experimental conditions. Calcite growth rates (pH=8.5 and Ωc=4.5) are reduced by FA (0.5 mg/L) to 47% and by Mg (10-4 M) to 38%, compared to control experiments containing no added growth-rate inhibitor. Humic acid (HA) is twice as effective a calcite growth-rate inhibitor as FA. Calcite growth rate in the presence of both FA (0.5 mg/L) and Mg (10-4 M) is reduced to 5% of the control rate. Mg inhibits calcite growth rates by substitution for calcium ion at the growth site. In contrast, FA inhibits calcite growth rates by binding multiple carboxylate groups on the calcite surface. FA and Mg together have an increased affinity for the calcite growth sites reducing calcite growth rates.

  16. Calcite growth-rate inhibition by fulvic acid and magnesium ion—Possible influence on biogenic calcite formation

    USGS Publications Warehouse

    Reddy, Michael M.

    2012-01-01

    Increases in ocean surface water dissolved carbon dioxide (CO2) concentrations retard biocalcification by reducing calcite supersaturation (Ωc). Reduced calcification rates may influence growth-rate dependent magnesium ion (Mg) incorporation into biogenic calcite modifying the use of calcifying organisms as paleoclimate proxies. Fulvic acid (FA) at biocalcification sites may further reduce calcification rates. Calcite growth-rate inhibition by FA and Mg, two common constituents of seawater and soil water involved in the formation of biogenic calcite, was measured separately and in combination under identical, highly reproducible experimental conditions. Calcite growth rates (pH=8.5 and Ωc=4.5) are reduced by FA (0.5 mg/L) to 47% and by Mg (10−4 M) to 38%, compared to control experiments containing no added growth-rate inhibitor. Humic acid (HA) is twice as effective a calcite growth-rate inhibitor as FA. Calcite growth rate in the presence of both FA (0.5 mg/L) and Mg (10−4 M) is reduced to 5% of the control rate. Mg inhibits calcite growth rates by substitution for calcium ion at the growth site. In contrast, FA inhibits calcite growth rates by binding multiple carboxylate groups on the calcite surface. FA and Mg together have an increased affinity for the calcite growth sites reducing calcite growth rates.

  17. How fast-growing bacteria robustly tune their ribosome concentration to approximate growth-rate maximization.

    PubMed

    Bosdriesz, Evert; Molenaar, Douwe; Teusink, Bas; Bruggeman, Frank J

    2015-05-01

    Maximization of growth rate is an important fitness strategy for bacteria. Bacteria can achieve this by expressing proteins at optimal concentrations, such that resources are not wasted. This is exemplified for Escherichia coli by the increase of its ribosomal protein-fraction with growth rate, which precisely matches the increased protein synthesis demand. These findings and others have led to the hypothesis that E. coli aims to maximize its growth rate in environments that support growth. However, what kind of regulatory strategy is required for a robust, optimal adjustment of the ribosome concentration to the prevailing condition is still an open question. In the present study, we analyze the ppGpp-controlled mechanism of ribosome expression used by E. coli and show that this mechanism maintains the ribosomes saturated with its substrates. In this manner, overexpression of the highly abundant ribosomal proteins is prevented, and limited resources can be redirected to the synthesis of other growth-promoting enzymes. It turns out that the kinetic conditions for robust, optimal protein-partitioning, which are required for growth rate maximization across conditions, can be achieved with basic biochemical interactions. We show that inactive ribosomes are the most suitable 'signal' for tracking the intracellular nutritional state and for adjusting gene expression accordingly, as small deviations from optimal ribosome concentration cause a huge fractional change in ribosome inactivity. We expect to find this control logic implemented across fast-growing microbial species because growth rate maximization is a common selective pressure, ribosomes are typically highly abundant and thus costly, and the required control can be implemented by a small, simple network.

  18. A new mechanistic growth model for simultaneous determination of lag phase duration and exponential growth rate and a new Bĕlehdrádek-type model for evaluating the effect of temperature on growth rate.

    PubMed

    Huang, Lihan

    2011-06-01

    A new mechanistic growth model was developed to describe microbial growth under isothermal conditions. The new mathematical model was derived from the basic observation of bacterial growth that may include lag, exponential, and stationary phases. With this model, the lag phase duration and exponential growth rate of a growth curve were simultaneously determined by nonlinear regression. The new model was validated using Listeria monocytogenes and Escherichia coli O157:H7 in broth or meat. Statistical results suggested that both bias factor (B(f)) and accuracy factor (A(f)) of the new model were very close to 1.0. A new Bĕlehdrádek-type rate model and the Ratkowsky square-root model were used to describe the temperature dependence of bacterial growth rate. It was observed that the maximum and minimum temperatures were more accurately estimated by a new Bĕlehdrádek-type rate model. Further, the inverse of square-roots of lag phases was found proportional to temperature, making it possible to estimate the lag phase duration from the growth temperature.

  19. Growth rate of Rayleigh-Taylor turbulent mixing layers with the foliation approach.

    PubMed

    Poujade, Olivier; Peybernes, Mathieu

    2010-01-01

    For years, astrophysicists, plasma fusion, and fluid physicists have puzzled over Rayleigh-Taylor turbulent mixing layers. In particular, strong discrepancies in the growth rates have been observed between experiments and numerical simulations. Although two phenomenological mechanisms (mode-coupling and mode-competition) have brought some insight on these differences, convincing theoretical arguments are missing to explain the observed values. In this paper, we provide an analytical expression of the growth rate compatible with both mechanisms and is valid for a self-similar, low Atwood Rayleigh-Taylor turbulent mixing subjected to a constant or time-varying acceleration. The key step in this work is the presentation of foliated averages and foliated turbulent spectra highlighted in our three-dimensional numerical simulations. We show that the exact value of the Rayleigh-Taylor growth rate not only depends upon the acceleration history but is also bound to the power-law exponent of the foliated spectra at large scales.

  20. Growth rate of Rayleigh-Taylor turbulent mixing layers with the foliation approach

    SciTech Connect

    Poujade, Olivier; Peybernes, Mathieu

    2010-01-15

    For years, astrophysicists, plasma fusion, and fluid physicists have puzzled over Rayleigh-Taylor turbulent mixing layers. In particular, strong discrepancies in the growth rates have been observed between experiments and numerical simulations. Although two phenomenological mechanisms (mode-coupling and mode-competition) have brought some insight on these differences, convincing theoretical arguments are missing to explain the observed values. In this paper, we provide an analytical expression of the growth rate compatible with both mechanisms and is valid for a self-similar, low Atwood Rayleigh-Taylor turbulent mixing subjected to a constant or time-varying acceleration. The key step in this work is the presentation of foliated averages and foliated turbulent spectra highlighted in our three-dimensional numerical simulations. We show that the exact value of the Rayleigh-Taylor growth rate not only depends upon the acceleration history but is also bound to the power-law exponent of the foliated spectra at large scales.

  1. In-situ estimation of MOCVD growth rate via a modified Kalman filter

    SciTech Connect

    Woo, W.W.; Svoronos, S.A.; Sankur, H.O.; Bajaj, J.; Irvine, S.J.C.

    1996-05-01

    In-situ laser reflectance monitoring of metal-organic chemical vapor deposition (MOCVD) is an effective way to monitor growth rate and epitaxial layer thickness of a variety of III-V and II-VI semiconductors. Materials with low optical extinction coefficients, such as ZnTe/GaAs and AlAs/GaAs for a 6,328 {angstrom} HeNe laser, are ideal for such an application. An extended Kalman filter modified to include a variable forgetting factor was applied to the MOCVD systems. The filter was able to accurately estimate thickness and growth rate while filtering out process noise and cope with sudden changes in growth rate, reflectance drift, and bias. Due to the forgetting factor, the Kalman filter was successful, even when based on very simple process models.

  2. Estimating Nursing Wage Bill in Canada and Breaking Down the Growth Rate: 2000 to 2010.

    PubMed

    Ariste, Ruolz; Béjaoui, Ali

    2015-05-01

    Even though the nursing professional category (registered nurses [RNs] and licensed practical nurses) made up about one-third of the Canadian health professionals, no study exists about their wage bill, the composition and growth rate of this wage bill. This paper attempts to fill this gap by estimating the nursing wage bill in the Canadian provinces and breaking down the growth rate for the 2000-2010 period, using the 2001 Census and the 2011 National Household Survey. Total wage bill for the nursing professional category in Canada was estimated at $20.1 billion ($17.3 billion for RNs), which suggests that it is as substantial as net physician remuneration. The average annual growth rate of this wage bill was 6.6% for RNs. This increase was mainly driven by real (inflation-adjusted) wage per hour, which was 3.0%, suggesting the existence of a "health premium" of 1.7 percentage points during the study period.

  3. Weibel Instability Growth Rate in Magnetized Plasmas with Quasi-Relativistic Distribution Function

    NASA Astrophysics Data System (ADS)

    Hosseini, Sayed Ahmad; Mahdavi, Mohammad

    2016-12-01

    The mechanism of the Weibel instability is investigated for dense magnetized plasmas. As we know, due to the electron velocity distribution, the Coulomb collision effect of electron-ion and the relativistic properties play an important role in such study. In this study an analytical expression for the growth rate and the condition of restricting the Weibel instability are derived for low-frequency limit. These calculations are done for the oscillation frequency dependence on the electron cyclotron frequency. It is shown that, the relativistic properties of the particle lead to increasing the growth rate of the instability. On the other hand the collision effects and background magnetic field try to decrease the growth rate by decreasing the temperature anisotropy and restricting the particles movement.

  4. Calculated diffusion coefficients and the growth rate of olivine in a basalt magma

    NASA Technical Reports Server (NTRS)

    Donaldson, C. H.

    1975-01-01

    Concentration gradients in glass adjacent to skeletal olivines in a basalt have been examined by electron probe. The glass is depleted in Mg, Fe, and Cr and enriched in Si, Al, Na, and Ca relative to that far from olivine. Ionic diffusion coefficients for the glass compositions are calculated from temperature, ionic radius and melt viscosity, using the Stokes-Einstein relation. At 1170 C, the diffusion coefficient of Mg(2+) ions in the basalt is 4.5 billionths sq cm per sec. Comparison with measured diffusion coefficients in a mugearite suggests this value may be 16 times too small. The concentration gradient data and the diffusion coefficients are used to calculate instantaneous olivine growth rates. Growth necessarily preceded emplacement such that the composition of the crystals plus the enclosing glass need not be that of a melt. The computed olivine growth rates are compatible with the rate of crystallization deduced for the Skaegaard intrusion.

  5. Determination of growth rate depression of some green algae by atrazine

    SciTech Connect

    Hersh, C.M.; Crumpton, W.G.

    1987-12-01

    A common contaminant of surface waters of agricultural regions is the triazine herbicide, atrazine (2-chloro-4-ethylamino-6-isoproplyamino-s-triazine). Atrazine effectively inhibits growth and photosynthesis of most plants, including freshwater algae. Both depression of growth rate and reduced yield have been used as parameters in studies of the effects of atrazine on algal growth. Considerable variation exists among algal toxicity methods despite attempts at standardization. Experimental endpoints range from percent inhibitions to EC50s. Algae from two different Iowa springs were the subjects of a study of naturally occurring atrazine tolerance. The authors report here the results of two aspects of that study: development of a quick method of assessing toxin effects on algal growth, and investigation of a ecologically meaningful endpoint for toxin-growth experiments.

  6. Physiological and Transcriptional Responses of Different Industrial Microbes at Near-Zero Specific Growth Rates.

    PubMed

    Ercan, Onur; Bisschops, Markus M M; Overkamp, Wout; Jørgensen, Thomas R; Ram, Arthur F; Smid, Eddy J; Pronk, Jack T; Kuipers, Oscar P; Daran-Lapujade, Pascale; Kleerebezem, Michiel

    2015-09-01

    The current knowledge of the physiology and gene expression of industrially relevant microorganisms is largely based on laboratory studies under conditions of rapid growth and high metabolic activity. However, in natural ecosystems and industrial processes, microbes frequently encounter severe calorie restriction. As a consequence, microbial growth rates in such settings can be extremely slow and even approach zero. Furthermore, uncoupling microbial growth from product formation, while cellular integrity and activity are maintained, offers perspectives that are economically highly interesting. Retentostat cultures have been employed to investigate microbial physiology at (near-)zero growth rates. This minireview compares information from recent physiological and gene expression studies on retentostat cultures of the industrially relevant microorganisms Lactobacillus plantarum, Lactococcus lactis, Bacillus subtilis, Saccharomyces cerevisiae, and Aspergillus niger. Shared responses of these organisms to (near-)zero growth rates include increased stress tolerance and a downregulation of genes involved in protein synthesis. Other adaptations, such as changes in morphology and (secondary) metabolite production, were species specific. This comparison underlines the industrial and scientific significance of further research on microbial (near-)zero growth physiology.

  7. Physiological and Transcriptional Responses of Different Industrial Microbes at Near-Zero Specific Growth Rates

    PubMed Central

    Ercan, Onur; Bisschops, Markus M. M.; Overkamp, Wout; Jørgensen, Thomas R.; Ram, Arthur F.; Smid, Eddy J.; Pronk, Jack T.; Kuipers, Oscar P.

    2015-01-01

    The current knowledge of the physiology and gene expression of industrially relevant microorganisms is largely based on laboratory studies under conditions of rapid growth and high metabolic activity. However, in natural ecosystems and industrial processes, microbes frequently encounter severe calorie restriction. As a consequence, microbial growth rates in such settings can be extremely slow and even approach zero. Furthermore, uncoupling microbial growth from product formation, while cellular integrity and activity are maintained, offers perspectives that are economically highly interesting. Retentostat cultures have been employed to investigate microbial physiology at (near-)zero growth rates. This minireview compares information from recent physiological and gene expression studies on retentostat cultures of the industrially relevant microorganisms Lactobacillus plantarum, Lactococcus lactis, Bacillus subtilis, Saccharomyces cerevisiae, and Aspergillus niger. Shared responses of these organisms to (near-)zero growth rates include increased stress tolerance and a downregulation of genes involved in protein synthesis. Other adaptations, such as changes in morphology and (secondary) metabolite production, were species specific. This comparison underlines the industrial and scientific significance of further research on microbial (near-)zero growth physiology. PMID:26048933

  8. Crack growth rates of Alloy 182 in high-temperature water

    SciTech Connect

    Itow, M.; Abe, Y.; Sudo, A.; Kaneko, T.

    1995-12-31

    The crack growth tests on Alloy 182 under constant load conditions were carried out in 288 C pure water in order to evaluate the effects of stress intensity factor (K) and dissolved oxygen (DO) concentration on crack growth rate. 1T-CT specimens were machined from 70mm heavy thickness weld joint made of wrought Alloy 600 and Alloy 182 weld metal. A fatigue pre-crack was introduced into each specimen, so that environmentally assisted cracks would propagate parallel to the weld dendrite direction. The weld metal chemistries had a sulfur content of 0.006% and a phosphorus content of 0.012%. During their crack growth testing with an applied constant load, the reversing d.c. potential drop technique was conducted to monitor crack length. The crack growth rate was increased with increasing K from 25 to 41 MPa{radical}m under 250 ppb DO water. The threshold of K for crack growth was considered to be within 15--20 MPa{radical}m. The crack growth rates at 35 MPa{radical}m were retarded by changing the DO concentration from 250 ppb to 20 ppb.

  9. Pan-Svalbard growth rate variability and environmental regulation in the Arctic bivalve Serripes groenlandicus

    NASA Astrophysics Data System (ADS)

    Carroll, Michael L.; Ambrose, William G.; Levin, Benjamin S.; Locke V, William L.; Henkes, Gregory A.; Hop, Haakon; Renaud, Paul E.

    2011-11-01

    Growth histories contained in the shells of bivalves provide continuous records of environmental and biological information over lifetimes spanning decades to centuries, thereby linking ecosystem responses to both natural and anthropogenic climatic variations over a range of scales. We examined growth rates and temporal growth patterns of 260 individuals of the circumpolar Greenland Smooth Cockle ( Serripes groenlandicus) collected between 1997 and 2009 from 11 sites around the Svalbard Archipelago. These sites encompass a range of oceanographic and environmental conditions, from strongly Atlantic-influenced conditions on the west coast to high-Arctic conditions in northeast Svalbard. Absolute growth was up to three times greater at the most strongly Atlantic-influenced locations compared to the most Arctic-influenced areas, and growth performance was highest at sites closest to the West Spitsbergen Current. We also developed growth chronologies up to 34 years in length extending back to 1974. Standardized growth indices (SGI) exhibited substantial inter-site variability, but there were also common temporal features including steadily increasing growth from the late 1980's to the mid-1990's followed by a marked shift from relatively greater to poorer growth in the mid-1990's and from 2004 to 2008. This pattern was consistent with phase-shifts in large-scale climatic drivers. Interannual variability in SGI was also related to local manifestations of the large-scale drivers, including sea temperature and sea ice extent. The temporal growth pattern at Rijpfjorden, on northeast Svalbard, was broadly representative (R = 0.81) of the entire dataset. While there were site-related differences in the specific relationships between growth and environmental parameters, the aggregated dataset indicated an overriding regional driver of bivalve growth: the Arctic Climate Regime Index (ACRI). These results demonstrate that sclerochronological proxies can be useful retrospective

  10. Growth rate effects on Mg/Ca and Sr/Ca ratios constrained by belemnite calcite

    NASA Astrophysics Data System (ADS)

    Vinzenz Ullmann, Clemens

    2016-04-01

    Multiple temperature proxies from single species are important to achieve robust palaeotemperature estimates. Besides the commonly employed oxygen isotope thermometer, also Mg/Ca and Sr/Ca ratios perform well as proxies for calcification temperature in the shells of some species. While salinity changes affect the ratios of earth alkaline elements much less than the δ18O thermometer, metabolic effects may exert a strong control on the expression of element ratios. Such effects are hard to study because biomineralization experiments have to overcome large intraspecific variability and can hardly ever isolate the controls of a single parameter on shell geochemistry. The unique geometry of the belemnite rostrum constitutes an exception to this rule. Its shape, large size, and the visibility of growth increments as bands enable the analysis of multiple, correlatable, high resolution geochemical profiles in a single fossil. The effects of the growth rate variability amongst these profiles on Mg/Ca and Sr/Ca ratios has been tested here. Within a specimen of Passaloteuthis bisulcata (Early Toarcian, Cleveland Basin, UK), Mg/Ca and Sr/Ca data were obtained from four profiles. With respect to growth rate in the first profile, which was taken as a reference, the relative growth rates in the remaining three profiles varied by a factor of 0.9 to 2.7. Results suggest that relative growth rate is linearly correlated with Mg/Ca and Sr/Ca, with a decrease of Mg/Ca by 8 % and increase of Sr/Ca by 6 % per 100 % increase in relative growth rate. The observed trends are consistent with abiogenic precipitation experiments and suggest that crystal precipitation rate exerts a significant, predictable control on the element distribution in biogenic calcite.

  11. Global observation of nitrous oxide: changes in growth rate and spatial patterns

    NASA Astrophysics Data System (ADS)

    Hall, B. D.; Dlugokencky, E. J.; Dutton, G. S.; Nance, J. D.; Crotwell, A. M.; Mondeel, D. J.; Elkins, J. W.

    2015-12-01

    Nitrous oxide (N2O) currently exerts the third largest climate forcing of the long-lived greenhouse gases, after CO2 and CH4. N2O is also involved in the destruction of stratospheric ozone. It is produced by microbial activity in soils and oceans, and also by industry. The atmospheric burden of N2O has increased more than 20% from its preindustrial level of ~270 nmol mol-1 (ppb). Much of this increase is related to the application of nitrogen-containing fertilizers, including manure. The NOAA Global Monitoring Division has measured the atmospheric mole fraction of N2O at Earth's surface in air samples collected around the globe (since the late 1970s) and at in situ sites mostly in the Western Hemisphere (since 1998). ). Measurements of the global burden and growth rate constrain global emissions, e.g. 18.2 ± 2.7 Tg N yr-1 in 2013, where most of the uncertainty is related to uncertainty in the global lifetime. The average growth rate of N2O from 1990 to 2010 was ~0.75 ppb yr-1. Since 2004, however, the growth rate has been increasing, and is now about 25% higher than the 1990-2010 average. Between 2010 and 2013 the growth rate averaged ~0.95 ppb yr-1. As the growth rate increased from 2004-2013, gradients derived from surface, zonal-mean N2O mole fraction, such the mean pole-to-pole difference, and the difference between NH temperate latitudes and the southern polar region, decreased. This suggests a change in the distribution of N2O emissions over this period. We will present our N2O data and examine trends, gradients, and other features that could shed light on recent changes in the growth rate. We will also compare N2O gradients to those of other trace gases, such as SF6.

  12. Individual growth rates in natural field vole, Microtus agrestis, populations exhibiting cyclic population dynamics.

    PubMed

    Burthe, Sarah Janette; Lambin, Xavier; Telfer, Sandra; Douglas, Alex; Beldomenico, Pablo; Smith, Andrew; Begon, Michael

    2010-03-01

    Rodents that have multi-annual cycles of density are known to have flexible growth strategies, and the "Chitty effect", whereby adults in the high-density phase of the cycle exhibit larger average body mass than during the low phase, is a well-documented feature of cyclic populations. Despite this, there have been no studies that have repeatedly monitored individual vole growth over time from all phases of a density cycle, in order to evaluate whether such variation in body size is due to differences in juvenile growth rates, differences in growth periods, or differential survival of particularly large or small voles. This study compares growth trajectories from voles during the peak, increase and crash phases of the cycle in order to evaluate whether voles are exhibiting fast or slow growth strategies. We found that although voles reach highest asymptotic weights in the peak phase and lowest asymptotes during the crash, initial growth rates were not significantly different. This suggests that voles attain larger body size during the peak phase as a result of growing for longer.

  13. Growth rates, seed size, and physiology: do small-seeded species really grow faster?

    PubMed

    Turnbull, Lindsay A; Paul-Victor, Cloé; Schmid, Bernhard; Purves, Drew W

    2008-05-01

    Relative growth rate (RGR) is currently the most commonly used method for measuring and comparing species' intrinsic growth potential. Comparative studies have, for example, revealed that small-seeded species have higher RGR, leading to the common belief that small-seeded species possess physiological adaptations for rapid growth that would allow them to outgrow large-seeded species, given sufficient time. We show that, because RGR declines as individual plants grow, it is heavily biased by initial size and does not measure the size-corrected growth potential that determines the outcome of competition in the long-term. We develop a daily growth model that includes a simple mechanistic representation of aboveground and belowground growth and its dependency on plant size and environmental factors. Intrinsic growth potential is encapsulated by the size-independent growth coefficient, G. We parameterized the model using repeated-harvest data from 1724 plants of nine species growing in contrasting nutrient and temperature regimes. Using information-theoretic criteria, we found evidence for interspecific differences in only three of nine model parameters: G, aboveground allocation, and frost damage. With other parameters shared between species, the model accurately reproduced above- and belowground biomass trajectories for all nine species in each set of environmental conditions. In contrast to conventional wisdom, the relationship between G and seed size was positive, despite a strong negative correlation between seed size and average RGR, meaning that large-seeded rather than small-seeded species have higher size-corrected growth potential. Further, we found a significant positive correlation between G and frost damage that, according to simulations, causes rank reversals in final biomass under daily temperature changes of +/- 5 degrees C. We recommend the wider use of this new kind of plant growth analysis as a better way of understanding underlying differences in

  14. Bacterial growth rates are influenced by cellular characteristics of individual species when immersed in electromagnetic fields.

    PubMed

    Tessaro, Lucas W E; Murugan, Nirosha J; Persinger, Michael A

    2015-03-01

    Previous studies have shown that exposure to extremely low-frequency electromagnetic fields (ELF-EMFs) have negative effects on the rate of growth of bacteria. In the present study, two Gram-positive and two Gram-negative species were exposed to six magnetic field conditions in broth cultures. Three variations of the 'Thomas' pulsed frequency-modulated pattern; a strong-static "puck" magnet upwards of 5000G in intensity; a pair of these magnets rotating opposite one another at ∼30rpm; and finally a strong dynamic magnetic field generator termed the 'Resonator' with an average intensity of 250μT were used. Growth rate was discerned by optical density (OD) measurements every hour at 600nm. ELF-EMF conditions significantly affected the rates of growth of the bacterial cultures, while the two static magnetic field conditions were not statistically significant. Most interestingly, the 'Resonator' dynamic magnetic field increased the rates of growth of three species (Staphylococcus epidermidis, Staphylococcus aureus, and Escherichia coli), while slowing the growth of one (Serratia marcescens). We suggest that these effects are due to individual biophysical characteristics of the bacterial species.

  15. Influence of arterial geometry on a model for growth rate of atheromas

    NASA Astrophysics Data System (ADS)

    Gessaghi, Valeria C.; Raschi, Marcelo A.; Larreteguy, Axel E.; Perazzo, y. Carlos A.

    2007-11-01

    Atherosclerosis is a disease that affects medium and large size arteries and it can partially or totally obstruct blood flow through them. The lack of blood supply to the heart or the brain can cause an infarct or a stroke with fatal consequences or permanent effects. This disease involves the proliferation of cells and the accumulation of fat, cholesterol, cell debris, calcium and other substances in the artery wall. Such accumulation results in the formation of atherosclerotic plaques called atheromas, which may cause the obstruction of the blood flow. Cardiovascular diseases, among which atherosclerosis is the most frequent, are the first cause of death in developed countries. The published works in the subject suggest that hemodynamic forces on arterial walls have influence on the localization, initial development and growth rate of atheromas. This paper presents a model for this growth rate, and explores the influence of the bifurcation angle on the blood flow patterns and on the predictions of the model in a simplified carotid artery. The choice of the carotid bifurcation as the subject for this study obeys the fact that atheromas in this artery are often responsible for strokes. Our model predicts a larger initial growth rate in the external walls of the bifurcation and smaller growth area and lower growth rates as the bifurcation angle is increased. The reason for this seems to be the appearance of helical flow patterns as the angle is increased.

  16. Modeling circadian clock-cell cycle interaction effects on cell population growth rates.

    PubMed

    El Cheikh, R; Bernard, S; El Khatib, N

    2014-12-21

    The circadian clock and the cell cycle are two tightly coupled oscillators. Recent analytical studies have shown counter-intuitive effects of circadian gating of the cell cycle on growth rates of proliferating cells which cannot be explained by a molecular model or a population model alone. In this work, we present a combined molecular-population model that studies how coupling the circadian clock to the cell cycle, through the protein WEE1, affects a proliferating cell population. We show that the cell cycle can entrain to the circadian clock with different rational period ratios and characterize multiple domains of entrainment. We show that coupling increases the growth rate for autonomous periods of the cell cycle around 24 h and above 48 h. We study the effect of mutation of circadian genes on the growth rate of cells and show that disruption of the circadian clock can lead to abnormal proliferation. Particularly, we show that Cry 1, Cry 2 mutations decrease the growth rate of cells, Per 2 mutation enhances it and Bmal 1 knockout increases it for autonomous periods of the cell cycle less than 21 h and decreases it elsewhere. Combining a molecular model to a population model offers new insight on the influence of the circadian clock on the growth of a cell population. This can help chronotherapy which takes benefits of physiological rhythms to improve anti-cancer efficacy and tolerance to drugs by administering treatments at a specific time of the day.

  17. Translation elicits a growth rate-dependent, genome-wide, differential protein production in Bacillus subtilis.

    PubMed

    Borkowski, Olivier; Goelzer, Anne; Schaffer, Marc; Calabre, Magali; Mäder, Ulrike; Aymerich, Stéphane; Jules, Matthieu; Fromion, Vincent

    2016-05-17

    Complex regulatory programs control cell adaptation to environmental changes by setting condition-specific proteomes. In balanced growth, bacterial protein abundances depend on the dilution rate, transcript abundances and transcript-specific translation efficiencies. We revisited the current theory claiming the invariance of bacterial translation efficiency. By integrating genome-wide transcriptome datasets and datasets from a library of synthetic gfp-reporter fusions, we demonstrated that translation efficiencies in Bacillus subtilis decreased up to fourfold from slow to fast growth. The translation initiation regions elicited a growth rate-dependent, differential production of proteins without regulators, hence revealing a unique, hard-coded, growth rate-dependent mode of regulation. We combined model-based data analyses of transcript and protein abundances genome-wide and revealed that this global regulation is extensively used in B. subtilis We eventually developed a knowledge-based, three-step translation initiation model, experimentally challenged the model predictions and proposed that a growth rate-dependent drop in free ribosome abundance accounted for the differential protein production.

  18. Effects of Saccharomyces cerevisiae on survival rate and growth performance of Convict Cichlid (Amatitlania nigrofasciata)

    PubMed Central

    Mohammadi, F; Mousavi, S. M.; Ahmadmoradi, E.; Zakeri, M.; Jahedi, A.

    2015-01-01

    Using probiotics can control pathogens by a variety of mechanisms. Probiotics can promote growth performance and have, therefore, become increasingly important in the aquaculture industry. Convict Cichlid belongs to the family of Cichlidae and is known for its rapid development in laboratory conditions and is suitable for behavioral examinations. The aim of this study was to evaluate the effects of Saccharomyces cerevisiae on growth performance, survival rate and body composition of Convict Cichlids (Amatitlania nigrofasciata). One hundred sixty eight Convict Cichlids (mean weight: 2.1 ± 0.12 g and mean length: 2.2 ± 0.05 cm) were fed by commercial diets with different concentrations of S. cerevisiae (0, 0.5%, 1%, 2%). At the end of the experiment, survival rate and growth indices were measured. Based on the results, growth performance significantly increased with probiotic, S. cerevisiae, specially, at the 2% probiotic level of concentration. In the present study, the best FCR (feed conversion rate), SGR (specific growth rate), CF (condition factor) and BWG (body weight gain) values were observed in a 2% concentration of S. cerevisiae. The results suggest that this yeast could improve feed utilization in this fish species. PMID:27175152

  19. Effects of Saccharomyces cerevisiae on survival rate and growth performance of Convict Cichlid (Amatitlania nigrofasciata).

    PubMed

    Mohammadi, F; Mousavi, S M; Ahmadmoradi, E; Zakeri, M; Jahedi, A

    2015-01-01

    Using probiotics can control pathogens by a variety of mechanisms. Probiotics can promote growth performance and have, therefore, become increasingly important in the aquaculture industry. Convict Cichlid belongs to the family of Cichlidae and is known for its rapid development in laboratory conditions and is suitable for behavioral examinations. The aim of this study was to evaluate the effects of Saccharomyces cerevisiae on growth performance, survival rate and body composition of Convict Cichlids (Amatitlania nigrofasciata). One hundred sixty eight Convict Cichlids (mean weight: 2.1 ± 0.12 g and mean length: 2.2 ± 0.05 cm) were fed by commercial diets with different concentrations of S. cerevisiae (0, 0.5%, 1%, 2%). At the end of the experiment, survival rate and growth indices were measured. Based on the results, growth performance significantly increased with probiotic, S. cerevisiae, specially, at the 2% probiotic level of concentration. In the present study, the best FCR (feed conversion rate), SGR (specific growth rate), CF (condition factor) and BWG (body weight gain) values were observed in a 2% concentration of S. cerevisiae. The results suggest that this yeast could improve feed utilization in this fish species.

  20. Measuring selection in human populations using the growth rate per generation.

    PubMed

    Ewbank, Douglas

    2016-04-19

    Estimates of the speed of evolution between generations depend on the association between individual traits and a measure of fitness. The two most frequently used measures of fitness are the net reproduction rate and the 1-year growth factor implied by the fertility and mortality rates. Results based on the two lead to very different results. The reason is that the 1-year growth factor is not a measure of change between generations. Therefore, studies of changes between generations should use the amount of growth over the length of a generation. This is especially important for studies of human populations because of the long length of generation. In addition, estimates based on a single year's growth are overly sensitive to data on individuals who fail to reproduce. The effects of using a generational measure are demonstrated using data from Kenya and Ukraine. These results demonstrate that using a 1-year growth rate to measure fitness leads to estimates that understate the rate at which evolution changes the characteristics of a human population.

  1. Collaborative Project: Understanding the Chemical Processes tat Affect Growth rates of Freshly Nucleated Particles

    SciTech Connect

    McMurry, Peter; Smuth, James

    2015-11-12

    This final technical report describes our research activities that have, as the ultimate goal, the development of a model that explains growth rates of freshly nucleated particles. The research activities, which combine field observations with laboratory experiments, explore the relationship between concentrations of gas-phase species that contribute to growth and the rates at which those species are taken up. We also describe measurements of the chemical composition of freshly nucleated particles in a variety of locales, as well as properties (especially hygroscopicity) that influence their effects on climate.

  2. Effect of Frequency on Fatigue Crack Growth Rate of Inconel 718 at High Temperature

    DTIC Science & Technology

    1987-06-01

    Potential 6 and Displacement Measurements. 2 Fractured Specimens of Inconel 718 Showing 13 Different Cracking*Regions Corresponding to Test Under Different...Conditions. 3 Typical a vs N Experimental Data with the 16 Fitted Linear Regression Line. 4 Fatigue Crack Growth Rate (da/dN) for 17 Inconel 718 as a...Temperature Air Data are Given. 5 Time Rate of Crack Growth, (da/dt) for 18 Inconel 718 as a Function of Frequency at Kmax = 40 MPa-ml/ 2 , R = 0.1

  3. Periodic matrix population models: growth rate, basic reproduction number, and entropy.

    PubMed

    Bacaër, Nicolas

    2009-10-01

    This article considers three different aspects of periodic matrix population models. First, a formula for the sensitivity analysis of the growth rate lambda is obtained that is simpler than the one obtained by Caswell and Trevisan. Secondly, the formula for the basic reproduction number R0 in a constant environment is generalized to the case of a periodic environment. Some inequalities between lambda and R0 proved by Cushing and Zhou are also generalized to the periodic case. Finally, we add some remarks on Demetrius' notion of evolutionary entropy H and its relationship to the growth rate lambda in the periodic case.

  4. Radiographic analysis of the growth rate of long bones in bustards.

    PubMed

    Naldo, J L; Bailey, T A; Samour, J H

    2000-12-01

    A serial radiographic study was conducted on seven houbara bustard (Chlamydotis undulata macqueenii), 10 rufous-crested bustard (Eupodotis ruficrista), four white-bellied bustard (Eupodotis senegalensis) and eight kori bustard (Ardeotis kori) chicks to determine the growth rate of long bones and to establish radiographic standards for assessing skeletal maturity. The growth rates of the tarsometatarsus and tibiotarsus in the bustard species investigated were similar to those in domestic fowl (Gallus domesticus) and some long-legged avian species. Maturation of long bones occurred earlier in houbara bustards compared with rufous-crested, white-bellied and kori bustards.

  5. High rates of growth recorded for hawksbill sea turtles in Anegada, British Virgin Islands

    PubMed Central

    Hawkes, Lucy A; McGowan, Andrew; Broderick, Annette C; Gore, Shannon; Wheatley, Damon; White, Jim; Witt, Matthew J; Godley, Brendan J

    2014-01-01

    Management of species of conservation concern requires knowledge of demographic parameters, such as rates of recruitment, survival, and growth. In the Caribbean, hawksbill turtles (Eretmochelys imbricata) have been historically exploited in huge numbers to satisfy trade in their shells and meat. In the present study, we estimated growth rate of juvenile hawksbill turtles around Anegada, British Virgin Islands, using capture–mark–recapture of 59 turtles over periods of up to 649 days. Turtles were recaptured up to six times, having moved up to 5.9 km from the release location. Across all sizes, turtles grew at an average rate of 9.3 cm year−1 (range 2.3–20.3 cm year−1), and gained mass at an average of 3.9 kg year−1 (range 850 g–16.1 kg year−1). Carapace length was a significant predictor of growth rate and mass gain, but there was no relationship between either variable and sea surface temperature. These are among the fastest rates of growth reported for this species, with seven turtles growing at a rate that would increase their body size by more than half per year (51–69% increase in body length). This study also demonstrates the importance of shallow water reef systems for the developmental habitat for juvenile hawksbill turtles. Although growth rates for posthatching turtles in the pelagic, and turtles larger than 61 cm, are not known for this population, the implications of this study are that Caribbean hawksbill turtles in some areas may reach body sizes suggesting sexual maturity in less time than previously considered. PMID:24834324

  6. Decreased growth rate of P. falciparum blood stage parasitemia with age in a holoendemic population.

    PubMed

    Pinkevych, Mykola; Petravic, Janka; Chelimo, Kiprotich; Vulule, John; Kazura, James W; Moormann, Ann M; Davenport, Miles P

    2014-04-01

    In malaria holoendemic settings, decreased parasitemia and clinical disease is associated with age and cumulative exposure. The relative contribution of acquired immunity against various stages of the parasite life cycle is not well understood. In particular, it is not known whether changes in infection dynamics can be best explained by decreasing rates of infection, or by decreased growth rates of parasites in blood. Here, we analyze the dynamics of Plasmodium falciparum infection after treatment in a cohort of 197 healthy study participants of different ages. We use both polymerase chain reaction (PCR) and microscopy detection of parasitemia in order to understand parasite growth rates and infection rates over time. The more sensitive PCR assay detects parasites earlier than microscopy, and demonstrates a higher overall prevalence of infection than microscopy alone. The delay between PCR and microscopy detection is significantly longer in adults compared with children, consistent with slower parasite growth with age. We estimated the parasite multiplication rate from delay to PCR and microscopy detections of parasitemia. We find that both the delay between PCR and microscopy infection as well as the differing reinfection dynamics in different age groups are best explained by a slowing of parasite growth with age.

  7. Survival, recruitment, and population growth rate of an important mesopredator: the northern raccoon.

    PubMed

    Troyer, Elizabeth M; Cameron Devitt, Susan E; Sunquist, Melvin E; Goswami, Varun R; Oli, Madan K

    2014-01-01

    Populations of mesopredators (mid-sized mammalian carnivores) are expanding in size and range amid declining apex predator populations and ever-growing human presence, leading to significant ecological impacts. Despite their obvious importance, population dynamics have scarcely been studied for most mesopredator species. Information on basic population parameters and processes under a range of conditions is necessary for managing these species. Here we investigate survival, recruitment, and population growth rate of a widely distributed and abundant mesopredator, the northern raccoon (Procyon lotor), using Pradel's temporal symmetry models and >6 years of monthly capture-mark-recapture data collected in a protected area. Monthly apparent survival probability was higher for females (0.949, 95% CI = 0.936-0.960) than for males (0.908, 95% CI = 0.893-0.920), while monthly recruitment rate was higher for males (0.091, 95% CI = 0.078-0.106) than for females (0.054, 95% CI = 0.042-0.067). Finally, monthly realized population growth rate was 1.000 (95% CI = 0.996-1.004), indicating that our study population has reached a stable equilibrium in this relatively undisturbed habitat. There was little evidence for substantial temporal variation in population growth rate or its components. Our study is one of the first to quantify survival, recruitment, and realized population growth rate of raccoons using long-term data and rigorous statistical models.

  8. Comparison of an Ampelisca abdita growth rate test with other standard amphipod sediment toxicity tests

    SciTech Connect

    Schafer, K.; Weston, D.P.

    1995-12-31

    Amphipod crustaceans are often used to measure the toxicity of bulk sediments. Acute lethal bioassays are commonly employed, but this study investigated the potential for using a chronic growth bioassay with Ampelisca abdita. A potential advantage of this method is that the growth rate could be a more sensitive measure of contamination than mortality. Growth rates for A. abdita in sediments spiked with cadmium and crude oil were compared to mortality rates in A. abdita, Eohaustorius estuaries, and Rhepoxynius abronius in sediments with the same concentrations of contaminants. A. abdita was more sensitive to cadmium than the other two species. For crude oil, there was a significant shift in size distribution from the control even at concentrations as low as 150 mg/kg of oil. The standard acute lethal tests for all species, on the other hand, did not show significant mortality until at least 1,600 mg/kg. The results confirm that growth rates are a more sensitive indicator of toxicity, and to at least the three contaminants tested, A. abdita is as sensitive as E. estuarius and R. abronius. This study also confirmed the reported high mortality rates of E. estuaries in San Francisco Bay sediments. The causes of this high mortality are unknown but give further reason for using A. abdita for toxicity tests in this region.

  9. Measurement of Temperature Fluctuations and Microscopic Growth Rates in a Silicon Floating Zone on TEXUS36

    NASA Technical Reports Server (NTRS)

    Croell, Arne; Schweizer, Markus; Dold, P.; Kaiser, Th.; Benz, K. W.; Lichtensteiger, M.

    1999-01-01

    Several earlier (micro)g experiments have shown that time-dependent thermocapillary (Marangoni) convection is the major cause for the formation of dopant striations in floating-zone grown semiconductor crystals, at least in small-scale systems not employing RF heating. To quantify this correlation, a silicon floating-zone experiment was performed on the TEXUS36 flight (February 7, 1 998) in the monoellipsoid mirror furnace TEM02-ELLI. During the experiment, temperature fluctuations in the silicon melt zone and the microscopic growth rate were simultaneously measured. Temperature fluctuations of 0.5 C - 0.7 C with main frequencies between 0.1 Hz and 0.3 Hz were detectable. The microscopic growth rate fluctuated considerably around the average growth rate of 1 mm/min: rates from 4mm/min to negative values (backmelting) were observed. Dopant striations are clearly visible in the Sb-doped crystal. The frequencies associated with the dopant inhomogeneities correspond quite well with those of the temperature fluctuations and microscopic growth rates. 3D numerical simulations were performed to predict the optimum position of the temperature sensor, to evaluate characteristic temperature amplitudes and frequencies, and to give insight into the instability mechanisms of Maran-goni convection in this configuration. The simulations were in good agreement with the experimental values, showing temperature fluctuations with frequencies f? 0.25 Hz and amplitudes up to 1.8 C at a position equivalent to that of the sensor tip in the experiment.

  10. Delta L: An Apparatus for Measuring Macromolecule Crystal Growth Rates in Microgravity

    NASA Technical Reports Server (NTRS)

    Judge, Russell A.; Whitaker, Ann F. (Technical Monitor)

    2001-01-01

    Strongly diffracting high quality macromolecule crystals of suitable volume are keenly sought for X-ray diffraction analysis so that high-resolution molecular structure data can be obtained. Such data is of tremendous value to medical research, agriculture and commercial biotechnology. In previous studies by many investigators microgravity has been reported in some instances to improve biological macromolecule X-ray crystal quality while little or no improvement was observed in other cases. A better understanding of processes effecting crystal quality improvement in microgravity will therefore be of great benefit in optimizing crystallization success in microgravity. In ground based research with the protein lysozyme we have previously shown that a population of crystals grown under the same solution conditions, exhibit a variation in X-ray diffraction properties (Judge et al., 1999). We have also observed that under the same solution conditions, individual crystals will grow at slightly different growth rates. This phenomenon is called growth rate dispersion. For small molecule materials growth rate dispersion has been directly related to crystal quality (Cunningham et al., 1991; Ristic et al., 1991). We therefore postulate that microgravity may act to improve crystal quality by reducing growth rate dispersion. If this is the case then as different, Materials exhibit different degrees of growth rate dispersion on the ground then growth rate dispersion could be used to screen which materials may benefit the most from microgravity crystallization. In order to assess this theory the Delta L hardware is being developed so that macromolecule crystal growth rates can be measured in microgravity. Crystal growth rate is defined as the change or delta in crystal size (defined as a characteristic length, L) over time; hence the name of the hardware. Delta L will consist of an optics, a fluids, and a data acquisition sub-assemblies. The optics assembly will consist of a

  11. Morphology and mycelial growth rate of Pleurotus spp. strains from the Mexican mixtec region

    PubMed Central

    Guadarrama-Mendoza, P.C.; del Toro, G. Valencia; Ramírez-Carrillo, R.; Robles-Martínez, F.; Yáñez-Fernández, J.; Garín-Aguilar, M.E.; Hernández, C.G.; Bravo-Villa, G.

    2014-01-01

    Two native Pleurotus spp. strains (white LB-050 and pale pink LB-051) were isolated from rotten tree trunks of cazahuate (Ipomoea murucoides) from the Mexican Mixtec Region. Both strains were chemically dedikaryotized to obtain their symmetrical monokaryotic components (neohaplonts). This was achieved employing homogenization time periods from 60 to 65 s, and 3 day incubation at 28 °C in a peptone-glucose solution (PGS). Pairing of compatible neohaplonts resulted in 56 hybrid strains which were classified into the four following hybrid types: (R1-nxB1-n, R1-nxB2-1, R2-nxB1-n and R2-nxB2-1). The mycelial growth of Pleurotus spp. monokaryotic and dikaryotic strains showed differences in texture (cottony or floccose), growth (scarce, regular or abundant), density (high, regular or low), and pigmentation (off-white, white or pale pink). To determine the rate and the amount of mycelium growth in malt extract agar at 28 °C, the diameter of the colony was measured every 24 h until the Petri dish was completely colonized. A linear model had the best fit to the mycelial growth kinetics. A direct relationship between mycelial morphology and growth rate was observed. Cottony mycelium presented significantly higher growth rates (p < 0.01) in comparison with floccose mycelium. Thus, mycelial morphology can be used as criterion to select which pairs must be used for optimizing compatible-mating studies. Hybrids resulting from cottony neohaplonts maintained the characteristically high growth rates of their parental strains with the hybrid R1-nxB1-n being faster than the latter. PMID:25477920

  12. Sex-based differences in Adelie penguin (Pygoscelis adeliae) chick growth rates.

    USGS Publications Warehouse

    Jennings, Scott; Varsani, Arvind; Dugger, Catherine; Ballard, Grant; Ainley, David G.

    2016-01-01

    Sexually size-dimorphic species must show some difference between the sexes in growth rate and/or length of growing period. Such differences in growth parameters can cause the sexes to be impacted by environmental variability in different ways, and understanding these differences allows a better understanding of patterns in productivity between individuals and populations. We investigated differences in growth rate and diet between male and female Adélie Penguin (Pygoscelis adeliae) chicks during two breeding seasons at Cape Crozier, Ross Island, Antarctica. Adélie Penguins are a slightly dimorphic species, with adult males averaging larger than adult females in mass (~11%) as well as bill (~8%) and flipper length (~3%). We measured mass and length of flipper, bill, tibiotarsus, and foot at 5-day intervals for 45 male and 40 female individually-marked chicks. Chick sex was molecularly determined from feathers. We used linear mixed effects models to estimate daily growth rate as a function of chick sex, while controlling for hatching order, brood size, year, and potential variation in breeding quality between pairs of parents. Accounting for season and hatching order, male chicks gained mass an average of 15.6 g d-1 faster than females. Similarly, growth in bill length was faster for males, and the calculated bill size difference at fledging was similar to that observed in adults. There was no evidence for sex-based differences in growth of other morphological features. Adélie diet at Ross Island is composed almost entirely of two species—one krill (Euphausia crystallorophias) and one fish (Pleuragramma antarctica), with fish having a higher caloric value. Using isotopic analyses of feather samples, we also determined that male chicks were fed a higher proportion of fish than female chicks. The related differences in provisioning and growth rates of male and female offspring provides a greater understanding of the ways in which ecological factors may impact

  13. Re-alimentation in harbor seal pups: effects on the somatotropic axis and growth rate.

    PubMed

    Richmond, Julie P; Norris, Tenaya; Zinn, Steven A

    2010-01-15

    The metabolic hormones, growth hormone (GH) and insulin-like growth factor (IGF)-I, together with IGF binding proteins (IGFBP), have been well studied in domestic species and are the primary components of the somatotropic axis. This hormone axis is responsive to nutrient intake, associated with growth rate, and accretion of protein and adipose. However, this relationship has not been evaluated in species that rely heavily on adipose stores for survival, such as pinnipeds. The primary objectives of this research were to investigate the response of the somatotropic axis to reduced nutrient intake and re-alimentation in rehabilitated harbor seal pups, and to assess if these hormones are related to nutritional status and growth rate in harbor seals. Stranded harbor seal pups (n=24) arrived at the rehabilitation facility very thin after fasting for several days (nutritional nadir). Throughout rehabilitation nutrient intake increased and pups gained mass and body condition. Concentrations of GH and IGFBP-2 decreased with re-alimentation, while IGF-I and IGFBP-3 concentrations increased. Overall, GH and IGFBP-2 were negatively associated and IGF-I and IGFBP-3 were positively associated with growth rate and increased body condition of harbor sea pups. Further, the magnitude of the growth response was related to the magnitude in response of the somatotropic axis to varied levels of intake. These data suggest that multiple components of the somatotropic axis may be used to assess the energy status of individuals and may also provide information on the level of feed intake that is predictive of growth rate.

  14. The Course of Actualization

    ERIC Educational Resources Information Center

    De Smet, Hendrik

    2012-01-01

    Actualization is traditionally seen as the process following syntactic reanalysis whereby an item's new syntactic status manifests itself in new syntactic behavior. The process is gradual in that some new uses of the reanalyzed item appear earlier or more readily than others. This article accounts for the order in which new uses appear during…

  15. Growth-rate influences on coral climate proxies tested by a multiple colony culture experiment

    NASA Astrophysics Data System (ADS)

    Hayashi, Erika; Suzuki, Atsushi; Nakamura, Takashi; Iwase, Akihiro; Ishimura, Toyoho; Iguchi, Akira; Sakai, Kazuhiko; Okai, Takashi; Inoue, Mayuri; Araoka, Daisuke; Murayama, Shohei; Kawahata, Hodaka

    2013-01-01

    As application of coral-based climate reconstruction has become more frequent at tropical sites, increased attention is being paid to the potential ambiguities of coral thermometers that are intrinsic to the biomineralisation process, including the so-called vital effect, the growth-rate-related kinetic effect, and the [CO32-] effect. Here we studied how the growth rate influenced the skeletal oxygen and carbon isotope ratios (δ18O and δ13C) and the Sr/Ca ratio in a common-garden experiment involving the long-term culture of Porites australiensis clone colonies. Comparison of the seasonal minimum δ18O values during summer showed a negligible influence of the large intercolony variation in growth rate (2-10 mm yr-1) on δ18O variation, but δ18O was relatively sensitive to temporary intracolony growth-rate changes related to colony health. In contrast, the Sr/Ca ratio was robust against both inter- and intracolony growth-rate variation. We found a positive shift in δ13C in slower growing corals, which we attributed to the kinetic behaviour of the calcification reaction. The seasonal fluctuation in δ13C corresponded not to changes in light intensity nor to δ13C of dissolved inorganic carbon in seawater, but to photosynthetic efficiency as measured by pulse-amplitude photometry. These findings support the inference that coral skeletal Sr/Ca and δ18O in a long-lived colony can function as a palaeoclimate archive by recording signals of clonal growth. We also propose practical guidelines for the proper interpretation of coral records.

  16. Differentiating between apparent and actual rates of H2O2 metabolism by isolated rat muscle mitochondria to test a simple model of mitochondria as regulators of H2O2 concentration.

    PubMed

    Treberg, Jason R; Munro, Daniel; Banh, Sheena; Zacharias, Pamela; Sotiri, Emianka

    2015-08-01

    Mitochondria are often regarded as a major source of reactive oxygen species (ROS) in animal cells, with H2O2 being the predominant ROS released from mitochondria; however, it has been recently demonstrated that energized brain mitochondria may act as stabilizers of H2O2 concentration (Starkov et al. [1]) based on the balance between production and the consumption of H2O2, the later of which is a function of [H2O2] and follows first order kinetics. Here we test the hypothesis that isolated skeletal muscle mitochondria, from the rat, are able to modulate [H2O2] based upon the interaction between the production of ROS, as superoxide/H2O2, and the H2O2 decomposition capacity. The compartmentalization of detection systems for H2O2 and the intramitochondrial metabolism of H2O2 leads to spacial separation between these two components of the assay system. This results in an underestimation of rates when relying solely on extramitochondrial H2O2 detection. We find that differentiating between these apparent rates found when using extramitochondrial H2O2 detection and the actual rates of metabolism is important to determining the rate constant for H2O2 consumption by mitochondria in kinetic experiments. Using the high rate of ROS production by mitochondria respiring on succinate, we demonstrate that net H2O2 metabolism by mitochondria can approach a stable steady-state of extramitochondrial [H2O2]. Importantly, the rate constant determined by extrapolation of kinetic experiments is similar to the rate constant determined as the [H2O2] approaches a steady state.

  17. Flexibility in metabolic rate confers a growth advantage under changing food availability

    PubMed Central

    Auer, Sonya K; Salin, Karine; Rudolf, Agata M; Anderson, Graeme J; Metcalfe, Neil B; Ardia, Daniel

    2015-01-01

    Phenotypic flexibility in physiological, morphological and behavioural traits can allow organisms to cope with environmental challenges. Given recent climate change and the degree of habitat modification currently experienced by many organisms, it is therefore critical to quantify the degree of phenotypic variation present within populations, individual capacities to change and what their consequences are for fitness. Flexibility in standard metabolic rate (SMR) may be particularly important since SMR reflects the minimal energetic cost of living and is one of the primary traits underlying organismal performance. SMR can increase or decrease in response to food availability, but the consequences of these changes for growth rates and other fitness components are not well known. We examined individual variation in metabolic flexibility in response to changing food levels and its consequences for somatic growth in juvenile brown trout (Salmo trutta). SMR increased when individuals were switched to a high food ration and decreased when they were switched to a low food regime. These shifts in SMR, in turn, were linked with individual differences in somatic growth; those individuals that increased their SMR more in response to elevated food levels grew fastest, while growth at the low food level was fastest in those individuals that depressed their SMR most. Flexibility in energy metabolism is therefore a key mechanism to maximize growth rates under the challenges imposed by variability in food availability and is likely to be an important determinant of species’ resilience in the face of global change. PMID:25939669

  18. Flexibility in metabolic rate confers a growth advantage under changing food availability.

    PubMed

    Auer, Sonya K; Salin, Karine; Rudolf, Agata M; Anderson, Graeme J; Metcalfe, Neil B

    2015-09-01

    1. Phenotypic flexibility in physiological, morphological and behavioural traits can allow organisms to cope with environmental challenges. Given recent climate change and the degree of habitat modification currently experienced by many organisms, it is therefore critical to quantify the degree of phenotypic variation present within populations, individual capacities to change and what their consequences are for fitness. 2. Flexibility in standard metabolic rate (SMR) may be particularly important since SMR reflects the minimal energetic cost of living and is one of the primary traits underlying organismal performance. SMR can increase or decrease in response to food availability, but the consequences of these changes for growth rates and other fitness components are not well known. 3. We examined individual variation in metabolic flexibility in response to changing food levels and its consequences for somatic growth in juvenile brown trout (Salmo trutta). 4. SMR increased when individuals were switched to a high food ration and decreased when they were switched to a low food regime. These shifts in SMR, in turn, were linked with individual differences in somatic growth; those individuals that increased their SMR more in response to elevated food levels grew fastest, while growth at the low food level was fastest in those individuals that depressed their SMR most. 5. Flexibility in energy metabolism is therefore a key mechanism to maximize growth rates under the challenges imposed by variability in food availability and is likely to be an important determinant of species' resilience in the face of global change.

  19. Molecular and Metabolic Adaptations of Lactococcus lactis at Near-Zero Growth Rates

    PubMed Central

    Ercan, Onur; Wels, Michiel; Smid, Eddy J.

    2014-01-01

    This paper describes the molecular and metabolic adaptations of Lactococcus lactis during the transition from a growing to a near-zero growth state by using carbon-limited retentostat cultivation. Transcriptomic analyses revealed that metabolic patterns shifted between lactic- and mixed-acid fermentations during retentostat cultivation, which appeared to be controlled at the level of transcription of the corresponding pyruvate dissipation-encoding genes. During retentostat cultivation, cells continued to consume several amino acids but also produced specific amino acids, which may derive from the conversion of glycolytic intermediates. We identify a novel motif containing CTGTCAG in the upstream regions of several genes related to amino acid conversion, which we propose to be the target site for CodY in L. lactis KF147. Finally, under extremely low carbon availability, carbon catabolite repression was progressively relieved and alternative catabolic functions were found to be highly expressed, which was confirmed by enhanced initial acidification rates on various sugars in cells obtained from near-zero-growth cultures. The present integrated transcriptome and metabolite (amino acids and previously reported fermentation end products) study provides molecular understanding of the adaptation of L. lactis to conditions supporting low growth rates and expands our earlier analysis of the quantitative physiology of this bacterium at near-zero growth rates toward gene regulation patterns involved in zero-growth adaptation. PMID:25344239

  20. Social status regulates growth rate: consequences for life-history strategies.

    PubMed

    Hofmann, H A; Benson, M E; Fernald, R D

    1999-11-23

    The life-history strategies of organisms are sculpted over evolutionary time by the relative prospects of present and future reproductive success. As a consequence, animals of many species show flexible behavioral responses to environmental and social change. Here we show that disruption of the habitat of a colony of African cichlid fish, Haplochromis burtoni (Günther) caused males to switch social status more frequently than animals kept in a stable environment. H. burtoni males can be either reproductively active, guarding a territory, or reproductively inactive (nonterritorial). Although on average 25-50% of the males are territorial in both the stable and unstable environments, during the 20-week study, nearly two-thirds of the animals became territorial for at least 1 week. Moreover, many fish changed social status several times. Surprisingly, the induced changes in social status caused changes in somatic growth. Nonterritorial males and animals ascending in social rank showed an increased growth rate whereas territorial males and animals descending in social rank slowed their growth rate or even shrank. Similar behavioral and physiological changes are caused by social change in animals kept in stable environmental conditions, although at a lower rate. This suggests that differential growth, in interaction with environmental conditions, is a central mechanism underlying the changes in social status. Such reversible phenotypic plasticity in a crucial life-history trait may have evolved to enable animals to shift resources from reproduction to growth or vice versa, depending on present and future reproductive prospects.

  1. The impact of disease on the survival and population growth rate of the Tasmanian devil.

    PubMed

    Lachish, Shelly; Jones, Menna; McCallum, Hamish

    2007-09-01

    1. We investigated the impact of a recently emerged disease, Devil Facial Tumour Disease (DFTD), on the survival and population growth rate of a population of Tasmanian devils, Sarcophilus harrisii, on the Freycinet Peninsula in eastern Tasmania. 2. Cormack-Jolly-Seber and multistate mark-recapture models were employed to investigate the impact of DFTD on age- and sex-specific apparent survival and transition rates. Disease impact on population growth rate was investigated using reverse-time mark-recapture models. 3. The arrival of DFTD triggered an immediate and steady decline in apparent survival rates of adults and subadults, the rate of which was predicted well by the increase in disease prevalence in the population over time. 4. Transitions from healthy to diseased state increased with disease prevalence suggesting that the force of infection in the population is increasing and that the epidemic is not subsiding. 5. The arrival of DFTD coincided with a marked, ongoing decline in the population growth rate of the previously stable population, which to date has not been offset by population compensatory responses.

  2. Significant alterations in anisotropic ice growth rate induced by the ice nucleation-active bacteria Xanthomonas campestris

    NASA Astrophysics Data System (ADS)

    Nada, Hiroki; Zepeda, Salvador; Miura, Hitoshi; Furukawa, Yoshinori

    2010-09-01

    In the present study, we found that the ice nucleation-active bacteria Xanthomonas campestris significantly altered anisotropic ice growth rate. Results of ice growth experiments in the presence of X. campestris showed that this bacterium decreased the ice crystal growth rate in the c-axis, whereas it increased growth rates in directions normal to the c-axis. These results indicate that these alterations in anisotropic growth rate are the result of selective binding of bacterial ice-nucleating proteins along the {0 0 0 1} basal plane.

  3. Evaluating the effect of temperature on microbial growth rate - the Ratkowsky and a Belehrádek type models

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this paper to conduct a parallel comparison of a new Belehradek-type growth rate (Huang model), Ratkowsky Square-root, and Ratkowsky Square equations as secondary models for evaluating the effect of temperature on the growth of microorganisms. Growth rates of psychrotrophs and meso...

  4. Final Report: "Collaborative Project. Understanding the Chemical Processes That Affect Growth Rates of Freshly Nucleated Particles"

    SciTech Connect

    Smith, James N.; McMurry, Peter H.

    2015-11-12

    This final technical report describes our research activities that have, as the ultimate goal, the development of a model that explains growth rates of freshly nucleated particles. The research activities, which combine field observations with laboratory experiments, explore the relationship between concentrations of gas-phase species that contribute to growth and the rates at which those species are taken up. We also describe measurements of the chemical composition of freshly nucleated particles in a variety of locales, as well as properties (especially hygroscopicity) that influence their effects on climate. Our measurements include a self-organized, DOE-ARM funded project at the Southern Great Plains site, the New Particle Formation Study (NPFS), which took place during spring 2013. NPFS data are available to the research community on the ARM data archive, providing a unique suite observations of trace gas and aerosols that are associated with the formation and growth of atmospheric aerosol particles.

  5. Growth rate responses of Missouri and lower Yellowstone river fishes to a latitudinal gradient

    USGS Publications Warehouse

    Pegg, M.A.; Pierce, C.L.

    2001-01-01

    Growth rate coefficients estimated for channel catfish Ictalurus punctatus, emerald shiners Notropis atherinoides, freshwater drums Aplodinotus grunniens, river carpsuckers Carpiodes carpio and saugers Stizostedion canadense collected in 1996-1998 from nine river sections of the Missouri and lower Yellowstone rivers at two life-stages (young-of-the-year and age 1 + years) were significantly different among sections. However, they showed no river-wide latitudinal trend except for age 1 + years emerald shiners that did show a weak negative relation between growth and both latitude and length of growing season. The results suggest growth rates of fishes along the Missouri River system are complex and could be of significance in the management and conservation of fish communities in this altered system. ?? 2001 The Fisheries Society of the British Isles.

  6. 77 K Fatigue Crack Growth Rate of Modified CF8M Stainless Steel Castings

    SciTech Connect

    Walsh, R. P.; Toplosky, V. J.; Han, K.; Heitzenroeder, P. J.; Nelson, B. E.

    2006-03-31

    The National Compact Stellerator Experiment (NCSX) is the first of a new class of stellarators. The modular superconducting coils in the NCSX have complex geometry that are manufactured on cast stainless steel (modified CF8M) winding forms. Although CF8M castings have been used before at cryogenic temperature there is limited data available for their mechanical properties at low temperatures. The fatigue life behavior of the cast material is vital thus a test program to generate data on representative material has been conducted. Fatigue test specimens have been obtained from key locations within prototype winding forms to determine the 77 K fatigue crack growth rate. The testing has successfully developed a representative database that ensures confident design. The measured crack growth rates are analyzed in terms of the Paris law parameters and the crack growth properties are related to the materials microstructure.

  7. Wavelength-normalized spectroscopic analysis of Staphylococcus aureus and Pseudomonas aeruginosa growth rates

    PubMed Central

    McBirney, Samantha E.; Trinh, Kristy; Wong-Beringer, Annie; Armani, Andrea M.

    2016-01-01

    Optical density (OD) measurements are the standard approach used in microbiology for characterizing bacteria concentrations in culture media. OD is based on measuring the optical absorbance of a sample at a single wavelength, and any error will propagate through all calculations, leading to reproducibility issues. Here, we use the conventional OD technique to measure the growth rates of two different species of bacteria, Pseudomonas aeruginosa and Staphylococcus aureus. The same samples are also analyzed over the entire UV-Vis wavelength spectrum, allowing a distinctly different strategy for data analysis to be performed. Specifically, instead of only analyzing a single wavelength, a multi-wavelength normalization process is implemented. When the OD method is used, the detected signal does not follow the log growth curve. In contrast, the multi-wavelength normalization process minimizes the impact of bacteria byproducts and environmental noise on the signal, thereby accurately quantifying growth rates with high fidelity at low concentrations. PMID:27867713

  8. Use of the Burton-prim-slichter Equation at High Growth Rates

    NASA Technical Reports Server (NTRS)

    Wilcox, W. R.

    1984-01-01

    The following must be assumed in order to derive the classic Burton-Prim-Slichter equation for segregation during crystal growth: isobaric, isothermal, isopotential or uncharged species, binary, planar interface, steady state, constant diffusion coefficient in fluid, no diffusion in crystal, no lateral convection within fluid film at interface with complete mixing beyond (stagnant film model), and either density, total concentration or partial molar volumes constant in the fluid phase. In addition, the effective distribution coefficient and the interfacial distribution coefficient must be defined properly. The velocity in the equation is the growth rate times a factor correcting for the difference in volumetric properties between crystal and fluid. The stagnant film thickness is found to be a function of freezing rate, with the precise functionality depending on the type of stirring occurring in the growth fluid.

  9. Radiocarbon-Based Ages and Growth Rates of Bamboo Corals from the Gulf of Alaska

    SciTech Connect

    Roark, E B; Guilderson, T P; Flood-Page, S; Dunbar, R B; Ingram, B L; Fallon, S J; McCulloch, M

    2004-12-12

    Deep-sea coral communities have long been recognized by fisherman as areas that support large populations of commercial fish. As a consequence, many deep-sea coral communities are threatened by bottom trawling. Successful management and conservation of this widespread deep-sea habitat requires knowledge of the age and growth rates of deep-sea corals. These organisms also contain important archives of intermediate and deep-water variability, and are thus of interest in the context of decadal to century-scale climate dynamics. Here, we present {Delta}{sup 14}C data that suggest that bamboo corals from the Gulf of Alaska are long-lived (75-126 years) and that they acquire skeletal carbon from two distinct sources. Independent verification of our growth rate estimates and coral ages is obtained by counting seasonal Sr/Ca cycles and probable lunar cycle growth bands.

  10. Growth Rate of Usnea aurantiacoatra (Jacq.) Bory on Fildes Peninsula, Antarctica and Its Climatic Background

    PubMed Central

    Li, Ying; Kromer, Bernd; Schukraft, Gerd; Bubenzer, Olaf; Huang, Man-Rong; Wang, Ze-Min; Bian, Lin-Gen; Li, Cheng-Sen

    2014-01-01

    The ages of a fruticose lichen of Usnea aurantiacoatra (Jacq.) Bory, from Fildes Peninsula, King George Island, Southwest Antarctic, were determined by radiocarbon (14C), and it is 1993–1996 at bottom and 2006–2007 at top of the lichen branch. The growth rates of U. aurantiacoatra calculated are 4.3 to 5.5 mm year−1 based on its length and ages. The comparisons show that the growth rates of U. aurantiacoatra are higher than those of U. antarctica (0.4 to 1.1 mm year−1). The growth rates of fruticose lichens are always higher, usually >2 mm year−1, than those of crustose ones, usually <1 mm year−1, in polar areas. A warming trend on Fildes Peninsula is recorded in the period from 1969 to 2010 obviously: the mean annual temperature rose from −2.75 to −1.9°C and the average temperature of summer months from 0.95 to 1.4°C, as well as the average temperature of winter months from −6.75 to −5.5°C. The alteration of lichen growth rates in polar areas may respond to the climatic and environmental changes, and the lichens may act as bio-monitor of natural condition. PMID:24968131

  11. Effect of temperature on microbial growth rate - thermodynamic analysis, the arrhenius and eyring-polanyi connection

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this work is to develop a new thermodynamic mathematical model for evaluating the effect of temperature on the rate of microbial growth. The new mathematical model is derived by combining the Arrhenius equation and the Eyring-Polanyi transition theory. The new model, suitable for ...

  12. Growth rate predicts mortality of Abies concolor in both burned and unburned stands

    USGS Publications Warehouse

    van Mantgem, Phillip J.; Stephenson, Nathan L.; Mutch, Linda S.; Johnson, Veronica G.; Esperanza, Annie M.; Parsons, David J.

    2003-01-01

    Tree mortality is often the result of both long-term and short-term stress. Growth rate, an indicator of long-term stress, is often used to estimate probability of death in unburned stands. In contrast, probability of death in burned stands is modeled as a function of short-term disturbance severity. We sought to narrow this conceptual gap by determining (i) whether growth rate, in addition to crown scorch, is a predictor of mortality in burned stands and (ii) whether a single, simple model could predict tree death in both burned and unburned stands. Observations of 2622 unburned and 688 burned Abies concolor (Gord. & Glend.) Lindl. (white fir) in the Sierra Nevada of California, U.S.A., indicated that growth rate was a significant predictor of mortality in the unburned stands, while both crown scorch and radial growth were significant predictors of mortality in the burned stands. Applying the burned stand model to unburned stands resulted in an overestimation of the unburned stand mortality rate. While failing to create a general model of tree death for A. concolor, our findings underscore the idea that similar processes may affect mortality in disturbed and undisturbed stands.

  13. Effect of Seeding Rate and Planting Arrangement on Rye Cover Crop and Weed Growth

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Weed growth in winter cover crops in warm climates may contribute to weed management costs in subsequent crops. A two year experiment was conducted on an organic vegetable farm in Salinas, California, to determine the impact of seeding rate and planting arrangement on rye (Secale cereale L. cv. Merc...

  14. Population Growth Rates: Connecting Mathematics to Studies of Society and the Environment

    ERIC Educational Resources Information Center

    Ninbet, Steven; Hurley, Gabrielle; Weldon, Elizabeth

    2006-01-01

    This article reports on the teaching of a unit of lessons which integrates mathematics with studies of society and the environment. The unit entitled "Population Growth Rates" was taught to a double class of Year 6 students by a team of three teachers. The objectives of the unit were: (1) to provide students with a real-world context in…

  15. CK2 activity is modulated by growth rate in Saccharomyces cerevisiae

    SciTech Connect

    Tripodi, Farida; Cirulli, Claudia; Reghellin, Veronica; Marin, Oriano; Brambilla, Luca; Schiappelli, Maria Patrizia; Porro, Danilo; Vanoni, Marco; Alberghina, Lilia; Coccetti, Paola

    2010-07-16

    Research highlights: {yields} CK2 subunits are nuclear both in glucose and in ethanol growing yeast cells. {yields} CK2 activity is modulated in S. cerevisiae. {yields} CK2 activity is higher in conditions supporting higher growth rates. {yields} V{sub max} is higher in faster growing cells, while K{sub m} is not affected. -- Abstract: CK2 is a highly conserved protein kinase controlling different cellular processes. It shows a higher activity in proliferating mammalian cells, in various types of cancer cell lines and tumors. The findings presented herein provide the first evidence of an in vivo modulation of CK2 activity, dependent on growth rate, in Saccharomyces cerevisiae. In fact, CK2 activity, assayed on nuclear extracts, is shown to increase in exponential growing batch cultures at faster growth rate, while localization of catalytic and regulatory subunits is not nutritionally modulated. Differences in intracellular CK2 activity of glucose- and ethanol-grown cells appear to depend on both increase in molecule number and k{sub cat}. Also in chemostat cultures nuclear CK2 activity is higher in faster growing cells providing the first unequivocal demonstration that growth rate itself can affect CK2 activity in a eukaryotic organism.

  16. Runoff nutrient transport as affected by land application method, swine growth stage, and runoff rate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This study was conducted to measure the effects of slurry application method, swine growth stage, and flow rate on runoff nutrient transport. Swine slurry was obtained from production units containing grower pigs, finisher pigs, or sows and gilts. The swine slurry was applied using broadcast, disk, ...

  17. Extracting growth rates from the non-laminated coralline sponge Astrosclera willeyana using "bomb" radiocarbon

    SciTech Connect

    Fallon, S; Guilderson, T

    2004-06-30

    Coralline sponges have the potential to fill in gaps in our understanding of subsurface oceanographic variability. However, one disadvantage they have compared to hermatypic reef building coral proxies is that they do not have annual density bands and need to be radiometrically dated for an age determination. To elucidate growth rate variability we have measured radiocarbon in 1 mm increments from Astrosclera willeyana sponges collected off the Central and Northern Great Barrier Reef (GBR) and from Truk in the Caroline Islands and compared these radiocarbon profiles to independently dated coral radiocarbon records. Growth rates of the GBR sponges average 1.2 {+-} 0.3 and 1.0 {+-} 0.3 mm yr{sup -1}, north and central respectively but can vary by a factor of two. The growth rate of the Truk sponge averages 1.2 {+-} 0.1 mm yr{sup -1}. These growth rates are significantly faster to those measured for other GBR Astrosclera willeyana sponges (0.2 mm yr{sup -1}) by Calcein staining (Woerheide 1988).

  18. Growth rates of great egret, snowy egret and black-crowned night-heron chicks

    USGS Publications Warehouse

    Custer, T.W.; Peterson, D.W.

    1991-01-01

    Growth rates of Great Erget (Casmerodius albus), Snowy Erget (Egretta thula), and Black-crowned Night-Heron (Nycticorax nycticorax) chicks to 18 days-of-age were estimated from repeated measurements of chicks in broods of three young. Weight gain (g/day) or increase in length (mm/day) of forearm, tarsus, or culmen did not between Black-crowned Night-Heron chicks at a colony in Rhode Island and a colony in Texas (USA). In Black-crowned night-Herons and Great Egrets, the last chick (C-chick) to hatch had lower growth rates than the first (A-) or second (B-) hatched chick. Black-crowned Night-Heron and Great Egret A-chicks gained weight faster than Snowy Egret A-chicks; however growth rates of the forearm, tarsus, or culmen each were not different among the three species. Equations based on the growth rate of culmen, forearm, or tarsus for repeatedly measured A-chicks estimated age of Great Egret, Snowy Egret, and Black-crowned Night-Heron chicks collected elsewhere to within two days of known age.

  19. Contemporary evolution of plant growth rate following experimental removal of herbivores.

    PubMed

    Turley, Nash E; Odell, Walter C; Schaefer, Hanno; Everwand, Georg; Crawley, Michael J; Johnson, Marc T J

    2013-05-01

    Herbivores are credited with driving the evolutionary diversification of plant defensive strategies over macroevolutionary time. For this to be true, herbivores must also cause short-term evolution within plant populations, but few studies have experimentally tested this prediction. We addressed this gap using a long-term manipulative field experiment where exclosures protected 22 plant populations from natural rabbit herbivory for <1 to 26 years. We collected seeds of Rumex acetosa L. (Polygonaceae) from our plots and grew them in a common greenhouse environment to quantify evolved differences among populations in individual plant growth rate, tolerance to herbivory, competitive ability, and the concentration of secondary metabolites (tannins and oxalate) implicated in defense against herbivores. In 26 years without rabbit herbivory, plant growth rate decreased linearly by 30%. We argue that plant growth rate has evolved as a defense against intense rabbit herbivory. In contrast, we found no change in tolerance to herbivory or concentrations of secondary metabolites. We also found no change in competitive ability, suggesting that contemporary evolution may not feed back to alter ecological interactions within this plant community. Our results combined with those of other studies show that the evolution of gross morphological traits such as growth rate in response to herbivory may be common, which calls into question assumptions about some of the most popular theories of plant defense.

  20. APPLICATION OF PHOTOPIGMENT BIOMARKERS FOR QUANTIFYING MICROALGAL COMMUNITY COMPOSITION AND IN SITU GROWTH RATES. (R828677)

    EPA Science Inventory

    In estuarine waters, phytoplankton are exposed to rapidly changing conditions that may affect community structure and function. In this study we determined the effects of mixing, turbidity, and limiting nutrient (N) additions on natural phytoplankton growth rates and algal gro...

  1. APPLICATION OF PHOTOPIGMENT BIOMARKERS FOR QUANTIFYING MICROALGAL COMMUNITY COMPOSITION AND IN SITU GROWTH RATES. (R826938)

    EPA Science Inventory

    In estuarine waters, phytoplankton are exposed to rapidly changing conditions that may affect community structure and function. In this study we determined the effects of mixing, turbidity, and limiting nutrient (N) additions on natural phytoplankton growth rates and algal gro...

  2. The effects of supplemental Sericea lespedeza pellets in lambs and kids. 1. Growth rate

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sericea lespedeza (SL; Lespedeza cuneata) has been used in recent years to aid in the control of gastrointestinal nematodes (GIN) in sheep and goats. Grazing or feeding dried SL leads to a reduction in egg production by GIN and reduces coccidiosis. Growth rates in lambs and kids when fed SL for mo...

  3. Linear growth rates of resistive tearing modes with sub-Alfvénic streaming flow

    SciTech Connect

    Wu, L. N.; Ma, Z. W.

    2014-07-15

    The tearing instability with sub-Alfvénic streaming flow along the external magnetic field is investigated using resistive MHD simulation. It is found that the growth rate of the tearing mode instability is larger than that without the streaming flow. With the streaming flow, there exist two Alfvén resonance layers near the central current sheet. The larger perturbation of the magnetic field in two closer Alfvén resonance layers could lead to formation of the observed cone structure and can largely enhance the development of the tearing mode for a narrower streaming flow. For a broader streaming flow, a larger separation of Alfvén resonance layers reduces the magnetic reconnection. The linear growth rate decreases with increase of the streaming flow thickness. The growth rate of the tearing instability also depends on the plasma beta (β). When the streaming flow is embedded in the current sheet, the growth rate increases with β if β < β{sub s}, but decreases if β > β{sub s}. The existence of the specific value β{sub s} can be attributed to competition between the suppressing effect of β and the enhancing effect of the streaming flow on the magnetic reconnection. The critical value β{sub s} increases with increase of the streaming flow strength.

  4. Predicting Lexical Density Growth Rate in Young Children with Autism Spectrum Disorders

    ERIC Educational Resources Information Center

    Yoder, Paul J.

    2006-01-01

    Purpose: The purpose of this longitudinal correlational study was to test whether an environmental variable and 4 child variables predicted growth rate of number of different nonimitative words used (i.e., lexical density). Method: Thirty-five young (age range = 21-54 months) children with autism spectrum disorders (ASD) who were initially…

  5. A Study on the Rate of Contribution of Education Investment to the Economic Growth in China

    ERIC Educational Resources Information Center

    Fan, Bo-nai; Lai, Xiong-xiang

    2006-01-01

    There is an evident bi-directional causality relationship between education investment and economic growth based on an analysis of statistics from 1952 to 2003 released by the State Statistics Bureau. A generalized difference regression model is set up to investigate the relationship between the two. Studies show that the rate of contribution of…

  6. Capitalizing on the Dynamic Features of Excel to Consider Growth Rates and Limits

    ERIC Educational Resources Information Center

    Taylor, Daniel; Moore-Russo, Deborah

    2012-01-01

    It is common for both algebra and calculus instructors to use power functions of various degrees as well as exponential functions to examine and compare rates of growth. This can be done on a chalkboard, with a graphing calculator, or with a spreadsheet. Instructors often are careful to connect the symbolic and graphical (and occasionally the…

  7. Investigations into the relationship of post-stress metabolic rates and growth of fishes

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The objective of this study was to determine if respirometry indices of fish following a stressor correspond with growth. On four occasions over a period of one month, oxygen consumption rates of 16 hybrid striped bass families were measured following a standardized handling stressor. Groups of 10...

  8. Specific growth rate and substrate dependent polyhydroxybutyrate production in Saccharomyces cerevisiae.

    PubMed

    Kocharin, Kanokarn; Nielsen, Jens

    2013-03-21

    Production of the biopolymer polyhydroxybutyrate (PHB) in Saccharomyces cerevisiae starts at the end of exponential phase particularly when the specific growth rate is decreased due to the depletion of glucose in the medium. The specific growth rate and the type of carbon source (fermentable/non-fermentable) have been known to influence the cell physiology and hence affect the fermentability of S. cerevisiae. The production of PHB utilizes cytosolic acetyl-CoA as a precursor and the S. cerevisiae employed in this study is therefore a strain with the enhanced cytosolic acetyl-CoA supply. Growth and PHB production at different specific growth rates were evaluated on glucose, ethanol and a mixture of glucose and ethanol as carbon source. Ethanol as carbon source yielded a higher PHB production compared to glucose since it can be directly used for cytosolic acetyl-CoA production and hence serves as a precursor for PHB production. However, this carbon source results in lower biomass yield and hence it was found that to ensure both biomass formation and PHB production a mixture of glucose and ethanol was optimal, and this resulted in the highest volumetric productivity of PHB, 8.23 mg/L · h-1, at a dilution rate of 0.1 h-1.

  9. Small Variance in Growth Rate in Annual Plants has Large Effects on Genetic Drift

    Technology Transfer Automated Retrieval System (TEKTRAN)

    When plant size is strongly correlated with plant reproduction, variance in growth rates results in a lognormal distribution of seed production within a population. Fecundity variance affects effective population size (Ne), which reflects the ability of a population to maintain beneficial mutations ...

  10. Spectral conversion of light for enhanced microalgae growth rates and photosynthetic pigment production.

    PubMed

    Mohsenpour, Seyedeh Fatemeh; Richards, Bryce; Willoughby, Nik

    2012-12-01

    The effect of light conditions on the growth of green algae Chlorella vulgaris and cyanobacteria Gloeothece membranacea was investigated by filtering different wavelengths of visible light and comparing against a model daylight source as a control. Luminescent acrylic sheets containing violet, green, orange or red dyes illuminated by a solar simulator produced the desired wavelengths of light for this study. From the experimental results the highest specific growth rate for C. vulgaris was achieved using the orange range whereas violet light promoted the growth of G. membranacea. Red light exhibited the least efficiency in conversion of light energy into biomass in both strains of microalgae. Photosynthetic pigment formation was examined and maximum chlorophyll-a production in C. vulgaris was obtained by red light illumination. Green light yielded the best chlorophyll-a production in G. membranacea. The proposed illumination strategy offers improved microalgae growth without resorting to artificial light sources, reducing energy use and costs of cultivation.

  11. Effect of band-overload on fatigue crack growth rate of HSLA steel

    NASA Astrophysics Data System (ADS)

    Abhinay, S. V.; Tenduwe, Om Prakash; Kumar, Ajit; Dutta, K.; Verma, B. B.; Ray, P. K.

    2015-02-01

    Fatigue crack growth behavior is important parameter of structural materials. This parameters can be used to predict their life, service reliability and operational safety in different conditions. The material used in this investigation is an HSLA steel. In this investigation effect of single overload and band-overload on fatigue crack growth of same steel are studied using compact tension (CT) specimens under mode-I condition and R=0.3. It is observed that overload and band-overload applications resulted retardation on the fatigue crack growth rate in most of the cases. It is also noticed that maximum retardation took place on application of seven successive overload cycles. Application of ten and more overload cycles caused no crack growth retardation.

  12. Increased classical endoplasmic reticulum stress is sufficient to reduce chondrocyte proliferation rate in the growth plate and decrease bone growth.

    PubMed

    Kung, Louise H W; Rajpar, M Helen; Preziosi, Richard; Briggs, Michael D; Boot-Handford, Raymond P

    2015-01-01

    Mutations in genes encoding cartilage oligomeric matrix protein and matrilin-3 cause a spectrum of chondrodysplasias called multiple epiphyseal dysplasia (MED) and pseudoachondroplasia (PSACH). The majority of these diseases feature classical endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR) as a result of misfolding of the mutant protein. However, the importance and the pathological contribution of ER stress in the disease pathogenesis are unknown. The aim of this study was to investigate the generic role of ER stress and the UPR in the pathogenesis of these diseases. A transgenic mouse line (ColIITgcog) was generated using the collagen II promoter to drive expression of an ER stress-inducing protein (Tgcog) in chondrocytes. The skeletal and histological phenotypes of these ColIITgcog mice were characterised. The expression and intracellular retention of Tgcog induced ER stress and activated the UPR as characterised by increased BiP expression, phosphorylation of eIF2α and spliced Xbp1. ColIITgcog mice exhibited decreased long bone growth and decreased chondrocyte proliferation rate. However, there was no disruption of chondrocyte morphology or growth plate architecture and perturbations in apoptosis were not apparent. Our data demonstrate that the targeted induction of ER stress in chondrocytes was sufficient to reduce the rate of bone growth, a key clinical feature associated with MED and PSACH, in the absence of any growth plate dysplasia. This study establishes that classical ER stress is a pathogenic factor that contributes to the disease mechanism of MED and PSACH. However, not all the pathological features of MED and PSACH were recapitulated, suggesting that a combination of intra- and extra-cellular factors are likely to be responsible for the disease pathology as a whole.

  13. Growth rate, protein accumulation, and catabolic enzyme activity of skeletal muscles of galliform birds.

    PubMed

    Shea, Russell E; Olson, John M; Ricklefs, Robert E

    2007-01-01

    We measured the mass and several potential indices of functional capacity of the leg and pectoral muscles through 21 d of age in chicks of three species of galliform birds and the domesticated turkey. The study was conducted to test the hypothesis that the growth rate of a tissue is inversely related to its capacity for mature function across species. We measured the proportion of protein and the activities of the catabolic enzymes citrate synthase (CS), pyruvate kinase (PK), and beta -hydroxy-acyl-CoA-dehydrogenase (HOAD) and estimated exponential growth rate (EGR) from growth increments. EGR was negatively related to proportion of protein, PK, and HOAD and positively related to CS activity. In a multiple regression, EGR was uniquely related only to proportion of protein; it was higher in pectoral muscles and increased in this order: wild turkeygrowth and large muscle size in turkeys resulted in substantially elevated growth rate. When the proportion of protein was normalized by its maximum value for each species and muscle type, the relationship between EGR and normalized protein did not differ significantly among species or muscle type. Thus, if we accept the proportion of protein relative to the mature level as an index of functional capacity--presumably representing the assembly of the contractile apparatus--then growth rate is consistently inversely related to a muscle's capacity for mature function, that is, force generation.

  14. Modelling the effect of ethanol on growth rate of food spoilage moulds.

    PubMed

    Dantigny, Philippe; Guilmart, Audrey; Radoi, Florentina; Bensoussan, Maurice; Zwietering, Marcel

    2005-02-15

    The effect of ethanol (E) on the radial growth rate (mu) of food spoilage moulds (Aspergillus candidus, Aspergillus flavus, Aspergillus niger, Cladosporium cladosporioides, Eurotium herbariorum, Mucor circinelloides, Mucor racemosus, Paecilomyces variotii, Penicillium chrysogenum, Penicillium digitatum, Rhizopus oryzae and Trichoderma harzianum) was assessed in Potato Dextrose Agar (PDA) medium at a(w) 0.99, 25 degrees C. In order to model this effect, the Monod type equation described previously by Houtsma et al. (Houtsma, P.C., Kusters, B.J.M., de Wit, J.C., Rombouts, F.M., Zwietering, M.H., 1994. Modelling growth rates of Listeria monocytogenes as a function of lactate concentration. Int. J. Food. Microbiol. 24, 113-123.) was re-parameterised: mu = mu(opt)[K(E(max)-E)/K E(max)-2KE+E(max)E]; E(max) (%, wt/wt): ethanol concentration at which no growth occurs, K (%, wt/wt): ethanol concentration at which mu = mu(opt)/2, mu(opt) (mm day(-1)): growth rate at 0% ethanol. The model was capable of describing curves, mu vs. E, with either a concave shape (KE(max)/2) with a good accuracy (root mean square error (RMSE) < or = 0.136) with the notable exception of R. oryzae and T. harzianum. After growth rate data were square-root transformed to stabilise the variance, E(max) was estimated in the range 3% to 5% for all moulds with the exception of T. harzianum (E(max) 2.14%) and P. variotii (E(max) 6.43%). Ethanol would appear an effective additional barrier to inhibit fungal growth in food products and would represent an interesting alternative to the use of preservatives.

  15. The effect of differential growth rates across plants on spectral predictions of physiological parameters.

    PubMed

    Rapaport, Tal; Hochberg, Uri; Rachmilevitch, Shimon; Karnieli, Arnon

    2014-01-01

    Leaves of various ages and positions in a plant's canopy can present distinct physiological, morphological and anatomical characteristics, leading to complexities in selecting a single leaf for spectral representation of an entire plant. A fortiori, as growth rates between canopies differ, spectral-based comparisons across multiple plants--often based on leaves' position but not age--becomes an even more challenging mission. This study explores the effect of differential growth rates on the reflectance variability between leaves of different canopies, and its implication on physiological predictions made by widely-used spectral indices. Two distinct irrigation treatments were applied for one month, in order to trigger the formation of different growth rates between two groups of grapevines. Throughout the experiment, the plants were physiologically and morphologically monitored, while leaves from every part of their canopies were spectrally and histologically sampled. As the control vines were constantly developing new leaves, the water deficit plants were experiencing growth inhibition, resulting in leaves of different age at similar nodal position across the treatments. This modification of the age-position correlation was characterized by a near infrared reflectance difference between younger and older leaves, which was found to be exponentially correlated (R(2) = 0.98) to the age-dependent area of intercellular air spaces within the spongy parenchyma. Overall, the foliage of the control plant became more spectrally variable, creating complications for intra- and inter-treatment leaf-based comparisons. Of the derived indices, the Structure-Insensitive Pigment Index (SIPI) was found indifferent to the age-position effect, allowing the treatments to be compared at any nodal position, while a Normalized Difference Vegetation Index (NDVI)-based stomatal conductance prediction was substantially affected by differential growth rates. As various biotic and abiotic

  16. The Effect of Differential Growth Rates across Plants on Spectral Predictions of Physiological Parameters

    PubMed Central

    Rapaport, Tal; Hochberg, Uri; Rachmilevitch, Shimon; Karnieli, Arnon

    2014-01-01

    Leaves of various ages and positions in a plant's canopy can present distinct physiological, morphological and anatomical characteristics, leading to complexities in selecting a single leaf for spectral representation of an entire plant. A fortiori, as growth rates between canopies differ, spectral-based comparisons across multiple plants – often based on leaves' position but not age – becomes an even more challenging mission. This study explores the effect of differential growth rates on the reflectance variability between leaves of different canopies, and its implication on physiological predictions made by widely-used spectral indices. Two distinct irrigation treatments were applied for one month, in order to trigger the formation of different growth rates between two groups of grapevines. Throughout the experiment, the plants were physiologically and morphologically monitored, while leaves from every part of their canopies were spectrally and histologically sampled. As the control vines were constantly developing new leaves, the water deficit plants were experiencing growth inhibition, resulting in leaves of different age at similar nodal position across the treatments. This modification of the age-position correlation was characterized by a near infrared reflectance difference between younger and older leaves, which was found to be exponentially correlated (R2 = 0.98) to the age-dependent area of intercellular air spaces within the spongy parenchyma. Overall, the foliage of the control plant became more spectrally variable, creating complications for intra- and inter-treatment leaf-based comparisons. Of the derived indices, the Structure-Insensitive Pigment Index (SIPI) was found indifferent to the age-position effect, allowing the treatments to be compared at any nodal position, while a Normalized Difference Vegetation Index (NDVI)-based stomatal conductance prediction was substantially affected by differential growth rates. As various biotic and

  17. Effects of growth temperature and growth rate on polytypes in gold-catalyzed GaAs nanowires studied by in situ X-ray diffraction

    NASA Astrophysics Data System (ADS)

    Takahasi, Masamitu; Kozu, Miwa; Sasaki, Takuo

    2016-04-01

    The polytypism of GaAs nanowires was investigated by in situ X-ray diffraction under different growth conditions. The growth of nanowires was found to start with the formation of the zincblende structure, followed by the growth of the wurtzite structure. The observed growth process of nanowires was well reproduced by simulations based on a layer-by-layer nucleation model. At a low growth temperature and a high growth rate, stacking faults were found to be frequently introduced owing to the reduction in energy barrier. As a result, the zincblend and wurtzite segments in nanowires were highly fragmented and the wurtzite structure was formed in the early stage of growth.

  18. Rates of Root and Organism Growth, Soil Conditions, and Temporal and Spatial Development of the Rhizosphere

    PubMed Central

    WATT, MICHELLE; SILK, WENDY K.; PASSIOURA, JOHN B.

    2006-01-01

    • Background Roots growing in soil encounter physical, chemical and biological environments that influence their rhizospheres and affect plant growth. Exudates from roots can stimulate or inhibit soil organisms that may release nutrients, infect the root, or modify plant growth via signals. These rhizosphere processes are poorly understood in field conditions. • Scope and Aims We characterize roots and their rhizospheres and rates of growth in units of distance and time so that interactions with soil organisms can be better understood in field conditions. We review: (1) distances between components of the soil, including dead roots remnant from previous plants, and the distances between new roots, their rhizospheres and soil components; (2) characteristic times (distance2/diffusivity) for solutes to travel distances between roots and responsive soil organisms; (3) rates of movement and growth of soil organisms; (4) rates of extension of roots, and how these relate to the rates of anatomical and biochemical ageing of root tissues and the development of the rhizosphere within the soil profile; and (5) numbers of micro-organisms in the rhizosphere and the dependence on the site of attachment to the growing tip. We consider temporal and spatial variation within the rhizosphere to understand the distribution of bacteria and fungi on roots in hard, unploughed soil, and the activities of organisms in the overlapping rhizospheres of living and dead roots clustered in gaps in most field soils. • Conclusions Rhizosphere distances, characteristic times for solute diffusion, and rates of root and organism growth must be considered to understand rhizosphere development. Many values used in our analysis were estimates. The paucity of reliable data underlines the rudimentary state of our knowledge of root–organism interactions in the field. PMID:16551700

  19. Influence of dose rate on fast neutron OER and biological effectiveness determined for growth inhibition in Vicia faba.

    PubMed

    Van Dam, J; Billiet, G; Bonte, J; Octave-Prignot, M; Wambersie, A

    1983-09-01

    The influence of dose rate on the effectiveness of a neutron irradiation was investigated using growth inhibition in Vicia faba bean roots as biological system. d(50) + Be neutron beams produced at the cyclotron CYCLONE of the University of Louvain-la-Neuve were used, at high and low dose rate, by modifying the deuteron beam current. When decreasing the dose rate from 0.14 Gy.min-1 to 0.2 Gy.h-1, the effectiveness of the neutrons decreased down to 0.84 +/- 0.05 (dose ratio, at high and low dose rate. Dhigh/Dlow, producing equal biological effect). Control irradiations, with 60Co gamma-rays, indicated a similar reduction in effectiveness (0.84 +/- 0.03) when decreasing dose rate from 0.6 Gy.min-1 to 0.7 Gy.h-1. In previous experiments, on the same Vicia faba system, higher RBE values were observed for 252Cf neutrons, at low dose rate (RBE = 8.3), compared to different neutron beams actually used in external beam therapy (RBE = 3.2 - 3.6 for d(50) + Be, p(75) + Be and 15 MeV (d, T) neutrons). According to present results, this higher RBE has to be related to the lower energy of the 252Cf neutron spectrum (2 MeV), since the influence of dose rate was shown to be small. As far as OER is concerned, for d(50) + Be neutrons, it decreases from 1.65 +/- 0.12 to 1.59 +/- 0.09 when decreasing dose rate from 0.14 Gy.min-1 to 0.2 Gy.h-1. Control irradiations with 60Co gamma-rays have shown an OER decrease from 2.69 +/- 0.08 to 2.55 +/- 0.11 when decreasing dose rate from 0.6 Gy.min-1 to 0.7 Gy.h-1. These rather small OER reductions are within the statistical fluctuations.

  20. Large nonlethal effects of an invasive invertebrate predator on zooplankton population growth rate.

    PubMed

    Pangle, Kevin L; Peacor, Scott D; Johannsson, Ora E

    2007-02-01

    We conducted a study to determine the contribution of lethal and nonlethal effects to a predator's net effect on a prey's population growth rate in a natural setting. We focused on the effects of an invasive invertebrate predator, Bythotrephes longimanus, on zooplankton prey populations in Lakes Michigan and Erie. Field data taken at multiple dates and locations in both systems indicated that the prey species Daphnia mendotae, Daphnia retrocurva, and Bosmina longirostris inhabited deeper portions of the water column as Bythotrephes biomass increased, possibly as an avoidance response to predation. This induced migration reduces predation risk but also can reduce birth rate due to exposure to cooler temperatures. We estimated the nonlethal (i.e., resulting from reduced birth rate) and lethal (i.e., consumptive) effects of Bythotrephes on D. mendotae and Bosmina longirostris. These estimates used diel field survey data of the vertical gradient of zooplankton prey density, Bythotrephes density, light intensity, and temperature with growth and predation rate models derived from laboratory studies. Results indicate that nonlethal effects played a substantial role in the net effect of Bythotrephes on several prey population growth rates in the field, with nonlethal effects on the same order of magnitude as or greater (up to 10-fold) than lethal effects. Our results further indicate that invasive species can have strong nonlethal, behaviorally based effects, despite short evolutionary coexistence with prey species.

  1. Effect of different carrier gases and their flow rates on the growth of carbon nanotubes

    SciTech Connect

    Tewari, Aarti; Sharma, Suresh C.

    2015-04-15

    The present paper examines the effect of different carrier gases and their flow rates on the growth of carbon nanotubes (CNTs). A theoretical model is developed incorporating the charging rate of the carbon nanotube, kinetics of all the plasma species, and the growth rate of the CNTs because of diffusion and accretion of ions on the catalyst nanoparticle. The three different carrier gases, i.e., argon (Ar), ammonia, and nitrogen, are considered in the present investigation, and flow rates of all the three carrier gases are varied individually (keeping the flow rates of hydrocarbon and hydrogen gas constant) to investigate the variations in the number densities of hydrocarbon and hydrogen ions in the plasma and their consequent effects on the height and radius of CNT. Based on the results obtained, it is concluded that Ar favors the formation of CNTs with larger height and radius whereas ammonia contributes to better height of CNT but decreases the radius of CNT, and nitrogen impedes both the height and radius of CNT. The present work can serve to the better understanding of process parameters during growth of CNTs by a plasma enhanced chemical vapor deposition process.

  2. Measurement of Microscopic Growth Rates in Float-Zone Silicon Crystals

    NASA Technical Reports Server (NTRS)

    Dold, P.; Schweizer, M.; Benz, K. W.; Rose, M. Franklin (Technical Monitor)

    2001-01-01

    Time dependent convective flows during crystal growth of doped semiconductors lead to fluctuations of the composition, so called dopant striations. In general, it is difficult to decide which is the main mechanism for the generation of these striations, it might be either the fluctuation of the concentration field in the melt and the extent of the solute boundary layer ahead of the solid-liquid interface or a variation of the growth velocity. Direct access to the concentration field is rather complicated to achieve, especially considering the high process temperature and the chemical activity of liquid silicon. The contribution of growth rate fluctuations to the formation of compositional fluctuations can be determined by measuring microscopic growth rates. The classical method of current pulses requires electrical feed-throughs and good electrical contacts, both are critical issues for the growth of high purity silicon crystals. Using a radiation based heating system, the heating power can be modulated very fast and effectively. We added to the normal heater power a sinusoidal off-set in the frequency range of 1 to 10 Hz, generating a narrow spaced weak rippling in the grown crystals which are superposed to the dopant striations caused by natural and by thermocapillary convection. The pulling speed was varied between 1 and 4mm/min. The microscope images of etched crystals slices have been analyzed by peak-search algorithms (measuring the spacing between each artificially induced marker) and by FFT. Performing growth experiments under a time-dependent flow regime, fluctuations of the microscopic growth velocity of Delta(v)/v(sub average) up to 50% have been measured. Damping the time-dependent convection by the use of an axial, static magnetic field of 500mT, the microscopic growth rate became constant within the resolution limit of this method. The results will be discussed using analytical methods for the calculation of microscopic growth velocity and by

  3. Study of gypsum crystal nucleation and growth rates in simulated flue gas desulfurization liquors. Final report

    SciTech Connect

    Randolph, A.D.; Etherton, D.

    1981-06-01

    The kinetics of gypsum crystal nucleation and growth rates were measured in flue gas desulfurization (FGD) scrubber liquors. Variables studied were parent seed crystal size and mass; the organic additives citric acid, adipic acid, sodium dodecylbenzene sulfonate, and Calgon CL246 polyacrylic acid formulation; and pH. Citric acid produced gypsum crystals with a more favorable columnar structure. Lower pH resulted in increased nucleation rates. Stable secondary nucleation was observed in the presence of retained parent gypsum seed crystals of size >150 ..mu..m. Growth and nucleation rates were correlated using reaction kinetic models. These kinetics were then used in rigorous computer simulations to predict crystal-size distribution (CSD) with different scrubber configurations. Scrubber process configurations employing classified product removal were calculated to produce a gypsum sludge having a mean particle size up to twice as large as the particle size with unclassified operation.

  4. Protein Degradation Rate in Arabidopsis thaliana Leaf Growth and Development[OPEN

    PubMed Central

    Nelson, Clark J.; Castleden, Ian

    2017-01-01

    We applied 15N labeling approaches to leaves of the Arabidopsis thaliana rosette to characterize their protein degradation rate and understand its determinants. The progressive labeling of new peptides with 15N and measuring the decrease in the abundance of >60,000 existing peptides over time allowed us to define the degradation rate of 1228 proteins in vivo. We show that Arabidopsis protein half-lives vary from several hours to several months based on the exponential constant of the decay rate for each protein. This rate was calculated from the relative isotope abundance of each peptide and the fold change in protein abundance during growth. Protein complex membership and specific protein domains were found to be strong predictors of degradation rate, while N-end amino acid, hydrophobicity, or aggregation propensity of proteins were not. We discovered rapidly degrading subunits in a variety of protein complexes in plastids and identified the set of plant proteins whose degradation rate changed in different leaves of the rosette and correlated with leaf growth rate. From this information, we have calculated the protein turnover energy costs in different leaves and their key determinants within the proteome. PMID:28138016

  5. Growth rates and production of heterotrophic bacteria and phytoplankton in the North Pacific subtropical gyre

    NASA Astrophysics Data System (ADS)

    Jones, David R.; Karl, David M.; Laws, Edward A.

    1996-10-01

    In field work conducted at 26°N, 155°W, in the North Pacific subtropical gyre, phytoplankton growth rates μp estimated from 14C labeling of chlorophyll a (chl a) averaged approximately one doubling per day in the euphotic zone (0-150 m). Microbial (microalgal plus heterotrophic bacterial) growth rates μm calculated from the incorporation of 3H-adenine into DNA were comparable to or exceeded phytoplankton growth rates at most depths in the euphotic zone. Photosynthetic rates averaged 727 mg C m -2 day -1 Phytoplankton carbon biomass, calculated from 14C labeling of chl a, averaged 7.2 mg m -3 in the euphotic zone. Vertical profiles of particulate DNA and ATP suggested that no more than 15% of particulate DNA was associated with actively growing cells. Heterotrophic bacterial carbon biomass was estimated from a two-year average at station ALOHA (22°45'N, 158°W) of flow cytometric counts of unpigmented, bacteria-size particles which bound DAPI on the assumption that 15% of the particles were actively growing cells and that heterotrophic bacterial cells contained 20 fg C cell -1 The heterotrophic bacterial carbon so calculated averaged 1.1 mg m -3 in the euphotic zone. Heterotrophic bacterial production was estimated to be 164 mg C m -2 day -1 or 23% of the calculated photosynthetic rate. Estimated heterotrophic bacterial growth rates averaged 0.97 day -1 in the euphotic zone and reached 4.7 day - at a depth of 20 m. Most heterotrophic bacterial production occurred in the upper 40 m of the euphotic zone, suggesting that direct excretion by phytoplankton, perhaps due to photorespiration or ultraviolet light effects, was a significant source of dissolved organic carbon for the bacteria.

  6. Food consumption and growth rates of juvenile black carp fed natural and prepared feeds

    USGS Publications Warehouse

    Hodgins, Nathaniel C.; Schramm, Harold L.; Gerard, Patrick D.

    2014-01-01

    The introduced mollusciphagic black carp Mylopharyngodon piceus poses a significant threat to native mollusks in temperate waters throughout the northern hemisphere, but consumption rates necessary to estimate the magnitude of impact on mollusks have not been established. We measured food consumption and growth rates for small (77–245 g) and large (466–1,071 g) triploid black carp held individually under laboratory conditions at 20, 25, and 30°C. Daily consumption rates (g food · g wet weight fish−1·d−1·100) of black carp that received prepared feed increased with temperature (small black carp 1.39–1.71; large black carp 1.28–2.10), but temperature-related increases in specific growth rate (100[ln(final weight) - ln(initial weight)]/number of days) only occurred for the large black carp (small black carp −0.02 to 0.19; large black carp 0.16–0.65). Neither daily consumption rates (5.90–6.28) nor specific growth rates (0.05–0.24) differed among temperatures for small black carp fed live snails. The results of these laboratory feeding trials indicate food consumption rates can vary from 289.9 to 349.5 J·g−1·d−1 for 150 g black carp receiving prepared feed, from 268.8 to 441.0 J·g−1·d−1for 800 g black carp receiving prepared feed, and from 84.8 to 90.2 J·g−1·d−1 for 150 g black carp that feed on snails. Applying estimated daily consumption rates to estimated biomass of native mollusks indicates that a relatively low biomass of bla

  7. Growth rates of young-of-year shovelnose sturgeon in the Upper Missouri River

    USGS Publications Warehouse

    Braaten, P.J.; Fuller, D.B.

    2007-01-01

    Information on growth during the larval and young-of-year life stages in natural river environments is generally lacking for most sturgeon species. In this study, methods for estimating ages and quantifying growth were developed for field-sampled larval and young-of-year shovelnose sturgeon Scaphirhynchus platorynchus in the upper Missouri River. First, growth was assessed by partitioning samples of young-of-year shovelnose sturgeon into cohorts, and regressing weekly increases in cohort mean length on sampling date. This method quantified relative growth because ages of the cohorts were unknown. Cohort increases in mean length among sampling dates were positively related (P 0.59 for all cohorts) to sampling date, and yielded growth rate estimates of 0.80-2.95 mm day-1 (2003) and 0.44-2.28 mm day-1 (2004). Highest growth rates occurred in the largest (and earliest spawned) cohorts. Second, a method was developed to estimate cohort hatch dates, thus age on date of sampling could be determined. This method included quantification of post-hatch length increases as a function of water temperature (growth capacity; mm per thermal unit, mm TU-1), and summation of mean daily water temperatures to achieve the required number of thermal units that corresponded to post-hatch lengths of shovelnose sturgeon on sampling dates. For six of seven cohorts of shovelnose sturgeon analyzed, linear growth models (r2 ??? 0.65, P < 0.0001) or Gompertz growth models (r2 ??? 0.83, P < 0.0001) quantified length-at-age from hatch through 55 days post-hatch (98-100 mm). Comparisons of length-at-age derived from the growth models indicated that length-at-age was greater for the earlier-hatched cohorts than later-hatched cohorts. Estimated hatch dates for different cohorts were corroborated based on the dates that newly-hatched larval shovelnose sturgeon were sampled in the drift. These results provide the first quantification of growth dynamics for field-sampled age-0 shovelnose sturgeon in a

  8. Growth rates of young-of-year shovelnose sturgeon in the Upper Missouri River

    USGS Publications Warehouse

    Braaten, P. J.; Fuller, D.B.

    2007-01-01

    Information on growth during the larval and young-of-year life stages in natural river environments is generally lacking for most sturgeon species. In this study, methods for estimating ages and quantifying growth were developed for field-sampled larval and young-of-year shovelnose sturgeon Scaphirhynchus platorynchus in the upper Missouri River. First, growth was assessed by partitioning samples of young-of-year shovelnose sturgeon into cohorts, and regressing weekly increases in cohort mean length on sampling date. This method quantified relative growth because ages of the cohorts were unknown. Cohort increases in mean length among sampling dates were positively related (P < 0.05, r2 > 0.59 for all cohorts) to sampling date, and yielded growth rate estimates of 0.80–2.95 mm day−1 (2003) and 0.44–2.28 mm day−1 (2004). Highest growth rates occurred in the largest (and earliest spawned) cohorts. Second, a method was developed to estimate cohort hatch dates, thus age on date of sampling could be determined. This method included quantification of post-hatch length increases as a function of water temperature (growth capacity; mm per thermal unit, mm TU−1), and summation of mean daily water temperatures to achieve the required number of thermal units that corresponded to post-hatch lengths of shovelnose sturgeon on sampling dates. For six of seven cohorts of shovelnose sturgeon analyzed, linear growth models (r2 ≥ 0.65, P < 0.0001) or Gompertz growth models (r2 ≥ 0.83, P < 0.0001) quantified length-at-age from hatch through 55 days post-hatch (98–100 mm). Comparisons of length-at-age derived from the growth models indicated that length-at-age was greater for the earlier-hatched cohorts than later-hatched cohorts. Estimated hatch dates for different cohorts were corroborated based on the dates that newly-hatched larval shovelnose sturgeon were sampled in the drift. These results provide the first quantification of growth dynamics

  9. Interspecies variation in mammary gland growth rate: relationship to gestation length.

    PubMed

    Sheffield, L G; Anderson, R R

    1985-10-01

    Growth of the mammary gland is measured by several indices including total wet weight, dry fat-free tissue, and deoxyribonucleic acid. The latter is a superior measure of true growth because it represents changes of cell numbers. Sufficient data have been generated to determine the relationship among species of mammals between gestation length and differences in rates of mammary growth. Exponential growth equations were estimated for eight mammalian species with gestation lengths from 16.5 d for the hamster to 280 d for the cow. The form of the most appropriate equation was Y = AeBx, where Y is mammary deoxyribonucleic acid or dry fat-free tissue, x is day of gestation, e is the base of natural logs, and A and B are constants. The A term was related to body weight (W) and the B-term to gestation length (G). Resulting equations were deoxyribonucleic acid (mg) = .0547W.803 e1.98 G-.98x and dry fat-free tissue (mg) = 2.35W.779 e.719 G-.77x. First-order rate constants of mammary growth ranged in a reverse order from a high of .141 d-1 in hamsters to a low of .008 d-1 in cows; in other words, mammary deoxyribonucleic acid in hamsters doubled in 4.9 d but in the bovine it took 87 d to double.

  10. Specific ion effects on the growth rates of Staphylococcus aureus and Pseudomonas aeruginosa

    NASA Astrophysics Data System (ADS)

    Lo Nostro, Pierandrea; Ninham, Barry W.; Lo Nostro, Antonella; Pesavento, Giovanna; Fratoni, Laura; Baglioni, Piero

    2005-03-01

    Motivated by recent advances in the physical and chemical basis of the Hofmeister effect, we measured the rate cell growth of S. aureus—a halophilic pathogenic bacterium—and of P. aeruginosa, an opportunistic pathogen, in the presence of different aqueous salt solutions at different concentrations (0.2, 0.6 and 0.9 M). Microorganism growth rates depend strongly on the kind of anion in the growth medium. In the case of S. aureus, chloride provides a favorable growth medium, while both kosmotropes (water structure makers) and chaotropes (water structure breakers) reduce the microorganism growth. In the case of P. aeruginosa, all ions affect adversely the bacterial survival. In both cases, the trends parallel the specific ion, or Hofmeister, sequences observed in a wide range of physico-chemical systems. The correspondence with specific ion effect obtained in other studies, on the activities of a DNA restriction enzyme, of horseradish peroxidase, and of Lipase A (Aspergillus niger) is particularly striking. This work provides compelling evidence for Hofmeister effects, physical chemistry in action, in these organisms.

  11. High-throughput measurement of single-cell growth rates using serial microfluidic mass sensor arrays

    PubMed Central

    Cermak, Nathan; Olcum, Selim; Delgado, Francisco Feijó; Wasserman, Steven C.; Payer, Kristofor R.; Murakami, Mark; Knudsen, Scott M.; Kimmerling, Robert J.; Stevens, Mark M.; Kikuchi, Yuki; Sandikci, Arzu; Ogawa, Masaaki; Agache, Vincent; Baléras, François; Weinstock, David M.; Manalis, Scott R.

    2016-01-01

    Methods to rapidly assess cell growth would be useful for many applications, including drug susceptibility testing, but current technologies have limited sensitivity or throughput. Here we present an approach to precisely and rapidly measure growth rates of many individual cells simultaneously. We flow cells in suspension through a microfluidic channel with 10–12 resonant mass sensors distributed along its length, weighing each cell repeatedly over the 4–20 min it spends in the channel. Because multiple cells traverse the channel at the same time, we obtain growth rates for >60 cells/h with a resolution of 0.2 pg/h for mammalian cells and 0.02 pg/h for bacteria. We measure the growth of single lymphocytic cells, mouse and human T cells, primary human leukemia cells, yeast, Escherichia coli and Enterococcus faecalis. Our system reveals subpopulations of cells with divergent growth kinetics and enables assessment of cellular responses to antibiotics and antimicrobial peptides within minutes. PMID:27598230

  12. Selective consequences of catastrophes for growth rates in a stream-dwelling salmonid.

    PubMed

    Vincenzi, Simone; Crivelli, Alain J; Giske, Jarl; Satterthwaite, William H; Mangel, Marc

    2012-02-01

    Optimal life histories in a fluctuating environment are likely to differ from those that are optimal in a constant environment, but we have little understanding of the consequences of bounded fluctuations versus episodic massive mortality events. Catastrophic disturbances, such as floods, droughts, landslides and fires, substantially alter the population dynamics of affected populations, but little has been done to investigate how catastrophes may act as a selective agent for life-history traits. We use an individual-based model of population dynamics of the stream-dwelling salmonid marble trout (Salmo marmoratus) to investigate how trade-offs between the growth and mortality of individuals and density-dependent body growth can lead to the maintenance of a wide or narrow range of individual variation in body growth rates in environments that are constant (i.e., only demographic stochasticity), variable (i.e., environmental stochasticity), or variable with catastrophic events that cause massive mortalities (e.g., flash floods). We find that occasional episodes of massive mortality can substantially reduce persistent variability in individual growth rates. Lowering the population density reduces density dependence and allows for higher fitness of more opportunistic strategies (rapid growth and early maturation) during the recovery period.

  13. Copper and silver selenide crystal growth rate measurements as a method for determination of ionic conductivity

    NASA Astrophysics Data System (ADS)

    Vučić, Zlatko; Lovrić, Davorin; Gladić, Jadranko; Etlinger, Božidar

    2004-03-01

    The motivation behind this work is the discrepancy between the measured and calculated growth rates of copper selenide spherical single crystals between 740 and 800 K. The growth of cylindrical polycrystalline samples of copper selenide at high temperatures was monitored in experiments that enabled full control of the geometry of growth. Together with the calculations based on Yokota's transport equation, these measurements eliminated ionic conductivity data as a possible reason behind too high values of the calculated growth rates. The equivalent growth experiments on polycrystalline silver selenide samples were performed as a test of the method, yielding excellent agreement with the results obtained by extrapolation of existing data. On the basis of these measurements and associated analysis, this method is proposed as a method for determination of ionic conductivity of mixed superionic conductors on temperatures up to the temperatures of melting, i.e. in the range in which other methods of ionic conductivity measurements either do not work or are not accurate enough.

  14. Controlling growth rate anisotropy for formation of continuous ZnO thin films from seeded substrates

    NASA Astrophysics Data System (ADS)

    Zhang, R. H.; Slamovich, E. B.; Handwerker, C. A.

    2013-05-01

    Solution-processed zinc oxide (ZnO) thin films are promising candidates for low-temperature-processable active layers in transparent thin film electronics. In this study, control of growth rate anisotropy using ZnO nanoparticle seeds, capping ions, and pH adjustment leads to a low-temperature (90 ° C) hydrothermal process for transparent and high-density ZnO thin films. The common 1D ZnO nanorod array was grown into a 2D continuous polycrystalline film using a short-time pure solution method. Growth rate anisotropy of ZnO crystals and the film morphology were tuned by varying the chloride (Cl-) ion concentration and the initial pH of solutions of zinc nitrate and hexamethylenetetramine (HMTA), and the competitive adsorption effects of Cl- ions and HMTA ligands on the anisotropic growth behavior of ZnO crystals were proposed. The lateral growth of nanorods constituting the film was promoted by lowering the solution pH to accelerate the hydrolysis of HMTA, thereby allowing the adsorption effects from Cl- to dominate. By optimizing the growth conditions, a dense ˜100 nm thickness film was fabricated in 15 min from a solution of [Cl-]/[Zn2+] = 1.5 and pH= 4.8 ± 0.1. This film shows >80% optical transmittance and a field-effect mobility of 2.730 cm2 V-1 s-1 at zero back-gate bias.

  15. Speed over efficiency: locusts select body temperatures that favour growth rate over efficient nutrient utilization

    PubMed Central

    Miller, Gabriel A.; Clissold, Fiona J.; Mayntz, David; Simpson, Stephen J.

    2009-01-01

    Ectotherms have evolved preferences for particular body temperatures, but the nutritional and life-history consequences of such temperature preferences are not well understood. We measured thermal preferences in Locusta migratoria (migratory locusts) and used a multi-factorial experimental design to investigate relationships between growth/development and macronutrient utilization (conversion of ingesta to body mass) as a function of temperature. A range of macronutrient intake values for insects at 26, 32 and 38°C was achieved by offering individuals high-protein diets, high-carbohydrate diets or a choice between both. Locusts placed in a thermal gradient selected temperatures near 38°C, maximizing rates of weight gain; however, this enhanced growth rate came at the cost of poor protein and carbohydrate utilization. Protein and carbohydrate were equally digested across temperature treatments, but once digested both macronutrients were converted to growth most efficiently at the intermediate temperature (32°C). Body temperature preference thus yielded maximal growth rates at the expense of efficient nutrient utilization. PMID:19625322

  16. Influence of growth rate on the physiological response of marine Synechococcus to phosphate limitation

    PubMed Central

    Kretz, Cécilia B.; Bell, Doug W.; Lomas, Debra A.; Lomas, Michael W.; Martiny, Adam C.

    2015-01-01

    Phosphate (P) is an important nutrient potentially limiting for primary productivity, yet, we currently know little about the relationship between growth rate and physiological response to P limitation in abundant marine Cyanobacteria. Thus, the aim of this research was to determine how variation in growth rate affected the physiology of marine Synechococcus WH8102 and CC9311 when growing under high N:P conditions. Experiments were carried out in chemostats with a media input N:P of 441 and we estimated the half saturation concentration for growth under P limiting conditions (Ks,p) and cellular C:N:P ratios. The Ks,p values were the lowest measured for any phytoplankton and on par with ambient P concentrations in oligotrophic regions. We also observed that both strains were able draw down P below 3 nM. Both Ks,p and drawdown concentration were lower for the open ocean vs. coastal Synechococcus strain, which may be linked to differences in P acquisition genes in these strains. Cellular C:P and N:P ratios were significantly higher in relation to the Redfield ratio for both Synechococcus strains but we saw no difference in these ratios among growth rates or strains. These results demonstrate that Synechococcus can proliferate under very low P conditions and also that genetically different strains have unique physiological responses to P limitation. PMID:25717321

  17. Population dynamics and growth rates of endosymbionts during Diaphorina citri (Hemiptera, Liviidae) ontogeny.

    PubMed

    Dossi, Fabio Cleisto Alda; da Silva, Edney Pereira; Cônsoli, Fernando Luis

    2014-11-01

    The infection density of symbionts is among the major parameters to understand their biological effects in host-endosymbionts interactions. Diaphorina citri harbors two bacteriome-associated bacterial endosymbionts (Candidatus Carsonella ruddii and Candidatus Profftella armatura), besides the intracellular reproductive parasite Wolbachia. In this study, the density dynamics of the three endosymbionts associated with the psyllid D. citri was investigated by real-time quantitative PCR (qPCR) at different developmental stages. Bacterial density was estimated by assessing the copy number of the 16S rRNA gene for Carsonella and Profftella, and of the ftsZ gene for Wolbachia. Analysis revealed a continuous growth of the symbionts during host development. Symbiont growth and rate curves were estimated by the Gompertz equation, which indicated a negative correlation between the degree of symbiont-host specialization and the time to achieve the maximum growth rate (t*). Carsonella densities were significantly lower than those of Profftella at all host developmental stages analyzed, even though they both displayed a similar trend. The growth rates of Wolbachia were similar to those of Carsonella, but Wolbachia was not as abundant. Adult males displayed higher symbiont densities than females. However, females showed a much more pronounced increase in symbiont density as they aged if compared to males, regardless of the incorporation of symbionts into female oocytes and egg laying. The increased density of endosymbionts in aged adults differs from the usual decrease observed during host aging in other insect-symbiont systems.

  18. Light pollution reduces activity, food consumption and growth rates in a sandy beach invertebrate.

    PubMed

    Luarte, T; Bonta, C C; Silva-Rodriguez, E A; Quijón, P A; Miranda, C; Farias, A A; Duarte, C

    2016-11-01

    The continued growth of human activity and infrastructure has translated into a widespread increase in light pollution. Natural daylight and moonlight cycles play a fundamental role for many organisms and ecological processes, so an increase in light pollution may have profound effects on communities and ecosystem services. Studies assessing ecological light pollution (ELP) effects on sandy beach organisms have lagged behind the study of other sources of disturbance. Hence, we assessed the influence of this stressor on locomotor activity, foraging behavior, absorption efficiency and growth rate of adults of the talitrid amphipod Orchestoidea tuberculata. In the field, an artificial light system was assembled to assess the local influence of artificial light conditions on the amphipod's locomotor activity and use of food patches in comparison to natural (ambient) conditions. Meanwhile in the laboratory, two experimental chambers were set to assess amphipod locomotor activity, consumption rates, absorption efficiency and growth under artificial light in comparison to natural light-dark cycles. Our results indicate that artificial light have significantly adverse effects on the activity patterns and foraging behavior of the amphipods, resulting on reduced consumption and growth rates. Given the steady increase in artificial light pollution here and elsewhere, sandy beach communities could be negatively affected, with unexpected consequences for the whole ecosystem.

  19. Improvement of growth rate of plants by bubble discharge in water

    NASA Astrophysics Data System (ADS)

    Takahata, Junichiro; Takaki, Koichi; Satta, Naoya; Takahashi, Katsuyuki; Fujio, Takuya; Sasaki, Yuji

    2015-01-01

    The effect of bubble discharge in water on the growth rate of plants was investigated experimentally for application to plant cultivation systems. Spinach (Spinacia oleracea), radish (Raphanus sativus var. sativus), and strawberry (Fragaria × ananassa) were used as specimens to clarify the effect of the discharge treatment on edible parts of the plants. The specimens were cultivated in pots filled with artificial soil, which included chicken manure charcoal. Distilled water was sprayed on the artificial soil and drained through a hole in the pots to a water storage tank. The water was circulated from the water storage tank to the cultivation pots after 15 or 30 min discharge treatment on alternate days. A magnetic compression-type pulsed power generator was used to produce the bubble discharge with a repetition rate of 250 pps. The plant height in the growth phase and the dry weight of the harvested plants were improved markedly by the discharge treatment in water. The soil and plant analyzer development (SPAD) value of the plants also improved in the growth phase of the plants. The concentration of nitrate nitrogen, which mainly contributed to the improvement of the growth rate, in the water increased with the discharge treatment. The Brix value of edible parts of Fragaria × ananassa increased with the discharge treatment. The inactivation of bacteria in the water was also confirmed with the discharge treatment.

  20. Respiration, growth and grazing rates of three ciliate species in hypoxic conditions.

    PubMed

    Rocke, Emma; Liu, Hongbin

    2014-08-30

    Marine hypoxic episodes are affecting both marine and freshwater bodies all over the world. Yet, limited data exists with regard to the effects of decreasing oxygen on protist metabolism. Three ciliate species were therefore isolated from Hong Kong coastal waters. Controlled hypoxic conditions were simulated in the lab environment, during which time growth, respiration and grazing rates were measured. Euplotes sp. and a Oxytrichidae-like ciliate showed decreased growth and respiration below 2.5 mg O2 L(-1), however Uronema marinum kept steady growth and respiration until below 1.5 mg O2 L(-1). Euplotes sp. and the Oxytrichidae-like ciliate had the highest ingestion rate, which dropped significantly below 3.0 mg O2 L(-1). U.marinum grazing rates were affected at and below 1.5 mg O2 L(-1), correlating with their drop in growth and respiration at this lower concentration. This study illustrates the slowing metabolism of key grazing protists, as well as species-specific tolerance in response to hypoxia.

  1. Growth-rate of Richtmyer-Meshkov instability for small and large amplitude initial perturbation

    NASA Astrophysics Data System (ADS)

    Swisher, Nora C.; Pandian, Arun; Dell, Zachary; Stellingwerf, Robert; Abarzhi, Snezhana I.

    2016-10-01

    We study the effect of the amplitude of the initial perturbation on Richtmyer-Meshkov instability (RMI) by means of Smooth Particle Hydrodynamics simulations and by the rigorous theory and the newly developed empirical model. A broad parameter regime is analyzed. Initially, the interface has a single-mode sinusoidal perturbation with the amplitude varying from 0% to 100% of its wavelength. An empirical model is developed to describe the non-monotone dependence of the RMI growth-rate on the initial amplitude. The initial growth rate of the interface has a peak value. The position of the peak depends only weakly on the Mach and Atwood numbers, whereas the peak value depends strongly on Atwood number and weakly on Mach number. The ratio of initial growth rate to background velocity is related to the energy partitioning between the interface and the bulk. We find an upper bound of the ratio of the interfacial energy to the bulk energy, and identified its scaling with the Atwood number. This peak value of the energy ratio indicates that RM interfacial growth can be controlled by initial conditions. The work is supported by the US National Science Foundation.

  2. Growth-rate of Richtmyer-Meshkov instability for small and large amplitude initial perturbation

    NASA Astrophysics Data System (ADS)

    Swisher, Nora; Pandian, Arun; Dell, Zachary; Stellingwerf, Robert; Abarzhi, Snezhana

    2016-11-01

    We study the effect of the amplitude of the initial perturbation on Richtmyer-Meshkov instability (RMI) by means of Smooth Particle Hydrodynamics simulations and by the rigorous theory and the newly developed empirical model. A broad parameter regime is analyzed. Initially, the interface has a single-mode sinusoidal perturbation with the amplitude varying from 0% to 100% of its wavelength. An empirical model is developed to describe the non-monotone dependence of the RMI growth-rate on the initial amplitude. The initial growth rate of the interface has a peak value. The position of the peak depends only weakly on the Mach and Atwood numbers, whereas the peak value depends strongly on Atwood number and weakly on Mach number. The ratio of initial growth rate to background velocity is related to the energy partitioning between the interface and the bulk. We find an upper bound of the ratio of the interfacial energy to the bulk energy, and identified its scaling with the Atwood number. This peak value of the energy ratio indicates that RM interfacial growth can be controlled by initial conditions. The work is supported by the US National Science Foundation.

  3. Enhancement of the Initial Growth Rate of Agricultural Plants by Using Static Magnetic Fields.

    PubMed

    Kim, Seung C; Mason, Alex; Im, Wooseok

    2016-07-08

    Electronic devices and high-voltage wires induce magnetic fields. A magnetic field of 1,300-2,500 Gauss (0.2 Tesla) was applied to Petri dishes containing seeds of Garden Balsam (Impatiens balsamina), Mizuna (Brassica rapa var. japonica), Komatsuna (Brassica rapa var. perviridis), and Mescluns (Lepidium sativum). We applied magnets under the culture dish. During the 4 days of application, we observed that the stem and root length increased. The group subjected to magnetic field treatment (n = 10) showed a 1.4 times faster rate of growth compared with the control group (n = 11) in a total of 8 days (p <0.0005). This rate is 20% higher than that reported in previous studies. The tubulin complex lines did not have connecting points, but connecting points occur upon the application of magnets. This shows complete difference from the control, which means abnormal arrangements. However, the exact cause remains unclear. These results of growth enhancement of applying magnets suggest that it is possible to enhance the growth rate, increase productivity, or control the speed of germination of plants by applying static magnetic fields. Also, magnetic fields can cause physiological changes in plant cells and can induce growth. Therefore, stimulation with a magnetic field can have possible effects that are similar to those of chemical fertilizers, which means that the use of fertilizers can be avoided.

  4. High growth rate homoepitaxial diamond film deposition at high temperatures by microwave plasma-assisted chemical vapor deposition

    NASA Technical Reports Server (NTRS)

    Vohra, Yogesh K. (Inventor); McCauley, Thomas S. (Inventor)

    1997-01-01

    The deposition of high quality diamond films at high linear growth rates and substrate temperatures for microwave-plasma chemical vapor deposition is disclosed. The linear growth rate achieved for this process is generally greater than 50 .mu.m/hr for high quality films, as compared to rates of less than 5 .mu.m/hr generally reported for MPCVD processes.

  5. The Effects of Funding Changes upon the Rate of Knowledge Growth in Algebraic and Differential Topology, 1955-75.

    ERIC Educational Resources Information Center

    Cohn, Steven F.

    1986-01-01

    Discusses effects of funding variations upon the rate of knowledge growth in algebraic and differential topology. Results based on a marginal productivity model indicated that funding variations had little or no effect upon the rate of knowledge growth. Lists 150 of the field's most highly rated papers. (ML)

  6. Volume Changes After Stereotactic LINAC Radiotherapy in Vestibular Schwannoma: Control Rate and Growth Patterns

    SciTech Connect

    Langenberg, Rick van de; Dohmen, Amy J.C.; Bondt, Bert J. de; Nelemans, Patty J.; Baumert, Brigitta G.; Stokroos, Robert J.

    2012-10-01

    Purpose: The purpose of this study was to evaluate the control rate of vestibular schwannomas (VS) after treatment with linear accelerator (LINAC)-based stereotactic radiosurgery (SRS) or radiotherapy (SRT) by using a validated volumetric measuring tool. Volume-based studies on prognosis after LINAC-based SRS or SRT for VS are reported scarcely. In addition, growth patterns and risk factors predicting treatment failure were analyzed. Materials and Methods: Retrospectively, 37 VS patients treated with LINAC based SRS or SRT were analyzed. Baseline and follow-up magnetic resonance imaging scans were analyzed with volume measurements on contrast enhanced T1-weighted magnetic resonance imaging. Absence of intervention after radiotherapy was defined as 'no additional intervention group, ' absence of radiological growth was defined as 'radiological control group. ' Significant growth was defined as a volume change of 19.7% or more, as calculated in a previous study. Results: The cumulative 4-year probability of no additional intervention was 96.4% {+-} 0.03; the 4-year radiological control probability was 85.4% {+-} 0.1). The median follow-up was 40 months. Overall, shrinkage was seen in 65%, stable VS in 22%, and growth in 13%. In 54% of all patients, transient swelling was observed. No prognostic factors were found regarding VS growth. Previous treatment and SRS were associated with transient swelling significantly. Conclusions: Good control rates are reported for LINAC based SRS or SRT in VS, in which the lower rate of radiological growth control is attributed to the use of the more sensitive volume measurements. Transient swelling after radiosurgery is a common phenomenon and should not be mistaken for treatment failure. Previous treatment and SRS were significantly associated with transient swelling.

  7. Effect of storage temperature on crystal formation rate and growth rate of calcium lactate crystals on smoked Cheddar cheeses.

    PubMed

    Rajbhandari, P; Patel, J; Valentine, E; Kindstedt, P S

    2013-06-01

    Previous studies have shown that storage temperature influences the formation of calcium lactate crystals on vacuum-packaged Cheddar cheese surfaces. However, the mechanisms by which crystallization is modulated by storage temperature are not completely understood. The objectives of this study were to evaluate the effect of storage temperature on smoked Cheddar cheese surfaces for (1) the number of discrete visible crystals formed per unit of cheese surface area; (2) growth rate and shape of discrete crystals (as measured by area and circularity); (3) percentage of total cheese surface area occupied by crystals. Three vacuum-packaged, random weight (∼300 g) retail samples of naturally smoked Cheddar cheese, produced from the same vat of cheese, were obtained from a retail source. The samples were cut parallel to the longitudinal axis at a depth of 10mm from the 2 surfaces to give six 10-mm-thick slabs, 4 of which were randomly assigned to 4 different storage temperature treatments: 1, 5, 10°C, and weekly cycling between 1 and 10°C. Samples were stored for 30 wk. Following the onset of visible surface crystals, digital photographs of surfaces were taken every other week and evaluated by image analysis for number of discrete crystal regions and total surface area occupied by crystals. Specific discrete crystals were chosen and evaluated biweekly for radius, area, and circularity. The entire experiment was conducted in triplicate. The effects of cheese surface, storage temperature, and storage time on crystal number and total crystal area were evaluated by ANOVA, according to a repeated-measures design. The number of discrete crystal regions increased significantly during storage but at different rates for different temperature treatments. Total crystal area also increased significantly during storage, at rates that varied with temperature treatment. Storage temperature did not appear to have a major effect on the growth rates and shapes of the individual crystals

  8. Growth rates of North Sea macroalgae in relation to temperature, irradiance and photoperiod

    NASA Astrophysics Data System (ADS)

    Fortes, M. D.; Lüning, K.

    1980-03-01

    Three eulittoral algae (Ulva lactuca, Porphyra umbilicalis, Chondrus crispus) and one sublittoral alga (Laminaria saccharina) from Helgoland (North Sea) were cultivated in a flow-through system at different temperatures, irradiances and daylengths. In regard to temperature there was a broad optimum at 10 15° C, except in P. umbilicalis, which grew fastest at 10 °C. A growth peak at this temperature was also found in four of 17 other North Sea macroalgae, for which the growth/temperature response was studied, whereas 13 of these species exhibited a growth optimum at 15 °C, or a broad optimum at 10 15 °C. Growth was light-saturated in U. lactuca, L. saccharina and C. crispus at photon flux densities above 70 µE m-2s-1, but in P. umbilicalis above 30 µE m-2s-1. Growth rate did not decrease notably in the eulittoral species after one week in relatively strong light (250 µE m-2s-1), but by about 50 % in the case of the sublittoral L. saccharina, as compared with growth under weak light conditions (30 µE m-2s-1). In contrast, chlorophyll content decreased in the sublittoral as well as in the eulittoral species, and the greatest change in pigment content occurred in the range 30 70 µE m-2s-1. Growth rate increased continuously up to photoperiods of 24 h light per day in L. saccharina and C. crispus, whereas daylength saturation occurred at photoperiods of more than 16 h light per day in U. lactuca and P. umbilicalis.

  9. Alteration of the growth rate and lag time of Leuconostoc mesenteroides NRRL-B523.

    PubMed

    Wolf, B F; Fogler, H S

    2001-03-20

    Bacterial profile modification is an important enhanced oil recovery technique used to direct injected water into a reservoir's low permeability zone containing trapped crude oil. During water flooding, the use of bacteria to plug the high permeability water zone and divert flow into the oil-bearing low-permeability zone will have a significant economic impact. However, during the field implementation of bacterial profile modification, the rapid growth of bacteria near the injection well bore may hinder the subsequent injection of growth media so that profile modification of the reservoir occurs only in the immediate vicinity of the well bore. By slowing the growth rate and prolonging the lag phase, the onset of pore-space plugging may be delayed and the biologically active zone extended deep into the reservoir. High substrate loading, high pH values, and the addition of the growth inhibitors sodium dodecylsulfate and sodium benzoate have been used in combination to alter the growth characteristics of Leuconostoc mesenteroides NRRL-B523 grown in batch conditions. The highest sucrose concentration used in these studies, 500 g/L, produced lag times 12-fold greater than the slowest lag times achieved at low sucrose concentrations. When L. mesenteroides was grown in media containing 500 g/L sucrose, an alkaline pH value threshold was found above which bacteria did not grow. At this threshold pH value of 8.1, an average lag time of 200 h was observed. Increasing the concentration of sodium benzoate had no effect on lag time, but reduced the growth rate until the threshold concentration of 0.6%, above which bacteria did not grow. Last, it was found that a solution of 0.075 mM sodium dodecylsulfate in media containing 15 g/L sucrose completely inhibited bacterial growth.

  10. Stimulatory Effect of Malo-Lactic Fermentation on the Growth Rate of Leuconostoc oenos

    PubMed Central

    Pilone, Gordon J.; Kunkee, Ralph E.

    1976-01-01

    Although l-malic acid is not an energy source for the malo-lactic organism Leuconostoc oenos (L. citrovorum) ML 34, the growth rate of the organism was found to be greatly increased by malo-lactic fermentation (the decarboxylation of l-malic acid to l-lactic acid). The stimulation was especially striking at the low pH (below pH 4) of wine, the natural habitat of this bacterium. The stimulation of growth did not result from changes in pH that accompany malo-lactic fermentation. Thus, these results suggest a biological function of malo-lactic fermentation. PMID:16345173

  11. Temperature dependence of metabolic rates for microbial growth, maintenance, and survival

    PubMed Central

    Price, P. Buford; Sowers, Todd

    2004-01-01

    Our work was motivated by discoveries of prokaryotic communities that survive with little nutrient in ice and permafrost, with implications for past or present microbial life in Martian permafrost and Europan ice. We compared the temperature dependence of metabolic rates of microbial communities in permafrost, ice, snow, clouds, oceans, lakes, marine and freshwater sediments, and subsurface aquifer sediments. Metabolic rates per cell fall into three groupings: (i) a rate, μg(T), for growth, measured in the laboratory at in situ temperatures with minimal disturbance of the medium; (ii) a rate, μm(T), sufficient for maintenance of functions but for a nutrient level too low for growth; and (iii) a rate, μs(T), for survival of communities imprisoned in deep glacial ice, subsurface sediment, or ocean sediment, in which they can repair macromolecular damage but are probably largely dormant. The three groups have metabolic rates consistent with a single activation energy of ≈110 kJ and that scale as μg(T):μm(T):μs(T) ≈ 106:103:1. There is no evidence of a minimum temperature for metabolism. The rate at -40°C in ice corresponds to ≈10 turnovers of cellular carbon per billion years. Microbes in ice and permafrost have metabolic rates similar to those in water, soil, and sediment at the same temperature. This finding supports the view that, far below the freezing point, liquid water inside ice and permafrost is available for metabolism. The rate μs(T) for repairing molecular damage by means of DNA-repair enzymes and protein-repair enzymes such as methyltransferase is found to be comparable to the rate of spontaneous molecular damage. PMID:15070769

  12. Determination of kinetic parameters of crystal growth rate of borax in aqueous solution by using the rotating disc technique

    NASA Astrophysics Data System (ADS)

    Sahin, Omer; Aslan, Fevzi; Ozdemir, Mustafa; Durgun, Mustafa

    2004-10-01

    Growth rate of polycrystalline disc of borax compressed at different pressure and rotated at various speed has been measured in a rotating disc crystallizer under well-defined conditions of supersaturation. It was found that the mass transfer coefficient, K, increased while overall growth rate constant, Kg, and surface reaction constant, kr, decreased with increasing smoothness of the disc. It was also determined that kinetic parameters (kr , r , K , g) of crystal growth rate of borax decreased with increasing rotating speed of the polycrystalline disc. The effectiveness factor was calculated from the growth rate data to evaluate the relative magnitude of the steps in series bulk diffusion through the mass transfer boundary layer and the surface integration. At low rotating speed of disc, the crystal growth rate of borax is mainly controlled by integration. However, both diffusion and integration steps affect the growth rate of borax at higher rotating speed of polycrystalline disc.

  13. Growth rates of rhizosphere microorganisms depend on competitive abilities of plants for nitrogen

    NASA Astrophysics Data System (ADS)

    Blagodatskaya, Evgenia; Littschwager, Johanna; Lauerer, Marianna; Kuzyakov, Yakov

    2010-05-01

    Rhizosphere - one of the most important ‘hot spots' in soil - is characterized not only by accelerated turnover of microbial biomass and nutrients but also by strong intra- and inter-specific competition. Intra-specific competition occurs between individual plants of the same species, while inter-specific competition can occur both at population level (plant species-specific, microbial species-specific interactions) and at community level (plant - microbial interactions). Such plant - microbial interactions are mainly governed by competition for available N sources, since N is one of the main growth limiting nutrients in natural ecosystems. Functional structure and activity of microbial community in rhizosphere is not uniform and is dependent on quantity and quality of root exudates which are plant specific. It is still unclear how microbial growth and turnover in the rhizosphere are dependent on the features and competitive abilities of plants for N. Depending on C and N availability, acceleration and even retardation of microbial activity and carbon mineralization can be expected in the rhizosphere of plants with high competitive abilities for N. We hypothesized slower microbial growth rates in the rhizosphere of plants with smaller roots, as they usually produce less exudates compared to plants with small shoot-to-root ratio. As the first hypothesis is based solely on C availability, we also expected the greater effect of N availability on microbial growth in rhizosphere of plants with smaller root mass. These hypothesis were tested for two plant species of strawberry: Fragaria vesca L. (native species), and Duchesnea indica (Andrews) Focke (an invasive plant in central Europe) growing in intraspecific and interspecific competition. Microbial biomass and the kinetic parameters of microbial growth in the rhizosphere were estimated by dynamics of CO2 emission from the soil amended with glucose and nutrients. Specific growth rate (µ) of soil microorganisms was

  14. Bivalve growth rate and isotopic variability across the Barents Sea Polar Front

    NASA Astrophysics Data System (ADS)

    Carroll, Michael L.; Ambrose, William G.; Locke V, William L.; Ryan, Stuart K.; Johnson, Beverly J.

    2014-02-01

    Analysis of bivalve shell increments provides a means to reconstruct long-term patterns in growth histories and assess factors that regulate marine ecosystems, while tissue stable isotopes are indicators of food sources and trophic dynamics. We examined shell growth patterns and tissue stable isotopic composition (δ13C and δ15N) of the hairy cockle (Ciliatocardium ciliatum) in the northwest Barents Sea to evaluate the influence of different water masses and the Polar Front on growth rates and food sources and to assess the influence of climatic variability on ecological processes over seasonal to decadal scales. Shell growth rates were highest in Atlantic water, intermediate in Arctic water, and lowest at the Polar Front. Temporal patterns of ontogenetically-adjusted growth (SGI) were negatively correlated with the Atlantic Multidecadal Oscillation (AMO), local precipitation and ice-free days. The highest growth occurred during colder periods with more sea ice, while lower growth was associated with warmer periods and less sea ice. Stable isotope values of lipid-extracted tissues from Atlantic water cockles were enriched in δ13C by up to 2.1‰ and δ15N by 1.5‰ compared to animals from Arctic waters. Distinct seasonal and water mass variations in stable isotopic values reflect spatial and temporal variability in food supplies to the bivalves in this region on small spatial scales. Overall, Atlantic waters supported the highest growth rates, the most complex trophic webs, and the greatest sensitivity to interannual variability in environmental conditions. Bivalves from Arctic waters were the most distinct of the three groups in their response to regional climate forcing and local environmental manifestations of those conditions. The Polar Front exhibits growth and isotopic characteristics predominantly of the Atlantic domain. These results demonstrate that integrating results of sclerochronological and stable isotopic analyses of benthic bivalves provide

  15. Flower vs. Leaf Feeding by Pieris brassicae: Glucosinolate-Rich Flower Tissues are Preferred and Sustain Higher Growth Rate

    PubMed Central

    Smallegange, R. C.; Blatt, S. E.; Harvey, J. A.; Agerbirk, N.; Dicke, M.

    2007-01-01

    Interactions between butterflies and caterpillars in the genus Pieris and plants in the family Brassicaceae are among the best explored in the field of insect–plant biology. However, we report here for the first time that Pieris brassicae, commonly assumed to be a typical folivore, actually prefers to feed on flowers of three Brassica nigra genotypes rather than on their leaves. First- and second-instar caterpillars were observed to feed primarily on leaves, whereas late second and early third instars migrated via the small leaves of the flower branches to the flower buds and flowers. Once flower feeding began, no further leaf feeding was observed. We investigated growth rates of caterpillars having access exclusively to either leaves of flowering plants or flowers. In addition, we analyzed glucosinolate concentrations in leaves and flowers. Late-second- and early-third-instar P. brassicae caterpillars moved upward into the inflorescences of B. nigra and fed on buds and flowers until the end of the final (fifth) instar, after which they entered into the wandering stage, leaving the plant in search of a pupation site. Flower feeding sustained a significantly higher growth rate than leaf feeding. Flowers contained levels of glucosinolates up to five times higher than those of leaves. Five glucosinolates were identified: the aliphatic sinigrin, the aromatic phenyethylglucosinolate, and three indole glucosinolates: glucobrassicin, 4-methoxyglucobrassicin, and 4-hydroxyglucobrassicin. Tissue type and genotype were the most important factors affecting levels of identified glucosinolates. Sinigrin was by far the most abundant compound in all three genotypes. Sinigrin, 4-hydroxyglucobrassicin, and phenylethylglucosinolate were present at significantly higher levels in flowers than in leaves. In response to caterpillar feeding, sinigrin levels in both leaves and flowers were significantly higher than in undamaged plants, whereas 4-hydroxyglucobrassicin leaf levels were

  16. Influence of growth rate on nitrogen balance in adolescent sprint athletes.

    PubMed

    Aerenhouts, Dirk; Van Cauwenberg, Jelle; Poortmans, Jacques Remi; Hauspie, Ronald; Clarys, Peter

    2013-08-01

    This study aimed to estimate nitrogen balance and protein requirements in adolescent sprint athletes as a function of growth rate and physical development. Sixty adolescent sprint athletes were followed up biannually over a 2-yr period. Individual growth curves and age at peak height velocity were determined. Skeletal muscle mass (SMM) was estimated based on anthropometric measurements and fat mass was estimated by underwater densitometry. Seven-day diet and physical activity diaries were completed to estimate energy balance and protein intake. Nitrogen analysis of 24-hr urine samples collected on 1 weekday and 1 weekend day allowed calculation of nitrogen balance. Body height, weight, and SMM increased throughout the study period in both genders. Mean protein intakes were between 1.4 and 1.6 g kg-1 day-1 in both genders. A protein intake of 1.46 g kg-1 day-1 in girls and 1.35 g kg-1 day-1 in boys was needed to yield a positive nitrogen balance. This did not differ between participants during and after their growth spurt. None of the growth parameters was significantly related to nitrogen balance. It can be concluded that a mean protein intake around 1.5 g kg-1 day-1 was sufficient to stay in a positive nitrogen balance, even during periods of peak growth. Therefore, protein intake should not be enhanced in peak periods of linear or muscular growth.

  17. Acoustically derived growth rates of sperm whales (Physeter macrocephalus) in Kaikoura, New Zealand.

    PubMed

    Miller, Brian S; Growcott, Abraham; Slooten, Elisabeth; Dawson, Stephen M

    2013-09-01

    A non-invasive acoustic method for measuring the growth of sperm whales was developed based on estimating the length of individuals by measuring the inter-pulse interval (IPI) of their clicks. Most prior knowledge of growth in male sperm whales has come from from fitting growth curves to length data gained from whaling. Recordings made at Kaikoura, New Zealand, were used to estimate the length and growth of 32 photographically identified, resident whales that have been recorded repeatedly between 1991 and 2009. All whales recorded more than six months apart (n = 30) showed an increase in IPI. Using established relationships between IPI and total length, it was found that the average growth rate in the Kaikoura population is lower, especially for smaller whales (13-14.5 m), than that derived from historical whaling data from other populations. This difference may be due to ecological differences among populations but might also reflect upward bias in measurements gained in whaling. The ability to track growth of individuals through time is only possible via non-lethal means and offers a fundamentally different kind of data because differences among individuals can be measured.

  18. Postnatal growth rates covary weakly with embryonic development rates and do not explain adult mortality probability among songbirds on four continents

    USGS Publications Warehouse

    Martin, Thomas E.; Oteyza, Juan C.; Mitchell, Adam E.; Potticary, Ahva L.; Lloyd, P.

    2016-01-01

    Growth and development rates may result from genetic programming of intrinsic processes that yield correlated rates between life stages. These intrinsic rates are thought to affect adult mortality probability and longevity. However, if proximate extrinsic factors (e.g., temperature, food) influence development rates differently between stages and yield low covariance between stages, then development rates may not explain adult mortality probability. We examined these issues based on study of 90 songbird species on four continents to capture the diverse life-history strategies observed across geographic space. The length of the embryonic period explained little variation (ca. 13%) in nestling periods and growth rates among species. This low covariance suggests that the relative importance of intrinsic and extrinsic influences on growth and development rates differs between stages. Consequently, nestling period durations and nestling growth rates were not related to annual adult mortality probability among diverse songbird species within or among sites. The absence of a clear effect of faster growth on adult mortality when examined in an evolutionary framework across species may indicate that species that evolve faster growth also evolve physiological mechanisms for ameliorating costs on adult mortality. Instead, adult mortality rates of species in the wild may be determined more strongly by extrinsic environmental causes.

  19. Postnatal growth rates covary weakly with embryonic development rates and do not explain adult mortality probability among songbirds on four continents.

    PubMed

    Martin, Thomas E; Oteyza, Juan C; Mitchell, Adam E; Potticary, Ahva L; Lloyd, Penn

    2015-03-01

    Growth and development rates may result from genetic programming of intrinsic processes that yield correlated rates between life stages. These intrinsic rates are thought to affect adult mortality probability and longevity. However, if proximate extrinsic factors (e.g., temperature, food) influence development rates differently between stages and yield low covariance between stages, then development rates may not explain adult mortality probability. We examined these issues based on study of 90 songbird species on four continents to capture the diverse life-history strategies observed across geographic space. The length of the embryonic period explained little variation (ca. 13%) in nestling periods and growth rates among species. This low covariance suggests that the relative importance of intrinsic and extrinsic influences on growth and development rates differs between stages. Consequently, nestling period durations and nestling growth rates were not related to annual adult mortality probability among diverse songbird species within or among sites. The absence of a clear effect of faster growth on adult mortality when examined in an evolutionary framework across species may indicate that species that evolve faster growth also evolve physiological mechanisms for ameliorating costs on adult mortality. Instead, adult mortality rates of species in the wild may be determined more strongly by extrinsic environmental causes.

  20. Linking leaf veins to growth and mortality rates: an example from a subtropical tree community.

    PubMed

    Iida, Yoshiko; Sun, I-Fang; Price, Charles A; Chen, Chien-Teh; Chen, Zueng-Sang; Chiang, Jyh-Min; Huang, Chun-Lin; Swenson, Nathan G

    2016-09-01

    A fundamental goal in ecology is to link variation in species function to performance, but functional trait-performance investigations have had mixed success. This indicates that less commonly measured functional traits may more clearly elucidate trait-performance relationships. Despite the potential importance of leaf vein traits, which are expected to be related to resource delivery rates and photosynthetic capacity, there are few studies, which examine associations between these traits and demographic performance in communities. Here, we examined the associations between species traits including leaf venation traits and demographic rates (Relative Growth Rate, RGR and mortality) as well as the spatial distributions of traits along soil environment for 54 co-occurring species in a subtropical forest. Size-related changes in demographic rates were estimated using a hierarchical Bayesian approach. Next, Kendall's rank correlations were quantified between traits and estimated demographic rates at a given size and between traits and species-average soil environment. Species with denser venation, smaller areoles, less succulent, or thinner leaves showed higher RGR for a wide range of size classes. Species with leaves of denser veins, larger area, cheaper construction costs or thinner, or low-density wood were associated with high mortality rates only in small size classes. Lastly, contrary to our expectations, acquisitive traits were not related to resource-rich edaphic conditions. This study shows that leaf vein traits are weakly, but significantly related to tree demographic performance together with other species traits. Because leaf traits associated with an acquisitive strategy such as denser venation, less succulence, and thinner leaves showed higher growth rate, but similar leaf traits were not associated with mortality, different pathways may shape species growth and survival. This study suggests that we are still not measuring some of key traits related to

  1. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake

    PubMed Central

    Keenan, Trevor F; Prentice, I. Colin; Canadell, Josep G; Williams, Christopher A; Wang, Han; Raupach, Michael; Collatz, G. James

    2016-01-01

    Terrestrial ecosystems play a significant role in the global carbon cycle and offset a large fraction of anthropogenic CO2 emissions. The terrestrial carbon sink is increasing, yet the mechanisms responsible for its enhancement, and implications for the growth rate of atmospheric CO2, remain unclear. Here using global carbon budget estimates, ground, atmospheric and satellite observations, and multiple global vegetation models, we report a recent pause in the growth rate of atmospheric CO2, and a decline in the fraction of anthropogenic emissions that remain in the atmosphere, despite increasing anthropogenic emissions. We attribute the observed decline to increases in the terrestrial sink during the past decade, associated with the effects of rising atmospheric CO2 on vegetation and the slowdown in the rate of warming on global respiration. The pause in the atmospheric CO2 growth rate provides further evidence of the roles of CO2 fertilization and warming-induced respiration, and highlights the need to protect both existing carbon stocks and regions, where the sink is growing rapidly. PMID:27824333

  2. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake.

    PubMed

    Keenan, Trevor F; Prentice, I Colin; Canadell, Josep G; Williams, Christopher A; Wang, Han; Raupach, Michael; Collatz, G James

    2016-11-08

    Terrestrial ecosystems play a significant role in the global carbon cycle and offset a large fraction of anthropogenic CO2 emissions. The terrestrial carbon sink is increasing, yet the mechanisms responsible for its enhancement, and implications for the growth rate of atmospheric CO2, remain unclear. Here using global carbon budget estimates, ground, atmospheric and satellite observations, and multiple global vegetation models, we report a recent pause in the growth rate of atmospheric CO2, and a decline in the fraction of anthropogenic emissions that remain in the atmosphere, despite increasing anthropogenic emissions. We attribute the observed decline to increases in the terrestrial sink during the past decade, associated with the effects of rising atmospheric CO2 on vegetation and the slowdown in the rate of warming on global respiration. The pause in the atmospheric CO2 growth rate provides further evidence of the roles of CO2 fertilization and warming-induced respiration, and highlights the need to protect both existing carbon stocks and regions, where the sink is growing rapidly.

  3. The Radial Growth Rate of Japanese Precious Corals Using Pb-210 Dating Method

    NASA Astrophysics Data System (ADS)

    Yamada, M.; Iwasaki, N.; Suzuki, A.; Aono, T.

    2014-12-01

    Precious corals belong to the subclass Octocorallia of the class Anthozoa. Its major component is calcium carbonate and the crystal structure is high-Mg calcite. Their skeletal axes are used for jewellery, rosary, amulet, etc. They are found mainly in the Japanese coast, the Mediterranean and off the Midway Islands and they are distributed at a depth of 100 m to 1500m. The growing skeletons of precious corals have potential for recording environmental change. Pb-210 is a naturally occurring radionuclide with a half-life of 22.3 years. Pb-210 is a natural sediment marker suitable for dating events that have occurred over the past 100 years and has been used to measure the sedimentation rates of lake and coastal marine sediments. The objectives of this study were to measure the Pb-210 concentration in the skeletons of Japanese red coral, pink coral and white coral and to estimate the radial growth rate using Pb-210 dating method. The radial growth rate of the skeleton can be estimated by the gradual decrease in Pb-210 concentrations measured from the surface inwards. The radial growth rate of the pink coral skeleton (Corallium elatius), collected at depths of 200 to 300 m off the coast of the Ryukyu Islands, Japan, was 0.15 mm/year, so slow that it would take as long as 50 years for a colony to grow to 15 mm in diameter.

  4. Growth rates, reproductive phenology, and pollination ecology of Espeletia grandiflora (Asteraceae), a giant Andean caulescent rosette.

    PubMed

    Fagua, J C; Gonzalez, V H

    2007-01-01

    From March 2001 to December 2002, we studied the reproductive phenology, pollination ecology, and growth rates of Espeletia grandiflora Humb. and Bonpl. (Asteraceae), a giant caulescent rosette from the Páramos of the Eastern Andes of Colombia. Espeletia grandiflora was found to be predominantly allogamous and strongly self-incompatible. Bumblebees (Bombus rubicundus and B. funebris) were the major pollinators of E. grandiflora, although moths, hummingbirds, flies, and beetles also visited flowers. Inflorescence development began in March and continued through August to September. Plants flowered for 30 - 96 days with a peak from the beginning of October through November. The percentage of flowering plants strongly differed among size classes and between both years. Seed dispersal occurred as early as September through May of the following year. The average absolute growth rate for juveniles and adults rate was 7.6 cm/year. Given the scarcity of floral visitors at high altitudes due to climatic conditions, we suggest that even small contributions from a wide range of pollinators might be advantageous for pollination of E. grandiflora. Long-term studies on different populations of E. grandiflora are required to determine if the high growth rates are representative, to quantify the variation in the flowering behavior within and among populations, and to establish if nocturnal pollination is a trait that is exclusive to our population of E. grandiflora.

  5. Recent pause in the growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake

    NASA Astrophysics Data System (ADS)

    Keenan, Trevor F.; Prentice, I. Colin; Canadell, Josep G.; Williams, Christopher A.; Wang, Han; Raupach, Michael; Collatz, G. James

    2016-11-01

    Terrestrial ecosystems play a significant role in the global carbon cycle and offset a large fraction of anthropogenic CO2 emissions. The terrestrial carbon sink is increasing, yet the mechanisms responsible for its enhancement, and implications for the growth rate of atmospheric CO2, remain unclear. Here using global carbon budget estimates, ground, atmospheric and satellite observations, and multiple global vegetation models, we report a recent pause in the growth rate of atmospheric CO2, and a decline in the fraction of anthropogenic emissions that remain in the atmosphere, despite increasing anthropogenic emissions. We attribute the observed decline to increases in the terrestrial sink during the past decade, associated with the effects of rising atmospheric CO2 on vegetation and the slowdown in the rate of warming on global respiration. The pause in the atmospheric CO2 growth rate provides further evidence of the roles of CO2 fertilization and warming-induced respiration, and highlights the need to protect both existing carbon stocks and regions, where the sink is growing rapidly.

  6. Testing the Growth Rate Hypothesis in Vascular Plants with Above- and Below-Ground Biomass

    PubMed Central

    Yu, Qiang; Wu, Honghui; He, Nianpeng; Lü, Xiaotao; Wang, Zhiping; Elser, James J.; Wu, Jianguo; Han, Xingguo

    2012-01-01

    The growth rate hypothesis (GRH) proposes that higher growth rate (the rate of change in biomass per unit biomass, μ) is associated with higher P concentration and lower C∶P and N∶P ratios. However, the applicability of the GRH to vascular plants is not well-studied and few studies have been done on belowground biomass. Here we showed that, for aboveground, belowground and total biomass of three study species, μ was positively correlated with N∶C under N limitation and positively correlated with P∶C under P limitation. However, the N∶P ratio was a unimodal function of μ, increasing for small values of μ, reaching a maximum, and then decreasing. The range of variations in μ was positively correlated with variation in C∶N∶P stoichiometry. Furthermore, μ and C∶N∶P ranges for aboveground biomass were negatively correlated with those for belowground. Our results confirm the well-known association of growth rate with tissue concentration of the limiting nutrient and provide empirical support for recent theoretical formulations. PMID:22427823

  7. Testing the growth rate hypothesis in vascular plants with above- and below-ground biomass.

    PubMed

    Yu, Qiang; Wu, Honghui; He, Nianpeng; Lü, Xiaotao; Wang, Zhiping; Elser, James J; Wu, Jianguo; Han, Xingguo

    2012-01-01

    The growth rate hypothesis (GRH) proposes that higher growth rate (the rate of change in biomass per unit biomass, μ) is associated with higher P concentration and lower C:P and N:P ratios. However, the applicability of the GRH to vascular plants is not well-studied and few studies have been done on belowground biomass. Here we showed that, for aboveground, belowground and total biomass of three study species, μ was positively correlated with N:C under N limitation and positively correlated with P:C under P limitation. However, the N:P ratio was a unimodal function of μ, increasing for small values of μ, reaching a maximum, and then decreasing. The range of variations in μ was positively correlated with variation in C:N:P stoichiometry. Furthermore, μ and C:N:P ranges for aboveground biomass were negatively correlated with those for belowground. Our results confirm the well-known association of growth rate with tissue concentration of the limiting nutrient and provide empirical support for recent theoretical formulations.

  8. Biomedical Progress Rates as New Parameters for Models of Economic Growth in Developed Countries

    PubMed Central

    Zhavoronkov, Alex; Litovchenko, Maria

    2013-01-01

    While the doubling of life expectancy in developed countries during the 20th century can be attributed mostly to decreases in child mortality, the trillions of dollars spent on biomedical research by governments, foundations and corporations over the past sixty years are also yielding longevity dividends in both working and retired population. Biomedical progress will likely increase the healthy productive lifespan and the number of years of government support in the old age. In this paper we introduce several new parameters that can be applied to established models of economic growth: the biomedical progress rate, the rate of clinical adoption and the rate of change in retirement age. The biomedical progress rate is comprised of the rejuvenation rate (extending the productive lifespan) and the non-rejuvenating rate (extending the lifespan beyond the age at which the net contribution to the economy becomes negative). While staying within the neoclassical economics framework and extending the overlapping generations (OLG) growth model and assumptions from the life cycle theory of saving behavior, we provide an example of the relations between these new parameters in the context of demographics, labor, households and the firm. PMID:24217179

  9. Biomedical progress rates as new parameters for models of economic growth in developed countries.

    PubMed

    Zhavoronkov, Alex; Litovchenko, Maria

    2013-11-08

    While the doubling of life expectancy in developed countries during the 20th century can be attributed mostly to decreases in child mortality, the trillions of dollars spent on biomedical research by governments, foundations and corporations over the past sixty years are also yielding longevity dividends in both working and retired population. Biomedical progress will likely increase the healthy productive lifespan and the number of years of government support in the old age. In this paper we introduce several new parameters that can be applied to established models of economic growth: the biomedical progress rate, the rate of clinical adoption and the rate of change in retirement age. The biomedical progress rate is comprised of the rejuvenation rate (extending the productive lifespan) and the non-rejuvenating rate (extending the lifespan beyond the age at which the net contribution to the economy becomes negative). While staying within the neoclassical economics framework and extending the overlapping generations (OLG) growth model and assumptions from the life cycle theory of saving behavior, we provide an example of the relations between these new parameters in the context of demographics, labor, households and the firm.

  10. Survival, Recruitment, and Population Growth Rate of an Important Mesopredator: The Northern Raccoon

    PubMed Central

    Troyer, Elizabeth M.; Cameron Devitt, Susan E.; Sunquist, Melvin E.; Goswami, Varun R.; Oli, Madan K.

    2014-01-01

    Populations of mesopredators (mid-sized mammalian carnivores) are expanding in size and range amid declining apex predator populations and ever-growing human presence, leading to significant ecological impacts. Despite their obvious importance, population dynamics have scarcely been studied for most mesopredator species. Information on basic population parameters and processes under a range of conditions is necessary for managing these species. Here we investigate survival, recruitment, and population growth rate of a widely distributed and abundant mesopredator, the northern raccoon (Procyon lotor), using Pradel’s temporal symmetry models and >6 years of monthly capture-mark-recapture data collected in a protected area. Monthly apparent survival probability was higher for females (0.949, 95% CI = 0.936–0.960) than for males (0.908, 95% CI = 0.893–0.920), while monthly recruitment rate was higher for males (0.091, 95% CI = 0.078–0.106) than for females (0.054, 95% CI = 0.042–0.067). Finally, monthly realized population growth rate was 1.000 (95% CI = 0.996–1.004), indicating that our study population has reached a stable equilibrium in this relatively undisturbed habitat. There was little evidence for substantial temporal variation in population growth rate or its components. Our study is one of the first to quantify survival, recruitment, and realized population growth rate of raccoons using long-term data and rigorous statistical models. PMID:24901349

  11. Lyapunov Exponent and Out-of-Time-Ordered Correlator's Growth Rate in a Chaotic System

    NASA Astrophysics Data System (ADS)

    Rozenbaum, Efim B.; Ganeshan, Sriram; Galitski, Victor

    2017-02-01

    It was proposed recently that the out-of-time-ordered four-point correlator (OTOC) may serve as a useful characteristic of quantum-chaotic behavior, because, in the semiclassical limit ℏ→0 , its rate of exponential growth resembles the classical Lyapunov exponent. Here, we calculate the four-point correlator C (t ) for the classical and quantum kicked rotor—a textbook driven chaotic system—and compare its growth rate at initial times with the standard definition of the classical Lyapunov exponent. Using both quantum and classical arguments, we show that the OTOC's growth rate and the Lyapunov exponent are, in general, distinct quantities, corresponding to the logarithm of the phase-space averaged divergence rate of classical trajectories and to the phase-space average of the logarithm, respectively. The difference appears to be more pronounced in the regime of low kicking strength K , where no classical chaos exists globally. In this case, the Lyapunov exponent quickly decreases as K →0 , while the OTOC's growth rate may decrease much slower, showing a higher sensitivity to small chaotic islands in the phase space. We also show that the quantum correlator as a function of time exhibits a clear singularity at the Ehrenfest time tE: transitioning from a time-independent value of t-1ln C (t ) at t tE. We note that the underlying physics here is the same as in the theory of weak (dynamical) localization [Aleiner and Larkin, Phys. Rev. B 54, 14423 (1996), 10.1103/PhysRevB.54.14423; Tian, Kamenev, and Larkin, Phys. Rev. Lett. 93, 124101 (2004), 10.1103/PhysRevLett.93.124101] and is due to a delay in the onset of quantum interference effects, which occur sharply at a time of the order of the Ehrenfest time.

  12. Measurement of Temperature Fluctuations and Microscopic Growth Rates in a Silicon Floating Zone on TEXUS36

    NASA Technical Reports Server (NTRS)

    Croell, Arne; Schweizer, Markus; Dold, P.; Kaiser, Th.; Lichtensteiger, M.; Benz, K. W.

    1999-01-01

    Several pg experiments on sounding rockets and the Space Shuttle have shown that time-dependent thermocapillary (Marangoni) convection is the major cause for the formation of dopant striations in floating-zone grown semiconductor crystals, at least in small-scale systems not employing RF heating. To quantify this correlation, a silicon floating-zone experiment was performed during the TEXUS36 flight (February 7, 1 998) in the monoellipsoid mirror furnace TEM02-ELLI. During the experiment, temperature fluctuations in the silicon melt zone and the microscopic growth rate were simultaneously measured. Temperature fluctuations of 0.5 C - 0.7 C with main frequencies between 0.1 Hz and 0.3Hz were detectable. The microscopic growth rate fluctuated considerably around the average growth rate of 1 mm/min: rates from 4mm/min to negative values (backmelting) were observed. Dopant striations are clearly visible in the Sb-doped crystal. They were characterized by Spreading Resistance measurements and Differential Interference Contrast microscopy. The frequencies associated with the dopant inhomogeneities correspond quite well with those of the temperature fluctuations and microscopic growth rates. 3D numerical simulations were performed to predict the optimum position of the temperature sensor, to evaluate characteristic temperature amplitudes and frequencies, and to give insight into the instability mechanisms of Marangoni convection in this configuration. The simulations were in good agreement with the experimental values, showing temperature fluctuations with frequencies? 0.25 Hz and amplitudes up to 1.8 C at a position equivalent to that of the sensor tip in the experiment.

  13. Measurement of Temperature Fluctuations and Microscopic Growth Rates in a Silicon Floating Zone Under Microgravity

    NASA Technical Reports Server (NTRS)

    Croell, Arne; Schweizer, Markus; Dold, P.; Kaiser, T.; Lichtensteiger, M.; Benz, K. W.

    1999-01-01

    USA Several microgravity experiments on sounding rockets and the Space Shuttle have shown that time-dependent thermocapillary (Marangoni) convection is the major cause for the formation of dopant striations in floating-zone grown semiconductor crystals, at least in small-scale systems not employing RF heating. To quantify this correlation, a silicon floating-zone experiment was performed during the TEXUS36 flight (February 7, 1998) in the monoellipsoid mirror furnace TEM02-ELLI. During the experiment, temperature fluctuations in the silicon melt zone and the microscopic growth rate were simultaneously measured. Temperature fluctuations of 0.5 C - 0.7 C with main frequencies between 0.1 Hz and 0.3 Hz were detectable. The microscopic growth rate fluctuated considerably around the average growth rate of 1 mm/min: rates from 4 mm/min to negative values (backmelting) were observed. Dopant striations are clearly visible in the Sb-doped crystal. They were characterized by Spreading Resistance measurements and Differential Interference Contrast microscopy. The frequencies associated with the dopant inhomogeneities correspond quite well with those of the temperature fluctuations and microscopic growth rates. 3D numerical simulations were performed to predict the optimum position of the temperature sensor, to evaluate characteristic temperature amplitudes and frequencies, and to give insight into the instability mechanisms of Marangoni convection in this configuration. The simulations were in good agreement with the experimental values, showing temperature fluctuations with frequencies ? 0.25 Hz and amplitudes up to 1.8 C at a position equivalent to that of the sensor tip in the experiment.

  14. Stiff Mutant Genes of Phycomyces Affect Turgor Pressure and Wall Mechanical Properties to Regulate Elongation Growth Rate

    PubMed Central

    Ortega, Joseph K. E.; Munoz, Cindy M.; Blakley, Scott E.; Truong, Jason T.; Ortega, Elena L.

    2012-01-01

    Regulation of cell growth is paramount to all living organisms. In plants, algae and fungi, regulation of expansive growth of cells is required for development and morphogenesis. Also, many sensory responses of stage IVb sporangiophores of Phycomyces blakesleeanus are produced by regulating elongation growth rate (growth responses) and differential elongation growth rate (tropic responses). “Stiff” mutant sporangiophores exhibit diminished tropic responses and are found to be defective in at least five genes; madD, E, F, G, and J. Prior experimental research suggests that the defective genes affect growth regulation, but this was not verified. All the growth of the single-celled stalk of the stage IVb sporangiophore occurs in a short region termed the “growth zone.” Prior experimental and theoretical research indicates that elongation growth rate of the stage IVb sporangiophore can be regulated by controlling the cell wall mechanical properties within the growth zone and the magnitude of the turgor pressure. A quantitative biophysical model for elongation growth rate is required to elucidate the relationship between wall mechanical properties and turgor pressure during growth regulation. In this study, it is hypothesized that the mechanical properties of the wall within the growth zone of stiff mutant sporangiophores are different compared to wild type (WT). A biophysical equation for elongation growth rate is derived for fungal and plant cells with a growth zone. Two strains of stiff mutants are studied, C149 madD120 (−) and C216 geo- (−). Experimental results demonstrate that turgor pressure is larger but irreversible wall deformation rates within the growth zone and growth zone length are smaller for stiff mutant sporangiophores compared to WT. These findings can explain the diminished tropic responses of the stiff mutant sporangiophores. It is speculated that the defective genes affect the amount of wall-building material delivered to the inner cell

  15. Stiff mutant genes of phycomyces affect turgor pressure and wall mechanical properties to regulate elongation growth rate.

    PubMed

    Ortega, Joseph K E; Munoz, Cindy M; Blakley, Scott E; Truong, Jason T; Ortega, Elena L

    2012-01-01

    Regulation of cell growth is paramount to all living organisms. In plants, algae and fungi, regulation of expansive growth of cells is required for development and morphogenesis. Also, many sensory responses of stage IVb sporangiophores of Phycomyces blakesleeanus are produced by regulating elongation growth rate (growth responses) and differential elongation growth rate (tropic responses). "Stiff" mutant sporangiophores exhibit diminished tropic responses and are found to be defective in at least five genes; madD, E, F, G, and J. Prior experimental research suggests that the defective genes affect growth regulation, but this was not verified. All the growth of the single-celled stalk of the stage IVb sporangiophore occurs in a short region termed the "growth zone." Prior experimental and theoretical research indicates that elongation growth rate of the stage IVb sporangiophore can be regulated by controlling the cell wall mechanical properties within the growth zone and the magnitude of the turgor pressure. A quantitative biophysical model for elongation growth rate is required to elucidate the relationship between wall mechanical properties and turgor pressure during growth regulation. In this study, it is hypothesized that the mechanical properties of the wall within the growth zone of stiff mutant sporangiophores are different compared to wild type (WT). A biophysical equation for elongation growth rate is derived for fungal and plant cells with a growth zone. Two strains of stiff mutants are studied, C149 madD120 (-) and C216 geo- (-). Experimental results demonstrate that turgor pressure is larger but irreversible wall deformation rates within the growth zone and growth zone length are smaller for stiff mutant sporangiophores compared to WT. These findings can explain the diminished tropic responses of the stiff mutant sporangiophores. It is speculated that the defective genes affect the amount of wall-building material delivered to the inner cell wall.

  16. The growth rates of KDP crystals in solutions with potassium permanganate additives

    NASA Astrophysics Data System (ADS)

    Egorova, A. E.; Vorontsov, D. A.; Nezhdanov, A. V.; Noskova, A. N.; Portnov, V. N.

    2017-01-01

    We have found that growth of the {101} faces of a KDP (KH2PO4) crystal is suppressed, and the growth rate of the {100} faces passes through the maximum with increasing addition of KMnO4 to a solution with pH=4.7. We have concluded that the [MnH2PO4]2+ complex and MnO2 particles affect the growth kinetics. The X-ray and electronic paramagnetic resonance data show that manganese is incorporated into the crystal in the form of Mn3+ and Mn4+. The local excess of a positive charge in the area with incorporated [MnH2PO4]2+ complex can be compensated by the shift of the hydrogen atoms in the KDP structure.

  17. Simulation of growth rate and deposition profile on the periodically patterned substrate

    NASA Astrophysics Data System (ADS)

    Baek, Byung-Joon; Kang, Sung-Ju; Kim, Jin-Taek; Pak, Bockchoon; Lee, Cheul-Ro

    2007-06-01

    The growth of GaN on the patterned substances has proven favorable to achieve thick, crack-free GaN layers. Based on these methods, we specially designed periodically patterned Si substrate process, which is referred to as lateral epitaxy on patterned Si substrate (LEPS). High crystalline quality GaN are obtained by using this technique. In this paper, numerical modeling of transport and reaction of species is performed to estimate the growth rate of GaN from the reaction of trimethyl gallium (TMG) and ammonia. The effect of fabricated structure of feature scale model will be predicted by using the topography simulator, and deposition profile of the GaN on the pattern will be discussed. The effect of flow conditions and pattern shape and periodicity will also be addressed, which can be critical for the quality of crystal growth. The dependency of step coverage and conformality of patterned mask will also be discussed.

  18. Growth trajectory influences temperature preference in fish through an effect on metabolic rate.

    PubMed

    Killen, Shaun S

    2014-11-01

    Most animals experience temperature variations as they move through the environment. For ectotherms, in particular, temperature has a strong influence on habitat choice. While well studied at the species level, less is known about factors affecting the preferred temperature of individuals; especially lacking is information on how physiological traits are linked to thermal preference and whether such relationships are affected by factors such feeding history and growth trajectory. This study examined these issues in the common minnow Phoxinus phoxinus, to determine the extent to which feeding history, standard metabolic rate (SMR) and aerobic scope (AS), interact to affect temperature preference. Individuals were either: 1) food deprived (FD) for 21 days, then fed ad libitum for the next 74 days; or 2) fed ad libitum throughout the entire period. All animals were then allowed to select preferred temperatures using a shuttle-box, and then measured for SMR and AS at 10 °C, estimated by rates of oxygen uptake. Activity within the shuttle-box under a constant temperature regime was also measured. In both FD and control fish, SMR was negatively correlated with preferred temperature. The SMR of the FD fish was increased compared with the controls, probably due to the effects of compensatory growth, and so these growth-compensated fish preferred temperatures that were on average 2.85 °C cooler than controls fed a maintenance ration throughout the study. Fish experiencing compensatory growth also displayed a large reduction in activity. In growth-compensated fish and controls, activity measured at 10 °C was positively correlated with preferred temperature. Individual fish prefer temperatures that vary predictably with SMR and activity level, which are both plastic in response to feeding history and growth trajectories. Cooler temperatures probably allow individuals to reduce maintenance costs and divert more energy towards growth. A reduction in SMR at cooler

  19. Guidance for growth factors, projections, and control strategies for the 15 percent rate-of-progress plans

    SciTech Connect

    Not Available

    1993-03-01

    Section 182(b)(1) of the Clean Air Act (Act) requires all ozone nonattainment areas classified as moderate and above to submit a State Implementation Plan (SIP) revision by November 15, 1993, which describes, in part, how the areas will achieve an actual volatile organic compound (VOC) emissions reduction of at least 15 percent during the first 6 years after enactment of the Clean Air Act Amendments of 1990 (CAAA). In addition, the SIP revision must describe how any growth in emissions from 1990 through 1996 will be fully offset. It is important to note that section 182(b)(1) also requires the SIP for moderate areas to provide for reductions in VOC and nitrogen oxides (NOx) emissions as necessary to attain the national primary ambient air quality standard for ozone by November 15, 1996. The guidance document focuses on the procedures for developing 1996 projected emissions inventories and control measures which moderate and above ozone nonattainment areas must include in their rate-of-progress plans. The document provides technical guidance to support the policy presented in the 'General Preamble: Implementation of Title I of the CAAA of 1990' (57 FR 13498).

  20. Evolution of Cell Size Homeostasis and Growth Rate Diversity during Initial Surface Colonization of Shewanella oneidensis.

    PubMed

    Lee, Calvin K; Kim, Alexander J; Santos, Giancarlo S; Lai, Peter Y; Lee, Stella Y; Qiao, David F; Anda, Jaime De; Young, Thomas D; Chen, Yujie; Rowe, Annette R; Nealson, Kenneth H; Weiss, Paul S; Wong, Gerard C L

    2016-09-06

    Cell size control and homeostasis are fundamental features of bacterial metabolism. Recent work suggests that cells add a constant size between birth and division ("adder" model). However, it is not known how cell size homeostasis is influenced by the existence of heterogeneous microenvironments, such as those during biofilm formation. Shewanella oneidensis MR-1 can use diverse energy sources on a range of surfaces via extracellular electron transport (EET), which can impact growth, metabolism, and size diversity. Here, we track bacterial surface communities at single-cell resolution to show that not only do bacterial motility appendages influence the transition from two- to three-dimensional biofilm growth and control postdivisional cell fates, they strongly impact cell size homeostasis. For every generation, we find that the average growth rate for cells that stay on the surface and continue to divide (nondetaching population) and that for cells that detach before their next division (detaching population) are roughly constant. However, the growth rate distribution is narrow for the nondetaching population, but broad for the detaching population in each generation. Interestingly, the appendage deletion mutants (ΔpilA, ΔmshA-D, Δflg) have significantly broader growth rate distributions than that of the wild type for both detaching and nondetaching populations, which suggests that Shewanella appendages are important for sensing and integrating environmental inputs that contribute to size homeostasis. Moreover, our results suggest multiplexing of appendages for sensing and motility functions contributes to cell size dysregulation. These results can potentially provide a framework for generating metabolic diversity in S. oneidensis populations to optimize EET in heterogeneous environments.

  1. Adult survival and population growth rate in Colorado big brown bats (Eptesicus fuscus)

    USGS Publications Warehouse

    O'Shea, T.J.; Ellison, L.E.; Stanley, T.R.

    2011-01-01

    We studied adult survival and population growth at multiple maternity colonies of big brown bats (Eptesicus fuscus) in Fort Collins, Colorado. We investigated hypotheses about survival using information-theoretic methods and mark-recapture analyses based on passive detection of adult females tagged with passive integrated transponders. We constructed a 3-stage life-history matrix model to estimate population growth rate (??) and assessed the relative importance of adult survival and other life-history parameters to population growth through elasticity and sensitivity analysis. Annual adult survival at 5 maternity colonies monitored from 2001 to 2005 was estimated at 0.79 (95% confidence interval [95% CI] = 0.77-0.82). Adult survival varied by year and roost, with low survival during an extreme drought year, a finding with negative implications for bat populations because of the likelihood of increasing drought in western North America due to global climate change. Adult survival during winter was higher than in summer, and mean life expectancies calculated from survival estimates were lower than maximum longevity records. We modeled adult survival with recruitment parameter estimates from the same population. The study population was growing (?? = 1.096; 95% CI = 1.057-1.135). Adult survival was the most important demographic parameter for population growth. Growth clearly had the highest elasticity to adult survival, followed by juvenile survival and adult fecundity (approximately equivalent in rank). Elasticity was lowest for fecundity of yearlings. The relative importances of the various life-history parameters for population growth rate are similar to those of large mammals. ?? 2011 American Society of Mammalogists.

  2. Fatigue crack growth rate characteristics of laser shock peened Ti-6Al-4V

    SciTech Connect

    Ruschau, J.J.; John, R.; Thompson, S.R.; Nicholas, T.

    1999-07-01

    The fatigue crack growth rate (FCGR) characteristics of Laser Shock Peened (LSP) titanium 6Al-4V were examined and compared to those of unprocessed material. The FCGR resistance of LSP processed material tested at low stress ratios (R) is shown to be significantly greater than for unprocessed, baseline material. The increased damage tolerance can be attributed to the large residual compressive stresses generated by the LSP process. Differences in the growth rate behavior due to LSP can be accounted for by using the closure corrected effective stress intensity range. {Delta}K{sub eff}, which takes into account only the portion of loading above the crack opening load. The rationale of using {Delta}K{sub eff} is also demonstrated through fractographic investigations.

  3. Eigenmodes and growth rates of relativistic current filamentation instability in a collisional plasma.

    PubMed

    Honda, M

    2004-01-01

    I theoretically found eigenmodes and growth rates of relativistic current filamentation instability in collisional regimes, deriving a generalized dispersion relation from self-consistent beam-Maxwell equations. For symmetrically counterstreaming, fully relativistic electron currents, the collisional coupling between electrons and ions creates the unstable modes of growing oscillation and wave, which stand out for long-wavelength perturbations. In the stronger collisional regime, the growing oscillatory mode tends to be dominant for all wavelengths. In the collisionless limit, those modes vanish, while maintaining another purely growing mode that exactly coincides with a standard relativistic Weibel mode. It is also shown that the effects of electron-electron collisions and thermal spread lower the growth rate of the relativistic Weibel instability. The present mechanisms of filamentation dynamics are essential for transport of homogeneous electron beam produced by the interaction of high power laser pulses with plasma.

  4. Using time-dependent models to investigate body condition and growth rate of the giant gartersnake

    USGS Publications Warehouse

    Coates, P.S.; Wylie, G.D.; Halstead, B.J.; Casazza, M.L.

    2009-01-01

    Identifying links between phenotypic attributes and fitness is a primary goal of reproductive ecology. Differences in within-year patterns of body condition between sexes of gartersnakes in relation to reproduction and growth are not fully understood. We conducted an 11-year field study of body condition and growth rate of the giant gartersnake Thamnophis gigas across 13 study areas in the Central Valley of California, USA. We developed a priori mixed effects models of body condition index (BCI), which included covariates of time, sex and snout-vent length and reported the best-approximating models using an information theoretic approach. Also, we developed models of growth rate index (GRI) using covariates of sex and periods based on reproductive behavior. The largest difference in BCI between sexes, as predicted by a non-linear (cubic) time model, occurred during the mating period when female body condition (0.014??0.001 se) was substantially greater than males (-0.027??0.002 se). Males likely allocated energy to search for mates, while females likely stored energy for embryonic development. We also provided evidence that males use more body energy reserves than females during hibernation, perhaps because of different body temperatures between sexes. We found GRI of male snakes was substantially lower during the mating period than during a non-mating period, which indicated that a trade-off existed between searching for mates and growth. These findings contribute to our understanding of snake ecology in a Mediterranean climate. ?? 2009 The Zoological Society of London.

  5. SCALING OF THE GROWTH RATE OF MAGNETIC ISLANDS IN THE HELIOSHEATH