Sample records for actual hydrologic conditions

  1. Feedback Loop of Data Infilling Using Model Result of Actual Evapotranspiration from Satellites and Hydrological Model

    NASA Astrophysics Data System (ADS)

    Murdi Hartanto, Isnaeni; Alexandridis, Thomas K.; van Andel, Schalk Jan; Solomatine, Dimitri

    2014-05-01

    Using satellite data in a hydrological model has long been occurring in modelling of hydrological processes, as a source of low cost regular data. The methods range from using satellite products as direct input, model validation, and data assimilation. However, the satellite data frequently face the missing value problem, whether due to the cloud cover or the limited temporal coverage. The problem could seriously affect its usefulness in hydrological model, especially if the model uses it as direct input, so data infilling becomes one of the important parts in the whole modelling exercise. In this research, actual evapotranspiration product from satellite is directly used as input into a spatially distributed hydrological model, and validated by comparing the catchment's end discharge with measured data. The instantaneous actual evapotranspiration is estimated from MODIS satellite images using a variation of the energy balance model for land (SEBAL). The eight-day cumulative actual evapotranspiration is then obtained by a temporal integration that uses the reference evapotranspiration calculated from meteorological data [1]. However, the above method cannot fill in a cell if the cell is constantly having no-data value during the eight-day periods. The hydrological model requires full set of data without no-data cells, hence, the no-data cells in the satellite's evapotranspiration map need to be filled in. In order to fills the no-data cells, an output of hydrological model is used. The hydrological model is firstly run with reference evapotranspiration as input to calculate discharge and actual evapotranspiration. The no-data cells in the eight-day cumulative map from the satellite are then filled in with the output of the first run of hydrological model. The final data is then used as input in a hydrological model to calculate discharge, thus creating a loop. The method is applied in the case study of Rijnland, the Netherlands where in the winter, cloud cover is

  2. Summary of Hydrologic Conditions in Georgia, 2008

    USGS Publications Warehouse

    Knaak, Andrew E.; Joiner, John K.; Peck, Michael F.

    2009-01-01

    The United States Geological Survey (USGS) Georgia Water Science Center (WSC) maintains a long-term hydrologic monitoring network of more than 290 real-time streamgages, more than 170 groundwater wells, and 10 lake and reservoir monitoring stations. One of the many benefits of data collected from this monitoring network is that analysis of the data provides an overview of the hydrologic conditions of rivers, creeks, reservoirs, and aquifers in Georgia. Hydrologic conditions are determined by statistical analysis of data collected during the current water year (WY) and comparison of the results to historical data collected at long-term stations. During the drought that persisted through 2008, the USGS succeeded in verifying and documenting numerous historic low-flow statistics at many streamgages and current water levels in aquifers, lakes, and reservoirs in Georgia. Streamflow data from the 2008 WY indicate that this drought is one of the most severe on record when compared to drought periods of 1950-1957, 1985-1989, and 1999-2002.

  3. Hydrologic Conditions in Kansas, water year 2015

    USGS Publications Warehouse

    May, Madison R.

    2016-03-31

    The U.S. Geological Survey (USGS), in cooperation with Federal, State, and local agencies, maintains a long-term network of hydrologic monitoring sites in Kansas. In 2015, the network included about 200 real-time streamgages (hereafter referred to as “gages”), 12 real-time reservoir-level monitoring stations, and 30 groundwater-level monitoring wells. These data and associated analyses provide a unique overview of hydrologic conditions and help improve the understanding of Kansas’s water resources.Real-time data are verified by the USGS throughout the year with regular measurements of streamflow, lake levels, and groundwater levels. These data are used in protecting life and property; and managing water resources for agricultural, industrial, public supply, ecological, and recreational purposes. Yearly hydrologic conditions are characterized by comparing statistical analyses of current and historical water year (WY) data for the period of record. A WY is the 12-month period from October 1 through September 30 and is designated by the year in which it ends.

  4. Summary of hydrologic conditions in Kansas, water year 2014

    USGS Publications Warehouse

    Robison, Andrew L.

    2015-01-01

    The U.S. Geological Survey Kansas Water Science Center, in cooperation with Federal, State, and local agencies, maintains a long-term network of hydrologic monitoring gages in the State of Kansas. These include 206 real-time streamgages, 12 real-time reservoir-level monitoring stations, and 32 groundwater monitoring wells. These data and associated analyses, accumulated over time, provide a unique overview of hydrologic conditions and help improve our understanding of Kansas’s water resources. Yearly hydrologic conditions are determined by comparing statistical analyses of current and historical water year data for the period of record. These data are used in protecting life and property, and managing water resources for agricultural, industrial, public supply, ecological, and recreational purposes.

  5. Summary of hydrologic conditions in Kansas, water year 2016

    USGS Publications Warehouse

    Louen, Justin M.

    2017-04-06

    The U.S. Geological Survey (USGS), in cooperation with Federal, State, and local agencies, maintains a long-term network of hydrologic monitoring sites in Kansas. Real-time data are collected at 216 streamgage sites and are verified throughout the year with regular measurements of streamflow made by USGS personnel. Annual assessments of hydrologic conditions are made by comparing statistical analyses of current and historical water year (WY) data for the period of record. A WY is the 12-month period from October 1 through September 30 and is designated by the calendar year in which the period ends. Long-term monitoring of hydrologic conditions in Kansas provides critical information for water-supply management, flood forecasting, reservoir operations, irrigation scheduling, bridge and culvert design, ecological monitoring, and many other uses.

  6. Hydrology for urban land planning - A guidebook on the hydrologic effects of urban land use

    USGS Publications Warehouse

    Leopold, Luna Bergere

    1968-01-01

    The application of current knowledge of the hydrologic effects of urbanization to the Brandywine should be viewed as a forecast of conditions which may be expected as urbanization proceeds. By making such forecasts in advance of actual urban development, the methods can be tested, data can be extended, and procedures improved as verification becomes possible.

  7. Effects of baseline conditions on the simulated hydrologic response to projected climate change

    USGS Publications Warehouse

    Koczot, Kathryn M.; Markstrom, Steven L.; Hay, Lauren E.

    2011-01-01

    Changes in temperature and precipitation projected from five general circulation models, using one late-twentieth-century and three twenty-first-century emission scenarios, were downscaled to three different baseline conditions. Baseline conditions are periods of measured temperature and precipitation data selected to represent twentieth-century climate. The hydrologic effects of the climate projections are evaluated using the Precipitation-Runoff Modeling System (PRMS), which is a watershed hydrology simulation model. The Almanor Catchment in the North Fork of the Feather River basin, California, is used as a case study. Differences and similarities between PRMS simulations of hydrologic components (i.e., snowpack formation and melt, evapotranspiration, and streamflow) are examined, and results indicate that the selection of a specific time period used for baseline conditions has a substantial effect on some, but not all, hydrologic variables. This effect seems to be amplified in hydrologic variables, which accumulate over time, such as soil-moisture content. Results also indicate that uncertainty related to the selection of baseline conditions should be evaluated using a range of different baseline conditions. This is particularly important for studies in basins with highly variable climate, such as the Almanor Catchment.

  8. Realizing ecosystem services: wetland hydrologic function along a gradient of ecosystem condition.

    PubMed

    McLaughlin, Daniel L; Cohen, Matthew J

    2013-10-01

    Wetlands provide numerous ecosystem services, from habitat provision to pollutant removal, floodwater storage, and microclimate regulation. Delivery of particular services relies on specific ecological functions, and thus to varying degree on wetland ecological condition, commonly quantified as departure from minimally impacted reference sites. Condition assessments are widely adopted as regulatory indicators of ecosystem function, and for some services (e.g., habitat) links between condition and function are often direct. For others, however, links are more tenuous, and using condition alone to enumerate ecosystem value (e.g., for compensatory mitigation) may underestimate important services. Hydrologic function affects many services cited in support of wetland protection both directly (floodwater retention, microclimate regulation) and indirectly (biogeochemical cycling, pollutant removal). We investigated links between condition and hydrologic function to test the hypothesis, embedded in regulatory assessment of wetland value, that condition predicts function. Condition was assessed using rapid and intensive approaches, including Florida's official wetland assessment tool, in 11 isolated forested wetlands in north Florida (USA) spanning a land use intensity gradient. Hydrologic function was assessed using hydrologic regime (mean, variance, and rates of change of water depth), and measurements of groundwater exchange and evapotranspiration (ET). Despite a wide range in condition, no systematic variation in hydrologic regime was observed; indeed reference sites spanned the full range of variation. In contrast, ET was affected by land use, with higher rates in intensive (agriculture and urban) landscapes in response to higher leaf area. ET determines latent heat exchange, which regulates microclimate, a valuable service in urban heat islands. Higher ET also indicates higher productivity and thus carbon cycling. Groundwater exchange regularly reversed flow direction

  9. Normal streamflows and water levels continue—Summary of hydrologic conditions in Georgia, 2014

    USGS Publications Warehouse

    Knaak, Andrew E.; Ankcorn, Paul D.; Peck, Michael F.

    2016-03-31

    The U.S. Geological Survey (USGS) South Atlantic Water Science Center (SAWSC) Georgia office, in cooperation with local, State, and other Federal agencies, maintains a long-term hydrologic monitoring network of more than 350 real-time, continuous-record, streamflow-gaging stations (streamgages). The network includes 14 real-time lake-level monitoring stations, 72 real-time surface-water-quality monitors, and several water-quality sampling programs. Additionally, the SAWSC Georgia office operates more than 204 groundwater monitoring wells, 39 of which are real-time. The wide-ranging coverage of streamflow, reservoir, and groundwater monitoring sites allows for a comprehensive view of hydrologic conditions across the State. One of the many benefits this monitoring network provides is a spatially distributed overview of the hydrologic conditions of creeks, rivers, reservoirs, and aquifers in Georgia.Streamflow and groundwater data are verified throughout the year by USGS hydrographers and made available to water-resource managers, recreationists, and Federal, State, and local agencies. Hydrologic conditions are determined by comparing the statistical analyses of data collected during the current water year to historical data. Changing hydrologic conditions underscore the need for accurate, timely data to allow informed decisions about the management and conservation of Georgia’s water resources for agricultural, recreational, ecological, and water-supply needs and in protecting life and property.

  10. Characterizing fate and transport properties in karst aquifers under different hydrologic conditions

    NASA Astrophysics Data System (ADS)

    Rodriguez, E.; Padilla, I. Y.

    2017-12-01

    Karst landscapes contain very productive aquifers. The hydraulic and hydrogeological characteristics of karst aquifers make these systems capable of storing and transporting large amount of water, but also highly vulnerable to contamination. Their extremely heterogeneous nature prevents accurate prediction in contaminant fate and transport. Even more challenging is to understand the impact of hydrologic conditions changes on fate and transport processes. This studies aims at characterizing fate and transport processes in the karst groundwater system of northern Puerto Rico under different hydrologic conditions. The study involves injecting rhodamine and uranine dyes into a sinkhole, and monitoring concentrations at a spring. Results show incomplete recovery of tracers, but breaking curves can be used to estimate advective, dispersive and mass transfer characteristic of the karst system. Preliminary results suggest significant differences in fate and transport characteristics under different hydrologic conditions.

  11. Designing hydrologic monitoring networks to maximize predictability of hydrologic conditions in a data assimilation system: a case study from South Florida, U.S.A

    NASA Astrophysics Data System (ADS)

    Flores, A. N.; Pathak, C. S.; Senarath, S. U.; Bras, R. L.

    2009-12-01

    Robust hydrologic monitoring networks represent a critical element of decision support systems for effective water resource planning and management. Moreover, process representation within hydrologic simulation models is steadily improving, while at the same time computational costs are decreasing due to, for instance, readily available high performance computing resources. The ability to leverage these increasingly complex models together with the data from these monitoring networks to provide accurate and timely estimates of relevant hydrologic variables within a multiple-use, managed water resources system would substantially enhance the information available to resource decision makers. Numerical data assimilation techniques provide mathematical frameworks through which uncertain model predictions can be constrained to observational data to compensate for uncertainties in the model forcings and parameters. In ensemble-based data assimilation techniques such as the ensemble Kalman Filter (EnKF), information in observed variables such as canal, marsh and groundwater stages are propagated back to the model states in a manner related to: (1) the degree of certainty in the model state estimates and observations, and (2) the cross-correlation between the model states and the observable outputs of the model. However, the ultimate degree to which hydrologic conditions can be accurately predicted in an area of interest is controlled, in part, by the configuration of the monitoring network itself. In this proof-of-concept study we developed an approach by which the design of an existing hydrologic monitoring network is adapted to iteratively improve the predictions of hydrologic conditions within an area of the South Florida Water Management District (SFWMD). The objective of the network design is to minimize prediction errors of key hydrologic states and fluxes produced by the spatially distributed Regional Simulation Model (RSM), developed specifically to simulate the

  12. The concept of hydrologic landscapes

    USGS Publications Warehouse

    Winter, T.C.

    2001-01-01

    Hydrologic landscapes are multiples or variations of fundamental hydrologic landscape units. A fundamental hydrologic landscape unit is defined on the basis of land-surface form, geology, and climate. The basic land-surface form of a fundamental hydrologic landscape unit is an upland separated from a lowland by an intervening steeper slope. Fundamental hydrologic landscape units have a complete hydrologic system consisting of surface runoff, ground-water flow, and interaction with atmospheric water. By describing actual landscapes in terms of land-surface slope, hydraulic properties of soils and geologic framework, and the difference between precipitation and evapotranspiration, the hydrologic system of actual landscapes can be conceptualized in a uniform way. This conceptual framework can then be the foundation for design of studies and data networks, syntheses of information on local to national scales, and comparison of process research across small study units in a variety of settings. The Crow Wing River watershed in central Minnesota is used as an example of evaluating stream discharge in the context of hydrologic landscapes. Lake-research watersheds in Wisconsin, Minnesota, North Dakota, and Nebraska are used as an example of using the hydrologic-landscapes concept to evaluate the effect of ground water on the degree of mineralization and major-ion chemistry of lakes that lie within ground-water flow systems.

  13. Nutrient dynamics in the lower Mississippi river floodplain: Comparing present and historic hydrologic conditions

    USGS Publications Warehouse

    Schramm, H.L.; Cox, M.S.; Tietjen, T.E.; Ezell, A.W.

    2009-01-01

    Alterations to the lower Mississippi River-floodplain ecosystem to facilitate commercial navigation and to reduce flooding of agricultural lands and communities in the historic floodplain have changed the hydrologic regime. As a result, the flood pulse usually has a lower water level, is of shorter duration, has colder water temperatures, and a smaller area of floodplain is inundated. Using average hydrologic conditions and water temperatures, we used established nitrogen and phosphorus processes in soils, an aquatic ecosystem model, and fish bioenergetic models to provide approximations of nitrogen and phosphorus flux in Mississippi River flood waters for the present conditions of a 2-month (mid-March to mid-May) flood pulse and for a 3-month (mid-March to mid-June), historic flood pulse. We estimated that the soils and aquatic biota can remove or sequester 542 and 976 kg nitrogen ha-1 during the present and historic hydrologic conditions, respectively. Phosphorus, on the other hand, will be added to the water largely as a result of anaerobic soil conditions but moderated by biological uptake by aquatic biota during both present and historic hydrologic conditions. The floodplain and associated water bodies may provide an important management opportunity for reducing downstream transport of nitrogen in Mississippi River waters. ?? 2009, The Society of Wetland Scientists.

  14. Hydrologic conditions controlling runoff generation immediately after wildfire

    USGS Publications Warehouse

    Ebel, Brian A.; Moody, John A.; Martin, Deborah A.

    2012-01-01

    We investigated the control of postwildfire runoff by physical and hydraulic properties of soil, hydrologic states, and an ash layer immediately following wildfire. The field site is within the area burned by the 2010 Fourmile Canyon Fire in Colorado, USA. Physical and hydraulic property characterization included ash thickness, particle size distribution, hydraulic conductivity, and soil water retention curves. Soil water content and matric potential were measured indirectly at several depths below the soil surface to document hydrologic states underneath the ash layer in the unsaturated zone, whereas precipitation and surface runoff were measured directly. Measurements of soil water content showed that almost no water infiltrated below the ash layer into the near-surface soil in the burned site at the storm time scale (i.e., minutes to hours). Runoff generation processes were controlled by and highly sensitive to ash thickness and ash hydraulic properties. The ash layer stored from 97% to 99% of rainfall, which was critical for reducing runoff amounts. The hydrologic response to two rain storms with different rainfall amounts, rainfall intensity, and durations, only ten days apart, indicated that runoff generation was predominantly by the saturation-excess mechanism perched at the ash-soil interface during the first storm and predominantly by the infiltration-excess mechanism at the ash surface during the second storm. Contributing area was not static for the two storms and was 4% (saturation excess) to 68% (infiltration excess) of the catchment area. Our results showed the importance of including hydrologic conditions and hydraulic properties of the ash layer in postwildfire runoff generation models.

  15. Modeling winter hydrological processes under differing climatic conditions: Modifying WEPP

    NASA Astrophysics Data System (ADS)

    Dun, Shuhui

    Water erosion is a serious and continuous environmental problem worldwide. In cold regions, soil freeze and thaw has great impacts on infiltration and erosion. Rain or snowmelt on a thawing soil can cause severe water erosion. Of equal importance is snow accumulation and snowmelt, which can be the predominant hydrological process in areas of mid- to high latitudes and forested watersheds. Modelers must properly simulate winter processes to adequately represent the overall hydrological outcome and sediment and chemical transport in these areas. Modeling winter hydrology is presently lacking in water erosion models. Most of these models are based on the functional Universal Soil Loss Equation (USLE) or its revised forms, e.g., Revised USLE (RUSLE). In RUSLE a seasonally variable soil erodibility factor (K) was used to account for the effects of frozen and thawing soil. Yet the use of this factor requires observation data for calibration, and such a simplified approach cannot represent the complicated transient freeze-thaw processes and their impacts on surface runoff and erosion. The Water Erosion Prediction Project (WEPP) watershed model, a physically-based erosion prediction software developed by the USDA-ARS, has seen numerous applications within and outside the US. WEPP simulates winter processes, including snow accumulation, snowmelt, and soil freeze-thaw, using an approach based on mass and energy conservation. However, previous studies showed the inadequacy of the winter routines in the WEPP model. Therefore, the objectives of this study were: (1) To adapt a modeling approach for winter hydrology based on mass and energy conservation, and to implement this approach into a physically-oriented hydrological model, such as WEPP; and (2) To assess this modeling approach through case applications to different geographic conditions. A new winter routine was developed and its performance was evaluated by incorporating it into WEPP (v2008.9) and then applying WEPP to

  16. Modelling hydrological conditions in the maritime forest region of south-western Nova Scotia

    NASA Astrophysics Data System (ADS)

    Yanni, Shelagh; Keys, Kevin; Meng, Fan-Rui; Yin, Xiwei; Clair, Tom; Arp, Paul A.

    2000-02-01

    Hydrological processes and conditions were quantified for the Mersey River Basin (two basins: one exiting below Mill Falls, and one exiting below George Lake), the Roger's Brook Basin, Moosepit Brook, and for other selected locations at and near Kejimkujik National Park in Nova Scotia, Canada, from 1967 to 1990. Addressed variables included precipitation (rain, snow, fog), air temperature, stream discharge, snowpack accumulations, throughfall, soil and subsoil moisture, soil temperature and soil frost, at a monthly resolution. It was found that monthly per hectare stream discharge was essentially independent of catchment area from <20 km2 to more than 1000 km2. The forest hydrology model ForHyM2 was used to simulate monthly rates of stream discharge, throughfall and snowpack water equivalents for mature forest conditions. These simulations were in good agreement with the historical records once the contributions of fog and mist to the area-wide water budget were taken into account, each on a monthly basis. The resulting simulations establish a hydrologically consistent, continuous, comprehensive and partially verified record for basin-wide outcomes for all major hydrological processes and conditions, be these related to stream discharge, soil moisture, soil temperature, snowpack accumulations, soil frost, throughfall, interception and soil percolation.

  17. Sensitivity of chemical weathering and dissolved carbon dynamics to hydrological conditions in a typical karst river

    PubMed Central

    Zhong, Jun; Li, Si-liang; Tao, Faxiang; Yue, Fujun; Liu, Cong-Qiang

    2017-01-01

    To better understand the mechanisms that hydrological conditions control chemical weathering and carbon dynamics in the large rivers, we investigated hydrochemistry and carbon isotopic compositions of dissolved inorganic carbon (DIC) based on high-frequency sampling in the Wujiang River draining the carbonate area in southwestern China. Concentrations of major dissolved solute do not strictly follow the dilution process with increasing discharge, and biogeochemical processes lead to variability in the concentration-discharge relationships. Temporal variations of dissolved solutes are closely related to weathering characteristics and hydrological conditions in the rainy seasons. The concentrations of dissolved carbon and the carbon isotopic compositions vary with discharge changes, suggesting that hydrological conditions and biogeochemical processes control dissolved carbon dynamics. Biological CO2 discharge and intense carbonate weathering by soil CO2 should be responsible for the carbon variability under various hydrological conditions during the high-flow season. The concentration of DICbio (DIC from biological sources) derived from a mixing model increases with increasing discharge, indicating that DICbio influx is the main driver of the chemostatic behaviors of riverine DIC in this typical karst river. The study highlights the sensitivity of chemical weathering and carbon dynamics to hydrological conditions in the riverine system. PMID:28220859

  18. Modeling summer month hydrological drought probabilities in the United States using antecedent flow conditions

    USGS Publications Warehouse

    Austin, Samuel H.; Nelms, David L.

    2017-01-01

    Climate change raises concern that risks of hydrological drought may be increasing. We estimate hydrological drought probabilities for rivers and streams in the United States (U.S.) using maximum likelihood logistic regression (MLLR). Streamflow data from winter months are used to estimate the chance of hydrological drought during summer months. Daily streamflow data collected from 9,144 stream gages from January 1, 1884 through January 9, 2014 provide hydrological drought streamflow probabilities for July, August, and September as functions of streamflows during October, November, December, January, and February, estimating outcomes 5-11 months ahead of their occurrence. Few drought prediction methods exploit temporal links among streamflows. We find MLLR modeling of drought streamflow probabilities exploits the explanatory power of temporally linked water flows. MLLR models with strong correct classification rates were produced for streams throughout the U.S. One ad hoc test of correct prediction rates of September 2013 hydrological droughts exceeded 90% correct classification. Some of the best-performing models coincide with areas of high concern including the West, the Midwest, Texas, the Southeast, and the Mid-Atlantic. Using hydrological drought MLLR probability estimates in a water management context can inform understanding of drought streamflow conditions, provide warning of future drought conditions, and aid water management decision making.

  19. Virtual hydrology observatory: an immersive visualization of hydrology modeling

    NASA Astrophysics Data System (ADS)

    Su, Simon; Cruz-Neira, Carolina; Habib, Emad; Gerndt, Andreas

    2009-02-01

    The Virtual Hydrology Observatory will provide students with the ability to observe the integrated hydrology simulation with an instructional interface by using a desktop based or immersive virtual reality setup. It is the goal of the virtual hydrology observatory application to facilitate the introduction of field experience and observational skills into hydrology courses through innovative virtual techniques that mimic activities during actual field visits. The simulation part of the application is developed from the integrated atmospheric forecast model: Weather Research and Forecasting (WRF), and the hydrology model: Gridded Surface/Subsurface Hydrologic Analysis (GSSHA). Both the output from WRF and GSSHA models are then used to generate the final visualization components of the Virtual Hydrology Observatory. The various visualization data processing techniques provided by VTK are 2D Delaunay triangulation and data optimization. Once all the visualization components are generated, they are integrated into the simulation data using VRFlowVis and VR Juggler software toolkit. VR Juggler is used primarily to provide the Virtual Hydrology Observatory application with fully immersive and real time 3D interaction experience; while VRFlowVis provides the integration framework for the hydrologic simulation data, graphical objects and user interaction. A six-sided CAVETM like system is used to run the Virtual Hydrology Observatory to provide the students with a fully immersive experience.

  20. Simulating Fire Disturbance and Plant Mortality Using Antecedent Eco-hydrological Conditions to Inform a Physically Based Combustion Model

    NASA Astrophysics Data System (ADS)

    Atchley, A. L.; Linn, R.; Middleton, R. S.; Runde, I.; Coon, E.; Michaletz, S. T.

    2016-12-01

    Wildfire is a complex agent of change that both affects and depends on eco-hydrological systems, thereby constituting a tightly linked system of disturbances and eco-hydrological conditions. For example, structure, build-up, and moisture content of fuel are dependent on eco-hydrological regimes, which impacts fire spread and intensity. Fire behavior, on the other hand, determines the severity and extent of eco-hydrological disturbance, often resulting in a mosaic of untouched, stressed, damaged, or completely destroyed vegetation within the fire perimeter. This in turn drives new eco-hydrological system behavior. The cycles of disturbance and recovery present a complex evolving system with many unknowns especially in the face of climate change that has implications for fire risk, water supply, and forest composition. Physically-based numerical experiments that attempt to capture the complex linkages between eco-hydrological regimes that affect fire behavior and the echo-hydrological response from those fire disturbances help build the understanding required to project how fire disturbance and eco-hydrological conditions coevolve over time. Here we explore the use of FIRETEC—a physically-based 3D combustion model that solves conservation of mass, momentum, energy, and chemical species—to resolve fire spread over complex terrain and fuel structures. Uniquely, we couple a physically-based plant mortality model with FIRETEC and examine the resultant hydrologic impact. In this proof of concept demonstration we spatially distribute fuel structure and moisture content based on the eco-hydrological condition to use as input for FIRETEC. The fire behavior simulation then produces localized burn severity and heat injures which are used as input to a spatially-informed plant mortality model. Ultimately we demonstrate the applicability of physically-based models to explore integrated disturbance and eco-hydrologic response to wildfire behavior and specifically map how fire

  1. Wetlands monitoring - hydrological conditions and water quality in selected transects of Biebrza National Park.

    NASA Astrophysics Data System (ADS)

    Stelmaszczyk, Mateusz; Okruszko, Tomasz

    2010-05-01

    Water Framework Directive (WFD) obligates Member States to prevent further deterioration as well as to protect and enhance the status of aquatic ecosystems and wetlands. In order to fulfill one of the WFD objectives - to keep wetlands in good surface water and groundwater status (determined by good ecological, chemical and quantitative status) it is necessary to specify most favourable conditions for them. In that case monitoring of factors responsible for wetlands status in natural areas is a key issue. Further, achieved knowledge of existing relations in ecosystems can be implemented in protection and restoration projects. There are a number of factors influencing diversity of habitats responsible for developing different wetland ecosystems and their sustaining in good ecological status. It's believed that among significant factors such as hydrological conditions, water quality, nutrient availability in the soil, pH value and management (e.g. grazing, mowing) the hydrological conditions are the most important. In presented work authors concentrated on hydrological conditions and water quality and theirs influence on wetland vegetation of Biebrza National Park (BNP). BNP located north-east part of Poland is recognized by many scientist as a unique undisturbed wetland reference area. Five transects located in different basins of BNP were chosen. Transects consist of piezometers in which the water table levels and water quality were measured. Analysis of electroconductivity (EC), alkalinity (HCO3-) and pH were done directly in the field. In the laboratory anions (NO3-, PO43-, Cl-, SO42-) and cations (NH4+, Ca2+, Mg2+, Br+, Li+, Na+, K+) concentration was determined using High Performance Liquid Chromatography (HPLC). D-divers, electronic devices to permanent measurement of groundwater level changes were located in some of the piezometers. Piezometers were located in the sites characterized by different hydrological conditions, from groundwater fed to river fed areas

  2. Human impact parameterization in global hydrological models improves estimates of monthly discharges and hydrological extremes: a multi-model validation study

    NASA Astrophysics Data System (ADS)

    Veldkamp, Ted; Ward, Philip; de Moel, Hans; Aerts, Jeroen; Muller Schmied, Hannes; Portmann, Felix; Zhao, Fang; Gerten, Dieter; Masaki, Yoshimitsu; Pokhrel, Yadu; Satoh, Yusuke; Gosling, Simon; Zaherpour, Jamal; Wada, Yoshihide

    2017-04-01

    Human impacts on freshwater resources and hydrological features form the core of present-day water related hazards, like flooding, droughts, water scarcity, and water quality issues. Driven by the societal and scientific needs to correctly model such water related hazards a fair amount of resources has been invested over the past decades to represent human activities and their interactions with the hydrological cycle in global hydrological models (GHMs). Use of these GHMs - including the human dimension - is widespread, especially in water resources research. Evaluation or comparative assessments of the ability of such GHMs to represent real-world hydrological conditions are, unfortunately, however often limited to (near-)natural river basins. Such studies are, therefore, not able to test the model representation of human activities and its associated impact on estimates of freshwater resources or assessments of hydrological extremes. Studies that did perform a validation exercise - including the human dimension and looking into managed catchments - either focused only on one hydrological model, and/or incorporated only a few data points (i.e. river basins) for validation. To date, a comprehensive comparative analysis that evaluates whether and where incorporating the human dimension actually improves the performance of different GHMs with respect to their representation of real-world hydrological conditions and extremes is missing. The absence of such study limits the potential benchmarking of GHMs and their outcomes in hydrological hazard and risk assessments significantly, potentially hampering incorporation of GHMs and their modelling results in actual policy making and decision support with respect to water resources management. To address this issue, we evaluate in this study the performance of five state-of-the-art GHMs that include anthropogenic activities in their modelling scheme, with respect to their representation of monthly discharges and hydrological

  3. Water and chemical budgets in an urbanized river system under various hydrological conditions

    NASA Astrophysics Data System (ADS)

    Brion, Natacha; Carbonnel, Vincent; Elskens, Marc; Claeys, Philippe; Verbanck, Michel A.

    2017-04-01

    Since historical times, riversides are preferential settlement places for human life and activities, ultimately leading to the development of Cities. Available water resources are not only essential to ensure human's vital functions, they are also used for the production of food, goods, and energy, as transport routes and as evacuation ways for domestic and industrial waste products. All these activities profoundly modify natural water circulation as well as water quality, with increased hydrological risks (floods, droughts,…) and chemical hazards (untreated sewage releases, industrial pollution,…) as consequence. An extreme example of strongly modified river system is the river Zenne crossing the city of Brussels. In and around the city, the river together with its connected navigation canal, determine a small vertical urbanized area (800 km2) combining extreme land-use landscapes. While the southern upstream part of this area lies in a region of intensive agricultural activities, the central part is occupied by a dense cityscape including a forested area, and the downstream part is mainly under industrial influence. In this context, we established a box-model representation of water and selected polluting chemicals (N and P, biological oxygen demand, and a selection of metals, pesticides and PAHs) budgets for the studied area under variable hydrological conditions. We first have identified the general distribution of water and pollutant tracers in the various background sources of the system: waters in streams located in the very upstream parts of the catchment, and untreated and treated sewage. Secondly we have assessed the distribution of water flows, and pollutant tracer concentrations at the boundaries of the studied water systems for different stable hydrological conditions and during flood events. Finally we will discuss water budgets and pollution tracer budgets for a yearly average hydrological situation and for dry and wet weather conditions in order

  4. Perturbations in the initial soil moisture conditions: Impacts on hydrologic simulation in a large river basin

    NASA Astrophysics Data System (ADS)

    Niroula, Sundar; Halder, Subhadeep; Ghosh, Subimal

    2018-06-01

    Real time hydrologic forecasting requires near accurate initial condition of soil moisture; however, continuous monitoring of soil moisture is not operational in many regions, such as, in Ganga basin, extended in Nepal, India and Bangladesh. Here, we examine the impacts of perturbation/error in the initial soil moisture conditions on simulated soil moisture and streamflow in Ganga basin and its propagation, during the summer monsoon season (June to September). This provides information regarding the required minimum duration of model simulation for attaining the model stability. We use the Variable Infiltration Capacity model for hydrological simulations after validation. Multiple hydrologic simulations are performed, each of 21 days, initialized on every 5th day of the monsoon season for deficit, surplus and normal monsoon years. Each of these simulations is performed with the initial soil moisture condition obtained from long term runs along with positive and negative perturbations. The time required for the convergence of initial errors is obtained for all the cases. We find a quick convergence for the year with high rainfall as well as for the wet spells within a season. We further find high spatial variations in the time required for convergence; the region with high precipitation such as Lower Ganga basin attains convergence at a faster rate. Furthermore, deeper soil layers need more time for convergence. Our analysis is the first attempt on understanding the sensitivity of hydrological simulations of Ganga basin on initial soil moisture conditions. The results obtained here may be useful in understanding the spin-up requirements for operational hydrologic forecasts.

  5. Oregon Hydrologic Landscapes: An Approach for Broadscale Hydrologic Classification

    EPA Science Inventory

    Gaged streams represent only a small percentage of watershed hydrologic conditions throughout the Unites States and globe, but there is a growing need for hydrologic classification systems that can serve as the foundation for broad-scale assessments of the hydrologic functions of...

  6. HYDROLOGIC CONDITIONS AFFECTING THE TROPOSPHERIC FLUX OF VINCLOZOLIN AND ITS DEGRADATION PRODUCTS

    EPA Science Inventory

    A laboratory chamber was used to determine hydrologic conditions that lead to the tropospheric flux of a suspected anti-androgenic dicarboximide fungicide, vinclozolin (3-(3,5-dichlorophenyl)-5-methyl-5-vinyl-oxzoli-dine-2,4-dione) and three degradation products from sterilized...

  7. Effects of the Temporal Variability of Evapotranspiration on Hydrologic Simulation in Central Florida

    USGS Publications Warehouse

    O'Reilly, Andrew M.

    2007-01-01

    similar magnitude, small errors in ET can produce relatively large errors in available water, and accurate estimates of actual ET are more important. Local hydrologic conditions can also be an important factor influencing the hydrologic response to ET variability. Various points along a flow path in a hydrologic system respond differently to temporal variations in ET. For example, soil moisture contents in the root zone are sensitive to daily variations in ET, whereas spring flow responds to only longer term variations in ET. Both the Hargreaves and Priestley-Taylor equations for potential ET, when applied with an annually invariant monthly vegetation coefficient derived from comparison of measured ET with computed potential ET values, can be used with a hydrologic model to produce reasonable predictions of water levels and flows. Baseline-adjusted modified coefficients of efficiency for simulated water levels ranged from 0.0, indicating that water levels were simulated equally as well with approximated ET as with actual ET values, to -0.6, indicating that water levels were simulated better with actual ET values. Simulations using the Hargreaves approximation consistently yielded larger absolute and relative errors than the Priestley-Taylor approximation. However, the differences between the Hargreaves and Priestley-Taylor simulations generally were much smaller than differences between these simulations and the simulations using actual ET. This suggests that the simpler Hargreaves equation may be an adequate substitute for the more complex Priestley-Taylor equation, depending on the level of accuracy required to satisfy the particular modeling objectives.

  8. Environmental Flows: Evaluating Long-Term Baselines for Hydrological Regime Change in the Southern United States

    NASA Astrophysics Data System (ADS)

    Deines, A. M.; Morrison, A. M.; Menzie, C.

    2016-12-01

    The wide variety of ecosystem services associated with running fresh waters are dependent on an assortment of flow conditions including timing and duration of seasonal floods as well as intermittent flows, such as storm peaks. Modern methods of assessing environmental flows consider hydrological regime change by comparing actual or simulated baseline flow conditions against putatively altered regime flows. These calculated flow changes are used as inputs to models of ecosystem responses such as for fish populations, inundated habitat area, or nutrient supplies. However, common and recommended tools and software used to make flow comparisons between putative regimes lack robust mechanisms for evaluating the significance of hydrological regime change in the context of long-term (multiple decades, centuries, or greater) trends, such as climatic conditions, or the facility to determine the existence and causes of regime changes when no obvious discontinuity exists, such as the construction of a dam. As such, environmental flow decisions based on short (recent) baseline records or baseline records assumed to represent stable hydrological conditions may lead to inefficient water use and ecosystem services distribution. Here we examine long-term patterns in discharge, the frequency and severity of regional droughts, and the Atlantic Multidecadal Oscillation to better understand the occurrence and causes of hydrological regime change in rivers in the Southern United States. For each river we ask: 1) Has hydrological regime change occurred? 2) To what degree is observed regime change associated with regional climatic drivers? 3) How might environmental flows suggested by current methods (e.g. the USGS Hydroecological Integrity Assessment or the Indicators of Hydrologic Alteration software) compare with flows derived by additional consideration of long-term drivers of hydrological change? We discuss the different temporal scales through which climate can influence a

  9. The role of hydrological initial conditions on Atmospheric River floods in the Russian River basin

    NASA Astrophysics Data System (ADS)

    Cao, Q.; Mehran, A.; Ralph, M.; Cannon, F.; Lettenmaier, D. P.

    2017-12-01

    A body of work over the last decade or so has demonstrated that most major floods along the U.S. West Coast are attributable to Atmospheric Rivers (ARs). Antecedent hydrological conditions play an important part in the natural links between precipitation and floods, and this is especially the case in the Pacific Coastal region where precipitation is strongly winter-dominant, and many potentially flood-inducing events occur relatively early in the wet season. The Russian River Basin has these characteristics, the result of which is mostly dry soils at the onset of the fall precipitation season. There is therefore a tradeoff in terms of flood potential between the strength of AR events, and the time history of previous precipitation that has begun to wet soils and raise local water tables. In order to examine flood responses associated with varying precursor hydrological conditions, we first constructed a data set of AR events that were coincident with Peaks Over Threshold (POT) extreme discharge events at selected USGS stream gauges throughout the Russian River basin. We investigated the role of antecedent soil moisture and water table conditions on historical AR flooding, initially using an exploratory data analysis approach. We then implemented the Distributed Hydrology-Soil-Vegetation Model (DHSVM) over the entire basin and conducted modeling experiments for each of the POT events under climatological and extreme antecedent conditions. We reconstructed climatological soil moisture by assimilating in situ observations into long-term soil moisture simulations from the UCLA Western U.S. Drought Monitoring System. We explore an envelope of frequency distributions of floods given a range of AR-related extreme precipitation and various initial hydrologic conditions, which eventually should have implications for flood management decision-making.

  10. What is the relative role of initial hydrological conditions and meteorological forcing to the seasonal hydrological forecasting skill? Analysis along Europe's hydro-climatic gradient

    NASA Astrophysics Data System (ADS)

    Pechlivanidis, Ilias; Crochemore, Louise

    2017-04-01

    Recent advances in understanding and forecasting of climate have led into skilful seasonal meteorological predictions, which can consequently increase the confidence of hydrological prognosis. The majority of seasonal impact modelling has commonly been conducted at only one or a limited number of basins limiting the potential to understand large systems. Nevertheless, there is a necessity to develop operational seasonal forecasting services at the pan-European scale, capable of addressing the end-user needs. The skill of such forecasting services is subject to a number of sources of uncertainty, i.e. model structure, parameters, and forcing input. In here, we complement the "deep" knowledge from basin based modelling by investigating the relative contributions of initial hydrological conditions (IHCs) and meteorological forcing (MF) to the skill of a seasonal pan-European hydrological forecasting system. We use the Ensemble Streamflow Prediction (ESP) and reverse ESP (revESP) procedure to show a proxy of hydrological forecasting uncertainty due to MF and IHC uncertainties respectively. We further calculate the critical lead time (CLT), as a proxy of the river memory, after which the importance of MFs surpasses the importance of IHCs. We analyze these results in the context of prevailing hydro-climatic conditions for about 35000 European basins. Both model state initialisation (level in surface water, i.e. reservoirs, lakes and wetlands, soil moisture, snow depth) and provision of climatology are based on forcing input derived from the WFDEI product for the period 1981-2010. The analysis shows that the contribution of ICs and MFs to the hydrological forecasting skill varies considerably according to location, season and lead time. This analysis allows clustering of basins in which hydrological forecasting skill may be improved by better estimation of IHCs, e.g. via data assimilation of in-situ and/or satellite observations; whereas in other basins skill improvement

  11. Hydrologic conditions in Florida during Water Year 2008

    USGS Publications Warehouse

    Verdi, Richard J.; Holt, Sandra L.; Irvin, Ronald B.; Fulcher, David L.

    2010-01-01

    Record-high and record-low hydrologic conditions occurred during water year 2008 (October 1, 2007-September 30, 2008). Record-low levels were caused by a continuation of the 2007 water year drought conditions into the 2008 water year and persisting until summer rainfall. The gage at the Santa Fe River near Fort White site recorded record-low monthly mean discharges in October and November 2007. The previous records for this site were set in 1956 and 2002, respectively. Record-high conditions in northeast and northwest Florida were caused by the rainfall and runoff associated with Tropical Storm Fay. For example, St. Mary's River near Macclenny recorded a new record-high monthly mean discharge in August 2008. The previous record for this site was set in 1945. Lake Okeechobee in south Florida reached new minimum monthly mean lake levels since monitoring began in 1912 from October to March during the 2008 water year. Some wells throughout northwest and south Florida registered period-of-record lowest daily maximum water levels.

  12. Experimental study on the regenerator under actual operating conditions

    NASA Astrophysics Data System (ADS)

    Nam, Kwanwoo; Jeong, Sangkwon

    2002-05-01

    An experimental apparatus was prepared to investigate thermal and hydrodynamic characteristics of the regenerator under its actual operating conditions. The apparatus included a compressor to pressurize and depressurize regenerator with various operating frequencies. Cold end of the regenerator was maintained around 100 K by means of liquid nitrogen container and heat exchanger. Instantaneous gas temperature and mass flow rate were measured at both ends of the regenerator during the whole pressure cycle. Pulsating pressure and pressure drop across the regenerator were also measured. The operating frequency of the pressure cycle was varied between 3 and 60 Hz, which are typical operating frequencies of Gifford-McMahon, pulse tube, and Stirling cryocoolers. First, friction factor for the wire screen mesh was directly determined from room temperature experiments. When the operating frequency was less than 9 Hz, the oscillating flow friction factor was nearly same as the steady flow friction factor for Reynolds number up to 100. For 60 Hz operations, the ratio of oscillating flow friction factor to steady flow one was increased as hydraulic Reynolds number became high. When the Reynolds number was 100, this ratio was about 1.6. Second, ineffectiveness of the regenerator was obtained when the cold-end was maintained around 100 K and the warm-end at 300 K to simulate the actual operating condition of the regenerator in cryocooler. Effect of the operating frequency on ineffectiveness of regenerator was discussed at low frequency range.

  13. Overview of drought and hydrologic conditions in the United States and southern Canada, water years 1986-90

    USGS Publications Warehouse

    Holmes, Sandra L.

    1992-01-01

    This report describes the drought and hydrologic conditions in the United States and southern Canada during the 1986-90 water years. This drought, which spread from the Eastern United States, where it was referred to as 'the drought of the century,' through the Midwest to the West Coast, brought to mind the Dust Bowl era of the 1930's. However, generally localized floods were numerous, but only one hurricane (Hugo) was of any consequence to the United States, Puerto Rico, and the Virgin Islands during a coincident period of anomalously low hurricane activity. The drought began in early 1984 as an 'agricultural drought,' which is a precipitation deficiency that results in a lack of soil moisture that is detrimental to agricultural production. This condition did not affect streamflow until about March or April 1986. A 'hydrological drought,' which is far more serious and widespread than an agricultural drought, was apparent from the low streamflow conditions that occurred after April 1986. To illustrate the changing nature of the drought, maps and synopses of monthly hydrologic conditions for the water years 1986-90 are presented.

  14. Habitat and Hydrology Condition Indices for the Upper Mississippi, Missouri, and Ohio Rivers

    EPA Science Inventory

    Habitat and hydrology indices were developed to assess the conditions in reaches of the impounded Upper Mississippi River, the Fort Peck and Garrison reaches of the Upper Missouri River, the Missouri National Recreational River, and the channelized Lower Missouri River, and the O...

  15. Hydrological response to changing climate conditions: Spatial streamflow variability in the boreal region

    NASA Astrophysics Data System (ADS)

    Teutschbein, Claudia; Grabs, Thomas; Karlsen, Reinert H.; Laudon, Hjalmar; Bishop, Kevin

    2016-04-01

    It has long been recognized that streamflow-generating processes are not only dependent on climatic conditions, but also affected by physical catchment properties such as topography, geology, soils and land cover. We hypothesize that these landscape characteristics do not only lead to highly variable hydrologic behavior of rather similar catchments under the same stationary climate conditions (Karlsen et al., 2014), but that they also play a fundamental role for the sensitivity of a catchment to a changing climate (Teutschbein et al., 2015). A multi-model ensemble based on 15 regional climate models was combined with a multi-catchment approach to explore the hydrologic sensitivity of 14 partially nested and rather similar catchments in Northern Sweden to changing climate conditions and the importance of small-scale spatial variability. Current (1981-2010) and future (2061-2090) streamflow was simulated with the HBV model. As expected, projected increases in temperature and precipitation resulted in increased total available streamflow, with lower spring and summer flows, but substantially higher winter streamflow. Furthermore, significant changes in flow durations with lower chances of both high and low flows can be expected in boreal Sweden in the future. This overall trend in projected streamflow pattern changes was comparable among the analyzed catchments while the magnitude of change differed considerably. This suggests that catchments belonging to the same region can show distinctly different degrees of hydrological responses to the same external climate change signal. We reason that differences in spatially distributed physical catchment properties at smaller scales are not only of great importance for current streamflow behavior, but also play a major role as first-order control for the sensitivity of catchments to changing climate conditions. References Karlsen, R.H., T. Grabs, K. Bishop, H. Laudon, and J. Seibert (2014). Landscape controls on

  16. GEOMORPHIC AND HYDROLOGIC INTERACTIONS IN THE DETERMINATION OF EQUILIBRIUM SOIL DEPTH

    NASA Astrophysics Data System (ADS)

    Nicotina, L.; Rinaldo, A.; Tarboton, D. G.

    2009-12-01

    In this work we propose numerical studies of the interactions between hydrology and geomorphology in the formation of the actual soil depth that drives ecologic and hydrologic processes. Sediment transport and geomorphic landscape evolution processes (i.e. erosion/deposition vs. soil production) strongly influence hydrology, carbon sequestration, soil formation and stream water chemistry. The process of rock conversion into soil originates a strong hydrologic control through the formation of the soil depth that participates to hydrologic processes, influence vegetation type and patterns and actively participate in the co-evolution mechanisms that shape the landscape. The description of spatial patterns in hydrology is usually constrained by the availability of field data, especially when dealing with quantities that are not easily measurable. In these circumstances it is deemed fundamental the capability of deriving hydrologic boundary conditions from physically based approaches. Here we aim, in a general framework, at the formulation of an integrated approach for the prediction of soil depth by mean of i) soil production models and ii) geomorphic transport laws. The processes that take place in the critical zone are driven by the extension of it and have foundamental importance over short time scales as well as on geologic time scales (i.e. as biota affects climate that drives hydrology and thus contributes on shaping the landscape). Our study aims at the investigation of the relationships between soil depth, topography and runoff production, we also address the mechanisms that bring to the development of actual patterns of soil depths which at the same time influence runoff. We use a schematic representation of the hydrologic processes that relies on the description of the topography (throuh a topographic wetness index) and the spatially variable soil depths. Such a model is applied in order to investigate the development of equilibrium soil depth patterns under

  17. Effect of antecedent-hydrological conditions on rainfall triggering of debris flows in ash-fall pyroclastic mantled slopes of Campania (southern Italy)

    USGS Publications Warehouse

    Napolitano, E.; Fusco, F; Baum, Rex L.; Godt, Jonathan W.; De Vita, P.

    2016-01-01

    Mountainous areas surrounding the Campanian Plain and the Somma-Vesuvius volcano (southern Italy) are among the most risky areas of Italy due to the repeated occurrence of rainfallinduced debris flows along ash-fall pyroclastic soil-mantled slopes. In this geomorphological framework, rainfall patterns, hydrological processes taking place within multi-layered ash-fall pyroclastic deposits and soil antecedent moisture status are the principal factors to be taken into account to assess triggering rainfall conditions and the related hazard. This paper presents the outcomes of an experimental study based on integrated analyses consisting of the reconstruction of physical models of landslides, in situ hydrological monitoring, and hydrological and slope stability modeling, carried out on four representative source areas of debris flows that occurred in May 1998 in the Sarno Mountain Range. The hydrological monitoring was carried out during 2011 using nests of tensiometers and Watermark pressure head sensors and also through a rainfall and air temperature recording station. Time series of measured pressure head were used to calibrate a hydrological numerical model of the pyroclastic soil mantle for 2011, which was re-run for a 12-year period beginning in 2000, given the availability of rainfall and air temperature monitoring data. Such an approach allowed us to reconstruct the regime of pressure head at a daily time scale for a long period, which is representative of about 11 hydrologic years with different meteorological conditions. Based on this simulated time series, average winter and summer hydrological conditions were chosen to carry out hydrological and stability modeling of sample slopes and to identify Intensity- Duration rainfall thresholds by a deterministic approach. Among principal results, the opposing winter and summer antecedent pressure head (soil moisture) conditions were found to exert a significant control on intensity and duration of rainfall

  18. Projecting impacts of climate change on hydrological conditions and biotic responses in a chalk valley riparian wetland

    NASA Astrophysics Data System (ADS)

    House, A. R.; Thompson, J. R.; Acreman, M. C.

    2016-03-01

    Projected changes in climate are likely to substantially impact wetland hydrological conditions that will in turn have implications for wetland ecology. Assessing ecohydrological impacts of climate change requires models that can accurately simulate water levels at the fine-scale resolution to which species and communities respond. Hydrological conditions within the Lambourn Observatory at Boxford, Berkshire, UK were simulated using the physically based, distributed model MIKE SHE, calibrated to contemporary surface and groundwater levels. The site is a 10 ha lowland riparian wetland where complex geological conditions and channel management exert strong influences on the hydrological regime. Projected changes in precipitation, potential evapotranspiration, channel discharge and groundwater level were derived from the UK Climate Projections 2009 ensemble of climate models for the 2080s under different scenarios. Hydrological impacts of climate change differ through the wetland over short distances depending on the degree of groundwater/surface-water interaction. Discrete areas of groundwater upwelling are associated with an exaggerated response of water levels to climate change compared to non-upwelling areas. These are coincident with regions where a weathered chalk layer, which otherwise separates two main aquifers, is absent. Simulated water levels were linked to requirements of the MG8 plant community and Desmoulin's whorl snail (Vertigo moulinsiana) for which the site is designated. Impacts on each are shown to differ spatially and in line with hydrological impacts. Differences in water level requirements for this vegetation community and single species highlight the need for separate management strategies in distinct areas of the wetland.

  19. Forests growing under dry conditions have higher hydrological resilience to drought than do more humid forests.

    PubMed

    Helman, David; Lensky, Itamar M; Yakir, Dan; Osem, Yagil

    2017-07-01

    More frequent and intense droughts are projected during the next century, potentially changing the hydrological balances in many forested catchments. Although the impacts of droughts on forest functionality have been vastly studied, little attention has been given to studying the effect of droughts on forest hydrology. Here, we use the Budyko framework and two recently introduced Budyko metrics (deviation and elasticity) to study the changes in the water yields (rainfall minus evapotranspiration) of forested catchments following a climatic drought (2006-2010) in pine forests distributed along a rainfall gradient (P = 280-820 mm yr -1 ) in the Eastern Mediterranean (aridity factor = 0.17-0.56). We use a satellite-based model and meteorological information to calculate the Budyko metrics. The relative water yield ranged from 48% to 8% (from the rainfall) in humid to dry forests and was mainly associated with rainfall amount (increasing with increased rainfall amount) and bedrock type (higher on hard bedrocks). Forest elasticity was larger in forests growing under drier conditions, implying that drier forests have more predictable responses to drought, according to the Budyko framework, compared to forests growing under more humid conditions. In this context, younger forests were shown more elastic than older forests. Dynamic deviation, which is defined as the water yield departure from the Budyko curve, was positive in all forests (i.e., less-than-expected water yields according to Budyko's curve), increasing with drought severity, suggesting lower hydrological resistance to drought in forests suffering from larger rainfall reductions. However, the dynamic deviation significantly decreased in forests that experienced relatively cooler conditions during the drought period. Our results suggest that forests growing under permanent dry conditions might develop a range of hydrological and eco-physiological adjustments to drought leading to higher hydrological

  20. Optimizing Use of Water Management Systems during Changes of Hydrological Conditions

    NASA Astrophysics Data System (ADS)

    Výleta, Roman; Škrinár, Andrej; Danáčová, Michaela; Valent, Peter

    2017-10-01

    When designing the water management systems and their components, there is a need of more detail research on hydrological conditions of the river basin, runoff of which creates the main source of water in the reservoir. Over the lifetime of the water management systems the hydrological time series are never repeated in the same form which served as the input for the design of the system components. The design assumes the observed time series to be representative at the time of the system use. However, it is rather unrealistic assumption, because the hydrological past will not be exactly repeated over the design lifetime. When designing the water management systems, the specialists may occasionally face the insufficient or oversized capacity design, possibly wrong specification of the management rules which may lead to their non-optimal use. It is therefore necessary to establish a comprehensive approach to simulate the fluctuations in the interannual runoff (taking into account the current dry and wet periods) in the form of stochastic modelling techniques in water management practice. The paper deals with the methodological procedure of modelling the mean monthly flows using the stochastic Thomas-Fiering model, while modification of this model by Wilson-Hilferty transformation of independent random number has been applied. This transformation usually applies in the event of significant asymmetry in the observed time series. The methodological procedure was applied on the data acquired at the gauging station of Horné Orešany in the Parná Stream. Observed mean monthly flows for the period of 1.11.1980 - 31.10.2012 served as the model input information. After extrapolation the model parameters and Wilson-Hilferty transformation parameters the synthetic time series of mean monthly flows were simulated. Those have been compared with the observed hydrological time series using basic statistical characteristics (e. g. mean, standard deviation and skewness) for testing

  1. Modeling the Hydrologic Response to Changes in Groundcover Conditions Caused by Fire Disturbances

    NASA Astrophysics Data System (ADS)

    Kikinzon, E.; Atchley, A. L.; Coon, E.; Middleton, R. S.

    2016-12-01

    Climate change and fire suppression increase wildfire activity, which alters ecosystem functions and can significantly impact hydrological response. Both wildfire and prescribed burns reduce groundcover, affect top layers of subsurface, and change the structure of overland flow pathways. To understand respective effects on surface and subsurface hydrology, it is imperative to accurately represent surface-subsurface interface pre and post-fire, and to model physical processes in groundcover components. We show mechanistic models used to describe physics in two key types of groundcover, litter and duff, in Advanced Terrestrial Simulator (ATS). Litter is considered to be a part of vegetative canopy covering the surface. It has associated water storage capacity, which allows simulating interception and drainage, and its thickness is used to evaluate surface roughness with potential effect of slowing overland flow compared to bare soil. Duff on the other hand is incorporated into the subsurface, thus requiring meshing and discretization capability to support complex geometries including pinchouts, which is necessary both for achieving desired mesh resolution and portraying bare soil patches without adversely affecting the time scale. As part of the subsurface, duff has its own hydrologic and water retention properties used to resolve infiltration and saturation limited runoff generation, run on, and infiltration processes. This enables the use of ATS for fine scale modeling of integrated hydrology with adequate representation of groundcover influence. To isolate the impact of changing groundcover, we consider a simple hill slope and study the hydrological response to varying amount and geometries of groundcover. To cover landscape characteristics produced by a wide variety of fire conditions, from high intensity to low intensity fire impacts, we simulate hydrologic response to precipitation events over a number of typical geometries and with fine control over amounts of

  2. Teachers' Perceptions of Their Working Conditions: How Predictive of Planned and Actual Teacher Movement?

    ERIC Educational Resources Information Center

    Ladd, Helen F.

    2011-01-01

    This quantitative study examines the relationship between teachers' perceptions of their working conditions and their intended and actual departures from schools. Based on rich administrative data for North Carolina combined with a 2006 statewide survey administered to all teachers in the state, the study documents that working conditions are…

  3. The evolution of hydrological and water quality conditions on Techirghiol Lake

    NASA Astrophysics Data System (ADS)

    Maftei, Carmen; Buta, Constantin; Tofan, Lucica

    2015-04-01

    Changes in climate and environment conditions alter the hydraulic and chemical properties of lakes. With a surface from 1300ha, the Techirghiol Lake, situated on the littoral of the Black Sea at 15km from Constanta town, is considered the greatest hypersaline lake of Romania very well known (from 1891) especially for the curative qualities of its water and mud. Physical and geographical conditions associated with an arid climate regime - where the annual precipitation is less than 400mm and the average temperatures exceed (lead evaporative potential to 700-1000mm), cause a strong concentration of mineral salts that give the lake an excessive salinity. In conditions of excessive salinity forms a therapeutic mud as a result of bacterial decomposition of aquatic organisms that have done there, especially crustaceans Arthemia and algae that live in water. This mud, highly hydrated, rich in minerals, has therapeutic properties, for this reason in Techirghiol has developed a strong health resort. Fresh water is a threat to the therapeutic lake properties. In hydrological year 1961-1962, the overland flow value to the lake was approximately 0.4 million m3, and from 1972-1973 the value reached 6 million cubic meters per year a great contribution was from the irrigation water. One of the consequences is the increasing of the lake level and the second is the decreasing of salinity. For this reason a hydraulic work system has been built to separate the saline water of the lake and the freshwater. The aim of this paper is to investigate the hydrologic and chemical responses of the Techirghiol Lake to the changes in climate and environment conditions.

  4. Hydrological Responses of Weather Conditions and Crop Change of Agricultural Area in the Rincon Valley, New Mexico

    NASA Astrophysics Data System (ADS)

    Ahn, S.; Sheng, Z.; Abudu, S.

    2017-12-01

    Hydrologic cycle of agricultural area has been changing due to the impacts of climate and land use changes (crop coverage changes) in an arid region of Rincon Valley, New Mexico. This study is to evaluate the impacts of weather condition and crop coverage change on hydrologic behavior of agricultural area in Rincon Valley (2,466km2) for agricultural watershed management using a watershed-scale hydrologic model, SWAT (Soil and Water Assessment Tool). The SWAT model was developed to incorporate irrigation of different crops using auto irrigation function. For the weather condition and crop coverage change evaluation, three spatial crop coverages including a normal (2008), wet (2009), and dry (2011) years were prepared using USDA crop data layer (CDL) for fourteen different crops. The SWAT model was calibrated for the period of 2001-2003 and validated for the period of 2004-2006 using daily-observed streamflow data. Scenario analysis was performed for wet and dry years based on the unique combinations of crop coverages and releases from Caballo Reservoir. The SWAT model simulated the present vertical water budget and horizontal water transfer considering irrigation practices in the Rincon Valley. Simulation results indicated the temporal and spatial variability for irrigation and non-irrigation seasons of hydrologic cycle in agricultural area in terms of surface runoff, evapotranspiration, infiltration, percolation, baseflow, soil moisture, and groundwater recharge. The water supply of the dry year could not fully cover whole irrigation period due to dry weather conditions, resulting in reduction of crop acreage. For extreme weather conditions, the temporal variation of water budget became robust, which requires careful irrigation management of the agricultural area. The results could provide guidelines for farmers to decide crop patterns in response to different weather conditions and water availability.

  5. Late Eocene Hydrological Conditions on the Antarctic Peninsula

    NASA Astrophysics Data System (ADS)

    Feakins, S. J.; Deconto, R. M.; Warny, S.

    2013-12-01

    The late Eocene to Oligocene transition (EOT) witnessed a major ice advance on Antarctica. Little is known about hydrological conditions in the Antarctic Peninsula during the late Eocene prior to the major ice advance. Here we explore the hydrological conditions with proxy reconstructions from marine sediment core NBP0602A-3C, adjacent to the tip of the Antarctic Peninsula, with sediments dated to approximately 35.9 × 1.1 Ma providing a snapshot of conditions prior to the EOT. We combine plant leaf wax hydrogen isotopic evidence paired with previously-published evidence from pollen assemblages from the marine core, and compare to results of climate model experiments. The pollen from late Eocene sediments of NBP0602A-3C indicate a Nothofagidites (southern beech) dominated landscape. In the same sediments, leaf wax hydrogen isotope (δDwax) values average -202×7‰ (1σ, n=22) for the C28 n-alkanoic acid. Based on an estimated net fractionation of -100‰, these values suggest paleoprecipitation δD values on the order of -118×8‰. The similarity between Late Eocene precipitation isotopic reconstructions (with no ice on what was then an island) and in situ modern isotopic values (while ice-covered) is surprising as ice-free conditions should imply warmer temperatures which would normally imply more enriched isotopic values. Convergent isotopic compositions during demonstrably different environments require a dynamical test to evaluate this validity of this isotopic result. In order to test the isotopic response to an expanding Antarctic ice sheet across the EOT, we conducted experiments with an isotope-enabled GCM. We simulated conditions before, during, and after the transition by systematically decreasing carbon dioxide levels from 1000 to 560 ppm while increasing ice volume to represent an ice-free to fully glaciated continent. Model experiments predict changes in vegetation cover from mixed forest to tundra biomes, reductions in austral summer temperature of

  6. Microwave hydrology: A trilogy

    NASA Technical Reports Server (NTRS)

    Stacey, J. M.; Johnston, E. J.; Girard, M. A.; Regusters, H. A.

    1985-01-01

    Microwave hydrology, as the term in construed in this trilogy, deals with the investigation of important hydrological features on the Earth's surface as they are remotely, and passively, sensed by orbiting microwave receivers. Microwave wavelengths penetrate clouds, foliage, ground cover, and soil, in varying degrees, and reveal the occurrence of standing liquid water on and beneath the surface. The manifestation of liquid water appearing on or near the surface is reported by a microwave receiver as a signal with a low flux level, or, equivalently, a cold temperature. Actually, the surface of the liquid water reflects the low flux level from the cosmic background into the input terminals of the receiver. This trilogy describes and shows by microwave flux images: the hydrological features that sustain Lake Baykal as an extraordinary freshwater resource; manifestations of subsurface water in Iran; and the major water features of the Congo Basin, a rain forest.

  7. CFD analysis of a full-scale ceramic kiln module under actual operating conditions

    NASA Astrophysics Data System (ADS)

    Milani, Massimo; Montorsi, Luca; Stefani, Matteo; Venturelli, Matteo

    2017-11-01

    The paper focuses on the CFD analysis of a full-scale module of an industrial ceramic kiln under actual operating conditions. The multi-dimensional analysis includes the real geometry of a ceramic kiln module employed in the preheating and firing sections and investigates the heat transfer between the tiles and the burners' flame as well as the many components that comprise the module. Particular attention is devoted to the simulation of the convective flow field in the upper and lower chambers and to the effects of radiation on the different materials is addressed. The assessment of the radiation contribution to the tiles temperature is paramount to the improvement of the performance of the kiln in terms of energy efficiency and fuel consumption. The CFD analysis is combined to a lumped and distributed parameter model of the entire kiln in order to simulate the module behaviour at the boundaries under actual operating conditions. Finally, the CFD simulation is employed to address the effects of the module operating conditions on the tiles' temperature distribution in order to improve the temperature uniformity as well as to enhance the energy efficiency of the system and thus to reduce the fuel consumption.

  8. Hydrologic Conditions in Northwest Florida: 2006 Water Year

    USGS Publications Warehouse

    Verdi, Richard Jay

    2007-01-01

    Introduction National data for streamflow, ground-water levels, and quality of water for the 2006 water year are accessible to the public on the U.S. Geological Survey's (USGS) Site Information Management System (SIMS) website http://web10capp.er.usgs.gov/adr06_lookup/search.jsp. This fact sheet describes data and hydrologic conditions throughout northwest Florida during the 2006 water year (fig. 1), when record-low monthly streamflow conditions were reported at several streamgage locations. Prior to 1960, these data were published in various USGS Water-Supply Papers and included water-related data collected by the USGS during the water year (October 1 to September 30). In 1961, a series of annual reports, 'Water Resources Data-Florida,' was introduced that published surface-water data. In 1964, a similar report was introduced for the purposes of publishing water-quality data. In 1975, the reports were merged to a single volume and were expanded to publish data for surface water, water quality, and ground-water levels. Formal publication of the annual report series was discontinued at the end of the 2005 water year, upon activation of the SIMS website database.

  9. Estimating the Uncertain Mathematical Structure of Hydrological Model via Bayesian Data Assimilation

    NASA Astrophysics Data System (ADS)

    Bulygina, N.; Gupta, H.; O'Donell, G.; Wheater, H.

    2008-12-01

    The structure of hydrological model at macro scale (e.g. watershed) is inherently uncertain due to many factors, including the lack of a robust hydrological theory at the macro scale. In this work, we assume that a suitable conceptual model for the hydrologic system has already been determined - i.e., the system boundaries have been specified, the important state variables and input and output fluxes to be included have been selected, and the major hydrological processes and geometries of their interconnections have been identified. The structural identification problem then is to specify the mathematical form of the relationships between the inputs, state variables and outputs, so that a computational model can be constructed for making simulations and/or predictions of system input-state-output behaviour. We show how Bayesian data assimilation can be used to merge both prior beliefs in the form of pre-assumed model equations with information derived from the data to construct a posterior model. The approach, entitled Bayesian Estimation of Structure (BESt), is used to estimate a hydrological model for a small basin in England, at hourly time scales, conditioned on the assumption of 3-dimensional state - soil moisture storage, fast and slow flow stores - conceptual model structure. Inputs to the system are precipitation and potential evapotranspiration, and outputs are actual evapotranspiration and streamflow discharge. Results show the difference between prior and posterior mathematical structures, as well as provide prediction confidence intervals that reflect three types of uncertainty: due to initial conditions, due to input and due to mathematical structure.

  10. Hydrology

    USGS Publications Warehouse

    Eisenbies, Mark H.; Hughes, W. Brian

    2000-01-01

    Hydrologic process are the main determinants of the type of wetland located on a site. Precipitation, groundwater, or flooding interact with soil properties and geomorphic setting to yield a complex matrix of conditions that control groundwater flux, water storage and discharge, water chemistry, biotic productivity, biodiversity, and biogeochemical cycling. Hydroperiod affects many abiotic factors that in turn determine plant and animal species composition, biodiversity, primary and secondary productivity, accumulation, of organic matter, and nutrient cycling. Because the hydrologic regime has a major influence on wetland functioning, understanding how hydrologic changes influence ecosystem processes is essential, especially in light of the pressures placed on remaining wetlands by society's demands for water resources and by potential global changes in climate.

  11. Hydrologic modification to improve habitat in riverine lakes: Management objectives, experimental approach, and initial conditions

    USGS Publications Warehouse

    Johnson, Barry L.; Barko, John W.; Gerasimov, Yuri; James, William F.; Litvinov, Alexander; Naimo, Teresa J.; Wiener, James G.; Gaugush, Robert F.; Rogala, James T.; Rogers, Sara J.; Schoettger, R.A.

    1996-01-01

    The Finger Lakes habitat-rehabilitation project is intended to improve physical and chemical conditions for fish in six connected back water lakes in Navigation Pool 5 of the upper Missouri River. The primary management objective is to improve water temperature, dissolved oxygen concentration and current velocity during winter for bluegills, Lepomis macrochirus, and black crappies, Pomoxis nigromaculatus, two of the primary sport fishes in the lakes. The lakes will be hydrologically altered by Installing culverts to Introduce controlled flows of oxygenated water into four lakes, and an existing unregulated culvert on a fifth lake will be equipped with a control gate to regulate inflow. These habitat modifications constitute a manipulative field experiment that will compare pre-project (1991 to summer 1993) and post-project (fall 1993 to 1996) conditions in the lakes, including hydrology, chemistry, rooted vegetation, and fish and macroinvertebrate communities. Initial data indicate that the Finger Lakes differ in water chemistry, hydrology, and macrophyte abundance. Macroinvertebrate communities also differed among lakes: species diversity was highest in lakes with dense aquatic macrophytes. The system seems to support a single fish community, although some species concentrated in individual lakes at different times. The introduction of similar flows into five of the lakes will probably reduce the existing physical and chemical differences among lakes. However, our ability to predict the effects of hydrologic modification on fish populations is limited by uncertainties concerning both the interactions of temperature, oxygen and current in winter and the biological responses of primary and secondary producers. Results from this study should provide guidance for similar habitat-rehabilitation projects in large rivers.

  12. Classification of simulated and actual NOAA-6 AVHRR data for hydrologic land-surface feature definition. [Advanced Very High Resolution Radiometer

    NASA Technical Reports Server (NTRS)

    Ormsby, J. P.

    1982-01-01

    An examination of the possibilities of using Landsat data to simulate NOAA-6 Advanced Very High Resolution Radiometer (AVHRR) data on two channels, as well as using actual NOAA-6 imagery, for large-scale hydrological studies is presented. A running average was obtained of 18 consecutive pixels of 1 km resolution taken by the Landsat scanners were scaled up to 8-bit data and investigated for different gray levels. AVHRR data comprising five channels of 10-bit, band-interleaved information covering 10 deg latitude were analyzed and a suitable pixel grid was chosen for comparison with the Landsat data in a supervised classification format, an unsupervised mode, and with ground truth. Landcover delineation was explored by removing snow, water, and cloud features from the cluster analysis, and resulted in less than 10% difference. Low resolution large-scale data was determined useful for characterizing some landcover features if weekly and/or monthly updates are maintained.

  13. Planning continuity and the actual conditions of shopping malls.

    PubMed

    Morita, Yoshitsugu; Tahara, Manabu

    2004-11-01

    The main purpose of this study is to investigate the continuity of the planning of shopping malls in downtown areas of Japan and to look into the tendencies of the current existing malls until today. This paper is a summary of a survey conducted on the actual conditions of current shopping malls and a questionnaire administered to local governments in the survey areas. The results of this study allow us to summarize the reasons for and changes caused by renewal efforts directed toward the streets, public spaces, and urban elements (pavement, bench, streetlight, arcade, sculpture, etc.) in shopping malls. Furthermore, these results also help us to understand the scale of the renewal efforts as well as their timing in relation to when the shopping mall was originally constructed.

  14. Characterizing the impact of spatiotemporal variations in stormwater infrastructure on hydrologic conditions

    NASA Astrophysics Data System (ADS)

    Jovanovic, T.; Mejia, A.; Hale, R. L.; Gironas, J. A.

    2015-12-01

    Urban stormwater infrastructure design has evolved in time, reflecting changes in stormwater policy and regulations, and in engineering design. This evolution makes urban basins heterogeneous socio-ecological-technological systems. We hypothesize that this heterogeneity creates unique impact trajectories in time and impact hotspots in space within and across cities. To explore this, we develop and implement a network hydro-engineering modeling framework based on high-resolution digital elevation and stormwater infrastructure data. The framework also accounts for climatic, soils, land use, and vegetation conditions in an urban basin, thus making it useful to study the impacts of stormwater infrastructure across cities. Here, to evaluate the framework, we apply it to urban basins in the metropolitan areas of Phoenix, Arizona. We use it to estimate different metrics to characterize the storm-event hydrologic response. We estimate both traditional metrics (e.g., peak flow, time to peak, and runoff volume) as well as new metrics (e.g., basin-scale dispersion mechanisms). We also use the dispersion mechanisms to assess the scaling characteristics of urban basins. Ultimately, we find that the proposed framework can be used to understand and characterize the impacts associated with stormwater infrastructure on hydrologic conditions within a basin. Additionally, we find that the scaling approach helps in synthesizing information but it requires further validation using additional urban basins.

  15. Hydrological and geomorphological controls of malaria transmission

    NASA Astrophysics Data System (ADS)

    Smith, M. W.; Macklin, M. G.; Thomas, C. J.

    2013-01-01

    Malaria risk is linked inextricably to the hydrological and geomorphological processes that form vector breeding sites. Yet environmental controls of malaria transmission are often represented by temperature and rainfall amounts, ignoring hydrological and geomorphological influences altogether. Continental-scale studies incorporate hydrology implicitly through simple minimum rainfall thresholds, while community-scale coupled hydrological and entomological models do not represent the actual diversity of the mosquito vector breeding sites. The greatest range of malaria transmission responses to environmental factors is observed at the catchment scale where seemingly contradictory associations between rainfall and malaria risk can be explained by hydrological and geomorphological processes that govern surface water body formation and persistence. This paper extends recent efforts to incorporate ecological factors into malaria-risk models, proposing that the same detailed representation be afforded to hydrological and, at longer timescales relevant for predictions of climate change impacts, geomorphological processes. We review existing representations of environmental controls of malaria and identify a range of hydrologically distinct vector breeding sites from existing literature. We illustrate the potential complexity of interactions among hydrology, geomorphology and vector breeding sites by classifying a range of water bodies observed in a catchment in East Africa. Crucially, the mechanisms driving surface water body formation and destruction must be considered explicitly if we are to produce dynamic spatial models of malaria risk at catchment scales.

  16. Hydrological Classification, a Practical Tool for Mangrove Restoration

    PubMed Central

    Van Loon, Anne F.; Te Brake, Bram; Van Huijgevoort, Marjolein H. J.; Dijksma, Roel

    2016-01-01

    Mangrove restoration projects, aimed at restoring important values of mangrove forests after degradation, often fail because hydrological conditions are disregarded. We present a simple, but robust methodology to determine hydrological suitability for mangrove species, which can guide restoration practice. In 15 natural and 8 disturbed sites (i.e. disused shrimp ponds) in three case study regions in south-east Asia, water levels were measured and vegetation species composition was determined. Using an existing hydrological classification for mangroves, sites were classified into hydrological classes, based on duration of inundation, and vegetation classes, based on occurrence of mangrove species. For the natural sites hydrological and vegetation classes were similar, showing clear distribution of mangrove species from wet to dry sites. Application of the classification to disturbed sites showed that in some locations hydrological conditions had been restored enough for mangrove vegetation to establish, in some locations hydrological conditions were suitable for various mangrove species but vegetation had not established naturally, and in some locations hydrological conditions were too wet for any mangrove species (natural or planted) to grow. We quantified the effect that removal of obstructions such as dams would have on the hydrology and found that failure of planting at one site could have been prevented. The hydrological classification needs relatively little data, i.e. water levels for a period of only one lunar tidal cycle without additional measurements, and uncertainties in the measurements and analysis are relatively small. For the study locations, the application of the hydrological classification gave important information about how to restore the hydrology to suitable conditions to improve natural regeneration or to plant mangrove species, which could not have been obtained by estimating elevation only. Based on this research a number of recommendations

  17. Hydrological Classification, a Practical Tool for Mangrove Restoration.

    PubMed

    Van Loon, Anne F; Te Brake, Bram; Van Huijgevoort, Marjolein H J; Dijksma, Roel

    2016-01-01

    Mangrove restoration projects, aimed at restoring important values of mangrove forests after degradation, often fail because hydrological conditions are disregarded. We present a simple, but robust methodology to determine hydrological suitability for mangrove species, which can guide restoration practice. In 15 natural and 8 disturbed sites (i.e. disused shrimp ponds) in three case study regions in south-east Asia, water levels were measured and vegetation species composition was determined. Using an existing hydrological classification for mangroves, sites were classified into hydrological classes, based on duration of inundation, and vegetation classes, based on occurrence of mangrove species. For the natural sites hydrological and vegetation classes were similar, showing clear distribution of mangrove species from wet to dry sites. Application of the classification to disturbed sites showed that in some locations hydrological conditions had been restored enough for mangrove vegetation to establish, in some locations hydrological conditions were suitable for various mangrove species but vegetation had not established naturally, and in some locations hydrological conditions were too wet for any mangrove species (natural or planted) to grow. We quantified the effect that removal of obstructions such as dams would have on the hydrology and found that failure of planting at one site could have been prevented. The hydrological classification needs relatively little data, i.e. water levels for a period of only one lunar tidal cycle without additional measurements, and uncertainties in the measurements and analysis are relatively small. For the study locations, the application of the hydrological classification gave important information about how to restore the hydrology to suitable conditions to improve natural regeneration or to plant mangrove species, which could not have been obtained by estimating elevation only. Based on this research a number of recommendations

  18. Effects of hydrologic conditions on biogeochemical processes and organic pollutant degradation in salt marsh sediments

    Treesearch

    W. James Catallo

    2000-01-01

    This work addressed the influence of tidal vs. static hydrologic conditions on biogeochemical processes and the transformation of pollutant organic chemicals (eight representative N-, O-, and S-heterocycles (NOSHs) from coal chemicals, crude oils, and pyrogenic mixtures) in salt marsh sediments. The goals were to: (1) determine the effects of static (flooded, drained)...

  19. Assessing predictability of a hydrological stochastic-dynamical system

    NASA Astrophysics Data System (ADS)

    Gelfan, Alexander

    2014-05-01

    The water cycle includes the processes with different memory that creates potential for predictability of hydrological system based on separating its long and short memory components and conditioning long-term prediction on slower evolving components (similar to approaches in climate prediction). In the face of the Panta Rhei IAHS Decade questions, it is important to find a conceptual approach to classify hydrological system components with respect to their predictability, define predictable/unpredictable patterns, extend lead-time and improve reliability of hydrological predictions based on the predictable patterns. Representation of hydrological systems as the dynamical systems subjected to the effect of noise (stochastic-dynamical systems) provides possible tool for such conceptualization. A method has been proposed for assessing predictability of hydrological system caused by its sensitivity to both initial and boundary conditions. The predictability is defined through a procedure of convergence of pre-assigned probabilistic measure (e.g. variance) of the system state to stable value. The time interval of the convergence, that is the time interval during which the system losses memory about its initial state, defines limit of the system predictability. The proposed method was applied to assess predictability of soil moisture dynamics in the Nizhnedevitskaya experimental station (51.516N; 38.383E) located in the agricultural zone of the central European Russia. A stochastic-dynamical model combining a deterministic one-dimensional model of hydrothermal regime of soil with a stochastic model of meteorological inputs was developed. The deterministic model describes processes of coupled heat and moisture transfer through unfrozen/frozen soil and accounts for the influence of phase changes on water flow. The stochastic model produces time series of daily meteorological variables (precipitation, air temperature and humidity), whose statistical properties are similar

  20. The role of the antecedent soil moisture condition on the distributed hydrologic modelling of the Toce alpine basin floods.

    NASA Astrophysics Data System (ADS)

    Ravazzani, G.; Montaldo, N.; Mancini, M.; Rosso, R.

    2003-04-01

    Event-based hydrologic models need the antecedent soil moisture condition, as critical boundary initial condition for flood simulation. Land-surface models (LSMs) have been developed to simulate mass and energy transfers, and to update the soil moisture condition through time from the solution of water and energy balance equations. They are recently used in distributed hydrologic modeling for flood prediction systems. Recent developments have made LSMs more complex by inclusion of more processes and controlling variables, increasing parameter number and uncertainty of their estimates. This also led to increasing of computational burden and parameterization of the distributed hydrologic models. In this study we investigate: 1) the role of soil moisture initial conditions in the modeling of Alpine basin floods; 2) the adequate complexity level of LSMs for the distributed hydrologic modeling of Alpine basin floods. The Toce basin is the case study; it is located in the North Piedmont (Italian Alps), and it has a total drainage area of 1534 km2 at Candoglia section. Three distributed hydrologic models of different level of complexity are developed and compared: two (TDLSM and SDLSM) are continuous models, one (FEST02) is an event model based on the simplified SCS-CN method for rainfall abstractions. In the TDLSM model a two-layer LSM computes both saturation and infiltration excess runoff, and simulates the evolution of the water table spatial distribution using the topographic index; in the SDLSM model a simplified one-layer distributed LSM only computes hortonian runoff, and doesn’t simulate the water table dynamic. All the three hydrologic models simulate the surface runoff propagation through the Muskingum-Cunge method. TDLSM and SDLSM models have been applied for the two-year (1996 and 1997) simulation period, during which two major floods occurred in the November 1996 and in the June 1997. The models have been calibrated and tested comparing simulated and

  1. On the effects of adaptive reservoir operating rules in hydrological physically-based models

    NASA Astrophysics Data System (ADS)

    Giudici, Federico; Anghileri, Daniela; Castelletti, Andrea; Burlando, Paolo

    2017-04-01

    Recent years have seen a significant increase of the human influence on the natural systems both at the global and local scale. Accurately modeling the human component and its interaction with the natural environment is key to characterize the real system dynamics and anticipate future potential changes to the hydrological regimes. Modern distributed, physically-based hydrological models are able to describe hydrological processes with high level of detail and high spatiotemporal resolution. Yet, they lack in sophistication for the behavior component and human decisions are usually described by very simplistic rules, which might underperform in reproducing the catchment dynamics. In the case of water reservoir operators, these simplistic rules usually consist of target-level rule curves, which represent the average historical level trajectory. Whilst these rules can reasonably reproduce the average seasonal water volume shifts due to the reservoirs' operation, they cannot properly represent peculiar conditions, which influence the actual reservoirs' operation, e.g., variations in energy price or water demand, dry or wet meteorological conditions. Moreover, target-level rule curves are not suitable to explore the water system response to climate and socio economic changing contexts, because they assume a business-as-usual operation. In this work, we quantitatively assess how the inclusion of adaptive reservoirs' operating rules into physically-based hydrological models contribute to the proper representation of the hydrological regime at the catchment scale. In particular, we contrast target-level rule curves and detailed optimization-based behavioral models. We, first, perform the comparison on past observational records, showing that target-level rule curves underperform in representing the hydrological regime over multiple time scales (e.g., weekly, seasonal, inter-annual). Then, we compare how future hydrological changes are affected by the two modeling

  2. Detecting hydrological changes through conceptual model

    NASA Astrophysics Data System (ADS)

    Viola, Francesco; Caracciolo, Domenico; Pumo, Dario; Francipane, Antonio; Valerio Noto, Leonardo

    2015-04-01

    Natural changes and human modifications in hydrological systems coevolve and interact in a coupled and interlinked way. If, on one hand, climatic changes are stochastic, non-steady, and affect the hydrological systems, on the other hand, human-induced changes due to over-exploitation of soils and water resources modifies the natural landscape, water fluxes and its partitioning. Indeed, the traditional assumption of static systems in hydrological analysis, which has been adopted for long time, fails whenever transient climatic conditions and/or land use changes occur. Time series analysis is a way to explore environmental changes together with societal changes; unfortunately, the not distinguishability between causes restrict the scope of this method. In order to overcome this limitation, it is possible to couple time series analysis with an opportune hydrological model, such as a conceptual hydrological model, which offers a schematization of complex dynamics acting within a basin. Assuming that model parameters represent morphological basin characteristics and that calibration is a way to detect hydrological signature at a specific moment, it is possible to argue that calibrating the model over different time windows could be a method for detecting potential hydrological changes. In order to test the capabilities of a conceptual model in detecting hydrological changes, this work presents different "in silico" experiments. A synthetic-basin is forced with an ensemble of possible future scenarios generated with a stochastic weather generator able to simulate steady and non-steady climatic conditions. The experiments refer to Mediterranean climate, which is characterized by marked seasonality, and consider the outcomes of the IPCC 5th report for describing climate evolution in the next century. In particular, in order to generate future climate change scenarios, a stochastic downscaling in space and time is carried out using realizations of an ensemble of General

  3. Quantifying the impact of Teleconnections on Hydrologic Regimes in Texas

    NASA Astrophysics Data System (ADS)

    Bhatia, N.; Singh, V. P.; Srivastav, R. K.

    2016-12-01

    Climate change is being alleged to have led to the increased frequency of extreme flooding events and the resulting damages are severe, especially where the flood-plain population densities are higher. Much research in the field of hydroclimatology is focusing on improving real-time flood forecasting models. Recent studies show that, in the state of Texas, extreme regional floods are actually triggered by abruptly higher precipitation intensities. Such intensities are further driven by sea-surface temperature and pressure anomalies, defined by certain patterns of teleconnections. In this study, climate variability is defined on the basis of five major Atlantic and Pacific Ocean related teleconnections: (i) Atlantic Multidecadal Oscillation (AMO), (ii) North Atlantic Oscillation (NAO), (iii) Pacific Decadal Oscillation (PDO), (iv) Pacific North American Pattern (PNA), and (v) Southern Oscillation Index (SOI). Hydrologic extremes will be modeled using probabilistic distributions. Leave-One-Out-Test (LOOT) will be employed to address the outliers in the extremes, and to eventually obtain the robust correlation coefficient. The variation in the effect of most correlated teleconnection with respect to hydrologic attributes will be investigated for the entire state. This study will attempt to identify potential teleconnection inputs for data-driven hydrologic models under varying climatic conditions.

  4. Hydrological cycle in the Danube basin in present and projected future climate conditions: a models' intercomparison perspective

    NASA Astrophysics Data System (ADS)

    Lucarini, V.

    2010-09-01

    We present an intercomparison and verification analysis of several GCMs and RCMs included in the 4th IPCC assessment report on their representation of the hydrological cycle on the Danube river basin for present and (in the case of the GCMs) projected future climate conditions. The basin-scale properties of the hydrological cycle are computed by spatially integrating the precipitation, evaporation, and runoff fields using the Voronoi-Thiessen tessellation formalism. Large discrepancies exist among RCMs for the monthly climatology as well as for the mean and variability of the annual balances, and only few data sets are consistent with the observed discharge values of the Danube at its Delta. This occurs in spite of common nesting of the RCMs into the same run of the same AGCM, and even if the driving AGCM provides itself an excellent estimate. We find consistently that, for a given model, increases in the resolution do not alter the net water balance, while speeding up the hydrological cycle through the enhancement of both precipitation and evaporation by the same amount. We propose that the atmospheric components of RCMs still face difficulties in representing the water balance even on a relatively large scale. Moreover, since for some models the hydrological balance estimates obtained with the runoff fields do not agree with those obtained via precipitation and evaporation, some deficiencies of the land models are also apparent. In the case of the GCMs, the span of the model- simulated mean annual water balances is of the same order of magnitude of the observed Danube discharge of the Delta; the true value is within the range simulated by the models. Some land components seem to have deficiencies since there are cases of violation of water conservation when annual means are considered. The overall performance and the degree of agreement of the GCMs are, surprisingly, comparable to those of the RCMs. Both RCMs and GCMs greatly outperform the NCEP-NCAR and ERA-40

  5. RESPONSE OF WETLAND PLANT SPECIES TO HYDROLOGIC CONDITIONS

    EPA Science Inventory

    Understanding hydrologic requirements of native and introduced species is critical to sustaining native plant communities in wetlands of disturbed landscapes. We examined plant assemblages and 31 species from emergent wetlands in an urbanizing area of the Pacific Northwest, USA,...

  6. RESPONSE OF WETLAND PLANT SPECIES TO HYDROLOGIC CONDITIONS

    EPA Science Inventory

    Understanding hydrologic requirements of native and introduced species is critical to sustaining native plant communities in wetlands of disturbed landscapes. We examined plant assemblages and 31 species from emergent wetlands in an urbanizing area of the Pacific Northwest, USA, ...

  7. Reforestation efforts reshape Hawaii's soil hydrology

    NASA Astrophysics Data System (ADS)

    Schultz, Colin

    2012-04-01

    Starting with the arrival in Hawaii of Polynesian settlers in the fourth century and peaking in the mid-1800s, the destructive forces of wildfires and pests and the grazing of feral pigs, goats, and cattle reduced the native forests of Maui to just one tenth of their original extent. Maui's native vegetation was replaced largely by imported or invasive species. Over time, the invasive grasses that took root reshaped the hydrological properties of the soil, reducing the viability of native plant species, which had evolved to thrive under Hawaii's previous hydrological dynamics. Maui's ecosystem had been changed for so long that scientists were uncertain whether the region could actually again support the native flora

  8. Hydrologic Design in the Anthropocene

    NASA Astrophysics Data System (ADS)

    Vogel, R. M.; Farmer, W. H.; Read, L.

    2014-12-01

    In an era dubbed the Anthropocene, the natural world is being transformed by a myriad of human influences. As anthropogenic impacts permeate hydrologic systems, hydrologists are challenged to fully account for such changes and develop new methods of hydrologic design. Deterministic watershed models (DWM), which can account for the impacts of changes in land use, climate and infrastructure, are becoming increasing popular for the design of flood and/or drought protection measures. As with all models that are calibrated to existing datasets, DWMs are subject to model error or uncertainty. In practice, the model error component of DWM predictions is typically ignored yet DWM simulations which ignore model error produce model output which cannot reproduce the statistical properties of the observations they are intended to replicate. In the context of hydrologic design, we demonstrate how ignoring model error can lead to systematic downward bias in flood quantiles, upward bias in drought quantiles and upward bias in water supply yields. By reincorporating model error, we document how DWM models can be used to generate results that mimic actual observations and preserve their statistical behavior. In addition to use of DWM for improved predictions in a changing world, improved communication of the risk and reliability is also needed. Traditional statements of risk and reliability in hydrologic design have been characterized by return periods, but such statements often assume that the annual probability of experiencing a design event remains constant throughout the project horizon. We document the general impact of nonstationarity on the average return period and reliability in the context of hydrologic design. Our analyses reveal that return periods do not provide meaningful expressions of the likelihood of future hydrologic events. Instead, knowledge of system reliability over future planning horizons can more effectively prepare society and communicate the likelihood

  9. Assessment of variability in the hydrological cycle of the Loess Plateau, China: examining dependence structures of hydrological processes

    NASA Astrophysics Data System (ADS)

    Guo, A.; Wang, Y.

    2017-12-01

    Investigating variability in dependence structures of hydrological processes is of critical importance for developing an understanding of mechanisms of hydrological cycles in changing environments. In focusing on this topic, present work involves the following: (1) identifying and eliminating serial correlation and conditional heteroscedasticity in monthly streamflow (Q), precipitation (P) and potential evapotranspiration (PE) series using the ARMA-GARCH model (ARMA: autoregressive moving average; GARCH: generalized autoregressive conditional heteroscedasticity); (2) describing dependence structures of hydrological processes using partial copula coupled with the ARMA-GARCH model and identifying their variability via copula-based likelihood-ratio test method; and (3) determining conditional probability of annual Q under different climate scenarios on account of above results. This framework enables us to depict hydrological variables in the presence of conditional heteroscedasticity and to examine dependence structures of hydrological processes while excluding the influence of covariates by using partial copula-based ARMA-GARCH model. Eight major catchments across the Loess Plateau (LP) are used as study regions. Results indicate that (1) The occurrence of change points in dependence structures of Q and P (PE) varies across the LP. Change points of P-PE dependence structures in all regions almost fully correspond to the initiation of global warming, i.e., the early 1980s. (3) Conditional probabilities of annual Q under various P and PE scenarios are estimated from the 3-dimensional joint distribution of (Q, P and PE) based on the above change points. These findings shed light on mechanisms of the hydrological cycle and can guide water supply planning and management, particularly in changing environments.

  10. Development of an Improved Irrigation Subroutine in SWAT to Simulate the Hydrology of Rice Paddy Grown under Submerged Conditions

    NASA Astrophysics Data System (ADS)

    Muraleedharan, B. V.; Kathirvel, K.; Narasimhan, B.; Nallasamy, N. D.

    2014-12-01

    Soil Water Assessment Tool (SWAT) is a basin scale, distributed hydrological model commonly used to predict the effect of management decisions on the hydrologic response of watersheds. Hydrologic response is decided by the various components of water balance. In the case of watersheds located in south India as well as in several other tropical countries around the world, paddy is one of the dominant crop controlling the hydrologic response of a watershed. Hence, the suitability of SWAT in replicating the hydrology of paddy fields needs to be verified. Rice paddy fields are subjected to flooding method of irrigation, while the irrigation subroutines in SWAT are developed to simulate crops grown under non flooding conditions. Moreover irrigation is represented well in field scale models, while it is poorly represented within watershed models like SWAT. Reliable simulation of flooding method of irrigation and hydrology of the fields will assist in effective water resources management of rice paddy fields which are one of the major consumers of surface and ground water resources. The current study attempts to modify the irrigation subroutine in SWAT so as to simulate flooded irrigation condition. A field water balance study was conducted on representative fields located within Gadana, a subbasin located in Tamil Nadu (southern part of India) and dominated by rice paddy based irrigation systems. The water balance of irrigated paddy fields simulated with SWAT was compared with the water balance derived by rice paddy based crop growth model named ORYZA. The variation in water levels along with the soil moisture variation predicted by SWAT was evaluated with respect to the estimates derived from ORYZA. The water levels were further validated with field based water balance measurements taken on a daily scale. It was observed that the modified irrigation subroutine was able to simulate irrigation of rice paddy within SWAT in a realistic way compared to the existing method.

  11. Hydrology

    Treesearch

    Mark H. Eisenbies; W. Brian Hughes

    2000-01-01

    Hydrologic processes are the main determinants of the type of wetland located on a site. Precipitation, groundwater, or flooding interact with soil properties and geomorphic setting to yield a complex matrix of conditions that control groundwater flux, water storage and discharge, water chemistry, biotic produvtivity, biodiversity, and biogeochemical cycling....

  12. Exploring the utility of real-time hydrologic data for landslide early warning

    NASA Astrophysics Data System (ADS)

    Mirus, B. B.; Smith, J. B.; Becker, R.; Baum, R. L.; Koss, E.

    2017-12-01

    Early warning systems can provide critical information for operations managers, emergency planners, and the public to help reduce fatalities, injuries, and economic losses due to landsliding. For shallow, rainfall-triggered landslides early warning systems typically use empirical rainfall thresholds, whereas the actual triggering mechanism involves the non-linear hydrological processes of infiltration, evapotranspiration, and hillslope drainage that are more difficult to quantify. Because hydrologic monitoring has demonstrated that shallow landslides are often preceded by a rise in soil moisture and pore-water pressures, some researchers have developed early warning criteria that attempt to account for these antecedent wetness conditions through relatively simplistic storage metrics or soil-water balance modeling. Here we explore the potential for directly incorporating antecedent wetness into landslide early warning criteria using recent landslide inventories and in-situ hydrologic monitoring near Seattle, WA, and Portland, OR. We use continuous, near-real-time telemetered soil moisture and pore-water pressure data measured within a few landslide-prone hillslopes in combination with measured and forecasted rainfall totals to inform easy-to-interpret landslide initiation thresholds. Objective evaluation using somewhat limited landslide inventories suggests that our new thresholds based on subsurface hydrologic monitoring and rainfall data compare favorably to the capabilities of existing rainfall-only thresholds for the Seattle area, whereas there are no established rainfall thresholds for the Portland area. This preliminary investigation provides a proof-of-concept for the utility of developing landslide early warning criteria in two different geologic settings using real-time subsurface hydrologic measurements from in-situ instrumentation.

  13. Porosity Development in a Coastal Setting: A Reactive Transport Model to Assess the Influence of Heterogeneity of Hydrological, Geochemical and Lithological Conditions

    NASA Astrophysics Data System (ADS)

    Maqueda, A.; Renard, P.; Cornaton, F. J.

    2014-12-01

    Coastal karst networks are formed by mineral dissolution, mainly calcite, in the freshwater-saltwater mixing zone. The problem has been approached first by studying the kinetics of calcite dissolution and then coupling ion-pairing software with flow and mass transport models. Porosity development models require high computational power. A workaround to reduce computational complexity is to assume the calcite dissolution reaction is relatively fast, thus equilibrium chemistry can be used to model it (Sanford & Konikow, 1989). Later developments allowed the full coupling of kinetics and transport in a model. However kinetics effects of calcite dissolution were found negligible under the single set of assumed hydrological and geochemical boundary conditions. A model is implemented with the coupling of FeFlow software as the flow & transport module and PHREEQC4FEFLOW (Wissmeier, 2013) ion-pairing module. The model is used to assess the influence of heterogeneities in hydrological, geochemical and lithological boundary conditions on porosity evolution. The hydrologic conditions present in the karst aquifer of Quintana Roo coast in Mexico are used as a guide for generating inputs for simulations.

  14. TREHS (Temporary Rivers Ecological and Hydrological Status): new software for investigating the degree of hydrologic alteration of temporary streams.

    NASA Astrophysics Data System (ADS)

    Gallart, Francesc; Llorens, Pilar; Cid, Núria; latron, Jérôme; Bonada, Núria; Prat, Narcís

    2017-04-01

    The evaluation of the hydrological alteration of a stream due to human activities is a first step to assess its overall quality and to design management strategies for its potential restoration. This task is currently made comparing impacted against unimpacted hydrographs, with the help of software tools, such as the IHA (Indicators of Hydrologic Alteration). Then, the environmental evaluation of the hydrological alteration is to be made in terms of its expectable menace for the original biological communities and/or its help for the spread of invasive species. However, when the regime of the target stream is not perennial, there are four main difficulties for implementing methods for assessing hydrological alteration: i) the main hydrological features relevant for biological communities in a temporary stream are not quantitative (discharges) but qualitative (temporal patterns of states such as flowing water, stagnant pools or lack of surface water), ii) stream flow records do not inform on the temporal occurrence of stagnant pools, which act as refugees for many species during the cessation of flow, iii) as most of the temporary streams are ungauged, the evaluation of their regime must be determined by using alternative methods such as remote sensing or citizen science, and iv) the biological quality assessment of the ecological status of a temporary stream must be conducted following a sampling schedule adapted to the flow regime and using adequate reference conditions. In order to overcome these challenges using an operational approach, the TREHS freely available software tool has been developed within the EU LIFE TRIVERS project (LIFE13 ENV/ES/000341). This software allows for the input of information coming from flow simulations obtained using any rainfall-runoff model (to set an unimpacted reference stream regime) and compares them with the information obtained from flow gauging records, interviews made to local citizens, instantaneous observations made by

  15. From local hydrological process analysis to regional hydrological model application in Benin: Concept, results and perspectives

    NASA Astrophysics Data System (ADS)

    Bormann, H.; Faß, T.; Giertz, S.; Junge, B.; Diekkrüger, B.; Reichert, B.; Skowronek, A.

    This paper presents the concept, first results and perspectives of the hydrological sub-project of the IMPETUS-Benin project which is part of the GLOWA program funded by the German ministry of education and research. In addition to the research concept, first results on field hydrology, pedology, hydrogeology and hydrological modelling are presented, focusing on the understanding of the actual hydrological processes. For analysing the processes a 30 km 2 catchment acting as a super test site was chosen which is assumed to be representative for the entire catchment of about 15,000 km 2. First results of the field investigations show that infiltration, runoff generation and soil erosion strongly depend on land cover and land use which again influence the soil properties significantly. A conceptual hydrogeological model has been developed summarising the process knowledge on runoff generation and subsurface hydrological processes. This concept model shows a dominance of fast runoff components (surface runoff and interflow), a groundwater recharge along preferential flow paths, temporary interaction between surface and groundwater and separate groundwater systems on different scales (shallow, temporary groundwater on local scale and permanent, deep groundwater on regional scale). The findings of intensive measurement campaigns on soil hydrology, groundwater dynamics and soil erosion have been integrated into different, scale-dependent hydrological modelling concepts applied at different scales in the target region (upper Ouémé catchment in Benin, about 15,000 km 2). The models have been applied and successfully validated. They will be used for integrated scenario analyses in the forthcoming project phase to assess the impacts of global change on the regional water cycle and on typical problem complexes such as food security in West African countries.

  16. Response of Arbuscular Mycorrhizal Fungi to Hydrologic Gradients in the Rhizosphere of Phragmites australis (Cav.) Trin ex. Steudel Growing in the Sun Island Wetland

    PubMed Central

    Wang, Li; Wu, Jieting; Ma, Fang; Yang, Jixian; Li, Shiyang; Li, Zhe; Zhang, Xue

    2015-01-01

    Within the rhizosphere, AM fungi are a sensitive variable to changes of botanic and environmental conditions, and they may interact with the biomass of plant and other microbes. During the vegetative period of the Phragmites australis growing in the Sun Island Wetland (SIW), the variations of AM fungi colonization were studied. Root samples of three hydrologic gradients generally showed AM fungi colonization, suggesting that AM fungi have the ability for adaptation to flooded habitats. There were direct and indirect hydrological related effects with respect to AM fungi biomass, which interacted simultaneously in the rhizosphere. Though water content in soil and reed growth parameters were both positively associated with AM fungi colonization, only the positive correlations between reed biomass parameters and the colonization could be expected, or both the host plant biomass and the AM fungi could be beneficial. The variations in response of host plant to the edaphic and hydrologic conditions may influence the effectiveness of the plant-mycorrhizal association. This study included a hydrologic component to better assess the role and distribution of AM fungi in wetland ecosystems. And because of that, the range of AM fungi was extended, since they actually showed a notable adaptability to hydrologic gradients. PMID:26146633

  17. Which key properties controls the preferential transport in the vadose zone under transient hydrological conditions

    NASA Astrophysics Data System (ADS)

    Groh, J.; Vanderborght, J.; Puetz, T.; Gerke, H. H.; Rupp, H.; Wollschlaeger, U.; Stumpp, C.; Priesack, E.; Vereecken, H.

    2015-12-01

    Understanding water flow and solute transport in the unsaturated zone is of great importance for an appropriate land use management strategy. The quantification and prediction of water and solute fluxes through the vadose zone can help to improve management practices in order to limit potential risk on our fresh water resources. Water related solute transport and residence time is strongly affected by preferential flow paths in the soil. Water flow in soils depends on soil properties and site factors (climate or experiment conditions, land use) and are therefore important factors to understand preferential solute transport in the unsaturated zone. However our understanding and knowledge of which on-site properties or conditions define and enhance preferential flow and transport is still poor and mostly limited onto laboratory experimental conditions (small column length and steady state boundary conditions). Within the TERENO SOILCan lysimeter network, which was designed to study the effects of climate change on soil functions, a bromide tracer was applied on 62 lysimeter at eight different test sites between Dec. 2013 and Jan. 2014. The TERENO SOILCan infrastructure offers the unique possibility to study the occurrence of preferential flow and transport of various soil types under different natural transient hydrological conditions and land use (crop, bare and grassland) at eight TERENO SOILCan observatories. Working with lysimeter replicates at each observatory allows defining the spatial variability of preferential transport and flow. Additionally lysimeters in the network were transferred within and between observatories in order to subject them to different rainfall and temperature regimes and enable us to relate the soil type susceptibility of preferential flow and transport not only to site specific physical and land use properties, but also to different transient boundary conditions. Comparison and statistical analysis between preferential flow indicators 5

  18. Organic priority substances and microbial processes in river sediments subject to contrasting hydrological conditions.

    PubMed

    Zoppini, Annamaria; Ademollo, Nicoletta; Amalfitano, Stefano; Casella, Patrizia; Patrolecco, Luisa; Polesello, Stefano

    2014-06-15

    Flood and drought events of higher intensity and frequency are expected to increase in arid and semi-arid regions, in which temporary rivers represent both a water resource and an aquatic ecosystem to be preserved. In this study, we explored the variation of two classes of hazardous substances (Polycyclic Aromatic Hydrocarbons and Nonylphenols) and the functioning of the microbial community in river sediments subject to hydrological fluctuations (Candelaro river basin, Italy). Overall, the concentration of pollutants (∑PAHs range 8-275ngg(-1); ∑NPs range 299-4858ngg(-1)) suggests a moderate degree of contamination. The conditions in which the sediments were tested, flow (high/low) and no flow (wet/dry/arid), were associated to significant differences in the chemical and microbial properties. The total organic carbon contribution decreased together with the stream flow reduction, while the contribution of C-PAHs and C-NPs tended to increase. NPs were relatively more concentrated in sediments under high flow, while the more hydrophobic PAHs accumulated under low and no flow conditions. Passing from high to no flow conditions, a gradual reduction of microbial processes was observed, to reach the lowest specific bacterial carbon production rates (0.06fmolCh(-1)cell(-1)), extracellular enzyme activities, and the highest doubling time (40h) in arid sediments. In conclusion, different scenarios for the mobilization of pollutants and microbial processes can be identified under contrasting hydrological conditions: (i) the mobilization of pollutants under high flow and a relatively higher probability for biodegradation; (ii) the accumulation of pollutants during low flow and lower probability for biodegradation; (iii) the drastic reduction of pollutant concentrations under dry and arid conditions, probably independently from the microbial activity (abiotic processes). Our findings let us infer that a multiple approach has to be considered for an appropriate water

  19. A hydrologic drying bias in water-resource impact analyses of anthropogenic climate change

    USGS Publications Warehouse

    Milly, Paul; Dunne, Krista A.

    2017-01-01

    For water-resource planning, sensitivity of freshwater availability to anthropogenic climate change (ACC) often is analyzed with “offline” hydrologic models that use precipitation and potential evapotranspiration (Ep) as inputs. Because Ep is not a climate-model output, an intermediary model of Ep must be introduced to connect the climate model to the hydrologic model. Several Ep methods are used. The suitability of each can be assessed by noting a credible Ep method for offline analyses should be able to reproduce climate models’ ACC-driven changes in actual evapotranspiration in regions and seasons of negligible water stress (Ew). We quantified this ability for seven commonly used Ep methods and for a simple proportionality with available energy (“energy-only” method). With the exception of the energy-only method, all methods tend to overestimate substantially the increase in Ep associated with ACC. In an offline hydrologic model, the Ep-change biases produce excessive increases in actual evapotranspiration (E), whether the system experiences water stress or not, and thence strong negative biases in runoff change, as compared to hydrologic fluxes in the driving climate models. The runoff biases are comparable in magnitude to the ACC-induced runoff changes themselves. These results suggest future hydrologic drying (wetting) trends likely are being systematically and substantially overestimated (underestimated) in many water-resource impact analyses.

  20. Exploration of warm-up period in conceptual hydrological modelling

    NASA Astrophysics Data System (ADS)

    Kim, Kue Bum; Kwon, Hyun-Han; Han, Dawei

    2018-01-01

    One of the important issues in hydrological modelling is to specify the initial conditions of the catchment since it has a major impact on the response of the model. Although this issue should be a high priority among modelers, it has remained unaddressed by the community. The typical suggested warm-up period for the hydrological models has ranged from one to several years, which may lead to an underuse of data. The model warm-up is an adjustment process for the model to reach an 'optimal' state, where internal stores (e.g., soil moisture) move from the estimated initial condition to an 'optimal' state. This study explores the warm-up period of two conceptual hydrological models, HYMOD and IHACRES, in a southwestern England catchment. A series of hydrologic simulations were performed for different initial soil moisture conditions and different rainfall amounts to evaluate the sensitivity of the warm-up period. Evaluation of the results indicates that both initial wetness and rainfall amount affect the time required for model warm up, although it depends on the structure of the hydrological model. Approximately one and a half months are required for the model to warm up in HYMOD for our study catchment and climatic conditions. In addition, it requires less time to warm up under wetter initial conditions (i.e., saturated initial conditions). On the other hand, approximately six months is required for warm-up in IHACRES, and the wet or dry initial conditions have little effect on the warm-up period. Instead, the initial values that are close to the optimal value result in less warm-up time. These findings have implications for hydrologic model development, specifically in determining soil moisture initial conditions and warm-up periods to make full use of the available data, which is very important for catchments with short hydrological records.

  1. Hydrological regionalisation based on available hydrological information for runoff prediction at catchment scale

    NASA Astrophysics Data System (ADS)

    Li, Qiaoling; Li, Zhijia; Zhu, Yuelong; Deng, Yuanqian; Zhang, Ke; Yao, Cheng

    2018-06-01

    Regionalisation provides a way of transferring hydrological information from gauged to ungauged catchments. The past few decades has seen several kinds of regionalisation approaches for catchment classification and runoff predictions. The underlying assumption is that catchments having similar catchment properties are hydrological similar. This requires the appropriate selection of catchment properties, particularly the inclusion of observed hydrological information, to explain the similarity of hydrological behaviour. We selected observable catchments properties and flow duration curves to reflect the hydrological behaviour, and to regionalize rainfall-runoff response for runoff prediction. As a case study, we investigated 15 catchments located in the Yangtze and Yellow River under multiple hydro-climatic conditions. A clustering scheme was developed to separate the catchments into 4 homogeneous regions by employing catchment properties including hydro-climatic attributes, topographic attributes and land cover etc. We utilized daily flow duration curves as the indicator of hydrological response and interpreted hydrological similarity by root mean square errors. The combined analysis of similarity in catchment properties and hydrological response suggested that catchments in the same homogenous region were hydrological similar. A further validation was conducted by establishing a rainfall-runoff coaxial correlation diagram for each catchment. A common coaxial correlation diagram was generated for each homogenous region. The performances of most coaxial correlation diagrams met the national standard. The coaxial correlation diagram can be transferred within the homogeneous region for runoff prediction in ungauged catchments at an hourly time scale.

  2. Effect of Hydrologic and Geochemical Conditions on Oxygen-Enhanced Bioremediation in a Gasoline-Contaminated Aquifer

    USGS Publications Warehouse

    Landmeyer, J.E.; Bradley, P.M.

    2003-01-01

    The effect of pre-existing factors, e.g., hydrologic, geochemical, and microbiological properties, on the results of oxygen addition to a reformulated gasoline-contaminated groundwater system was studied. Oxygen addition with an oxygen-release compound (a proprietary form of magnesium peroxide produced different results with respect to dissolved oxygen (DO) generation and contaminant decrease in the two locations. Oxygen-release compound injected at the former UST source area did not significantly change measured concentrations of DO, benzene, toluene, or MTBE. Conversely, oxygen-release compound injected 200 m downgradient of the former UST source area rapidly increased DO levels, and benzene, toluene, and MTBE concentrations decreased substantially. The different results could be related to differences in hydrologic and geochemical conditions that characterized the two locations prior to oxygen addition. The lack of recharge to ground water in the paved UST source area led to a much larger geochemical sink for DO compared to ground water in the unpaved area.

  3. Analysis of interrelation between water quality and hydrologic conditions on a small karst catchment area of sinking watercourse Trbuhovica

    NASA Astrophysics Data System (ADS)

    Hinić, V.; Rubinić, J.; Vučković, I.; Ružić, I.; Gržetić, A.; Volf, G.; Ljubotina, M.; Kvas, N.

    2008-11-01

    Sinking watercourse Trbuhovica is located at the topping karst of Gorski Kotar in Croatia, near the Slovenian border. About 900 inhabitants live in Trbuhovica catchment area. Sewage system had not been built. The project KEEP WATERS CLEAN (INTERREG III A project) was approved by EU commission and has a purpose of investigating water resources of that area, their appropriate protection and improving management of those resources. This paper presents project's 1st phase investigation results: hydrologic conditions and water quality at several locations on stream and at the springs of Trbuhovica, Mlake and Obrh. Climatologic (precipitation, air temperature and snow cover), basic hydrologic characteristics (flow and water temperature), water quality parameters (pH, electric conductivity, alkalinity, oxygen regime, nutrients and mineral oils) and microbiology indicators have been monitored. Samples of micro invertebrates and samples of periphyton have been collected in the field. Biological results have been elaborated via Saprobial Index according to Pantle-Buck. Analyses results showed a strong connection between hydrologic condition and selected water quality parameters. The groundwater quality changes are very quick. Maximum pollutions occur during the period of intensive rain. Water at the spring of Mlaka is very clean and is classified in the first to second water category, while Trbuhovica shows higher organic pollution.

  4. Understanding the relationship between actual and potential evapotranspirations from long- term water balance analysis and flux observation

    NASA Astrophysics Data System (ADS)

    Yang, D.; Yang, H.; Sun, F.

    2007-12-01

    Increase in air temperature and decrease in pan evaporation was found to be common worldwide during the past half century. This results in controversy in view of the changes to the hydrological cycle. Increases in precipitation have been expected due to the Clausius¡§CClapyeron relation in that the specific humidity increases exponentially with the greenhouse-gas induced temperature increasing and confirmed by measurements over northern extratropical land areas. The hydrologic cycle is expected to be intensified (or accelerated). However, the decreased pan evaporation is found to be well related to the global dimming, i.e., the decreased solar radiation induced by the pollution increasing, thus evaporation (i.e., the latent heat flux) should be steadily decreasing from the energy balance perspective. Many researchers explained that the potential evaporation (usually measured by pan) is decreased with increasing of precipitation; however, the increased soil moisture (due to precipitation increasing) can be evaporated because of extra energy available. Therefore, the actual and potential evaporation are in complementary relationship, which is expected to unify the controversy between global warming and dimming. This means that pan evaporation decrease implicates acceleration of the global hydrologic cycle, i.e., increase in the terrestrial evaporation. Based on the complementary theory, many operational formulae have been introduced to estimated actual evaporation from the potential evaporation. Our recent water balance analysis of 108 catchments in non-humid regions of China has shown that there are no general opposite trends between potential and actual evaporation in the same period. A novel phenomenon has been found that the complementary relationships in evaporation are distinctly confirmed when the annual actual and potential evaporation are plotted against annual precipitation; However, complementary relationships disappear in many catchments when actual and

  5. Hydrologic conditions: Dade County, Florida

    USGS Publications Warehouse

    Kohout, Francis Anthony; Klein, Howard; Sherwood, C.B.; Leach, Stanley D.

    1964-01-01

    Thin layers of dense limestone of low permeability that occur near the top of the Biscayne aquifer in the vicinity of the north end of Levee 30 in Dade County, Florida are of hydrologic importance because they retard the downward infiltration of ponded water in Conservation Area No. 3. This retarding effect frequently results in high head differentials across the levee. Tests made in a small area adjacent to Levee 30 indicate that the coefficient of transmissibility of the aquifer is 3,600,000 gpd (gallons per day) per foot, and the coefficient of vertical permeability of the dense limestones is 13 gpd per square foot. If ground-water flow beneath the levee is laminar, the total inflow to the Levee 30 Canal from Conservation Area No. 3 will be about 350 mgd (million gallons per day), or 540 cfs (cubic feet per second), per mile length of levee when the head difference across the levee is 10 feet.

  6. Identifying hydrological pre-conditions and rainfall triggers of slope failures for 2014 storm events in the Ialomita Subcarpathians, Romania

    NASA Astrophysics Data System (ADS)

    Chitu, Zenaida; Bogaard, Thom; Busuioc, Aristita; Burcea, Sorin; Adler, Mary-Jeanne; Sandric, Ionut

    2015-04-01

    Like in many parts of the world, in Romania, landslides represent recurrent phenomena that produce numerous damages to infrastructure every few years. Various studies on landslide occurrence in the Curvature Subcarpathians reveal that rainfall represents the most important triggering factor for landslides. Depending on rainfall characteristics and environmental factors different types of landslides were recorded in the Ialomita Subcarpathians: slumps, earthflows and complex landslides. This area, located in the western part of Curvature Subcarpathians, is characterized by a very complex geology whose main features are represented by the nappes system, the post tectonic covers, the diapirism phenomena and vertical faults. This work aims to investigate hydrological pre-conditions and rainfall characteristics which triggered slope failures in 2014 in the Ialomita Subcarpathians, Romania. Hydrological pre-conditions were investigated by means of water balance analysis and low flow techniques, while spatial and temporal patterns of rainfalls were estimated using radar data and six rain gauges. Additionally, six soil moisture stations that are fitted with volumetric soil moisture sensors and temperature soil sensors were used to estimate the antecedent soil moisture conditions.

  7. Value of medium range weather forecasts in the improvement of seasonal hydrologic prediction skill

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shukla, Shraddhanand; Voisin, Nathalie; Lettenmaier, D. P.

    2012-08-15

    We investigated the contribution of medium range weather forecasts with lead times up to 14 days to seasonal hydrologic prediction skill over the Conterminous United States (CONUS). Three different Ensemble Streamflow Prediction (ESP)-based experiments were performed for the period 1980-2003 using the Variable Infiltration Capacity (VIC) hydrology model to generate forecasts of monthly runoff and soil moisture (SM) at lead-1 (first month of the forecast period) to lead-3. The first experiment (ESP) used a resampling from the retrospective period 1980-2003 and represented full climatological uncertainty for the entire forecast period. In the second and third experiments, the first 14 daysmore » of each ESP ensemble member were replaced by either observations (perfect 14-day forecast) or by a deterministic 14-day weather forecast. We used Spearman rank correlations of forecasts and observations as the forecast skill score. We estimated the potential and actual improvement in baseline skill as the difference between the skill of experiments 2 and 3 relative to ESP, respectively. We found that useful runoff and SM forecast skill at lead-1 to -3 months can be obtained by exploiting medium range weather forecast skill in conjunction with the skill derived by the knowledge of initial hydrologic conditions. Potential improvement in baseline skill by using medium range weather forecasts, for runoff (SM) forecasts generally varies from 0 to 0.8 (0 to 0.5) as measured by differences in correlations, with actual improvement generally from 0 to 0.8 of the potential improvement. With some exceptions, most of the improvement in runoff is for lead-1 forecasts, although some improvement in SM was achieved at lead-2.« less

  8. Hydrologic controls on the development of equilibrium soil depths

    NASA Astrophysics Data System (ADS)

    Nicotina, L.; Tarboton, D. G.; Tesfa, T. K.; Rinaldo, A.

    2010-12-01

    The object of the present work was the study of the coevolution of runoff production and geomorphological processes and its effects on the formation of equilibrium soil depth by focusing on their mutual feedbacks. The primary goal of this work is to describe spatial patterns of soil depth resulting, under the hypothesis of dynamic equilibrium, from long-term interactions between hydrologic forcings and soil production, erosion and sediment transport processes. These processes dominate the formation of actual soil depth patterns that represent the boundary condition for water redistribution, thus this paper also proposes and attempt to set the premises for decoding their individual role and mutual interactions in shaping the hydrologic response of a catchment. The relevance of the study stems from the massive improvement in hydrologic predictions for ungauged basins that would be achieved by using directly soil depths derived from geomorphic features remotely measured and objectively manipulated. Moreover the setup of a coupled hydrologic-geomorphologic approach represents a first step into the study of such interactions and in particular of the effects of soil moisture in determining soil production functions. Hydrological processes are here described by explicitly accounting for local soil depths and detailed catchment topography from high resolution digital terrain models (DTM). Geomorphological processes are described by means of well-studied geomorphic transport laws. Soil depth is assumed, in the exponential soil production function, as a proxy for all the mechanisms that induce mechanical disruption of bedrock and it’s conversion into soil. This formulation, although empirical, has been widely used in the literature and is currently accepted. The modeling approach is applied to the semi-arid Dry Creek Experimental Watershed, located near Boise, Idaho, USA. Modeled soil depths are compared with field data obtained from an extensive survey of the catchment

  9. The Canadian Hydrological Model (CHM): A multi-scale, variable-complexity hydrological model for cold regions

    NASA Astrophysics Data System (ADS)

    Marsh, C.; Pomeroy, J. W.; Wheater, H. S.

    2016-12-01

    There is a need for hydrological land surface schemes that can link to atmospheric models, provide hydrological prediction at multiple scales and guide the development of multiple objective water predictive systems. Distributed raster-based models suffer from an overrepresentation of topography, leading to wasted computational effort that increases uncertainty due to greater numbers of parameters and initial conditions. The Canadian Hydrological Model (CHM) is a modular, multiphysics, spatially distributed modelling framework designed for representing hydrological processes, including those that operate in cold-regions. Unstructured meshes permit variable spatial resolution, allowing coarse resolutions at low spatial variability and fine resolutions as required. Model uncertainty is reduced by lessening the necessary computational elements relative to high-resolution rasters. CHM uses a novel multi-objective approach for unstructured triangular mesh generation that fulfills hydrologically important constraints (e.g., basin boundaries, water bodies, soil classification, land cover, elevation, and slope/aspect). This provides an efficient spatial representation of parameters and initial conditions, as well as well-formed and well-graded triangles that are suitable for numerical discretization. CHM uses high-quality open source libraries and high performance computing paradigms to provide a framework that allows for integrating current state-of-the-art process algorithms. The impact of changes to model structure, including individual algorithms, parameters, initial conditions, driving meteorology, and spatial/temporal discretization can be easily tested. Initial testing of CHM compared spatial scales and model complexity for a spring melt period at a sub-arctic mountain basin. The meshing algorithm reduced the total number of computational elements and preserved the spatial heterogeneity of predictions.

  10. Hydrology under change: an evaluation protocol to investigate how hydrological models deal with changing catchments

    Treesearch

    G. Thirel; V. Andreassian; C. Perrin; J.-N. Audouy; L. Berthet; Pamela Edwards; N. Folton; C. Furusho; A. Kuentz; J. Lerat; G. Lindstrom; E. Martin; T. Mathevet; R. Merz; J. Parajka; D. Ruelland; J. Vaze

    2015-01-01

    Testing hydrological models under changing conditions is essential to evaluate their ability to cope with changing catchments and their suitability for impact studies. With this perspective in mind, a workshop dedicated to this issue was held at the 2013 General Assembly of the International Association of Hydrological Sciences (IAHS) in Göteborg, Sweden, in July 2013...

  11. Entropy of hydrological systems under small samples: Uncertainty and variability

    NASA Astrophysics Data System (ADS)

    Liu, Dengfeng; Wang, Dong; Wang, Yuankun; Wu, Jichun; Singh, Vijay P.; Zeng, Xiankui; Wang, Lachun; Chen, Yuanfang; Chen, Xi; Zhang, Liyuan; Gu, Shenghua

    2016-01-01

    Entropy theory has been increasingly applied in hydrology in both descriptive and inferential ways. However, little attention has been given to the small-sample condition widespread in hydrological practice, where either hydrological measurements are limited or are even nonexistent. Accordingly, entropy estimated under this condition may incur considerable bias. In this study, small-sample condition is considered and two innovative entropy estimators, the Chao-Shen (CS) estimator and the James-Stein-type shrinkage (JSS) estimator, are introduced. Simulation tests are conducted with common distributions in hydrology, that lead to the best-performing JSS estimator. Then, multi-scale moving entropy-based hydrological analyses (MM-EHA) are applied to indicate the changing patterns of uncertainty of streamflow data collected from the Yangtze River and the Yellow River, China. For further investigation into the intrinsic property of entropy applied in hydrological uncertainty analyses, correlations of entropy and other statistics at different time-scales are also calculated, which show connections between the concept of uncertainty and variability.

  12. Adequacy of selected evapotranspiration approximations for hydrologic simulation

    USGS Publications Warehouse

    Sumner, D.M.

    2006-01-01

    Evapotranspiration (ET) approximations, usually based on computed potential ET (PET) and diverse PET-to-ET conceptualizations, are routinely used in hydrologic analyses. This study presents an approach to incorporate measured (actual) ET data, increasingly available using micrometeorological methods, to define the adequacy of ET approximations for hydrologic simulation. The approach is demonstrated at a site where eddy correlation-measured ET values were available. A baseline hydrologic model incorporating measured ET values was used to evaluate the sensitivity of simulated water levels, subsurface recharge, and surface runoff to error in four ET approximations. An annually invariant pattern of mean monthly vegetation coefficients was shown to be most effective, despite the substantial year-to-year variation in measured vegetation coefficients. The temporal variability of available water (precipitation minus ET) at the humid, subtropical site was largely controlled by the relatively high temporal variability of precipitation, benefiting the effectiveness of coarse ET approximations, a result that is likely to prevail at other humid sites.

  13. Hydrologic system state at debris flow initiation in the Pitztal catchment, Austria

    NASA Astrophysics Data System (ADS)

    Mostbauer, Karin; Hrachowitz, Markus; Prenner, David; Kaitna, Roland

    2017-04-01

    Debris flows represent a severe hazard in mountain regions. Though significant effort has been made to forecast such events, the trigger conditions as well as the hydrologic disposition of a watershed at the time of debris flow occurrence are not well understood. To improve our knowledge on the connection between debris flow initiation and the hydrologic system, this study applies a semi-distributed conceptual rainfall-runoff model, linking different system state variables such as soil moisture, snowmelt, or runoff with documented debris flow events in the Pitztal watershed, western Austria. The hydrologic modelling was performed on a daily basis between 1953 and 2012. High-intensity rainfall could be identified as the dominant trigger (31 out of 43 debris flows), while triggering exclusively by low-intensity, long-lasting rainfall was only observed in one single case. The remaining events were related to snowmelt; whether all of these events where triggered by rain-on-snow, or whether some of these events were actually triggered by snowmelt only, remains unclear since the occurrence of un- resp. underrecorded rainfall was detected frequently. The usage of a conceptual hydrological model for investigating debris flow initiation constitutes a novel approach in debris flow research and was assessed as very valuable. For future studies, it is recommended to evaluate also sub-daily information. As antecedent snowmelt was found to be much more important to debris flow initiation than antecedent rainfall, it might prove beneficial to include snowmelt in the commonly used rainfall intensity-duration thresholds.

  14. Changes in dissolved organic matter quality in a peatland and forest headwater stream as a function of seasonality and hydrologic conditions

    NASA Astrophysics Data System (ADS)

    Broder, Tanja; Knorr, Klaus-Holger; Biester, Harald

    2017-04-01

    Peatlands and peaty riparian zones are major sources of dissolved organic matter (DOM), but are poorly understood in terms of export dynamics and controls thereof. Thereby quality of DOM affects function and behavior of DOM in aquatic ecosystems, but DOM quality can also help to track DOM sources and their export dynamics under specific hydrologic preconditions. The objective of this study was to elucidate controls on temporal variability in DOM concentration and quality in stream water draining a bog and a forested peaty riparian zone, particularly considering drought and storm flow events. DOM quality was monitored using spectrofluorometric indices for aromaticity (SUVA254), apparent molecular size (SR) and precursor organic material (FI), as well as PARAFAC modeling of excitation emission matrices (EEMs). Indices for DOM quality exhibited major changes due to different hydrologic conditions, but patterns were also dependent on season. Stream water at the forested site with mineral, peaty soils generally exhibited higher variability in DOM concentrations and quality compared to the outflow of an ombrotrophic bog, where DOM was less susceptible to changes in hydrologic conditions. During snowmelt and spring events, near-surface protein-like DOM pools were exported. A microbial DOM fraction originating from groundwater and deep peat layers was increasing during drought, while a strongly microbially altered DOM fraction was also exported by discharge events with dry preconditions at the forested site. This might be due to accelerated microbial activity in the peaty riparian zone of the forested site under these preconditions. Our study demonstrated that DOM export dynamics are not only a passive mixing of different hydrological sources, but monitoring studies have to consider that DOM quality depends on hydrologic preconditions and season. Moreover, the forested peaty riparian zone generated the most variability in headwater DOM quantity and quality, as could be

  15. Hydrological AnthropoScenes

    NASA Astrophysics Data System (ADS)

    Cudennec, Christophe

    2016-04-01

    The Anthropocene concept encapsulates the planetary-scale changes resulting from accelerating socio-ecological transformations, beyond the stratigraphic definition actually in debate. The emergence of multi-scale and proteiform complexity requires inter-discipline and system approaches. Yet, to reduce the cognitive challenge of tackling this complexity, the global Anthropocene syndrome must now be studied from various topical points of view, and grounded at regional and local levels. A system approach should allow to identify AnthropoScenes, i.e. settings where a socio-ecological transformation subsystem is clearly coherent within boundaries and displays explicit relationships with neighbouring/remote scenes and within a nesting architecture. Hydrology is a key topical point of view to be explored, as it is important in many aspects of the Anthropocene, either with water itself being a resource, hazard or transport force; or through the network, connectivity, interface, teleconnection, emergence and scaling issues it determines. We will schematically exemplify these aspects with three contrasted hydrological AnthropoScenes in Tunisia, France and Iceland; and reframe therein concepts of the hydrological change debate. Bai X., van der Leeuw S., O'Brien K., Berkhout F., Biermann F., Brondizio E., Cudennec C., Dearing J., Duraiappah A., Glaser M., Revkin A., Steffen W., Syvitski J., 2016. Plausible and desirable futures in the Anthropocene: A new research agenda. Global Environmental Change, in press, http://dx.doi.org/10.1016/j.gloenvcha.2015.09.017 Brondizio E., O'Brien K., Bai X., Biermann F., Steffen W., Berkhout F., Cudennec C., Lemos M.C., Wolfe A., Palma-Oliveira J., Chen A. C-T. Re-conceptualizing the Anthropocene: A call for collaboration. Global Environmental Change, in review. Montanari A., Young G., Savenije H., Hughes D., Wagener T., Ren L., Koutsoyiannis D., Cudennec C., Grimaldi S., Blöschl G., Sivapalan M., Beven K., Gupta H., Arheimer B., Huang Y

  16. Delineating wetland catchments and modeling hydrologic ...

    EPA Pesticide Factsheets

    In traditional watershed delineation and topographic modeling, surface depressions are generally treated as spurious features and simply removed from a digital elevation model (DEM) to enforce flow continuity of water across the topographic surface to the watershed outlets. In reality, however, many depressions in the DEM are actual wetland landscape features with seasonal to permanent inundation patterning characterized by nested hierarchical structures and dynamic filling–spilling–merging surface-water hydrological processes. Differentiating and appropriately processing such ecohydrologically meaningful features remains a major technical terrain-processing challenge, particularly as high-resolution spatial data are increasingly used to support modeling and geographic analysis needs. The objectives of this study were to delineate hierarchical wetland catchments and model their hydrologic connectivity using high-resolution lidar data and aerial imagery. The graph-theory-based contour tree method was used to delineate the hierarchical wetland catchments and characterize their geometric and topological properties. Potential hydrologic connectivity between wetlands and streams were simulated using the least-cost-path algorithm. The resulting flow network delineated potential flow paths connecting wetland depressions to each other or to the river network on scales finer than those available through the National Hydrography Dataset. The results demonstrated that

  17. Watershed analysis of the Salmon River watershed, Washington : hydrology

    USGS Publications Warehouse

    Bidlake, William R.

    2003-01-01

    The U.S. Geological Survey analyzed selected hydrologic conditions as part of a watershed analysis of the Salmon River watershed, Washington, conducted by the Quinault Indian Nation. The selected hydrologic conditions were analyzed according to a framework of hydrologic key questions that were identified for the watershed. The key questions were posed to better understand the natural, physical, and biological features of the watershed that control hydrologic responses; to better understand current streamflow characteristics, including peak and low flows; to describe any evidence that forest harvesting and road construction have altered frequency and magnitude of peak and low flows within the watershed; to describe what is currently known about the distribution and extent of wetlands and any impacts of land management activities on wetlands; and to describe how hydrologic monitoring within the watershed might help to detect future hydrologic change, to preserve critical ecosystem functions, and to protect public and private property.

  18. Hydrological effect of vegetation against rainfall-induced landslides

    NASA Astrophysics Data System (ADS)

    Gonzalez-Ollauri, Alejandro; Mickovski, Slobodan B.

    2017-06-01

    The hydrological effect of vegetation on rainfall-induced landslides has rarely been quantified and its integration into slope stability analysis methods remains a challenge. Our goal was to establish a reproducible, novel framework to evaluate the hydrological effect of vegetation on shallow landslides. This was achieved by accomplishing three objectives: (i) quantification in situ of the hydrological mechanisms by which woody vegetation (i.e. Salix sp.) might impact slope stability under wetting and drying conditions; (ii) to propose a new approach to predict plant-derived matric suctions under drying conditions; and (iii) to evaluate the suitability of the unified effective stress principle and framework (UES) to quantify the hydrological effect of vegetation against landslides. The results revealed that plant water uptake was the main hydrological mechanism contributing to slope stability, as the vegetated slope was, on average, 12.84% drier and had matric suctions three times higher than the fallow slope. The plant-related mechanisms under wetting conditions had a minimal effect on slope stability. The plant aerial parts intercepted up to 26.73% of the rainfall and concentrated a further 10.78% of it around the stem. Our approach successfully predicted the plant-derived matric suctions and UES proved to be adequate for evaluating the hydrological effect of vegetation on landslides. Although the UES framework presented here sets the basis for effectively evaluating the hydrological effect of vegetation on slope stability, it requires knowledge of the specific hydro-mechanical properties of plant-soil composites and this in itself needs further investigation.

  19. Hydrology for everyone: Share your knowledge

    NASA Astrophysics Data System (ADS)

    Dogulu, Nilay; Dogulu, Canay

    2015-04-01

    Hydrology, the science of water, plays a central role in understanding the function and behaviour of water on the earth. Given the increasingly complex, uncertain, and dynamic nature of this system, the study of hydrology presents challenges in solving water-related problems in societies. While researchers in hydrologic science and engineering embrace these challenges, it is important that we also realize our critical role in promoting the basic understanding of hydrology concepts among the general public. Hydrology is everywhere, yet, the general public often lacks the basic understanding of the hydrologic environment surrounding them. Essentially, we believe that a basic level of knowledge on hydrology is a must for everyone and that this knowledge might facilitate resilience of communities to hydrological extremes. For instance, in case of flood and drought conditions, which are the most frequent and widespread hydrological phenomena that societies live with, a key aspect of facilitating community resilience would be to create awareness on the hydrological, meteorological, and climatological processes behind floods and droughts, and also on their potential implications on water resources management. Such knowledge awareness can lead to an increase in individuals' awareness on their role in water-related problems which in turn can potentially motivate them to adopt preparedness behaviours. For these reasons, embracing an approach that will increase hydrologic literacy of the general public should be a common objective for the hydrologic community. This talk, hopefully, will motivate researchers in hydrologic science and engineering to share their knowledge with the general public. We, as early career hydrologists, should take this responsibility more than anybody else. Start teaching hydrology now and share your knowledge with people around you - friends, family, relatives, neighbours, and others. There is hydrology for everyone!

  20. Hydrologic Process-oriented Optimization of Electrical Resistivity Tomography

    NASA Astrophysics Data System (ADS)

    Hinnell, A.; Bechtold, M.; Ferre, T. A.; van der Kruk, J.

    2010-12-01

    Electrical resistivity tomography (ERT) is commonly used in hydrologic investigations. Advances in joint and coupled hydrogeophysical inversion have enhanced the quantitative use of ERT to construct and condition hydrologic models (i.e. identify hydrologic structure and estimate hydrologic parameters). However the selection of which electrical resistivity data to collect and use is often determined by a combination of data requirements for geophysical analysis, intuition on the part of the hydrogeophysicist and logistical constraints of the laboratory or field site. One of the advantages of coupled hydrogeophysical inversion is the direct link between the hydrologic model and the individual geophysical data used to condition the model. That is, there is no requirement to collect geophysical data suitable for independent geophysical inversion. The geophysical measurements collected can be optimized for estimation of hydrologic model parameters rather than to develop a geophysical model. Using a synthetic model of drip irrigation we evaluate the value of individual resistivity measurements to describe the soil hydraulic properties and then use this information to build a data set optimized for characterizing hydrologic processes. We then compare the information content in the optimized data set with the information content in a data set optimized using a Jacobian sensitivity analysis.

  1. Debates—Hypothesis testing in hydrology: Introduction

    NASA Astrophysics Data System (ADS)

    Blöschl, Günter

    2017-03-01

    This paper introduces the papers in the "Debates—Hypothesis testing in hydrology" series. The four articles in the series discuss whether and how the process of testing hypotheses leads to progress in hydrology. Repeated experiments with controlled boundary conditions are rarely feasible in hydrology. Research is therefore not easily aligned with the classical scientific method of testing hypotheses. Hypotheses in hydrology are often enshrined in computer models which are tested against observed data. Testability may be limited due to model complexity and data uncertainty. All four articles suggest that hypothesis testing has contributed to progress in hydrology and is needed in the future. However, the procedure is usually not as systematic as the philosophy of science suggests. A greater emphasis on a creative reasoning process on the basis of clues and explorative analyses is therefore needed.

  2. Hydrologic dynamics and ecosystem structure.

    PubMed

    Rodríguez-Iturbe, I

    2003-01-01

    Ecohydrology is the science that studies the mutual interaction between the hydrological cycle and ecosystems. Such an interaction is especially intense in water-controlled ecosystems, where water may be a limiting factor, not only because of its scarcity, but also because of its intermittent and unpredictable appearance. Hydrologic dynamics is shown to be a crucial factor for ecological patterns and processes. The probabilistic structure of soil moisture in time and space is presented as the key linkage between soil, climate and vegetation dynamics. Nutrient cycles, vegetation coexistence and plant response to environmental conditions are all intimately linked to the stochastic fluctuation of the hydrologic inputs driving an ecosystem.

  3. Future directions in forest hydrology

    Treesearch

    T.M. Williams; Devendra Amatya; L. Bren; C. deJong; J.E. Nettles

    2016-01-01

    Forest hydrology is a separate and unique branch of hydrology due to the special conditions caused by trees, and the understorey beneath them, comprising a forest. Understanding the forest, with trees that can grow over 100 m tall, may have crowns up to 20-30 m in diameter with roots 5-10 m deep and spread as widely as the crowns, and have lifespans from 50 to 5000...

  4. Response and adaptation of grapevine cultivars to hydrological conditions forced by a changing climate in a complex landscape

    NASA Astrophysics Data System (ADS)

    De Lorenzi, Francesca; Bonfante, Antonello; Alfieri, Silvia Maria; Monaco, Eugenia; De Mascellis, Roberto; Manna, Piero; Menenti, Massimo

    2014-05-01

    requirements were determined. To assess cultivars adaptability, hydrological requirements were evaluated against hydrological indicators. A probabilistic assessment of adaptability was performed, and the inaccuracy of estimated hydrological requirements was accounted for by the error of estimate and its distribution. Maps of cultivars potential distribution, i.e. locations where each cultivar is expected to be compatible with climate, were derived and possible options for adaptation to climate change were defined. The 2021 - 2050 climate scenario was characterized by higher temperatures throughout the year and by a significant decrease in precipitation during spring and autumn. The results have shown the relevant variability of soils water regime and its effects on cultivars adaptability. In the future climate scenario, a hydrological indicator (i.e. relative evapotranspiration deficit - RETD), averaged over the growing season, showed an average increase of 5-8 %, and more pronounced increases occurred in the phenological phases of berry formation and ripening. At the locations where soil hydrological conditions were favourable (like the ancient terraces), hydrological indicators were quite similar in both climate scenarios and the adaptability of the cultivars was high both in the reference and future climate case. The work was carried out within the Italian national project AGROSCENARI funded by the Ministry for Agricultural, Food and Forest Policies (MIPAAF, D.M. 8608/7303/2008) Keywords: climate change, Vitis vinifera L., simulation model, yield response functions, potential cultivation area.

  5. A question driven socio-hydrological modeling process

    NASA Astrophysics Data System (ADS)

    Garcia, M.; Portney, K.; Islam, S.

    2016-01-01

    Human and hydrological systems are coupled: human activity impacts the hydrological cycle and hydrological conditions can, but do not always, trigger changes in human systems. Traditional modeling approaches with no feedback between hydrological and human systems typically cannot offer insight into how different patterns of natural variability or human-induced changes may propagate through this coupled system. Modeling of coupled human-hydrological systems, also called socio-hydrological systems, recognizes the potential for humans to transform hydrological systems and for hydrological conditions to influence human behavior. However, this coupling introduces new challenges and existing literature does not offer clear guidance regarding model conceptualization. There are no universally accepted laws of human behavior as there are for the physical systems; furthermore, a shared understanding of important processes within the field is often used to develop hydrological models, but there is no such consensus on the relevant processes in socio-hydrological systems. Here we present a question driven process to address these challenges. Such an approach allows modeling structure, scope and detail to remain contingent on and adaptive to the question context. We demonstrate the utility of this process by revisiting a classic question in water resources engineering on reservoir operation rules: what is the impact of reservoir operation policy on the reliability of water supply for a growing city? Our example model couples hydrological and human systems by linking the rate of demand decreases to the past reliability to compare standard operating policy (SOP) with hedging policy (HP). The model shows that reservoir storage acts both as a buffer for variability and as a delay triggering oscillations around a sustainable level of demand. HP reduces the threshold for action thereby decreasing the delay and the oscillation effect. As a result, per capita demand decreases during

  6. Multidisciplinary hydrologic investigations at Yucca Mountain, Nevada

    USGS Publications Warehouse

    Dudley, William W.

    1990-01-01

    Future climatic conditions and tectonic processes have the potential to cause significant changes of the hydrologic system in the southern Great Basin, where a nuclear-waste repository is proposed for construction above the water table at Yucca Mountain, Nevada. Geothermal anomalies in the vicinity of Yucca Mountain probably result from the local and regional transport of heat by ground-water flow. Regionally and locally irregular patterns of hydraulic potential, local marsh and pond deposits, and calcite veins in faults and fractures probably are related principally to climatically imposed hydrologic conditions within the geologic and topographic framework. However, tectonic effects on the hydrologic system have also been proposed as the causes of these features, and existing data limitations preclude a full evaluation of these competing hypotheses. A broad program that integrates many disciplines of earth science is required in order to understand the relation of hydrology to past, present and future climates and tectonism.

  7. Hydrologic data and description of a hydrologic monitoring plan for Medicine Lake Volcano, California

    USGS Publications Warehouse

    Schneider, Tiffany Rae; McFarland, W.D.

    1996-01-01

    A hydrologic reconnaissance of the Medicine Lake Volcano area was done to collect data needed for the design of a hydrologic monitoring plan. The reconnaissance was completed during two field trips made in June and September 1992, during which geothermal and hydrologic features of public interest in the Medicine Lake area were identified. Selected wells, springs, and geothermal features were located and documented, and initial water-level, discharge, temperature, and specific-conductance measurements were made. Lakes in the study area also were surveyed during the September field trip. Temperature, specific- conductance, dissolved oxygen, and pH data were collected by using a multiparameter probe. The proposed monitoring plan includes measurement of water levels in wells, discharge from springs, and lake stage, as well as analysis of well-,spring-, and lake-water quality. In determining lake-water quality, data for both stratified and unstratified conditions would be considered. (Data for stratified conditions were collected during the reconnaissance phase of this project, but data for unstratified conditions were not.) In addition, lake stage also would be monitored. A geothermal feature near Medicine Lake is a "hot spot" from which hot gases discharge from two distinct vents. Gas chemistry and temperature would be monitored in one of these vents.

  8. Ensemble Analysis of Variational Assimilation of Hydrologic and Hydrometeorological Data into Distributed Hydrologic Model

    NASA Astrophysics Data System (ADS)

    Lee, H.; Seo, D.; Koren, V.

    2008-12-01

    A prototype 4DVAR (four-dimensional variational) data assimilator for gridded Sacramento soil-moisture accounting and kinematic-wave routing models in the Hydrology Laboratory's Research Distributed Hydrologic Model (HL-RDHM) has been developed. The prototype assimilates streamflow and in-situ soil moisture data and adjusts gridded precipitation and climatological potential evaporation data to reduce uncertainty in the model initial conditions for improved monitoring and prediction of streamflow and soil moisture at the outlet and interior locations within the catchment. Due to large degrees of freedom involved, data assimilation (DA) into distributed hydrologic models is complex. To understand and assess sensitivity of the performance of DA to uncertainties in the model initial conditions and in the data, two synthetic experiments have been carried out in an ensemble framework. Results from the synthetic experiments shed much light on the potential and limitations with DA into distributed models. For initial real-world assessment, the prototype DA has also been applied to the headwater basin at Eldon near the Oklahoma-Arkansas border. We present these results and describe the next steps.

  9. Scientific approach as an understanding and applications of hydrological concepts of tropical rainforest

    NASA Astrophysics Data System (ADS)

    Haryanto, Z.; Setyasih, I.

    2018-04-01

    East Kalimantan has a variety of biomes, one of which is tropical rain forests. Tropical rain forests have enormous hydrological potential, so it is necessary to provide understanding to prospective teachers. Hydrology material cannot be separated from the concept of science, for it is needed the right way of learning so students easily understand the material. This research uses descriptive method with research subject is geography education students taking hydrology course at Faculty of Teacher Training and Education, Mulawarman University. The results showed that the students were able to observe, ask question, collect data, give reason, and communicate the hydrological conditions of tropical rain forest biomes, especially related to surface ground water and groundwater conditions. Tropical rainforests are very influenced by the hydrological conditions of the region and the availability of water is affected by the forest area as a catchment area. Therefore, the tropical rainforest must be maintained in condition and its duration, so that there is no water crisis and hydrological related disasters.

  10. Scaling, Similarity, and the Fourth Paradigm for Hydrology

    NASA Technical Reports Server (NTRS)

    Peters-Lidard, Christa D.; Clark, Martyn; Samaniego, Luis; Verhoest, Niko E. C.; van Emmerik, Tim; Uijlenhoet, Remko; Achieng, Kevin; Franz, Trenton E.; Woods, Ross

    2017-01-01

    In this synthesis paper addressing hydrologic scaling and similarity, we posit that roadblocks in the search for universal laws of hydrology are hindered by our focus on computational simulation (the third paradigm), and assert that it is time for hydrology to embrace a fourth paradigm of data-intensive science. Advances in information-based hydrologic science, coupled with an explosion of hydrologic data and advances in parameter estimation and modelling, have laid the foundation for a data-driven framework for scrutinizing hydrological scaling and similarity hypotheses. We summarize important scaling and similarity concepts (hypotheses) that require testing, describe a mutual information framework for testing these hypotheses, describe boundary condition, state flux, and parameter data requirements across scales to support testing these hypotheses, and discuss some challenges to overcome while pursuing the fourth hydrological paradigm. We call upon the hydrologic sciences community to develop a focused effort towards adopting the fourth paradigm and apply this to outstanding challenges in scaling and similarity.

  11. Hydrologic conditions in the Chicod Creek basin, North Carolina, before and during channel modifications, 1975-81

    USGS Publications Warehouse

    Watkins, S.A.; Simmons, C.E.

    1984-01-01

    Beginning in late 1978, stream channels throughout the 60-square mile Chicod Creek basin underwent extensive modification to increase drainage efficiency and reduce flooding potential. Drainage modifications in this Coastal Plain basin, consisting primarily of channel excavation and clearing of channel blockages, were completed in December 1981. The hydrologic condition of the basin before and during modification was determined from observed data. Observed data indicate hydrologic changes occurred in selected basin characteristics. For example, water levels in the surficial aquifer within 250 feet of Juniper Branch declined as much as 0.4 feet during modifications; at distances greater than 250 feet from the stream, ground-water levels did not change. Base flows increased, and suspended-sediment concentrations for high flows were several times greater than before channel modifications. Increases in selected chemical constituent concentrations in stream water during modifications were as follows: calcium, 12 percent; sodium, 18 percent; bicarbonate, 84 percent; and phosphorous, 80 percent. Significant changes were not found in either pesticide concentrations or coliform bacteria counts.

  12. Hydrological conditions in the straits of the Ryukyu archipelago and adjacent basins

    NASA Astrophysics Data System (ADS)

    Moroz, V. V.; Bogdanov, K. T.

    2007-10-01

    The structure and dynamics of the water are studied on the basis of hydrological and meteorological long-term data combined with the materials of field observations over a period longer than half a century in the region of the Ryukyu archipelago. New data about the hydrological characteristics of the waters were obtained. Characteristic differences of waters of various modifications in the main straits between the islands are demonstrated. The dependence of the water structure formation in the straits on the seasonal variability of the water exchange through the straits is distinguished.

  13. Assessment of the Impact of Climate Change on the Water Balances and Flooding Conditions of Peninsular Malaysia watersheds by a Coupled Numerical Climate Model - Watershed Hydrology Model

    NASA Astrophysics Data System (ADS)

    Ercan, A.; Kavvas, M. L.; Ishida, K.; Chen, Z. Q.; Amin, M. Z. M.; Shaaban, A. J.

    2017-12-01

    Impacts of climate change on the hydrologic processes under future climate change conditions were assessed over various watersheds of Peninsular Malaysia by means of a coupled regional climate and physically-based hydrology model that utilized an ensemble of future climate change projections. An ensemble of 15 different future climate realizations from coarse resolution global climate models' (GCMs) projections for the 21st century were dynamically downscaled to 6 km resolution over Peninsular Malaysia by a regional numerical climate model, which was then coupled with the watershed hydrology model WEHY through the atmospheric boundary layer over the selected watersheds of Peninsular Malaysia. Hydrologic simulations were carried out at hourly increments and at hillslope-scale in order to assess the impacts of climate change on the water balances and flooding conditions at the selected watersheds during the 21st century. The coupled regional climate and hydrology model was simulated for a duration of 90 years for each of the 15 realizations. It is demonstrated that the increase in mean monthly flows due to the impact of expected climate change during 2040-2100 is statistically significant at the selected watersheds. Furthermore, the flood frequency analyses for the selected watersheds indicate an overall increasing trend in the second half of the 21st century.

  14. Regional scale hydrologic modeling of a karst-dominant geomorphology: The case study of the Island of Crete

    NASA Astrophysics Data System (ADS)

    Malagò, Anna; Efstathiou, Dionissios; Bouraoui, Fayçal; Nikolaidis, Nikolaos P.; Franchini, Marco; Bidoglio, Giovanni; Kritsotakis, Marinos

    2016-09-01

    Crete Island (Greece) is a karst dominated region that faces limited water supply and increased seasonal demand, especially during summer for agricultural and touristic uses. In addition, due to the mountainous terrain, interbasin water transfer is very limited. The resulting water imbalance requires a correct quantification of available water resources in view of developing appropriate management plans to face the problem of water shortage. The aim of this work is the development of a methodology using the SWAT model and a karst-flow model (KSWAT, Karst SWAT model) for the quantification of a spatially and temporally explicit hydrologic water balance of karst-dominated geomorphology in order to assess the sustainability of the actual water use. The application was conducted in the Island of Crete using both hard (long time series of streamflow and spring monitoring stations) and soft data (i.e. literature information of individual processes). The KSWAT model estimated the water balance under normal hydrological condition as follows: 6400 Mm3/y of precipitation, of which 40% (2500 Mm3/y) was lost through evapotranspiration, 5% was surface runoff and 55% percolated into the soil contributing to lateral flow (2%), and recharging the shallow (9%) and deep aquifer (44%). The water yield was estimated as 22% of precipitation, of which about half was the contribution from spring discharges (9% of precipitation). The application of the KSWAT model increased our knowledge about water resources availability and distribution in Crete under different hydrologic conditions. The model was able to capture the hydrology of the karst areas allowing a better management and planning of water resources under scarcity.

  15. Hydrological response of a subhumid watershed after a greening-up process, an example in South East Spain

    NASA Astrophysics Data System (ADS)

    Zema, Demetrio Antonio; Cataldo, Maria Francesca; Denisi, Pietro; Martino, Domenico; de Vente, Joris; Boix-Fayos, Carolina

    2016-04-01

    Many watersheds in the Mediterranean are subject to land use changes and hydrological control works that can have important effects on their hydrological and geomorphological response. In such contexts, a better understanding of the hydrological processes and their linkage to the geomorphic evolutionary trends would help territory planners and other stakeholders to face off soil and water body degradation, optimising efficiency and cheapness of planned interventions. This study focuses on a catchment in SE Spain, Upper Taibilla (320 km2, Segura basin), which suffered an important greening-up process with increase of forest cover, decrease of agriculture activities and installation of hydrological control works during the second half of XX century. The objective was to characterize the changes in the hydrological response of the catchment in relation to the changes in their drainage area. Firstly, the actual hydrological response to precipitation was analysed at aggregated (i.e. monthly, seasonal and annual) scale, using 15 years of the most recent runoff observations collected at the outlet of Upper Taibilla river (specifically at the inlet of Taibilla reservoir). Based on the actual distribution of soil land use and texture, the studied sub-basins were discretised by a GIS software in a system of homogenous hydrological units, in order to identify the most critical areas producing surface runoff. This actual aptitude to produce runoff was compared to the sub-basin hydrological response of 1930-1940s (that is before reforestation works and check-dam installation), in order to analyse the eventual presence of evolutionary trends in basin hydrology and the whole efficiency of these works in mitigating runoff impacts. Furthermore, considering that computer prediction models are important tools for planning land use changes and other management works in basins, the applicability of two hydrological models for predicting surface runoff in the studied sub-basins was

  16. Simulated natural hydrologic regime of an intermountain playa conservation site

    USGS Publications Warehouse

    Sanderson, J.S.; Kotliar, N.B.; Steingraeber, D.A.; Browne, C.

    2008-01-01

    An intermountain playa wetland preserve in Colorado's San Luis Valley was studied to assess how its current hydrologic function compares to its natural hydrologic regime. Current hydrologic conditions were quantified, and on-site effects of off-site water use were assessed. A water-budget model was developed to simulate an unaltered (i.e., natural) hydrologic regime, and simulated natural conditions were compared to observed conditions. From 1998-2002, observed stream inflows accounted for ??? 80% of total annual water inputs. No ground water discharged to the wetland. Evapotranspiration (ET) accounted for ??? 69% of total annual water loss. Simulated natural conditions differed substantially from current altered conditions with respect to depth, variability, and frequency of flooding. During 1998-2002, observed monthly mean surface-water depth was 65% lower than under simulated natural conditions. Observed monthly variability in water depth range from 129% greater (May) to 100% less (September and October) than simulated. As observed, the wetland dried completely (i.e., was ephemeral) in all years; as simulated, the wetland was ephemeral in two of five years. For the period 1915-2002, the simulated wetland was inundated continuously for as long as 16 years and nine months. The large differences in observed and simulated surface-water dynamics resulted from differences between altered and simulated unaltered stream inflows. The maximum and minimum annual total stream inflows observed from 1998-2005 were 3.1 ?? 106 m3 and 0 m3, respectively, versus 15.5 ?? 106 m3 and 3.2 ?? 106 m3 under simulated natural conditions from 1915-2002. The maximum simulated inflow was 484% greater than observed. These data indicate that the current hydrologic regime of this intermountain playa differs significantly from its natural hydrologic regime, which has important implications for planning and assessing conservation success. ?? 2008, The Society of Wetland Scientists.

  17. The U.S. Geological Survey Coal Hydrology Program and the potential of hydrologic models for impact assessments

    USGS Publications Warehouse

    Doyle, W. Harry

    1981-01-01

    A requirement of Public Law 95-87, the Surface Mining Control and Reclamation Act of 1977, is the understanding of the hydrology in actual and proposed surface-mined areas. Surface-water data for small specific-sites and for larger areas such as adjacent and general areas are needed also to satisfy the hydrologic requirements of the Act. The Act specifies that surface-water modeling techniques may be used to generate the data and information. The purpose of this report is to describe how this can be achieved for smaller watersheds. This report also characterizes 12 ' state-of-the-art ' strip-mining assessment models that are to be tested with data from two data-intensive studies involving small watersheds in Tennessee and Indiana. Watershed models are best applied to small watersheds with specific-site data. Extending the use of modeling techniques to larger watersheds remains relatively untested, and to date the upper limits for application have not been established. The U.S. Geological Survey is currently collecting regional hydrologic data in the major coal provinces of the United States and this data will be used to help satisfy the ' general-area ' data requirements of the Act. This program is reviewed and described in this report. (USGS)

  18. Hydrologic conditions in New Hampshire and Vermont, water year 2011

    USGS Publications Warehouse

    Kiah, Richard G.; Jarvis, Jason D.; Hegemann, Robert F.; Hilgendorf, Gregory S.; Ward, Sanborn L.

    2013-01-01

    Record-high hydrologic conditions in New Hampshire and Vermont occurred during water year 2011, according to data from 125 streamgages and lake gaging stations, 27 creststage gages, and 41 groundwater wells. Annual runoff for the 2011 water year was the sixth highest on record for New Hampshire and the highest on record for Vermont on the basis of a 111-year reference period (water years 1901–2011). Groundwater levels for the 2011 water year were generally normal in New Hampshire and normal to above normal in Vermont. Record flooding occurred in April, May, and August of water year 2011. Peak-of-record streamflows were recorded at 38 streamgages, 25 of which had more than 10 years of record. Flooding in April 2011 was widespread in parts of northern New Hampshire and Vermont; peak-of-record streamflows were recorded at nine streamgages. Flash flooding in May 2011 was isolated to central and northeastern Vermont; peakof- record streamflows were recorded at five streamgages. Devastating flooding in August 2011 occurred throughout most of Vermont and in parts of New Hampshire as a result of the heavy rains associated with Tropical Storm Irene. Peak-ofrecord streamflows were recorded at 24 streamgages.

  19. The role of the NAO on the North Atlantic hydrological conditions and its interplay with the EA and SCAND atmospheric patterns

    NASA Astrophysics Data System (ADS)

    Hernandez, A.; Rubio-Ingles, M. J.; Shanahan, T. M.; Sáez, A.; Raposeiro, P. M.; Vázquez-Loureiro, D.; Sánchez-López, G.; Gonçalves, V. M.; Bao, R.; Trigo, R.; Giralt, S.

    2016-12-01

    The NAO is the main atmospheric circulation mode controlling the largest fraction of the North Atlantic climate variability. It is defined by the normalized air pressure difference between the Azores High and the Iceland Low as the southern and northern centers of action of the dipole respectively. The NAO pattern has large influence over the precipitation regime in the North Atlantic and the western facade of Europe. Thus, the Lake Azul (São Miguel island, Azores archipelago), with a strategic location in the middle of the north Atlantic Ocean, is influenced by variations on intensity and position of the southern NAO center of action. The reconstruction of the past hydrological conditions in lake location for the last 700 years was obtained by means of high resolution δD plant leaf wax analyses, a proxy for the Precipitation/Evaporation ratio. The 700 years of climatic history included the end of the Medieval Climate Anomaly (MCA), the Little Ice Age (LIA) and the modern Global Warming (GW). The hydrological results showed multidecadal variations with no particular conditions at any climatic period. Overall, the MCA (1285 - 1350 AD) displayed mostly dry conditions, the LIA (1350 - 1820 AD) was mainly wet and, the last 200 years of record showed highly variable conditions. The lake Azul hydrological variations have been compared with a wide range of additional proxy datasets, including: documentary, ice, tree rings, speleothem, lacustrine and oceanic records from the North Atlantic. This comparison has allowed us to understand the decadal and centennial imprints of the NAO as well as to infer its interaction with other relevant large-scale circulation patterns over this sector, such as the Eastern Atlantic (EA) and the Scandinavian (SCAND) climate modes.

  20. Water regime of Playa Lakes from southern Spain: conditioning factors and hydrological modeling.

    PubMed

    Moral, Francisco; Rodriguez-Rodriguez, Miguel; Beltrán, Manuel; Benavente, José; Cifuentes, Victor Juan

    2013-07-01

    Andalusia's lowland countryside has a network of small geographically isolated playa lakes scattered across an area of 9000 km2 whose watersheds are mostly occupied by clayey rocks. The hydrological model proposed by the authors seeks to find equilibrium among usefulness, simplicity, and applicability to isolated playas in a semiarid context elsewhere. Based in such model, the authors have used monthly climatic data, water stage measurements, and the basin morphometry of a particular case (Los Jarales playa lake) to calibrate the soil water budget in the catchment and the water inputs from the watershed (runoff plus groundwater flow) at different scales, from monthly to daily. After the hydrologic model was calibrated, the authors implemented simulations with the goal of reproducing the past hydrological dynamics and forecasting water regime changes that would be caused by a modification of the wetland morphometry.

  1. Darwinian hydrology: can the methodology Charles Darwin pioneered help hydrologic science?

    NASA Astrophysics Data System (ADS)

    Harman, C.; Troch, P. A.

    2013-05-01

    There have been repeated calls for a Darwinian approach to hydrologic science or for a synthesis of Darwinian and Newtonian approaches, to deepen understanding the hydrologic system in the larger landscape context, and so develop a better basis for predictions now and in an uncertain future. But what exactly makes a Darwinian approach to hydrology "Darwinian"? While there have now been a number of discussions of Darwinian approaches, many referencing Harte (2002), the term is potentially a source of confusion while its connections to Darwin remain allusive rather than explicit. Here we discuss the methods that Charles Darwin pioneered to understand a variety of complex systems in terms of their historical processes of change. We suggest that the Darwinian approach to hydrology follows his lead by focusing attention on the patterns of variation in populations, seeking hypotheses that explain these patterns in terms of the mechanisms and conditions that determine their historical development, using deduction and modeling to derive consequent hypotheses that follow from a proposed explanation, and critically testing these hypotheses against new observations. It is not sufficient to catalogue the patterns or predict them statistically. Nor is it sufficient for the explanations to amount to a "just-so" story not subject to critical analysis. Darwin's theories linked present-day variation to mechanisms that operated over history, and could be independently test and falsified by comparing new observations to the predictions of corollary hypotheses they generated. With a Darwinian framework in mind it is easy to see that a great deal of hydrologic research has already been done that contributes to a Darwinian hydrology - whether deliberately or not. The various heuristic methods that Darwin used to develop explanatory theories - extrapolating mechanisms, space for time substitution, and looking for signatures of history - have direct application in hydrologic science. Some

  2. Characterizing meteorological and hydrologic conditions associated with shallow landslide initiation in the coastal bluffs of the Atlantic Highlands, New Jersey

    USGS Publications Warehouse

    Ashland, Francis; Fiore, Alex R.; Reilly, Pamela A.; De Graff, Jerome V.; Shakoor, Abdul

    2017-01-01

    Meteorological and hydrologic conditions associated with shallow landslide initiation in the coastal bluffs of the Atlantic Highlands, New Jersey remain undocumented despite a history of damaging slope movement extending back to at least 1903. This study applies an empirical approach to quantify the rainfall conditions leading to shallow landsliding based on analysis of overlapping historical precipitation data and records of landslide occurrence, and uses continuous monitoring to quantify antecedent soil moisture and hydrologic response to rainfall events at two failure-prone hillslopes. Analysis of historical rainfall data reveals that both extended duration and cumulative rainfall amounts are critical characteristics of many landslide-inducing storms, and is consistent with current monitoring results that show notable increases in shallow soil moisture and pore-water pressure in continuous rainfall periods. Monitoring results show that shallow groundwater levels and soil moisture increase from annual lows in late summer-early fall to annual highs in late winter-early spring, and historical data indicate that shallow landslides occur most commonly from tropical cyclones in late summer through fall and nor’easters in spring. Based on this seasonality, we derived two provisional rainfall thresholds using a limited dataset of documented landslides and rainfall conditions for each season and storm type. A lower threshold for landslide initiation in spring corresponds with high antecedent moisture conditions, and higher rainfall amounts are required to induce shallow landslides during the drier soil moisture conditions in late summer-early fall.

  3. Does drought alter hydrological functions in forest soils?

    NASA Astrophysics Data System (ADS)

    Gimbel, Katharina F.; Puhlmann, Heike; Weiler, Markus

    2016-04-01

    Climate change is expected to impact the water cycle and severely affect precipitation patterns across central Europe and in other parts of the world, leading to more frequent and severe droughts. Usually when projecting drought impacts on hydrological systems, it is assumed that system properties, like soil properties, remain stable and will not be affected by drought events. To study if this assumption is appropriate, we address the effects of drought on the infiltration behavior of forest soils using dye tracer experiments on six sites in three regions across Germany, which were forced into drought conditions. The sites cover clayey-, loamy- and sandy-textured soils. In each region, we compared a deciduous and a coniferous forest stand to address differences between the main tree species. The results of the dye tracer experiments show clear evidence for changes in infiltration behavior at the sites. The infiltration changed at the clayey plots from regular and homogeneous flow to fast preferential flow. Similar behavior was observed at the loamy plots, where large areas in the upper layers remained dry, displaying signs of strong water repellency. This was confirmed by water drop penetration time (WDPT) tests, which revealed, in all except one plot, moderate to severe water repellency. Water repellency was also accountable for the change of regular infiltration to fingered flow in the sandy soils. The results of this study suggest that the drought history or, more generally, the climatic conditions of a soil in the past are more important than the actual antecedent soil moisture status regarding hydrophobicity and infiltration behavior; furthermore, drought effects on infiltration need to be considered in hydrological models to obtain realistic predictions concerning water quality and quantity in runoff and groundwater recharge.

  4. GLOFRIM v1.0 - A globally applicable computational framework for integrated hydrological-hydrodynamic modelling

    NASA Astrophysics Data System (ADS)

    Hoch, Jannis M.; Neal, Jeffrey C.; Baart, Fedor; van Beek, Rens; Winsemius, Hessel C.; Bates, Paul D.; Bierkens, Marc F. P.

    2017-10-01

    We here present GLOFRIM, a globally applicable computational framework for integrated hydrological-hydrodynamic modelling. GLOFRIM facilitates spatially explicit coupling of hydrodynamic and hydrologic models and caters for an ensemble of models to be coupled. It currently encompasses the global hydrological model PCR-GLOBWB as well as the hydrodynamic models Delft3D Flexible Mesh (DFM; solving the full shallow-water equations and allowing for spatially flexible meshing) and LISFLOOD-FP (LFP; solving the local inertia equations and running on regular grids). The main advantages of the framework are its open and free access, its global applicability, its versatility, and its extensibility with other hydrological or hydrodynamic models. Before applying GLOFRIM to an actual test case, we benchmarked both DFM and LFP for a synthetic test case. Results show that for sub-critical flow conditions, discharge response to the same input signal is near-identical for both models, which agrees with previous studies. We subsequently applied the framework to the Amazon River basin to not only test the framework thoroughly, but also to perform a first-ever benchmark of flexible and regular grids on a large-scale. Both DFM and LFP produce comparable results in terms of simulated discharge with LFP exhibiting slightly higher accuracy as expressed by a Kling-Gupta efficiency of 0.82 compared to 0.76 for DFM. However, benchmarking inundation extent between DFM and LFP over the entire study area, a critical success index of 0.46 was obtained, indicating that the models disagree as often as they agree. Differences between models in both simulated discharge and inundation extent are to a large extent attributable to the gridding techniques employed. In fact, the results show that both the numerical scheme of the inundation model and the gridding technique can contribute to deviations in simulated inundation extent as we control for model forcing and boundary conditions. This study shows

  5. Calibration by Hydrological Response Unit of a National Hydrologic Model to Improve Spatial Representation and Distribution of Parameters

    NASA Astrophysics Data System (ADS)

    Norton, P. A., II

    2015-12-01

    The U. S. Geological Survey is developing a National Hydrologic Model (NHM) to support consistent hydrologic modeling across the conterminous United States (CONUS). The Precipitation-Runoff Modeling System (PRMS) simulates daily hydrologic and energy processes in watersheds, and is used for the NHM application. For PRMS each watershed is divided into hydrologic response units (HRUs); by default each HRU is assumed to have a uniform hydrologic response. The Geospatial Fabric (GF) is a database containing initial parameter values for input to PRMS and was created for the NHM. The parameter values in the GF were derived from datasets that characterize the physical features of the entire CONUS. The NHM application is composed of more than 100,000 HRUs from the GF. Selected parameter values commonly are adjusted by basin in PRMS using an automated calibration process based on calibration targets, such as streamflow. Providing each HRU with distinct values that captures variability within the CONUS may improve simulation performance of the NHM. During calibration of the NHM by HRU, selected parameter values are adjusted for PRMS based on calibration targets, such as streamflow, snow water equivalent (SWE) and actual evapotranspiration (AET). Simulated SWE, AET, and runoff were compared to value ranges derived from multiple sources (e.g. the Snow Data Assimilation System, the Moderate Resolution Imaging Spectroradiometer (i.e. MODIS) Global Evapotranspiration Project, the Simplified Surface Energy Balance model, and the Monthly Water Balance Model). This provides each HRU with a distinct set of parameter values that captures the variability within the CONUS, leading to improved model performance. We present simulation results from the NHM after preliminary calibration, including the results of basin-level calibration for the NHM using: 1) default initial GF parameter values, and 2) parameter values calibrated by HRU.

  6. Advancing reservoir operation description in physically based hydrological models

    NASA Astrophysics Data System (ADS)

    Anghileri, Daniela; Giudici, Federico; Castelletti, Andrea; Burlando, Paolo

    2016-04-01

    Last decades have seen significant advances in our capacity of characterizing and reproducing hydrological processes within physically based models. Yet, when the human component is considered (e.g. reservoirs, water distribution systems), the associated decisions are generally modeled with very simplistic rules, which might underperform in reproducing the actual operators' behaviour on a daily or sub-daily basis. For example, reservoir operations are usually described by a target-level rule curve, which represents the level that the reservoir should track during normal operating conditions. The associated release decision is determined by the current state of the reservoir relative to the rule curve. This modeling approach can reasonably reproduce the seasonal water volume shift due to reservoir operation. Still, it cannot capture more complex decision making processes in response, e.g., to the fluctuations of energy prices and demands, the temporal unavailability of power plants or varying amount of snow accumulated in the basin. In this work, we link a physically explicit hydrological model with detailed hydropower behavioural models describing the decision making process by the dam operator. In particular, we consider two categories of behavioural models: explicit or rule-based behavioural models, where reservoir operating rules are empirically inferred from observational data, and implicit or optimization based behavioural models, where, following a normative economic approach, the decision maker is represented as a rational agent maximising a utility function. We compare these two alternate modelling approaches on the real-world water system of Lake Como catchment in the Italian Alps. The water system is characterized by the presence of 18 artificial hydropower reservoirs generating almost 13% of the Italian hydropower production. Results show to which extent the hydrological regime in the catchment is affected by different behavioural models and reservoir

  7. Editorial for Journal of Hydrology: Regional Studies

    USGS Publications Warehouse

    Willems, Patrick; Batelaan, Okke; Hughes, Denis A.; Swarzenski, Peter W.

    2014-01-01

    Hydrological regimes and processes show strong regional differences. While some regions are affected by extreme drought and desertification, others are under threat of increased fluvial and/or pluvial floods. Changes to hydrological systems as a consequence of natural variations and human activities are region-specific. Many of these changes have significant interactions with and implications for human life and ecosystems. Amongst others, population growth, improvements in living standards and other demographic and socio-economic trends, related changes in water and energy demands, change in land use, water abstractions and returns to the hydrological system (UNEP, 2008), introduce temporal and spatial changes to the system and cause contamination of surface and ground waters. Hydro-meteorological boundary conditions are also undergoing spatial and temporal changes. Climate change has been shown to increase temporal and spatial variations of rainfall, increase temperature and cause changes to evapotranspiration and other hydro-meteorological variables (IPCC, 2013). However, these changes are also region specific. In addition to these climate trends, (multi)-decadal oscillatory changes in climatic conditions and large variations in meteorological conditions will continue to occur.

  8. Summary of hydrologic modeling for the Delaware River Basin using the Water Availability Tool for Environmental Resources (WATER)

    USGS Publications Warehouse

    Williamson, Tanja N.; Lant, Jeremiah G.; Claggett, Peter; Nystrom, Elizabeth A.; Milly, Paul C.D.; Nelson, Hugh L.; Hoffman, Scott A.; Colarullo, Susan J.; Fischer, Jeffrey M.

    2015-11-18

    The Water Availability Tool for Environmental Resources (WATER) is a decision support system for the nontidal part of the Delaware River Basin that provides a consistent and objective method of simulating streamflow under historical, forecasted, and managed conditions. In order to quantify the uncertainty associated with these simulations, however, streamflow and the associated hydroclimatic variables of potential evapotranspiration, actual evapotranspiration, and snow accumulation and snowmelt must be simulated and compared to long-term, daily observations from sites. This report details model development and optimization, statistical evaluation of simulations for 57 basins ranging from 2 to 930 km2 and 11.0 to 99.5 percent forested cover, and how this statistical evaluation of daily streamflow relates to simulating environmental changes and management decisions that are best examined at monthly time steps normalized over multiple decades. The decision support system provides a database of historical spatial and climatic data for simulating streamflow for 2001–11, in addition to land-cover and general circulation model forecasts that focus on 2030 and 2060. WATER integrates geospatial sampling of landscape characteristics, including topographic and soil properties, with a regionally calibrated hillslope-hydrology model, an impervious-surface model, and hydroclimatic models that were parameterized by using three hydrologic response units: forested, agricultural, and developed land cover. This integration enables the regional hydrologic modeling approach used in WATER without requiring site-specific optimization or those stationary conditions inferred when using a statistical model.

  9. Global impacts of the meat trade on in-stream organic river pollution: the importance of spatially distributed hydrological conditions

    NASA Astrophysics Data System (ADS)

    Wen, Yingrong; Schoups, Gerrit; van de Giesen, Nick

    2018-01-01

    In many regions of the world, intensive livestock farming has become a significant source of organic river pollution. As the international meat trade is growing rapidly, the environmental impacts of meat production within one country can occur either domestically or internationally. The goal of this paper is to quantify the impacts of the international meat trade on global organic river pollution at multiple scales (national, regional and gridded). Using the biological oxygen demand (BOD) as an overall indicator of organic river pollution, we compute the spatially distributed organic pollution in global river networks with and without a meat trade, where the without-trade scenario assumes that meat imports are replaced by local production. Our analysis reveals a reduction in the livestock population and production of organic pollutants at the global scale as a result of the international meat trade. However, the actual environmental impact of trade, as quantified by in-stream BOD concentrations, is negative; i.e. we find a slight increase in polluted river segments. More importantly, our results show large spatial variability in local (grid-scale) impacts that do not correlate with local changes in BOD loading, which illustrates: (1) the significance of accounting for the spatial heterogeneity of hydrological processes along river networks, and (2) the limited value of looking at country-level or global averages when estimating the actual impacts of trade on the environment.

  10. Development of hydrologic landscape regions for classifying hydrologic permanace and hydrological-ecological interactions

    EPA Science Inventory

    In a 2001 paper, Winter proposed the concept of the hydrologic landscape unit as a fundamental unit composed of an upland and lowland separated by a steeper slope. Winter suggested that this concept could be useful for hydrologic research, data analysis, and comparing hydrologic...

  11. Evaluating DEM conditioning techniques, elevation source data, and grid resolution for field-scale hydrological parameter extraction

    NASA Astrophysics Data System (ADS)

    Woodrow, Kathryn; Lindsay, John B.; Berg, Aaron A.

    2016-09-01

    Although digital elevation models (DEMs) prove useful for a number of hydrological applications, they are often the end result of numerous processing steps that each contains uncertainty. These uncertainties have the potential to greatly influence DEM quality and to further propagate to DEM-derived attributes including derived surface and near-surface drainage patterns. This research examines the impacts of DEM grid resolution, elevation source data, and conditioning techniques on the spatial and statistical distribution of field-scale hydrological attributes for a 12,000 ha watershed of an agricultural area within southwestern Ontario, Canada. Three conditioning techniques, including depression filling (DF), depression breaching (DB), and stream burning (SB), were examined. The catchments draining to each boundary of 7933 agricultural fields were delineated using the surface drainage patterns modeled from LiDAR data, interpolated to a 1 m, 5 m, and 10 m resolution DEMs, and from a 10 m resolution photogrammetric DEM. The results showed that variation in DEM grid resolution resulted in significant differences in the spatial and statistical distributions of contributing areas and the distributions of downslope flowpath length. Degrading the grid resolution of the LiDAR data from 1 m to 10 m resulted in a disagreement in mapped contributing areas of between 29.4% and 37.3% of the study area, depending on the DEM conditioning technique. The disagreements among the field-scale contributing areas mapped from the 10 m LiDAR DEM and photogrammetric DEM were large, with nearly half of the study area draining to alternate field boundaries. Differences in derived contributing areas and flowpaths among various conditioning techniques increased substantially at finer grid resolutions, with the largest disagreement among mapped contributing areas occurring between the 1 m resolution DB DEM and the SB DEM (37% disagreement) and the DB-DF comparison (36.5% disagreement in mapped

  12. Human water consumption intensifies hydrological drought worldwide

    NASA Astrophysics Data System (ADS)

    Wada, Y.; Van Beek, L. P.; Wanders, N.; Bierkens, M. F.

    2012-12-01

    Over the past decades, human water consumption has more than doubled, and reduced streamflow over various regions of the world. However, it remains unclear to what degree human water consumption intensifies hydrological droughts, i.e. the occurrence of anomalously low streamflow. Here, we quantify over the period 1960-2010 the impact of human water consumption on the intensity and frequency of hydrological droughts worldwide. We simulated streamflow by the global hydrological and water resources model PCR-GLOBWB at a 0.5 degree spatial resolution, and reduced the amount of streamflow with different levels of human water consumption over the period 1960-2010. We applied the commonly used variable threshold level method to identify below-normal water availability as the onset of hydrological droughts. We then standardized the deficit volume dividing relative to the threshold level to express the intensity of drought conditions to normal streamflow conditions. The results show that human water consumption substantially reduced local and downstream streamflow in many regions of the world. This subsequently intensified hydrological droughts regionally by 10-500%. Irrigation is responsible for the intensification of hydrological droughts over western and central U.S., southern Europe, Asia, and southeastern Australia, whereas the impact of industrial and households' consumption on the intensification is considerably larger over eastern U.S., and western and central Europe. The results also show that drought frequency increased by more than 27% compared to pristine or natural condition as a result of human water consumption. The intensification of drought frequency is most severe over Asia, but also substantial over North America and Europe. Importantly, global population under severe hydrological droughts considerably increased from 0.7 billion in 1960 to 2.2 billion in 2010 due to rapid population growth. As a limited validation exercise, we compared simulated deficit

  13. Acting, predicting and intervening in a socio-hydrological world

    NASA Astrophysics Data System (ADS)

    Lane, S. N.

    2014-03-01

    This paper asks a simple question: if humans and their actions co-evolve with hydrological systems (Sivapalan et al., 2012), what is the role of hydrological scientists, who are also humans, within this system? To put it more directly, as traditionally there is a supposed separation of scientists and society, can we maintain this separation as socio-hydrologists studying a socio-hydrological world? This paper argues that we cannot, using four linked sections. The first section draws directly upon the concern of science-technology studies to make a case to the (socio-hydrological) community that we need to be sensitive to constructivist accounts of science in general and socio-hydrology in particular. I review three positions taken by such accounts and apply them to hydrological science, supported with specific examples: (a) the ways in which scientific activities frame socio-hydrological research, such that at least some of the knowledge that we obtain is constructed by precisely what we do; (b) the need to attend to how socio-hydrological knowledge is used in decision-making, as evidence suggests that hydrological knowledge does not flow simply from science into policy; and (c) the observation that those who do not normally label themselves as socio-hydrologists may actually have a profound knowledge of socio-hydrology. The second section provides an empirical basis for considering these three issues by detailing the history of the practice of roughness parameterisation, using parameters like Manning's n, in hydrological and hydraulic models for flood inundation mapping. This history sustains the third section that is a more general consideration of one type of socio-hydrological practice: predictive modelling. I show that as part of a socio-hydrological analysis, hydrological prediction needs to be thought through much more carefully: not only because hydrological prediction exists to help inform decisions that are made about water management; but also because

  14. The Hydrological Evolution of Mars as Recorded at Gale Crater

    NASA Astrophysics Data System (ADS)

    Andrews-Hanna, J. C.; Horvath, D. G.

    2017-12-01

    The sedimentary deposits making up the Aeolis Mons sedimentary mound within Gale Crater preserve a record of the evolving hydrology and climate of Mars during the Late Noachian and Hesperian epochs. Aqueous sedimentary deposits including mudstones, deltaic deposits, and sulfate-cemented sediments indicate the past presence of liquid water on the surface. However, these observations alone do not strictly constrain the nature of the hydrology and climate at the time of deposition. We use models of the subsurface and surface hydrology to shed light on the conditions required to reproduce the observed deposits. Changes in the nature and composition of the deposits reflect changes in the balance between the surface and subsurface components of the hydrological cycle, driven by climate changes. Mudstones observed by the MSL rover at the base of the crater reflect lacustrine deposition under semi-arid conditions, with substantial fluid supply from both the surface (overland flow and direct precipitation) and subsurface. A transition at higher stratigraphic levels to sulfate-cemented sandstones required a change to a more arid climate, with the hydrology dominated by long-distance subsurface transport. Near the top of the mound, unaltered deposits indicate deposition under dry conditions, though this transition coincides with the natural limit on the rise of the water table imposed by the surrounding topography and does not require a change in climate. Erosion of the crater-filling sedimentary deposits to their present mound shape required a dramatic drop in the water table under hyper-arid conditions. Evidence for later lake stands in the Hesperian indicates transient returns to semi-arid conditions similar to those that prevailed during the Late Noachian. By coupling surface and orbital observations with hydrological modeling, we are able to make more specific constraints on the evolving climate and aridity of early Mars.

  15. Using Advances in Research on Louisiana Coastal Restoration and Protection to Develop Undergraduate Hydrology Education Experiences Delivered via a Web Interface

    NASA Astrophysics Data System (ADS)

    Bodin, M.; Habib, E. H.; Meselhe, E. A.; Visser, J.; Chimmula, S.

    2014-12-01

    Utilizing advances in hydrologic research and technology, learning modules can be developed to deliver visual, case-based, data and simulation driven educational experiences. This paper focuses on the development of web modules based on case studies in Coastal Louisiana, one of three ecosystems that comprise an ongoing hydrology education online system called HydroViz. The Chenier Plain ecosystem in Coastal Louisiana provides an abundance of concepts and scenarios appropriate for use in many undergraduate water resource and hydrology curricula. The modules rely on a set of hydrologic data collected within the Chenier Plain along with inputs and outputs of eco-hydrology and vegetation-change simulation models that were developed to analyze different restoration and protection projects within the 2012 Louisiana Costal Master Plan. The modules begin by investigating the basic features of the basin and it hydrologic characteristics. The eco-hydrology model is then introduced along with its governing equations, numerical solution scheme and how it represents the study domain. Concepts on water budget in a coastal basin are then introduced using the simulation model inputs, outputs and boundary conditions. The complex relationships between salinity, water level and vegetation changes are then investigated through the use of the simulation models and associated field data. Other student activities focus on using the simulation models to evaluate tradeoffs and impacts of actual restoration and protection projects that were proposed as part of 2012 Louisiana Master Plan. The hands-on learning activities stimulate student learning of hydrologic and water management concepts by providing real-world context and opportunity to build fundamental knowledge as well as practical skills. The modules are delivered through a carefully designed user interface using open source and free technologies which enable wide dissemination and encourage adaptation by others.

  16. Development of a Historical Hydrological online research and application platform for Switzerland - Historical Hydrological Atlas of Switzerland (HHAS)

    NASA Astrophysics Data System (ADS)

    Wetter, Oliver

    2017-04-01

    It is planned to develop and maintain a historical hydrological online platform for Switzerland, which shall be specially designed for the needs of research and federal, cantonal or private institutions being interested in hydrological risk assessment and protection measures. The aim is on the one hand to facilitate the access to raw data which generally is needed for further historical hydrological reconstruction and quantification, so that future research will be achieved in significantly shorter time. On the other hand, new historical hydrological research results shall be continuously included in order to establish this platform as a useful tool for the assessment of hydrological risk by including the long term experience of reconstructed pre-instrumental hydrological extreme events like floods and droughts. Meteorological parameters that may trigger extreme hydrological events, like monthly or seasonally resolved reconstructions of temperature and precipitation shall be made accessible in this platform as well. The ultimate goal will be to homogenise the reconstructed hydrological extreme events which usually appeared in the pre anthropogenic influence period under different climatological as well as different hydrological regimes and topographical conditions with the present day state. Long term changes of reconstructed small- to extreme flood seasonality, based on municipal accounting records, will be included in the platform as well. This helps - in combination with the before mentioned meteorological parameters - to provide an increased understanding of the major changes in the generally complex overall system that finally causes hydrological extreme events. The goal of my presentation at the Historical Climatology session is to give an overview about the applied historical climatological and historical hydrological methodologies that are applied on the historical raw data (evidence) to reconstruct pre instrumental hydrological events and meteorological

  17. Neural Networks for Hydrological Modeling Tool for Operational Purposes

    NASA Astrophysics Data System (ADS)

    Bhatt, Divya; Jain, Ashu

    2010-05-01

    Hydrological models are useful in many water resources applications such as flood control, irrigation and drainage, hydro power generation, water supply, erosion and sediment control, etc. Estimates of runoff are needed in many water resources planning, design development, operation and maintenance activities. Runoff is generally computed using rainfall-runoff models. Computer based hydrologic models have become popular for obtaining hydrological forecasts and for managing water systems. Rainfall-runoff library (RRL) is computer software developed by Cooperative Research Centre for Catchment Hydrology (CRCCH), Australia consisting of five different conceptual rainfall-runoff models, and has been in operation in many water resources applications in Australia. Recently, soft artificial intelligence tools such as Artificial Neural Networks (ANNs) have become popular for research purposes but have not been adopted in operational hydrological forecasts. There is a strong need to develop ANN models based on real catchment data and compare them with the conceptual models actually in use in real catchments. In this paper, the results from an investigation on the use of RRL and ANNs are presented. Out of the five conceptual models in the RRL toolkit, SimHyd model has been used. Genetic Algorithm has been used as an optimizer in the RRL to calibrate the SimHyd model. Trial and error procedures were employed to arrive at the best values of various parameters involved in the GA optimizer to develop the SimHyd model. The results obtained from the best configuration of the SimHyd model are presented here. Feed-forward neural network model structure trained by back-propagation training algorithm has been adopted here to develop the ANN models. The daily rainfall and runoff data derived from Bird Creek Basin, Oklahoma, USA have been employed to develop all the models included here. A wide range of error statistics have been used to evaluate the performance of all the models

  18. [A nationwide investigation needs for rehabilitation of schizophrenic outpatients--the patients' attribute and actual conditions of living].

    PubMed

    Yamashita, T; Kuroda, K; Hirano, W; Ueno, M; Yoshizumi, A; Inomata, Y; Komine, K

    1996-01-01

    In Japan we are very short of community resources for persons with mental disability. The authors, a board of resettlement, thought patients' actual conditions of living and needs for rehabilitation to let them live in the community had to be evaluated. Then in March 1993 the actual conditions of living and needs for rehabilitation of schizophrenic outpatients were investigated nationally. This article is the report on the patients' actual conditions of living. Investigation papers were sent to 358 institutions (286 hospitals and 72 clinics) which agreed to cooperate with the investigation. The 5186 investigation papers were received from 313 institutions. All of the papers except 18, which were lack of their ages, were analyzed. All of the schizophrenic outpatients, who consulted psychiatrists on one day during investigation, were considered objects of this research. Those who consented were included the research and psychiatrists filled in investigation papers. These institutions had a policy of intensive social resettlement activities and so on. Male patients were 55% and females were 45%. There were patients in the forties and females were older than males. Thirty-nine percent of them had been hospitalized once or twice. Thirty-four percent of them had been hospitalized for less than one year. Eighteen percent of them had not been hospitalized. Fifty percent of patients answered there was no friend and acquaintance, and had a tendency to stand alone. Fifty-three percent of patients lived with their parents, 21% with their spouses, and 17% alone. But 32% of females lived with their husbands. Sixteen percent worked for full-time jobs, 8% worked part-time jobs, 12% attended day care center 4% went to sheltered-workshops and only 1% went to rehabilitation-workshops for outpatients. While 13% didn't have a right to receive disability pension, the sources of income were job (30%), disability pension (30%), and welfare benefits (12%). Regarding the ability for living

  19. Estimation of actual evapotranspiration in the Nagqu river basin of the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Zou, Mijun; Zhong, Lei; Ma, Yaoming; Hu, Yuanyuan; Feng, Lu

    2018-05-01

    As a critical component of the energy and water cycle, terrestrial actual evapotranspiration (ET) can be influenced by many factors. This study was mainly devoted to providing accurate and continuous estimations of actual ET for the Tibetan Plateau (TP) and analyzing the effects of its impact factors. In this study, summer observational data from the Coordinated Enhanced Observing Period (CEOP) Asia-Australia Monsoon Project (CAMP) on the Tibetan Plateau (CAMP/Tibet) for 2003 to 2004 was selected to determine actual ET and investigate its relationship with energy, hydrological, and dynamical parameters. Multiple-layer air temperature, relative humidity, net radiation flux, wind speed, precipitation, and soil moisture were used to estimate actual ET. The regression model simulation results were validated with independent data retrieved using the combinatory method. The results suggested that significant correlations exist between actual ET and hydro-meteorological parameters in the surface layer of the Nagqu river basin, among which the most important factors are energy-related elements (net radiation flux and air temperature). The results also suggested that how ET is eventually affected by precipitation and two-layer wind speed difference depends on whether their positive or negative feedback processes have a more important role. The multivariate linear regression method provided reliable estimations of actual ET; thus, 6-parameter simplified schemes and 14-parameter regular schemes were established.

  20. Determination of biologically significant hydrologic condition metrics in urbanizing watersheds: an empirical analysis over a range of environmental settings

    USGS Publications Warehouse

    Steuer, Jeffrey J.; Stensvold, Krista A.; Gregory, Mark B.

    2010-01-01

    We investigated the relations among 83 hydrologic condition metrics (HCMs) and changes in algal, invertebrate, and fish communities in five metropolitan areas across the continental United States. We used a statistical approach that employed Spearman correlation and regression tree analysis to identify five HCMs that are strongly associated with observed biological variation along a gradient of urbanization. The HCMs related to average flow magnitude, high-flow magnitude, high-flow event frequency, high-flow duration, and rate of change of stream cross-sectional area were most consistently associated with changes in aquatic communities. Although our investigation used an urban gradient design with short hydrologic periods of record (≤1 year) of hourly cross-sectional area time series, these five HCMs were consistent with previous investigations using long-term daily-flow records. The ecological sampling day often was included in the hydrologic period. Regression tree models explained up to 73, 92, and 79% of variance for specific algal, invertebrate, and fish community metrics, respectively. National models generally were not as statistically significant as models for individual metropolitan areas. High-flow event frequency, a hydrologic metric found to be transferable across stream type and useful for classifying habitat by previous research, was found to be the most ecologically relevant HCM; transformation by precipitation increased national-scale applicability. We also investigated the relation between measures of stream flashiness and land-cover indicators of urbanization and found that land-cover characteristic and pattern variables, such as road density, percent wetland, and proximity of developed land, were strongly related to HCMs at both a metropolitan and national scale and, therefore, may be effective land-use management options in addition to wholesale impervious-area reduction.

  1. Calibration of a distributed hydrologic model for six European catchments using remote sensing data

    NASA Astrophysics Data System (ADS)

    Stisen, S.; Demirel, M. C.; Mendiguren González, G.; Kumar, R.; Rakovec, O.; Samaniego, L. E.

    2017-12-01

    While observed streamflow has been the single reference for most conventional hydrologic model calibration exercises, the availability of spatially distributed remote sensing observations provide new possibilities for multi-variable calibration assessing both spatial and temporal variability of different hydrologic processes. In this study, we first identify the key transfer parameters of the mesoscale Hydrologic Model (mHM) controlling both the discharge and the spatial distribution of actual evapotranspiration (AET) across six central European catchments (Elbe, Main, Meuse, Moselle, Neckar and Vienne). These catchments are selected based on their limited topographical and climatic variability which enables to evaluate the effect of spatial parameterization on the simulated evapotranspiration patterns. We develop a European scale remote sensing based actual evapotranspiration dataset at a 1 km grid scale driven primarily by land surface temperature observations from MODIS using the TSEB approach. Using the observed AET maps we analyze the potential benefits of incorporating spatial patterns from MODIS data to calibrate the mHM model. This model allows calibrating one-basin-at-a-time or all-basins-together using its unique structure and multi-parameter regionalization approach. Results will indicate any tradeoffs between spatial pattern and discharge simulation during model calibration and through validation against independent internal discharge locations. Moreover, added value on internal water balances will be analyzed.

  2. Balancing model complexity and measurements in hydrology

    NASA Astrophysics Data System (ADS)

    Van De Giesen, N.; Schoups, G.; Weijs, S. V.

    2012-12-01

    outcomes, thereby preventing the most obvious results of over-fitting. Thirdly, dependence within and between time series poses an additional analytical problem. Finally, there are arguments to be made that the often discussed "equifinality" in hydrological models is simply a different manifestation of the lack of complexity control. In turn, this points toward a general idea, which is actually quite popular in sciences other than hydrology, that additional data gathering is a good way to increase the information content of our descriptions of hydrological reality.

  3. Forest hydrology

    Treesearch

    Ge Sun; Devendra Amatya; Steve McNulty

    2016-01-01

    Forest hydrology studies the distribution, storage, movement, and quality of water and the hydrological processes in forest-dominated ecosystems. Forest hydrological science is regarded as the foundation of modern integrated water¬shed management. This chapter provides an overview of the history of forest hydrology and basic principles of this unique branch of...

  4. Hydrological modelling for flood forecasting: Calibrating the post-fire initial conditions

    NASA Astrophysics Data System (ADS)

    Papathanasiou, C.; Makropoulos, C.; Mimikou, M.

    2015-10-01

    Floods and forest fires are two of the most devastating natural hazards with severe socioeconomic, environmental as well as aesthetic impacts on the affected areas. Traditionally, these hazards are examined from different perspectives and are thus investigated through different, independent systems, overlooking the fact that they are tightly interrelated phenomena. In fact, the same flood event is more severe, i.e. associated with increased runoff discharge and peak flow and decreased time to peak, if it occurs over a burnt area than that occurring over a land not affected by fire. Mediterranean periurban areas, where forests covered with flammable vegetation coexist with agricultural land and urban zones, are typical areas particularly prone to the combined impact of floods and forest fires. Hence, the accurate assessment and effective management of post-fire flood risk becomes an issue of priority. The research presented in this paper aims to develop a robust methodological framework, using state of art tools and modern technologies to support the estimation of the change in time of five representative hydrological parameters for post-fire conditions. The proposed methodology considers both longer- and short-term initial conditions in order to assess the dynamic evolution of the selected parameters. The research focuses on typical Mediterranean periurban areas that are subjected to both hazards and concludes with a set of equations that associate post-fire and pre-fire conditions for five Fire Severity (FS) classes and three soil moisture states. The methodology has been tested for several flood events on the Rafina catchment, a periurban catchment in Eastern Attica (Greece). In order to validate the methodology, simulated hydrographs were produced and compared against available observed data. Results indicate a close convergence of observed and simulated flows. The proposed methodology is particularly flexible and thus easily adaptable to catchments with similar

  5. Hydrogeology and hydrologic conditions of the Ozark Plateaus aquifer system

    USGS Publications Warehouse

    Hays, Phillip D.; Knierim, Katherine J.; Breaker, Brian K.; Westerman, Drew A.; Clark, Brian R.

    2016-11-23

    The hydrogeology and hydrologic characteristics of the Ozark Plateaus aquifer system were characterized as part of ongoing U.S. Geological Survey efforts to assess groundwater availability across the Nation. The need for such a study in the Ozark Plateaus physiographic province (Ozark Plateaus) is highlighted by increasing demand on groundwater resources by the 5.3 million people of the Ozark Plateaus, water-level declines in some areas, and potential impacts of climate change on groundwater availability. The subject study integrates knowledge gained through local investigation within a regional perspective to develop a regional conceptual model of groundwater flow in the Ozark Plateaus aquifer system (Ozark system), a key phase of groundwater availability assessment. The Ozark system extends across much of southern Missouri and northwestern and north-central Arkansas and smaller areas of southeastern Kansas and northeastern Oklahoma. The region is one of the major karst landscapes in the United States, and karst aquifers are predominant in the Ozark system. Groundwater flow is ultimately controlled by aquifer and confining unit lithologies and stratigraphic relations, geologic structure, karst development, and the character of surficial lithologies and regolith mantle. The regolith mantle is a defining element of Ozark Plateaus karst, affecting recharge, karst development, and vulnerability to surface-derived contaminants. Karst development is more advanced—as evidenced by larger springs, hydraulic characteristics, and higher well yields—in the Salem Plateau and in the northern part of the Springfield Plateau (generally north of the Arkansas-Missouri border) as compared with the southern part of the Springfield Plateau in Arkansas, largely due to thinner, less extensive regolith and purer carbonate lithology.Precipitation is the ultimate source of all water to the Ozark system, and the hydrologic budget for the Ozark system includes inputs from recharge

  6. Hydrological sciences and water security: An overview

    NASA Astrophysics Data System (ADS)

    Young, G.; Demuth, S.; Mishra, A.; Cudennec, C.

    2015-04-01

    This paper provides an introduction to the concepts of water security including not only the risks to human wellbeing posed by floods and droughts, but also the threats of inadequate supply of water in both quantity and quality for food production, human health, energy and industrial production, and for the natural ecosystems on which life depends. The overall setting is one of constant change in all aspects of Earth systems. Hydrological systems (processes and regimes) are changing, resulting from varying and changing precipitation and energy inputs, changes in surface covers, mining of groundwater resources, and storage and diversions by dams and infrastructures. Changes in social, political and economic conditions include population and demographic shifts, political realignments, changes in financial systems and in trade patterns. There is an urgent need to address hydrological and social changes simultaneously and in combination rather than as separate entities, and thus the need to develop the approach of `socio-hydrology'. All aspects of water security, including the responses of both UNESCO and the International Association of Hydrological Sciences (IAHS) to the concepts of socio-hydrology, are examined in detailed papers within the volume titled Hydrological Sciences and Water Security: Past, Present and Future.

  7. Hydrological system dynamics of glaciated Karnali River Basin Nepal Himalaya using J2000 Hydrological model

    NASA Astrophysics Data System (ADS)

    Khatiwada, K. R.; Nepal, S.; Panthi, J., Sr.; Shrestha, M.

    2015-12-01

    Hydrological modelling plays an important role in understanding hydrological processes of a catchment. In the context of climate change, the understanding of hydrological characteristic of the catchment is very vital to understand how the climate change will affect the hydrological regime. This research facilitates in better understanding of the hydrological system dynamics of a himalayan mountainous catchment in western Nepal. The Karnali River, longest river flowing inside Nepal, is one of the three major basins of Nepal, having the area of 45269 sq. km. is unique. The basin has steep topography and high mountains to the northern side. The 40% of the basin is dominated by forest land while other land cover are: grass land, bare rocky land etc. About 2% of the areas in basin is covered by permanent glacier apart from that about 12% of basin has the snow and ice cover. There are 34 meteorological stations distributed across the basin. A process oriented distributed J2000 hydrologial model has been applied to understand the hydrological system dynamics. The model application provides distributed output of various hydrological components. The J2000 model applies Hydrological Response Unit (HRU) as a modelling entity. With 6861 HRU and 1010 reaches, the model was calibrated (1981-1999) and validated (2000-2004) at a daily scale using split-sample test. The model is able to capture the overall hydrological dynamics well. The rising limbs and recession limbs are simulated equally and with satisfactory ground water conditions. Based on the graphical and statistical evaluation of the model performance the model is able to simulate hydrological processes fairly well. Calibration shows that Nash Sutcliffe efficiency is 0.91, coefficient of determination is 0.92 Initial observation shows that during the pre-monsoon season(March to May) the glacial runoff is 25% of the total discharge while in the monsoon(June to September) season it is only 13%. The surface runoff

  8. A RETROSPECTIVE ANALYSIS OF MODEL UNCERTAINTY FOR FORECASTING HYDROLOGIC CHANGE

    EPA Science Inventory

    GIS-based hydrologic modeling offers a convenient means of assessing the impacts associated with land-cover/use change for environmental planning efforts. Alternative future scenarios can be used as input to hydrologic models and compared with existing conditions to evaluate pot...

  9. EVALUATION OF URBANIZATION IMPACTS ON HYDROLOGY - LABORATORY AND FIELD APPROACHES

    EPA Science Inventory

    Although urbanization has a major impact on watershed hydrology, there have not been many studies to quantify how basic hydrological relationships are altered by the addition of impervious surface under controlled conditions. In addition, few studies have been conducted to quanti...

  10. Flow processes on the catchment scale - modeling of initial structural states and hydrological behavior in an artificial exemplary catchment

    NASA Astrophysics Data System (ADS)

    Maurer, Thomas; Caviedes-Voullième, Daniel; Hinz, Christoph; Gerke, Horst H.

    2017-04-01

    Landscapes that are heavily disturbed or newly formed by either natural processes or human activity are in a state of disequilibrium. Their initial development is thus characterized by highly dynamic processes under all climatic conditions. The primary distribution and structure of the solid phase (i.e. mineral particles forming the pore space) is one of the decisive factors for the development of hydrological behavior of the eco-hydrological system and therefore (co-) determining for its - more or less - stable final state. The artificially constructed ‚Hühnerwasser' catchment (a 6 ha area located in the open-cast lignite mine Welzow-Süd, southern Brandenburg, Germany) is a landscape laboratory where the initial eco-hydrological development is observed since 2005. The specific formation (or construction) processes generated characteristic sediment structures and distributions, resulting in a spatially heterogeneous initial state of the catchment. We developed a structure generator that simulates the characteristic distribution of the solid phase for such constructed landscapes. The program is able to generate quasi-realistic structures and sediment compositions on multiple spatial levels (1 cm up to 100 m scale). The generated structures can be i) conditioned to actual measurement values (e.g., soil texture and bulk distribution); ii) stochastically generated, and iii) calculated deterministically according to the geology and technical processes at the excavation site. Results are visualized using the GOCAD software package and the free software Paraview. Based on the 3D-spatial sediment distributions, effective hydraulic van-Genuchten parameters are calculated using pedotransfer functions. The hydraulic behavior of different sediment distribution (i.e. versions or variations of the catchment's porous body) is calculated using a numerical model developed by one of us (Caviedes-Voullième). Observation data are available from catchment monitoring are available

  11. Hydrologic measurements and implications for tree island formation within Everglades National Park

    NASA Astrophysics Data System (ADS)

    Bazante, Jose; Jacobi, Gary; Solo-Gabriele, Helena M.; Reed, David; Mitchell-Bruker, Sherry; Childers, Daniel L.; Leonard, Lynn; Ross, Michael

    2006-10-01

    study sites and were primarily of organic origin. The mean particle size of the suspended sediments was 3 μm with a distribution that was exponential. Critical velocities needed to cause re-suspension of these particles were estimated to be above the actual velocities observed. Sediment transport within the water column appears to be at a near steady state during the conditions evaluated with low rates of sediment loss balanced by presumably the release of equivalent quantities of particles of organic origin. Existing hydrologic conditions do not appear to transport sufficient suspended sediments to result in the formation of tree islands. Of interest would be to collect hydrologic and sediment transport data during extreme hydrologic events to determine if enough sediment is transported under these conditions to promote sufficient sediment accumulations.

  12. Simulation of hydrologic conditions and suspended-sediment loads in the San Antonio River Basin downstream from San Antonio, Texas, 2000-12

    USGS Publications Warehouse

    Banta, J. Ryan; Ockerman, Darwin J.

    2014-01-01

    Suspended sediment in rivers and streams can play an important role in ecological health of rivers and estuaries and consequently is an important issue for water-resource managers. To better understand suspended-sediment loads and transport in a watershed, the U.S. Geological Survey (USGS), in cooperation with the San Antonio River Authority, developed a Hydrological Simulation Program—FORTRAN model to simulate hydrologic conditions and suspended-sediment loads during 2000–12 for four watersheds, which comprise the overall study area in the San Antonio River Basin (hereinafter referred to as the “USGS–2014 model”). The study area consists of approximately 2,150 square miles encompassing parts of Bexar, Guadalupe, Wilson, Karnes, DeWitt, Goliad, Victoria, and Refugio Counties. The USGS–2014 model was calibrated for hydrology and suspended sediment for 2006–12. Overall, model-fit statistics and graphic evaluations from the calibration and testing periods provided multiple lines of evidence indicating that the USGS–2014 model simulations of hydrologic and suspended-sediment conditions were mostly “good” to “very good.” Model simulation results indicated that approximately 1,230 tons per day of suspended sediment exited the study area and were delivered to the Guadalupe River during 2006–12, of which approximately 62 percent originated upstream from the study area. Sample data and simulated model results indicate that most of the suspended-sediment load in the study area consisted of silt- and clay-sized particles (less than 0.0625 millimeters). The Cibolo Creek watershed was the largest contributor of suspended sediment from the study area. For the entire study area, open/developed land and cropland exhibited the highest simulated soil erosion rates; however, the largest contributions of sediment (by land-cover type) were pasture and forest/rangeland/shrubland, which together composed approximately 80 percent of the land cover of the

  13. Hydrology

    NASA Astrophysics Data System (ADS)

    Brutsaert, Wilfried

    2005-08-01

    Water in its different forms has always been a source of wonder, curiosity and practical concern for humans everywhere. Hydrology - An Introduction presents a coherent introduction to the fundamental principles of hydrology, based on the course that Wilfried Brutsaert has taught at Cornell University for the last thirty years. Hydrologic phenomena are dealt with at spatial and temporal scales at which they occur in nature. The physics and mathematics necessary to describe these phenomena are introduced and developed, and readers will require a working knowledge of calculus and basic fluid mechanics. The book will be invaluable as a textbook for entry-level courses in hydrology directed at advanced seniors and graduate students in physical science and engineering. In addition, the book will be more broadly of interest to professional scientists and engineers in hydrology, environmental science, meteorology, agronomy, geology, climatology, oceanology, glaciology and other earth sciences. Emphasis on fundamentals Clarification of the underlying physical processes Applications of fluid mechanics in the natural environment

  14. Assessing the impacts of extended drought conditions and global warming on groundwater resources in Iowa

    NASA Astrophysics Data System (ADS)

    Acar, O.; Franz, K.; Simpkins, W. W.

    2013-12-01

    Extended drought conditions that affected much of the U.S. throughout 2012 and continued into 2013 are bringing climate change to the forefront of public attention. Long-term effects of an extended dry spell on groundwater is especially concerning as these resources are essential for meeting drinking water demands, supporting agricultural and industrial activities, and maintaining water levels in rivers and lakes. Thus, the impact of extended drought conditions on the entire hydrologic cycle needs to be well understood to guide future resource and land management decisions. This study aims to explore the impact of extended drought conditions on groundwater resources in a representative Iowa watershed using Regional Climate Model scenarios implemented through HydroGeoSphere, a physically-based, surface water-groundwater model. Estimating the impacts of climate changes on groundwater resources requires representation of the full hydrological system, i.e. the connection between the atmospheric and surface-subsurface processes, in a realistic way. In the HydroGeoSphere model, surface and subsurface flow equations are solved simultaneously, and the interdependence of processes like actual evapotranspiration and recharge is handled explicitly. Using such state-of-the-art modeling tools, we seek to address the consequences of changing climate extremes (that have already been experienced and expected to continue over long periods in the future) on the hydrologic cycle of our pilot study area, the South Fork watershed in north-central Iowa. The results will provide a baseline for investigating mitigation strategies in agricultural practices and water use due to changes in the wet and dry cycles of the regional hydrologic cycle.

  15. Framework for a hydrologic climate-response network in New England

    USGS Publications Warehouse

    Lent, Robert M.; Hodgkins, Glenn A.; Dudley, Robert W.; Schalk, Luther F.

    2015-01-01

    Many climate-related hydrologic variables in New England have changed in the past century, and many are expected to change during the next century. It is important to understand and monitor these changes because they can affect human water supply, hydroelectric power generation, transportation infrastructure, and stream and riparian ecology. This report describes a framework for hydrologic monitoring in New England by means of a climate-response network. The framework identifies specific inland hydrologic variables that are sensitive to climate variation; identifies geographic regions with similar hydrologic responses; proposes a fixed-station monitoring network composed of existing streamflow, groundwater, lake ice, snowpack, and meteorological data-collection stations for evaluation of hydrologic response to climate variation; and identifies streamflow basins for intensive, process-based studies and for estimates of future hydrologic conditions.

  16. A "total parameter estimation" method in the varification of distributed hydrological models

    NASA Astrophysics Data System (ADS)

    Wang, M.; Qin, D.; Wang, H.

    2011-12-01

    Conventionally hydrological models are used for runoff or flood forecasting, hence the determination of model parameters are common estimated based on discharge measurements at the catchment outlets. With the advancement in hydrological sciences and computer technology, distributed hydrological models based on the physical mechanism such as SWAT, MIKESHE, and WEP, have gradually become the mainstream models in hydrology sciences. However, the assessments of distributed hydrological models and model parameter determination still rely on runoff and occasionally, groundwater level measurements. It is essential in many countries, including China, to understand the local and regional water cycle: not only do we need to simulate the runoff generation process and for flood forecasting in wet areas, we also need to grasp the water cycle pathways and consumption process of transformation in arid and semi-arid regions for the conservation and integrated water resources management. As distributed hydrological model can simulate physical processes within a catchment, we can get a more realistic representation of the actual water cycle within the simulation model. Runoff is the combined result of various hydrological processes, using runoff for parameter estimation alone is inherits problematic and difficult to assess the accuracy. In particular, in the arid areas, such as the Haihe River Basin in China, runoff accounted for only 17% of the rainfall, and very concentrated during the rainy season from June to August each year. During other months, many of the perennial rivers within the river basin dry up. Thus using single runoff simulation does not fully utilize the distributed hydrological model in arid and semi-arid regions. This paper proposed a "total parameter estimation" method to verify the distributed hydrological models within various water cycle processes, including runoff, evapotranspiration, groundwater, and soil water; and apply it to the Haihe river basin in

  17. Retrieving hydrological connectivity from empirical causality in karst systems

    NASA Astrophysics Data System (ADS)

    Delforge, Damien; Vanclooster, Marnik; Van Camp, Michel; Poulain, Amaël; Watlet, Arnaud; Hallet, Vincent; Kaufmann, Olivier; Francis, Olivier

    2017-04-01

    Because of their complexity, karst systems exhibit nonlinear dynamics. Moreover, if one attempts to model a karst, the hidden behavior complicates the choice of the most suitable model. Therefore, both intense investigation methods and nonlinear data analysis are needed to reveal the underlying hydrological connectivity as a prior for a consistent physically based modelling approach. Convergent Cross Mapping (CCM), a recent method, promises to identify causal relationships between time series belonging to the same dynamical systems. The method is based on phase space reconstruction and is suitable for nonlinear dynamics. As an empirical causation detection method, it could be used to highlight the hidden complexity of a karst system by revealing its inner hydrological and dynamical connectivity. Hence, if one can link causal relationships to physical processes, the method should show great potential to support physically based model structure selection. We present the results of numerical experiments using karst model blocks combined in different structures to generate time series from actual rainfall series. CCM is applied between the time series to investigate if the empirical causation detection is consistent with the hydrological connectivity suggested by the karst model.

  18. Assessing the hydrologic response to wildfires in mountainous regions

    NASA Astrophysics Data System (ADS)

    Havel, Aaron; Tasdighi, Ali; Arabi, Mazdak

    2018-04-01

    This study aims to understand the hydrologic responses to wildfires in mountainous regions at various spatial scales. The Soil and Water Assessment Tool (SWAT) was used to evaluate the hydrologic responses of the upper Cache la Poudre Watershed in Colorado to the 2012 High Park and Hewlett wildfire events. A baseline SWAT model was established to simulate the hydrology of the study area between the years 2000 and 2014. A procedure involving land use and curve number updating was implemented to assess the effects of wildfires. Application of the proposed procedure provides the ability to simulate the hydrologic response to wildfires seamlessly through mimicking the dynamic of the changes due to wildfires. The wildfire effects on curve numbers were determined comparing the probability distribution of curve numbers after calibrating the model for pre- and post-wildfire conditions. Daily calibration and testing of the model produced very good results. No-wildfire and wildfire scenarios were created and compared to quantify changes in average annual total runoff volume, water budgets, and full streamflow statistics at different spatial scales. At the watershed scale, wildfire conditions showed little impact on the hydrologic responses. However, a runoff increase up to 75 % was observed between the scenarios in sub-watersheds with high burn intensity. Generally, higher surface runoff and decreased subsurface flow were observed under post-wildfire conditions. Flow duration curves developed for burned sub-watersheds using full streamflow statistics showed that less frequent streamflows become greater in magnitude. A linear regression model was developed to assess the relationship between percent burned area and runoff increase in Cache la Poudre Watershed. A strong (R2 > 0.8) and significant (p < 0.001) positive correlation was determined between runoff increase and percentage of burned area upstream. This study showed that the effects of wildfires on hydrology of a

  19. Rainfall simulators in hydrological and geomorphological sciences: benefits, applications and future research directions

    NASA Astrophysics Data System (ADS)

    Iserloh, Thomas; Cerdà, Artemi; Fister, Wolfgang; Seitz, Steffen; Keesstra, Saskia; Green, Daniel; Gabriels, Donald

    2017-04-01

    Rainfall simulators are used extensively within the hydrological and geomorphological sciences and provide a useful investigative tool to understand many processes, such as: (i) plot-scale runoff, infiltration and erosion; (ii) irrigation and crop management, and; (iii) investigations into flooding within a laboratory setting. Although natural rainfall is desirable as it represents actual conditions in a given geographic location, data acquisition relying on natural rainfall is often hindered by its unpredictable nature. Furthermore, rainfall characteristics such as the intensity, duration, drop size distribution and kinetic energy cannot be spatially or temporally regulated or repeated between experimentation. Rainfall simulators provide a suitable method to overcome the issues associated with depending on potentially erratic and unpredictable natural rainfall as they allow: (i) multiple measurements to be taken quickly without waiting for suitable natural rainfall conditions; (ii) the simulation of spatially and/or temporally controlled rainfall patterns over a given plot area, and; (iii) the creation of a closed environment, allowing simplified measurement of input and output conditions. There is no standardisation of rainfall simulation and as such, rainfall simulators differ in their design, rainfall characteristics and research application. Although this impedes drawing meaningful comparisons between studies, this allows researchers to create a bespoke and tailored rainfall simulator for the specific research application. This paper summarises the rainfall simulators used in European research institutions (Universities of Trier, Valencia, Basel, Tuebingen, Wageningen, Loughborough and Ghent) to investigate a number of hydrological and geomorphological issues and includes details on the design specifications (such as the extent and characteristics of simulated rainfall), as well as a discussion of the purpose and application of the rainfall simulator.

  20. Method for Prediction of the Power Output from Photovoltaic Power Plant under Actual Operating Conditions

    NASA Astrophysics Data System (ADS)

    Obukhov, S. G.; Plotnikov, I. A.; Surzhikova, O. A.; Savkin, K. D.

    2017-04-01

    Solar photovoltaic technology is one of the most rapidly growing renewable sources of electricity that has practical application in various fields of human activity due to its high availability, huge potential and environmental compatibility. The original simulation model of the photovoltaic power plant has been developed to simulate and investigate the plant operating modes under actual operating conditions. The proposed model considers the impact of the external climatic factors on the solar panel energy characteristics that improves accuracy in the power output prediction. The data obtained through the photovoltaic power plant operation simulation enable a well-reasoned choice of the required capacity for storage devices and determination of the rational algorithms to control the energy complex.

  1. Simulated discharge trends indicate robustness of hydrological models in a changing climate

    NASA Astrophysics Data System (ADS)

    Addor, Nans; Nikolova, Silviya; Seibert, Jan

    2016-04-01

    Assessing the robustness of hydrological models under contrasted climatic conditions should be part any hydrological model evaluation. Robust models are particularly important for climate impact studies, as models performing well under current conditions are not necessarily capable of correctly simulating hydrological perturbations caused by climate change. A pressing issue is the usually assumed stationarity of parameter values over time. Modeling experiments using conceptual hydrological models revealed that assuming transposability of parameters values in changing climatic conditions can lead to significant biases in discharge simulations. This raises the question whether parameter values should to be modified over time to reflect changes in hydrological processes induced by climate change. Such a question denotes a focus on the contribution of internal processes (i.e., catchment processes) to discharge generation. Here we adopt a different perspective and explore the contribution of external forcing (i.e., changes in precipitation and temperature) to changes in discharge. We argue that in a robust hydrological model, discharge variability should be induced by changes in the boundary conditions, and not by changes in parameter values. In this study, we explore how well the conceptual hydrological model HBV captures transient changes in hydrological signatures over the period 1970-2009. Our analysis focuses on research catchments in Switzerland undisturbed by human activities. The precipitation and temperature forcing are extracted from recently released 2km gridded data sets. We use a genetic algorithm to calibrate HBV for the whole 40-year period and for the eight successive 5-year periods to assess eventual trends in parameter values. Model calibration is run multiple times to account for parameter uncertainty. We find that in alpine catchments showing a significant increase of winter discharge, this trend can be captured reasonably well with constant

  2. The inequality of water scarcity events: who is actually being affected?

    NASA Astrophysics Data System (ADS)

    Veldkamp, Ted I. E.; Wada, Yoshihide; Kummu, Matti; Aerts, Jeroen C. J. H.; Ward, Philip J.

    2015-04-01

    Over the past decades, changing hydro-climatic and socioeconomic conditions increased regional and global water scarcity problems. In the near future, projected changes in human water use and population growth - in combination with climate change - are expected to aggravate water scarcity conditions and its associated impacts on our society. Whilst a wide range of studies have modelled past and future regional and global patterns of change in population or land area impacted by water scarcity conditions, less attention is paid on who is actually affected and how vulnerable this share of the population is to water scarcity conditions. The actual impact of water scarcity events, however, not only depends on the numbers being affected, but merely on how sensitive this population is to water scarcity conditions, how quick and efficient governments can deal with the problems induced by water scarcity, and how many (financial and infrastructural) resources are available to cope with water scarce conditions. Only few studies have investigated the above mentioned interactions between societal composition and water scarcity conditions (e.g. by means of the social water scarcity index and the water poverty index) and, up to our knowledge, a comprehensive global analysis including different water scarcity indicators and multiple climate and socioeconomic scenarios is missing. To address this issue, we assess in this contribution the adaptive capacity of a society to water scarcity conditions, evaluate how this may be driven by different societal factors, and discuss how enhanced knowledge on this topic could be of interest for water managers in their design of adaptation strategies coping with water scarcity events. For that purpose, we couple spatial information on water scarcity conditions with different components from, among others, the Human Development Index and the Worldwide Governance Indicators, such as: the share of the population with an income below the poverty

  3. Comment on "Can assimilation of crowdsourced data in hydrological modelling improve flood prediction?" by Mazzoleni et al. (2017)

    NASA Astrophysics Data System (ADS)

    Viero, Daniele P.

    2018-01-01

    Citizen science and crowdsourcing are gaining increasing attention among hydrologists. In a recent contribution, Mazzoleni et al. (2017) investigated the integration of crowdsourced data (CSD) into hydrological models to improve the accuracy of real-time flood forecasts. The authors used synthetic CSD (i.e. not actually measured), because real CSD were not available at the time of the study. In their work, which is a proof-of-concept study, Mazzoleni et al. (2017) showed that assimilation of CSD improves the overall model performance; the impact of irregular frequency of available CSD, and that of data uncertainty, were also deeply assessed. However, the use of synthetic CSD in conjunction with (semi-)distributed hydrological models deserves further discussion. As a result of equifinality, poor model identifiability, and deficiencies in model structure, internal states of (semi-)distributed models can hardly mimic the actual states of complex systems away from calibration points. Accordingly, the use of synthetic CSD that are drawn from model internal states under best-fit conditions can lead to overestimation of the effectiveness of CSD assimilation in improving flood prediction. Operational flood forecasting, which results in decisions of high societal value, requires robust knowledge of the model behaviour and an in-depth assessment of both model structure and forcing data. Additional guidelines are given that are useful for the a priori evaluation of CSD for real-time flood forecasting and, hopefully, for planning apt design strategies for both model calibration and collection of CSD.

  4. Basin-scale simulation of current and potential climate changed hydrologic conditions in the Lake Michigan Basin, United States

    USGS Publications Warehouse

    Christiansen, Daniel E.; Walker, John F.; Hunt, Randall J.

    2014-01-01

    The Great Lakes Restoration Initiative (GLRI) is the largest public investment in the Great Lakes in two decades. A task force of 11 Federal agencies developed an action plan to implement the initiative. The U.S. Department of the Interior was one of the 11 agencies that entered into an interagency agreement with the U.S. Environmental Protection Agency as part of the GLRI to complete scientific projects throughout the Great Lakes basin. The U.S. Geological Survey, a bureau within the Department of the Interior, is involved in the GLRI to provide scientific support to management decisions as well as measure progress of the Great Lakes basin restoration efforts. This report presents basin-scale simulated current and forecast climatic and hydrologic conditions in the Lake Michigan Basin. The forecasts were obtained by constructing and calibrating a Precipitation-Runoff Modeling System (PRMS) model of the Lake Michigan Basin; the PRMS model was calibrated using the parameter estimation and uncertainty analysis (PEST) software suite. The calibrated model was used to evaluate potential responses to climate change by using four simulated carbon emission scenarios from eight general circulation models released by the World Climate Research Programme’s Coupled Model Intercomparison Project phase 3. Statistically downscaled datasets of these scenarios were used to project hydrologic response for the Lake Michigan Basin. In general, most of the observation sites in the Lake Michigan Basin indicated slight increases in annual streamflow in response to future climate change scenarios. Monthly streamflows indicated a general shift from the current (2014) winter-storage/snowmelt-pulse system to a system with a more equally distributed hydrograph throughout the year. Simulated soil moisture within the basin illustrates that conditions within the basin are also expected to change on a monthly timescale. One effect of increasing air temperature as a result of the changing

  5. Temporal and spatial variation of hydrological condition in the Ziwu River Basin of the Han River in China

    NASA Astrophysics Data System (ADS)

    Li, Ziyan; Liu, Dengfeng; Huang, Qiang; Bai, Tao; Zhou, Shuai; Lin, Mu

    2018-06-01

    The middle route of South-To-North Water Diversion in China transfers water from the Han River and Han-To-Wei Water Diversion project of Shaanxi Province will transfer water from the Ziwu River, which is a tributary of the Han River. In order to gain a better understanding of future changes in the hydrological conditions within the Ziwu River basin, a Mann-Kendall (M-K) trend analysis is coupled with a persistence analysis using the rescaled range analysis (R/S) method. The future change in the hydrological characteristics of the Ziwu River basin is obtained by analysing the change of meteorological factors. The results show that, the future precipitation and potential evaporation are seasonal, and the spatial variation is significant. The proportion of basin area where the spring, summer, autumn and winter precipitation is predicted to continue increase is 0.00, 100.00, 19.00 and 16.00 %, meanwhile, the proportion of basin area that will continue to decrease in the future respectively will be 100.00, 0.00, 81.00 and 74.00 %.The future potential evapotranspiration of the four seasons in the basin shows a decreasing trend. The future water supply situation in the spring and autumn of the Ziwu River basin will degrade, and the future water supply situation in the summer and winter will improve. In addition, the areas with the same water supply situation are relatively concentrated. The results will provide scientific basis for the planning and management of river basin water resources and socio-hydrological processes analysis.

  6. Hydrologic refugia, plants, and climate change.

    PubMed

    McLaughlin, Blair C; Ackerly, David D; Klos, P Zion; Natali, Jennifer; Dawson, Todd E; Thompson, Sally E

    2017-08-01

    Climate, physical landscapes, and biota interact to generate heterogeneous hydrologic conditions in space and over time, which are reflected in spatial patterns of species distributions. As these species distributions respond to rapid climate change, microrefugia may support local species persistence in the face of deteriorating climatic suitability. Recent focus on temperature as a determinant of microrefugia insufficiently accounts for the importance of hydrologic processes and changing water availability with changing climate. Where water scarcity is a major limitation now or under future climates, hydrologic microrefugia are likely to prove essential for species persistence, particularly for sessile species and plants. Zones of high relative water availability - mesic microenvironments - are generated by a wide array of hydrologic processes, and may be loosely coupled to climatic processes and therefore buffered from climate change. Here, we review the mechanisms that generate mesic microenvironments and their likely robustness in the face of climate change. We argue that mesic microenvironments will act as species-specific refugia only if the nature and space/time variability in water availability are compatible with the ecological requirements of a target species. We illustrate this argument with case studies drawn from California oak woodland ecosystems. We posit that identification of hydrologic refugia could form a cornerstone of climate-cognizant conservation strategies, but that this would require improved understanding of climate change effects on key hydrologic processes, including frequently cryptic processes such as groundwater flow. © 2017 John Wiley & Sons Ltd.

  7. Beyond Metrics? The Role of Hydrologic Baseline Archetypes in Environmental Water Management.

    PubMed

    Lane, Belize A; Sandoval-Solis, Samuel; Stein, Eric D; Yarnell, Sarah M; Pasternack, Gregory B; Dahlke, Helen E

    2018-06-22

    Balancing ecological and human water needs often requires characterizing key aspects of the natural flow regime and then predicting ecological response to flow alterations. Flow metrics are generally relied upon to characterize long-term average statistical properties of the natural flow regime (hydrologic baseline conditions). However, some key aspects of hydrologic baseline conditions may be better understood through more complete consideration of continuous patterns of daily, seasonal, and inter-annual variability than through summary metrics. Here we propose the additional use of high-resolution dimensionless archetypes of regional stream classes to improve understanding of baseline hydrologic conditions and inform regional environmental flows assessments. In an application to California, we describe the development and analysis of hydrologic baseline archetypes to characterize patterns of flow variability within and between stream classes. We then assess the utility of archetypes to provide context for common flow metrics and improve understanding of linkages between aquatic patterns and processes and their hydrologic controls. Results indicate that these archetypes may offer a distinct and complementary tool for researching mechanistic flow-ecology relationships, assessing regional patterns for streamflow management, or understanding impacts of changing climate.

  8. Hydrology Model Formulation within the Training Range Environmental Evaluation and Characterization System (TREECS)

    DTIC Science & Technology

    2014-02-01

    Potential evapotranspiration is computed using the Thornthwaite Method. Infiltration is computed from a water balance. DISCLAIMER: The contents of...precipitation, rainfall, runoff, evapotranspiration , infiltration, and number of days with rainfall. A hydrology model was developed to estimate...temperatures. Potential evapotranspiration (PET) is computed using the Thornthwaite Method. Actual evapotranspiration (ET) and infiltration are computed from a

  9. National water summary 1990-91: Hydrologic events and stream water quality

    USGS Publications Warehouse

    Paulson, Richard W.; Chase, Edith B.; Williams, John S.; Moody, David W.

    1993-01-01

    The following discussion is an overview of the three parts of this 1990-91 National Water Summary - "Hydrologic Conditions and Water-Related Events, Water Years 1990-91," "Hydrologic Perspectives on Water Issues," and "State Summaries of Stream Water Quality."

  10. Water towers of the Great Basin: climatic and hydrologic change at watershed scales in a mountainous arid region

    NASA Astrophysics Data System (ADS)

    Weiss, S. B.

    2017-12-01

    Impacts of climate change in the Great Basin will manifest through changes in the hydrologic cycle. Downscaled climate data and projections run through the Basin Characterization Model (BCM) produce time series of hydrologic response - recharge, runoff, actual evapotranspiration (AET), and climatic water deficit (CWD) - that directly affect water resources and vegetation. More than 50 climate projections from CMIP5 were screened using a cluster analysis of end-century (2077-2099) seasonal precipitation and annual temperature to produce a reduced subset of 12 climate futures that cover a wide range of macroclimate response. Importantly, variations among GCMs in summer precipitation produced by the SW monsoon are captured. Data were averaged within 84 HUC8 watersheds with widley varying climate, topography, and geology. Resultant time series allow for multivariate analysis of hydrologic response, especially partitioning between snowpack, recharge, runoff, and actual evapotranspiration. Because the bulk of snowpack accumulation is restricted to small areas of isolated mountain ranges, losses of snowpack can be extreme as snowline moves up the mountains with warming. Loss of snowpack also affects recharge and runoff rates, and importantly, the recharge/runoff ratio - as snowpacks fade, recharge tends to increase relative to runoff. Thresholds for regime shifts can be identified, but the unique topography and geology of each basin must be considered in assessing hydrologic response.

  11. What are we monitoring and why? Using geomorphic principles to frame eco-hydrological assessments of river condition.

    PubMed

    Brierley, Gary; Reid, Helen; Fryirs, Kirstie; Trahan, Nadine

    2010-04-01

    Monitoring and assessment are integral components in adaptive management programmes that strive to improve the condition of river systems. Unfortunately, these procedures are generally applied with an emphasis upon biotic attributes and water quality, with limited regard for the geomorphic structure, function and evolutionary trajectory of a river system. Geomorphic principles convey an understanding of the landscape context within which ecohydrologic processes interact. Collectively, geo-eco-hydrologic understanding presents a coherent biophysical template that can be used to frame spatially and temporally rigorous approaches to monitoring that respect the inherent diversity, variability and complexity of any given river system. This understanding aids the development of management programmes that 'work with nature.' Unless an integrative perspective is used to monitor river condition, conservation and rehabilitation plans are unlikely to reach their true potential. (c) 2010 Elsevier B.V. All rights reserved.

  12. HyCAW: Hydrological Climate change Adaptation Wizard

    NASA Astrophysics Data System (ADS)

    Bagli, Stefano; Mazzoli, Paolo; Broccoli, Davide; Luzzi, Valerio

    2016-04-01

    Changes in temporal and total water availability due to hydrologic and climate change requires an efficient use of resources through the selection of the best adaptation options. HyCAW provides a novel service to users willing or needing to adapt to hydrological change, by turning available scientific information into a user friendly online wizard that lets to: • Evaluate the monthly reduction of water availability induced by climate change; • Select the best adaptation options and visualize the benefits in terms of water balance and cost reduction; • Quantify potential of water saving by improving of water use efficiency. The tool entails knowledge of the intra-annual distribution of available surface and groundwater flows at a site under present and future (climate change) scenarios. This information is extracted from long term scenario simulation by E-HYPE (European hydrological predictions for the environment) model from Swedish Meteorological and Hydrological Institute, to quantify the expected evolution in water availability (e.g. percent reduction of soil infiltration and aquifer recharge; relative seasonal shift of runoff from summer to winter in mountain areas; etc.). Users are requested to provide in input their actual water supply on a monthly basis, both from surface and groundwater sources. Appropriate decision trees and an embedded precompiled database of Water saving technology for different sectors (household, agriculture, industrial, tourisms) lead them to interactively identify good practices for water saving/recycling/harvesting that they may implement in their specific context. Thanks to this service, users are not required to have a detailed understanding neither of data nor of hydrological processes, but may benefit of scientific analysis directly for practical adaptation in a simple and user friendly way, effectively improving their adaptation capacity. The tool is being developed under a collaborative FP7 funded project called SWITCH

  13. Social dimensions of vulnerability to glacier-hydrology hazards in Peru and Nepal

    NASA Astrophysics Data System (ADS)

    McDowell, Graham; Carey, Mark; Huggel, Christian; Kargel, Jeffrey S.

    2014-05-01

    Snow and ice hazards affect populations worldwide, and prevention and adaptation plans must devote more attention to the human dimensions of these hazards. Historically, most research on glacier hazards has emphasized glacial lake outburst floods (GLOFs) and rock-ice landslides. This work often focuses on technical approaches or scientific knowledge about these high-magnitude and low-frequency hazards. This study examines a different type of cryospheric hazard, one that is low-magnitude and high-frequency, especially under future climate change projections: the increasingly recognized hydrologic hazards related to runoff variability in downstream communities below shrinking glaciers. By focusing on actual water users in glacier-fed watersheds, the research helps illuminate key vulnerabilities to hydrological change. It demonstrates that people are indeed vulnerable to decreased runoff, but that these vulnerabilities must be analyzed in the context of global change, including socio-economic and political variables, and not just through technical or scientific approaches. The study examines water use for export-oriented agriculture in Peru's billion-dollar Chavimochic Project, which depends on a single canal from the Santa River that could be damaged by a GLOF or avalanche. Or the canal could experience declining water supplies in the future if water use increases, particularly due to international agricultural demands, while water supplies from glacial ice decreases. The study also provides insights from Khumbu, Nepal, where changing hydrological conditions are leading to reduced water access for household uses, declining crop yields, reduced water access for meeting the high water demands of tourists, and reduced hydro-electricity generation capabilities. Although these effects are widespread, there are clear patterns of socially determined vulnerability among the population, with low livelihood diversity an important indicator of increased susceptibility to harm

  14. Effects of local climate and hydrological conditions on the thermal regime of a reservoir at Tropic of Cancer, in southern China.

    PubMed

    Wang, Sheng; Qian, Xin; Han, Bo-Ping; Luo, Lian-Cong; Hamilton, David P

    2012-05-15

    Thermal regime is strongly associated with hydrodynamics in water, and it plays an important role in the dynamics of water quality and ecosystem succession of stratified reservoirs. Changes in both climate and hydrological conditions can modify thermal regimes. Liuxihe Reservoir (23°45'50″N; 113°46'52″E) is a large, stratified and deep reservoir in Guangdong Province, located at the Tropic of Cancer of southern China. The reservoir is a warm monomictic water body with a long period of summer stratification and a short period of mixing in winter. The vertical distribution of suspended particulate material and nutrients are influenced strongly by the thermal structure and the associated flow fields. The hypolimnion becomes anoxic in the stratified period, increasing the release of nutrients from the bottom sediments. Fifty-one years of climate and reservoir operational observations are used here to show the marked changes in local climate and reservoir operational schemes. The data show increasing air temperature and more violent oscillations in inflow volumes in the last decade, while the inter-annual water level fluctuations tend to be more moderate. To quantify the effects of changes in climate and hydrological conditions on thermal structure, we used a numerical simulation model to create scenarios incorporating different air temperatures, inflow volumes, and water levels. The simulations indicate that water column stability, the duration of the mixing period, and surface and outflow temperatures are influenced by both natural factors and by anthropogenic factors such as climate change and reservoir operation schemes. Under continuous warming and more stable storage in recent years, the simulations indicate greater water column stability and increased duration of stratification, while irregular large discharge events may reduce stability and lead to early mixing in autumn. Our results strongly suggest that more attention should be focused on water quality

  15. Hydrology

    ERIC Educational Resources Information Center

    Sharp, John M., Jr.

    1978-01-01

    The past year saw a re-emphasis on the practical aspects of hydrology due to regional drought patterns, urban flooding, and agricultural and energy demands on water resources. Highlights of hydrologic symposia, publications, and events are included. (MA)

  16. Panta Rhei: Global Perspectives on Hydrology, Society and Change

    NASA Astrophysics Data System (ADS)

    McMillan, H. K.; Van Loon, A.; Mejia, A.; Liu, J.

    2016-12-01

    In 2013, the International Association of Hydrological Sciences - IAHS - launched the hydrological decade 2013-2022 with the theme `Panta Rhei: Change in Hydrology and Society'. The decade recognises the urgency of hydrological research to understand and predict the interactions of society and water, to support sustainable water resource use under changing climatic and environmental conditions. This presentation provides an overview of the first three years of Panta Rhei, describing the scope, progress and future direction of the initiative. We provide a summary of the new science being undertaken by the 31 Panta Rhei working groups, demonstrating the views of the more than 400 members on the most pressing research questions and how the hydrological community is progressing towards those goals. We draw out interconnections between different strands of research, and reflect on the need to take a global view on hydrology in a world strongly impacted by humans and undergoing environmental change. There are many challenges associated with understanding and predicting change in hydrology and society, and empowering communities to mitigate and adapt to those changes. Such challenges can only be met by the concerted and joint efforts of hydrologists and affected societies around the world.

  17. Hydrological balance and water transport processes of partially sealed soils

    NASA Astrophysics Data System (ADS)

    Timm, Anne; Wessolek, Gerd

    2017-04-01

    With increased urbanisation, soil sealing and its drastic effects on hydrological processes have received a lot of attention. Based on safety concerns, there has been a clear focus on urban drainage and prevention of urban floods caused by storm water events. For this reason, any kind of sealing is often seen as impermeable runoff generator that prevents infiltration and evaporation. While many hydrological models, especially storm water models, have been developed, there are only a handful of empirical studies actually measuring the hydrological balance of (partially) sealed surfaces. These challenge the general assumption of negligible infiltration and evaporation and show that these processes take place even for severe sealing such as asphalt. Depending on the material, infiltration from partially sealed surfaces can be equal to that of vegetated ones. Therefore, more detailed knowledge is needed to improve our understanding and models. In Berlin, two partially sealed weighable lysimeters were equipped with multiple temperature and soil moisture sensors in order to study their hydrological balance, as well as water and heat transport processes within the soil profile. This combination of methods affirms previous observations and offers new insights into altered hydrological processes of partially sealed surfaces at a small temporal scale. It could be verified that not all precipitation is transformed into runoff. Even for a relatively high sealing degree of concrete slabs with narrow seams, evaporation and infiltration may exceed runoff. Due to the lack of plant roots, the hydrological balance is mostly governed by precipitation events and evaporation generally occurs directly after rainfall. However, both surfaces allow for upward water transport from the upper underlying soil layers, sometimes resulting in relatively low evaporation rates on days without precipitation. The individual response of the surfaces differs considerably, which illustrates how

  18. Directional connectivity in hydrology and ecology.

    PubMed

    Larsen, Laurel G; Choi, Jungyill; Nungesser, Martha K; Harvey, Judson W

    2012-12-01

    Quantifying hydrologic and ecological connectivity has contributed to understanding transport and dispersal processes and assessing ecosystem degradation or restoration potential. However, there has been little synthesis across disciplines. The growing field of ecohydrology and recent recognition that loss of hydrologic connectivity is leading to a global decline in biodiversity underscore the need for a unified connectivity concept. One outstanding need is a way to quantify directional connectivity that is consistent, robust to variations in sampling, and transferable across scales or environmental settings. Understanding connectivity in a particular direction (e.g., streamwise, along or across gradient, between sources and sinks, along cardinal directions) provides critical information for predicting contaminant transport, planning conservation corridor design, and understanding how landscapes or hydroscapes respond to directional forces like wind or water flow. Here we synthesize progress on quantifying connectivity and develop a new strategy for evaluating directional connectivity that benefits from use of graph theory in ecology and percolation theory in hydrology. The directional connectivity index (DCI) is a graph-theory based, multiscale metric that is generalizable to a range of different structural and functional connectivity applications. It exhibits minimal sensitivity to image rotation or resolution within a given range and responds intuitively to progressive, unidirectional change. Further, it is linearly related to the integral connectivity scale length--a metric common in hydrology that correlates well with actual fluxes--but is less computationally challenging and more readily comparable across different landscapes. Connectivity-orientation curves (i.e., directional connectivity computed over a range of headings) provide a quantitative, information-dense representation of environmental structure that can be used for comparison or detection of

  19. Directional connectivity in hydrology and ecology

    USGS Publications Warehouse

    Larsen, Laurel G.; Choi, Jungyill; Nungesser, Martha K.; Harvey, Judson W.

    2012-01-01

    Quantifying hydrologic and ecological connectivity has contributed to understanding transport and dispersal processes and assessing ecosystem degradation or restoration potential. However, there has been little synthesis across disciplines. The growing field of ecohydrology and recent recognition that loss of hydrologic connectivity is leading to a global decline in biodiversity underscore the need for a unified connectivity concept. One outstanding need is a way to quantify directional connectivity that is consistent, robust to variations in sampling, and transferable across scales or environmental settings. Understanding connectivity in a particular direction (e.g., streamwise, along or across gradient, between sources and sinks, along cardinal directions) provides critical information for predicting contaminant transport, planning conservation corridor design, and understanding how landscapes or hydroscapes respond to directional forces like wind or water flow. Here we synthesize progress on quantifying connectivity and develop a new strategy for evaluating directional connectivity that benefits from use of graph theory in ecology and percolation theory in hydrology. The directional connectivity index (DCI) is a graph-theory based, multiscale metric that is generalizable to a range of different structural and functional connectivity applications. It exhibits minimal sensitivity to image rotation or resolution within a given range and responds intuitively to progressive, unidirectional change. Further, it is linearly related to the integral connectivity scale length—a metric common in hydrology that correlates well with actual fluxes—but is less computationally challenging and more readily comparable across different landscapes. Connectivity-orientation curves (i.e., directional connectivity computed over a range of headings) provide a quantitative, information-dense representation of environmental structure that can be used for comparison or detection of

  20. Disturbance Hydrology: Preparing for an Increasingly Disturbed Future

    NASA Astrophysics Data System (ADS)

    Mirus, Benjamin B.; Ebel, Brian A.; Mohr, Christian H.; Zegre, Nicolas

    2017-12-01

    This special issue is the result of several fruitful conference sessions on disturbance hydrology, which started at the 2013 AGU Fall Meeting in San Francisco and have continued every year since. The stimulating presentations and discussions surrounding those sessions have focused on understanding both the disruption of hydrologic functioning following discrete disturbances, as well as the subsequent recovery or change within the affected watershed system. Whereas some hydrologic disturbances are directly linked to anthropogenic activities, such as resource extraction, the contributions to this special issue focus primarily on those with indirect or less pronounced human involvement, such as bark-beetle infestation, wildfire, and other natural hazards. However, human activities are enhancing the severity and frequency of these seemingly natural disturbances, thereby contributing to acute hydrologic problems and hazards. Major research challenges for our increasingly disturbed planet include the lack of continuous pre and postdisturbance monitoring, hydrologic impacts that vary spatially and temporally based on environmental and hydroclimatic conditions, and the preponderance of overlapping or compounding disturbance sequences. In addition, a conceptual framework for characterizing commonalities and differences among hydrologic disturbances is still in its infancy. In this introduction to the special issue, we advance the fusion of concepts and terminology from ecology and hydrology to begin filling this gap. We briefly explore some preliminary approaches for comparing different disturbances and their hydrologic impacts, which provides a starting point for further dialogue and research progress.

  1. Disturbance hydrology: Preparing for an increasingly disturbed future

    USGS Publications Warehouse

    Mirus, Benjamin B.; Ebel, Brian A.; Mohr, Christian H.; Zegre, Nicolas

    2017-01-01

    This special issue is the result of several fruitful conference sessions on disturbance hydrology, which started at the 2013 AGU Fall Meeting in San Francisco and have continued every year since. The stimulating presentations and discussions surrounding those sessions have focused on understanding both the disruption of hydrologic functioning following discrete disturbances, as well as the subsequent recovery or change within the affected watershed system. Whereas some hydrologic disturbances are directly linked to anthropogenic activities, such as resource extraction, the contributions to this special issue focus primarily on those with indirect or less pronounced human involvement, such as bark-beetle infestation, wildfire, and other natural hazards. However, human activities are enhancing the severity and frequency of these seemingly natural disturbances, thereby contributing to acute hydrologic problems and hazards. Major research challenges for our increasingly disturbed planet include the lack of continuous pre- and post-disturbance monitoring, hydrologic impacts that vary spatially and temporally based on environmental and hydroclimatic conditions, and the preponderance of overlapping or compounding disturbance sequences. In addition, a conceptual framework for characterizing commonalities and differences among hydrologic disturbances is still in its infancy. In this introduction to the special issue, we advance the fusion of concepts and terminology from ecology and hydrology to begin filling this gap. We briefly explore some preliminary approaches for comparing different disturbances and their hydrologic impacts, which provides a starting point for further dialogue and research progress.

  2. Towards validation of the Canadian precipitation analysis (CaPA) for hydrologic modeling applications in the Canadian Prairies

    NASA Astrophysics Data System (ADS)

    Boluwade, Alaba; Zhao, K.-Y.; Stadnyk, T. A.; Rasmussen, P.

    2018-01-01

    This study presents a three-step validation technique to compare the performance of the Canadian Precipitation Analysis (CaPA) product relative to actual observation as a hydrologic forcing in regional watershed simulation. CaPA is an interpolated (6 h or 24 h accumulation) reanalysis precipitation product in near real time covering all of North America. The analysis procedure involves point-to-point (P2P) and map-to-map (M2M) comparisons, followed by proxy validation using an operational version of the WATFLOOD™ hydrologic model from 2002 to 2005 in the Lake Winnipeg Basin (LWB), Canada. The P2P technique using a Bayesian change point analysis shows that CaPA corresponds with actual observations (Canadian daily climate data, CDCD), on both an annual and seasonal basis. CaPA has the same spatial pattern, dependency and autocorrelation properties as CDCD pixel by pixel (M2M). When used as hydrologic forcing in WATFLOOD™, results indicate that CaPA is a reliable product for water resource modeling and predictions, but that the quality of CaPA data varies annually and seasonally, as does the quality of observations. CaPA proved most beneficial as a hydrologic forcing during winter seasons where observation quality is the lowest. Reanalysis products, such as CaPA, can be a reliable option in sparse network areas, and is beneficial for regional governments when the cost of new weather stations is prohibitive.

  3. GIS/RS-based Integrated Eco-hydrologic Modeling in the East River Basin, South China

    NASA Astrophysics Data System (ADS)

    Wang, Kai

    Land use/cover change (LUCC) has significantly altered the hydrologic system in the East River (Dongjiang) Basin. Quantitative modeling of hydrologic impacts of LUCC is of great importance for water supply, drought monitoring and integrated water resources management. An integrated eco-hydrologic modeling system of Distributed Monthly Water Balance Model (DMWBM), Surface Energy Balance System (SEBS) was developed with aid of GIS/RS to quantify LUCC, to conduct physically-based ET (evapotranspiration) mapping and to predict hydrologic impacts of LUCC. To begin with, in order to evaluate LUCC, understand implications of LUCC and provide boundary condition for the integrated eco-hydrologic modeling, firstly the long-term vegetation dynamics was investigated based on Normalized Difference Vegetation Index (NDVI) data, and then LUCC was analyzed with post-classification methods and finally LUCC prediction was conducted based on Markov chain model. The results demonstrate that the vegetation activities decreased significantly in summer over the years. Moreover, there were significant changes in land use/cover over the past two decades. Particularly there was a sharp increase of urban and built-up area and a significant decrease of grassland and cropland. All these indicate that human activities are intensive in the East River Basin and provide valuable information for constructing scenarios for studying hydrologic impacts of LUCC. The physically-remote-sensing-based Surface Energy Balance System (SEBS) was employed to estimate areal actual ET for a large area rather than traditional point measurements . The SEBS was enhanced for application in complex vegetated area. Then the inter-comparison with complimentary ET model and distributed monthly water balance model was made to validate the enhanced SEBS (ESEBS). The application and test of ESEBS show that it has a good accuracy both monthly and annually and can be effectively applied in the East River Basin. The results of

  4. Performance of a distributed semi-conceptual hydrological model under tropical watershed conditions

    USDA-ARS?s Scientific Manuscript database

    Many hydrologic models have been developed to help manage natural resources all over the world. Nevertheless, most models have presented a high complexity in terms of data base requirements, as well as, many calibration parameters. This has resulted in serious difficulties to application in catchmen...

  5. Spatially Distributed Assimilation of Remotely Sensed Leaf Area Index and Potential Evapotranspiration for Hydrologic Modeling in Wetland Landscapes

    NASA Astrophysics Data System (ADS)

    Rajib, A.; Evenson, G. R.; Golden, H. E.; Lane, C.

    2017-12-01

    Evapotranspiration (ET), a highly dynamic flux in wetland landscapes, regulates the accuracy of surface/sub-surface runoff simulation in a hydrologic model. Accordingly, considerable uncertainty in simulating ET-related processes remains, including our limited ability to incorporate realistic ground conditions, particularly those involved with complex land-atmosphere feedbacks, vegetation growth, and energy balances. Uncertainty persists despite using high resolution topography and/or detailed land use data. Thus, a good hydrologic model can produce right answers for wrong reasons. In this study, we develop an efficient approach for multi-variable assimilation of remotely sensed earth observations (EOs) into a hydrologic model and apply it in the 1700 km2 Pipestem Creek watershed in the Prairie Pothole Region of North Dakota, USA. Our goal is to employ EOs, specifically Leaf Area Index (LAI) and Potential Evapotranspiration (PET), as surrogates for the aforementioned processes without overruling the model's built-in physical/semi-empirical process conceptualizations. To do this, we modified the source code of an already-improved version of the Soil and Water Assessment Tool (SWAT) for wetland hydrology (Evenson et al. 2016 HP 30(22):4168) to directly assimilate remotely-sensed LAI and PET (obtained from the 500 m and 1 km Moderate Resolution Imaging Spectroradiometer (MODIS) gridded products, respectively) into each model Hydrologic Response Unit (HRU). Two configurations of the model, one with and one without EO assimilation, are calibrated against streamflow observations at the watershed outlet. Spatio-temporal changes in the HRU-level water balance, based on calibrated outputs, are evaluated using MODIS Actual Evapotranspiration (AET) as a reference. It is expected that the model configuration having remotely sensed LAI and PET, will simulate more realistic land-atmosphere feedbacks, vegetation growth and energy balance. As a result, this will decrease simulated

  6. Eco-hydrologic model cascades: Simulating land use and climate change impacts on hydrology, hydraulics and habitats for fish and macroinvertebrates.

    PubMed

    Guse, Björn; Kail, Jochem; Radinger, Johannes; Schröder, Maria; Kiesel, Jens; Hering, Daniel; Wolter, Christian; Fohrer, Nicola

    2015-11-15

    Climate and land use changes affect the hydro- and biosphere at different spatial scales. These changes alter hydrological processes at the catchment scale, which impact hydrodynamics and habitat conditions for biota at the river reach scale. In order to investigate the impact of large-scale changes on biota, a cascade of models at different scales is required. Using scenario simulations, the impact of climate and land use change can be compared along the model cascade. Such a cascade of consecutively coupled models was applied in this study. Discharge and water quality are predicted with a hydrological model at the catchment scale. The hydraulic flow conditions are predicted by hydrodynamic models. The habitat suitability under these hydraulic and water quality conditions is assessed based on habitat models for fish and macroinvertebrates. This modelling cascade was applied to predict and compare the impacts of climate- and land use changes at different scales to finally assess their effects on fish and macroinvertebrates. Model simulations revealed that magnitude and direction of change differed along the modelling cascade. Whilst the hydrological model predicted a relevant decrease of discharge due to climate change, the hydraulic conditions changed less. Generally, the habitat suitability for fish decreased but this was strongly species-specific and suitability even increased for some species. In contrast to climate change, the effect of land use change on discharge was negligible. However, land use change had a stronger impact on the modelled nitrate concentrations affecting the abundances of macroinvertebrates. The scenario simulations for the two organism groups illustrated that direction and intensity of changes in habitat suitability are highly species-dependent. Thus, a joined model analysis of different organism groups combined with the results of hydrological and hydrodynamic models is recommended to assess the impact of climate and land use changes on

  7. [Comprehensive weighted recognition method for hydrological abrupt change: With the runoff series of Jiajiu hydrological station in Lancang River as an example].

    PubMed

    Gu, Hai Ting; Xie, Ping; Sang, Yan Fang; Wu, Zi Yi

    2018-04-01

    Abrupt change is an important manifestation of hydrological process with dramatic variation in the context of global climate change, the accurate recognition of which has great significance to understand hydrological process changes and carry out the actual hydrological and water resources works. The traditional method is not reliable at both ends of the samples. The results of the methods are often inconsistent. In order to solve the problem, we proposed a comprehensive weighted recognition method for hydrological abrupt change based on weighting by comparing of 12 commonly used methods for testing change points. The reliability of the method was verified by Monte Carlo statistical test. The results showed that the efficiency of the 12 methods was influenced by the factors including coefficient of variation (Cv), deviation coefficient (Cs) before the change point, mean value difference coefficient, Cv difference coefficient and Cs difference coefficient, but with no significant relationship with the mean value of the sequence. Based on the performance of each method, the weight of each test method was given following the results from statistical test. The sliding rank sum test method and the sliding run test method had the highest weight, whereas the RS test method had the lowest weight. By this means, the change points with the largest comprehensive weight could be selected as the final result when the results of the different methods were inconsistent. This method was used to analyze the daily maximum sequence of Jiajiu station in the lower reaches of the Lancang River (1-day, 3-day, 5-day, 7-day and 1-month). The results showed that each sequence had obvious jump variation in 2004, which was in agreement with the physical causes of hydrological process change and water conservancy construction. The rationality and reliability of the proposed method was verified.

  8. Hydrologic characteristics of freshwater mussel habitat: novel insights from modeled flows

    USGS Publications Warehouse

    Drew, C. Ashton; Eddy, Michele; Kwak, Thomas J.; Cope, W. Gregory; Augspurger, Tom

    2018-01-01

    The ability to model freshwater stream habitat and species distributions is limited by the spatially sparse flow data available from long-term gauging stations. Flow data beyond the immediate vicinity of gauging stations would enhance our ability to explore and characterize hydrologic habitat suitability. The southeastern USA supports high aquatic biodiversity, but threats, such as landuse alteration, climate change, conflicting water-resource demands, and pollution, have led to the imperilment and legal protection of many species. The ability to distinguish suitable from unsuitable habitat conditions, including hydrologic suitability, is a key criterion for successful conservation and restoration of aquatic species. We used the example of the critically endangered Tar River Spinymussel (Parvaspina steinstansana) and associated species to demonstrate the value of modeled flow data (WaterFALL™) to generate novel insights into population structure and testable hypotheses regarding hydrologic suitability. With ordination models, we: 1) identified all catchments with potentially suitable hydrology, 2) identified 2 distinct hydrologic environments occupied by the Tar River Spinymussel, and 3) estimated greater hydrological habitat niche breadth of assumed surrogate species associates at the catchment scale. Our findings provide the first demonstrated application of complete, continuous, regional modeled hydrologic data to freshwater mussel distribution and management. This research highlights the utility of modeling and data-mining methods to facilitate further exploration and application of such modeled environmental conditions to inform aquatic species management. We conclude that such an approach can support landscape-scale management decisions that require spatial information at fine resolution (e.g., enhanced National Hydrology Dataset catchments) and broad extent (e.g., multiple river basins).

  9. [Socio-hydrology: A review].

    PubMed

    Ding, Jing-yi; Zhao, Wen-wu; Fang, Xue-ning

    2015-04-01

    Socio-hydrology is an interdiscipline of hydrology, nature, society and humanity. It mainly explores the two-way feedbacks of coupled human-water system and its dynamic mechanism of co-evolution, and makes efforts to solve the issues that human faces today such as sustainable utilization of water resources. Starting from the background, formation process, and fundamental concept of socio-hydrology, this paper summarized the features of socio-hydrology. The main research content of socio-hydrology was reduced to three aspects: The tradeoff in coupled human-water system, interests in water resources management and virtual water research in coupled human-water system. And its differences as well as relations with traditional hydrology, eco-hydrology and hydro-sociology were dwelled on. Finally, with hope to promote the development of socio-hydrology researches in China, the paper made prospects for the development of the subject from following aspects: Completing academic content and deepening quantitative research, focusing on scale studies of socio-hydrology, fusing socio-hydrology and eco-hydrology.

  10. Comparison of Forced ENSO-Like Hydrological Expressions in Simulations of the Preindustrial and Mid-Holocene

    NASA Technical Reports Server (NTRS)

    Lewis, Sophie C.; LeGrande, Allegra N.; Schmidt, Gavin A.; Kelley, Maxwell

    2014-01-01

    Using the water isotope- and vapor source distribution (VSD) tracer-enabled Goddard Institute for Space Studies ModelE-R, we examine changing El Nino-Southern Oscillation (ENSO)-like expressions in the hydrological cycle in a suite of model experiments. We apply strong surface temperature anomalies associated with composite observed El Nino and La Nina events as surface boundary conditions to preindustrial and mid-Holocene model experiments in order to investigate ENSO-like expressions in the hydrological cycle under varying boundary conditions. We find distinct simulated hydrological anomalies associated with El Nino-like ("ENSOWARM") and La Nina-like ("ENSOCOOL") conditions, and the region-specific VSD tracers show hydrological differences across the Pacific basin between El Nino-like and La Nina-like events. The application of ENSOCOOL forcings does not produce climatological anomalies that represent the equal but opposite impacts of the ENSOWARM experiment, as the isotopic anomalies associated with ENSOWARM conditions are generally stronger than with ENSOCOOL and the spatial patterns of change distinct. Also, when the same ENSO-like surface temperature anomalies are imposed on the mid-Holocene, the hydrological response is muted, relative to the preindustrial. Mid-Holocene changes in moisture sources to the analyzed regions across the Pacific reveal potentially complex relationships between ENSO-like conditions and boundary conditions. Given the complex impacts of ENSO-like conditions on various aspects of the hydrological cycle, we suggest that proxy record insights into paleo-ENSO variability are most likely to be robust when synthesized from a network of many spatially diverse archives, which can account for the potential nonstationarity of ENSO teleconnections under different boundary conditions.

  11. Effects of hydrology on red mangrove recruits

    USGS Publications Warehouse

    Doyle, Thomas W.

    2003-01-01

    Coastal wetlands along the Gulf of Mexico have been experiencing significant shifts in hydrology and salinity levels over the past century as a result of changes in sea level and freshwater drainage patterns. Local land management in coastal zones has also impacted the hydrologic regimes of salt marshes and mangrove areas. Parks and refuges in south Florida that contain mangrove forests have, in some cases, been ditched or impounded to control mosquito outbreaks and to foster wildlife use. And while mangroves dominate the subtropical coastlines of Florida and thrive in saltwater environments, little is known about how they respond to changes in hydrology under managed or variable tidal conditions. USGS researchers designed a study to evaluate the basic hydrological requirements of mangroves so that their health and survival may be more effectively managed in controlled impoundments and restored wetlands. Mangroves are commonly found in the intertidal zone (between low and high tides) in a rather broad spectrum of hydrologic settings. Because they thrive at the interface of land and sea, mangroves are subject to changes in freshwater flow (flow rate, nutrients, pollutants) and to marine influences (sea-level rise, salinity). Salinity has long been recognized as a controlling factor that determines the health and distribution of mangrove forests. Field and experimental observations indicate that most mangrove species achieve their highest growth potential under brackish conditions (modest salinity) between 10 and 20 parts per thousand (ppt). Yet, if provided with available propagules, successful regeneration, and limited competition from other plants, then mangroves can survive and thrive in freshwater systems as well. Because little is known about the growthand survival patterns of mangrove species relative to changing hydrology, USGS scientists conducted greenhouse and field experiments to determine how flooded or drained patterns of hydrology would influence

  12. A framework for improving a seasonal hydrological forecasting system using sensitivity analysis

    NASA Astrophysics Data System (ADS)

    Arnal, Louise; Pappenberger, Florian; Smith, Paul; Cloke, Hannah

    2017-04-01

    Seasonal streamflow forecasts are of great value for the socio-economic sector, for applications such as navigation, flood and drought mitigation and reservoir management for hydropower generation and water allocation to agriculture and drinking water. However, as we speak, the performance of dynamical seasonal hydrological forecasting systems (systems based on running seasonal meteorological forecasts through a hydrological model to produce seasonal hydrological forecasts) is still limited in space and time. In this context, the ESP (Ensemble Streamflow Prediction) remains an attractive forecasting method for seasonal streamflow forecasting as it relies on forcing a hydrological model (starting from the latest observed or simulated initial hydrological conditions) with historical meteorological observations. This makes it cheaper to run than a standard dynamical seasonal hydrological forecasting system, for which the seasonal meteorological forecasts will first have to be produced, while still producing skilful forecasts. There is thus the need to focus resources and time towards improvements in dynamical seasonal hydrological forecasting systems which will eventually lead to significant improvements in the skill of the streamflow forecasts generated. Sensitivity analyses are a powerful tool that can be used to disentangle the relative contributions of the two main sources of errors in seasonal streamflow forecasts, namely the initial hydrological conditions (IHC; e.g., soil moisture, snow cover, initial streamflow, among others) and the meteorological forcing (MF; i.e., seasonal meteorological forecasts of precipitation and temperature, input to the hydrological model). Sensitivity analyses are however most useful if they inform and change current operational practices. To this end, we propose a method to improve the design of a seasonal hydrological forecasting system. This method is based on sensitivity analyses, informing the forecasters as to which element of

  13. Citizen Hydrology - Tradeoffs between Traditional Continuous Approaches and Temporally Discrete Hydrologic Monitoring

    NASA Astrophysics Data System (ADS)

    Davids, Jeffrey; Rutten, Martine; van de Giesen, Nick; Mehl, Steffen; Norris, James

    2016-04-01

    Traditional approaches to hydrologic data collection rely on permanent installations of sophisticated and relatively accurate but expensive monitoring equipment at limited numbers of sites. Consequently, the spatial coverage of the data is limited and the cost is high. Moreover, achieving adequate maintenance of the sophisticated equipment often exceeds local technical and resource capacity, and experience has shown that permanently deployed monitoring equipment is susceptible to vandalism, theft, and other hazards. Rather than using expensive, vulnerable installations at a few points, SmartPhones4Water (S4W), a form of citizen science, leverages widely available mobile technology to gather hydrologic data at many sites in a manner that is highly repeatable and scalable. The tradeoff for increased spatial resolution, however, is reduced observation frequency. As a first step towards evaluating the tradeoffs between the traditional continuous monitoring approach and emerging citizen science methods, 50 U.S. Geological Survey (USGS) streamflow gages were randomly selected from the population of roughly 350 USGS gages operated in California. Gaging station metadata and historical 15 minute flow data for the period from 01/10/2007 through 31/12/2014 were compiled for each of the selected gages. Historical 15 minute flow data were then used to develop daily, monthly, and yearly determinations of average, minimum, maximum streamflow, cumulative runoff, and streamflow distribution. These statistics were then compared to similar statistics developed from randomly selected daily and weekly spot measurements of streamflow. Cumulative runoff calculated from daily and weekly observations were within 10 percent of actual runoff calculated from 15 minute data for 75 percent and 46 percent of sites respectively. As anticipated, larger watersheds with less dynamic temporal variability compared more favorably for all statistics evaluated than smaller watersheds. Based on the

  14. Xanthos – A Global Hydrologic Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Xinya; Vernon, Chris R.; Hejazi, Mohamad I.

    Xanthos is an open-source hydrologic model, written in Python, designed to quantify and analyse global water availability. Xanthos simulates historical and future global water availability on a monthly time step at a spatial resolution of 0.5 geographic degrees. Xanthos was designed to be extensible and used by scientists that study global water supply and work with the Global Change Assessment Model (GCAM). Xanthos uses a user-defined configuration file to specify model inputs, outputs and parameters. Xanthos has been tested using actual global data sets and the model is able to provide historical observations and future estimates of renewable freshwater resourcesmore » in the form of total runoff.« less

  15. Xanthos – A Global Hydrologic Model

    DOE PAGES

    Li, Xinya; Vernon, Chris R.; Hejazi, Mohamad I.; ...

    2017-09-11

    Xanthos is an open-source hydrologic model, written in Python, designed to quantify and analyse global water availability. Xanthos simulates historical and future global water availability on a monthly time step at a spatial resolution of 0.5 geographic degrees. Xanthos was designed to be extensible and used by scientists that study global water supply and work with the Global Change Assessment Model (GCAM). Xanthos uses a user-defined configuration file to specify model inputs, outputs and parameters. Xanthos has been tested using actual global data sets and the model is able to provide historical observations and future estimates of renewable freshwater resourcesmore » in the form of total runoff.« less

  16. Knowledge discovery from high-frequency stream nitrate concentrations: hydrology and biology contributions.

    PubMed

    Aubert, Alice H; Thrun, Michael C; Breuer, Lutz; Ultsch, Alfred

    2016-08-30

    High-frequency, in-situ monitoring provides large environmental datasets. These datasets will likely bring new insights in landscape functioning and process scale understanding. However, tailoring data analysis methods is necessary. Here, we detach our analysis from the usual temporal analysis performed in hydrology to determine if it is possible to infer general rules regarding hydrochemistry from available large datasets. We combined a 2-year in-stream nitrate concentration time series (time resolution of 15 min) with concurrent hydrological, meteorological and soil moisture data. We removed the low-frequency variations through low-pass filtering, which suppressed seasonality. We then analyzed the high-frequency variability component using Pareto Density Estimation, which to our knowledge has not been applied to hydrology. The resulting distribution of nitrate concentrations revealed three normally distributed modes: low, medium and high. Studying the environmental conditions for each mode revealed the main control of nitrate concentration: the saturation state of the riparian zone. We found low nitrate concentrations under conditions of hydrological connectivity and dominant denitrifying biological processes, and we found high nitrate concentrations under hydrological recession conditions and dominant nitrifying biological processes. These results generalize our understanding of hydro-biogeochemical nitrate flux controls and bring useful information to the development of nitrogen process-based models at the landscape scale.

  17. Historical trends and the long-term changes of the hydrological cycle components in a Mediterranean river basin.

    PubMed

    Mentzafou, A; Wagner, S; Dimitriou, E

    2018-04-29

    Identifying the historical hydrometeorological trends in a river basin is necessary for understanding the dominant interactions between climate, human activities and local hydromorphological conditions. Estimating the hydrological reference conditions in a river is also crucial for estimating accurately the impacts from human water related activities and design appropriate water management schemes. In this effort, the output of a regional past climate model was used, covering the period from 1660 to 1990, in combination with a dynamic, spatially distributed, hydrologic model to estimate the past and recent trends in the main hydrologic parameters such as overland flow, water storages and evapotranspiration, in a Mediterranean river basin. The simulated past hydrologic conditions (1660-1960) were compared with the current hydrologic regime (1960-1990), to assess the magnitude of human and natural impacts on the identified hydrologic trends. The hydrological components of the recent period of 2008-2016 were also examined in relation to the impact of human activities. The estimated long-term trends of the hydrologic parameters were partially assigned to varying atmospheric forcing due to volcanic activity combined with spontaneous meteorological fluctuations. Copyright © 2018. Published by Elsevier B.V.

  18. Hydrologic conditions and assessment of water resources in the Turkey Creek watershed, Jefferson County, Colorado, 1998-2001

    USGS Publications Warehouse

    Bossong, Clifford R.; Caine, Jonathan S.; Stannard, David I.; Flynn, Jennifer L.; Stevens, Michael R.; Heiny-Dash, Janet S.

    2003-01-01

    The 47.2-square-mile Turkey Creek watershed, in Jefferson County southwest of Denver, Colorado, is relatively steep with about 4,000 feet of relief and is in an area of fractured crystalline rocks of Precambrian age. Water needs for about 4,900 households in the watershed are served by domestic wells and individual sewage-disposal systems. Hydrologic conditions are described on the basis of contemporary hydrologic and geologic data collected in the watershed from early spring 1998 through September 2001. The water resources are assessed using discrete fracture-network modeling to estimate porosity and a physically based, distributed-parameter watershed runoff model to develop estimates of water-balance terms. A variety of climatologic and hydrologic data were collected. Direct measurements of evapotranspiration indicate that a large amount (3 calendar-year mean of 82.9 percent) of precipitation is returned to the atmosphere. Surface-water records from January 1, 1999, through September 30, 2001, indicate that about 9 percent of precipitation leaves the watershed as streamflow in a seasonal pattern, with highest streamflows generally occurring in spring related to snowmelt and precipitation. Although conditions vary considerably within the watershed, overall watershed streamflow, based on several records collected during the 1940's, 1950's, 1980', and 1990's near the downstream part of watershed, can be as high as about 200 cubic feet per second on a daily basis during spring. Streamflow typically recedes to about 1 cubic foot per second or less during rainless periods and is rarely zero. Ground-water level data indicate a seasonal pattern similar to that of surface water in which water levels are highest, rising tens of feet in some locations, in the spring and then receding during rainless periods at relatively constant rates until recharged. Synoptic measurements of water levels in 131 mostly domestic wells in fall of 2001 indicate a water-table surface that

  19. Dynamics of chromophoric dissolved organic matter influenced by hydrological conditions in a large, shallow, and eutrophic lake in China.

    PubMed

    Zhou, Yongqiang; Zhang, Yunlin; Shi, Kun; Liu, Xiaohan; Niu, Cheng

    2015-09-01

    High concentrations of chromophoric dissolved organic matter (CDOM) are terrestrially derived from upstream tributaries to Lake Taihu, China, and are influenced by hydrological conditions of the upstream watershed. To investigate how the dynamics of CDOM in Lake Taihu are influenced by upstream inflow runoff, four sampling cruises, differing in hydrological conditions, were undertaken in the lake and its three major tributaries, rivers Yincun, Dapu, and Changdou. CDOM absorption, fluorescence spectroscopy, chemical oxygen demand (COD), and stable isotope δ(13)C and δ(15)N measurements were conducted to characterize the dynamics of CDOM. The mean absorption coefficient a(350) collected from the three river profiles (5.15 ± 1.92 m(-1)) was significantly higher than that of the lake (2.95 ± 1.88 m(-1)), indicating that the upstream rivers carried a substantial load of CDOM to the lake. This finding was substantiated by the exclusively terrestrial signal exhibited by the level of δ(13)C (-26.23 ± 0.49‰) of CDOM samples collected from the rivers. Mean a(350) and COD in Lake Taihu were significantly higher in the wet season than in the dry season (t test, p < 0.0001), suggesting that the abundance of CDOM in the lake is strongly influenced by hydrological conditions of the watershed. Four components were identified by parallel factor analysis, including two protein-like components (C1 and C2), a terrestrial humic-like component (C3), and a microbial humic-like (C4) component. The contribution percentage of the two humic-like components relative to the summed fluorescence intensity of the four components (C humic) increased significantly from the dry to the wet season. This seasonal difference in contribution further substantiated that an enhanced rainfall followed by an elevated inflow runoff in the lake watershed in the wet season may result in an increase in humic-like substances being discharged into the lake compared to that in the dry

  20. Climatic and hydrologic influences on wading bird foraging patterns in Everglades National Park

    NASA Astrophysics Data System (ADS)

    Kwon, H.; Lall, U.; Engel, V.

    2008-05-01

    The ability to map the relationship between ecological outcomes and hydrologic conditions in the Everglades National Park is a key building block for the restoration program, a primary goal of which is to improve habitat for wading bird species and to promote nesting. This paper reports on a model linking wading bird foraging numbers to hydrologic conditions in the Park We demonstrate that seasonal hydrologic statistics derived from a single water level recording site are a) well correlated with water depths throughout most areas of the Park, and b) are effective as predictors of Great Egret and White Ibis foraging numbers at the end of the nesting season when using a nonlinear Bayesian Hierarchical model that permits the estimation of a conditional distribution of bird populations given the seasonal statistics of stage at the index location. Model parameters are estimated using a Markov Chain Monte Carlo procedure. Parameter and model uncertainty are both assessed as a byproduct of the estimation process. Water depths at the beginning of the nesting season, the recession rate, and the numbers of reversals in the recession are identified as significant predictors, consistent with the hydrologic conditions considered important in the seasonal production and concentration of prey organisms in this system. Long-term hydrologic records at the index location allow for a retrospective analysis (1952-2006) of wading bird foraging numbers showing low frequency oscillations in response to decadal and multi-decadal fluctuations in hydroclimatic conditions.

  1. [Gene method for inconsistent hydrological frequency calculation. 2: Diagnosis system of hydrological genes and method of hydrological moment genes with inconsistent characters].

    PubMed

    Xie, Ping; Zhao, Jiang Yan; Wu, Zi Yi; Sang, Yan Fang; Chen, Jie; Li, Bin Bin; Gu, Hai Ting

    2018-04-01

    The analysis of inconsistent hydrological series is one of the major problems that should be solved for engineering hydrological calculation in changing environment. In this study, the diffe-rences of non-consistency and non-stationarity were analyzed from the perspective of composition of hydrological series. The inconsistent hydrological phenomena were generalized into hydrological processes with inheritance, variability and evolution characteristics or regulations. Furthermore, the hydrological genes were identified following the theory of biological genes, while their inheritance bases and variability bases were determined based on composition of hydrological series under diffe-rent time scales. To identify and test the components of hydrological genes, we constructed a diagnosis system of hydrological genes. With the P-3 distribution as an example, we described the process of construction and expression of the moment genes to illustrate the inheritance, variability and evolution principles of hydrological genes. With the annual minimum 1-month runoff series of Yunjinghong station in Lancangjiang River basin as an example, we verified the feasibility and practicability of hydrological gene theory for the calculation of inconsistent hydrological frequency. The results showed that the method could be used to reveal the evolution of inconsistent hydrological series. Therefore, it provided a new research pathway for engineering hydrological calculation in changing environment and an essential reference for the assessment of water security.

  2. Hydrologic controls on DOC, As and Pb export from a polluted peatland - the importance of heavy rain events, antecedent moisture conditions and hydrological connectivity

    NASA Astrophysics Data System (ADS)

    Broder, T.; Biester, H.

    2015-03-01

    Bogs can store large amounts of lead (Pb) and arsenic (As) attributed to atmospheric deposition of anthropogenic emissions. Pb and As are exported along with dissolved organic carbon (DOC) in these organic-rich systems, but it is not yet clear which hydrological (pre-)conditions favor their export. This study combines one year continuous monitoring of precipitation, bog water level and pore water concentration changes with bog discharge, DOC, As and Pb stream concentrations and fluxes. Concentrations ranged from 5 to 30 mg L-1 for DOC, 0.2 to 1.9 μg L-1 for As and 1.3 to 12 μg L-1 for Pb with highest concentrations in late summer. As and Pb concentrations significantly correlated with DOC concentrations. Fluxes depended strongly on discharge, as 40% of As and 43% of Pb were exported by the upper 10% of discharge, pointing out the over-proportional contribution of heavy rain and high discharge events to annual As, Pb and DOC export. Exponential increase in element export from the bog is explained by connection of additional DOC, As and Pb pools in the acrotelm during water table rise, which is most pronounced after drought. Pb, As and DOC concentrations in pore water provide evidence of an increase of the soluble Pb pool as soon as the peat layer gets hydrologically connected, while DOC and As peak concentrations in runoff lag in comparison to Pb. Our data indicates a distinct bog-specific discharge threshold of 8 L s-1, which is thought to depend mainly on the bogs size and drainage conditions. Above this threshold element concentration do not further increase and discharge gets diluted. Combining pore water and discharge data shows that As and Pb exports are not only dependent on the amount of precipitation and discharge, but on the frequency and depth of water table fluctuations. Comparing the annual bog As and Pb export with element inventories indicates that As is much more mobilized than Pb, with annual fluxes accounting for 0.85 and 0.27‰ of total As and

  3. Hydrologic controls on DOC, As and Pb export from a polluted peatland - the importance of heavy rain events, antecedent moisture conditions and hydrological connectivity

    NASA Astrophysics Data System (ADS)

    Broder, T.; Biester, H.

    2015-08-01

    Bogs can store large amounts of lead (Pb) and arsenic (As) from atmospheric deposition of anthropogenic emissions. Pb and As are exported along with dissolved organic carbon (DOC) from these organic-rich systems, but it is not yet clear which hydrological (pre)conditions favor their export. This study combines a 1-year monitoring of precipitation, bog water level and pore water concentration changes with bog discharge and DOC, iron, As and Pb stream concentrations. From these data, annual DOC, As, and Pb exports were calculated. Concentrations ranged from 5 to 30 mg L-1 for DOC, 0.2 to 1.9 μg L-1 for As, and 1.3 to 12 μg L-1 for Pb, with highest concentrations in late summer. As and Pb concentrations significantly correlated with DOC concentrations. Fluxes depended strongly on discharge, as 40 % of As and 43 % of Pb were exported during 10 % of the time with the highest discharge, pointing out the over-proportional contribution of short-time, high-discharge events to annual As, Pb and DOC export. Exponential increase in element export from the bog is explained by connection of additional DOC, As and Pb pools in the acrotelm during water table rise, which is most pronounced after drought. Pb, As and DOC concentrations in pore water provide evidence of an increase in the soluble Pb pool as soon as the peat layer becomes hydrologically connected, while DOC and As peak concentrations in runoff lag behind in comparison to Pb. Our data indicate a distinct bog-specific discharge threshold of 8 L s-1, which is thought to depend mainly on the bogs size and drainage conditions. Above this threshold, element concentrations do not further increase and discharge becomes diluted. Combining pore water and discharge data shows that As and Pb exports are dependent on not only the amount of precipitation and discharge but also on the frequency and depth of water table fluctuations. Comparing the annual bog As and Pb export with element inventories indicates that As is much more

  4. Climate and the equilibrium state of land surface hydrology parameterizations

    NASA Technical Reports Server (NTRS)

    Entekhabi, Dara; Eagleson, Peter S.

    1991-01-01

    For given climatic rates of precipitation and potential evaporation, the land surface hydrology parameterizations of atmospheric general circulation models will maintain soil-water storage conditions that balance the moisture input and output. The surface relative soil saturation for such climatic conditions serves as a measure of the land surface parameterization state under a given forcing. The equilibrium value of this variable for alternate parameterizations of land surface hydrology are determined as a function of climate and the sensitivity of the surface to shifts and changes in climatic forcing are estimated.

  5. Hydrological Relevant Parameters from Remote Sensing - Spatial Modelling Input and Validation Basis

    NASA Astrophysics Data System (ADS)

    Hochschild, V.

    2012-12-01

    This keynote paper will demonstrate how multisensoral remote sensing data is used as spatial input for mesoscale hydrological modeling as well as for sophisticated validation purposes. The tasks of Water Resources Management are subject as well as the role of remote sensing in regional catchment modeling. Parameters derived from remote sensing discussed in this presentation will be land cover, topographical information from digital elevation models, biophysical vegetation parameters, surface soil moisture, evapotranspiration estimations, lake level measurements, determination of snow covered area, lake ice cycles, soil erosion type, mass wasting monitoring, sealed area, flash flood estimation. The actual possibilities of recent satellite and airborne systems are discussed, as well as the data integration into GIS and hydrological modeling, scaling issues and quality assessment will be mentioned. The presentation will provide an overview of own research examples from Germany, Tibet and Africa (Ethiopia, South Africa) as well as other international research activities. Finally the paper gives an outlook on upcoming sensors and concludes the possibilities of remote sensing in hydrology.

  6. Effect of Spatial Distribution and Connectivity of Urban Impervious Areas on Hydrologic Response

    NASA Astrophysics Data System (ADS)

    Khoshouei, F.; Basu, N. B.; Schnoor, J. L.

    2012-12-01

    Urbanization alters the hydrology of a watershed by increasing impervious areas which results in decreased infiltration and increased runoff. Total Impervious Area (TIA) has been extensively used as a metric to describe this impact. It has recently been recognized, however, that TIA is a necessary but not sufficient attribute to describe the hydrologic response of a watershed. The connectivity and spatial placement of the impervious areas play a significant role in altering streamflow distributions. While the importance of spatial metrics is well recognized, the actual magnitude of their impact has not been adequately quantified in a systematic manner. We assess the effect of the spatial distribution of impervious area on hydrologic response in six peri-urban watersheds with areas in the order of 15 sq km in Midwest. We use the Gridded Surface Subsurface Hydrologic Analysis (GSSHA) model from the Army Corp of Engineers for our exploration. GSSHA is a grid-based two-dimensional hydrologic model with 2D overland flow and 1D streamflow and infiltration. The models for the watersheds were calibrated and validated using discharge data from USGS streamflow database. The models were then used in a virtual experimentation mode to understand the variability in hydrologic response as a function of different patterns of urban expansion. A new metric, "Impervious Area Width Function- IAWF" was developed that captured the distribution of flow path lengths from impervious areas. This metric captured the difference in hydrologic response between two watersheds with the same total impervious area but different distributions. The results suggest that urban development in areas with longer travel time (far from outlet) results in higher peak flows.

  7. Significant uncertainty in global scale hydrological modeling from precipitation data errors

    NASA Astrophysics Data System (ADS)

    Sperna Weiland, Frederiek C.; Vrugt, Jasper A.; van Beek, Rens (L.) P. H.; Weerts, Albrecht H.; Bierkens, Marc F. P.

    2015-10-01

    In the past decades significant progress has been made in the fitting of hydrologic models to data. Most of this work has focused on simple, CPU-efficient, lumped hydrologic models using discharge, water table depth, soil moisture, or tracer data from relatively small river basins. In this paper, we focus on large-scale hydrologic modeling and analyze the effect of parameter and rainfall data uncertainty on simulated discharge dynamics with the global hydrologic model PCR-GLOBWB. We use three rainfall data products; the CFSR reanalysis, the ERA-Interim reanalysis, and a combined ERA-40 reanalysis and CRU dataset. Parameter uncertainty is derived from Latin Hypercube Sampling (LHS) using monthly discharge data from five of the largest river systems in the world. Our results demonstrate that the default parameterization of PCR-GLOBWB, derived from global datasets, can be improved by calibrating the model against monthly discharge observations. Yet, it is difficult to find a single parameterization of PCR-GLOBWB that works well for all of the five river basins considered herein and shows consistent performance during both the calibration and evaluation period. Still there may be possibilities for regionalization based on catchment similarities. Our simulations illustrate that parameter uncertainty constitutes only a minor part of predictive uncertainty. Thus, the apparent dichotomy between simulations of global-scale hydrologic behavior and actual data cannot be resolved by simply increasing the model complexity of PCR-GLOBWB and resolving sub-grid processes. Instead, it would be more productive to improve the characterization of global rainfall amounts at spatial resolutions of 0.5° and smaller.

  8. Hydrological states and the resilience of deltaic forested wetlands

    NASA Astrophysics Data System (ADS)

    Keim, R.; Allen, S. T.

    2017-12-01

    The flooding regime constitutes a set of chronic disturbances that are largely responsible for ecosystem structure. However, disturbances do not always constitute stresses to plants that survive because of adaptations to flooded conditions. We examine baldcypress-water tupelo forested wetlands in the delta of the Mississippi River as a case study in mechanisms by which hydrologic change shapes wetland ecosystem change, supported by experimental evidence from remote sensing, tree-ring and other field studies, and meta-analysis across the literature. Decreased hydrologic variability caused by water control structures has reduced the frequency of flood events that increase growth of baldcypress and favor its establishment by reducing competition from other species. Hydrologic modifications that lead to semi-permanent, stagnant flooding constitute semi-permanent disturbance that prevents regeneration of any trees, reduces growth of established trees, and reduces stand density by causing mortality of some trees. However, baldcypress trees in low-density stands appear to be generally adapted for long-term survival in stagnant conditions. Thus, initial decreases in stand density after impoundment do not necessarily portend continued conversion away from forest because reduced inter-tree competition is a negative feedback on mortality. Overall, a natural hydrologic regime with high variability in riverine flooding favors denser stands with greater diversity of tree species, and the present, controlled hydrologic regime that has largely eliminated riverine flooding favors open stands. Sea-level rise will increase salinity that quickly leads to forest conversion to marsh, but will also increase stagnant, freshwater flooding further inland. These drivers of hydrologic change reduce carbon assimilation by forests, both by reduced stand-level productivity and decreased forested area.

  9. Hydrologic-Process-Based Soil Texture Classifications for Improved Visualization of Landscape Function

    PubMed Central

    Groenendyk, Derek G.; Ferré, Ty P.A.; Thorp, Kelly R.; Rice, Amy K.

    2015-01-01

    Soils lie at the interface between the atmosphere and the subsurface and are a key component that control ecosystem services, food production, and many other processes at the Earth’s surface. There is a long-established convention for identifying and mapping soils by texture. These readily available, georeferenced soil maps and databases are used widely in environmental sciences. Here, we show that these traditional soil classifications can be inappropriate, contributing to bias and uncertainty in applications from slope stability to water resource management. We suggest a new approach to soil classification, with a detailed example from the science of hydrology. Hydrologic simulations based on common meteorological conditions were performed using HYDRUS-1D, spanning textures identified by the United States Department of Agriculture soil texture triangle. We consider these common conditions to be: drainage from saturation, infiltration onto a drained soil, and combined infiltration and drainage events. Using a k-means clustering algorithm, we created soil classifications based on the modeled hydrologic responses of these soils. The hydrologic-process-based classifications were compared to those based on soil texture and a single hydraulic property, Ks. Differences in classifications based on hydrologic response versus soil texture demonstrate that traditional soil texture classification is a poor predictor of hydrologic response. We then developed a QGIS plugin to construct soil maps combining a classification with georeferenced soil data from the Natural Resource Conservation Service. The spatial patterns of hydrologic response were more immediately informative, much simpler, and less ambiguous, for use in applications ranging from trafficability to irrigation management to flood control. The ease with which hydrologic-process-based classifications can be made, along with the improved quantitative predictions of soil responses and visualization of landscape

  10. A blueprint for using climate change predictions in an eco-hydrological study

    NASA Astrophysics Data System (ADS)

    Caporali, E.; Fatichi, S.; Ivanov, V. Y.

    2009-12-01

    There is a growing interest to extend climate change predictions to smaller, catchment-size scales and identify their implications on hydrological and ecological processes. Small scale processes are, in fact, expected to mediate climate changes, producing local effects and feedbacks that can interact with the principal consequences of the change. This is particularly applicable, when a complex interaction, such as the inter-relationship between the hydrological cycle and vegetation dynamics, is considered. This study presents a blueprint methodology for studying climate change impacts, as inferred from climate models, on eco-hydrological dynamics at the catchment scale. Climate conditions, present or future, are imposed through input hydrometeorological variables for hydrological and eco-hydrological models. These variables are simulated with an hourly weather generator as an outcome of a stochastic downscaling technique. The generator is parameterized to reproduce the climate of southwestern Arizona for present (1961-2000) and future (2081-2100) conditions. The methodology provides the capability to generate ensemble realizations for the future that take into account the heterogeneous nature of climate predictions from different models. The generated time series of meteorological variables for the two scenarios corresponding to the current and mean expected future serve as input to a coupled hydrological and vegetation dynamics model, “Tethys-Chloris”. The hydrological model reproduces essential components of the land-surface hydrological cycle, solving the mass and energy budget equations. The vegetation model parsimoniously parameterizes essential plant life-cycle processes, including photosynthesis, phenology, carbon allocation, and tissue turnover. The results for the two mean scenarios are compared and discussed in terms of changes in the hydrological balance components, energy fluxes, and indices of vegetation productivity The need to account for

  11. Hydrologic-Process-Based Soil Texture Classifications for Improved Visualization of Landscape Function.

    PubMed

    Groenendyk, Derek G; Ferré, Ty P A; Thorp, Kelly R; Rice, Amy K

    2015-01-01

    Soils lie at the interface between the atmosphere and the subsurface and are a key component that control ecosystem services, food production, and many other processes at the Earth's surface. There is a long-established convention for identifying and mapping soils by texture. These readily available, georeferenced soil maps and databases are used widely in environmental sciences. Here, we show that these traditional soil classifications can be inappropriate, contributing to bias and uncertainty in applications from slope stability to water resource management. We suggest a new approach to soil classification, with a detailed example from the science of hydrology. Hydrologic simulations based on common meteorological conditions were performed using HYDRUS-1D, spanning textures identified by the United States Department of Agriculture soil texture triangle. We consider these common conditions to be: drainage from saturation, infiltration onto a drained soil, and combined infiltration and drainage events. Using a k-means clustering algorithm, we created soil classifications based on the modeled hydrologic responses of these soils. The hydrologic-process-based classifications were compared to those based on soil texture and a single hydraulic property, Ks. Differences in classifications based on hydrologic response versus soil texture demonstrate that traditional soil texture classification is a poor predictor of hydrologic response. We then developed a QGIS plugin to construct soil maps combining a classification with georeferenced soil data from the Natural Resource Conservation Service. The spatial patterns of hydrologic response were more immediately informative, much simpler, and less ambiguous, for use in applications ranging from trafficability to irrigation management to flood control. The ease with which hydrologic-process-based classifications can be made, along with the improved quantitative predictions of soil responses and visualization of landscape

  12. Comparing hydrological signatures of small agricultural catchments using uncertain data provided by a soft hydrological monitoring

    NASA Astrophysics Data System (ADS)

    Crabit, Armand; Colin, François

    2016-04-01

    Discharge estimation is one of the greatest challenge for every hydrologist as it is the most classical hydrological variable used in hydrological studies. The key lies in the rating curves and the way they were built: based on field measurements or using physical equations as the Manning-Strickler relation… However, as we all know, data and associated uncertainty deeply impact the veracity of such rating curves that could have serious consequences on data interpretation. And, of all things, this affects every catchment in the world, not only the gauged catchments but also and especially the poorly gauged ones that account for the larger part of the catchment of the world. This study investigates how to compare hydrological behaviour of 11 small (0.1 to 0.6 km2) poorly gauged catchments considering uncertainty associated to their rating curves. It shows how important the uncertainty can be using Manning equation and focus on its parameter: the roughness coefficient. Innovative work has been performed under controlled experimental conditions to estimate the Manning coefficient values for the different cover types observed in studied streams: non-aquatic vegetations. The results show that estimated flow rates using suitable roughness coefficients highly differ from those we should have obtained if we only considered the common values given in the literature. Moreover, it highlights how it could also affect all derived hydrological indicators commonly used to compare hydrological behaviour. Data of rainfall and water depth at a catchment's outlet were recorded using automatic logging equipment during 2008-2009. The hydrological regime is intermittent and the annual precipitation ranged between 569 and 727 mm. Discharge was then estimated using Manning's equation and channel cross-section measurements. Even if discharge uncertainty is high, the results show significant variability between catchment's responses that allows for catchment classification. It also

  13. Comparison and Validation of Hydrological E-Flow Methods through Hydrodynamic Modelling

    NASA Astrophysics Data System (ADS)

    Kuriqi, Alban; Rivaes, Rui; Sordo-Ward, Alvaro; Pinheiro, António N.; Garrote, Luis

    2017-04-01

    Flow regime determines physical habitat conditions and local biotic configuration. The development of environmental flow guidelines to support the river integrity is becoming a major concern in water resources management. In this study, we analysed two sites located in southern part of Portugal, respectively at Odelouca and Ocreza Rivers, characterised by the Mediterranean climate. Both rivers are almost in pristine condition, not regulated by dams or other diversion construction. This study presents an analysis of the effect on fish habitat suitability by the implementation of different hydrological e-flow methods. To conduct this study we employed certain hydrological e-flow methods recommended by the European Small Hydropower Association (ESHA). River hydrology assessment was based on approximately 30 years of mean daily flow data, provided by the Portuguese Water Information System (SNIRH). The biological data, bathymetry, physical and hydraulic features, and the Habitat Suitability Index for fish species were collected from extensive field works. We followed the Instream Flow Incremental Methodology (IFIM) to assess the flow-habitat relationship taking into account the habitat suitability of different instream flow releases. Initially, we analysed fish habitat suitability based on natural conditions, and we used it as reference condition for other scenarios considering the chosen hydrological e-flow methods. We accomplished the habitat modelling through hydrodynamic analysis by using River-2D model. The same methodology was applied to each scenario by considering as input the e-flows obtained from each of the hydrological method employed in this study. This contribution shows the significance of ecohydrological studies in establishing a foundation for water resources management actions. Keywords: ecohydrology, e-flow, Mediterranean rivers, river conservation, fish habitat, River-2D, Hydropower.

  14. Advancements in Hydrology and Erosion Process Understanding and Post-Fire Hydrologic and Erosion Model Development for Semi-Arid Landscapes

    NASA Astrophysics Data System (ADS)

    Williams, C. Jason; Pierson, Frederick B.; Al-Hamdan, Osama Z.; Robichaud, Peter R.; Nearing, Mark A.; Hernandez, Mariano; Weltz, Mark A.; Spaeth, Kenneth E.; Goodrich, David C.

    2017-04-01

    Fire activity continues to increase in semi-arid regions around the globe. Private and governmental land management entities are challenged with predicting and mitigating post-fire hydrologic and erosion responses on these landscapes. For more than a decade, a team of scientists with the US Department of Agriculture has collaborated on extensive post-fire hydrologic field research and the application of field research to development of post-fire hydrology and erosion predictive technologies. Experiments funded through this research investigated the impacts of fire on vegetation and soils and the effects of these fire-induced changes on infiltration, runoff generation, erodibility, and soil erosion processes. The distribution of study sites spans diverse topography across grassland, shrubland, and woodland landscapes throughout the western United States. Knowledge gleaned from the extensive field experiments was applied to develop and enhance physically-based models for hillslope- to watershed-scale runoff and erosion prediction. Our field research and subsequent data syntheses have identified key knowledge gaps and challenges regarding post-fire hydrology and erosion modeling. Our presentation details some consistent trends across a diverse domain and varying landscape conditions based on our extensive field campaigns. We demonstrate how field data have advanced our understanding of post-fire hydrology and erosion for semi-arid landscapes and highlight remaining key knowledge gaps. Lastly, we briefly show how our well-replicated experimental methodologies have contributed to advancements in hydrologic and erosion model development for the post-fire environment.

  15. Operational actual wetland evapotranspiration estimation for the Everglades using MODIS imagery

    NASA Astrophysics Data System (ADS)

    Melesse, Assefa; Cereon, Cristobal

    2014-05-01

    Wetlands are one of the most important ecosystems with varied functions and structures. Humans have drained wetlands and altered the structure and functions of wetlands for various uses. Wetland restoration efforts require assessment of the level of ecohydrological restoration for the intended functions. Among the various indicators of success in wetland restoration, achieving the desired water level (hydrology) is the most important, faster to achieve and easier to monitor than the establishment of the hydric soils and wetland vegetation. Monitoring wetland hydrology using remote sensing based evapotranspiration (ET) is a useful tool and approach since point measurements for understanding the temporal (before and after restoration) and spatial (impacted and restored) parts of the wetland are not effective for large areas. Evapotranspiration accounts over 80% of the water budget of the wetlands necessitating the need for spatiotemporal monitoring of ET flux. A study employing remotely sensed data from Moderate Resolution Imaging Spectroradiometer (MODIS) and modeling tools was conducted for a weekly spatial estimation of Everglades ET. Weekly surface temperature data were generated from the MODIS thermal band and evaporative fraction was estimated using the simplified surface energy balance (SSEB) approach. Based on the Simple Method, potential ET (PET) was estimated. Actual weekly wetland ET was computed as the (product of the PET and evaporative fraction). The ET product will be useful information for environmental restoration and wetland hydrology managers. The on-going restoration and monitoring work in the Everglades will benefit from this product and assist in evaluating progress and success in the restoration.

  16. Assessing the importance of rainfall uncertainty on hydrological models with different spatial and temporal scale

    NASA Astrophysics Data System (ADS)

    Nossent, Jiri; Pereira, Fernando; Bauwens, Willy

    2015-04-01

    Precipitation is one of the key inputs for hydrological models. As long as the values of the hydrological model parameters are fixed, a variation of the rainfall input is expected to induce a change in the model output. Given the increased awareness of uncertainty on rainfall records, it becomes more important to understand the impact of this input - output dynamic. Yet, modellers often still have the intention to mimic the observed flow, whatever the deviation of the employed records from the actual rainfall might be, by recklessly adapting the model parameter values. But is it actually possible to vary the model parameter values in such a way that a certain (observed) model output can be generated based on inaccurate rainfall inputs? Thus, how important is the rainfall uncertainty for the model output with respect to the model parameter importance? To address this question, we apply the Sobol' sensitivity analysis method to assess and compare the importance of the rainfall uncertainty and the model parameters on the output of the hydrological model. In order to be able to treat the regular model parameters and input uncertainty in the same way, and to allow a comparison of their influence, a possible approach is to represent the rainfall uncertainty by a parameter. To tackle the latter issue, we apply so called rainfall multipliers on hydrological independent storm events, as a probabilistic parameter representation of the possible rainfall variation. As available rainfall records are very often point measurements at a discrete time step (hourly, daily, monthly,…), they contain uncertainty due to a latent lack of spatial and temporal variability. The influence of the latter variability can also be different for hydrological models with different spatial and temporal scale. Therefore, we perform the sensitivity analyses on a semi-distributed model (SWAT) and a lumped model (NAM). The assessment and comparison of the importance of the rainfall uncertainty and the

  17. Summary of hydrologic conditions in the Reedy Creek Improvement District, central Florida

    USGS Publications Warehouse

    German, Edward R.

    1986-01-01

    The Reedy Creek Improvement is an area of about 43 square miles in southwestern Orange and northwestern Osceola Counties, Florida. A systematic program of hydrologic data collection in the Reedy Creek Improvement District and vicinity provided data for assessing the impact of development, mostly the Walt Disney World Theme Park and related development on the hydrology. Data collected include stream discharge, water quality, groundwater levels, lakes levels, and climatological. Rainfall has been less than the long-term average in the Reedy Creek Improvement District since development began in 1968. The deficient rainfall has reduced stream discharge, lowered groundwater and lake levels, and possibly affected water quality in the area. Groundwater levels and lake levels have declined since 1970. However, the coincidence of below-average rainfall with the period of development makes it impossible to assess the effect of pumping on declines. Occurrence of toxic metals does not relate to development, but distribution of insecticides and herbicides does appear to relate to development. Specific conductance, phosphorous, and nitrate concentrations have increased in Reedy Creek since 1970, probably due to disposal of treated wastes. (USGS)

  18. Alternate corrections for estimating actual wetland evapotranspiration from potential evapotranspiration

    USGS Publications Warehouse

    Shoemaker, W. Barclay; Sumner, D.M.

    2006-01-01

    Corrections can be used to estimate actual wetland evapotranspiration (AET) from potential evapotranspiration (PET) as a means to define the hydrology of wetland areas. Many alternate parameterizations for correction coefficients for three PET equations are presented, covering a wide range of possible data-availability scenarios. At nine sites in the wetland Everglades of south Florida, USA, the relatively complex PET Penman equation was corrected to daily total AET with smaller standard errors than the PET simple and Priestley-Taylor equations. The simpler equations, however, required less data (and thus less funding for instrumentation), with the possibility of being corrected to AET with slightly larger, comparable, or even smaller standard errors. Air temperature generally corrected PET simple most effectively to wetland AET, while wetland stage and humidity generally corrected PET Priestley-Taylor and Penman most effectively to wetland AET. Stage was identified for PET Priestley-Taylor and Penman as the data type with the most correction ability at sites that are dry part of each year or dry part of some years. Finally, although surface water generally was readily available at each monitoring site, AET was not occurring at potential rates, as conceptually expected under well-watered conditions. Apparently, factors other than water availability, such as atmospheric and stomata resistances to vapor transport, also were limiting the PET rate. ?? 2006, The Society of Wetland Scientists.

  19. Introduction to hydrology

    USDA-ARS?s Scientific Manuscript database

    Hydrology deals with the occurrence, movement, and storage of water in the Earth system. Hydrologic science comprises understanding the underlying physical and stochastic processes involved and estimating the quantity and quality of water in the various phases and stores. The study of hydrology als...

  20. Understanding and seasonal forecasting of hydrological drought in the Anthropocene

    NASA Astrophysics Data System (ADS)

    Yuan, Xing; Zhang, Miao; Wang, Linying; Zhou, Tian

    2017-11-01

    Hydrological drought is not only caused by natural hydroclimate variability but can also be directly altered by human interventions including reservoir operation, irrigation, groundwater exploitation, etc. Understanding and forecasting of hydrological drought in the Anthropocene are grand challenges due to complicated interactions among climate, hydrology and humans. In this paper, five decades (1961-2010) of naturalized and observed streamflow datasets are used to investigate hydrological drought characteristics in a heavily managed river basin, the Yellow River basin in north China. Human interventions decrease the correlation between hydrological and meteorological droughts, and make the hydrological drought respond to longer timescales of meteorological drought. Due to large water consumptions in the middle and lower reaches, there are 118-262 % increases in the hydrological drought frequency, up to 8-fold increases in the drought severity, 21-99 % increases in the drought duration and the drought onset is earlier. The non-stationarity due to anthropogenic climate change and human water use basically decreases the correlation between meteorological and hydrological droughts and reduces the effect of human interventions on hydrological drought frequency while increasing the effect on drought duration and severity. A set of 29-year (1982-2010) hindcasts from an established seasonal hydrological forecasting system are used to assess the forecast skill of hydrological drought. In the naturalized condition, the climate-model-based approach outperforms the climatology method in predicting the 2001 severe hydrological drought event. Based on the 29-year hindcasts, the former method has a Brier skill score of 11-26 % against the latter for the probabilistic hydrological drought forecasting. In the Anthropocene, the skill for both approaches increases due to the dominant influence of human interventions that have been implicitly incorporated by the hydrological post

  1. The impact of changing climate conditions on the hydrological behavior of several Mediterranean sub-catchments in Crete

    NASA Astrophysics Data System (ADS)

    Eirini Vozinaki, Anthi; Tapoglou, Evdokia; Tsanis, Ioannis

    2017-04-01

    Climate change, although is already happening, consists of a big threat capable of causing lots of inconveniences in future societies and their economies. In this work, the climate change impact on the hydrological behavior of several Mediterranean sub-catchments, in Crete, is presented. The sensitivity of these hydrological systems to several climate change scenarios is also provided. The HBV hydrological model has been used, calibrated and validated for the study sub-catchments against measured weather and streamflow data and inputs. The impact of climate change on several hydro-meteorological parameters (i.e. precipitation, streamflow etc.) and hydrological signatures (i.e. spring flood peak, length and volume, base flow, flow duration curves, seasonality etc.) have been statistically elaborated and analyzed, defining areas of increased probability risk associated additionally to flooding or drought. The potential impacts of climate change on current and future water resources have been quantified by driving HBV model with current and future scenarios, respectively, for specific climate periods. This work aims to present an integrated methodology for the definition of future climate and hydrological risks and the prediction of future water resources behavior. Future water resources management could be rationally effectuated, in Mediterranean sub-catchments prone to drought or flooding, using the proposed methodology. The research reported in this paper was fully supported by the Project "Innovative solutions to climate change adaptation and governance in the water management of the Region of Crete - AQUAMAN" funded within the framework of the EEA Financial Mechanism 2009-2014.

  2. Automation of lidar-based hydrologic feature extraction workflows using GIS

    NASA Astrophysics Data System (ADS)

    Borlongan, Noel Jerome B.; de la Cruz, Roel M.; Olfindo, Nestor T.; Perez, Anjillyn Mae C.

    2016-10-01

    With the advent of LiDAR technology, higher resolution datasets become available for use in different remote sensing and GIS applications. One significant application of LiDAR datasets in the Philippines is in resource features extraction. Feature extraction using LiDAR datasets require complex and repetitive workflows which can take a lot of time for researchers through manual execution and supervision. The Development of the Philippine Hydrologic Dataset for Watersheds from LiDAR Surveys (PHD), a project under the Nationwide Detailed Resources Assessment Using LiDAR (Phil-LiDAR 2) program, created a set of scripts, the PHD Toolkit, to automate its processes and workflows necessary for hydrologic features extraction specifically Streams and Drainages, Irrigation Network, and Inland Wetlands, using LiDAR Datasets. These scripts are created in Python and can be added in the ArcGIS® environment as a toolbox. The toolkit is currently being used as an aid for the researchers in hydrologic feature extraction by simplifying the workflows, eliminating human errors when providing the inputs, and providing quick and easy-to-use tools for repetitive tasks. This paper discusses the actual implementation of different workflows developed by Phil-LiDAR 2 Project 4 in Streams, Irrigation Network and Inland Wetlands extraction.

  3. Delineating wetland catchments and modeling hydrologic connectivity using lidar data and aerial imagery

    NASA Astrophysics Data System (ADS)

    Wu, Qiusheng; Lane, Charles R.

    2017-07-01

    In traditional watershed delineation and topographic modeling, surface depressions are generally treated as spurious features and simply removed from a digital elevation model (DEM) to enforce flow continuity of water across the topographic surface to the watershed outlets. In reality, however, many depressions in the DEM are actual wetland landscape features with seasonal to permanent inundation patterning characterized by nested hierarchical structures and dynamic filling-spilling-merging surface-water hydrological processes. Differentiating and appropriately processing such ecohydrologically meaningful features remains a major technical terrain-processing challenge, particularly as high-resolution spatial data are increasingly used to support modeling and geographic analysis needs. The objectives of this study were to delineate hierarchical wetland catchments and model their hydrologic connectivity using high-resolution lidar data and aerial imagery. The graph-theory-based contour tree method was used to delineate the hierarchical wetland catchments and characterize their geometric and topological properties. Potential hydrologic connectivity between wetlands and streams were simulated using the least-cost-path algorithm. The resulting flow network delineated potential flow paths connecting wetland depressions to each other or to the river network on scales finer than those available through the National Hydrography Dataset. The results demonstrated that our proposed framework is promising for improving overland flow simulation and hydrologic connectivity analysis.

  4. Hydrological and glaciological balances on Antizana Volcano, Ecuador

    NASA Astrophysics Data System (ADS)

    Favier, V.; Cadier, E.; Coudrain, A.; Francou, B.; Maisincho, L.; Praderio, E.; Villacis, M.; Wagnon, P.

    2006-12-01

    Water supply for Quito, the capital of Ecuador, is partly fed by the water collected at the piedmont of Antizana ice covered stratovolcano. In order to assess the contribution of glaciers to the local water resources, a comparison of hydrological and glaciological datasets collected over the 1995-2005 period on Antizana Glacier 15 watershed was realized. Over the study period, Antizana glacier 15 retreated quickly, inducing an important water contribution to lower altitude discharges. However, comparison of hydrological and glaciological balances allowed observation of important missing runoffs due to underground circulations. Subsuperficial circulations were initially questioned due to the total disappearance of surface streams at the level of the frontal moraine, a surface stream being observed again downstream the moraine. Brine injections were performed upstream the moraine and in a small lake located on the moraine and restitution rates of salt were computed. Tracer experiments demonstrated a complete restitution of discharges implying that missing runoff were not involved in subsuperficial circulations but in deeper ones that may have flown through the fractured rock environment of the stratovlocano. Experiments also demonstrated that infiltrations occurred directly at the bedrock of the glaciers. Then, taking into account the weak discharges observed at the glacier front would induce computation of a strongly underestimated value of the actual water contribution from glaciers to lower altitude discharges. Finally, assessing water contribution from glaciers of Ecuador requires a comparison of glaciological and hydrological data.

  5. Practical implementation of a particle filter data assimilation approach to estimate initial hydrologic conditions and initialize medium-range streamflow forecasts

    NASA Astrophysics Data System (ADS)

    Clark, Elizabeth; Wood, Andy; Nijssen, Bart; Mendoza, Pablo; Newman, Andy; Nowak, Kenneth; Arnold, Jeffrey

    2017-04-01

    In an automated forecast system, hydrologic data assimilation (DA) performs the valuable function of correcting raw simulated watershed model states to better represent external observations, including measurements of streamflow, snow, soil moisture, and the like. Yet the incorporation of automated DA into operational forecasting systems has been a long-standing challenge due to the complexities of the hydrologic system, which include numerous lags between state and output variations. To help demonstrate that such methods can succeed in operational automated implementations, we present results from the real-time application of an ensemble particle filter (PF) for short-range (7 day lead) ensemble flow forecasts in western US river basins. We use the System for Hydromet Applications, Research and Prediction (SHARP), developed by the National Center for Atmospheric Research (NCAR) in collaboration with the University of Washington, U.S. Army Corps of Engineers, and U.S. Bureau of Reclamation. SHARP is a fully automated platform for short-term to seasonal hydrologic forecasting applications, incorporating uncertainty in initial hydrologic conditions (IHCs) and in hydrometeorological predictions through ensemble methods. In this implementation, IHC uncertainty is estimated by propagating an ensemble of 100 temperature and precipitation time series through conceptual and physically-oriented models. The resulting ensemble of derived IHCs exhibits a broad range of possible soil moisture and snow water equivalent (SWE) states. The PF selects and/or weights and resamples the IHCs that are most consistent with external streamflow observations, and uses the particles to initialize a streamflow forecast ensemble driven by ensemble precipitation and temperature forecasts downscaled from the Global Ensemble Forecast System (GEFS). We apply this method in real-time for several basins in the western US that are important for water resources management, and perform a hindcast

  6. Hydrologic impacts of high severity wildfire: Learning from the past and preparing for the future

    Treesearch

    Daniel G. Neary; Karen A. Koestner; Ann Youberg

    2011-01-01

    Wildfire is a natural disturbance with epic potential to drastically alter watershed hydrologic condition. Basins with high-burn severity, especially those with steep previously forested terrain, have flashier hydrographs and can produce peak-flows orders of magnitude greater than pre-fire conditions. This is due to fundamental changes in the hydrology of burnt...

  7. Acoustics Reveals the Presence of a Macrozooplankton Biocline in the Bay of Biscay in Response to Hydrological Conditions and Predator-Prey Relationships

    PubMed Central

    Lezama-Ochoa, Ainhoa; Irigoien, Xabier; Chaigneau, Alexis; Quiroz, Zaida; Lebourges-Dhaussy, Anne; Bertrand, Arnaud

    2014-01-01

    Bifrequency acoustic data, hydrological measurements and satellite data were used to study the vertical distribution of macrozooplankton in the Bay of Biscay in relation to the hydrological conditions and fish distribution during spring 2009. The most noticeable result was the observation of a ‘biocline’ during the day i.e., the interface where zooplankton biomass changes more rapidly with depth than it does in the layers above or below. The biocline separated the surface layer, almost devoid of macrozooplankton, from the macrozooplankton-rich deeper layers. It is a specific vertical feature which ties in with the classic diel vertical migration pattern. Spatiotemporal correlations between macrozooplankton and environmental variables (photic depth, thermohaline vertical structure, stratification index and chlorophyll-a) indicate that no single factor explains the macrozooplankton vertical distribution. Rather a set of factors, the respective influence of which varies from region to region depending on the habitat characteristics and the progress of the spring stratification, jointly influence the distribution. In this context, the macrozooplankton biocline is potentially a biophysical response to the search for a particular depth range where light attenuation, thermohaline vertical structure and stratification conditions together provide a suitable alternative to the need for expending energy in reaching deeper water without the risk of being eaten. PMID:24505374

  8. Understanding the Impacts of Climate Change and Land Use Dynamics Using a Fully Coupled Hydrologic Feedback Model between Surface and Subsurface Systems

    NASA Astrophysics Data System (ADS)

    Park, C.; Lee, J.; Koo, M.

    2011-12-01

    Climate is the most critical driving force of the hydrologic system of the Earth. Since the industrial revolution, the impacts of anthropogenic activities to the Earth environment have been expanded and accelerated. Especially, the global emission of carbon dioxide into the atmosphere is known to have significantly increased temperature and affected the hydrologic system. Many hydrologists have contributed to the studies regarding the climate change on the hydrologic system since the Intergovernmental Panel on Climate Change (IPCC) was created in 1988. Among many components in the hydrologic system groundwater and its response to the climate change and anthropogenic activities are not fully understood due to the complexity of subsurface conditions between the surface and the groundwater table. A new spatio-temporal hydrologic model has been developed to estimate the impacts of climate change and land use dynamics on the groundwater. The model consists of two sub-models: a surface model and a subsurface model. The surface model involves three surface processes: interception, runoff, and evapotranspiration, and the subsurface model does also three subsurface processes: soil moisture balance, recharge, and groundwater flow. The surface model requires various input data including land use, soil types, vegetation types, topographical elevations, and meteorological data. The surface model simulates daily hydrological processes for rainfall interception, surface runoff varied by land use change and crop growth, and evapotranspiration controlled by soil moisture balance. The daily soil moisture balance is a key element to link two sub-models as it calculates infiltration and groundwater recharge by considering a time delay routing through a vadose zone down to the groundwater table. MODFLOW is adopted to simulate groundwater flow and interaction with surface water components as well. The model is technically flexible to add new model or modify existing model as it is

  9. Conceptualizing socio-hydrological drought processes: the rise and fall of the Ancient Maya civilization

    NASA Astrophysics Data System (ADS)

    Kuil, Linda; Carr, Gemma; Viglione, Alberto; Prskawetz, Alexia; Bloeschl, Guenter

    2016-04-01

    Different communities have followed different paths to arrive at their present situation as a consequence of the continuous, specific interactions between the hydrological and social system. The need to understand the current and future pathways to water security becomes more and more pressing, considering the increasingly delicate balance between water demand and water supply. To contribute to addressing this challenge, we examine the link between water stress and society through socio-hydrological modeling. Within the spirit of the Easter Island model by Brander and Taylor and drawing from the vulnerability literature, we conceptualize the interactions of an agricultural society with its environment. We apply the model to the case of the ancient Maya, a civilization who occupied the Maya Lowlands (parts of present day Mexico, Guatemala, Belize) from around 2000 BC to after AD 830. The hypothesis that modest drought periods played a major role in the fall of the society is explored. We are able to simulate plausible feedbacks and find that a modest reduction in rainfall is a necessary, but not a sufficient condition in order to observe a collapse of 80 percent of the population. Equally important are actual population density and the impact of drought on crop growth. The model shows that reservoirs allow the society to grow larger, but also that the vulnerability to drought increases.

  10. Optimality and inference in hydrology from entropy production considerations: synthetic hillslope numerical experiments

    NASA Astrophysics Data System (ADS)

    Kollet, S. J.

    2015-05-01

    In this study, entropy production optimization and inference principles are applied to a synthetic semi-arid hillslope in high-resolution, physics-based simulations. The results suggest that entropy or power is indeed maximized, because of the strong nonlinearity of variably saturated flow and competing processes related to soil moisture fluxes, the depletion of gradients, and the movement of a free water table. Thus, it appears that the maximum entropy production (MEP) principle may indeed be applicable to hydrologic systems. In the application to hydrologic system, the free water table constitutes an important degree of freedom in the optimization of entropy production and may also relate the theory to actual observations. In an ensuing analysis, an attempt is made to transfer the complex, "microscopic" hillslope model into a macroscopic model of reduced complexity using the MEP principle as an interference tool to obtain effective conductance coefficients and forces/gradients. The results demonstrate a new approach for the application of MEP to hydrologic systems and may form the basis for fruitful discussions and research in future.

  11. High-resolution downscaling for hydrological management

    NASA Astrophysics Data System (ADS)

    Ulbrich, Uwe; Rust, Henning; Meredith, Edmund; Kpogo-Nuwoklo, Komlan; Vagenas, Christos

    2017-04-01

    Hydrological modellers and water managers require high-resolution climate data to model regional hydrologies and how these may respond to future changes in the large-scale climate. The ability to successfully model such changes and, by extension, critical infrastructure planning is often impeded by a lack of suitable climate data. This typically takes the form of too-coarse data from climate models, which are not sufficiently detailed in either space or time to be able to support water management decisions and hydrological research. BINGO (Bringing INnovation in onGOing water management; ) aims to bridge the gap between the needs of hydrological modellers and planners, and the currently available range of climate data, with the overarching aim of providing adaptation strategies for climate change-related challenges. Producing the kilometre- and sub-daily-scale climate data needed by hydrologists through continuous simulations is generally computationally infeasible. To circumvent this hurdle, we adopt a two-pronged approach involving (1) selective dynamical downscaling and (2) conditional stochastic weather generators, with the former presented here. We take an event-based approach to downscaling in order to achieve the kilometre-scale input needed by hydrological modellers. Computational expenses are minimized by identifying extremal weather patterns for each BINGO research site in lower-resolution simulations and then only downscaling to the kilometre-scale (convection permitting) those events during which such patterns occur. Here we (1) outline the methodology behind the selection of the events, and (2) compare the modelled precipitation distribution and variability (preconditioned on the extremal weather patterns) with that found in observations.

  12. On the information content of hydrological signatures and their relationship to catchment attributes

    NASA Astrophysics Data System (ADS)

    Addor, Nans; Clark, Martyn P.; Prieto, Cristina; Newman, Andrew J.; Mizukami, Naoki; Nearing, Grey; Le Vine, Nataliya

    2017-04-01

    Hydrological signatures, which are indices characterizing hydrologic behavior, are increasingly used for the evaluation, calibration and selection of hydrological models. Their key advantage is to provide more direct insights into specific hydrological processes than aggregated metrics (e.g., the Nash-Sutcliffe efficiency). A plethora of signatures now exists, which enable characterizing a variety of hydrograph features, but also makes the selection of signatures for new studies challenging. Here we propose that the selection of signatures should be based on their information content, which we estimated using several approaches, all leading to similar conclusions. To explore the relationship between hydrological signatures and the landscape, we extended a previously published data set of hydrometeorological time series for 671 catchments in the contiguous United States, by characterizing the climatic conditions, topography, soil, vegetation and stream network of each catchment. This new catchment attributes data set will soon be in open access, and we are looking forward to introducing it to the community. We used this data set in a data-learning algorithm (random forests) to explore whether hydrological signatures could be inferred from catchment attributes alone. We find that some signatures can be predicted remarkably well by random forests and, interestingly, the same signatures are well captured when simulating discharge using a conceptual hydrological model. We discuss what this result reveals about our understanding of hydrological processes shaping hydrological signatures. We also identify which catchment attributes exert the strongest control on catchment behavior, in particular during extreme hydrological events. Overall, climatic attributes have the most significant influence, and strongly condition how well hydrological signatures can be predicted by random forests and simulated by the hydrological model. In contrast, soil characteristics at the

  13. Evolving soils and hydrologic connectivity in semiarid hillslopes

    NASA Astrophysics Data System (ADS)

    Saco, Patricia M.

    2015-04-01

    Soil moisture availability is essential for the stability and resilience of semiarid ecosystems. In these ecosystems the amount of soil moisture available for vegetation growth and survival is intrinsically related to the way water is redistributed, that is from source to sink areas, and therefore prescribed by the hydrologic connectivity of the landscape. Recent studies have shown that hydrologic connectivity is highly dynamic and linked to the coevolution of geomorphic, soil and vegetation structures at a variety of spatial and temporal scales. This study investigates the effect of evolving soil depths on hydrologic connectivity using a modelling framework. The focus is on Australian semiarid hillslopes with patterned vegetation that result from coevolving landforms, soils, water redistribution, and vegetation patterns. We present and analyse results from simulations using a coupled landform evolution-dynamic vegetation model, which includes a soil depth evolution module and accounts for soil production and sediment erosion and deposition processes. We analyse the effect of soils depths on surface connectivity for a range of biotic (plant functional type strategies) and abiotic (slope and erodibility) conditions. The analysis shows that different plant functional types, through their varying facilitation strategies, have a profound effect on soils depths and therefore affect hydrologic connectivity and soil moisture patterns. This interplay becomes particularly important for systems that coevolve to have very shallow soils. In this case soil depth becomes the key factor prescribing surface connectivity and available soil moisture for plants, which affect the recovery of the system after disturbance. Conditions for the existence of threshold behaviour for which small perturbations can trigger a sudden increase in hydrologic connectivity, reduced soil moisture availability and decrease in productivity leading to degraded states are investigated. Critical

  14. Hydrologic conditions in urban Miami-Dade County, Florida, and the effect of groundwater pumpage and increased sea level on canal leakage and regional groundwater flow

    USGS Publications Warehouse

    Hughes, Joseph D.; White, Jeremy T.

    2014-01-01

    The model was designed specifically to evaluate the effect of groundwater pumpage on canal leakage at the surface-water-basin scale and thus may not be appropriate for (1) predictions that are dependent on data not included in the calibration process (for example, subdaily simulation of high-intensity events and travel times) and (or) (2) hydrologic conditions that are substantially different from those during the calibration and verification periods. The reliability of the model is limited by the conceptual model of the surface-water and groundwater system, the spatial distribution of physical properties, the scale and discretization of the system, and specified boundary conditions. Some of the model limitations are manifested in model errors. Despite these limitations, however, the model represents the complexities of the interconnected surface-water and groundwater systems that affect how the systems respond to groundwater pumpage, sea-level rise, and other hydrologic stresses. The model also quantifies the relative effects of groundwater pumpage and sea-level rise on the surface-water and groundwater systems.

  15. Short-term Hydropower Reservoir Operations in Chile's Central Interconnected System: Tradeoffs between Hydrologic Alteration and Economic Performance

    NASA Astrophysics Data System (ADS)

    Olivares, M. A.

    2011-12-01

    Hydropower accounts for about 50% of the installed capacity in Chile's Central Interconnected System (CIS) and new developments are envisioned in the near future. Large projects involving reservoirs are perceived negatively by the general public. In terms of operations, hydropower scheduling takes place at monthly, weekly, daily and hourly intervals, and operations at each level affect different environmental processes. Due to its ability to quickly and inexpensively respond to short-term changes in demand, hydropower reservoirs often are operated to provide power during periods of peak demand. This operational scheme, known as hydropeaking, changes the hydrologic regime by altering the rate and frequency of changes in flow magnitude on short time scales. To mitigate impacts on downstream ecosystems, operational constraints -typically minimum instream flows and maximum ramping rates- are imposed on hydropower plants. These operational restrictions limit reduce operational flexibility and can reduce the economic value of energy generation by imposing additional costs on the operation of interconnected power systems. Methods to predict the degree of hydrologic alteration rely on statistical analyses of instream flow time series. Typically, studies on hydrologic alteration use historical operational records for comparison between pre- and post-dam conditions. Efforts to assess hydrologic alteration based on future operational schemes of reservoirs are scarce. This study couples two existing models: a mid-term operations planning and a short-term economic dispatch to simulate short-term hydropower reservoir operations under different future scenarios. Scenarios of possible future configurations of the Chilean CIS are defined with emphasis on the introduction of non-conventional renewables (particularly wind energy) and large hydropower projects in Patagonia. Both models try to reproduce the actual decision making process in the Chilean Central Interconnected System

  16. Wetland Hydrology

    EPA Science Inventory

    This chapter discusses the state of the science in wetland hydrology by touching upon the major hydraulic and hydrologic processes in these complex ecosystems, their measurement/estimation techniques, and modeling methods. It starts with the definition of wetlands, their benefit...

  17. The impact of hydrologic segmentation on the Critical Zone water fluxes of headwater catchments

    NASA Astrophysics Data System (ADS)

    Gutierrez-Jurado, H. A.; Dominguez, M.; Guan, H.

    2017-12-01

    Headwater catchments are usually located on areas with complex terrain, where variability in aspect and microclimate give rise to contrasting vegetation cover and soil properties. This fine-scale variability in land surface conditions within a catchment is usually overlooked in hydrologic models, and the resulting differences in hydrologic dynamics across the slopes neglected. In this work we evaluate the impact of the differential hydrologic response, or as we define it here, "hydrologic segmentation" on the partition of water fluxes of contrasting slopes within a series of headwater catchments across a latitudinal gradient. Our aim is to investigate the effect of hydrologically segmenting the slopes of headwater catchments as a function of their unique aspect-vegetation-soils associations, on the water fluxes of the catchments and their potential consequences on the water balance at a regional scale. Using a distributed hydrologic model and data from a series of catchments with varying land cover and climatic conditions, we run a set of simulations with and without hydrologic segmentation to assess the effect of changing the architecture of the top part of the critical zone on the evaporation, transpiration, infiltration and runoff fluxes of each catchment slope. We calibrate and compare the simulation results with observations from a network of hydrologic sensors and independent field estimates of the various water fluxes. Our results suggest that hydrologic segmentation will significantly affect both the timing and partition of evapotranspiration fluxes with direct impacts on soil moisture residence times and the potential for deep infiltration and aquifer recharge.

  18. Watershed memory at the Coweeta Hydrologic Laboratory: the effect of past precipitation and storage on hydrologic response

    Treesearch

    Fabian Nippgen; Brian L. McGlynn; Ryan E. Emanuel; James M. Vose

    2016-01-01

    The rainfall-runoff response of watersheds is affected by the legacy of past hydroclimatic conditions. We examined how variability in precipitation affected streamflow using 21 years of daily streamflow and precipitation data from five watersheds at the Coweeta Hydrologic Laboratory in southwestern North Carolina, USA. The gauged watersheds contained both...

  19. Glacier loss and emerging hydrologic vulnerabilities in the Peruvian Andes

    NASA Astrophysics Data System (ADS)

    Mark, B. G.; McKenzie, J. M.; Baraer, M.; Lagos, P.; Lautz, L.; Carey, M.; Bury, J.; Crumley, R.; Wigmore, O.; Somers, L. D.

    2015-12-01

    Accelerating glacier recession in the tropical Andes is transforming downstream hydrology, while increasing demands for water by end-users (even beyond the watershed limits) is complicating the assessment of vulnerability. Future scenarios of hydro-climatic vulnerability require a better understanding of coupled hydrologic and human systems, involving both multiscale process studies and more robust models of glacier-climate interactions. We synthesize research in two proglacial valleys of glacierized mountain ranges in different regions of Peru that are both in proximity to growing water usage from urban sectors, agriculture, hydroelectric generation, and mining. In both the Santa River watershed draining the Cordillera Blanca and the Shullcas River watershed below Hyuatapallana Mountain in Junin, glaciers have receded over 25% since the 1980s. Historical runoff and glacier data, combined with glacier-climate modeling, show a long-term decrease in discharge resulting from a net loss of stored water. We find evidence that this altered hydrology is transforming proglacial wetland ecology and water quality, even while water resource use has intensified. Beyond glaciers, our results show that over 60% of the dry season base flow in each watershed is groundwater sourced from heterogeneous aquifers. Municipal water supply in Huancayo already relies on 18 groundwater wells. Perceptions of water availability and actual water use practices remain relatively divorced from the actual water resources provided from each mountain range. Critical changes in glacier volume and water supply are not perceived or acknowledged consistently amongst different water users, nor reflected in water management decisions. In order to identify, understand, model, and adapt to climate-glacier-water changes, it is vital to integrate the analysis of water availability and groundwater processes (the domain of hydrologists) with that of water use (the focus for social scientists). Attention must be

  20. Actual measurement, hygrothermal response experiment and growth prediction analysis of microbial contamination of central air conditioning system in Dalian, China

    PubMed Central

    Lv, Yang; Hu, Guangyao; Wang, Chunyang; Yuan, Wenjie; Wei, Shanshan; Gao, Jiaoqi; Wang, Boyuan; Song, Fangchao

    2017-01-01

    The microbial contamination of central air conditioning system is one of the important factors that affect the indoor air quality. Actual measurement and analysis were carried out on microbial contamination in central air conditioning system at a venue in Dalian, China. Illumina miseq method was used and three fungal samples of two units were analysed by high throughput sequencing. Results showed that the predominant fungus in air conditioning unit A and B were Candida spp. and Cladosporium spp., and two fungus were further used in the hygrothermal response experiment. Based on the data of Cladosporium in hygrothermal response experiment, this paper used the logistic equation and the Gompertz equation to fit the growth predictive model of Cladosporium genera in different temperature and relative humidity conditions, and the square root model was fitted based on the two environmental factors. In addition, the models were carried on the analysis to verify the accuracy and feasibility of the established model equation. PMID:28367963

  1. Actual measurement, hygrothermal response experiment and growth prediction analysis of microbial contamination of central air conditioning system in Dalian, China.

    PubMed

    Lv, Yang; Hu, Guangyao; Wang, Chunyang; Yuan, Wenjie; Wei, Shanshan; Gao, Jiaoqi; Wang, Boyuan; Song, Fangchao

    2017-04-03

    The microbial contamination of central air conditioning system is one of the important factors that affect the indoor air quality. Actual measurement and analysis were carried out on microbial contamination in central air conditioning system at a venue in Dalian, China. Illumina miseq method was used and three fungal samples of two units were analysed by high throughput sequencing. Results showed that the predominant fungus in air conditioning unit A and B were Candida spp. and Cladosporium spp., and two fungus were further used in the hygrothermal response experiment. Based on the data of Cladosporium in hygrothermal response experiment, this paper used the logistic equation and the Gompertz equation to fit the growth predictive model of Cladosporium genera in different temperature and relative humidity conditions, and the square root model was fitted based on the two environmental factors. In addition, the models were carried on the analysis to verify the accuracy and feasibility of the established model equation.

  2. The application of remote sensing to the development and formulation of hydrologic planning models

    NASA Technical Reports Server (NTRS)

    Fowler, T. R.; Castruccio, P. A.; Loats, H. L., Jr.

    1977-01-01

    The development of a remote sensing model and its efficiency in determining parameters of hydrologic models are reviewed. Procedures for extracting hydrologic data from LANDSAT imagery, and the visual analysis of composite imagery are presented. A hydrologic planning model is developed and applied to determine seasonal variations in watershed conditions. The transfer of this technology to a user community and contract arrangements are discussed.

  3. Watersheds, ecoregions and hydrologic units: the appropriate use of each for research and environmental management decisions

    Treesearch

    James Glover; James Omernik; Robert Hughes; Glenn Griffith; Marc Weber

    2016-01-01

    It has long been recognized that conditions at a point on a stream are highly dependent on conditions upgradient within the topographic watershed. The hydrologic unit (HU) system has provided a useful set of nationally consistent, hydrologically based polygons that has allowed for the generalization and tabulation of various conditions within the stream and its valley...

  4. Teaching the right hydrology with minimum resources in Ethiopia

    NASA Astrophysics Data System (ADS)

    Steenhuis, Tammo; Collick, Amy; Wondie, Ayalew; Jemberu, Tsehai

    2010-05-01

    This presentation will highlight our experience in teaching 19 Master's students from diverse backgrounds hydrology and watershed management in Ethiopia. Although the program was based at Bahir Dar University on the shores of Lake Tana in Ethiopia, the students received an US degree. The goal was to train professionals who can help to institute more effective and sustainable watershed management practices in Ethiopia. Teaching hydrology was a challenge. From the literature and personal observation, it was obvious that the traditional techniques of predicting runoff based on infiltration excess runoff and SCS curve number method were not satisfactory. Saturation excess runoff was more likely. However there was no research to prove that it actually was the case. In class we taught both runoff principles but stressed the saturation excess runoff. It was impossible to convince the students that the techniques that came from the western world be incorrect. For their Masters thesis, eight students did field research on runoff and erosion processes in watershed (some of which has a long record of discharge and sediment data). The students recorded water table heights, measured infiltration rates and determined where most erosion took place in the landscape. Based on this data they modeled the previously observed discharge successful using a saturation excess type model. From these studies we could establish that saturation in the landscape had a great effect on both runoff and sediment losses. As result of the field work, students had changed their mind about the appropriateness of using for example the SCS curve number method in Ethiopian highlands Perhaps the lesson to be learned is that we do not need a lot of funds to teach students the right hydrology. However, there is no substitute for going out in the field and experiencing what the right hydrology is by studying the processes in the landscape itself. By simply teaching in class, students will and cannot accept

  5. Overall uncertainty study of the hydrological impacts of climate change for a Canadian watershed

    NASA Astrophysics Data System (ADS)

    Chen, Jie; Brissette, FrançOis P.; Poulin, Annie; Leconte, Robert

    2011-12-01

    General circulation models (GCMs) and greenhouse gas emissions scenarios (GGES) are generally considered to be the two major sources of uncertainty in quantifying the climate change impacts on hydrology. Other sources of uncertainty have been given less attention. This study considers overall uncertainty by combining results from an ensemble of two GGES, six GCMs, five GCM initial conditions, four downscaling techniques, three hydrological model structures, and 10 sets of hydrological model parameters. Each climate projection is equally weighted to predict the hydrology on a Canadian watershed for the 2081-2100 horizon. The results show that the choice of GCM is consistently a major contributor to uncertainty. However, other sources of uncertainty, such as the choice of a downscaling method and the GCM initial conditions, also have a comparable or even larger uncertainty for some hydrological variables. Uncertainties linked to GGES and the hydrological model structure are somewhat less than those related to GCMs and downscaling techniques. Uncertainty due to the hydrological model parameter selection has the least important contribution among all the variables considered. Overall, this research underlines the importance of adequately covering all sources of uncertainty. A failure to do so may result in moderately to severely biased climate change impact studies. Results further indicate that the major contributors to uncertainty vary depending on the hydrological variables selected, and that the methodology presented in this paper is successful at identifying the key sources of uncertainty to consider for a climate change impact study.

  6. The importance of hydrological uncertainty assessment methods in climate change impact studies

    NASA Astrophysics Data System (ADS)

    Honti, M.; Scheidegger, A.; Stamm, C.

    2014-08-01

    Climate change impact assessments have become more and more popular in hydrology since the middle 1980s with a recent boost after the publication of the IPCC AR4 report. From hundreds of impact studies a quasi-standard methodology has emerged, to a large extent shaped by the growing public demand for predicting how water resources management or flood protection should change in the coming decades. The "standard" workflow relies on a model cascade from global circulation model (GCM) predictions for selected IPCC scenarios to future catchment hydrology. Uncertainty is present at each level and propagates through the model cascade. There is an emerging consensus between many studies on the relative importance of the different uncertainty sources. The prevailing perception is that GCM uncertainty dominates hydrological impact studies. Our hypothesis was that the relative importance of climatic and hydrologic uncertainty is (among other factors) heavily influenced by the uncertainty assessment method. To test this we carried out a climate change impact assessment and estimated the relative importance of the uncertainty sources. The study was performed on two small catchments in the Swiss Plateau with a lumped conceptual rainfall runoff model. In the climatic part we applied the standard ensemble approach to quantify uncertainty but in hydrology we used formal Bayesian uncertainty assessment with two different likelihood functions. One was a time series error model that was able to deal with the complicated statistical properties of hydrological model residuals. The second was an approximate likelihood function for the flow quantiles. The results showed that the expected climatic impact on flow quantiles was small compared to prediction uncertainty. The choice of uncertainty assessment method actually determined what sources of uncertainty could be identified at all. This demonstrated that one could arrive at rather different conclusions about the causes behind

  7. Mechanical and Hydrologic Effects of Riparian Vegetation on Critical Conditions for Streambank Stability: Upper Truckee River, California

    NASA Astrophysics Data System (ADS)

    Simon, A.; Pollen, N. L.; Langendoen, E. J.

    2005-05-01

    The Upper Truckee River is the single largest contributor of sediment to Lake Tahoe with a large proportion of the suspended-sediment load coming from eroding streambanks. Recent advances in quantifying streambank processes highlight the combined effects of hydraulic erosion at the bank toe with geotechnical stability of the upper part of the bank and resulted in the development of a deterministic model of bank-toe erosion and streambank stability (Simon et al., 1999). The use of riparian vegetation in schemes of bank stabilization and stream restoration have become popular but are often implemented on a trial and error basis because of a lack of quantifiable information on the mechanical and hydrologic effects of vegetation on bank stability. This study, conducted along an unstable reach of the Upper Truckee River, combines field data with numerical modeling to quantify (1) hydraulic and geotechnical driving and resisting forces that control bank failures, (2) the mechanical and hydrologic effects of vegetation on shear strength, and (3) the critical conditions for bank stability with and without indigenous riparian species. Tests were conducted using three top-bank treatments: bare (control), Lemmon's willow, and young Lodgepole pine. The susceptibility of the bank toe to erosion by hydraulic forces was quantified by conducting submerged jet tests of in situ material to determine the erodibility coefficient (k) and the critical shear stress of the material. Drained, shear-strength parameters (cohesion and friction angle) of the banks were determined from borehole shear tests at various depths. Pore-water pressure and matric suction were monitored at three depths (30, 100, and 150 cm) with digital tensiometers to calculate changes in apparent cohesion for the period (September 2003 - May 2004) and to differentiate between the hydrologic effects of the two species. Root reinforcement of the two species was quantified by determining the relation between root

  8. One-Water Hydrologic Flow Model (MODFLOW-OWHM)

    USGS Publications Warehouse

    Hanson, Randall T.; Boyce, Scott E.; Schmid, Wolfgang; Hughes, Joseph D.; Mehl, Steffen W.; Leake, Stanley A.; Maddock, Thomas; Niswonger, Richard G.

    2014-01-01

    -constrained conditions. From large- to small-scale settings, MF-OWHM has the unique set of capabilities to simulate and analyze historical, present, and future conjunctive-use conditions. MF-OWHM is especially useful for the analysis of agricultural water use where few data are available for pumpage, land use, or agricultural information. The features presented in this IHM include additional linkages with SFR, SWR, Drain-Return (DRT), Multi-Node Wells (MNW1 and MNW2), and Unsaturated-Zone Flow (UZF). Thus, MF-OWHM helps to reduce the loss of water during simulation of the hydrosphere and helps to account for “all of the water everywhere and all of the time.” In addition to groundwater, surface-water, and landscape budgets, MF-OWHM provides more options for observations of land subsidence, hydraulic properties, and evapotranspiration (ET) than previous models. Detailed landscape budgets combined with output of estimates of actual evapotranspiration facilitates linkage to remotely sensed observations as input or as additional observations for parameter estimation or water-use analysis. The features of FMP have been extended to allow for temporally variable water-accounting units (farms) that can be linked to land-use models and the specification of both surface-water and groundwater allotments to facilitate sustainability analysis and connectivity to the Groundwater Management Process (GWM). An example model described in this report demonstrates the application of MF-OWHM with the addition of land subsidence and a vertically deforming mesh, delayed recharge through an unsaturated zone, rejected infiltration in a riparian area, changes in demand caused by deficiency in supply, and changes in multi-aquifer pumpage caused by constraints imposed through the Farm Process and the MNW2 Package, and changes in surface water such as runoff, streamflow, and canal flows through SFR and SWR linkages.

  9. Improving Hydrological Simulations by Incorporating GRACE Data for Parameter Calibration

    NASA Astrophysics Data System (ADS)

    Bai, P.

    2017-12-01

    Hydrological model parameters are commonly calibrated by observed streamflow data. This calibration strategy is questioned when the modeled hydrological variables of interest are not limited to streamflow. Well-performed streamflow simulations do not guarantee the reliable reproduction of other hydrological variables. One of the reasons is that hydrological model parameters are not reasonably identified. The Gravity Recovery and Climate Experiment (GRACE) satellite-derived total water storage change (TWSC) data provide an opportunity to constrain hydrological model parameterizations in combination with streamflow observations. We constructed a multi-objective calibration scheme based on GRACE-derived TWSC and streamflow observations, with the aim of improving the parameterizations of hydrological models. The multi-objective calibration scheme was compared with the traditional single-objective calibration scheme, which is based only on streamflow observations. Two monthly hydrological models were employed on 22 Chinese catchments with different hydroclimatic conditions. The model evaluation was performed using observed streamflows, GRACE-derived TWSC, and evapotranspiraiton (ET) estimates from flux towers and from the water balance approach. Results showed that the multi-objective calibration provided more reliable TWSC and ET simulations without significant deterioration in the accuracy of streamflow simulations than the single-objective calibration. In addition, the improvements of TWSC and ET simulations were more significant in relatively dry catchments than in relatively wet catchments. This study highlights the importance of including additional constraints besides streamflow observations in the parameter estimation to improve the performances of hydrological models.

  10. Hydrologic impacts of thawing permafrost—A review

    USGS Publications Warehouse

    Walvoord, Michelle Ann; Kurylyk, Barret L.

    2016-01-01

    Where present, permafrost exerts a primary control on water fluxes, flowpaths, and distribution. Climate warming and related drivers of soil thermal change are expected to modify the distribution of permafrost, leading to changing hydrologic conditions, including alterations in soil moisture, connectivity of inland waters, streamflow seasonality, and the partitioning of water stored above and below ground. The field of permafrost hydrology is undergoing rapid advancement with respect to multiscale observations, subsurface characterization, modeling, and integration with other disciplines. However, gaining predictive capability of the many interrelated consequences of climate change is a persistent challenge due to several factors. Observations of hydrologic change have been causally linked to permafrost thaw, but applications of process-based models needed to support and enhance the transferability of empirical linkages have often been restricted to generalized representations. Limitations stem from inadequate baseline permafrost and unfrozen hydrogeologic characterization, lack of historical data, and simplifications in structure and process representation needed to counter the high computational demands of cryohydrogeologic simulations. Further, due in part to the large degree of subsurface heterogeneity of permafrost landscapes and the nonuniformity in thaw patterns and rates, associations between various modes of permafrost thaw and hydrologic change are not readily scalable; even trajectories of change can differ. This review highlights promising advances in characterization and modeling of permafrost regions and presents ongoing research challenges toward projecting hydrologic and ecologic consequences of permafrost thaw at time and spatial scales that are useful to managers and researchers.

  11. Hydrologic Landscape Classification to Estimate Bristol Bay Watershed Hydrology

    EPA Science Inventory

    The use of hydrologic landscapes has proven to be a useful tool for broad scale assessment and classification of landscapes across the United States. These classification systems help organize larger geographical areas into areas of similar hydrologic characteristics based on cl...

  12. On the Usefulness of Hydrologic Landscapes for Hydrologic Modeling and Water Management

    EPA Science Inventory

    Hydrologic Landscapes (HLs) are units that can be used in aggregate to describe the watershed-scale hydrologic response of an area through use of physical and climatic properties. The HL assessment unit is a useful classification tool to relate and transfer hydrologically meaning...

  13. On the Usefulness of Hydrologic Landscapes on Hydrologic Model calibration and Selection

    EPA Science Inventory

    Hydrologic Landscapes (HLs) are units that can be used in aggregate to describe the watershed-scale hydrologic response of an area through use of physical and climatic properties. The HL assessment unit is a useful classification tool to relate and transfer hydrologically meaning...

  14. Plot-scale field experiment of surface hydrologic processes with EOS implications

    NASA Technical Reports Server (NTRS)

    Laymon, Charles A.; Macari, Emir J.; Costes, Nicholas C.

    1992-01-01

    Plot-scale hydrologic field studies were initiated at NASA Marshall Space Flight Center to a) investigate the spatial and temporal variability of surface and subsurface hydrologic processes, particularly as affected by vegetation, and b) develop experimental techniques and associated instrumentation methodology to study hydrologic processes at increasingly large spatial scales. About 150 instruments, most of which are remotely operated, have been installed at the field site to monitor ground atmospheric conditions, precipitation, interception, soil-water status, and energy flux. This paper describes the nature of the field experiment, instrumentation and sampling rationale, and presents preliminary findings.

  15. HYDROLOGIC MODEL UNCERTAINTY ASSOCIATED WITH SIMULATING FUTURE LAND-COVER/USE SCENARIOS: A RETROSPECTIVE ANALYSIS

    EPA Science Inventory

    GIS-based hydrologic modeling offers a convenient means of assessing the impacts associated with land-cover/use change for environmental planning efforts. Alternative future scenarios can be used as input to hydrologic models and compared with existing conditions to evaluate pot...

  16. Impact of vegetation dynamics on hydrological processes in a semi-arid basin by using a land surface-hydrology coupled model

    NASA Astrophysics Data System (ADS)

    Jiao, Yang; Lei, Huimin; Yang, Dawen; Huang, Maoyi; Liu, Dengfeng; Yuan, Xing

    2017-08-01

    Land surface models (LSMs) are widely used to understand the interactions between hydrological processes and vegetation dynamics, which is important for the attribution and prediction of regional hydrological variations. However, most LSMs have large uncertainties in their representations of eco-hydrological processes due to deficiencies in hydrological parameterizations. In this study, the Community Land Model version 4 (CLM4) LSM was modified with an advanced runoff generation and flow routing scheme, resulting in a new land surface-hydrology coupled model, CLM-GBHM. Both models were implemented in the Wudinghe River Basin (WRB), which is a semi-arid basin located in the middle reaches of the Yellow River, China. Compared with CLM, CLM-GBHM increased the Nash Sutcliffe efficiency for daily river discharge simulation (1965-1969) from -0.03 to 0.23 and reduced the relative bias in water table depth simulations (2010-2012) from 32.4% to 13.4%. The CLM-GBHM simulations with static, remotely sensed and model-predicted vegetation conditions showed that the vegetation in the WRB began to recover in the 2000s due to the Grain for Green Program but had not reached the same level of vegetation cover as regions in natural eco-hydrological equilibrium. Compared with a simulation using remotely sensed vegetation cover, the simulation with a dynamic vegetation model that considers only climate-induced change showed a 10.3% increase in evapotranspiration, a 47.8% decrease in runoff, and a 62.7% and 71.3% deceleration in changing trend of the outlet river discharge before and after the year 2000, respectively. This result suggests that both natural and anthropogenic factors should be incorporated in dynamic vegetation models to better simulate the eco-hydrological cycle.

  17. Using a Budyko Derived Index to Evaluate the Internal Hydrological Variability of Catchments in Complex Terrain

    NASA Astrophysics Data System (ADS)

    Dominguez, M.

    2017-12-01

    Headwater catchments in complex terrain typically exhibit significant variations in microclimatic conditions across slopes. This microclimatic variability in turn, modifies land surface properties presumably altering the hydrologic dynamics of these catchments. The extent to which differences in microclimate and land cover dictate the partition of water and energy fluxes within a catchment is still poorly understood. In this study, we attempt to do an assessment of the effects of aspect, elevation and latitude (which are the principal factors that define microclimate conditions) on the hydrologic behavior of the hillslopes within catchments with complex terrain. Using a distributed hydrologic model on a number of catchments at different latitudes, where data is available for calibration and validation, we estimate the different components of the water balance to obtain the aridity index (AI = PET/P) and the evaporative index (EI = AET/P) of each slope for a number of years. We use Budyko's curve as a framework to characterize the inter-annual variability in the hydrologic response of the hillslopes in the studied catchments, developing a hydrologic sensitivity index (HSi) based on the relative change in Budyko's curve components (HSi=ΔAI/ΔEI). With this method, when the HSi values of a given hillslope are larger than 1 the hydrologic behavior of that part of the catchment is considered sensitive to changes in climatic conditions, while values approaching 0 would indicate the opposite. We use this approach as a diagnostic tool to discern the effect of aspect, elevation, and latitude on the hydrologic regime of the slopes in complex terrain catchments and to try to explain observed patterns of land cover conditions on these types of catchments.

  18. Changing hydrological conditions in the Po basin under global warming.

    PubMed

    Coppola, Erika; Verdecchia, Marco; Giorgi, Filippo; Colaiuda, Valentina; Tomassetti, Barbara; Lombardi, Annalina

    2014-09-15

    The Po River is a crucial resource for the Italian economy, since 40% of the gross domestic product comes from this area. It is thus crucial to quantify the impact of climate change on this water resource in order to plan for future water use. In this paper a mini ensemble of 8 hydrological simulations is completed from 1960 to 2050 under the A1B emission scenario, by using the output of two regional climate models as input (REMO and RegCM) at two different resolutions (25 km-10 km and 25 km-3 km). The river discharge at the outlet point of the basin shows a change in the spring peak of the annual cycle, with a one month shift from May to April. This shift is entirely due to the change in snowmelt timing which drives most of the discharge during this period. Two other important changes are an increase of discharge in the wintertime and a decrease in the fall from September to November. The uncertainty associated with the winter change is larger compared to that in the fall. The spring shift and the fall decrease of discharge imply an extension of the hydrological dry season and thus an increase in water stress over the basin. The spatial distributions of the discharge changes are in agreement with what is observed at the outlet point and the uncertainty associated with these changes is proportional to the amplitude of the signal. The analysis of the changes in the anomaly distribution of discharge shows that both the increases and decreases in seasonal discharge are tied to the changes in the tails of the distribution, i.e. to the increase or decrease of extreme events. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. 1990 Hydrology Prize awarded

    NASA Astrophysics Data System (ADS)

    The International Association of Hydrological Sciences awarded its 1990 International Hydrology Prize to Z. Kaczmarek of Warsaw, Poland. The award was presented on March 16 in Paris, France, during Unesco's Commemorative Symposium on 25 Years of the International Hydrological Decade/International Hydrological Program.The IAHS International Hydrology Prize, a silver medal, was first approved in 1979 as an annual award to a person who has made an outstanding contribution to hydrology and gives the candidate universal recognition of his international stature. The IAHS national committees give nominations to the IAHS Secretary General for consideration by a nominating committee, which consists of the IAHS president, the first and second vice presidents and representatives of Unesco and the World Meteorological Organization. The citation for the award to Kaczmarek, which was given by IAHS president Vit Klemes, follows.

  20. Do We Know the Actual Magnetopause Position for Typical Solar Wind Conditions?

    NASA Technical Reports Server (NTRS)

    Samsonov, A. A.; Gordeev, E.; Tsyganenko, N. A.; Safrankova, J.; Nemecek, Z.; Simunek, J.; Sibeck, D. G.; Toth, G.; Merkin, V. G.; Raeder, J.

    2016-01-01

    We compare predicted magnetopause positions at the subsolar point and four reference points in the terminator plane obtained from several empirical and numerical MHD (magnetohydrodynamics) models. Empirical models using various sets of magnetopause crossings and making different assumptions about the magnetopause shape predict significantly different magnetopause positions (with a scatter greater than 1 Earth radius (R (sub E)) even at the subsolar point. Axisymmetric magnetopause models cannot reproduce the cusp indentations or the changes related to the dipole tilt effect, and most of them predict the magnetopause closer to the Earth than non axisymmetric models for typical solar wind conditions and zero tilt angle. Predictions of two global non axisymmetric models do not match each other, and the models need additional verification. MHD models often predict the magnetopause closer to the Earth than the non axisymmetric empirical models, but the predictions of MHD simulations may need corrections for the ring current effect and decreases of the solar wind pressure that occur in the foreshock. Comparing MHD models in which the ring current magnetic field is taken into account with the empirical Lin et al. model, we find that the differences in the reference point positions predicted by these models are relatively small for B (sub z) equals 0 (note: B (sub z) is when the Earth's magnetic field points north versus Sun's magnetic field pointing south). Therefore, we assume that these predictions indicate the actual magnetopause position, but future investigations are still needed.

  1. Summary of hydrologic data collected during 1974 in Dade County, Florida

    USGS Publications Warehouse

    Hull, J.E.

    1975-01-01

    This report is ninth in a series documenting the annual hydrologic conditions in Dade County, Florida. The hydrologic conditions in Dade County for the 1974 water year (October 1, 1973 to September 30, 1974) except for rainfall are summarized in tables, graphs, and maps. The locations of ground-water data-collection stations are shown in figure 1, rainfall and surface-water stations in figure 2, and water quality sampling stations in figure 43. As shown, the network of stations is extensive. The long-term records (1940 to 1974) furnish background information vital in the analysis of effects of water-management practices.

  2. Impacts of fire on hydrology and erosion in steep mountain big sagebrush communities

    Treesearch

    Frederick B. Pierson; Peter R. Robichaud; Kenneth E. Spaeth; Corey A. Moffet

    2003-01-01

    Wildfire is an important ecological process and management issue on western rangelands. Major unknowns associated with wildfire are its affects on vegetation and soil conditions that influence hydrologic processes including infiltration, surface runoff, erosion, sediment transport, and flooding. Post wildfire hydrologic response was studied in big sagebrush plant...

  3. Toward seamless hydrologic predictions across spatial scales

    NASA Astrophysics Data System (ADS)

    Samaniego, Luis; Kumar, Rohini; Thober, Stephan; Rakovec, Oldrich; Zink, Matthias; Wanders, Niko; Eisner, Stephanie; Müller Schmied, Hannes; Sutanudjaja, Edwin H.; Warrach-Sagi, Kirsten; Attinger, Sabine

    2017-09-01

    Land surface and hydrologic models (LSMs/HMs) are used at diverse spatial resolutions ranging from catchment-scale (1-10 km) to global-scale (over 50 km) applications. Applying the same model structure at different spatial scales requires that the model estimates similar fluxes independent of the chosen resolution, i.e., fulfills a flux-matching condition across scales. An analysis of state-of-the-art LSMs and HMs reveals that most do not have consistent hydrologic parameter fields. Multiple experiments with the mHM, Noah-MP, PCR-GLOBWB, and WaterGAP models demonstrate the pitfalls of deficient parameterization practices currently used in most operational models, which are insufficient to satisfy the flux-matching condition. These examples demonstrate that J. Dooge's 1982 statement on the unsolved problem of parameterization in these models remains true. Based on a review of existing parameter regionalization techniques, we postulate that the multiscale parameter regionalization (MPR) technique offers a practical and robust method that provides consistent (seamless) parameter and flux fields across scales. Herein, we develop a general model protocol to describe how MPR can be applied to a particular model and present an example application using the PCR-GLOBWB model. Finally, we discuss potential advantages and limitations of MPR in obtaining the seamless prediction of hydrological fluxes and states across spatial scales.

  4. Predicting the natural flow regime: Models for assessing hydrological alteration in streams

    USGS Publications Warehouse

    Carlisle, D.M.; Falcone, J.; Wolock, D.M.; Meador, M.R.; Norris, R.H.

    2009-01-01

    Understanding the extent to which natural streamflow characteristics have been altered is an important consideration for ecological assessments of streams. Assessing hydrologic condition requires that we quantify the attributes of the flow regime that would be expected in the absence of anthropogenic modifications. The objective of this study was to evaluate whether selected streamflow characteristics could be predicted at regional and national scales using geospatial data. Long-term, gaged river basins distributed throughout the contiguous US that had streamflow characteristics representing least disturbed or near pristine conditions were identified. Thirteen metrics of the magnitude, frequency, duration, timing and rate of change of streamflow were calculated using a 20-50 year period of record for each site. We used random forests (RF), a robust statistical modelling approach, to develop models that predicted the value for each streamflow metric using natural watershed characteristics. We compared the performance (i.e. bias and precision) of national- and regional-scale predictive models to that of models based on landscape classifications, including major river basins, ecoregions and hydrologic landscape regions (HLR). For all hydrologic metrics, landscape stratification models produced estimates that were less biased and more precise than a null model that accounted for no natural variability. Predictive models at the national and regional scale performed equally well, and substantially improved predictions of all hydrologic metrics relative to landscape stratification models. Prediction error rates ranged from 15 to 40%, but were 25% for most metrics. We selected three gaged, non-reference sites to illustrate how predictive models could be used to assess hydrologic condition. These examples show how the models accurately estimate predisturbance conditions and are sensitive to changes in streamflow variability associated with long-term land-use change. We also

  5. Restoring the hydrologic response to pre-developed conditions in an urbanized headwater catchment: Reality or utopia?

    NASA Astrophysics Data System (ADS)

    Wright, O.; Istanbulluoglu, E.

    2012-12-01

    The conversion of forested areas to impervious surfaces, lawns and pastures alters the natural hydrology of an area by increasing the flashiness of stormwater generated runoff, resulting in increased streamflow peaks and volumes. Currently, most of the stormwater from developed areas in the Puget Sound region remains uncontrolled. The lack of adequate stormwater facilities along with increasing urbanization and population growth illustrates the importance of understanding urban watershed behavior and best management practices (BMPs) that improve changes in hydrology. In this study, we developed a lumped urban ecohydrology model that represents vegetation dynamics, connects pervious and impervious surfaces and implements various BMP scenarios. The model is implemented in an urban headwater subcatchment located in the Newaukum Creek Basin. We evaluate the hydrologic impact of controlling runoff at the source and disconnecting impervious surfaces from the storm drain using rain barrels and bioretention cells. BMP scenarios consider the basin's land use/land coverage, the response of different impervious surface types, the potential for BMP placement, the size and drainage area for BMPs, and the mitigation needs to meet in-stream flow goals.

  6. Temporal Variation and Scaling of Hydrological Variables in a Typical Watershed

    NASA Astrophysics Data System (ADS)

    Yang, C.; Zhang, Y. K.; Liang, X.; Liu, J.

    2016-12-01

    Temporal variations of the main hydrological variables over 16 years were systematically investigated based on the results from an integrated hydrological modeling at the Sagehen Creek Watershed in northern Sierra Nevada. Temporal scaling of these variables and damping effects of the hydrological system as well as its subsystems, i.e., the land surface, unsaturated zone, and saturated zone, were analyzed with spectral analyses. It was found that the hydrological system may act as a cascade of hierarchical fractal filters which sequentially transfer a non-fractal or less correlated fractal hydrological signal to a more correlated fractal signal. Temporal scaling of infiltration (I), actual evapotraspiration (ET), recharge (R), baseflow (BF), streamflow (SF) exist and the temporal autocorrelation of these variables increase as water moves through the system. The degree of the damping effect of the subsystems is different and is strongest in the unsaturated zone compared with that of the land surface and saturated zone. The temporal scaling of the groundwater levels (h) also exists and is strongly affected by the river: the temporal autocorrelation of h near the river is similar to that of the river stage fluctuations and increases away from the river. There is a break in the temporal scaling of h near the river at low frequencies due to the effect of the river. Temporal variations of the soil moisture (θ) is more complicated: the value of the scaling exponent (β) for θ increases with depth as water moves downwards and its high-frequency fluctuations are damped by the unsaturated zone. The temporal fluctuations of precipitation (P) and I are fractional Gauss noise (fGn), those of ET, R, BF, and SF are fractional Brownian motion (fBm), and those of h away from the river are 2nd-order fBm based on the values of β obtained in this study. Keywords: Temporal variations, Scaling, Damping effect, Hydrological system.

  7. On the appropriate definition of soil profile configuration and initial conditions for land surface-hydrology models in cold regions

    NASA Astrophysics Data System (ADS)

    Sapriza-Azuri, Gonzalo; Gamazo, Pablo; Razavi, Saman; Wheater, Howard S.

    2018-06-01

    Arctic and subarctic regions are amongst the most susceptible regions on Earth to global warming and climate change. Understanding and predicting the impact of climate change in these regions require a proper process representation of the interactions between climate, carbon cycle, and hydrology in Earth system models. This study focuses on land surface models (LSMs) that represent the lower boundary condition of general circulation models (GCMs) and regional climate models (RCMs), which simulate climate change evolution at the global and regional scales, respectively. LSMs typically utilize a standard soil configuration with a depth of no more than 4 m, whereas for cold, permafrost regions, field experiments show that attention to deep soil profiles is needed to understand and close the water and energy balances, which are tightly coupled through the phase change. To address this gap, we design and run a series of model experiments with a one-dimensional LSM, called CLASS (Canadian Land Surface Scheme), as embedded in the MESH (Modélisation Environmentale Communautaire - Surface and Hydrology) modelling system, to (1) characterize the effect of soil profile depth under different climate conditions and in the presence of parameter uncertainty; (2) assess the effect of including or excluding the geothermal flux in the LSM at the bottom of the soil column; and (3) develop a methodology for temperature profile initialization in permafrost regions, where the system has an extended memory, by the use of paleo-records and bootstrapping. Our study area is in Norman Wells, Northwest Territories of Canada, where measurements of soil temperature profiles and historical reconstructed climate data are available. Our results demonstrate a dominant role for parameter uncertainty, that is often neglected in LSMs. Considering such high sensitivity to parameter values and dependency on the climate condition, we show that a minimum depth of 20 m is essential to adequately represent

  8. Hydrologic processes governing near surface saturation of alpine wetlands in the Canadian Rockies

    NASA Astrophysics Data System (ADS)

    Westbrook, C.; Mercer, J.

    2016-12-01

    Alpine wetlands are vital for habitat, biodiversity, carbon cycling and water storage, but little is known about their hydrologic condition. Climate trends toward smaller mountain snowpacks that melt earlier are thought to pose a threat to the continued provision of alpine wetland ecological functions, and their existence, as it is believed they derive their water mainly from snowmelt. Our objective was to determine the hydrologic processes governing near surface saturation in alpine wetlands. We monitored the water table dynamics of three alpine wetlands in contrasting hydrogeomorphic landscape positions for two summers in Banff National Park, Canada. We concurrently monitored water balance components, and analyzed soil properties and source water geochemistry. Despite very different snow conditions between the two study years, water tables remained near the surface and relatively stable in both years, indicating wetlands are more hydrologically buffered from snowpack variations than expected. We did not find convincing evidence of hydrogeomorphic position influencing wetland water table dynamics. Instead, peat thickness seemed to be critical in regulating water table as the wetland with the thickest peat soil (>1 m) maintained water tables closest to the ground surface for the longest period of time. Thicker peat deposits may develop under convergent hydrologic flow path conditions. Our results indicate that alpine wetlands are more resilient to shifting environmental conditions than previously reported.

  9. Hydrologic Drought Decision Support System (HyDroDSS)

    USGS Publications Warehouse

    Granato, Gregory E.

    2014-01-01

    The hydrologic drought decision support system (HyDroDSS) was developed by the U.S. Geological Survey (USGS) in cooperation with the Rhode Island Water Resources Board (RIWRB) for use in the analysis of hydrologic variables that may indicate the risk for streamflows to be below user-defined flow targets at a designated site of interest, which is defined herein as data-collection site on a stream that may be adversely affected by pumping. Hydrologic drought is defined for this study as a period of lower than normal streamflows caused by precipitation deficits and (or) water withdrawals. The HyDroDSS is designed to provide water managers with risk-based information for balancing water-supply needs and aquatic-habitat protection goals to mitigate potential effects of hydrologic drought. This report describes the theory and methods for retrospective streamflow-depletion analysis, rank correlation analysis, and drought-projection analysis. All three methods are designed to inform decisions made by drought steering committees and decisionmakers on the basis of quantitative risk assessment. All three methods use estimates of unaltered streamflow, which is the measured or modeled flow without major withdrawals or discharges, to approximate a natural low-flow regime. Retrospective streamflow-depletion analysis can be used by water-resource managers to evaluate relations between withdrawal plans and the potential effects of withdrawal plans on streams at one or more sites of interest in an area. Retrospective streamflow-depletion analysis indicates the historical risk of being below user-defined flow targets if different pumping plans were implemented for the period of record. Retrospective streamflow-depletion analysis also indicates the risk for creating hydrologic drought conditions caused by use of a pumping plan. Retrospective streamflow-depletion analysis is done by calculating the net streamflow depletions from withdrawals and discharges and applying these depletions

  10. Hydrologic unit maps

    USGS Publications Warehouse

    Seaber, Paul R.; Kapinos, F. Paul; Knapp, George L.

    1987-01-01

    A set of maps depicting approved boundaries of, and numerical codes for, river-basin units of the United States has been developed by the U.S . Geological Survey. These 'Hydrologic Unit Maps' are four-color maps that present information on drainage, culture, hydrography, and hydrologic boundaries and codes of (1) the 21 major water-resources regions and the 222 subregions designated by the U.S . Water Resources Council, (2) the 352 accounting units of the U.S. Geological Survey's National Water Data Network, and (3) the 2,149 cataloging units of the U.S . Geological Survey's 'Catalog of information on Water Data:' The maps are plotted on the Geological Survey State base-map series at a scale of 1 :500,000 and, except for Alaska, depict hydrologic unit boundaries for all drainage basins greater than 700 square miles (1,813 square kilometers). A complete list of all the hydrologic units, along with their drainage areas, their names, and the names of the States or outlying areas in which they reside, is contained in the report. These maps and associated codes provide a standardized base for use by water-resources organizations in locating, storing, retrieving, and exchanging hydrologic data, in indexing and inventorying hydrologic data and information, in cataloging water-data acquisition activities, and in a variety of other applications. Because the maps have undergone extensive review by all principal Federal, regional, and State water-resource agencies, they are widely accepted for use in planning and describing water-use and related land-use activities, and in geographically organizing hydrologic data . Examples of these uses are given in the report . The hydrologic unit codes shown on the maps have been approved as a Federal Information Processing Standard for use by the Federal establishment.

  11. MACHYDRO-90 - The microwave aircraft experiment for hydrology

    NASA Technical Reports Server (NTRS)

    Engman, Edwin T.

    1991-01-01

    MACHYDRO-90 is a multisensor aircraft campaign (MAC) that was held in central Pennsylvania over an eleven day period in July 1990. The emphasis of the campaign was on the microwave measurements of soil moisture, although other aspects of hydrology and microwave-target interactions were also studied. A description is given of the experiment, its organization, and the meteorological conditions during the eleven days. Preliminary results are also presented from PBMR (Push-Broom Microwave Radiometer) and SAR (synthetic aperture radar) measurements of soil moisture. These results are portrayed in the context of the hydrology, which, during this experiment, exhibited dry and wet extremes.

  12. Forecasting seasonal hydrologic response in major river basins

    NASA Astrophysics Data System (ADS)

    Bhuiyan, A. M.

    2014-05-01

    Seasonal precipitation variation due to natural climate variation influences stream flow and the apparent frequency and severity of extreme hydrological conditions such as flood and drought. To study hydrologic response and understand the occurrence of extreme hydrological events, the relevant forcing variables must be identified. This study attempts to assess and quantify the historical occurrence and context of extreme hydrologic flow events and quantify the relation between relevant climate variables. Once identified, the flow data and climate variables are evaluated to identify the primary relationship indicators of hydrologic extreme event occurrence. Existing studies focus on developing basin-scale forecasting techniques based on climate anomalies in El Nino/La Nina episodes linked to global climate. Building on earlier work, the goal of this research is to quantify variations in historical river flows at seasonal temporal-scale, and regional to continental spatial-scale. The work identifies and quantifies runoff variability of major river basins and correlates flow with environmental forcing variables such as El Nino, La Nina, sunspot cycle. These variables are expected to be the primary external natural indicators of inter-annual and inter-seasonal patterns of regional precipitation and river flow. Relations between continental-scale hydrologic flows and external climate variables are evaluated through direct correlations in a seasonal context with environmental phenomenon such as sun spot numbers (SSN), Southern Oscillation Index (SOI), and Pacific Decadal Oscillation (PDO). Methods including stochastic time series analysis and artificial neural networks are developed to represent the seasonal variability evident in the historical records of river flows. River flows are categorized into low, average and high flow levels to evaluate and simulate flow variations under associated climate variable variations. Results demonstrated not any particular method is

  13. The European 2015 drought from a hydrological perspective

    NASA Astrophysics Data System (ADS)

    Laaha, Gregor; Gauster, Tobias; Delus, Claire; Vidal, Jean-Philippe

    2016-04-01

    The year 2015 was hot and dry in many European countries. A timely assessment of its hydrological impacts constitutes a difficult task, because stream flow records are often not available within 2-3 years after recording. Moreover, monitoring is performed on a national or even provincial basis. There are still major barriers of data access, especially for eastern European countries. Wherever data are available, their compatibility poses a major challenge. In two companion papers we summarize a collaborative initiative of members of UNESCO's FRIEND-Water program to perform a timely Pan-European assessment of the 2015 drought. In this second part we analyse the hydrological perspective based on streamflow observations. We first describe the data access strategy and the assessment method. We than present the results consisting of a range of low flow indices calculated for about 800 gauges across Europe. We compare the characteristics of the 2015 drought with the average, long-term conditions, and with the specific conditions of the 2003 drought, which is often used as a worst-case benchmark to gauge future drought events. Overall, the hydrological 2015 drought is characterised by a much smaller spatial extend than the 2003 drought. Extreme streamflows are observed mainly in a band North of the Alps spanning from E-France to Poland. In terms of flow magnitude, Czech, E-Germany and N-Austria were most affected. In this region the low flows often had return periods of 100 years and more, indicating that the event was much more severe than the 2003 event. In terms of deficit volumes, the centre of the event was more oriented towards S-Germany. Based on a detailed assessment of the spatio-temporal characteristics at various scales, we are able to explain the different behaviour in these regions by diverging wetness preconditions in the catchments. This suggest that the sole knowledge of atmospheric indices is not sufficient to characterise hydrological drought events. We

  14. Multimodel hydrological ensemble forecasts for the Baskatong catchment in Canada using the TIGGE database.

    NASA Astrophysics Data System (ADS)

    Tito Arandia Martinez, Fabian

    2014-05-01

    Adequate uncertainty assessment is an important issue in hydrological modelling. An important issue for hydropower producers is to obtain ensemble forecasts which truly grasp the uncertainty linked to upcoming streamflows. If properly assessed, this uncertainty can lead to optimal reservoir management and energy production (ex. [1]). The meteorological inputs to the hydrological model accounts for an important part of the total uncertainty in streamflow forecasting. Since the creation of the THORPEX initiative and the TIGGE database, access to meteorological ensemble forecasts from nine agencies throughout the world have been made available. This allows for hydrological ensemble forecasts based on multiple meteorological ensemble forecasts. Consequently, both the uncertainty linked to the architecture of the meteorological model and the uncertainty linked to the initial condition of the atmosphere can be accounted for. The main objective of this work is to show that a weighted combination of meteorological ensemble forecasts based on different atmospheric models can lead to improved hydrological ensemble forecasts, for horizons from one to ten days. This experiment is performed for the Baskatong watershed, a head subcatchment of the Gatineau watershed in the province of Quebec, in Canada. Baskatong watershed is of great importance for hydro-power production, as it comprises the main reservoir for the Gatineau watershed, on which there are six hydropower plants managed by Hydro-Québec. Since the 70's, they have been using pseudo ensemble forecast based on deterministic meteorological forecasts to which variability derived from past forecasting errors is added. We use a combination of meteorological ensemble forecasts from different models (precipitation and temperature) as the main inputs for hydrological model HSAMI ([2]). The meteorological ensembles from eight of the nine agencies available through TIGGE are weighted according to their individual performance and

  15. Hydrological Modelling the Middle Magdalena Valley (Colombia)

    NASA Astrophysics Data System (ADS)

    Arenas, M. C.; Duque, N.; Arboleda, P.; Guadagnini, A.; Riva, M.; Donado-Garzon, L. D.

    2017-12-01

    Hydrological distributed modeling is key point for a comprehensive assessment of the feedback between the dynamics of the hydrological cycle, climate conditions and land use. Such modeling results are markedly relevant in the fields of water resources management, natural hazards and oil and gas industry. Here, we employ TopModel (TOPography based hydrological MODEL) for the hydrological modeling of an area in the Middle Magdalena Valley (MMV), a tropical basin located in Colombia. This study is located over the intertropical convergence zone and is characterized by special meteorological conditions, with fast water fluxes over the year. It has been subject to significant land use changes, as a result of intense economical activities, i.e., and agriculture, energy and oil & gas production. The model employees a record of 12 years of daily precipitation and evapotranspiration data as inputs. Streamflow data monitored across the same time frame are used for model calibration. The latter is performed by considering data from 2000 to 2008. Model validation then relies on observations from 2009 to 2012. The robustness of our analyses is based on the Nash-Sutcliffe coefficient (values of this metric being 0.62 and 0.53, respectively for model calibration and validation). Our results reveal high water storage capacity in the soil, and a marked subsurface runoff, consistent with the characteristics of the soil types in the regions. A significant influence on runoff response of the basin to topographical factors represented in the model is evidenced. Our calibrated model provides relevant indications about recharge in the region, which is important to quantify the interaction between surface water and groundwater, specially during the dry season, which is more relevant in climate-change and climate-variability scenarios.

  16. Hydrologic connectivity: Quantitative assessments of hydrologic-enforced drainage structures in an elevation model

    USGS Publications Warehouse

    Poppenga, Sandra K.; Worstell, Bruce B.

    2016-01-01

    Elevation data derived from light detection and ranging present challenges for hydrologic modeling as the elevation surface includes bridge decks and elevated road features overlaying culvert drainage structures. In reality, water is carried through these structures; however, in the elevation surface these features impede modeled overland surface flow. Thus, a hydrologically-enforced elevation surface is needed for hydrodynamic modeling. In the Delaware River Basin, hydrologic-enforcement techniques were used to modify elevations to simulate how constructed drainage structures allow overland surface flow. By calculating residuals between unfilled and filled elevation surfaces, artificially pooled depressions that formed upstream of constructed drainage structure features were defined, and elevation values were adjusted by generating transects at the location of the drainage structures. An assessment of each hydrologically-enforced drainage structure was conducted using field-surveyed culvert and bridge coordinates obtained from numerous public agencies, but it was discovered the disparate drainage structure datasets were not comprehensive enough to assess all remotely located depressions in need of hydrologic-enforcement. Alternatively, orthoimagery was interpreted to define drainage structures near each depression, and these locations were used as reference points for a quantitative hydrologic-enforcement assessment. The orthoimagery-interpreted reference points resulted in a larger corresponding sample size than the assessment between hydrologic-enforced transects and field-surveyed data. This assessment demonstrates the viability of rules-based hydrologic-enforcement that is needed to achieve hydrologic connectivity, which is valuable for hydrodynamic models in sensitive coastal regions. Hydrologic-enforced elevation data are also essential for merging with topographic/bathymetric elevation data that extend over vulnerable urbanized areas and dynamic coastal

  17. QUANTIFYING AN UNCERTAIN FUTURE: HYDROLOGIC MODEL PERFORMANCE FOR A SERIES OF REALIZED "FUTURE" CONDITIONS

    EPA Science Inventory

    GIS-based hydrologic modeling offers a convenient means of assessing the impacts associated with land-cover/use change for environmental planning efforts. Future scenarios can be developed through a combination of modifications to the land-cover/use maps used to parameterize hydr...

  18. Classifying low flow hydrological regimes at a regional scale

    NASA Astrophysics Data System (ADS)

    Kirkby, M. J.; Gallart, F.; Kjeldsen, T. R.; Irvine, B. J.; Froebrich, J.; Lo Porto, A.; de Girolamo, A.; Mirage Team

    2011-12-01

    The paper uses a simple water balance model that partitions the precipitation between actual evapotranspiration, quick flow and delayed flow, and has sufficient complexity to capture the essence of climate and vegetation controls on this partitioning. Using this model, monthly flow duration curves have been constructed from climate data across Europe to address the relative frequency of ecologically critical low flow stages in semi-arid rivers, when flow commonly persists only in disconnected pools in the river bed. The hydrological model is based on a dynamic partitioning of precipitation to estimate water available for evapotranspiration and plant growth and for residual runoff. The duration curve for monthly flows has then been analysed to give an estimate of bankfull flow based on recurrence interval. Arguing from observed ratios of cross-sectional areas at flood and low flows, hydraulic geometry suggests that disconnected flow under "pool" conditions is approximately 0.1% of bankfull flow. Flow duration curves define a measure of bankfull discharge on the basis of frequency. The corresponding frequency for pools is then read from the duration curve, using this (0.1%) ratio to estimate pool discharge from bank full discharge. The flow duration curve then provides an estimate of the frequency of poorly connected pool conditions, corresponding to this discharge, that constrain survival of river-dwelling arthropods and fish. The methodology has here been applied across Europe at 15 km resolution, and the potential is demonstrated for applying the methodology under alternative climatic scenarios.

  19. A simple rainfall-runoff model based on hydrological units applied to the Teba catchment (south-east Spain)

    NASA Astrophysics Data System (ADS)

    Donker, N. H. W.

    2001-01-01

    A hydrological model (YWB, yearly water balance) has been developed to model the daily rainfall-runoff relationship of the 202 km2 Teba river catchment, located in semi-arid south-eastern Spain. The period of available data (1976-1993) includes some very rainy years with intensive storms (responsible for flooding parts of the town of Malaga) and also some very dry years.The YWB model is in essence a simple tank model in which the catchment is subdivided into a limited number of meaningful hydrological units. Instead of generating per unit surface runoff resulting from infiltration excess, runoff has been made the result of storage excess. Actual evapotranspiration is obtained by means of curves, included in the software, representing the relationship between the ratio of actual to potential evapotranspiration as a function of soil moisture content for three soil texture classes.The total runoff generated is split between base flow and surface runoff according to a given baseflow index. The two components are routed separately and subsequently joined. A large number of sequential years can be processed, and the results of each year are summarized by a water balance table and a daily based rainfall runoff time series. An attempt has been made to restrict the amount of input data to the minimum.Interactive manual calibration is advocated in order to allow better incorporation of field evidence and the experience of the model user. Field observations allowed for an approximate calibration at the hydrological unit level.

  20. Determining hydrological changes in a small Arctic treeline basin using cold regions hydrological modelling and a pseudo-global warming approach

    NASA Astrophysics Data System (ADS)

    Krogh, S. A.; Pomeroy, J. W.

    2017-12-01

    Increasing temperatures are producing higher rainfall ratios, shorter snow-covered periods, permafrost thaw, more shrub coverage, more northerly treelines and greater interaction between groundwater and surface flow in Arctic basins. How these changes will impact the hydrology of the Arctic treeline environment represents a great challenge. To diagnose the future hydrology along the current Arctic treeline, a physically based cold regions model was used to simulate the hydrology of a small basin near Inuvik, Northwest Territories, Canada. The hydrological model includes hydrological processes such as snow redistribution and sublimation by wind, canopy interception of snow/rain and sublimation/evaporation, snowmelt energy balance, active layer freeze/thaw, infiltration into frozen and unfrozen soils, evapotranspiration, horizontal flow through organic terrain and snowpack, subsurface flow and streamflow routing. The model was driven with weather simulated by a high-resolution (4 km) numerical weather prediction model under two scenarios: (1) control run, using ERA-Interim boundary conditions (2001-2013) and (2) future, using a Pseudo-Global Warming (PGW) approach based on the RCP8.5 projections perturbing the control run. Transient changes in vegetation based on recent observations and ecological expectations were then used to re-parameterise the model. Historical hydrological simulations were validated against daily streamflow, snow water equivalent and active layer thickness records, showing the model's suitability in this environment. Strong annual warming ( 6 °C) and more precipitation ( 20%) were simulated by the PGW scenario, with winter precipitation and fall temperature showing the largest seasonal increase. The joint impact of climate and transient vegetation changes on snow accumulation and redistribution, evapotranspiration, active layer development, runoff generation and hydrograph characteristics are analyzed and discussed.

  1. Spatial dynamics of ecosystem service flows: a comprehensive approach to quantifying actual services

    USGS Publications Warehouse

    Bagstad, Kenneth J.; Johnson, Gary W.; Voigt, Brian; Villa, Ferdinando

    2013-01-01

    Recent ecosystem services research has highlighted the importance of spatial connectivity between ecosystems and their beneficiaries. Despite this need, a systematic approach to ecosystem service flow quantification has not yet emerged. In this article, we present such an approach, which we formalize as a class of agent-based models termed “Service Path Attribution Networks” (SPANs). These models, developed as part of the Artificial Intelligence for Ecosystem Services (ARIES) project, expand on ecosystem services classification terminology introduced by other authors. Conceptual elements needed to support flow modeling include a service's rivalness, its flow routing type (e.g., through hydrologic or transportation networks, lines of sight, or other approaches), and whether the benefit is supplied by an ecosystem's provision of a beneficial flow to people or by absorption of a detrimental flow before it reaches them. We describe our implementation of the SPAN framework for five ecosystem services and discuss how to generalize the approach to additional services. SPAN model outputs include maps of ecosystem service provision, use, depletion, and flows under theoretical, possible, actual, inaccessible, and blocked conditions. We highlight how these different ecosystem service flow maps could be used to support various types of decision making for conservation and resource management planning.

  2. Hydrology for a Changing World

    NASA Astrophysics Data System (ADS)

    Hirsch, R. M.

    2017-12-01

    To support critical decisions related to water quantity, quality, and hazard mitigation, surface water hydrologists and water resources engineers have historically invoked the assumption that hydrologic systems are stationary; variables such as discharge or solute fluxes were assumed to have a mean, a variance, and other statistical properties that did not change over time. Today, the drivers of non-stationarity such as urbanization, groundwater depletion, engineered land-drainage systems, application of nutrients at the land surface, new farming technologies, and changes in greenhouse gas forcing of the global atmosphere have perturbed hydrologic systems enough so that this assumption must be challenged. Understanding of the non-stationarity in hydrologic systems is important for at least two major reasons: (1) Society needs insights on the hydrologic conditions of the future as a basis for planning, operating, and regulating water resources in the future. Water resources engineers cannot depend solely on records of the past to design and operate in the future. However, simply substituting model projections for historic records, without evaluation of the ability of those models to produce realistic projections, is not acceptable. (2) Non-stationarity provides a framework to identify emerging water resource issues and evaluate our society's success in achieving its environmental goals. The study of hydrologic change is our greatest challenge. We must learn how best to blend our knowledge of the past with our projections of the future. In this non-stationary world, observing systems and networks become even more critically important and our models must be tested using historical records to ensure that they produce useful projections of our future. In the words of Ralph Keeling, "The only way to figure out what is happening to our planet is to measure it, and this means tracking the changes decade after decade, and poring over the records." Walter Langbein knew the

  3. Rainfall and hydrological stability alter the impact of top predators on food web structure and function.

    PubMed

    Marino, Nicholas A C; Srivastava, Diane S; MacDonald, A Andrew M; Leal, Juliana S; Campos, Alice B A; Farjalla, Vinicius F

    2017-02-01

    Climate change will alter the distribution of rainfall, with potential consequences for the hydrological dynamics of aquatic habitats. Hydrological stability can be an important determinant of diversity in temporary aquatic habitats, affecting species persistence and the importance of predation on community dynamics. As such, prey are not only affected by drought-induced mortality but also the risk of predation [a non-consumptive effect (NCE)] and actual consumption by predators [a consumptive effect (CE)]. Climate-induced changes in rainfall may directly, or via altered hydrological stability, affect predator-prey interactions and their cascading effects on the food web, but this has rarely been explored, especially in natural food webs. To address this question, we performed a field experiment using tank bromeliads and their aquatic food web, composed of predatory damselfly larvae, macroinvertebrate prey and bacteria. We manipulated the presence and consumption ability of damselfly larvae under three rainfall scenarios (ambient, few large rainfall events and several small rainfall events), recorded the hydrological dynamics within bromeliads and examined the effects on macroinvertebrate colonization, nutrient cycling and bacterial biomass and turnover. Despite our large perturbations of rainfall, rainfall scenario had no effect on the hydrological dynamics of bromeliads. As a result, macroinvertebrate colonization and nutrient cycling depended on the hydrological stability of bromeliads, with no direct effect of rainfall or predation. In contrast, rainfall scenario determined the direction of the indirect effects of predators on bacteria, driven by both predator CEs and NCEs. These results suggest that rainfall and the hydrological stability of bromeliads had indirect effects on the food web through changes in the CEs and NCEs of predators. We suggest that future studies should consider the importance of the variability in hydrological dynamics among habitats as

  4. Next-Generation Intensity-Duration-Frequency Curves for Hydrologic Design in Snow-Dominated Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Hongxiang; Sun, Ning; Wigmosta, Mark

    Precipitation-based intensity-duration-frequency (PREC-IDF) curves are a standard tool used to derive design floods for hydraulic infrastructure worldwide. In snow-dominated regions where a large percentage of flood events are caused by snowmelt and rain-on-snow events, the PREC-IDF design approach can lead to substantial underestimation/overestimation of design floods and associated infrastructure. In this study, next-generation IDF (NG-IDF) curves, which characterize the actual water reaching the land surface, are introduced into the design process to improve hydrologic design. The authors compared peak design flood estimates from the National Resource Conservation Service TR-55 hydrologic model driven by NG-IDF and PREC-IDF curves at 399 Snowpackmore » Telemetry (SNOTEL) stations across the western United States, all of which had at least 30 years of high-quality records. They found that about 72% of the stations in the western United States showed the potential for underdesign, for which the PREC-IDF curves underestimated peak design floods by as much as 324%. These results demonstrated the need to update the use of PREC-IDF curves to the use of NG-IDF curves for hydrologic design in snow-dominated regions.« less

  5. Next-Generation Intensity‐Duration‐Frequency Curves for Hydrologic Design in Snow-Dominated Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Hongxiang; Sun, Ning; Wigmosta, Mark S.

    Precipitation-based intensity-duration-frequency (PREC-IDF) curves are a standard tool used to derive design floods for hydraulic infrastructure worldwide. In snow-dominated regions where a large percentage of flood events are caused by snowmelt and rain-on-snow events, the PREC-IDF design approach can lead to substantial underestimation/overestimation of design floods and associated infrastructure. In this study, next-generation IDF (NG-IDF) curves, which characterize the actual water reaching the land surface, are introduced into the design process to improve hydrologic design. The authors compared peak design flood estimates from the National Resource Conservation Service TR-55 hydrologic model driven by NG-IDF and PREC-IDF curves at 399 Snowpackmore » Telemetry (SNOTEL) stations across the western United States, all of which had at least 30 years of high-quality records. They found that about 72% of the stations in the western United States showed the potential for underdesign, for which the PREC-IDF curves underestimated peak design floods by as much as 324%. These results demonstrated the need to update the use of PREC-IDF curves to the use of NG-IDF curves for hydrologic design in snow-dominated regions.« less

  6. Scale effect challenges in urban hydrology highlighted with a distributed hydrological model

    NASA Astrophysics Data System (ADS)

    Ichiba, Abdellah; Gires, Auguste; Tchiguirinskaia, Ioulia; Schertzer, Daniel; Bompard, Philippe; Ten Veldhuis, Marie-Claire

    2018-01-01

    Hydrological models are extensively used in urban water management, development and evaluation of future scenarios and research activities. There is a growing interest in the development of fully distributed and grid-based models. However, some complex questions related to scale effects are not yet fully understood and still remain open issues in urban hydrology. In this paper we propose a two-step investigation framework to illustrate the extent of scale effects in urban hydrology. First, fractal tools are used to highlight the scale dependence observed within distributed data input into urban hydrological models. Then an intensive multi-scale modelling work is carried out to understand scale effects on hydrological model performance. Investigations are conducted using a fully distributed and physically based model, Multi-Hydro, developed at Ecole des Ponts ParisTech. The model is implemented at 17 spatial resolutions ranging from 100 to 5 m. Results clearly exhibit scale effect challenges in urban hydrology modelling. The applicability of fractal concepts highlights the scale dependence observed within distributed data. Patterns of geophysical data change when the size of the observation pixel changes. The multi-scale modelling investigation confirms scale effects on hydrological model performance. Results are analysed over three ranges of scales identified in the fractal analysis and confirmed through modelling. This work also discusses some remaining issues in urban hydrology modelling related to the availability of high-quality data at high resolutions, and model numerical instabilities as well as the computation time requirements. The main findings of this paper enable a replacement of traditional methods of model calibration by innovative methods of model resolution alteration based on the spatial data variability and scaling of flows in urban hydrology.

  7. A Quantitative Socio-hydrological Characterization of Water Security in Large-Scale Irrigation Systems

    NASA Astrophysics Data System (ADS)

    Siddiqi, A.; Muhammad, A.; Wescoat, J. L., Jr.

    2017-12-01

    Large-scale, legacy canal systems, such as the irrigation infrastructure in the Indus Basin in Punjab, Pakistan, have been primarily conceived, constructed, and operated with a techno-centric approach. The emerging socio-hydrological approaches provide a new lens for studying such systems to potentially identify fresh insights for addressing contemporary challenges of water security. In this work, using the partial definition of water security as "the reliable availability of an acceptable quantity and quality of water", supply reliability is construed as a partial measure of water security in irrigation systems. A set of metrics are used to quantitatively study reliability of surface supply in the canal systems of Punjab, Pakistan using an extensive dataset of 10-daily surface water deliveries over a decade (2007-2016) and of high frequency (10-minute) flow measurements over one year. The reliability quantification is based on comparison of actual deliveries and entitlements, which are a combination of hydrological and social constructs. The socio-hydrological lens highlights critical issues of how flows are measured, monitored, perceived, and experienced from the perspective of operators (government officials) and users (famers). The analysis reveals varying levels of reliability (and by extension security) of supply when data is examined across multiple temporal and spatial scales. The results shed new light on evolution of water security (as partially measured by supply reliability) for surface irrigation in the Punjab province of Pakistan and demonstrate that "information security" (defined as reliable availability of sufficiently detailed data) is vital for enabling water security. It is found that forecasting and management (that are social processes) lead to differences between entitlements and actual deliveries, and there is significant potential to positively affect supply reliability through interventions in the social realm.

  8. Water allocation assessment in low flow river under data scarce conditions: a study of hydrological simulation in Mediterranean basin.

    PubMed

    Bangash, Rubab F; Passuello, Ana; Hammond, Michael; Schuhmacher, Marta

    2012-12-01

    River Francolí is a small river in Catalonia (northeastern Spain) with an average annual low flow (~2 m(3)/s). The purpose of the River Francolí watershed assessments is to support and inform region-wide planning efforts from the perspective of water protection, climate change and water allocation. In this study, a hydrological model of the Francolí River watershed was developed for use as a tool for watershed planning, water resource assessment, and ultimately, water allocation purposes using hydrological data from 2002 to 2006 inclusive. The modeling package selected for this application is DHI's MIKE BASIN. This model is a strategic scale water resource management simulation model, which includes modeling of both land surface and subsurface hydrological processes. Topographic, land use, hydrological, rainfall, and meteorological data were used to develop the model segmentation and input. Due to the unavailability of required catchment runoff data, the NAM rainfall-runoff model was used to calculate runoff of all the sub-watersheds. The results reveal a potential pressure on the availability of groundwater and surface water in the lower part of River Francolí as was expected by the IPCC for Mediterranean river basins. The study also revealed that due to the complex hydrological regime existing in the study area and data scarcity, a comprehensive physically based method was required to better represent the interaction between groundwater and surface water. The combined ArcGIS/MIKE BASIN models appear as a useful tool to assess the hydrological cycle and to better understand water allocation to different sectors in the Francolí River watershed. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Network analysis applications in hydrology

    NASA Astrophysics Data System (ADS)

    Price, Katie

    2017-04-01

    Applied network theory has seen pronounced expansion in recent years, in fields such as epidemiology, computer science, and sociology. Concurrent development of analytical methods and frameworks has increased possibilities and tools available to researchers seeking to apply network theory to a variety of problems. While water and nutrient fluxes through stream systems clearly demonstrate a directional network structure, the hydrological applications of network theory remain under­explored. This presentation covers a review of network applications in hydrology, followed by an overview of promising network analytical tools that potentially offer new insights into conceptual modeling of hydrologic systems, identifying behavioral transition zones in stream networks and thresholds of dynamical system response. Network applications were tested along an urbanization gradient in Atlanta, Georgia, USA. Peachtree Creek and Proctor Creek. Peachtree Creek contains a nest of five long­term USGS streamflow and water quality gages, allowing network application of long­term flow statistics. The watershed spans a range of suburban and heavily urbanized conditions. Summary flow statistics and water quality metrics were analyzed using a suite of network analysis techniques, to test the conceptual modeling and predictive potential of the methodologies. Storm events and low flow dynamics during Summer 2016 were analyzed using multiple network approaches, with an emphasis on tomogravity methods. Results indicate that network theory approaches offer novel perspectives for understanding long­ term and event­based hydrological data. Key future directions for network applications include 1) optimizing data collection, 2) identifying "hotspots" of contaminant and overland flow influx to stream systems, 3) defining process domains, and 4) analyzing dynamic connectivity of various system components, including groundwater­surface water interactions.

  10. Habitat and Hydrological Effects of Low-head Dams on the Mississippi and Ohio Rivers

    EPA Science Inventory

    We sampled sites in the Ohio and impounded Upper Mississippi Rivers to develop indices of habitat and hydrological condition. Discharge in these rivers is controlled by low-head locks and dams. On the Ohio River, the littoral fish cover index, the hydrology index, and a multi-met...

  11. DEVELOPMENT OF HYDROLOGICAL EDUCATION IN UKRAINE

    NASA Astrophysics Data System (ADS)

    Manukalo, V.

    2009-12-01

    special hydrological training in the next years. After the completion of first and second year academic program, students undertake field practical works under the supervision of their teachers at field stations of the Kyiv National University and the State Hydrometeorological Service. The rapid development of scientific and practical hydrology, an increase of environmental oriented researches stimulate the upgrading of requirements to the hydrological education. In order to meet these requirements a number of measures have been undertaken in the Kyiv University by the way of improving of education methods, education teaching conditions and strengthening the co-operation at home and abroad. A number of the new courses (“Hydroinformatics”, “Environmental Planning and Management” and others) have been developed during last years. The practical training of using of new hydrological and hydrochemical equipment and methods of observation and forecasting in the State Hydometeorological Service is increased. All students have practical works at the organization of the State Hydrometeorological Service: meteorological and hydrological stations, observatories, hydrological forecasting units. The special complex program of practical hydrological training of students was development by the Administration of the State Hydrometeorological Service in 2007.

  12. Modeling non-linear growth responses to temperature and hydrology in wetland trees

    NASA Astrophysics Data System (ADS)

    Keim, R.; Allen, S. T.

    2016-12-01

    Growth responses of wetland trees to flooding and climate variations are difficult to model because they depend on multiple, apparently interacting factors, but are a critical link in hydrological control of wetland carbon budgets. To more generally understand tree growth to hydrological forcing, we modeled non-linear responses of tree ring growth to flooding and climate at sub-annual time steps, using Vaganov-Shashkin response functions. We calibrated the model to six baldcypress tree-ring chronologies from two hydrologically distinct sites in southern Louisiana, and tested several hypotheses of plasticity in wetlands tree responses to interacting environmental variables. The model outperformed traditional multiple linear regression. More importantly, optimized response parameters were generally similar among sites with varying hydrological conditions, suggesting generality to the functions. Model forms that included interacting responses to multiple forcing factors were more effective than were single response functions, indicating the principle of a single limiting factor is not correct in wetlands and both climatic and hydrological variables must be considered in predicting responses to hydrological or climate change.

  13. Quantification of the impact of hydrology on agricultural production as a result of too dry, too wet or too saline conditions

    NASA Astrophysics Data System (ADS)

    Hack-ten Broeke, Mirjam J. D.; Kroes, Joop G.; Bartholomeus, Ruud P.; van Dam, Jos C.; de Wit, Allard J. W.; Supit, Iwan; Walvoort, Dennis J. J.; van Bakel, P. Jan T.; Ruijtenberg, Rob

    2016-08-01

    For calculating the effects of hydrological measures on agricultural production in the Netherlands a new comprehensive and climate proof method is being developed: WaterVision Agriculture (in Dutch: Waterwijzer Landbouw). End users have asked for a method that considers current and future climate, that can quantify the differences between years and also the effects of extreme weather events. Furthermore they would like a method that considers current farm management and that can distinguish three different causes of crop yield reduction: drought, saline conditions or too wet conditions causing oxygen shortage in the root zone. WaterVision Agriculture is based on the hydrological simulation model SWAP and the crop growth model WOFOST. SWAP simulates water transport in the unsaturated zone using meteorological data, boundary conditions (like groundwater level or drainage) and soil parameters. WOFOST simulates crop growth as a function of meteorological conditions and crop parameters. Using the combination of these process-based models we have derived a meta-model, i.e. a set of easily applicable simplified relations for assessing crop growth as a function of soil type and groundwater level. These relations are based on multiple model runs for at least 72 soil units and the possible groundwater regimes in the Netherlands. So far, we parameterized the model for the crops silage maize and grassland. For the assessment, the soil characteristics (soil water retention and hydraulic conductivity) are very important input parameters for all soil layers of these 72 soil units. These 72 soil units cover all soils in the Netherlands. This paper describes (i) the setup and examples of application of the process-based model SWAP-WOFOST, (ii) the development of the simplified relations based on this model and (iii) how WaterVision Agriculture can be used by farmers, regional government, water boards and others to assess crop yield reduction as a function of groundwater

  14. Modelling hydrological responses of Nerbioi River Basin to Climate Change

    NASA Astrophysics Data System (ADS)

    Mendizabal, Maddalen; Moncho, Roberto; Chust, Guillem; Torp, Peter

    2010-05-01

    Future climate change will affect aquatic systems on various pathways. Regarding the hydrological cycle, which is a very important pathway, changes in hydrometeorological variables (air temperature, precipitation, evapotranspiration) in first order impact discharges. The fourth report assessment of the Intergovernmental Panel for Climate Change indicates there is evidence that the recent warming of the climate system would result in more frequent extreme precipitation events, increased winter flood likelihoods, increased and widespread melting of snow and ice, longer and more widespread droughts, and rising sea level. Available research and climate model outputs indicate a range of hydrological impacts with likely to very likely probabilities (67 to 99%). For example, it is likely that up to 20% of the world population will live in areas where river flood potential could increase by the 2080s. In Spain, within the Atlantic basin, the hydrological variability will increase in the future due to the intensification of the positive phase of the North Atlantic Oscillation (NAO) index. This might cause flood frequency decreases, but its magnitude does not decrease. The generation of flood, its duration and magnitude are closely linked to changes in winter precipitation. The climatic conditions and relief of the Iberian Peninsula favour the generation of floods. In Spain, floods had historically strong socio-economic impacts, with more than 1525 victims in the past five decades. This upward trend of hydrological variability is expected to remain in the coming decades (medium uncertainty) when the intensification of the positive phase of the NAO index (MMA, 2006) is considered. In order to adapt or minimize climate change impacts in water resources, it is necessary to use climate projections as well as hydrological modelling tools. The main objective of this paper is to evaluate and assess the hydrological response to climate changes in flow conditions in Nerbioi river

  15. Natural and induced endoreic hydrological conditions in the Alta Murgia karstic region (Apulia, Southern Italy)

    NASA Astrophysics Data System (ADS)

    Canora, F.; Fidelibus, M. D.; Spilotro, G.

    2009-04-01

    A study aimed at understanding the hydrological processes in karst areas related to the presence of natural and artificial endoreic basins and their modification due to land use change, as well as the influence of above factors on the infiltration rate has been carried out in the Alta Murgia region (Apulia, Southern Italy). The region is a Cretaceous limestone plateau of the Apulian platform, characterized by a mature karstic landscape: due to its elevation, climatic conditions and lithology, the plateau constitutes the main recharge area of the Murgia aquifer. The typical karst topography is essentially related to the subterranean drainage (sinkholes, caves, conduit): surface and subsurface karst geomorphology is strictly interrelated with hydrology. The morphological features of the karstic plateau are defined by the high density of surface karstic forms (mainly dolines), the presence of exposed karst and karren fields, as well as by the extensive outcrop of fractured rocks. Karst surface shows, on the bottom of the morpho-structural depressions called "lame", natural distribution of modest deposits of "terra rossa" and regolith. The "lame" work as streams during and after intense rainfall events, often outlining a primordial ephemeral hydrographical network, frequently convergent towards dolines, poljes or endoreic basins. Alta Murgia shows many natural endoreic basin conditions in a quite flat morphology. In this environment, when intense rainfall events cover large areas and rainfall intensity exceeds the infiltration capacity of soils and/or sinkholes, significant runoff amounts are produced and stored in the basins causing floods. Most of the natural endoreic basins are small and independent: while the majority of them continue functioning as endoreic even in presence of extreme events of high return time, others (quasi-endoreic), under the same circumstances can start contributing to other basins, due to exceeding their water storage capability. This way

  16. Simulation of hydrologic influences on wetland ecosystem succession. Master's thesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pompilio, R.A.

    1994-09-01

    This research focuses on the development of a simulation model to determine the affects of hydrological influences on a wetland ecosystem. The model allows perturbations to the inputs of various wetland data which in turn, influences the successional development of the ecosystem. This research consisted of converting a grassland ecosystem model to one which simulates wetland conditions. The critical factor in determining the success of wetland creation is the hydrology of the system. There are four of the areas of the original model which are affected by the hydrology. The model measures the health or success of the ecosystem throughmore » the measurement of the systems gross plant production, the respiration and the net primary production of biomass. Altering the auxiliary variables of water level and the rate of flow through the system explicitly details the affects hydrologic influences on those production rates. Ten case tests depicting exogenous perturbations of the hydrology were run to identify these affects. Although the tests dealt with the fluctuation of water through the system, any one of the auxiliary variables in the model could be changed to reflect site specific data. Productivity, Hazardous material management, Hazardous material pharmacy.« less

  17. [An investigation into the actual condition of the sports drink intake on children].

    PubMed

    Yamamoto, M; Amano, H; Miura, K; Nagasaka, N

    1990-01-01

    The purpose of this study was to investigate the actual condition of the sport drink intake on children. We conducted an investigation by means of questionnaires at 3 nursery schools and a day nursery in and around Hiroshima City, and using 505 answers with the comparison between 4 areas. The following results were obtained: 1) Less than 10% of the children often took sport drinks and about 70% of the children sometimes. 2) In response to the question of when taken, 40-50% of answers revealed that the drinks were taken when the children ill and 20-40% of answers were take from home. 3) In response to the question as to why children begin to take the drinks, many parents answered that they were advised by a doctor and a nurse to give their child sport drinks to prevent for dehydration, when their children were ill. This answer accounted for about 60% of the answers to this question. 4) Parents imagined that fruit drinks, carbonated beverages and beverages with lactic acid promoted tooth decay. Also the image of cariogenicity was less than 100% fruit juices, home-made juices, sport drinks, cow milks and water or tea in that order. The results suggest that parents regard sport drinks as beverages which do not promote tooth decay and give their child sport drinks frequency.

  18. Transport of fluorobenzoate tracers in a vegetated hydrologic control volume: 1. Experimental results

    NASA Astrophysics Data System (ADS)

    Queloz, Pierre; Bertuzzo, Enrico; Carraro, Luca; Botter, Gianluca; Miglietta, Franco; Rao, P. S. C.; Rinaldo, Andrea

    2015-04-01

    This paper reports about the experimental evidence collected on the transport of five fluorobenzoate tracers injected under controlled conditions in a vegetated hydrologic volume, a large lysimeter (fitted with load cells, sampling ports, and an underground chamber) where two willows prompting large evapotranspiration fluxes had been grown. The relevance of the study lies in the direct and indirect measures of the ways in which hydrologic fluxes, in this case, evapotranspiration from the upper surface and discharge from the bottom drainage, sample water and solutes in storage at different times under variable hydrologic forcings. Methods involve the accurate control of hydrologic inputs and outputs and a large number of suitable chemical analyses of water samples in discharge waters. Mass extraction from biomass has also been performed ex post. The results of the 2 year long experiment established that our initial premises on the tracers' behavior, known to be sorption-free under saturated conditions which we verified in column leaching tests, were unsuitable as large differences in mass recovery appeared. Issues on reactivity thus arose and were addressed in the paper, in this case attributed to microbial degradation and solute plant uptake. Our results suggest previously unknown features of fluorobenzoate compounds as hydrologic tracers, potentially interesting for catchment studies owing to their suitability for distinguishable multiple injections, and an outlook on direct experimental closures of mass balance in hydrologic transport volumes involving fluxes that are likely to sample differently stored water and solutes.

  19. Approaches to modelling hydrology and ecosystem interactions

    NASA Astrophysics Data System (ADS)

    Silberstein, Richard P.

    2014-05-01

    As the pressures of industry, agriculture and mining on groundwater resources increase there is a burgeoning un-met need to be able to capture these multiple, direct and indirect stresses in a formal framework that will enable better assessment of impact scenarios. While there are many catchment hydrological models and there are some models that represent ecological states and change (e.g. FLAMES, Liedloff and Cook, 2007), these have not been linked in any deterministic or substantive way. Without such coupled eco-hydrological models quantitative assessments of impacts from water use intensification on water dependent ecosystems under changing climate are difficult, if not impossible. The concept would include facility for direct and indirect water related stresses that may develop around mining and well operations, climate stresses, such as rainfall and temperature, biological stresses, such as diseases and invasive species, and competition such as encroachment from other competing land uses. Indirect water impacts could be, for example, a change in groundwater conditions has an impact on stream flow regime, and hence aquatic ecosystems. This paper reviews previous work examining models combining ecology and hydrology with a view to developing a conceptual framework linking a biophysically defensable model that combines ecosystem function with hydrology. The objective is to develop a model capable of representing the cumulative impact of multiple stresses on water resources and associated ecosystem function.

  20. [Gene method for inconsistent hydrological frequency calculation. I: Inheritance, variability and evolution principles of hydrological genes].

    PubMed

    Xie, Ping; Wu, Zi Yi; Zhao, Jiang Yan; Sang, Yan Fang; Chen, Jie

    2018-04-01

    A stochastic hydrological process is influenced by both stochastic and deterministic factors. A hydrological time series contains not only pure random components reflecting its inheri-tance characteristics, but also deterministic components reflecting variability characteristics, such as jump, trend, period, and stochastic dependence. As a result, the stochastic hydrological process presents complicated evolution phenomena and rules. To better understand these complicated phenomena and rules, this study described the inheritance and variability characteristics of an inconsistent hydrological series from two aspects: stochastic process simulation and time series analysis. In addition, several frequency analysis approaches for inconsistent time series were compared to reveal the main problems in inconsistency study. Then, we proposed a new concept of hydrological genes origined from biological genes to describe the inconsistent hydrolocal processes. The hydrologi-cal genes were constructed using moments methods, such as general moments, weight function moments, probability weight moments and L-moments. Meanwhile, the five components, including jump, trend, periodic, dependence and pure random components, of a stochastic hydrological process were defined as five hydrological bases. With this method, the inheritance and variability of inconsistent hydrological time series were synthetically considered and the inheritance, variability and evolution principles were fully described. Our study would contribute to reveal the inheritance, variability and evolution principles in probability distribution of hydrological elements.

  1. Regional frameworks applied to hydrology: can landscape-based frameworks capture the hydrologic variability?

    Treesearch

    R. McManamay; D. Orth; C. Dolloff; E. Frimpong

    2011-01-01

    Regional frameworks have been used extensively in recent years to aid in broad-scale management. Widely used landscape-based regional frameworks, such as hydrologic landscape regions (HLRs) and physiographic provinces, may provide predictive tools of hydrologic variability. However, hydrologic-based regional frameworks, created using only streamflow data, are also...

  2. Hydrologic Extremes and Risk Assessment under Non-stationarity

    NASA Astrophysics Data System (ADS)

    Mondal, A.

    2015-12-01

    In the context of hydrologic designs, robust assessment and communication of risk is crucial to ascertain a sustainable water future. Traditional methods for defining return period, risk or reliability assumes a stationary regime which may no longer be valid because of natural or man-made changes. Reformulations are suggested in recent literature to account for non-stationarity in the definition of hydrologic risk, as time evolves. This study presents a comparative analysis of design levels under non-stationarity based on time varying annual exceedance probabilities, waiting time of a hazardous event, number of hazardous events and probability of failure. A case study application is shown for peak streamflow in the flood-prone delta area of the Krishna River in India where an increasing trend in annual maximum flows are observed owing to persistent silting. Considerable disagreement is found between the design magnitudes of flood obtained by the different definitions of hydrologic risk. Such risk is also found to be highly sensitive to the assumed design life period and projections of trend in that period or beyond. Additionally, some critical points on the assumption of a deterministic non-stationary model for an observed natural process are also discussed. The findings highlight the necessity for a unifying framework for assessment and communication of hydrologic risk under transient hydro-climatic conditions. The concepts can also be extended to other applications such as regional hydrologic frequency analysis or development of precipitation intensity-duration-frequency relationships for infrastructure design.

  3. Towards Reproducibility in Computational Hydrology

    NASA Astrophysics Data System (ADS)

    Hutton, Christopher; Wagener, Thorsten; Freer, Jim; Han, Dawei; Duffy, Chris; Arheimer, Berit

    2017-04-01

    Reproducibility is a foundational principle in scientific research. The ability to independently re-run an experiment helps to verify the legitimacy of individual findings, and evolve (or reject) hypotheses and models of how environmental systems function, and move them from specific circumstances to more general theory. Yet in computational hydrology (and in environmental science more widely) the code and data that produces published results are not regularly made available, and even if they are made available, there remains a multitude of generally unreported choices that an individual scientist may have made that impact the study result. This situation strongly inhibits the ability of our community to reproduce and verify previous findings, as all the information and boundary conditions required to set up a computational experiment simply cannot be reported in an article's text alone. In Hutton et al 2016 [1], we argue that a cultural change is required in the computational hydrological community, in order to advance and make more robust the process of knowledge creation and hypothesis testing. We need to adopt common standards and infrastructures to: (1) make code readable and re-useable; (2) create well-documented workflows that combine re-useable code together with data to enable published scientific findings to be reproduced; (3) make code and workflows available, easy to find, and easy to interpret, using code and code metadata repositories. To create change we argue for improved graduate training in these areas. In this talk we reflect on our progress in achieving reproducible, open science in computational hydrology, which are relevant to the broader computational geoscience community. In particular, we draw on our experience in the Switch-On (EU funded) virtual water science laboratory (http://www.switch-on-vwsl.eu/participate/), which is an open platform for collaboration in hydrological experiments (e.g. [2]). While we use computational hydrology as

  4. The integrated water balance and soil data set of the Rollesbroich hydrological observatory

    NASA Astrophysics Data System (ADS)

    Qu, Wei; Bogena, Heye R.; Huisman, Johan A.; Schmidt, Marius; Kunkel, Ralf; Weuthen, Ansgar; Schiedung, Henning; Schilling, Bernd; Sorg, Jürgen; Vereecken, Harry

    2016-10-01

    The Rollesbroich headwater catchment located in western Germany is a densely instrumented hydrological observatory and part of the TERENO (Terrestrial Environmental Observatories) initiative. The measurements acquired in this observatory present a comprehensive data set that contains key hydrological fluxes in addition to important hydrological states and properties. Meteorological data (i.e., precipitation, air temperature, air humidity, radiation components, and wind speed) are continuously recorded and actual evapotranspiration is measured using the eddy covariance technique. Runoff is measured at the catchment outlet with a gauging station. In addition, spatiotemporal variations in soil water content and temperature are measured at high resolution with a wireless sensor network (SoilNet). Soil physical properties were determined using standard laboratory procedures from samples taken at a large number of locations in the catchment. This comprehensive data set can be used to validate remote sensing retrievals and hydrological models, to improve the understanding of spatial temporal dynamics of soil water content, to optimize data assimilation and inverse techniques for hydrological models, and to develop upscaling and downscaling procedures of soil water content information. The complete data set is freely available online (http://www.tereno.net, doi:10.5880/TERENO.2016.001, doi:10.5880/TERENO.2016.004, doi:10.5880/TERENO.2016.003) and additionally referenced by three persistent identifiers securing the long-term data and metadata availability.

  5. Hydrologic characterization for Spring Creek and hydrologic budget and model scenarios for Sheridan Lake, South Dakota, 1962-2007

    USGS Publications Warehouse

    Driscoll, Daniel G.; Norton, Parker A.

    2009-01-01

    Sheridan Lake for the historical pass-through operating system. Two inflow components (stream inflow and precipitation) and one outflow component (evaporation) were considered. The hydrologic budget uses monthly time steps within a computational year that includes two 6-month periods - May through October, for which evaporation is accounted for, and November through April, when evaporation is considered negligible. Results indicate that monthly evaporation rates can substantially exceed inflow during low-flow periods, and potential exists for outflows to begin approaching zero-flow conditions substantially prior to the onset of zero-inflow conditions, especially when daily inflow and evaporation are considered. Results also indicate that September may be the month for greatest potential benefit for enhancing fish habitat and other ecosystem values in downstream reaches of Spring Creek with managed releases of cool water. Computed monthly outflows from Sheridan Lake for September are less than 1.0 ft3/s for 8 of the 44 years (18 percent) and are less than 2.0 ft3/s for 14 of the 44 years (32 percent). Conversely, none of the computed outflows for May are less than 2.0 ft3/s. A short-term (July through September 2007) data set was used to calculate daily evaporation from Sheridan Lake and to evaluate the applicability of published pan coefficients. Computed values of pan coefficients of approximately 1.0 and 1.1 for two low-flow periods are larger than the mean annual pan coefficient of 0.74 for the area that is reported in the literature; however, the computed values are consistent with pan coefficients reported elsewhere for similar late summer and early fall periods. Thus, these results supported the use of variable monthly pan coefficients for the long-term hydrologic budget. A hydrologic model was developed using the primary components of the hydrologic budget and was used to simulate monthly storage deficits and drawdown for Sheridan Lake using hypothetical

  6. Predicting foraging wading bird populations in Everglades National Park from seasonal hydrologic statistics under different management scenarios

    NASA Astrophysics Data System (ADS)

    Kwon, Hyun-Han; Lall, Upmanu; Engel, Vic

    2011-09-01

    The ability to map relationships between ecological outcomes and hydrologic conditions in the Everglades National Park (ENP) is a key building block for their restoration program, a primary goal of which is to improve conditions for wading birds. This paper presents a model linking wading bird foraging numbers to hydrologic conditions in the ENP. Seasonal hydrologic statistics derived from a single water level recorder are well correlated with water depths throughout most areas of the ENP, and are effective as predictors of wading bird numbers when using a nonlinear hierarchical Bayesian model to estimate the conditional distribution of bird populations. Model parameters are estimated using a Markov chain Monte Carlo (MCMC) procedure. Parameter and model uncertainty is assessed as a byproduct of the estimation process. Water depths at the beginning of the nesting season, the average dry season water level, and the numbers of reversals from the dry season recession are identified as significant predictors, consistent with the hydrologic conditions considered important in the production and concentration of prey organisms in this system. Long-term hydrologic records at the index location allow for a retrospective analysis (1952-2006) of foraging bird numbers showing low frequency oscillations in response to decadal fluctuations in hydroclimatic conditions. Simulations of water levels at the index location used in the Bayesian model under alternative water management scenarios allow the posterior probability distributions of the number of foraging birds to be compared, thus providing a mechanism for linking management schemes to seasonal rainfall forecasts.

  7. Glaciers and small ice caps in the macro-scale hydrological cycle - an assessment of present conditions and future changes

    NASA Astrophysics Data System (ADS)

    Lammers, Richard; Hock, Regine; Prusevich, Alexander; Bliss, Andrew; Radic, Valentina; Glidden, Stanley; Grogan, Danielle; Frolking, Steve

    2014-05-01

    Glacier and small ice cap melt water contributions to the global hydrologic cycle are an important component of human water supply and for sea level rise. This melt water is used in many arid and semi-arid parts of the world for direct human consumption as well as indirect consumption by irrigation for crops, serving as frozen reservoirs of water that supplement runoff during warm and dry periods of summer when it is needed the most. Additionally, this melt water reaching the oceans represents a direct input to sea level rise and therefore accurate estimates of this contribution have profound economic and geopolitical implications. It has been demonstrated that, on the scale of glacierized river catchments, land surface hydrological models can successfully simulate glacier contribution to streamflow. However, at global scales, the implementation of glacier melt in hydrological models has been rudimentary or non-existent. In this study, a global glacier mass balance model is coupled with the University of New Hampshire Water Balance/Transport Model (WBM) to assess recent and projected future glacier contributions to the hydrological cycle over the global land surface (excluding the ice sheets of Greenland and Antarctica). For instance, results of WBM simulations indicate that seasonal glacier melt water in many arid climate watersheds comprises 40 % or more of their discharge. Implicitly coupled glacier and WBM models compute monthly glacier mass changes and resulting runoff at the glacier terminus for each individual glacier from the globally complete Randolph Glacier Inventory including over 200 000 glaciers. The time series of glacier runoff is aggregated over each hydrological modeling unit and delivered to the hydrological model for routing downstream and mixing with non-glacial contribution of runoff to each drainage basin outlet. WBM tracks and uses glacial and non-glacial components of the in-stream water for filling reservoirs, transfers of water between

  8. Impact of vegetation dynamics on hydrological processes in a semi-arid basin by using a land surface-hydrology coupled model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiao, Yang; Lei, Huimin; Yang, Dawen

    Land surface models (LSMs) are widely used to understand the interactions between hydrological processes and vegetation dynamics, which is important for the attribution and prediction of regional hydrological variations. However, most LSMs have large uncertainties in their representations of ecohydrological processes due to deficiencies in hydrological parameterizations. In this study, the Community Land Model version 4 (CLM4) LSM was modified with an advanced runoff generation and flow routing scheme, resulting in a new land surface-hydrology coupled model, CLM-GBHM. Both models were implemented in the Wudinghe River Basin (WRB), which is a semi-arid basin located in the middle reaches of themore » Yellow River, China. Compared with CLM, CLM-GBHM increased the Nash Sutcliffe efficiency for daily river discharge simulation (1965–1969) from 0.03 to 0.23 and reduced the relative bias in water table depth simulations (2010–2012) from 32.4% to 13.4%. The CLM-GBHM simulations with static, remotely sensed and model-predicted vegetation conditions showed that the vegetation in the WRB began to recover in the 2000s due to the Grain for Green Program but had not reached the same level of vegetation cover as regions in natural eco-hydrological equilibrium. Compared with a simulation using remotely sensed vegetation cover, the simulation with a dynamic vegetation model that considers only climate-induced change showed a 10.3% increase in evapotranspiration, a 47.8% decrease in runoff, and a 62.7% and 71.3% deceleration in changing trend of the outlet river discharge before and after the year 2000, respectively. This result suggests that both natural and anthropogenic factors should be incorporated in dynamic vegetation models to better simulate the eco-hydrological cycle.« less

  9. Attenuation of organic micropollutants in an urban lowland stream under varying seasonal and hydrological conditions

    NASA Astrophysics Data System (ADS)

    Jaeger, Anna; Posselt, Malte; Schaper, Jonas; Lewandowski, Jörg

    2017-04-01

    Transport and fate of polar organic micropollutants in urban streams are of increasing concern for urban water management. Appropriate river management techniques may support a river's ability to self-purify. The river Erpe, an urban lowland stream located in Berlin, Germany, receives treated wastewater which increases its discharge up to 4-fold. Numerous micropollutants (e.g. pharmaceuticals, personal care products, performance chemicals) which survive the treatment process are released into the river and threaten ecosystems and aquatic groundwater quality. In the present work the transport of 57 substances was investigated along a 4.7 km stretch of the river with the aim of understanding the influence of varying seasonal and hydrological conditions on micropollutant fate. We hypothesized that particularly transient storage is a main driver of micropollutant attenuation. A Lagrangian sampling scheme was applied to follow water parcels down the river using the diurnal fluctuations of conservative solute concentrations as an intrinsic tracer. Water samples were collected at two (April) and three (June) stations along a 4.7 km reach downstream of the wastewater inflow. In June the experiment was conducted twice, before and after the first stretch was cleared of macrophytes. Each experiment comprised of hourly sample collection for 48 hours, accompanied by discharge measurements and continuous data logging of water-level, -temperature and electric conductivity. The set of micropollutants, which included both parent compounds and transformation products, was analysed by a newly developed direct injection-UHPLC-MS/MS method. The behaviour of individual micropollutants was compound-specific. Carbamazepine and benzotriazole were persistent along the river stretch while substances such as valsartan and metoprolol were attenuated by up to 15% of their original concentration. Interestingly, some transformation products, such as valsartan acid increased in concentration

  10. Impacts of Autonomous Adaptations on the Hydrological Drought Under Climate Change Condition

    NASA Astrophysics Data System (ADS)

    Oki, T.; Satoh, Y.; Pokhrel, Y. N.; KIM, H.; Yoshimura, K.

    2014-12-01

    Because of expected effects of climate changes on quantity and spatial distribution of available water resources, assessment of the changes in the balance between the demand and supply of water resources is critical for some regions. Historically, water deficiencies were overcome by planned water management such as dam regulation and irrigation. But only few studies have investigated the effect of anthropogenic factors on the risk of imbalance of water demand and supply under climate change conditions. Therefore, estimation of the potential deficiency in existing infrastructures under water-environment change is needed to support our society to adapt against future climate changes. This study aims to estimate the impacts of climate changes on the risk of water scarcity projected based on CMIP5 RCP scenarios and the efficiency of autonomous adaptation by anthropogenic water management, such as reservoir operation and irrigation using ground water. First, tendencies of the changes in water scarcity under climate change are estimated by an improved land surface model, which integrates natural water cycles and human activities. Second, the efficiencies of human-developed infrastructure are analyzed by comparing the naturalized and fully anthropogenic offline simulations. It was found that number of hydrological drought days will be increased and decreased in approximately 70 % and 24 % of global land, respectively, considering anthropogenic water management, however, they are approximately 82 % and 16 %, respectively, under naturalized condition without anthropogenic water management. The differences indicate how autonomous adaptation through anthropogenic water management can reduce the impacts of climate change. Also, adequate enhancement of infrastructure is necessary against expected water scarcity under climate change because such positive and negative effects of artificial water regulation show comparable impact on water scarcity risk to that of climate change in

  11. Hydrological research in Ethiopia

    NASA Astrophysics Data System (ADS)

    Gebremichael, M.

    2012-12-01

    Almost all major development problems in Ethiopia are water-related: food insecurity, low economic development, recurrent droughts, disastrous floods, poor health conditions, and low energy condition. In order to develop and manage existing water resources in a sustainable manner, knowledge is required about water availability, water quality, water demand in various sectors, and the impacts of water resource projects on health and the environment. The lack of ground-based data has been a major challenge for generating this knowledge. Current advances in remote sensing and computer simulation technology could provide alternative source of datasets. In this talk, I will present the challenges and opportunities in using remote sensing datasets and hydrological models in regions such as Africa where ground-based datasets are scarce.

  12. Quantification of effective plant rooting depth: advancing global hydrological modelling

    NASA Astrophysics Data System (ADS)

    Yang, Y.; Donohue, R. J.; McVicar, T.

    2017-12-01

    Plant rooting depth (Zr) is a key parameter in hydrological and biogeochemical models, yet the global spatial distribution of Zr is largely unknown due to the difficulties in its direct measurement. Moreover, Zr observations are usually only representative of a single plant or several plants, which can differ greatly from the effective Zr over a modelling unit (e.g., catchment or grid-box). Here, we provide a global parameterization of an analytical Zr model that balances the marginal carbon cost and benefit of deeper roots, and produce a climatological (i.e., 1982-2010 average) global Zr map. To test the Zr estimates, we apply the estimated Zr in a highly transparent hydrological model (i.e., the Budyko-Choudhury-Porporato (BCP) model) to estimate mean annual actual evapotranspiration (E) across the globe. We then compare the estimated E with both water balance-based E observations at 32 major catchments and satellite grid-box retrievals across the globe. Our results show that the BCP model, when implemented with Zr estimated herein, optimally reproduced the spatial pattern of E at both scales and provides improved model outputs when compared to BCP model results from two already existing global Zr datasets. These results suggest that our Zr estimates can be effectively used in state-of-the-art hydrological models, and potentially biogeochemical models, where the determination of Zr currently largely relies on biome type-based look-up tables.

  13. Revising Hydrology of a Land Surface Model

    NASA Astrophysics Data System (ADS)

    Le Vine, Nataliya; Butler, Adrian; McIntyre, Neil; Jackson, Christopher

    2015-04-01

    Land Surface Models (LSMs) are key elements in guiding adaptation to the changing water cycle and the starting points to develop a global hyper-resolution model of the terrestrial water, energy and biogeochemical cycles. However, before this potential is realised, there are some fundamental limitations of LSMs related to how meaningfully hydrological fluxes and stores are represented. An important limitation is the simplistic or non-existent representation of the deep subsurface in LSMs; and another is the lack of connection of LSM parameterisations to relevant hydrological information. In this context, the paper uses a case study of the JULES (Joint UK Land Environmental Simulator) LSM applied to the Kennet region in Southern England. The paper explores the assumptions behind JULES hydrology, adapts the model structure and optimises the coupling with the ZOOMQ3D regional groundwater model. The analysis illustrates how three types of information can be used to improve the model's hydrology: a) observations, b) regionalized information, and c) information from an independent physics-based model. It is found that: 1) coupling to the groundwater model allows realistic simulation of streamflows; 2) a simple dynamic lower boundary improves upon JULES' stationary unit gradient condition; 3) a 1D vertical flow in the unsaturated zone is sufficient; however there is benefit in introducing a simple dual soil moisture retention curve; 4) regionalized information can be used to describe soil spatial heterogeneity. It is concluded that relatively simple refinements to the hydrology of JULES and its parameterisation method can provide a substantial step forward in realising its potential as a high-resolution multi-purpose model.

  14. Using dry and wet year hydroclimatic extremes to guide future hydrologic projections

    NASA Astrophysics Data System (ADS)

    Oni, Stephen; Futter, Martyn; Ledesma, Jose; Teutschbein, Claudia; Buttle, Jim; Laudon, Hjalmar

    2016-07-01

    There are growing numbers of studies on climate change impacts on forest hydrology, but limited attempts have been made to use current hydroclimatic variabilities to constrain projections of future climatic conditions. Here we used historical wet and dry years as a proxy for expected future extreme conditions in a boreal catchment. We showed that runoff could be underestimated by at least 35 % when dry year parameterizations were used for wet year conditions. Uncertainty analysis showed that behavioural parameter sets from wet and dry years separated mainly on precipitation-related parameters and to a lesser extent on parameters related to landscape processes, while uncertainties inherent in climate models (as opposed to differences in calibration or performance metrics) appeared to drive the overall uncertainty in runoff projections under dry and wet hydroclimatic conditions. Hydrologic model calibration for climate impact studies could be based on years that closely approximate anticipated conditions to better constrain uncertainty in projecting extreme conditions in boreal and temperate regions.

  15. A seasonal hydrologic ensemble prediction system for water resource management

    NASA Astrophysics Data System (ADS)

    Luo, L.; Wood, E. F.

    2006-12-01

    A seasonal hydrologic ensemble prediction system, developed for the Ohio River basin, has been improved and expanded to several other regions including the Eastern U.S., Africa and East Asia. The prediction system adopts the traditional Extended Streamflow Prediction (ESP) approach, utilizing the VIC (Variable Infiltration Capacity) hydrological model as the central tool for producing ensemble prediction of soil moisture, snow and streamflow with lead times up to 6-month. VIC is forced by observed meteorology to estimate the hydrological initial condition prior to the forecast, but during the forecast period the atmospheric forcing comes from statistically downscaled, seasonal forecast from dynamic climate models. The seasonal hydrologic ensemble prediction system is currently producing realtime seasonal hydrologic forecast for these regions on a monthly basis. Using hindcasts from a 19-year period (1981-1999), during which seasonal hindcasts from NCEP Climate Forecast System (CFS) and European Union DEMETER project are available, we evaluate the performance of the forecast system over our forecast regions. The evaluation shows that the prediction system using the current forecast approach is able to produce reliable and accurate precipitation, soil moisture and streamflow predictions. The overall skill is much higher then the traditional ESP. In particular, forecasts based on multiple climate model forecast are more skillful than single model-based forecast. This emphasizes the significant need for producing seasonal climate forecast with multiple climate models for hydrologic applications. Forecast from this system is expected to provide very valuable information about future hydrologic states and associated risks for end users, including water resource management and financial sectors.

  16. The critical role of uncertainty in projections of hydrological extremes

    NASA Astrophysics Data System (ADS)

    Meresa, Hadush K.; Romanowicz, Renata J.

    2017-08-01

    This paper aims to quantify the uncertainty in projections of future hydrological extremes in the Biala Tarnowska River at Koszyce gauging station, south Poland. The approach followed is based on several climate projections obtained from the EURO-CORDEX initiative, raw and bias-corrected realizations of catchment precipitation, and flow simulations derived using multiple hydrological model parameter sets. The projections cover the 21st century. Three sources of uncertainty are considered: one related to climate projection ensemble spread, the second related to the uncertainty in hydrological model parameters and the third related to the error in fitting theoretical distribution models to annual extreme flow series. The uncertainty of projected extreme indices related to hydrological model parameters was conditioned on flow observations from the reference period using the generalized likelihood uncertainty estimation (GLUE) approach, with separate criteria for high- and low-flow extremes. Extreme (low and high) flow quantiles were estimated using the generalized extreme value (GEV) distribution at different return periods and were based on two different lengths of the flow time series. A sensitivity analysis based on the analysis of variance (ANOVA) shows that the uncertainty introduced by the hydrological model parameters can be larger than the climate model variability and the distribution fit uncertainty for the low-flow extremes whilst for the high-flow extremes higher uncertainty is observed from climate models than from hydrological parameter and distribution fit uncertainties. This implies that ignoring one of the three uncertainty sources may cause great risk to future hydrological extreme adaptations and water resource planning and management.

  17. Relating the dynamics of climatological and hydrological droughts in semiarid Botswana

    NASA Astrophysics Data System (ADS)

    Byakatonda, Jimmy; Parida, B. P.; Kenabatho, Piet K.

    2018-06-01

    Dynamics of droughts have been an associated feature of climate variability particularly in semiarid regions which impact on the response of hydrological systems. This study attempts to determine drought timescale that is suitable for monitoring the effects of drought on hydrological systems which can then be used to assess the long term persistence or reversion and forecasts of the dynamics. Based on this, climatological and hydrological drought indices characterized by Standardized precipitation evapotranspiration index (SPEI) and Standardized flow index (SFI) respectively have been determined using monthly rainfall, temperature and flow data from two major river systems. The association between climatological and hydrological droughts in Botswana has been investigated using these river systems namely: Okavango that is predominantly a storage type and Limpopo which is non-storage for a period of 1975-2014. Dynamics of climatological and hydrological droughts are showing trends towards drying conditions at both river systems. It was also observed that hydrological droughts lag climatological droughts by 7 months in Limpopo and 6 months in Okavango river systems respectively. Analyses of the association between climatic and flow indices indicate that the degree of association becomes stronger with increasing timescale at the Okavango river system. However in the Limpopo river system, it was observed that high timescales of 18- and 24-months were not useful in drought monitoring. 15-months timescale was identified to best monitor drought dynamics at both locations. Therefore SPEIs and SFIs computed at 15-months timescale have been used to assess the variability and long term persistence in drought dynamics through rescaled range analysis (R/S). H-coefficients of 0.06 and 0.08 resulted for Limpopo and Okavango respectively. These H-coefficients being significantly less than 0.5 is an indication of high variability and suggests a change in dynamics from the existing

  18. Green roof hydrologic performance and modeling: a review.

    PubMed

    Li, Yanling; Babcock, Roger W

    2014-01-01

    Green roofs reduce runoff from impervious surfaces in urban development. This paper reviews the technical literature on green roof hydrology. Laboratory experiments and field measurements have shown that green roofs can reduce stormwater runoff volume by 30 to 86%, reduce peak flow rate by 22 to 93% and delay the peak flow by 0 to 30 min and thereby decrease pollution, flooding and erosion during precipitation events. However, the effectiveness can vary substantially due to design characteristics making performance predictions difficult. Evaluation of the most recently published study findings indicates that the major factors affecting green roof hydrology are precipitation volume, precipitation dynamics, antecedent conditions, growth medium, plant species, and roof slope. This paper also evaluates the computer models commonly used to simulate hydrologic processes for green roofs, including stormwater management model, soil water atmosphere and plant, SWMS-2D, HYDRUS, and other models that are shown to be effective for predicting precipitation response and economic benefits. The review findings indicate that green roofs are effective for reduction of runoff volume and peak flow, and delay of peak flow, however, no tool or model is available to predict expected performance for any given anticipated system based on design parameters that directly affect green roof hydrology.

  19. Geochemical response to hydrologic change along land-sea interfaces

    NASA Astrophysics Data System (ADS)

    Michael, H. A.; Yu, X.; LeMonte, J. J.; Sparks, D. L.; Kim, K. H.; Heiss, J.; Ullman, W. J.; Guimond, J. A.; Seyfferth, A.

    2016-12-01

    Coastal groundwater-surface water interfaces are hotspots of geochemical activity, where reactants contributed by different sources come in contact. Reactions that occur along these land-sea boundaries have important effects on fluxes and cycling of carbon, nutrients, and contaminants. Hydrologic perturbations can alter interactions by promoting mixing, changing redox state, and altering subsurface residence times during which reactions may occur. We present examples from field and modeling investigations along the Delaware coastline that illustrate the impacts of hydrologic fluctuations on geochemical conditions and fluxes in different coastal environments. Along the highly populated Wilmington coastline, soils are contaminated with heavy metals from legacy industrial practices. We show with continuous redox monitoring and sampling over tidal to seasonal timescales that arsenic is mobilized and immobilized in response to hydrologic change. Along a beach, modeling and long-term monitoring show the influence of tidal to seasonal changes in the mixing zone between discharging fresh groundwater and seawater in the intertidal beach aquifer and associated impacts on biogeochemical reactivity and denitrification. In a saltmarsh, hydrologic changes alter carbon dynamics, with implications for the discharge of dissolved organic carbon to the ocean and export of carbon dioxide and methane to the atmosphere. Understanding the impacts of hydrologic changes on both long and short timescales is essential for improving our ability to predict the global biogeochemical impacts of a changing climate.

  20. Investigating the Role of Hydrologic Residence Time in Nitrogen Transformations at the Sediment-Water Interface using Controlled Variable Head Experiments

    NASA Astrophysics Data System (ADS)

    Hampton, T. B.; Zarnetske, J. P.; Briggs, M. A.; Singha, K.; Day-Lewis, F. D.

    2017-12-01

    Many important biogeochemical processes governing both carbon and nitrogen dynamics in streams take place at the sediment-water interface (SWI). This interface is highly variable in biogeochemical function, with stream stage often influencing the magnitude and direction of water and solute exchange through the SWI. It is well known that the SWI can be an important location for carbon and nitrogen transformations, including denitrification and greenhouse gas production. The degree of mixing of carbon and nitrate, along with oxygen from surface waters, is strongly influenced by hydrologic exchange at the SWI. We hypothesize that hydrologic residence time, which is also determined by the magnitude of exchange, is a key control on the fate of nitrate at the SWI and on the end products of denitrification. Previous studies in the headwaters of the Ipswich River in MA as part of the Lotic Intersite Nitrogen Experiments (LINX II) and other long-term monitoring suggest that the Ipswich River SWI represents an important source of nitrous oxide, a potent greenhouse gas. Using a novel constant-head infiltrometer ring embedded in the stream sediments, we created four unique controlled down-welling (i.e., recharge) conditions, and tested how varying this hydrologic flux and thus the residence time distribution influenced biogeochemical function of the Ipswich River SWI. Specifically, we added isotopically-labelled 15N-nitrate to stream water during each controlled hydrologic flux experiment to quantify nitrate transformation rates, including denitrification end products, under the different hydrologic conditions. We also measured a suite of carbon and nitrogen solutes, along with dissolved oxygen conditions throughout each experiment to characterize the broader residence timescale and biogeochemical responses to the hydrologic manipulations. Initial results show that the oxic conditions of the SWI were strongly responsive to changes in hydrologic flux rates, thereby changing the

  1. How misapplication of the hydrologic unit framework diminishes the meaning of watersheds

    USGS Publications Warehouse

    Omernik, James M.; Griffith, Glenn E.; Hughes, Robert M.; Glover, James B.; Weber, Marc H.

    2017-01-01

    Hydrologic units provide a convenient but problematic nationwide set of geographic polygons based on subjectively determined subdivisions of land surface areas at several hierarchical levels. The problem is that it is impossible to map watersheds, basins, or catchments of relatively equal size and cover the whole country. The hydrologic unit framework is in fact composed mostly of watersheds and pieces of watersheds. The pieces include units that drain to segments of streams, remnant areas, noncontributing areas, and coastal or frontal units that can include multiple watersheds draining to an ocean or large lake. Hence, half or more of the hydrologic units are not watersheds as the name of the framework “Watershed Boundary Dataset” implies. Nonetheless, hydrologic units and watersheds are commonly treated as synonymous, and this misapplication and misunderstanding can have some serious scientific and management consequences. We discuss some of the strengths and limitations of watersheds and hydrologic units as spatial frameworks. Using examples from the Northwest and Southeast United States, we explain how the misapplication of the hydrologic unit framework has altered the meaning of watersheds and can impair understanding associations between spatial geographic characteristics and surface water conditions.

  2. Hydrologic conditions in the Bill Williams River National Wildlife Refuge and Planet Valley, Arizona, 2000

    USGS Publications Warehouse

    Wilson, Richard P.; Owen-Joyce, Sandra J.

    2002-01-01

    During a period of sustained base-flow conditions in the Bill Williams River below Alamo Dam in west central Arizona from March to July 2000, the channel of the river through Planet Valley was dry, and the water table sloped almost due west parallel to the main slope of the flood plain. Water from the river infiltrated into the channel bottom at the head of Planet Valley, moved downgradient in the subsurface, and reappeared in the channel about 0.3 mile downstream from the east boundary of the Bill Williams River National Wildlife Refuge. A river aquifer in hydraulic connection with the Bill Williams River was mapped from a point 6.3 miles upstream from Highway 95 to the upstream end of Planet Valley. Formations that make up the river aquifer in Planet Valley are younger alluvium, older alluviums, and fanglomerate. Total thickness of the river aquifer probably is less than 200 feet in the bedrock canyons to as much as 1,035 feet in Planet Valley. The purpose of this study was to investigate the current hydrologic conditions along the Bill Williams River, which included an inventory of wells within the river aquifer of the Colorado River and in Planet Valley, and to determine the configuration of the water table. A map shows the elevation and configuration of the water table from the east end of Planet Valley to the confluence of the Bill Williams River with Lake Havasu.

  3. Arid Zone Hydrology

    USDA-ARS?s Scientific Manuscript database

    Arid zone hydrology encompasses a wide range of topics and hydro-meteorological and ecological characteristics. Although arid and semi-arid watersheds perform the same functions as those in humid environments, their hydrology and sediment transport characteristics cannot be readily predicted by inf...

  4. Findings and Challenges in Fine-Resolution Large-Scale Hydrological Modeling

    NASA Astrophysics Data System (ADS)

    Her, Y. G.

    2017-12-01

    Fine-resolution large-scale (FL) modeling can provide the overall picture of the hydrological cycle and transport while taking into account unique local conditions in the simulation. It can also help develop water resources management plans consistent across spatial scales by describing the spatial consequences of decisions and hydrological events extensively. FL modeling is expected to be common in the near future as global-scale remotely sensed data are emerging, and computing resources have been advanced rapidly. There are several spatially distributed models available for hydrological analyses. Some of them rely on numerical methods such as finite difference/element methods (FDM/FEM), which require excessive computing resources (implicit scheme) to manipulate large matrices or small simulation time intervals (explicit scheme) to maintain the stability of the solution, to describe two-dimensional overland processes. Others make unrealistic assumptions such as constant overland flow velocity to reduce the computational loads of the simulation. Thus, simulation efficiency often comes at the expense of precision and reliability in FL modeling. Here, we introduce a new FL continuous hydrological model and its application to four watersheds in different landscapes and sizes from 3.5 km2 to 2,800 km2 at the spatial resolution of 30 m on an hourly basis. The model provided acceptable accuracy statistics in reproducing hydrological observations made in the watersheds. The modeling outputs including the maps of simulated travel time, runoff depth, soil water content, and groundwater recharge, were animated, visualizing the dynamics of hydrological processes occurring in the watersheds during and between storm events. Findings and challenges were discussed in the context of modeling efficiency, accuracy, and reproducibility, which we found can be improved by employing advanced computing techniques and hydrological understandings, by using remotely sensed hydrological

  5. Hydrologic influence on redox dynamics in estuarine environments

    NASA Astrophysics Data System (ADS)

    Michael, H. A.; Kim, K. H.; Guimond, J. A.; Heiss, J.; Ullman, W. J.; Seyfferth, A.

    2017-12-01

    Redox conditions in coastal aquifers control reactions that impact nutrient cycling, contaminant release, and carbon budgets, with implications for water resources and ecosystem health. Hydrologic changes can shift redox boundaries and inputs of reactants, especially in dynamic coastal systems subject to fluctuations on tidal, lunar, and longer timescales. We present two examples of redox shifts in estuarine systems in Delaware, USA: a beach aquifer and a saltmarsh. Beach aquifers are biogeochemical hot spots due to mixing between fresh groundwater and infiltrating seawater. At Cape Henlopen, DE, geochemical measurements identified reactions in the intertidal aquifer that include cycling of carbon, nitrogen, iron, and sulfur. Measurements and modeling illustrate that redox potential as well as the locations of redox reactions shift on tidal to seasonal timescales and in response to changing beach and aquifer properties, impacting overall rates of reactions such as denitrification that reduces N loads to coastal waters. In the St. Jones National Estuarine Research Reserve, tidal fluctuations in channels cause periodic groundwater-surface water exchange, water table movement, and intermittent flooding that varies spatially across the saltmarsh. These changes create shifts in redox potential that are greatest near channels and in the top 20 cm of sediments. The magnitude of redox change depends on hydrologic setting (near channels or in marsh interior), hydrologic conditions (tidal stage, seasonal shifts), as well as prevalence of macropores created by crab burrows that change seasonally with crab activity. These shifts correspond to changes in porewater chemistry that have implications for nutrient cycling and carbon export to the ocean. Understanding hydrologic influence on redox geochemistry is critical for predicting how these systems and their ecosystem services may change in the future in response to anthropogenic and climate change.

  6. Influence of ecohydrologic feedbacks from simulated crop growth on integrated regional hydrologic simulations under climate scenarios

    NASA Astrophysics Data System (ADS)

    van Walsum, P. E. V.; Supit, I.

    2012-06-01

    Hydrologic climate change modelling is hampered by climate-dependent model parameterizations. To reduce this dependency, we extended the regional hydrologic modelling framework SIMGRO to host a two-way coupling between the soil moisture model MetaSWAP and the crop growth simulation model WOFOST, accounting for ecohydrologic feedbacks in terms of radiation fraction that reaches the soil, crop coefficient, interception fraction of rainfall, interception storage capacity, and root zone depth. Except for the last, these feedbacks are dependent on the leaf area index (LAI). The influence of regional groundwater on crop growth is included via a coupling to MODFLOW. Two versions of the MetaSWAP-WOFOST coupling were set up: one with exogenous vegetation parameters, the "static" model, and one with endogenous crop growth simulation, the "dynamic" model. Parameterization of the static and dynamic models ensured that for the current climate the simulated long-term averages of actual evapotranspiration are the same for both models. Simulations were made for two climate scenarios and two crops: grass and potato. In the dynamic model, higher temperatures in a warm year under the current climate resulted in accelerated crop development, and in the case of potato a shorter growing season, thus partly avoiding the late summer heat. The static model has a higher potential transpiration; depending on the available soil moisture, this translates to a higher actual transpiration. This difference between static and dynamic models is enlarged by climate change in combination with higher CO2 concentrations. Including the dynamic crop simulation gives for potato (and other annual arable land crops) systematically higher effects on the predicted recharge change due to climate change. Crop yields from soils with poor water retention capacities strongly depend on capillary rise if moisture supply from other sources is limited. Thus, including a crop simulation model in an integrated

  7. Hydrologic and biogeochemical controls of river subsurface solutes under agriculturally enhanced ground water flow

    USGS Publications Warehouse

    Wildman, R.A.; Domagalski, Joseph L.; Hering, J.G.

    2009-01-01

    The relative influences of hydrologic processes and biogeochemistry on the transport and retention of minor solutes were compared in the riverbed of the lower Merced River (California, USA). The subsurface of this reach receives ground water discharge and surface water infiltration due to an altered hydraulic setting resulting from agricultural irrigation. Filtered ground water samples were collected from 30 drive point locations in March, June, and October 2004. Hydrologic processes, described previously, were verified by observations of bromine concentrations; manganese was used to indicate redox conditions. The separate responses of the minor solutes strontium, barium, uranium, and phosphorus to these influences were examined. Correlation and principal component analyses indicate that hydrologic processes dominate the distribution of trace elements in the ground water. Redox conditions appear to be independent of hydrologic processes and account for most of the remaining data variability. With some variability, major processes are consistent in two sampling transects separated by 100 m. Copyright ?? 2009 by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America. All rights reserved.

  8. Hydrological modelling in forested systems | Science ...

    EPA Pesticide Factsheets

    This chapter provides a brief overview of forest hydrology modelling approaches for answering important global research and management questions. Many hundreds of hydrological models have been applied globally across multiple decades to represent and predict forest hydrological processes. The focus of this chapter is on process-based models and approaches, specifically 'forest hydrology models'; that is, physically based simulation tools that quantify compartments of the forest hydrological cycle. Physically based models can be considered those that describe the conservation of mass, momentum and/or energy. The purpose of this chapter is to provide a brief overview of forest hydrology modeling approaches for answering important global research and management questions. The focus of this chapter is on process-based models and approaches, specifically “forest hydrology models”, i.e., physically-based simulation tools that quantify compartments of the forest hydrological cycle.

  9. Scaling Hydrologic Processes in Boreal Forest Stands: New Eco-hydrological Perspectives or Deja vu?

    NASA Astrophysics Data System (ADS)

    Silins, U.; Lieffers, V. J.; Landhausser, S. M.; Mendoza, C. A.; Devito, K. J.; Petrone, R. M.; Gan, T. Y.

    2006-12-01

    The leaf area of forest canopies is both main attribute of stands controlling water balance through transpiration and interception, and "engine" driving stand growth, stand dynamics, and forest succession. While transpiration and interception dynamics are classic themes in forest hydrology, we present results from our eco-hydrological research on boreal trees to highlight how more recent eco-physiological insights into species specific controls over water use and leaf area such as hydraulic architecture, cavitation, sapwood-leaf area relationships, and root system controls over water uptake are providing new insights into integrated atmospheric-autecological controls over these hydrologic processes. These results are discussed in the context of newer eco-hydrological frameworks which may serve to aid in exploring how forest disturbance and subsequent trajectories of hydrologic recovery are likely to affect both forest growth dynamics and hydrology of forested landscapes in response to forest management, severe forest pest epidemics such as the Mountain Pine Beetle epidemic in Western Canada, and climate change.

  10. Replacing climatological potential evapotranspiration estimates with dynamic satellite-based observations in operational hydrologic prediction models

    NASA Astrophysics Data System (ADS)

    Franz, K. J.; Bowman, A. L.; Hogue, T. S.; Kim, J.; Spies, R.

    2011-12-01

    In the face of a changing climate, growing populations, and increased human habitation in hydrologically risky locations, both short- and long-range planners increasingly require robust and reliable streamflow forecast information. Current operational forecasting utilizes watershed-scale, conceptual models driven by ground-based (commonly point-scale) observations of precipitation and temperature and climatological potential evapotranspiration (PET) estimates. The PET values are derived from historic pan evaporation observations and remain static from year-to-year. The need for regional dynamic PET values is vital for improved operational forecasting. With the advent of satellite remote sensing and the adoption of a more flexible operational forecast system by the National Weather Service, incorporation of advanced data products is now more feasible than in years past. In this study, we will test a previously developed satellite-derived PET product (UCLA MODIS-PET) in the National Weather Service forecast models and compare the model results to current methods. The UCLA MODIS-PET method is based on the Priestley-Taylor formulation, is driven with MODIS satellite products, and produces a daily, 250m PET estimate. The focus area is eight headwater basins in the upper Midwest U.S. There is a need to develop improved forecasting methods for this region that are able to account for climatic and landscape changes more readily and effectively than current methods. This region is highly flood prone yet sensitive to prolonged dry periods in late summer and early fall, and is characterized by a highly managed landscape, which has drastically altered the natural hydrologic cycle. Our goal is to improve model simulations, and thereby, the initial conditions prior to the start of a forecast through the use of PET values that better reflect actual watershed conditions. The forecast models are being tested in both distributed and lumped mode.

  11. Ensemble catchment hydrological modelling for climate change impact analysis

    NASA Astrophysics Data System (ADS)

    Vansteenkiste, Thomas; Ntegeka, Victor; Willems, Patrick

    2014-05-01

    It is vital to investigate how the hydrological model structure affects the climate change impact given that future changes not in the range for which the models were calibrated or validated are likely. Thus an ensemble modelling approach which involves a diversity of models with different structures such as spatial resolutions and process descriptions is crucial. The ensemble modelling approach was applied to a set of models: from the lumped conceptual models NAM, PDM and VHM, an intermediate detailed and distributed model WetSpa, to the highly detailed and fully distributed model MIKE-SHE. Explicit focus was given to the high and low flow extremes. All models were calibrated for sub flows and quick flows derived from rainfall and potential evapotranspiration (ETo) time series. In general, all models were able to produce reliable estimates of the flow regimes under the current climate for extreme peak and low flows. An intercomparison of the low and high flow changes under changed climatic conditions was made using climate scenarios tailored for extremes. Tailoring was important for two reasons. First, since the use of many scenarios was not feasible it was necessary to construct few scenarios that would reasonably represent the range of extreme impacts. Second, scenarios would be more informative as changes in high and low flows would be easily traced to changes of ETo and rainfall; the tailored scenarios are constructed using seasonal changes that are defined using different levels of magnitude (high, mean and low) for rainfall and ETo. After simulation of these climate scenarios in the five hydrological models, close agreement was found among the models. The different models predicted similar range of peak flow changes. For the low flows, however, the differences in the projected impact range by different hydrological models was larger, particularly for the drier scenarios. This suggests that the hydrological model structure is critical in low flow predictions

  12. Hydrological modelling in forested systems

    EPA Science Inventory

    This chapter provides a brief overview of forest hydrology modelling approaches for answering important global research and management questions. Many hundreds of hydrological models have been applied globally across multiple decades to represent and predict forest hydrological p...

  13. The long-term hydrological effect of forest stands on the stability of slopes

    NASA Astrophysics Data System (ADS)

    Bogaard, T. A.; Meng, W.; van Beek, L. P. H.

    2012-04-01

    Forest is widely known to improve slope stability as a result of mechanical and hydrological effects. While the mechanics underlying the stabilizing process of root reinforcement are well understood and quantified, the influence of forest on the occurrence of critical hydrological conditions in terms of suction or pore pressure remains uncertain. Due to seasonal and inter-annual fluctuations, the stabilizing influence of evaporation and transpiration is difficult to isolate from the overall noise of the hydrological signal. More long-term effects of forest stands on soil development are highly variable and thus difficult to observe and quantify. Often these effects are ambivalent, having potentially a stabilizing or destabilizing influence on a slope under particular conditions (e.g., more structured soils leading to both rapid infiltration and drainage). Consequently, it can be postulated that forests will hydrologically influence the magnitude-frequency distribution of landsliding, not only at the stand level but also on a regional scale through the groundwater system. The overall aim of this research is to understand and quantify the stabilizing hydrological effect of forests on potentially unstable slopes. To this end, we focus on the changes in the magnitude-frequency distribution of landsliding that arise as a result of variations in evapotranspiration losses over the life cycle of stands. Temporal variations in evapotranspiration comprise first of all the interception that can account for an important amount of evaporation from a forest, and that changes with seasonal and annual variations in the interception capacity of the canopy and forest floor. Transpiration also represents an important loss that varies over the various growth stages of a forest stand. Based on a literature review of water consumption by tree species and water balance studies of forested catchments we defined the potential transpiration for different growth stages. This information we

  14. Future climate change impact assessment of watershed scale hydrologic processes in Peninsular Malaysia by a regional climate model coupled with a physically-based hydrology modelo.

    PubMed

    Amin, M Z M; Shaaban, A J; Ercan, A; Ishida, K; Kavvas, M L; Chen, Z Q; Jang, S

    2017-01-01

    Impacts of climate change on the hydrologic processes under future climate change conditions were assessed over Muda and Dungun watersheds of Peninsular Malaysia by means of a coupled regional climate and physically-based hydrology model utilizing an ensemble of future climate change projections. An ensemble of 15 different future climate realizations from coarse resolution global climate models' (GCMs) projections for the 21st century was dynamically downscaled to 6km resolution over Peninsular Malaysia by a regional climate model, which was then coupled with the watershed hydrology model WEHY through the atmospheric boundary layer over Muda and Dungun watersheds. Hydrologic simulations were carried out at hourly increments and at hillslope-scale in order to assess the impacts of climate change on the water balances and flooding conditions in the 21st century. The coupled regional climate and hydrology model was simulated for a duration of 90years for each of the 15 realizations. It is demonstrated that the increase in mean monthly flows due to the impact of expected climate change during 2040-2100 is statistically significant from April to May and from July to October at Muda watershed. Also, the increase in mean monthly flows is shown to be significant in November during 2030-2070 and from November to December during 2070-2100 at Dungun watershed. In other words, the impact of the expected climate change will be significant during the northeast and southwest monsoon seasons at Muda watershed and during the northeast monsoon season at Dungun watershed. Furthermore, the flood frequency analyses for both watersheds indicated an overall increasing trend in the second half of the 21st century. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Coupled hydrological and geochemical process evolution at the Landscape Evolution Observatory

    NASA Astrophysics Data System (ADS)

    Troch, P. A. A.

    2015-12-01

    Predictions of hydrologic and biogeochemical responses to natural and anthropogenic forcing at the landscape scale are highly uncertain due to the effects of heterogeneity on the scaling of reaction, flow and transport phenomena. The physical, chemical and biological structures and processes controlling reaction, flow and transport in natural landscapes interact at multiple space and time scales and are difficult to quantify. The current paradigm of hydrological and geochemical theory is that process descriptions derived from observations at small scales in controlled systems can be applied to predict system response at much larger scales, as long as some 'equivalent' or 'effective' values of the scale-dependent parameters can be identified. Furthermore, natural systems evolve in time in a way that is hard to observe in short-run laboratory experiments or in natural landscapes with unknown initial conditions and time-variant forcing. The spatial structure of flow pathways along hillslopes determines the rate, extent and distribution of geochemical reactions (and biological colonization) that drive weathering, the transport and precipitation of solutes and sediments, and the further evolution of soil structure. The resulting evolution of structures and processes, in turn, produces spatiotemporal variability of hydrological states and flow pathways. There is thus a need for experimental research to improve our understanding of hydrology-biogeochemistry interactions and feedbacks at appropriate spatial scales larger than laboratory soil column experiments. Such research is complicated in real-world settings because of poorly constrained impacts of initial conditions, climate variability, ecosystems dynamics, and geomorphic evolution. The Landscape Evolution Observatory (LEO) at Biosphere 2 offers a unique research facility that allows real-time observations of incipient hydrologic and biogeochemical response under well-constrained initial conditions and climate

  16. Parallel computing method for simulating hydrological processesof large rivers under climate change

    NASA Astrophysics Data System (ADS)

    Wang, H.; Chen, Y.

    2016-12-01

    Climate change is one of the proverbial global environmental problems in the world.Climate change has altered the watershed hydrological processes in time and space distribution, especially in worldlarge rivers.Watershed hydrological process simulation based on physically based distributed hydrological model can could have better results compared with the lumped models.However, watershed hydrological process simulation includes large amount of calculations, especially in large rivers, thus needing huge computing resources that may not be steadily available for the researchers or at high expense, this seriously restricted the research and application. To solve this problem, the current parallel method are mostly parallel computing in space and time dimensions.They calculate the natural features orderly thatbased on distributed hydrological model by grid (unit, a basin) from upstream to downstream.This articleproposes ahigh-performancecomputing method of hydrological process simulation with high speedratio and parallel efficiency.It combinedthe runoff characteristics of time and space of distributed hydrological model withthe methods adopting distributed data storage, memory database, distributed computing, parallel computing based on computing power unit.The method has strong adaptability and extensibility,which means it canmake full use of the computing and storage resources under the condition of limited computing resources, and the computing efficiency can be improved linearly with the increase of computing resources .This method can satisfy the parallel computing requirements ofhydrological process simulation in small, medium and large rivers.

  17. Assessment of 21st century drought conditions at Shasta Dam based on dynamically projected water supply conditions by a regional climate model coupled with a physically-based hydrology model.

    PubMed

    Trinh, T; Ishida, K; Kavvas, M L; Ercan, A; Carr, K

    2017-05-15

    Along with socioeconomic developments, and population increase, natural disasters around the world have recently increased the awareness of harmful impacts they cause. Among natural disasters, drought is of great interest to scientists due to the extraordinary diversity of their severity and duration. Motivated by the development of a potential approach to investigate future possible droughts in a probabilistic framework based on climate change projections, a methodology to consider thirteen future climate projections based on four emission scenarios to characterize droughts is presented. The proposed approach uses a regional climate model coupled with a physically-based hydrology model (Watershed Environmental Hydrology Hydro-Climate Model; WEHY-HCM) to generate thirteen equally likely future water supply projections. The water supply projections were compared to the current water demand for the detection of drought events and estimation of drought properties. The procedure was applied to Shasta Dam watershed to analyze drought conditions at the watershed outlet, Shasta Dam. The results suggest an increasing water scarcity at Shasta Dam with more severe and longer future drought events in some future scenarios. An important advantage of the proposed approach to the probabilistic analysis of future droughts is that it provides the drought properties of the 100-year and 200-year return periods without resorting to any extrapolation of the frequency curve. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Updating of states in operational hydrological models

    NASA Astrophysics Data System (ADS)

    Bruland, O.; Kolberg, S.; Engeland, K.; Gragne, A. S.; Liston, G.; Sand, K.; Tøfte, L.; Alfredsen, K.

    2012-04-01

    Operationally the main purpose of hydrological models is to provide runoff forecasts. The quality of the model state and the accuracy of the weather forecast together with the model quality define the runoff forecast quality. Input and model errors accumulate over time and may leave the model in a poor state. Usually model states can be related to observable conditions in the catchment. Updating of these states, knowing their relation to observable catchment conditions, influence directly the forecast quality. Norway is internationally in the forefront in hydropower scheduling both on short and long terms. The inflow forecasts are fundamental to this scheduling. Their quality directly influence the producers profit as they optimize hydropower production to market demand and at the same time minimize spill of water and maximize available hydraulic head. The quality of the inflow forecasts strongly depends on the quality of the models applied and the quality of the information they use. In this project the focus has been to improve the quality of the model states which the forecast is based upon. Runoff and snow storage are two observable quantities that reflect the model state and are used in this project for updating. Generally the methods used can be divided in three groups: The first re-estimates the forcing data in the updating period; the second alters the weights in the forecast ensemble; and the third directly changes the model states. The uncertainty related to the forcing data through the updating period is due to both uncertainty in the actual observation and to how well the gauging stations represent the catchment both in respect to temperatures and precipitation. The project looks at methodologies that automatically re-estimates the forcing data and tests the result against observed response. Model uncertainty is reflected in a joint distribution of model parameters estimated using the Dream algorithm.

  19. Riparian plant composition along hydrologic gradients in a dryland river basin and implications for a warming climate

    USGS Publications Warehouse

    Reynolds, Lindsay; Shafroth, Patrick B.

    2017-01-01

    Droughts in dryland regions on all continents are expected to increase in severity and duration under future climate projections. In dryland regions, it is likely that minimum streamflow will decrease with some perennial streams shifting to intermittent flow under climate-driven changes in precipitation and runoff and increases in temperature. Decreasing base flow and shifting flow regimes from perennial to intermittent could have significant implications for stream-dependent biota, including riparian vegetation. In this study, we asked, how do riparian plant communities vary along wet-to-dry hydrologic gradients on small (first–third order) streams? We collected data on geomorphic, hydrologic, and plant community characteristics on 54 stream sites ranging in hydrology from intermittent to perennial flow across the Upper Colorado River Basin (284,898 km2). We found that plant communities varied along hydrologic gradients from high to low elevation between streams, and perennial to intermittent flow. We identified indicator species associated with different hydrologic conditions and suggest how plant communities may shift under warmer, drier conditions. Our results indicate that species richness and cover of total, perennial, wetland, and native plant groups will decrease while annual plants will increase under drying conditions. Understanding how plant communities respond to regional drivers such as hydroclimate requires broad-scale approaches such as sampling across whole river basins. With increasingly arid conditions in many regions of the globe, understanding plant community shifts is key to understanding the future of riparian ecosystems.

  20. Hands-On Hydrology

    ERIC Educational Resources Information Center

    Mathews, Catherine E.; Monroe, Louise Nelson

    2004-01-01

    A professional school and university collaboration enables elementary students and their teachers to explore hydrology concepts and realize the beneficial functions of wetlands. Hands-on experiences involve young students in determining water quality at field sites after laying the groundwork with activities related to the hydrologic cycle,…

  1. The influence of reservoirs, climate, land use and hydrologic conditions on loads and chemical quality of dissolved organic carbon in the Colorado River

    USGS Publications Warehouse

    Miller, Matthew P.

    2012-01-01

    Longitudinal patterns in dissolved organic carbon (DOC) loads and chemical quality were identified in the Colorado River from the headwaters in the Rocky Mountains to the United States-Mexico border from 1994 to 2011. Watershed- and reach-scale climate, land use, river discharge and hydrologic modification conditions that contribute to patterns in DOC were also identified. Principal components analysis (PCA) identified site-specific precipitation and reach-scale discharge as being correlated with sites in the upper basin, where there were increases in DOC load from the upstream to downstream direction. In the lower basin, where DOC load decreased from upstream to downstream, sites were correlated with site-specific temperature and reach-scale population, urban land use and hydrologic modification. In the reaches containing Lakes Powell and Mead, the two largest reservoirs in the United States, DOC quantity decreased, terrestrially derived aromatic DOC was degraded and/or autochthonous less aromatic DOC was produced. Taken together, these results suggest that longitudinal patterns in the relatively unregulated upper basin are influenced by watershed inputs of water and DOC, whereas DOC patterns in the lower basin are reflective of a balance between watershed contribution of water and DOC to the river and loss of water and DOC due to hydrologic modification and/or biogeochemical processes. These findings suggest that alteration of constituent fluxes in rivers that are highly regulated may overshadow watershed processes that would control fluxes in comparable unregulated rivers. Further, these results provide a foundation for detailed assessments of factors controlling the transport and chemical quality of DOC in the Colorado River.

  2. Random Forest-Based Approach for Maximum Power Point Tracking of Photovoltaic Systems Operating under Actual Environmental Conditions.

    PubMed

    Shareef, Hussain; Mutlag, Ammar Hussein; Mohamed, Azah

    2017-01-01

    Many maximum power point tracking (MPPT) algorithms have been developed in recent years to maximize the produced PV energy. These algorithms are not sufficiently robust because of fast-changing environmental conditions, efficiency, accuracy at steady-state value, and dynamics of the tracking algorithm. Thus, this paper proposes a new random forest (RF) model to improve MPPT performance. The RF model has the ability to capture the nonlinear association of patterns between predictors, such as irradiance and temperature, to determine accurate maximum power point. A RF-based tracker is designed for 25 SolarTIFSTF-120P6 PV modules, with the capacity of 3 kW peak using two high-speed sensors. For this purpose, a complete PV system is modeled using 300,000 data samples and simulated using the MATLAB/SIMULINK package. The proposed RF-based MPPT is then tested under actual environmental conditions for 24 days to validate the accuracy and dynamic response. The response of the RF-based MPPT model is also compared with that of the artificial neural network and adaptive neurofuzzy inference system algorithms for further validation. The results show that the proposed MPPT technique gives significant improvement compared with that of other techniques. In addition, the RF model passes the Bland-Altman test, with more than 95 percent acceptability.

  3. Hydrological character of the soil of a degraded area: comparison of analysis physical, chemical and floristic vegetational

    NASA Astrophysics Data System (ADS)

    Manfredi, Paolo; Cassinari, Chiara; Giupponi, Luca; Sichel, Giorgio Maria; Trevisan, Marco

    2013-04-01

    This work is an integral part of a project co-financed by the European Union "Environmental recovery of degraded soils and desertified land by a new technology treatment for the recovery of the land" (Life 10 ENV IT 400 "New Life"); this technology is based on a treatment (patented by m.c.m. Ecosistemi) of chemical mechanical processing of degraded soils with an initial process of disgregation of the same followed by their reconstitution incorporating soil matrices, a subsequent polycondensation with humic acids and a final restoration. The area of intervention of the New Life project lies in the municipal territory of Piacenza, where between the years 70 and 80 has been made a landfill for municipal solid waste with subsequent restoration work by placing a layer of soil cover. The first phase of the New Life project was that of a physical and chemical characterization of different cover soils of the area combined with floristic-vegetational analysis. At this stage the present study aims to compare the data related to the analysis of the vegetation with those returned by investigation of hydrological characteristics of soils performed by laboratory methods, together to confront two theoretical calculation methods for determination of hydrological parameters. The comparison of the ecological study of the vegetation with the outcomes obtained by the classical methods regarding the determination of water retention, allows you to have a picture that is as detailed as possible in describing the characteristics of the substrate. The comparison also with the two methods of calculation, which determines the hydrological character conditions in average soil condition, allows you to ascertain the actual disturbance of the soil in the area. In order to delineate the hydrological characteristics of the soils sampled, were quantified by the Maximum Water Concentration, the capacity range, the point of Withering by the method of the Tensiometric box and the Pressure Membrane

  4. Projecting supply and demand of hydrologic ecosystem services under future climate conditions

    NASA Astrophysics Data System (ADS)

    Chiang, Li-Chi; Huang, Tao; Lee, Tsung-Yu

    2014-05-01

    Ecosystems provide essential goods and services, such as food, clean water, water purification, soil conservation and cultural services for human being. In a watershed, these water-related ecosystem goods and services can directly or indirectly benefit both local people and downstream beneficiaries through a reservoir. Water quality and quantity in a reservoir are of importance for agricultural, industrial and domestic uses. Under the impacts of climate and land use changes, both ecosystem service supply and demand will be affected by changes in precipitation patterns, temperature, urbanization and agricultural activities. However, the linkage between ecosystem service provisioning (ESP) and ecosystem service beneficiary (ESB), and scales of supply and demand of ecosystem services are not clear yet. Therefore, to investigate water-related ecosystem service supply under climate and land use change, we took the Xindian river watershed (303 km2) as a case study, where the Feitsui Reservoir provides hydro-power and daily domestic water use of 3,450,000 m3 for 3.46 million people in Taipei, Taiwan. We integrated a hydrological model (Soil and Water Assessment Tool, SWAT) and a land use change model (Conversion of Land Use and its Effects, CLUE-s) with future climate change scenarios derived from General Circulation Models (GCMs), to assess the changes in ecosystem service supply and demand at different hydrologic scales. The results will provide useful information for decision-making on future land use management and climate change adaptation strategies in the watersheds. Keywords: climate change, land use change, ecosystem service, watershed, scale

  5. Evaluation of ERTS-1 data for certain hydrological uses

    NASA Technical Reports Server (NTRS)

    Wiesnet, D. R. (Principal Investigator); Mcginnis, D. F.; Mcmillan, M. C.

    1974-01-01

    The author has identified the following significant results. ERTS-1 MSS data have been used in a variety of hydrologic research including snow-extent mapping; studies of snowmelt, snowmelt runoff, spectral reflectance of snow for assessing snowpack conditions, and snow albedo; lake ice formation, breakup, and migration; lake current measurements; multispectral studies of lake ice; and flood studies. MSS sensing of soil moisture over a well-vegetated test site was unsuccessfully attempted. Although a powerful research tool, ERTS-1 has very limited use as an operational system for hydrologic communities because of its 18-day revisit cycle and its lack of a quick look capability.

  6. Hydrologic conditions, stream-water quality, and selected groundwater studies conducted in the Lawrenceville area, Georgia, 2003-2008

    USGS Publications Warehouse

    Clarke, John S.; Williams, Lester J.

    2010-01-01

    Hydrologic studies conducted during 2003-2008 as part of the U.S. Geological Survey Cooperative Water Program with the City of Lawrenceville, Georgia, provide important data for the management of water resources. The Cooperative Water Program includes (1) hydrologic monitoring (precipitation, streamflow, and groundwater levels) to quantify baseline conditions in anticipation of expanded groundwater development, (2) surface-water-quality monitoring to provide an understanding of how stream quality is affected by natural (such as precipitation) and anthropogenic factors (such as impervious area), and (3) geologic studies to better understand groundwater flow and hydrologic processes in a crystalline rock setting. The hydrologic monitoring network includes each of the two watersheds projected for groundwater development?the Redland-Pew Creek and upper Alcovy River watersheds?and the upper Apalachee River watershed, which serves as a background or control watershed because of its similar hydrologic and geologic characteristics to the other two watersheds. In each watershed, precipitation was generally greater during 2003-2005 than during 2006-2008, and correspondingly streamflow and groundwater levels decreased. In the upper Alcovy River and Redland-Pew Creek watersheds, groundwater level declines during 2003-2008 were mostly between 2 and 7 feet, with maximum observed declines of as much as 28.5 feet in the upper Alcovy River watershed, and 49.1 feet in the Redland-Pew Creek watershed. Synoptic base-flow measurements were used to locate and quantify gains or losses to streamflow resulting from groundwater interaction (groundwater seepage). In September 2006, seepage gains were measured at five of nine reaches evaluated in the upper Alcovy River watershed, with losses in the other four. The four losing reaches were near the confluence of the Alcovy River and Cedar Creek where the stream gradient is low and bedrock is at or near the land surface. In the Redland

  7. Geospatial technology applications in forest hydrology

    Treesearch

    S.S. Panda; E. Masson; S. Sen; H.W. Kim; Devendra Amatya

    2016-01-01

    Two separate disciplines, hydrology and forestry, together constitute forest hydrology. It is obvious that forestry and forest hydrology disciplines are spatial entities. Forestry is the science that seeks to understand the nature of forests throygh their life cycle and interactions with the surrounding environment. Forest hydrology includes forest soil water, streams...

  8. Comparison of global optimization approaches for robust calibration of hydrologic model parameters

    NASA Astrophysics Data System (ADS)

    Jung, I. W.

    2015-12-01

    Robustness of the calibrated parameters of hydrologic models is necessary to provide a reliable prediction of future performance of watershed behavior under varying climate conditions. This study investigated calibration performances according to the length of calibration period, objective functions, hydrologic model structures and optimization methods. To do this, the combination of three global optimization methods (i.e. SCE-UA, Micro-GA, and DREAM) and four hydrologic models (i.e. SAC-SMA, GR4J, HBV, and PRMS) was tested with different calibration periods and objective functions. Our results showed that three global optimization methods provided close calibration performances under different calibration periods, objective functions, and hydrologic models. However, using the agreement of index, normalized root mean square error, Nash-Sutcliffe efficiency as the objective function showed better performance than using correlation coefficient and percent bias. Calibration performances according to different calibration periods from one year to seven years were hard to generalize because four hydrologic models have different levels of complexity and different years have different information content of hydrological observation. Acknowledgements This research was supported by a grant (14AWMP-B082564-01) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean government.

  9. Evaluation of Wetland Hydrology in Formerly Irrigated Areas

    DTIC Science & Technology

    2017-07-01

    Laboratory 1987). The USACE requires defensible documentation identifying the presence or absence of wetland conditions when agricultural lands...irrigated agricultural areas (USACE 2008). In 2012, the USACE South Pacific Division (SPD) developed guidelines encouraging landowners to...geographic range; regulatory status; creation in agricultural landscapes; wildlife habitat; threatened and endangered species; water quality; hydrology

  10. Wetland Hydrology | Science Inventory | US EPA

    EPA Pesticide Factsheets

    This chapter discusses the state of the science in wetland hydrology by touching upon the major hydraulic and hydrologic processes in these complex ecosystems, their measurement/estimation techniques, and modeling methods. It starts with the definition of wetlands, their benefits and types, and explains the role and importance of hydrology on wetland functioning. The chapter continues with the description of wetland hydrologic terms and related estimation and modeling techniques. The chapter provides a quick but valuable information regarding hydraulics of surface and subsurface flow, groundwater seepage/discharge, and modeling groundwater/surface water interactions in wetlands. Because of the aggregated effects of the wetlands at larger scales and their ecosystem services, wetland hydrology at the watershed scale is also discussed in which we elaborate on the proficiencies of some of the well-known watershed models in modeling wetland hydrology. This chapter can serve as a useful reference for eco-hydrologists, wetland researchers and decision makers as well as watershed hydrology modelers. In this chapter, the importance of hydrology for wetlands and their functional role are discussed. Wetland hydrologic terms and the major components of water budget in wetlands and how they can be estimated/modeled are also presented. Although this chapter does not provide a comprehensive coverage of wetland hydrology, it provides a quick understanding of the basic co

  11. Identifying Hydrologic Processes in Agricultural Watersheds Using Precipitation-Runoff Models

    USGS Publications Warehouse

    Linard, Joshua I.; Wolock, David M.; Webb, Richard M.T.; Wieczorek, Michael

    2009-01-01

    Understanding the fate and transport of agricultural chemicals applied to agricultural fields will assist in designing the most effective strategies to prevent water-quality impairments. At a watershed scale, the processes controlling the fate and transport of agricultural chemicals are generally understood only conceptually. To examine the applicability of conceptual models to the processes actually occurring, two precipitation-runoff models - the Soil and Water Assessment Tool (SWAT) and the Water, Energy, and Biogeochemical Model (WEBMOD) - were applied in different agricultural settings of the contiguous United States. Each model, through different physical processes, simulated the transport of water to a stream from the surface, the unsaturated zone, and the saturated zone. Models were calibrated for watersheds in Maryland, Indiana, and Nebraska. The calibrated sets of input parameters for each model at each watershed are discussed, and the criteria used to validate the models are explained. The SWAT and WEBMOD model results at each watershed conformed to each other and to the processes identified in each watershed's conceptual hydrology. In Maryland the conceptual understanding of the hydrology indicated groundwater flow was the largest annual source of streamflow; the simulation results for the validation period confirm this. The dominant source of water to the Indiana watershed was thought to be tile drains. Although tile drains were not explicitly simulated in the SWAT model, a large component of streamflow was received from lateral flow, which could be attributed to tile drains. Being able to explicitly account for tile drains, WEBMOD indicated water from tile drains constituted most of the annual streamflow in the Indiana watershed. The Nebraska models indicated annual streamflow was composed primarily of perennial groundwater flow and infiltration-excess runoff, which conformed to the conceptual hydrology developed for that watershed. The hydrologic

  12. Project Lifespan-based Nonstationary Hydrologic Design Methods for Changing Environment

    NASA Astrophysics Data System (ADS)

    Xiong, L.

    2017-12-01

    Under changing environment, we must associate design floods with the design life period of projects to ensure the hydrologic design is really relevant to the operation of the hydrologic projects, because the design value for a given exceedance probability over the project life period would be significantly different from that over other time periods of the same length due to the nonstationarity of probability distributions. Several hydrologic design methods that take the design life period of projects into account have been proposed in recent years, i.e. the expected number of exceedances (ENE), design life level (DLL), equivalent reliability (ER), and average design life level (ADLL). Among the four methods to be compared, both the ENE and ER methods are return period-based methods, while DLL and ADLL are risk/reliability- based methods which estimate design values for given probability values of risk or reliability. However, the four methods can be unified together under a general framework through a relationship transforming the so-called representative reliability (RRE) into the return period, i.e. m=1/1(1-RRE), in which we compute the return period m using the representative reliability RRE.The results of nonstationary design quantiles and associated confidence intervals calculated by ENE, ER and ADLL were very similar, since ENE or ER was a special case or had a similar expression form with respect to ADLL. In particular, the design quantiles calculated by ENE and ADLL were the same when return period was equal to the length of the design life. In addition, DLL can yield similar design values if the relationship between DLL and ER/ADLL return periods is considered. Furthermore, ENE, ER and ADLL had good adaptability to either an increasing or decreasing situation, yielding not too large or too small design quantiles. This is important for applications of nonstationary hydrologic design methods in actual practice because of the concern of choosing the emerging

  13. Dynamically adaptive data-driven simulation of extreme hydrological flows

    NASA Astrophysics Data System (ADS)

    Kumar Jain, Pushkar; Mandli, Kyle; Hoteit, Ibrahim; Knio, Omar; Dawson, Clint

    2018-02-01

    Hydrological hazards such as storm surges, tsunamis, and rainfall-induced flooding are physically complex events that are costly in loss of human life and economic productivity. Many such disasters could be mitigated through improved emergency evacuation in real-time and through the development of resilient infrastructure based on knowledge of how systems respond to extreme events. Data-driven computational modeling is a critical technology underpinning these efforts. This investigation focuses on the novel combination of methodologies in forward simulation and data assimilation. The forward geophysical model utilizes adaptive mesh refinement (AMR), a process by which a computational mesh can adapt in time and space based on the current state of a simulation. The forward solution is combined with ensemble based data assimilation methods, whereby observations from an event are assimilated into the forward simulation to improve the veracity of the solution, or used to invert for uncertain physical parameters. The novelty in our approach is the tight two-way coupling of AMR and ensemble filtering techniques. The technology is tested using actual data from the Chile tsunami event of February 27, 2010. These advances offer the promise of significantly transforming data-driven, real-time modeling of hydrological hazards, with potentially broader applications in other science domains.

  14. Abundance and biomass responses of microbial food web components to hydrology and environmental gradients within a floodplain of the River Danube.

    PubMed

    Palijan, Goran

    2012-07-01

    This study investigated the relationships of time-dependent hydrological variability and selected microbial food web components. Samples were collected monthly from the Kopački Rit floodplain in Croatia, over a period of 19 months, for analysis of bacterioplankton abundance, cell size and biomass; abundance of heterotrophic nanoflagellates and nanophytoplankton; and concentration of chlorophyll a. Similar hydrological variability at different times of the year enabled partition of seasonal effects from hydrological changes on microbial community properties. The results suggested that, unlike some other studies investigating sites with different connectivity, bacterioplankton abundance, and phytoplankton abundance and biomass increased during lentic conditions. At increasing water level, nanophytoplankton showed lower sensitivity to disturbance in comparison with total phytoplankton biomass: this could prolong autotrophic conditions within the floodplain. Bacterioplankton biomass, unlike phytoplankton, was not impacted by hydrology. The bacterial biomass less affected by hydrological changes can be an important additional food component for the floodplain food web. The results also suggested a mechanism controlling bacterial cell size independent of hydrology, as bacterial cell size was significantly decreased as nanoflagellate abundance increased. Hydrology, regardless of seasonal sucession, has the potential to structure microbial food webs, supporting microbial development during lentic conditions. Conversely, other components appear unaffected by hydrology or may be more strongly controlled by biotic interactions. This research, therefore, adds to understanding on microbial food web interactions in the context of flood and flow pulses in river-floodplain ecosystems.

  15. Hydrological Forecasting Practices in Brazil

    NASA Astrophysics Data System (ADS)

    Fan, Fernando; Paiva, Rodrigo; Collischonn, Walter; Ramos, Maria-Helena

    2016-04-01

    This work brings a review on current hydrological and flood forecasting practices in Brazil, including the main forecasts applications, the different kinds of techniques that are currently being employed and the institutions involved on forecasts generation. A brief overview of Brazil is provided, including aspects related to its geography, climate, hydrology and flood hazards. A general discussion about the Brazilian practices on hydrological short and medium range forecasting is presented. Detailed examples of some hydrological forecasting systems that are operational or in a research/pre-operational phase using the large scale hydrological model MGB-IPH are also presented. Finally, some suggestions are given about how the forecasting practices in Brazil can be understood nowadays, and what are the perspectives for the future.

  16. Assessing the impacts of climate change in Mediterranean catchments under conditions of data scarcity - The Gaza case study

    NASA Astrophysics Data System (ADS)

    Gampe, David; Ludwig, Ralf

    2013-04-01

    According to current climate projections, Mediterranean countries are at high risk for an even pronounced susceptibility to changes in the hydrological budget and extremes. While there is scientific consensus that climate induced changes on the hydrology of Mediterranean regions are presently occurring and are projected to amplify in the future, very little knowledge is available about the quantification of these changes, which is hampered by a lack of suitable and cost effective hydrological monitoring and modeling systems. The European FP7-project CLIMB is aiming to analyze climate induced changes on the hydrology of the Mediterranean Basins by investigating seven test sites located in the countries Italy, France, Turkey, Tunisia, Gaza and Egypt. CLIMB employs a combination of novel geophysical field monitoring concepts, remote sensing techniques and integrated hydrologic modeling to improve process descriptions and understanding and to quantify existing uncertainties in climate change impact analysis. One of those seven sites is the Gaza Strip, located in the Eastern Mediterranean and part of the Palestinian Autonomous Area, covers an area of 365km² with a length of 35km and 6 to 12km in width. Elevation ranges from sea level up to 104m in the East of the test site. Mean annual precipitation varies from 235mm in the South to 420mm in the North of the area. The inter annual variability of rainfall and the rapid population growth in an highly agricultural used area represent the major challenges in this area. The physically based Water Simulation Model WaSiM Vers. 2 (Schulla & Jasper (1999)) is setup to model current and projected future hydrological conditions. The availability of measured meteorological and hydrological data is poor as common to many Mediterranean catchments. The lack of available measured input data hampers the calibration of the model setup and the validation of model outputs. WaSiM was driven with meteorological forcing taken from 4

  17. Numerical analysis of an entire ceramic kiln under actual operating conditions for the energy efficiency improvement.

    PubMed

    Milani, Massimo; Montorsi, Luca; Stefani, Matteo; Saponelli, Roberto; Lizzano, Maurizio

    2017-12-01

    The paper focuses on the analysis of an industrial ceramic kiln in order to improve the energy efficiency and thus the fuel consumption and the corresponding carbon dioxide emissions. A lumped and distributed parameter model of the entire system is constructed to simulate the performance of the kiln under actual operating conditions. The model is able to predict accurately the temperature distribution along the different modules of the kiln and the operation of the many natural gas burners employed to provide the required thermal power. Furthermore, the temperature of the tiles is also simulated so that the quality of the final product can be addressed by the modelling. Numerical results are validated against experimental measurements carried out on a real ceramic kiln during regular production operations. The developed numerical model demonstrates to be an efficient tool for the investigation of different design solutions for the kiln's components. In addition, a number of control strategies for the system working conditions can be simulated and compared in order to define the best trade off in terms of fuel consumption and product quality. In particular, the paper analyzes the effect of a new burner type characterized by internal heat recovery capability aimed at improving the energy efficiency of the ceramic kiln. The fuel saving and the relating reduction of carbon dioxide emissions resulted in the order of 10% when compared to the standard burner. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Hydrologic and water quality sensitivity to climate and land ...

    EPA Pesticide Factsheets

    This page describes a current EPA ORD project. No project report or other download is available at this time. Please see the section Next Steps below for a timeline of anticipated products of this work. Background: Projected changes in climate during the next century could cause or contribute to increased flooding, drought, water quality degradation, and ecosystem impairment. The effects of climate change in different watersheds will vary due to regional differences in climate change, physiographic setting, and interaction with land-use, pollutant sources, and water management in different locations. EPA is conducting watershed modeling to develop hydrologic and water quality change scenarios for 20 relatively large U.S. watersheds. Watershed modeling will be conducted using the Hydrologic Simulation Program-FORTRAN (HSPF) and Soil Water Assessment Tool (SWAT) watershed models. Study areas range from about 10,000-15,000 square miles in size, and will cover nearly every ecoregion in the United States and a range of hydro-climatic conditions. A range of hydrologic and water quality endpoints will be determined for each watershed simulation. Endpoints will be selected to inform upon a range of stream flow, water quality, aquatic ecosystem, and EPA program management goals and targets. Model simulations will be conducted to evaluate a range of projected future (2040-2070) changes in climate and land-use. Simulations will include baseline conditions,

  19. Curricula and Syllabi in Hydrology.

    ERIC Educational Resources Information Center

    United Nations Educational, Scientific, and Cultural Organization, Paris (France).

    This collection of papers is intended to provide a means for the exchange of information on hydrological techniques and for the coordination of research and data collection. The objectives and trends in hydrological education are presented. The International Hydrological Decade (IHD) Working Group on Education recommends a series of topics that…

  20. Ecological limit functions relating fish community response to hydrologic departures of the ecological flow regime in the Tennessee River basin, United States

    USGS Publications Warehouse

    Knight, Rodney R.; Murphy, Jennifer C.; Wolfe, William J.; Saylor, Charles F.; Wales, Amy K.

    2014-01-01

    Ecological limit functions relating streamflow and aquatic ecosystems remain elusive despite decades of research. We investigated functional relationships between species richness and changes in streamflow characteristics at 662 fish sampling sites in the Tennessee River basin. Our approach included the following: (1) a brief summary of relevant literature on functional relations between fish and streamflow, (2) the development of ecological limit functions that describe the strongest discernible relationships between fish species richness and streamflow characteristics, (3) the evaluation of proposed definitions of hydrologic reference conditions, and (4) an investigation of the internal structures of wedge-shaped distributions underlying ecological limit functions.Twenty-one ecological limit functions were developed across three ecoregions that relate the species richness of 11 fish groups and departures from hydrologic reference conditions using multivariate and quantile regression methods. Each negatively sloped function is described using up to four streamflow characteristics expressed in terms of cumulative departure from hydrologic reference conditions. Negative slopes indicate increased departure results in decreased species richness.Sites with the highest measured fish species richness generally had near-reference hydrologic conditions for a given ecoregion. Hydrology did not generally differ between sites with the highest and lowest fish species richness, indicating that other environmental factors likely limit species richness at sites with reference hydrology.Use of ecological limit functions to make decisions regarding proposed hydrologic regime changes, although commonly presented as a management tool, is not as straightforward or informative as often assumed. We contend that statistical evaluation of the internal wedge structure below limit functions may provide a probabilistic understanding of how aquatic ecology is influenced by altered hydrology

  1. Hydrological Process of Martian Surface in Hesperian epoch

    NASA Astrophysics Data System (ADS)

    Yamashiki, Y. A.; Sato, H.; Kuroki, R.; Miyamoto, H.; Hemmi, R.

    2017-12-01

    It is considered that the Mars in Noachian ecoch was much warmer temperature than current condition, with atmosphere and ocean supported by its magnetic actiity. Several valley which seems to be developed by ancient hydrological processes are obsered in Martian surface, is being considered to be built long time before. Some fluvial fun was formed during the following Hesperian epoch, which is considered as much cooler and drier than Noachian epoch. In this study, we applied Hydro-debris 2D model into Martian surface in Hesperian epoch in order to try develping surface vallay formation throughout hydrological processes. Sediment transport and associated small-scale debris-flow occurrence may be the key for valley formation, where might be the micro-habitable zone.

  2. Green roof impact on the hydrological cycle components

    NASA Astrophysics Data System (ADS)

    Lamera, Carlotta; Rulli, Maria Cristina; Becciu, Gianfranco; Rosso, Renzo

    2013-04-01

    In the last decades the importance of storm water management in urban areas has increased considerably, due to both urbanization extension and to a greater concern for environment pollution. Traditional storm water control practices, based on the "all to the sewer" attitude, rely on conveyance to route storm water runoff from urban impervious surfaces towards the nearby natural water bodies. In recent years, infiltration facilities are receiving an increasing attention, due to their particular efficiency in restoring a balance in hydrological cycle quite equal to quite pre-urbanization condition. In particular, such techniques are designed to capture, temporarily retain and infiltrate storm water, promote evapotranspiration and harvest water at the source, encouraging in general evaporation, evapotranspiration, groundwater recharge and the re-use of storm water. Green roofs are emerging as an increasingly popular Sustainable Urban Drainage Systems (SUDS) technique for urban storm water management. Indeed, they are able to operate hydrologic control over storm water runoff: they allow a significant reduction of peak flows and runoff volumes collected by drainage system, with a consequent reduction of flooding events and pollution masses discharges by CSO. Furthermore green roofs have a positive influence on the microclimate in urban areas by helping in lower urban air temperatures and mitigate the heat island effect. Last but not least, they have the advantage of improving the thermal insulation of buildings, with significant energy savings. A detailed analysis of the hydrological dynamics, connected both with the characteristics of the climatic context and with the green roof technical design, is essential in order to obtain a full characterization of the hydrologic behavior of a green roof system and its effects on the urban water cycle components. The purpose of this paper is to analysis the hydrological effects and urban benefits of the vegetation cover of a

  3. Hydrological response of the Mediterranean catchments- A review

    NASA Astrophysics Data System (ADS)

    Merheb, Mohammad; Moussa, Roger; Abdallah, Chadi; Colin, François; Perrin, Charles; Baghdadi, Nicolas

    2015-04-01

    The Mediterranean region is a water stressed environment with increasing climatic and anthropogenic pressures. This work presents a review of 120 hydrological studies carried out in the Mediterranean region. It contributes to the ongoing hydrological research initiative on "Hydrology in a changing world" launched by the IAHS in 2014. It aims to understand the characteristics of hydrological response under Mediterranean conditions, taking into account changes driven by anthropogenic and climatic factors; and to compare modeling and regionalization approaches in use. The study region is divided into three sub-regions: Northwestern Mediterranean (NWM), Eastern (EM) and Southern Mediterranean (SM). Information on catchments responses and modeling approaches at different time scales (annual, dry season and event) were extracted from published studies, and analyzed. Results indicate regional discrepancies (between NWM, EM and SM sub-regions) in the distribution of climatic and hydrological response characteristics at the annual and the event scale. The NWM catchments are the wettest, and the SM catchments are the driest, while the EM catchments are intermediate and exhibit the largest variability. The NWM sub-region shows the most extreme rainfall regime in the Mediterranean, particularly, in an arc that extends from Northeastern Spain to Northeastern Italy. Observations indicate decreasing tendency in water resources due to both anthropogenic and climatic impacts, and a more extreme rainfall regime. Moreover, Mediterranean catchments show very heterogeneous responses in time and space which make the modeling of their hydrological functioning very complicated and data demanding, with increasing model limitations and uncertainties. Nevertheless, the models in use are classical ones; very few were developed to address these regional specificities. Regionalization studies in the Mediterranean are scarce even in term of low flows and FDCs which is surprising in a water

  4. ERM model analysis for adaptation to hydrological model errors

    NASA Astrophysics Data System (ADS)

    Baymani-Nezhad, M.; Han, D.

    2018-05-01

    Hydrological conditions are changed continuously and these phenomenons generate errors on flood forecasting models and will lead to get unrealistic results. Therefore, to overcome these difficulties, a concept called model updating is proposed in hydrological studies. Real-time model updating is one of the challenging processes in hydrological sciences and has not been entirely solved due to lack of knowledge about the future state of the catchment under study. Basically, in terms of flood forecasting process, errors propagated from the rainfall-runoff model are enumerated as the main source of uncertainty in the forecasting model. Hence, to dominate the exciting errors, several methods have been proposed by researchers to update the rainfall-runoff models such as parameter updating, model state updating, and correction on input data. The current study focuses on investigations about the ability of rainfall-runoff model parameters to cope with three types of existing errors, timing, shape and volume as the common errors in hydrological modelling. The new lumped model, the ERM model, has been selected for this study to evaluate its parameters for its use in model updating to cope with the stated errors. Investigation about ten events proves that the ERM model parameters can be updated to cope with the errors without the need to recalibrate the model.

  5. The monitoring of eco-hydrological parameters within the LIFE Ljubljanica Connects project

    NASA Astrophysics Data System (ADS)

    Sapač, Klaudija; Šraj, Mojca; Zabret, Katarina; Brilly, Mitja; Vidmar, Andrej

    2016-04-01

    The main objectives of the Ljubljanica Connects project arising from the need to improve the living conditions in the Ljubljanica River for endangered fish species. The history of improving the conditions dates back more than 100 years ago with the construction of fish passages at the obstacles on the Ljubljanica River. As part of the project the fish passages were reconstructed and upgraded to improve river connectivity. But for the survival of fish and other aquatic organisms in the river also adequate living conditions are necessary which can be determined by measurements of individual parameters of water quality. Within the LIFE Ljubljanica Connects project we have established continuous eco-hydrological monitoring of water level and temperature at 17 measuring sites and concentration of dissolved oxygen at 3 measuring sites along the Ljubljanica River and its tributaries. Water level data are input data for the hydrological model of Ljubljanica River, while water temperature and concentration of dissolved oxygen are the basic indicators of the quality of the water. The purpose of this paper is to present the measuring equipment of eco-hydrological monitoring, the first feedback on the results of measured water temperature and the concentration of dissolved oxygen in the Ljubljanica River, and the advantages and importance of such monitoring.

  6. ALLOCATION OF MONITORING SITES FOR REGIONAL SURVEYS OF HYDROLOGIC UNITS

    EPA Science Inventory

    In order to characterize the ecological condition of Pacific Northwest watersheds and their aquatic ecosystems, interagency teams have developed the Aquatic and Riparian Effectiveness Monitoring Plan. Monitoring is targeted at the subwatershed scale (6th-field Hydrologic Unit Co...

  7. Recent advances in catchment hydrology

    NASA Astrophysics Data System (ADS)

    van Meerveld, I. H. J.

    2017-12-01

    Despite the consensus that field observations and catchment studies are imperative to understand hydrological processes, to determine the impacts of global change, to quantify the spatial and temporal variability in hydrological fluxes, and to refine and test hydrological models, there is a decline in the number of field studies. This decline and the importance of fieldwork for catchment hydrology have been described in several recent opinion papers. This presentation will summarize these commentaries, describe how catchment studies have evolved over time, and highlight the findings from selected recent studies published in Water Resources Research.

  8. Fifty years of forest hydrology in the Southeast

    Treesearch

    C. Rhett Jackson; Ge Sun; Devendra Amatya; Wayne T. Swank; Mark Riedel; Jim Patric; Tom Williams; Jim M. Vose; Carl Trettin; W. Michael Aust; R. Scott Beasley; Hamlin Williston; George G. Ice

    2004-01-01

    The forests of the southeastern United States are incredibly valuable and diverse, both for timber production and for the aquatic habitat they provide. These overlapping values and diverse conditions have spawned numerous studies to assess how forest management affects hydrology and water quality. In the mountains, key watershed studies include those conducted at USDA...

  9. Shortage and surplus of water in the socio-hydrological context

    NASA Astrophysics Data System (ADS)

    Schumann, A.; Nijssen, d.

    2014-09-01

    Balancing the temporal variability of hydrological conditions in the long- and short-term is often essential for steady socio-economic conditions. However, this equilibrium is very fragile in many cases. Hydrological changes or socio-economic changes may destroy it in a short time. If we extend the bearing capacity of socio-hydrological systems we increase, in many cases, the harmful consequences of failures. Here, two case studies are discussed to illustrate these problems. The limited success at adapting water resources to increasing human requirements without consideration of the natural capacities will be discussed with the example of water use for irrigation in northeastern China. The demand for a new planning approach, which is based on a combination of monitoring, model-based impact assessments and spatial distributed planning, is demonstrated. The problems of water surplus, which becomes evident during floods, are discussed in a second case study. It is shown that flood protection depends strongly on expectations of flood characteristics. The gap between the social requirement for complete flood prevention and the remaining risk of flood damage becomes obvious. An increase of risk-awareness would be more sustainable than promises of flood protection, which are the basis for technical measures to affect floods and (or) to prevent flood damages.

  10. Hydrologic drivers and controls of stream biofilm-grazer interactions

    NASA Astrophysics Data System (ADS)

    Ceola, S.; Bertuzzo, E.; Mari, L.; Botter, G.; Hödl, I.; Battin, T.; Rinaldo, A.

    2012-04-01

    Understanding the dynamics of fluvial ecosystems linked to hydrology is one of the most important challenges of ecohydrology. In fact, streamflow, which chiefly relies on rainfall, climate, land use and geomorphologic properties, plays a fundamental role in sustaining and regulating fluvial ecosystem integrity. To analyze possible implications of hydrological fluctuations on the biofilm-grazer interaction, an experimental campaign has been conducted between June and September 2011 at the Wasser Cluster Lunz, in Lunz am See (AU). 36 flumes have been used to perform biofilm growth and grazing activity under two distinct discharge conditions (i.e., constant and stochastic discharge regimes) and four different light regimes (from natural light conditions to nearly 70% attenuation). Experimental results concerning (i) dynamics of biofilm growth, (ii) grazing effect, and (iii) grazing rate will be presented. Results of performed statistical analysis for testing the effects of discharge treatment and light regime on the grazing rate will be also discussed.

  11. Who is Self-Actualized?

    ERIC Educational Resources Information Center

    Roweton, William E.

    1981-01-01

    In an attempt to clarify Maslow's concept of self-actualization as it relates to human motivation, a class of educational psychology students wrote essays describing a self-actualized person and then attempted to decide whether public schools contribute to the production of self-actualized persons. Two-thirds of the students decided that schools…

  12. Hydrologic Services Course.

    ERIC Educational Resources Information Center

    National Oceanic and Atmospheric Administration (DOC), Rockville, MD. National Weather Service.

    A course to develop an understanding of the scope of water resource activities, of the need for forecasting, of the National Weather Service's role in hydrology, and of the proper procedures to follow in fulfilling this role is presented. The course is one of self-help, guided by correspondence. Nine lessons are included: (1) Hydrology in the…

  13. Artificial intelligence techniques coupled with seasonality measures for hydrological regionalization of Q90 under Brazilian conditions

    NASA Astrophysics Data System (ADS)

    Beskow, Samuel; de Mello, Carlos Rogério; Vargas, Marcelle M.; Corrêa, Leonardo de L.; Caldeira, Tamara L.; Durães, Matheus F.; de Aguiar, Marilton S.

    2016-10-01

    Information on stream flows is essential for water resources management. The stream flow that is equaled or exceeded 90% of the time (Q90) is one the most used low stream flow indicators in many countries, and its determination is made from the frequency analysis of stream flows considering a historical series. However, stream flow gauging network is generally not spatially sufficient to meet the necessary demands of technicians, thus the most plausible alternative is the use of hydrological regionalization. The objective of this study was to couple the artificial intelligence techniques (AI) K-means, Partitioning Around Medoids (PAM), K-harmonic means (KHM), Fuzzy C-means (FCM) and Genetic K-means (GKA), with measures of low stream flow seasonality, for verification of its potential to delineate hydrologically homogeneous regions for the regionalization of Q90. For the performance analysis of the proposed methodology, location attributes from 108 watersheds situated in southern Brazil, and attributes associated with their seasonality of low stream flows were considered in this study. It was concluded that: (i) AI techniques have the potential to delineate hydrologically homogeneous regions in the context of Q90 in the study region, especially the FCM method based on fuzzy logic, and GKA, based on genetic algorithms; (ii) the attributes related to seasonality of low stream flows added important information that increased the accuracy of the grouping; and (iii) the adjusted mathematical models have excellent performance and can be used to estimate Q90 in locations lacking monitoring.

  14. A Dynamic Hydrology-Critical Zone Framework for Rainfall-triggered Landslide Hazard Prediction

    NASA Astrophysics Data System (ADS)

    Dialynas, Y. G.; Foufoula-Georgiou, E.; Dietrich, W. E.; Bras, R. L.

    2017-12-01

    Watershed-scale coupled hydrologic-stability models are still in their early stages, and are characterized by important limitations: (a) either they assume steady-state or quasi-dynamic watershed hydrology, or (b) they simulate landslide occurrence based on a simple one-dimensional stability criterion. Here we develop a three-dimensional landslide prediction framework, based on a coupled hydrologic-slope stability model and incorporation of the influence of deep critical zone processes (i.e., flow through weathered bedrock and exfiltration to the colluvium) for more accurate prediction of the timing, location, and extent of landslides. Specifically, a watershed-scale slope stability model that systematically accounts for the contribution of driving and resisting forces in three-dimensional hillslope segments was coupled with a spatially-explicit and physically-based hydrologic model. The landslide prediction framework considers critical zone processes and structure, and explicitly accounts for the spatial heterogeneity of surface and subsurface properties that control slope stability, including soil and weathered bedrock hydrological and mechanical characteristics, vegetation, and slope morphology. To test performance, the model was applied in landslide-prone sites in the US, the hydrology of which has been extensively studied. Results showed that both rainfall infiltration in the soil and groundwater exfiltration exert a strong control on the timing and magnitude of landslide occurrence. We demonstrate the extent to which three-dimensional slope destabilizing factors, which are modulated by dynamic hydrologic conditions in the soil-bedrock column, control landslide initiation at the watershed scale.

  15. [Research progress on hydrological scaling].

    PubMed

    Liu, Jianmei; Pei, Tiefan

    2003-12-01

    With the development of hydrology and the extending effect of mankind on environment, scale issue has become a great challenge to many hydrologists due to the stochasticism and complexity of hydrological phenomena and natural catchments. More and more concern has been given to the scaling issues to gain a large-scale (or small-scale) hydrological characteristic from a certain known catchments, but hasn't been solved successfully. The first part of this paper introduced some concepts about hydrological scale, scale issue and scaling. The key problem is the spatial heterogeneity of catchments and the temporal and spatial variability of hydrological fluxes. Three approaches to scale were put forward in the third part, which were distributed modeling, fractal theory and statistical self similarity analyses. Existing problems and future research directions were proposed in the last part.

  16. Impact of the 1997-1998 El-Nino of Regional Hydrology

    NASA Technical Reports Server (NTRS)

    Lakshmi, Venkataraman; Susskind, Joel

    1998-01-01

    The 1997-1998 El-Nino brought with it a range of severe local-regional hydrological phenomena. Record high temperatures and extremely dry soil conditions in Texas is an example of this regional effect. The El-Nino and La-Nina change the continental weather patterns considerably. However, connections between continental weather anomalies and regional or local anomalies have not been established to a high degree of confidence. There are several unique features of the recent El-Nino and La-Nina. Due to the recognition of the present El-Nino well in advance, there have been several coupled model studies on global and regional scales. Secondly, there is a near real-time monitoring of the situation using data from satellite sensors, namely, SeaWIFS, TOVS, AVHRR and GOES. Both observations and modeling characterize the large scale features of this El-Nino fairly well. However the connection to the local and regional hydrological phenomenon still needs to be made. This paper will use satellite observations and analysis data to establish a relation between local hydrology and large scale weather patterns. This will be the first step in using satellite data to perform regional hydrological simulations of surface temperature and soil moisture.

  17. Hydrologic and geochemical data assimilation at the Hanford 300 Area

    NASA Astrophysics Data System (ADS)

    Chen, X.; Hammond, G. E.; Murray, C. J.; Zachara, J. M.

    2012-12-01

    In modeling the uranium migration within the Integrated Field Research Challenge (IFRC) site at the Hanford 300 Area, uncertainties arise from both hydrologic and geochemical sources. The hydrologic uncertainty includes the transient flow boundary conditions induced by dynamic variations in Columbia River stage and the underlying heterogeneous hydraulic conductivity field, while the geochemical uncertainty is a result of limited knowledge of the geochemical reaction processes and parameters, as well as heterogeneity in uranium source terms. In this work, multiple types of data, including the results from constant-injection tests, borehole flowmeter profiling, and conservative tracer tests, are sequentially assimilated across scales within a Bayesian framework to reduce the hydrologic uncertainty. The hydrologic data assimilation is then followed by geochemical data assimilation, where the goal is to infer the heterogeneous distribution of uranium sources using uranium breakthrough curves from a desorption test that took place at high spring water table. We demonstrate in our study that Ensemble-based data assimilation techniques (Ensemble Kalman filter and smoother) are efficient in integrating multiple types of data sequentially for uncertainty reduction. The computational demand is managed by using the multi-realization capability within the parallel PFLOTRAN simulator.

  18. Spatio-temporal change in forest cover and carbon storage considering actual and potential forest cover in South Korea.

    PubMed

    Nam, Kijun; Lee, Woo-Kyun; Kim, Moonil; Kwak, Doo-Ahn; Byun, Woo-Hyuk; Yu, Hangnan; Kwak, Hanbin; Kwon, Taesung; Sung, Joohan; Chung, Dong-Jun; Lee, Seung-Ho

    2015-07-01

    This study analyzes change in carbon storage by applying forest growth models and final cutting age to actual and potential forest cover for six major tree species in South Korea. Using National Forest Inventory data, the growth models were developed to estimate mean diameter at breast height, tree height, and number of trees for Pinus densiflora, Pinus koraiensis, Pinus rigida, Larix kaempferi, Castanea crenata and Quercus spp. stands. We assumed that actual forest cover in a forest type map will change into potential forest covers according to the Hydrological and Thermal Analogy Groups model. When actual forest cover reaches the final cutting age, forest volume and carbon storage are estimated by changed forest cover and its growth model. Forest volume between 2010 and 2110 would increase from 126.73 to 157.33 m(3) hm(-2). Our results also show that forest cover, volume, and carbon storage could abruptly change by 2060. This is attributed to the fact that most forests are presumed to reach final cutting age. To avoid such dramatic change, a regeneration and yield control scheme should be prepared and implemented in a way that ensures balance in forest practice and yield.

  19. Modeling Subsurface Hydrology in Floodplains

    NASA Astrophysics Data System (ADS)

    Evans, Cristina M.; Dritschel, David G.; Singer, Michael B.

    2018-03-01

    Soil-moisture patterns in floodplains are highly dynamic, owing to the complex relationships between soil properties, climatic conditions at the surface, and the position of the water table. Given this complexity, along with climate change scenarios in many regions, there is a need for a model to investigate the implications of different conditions on water availability to riparian vegetation. We present a model, HaughFlow, which is able to predict coupled water movement in the vadose and phreatic zones of hydraulically connected floodplains. Model output was calibrated and evaluated at six sites in Australia to identify key patterns in subsurface hydrology. This study identifies the importance of the capillary fringe in vadose zone hydrology due to its water storage capacity and creation of conductive pathways. Following peaks in water table elevation, water can be stored in the capillary fringe for up to months (depending on the soil properties). This water can provide a critical resource for vegetation that is unable to access the water table. When water table peaks coincide with heavy rainfall events, the capillary fringe can support saturation of the entire soil profile. HaughFlow is used to investigate the water availability to riparian vegetation, producing daily output of water content in the soil over decadal time periods within different depth ranges. These outputs can be summarized to support scientific investigations of plant-water relations, as well as in management applications.

  20. A Smallholder Socio-hydrological Modelling Framework

    NASA Astrophysics Data System (ADS)

    Pande, S.; Savenije, H.; Rathore, P.

    2014-12-01

    Small holders are farmers who own less than 2 ha of farmland. They often have low productivity and thus remain at subsistence level. A fact that nearly 80% of Indian farmers are smallholders, who merely own a third of total farmlands and belong to the poorest quartile, but produce nearly 40% of countries foodgrains underlines the importance of understanding the socio-hydrology of a small holder. We present a framework to understand the socio-hydrological system dynamics of a small holder. It couples the dynamics of 6 main variables that are most relevant at the scale of a small holder: local storage (soil moisture and other water storage), capital, knowledge, livestock production, soil fertility and grass biomass production. The model incorporates rule-based adaptation mechanisms (for example: adjusting expenditures on food and fertilizers, selling livestocks etc.) of small holders when they face adverse socio-hydrological conditions, such as low annual rainfall, higher intra-annual variability in rainfall or variability in agricultural prices. It allows us to study sustainability of small holder farming systems under various settings. We apply the framework to understand the socio-hydrology of small holders in Aurangabad, Maharashtra, India. This district has witnessed suicides of many sugarcane farmers who could not extricate themselves out of the debt trap. These farmers lack irrigation and are susceptible to fluctuating sugar prices and intra-annual hydroclimatic variability. This presentation discusses two aspects in particular: whether government interventions to absolve the debt of farmers is enough and what is the value of investing in local storages that can buffer intra-annual variability in rainfall and strengthening the safety-nets either by creating opportunities for alternative sources of income or by crop diversification.

  1. On modeling complex interplay in small-scale self-organized socio-hydrological systems

    NASA Astrophysics Data System (ADS)

    Muneepeerakul, Rachata

    2017-04-01

    Successful and sustainable socio-hydrological systems, as in any coupled natural human-systems, require effective governance, which depends on the existence of proper infrastructure (both hard and soft). Recent work has addressed systems in which resource users and the organization responsible for maintaining the infrastructure are separate entities. However, many socio-hydrological systems, especially in developing countries, are small and without such formal division of labor; rather, such division of labor typically arises from self-organization within the population. In this work, we modify and mathematically operationalize a conceptual framework by developing a system of differential equations that capture the strategic behavior within such a self-organized population, its interplay with infrastructure characteristics and hydrological dynamics, and feedbacks between these elements. The model yields a number of insightful conditions related to long-term sustainability and collapse of the socio-hydrological system in the form of relationships between biophysical and social factors. These relationships encapsulate nonlinear interactions of these factors. The modeling framework is grounded in a solid conceptual foundation upon which additional modifications and realism can be built for potential reconciliation between socio-hydrology with other related fields and further applications.

  2. Hydrology

    ERIC Educational Resources Information Center

    Sharp, John M.

    1977-01-01

    Lists many recent research projects in hydrology, including flow in fractured media, improvements in remote-sensing techniques, effects of urbanization on water resources, and developments in drainage basins. (MLH)

  3. Towards prediction of heatwaves based on the complementary relationship between actual and potential evaporation - energy partitioning and hydrologic attributes

    NASA Astrophysics Data System (ADS)

    Or, D.; Aminzadeh, M.; Roderick, M. L.

    2017-12-01

    Prediction of extreme climate events such as heatwaves that are characterized by prolonged periods of high air temperatures (accompanied by low precipitation and high radiation) provides an opportunity to potentially mitigate the associated environmental, social and economic impacts. Vegetation may respond to these extreme conditions by reducing evaporative flux either due to soil water depletion or inability to meet the atmospheric evaporative demand (high canopy resistance). We implement a newly generalized Complementary Relationship (CR) for spatially heterogeneous land surfaces to predict the actual evaporation from drying landscapes covered by different vegetation types (i.e., grassland and forest). A strong correlation between air temperature and sensible heat flux anomalies identified from FLUXNET network data suggests that abrupt changes in sensible heat flux above climatological means can serve as indicators for predicting the onset of a heatwave. We thus capitalize on the inherent coupling between evaporative and sensible heat fluxes linked to moisture availability within the CR framework to predict rapid increase in regional sensible heat flux associated with soil drying (low precipitation) or with extreme evaporative demand (high radiation) while soil moisture is not limiting. The proposed approach evaluated using FLUXNET datasets provides an energy constraint framework based on the CR concept to obtain new insights into the onset of heatwaves and climate extremes such as regional droughts.

  4. OpenDA-WFLOW framework for improving hydrologic predictions using distributed hydrologic models

    NASA Astrophysics Data System (ADS)

    Weerts, Albrecht; Schellekens, Jaap; Kockx, Arno; Hummel, Stef

    2017-04-01

    Data assimilation (DA) holds considerable potential for improving hydrologic predictions (Liu et al., 2012) and increase the potential for early warning and/or smart water management. However, advances in hydrologic DA research have not yet been adequately or timely implemented in operational forecast systems to improve the skill of forecasts for better informed real-world decision making. The objective of this work is to highlight the development of a generic linkage of the open source OpenDA package and the open source community hydrologic modeling framework Openstreams/WFLOW and its application in operational hydrological forecasting on various spatial scales. The coupling between OpenDA and Openstreams/wflow framework is based on the emerging standard Basic Model Interface (BMI) as advocated by CSDMS using cross-platform webservices (i.e. Apache Thrift) developed by Hut et al. (2016). The potential application of the OpenDA-WFLOW for operational hydrologic forecasting including its integration with Delft-FEWS (used by more than 40 operational forecast centers around the world (Werner et al., 2013)) is demonstrated by the presented case studies. We will also highlight the possibility to give real-time insight into the working of the DA methods applied for supporting the forecaster as mentioned as one of the burning issues by Liu et al., (2012).

  5. Climate-induced alteration of hydrologic indicators in the Athabasca River Basin, Alberta, Canada

    NASA Astrophysics Data System (ADS)

    Eum, Hyung-Il; Dibike, Yonas; Prowse, Terry

    2017-01-01

    The hydrologic response of the Athabasca River Basin (ARB) in Alberta to projected changes in the future climate is investigated using the Variable Infiltration Capacity (VIC) process-based and distributed hydrologic model. The model forcings are derived from a selected set of GCMs from the latest Coupled Model Intercomparison Project (CMIP5) statistically downscaled to a higher resolution (10 km) over Canada. Twelve hydrologic indicators that represent the magnitude and timing of the hydrologic regimes are evaluated for three 30-year time periods centered at the 1990s, 2050s and 2080s to identify significant alterations of hydrologic regimes between the reference and the two future periods using a t-test at 5% significance level. Hydrologic alteration factors (HAF) are also evaluated for each hydrologic indicator using the range of variability approach (RVA) to investigate projected changes in the distribution of these indicators. The results show increases in spring and winter flows for the two future periods at all hydrometric stations within the basin, resulting in an extended period of spring freshet. A higher rate of increase is projected for the stations located at the upper reach of the river because of the combined effects of increased precipitation and earlier snowmelt resulting from a warming climate. By contrast, summer flows are projected to decrease by up to 21% on average in the 2080s over most of the mainstem stations because of earlier snowmelt, increased evapotranspiration and no significant increase in summer precipitation. A water-management rule that optimizes impacts of water withdrawal from the lower reach of the Athabasca River under the current condition is also applied to the future scenarios to assess its relative performance under the projected climate conditions. The results indicate possible improvement in the water resources system performance in terms of increased reliability and resilience and reduced vulnerability during the two

  6. Hydrologic Impacts of Climate Change: Quantification of Uncertainties (Alexander von Humboldt Medal Lecture)

    NASA Astrophysics Data System (ADS)

    Mujumdar, Pradeep P.

    2014-05-01

    with conditional random fields, Dempster-Shafer theory, possibility theory, imprecise probabilities and non-stationary extreme value theory are discussed. Specific applications on uncertainty quantification in impacts on streamflows, evaporative water demands, river water quality and urban flooding are presented. A brief discussion on detection and attribution of hydrologic change at river basin scales, contribution of landuse change and likely alterations in return levels of hydrologic extremes is also provided.

  7. Impact of Landslides Induced by Earthquake on Hydrologic Response in a Mountainous Catchment

    NASA Astrophysics Data System (ADS)

    Qian, Q.; Su, D.; Ran, Q.

    2013-12-01

    The changes of the underlying surface conditions (topography, vegetation cover rate, etc.), which were caused by the numerous landslides in the Wenchuan earthquake, may influence the hydrologic response and then change the flash flood or other kinds of the disaster risk in the affected areas. The Jianpinggou catchment, located in Sichuan China, is selected as the study area for this paper. It is a steep-slope mountainous catchment, flash flood is the main disaster, and sometimes causes the debris flow. The distribution of the landslides in this catchment is obtained from the remote sensing image data. The changes of topography are obtained from the comparisons among the different periods of digital elevation models (DEMs). A physical-based model, the Integrated Hydrology Model (InHM), is used to simulate the hydrologic response before and after the landslide, respectively. The influence of the underlying surface conditions is then discussed based on the output data, such as the hydrograph, distributed water depth and local runoff. The study leads to the following generalized conclusions: 1) the impact of the landslides on hydrologic response does exist, and the greater the proportion of surface flow in the total runoff is, the greater the impact will be; 2) the peak flow from the outlet increased after the landslide, but the shape of the hydrograph has little change; 3) the effect of the landslides on the local runoff is relatively obvious, and this elevates the local flash floods risk; 4) the difference of hydrologic responses between the two periods (before and after the landslide occurring) becomes larger with the increasing rainfall, with a threshold of rapid growth at the rainfall frequencies of once in every 50 years, but there is a limit. The improved understanding of the impact of landslides on the hydrologic response in Jianpinggou catchment provides valuable theoretical support for the storm flood forecast.

  8. Random Forest-Based Approach for Maximum Power Point Tracking of Photovoltaic Systems Operating under Actual Environmental Conditions

    PubMed Central

    Shareef, Hussain; Mohamed, Azah

    2017-01-01

    Many maximum power point tracking (MPPT) algorithms have been developed in recent years to maximize the produced PV energy. These algorithms are not sufficiently robust because of fast-changing environmental conditions, efficiency, accuracy at steady-state value, and dynamics of the tracking algorithm. Thus, this paper proposes a new random forest (RF) model to improve MPPT performance. The RF model has the ability to capture the nonlinear association of patterns between predictors, such as irradiance and temperature, to determine accurate maximum power point. A RF-based tracker is designed for 25 SolarTIFSTF-120P6 PV modules, with the capacity of 3 kW peak using two high-speed sensors. For this purpose, a complete PV system is modeled using 300,000 data samples and simulated using the MATLAB/SIMULINK package. The proposed RF-based MPPT is then tested under actual environmental conditions for 24 days to validate the accuracy and dynamic response. The response of the RF-based MPPT model is also compared with that of the artificial neural network and adaptive neurofuzzy inference system algorithms for further validation. The results show that the proposed MPPT technique gives significant improvement compared with that of other techniques. In addition, the RF model passes the Bland–Altman test, with more than 95 percent acceptability. PMID:28702051

  9. Hydrologic Predictions in the Anthropocene: A Research Framework Based on a Co-evolutionary Socio-hydrologic Perspective

    NASA Astrophysics Data System (ADS)

    Sivapalan, M.; Bloeschl, G.

    2012-12-01

    The world is facing a water management crisis, in the context of fast rising demand for water due to growth of human populations and changing lifestyles, and depletion of freshwater resources. In many parts of the world, poor distribution of freshwater in relation to demand is already the cause of serious water scarcity, exacerbated by climate change. Cumulatively, these result in increased human appropriation of water resources, significant modification of landscapes, and a strong human imprint on water cycle dynamics from local to global scales. Hydrologic predictions in such a fast changing environment face significant challenges. Traditional models for predictions treat the hydrologic system as a simple input-output system, and propagate variability of external inputs or disturbances through the various hydrologic subsystems, but assuming stationarity. However, in a fast changing world, none of the subsystems can be assumed to be stationary, but as co-evolving parts of a complex system. The role of humans takes on an important role, which can no longer be assumed to independent of the natural system. We need new socio-hydrologic frameworks to observe, monitor, understand and predict the co-evolution of coupled human-natural systems. In this talk, using examples from one or more real-world settings (from Australia and Europe) involving human interactions with hydrologic systems, we will present new theoretical frameworks that should be adopted to advance the emergent new sub-discipline of socio-hydrology. The proposed research agenda is organized under (i) process socio-hydrology, (ii) comparative socio-hydrology, and (iii) historical socio-hydrology.

  10. Physiological condition of juvenile wading birds in relation to multiple landscape stressors in the Florida Everglades: effects of hydrology, prey availability, and mercury bioaccumulation

    USGS Publications Warehouse

    Herring, Garth; Eagles-Smith, Collin A.; Gawlik, Dale E.; Beerens, James M.; Ackerman, Joshua T.

    2014-01-01

    The physiological condition of juvenile birds can be influenced by multiple ecological stressors, and few studies have concurrently considered the effects of environmental contaminants in combination with ecological attributes that can influence foraging conditions and prey availability. Using three temporally distinct indices of physiological condition, we compared the physiological response of nestling great egrets (Ardea alba) and white ibises (Eudocimus albus) to changing prey availability, hydrology (water depth, recession rate), and mercury exposure in the Florida Everglades. We found that the physiological response of chicks varied between species and among environmental variables. Chick body condition (short-term index) and fecal corticosterone levels (medium-term) were influenced by wetland water depth, prey availability, region, and age, but not by mercury contamination. However, mercury exposure did influence heat shock protein 70 (HSP70) in egret chicks, indicating a longer-term physiological response to contamination. Our results indicate that the physiological condition of egret and ibis chicks were influenced by several environmental stressors, and the time frame of the effect may depend on the specialized foraging behavior of the adults provisioning the chicks.

  11. Physiological condition of juvenile wading birds in relation to multiple landscape stressors in the Florida Everglades: effects of hydrology, prey availability, and mercury bioaccumulation.

    PubMed

    Herring, Garth; Eagles-Smith, Collin A; Gawlik, Dale E; Beerens, James M; Ackerman, Joshua T

    2014-01-01

    The physiological condition of juvenile birds can be influenced by multiple ecological stressors, and few studies have concurrently considered the effects of environmental contaminants in combination with ecological attributes that can influence foraging conditions and prey availability. Using three temporally distinct indices of physiological condition, we compared the physiological response of nestling great egrets (Ardea alba) and white ibises (Eudocimus albus) to changing prey availability, hydrology (water depth, recession rate), and mercury exposure in the Florida Everglades. We found that the physiological response of chicks varied between species and among environmental variables. Chick body condition (short-term index) and fecal corticosterone levels (medium-term) were influenced by wetland water depth, prey availability, region, and age, but not by mercury contamination. However, mercury exposure did influence heat shock protein 70 (HSP70) in egret chicks, indicating a longer-term physiological response to contamination. Our results indicate that the physiological condition of egret and ibis chicks were influenced by several environmental stressors, and the time frame of the effect may depend on the specialized foraging behavior of the adults provisioning the chicks.

  12. Physiological Condition of Juvenile Wading Birds in Relation to Multiple Landscape Stressors in the Florida Everglades: Effects of Hydrology, Prey Availability, and Mercury Bioaccumulation

    PubMed Central

    Herring, Garth; Eagles-Smith, Collin A.; Gawlik, Dale E.; Beerens, James M.; Ackerman, Joshua T.

    2014-01-01

    The physiological condition of juvenile birds can be influenced by multiple ecological stressors, and few studies have concurrently considered the effects of environmental contaminants in combination with ecological attributes that can influence foraging conditions and prey availability. Using three temporally distinct indices of physiological condition, we compared the physiological response of nestling great egrets (Ardea alba) and white ibises (Eudocimus albus) to changing prey availability, hydrology (water depth, recession rate), and mercury exposure in the Florida Everglades. We found that the physiological response of chicks varied between species and among environmental variables. Chick body condition (short-term index) and fecal corticosterone levels (medium-term) were influenced by wetland water depth, prey availability, region, and age, but not by mercury contamination. However, mercury exposure did influence heat shock protein 70 (HSP70) in egret chicks, indicating a longer-term physiological response to contamination. Our results indicate that the physiological condition of egret and ibis chicks were influenced by several environmental stressors, and the time frame of the effect may depend on the specialized foraging behavior of the adults provisioning the chicks. PMID:25184221

  13. Impacts of climate and land-use changes on the hydrological dynamics in the upper Citarum River basin based on the J2000 hydrological model

    NASA Astrophysics Data System (ADS)

    Magenika Julian, Miga; Fink, Manfred; Fischer, Christian; Krause, Peter; Flügel, Wolfgang-Albert

    2015-04-01

    Changes of land-use and climate will most likely result in changes of the hydrological dynamics in river basins. Such changes can be noticed in the upper Citarum River basin (UCB), Java Island, Indonesia. This basin covers 1821km2 and is located in a hilly area of the backcountry of Jakarta. Between 2005 and 2009, the basin's forest cover has been reduced by 5.0%, residential areas grew around 8.2% expanding around the existing residential areas, and 3.9% of shrubland was converted into agricultural areas. From 1985 through 2009, the mean annual air temperature increased by 0.01° C/year; whereas, precipitation slightly decreased by 6.8mm/year. The process-oriented hydrological model JAMS/J2000 was adapted and implemented to assess the impact of land-use change and climate variability on the hydrological dynamics of this basin, including consideration of the temporal and spatial distributions. For this assessment, three scenarios based on realistic events were investigated; these consisted of the following (i) land-use changes in 2005 versus 2009; (ii) temperature increase from 1984 to 2009, while keeping a precipitation constant from year 1984; and (iii) variability of precipitation from 1984 to 2009, while keeping temperature constant from year 1984. The model-input conditions of land-use, precipitation, and temperature changes where applied individually, holding the other factors constant. Model simulations were conducted for the UCB. The J2000 model for the UCB was calibrated and validated using a split-sample approach. For model calibration and validation, fairly good objective functions were achieved: i.e. Nash-Sutcliffe efficiencies (E) by 0.79 and 0.76, log E of 0.89 and 0.84, coefficient of determination of 0.79 and 0.77, and a percent bias of -1.4% and -1.1%. From the model-simulation results, it was concluded that the land-use changes resulted in a slight increase in stream discharge (4.6%) and a decrease of evaporation of 3.7%. The analysis of the

  14. A method for coupling a parameterization of the planetary boundary layer with a hydrologic model

    NASA Technical Reports Server (NTRS)

    Lin, J. D.; Sun, Shu Fen

    1986-01-01

    Deardorff's parameterization of the planetary boundary layer is adapted to drive a hydrologic model. The method converts the atmospheric conditions measured at the anemometer height at one site to the mean values in the planetary boundary layer; it then uses the planetary boundary layer parameterization and the hydrologic variables to calculate the fluxes of momentum, heat and moisture at the atmosphere-land interface for a different site. A simplified hydrologic model is used for a simulation study of soil moisture and ground temperature on three different land surface covers. The results indicate that this method can be used to drive a spatially distributed hydrologic model by using observed data available at a meteorological station located on or nearby the site.

  15. Assimilation of remote sensing observations into a continuous distributed hydrological model: impacts on the hydrologic cycle

    NASA Astrophysics Data System (ADS)

    Laiolo, Paola; Gabellani, Simone; Campo, Lorenzo; Cenci, Luca; Silvestro, Francesco; Delogu, Fabio; Boni, Giorgio; Rudari, Roberto

    2015-04-01

    The reliable estimation of hydrological variables (e.g. soil moisture, evapotranspiration, surface temperature) in space and time is of fundamental importance in operational hydrology to improve the forecast of the rainfall-runoff response of catchments and, consequently, flood predictions. Nowadays remote sensing can offer a chance to provide good space-time estimates of several hydrological variables and then improve hydrological model performances especially in environments with scarce in-situ data. This work investigates the impact of the assimilation of different remote sensing products on the hydrological cycle by using a continuous physically based distributed hydrological model. Three soil moisture products derived by ASCAT (Advanced SCATterometer) are used to update the model state variables. The satellite-derived products are assimilated into the hydrological model using different assimilation techniques: a simple nudging and the Ensemble Kalman Filter. Moreover two assimilation strategies are evaluated to assess the impact of assimilating the satellite products at model spatial resolution or at the satellite scale. The experiments are carried out for three Italian catchments on multi year period. The benefits on the model predictions of discharge, LST, evapotranspiration and soil moisture dynamics are tested and discussed.

  16. Developing a Hydrologic Assessment Tool for Designing Bioretention in a watershed

    NASA Astrophysics Data System (ADS)

    Baek, Sangsoo; Ligaray, Mayzonee; Park, Jeong-Pyo; Kwon, Yongsung; Cho, Kyung Hwa

    2017-04-01

    Continuous urbanization has negatively impacted the ecological and hydrological environments at the global, regional, and local scales. This issue was addressed by developing Low Impact Development (LID) practices to deliver better hydrologic function and improve the environmental, economic, social and cultural outcomes. This study developed a modeling software to simulate and optimize bioretentions among LID in a given watershed. The model calculated a detailed soil infiltration process in bioretention with hydrological conditions and hydraulic facilities (e.g. riser and underdrain) and also generated an optimized plan using Flow Duration Curve (FDC). The optimization result from the simulation demonstrated that the location and size of bioretention, as well as the soil texture, are important elements for an efficient bioretention. We hope that the developed software in this study could be useful for establishing an appropriate scheme of LID installment

  17. A national-scale seasonal hydrological forecast system: development and evaluation over Britain

    NASA Astrophysics Data System (ADS)

    Bell, Victoria A.; Davies, Helen N.; Kay, Alison L.; Brookshaw, Anca; Scaife, Adam A.

    2017-09-01

    Skilful winter seasonal predictions for the North Atlantic circulation and northern Europe have now been demonstrated and the potential for seasonal hydrological forecasting in the UK is now being explored. One of the techniques being used combines seasonal rainfall forecasts provided by operational weather forecast systems with hydrological modelling tools to provide estimates of seasonal mean river flows up to a few months ahead. The work presented here shows how spatial information contained in a distributed hydrological model typically requiring high-resolution (daily or better) rainfall data can be used to provide an initial condition for a much simpler forecast model tailored to use low-resolution monthly rainfall forecasts. Rainfall forecasts (hindcasts) from the GloSea5 model (1996 to 2009) are used to provide the first assessment of skill in these national-scale flow forecasts. The skill in the combined modelling system is assessed for different seasons and regions of Britain, and compared to what might be achieved using other approaches such as use of an ensemble of historical rainfall in a hydrological model, or a simple flow persistence forecast. The analysis indicates that only limited forecast skill is achievable for Spring and Summer seasonal hydrological forecasts; however, Autumn and Winter flows can be reasonably well forecast using (ensemble mean) rainfall forecasts based on either GloSea5 forecasts or historical rainfall (the preferred type of forecast depends on the region). Flow forecasts using ensemble mean GloSea5 rainfall perform most consistently well across Britain, and provide the most skilful forecasts overall at the 3-month lead time. Much of the skill (64 %) in the 1-month ahead seasonal flow forecasts can be attributed to the hydrological initial condition (particularly in regions with a significant groundwater contribution to flows), whereas for the 3-month ahead lead time, GloSea5 forecasts account for ˜ 70 % of the

  18. Modeled hydrologic metrics show links between hydrology and the functional composition of stream assemblages.

    PubMed

    Patrick, Christopher J; Yuan, Lester L

    2017-07-01

    Flow alteration is widespread in streams, but current understanding of the effects of differences in flow characteristics on stream biological communities is incomplete. We tested hypotheses about the effect of variation in hydrology on stream communities by using generalized additive models to relate watershed information to the values of different flow metrics at gauged sites. Flow models accounted for 54-80% of the spatial variation in flow metric values among gauged sites. We then used these models to predict flow metrics in 842 ungauged stream sites in the mid-Atlantic United States that were sampled for fish, macroinvertebrates, and environmental covariates. Fish and macroinvertebrate assemblages were characterized in terms of a suite of metrics that quantified aspects of community composition, diversity, and functional traits that were expected to be associated with differences in flow characteristics. We related modeled flow metrics to biological metrics in a series of stressor-response models. Our analyses identified both drying and base flow instability as explaining 30-50% of the observed variability in fish and invertebrate community composition. Variations in community composition were related to variations in the prevalence of dispersal traits in invertebrates and trophic guilds in fish. The results demonstrate that we can use statistical models to predict hydrologic conditions at bioassessment sites, which, in turn, we can use to estimate relationships between flow conditions and biological characteristics. This analysis provides an approach to quantify the effects of spatial variation in flow metrics using readily available biomonitoring data. © 2017 by the Ecological Society of America.

  19. What makes Darwinian hydrology "Darwinian"? Asking a different kind of question about landscapes

    NASA Astrophysics Data System (ADS)

    Harman, C.; Troch, P. A.

    2014-02-01

    There have been repeated calls for a Darwinian approach to hydrologic science, or for a synthesis of Darwinian and Newtonian approaches, to deepen understanding of the hydrologic system in the larger landscape context, and so develop a better basis for predictions now and in an uncertain future. But what exactly makes a Darwinian approach to hydrology "Darwinian"? While there have now been a number of discussions of Darwinian approaches, many referencing Harte (2002), the term is potentially a source of confusion because its connections to Darwin remain allusive rather than explicit. Here we suggest that the Darwinian approach to hydrology follows the example of Charles Darwin by focusing attention on the patterns of variation in populations and seeking hypotheses that explain these patterns in terms of the mechanisms and conditions that determine their historical development. These hypotheses do not simply catalog patterns or predict them statistically - they connect the present structure with processes operating in the past. Nor are they explanations presented without independent evidence or critical analysis - Darwin's hypotheses about the mechanisms underlying present-day variation could be independently tested and validated. With a Darwinian framework in mind, it is easy to see that a great deal of hydrologic research has already been done that contributes to a Darwinian hydrology - whether deliberately or not. We discuss some practical and philosophical issues with this approach to hydrologic science: how are explanatory hypotheses generated? What constitutes a good hypothesis? How are hypotheses tested? "Historical" sciences - including paleohydrology - have long grappled with these questions, as must a Darwinian hydrologic science. We can draw on Darwin's own example for some answers, though there are ongoing debates about the philosophical nature of his methods and reasoning. Darwin used a range of methods of historical reasoning to develop explanatory

  20. The influence of regional hydrology on nesting behavior and nest fate of the American alligator

    USGS Publications Warehouse

    Ugarte, Cristina A.; Bass, Oron L.; Nuttle, William; Mazzotti, Frank J.; Rice, Kenneth G.; Fujisaki, Ikuko; Whelan, Kevin R.T.

    2013-01-01

    Hydrologic conditions are critical to the nesting behavior and reproductive success of crocodilians. In South Florida, USA, growing human settlement has led to extensive surface water management and modification of historical water flows in the wetlands, which have affected regional nesting of the American alligator (Alligator mississippiensis). Although both natural and anthropogenic factors are considered to determine hydrologic conditions, the aspects of hydrological patterns that affect alligator nest effort, flooding (partial and complete), and failure (no hatchling) are unclear. We deconstructed annual hydrological patterns using harmonic models that estimated hydrological matrices including mean, amplitude, timing of peak, and periodicity of surface water depth and discharge and examined their effects on alligator nesting using survey data from Shark Slough, Everglades National Park, from 1985 to 2005. Nest effort increased in years with higher mean and lesser periodicity of water depth. A greater proportion of nests were flooded and failed when peak discharge occurred earlier in the year. Also, nest flooding rates were greater in years with greater periodicity of water depth, and nest failure rate was greater when mean discharge was higher. This study guides future water management decisions to mitigate negative impacts on reproduction of alligators and provides wildlife managers with a tool for assessing and modifying annual water management plans to conserve crocodilians and other wetland species.

  1. Hydrological-niche models predict water plant functional group distributions in diverse wetland types.

    PubMed

    Deane, David C; Nicol, Jason M; Gehrig, Susan L; Harding, Claire; Aldridge, Kane T; Goodman, Abigail M; Brookes, Justin D

    2017-06-01

    Human use of water resources threatens environmental water supplies. If resource managers are to develop policies that avoid unacceptable ecological impacts, some means to predict ecosystem response to changes in water availability is necessary. This is difficult to achieve at spatial scales relevant for water resource management because of the high natural variability in ecosystem hydrology and ecology. Water plant functional groups classify species with similar hydrological niche preferences together, allowing a qualitative means to generalize community responses to changes in hydrology. We tested the potential for functional groups in making quantitative prediction of water plant functional group distributions across diverse wetland types over a large geographical extent. We sampled wetlands covering a broad range of hydrogeomorphic and salinity conditions in South Australia, collecting both hydrological and floristic data from 687 quadrats across 28 wetland hydrological gradients. We built hydrological-niche models for eight water plant functional groups using a range of candidate models combining different surface inundation metrics. We then tested the predictive performance of top-ranked individual and averaged models for each functional group. Cross validation showed that models achieved acceptable predictive performance, with correct classification rates in the range 0.68-0.95. Model predictions can be made at any spatial scale that hydrological data are available and could be implemented in a geographical information system. We show the response of water plant functional groups to inundation is consistent enough across diverse wetland types to quantify the probability of hydrological impacts over regional spatial scales. © 2017 by the Ecological Society of America.

  2. A comparison of hydrological deformation using GPS and global hydrological model for the Eurasian plate

    NASA Astrophysics Data System (ADS)

    Li, Zhen; Yue, Jianping; Li, Wang; Lu, Dekai; Li, Xiaogen

    2017-08-01

    The 0.5° × 0.5° gridded hydrological loading from Global Land Surface Discharge Model (LSDM) mass distributions is adopted for 32 GPS sites on the Eurasian plate from January 2010 to January 2014. When the heights of these sites that have been corrected for the effects of non-tidal atmospheric and ocean loading are adjusted by the hydrological loading deformation, more than one third of the root-mean-square (RMS) values of the GPS height variability become larger. After analyzing the results by continuous wavelet transform (CWT) and wavelet transform coherence (WTC), we confirm that hydrological loading primarily contributes to the annual variations in GPS heights. Further, the cross wavelet transform (XWT) is used to investigate the relative phase between the time series of GPS heights and hydrological deformation, and it is indicated that the annual oscillations in the two time series are physically related for some sites; other geophysical effect, GPS systematic errors and hydrological modeling errors could result in the phase asynchrony between GPS and hydrological loading signals for the other sites. Consequently, the phase asynchrony confirms that the annual fluctuations in GPS observations result from a combination of geophysical signals and systematic errors.

  3. The National Wetland Condition Assessment

    EPA Science Inventory

    The first National Wetland Condition Assessment (NWCA) was conducted in 2011 by the US Environmental Protection Agency (USEPA). Vegetation, algae, soil, water chemistry,and hydrologic data were collected at each of 1138 sites across the contiguous US. Ecological condition was ass...

  4. Technical note: Design flood under hydrological uncertainty

    NASA Astrophysics Data System (ADS)

    Botto, Anna; Ganora, Daniele; Claps, Pierluigi; Laio, Francesco

    2017-07-01

    Planning and verification of hydraulic infrastructures require a design estimate of hydrologic variables, usually provided by frequency analysis, and neglecting hydrologic uncertainty. However, when hydrologic uncertainty is accounted for, the design flood value for a specific return period is no longer a unique value, but is represented by a distribution of values. As a consequence, the design flood is no longer univocally defined, making the design process undetermined. The Uncertainty Compliant Design Flood Estimation (UNCODE) procedure is a novel approach that, starting from a range of possible design flood estimates obtained in uncertain conditions, converges to a single design value. This is obtained through a cost-benefit criterion with additional constraints that is numerically solved in a simulation framework. This paper contributes to promoting a practical use of the UNCODE procedure without resorting to numerical computation. A modified procedure is proposed by using a correction coefficient that modifies the standard (i.e., uncertainty-free) design value on the basis of sample length and return period only. The procedure is robust and parsimonious, as it does not require additional parameters with respect to the traditional uncertainty-free analysis. Simple equations to compute the correction term are provided for a number of probability distributions commonly used to represent the flood frequency curve. The UNCODE procedure, when coupled with this simple correction factor, provides a robust way to manage the hydrologic uncertainty and to go beyond the use of traditional safety factors. With all the other parameters being equal, an increase in the sample length reduces the correction factor, and thus the construction costs, while still keeping the same safety level.

  5. Modeling Forest Management Strategies for Hydrological Climate Change Adaptation in the upper Columbia

    NASA Astrophysics Data System (ADS)

    Duan, Z.; Sun, N.; Wigmosta, M. S.; Hessburg, P. F., Sr.; Coleman, A. M.; Salter, B.

    2017-12-01

    Management of forest lands in the Upper Columbia River basin is necessary to ensure the sustainability of natural ecosystems and enhance protection and recovery of fish and wildlife populations. By 2030, summertime surface water demand is expected to significantly exceed supply in most years in many Upper Columbia tributaries; in some years, a portion of these tributaries will exceed supply even outside the summer months. Forest restoration (i.e., timber harvest, prescribed burning, thinning) reduces canopy cover and, subsequently, has been shown in many cases to increase snow accumulation and total runoff volume. We use the Distributed Hydrology Soil Vegetation Model (DHSVM) to predict hydrologic properties and changes associated with realistic forest restoration scenarios prescribed in high spatial detail (90 m) within snow-dominated watersheds of the upper Columbia under current and future climate conditions. We consider changes in hydrological processes related to snowpack, stream discharge, and water temperature. Model results suggest forest restoration will impact annual water yield under both current and future climate conditions and the impact of forest restoration on the timing of snowmelt and streamflow varies from year to year and is highly dependent on local meteorological conditions and particular forest restoration scenarios. Corresponding changes in water temperature will also be discussed.

  6. Hydrologic considerations in defining isolated wetlands

    USGS Publications Warehouse

    Winter, T.C.; LaBaugh, J.W.

    2003-01-01

    Wetlands that are not connected by streams to other surface-water bodies are considered to be isolated. Although the definition is based on surface-water connections to other water bodies, isolated wetlands commonly are integral parts of extensive ground-water flow systems, and isolated wetlands can spill over their surface divides into adjacent surface-water bodies during periods of abundant precipitation and high water levels. Thus, characteristics of ground-water flow and atmospheric-water flow affect the isolation of wetlands. In general, the degree that isolated wetlands are connected through the ground-water system to other surface-water bodies depends to a large extent on the rate that ground water moves and the rate that hydrologic stresses can be transmitted through the ground-water system. Water that seeps from an isolated wetland into a gravel aquifer can travel many kilometers through the ground-water system in one year. In contrast, water that seeps from an isolated wetland into a clayey or silty substrate may travel less than one meter in one year. For wetlands that can spill over their surface watersheds during periods of wet climate conditions, their isolation is related to the height to a spill elevation above normal wetland water level and the recurrence interval of various magnitudes of precipitation. The concepts presented in this paper indicate that the entire hydrologic system needs to be considered in establishing a definition of hydrologic isolation.

  7. Oregon Hydrologic Landscapes: A Classification Framework

    EPA Science Inventory

    There is a growing need for hydrologic classification systems that can provide a basis for broad-scale assessments of the hydrologic functions of landscapes and watersheds and their responses to stressors such as climate change. We developed a hydrologic landscape (HL) classifica...

  8. Five Guidelines for Selecting Hydrological Signatures

    NASA Astrophysics Data System (ADS)

    McMillan, H. K.; Westerberg, I.; Branger, F.

    2017-12-01

    Hydrological signatures are index values derived from observed or modeled series of hydrological data such as rainfall, flow or soil moisture. They are designed to extract relevant information about hydrological behavior, such as to identify dominant processes, and to determine the strength, speed and spatiotemporal variability of the rainfall-runoff response. Hydrological signatures play an important role in model evaluation. They allow us to test whether particular model structures or parameter sets accurately reproduce the runoff generation processes within the watershed of interest. Most modeling studies use a selection of different signatures to capture different aspects of the catchment response, for example evaluating overall flow distribution as well as high and low flow extremes and flow timing. Such studies often choose their own set of signatures, or may borrow subsets of signatures used in multiple other works. The link between signature values and hydrological processes is not always straightforward, leading to uncertainty and variability in hydrologists' signature choices. In this presentation, we aim to encourage a more rigorous approach to hydrological signature selection, which considers the ability of signatures to represent hydrological behavior and underlying processes for the catchment and application in question. To this end, we propose a set of guidelines for selecting hydrological signatures. We describe five criteria that any hydrological signature should conform to: Identifiability, Robustness, Consistency, Representativeness, and Discriminatory Power. We describe an example of the design process for a signature, assessing possible signature designs against the guidelines above. Due to their ubiquity, we chose a signature related to the Flow Duration Curve, selecting the FDC mid-section slope as a proposed signature to quantify catchment overall behavior and flashiness. We demonstrate how assessment against each guideline could be used to

  9. Curricula and Syllabi in Hydrology. A Contribution to the International Hydrological Programme. UNESCO Technical Papers in Hydrology No. 22. Second Edition.

    ERIC Educational Resources Information Center

    Chandra, Satish, Ed.; Mostertman, L. J., Ed.

    Hydrology is the science dealing with the earth's waters, their occurrence, circulation, and distribution, their chemical and physical properties, and their reaction with the environment. As such, hydrology is an indispensible requirement for planning in the field of water resources. Objectives for, spectrum of, and topics for education in…

  10. Development of a biosphere hydrological model considering vegetation dynamics and its evaluation at basin scale under climate change

    NASA Astrophysics Data System (ADS)

    Li, Qiaoling; Ishidaira, Hiroshi

    2012-01-01

    SummaryThe biosphere and hydrosphere are intrinsically coupled. The scientific question is if there is a substantial change in one component such as vegetation cover, how will the other components such as transpiration and runoff generation respond, especially under climate change conditions? Stand-alone hydrological models have a detailed description of hydrological processes but do not sufficiently parameterize vegetation as a dynamic component. Dynamic global vegetation models (DGVMs) are able to simulate transient structural changes in major vegetation types but do not simulate runoff generation reliably. Therefore, both hydrological models and DGVMs have their limitations as well as advantages for addressing this question. In this study a biosphere hydrological model (LPJH) is developed by coupling a prominent DGVM (Lund-Postdam-Jena model referred to as LPJ) with a stand-alone hydrological model (HYMOD), with the objective of analyzing the role of vegetation in the hydrological processes at basin scale and evaluating the impact of vegetation change on the hydrological processes under climate change. The application and validation of the LPJH model to four basins representing a variety of climate and vegetation conditions shows that the performance of LPJH is much better than that of the original LPJ and is similar to that of stand-alone hydrological models for monthly and daily runoff simulation at the basin scale. It is argued that the LPJH model gives more reasonable hydrological simulation since it considers both the spatial variability of soil moisture and vegetation dynamics, which make the runoff generation mechanism more reliable. As an example, it is shown that changing atmospheric CO 2 content alone would result in runoff increases in humid basins and decreases in arid basins. Theses changes are mainly attributable to changes in transpiration driven by vegetation dynamics, which are not simulated in stand-alone hydrological models. Therefore LPJH

  11. Geomorphological control on variably saturated hillslope hydrology and slope instability

    USGS Publications Warehouse

    Giuseppe, Formetta; Simoni, Silvia; Godt, Jonathan W.; Lu, Ning; Rigon, Riccardo

    2016-01-01

    In steep topography, the processes governing variably saturated subsurface hydrologic response and the interparticle stresses leading to shallow landslide initiation are physically linked. However, these processes are usually analyzed separately. Here, we take a combined approach, simultaneously analyzing the influence of topography on both hillslope hydrology and the effective stress fields within the hillslope itself. Clearly, runoff and saturated groundwater flow are dominated by gravity and, ultimately, by topography. Less clear is how landscape morphology influences flows in the vadose zone, where transient fluxes are usually taken to be vertical. We aim to assess and quantify the impact of topography on both saturated and unsaturated hillslope hydrology and its effects on shallow slope stability. Three real hillslope morphologies (concave, convex, and planar) are analyzed using a 3-D, physically based, distributed model coupled with a module for computation of the probability of failure, based on the infinite slope assumption. The results of the analyses, which included parameter uncertainty analysis of the results themselves, show that convex and planar slopes are more stable than concave slopes. Specifically, under the same initial, boundary, and infiltration conditions, the percentage of unstable areas ranges from 1.3% for the planar hillslope, 21% for convex, to a maximum value of 33% for the concave morphology. The results are supported by a sensitivity analysis carried out to examine the effect of initial conditions and rainfall intensity.

  12. Hydrological excitation of polar motion

    NASA Astrophysics Data System (ADS)

    Nastula, Y.; Kolaczek, B.

    2006-08-01

    Hydrological excitation of the polar motion (HAM) were computed from the available recently hydrological data series (NCEP, ECMWF, CPC water storage and LaD World simulations of global continental water) and compared. Time variable seasonal spectra of these hydrological excitation functions and of the geodetic excitation function of polar motion computed from the polar motion COMB03 data were compared showing big differences in their temporal characteristics and the necessity of the further improvement of the HAM models. Seasonal oscillations of the global geophysical excitation functions (AAM + OAM + HAM) and their time variations were compared also. These hydrological excitation functions do not close the budget of the global geophysical excitation function of polar motion.

  13. Effects of landuse change on the hydrologic regime of the Mae Chaem river basin, NW Thailand

    NASA Astrophysics Data System (ADS)

    Thanapakpawin, P.; Richey, J.; Thomas, D.; Rodda, S.; Campbell, B.; Logsdon, M.

    2007-02-01

    SummaryConflicts between upland shifting cultivation, upland commercial crops, and lowland irrigated agriculture cause water resource tension in the Mae Chaem watershed in Chiang Mai, Thailand. In this paper, we assess hydrologic regimes of the Mae Chaem River with landuse change. Three plausible future forest-to-crop expansion scenarios and a scenario of crop-to-forest reversal were developed based on the landcover transition from 1989 to 2000, with emphasis on influences of elevation bands and irrigation diversion. Basin hydrologic responses were simulated using the Distributed Hydrology Soil Vegetation Model (DHSVM). Meteorological data from six weather stations inside and adjacent to the Mae Chaem watershed during the period 1993-2000 were the climate inputs. Computed stream flow was compared to observed discharge at Ban Mae Mu gauge on Mae Mu river, Ban Mae Suk gauge on Mae Suk river, and at Kaeng Ob Luang, located downstream from the district town in Mae Chaem. With current assumptions, expansion of highland crop fields led to slightly higher regulated annual and wet-season water yields compared to similar expansion in the lowland-midland zone. Actual downstream water availability was sensitive to irrigation diversion. This modeling approach can be a useful tool for water allocation for small watersheds undergoing rapid commercialization, because it alerts land managers to the potential range of water supply in wet and dry seasons, and provides information on spatial distribution of basin hydrologic components.

  14. Towards an Improved Represenation of Reservoirs and Water Management in a Land Surface-Hydrology Model

    NASA Astrophysics Data System (ADS)

    Yassin, F.; Anis, M. R.; Razavi, S.; Wheater, H. S.

    2017-12-01

    Water management through reservoirs, diversions, and irrigation have significantly changed river flow regimes and basin-wide energy and water balance cycles. Failure to represent these effects limits the performance of land surface-hydrology models not only for streamflow prediction but also for the estimation of soil moisture, evapotranspiration, and feedbacks to the atmosphere. Despite recent research to improve the representation of water management in land surface models, there remains a need to develop improved modeling approaches that work in complex and highly regulated basins such as the 406,000 km2 Saskatchewan River Basin (SaskRB). A particular challenge for regional and global application is a lack of local information on reservoir operational management. To this end, we implemented a reservoir operation, water abstraction, and irrigation algorithm in the MESH land surface-hydrology model and tested it over the SaskRB. MESH is Environment Canada's Land Surface-hydrology modeling system that couples Canadian Land Surface Scheme (CLASS) with hydrological routing model. The implemented reservoir algorithm uses an inflow-outflow relationship that accounts for the physical characteristics of reservoirs (e.g., storage-area-elevation relationships) and includes simplified operational characteristics based on local information (e.g., monthly target volume and release under limited, normal, and flood storage zone). The irrigation algorithm uses the difference between actual and potential evapotranspiration to estimate irrigation water demand. This irrigation demand is supplied from the neighboring reservoirs/diversion in the river system. We calibrated the model enabled with the new reservoir and irrigation modules in a multi-objective optimization setting. Results showed that the reservoir and irrigation modules significantly improved the MESH model performance in generating streamflow and evapotranspiration across the SaskRB and that this our approach provides

  15. Sensitivity of wetland hydrology to external climate forcing in central Florida

    NASA Astrophysics Data System (ADS)

    Lammertsma, Emmy I.; Donders, Timme H.; Pearce, Christof; Cremer, Holger; Gaiser, Evelyn E.; Wagner-Cremer, Friederike

    2015-11-01

    Available proxy records from the Florida peninsula give a varying view on hydrological changes during the late Holocene. Here we evaluate the consistency and sensitivity of local wetland records in relation to hydrological changes over the past 5 ka based on pollen and diatom proxies from peat cores in Highlands Hammock State Park, central Florida. Around 5 cal ka BP, a dynamic floodplain environment is present. Subsequently, a wetland forest establishes, followed by a change to persistent wet conditions between 2.5 and 2.0 ka. Long hydroperiods remain despite gradual succession and basin infilling with maximum wet conditions between 1.3 and 1.0 ka. The wet phase and subsequent strong drying over the last millennium, as indicated by shifts in both pollen and diatom assemblages, can be linked to the early Medieval Warm Period and Little Ice Age, respectively, driven by regionally higher sea-surface temperatures and a temporary northward migration of the Intertropical Convergence Zone. Changes during the 20th century are the result of constructions intended to protect the Highlands Hammock State Park from wildfires. The multiple cores and proxies allow distinguishing local and regional hydrological changes. The peat records reflect relatively subtle climatic changes that are not evident from regional pollen records from lakes.

  16. Rheological investigation of body cream and body lotion in actual application conditions

    NASA Astrophysics Data System (ADS)

    Kwak, Min-Sun; Ahn, Hye-Jin; Song, Ki-Won

    2015-08-01

    The objective of the present study is to systematically evaluate and compare the rheological behaviors of body cream and body lotion in actual usage situations. Using a strain-controlled rheometer, the steady shear flow properties of commercially available body cream and body lotion were measured over a wide range of shear rates, and the linear viscoelastic properties of these two materials in small amplitude oscillatory shear flow fields were measured over a broad range of angular frequencies. The temperature dependency of the linear viscoelastic behaviors was additionally investigated over a temperature range most relevant to usual human life. The main findings obtained from this study are summarized as follows: (1) Body cream and body lotion exhibit a finite magnitude of yield stress. This feature is directly related to the primary (initial) skin feel that consumers usually experience during actual usage. (2) Body cream and body lotion exhibit a pronounced shear-thinning behavior. This feature is closely connected with the spreadability when cosmetics are applied onto the human skin. (3) The linear viscoelastic behaviors of body cream and body lotion are dominated by an elastic nature. These solid-like properties become a criterion to assess the selfstorage stability of cosmetic products. (4) A modified form of the Cox-Merz rule provides a good ability to predict the relationship between steady shear flow and dynamic viscoelastic properties for body cream and body lotion. (5) The storage modulus and loss modulus of body cream show a qualitatively similar tendency to gradually decrease with an increase in temperature. In the case of body lotion, with an increase in temperature, the storage modulus is progressively decreased while the loss modulus is slightly increased and then decreased. This information gives us a criterion to judge how the characteristics of cosmetic products are changed by the usual human environments.

  17. A First Look at Decadal Hydrological Predictability by Land Surface Ensemble Simulations

    NASA Astrophysics Data System (ADS)

    Yuan, Xing; Zhu, Enda

    2018-03-01

    The prediction of terrestrial hydrology at the decadal scale is critical for managing water resources in the face of climate change. Here we conducted an assessment by global land model simulations following the design of the fifth Coupled Model Intercomparison Project (CMIP5) decadal hindcast experiments, specifically testing for the sensitivity to perfect initial or boundary conditions. The memory for terrestrial water storage (TWS) is longer than 6 years over 11% of global land areas where the deep soil moisture and aquifer water have a long memory and a nonnegligible variability. Ensemble decadal predictions based on realistic initial conditions are skillful over 31%, 43%, and 59% of global land areas for TWS, deep soil moisture, and aquifer water, respectively. The fraction of skillful predictions for TWS increases by 10%-16% when conditioned on Pacific Decadal Oscillation and Atlantic Multidecadal Oscillation indices. This study provides a first look at decadal hydrological predictability, with an improved skill when incorporating low-frequency climate information.

  18. A Community Data Model for Hydrologic Observations

    NASA Astrophysics Data System (ADS)

    Tarboton, D. G.; Horsburgh, J. S.; Zaslavsky, I.; Maidment, D. R.; Valentine, D.; Jennings, B.

    2006-12-01

    The CUAHSI Hydrologic Information System project is developing information technology infrastructure to support hydrologic science. Hydrologic information science involves the description of hydrologic environments in a consistent way, using data models for information integration. This includes a hydrologic observations data model for the storage and retrieval of hydrologic observations in a relational database designed to facilitate data retrieval for integrated analysis of information collected by multiple investigators. It is intended to provide a standard format to facilitate the effective sharing of information between investigators and to facilitate analysis of information within a single study area or hydrologic observatory, or across hydrologic observatories and regions. The observations data model is designed to store hydrologic observations and sufficient ancillary information (metadata) about the observations to allow them to be unambiguously interpreted and used and provide traceable heritage from raw measurements to usable information. The design is based on the premise that a relational database at the single observation level is most effective for providing querying capability and cross dimension data retrieval and analysis. This premise is being tested through the implementation of a prototype hydrologic observations database, and the development of web services for the retrieval of data from and ingestion of data into the database. These web services hosted by the San Diego Supercomputer center make data in the database accessible both through a Hydrologic Data Access System portal and directly from applications software such as Excel, Matlab and ArcGIS that have Standard Object Access Protocol (SOAP) capability. This paper will (1) describe the data model; (2) demonstrate the capability for representing diverse data in the same database; (3) demonstrate the use of the database from applications software for the performance of hydrologic analysis

  19. Summary of hydrologic conditions of the Louisville area of Kentucky

    USGS Publications Warehouse

    Bell, Edwin Allen

    1966-01-01

    Water problems and their solutions have been associated with the growth and development of the Louisville area for more than a century. Many hydrologic data that aided water users in the past can be applied to present water problems and will be helpful for solving many similar problems in the future. Most of the water problems of Louisville, a water-rich area, concern management and are associated with the distribution of supplies, the quality of water, drainage, and waste disposal. The local hydrologic system at Louisville is dominated by the Ohio River and the glacial-outwash deposits beneath its flood plain. The water-bearing limestones in the uplands are ,secondary sources of water. The average flow of the Ohio River at Louisville, 73 billion gallons per day, and the potential availability of 370 million gallons per day of ground water suitable for industrial cooling purposes minimize the chance of acute water shortage in the area. Under current development, use of water averages about 211 million gallons per day, excluding about 392 million gallons of Ohio River water circulated daily through steampower plants and returned directly to the river. Optimum use and control of the water resources will be dependent on solving several water problems. The principal sources of water are in the Ohio River bottom land, whereas the new and potential centers of use are in the uplands. Either water must be piped to these new centers from the present sources or new supplies must be developed. Available data on streamflow and ground water are adequate to plan for the development of small local supplies. Since the completion of floodwalls and levees in 1953, widespread damage from flooding is a thing of the past in the Louisville area. Some local flooding of unprotected areas and of lowlands along tributary streams still takes place. The analyses of streamflow data are useful in planning for protection of these areas, but additional streamflow records and flood-area mapping

  20. Evaluation of hydrologic equilibrium in a mountainous watershed: incorporating forest canopy spatial adjustment to soil biogeochemical processes

    NASA Astrophysics Data System (ADS)

    Mackay, D. Scott

    Hydrologic equilibrium theory has been used to describe both short-term regulation of gas exchange and long-term adjustment of forest canopy density. However, by focusing on water and atmospheric conditions alone a hydrologic equilibrium may impose an oversimplification of the growth of forests adjusted to hydrology. In this study nitrogen is incorporated as a third regulation of catchment level forest dynamics and gas exchange. This was examined with an integrated distributed hydrology and forest growth model in a central Sierra Nevada watershed covered primarily by old-growth coniferous forest. Water and atmospheric conditions reasonably reproduced daily latent heat flux, and predicted the expected catenary trend of leaf area index (LAI). However, it was not until the model was provided a spatially detailed description of initial soil carbon and nitrogen pools that spatial patterns of LAI were generated. This latter problem was attributed to a lack of soil history or memory in the initialization of the simulations. Finally, by reducing stomatal sensitivity to vapor pressure deficit (VPD) the canopy density increased when water and nitrogen limitations were not present. The results support a three-control hydrologic equilibrium in the Sierra Nevada watershed. This has implications for modeling catchment level soil-vegetation-atmospheric interactions over interannual, decade, and century time-scales.

  1. Fundamentals of watershed hydrology

    Treesearch

    Pamela J. Edwards; Karl W.J. Williard; Jon E. Schoonover

    2015-01-01

    This is a primer about hydrology, the science of water. Watersheds are the basic land unit for water resource management and their delineation, importance, and variation are explained and illustrated. The hydrologic cycle and its components (precipitation, evaporation, transpiration, soil water, groundwater, and streamflow) which collectively provide a foundation for...

  2. Independent technical review and analysis of hydraulic modeling and hydrology under low-flow conditions of the Des Plaines River near Riverside, Illinois

    USGS Publications Warehouse

    Over, Thomas M.; Straub, Timothy D.; Hortness, Jon E.; Murphy, Elizabeth A.

    2012-01-01

    The U.S. Geological Survey (USGS) has operated a streamgage and published daily flows for the Des Plaines River at Riverside since Oct. 1, 1943. A HEC-RAS model has been developed to estimate the effect of the removal of Hofmann Dam near the gage on low-flow elevations in the reach approximately 3 miles upstream from the dam. The Village of Riverside, the Illinois Department of Natural Resources-Office of Water Resources (IDNR-OWR), and the U. S. Army Corps of Engineers-Chicago District (USACE-Chicago) are interested in verifying the performance of the HEC-RAS model for specific low-flow conditions, and obtaining an estimate of selected daily flow quantiles and other low-flow statistics for a selected period of record that best represents current hydrologic conditions. Because the USGS publishes streamflow records for the Des Plaines River system and provides unbiased analyses of flows and stream hydraulic characteristics, the USGS served as an Independent Technical Reviewer (ITR) for this study.

  3. From hydrodynamic to hydrological modelling: Investigating long-term hydrological regimes of key wetlands in the Macquarie Marshes, a semi-arid lowland floodplain in Australia

    NASA Astrophysics Data System (ADS)

    Wen, Li; Macdonald, Rohan; Morrison, Tim; Hameed, Tahir; Saintilan, Neil; Ling, Joanne

    2013-09-01

    /outflow, volume, and inundated area for key wetlands within the Marshes under natural conditions and recent water management practices for the period of July 1 1991 to June 30 2009. The results revealed that the recent water management practices have induced large changes to wetland hydrology. The most noticeable changes include the dramatic reductions in high flows (i.e. flows with less than 25% exceedence, reduction ranges from 85% to 98% of the high flow peak depending on the location), areal inundation extent (ranging from 13% to 79% depending on climatic conditions), and flow rising/falling rates (over 90% for high flows). Our analysis also highlighted that the impacts of water management practices on some of the flow variables for wetland habitats contrasted with those for instream habitats. For example, we did not find any evident alterations in the low flows (i.e. 75% exceedence) attributable to water management.

  4. From engineering hydrology to Earth system science: milestones in the transformation of hydrologic science

    NASA Astrophysics Data System (ADS)

    Sivapalan, Murugesu

    2018-03-01

    Hydrology has undergone almost transformative changes over the past 50 years. Huge strides have been made in the transition from early empirical approaches to rigorous approaches based on the fluid mechanics of water movement on and below the land surface. However, progress has been hampered by problems posed by the presence of heterogeneity, including subsurface heterogeneity present at all scales. The inability to measure or map the heterogeneity everywhere prevented the development of balance equations and associated closure relations at the scales of interest, and has led to the virtual impasse we are presently in, in terms of development of physically based models needed for hydrologic predictions. An alternative to the mapping of heterogeneity everywhere is a new Earth system science view, which sees the heterogeneity as the end result of co-evolutionary hydrological, geomorphological, ecological, and pedological processes, each operating at a different rate, which help to shape the landscapes that we find in nature, including the heterogeneity that we do not readily see. The expectation is that instead of specifying exact details of the heterogeneity in our models, we can replace it (without loss of information) with the ecosystem function that they perform. Guided by this new Earth system science perspective, development of hydrologic science is now addressing new questions using novel holistic co-evolutionary approaches as opposed to the physical, fluid mechanics based reductionist approaches that we inherited from the recent past. In the emergent Anthropocene, the co-evolutionary view has expanded further to involve interactions and feedbacks with human-social processes as well. In this paper, I present my own perspective of key milestones in the transformation of hydrologic science from engineering hydrology to Earth system science, drawn from the work of several students and colleagues of mine, and discuss their implication for hydrologic observations

  5. Hydrologic filtering of fish life history strategies across the United States: implications for stream flow alteration

    DOE PAGES

    McManamay, Ryan A.; Frimpong, Emmanuel A.

    2015-01-01

    Lotic fish have developed life history strategies adapted to the natural variation in stream flow regimes. The natural timing, duration, and magnitude of flow events has contributed to the diversity, production, and composition of fish assemblages over time. Studies evaluating the role of hydrology in structuring fish assemblages have been more common at the local or regional scale with very few studies conducted at the continental scale. Furthermore, quantitative linkages between natural hydrologic patterns and fish assemblages are rarely used to make predictions of ecological consequences of hydrologic alterations. We ask two questions: (1) what is the relative role ofmore » hydrology in structuring fish assemblages at large scales? and (2) can relationships between fish assemblages and natural hydrology be utilized to predict fish assemblage responses to hydrologic disturbance? We developed models to relate fish life histories and reproductive strategies to landscape and hydrologic variables separately and then combined. Models were then used to predict the ecological consequences of altered hydrology due to dam regulation. Although hydrology plays a considerable role in structuring fish assemblages, the performance of models using only hydrologic variables was lower than that of models constructed using landscape variables. Isolating the relative importance of hydrology in structuring fish assemblages at the continental scale is difficult since hydrology is interrelated to many landscape factors. By applying models to dam-regulated hydrologic data, we observed some consistent predicted responses in fish life history strategies and modes of reproduction. In agreement with existing literature, equilibrium strategists are predicted to increase following dam regulation, whereas opportunistic and periodic species are predicted to decrease. In addition, dam regulation favors the selection of reproductive strategies with extended spawning seasons and preference for

  6. Hydrologic filtering of fish life history strategies across the United States: implications for stream flow alteration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McManamay, Ryan A.; Frimpong, Emmanuel A.

    Lotic fish have developed life history strategies adapted to the natural variation in stream flow regimes. The natural timing, duration, and magnitude of flow events has contributed to the diversity, production, and composition of fish assemblages over time. Studies evaluating the role of hydrology in structuring fish assemblages have been more common at the local or regional scale with very few studies conducted at the continental scale. Furthermore, quantitative linkages between natural hydrologic patterns and fish assemblages are rarely used to make predictions of ecological consequences of hydrologic alterations. We ask two questions: (1) what is the relative role ofmore » hydrology in structuring fish assemblages at large scales? and (2) can relationships between fish assemblages and natural hydrology be utilized to predict fish assemblage responses to hydrologic disturbance? We developed models to relate fish life histories and reproductive strategies to landscape and hydrologic variables separately and then combined. Models were then used to predict the ecological consequences of altered hydrology due to dam regulation. Although hydrology plays a considerable role in structuring fish assemblages, the performance of models using only hydrologic variables was lower than that of models constructed using landscape variables. Isolating the relative importance of hydrology in structuring fish assemblages at the continental scale is difficult since hydrology is interrelated to many landscape factors. By applying models to dam-regulated hydrologic data, we observed some consistent predicted responses in fish life history strategies and modes of reproduction. In agreement with existing literature, equilibrium strategists are predicted to increase following dam regulation, whereas opportunistic and periodic species are predicted to decrease. In addition, dam regulation favors the selection of reproductive strategies with extended spawning seasons and preference for

  7. Impacts of climate variability and extreme events on soil hydrological processes

    NASA Astrophysics Data System (ADS)

    Ramos, M. C.; Mulligan, M.

    2003-04-01

    The Mediterranean climate (dry subhumid), characterised by a high variability, produces in many situations an insufficient water supply to support stable agriculture. Not only is there insufficient rainfall, but its occurrence is also highly variable between years, during the year, and spatially, during a single rainfall event. One of the main climatic characteristics affecting the vulnerability of the Mediterranean region is the high intensity rainfalls which fall after a very dry summer and the high degree of climatic fluctuation in the short and long term, especially in rainfall quantity. In addition, the rainwater penetration and storage of water in the soil are conditioned by the soil characteristics, in some cases modified by changes in land use and with new management practices. The aim of this study was to evaluate the impact of this high variability, from year to year and through the year, on soil hydrological processes, in fields resulted of the mechanisation works in vineyards in a Mediterranean environment. The PATTERNlight model, a simplified two-dimensional version of the hydrological and growth PATTERN model (Mulligan, 1996) is used here to simulate the water balance for three situations: normal, wet and dry years. Ssignificant differences in soil moisture and recharge were observed under vine culture from year to year, giving rise very often, to critical situations for the development of the crops. The distribution of the rainfall through the year together with the intensity of the recorded rainfalls is much very significant for soil hydrology than the total annual rainfall. Very low soil moisture conditions are raised when spring rainfall is scarce, which contribute to exhaustion of profile soil water over the summer, especially if the antecedent soil moisture is low. This low soil moisture has a significant effect on the development of the vine crop. The simulations of leaf and root biomass carried out with the PATTERNLIGHT model indicate the

  8. Assessing the Assessment Methods: Climate Change and Hydrologic Impacts

    NASA Astrophysics Data System (ADS)

    Brekke, L. D.; Clark, M. P.; Gutmann, E. D.; Mizukami, N.; Mendoza, P. A.; Rasmussen, R.; Ikeda, K.; Pruitt, T.; Arnold, J. R.; Rajagopalan, B.

    2014-12-01

    The Bureau of Reclamation, the U.S. Army Corps of Engineers, and other water management agencies have an interest in developing reliable, science-based methods for incorporating climate change information into longer-term water resources planning. Such assessments must quantify projections of future climate and hydrology, typically relying on some form of spatial downscaling and bias correction to produce watershed-scale weather information that subsequently drives hydrology and other water resource management analyses (e.g., water demands, water quality, and environmental habitat). Water agencies continue to face challenging method decisions in these endeavors: (1) which downscaling method should be applied and at what resolution; (2) what observational dataset should be used to drive downscaling and hydrologic analysis; (3) what hydrologic model(s) should be used and how should these models be configured and calibrated? There is a critical need to understand the ramification of these method decisions, as they affect the signal and uncertainties produced by climate change assessments and, thus, adaptation planning. This presentation summarizes results from a three-year effort to identify strengths and weaknesses of widely applied methods for downscaling climate projections and assessing hydrologic conditions. Methods were evaluated from two perspectives: historical fidelity, and tendency to modulate a global climate model's climate change signal. On downscaling, four methods were applied at multiple resolutions: statistically using Bias Correction Spatial Disaggregation, Bias Correction Constructed Analogs, and Asynchronous Regression; dynamically using the Weather Research and Forecasting model. Downscaling results were then used to drive hydrologic analyses over the contiguous U.S. using multiple models (VIC, CLM, PRMS), with added focus placed on case study basins within the Colorado Headwaters. The presentation will identify which types of climate changes are

  9. Hydrologic applications of weather radar

    NASA Astrophysics Data System (ADS)

    Seo, Dong-Jun; Habib, Emad; Andrieu, Hervé; Morin, Efrat

    2015-12-01

    By providing high-resolution quantitative precipitation information (QPI), weather radars have revolutionized hydrology in the last two decades. With the aid of GIS technology, radar-based quantitative precipitation estimates (QPE) have enabled routine high-resolution hydrologic modeling in many parts of the world. Given the ever-increasing need for higher-resolution hydrologic and water resources information for a wide range of applications, one may expect that the use of weather radar will only grow. Despite the tremendous progress, a number of significant scientific, technological and engineering challenges remain to realize its potential. New challenges are also emerging as new areas of applications are discovered, explored and pursued. The purpose of this special issue is to provide the readership with some of the latest advances, lessons learned, experiences gained, and science issues and challenges related to hydrologic applications of weather radar. The special issue features 20 contributions on various topics which reflect the increasing diversity as well as the areas of focus in radar hydrology today. The contributions may be grouped as follows:

  10. iTree-Hydro: Snow hydrology update for the urban forest hydrology model

    Treesearch

    Yang Yang; Theodore A. Endreny; David J. Nowak

    2011-01-01

    This article presents snow hydrology updates made to iTree-Hydro, previously called the Urban Forest Effects—Hydrology model. iTree-Hydro Version 1 was a warm climate model developed by the USDA Forest Service to provide a process-based planning tool with robust water quantity and quality predictions given data limitations common to most urban areas. Cold climate...

  11. Hydrologic changes after logging in two small Oregon coastal watersheds

    USGS Publications Warehouse

    Harris, David Dell

    1977-01-01

    Effects of clearcut, cable logging on the hydrologic characteristics of a small coastal stream in Oregon indicate an average 181-percent increase in sediment yield over a 7-year postlogging period. Annual runoff and high-flow volumes increased 19 and 1.1 inches (480 and 28 mm), respectively, after logging in the watershed. Clearcutting in small, spaced patches in another watershed resulted in some increase in water and sediment yields, but the increase was not statistically significant. Average monthly April-October maximum water temperatures increased significantly in the principal stream of both the clearcut and 'patch-cut' watersheds. Hydrologic characteristics of both streams generally appear to be returning to prelogging conditions (19731.

  12. INTEGRATING LANDSCAPE ASSESSMENT AND HYDROLOGIC MODELING FOR LAND COVER CHANGE ANALYSIS

    EPA Science Inventory

    This study is based on the assumption that land cover change and rainfall spatial variability affect the r-ainfall-runoff relationships on the watershed. Hydrologic response is an integrated indicator of watershed condition, and changes in land cover may affect the overall health...

  13. Diurnal hydrological physicochemical controls and sampling methods for minor and trace elements in an Alpine glacial hydrological system

    NASA Astrophysics Data System (ADS)

    Mitchell, Andrew C.; Brown, Giles H.

    2007-01-01

    SummaryWe present diurnal (i) 0.45 and 0.1 μm pore-size filtered and (ii) operationally defined labile particulate-associated major, minor and trace element concentrations and fluxes in glacial outflow waters draining Haut Glacier d'Arolla, Switzerland. We use speciation modelling (PHREEQCi) and water-suspended sediment interaction experiments are utilised under conditions analogous to the subglacial channellised hydrological system, in order to assess controls on, and the most suitable sampling methods to investigate short-term variations in the mode of major, minor and trace element species export from a glacierised headwater catchment. 0.45 μm pore-size filtered major ions, Sr and U are exported in glacial outflow waters predominately as mobile monovalent or divalent ions or as carbonate complexes, and are controlled by hydrological variations over diurnal cycles, exhibiting an inverse concentration with increasing meltwater discharge. Conversely, 0.45 μm pore-size filtered concentrations of most minor and trace elements ( e.g. Fe, Mn, Co, Ba and Pb) exhibit variations that are not strongly inter-correlated with meltwater discharge or suspended sediment concentrations (SSC) over diurnal periods. The use of 0.45 and 0.1 μm pore-size filter membranes indicates that significant colloidal material is not passing through the 0.45 μm pore-size filters, and these unsystematic variations are not a result of colloid measurement. Speciation modelling applied to meltwaters and observations during water-rock interaction experiments suggest that these unsystematic temporal variations reflect physicochemical controls. This includes sorption, and the oversaturation and precipitation of Fe and Al (oxi)hydroxides, and the co-precipitation of other species. Diurnal pH variations appear important in controlling such short-term physicochemical controls, which limits such species use for hydrological investigations. The percentage of total elemental fluxes exported as the

  14. Scaling biodiversity responses to hydrological regimes.

    PubMed

    Rolls, Robert J; Heino, Jani; Ryder, Darren S; Chessman, Bruce C; Growns, Ivor O; Thompson, Ross M; Gido, Keith B

    2018-05-01

    Of all ecosystems, freshwaters support the most dynamic and highly concentrated biodiversity on Earth. These attributes of freshwater biodiversity along with increasing demand for water mean that these systems serve as significant models to understand drivers of global biodiversity change. Freshwater biodiversity changes are often attributed to hydrological alteration by water-resource development and climate change owing to the role of the hydrological regime of rivers, wetlands and floodplains affecting patterns of biodiversity. However, a major gap remains in conceptualising how the hydrological regime determines patterns in biodiversity's multiple spatial components and facets (taxonomic, functional and phylogenetic). We synthesised primary evidence of freshwater biodiversity responses to natural hydrological regimes to determine how distinct ecohydrological mechanisms affect freshwater biodiversity at local, landscape and regional spatial scales. Hydrological connectivity influences local and landscape biodiversity, yet responses vary depending on spatial scale. Biodiversity at local scales is generally positively associated with increasing connectivity whereas landscape-scale biodiversity is greater with increasing fragmentation among locations. The effects of hydrological disturbance on freshwater biodiversity are variable at separate spatial scales and depend on disturbance frequency and history and organism characteristics. The role of hydrology in determining habitat for freshwater biodiversity also depends on spatial scaling. At local scales, persistence, stability and size of habitat each contribute to patterns of freshwater biodiversity yet the responses are variable across the organism groups that constitute overall freshwater biodiversity. We present a conceptual model to unite the effects of different ecohydrological mechanisms on freshwater biodiversity across spatial scales, and develop four principles for applying a multi-scaled understanding of

  15. Hydrologic vulnerability of tribal reservation lands across the U.S.

    NASA Astrophysics Data System (ADS)

    Jones, C., Jr.; Leibowitz, S. G.; Sawicz, K. A.; Comeleo, R. L.; Stratton, L. E.

    2017-12-01

    We apply the hydrologic landscapes (HL) concept to assess the hydrologic vulnerability to climate of the United States (U.S.) with special emphasis on tribal lands. The basic assumption of the HL approach is that catchments that share similar physical and climatic characteristics are expected to have similar hydrologic characteristics. We map climate vulnerability by integrating a retrospective analysis of historical climate and hydrology into the HL approach, comparing this baseline of variability with future projections of temperature, precipitation, potential evapotranspiration, snow accumulation, climatic moisture, surplus water, and seasonality of the water surplus. Projections that are not within two standard deviations of the historical decadal average contribute to the vulnerability index for each metric. This allows stakeholders and/or water resource managers to understand the potential impacts of future conditions. The resulting vulnerability maps show that temperature and potential evapotranspiration are consistently projected to have high vulnerability indices across the U.S. including all tribal reservations. Precipitation vulnerability is not as spatially-uniform as temperature. Most areas with snow are projected to experience significant changes in future snow accumulation. The seasonality vulnerability map shows that mountainous areas in the West are most prone to changes in seasonality. This paper illustrates how the HL approach can help assess climatic and hydrologic vulnerability for disadvantaged groups across the U.S. By combining the HL concept and climate vulnerability analyses, we provide an approach that can assist tribal resource managers to perform vulnerability assessments and adaptation plans, which is a major priority for the tribes nationwide.

  16. Tool use without a tool: kinematic characteristics of pantomiming as compared to actual use and the effect of brain damage.

    PubMed

    Hermsdörfer, Joachim; Li, Yong; Randerath, Jennifer; Goldenberg, Georg; Johannsen, Leif

    2012-04-01

    Movement goals and task mechanics differ substantially between actual tool use and corresponding pantomimes. In addition, apraxia seems to be more severe during pantomime than during actual tool use. Comparisons of these two modes of action execution using quantitative methods of movement analyses are rare. In the present study, repetitive scooping movements with a ladle from a bowl into a plate were recorded and movement kinematics was analyzed. Brain-damaged patients using their ipsilesional hand and healthy control subjects were tested in three conditions: pantomime, demonstration with the tool only, and actual use in the normal context. Analysis of the hand trajectories during the transport component revealed clear differences between the tasks, such as slower actual use and moderate deficits in patients with left brain damage (LBD). LBD patients were particularly impaired in the scooping component: LBD patients with apraxia exhibited reduced hand rotation at the bowl and the plate. The deficit was most obvious during pantomime but actual use was also affected, and reduced hand rotation was consistent across conditions as indicated by strong pair-wise correlations between task conditions. In healthy control subjects, correlations between movement parameters were most evident between the pantomime and demonstration conditions but weak in correlation pairs involving actual use. From these findings and published neuroimaging evidence, we conclude that for a specific tool-use action, common motor schemas are activated but are adjusted and modified according to the actual task constraints and demands. An apraxic LBD individual can show a deficit across all three action conditions, but the severity can differ substantially between conditions.

  17. Assessing climate change impact by integrated hydrological modelling

    NASA Astrophysics Data System (ADS)

    Lajer Hojberg, Anker; Jørgen Henriksen, Hans; Olsen, Martin; der Keur Peter, van; Seaby, Lauren Paige; Troldborg, Lars; Sonnenborg, Torben; Refsgaard, Jens Christian

    2013-04-01

    Future climate may have a profound effect on the freshwater cycle, which must be taken into consideration by water management for future planning. Developments in the future climate are nevertheless uncertain, thus adding to the challenge of managing an uncertain system. To support the water managers at various levels in Denmark, the national water resources model (DK-model) (Højberg et al., 2012; Stisen et al., 2012) was used to propagate future climate to hydrological response under considerations of the main sources of uncertainty. The DK-model is a physically based and fully distributed model constructed on the basis of the MIKE SHE/MIKE11 model system describing groundwater and surface water systems and the interaction between the domains. The model has been constructed for the entire 43.000 km2 land area of Denmark only excluding minor islands. Future climate from General Circulation Models (GCM) was downscaled by Regional Climate Models (RCM) by a distribution-based scaling method (Seaby et al., 2012). The same dataset was used to train all combinations of GCM-RCMs and they were found to represent the mean and variance at the seasonal basis equally well. Changes in hydrological response were computed by comparing the short term development from the period 1990 - 2010 to 2021 - 2050, which is the time span relevant for water management. To account for uncertainty in future climate predictions, hydrological response from the DK-model using nine combinations of GCMs and RCMs was analysed for two catchments representing the various hydrogeological conditions in Denmark. Three GCM-RCM combinations displaying high, mean and low future impacts were selected as representative climate models for which climate impact studies were carried out for the entire country. Parameter uncertainty was addressed by sensitivity analysis and was generally found to be of less importance compared to the uncertainty spanned by the GCM-RCM combinations. Analysis of the simulations

  18. Reference hydrologic networks II. Using reference hydrologic networks to assess climate-driven changes in streamflow

    USGS Publications Warehouse

    Burn, Donald H.; Hannaford, Jamie; Hodgkins, Glenn A.; Whitfield, Paul H.; Thorne, Robin; Marsh, Terry

    2012-01-01

    Reference hydrologic networks (RHNs) can play an important role in monitoring for changes in the hydrological regime related to climate variation and change. Currently, the literature concerning hydrological response to climate variations is complex and confounded by the combinations of many methods of analysis, wide variations in hydrology, and the inclusion of data series that include changes in land use, storage regulation and water use in addition to those of climate. Three case studies that illustrate a variety of approaches to the analysis of data from RHNs are presented and used, together with a summary of studies from the literature, to develop approaches for the investigation of changes in the hydrological regime at a continental or global scale, particularly for international comparison. We present recommendations for an analysis framework and the next steps to advance such an initiative. There is a particular focus on the desirability of establishing standardized procedures and methodologies for both the creation of new national RHNs and the systematic analysis of data derived from a collection of RHNs.

  19. How does modifying a DEM to reflect known hydrology affect subsequent terrain analysis?

    NASA Astrophysics Data System (ADS)

    Callow, John Nikolaus; Van Niel, Kimberly P.; Boggs, Guy S.

    2007-01-01

    SummaryMany digital elevation models (DEMs) have difficulty replicating hydrological patterns in flat landscapes. Efforts to improve DEM performance in replicating known hydrology have included a variety of soft (i.e. algorithm-based approaches) and hard techniques, such as " Stream burning" or "surface reconditioning" (e.g. Agree or ANUDEM). Using a representation of the known stream network, these methods trench or mathematically warp the original DEM to improve how accurately stream position, stream length and catchment boundaries replicate known hydrological conditions. However, these techniques permanently alter the DEM and may affect further analyses (e.g. slope). This paper explores the impact that commonly used hydrological correction methods ( Stream burning, Agree.aml and ANUDEM v4.6.3 and ANUDEM v5.1) have on the overall nature of a DEM, finding that different methods produce non-convergent outcomes for catchment parameters (such as catchment boundaries, stream position and length), and differentially compromise secondary terrain analysis. All hydrological correction methods successfully improved calculation of catchment area, stream position and length as compared to using the DEM without any modification, but they all increased catchment slope. No single method performing best across all categories. Different hydrological correction methods changed elevation and slope in different spatial patterns and magnitudes, compromising the ability to derive catchment parameters and conduct secondary terrain analysis from a single DEM. Modification of a DEM to better reflect known hydrology can be useful, however knowledge of the magnitude and spatial pattern of the changes are required before using a DEM for subsequent analyses.

  20. Impacts of anthropogenic activities on different hydrological drought characteristics

    NASA Astrophysics Data System (ADS)

    Tijdeman, Erik; Stahl, Kerstin; Bachmair, Sophie

    2015-04-01

    The natural hazard drought can have severe impacts on a variety of sectors and at a variety of scales. Droughts, here defined as below average water availability, occur everywhere. However, the impact of a drought event is not only influenced by its severity but also by the vulnerability of an area to droughts. Research in catchments with natural flow conditions is crucial to gain process understanding about hydrological droughts. However, the locations of catchments with natural flow are often not representative for regions with a socioeconomic sector that is highly vulnerable to droughts. In these more vulnerable areas, human activities like groundwater extraction can intensify hydrological droughts. On the other hand, human activities can also mitigate or limit the magnitude of drought events. The aim of this study is to assess the impact of different anthropogenic influences on streamflow droughts by comparing hydrological drought characteristics between catchments with natural streamflow and with regulated or otherwise altered streamflow. The study is based on a large set of streamflow records from catchments in Germany, the UK and the USA with either known anthropogenic influences or natural streamflow conditions. Different drought characteristics (duration, deficit, frequency and timing of drought events) are computed for the selected stations. The drought characteristics in catchments influenced by various anthropogenic activities are stratified by the characteristics of anthropogenic influence, but also by similar physical and climatological properties. These stratified groups are then compared to drought characteristics in natural catchments with similar properties. Results show both negative and positive impacts of different human activities on droughts. For example, urbanized areas with low flow regulations show hydrological droughts with shorter durations and lower deficit volumes compared to nearby natural catchments, while records downstream of

  1. Hydrologic processes in the pinyon-juniper woodlands: A literature review

    Treesearch

    Peter F. Ffolliott; Gerald J. Gottfried

    2012-01-01

    Hydrologic processes in the pinyon-juniper woodlands of the western region of the United States are variable because of the inherent interactions among the occurring precipitation regimes, geomorphological settings, and edaphic conditions that characterize the ecosystem. A wide range of past and present land-use practices further complicates comprehensive evaluations...

  2. Assessing cover crop management under actual and climate change conditions.

    PubMed

    Alonso-Ayuso, María; Quemada, Miguel; Vanclooster, Marnik; Ruiz-Ramos, Margarita; Rodriguez, Alfredo; Gabriel, José Luis

    2018-04-15

    The termination date is recognized as a key management factor to enhance cover crops for multiple benefits and to avoid competition with the following cash crop. However, the optimum date depends on annual meteorological conditions, and climate variability induces uncertainty in a decision that needs to be taken every year. One of the most important cover crop benefits is reducing nitrate leaching, a major concern for irrigated agricultural systems and highly affected by the termination date. This study aimed to determine the effects of cover crops and their termination date on the water and N balances of an irrigated Mediterranean agroecosystem under present and future climate conditions. For that purpose, two field experiments were used for inverse calibration and validation of the WAVE model (Water and Agrochemicals in the soil and Vadose Environment), based on continuous soil water content data, soil nitrogen content and crop measurements. The calibrated and validated model was subsequently used in advanced scenario analysis under present and climate change conditions. Under present conditions, a late termination date increased cover crop biomass and subsequently soil water and N depletion. Hence, preemptive competition risk with the main crop was enhanced, but a reduction of nitrate leaching also occurred. The hypothetical planting date of the following cash crop was also an important tool to reduce preemptive competition. Under climate change conditions, the simulations showed that the termination date will be even more important to reduce preemptive competition and nitrate leaching. Copyright © 2017 The Author(s). Published by Elsevier B.V. All rights reserved.

  3. Change in frozen soils and its effect on regional hydrology, upper Heihe basin, northeastern Qinghai-Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Gao, Bing; Yang, Dawen; Qin, Yue; Wang, Yuhan; Li, Hongyi; Zhang, Yanlin; Zhang, Tingjun

    2018-02-01

    Frozen ground has an important role in regional hydrological cycles and ecosystems, particularly on the Qinghai-Tibetan Plateau (QTP), which is characterized by high elevations and a dry climate. This study modified a distributed, physically based hydrological model and applied it to simulate long-term (1971-2013) changes in frozen ground its the effects on hydrology in the upper Heihe basin, northeastern QTP. The model was validated against data obtained from multiple ground-based observations. Based on model simulations, we analyzed spatio-temporal changes in frozen soils and their effects on hydrology. Our results show that the area with permafrost shrank by 8.8 % (approximately 500 km2), predominantly in areas with elevations between 3500 and 3900 m. The maximum depth of seasonally frozen ground decreased at a rate of approximately 0.032 m decade-1, and the active layer thickness over the permafrost increased by approximately 0.043 m decade-1. Runoff increased significantly during the cold season (November-March) due to an increase in liquid soil moisture caused by rising soil temperatures. Areas in which permafrost changed into seasonally frozen ground at high elevations showed especially large increases in runoff. Annual runoff increased due to increased precipitation, the base flow increased due to changes in frozen soils, and the actual evapotranspiration increased significantly due to increased precipitation and soil warming. The groundwater storage showed an increasing trend, indicating that a reduction in permafrost extent enhanced the groundwater recharge.

  4. Phytoplankton characteristics and hydrological conditions in the western part of the Sea of Okhotsk in the spring of 1999 and 2000 based on expeditionary and satellite data

    NASA Astrophysics Data System (ADS)

    Zakharkov, S. P.; Selina, M. S.; Vanin, N. S.; Shtraikhert, E. A.; Biebov, N.

    2007-08-01

    Using the data obtained in 1999 2000 during the spring bloom of phytoplankton (late May early June), the variability of the pigment concentrations, the phytoplankton biomass and species compositions, and the hydrological conditions on the eastern shelf of Sakhalin Island was studied. The study resulted in revealing 135 microalgae species belonging to eight divisions. The most diversely presented were the Dinophyta dinoflagellates and Bacillariophyta diatoms (70 and 53 species, respectively). The concentration of chlorophyll a in the euphotic zone amounted, on average, to 3.8 mg/m3 in 1999 and 2.4 mg/m3 in 2000. It was shown that, in the northern and southern parts of the coastal zone, the concentration of chlorophyll a and the phytoplankton density in the spring were considerably different and depended on the hydrological conditions. In the north, their maximum values were found in the area of the depth break and were determined by the tidal mixing. The increased algae concentrations and temperature inversions at depths of 400 600 m confirm the downslope sliding of the near-bottom shelf waters. In the southern part, the high phytoplankton concentrations in the surface layer in 1999 confirmed by the monthly averaged estimates from the SeaWiFS satellite color scanner were caused by the abnormal northward propagation of the Soya Current waters and by intense tidal mixing.

  5. Snow multivariable data assimilation for hydrological predictions in Alpine sites

    NASA Astrophysics Data System (ADS)

    Piazzi, Gaia; Thirel, Guillaume; Campo, Lorenzo; Gabellani, Simone; Stevenin, Hervè

    2017-04-01

    Snowpack dynamics (snow accumulation and ablation) strongly impacts on hydrological processes in Alpine areas. During the winter season the presence of snow cover (snow accumulation) reduces the drainage in the basin with a resulting lower watershed time of concentration in case of possible rainfall events. Moreover, the release of the significant water volume stored in winter (snowmelt) considerably contributes to the total discharge during the melting period. Therefore when modeling hydrological processes in snow-dominated catchments the quality of predictions deeply depends on how the model succeeds in catching snowpack dynamics. The integration of a hydrological model with a snow module allows improving predictions of river discharges. Besides the well-known modeling limitations (uncertainty in parameterizations; possible errors affecting both meteorological forcing data and initial conditions; approximations in boundary conditions), there are physical factors that make an exhaustive reconstruction of snow dynamics complicated: snow intermittence in space and time, stratification and slow phenomena like metamorphism processes, uncertainty in snowfall evaluation, wind transportation, etc. Data Assimilation (DA) techniques provide an objective methodology to combine several independent snow-related data sources (model simulations, ground-based measurements and remote sensed observations) in order to obtain the most likely estimate of snowpack state. This study presents SMASH (Snow Multidata Assimilation System for Hydrology), a multi-layer snow dynamic model strengthened by a multivariable DA framework for hydrological purposes. The model is physically based on mass and energy balances and can be used to reproduce the main physical processes occurring within the snowpack: accumulation, density dynamics, melting, sublimation, radiative balance, heat and mass exchanges. The model is driven by observed forcing meteorological data (air temperature, wind velocity

  6. Modeling Hydrological Processes in New Mexico-Texas-Mexico Border Region

    NASA Astrophysics Data System (ADS)

    Samimi, M.; Jahan, N. T.; Mirchi, A.

    2017-12-01

    Efficient allocation of limited water resources to competing use sectors is becoming increasingly critical for water-scarce regions. Understanding natural and anthropogenic processes affecting hydrological processes is key for efficient water management. We used Soil and Water Assessment Tool (SWAT) to model governing hydrologic processes in New Mexico-Texas-Mexico border region. Our study area includes the Elephant Butte Irrigation District (EBID), which manages water resources to support irrigated agriculture. The region is facing water resources challenges associated with chronic water scarcity, over-allocation, diminishing water supply, and growing water demand. Agricultural activities rely on conjunctive use of Rio Grande River water supply and groundwater withdrawal. The model is calibrated and validated under baseline conditions in the arid and semi-arid climate in order to evaluate potential impacts of climate change on the agricultural sector and regional water availability. We highlight the importance of calibrating the crop growth parameters, evapotranspiration, and groundwater recharge to provide a realistic representation of the hydrological processes and water availability in the region. Furthermore, limitations of the model and its utility to inform stakeholders will be discussed.

  7. [Correlation coefficient-based principle and method for the classification of jump degree in hydrological time series].

    PubMed

    Wu, Zi Yi; Xie, Ping; Sang, Yan Fang; Gu, Hai Ting

    2018-04-01

    The phenomenon of jump is one of the importantly external forms of hydrological variabi-lity under environmental changes, representing the adaption of hydrological nonlinear systems to the influence of external disturbances. Presently, the related studies mainly focus on the methods for identifying the jump positions and jump times in hydrological time series. In contrast, few studies have focused on the quantitative description and classification of jump degree in hydrological time series, which make it difficult to understand the environmental changes and evaluate its potential impacts. Here, we proposed a theatrically reliable and easy-to-apply method for the classification of jump degree in hydrological time series, using the correlation coefficient as a basic index. The statistical tests verified the accuracy, reasonability, and applicability of this method. The relationship between the correlation coefficient and the jump degree of series were described using mathematical equation by derivation. After that, several thresholds of correlation coefficients under different statistical significance levels were chosen, based on which the jump degree could be classified into five levels: no, weak, moderate, strong and very strong. Finally, our method was applied to five diffe-rent observed hydrological time series, with diverse geographic and hydrological conditions in China. The results of the classification of jump degrees in those series were closely accorded with their physically hydrological mechanisms, indicating the practicability of our method.

  8. Multiple effects of hydrological connectivity on floodplain processes in human modified river systems

    NASA Astrophysics Data System (ADS)

    Hein, Thomas; Bondar-Kunze, Elisabeth; Preiner, Stefan; Reckendorfer, Walter; Tritthart, Michael; Weigelhofer, Gabriele; Welti, Nina

    2014-05-01

    Floodplain and riparian ecosystems provide multiple functions and services of importance for human well-being and are of strategic importance for different sectors at catchment scale. Especially floodplains in the vicinity of urban areas can be areas of conflicting interests ranging from different land use types, flood water retention, drinking water production and recreation to conservation of last remnants of former riverine landscape, as it is the case in floodplains in the Danube Nationalpark downstream Vienna. Many of these ecosystem functions and services are controlled by the exchange conditions between river main channel and floodplain systems, the hydrological connectivity. At the same time these systems have been highly altered and especially the connectivity has been severely impaired. Thus, far ranging effects of changes in hydrological connectivity at various levels can be expected in altered floodplain systems. The aim of this presentation is to explore the complex control of different ecosystem functions and associated services by different parameters of hydrological connectivity, ranging from nutrient, sediment and matter dynamics and biodiversity aspects. Increasing connectivity will be shown to impact microbial dynamics, sediment-water interactions, carbon dynamics and trophic conditions, thus affecting the fundamental functions of particular floodplain systems at various spatial and temporal scales. Based on these changes also the provision of ecosystem services of floodplains is affected. The results clearly show that hydrological connectivity needs to be considered in a sustainable management approach.

  9. Comparison of Two Conceptually Different Physically-based Hydrological Models - Looking Beyond Streamflows

    NASA Astrophysics Data System (ADS)

    Rousseau, A. N.; Álvarez; Yu, X.; Savary, S.; Duffy, C.

    2015-12-01

    Most physically-based hydrological models simulate to various extents the relevant watershed processes occurring at different spatiotemporal scales. These models use different physical domain representations (e.g., hydrological response units, discretized control volumes) and numerical solution techniques (e.g., finite difference method, finite element method) as well as a variety of approximations for representing the physical processes. Despite the fact that several models have been developed so far, very few inter-comparison studies have been conducted to check beyond streamflows whether different modeling approaches could simulate in a similar fashion the other processes at the watershed scale. In this study, PIHM (Qu and Duffy, 2007), a fully coupled, distributed model, and HYDROTEL (Fortin et al., 2001; Turcotte et al., 2003, 2007), a pseudo-coupled, semi-distributed model, were compared to check whether the models could corroborate observed streamflows while equally representing other processes as well such as evapotranspiration, snow accumulation/melt or infiltration, etc. For this study, the Young Womans Creek watershed, PA, was used to compare: streamflows (channel routing), actual evapotranspiration, snow water equivalent (snow accumulation and melt), infiltration, recharge, shallow water depth above the soil surface (surface flow), lateral flow into the river (surface and subsurface flow) and height of the saturated soil column (subsurface flow). Despite a lack of observed data for contrasting most of the simulated processes, it can be said that the two models can be used as simulation tools for streamflows, actual evapotranspiration, infiltration, lateral flows into the river, and height of the saturated soil column. However, each process presents particular differences as a result of the physical parameters and the modeling approaches used by each model. Potentially, these differences should be object of further analyses to definitively confirm or

  10. Hydrologic classification of rivers based on cluster analysis of dimensionless hydrologic signatures: Applications for environmental instream flows

    NASA Astrophysics Data System (ADS)

    Praskievicz, S. J.; Luo, C.

    2017-12-01

    Classification of rivers is useful for a variety of purposes, such as generating and testing hypotheses about watershed controls on hydrology, predicting hydrologic variables for ungaged rivers, and setting goals for river management. In this research, we present a bottom-up (based on machine learning) river classification designed to investigate the underlying physical processes governing rivers' hydrologic regimes. The classification was developed for the entire state of Alabama, based on 248 United States Geological Survey (USGS) stream gages that met criteria for length and completeness of records. Five dimensionless hydrologic signatures were derived for each gage: slope of the flow duration curve (indicator of flow variability), baseflow index (ratio of baseflow to average streamflow), rising limb density (number of rising limbs per unit time), runoff ratio (ratio of long-term average streamflow to long-term average precipitation), and streamflow elasticity (sensitivity of streamflow to precipitation). We used a Bayesian clustering algorithm to classify the gages, based on the five hydrologic signatures, into distinct hydrologic regimes. We then used classification and regression trees (CART) to predict each gaged river's membership in different hydrologic regimes based on climatic and watershed variables. Using existing geospatial data, we applied the CART analysis to classify ungaged streams in Alabama, with the National Hydrography Dataset Plus (NHDPlus) catchment (average area 3 km2) as the unit of classification. The results of the classification can be used for meeting management and conservation objectives in Alabama, such as developing statewide standards for environmental instream flows. Such hydrologic classification approaches are promising for contributing to process-based understanding of river systems.

  11. Drinking water systems, hydrology, and childhood gastrointestinal illness in Central and Northern Wisconsin.

    PubMed

    Uejio, Christopher K; Yale, Steven H; Malecki, Kristen; Borchardt, Mark A; Anderson, Henry A; Patz, Jonathan A

    2014-04-01

    This study investigated if the type of drinking water source (treated municipal, untreated municipal, and private well water) modifies the effect of hydrology on childhood (aged < 5 years) gastrointestinal illness. We conducted a time series study to assess the relationship between hydrologic and weather conditions with childhood gastrointestinal illness from 1991 to 2010. The Central and Northern Wisconsin study area includes households using all 3 types of drinking water systems. Separate time series models were created for each system and half-year period (winter/spring, summer/fall). More precipitation (summer/fall) systematically increased childhood gastrointestinal illness in municipalities accessing untreated water. The relative risk of contracting gastrointestinal illness was 1.4 in weeks with 3 centimeters of precipitation and 2.4 in very wet weeks with 12 centimeters of precipitation. By contrast, gastrointestinal illness in private well and treated municipal areas was not influenced by hydrologic conditions, although warmer winter temperatures slightly increased incidence. Our study suggests that improved drinking water protection, treatment, and delivery infrastructure may improve public health by specifically identifying municipal water systems lacking water treatment that may transmit waterborne disease.

  12. Drinking Water Systems, Hydrology, and Childhood Gastrointestinal Illness in Central and Northern Wisconsin

    PubMed Central

    Uejio, Christopher K.; Yale, Steven H.; Malecki, Kristen; Borchardt, Mark A.; Anderson, Henry A.; Patz, Jonathan A.

    2014-01-01

    Objectives. This study investigated if the type of drinking water source (treated municipal, untreated municipal, and private well water) modifies the effect of hydrology on childhood (aged < 5 years) gastrointestinal illness. Methods. We conducted a time series study to assess the relationship between hydrologic and weather conditions with childhood gastrointestinal illness from 1991 to 2010. The Central and Northern Wisconsin study area includes households using all 3 types of drinking water systems. Separate time series models were created for each system and half-year period (winter/spring, summer/fall). Results. More precipitation (summer/fall) systematically increased childhood gastrointestinal illness in municipalities accessing untreated water. The relative risk of contracting gastrointestinal illness was 1.4 in weeks with 3 centimeters of precipitation and 2.4 in very wet weeks with 12 centimeters of precipitation. By contrast, gastrointestinal illness in private well and treated municipal areas was not influenced by hydrologic conditions, although warmer winter temperatures slightly increased incidence. Conclusions. Our study suggests that improved drinking water protection, treatment, and delivery infrastructure may improve public health by specifically identifying municipal water systems lacking water treatment that may transmit waterborne disease. PMID:24524509

  13. Understanding the Dynamics of Socio-Hydrological Environment: a Conceptual Framework

    NASA Astrophysics Data System (ADS)

    Woyessa, Y.; Welderufael, W.; Edossa, D.

    2011-12-01

    Human actions affect ecological systems and the services they provide through various activities, such as land use, water use, pollution and climate change. Climate change is perhaps one of the most important sustainable development challenges that threaten to undo many of the development efforts being made to reach the targets set for the Millennium Development Goals. Understanding the change of ecosystems under different scenarios of climate and biophysical conditions could assist in bringing the issue of ecosystem services into decision making process. Similarly, the impacts of land use change on ecosystems and biodiversity have received considerable attention from ecologists and hydrologists alike. Land use change in a catchment can impact on water supply by altering hydrological processes, such as infiltration, groundwater recharge, base flow and direct runoff. In the past a variety of models were used for predicting land-use changes. Recently the focus has shifted away from using mathematically oriented models to agent-based modelling (ABM) approach to simulate land use scenarios. A conceptual framework is being developed which integrates climate change scenarios and the human dimension of land use decision into a hydrological model in order to assess its impacts on the socio-hydrological dynamics of a river basin. The following figures present the framework for the analysis and modelling of the socio-hydrological dynamics. Keywords: climate change, land use, river basin

  14. Hydrologic monitoring and analysis in the Sundarbans mangrove ecosystem, Bangladesh

    NASA Astrophysics Data System (ADS)

    Wahid, Shahriar Md.; Babel, Mukand S.; Bhuiyan, Abdur Rahman

    2007-01-01

    SummaryThe unique habitat of the Sundarbans mangrove ecosystem is dependent upon the hydrological regime. Therefore, a comprehensive study to understand the hydrologic behaviour and the changes that have taken place due to anthropogenic activities in and around the area is fundamental to the management of natural resources and environment. In the past, ad hoc and uncoordinated efforts were made due to the inherent inaccessibility and high cost of data collection. The present article documents the results of the hydrologic monitoring, modelling and analysis in the Sundarbans. The study results show that the annual maximum tidal range has increased by about 0.75 m in the eastern and central parts during the last two decades. About 60% area remains in higher salinity condition (>20 ppt) for at least 1.5 months in a year. Organic pollution in the waterways is within the Environmental Quality Standard (EQS) of Bangladesh with the average Dissolved Oxygen (DO) of 5.99 mg/L. Total Ammonia, Nitrate (NO 3-N) and Phosphate (PO 4-P) level are present in sufficient quantity for the aquatic life to survive and are within EQS limit. Lead and Chromium occasionally exceed EQS limit especially along the large barge routes in the western part. The data and information presented in the paper will serve as a baseline for future hydrological and environmental studies.

  15. Development of Representative Rainfall Periods for Green Infrastructure Design: Connecting the Dots Between Climate, Urban Hydrology and Resilience

    NASA Astrophysics Data System (ADS)

    Albright, C. M.; Traver, R.; Wadzuk, B.

    2017-12-01

    Analysis of local-to-regional climate data is critical in understanding how changing patterns in rainfall and other atmospheric conditions can affect urban hydrology. Urbanization has caused hydrologic and ecologic modifications to our land surfaces, and altered the dynamics of urban water cycle in complex ways. Green infrastructure (GI) systems, in their simplest form, reduce runoff and flooding, prevent combined sewer overflows and improve quality of receiving waters. However, when viewed through a more holistic lens, GI systems sit at the nexus of hydrology, climate and energy, yet are rarely designed to account for the impacts of these intersections. We must assess urban hydrologic systems beyond their response to a single event or design storm, incorporating multiple temporal scales and all hydrologic processes. This is of utmost importance to design and characterization of urban GI systems because the resilience of these systems will be dictated by their ability to adapt to future behavior of extreme weather patterns and climate. In this study, we characterize long-term hydrologic conditions in Philadelphia to identify periods of record that are most representative of regional climate characteristics, including a representative rainfall year and longer representative periods. Utility of these datasets will be demonstrated by showing that GI systems are able to sustain effective performance for most expected annual precipitation events. Connections between atmospheric (precipitation and temperature) patterns, GI systems and potential removal mechanisms in the urban hydrologic cycle will be presented for Philadelphia and cities with similar climate characteristics. Establishing such connections is critically needed to not only validate what is already known about urban GI, but more importantly, to advance theory and practice by linking the hydrologic benefits of urban GI to broader concepts such as risk, mitigation of extreme events and sustainable communities.

  16. Dams on Mekong tributaries as significant contributors of hydrological alterations to the Tonle Sap Floodplain in Cambodia

    NASA Astrophysics Data System (ADS)

    Arias, M. E.; Piman, T.; Lauri, H.; Cochrane, T. A.; Kummu, M.

    2014-02-01

    River tributaries have a key role in the biophysical functioning of the Mekong Basin. Of particular attention are the Sesan, Srepok, and Sekong (3S) rivers, which contribute nearly a quarter of the total Mekong discharge. Forty two dams are proposed in the 3S, and once completed they will exceed the active storage of China's large dam cascade in the upper Mekong. Given their proximity to the lower Mekong floodplains, the 3S dams could alter the flood-pulse hydrology driving the productivity of downstream ecosystems. Therefore, the main objective of this study was to quantify how hydropower development in the 3S would alter the hydrology of the Tonle Sap floodplain, the largest wetland in the Mekong and home to one of the most productive inland fisheries in the world. We coupled results from four numerical models representing the basin's surface hydrology, water resources development, and floodplain hydrodynamics. The scale of alterations caused by hydropower in the 3S was compared with the basin's definite future development scenario (DF) driven by the upper Mekong dam cascade. The DF or the 3S development scenarios could independently increase Tonle Sap's 30 day minimum water levels by 30 ± 5 cm and decrease annual water level fall rates by 0.30 ± 0.05 cm d-2. When analyzed together (DF + 3S), these scenarios are likely to eliminate all baseline conditions (1986-2000) of extreme low water levels, a particularly important component of Tonle Sap's environmental flows. Given the ongoing trends and large economic incentives in the hydropower business in the region, there is a high possibility that most of the 3S hydropower potential will actually be exploited and that dams would be built even in locations where there is a high risk of ecological disruptions. Hence, retrofitting current designs and operations to promote sustainable hydropower practices that optimize multiple river services - rather than just maximize hydropower generation - appear to be the most

  17. WaterWatch - Maps, graphs, and tables of current, recent, and past streamflow conditions

    USGS Publications Warehouse

    Jian, Xiaodong; Wolock, David; Lins, Harry F.

    2008-01-01

    WaterWatch (http://water.usgs.gov/waterwatch/) is a U.S. Geological Survey (USGS) World Wide Web site that dis­plays maps, graphs, and tables describing real-time, recent, and past streamflow conditions for the United States. The real-time information generally is updated on an hourly basis. WaterWatch provides streamgage-based maps that show the location of more than 3,000 long-term (30 years or more) USGS streamgages; use colors to represent streamflow conditions compared to historical streamflow; feature a point-and-click interface allowing users to retrieve graphs of stream stage (water elevation) and flow; and highlight locations where extreme hydrologic events, such as floods and droughts, are occurring.The streamgage-based maps show streamflow conditions for real-time, average daily, and 7-day average streamflow. The real-time streamflow maps highlight flood and high flow conditions. The 7-day average streamflow maps highlight below-normal and drought conditions.WaterWatch also provides hydrologic unit code (HUC) maps. HUC-based maps are derived from the streamgage-based maps and illustrate streamflow conditions in hydrologic regions. These maps show average streamflow conditions for 1-, 7-, 14-, and 28-day periods, and for monthly average streamflow; highlight regions of low flow or hydrologic drought; and provide historical runoff and streamflow conditions beginning in 1901.WaterWatch summarizes streamflow conditions in a region (state or hydrologic unit) in terms of the long-term typical condition at streamgages in the region. Summary tables are provided along with time-series plots that depict variations through time. WaterWatch also includes tables of current streamflow information and locations of flooding.

  18. A hybrid hydrologically complemented warning model for shallow landslides induced by extreme rainfall in Korean Mountain

    NASA Astrophysics Data System (ADS)

    Singh Pradhan, Ananta Man; Kang, Hyo-Sub; Kim, Yun-Tae

    2016-04-01

    This study uses a physically based approach to evaluate the factor of safety of the hillslope for different hydrological conditions, in Mt Umyeon, south of Seoul. The hydrological conditions were determined using intensity and duration of whole Korea of known landslide inventory data. Quantile regression statistical method was used to ascertain different probability warning levels on the basis of rainfall thresholds. Physically based models are easily interpreted and have high predictive capabilities but rely on spatially explicit and accurate parameterization, which is commonly not possible. Statistical probabilistic methods can include other causative factors which influence the slope stability such as forest, soil and geology, but rely on good landslide inventories of the site. In this study a hybrid approach has described that combines the physically-based landslide susceptibility for different hydrological conditions. A presence-only based maximum entropy model was used to hybrid and analyze relation of landslide with conditioning factors. About 80% of the landslides were listed among the unstable sites identified in the proposed model, thereby presenting its effectiveness and accuracy in determining unstable areas and areas that require evacuation. These cumulative rainfall thresholds provide a valuable reference to guide disaster prevention authorities in the issuance of warning levels with the ability to reduce losses and save lives.

  19. Climatic and hydrologic influences on wading bird foraging patterns in Everglades National Park

    NASA Astrophysics Data System (ADS)

    Kwon, H.; Lall, U.; Engel, V.

    2007-12-01

    A goal of the Everglades National Park (ENP) restoration project is to ensure that the ecological health of the ENP improves as a direct result of management activities. Achieving hydrologic targets through the proper timing and amount of releases from control structures is a first step in the management process. Significant climate and weather variations in the region influence the ability to make releases and also determine the ecological outcomes. An assessment of the relative impact of climate variations and water releases to ENP in determining ecological outcomes is consequently a key to the evaluation of the success or failure of any restoration plan. Seasonal water depths in ENP depend on managed surface water releases from control structures and on direct rainfall. Here we link wading bird foraging patterns - a fundamental aspect of Everglades' ecology - to hydrologic management and climate variability in the National Park. Our objective is multifold. First, we relate the water levels at P33 and Shark Slough to the synoptic hydrologic conditions. Second, we develop a statistical model relating water levels at a station in central Shark Slough (P33) to wading birds foraging patterns throughout ENP. We attempt to apply a Hierarchical Bayesian scheme to a time series of wading bird to provide an uncertainty distribution of the population over specified time periods given hydrologic condition. Third, we develop a set of hydrologic index derived by recorded water level at P33 for a use of the statistical model of wading birds as an input. Our study will focus on great egret and white ibis that are major species among wading birds in the ENP. The great egret and white ibis prediction predicted by the model using the proposed predictors exhibits strong correlation with the observed streamflow, with an correlation 0.8.

  20. Modelling past hydrology of an interfluve area in the Campine region (NE Belgium)

    NASA Astrophysics Data System (ADS)

    Leterme, Bertrand; Beerten, Koen; Gedeon, Matej; Vandersteen, Katrijn

    2015-04-01

    This study aims at hydrological model verification of a small lowland interfluve area (18.6 km²) in NE Belgium, for conditions that are different than today. We compare the current state with five reference periods in the past (AD 1500, 1770, 1854, 1909 and 1961) representing important stages of landscape evolution in the study area. Historical information and proxy data are used to derive conceptual model features and boundary conditions specific to each period: topography, surface water geometry (canal, drains and lakes), land use, soils, vegetation and climate. The influence of landscape evolution on the hydrological cycle is assessed using numerical simulations of a coupled unsaturated zone - groundwater model (HYDRUS-MODFLOW). The induced hydrological changes are assessed in terms of groundwater level, recharge, evapotranspiration, and surface water discharge. HYDRUS-MODFLOW coupling allows including important processes such as the groundwater contribution to evapotranspiration. Major land use change occurred between AD 1854 and 1909, with about 41% of the study area being converted from heath to coniferous forest, together with the development of a drainage network. Results show that this led to a significant decrease of groundwater recharge and lowering of the groundwater table. A limitation of the study lies in the comparison of simulated past hydrology with appropriate palaeo-records. Examples are given as how some indicators (groundwater head, swamp zones) can be used to tend to model validation. Quantifying the relative impact of land use and climate changes requires running sensitivity simulations where the models using alternative land use are run with the climate forcing of other periods. A few examples of such sensitivity runs are presented in order to compare the influence of land use and climate change on the study area hydrology.

  1. Toward Global Real Time Hydrologic Modeling - An "Open" View From the Trenches

    NASA Astrophysics Data System (ADS)

    Nelson, J.

    2015-12-01

    Big Data has become a popular term to describe the exponential growth of data and related cyber infrastructure to process it so that better analysis can be performed and lead to improved decision-making. How are we doing in the hydrologic sciences? As part of a significant collaborative effort that brought together scientists from public, private, and academic organizations a new transformative hydrologic forecasting modeling infrastructure has been developed. How was it possible to go from deterministic hydrologic forecasts largely driven through manual interactions at 3600 stations to automated 15-day ensemble forecasts at 2.67 million stations? Earth observations of precipitation, temperature, moisture, and other atmospheric and land surface conditions form the foundation of global hydrologic forecasts, but this project demonstrates a critical component to harness these resources can be summed up in one word: OPEN. Whether it is open data sources, open software solutions with open standards, or just being open to collaborations and building teams across institutions, disciplines, and international boundaries, time and time again through my involvement in the development of a high-resolution real time global hydrologic forecasting model I have discovered that in every aspect the sum has always been greater than the parts. While much has been accomplished, much more remains to be done, but the most important lesson learned has been to the degree that we can remain open and work together, the greater our ability will be to use big data hydrologic modeling resources to solve the world's most vexing water related challenges. This presentation will demonstrate a transformational global real time hydrologic forecasting application based on downscaled ECMWF ensemble forecasts, RAPID routing, and Tethys Platform for cloud computing and visualization with discussions of the human and cyber infrastructure connections that make it successful and needs moving forward.

  2. Integrating satellite actual evapotranspiration patterns into distributed model parametrization and evaluation for a mesoscale catchment

    NASA Astrophysics Data System (ADS)

    Demirel, M. C.; Mai, J.; Stisen, S.; Mendiguren González, G.; Koch, J.; Samaniego, L. E.

    2016-12-01

    Distributed hydrologic models are traditionally calibrated and evaluated against observations of streamflow. Spatially distributed remote sensing observations offer a great opportunity to enhance spatial model calibration schemes. For that it is important to identify the model parameters that can change spatial patterns before the satellite based hydrologic model calibration. Our study is based on two main pillars: first we use spatial sensitivity analysis to identify the key parameters controlling the spatial distribution of actual evapotranspiration (AET). Second, we investigate the potential benefits of incorporating spatial patterns from MODIS data to calibrate the mesoscale Hydrologic Model (mHM). This distributed model is selected as it allows for a change in the spatial distribution of key soil parameters through the calibration of pedo-transfer function parameters and includes options for using fully distributed daily Leaf Area Index (LAI) directly as input. In addition the simulated AET can be estimated at the spatial resolution suitable for comparison to the spatial patterns observed using MODIS data. We introduce a new dynamic scaling function employing remotely sensed vegetation to downscale coarse reference evapotranspiration. In total, 17 parameters of 47 mHM parameters are identified using both sequential screening and Latin hypercube one-at-a-time sampling methods. The spatial patterns are found to be sensitive to the vegetation parameters whereas streamflow dynamics are sensitive to the PTF parameters. The results of multi-objective model calibration show that calibration of mHM against observed streamflow does not reduce the spatial errors in AET while they improve only the streamflow simulations. We will further examine the results of model calibration using only multi spatial objective functions measuring the association between observed AET and simulated AET maps and another case including spatial and streamflow metrics together.

  3. Hydrological Drought in the Anthropocene: Impacts of Local Water Extraction and Reservoir Regulation in the U.S.: Hydrological Drought in the Anthropocene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wan, Wenhua; Zhao, Jianshi; Li, Hong-Yi

    Hydrological drought is a substantial negative deviation from normal hydrologic conditions and is influenced by climate and human activities such as water management. By perturbing the streamflow regime, climate change and water management may significantly alter drought characteristics in the future. Here we utilize a high-resolution integrated modeling framework that represents water management in terms of both local surface water extraction and reservoir regulation, and use the Standardized Streamflow Index (SSI) to quantify hydrological drought. We explore the impacts of water management on hydrological drought over the contiguous US in a warming climate with and without emissions mitigation. Despite themore » uncertainty of climate change impacts, local surface water extraction consistently intensifies drought that dominates at the regional to national scale. However, reservoir regulation alleviates drought by enhancing summer flow downstream of reservoirs. The relative dominance of drought intensification or relief is largely determined by the water demand, with drought intensification dominating in regions with intense water demand such as the Great Plains and California, while drought relief dominates in regions with low water demand. At the national level, water management increases the spatial extent of extreme drought despite some alleviations of moderate to severe drought. In an emissions mitigation scenario with increased irrigation demand for bioenergy production, water management intensifies drought more than the business-as-usual scenario at the national level, so the impacts of emissions mitigation must be evaluated by considering its benefit in reducing warming and evapotranspiration against its effects on increasing water demand and intensifying drought.« less

  4. Comparative analysis of operational forecasts versus actual weather conditions in airline flight planning, volume 2

    NASA Technical Reports Server (NTRS)

    Keitz, J. F.

    1982-01-01

    The impact of more timely and accurate weather data on airline flight planning with the emphasis on fuel savings is studied. This volume of the report discusses the results of Task 2 of the four major tasks included in the study. Task 2 compares various catagories of flight plans and flight tracking data produced by a simulation system developed for the Federal Aviation Administrations by SRI International. (Flight tracking data simulate actual flight tracks of all aircraft operating at a given time and provide for rerouting of flights as necessary to resolve traffic conflicts.) The comparisons of flight plans on the forecast to flight plans on the verifying analysis confirm Task 1 findings that wind speeds are generally underestimated. Comparisons involving flight tracking data indicate that actual fuel burn is always higher than planned, in either direction, and even when the same weather data set is used. Since the flight tracking model output results in more diversions than is known to be the case, it was concluded that there is an error in the flight tracking algorithm.

  5. Landscape factors and hydrology influence mercury concentrations in wading birds breeding in the Florida Everglades, USA.

    PubMed

    Herring, Garth; Eagles-Smith, Collin A; Ackerman, Joshua T; Gawlik, Dale E; Beerens, James M

    2013-08-01

    The hydrology of wetland ecosystems is a key driver of both mercury (Hg) methylation and waterbird foraging ecology, and hence may play a fundamental role in waterbird exposure and risk to Hg contamination. However, few studies have investigated hydrological factors that influence waterbird Hg exposure. We examined how several landscape-level hydrological variables influenced Hg concentrations in great egret and white ibis adults and chicks in the Florida Everglades. The great egret is a visual "exploiter" species that tolerates lower prey densities and is less sensitive to hydrological conditions than is the white ibis, which is a tactile "searcher" species that pursues higher prey densities in shallow water. Mercury concentrations in adult great egrets were most influenced by the spatial region that they occupied in the Everglades (higher in the southern region); whereas the number of days a site was dry during the previous dry season was the most important factor influencing Hg concentrations in adult ibis (Hg concentrations increased with the number of days dry). In contrast, Hg concentrations in egret chicks were most influenced by calendar date (increasing with date), whereas Hg concentrations in ibis chicks were most influenced by chick age, region, and water recession rate (Hg concentrations decreased with age, were higher in the southern regions, and increased with positive water recession rates). Our results indicate that both recent (preceding two weeks) hydrological conditions, and those of the prior year, influence Hg concentrations in wading birds. Further, these results suggest that Hg exposure in wading birds is driven by complex relationships between wading bird behavior and life stage, landscape hydrologic patterns, and biogeochemical processes. Published by Elsevier B.V.

  6. Landscape factors and hydrology influence mercury concentrations in wading birds breeding in the Florida Everglades, USA

    USGS Publications Warehouse

    Herring, Garth; Eagles-Smith, Collin A.; Ackerman, Joshua T.; Gawlik, Dale E.; Beerens, James M.

    2013-01-01

    The hydrology of wetland ecosystems is a key driver of both mercury (Hg) methylation and waterbird foraging ecology, and hence may play a fundamental role in waterbird exposure and risk to Hg contamination. However, few studies have investigated hydrological factors that influence waterbird Hg exposure. We examined how several landscape-level hydrological variables influenced Hg concentrations in great egret and white ibis adults and chicks in the Florida Everglades. The great egret is a visual “exploiter” species that tolerates lower prey densities and is less sensitive to hydrological conditions than is the white ibis, which is a tactile “searcher” species that pursues higher prey densities in shallow water. Mercury concentrations in adult great egrets were most influenced by the spatial region that they occupied in the Everglades (higher in the southern region); whereas the number of days a site was dry during the previous dry season was the most important factor influencing Hg concentrations in adult ibis (Hg concentrations increased with the number of days dry). In contrast, Hg concentrations in egret chicks were most influenced by calendar date (increasing with date), whereas Hg concentrations in ibis chicks were most influenced by chick age, region, and water recession rate (Hg concentrations decreased with age, were higher in the southern regions, and increased with positive water recession rates). Our results indicate that both recent (preceding two weeks) hydrological conditions, and those of the prior year, influence Hg concentrations in wading birds. Further, these results suggest that Hg exposure in wading birds is driven by complex relationships between wading bird behavior and life stage, landscape hydrologic patterns, and biogeochemical processes.

  7. Interactions between hydrology and water chemistry shape bacterioplankton biogeography across boreal freshwater networks

    PubMed Central

    Niño-García, Juan Pablo; Ruiz-González, Clara; del Giorgio, Paul A

    2016-01-01

    Disentangling the mechanisms shaping bacterioplankton communities across freshwater ecosystems requires considering a hydrologic dimension that can influence both dispersal and local sorting, but how the environment and hydrology interact to shape the biogeography of freshwater bacterioplankton over large spatial scales remains unexplored. Using Illumina sequencing of the 16S ribosomal RNA gene, we investigate the large-scale spatial patterns of bacterioplankton across 386 freshwater systems from seven distinct regions in boreal Québec. We show that both hydrology and local water chemistry (mostly pH) interact to shape a sequential structuring of communities from highly diverse assemblages in headwater streams toward larger rivers and lakes dominated by fewer taxa. Increases in water residence time along the hydrologic continuum were accompanied by major losses of bacterial richness and by an increased differentiation of communities driven by local conditions (pH and other related variables). This suggests that hydrology and network position modulate the relative role of environmental sorting and mass effects on community assembly by determining both the time frame for bacterial growth and the composition of the immigrant pool. The apparent low dispersal limitation (that is, the lack of influence of geographic distance on the spatial patterns observed at the taxonomic resolution used) suggests that these boreal bacterioplankton communities derive from a shared bacterial pool that enters the networks through the smallest streams, largely dominated by mass effects, and that is increasingly subjected to local sorting of species during transit along the hydrologic continuum. PMID:26849312

  8. Interactions between hydrology and water chemistry shape bacterioplankton biogeography across boreal freshwater networks.

    PubMed

    Niño-García, Juan Pablo; Ruiz-González, Clara; Del Giorgio, Paul A

    2016-07-01

    Disentangling the mechanisms shaping bacterioplankton communities across freshwater ecosystems requires considering a hydrologic dimension that can influence both dispersal and local sorting, but how the environment and hydrology interact to shape the biogeography of freshwater bacterioplankton over large spatial scales remains unexplored. Using Illumina sequencing of the 16S ribosomal RNA gene, we investigate the large-scale spatial patterns of bacterioplankton across 386 freshwater systems from seven distinct regions in boreal Québec. We show that both hydrology and local water chemistry (mostly pH) interact to shape a sequential structuring of communities from highly diverse assemblages in headwater streams toward larger rivers and lakes dominated by fewer taxa. Increases in water residence time along the hydrologic continuum were accompanied by major losses of bacterial richness and by an increased differentiation of communities driven by local conditions (pH and other related variables). This suggests that hydrology and network position modulate the relative role of environmental sorting and mass effects on community assembly by determining both the time frame for bacterial growth and the composition of the immigrant pool. The apparent low dispersal limitation (that is, the lack of influence of geographic distance on the spatial patterns observed at the taxonomic resolution used) suggests that these boreal bacterioplankton communities derive from a shared bacterial pool that enters the networks through the smallest streams, largely dominated by mass effects, and that is increasingly subjected to local sorting of species during transit along the hydrologic continuum.

  9. CrowdHydrology: crowdsourcing hydrologic data and engaging citizen scientists.

    PubMed

    Lowry, Christopher S; Fienen, Michael N

    2013-01-01

    Spatially and temporally distributed measurements of processes, such as baseflow at the watershed scale, come at substantial equipment and personnel cost. Research presented here focuses on building a crowdsourced database of inexpensive distributed stream stage measurements. Signs on staff gauges encourage citizen scientists to voluntarily send hydrologic measurements (e.g., stream stage) via text message to a server that stores and displays the data on the web. Based on the crowdsourced stream stage, we evaluate the accuracy of citizen scientist measurements and measurement approach. The results show that crowdsourced data collection is a supplemental method for collecting hydrologic data and a promising method of public engagement. © 2012, The Author(s). Ground Water © 2012, National Ground Water Association.

  10. A Flexible Framework Hydrological Informatic Modeling System - HIMS

    NASA Astrophysics Data System (ADS)

    WANG, L.; Wang, Z.; Changming, L.; Li, J.; Bai, P.

    2017-12-01

    Simulating water cycling process temporally and spatially fitting for the characteristics of the study area was important for floods prediction and streamflow simulation with high accuracy, as soil properties, land scape, climate, and land managements were the critical factors influencing the non-linear relationship of rainfall-runoff at watershed scales. Most existing hydrological models cannot simulate water cycle process at different places with customized mechanisms with fixed single structure and mode. This study develops Hydro-Informatic Modeling System (HIMS) model with modular of each critical hydrological process with multiple choices for various scenarios to solve this problem. HIMS has the structure accounting for two runoff generation mechanisms of infiltration excess and saturation excess and estimated runoff with different methods including Time Variance Gain Model (TVGM), LCM which has good performance at ungauged areas, besides the widely used Soil Conservation Service-Curve Number (SCS-CN) method. Channel routing model contains the most widely used Muskingum, and kinematic wave equation with new solving method. HIMS model performance with its symbolic runoff generation model LCM was evaluated through comparison with the observed streamflow datasets of Lasha river watershed at hourly, daily, and monthly time steps. Comparisons between simulational and obervational streamflows were found with NSE higher than 0.87 and WE within ±20%. Water balance analysis about precipitation, streamflow, actual evapotranspiration (ET), and soil moisture change was conducted temporally at annual time step and it has been proved that HIMS model performance was reliable through comparison with literature results at the Lhasa River watershed.

  11. Designing a visualization system for hydrological data

    NASA Astrophysics Data System (ADS)

    Fuhrmann, Sven

    2000-02-01

    The field of hydrology is, as any other scientific field, strongly affected by a massive technological evolution. The spread of modern information and communication technology within the last three decades has led to an increased collection, availability and use of spatial and temporal digital hydrological data. In a two-year research period a working group in Muenster applied and developed methods for the visualization of digital hydrological data and the documentation of hydrological models. A low-cost multimedial, hydrological visualization system (HydroVIS) for the Weser river catchment was developed. The research group designed HydroVIS under freeware constraints and tried to show what kind of multimedia visualization techniques can be effectively used with a nonprofit hydrological visualization system. The system's visual components include features such as electronic maps, temporal and nontemporal cartographic animations, the display of geologic profiles, interactive diagrams and hypertext, including photographs and tables.

  12. Modelling hydrological processes and dissolved organic carbon dynamics in a rehabilitated Sphagnum-dominated peatland

    NASA Astrophysics Data System (ADS)

    Bernard-Jannin, Léonard; Binet, Stéphane; Gogo, Sébastien; Leroy, Fabien; Perdereau, Laurent; Laggoun-Défarge, Fatima

    2017-04-01

    Sphagnum-dominated peatlands represent a global major stock of carbon (C). Dissolved organic carbon (DOC) exports through runoff and leaching could reduce their potential C sink function and impact downstream water quality. DOC production in peatlands is strongly controlled by the hydrology, especially water table depth (WTD). Therefore, disturbances such as drainage can lead to increase DOC exports by lowering the WTD. Hydrological restoration (e.g. rewetting) can be undertaken to restore peatland functioning with an impact on DOC exports. The objective of this study is to assess the impact of drainage and rewetting on hydrological processes and their interactions with DOC dynamics in a Sphagnum dominated peatland. A hydrological model has been applied to a drained peatland (La Guette, France) which experienced a rewetting action on February 2014 and where WTD has been recorded in four piezometers at a 15 min time step since 2009. In addition, DOC concentrations in the peatland have been measured 6 times a year since 2014. The hydrological model is a WTD dependent reservoir model composed by two reservoirs representing the micro and macro porosity of the peatland (Binet et al., 2013). A DOC production module in both reservoirs was implemented based on temperature and WTD. The model was calibrated against WTD and DOC concentrations for each piezometer. The results show that the WTD in the study area is strongly affected by local meteorological conditions that could hide the effect of the rewetting action. The preliminary results evidenced that an additional source of water, identified as groundwater supply originating from the surrounding sandy layer aquifer, is necessary to maintain the water balance, especially during wet years (NS>0.8). Finally, the DOC module was able to describe DOC concentrations measured in the peatland and could be used to assess the impact of rewetting on DOC dynamics at different locations and to identify the factors of control of DOC

  13. An Agenda for Land-Surface Hydrology Research and a Call for the Second International Hydrological Decade

    NASA Technical Reports Server (NTRS)

    Entekhabi, Dara; Bras, Rafael L.; McLaughlin, Dennis B.; Asrar, Ghassem R.; Wei, Ying; Betts, Alan K.; Beven, Keith J.; Duffy, Christopher J.; Dunne, Thomas; Koster, Randall D.; hide

    1998-01-01

    An agenda for land-surface hydrology research is proposed to open the debate for more comprehensive prioritization of science and application activities in the hydrologic sciences. A set of science questions are posed and the observational requirements to achieve substantial progress are identified. In this context, the proposal to initiate the 2nd International Hydrologic Decade (IHD) is put forth. The benefits of this initiative for enhanced scientific understanding and improved capability in meeting societal needs are also identified.

  14. Effects of peatland burning on hydrology, water quality and aquatic ecosystems

    NASA Astrophysics Data System (ADS)

    Brown, L. E.; Holden, J.; Palmer, S. M.

    2009-04-01

    Controlled burning is used worldwide for the management of vegetation, yet there is serious concern about the environmental implications of such practices. Across the UK many peatlands are burned to encourage and maintain heather growth. However, detailed evaluations of the costs, benefits and sustainability of burning are hampered by a lack of basic scientific data. This paper will present the outline of a new three year NERC-funded project called EMBER which provides the first co-ordinated evaluation of vegetation burning on peatland hydrological and ecological processes. Case study sites influenced by prescribed burns will be established in internationally important sites in the Peak District and North Pennines, UK. EMBER will increase understanding of the processes linking prescribed peat vegetation fires, hydrology, water quality and stream invertebrate communities in upland peat dominated catchments. Four work packages will aim to: 1) increase understanding of the effects of moorland patch burning on the hydrology and physicochemistry of peat, through examination of changes in soil hydrology and water quality; 2) provide a better understanding of the effects of moorland patch burning on basin runoff quantity and quality, through examination of river flow regimes, suspended sediment concentration and water chemistry; 3) assess the influence of changes in stream hydrology, water quality and sediment fluxes on stream ecosystems through examination of stream invertebrate community biodiversity and fish abundance and 4) gain a more fundamental understanding of some environmental drivers of upland aquatic community response to burning by experimentally manipulating fine sediment flux under controlled conditions using a series of streamside mesocosms. Taken together these packages will provide a holistic patch- to basin-scale evaluation of burning from the perspective of peat hydrology, chemistry, river water quantity and quality, and stream ecosystems, thus

  15. Revisiting an interdisciplinary hydrological modelling project. A socio-hydrology (?) example from the early 2000s

    NASA Astrophysics Data System (ADS)

    Seidl, Roman; Barthel, Roland

    2016-04-01

    Interdisciplinary scientific and societal knowledge plays an increasingly important role in global change research. Also, in the field of water resources interdisciplinarity as well as cooperation with stakeholders from outside academia have been recognized as important. In this contribution, we revisit an integrated regional modelling system (DANUBIA), which was developed by an interdisciplinary team of researchers and relied on stakeholder participation in the framework of the GLOWA-Danube project from 2001 to 2011 (Mauser and Prasch 2016). As the model was developed before the current increase in literature on participatory modelling and interdisciplinarity, we ask how a socio-hydrology approach would have helped and in what way it would have made the work different. The present contribution firstly presents the interdisciplinary concept of DANUBIA, mainly with focus on the integration of human behaviour in a spatially explicit, process-based numerical modelling system (Roland Barthel, Janisch, Schwarz, Trifkovic, Nickel, Schulz, and Mauser 2008; R. Barthel, Nickel, Meleg, Trifkovic, and Braun 2005). Secondly, we compare the approaches to interdisciplinarity in GLOWA-Danube with concepts and ideas presented by socio-hydrology. Thirdly, we frame DANUBIA and a review of key literature on socio-hydrology in the context of a survey among hydrologists (N = 184). This discussion is used to highlight gaps and opportunities of the socio-hydrology approach. We show that the interdisciplinary aspect of the project and the participatory process of stakeholder integration in DANUBIA were not entirely successful. However, important insights were gained and important lessons were learnt. Against the background of these experiences we feel that in its current state, socio-hydrology is still lacking a plan for knowledge integration. Moreover, we consider necessary that socio-hydrology takes into account the lessons learnt from these earlier examples of knowledge integration

  16. Hydrologically Controlled Arsenic Release in Deltaic Wetlands and Coastal Riparian Zones

    NASA Astrophysics Data System (ADS)

    Stuckey, J.; LeMonte, J. J.; Yu, X.; Schaefer, M.; Kocar, B. D.; Benner, S. G.; Rinklebe, J.; Tappero, R.; Michael, H. A.; Fendorf, S. E.; Sparks, D. L.

    2016-12-01

    Wetland and riparian zone hydrology exerts critical controls on the biogeochemical cycling of metal contaminants including arsenic. The role of wetlands in driving geogenic arsenic release to groundwater has been debated in the deltas of South and Southeast Asia where the largest impacted human population resides. In addition, groundwater in coastal areas worldwide, such as those in South and Southeast Asia and the Mid-Atlantic of the U.S., is at risk to largely unexplored biogeochemical and hydrologic impacts of projected sea level rise. First, we present data from fresh-sediment incubations, in situ model sediment incubations and a controlled field experiment with manipulated wetland hydrology and organic carbon inputs in the minimally disturbed upper Mekong Delta. Here we show that arsenic release is limited to near-surface sediments of permanently saturated wetlands where both organic carbon and arsenic-bearing solids are sufficiently reactive for microbial oxidation of organic carbon and reduction of arsenic-bearing iron oxides. In contrast, within the deeper aquifer or seasonally saturated sediments, reductive dissolution of iron oxides is observed only when either more reactive exogenous forms of iron oxides or organic carbon are added, revealing a potential thermodynamic restriction to microbial metabolism. Second, in order to assess the potential impacts of sea level rise on arsenic release to groundwater, we determined the changes in arsenic speciation and partitioning in sediment collected from an anthropogenically contaminated coastal riparian zone under controlled Eh regimes in both seawater and freshwater systems. Here we show greater arsenic release under anoxic/suboxic conditions in the freshwater system than in the seawater system, potentially due to high salinity induced microbial inhibition. Collectively, our work shows that shifting hydrologic conditions in deltaic wetlands and tidally influenced zones impacts the extent of arsenic release to

  17. Genetic Programming for Automatic Hydrological Modelling

    NASA Astrophysics Data System (ADS)

    Chadalawada, Jayashree; Babovic, Vladan

    2017-04-01

    One of the recent challenges for the hydrologic research community is the need for the development of coupled systems that involves the integration of hydrologic, atmospheric and socio-economic relationships. This poses a requirement for novel modelling frameworks that can accurately represent complex systems, given, the limited understanding of underlying processes, increasing volume of data and high levels of uncertainity. Each of the existing hydrological models vary in terms of conceptualization and process representation and is the best suited to capture the environmental dynamics of a particular hydrological system. Data driven approaches can be used in the integration of alternative process hypotheses in order to achieve a unified theory at catchment scale. The key steps in the implementation of integrated modelling framework that is influenced by prior understanding and data, include, choice of the technique for the induction of knowledge from data, identification of alternative structural hypotheses, definition of rules, constraints for meaningful, intelligent combination of model component hypotheses and definition of evaluation metrics. This study aims at defining a Genetic Programming based modelling framework that test different conceptual model constructs based on wide range of objective functions and evolves accurate and parsimonious models that capture dominant hydrological processes at catchment scale. In this paper, GP initializes the evolutionary process using the modelling decisions inspired from the Superflex framework [Fenicia et al., 2011] and automatically combines them into model structures that are scrutinized against observed data using statistical, hydrological and flow duration curve based performance metrics. The collaboration between data driven and physical, conceptual modelling paradigms improves the ability to model and manage hydrologic systems. Fenicia, F., D. Kavetski, and H. H. Savenije (2011), Elements of a flexible approach

  18. Hydrology and Conservation Ecology

    NASA Astrophysics Data System (ADS)

    Narayanan, M.

    2006-12-01

    Responses to change in the behavior of ecological systems are largely governed by interactions at different levels. Research is essential and is to be necessarily designed to gain insights into various interactions at the community level. Sustainable resource management is only possible if conservation of biodiversity can be accomplished by properly using the knowledge discovered. It is well known that the United States Department of Agriculture provides technical information, resources, and data necessary to assist the researchers in addressing their conservation needs. Conservation aims to protect, preserve and conserve the earth's natural resources. These include, but not limited to the conservation of soil, water, minerals, air, plants and all living beings. The United States Department of Agriculture also encourages farmers and ranchers to voluntarily address threats to soil and water. Protection of wetlands and wildlife habitat has been on the radar screen of conservation experts for a very long time. The main objective has always been to help farmers and landowners conform and comply with federal and state environmental laws. During the implementation phase, farmers should be encouraged to make beneficial, cost-effective changes to methods of irrigation systems. In some cases, the hydrologic regime of the project area can be thought of as principally an issue of river flow regimes for floodplain forests. In this presentation, the author tries to focus on the impact of hydrology and conservation ecology on global warming. He also discusses the impact of hydrology and conservation ecology global air concerns such as greenhouse gas concentrations in the atmosphere. References: Chow, V. T, D. R. Maidment, and L. W. Mays. 1988. Applied Hydrology. McGraw-Hill, Inc. U.S. Soil Conservation Service. Technical Release 55: Urban Hydrology for Small Watersheds. USDA (U.S. Department of Agriculture). June 1986. Lehner, B. and P. Döll (2004). Development and validation

  19. USDA-ARS Hydrology Laboratory MISWG Hydrology Workshop

    NASA Technical Reports Server (NTRS)

    Jackson, T. J.

    1982-01-01

    Current research being conducted in remote sensing techniques for measuring hydrologic parameters and variables deals with runoff curve numbers (CN), evapotranspiration (ET), and soil moisture. The CN and ET research utilizes visible and infrared measurements. Soil moisture investigations focus on the microwave region of the electromagnetic spectrum.

  20. Hydrological resiliency in the Western Boreal Plains: classification of hydrological responses using wavelet analysis to assess landscape resilience

    NASA Astrophysics Data System (ADS)

    Probert, Samantha; Kettridge, Nicholas; Devito, Kevin; Hannah, David; Parkin, Geoff

    2017-04-01

    The Boreal represents a system of substantial resilience to climate change, with minimal ecological change over the past 6000 years. However, unprecedented climatic warming, coupled with catchment disturbances could exceed thresholds of hydrological function in the Western Boreal Plains. Knowledge of ecohydrological and climatic feedbacks that shape the resilience of boreal forests has advanced significantly in recent years, but this knowledge is yet to be applied and understood at landscape scales. Hydrological modelling at the landscape scale is challenging in the WBP due to diverse, non-topographically driven hydrology across the mosaic of terrestrial and aquatic ecosystems. This study functionally divides the geologic and ecological components of the landscape into Hydrologic Response Areas (HRAs) and wetland, forestland, interface and pond Hydrologic Units (HUs) to accurately characterise water storage and infer transmission at multiple spatial and temporal scales. Wavelet analysis is applied to pond and groundwater levels to describe the patterns of water storage in response to climate signals; to isolate dominant controls on hydrological responses and to assess the relative importance of physical controls between wet and dry climates. This identifies which components of the landscape exhibit greater magnitude and frequency of variability to wetting and drying trends, further to testing the hierarchical framework for hydrological storage controls of: climate, bedrock geology, surficial geology, soil, vegetation, and topography. Classifying HRA and HU hydrological function is essential to understand and predict water storage and redistribution through drought cycles and wet periods. This work recognises which landscape components are most sensitive under climate change and disturbance and also creates scope for hydrological resiliency research in Boreal systems by recognising critical landscape components and their role in landscape collapse or catastrophic

  1. 30 CFR 817.41 - Hydrologic-balance protection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Hydrologic-balance protection. 817.41 Section... ACTIVITIES § 817.41 Hydrologic-balance protection. (a) General. All underground mining and reclamation activities shall be conducted to minimize disturbance of the hydrologic balance within the permit and...

  2. 30 CFR 817.41 - Hydrologic-balance protection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Hydrologic-balance protection. 817.41 Section... ACTIVITIES § 817.41 Hydrologic-balance protection. (a) General. All underground mining and reclamation activities shall be conducted to minimize disturbance of the hydrologic balance within the permit and...

  3. 30 CFR 816.41 - Hydrologic-balance protection.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Hydrologic-balance protection. 816.41 Section... ACTIVITIES § 816.41 Hydrologic-balance protection. (a) General. All surface mining and reclamation activities shall be conducted to minimize disturbance of the hydrologic balance within the permit and adjacent...

  4. 30 CFR 816.41 - Hydrologic-balance protection.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 3 2011-07-01 2011-07-01 false Hydrologic-balance protection. 816.41 Section... ACTIVITIES § 816.41 Hydrologic-balance protection. (a) General. All surface mining and reclamation activities shall be conducted to minimize disturbance of the hydrologic balance within the permit and adjacent...

  5. Hydrologic Predictions in the Anthropocene: Exploration with Co-evolutionary Socio-hydrologic Models

    NASA Astrophysics Data System (ADS)

    Sivapalan, Murugesu; Tian, Fuqiang; Liu, Dengfeng

    2013-04-01

    Socio-hydrology studies the co-evolution and self-organization of humans in the hydrologic landscape, which requires a thorough understanding of the complex interactions between humans and water. On the one hand, the nature of water availability greatly impacts the development of society. On the other hand, humans can significantly alter the spatio-temporal distribution of water and in this way provide feedback to the society itself. The human-water system functions underlying such complex human-water interactions are not well understood. Exploratory models with the appropriate level of simplification in any given area can be valuable to understand these functions and the self-organization associated with socio-hydrology. In this study, a simple coupled modeling framework for socio-hydrology co-evolution is developed, and is used to illustrate the explanatory power of such models. In the Tarim River, humans depend heavily on agricultural production (other industries can be ignored for a start), and the social processes can be described principally by two variables, i.e., irrigated-area and human population. The eco-hydrological processes are expressed in terms of area under natural vegetation and stream discharge. The study area is the middle and the lower reaches of the Tarim River, which is divided into two modeling units, i.e. middle reach and lower reach. In each modeling unit, four ordinary differential equations are used to simulate the dynamics of the hydrological system represented by stream discharge, ecological system represented by area under natural vegetation, the economic system represented by irrigated area under agriculture and social system represented by human population. The four dominant variables are coupled together by several internal variables. For example, the stream discharge is coupled to irrigated area by the colonization rate and mortality rate of the irrigated area in the middle reach and the irrigated area is coupled to stream

  6. Perspective on Eco-Hydrology Developing Strategy in China

    NASA Astrophysics Data System (ADS)

    Xia, J.

    2017-12-01

    China is one of developing countries with higher eco-environmental press in the world due to large population and its socio-economic development. In China, water is not only the sources for life, but also the key for production, and the foundation for eco-system. Thus, Eco-hydrology becomes a fundamental also an applied sciences related to describe the hydrologic mechanisms that underlie ecologic patterns and processes. This paper addresses the issue of Eco-hydrology Developing Strategy in China, supported by Chinese Academy of Sciences (CAS). Major contents include four aspects, namely: (1) Demands and frontier of eco-hydrology in the world; (2) Major theories and approaches of Eco-hydrology; (3) Perspective of future development on Eco-hydrology; (4) Enacting and proposal for China development strategy on Eco-hydrology. Application fields involves urban, rural area, wetland, river & lake, forest and special regions in China, such as the arid and semi-arid region and so on. The goal is to promote the disciplinary development of eco-hydrology, and serve for national demands on ecological civilization construction in China.

  7. Detection of Hydrological changes of Wujiang River

    NASA Astrophysics Data System (ADS)

    Dong, L.; Chen, Y.

    2016-12-01

    In the century our earth experienced a rapid environment changes due to strong human activities, which impactedthe earth'shydrology and water resources systems negatively, and causedsevere problems to the society, such as increased flood and drought risk, water pollution and ecosystem degradation. Understanding the variations of hydrological characteristics has important meaning to solve the problem of hydrology and water resources and maintain sustainable development of river basin water resources.This paper takesWujiangriveras an example,which is a typical medium watershedaffected by human activities seriously in southern China.Using the methods of Mann-Kendall test and serial cluster analysis, this paper studies the characteristics and laws of historical hydrological process inWujiang river, detectsthe impact of changing environment to watershed hydrological processes, based on the observed hydrological data of 36 years from 1980 to 2015 in three representative hydrological stationsnamedFenshi,Chixi and Pingshi. The results show that the annual runoffandannual precipitation has some kind of changes.

  8. A VRML-Based Data Portal: Hydrology of the Hubbard Brook Experimental Forest and Mirror Lake Sub-Basin

    NASA Astrophysics Data System (ADS)

    Becker, M. W.; Bursik, M. I.; Schuetz, J. W.

    2001-05-01

    The Hubbard Brook Experimental Forest (HBEF) of Central New Hampshire has been a focal point for collaborative hydrologic research for over 40 years. A tremendous amount of data from this area is available through the internet and other sources, but is not organized in a manner that facilitates teaching of hydrologic concepts. The Mirror Lake Watershed Interactive Teaching Database is making hydrologic data from the HBEF and associated interactive problem sets available to upper-level and post-graduate university students through a web-based resource. Hydrologic data are offered via a three-dimensional VRML (Virtual Reality Modeling Language) interface, that facilitates viewing and retrieval in a spatially meaningful manner. Available data are mapped onto a topographic base, and hot spots representing data collection points (e.g. weirs) lead to time-series displays (e.g. hydrographs) that provide a temporal link to the spatially organized data. Associated instructional exercises are designed to increase understanding of both hydrologic data and hydrologic methods. A pedagogical module concerning numerical ground-water modeling will be presented as an example. Numerical modeling of ground-water flow involves choosing the combination of hydrogeologic parameters (e.g. hydraulic conductivity, recharge) that cause model-predicted heads to best match measured heads in the aquifer. Choosing the right combination of parameters requires careful judgment based upon knowledge of the hydrogeologic system and the physics of ground-water flow. Unfortunately, students often get caught up in the technical aspects and lose sight of the fundamentals when working with real ground-water software. This module provides exercises in which a student chooses model parameters and immediately sees the predicted results as a 3-D VRML object. VRML objects are based upon actual Modflow model results corresponding to the range of model input parameters available to the student. This way, the

  9. Mapping (dis)agreement in hydrologic projections

    NASA Astrophysics Data System (ADS)

    Melsen, Lieke A.; Addor, Nans; Mizukami, Naoki; Newman, Andrew J.; Torfs, Paul J. J. F.; Clark, Martyn P.; Uijlenhoet, Remko; Teuling, Adriaan J.

    2018-03-01

    Hydrologic projections are of vital socio-economic importance. However, they are also prone to uncertainty. In order to establish a meaningful range of storylines to support water managers in decision making, we need to reveal the relevant sources of uncertainty. Here, we systematically and extensively investigate uncertainty in hydrologic projections for 605 basins throughout the contiguous US. We show that in the majority of the basins, the sign of change in average annual runoff and discharge timing for the period 2070-2100 compared to 1985-2008 differs among combinations of climate models, hydrologic models, and parameters. Mapping the results revealed that different sources of uncertainty dominate in different regions. Hydrologic model induced uncertainty in the sign of change in mean runoff was related to snow processes and aridity, whereas uncertainty in both mean runoff and discharge timing induced by the climate models was related to disagreement among the models regarding the change in precipitation. Overall, disagreement on the sign of change was more widespread for the mean runoff than for the discharge timing. The results demonstrate the need to define a wide range of quantitative hydrologic storylines, including parameter, hydrologic model, and climate model forcing uncertainty, to support water resource planning.

  10. Geologic and hydrologic characterization and evaluation of the Basin and Range Province relative to the disposal of high-level radioactive waste: Part II, Geologic and hydrologic characterization

    USGS Publications Warehouse

    Sargent, Kenneth A.; Bedinger, M.S.

    1985-01-01

    The geology and hydrology of the Basin and Range Province of the western conterminous United States are characterized in a series of data sets depicted in maps compiled for evaluation of prospective areas for further study of geohydrologic environments for isolation of high-level radioactive waste. The data sets include: (1) Average precipitation and evaporation; (2) surface distribution of selected rock types; (3) tectonic conditions; and (4) surface- and ground -water hydrology and Pleistocene lakes and marshes.Rocks mapped for consideration as potential host media for the isolation of high-level radioactive waste are widespread and include argillaceous rocks, granitic rocks, tuffaceous rocks, mafic extrusive rocks, evaporites, and laharic breccias. The unsaturated zone, where probably as thick as 150 meters (500 feet), was mapped for consideration as an environment for isolation of high-level waste. Unsaturated rocks of various lithologic types are widespread in the Province.Tectonic stability in the Quaternary Period is considered the key to assessing the probability of future tectonism with regard to high-level radioactive waste disposal. Tectonic conditions are characterized on the basis of the seismic record, heat-flow measurements, the occurrence of Quaternary faults, vertical crustal movement, and volcanic features. Tectonic activity, as indicated by seismicity, is greatest in areas bordering the western margin of the Province in Nevada and southern California, the eastern margin of the Province bordering the Wasatch Mountains in Utah and in parts of the Rio Grande valley. Late Cenozoic volcanic activity is widespread, being greatest bordering the Sierra Nevada in California and Oregon, and bordering the Wasatch Mountains in southern Utah and Idaho.he arid to semiarid climate of the Province results in few perennial streams and lakes. A large part of the surface drainage is interior and the many closed basins commonly are occupied by playas or dry lake

  11. Hydrological partitioning in the critical zone: Recent advances and opportunities for developing transferable understanding of water cycle dynamics: CRITICAL ZONE HYDROLOGY

    DOE PAGES

    Brooks, Paul D.; Chorover, Jon; Fan, Ying; ...

    2015-09-01

    Hydrology is an integrative discipline linking the broad array of water‐related research with physical, ecological, and social sciences. The increasing breadth of hydrological research, often where subdisciplines of hydrology partner with related sciences, reflects the central importance of water to environmental science, while highlighting the fractured nature of the discipline itself. This lack of coordination among hydrologic subdisciplines has hindered the development of hydrologic theory and integrated models capable of predicting hydrologic partitioning across time and space. The recent development of the concept of the critical zone (CZ), an open system extending from the top of the canopy to themore » base of groundwater, brings together multiple hydrological subdisciplines with related physical and ecological sciences. Observations obtained by CZ researchers provide a diverse range of complementary process and structural data to evaluate both conceptual and numerical models. Consequently, a cross‐site focus on “critical zone hydrology” has potential to advance the discipline of hydrology and to facilitate the transition of CZ observatories into a research network with immediate societal relevance. Here we review recent work in catchment hydrology and hydrochemistry, hydrogeology, and ecohydrology that highlights a common knowledge gap in how precipitation is partitioned in the critical zone: “how is the amount, routing, and residence time of water in the subsurface related to the biogeophysical structure of the CZ?” Addressing this question will require coordination among hydrologic subdisciplines and interfacing sciences, and catalyze rapid progress in understanding current CZ structure and predicting how climate and land cover changes will affect hydrologic partitioning.« less

  12. 30 CFR 822.11 - Essential hydrologic functions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 3 2010-07-01 2010-07-01 false Essential hydrologic functions. 822.11 Section... IN ALLUVIAL VALLEY FLOORS § 822.11 Essential hydrologic functions. (a) The operator of a surface coal... throughout the mining and reclamation process the essential hydrologic functions of an alluvial valley floor...

  13. PREFACE: XXIVth Conference of the Danubian Countries on the Hydrological Forecasting and Hydrological Bases of Water Management

    NASA Astrophysics Data System (ADS)

    Brilly, Mitja; Bonacci, Ognjen; Nachtnebel, Peter Hans; Szolgay, Ján; Balint, Gabor

    2008-10-01

    This volume of IOP Conference Series: Earth and Environmental Science presents a selection of papers that were given at the 24th Conference of the Danube Countries. Within the framework of the International Hydrological Program IHP of UNESCO. Since 1961 the Danube countries have successfully co-operated in organizing conferences on Hydrological Forecasting and Hydrological Water Management Issues. The 24th Conference of the Danube Countries took place between 2-4 June 2008 in Bled, Slovenia and was organized by the National Committee of Slovenia for the International Hydrological Program of UNESCO, under the auspices of the President of Republic of Slovenia. It was organized jointly by the Slovenian National Commission for UNESCO and the Environmental Agency of the Republic of Slovenia, under the support of UNESCO, WMO, and IAHS. Support for the attendance of some participants was provided by UNESCO. Additional support for the symposium was provided by the Slovene Commission for UNESCO, Environmental Agency of Slovenia, Karst Research Institute, Hydropower plants on the lower Sava River and Chair of Hydraulics Engineering FGG University of Ljubljana. All participants expressed great interest and enthusiasm in presenting the latest research results and sharing practical experiences in the Hydrology of the Danube River basin. The Editorial Board, who were nominated at the Conference, initially selected 80 full papers for publication from 210 submitted extended abstracts and papers provided by authors from twenty countries. Altogether 51 revised papers were accepted for publishing in this volume. Papers are divided by conference topics: Hydrological forecasting Hydro-meteorological extremes, floods and droughts Global climate change and antropogenic impacts on hydrological processes Water management Floods, morphological processes, erosion, sediment transport and sedimentation Developments in hydrology Mitja Brilly, Ognjen Bonacci, Peter Hans Nachtnebel, Ján Szolgay

  14. Hydrological modeling in forested systems

    Treesearch

    H.E. Golden; G.R. Evenson; S. Tian; Devendra Amatya; Ge Sun

    2015-01-01

    Characterizing and quantifying interactions among components of the forest hydrological cycle is complex and usually requires a combination of field monitoring and modelling approaches (Weiler and McDonnell, 2004; National Research Council, 2008). Models are important tools for testing hypotheses, understanding hydrological processes and synthesizing experimental data...

  15. HYDROSAT - An instrument platform for hydrology

    NASA Technical Reports Server (NTRS)

    Ormsby, J. P.; Engman, E. T.

    1993-01-01

    This paper discusses a multisensor satellite approach for the study of hydrological applications. Spectral as well as spatial and temporal characteristics of specific operational and planned instruments applicable to hydrology are presented. A hydrology specific series of sensors are proposed to fill the gaps not covered by the current and planned systems. We have called this hypothetical platform HYDROSAT. In addition, the trade-offs between a geostationary satellite and a polar orbiter are explored.

  16. HydroViz: A web-based hydrologic observatory for enhancing hydrology and earth-science education

    NASA Astrophysics Data System (ADS)

    Habib, E. H.; Ma, Y.; Williams, D.

    2010-12-01

    The main goal of this study is to develop a virtual hydrologic observatory (HydroViz) that integrates hydrologic field observations with numerical simulations by taking advantage of advances in hydrologic field & remote sensing data, computer modeling, scientific visualization, and web resources and internet accessibility. The HydroViz system is a web-based teaching tool that can run on any web browsers. It leverages the strength of Google Earth to provide authentic and hands-on activities to improve learning. Evaluation of the HydroViz was performed in three engineering courses (a senior level course and two Introductory courses at two different universities). Evaluation results indicate that HydroViz provides an improvement over existing engineering hydrology curriculum. HydroViz was effective in facilitating students’ learning and understanding of hydrologic concepts & increasing related skills. HydroViz was much more effective for students in engineering hydrology classes rather than at the freshmen introduction to civil engineering class. We found that HydroViz has great potential for freshmen audience. Even though HydroViz was challenging to some freshmen, most of them still learned the key concepts and the tool increased the enthusiasm for half of the freshmen. The evaluation provided suggestions to create a simplified version of HydroViz for freshmen-level courses students. It identified concepts and tasks that might be too challenging or irrelevant to the freshmen and areas where we could provide more guidance in the tool. After the first round of evaluation, the development team has made significant improvements to HydroViz, which would further improve its effectiveness for next round of class applications which is planned for the Fall of 2010 to take place in 5 classes at 4 different institutions.

  17. A metrics for soil hydrological processes and their intrinsic dimensionality in heterogeneous systems

    NASA Astrophysics Data System (ADS)

    Lischeid, G.; Hohenbrink, T.; Schindler, U.

    2012-04-01

    Hydrology is based on the observation that catchments process input signals, e.g., precipitation, in a highly deterministic way. Thus, the Darcy or the Richards equation can be applied to model water fluxes in the saturated or vadose zone, respectively. Soils and aquifers usually exhibit substantial spatial heterogeneities at different scales that can, in principle, be represented by corresponding parameterisations of the models. In practice, however, data are hardly available at the required spatial resolution, and accounting for observed heterogeneities of soil and aquifer structure renders models very time and CPU consuming. We hypothesize that the intrinsic dimensionality of soil hydrological processes, which is induced by spatial heterogeneities, actually is very low and that soil hydrological processes in heterogeneous soils follow approximately the same trajectory. That means, the way how the soil transforms any hydrological input signals is the same for different soil textures and structures. Different soils differ only with respect to the extent of transformation of input signals. In a first step, we analysed the output of a soil hydrological model, based on the Richards equation, for homogeneous soils down to 5 m depth for different soil textures. A matrix of time series of soil matrix potential and soil water content at 10 cm depth intervals was set up. The intrinsic dimensionality of that matrix was assessed using the Correlation Dimension and a non-linear principal component approach. The latter provided a metrics for the extent of transformation ("damping") of the input signal. In a second step, model outputs for heterogeneous soils were analysed. In a last step, the same approaches were applied to 55 time series of observed soil water content from 15 sites and different depths. In all cases, the intrinsic dimensionality in fact was very close to unity, confirming our hypothesis. The metrics provided a very efficient tool to quantify the observed

  18. Hydrology: The interdisciplinary science of water

    NASA Astrophysics Data System (ADS)

    Vogel, Richard M.; Lall, Upmanu; Cai, Ximing; Rajagopalan, Balaji; Weiskel, Peter K.; Hooper, Richard P.; Matalas, Nicholas C.

    2015-06-01

    We live in a world where biophysical and social processes are tightly coupled. Hydrologic systems change in response to a variety of natural and human forces such as climate variability and change, water use and water infrastructure, and land cover change. In turn, changes in hydrologic systems impact socioeconomic, ecological, and climate systems at a number of scales, leading to a coevolution of these interlinked systems. The Harvard Water Program, Hydrosociology, Integrated Water Resources Management, Ecohydrology, Hydromorphology, and Sociohydrology were all introduced to provide distinct, interdisciplinary perspectives on water problems to address the contemporary dynamics of human interaction with the hydrosphere and the evolution of the Earth's hydrologic systems. Each of them addresses scientific, social, and engineering challenges related to how humans influence water systems and vice versa. There are now numerous examples in the literature of how holistic approaches can provide a structure and vision of the future of hydrology. We review selected examples, which taken together, describe the type of theoretical and applied integrated hydrologic analyses and associated curricular content required to address the societal issue of water resources sustainability. We describe a modern interdisciplinary science of hydrology needed to develop an in-depth understanding of the dynamics of the connectedness between human and natural systems and to determine effective solutions to resolve the complex water problems that the world faces today. Nearly, every theoretical hydrologic model introduced previously is in need of revision to accommodate how climate, land, vegetation, and socioeconomic factors interact, change, and evolve over time.

  19. Hydrology: The interdisciplinary science of water

    USGS Publications Warehouse

    Vogel, Richard M.; Lall, Upmanu; Cai, Ximing; Rajagopalan, Balaji; Weiskel, Peter K.; Hooper, Richard P.; Matalas, Nicholas C.

    2015-01-01

    We live in a world where biophysical and social processes are tightly coupled. Hydrologic systems change in response to a variety of natural and human forces such as climate variability and change, water use and water infrastructure, and land cover change. In turn, changes in hydrologic systems impact socioeconomic, ecological, and climate systems at a number of scales, leading to a coevolution of these interlinked systems. The Harvard Water Program, Hydrosociology, Integrated Water Resources Management, Ecohydrology, Hydromorphology, and Sociohydrology were all introduced to provide distinct, interdisciplinary perspectives on water problems to address the contemporary dynamics of human interaction with the hydrosphere and the evolution of the Earth’s hydrologic systems. Each of them addresses scientific, social, and engineering challenges related to how humans influence water systems and vice versa. There are now numerous examples in the literature of how holistic approaches can provide a structure and vision of the future of hydrology. We review selected examples, which taken together, describe the type of theoretical and applied integrated hydrologic analyses and associated curricular content required to address the societal issue of water resources sustainability. We describe a modern interdisciplinary science of hydrology needed to develop an in-depth understanding of the dynamics of the connectedness between human and natural systems and to determine effective solutions to resolve the complex water problems that the world faces today. Nearly, every theoretical hydrologic model introduced previously is in need of revision to accommodate how climate, land, vegetation, and socioeconomic factors interact, change, and evolve over time.

  20. Improving student comprehension of the interconnectivity of the hydrologic cycle with a novel 'hydrology toolbox', integrated watershed model, and companion textbook

    NASA Astrophysics Data System (ADS)

    Huning, L. S.; Margulis, S. A.

    2013-12-01

    Concepts in introductory hydrology courses are often taught in the context of process-based modeling that ultimately is integrated into a watershed model. In an effort to reduce the learning curve associated with applying hydrologic concepts to real-world applications, we developed and incorporated a 'hydrology toolbox' that complements a new, companion textbook into introductory undergraduate hydrology courses. The hydrology toolbox contains the basic building blocks (functions coded in MATLAB) for an integrated spatially-distributed watershed model that makes hydrologic topics (e.g. precipitation, snow, radiation, evaporation, unsaturated flow, infiltration, groundwater, and runoff) more user-friendly and accessible for students. The toolbox functions can be used in a modular format so that students can study individual hydrologic processes and become familiar with the hydrology toolbox. This approach allows such courses to emphasize understanding and application of hydrologic concepts rather than computer coding or programming. While topics in introductory hydrology courses are often introduced and taught independently or semi-independently, they are inherently interconnected. These toolbox functions are therefore linked together at the end of the course to reinforce a holistic understanding of how these hydrologic processes are measured, interconnected, and modeled. They are integrated into a spatially-distributed watershed model or numerical laboratory where students can explore a range of topics such as rainfall-runoff modeling, urbanization, deforestation, watershed response to changes in parameters or forcings, etc. Model output can readily be visualized and analyzed by students to understand watershed response in a real river basin or a simple 'toy' basin. These tools complement the textbook, each of which has been well received by students in multiple hydrology courses with various disciplinary backgrounds. The same governing equations that students have