Science.gov

Sample records for actual material properties

  1. Ultrasonic material property determinations

    NASA Technical Reports Server (NTRS)

    Serabian, S.

    1986-01-01

    The use and potential offered by ultrasonic velocity and attenuation measurements to determine and/or monitor material properties is explored. The basis for such unique measurements along with examples of materials from a variety of industries are presented.

  2. Building Materials Property Table

    SciTech Connect

    2010-04-16

    This information sheet describes a table of some of the key technical properties of many of the most common building materials taken from ASHRAE Fundamentals - 2001, Moisture Control in Buildings, CMHC, NRC/IRC, IEA Annex 24, and manufacturer data.

  3. Rhenium material properties

    NASA Technical Reports Server (NTRS)

    Biaglow, James A.

    1995-01-01

    Tensile data were obtained from four different types of rhenium at ambient and elevated temperatures. The four types of rhenium included chemical vapor deposition (CVD) and three powder metallurgy (PM) types, i.e., rolled sheet and pressed and sintered bars, with and without hot isostatic pressure (HIP) treatment. Results revealed a wide range of values with ultimate strengths at ambient temperatures varying from 663 MPa for CVD rhenium to 943 MPa for rolled sheet. A similar spread was also obtained for material tested at 1088 K and 1644 K. The wide variance observed with the different materials indicated that the rhenium manufacturing process, material composition and prior handling strongly dictated its properties. In addition to tensile properties, CVD, pressed and sintered material and HIP rhenium successfully completed 100 cycles of low cycle fatigue. Creep data were also obtained showing that CVD and pressed and sintered rhenium could sustain five hours of testing under a tension of 27.5 MPa at 1922 K.

  4. Rhenium material properties

    SciTech Connect

    Biaglow, J.A.

    1995-09-01

    Tensile data were obtained from four different types of rhenium at ambient and elevated temperatures. The four types of rhenium included chemical vapor deposition (CVD) and three powder metallurgy (PM) types, i.e., rolled sheet and pressed and sintered bars, with and without hot isostatic pressure (HIP) treatment. Results revealed a wide range of values with ultimate strengths at ambient temperatures varying from 663 MPa for CVD rhenium to 943 MPa for rolled sheet. A similar spread was also obtained for material tested at 1088 K and 1644 K. The wide variance observed with the different materials indicated that the rhenium manufacturing process, material composition and prior handling strongly dictated its properties. In addition to tensile properties, CVD, pressed and sintered material and HIP rhenium successfully completed 100 cycles of low cycle fatigue. Creep data were also obtained showing that CVD and pressed and sintered rhenium could sustain five hours of testing under a tension of 27.5 MPa at 1922 K.

  5. Finite element modelling of the actual structure of cellular materials determined by X-ray tomography

    SciTech Connect

    Youssef, S. . E-mail: souhail.youssef@insa-lyon.fr; Maire, E.; Gaertner, R.

    2005-02-01

    The initial microstructure and local deformation mechanisms of a polyurethane foam during a compression test are investigated by means of X-ray microtomography. A methodology to mesh the actual solid volume is described. The polymer material behaviour is assumed to be elastoplastic. A predictive finite element modelling of the mechanical behaviour of cellular materials is then implemented. The validation of the modelling procedure is performed in relation to the macroscopic mechanical response as well as to the local deformation mechanisms observed during the experiments.

  6. Materials properties data base computerization

    NASA Technical Reports Server (NTRS)

    Baur, R. G.; Donthnier, M. L.; Moran, M. C.; Mortman, I.; Pinter, R. S.

    1984-01-01

    Material property data plays a key role in the design of jet engine components. Consistency, accuracy and efficient use of material property data is of prime importance to the engineering community. The system conception, development, implementation, and future plans for computer software that captures the Material Properties Handbook into a scientific data base are described. The engineering community is given access to raw data and property curves, display of multiple curves for material evaluation and selection, direct access by design analysis computer programs, display of the material specification, and a historical repository for the material evolution. The impact of this activity includes significant productivity gains and cost reductions; all users have access to the same information nd provides consistent, rapid response to the needs of the engineering community. Future plans include incorporating the materials properties data base into a network environment to access information from other data bases and download information to engineering work stations.

  7. Correlation of ideal and actual shear strengths of metals with their friction properties

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1981-01-01

    The relation between the ideal and actual shear strengths and friction properties of clean metals in contact with clean diamond, boron nitride, silicon carbide, manganese-zinc ferrite, and the metals themselves in vacuum is discussed. An estimate of the ideal shear strength for metals is obtained from the shear modulus, the repeat distance of atoms in the direction of shear of the metal, and the interplanar spacing of the shearing planes. The coefficient of friction for metals is shown to be correlated with both the ideal and actual shear strength of metals. The higher the strength of the metal, the lower the coefficient of friction occurs.

  8. Mechanical Properties of MEMS Materials

    DTIC Science & Technology

    2004-03-01

    thermal strain for polysilicon (data points) compared with bulk silicon (Thermophysical Properties of Matter, Volume 13, Y. S. Touloukian , Editor...AFRL-IF-RS-TR-2004-76 Final Technical Report March 2004 MECHANICAL PROPERTIES OF MEMS MATERIALS Johns Hopkins University...TITLE AND SUBTITLE MECHANICAL PROPERTIES OF MEMS MATERIALS 6. AUTHOR(S) W. N. Sharpe, Jr., K. J. Hemker - Dept of Mechanical Engineering R. L

  9. Properties of aircraft tire materials

    NASA Technical Reports Server (NTRS)

    Dodge, Richard N.; Clark, Samuel K.

    1988-01-01

    A summary is presented of measured elastomeric composite response suitable for linear structural and thermoelastic analysis in aircraft tires. Both real and loss properties are presented for a variety of operating conditions including the effects of temperature and frequency. Suitable micro-mechanics models are used for predictions of these properties for other material combinations and the applicability of laminate theory is discussed relative to measured values.

  10. Satellite material contaminant optical properties

    NASA Technical Reports Server (NTRS)

    Wood, B. E.; Bertrand, W. T.; Seiber, B. L.; Kiech, E. L.; Falco, P. M.; Holt, J. D.

    1990-01-01

    The Air Force Wright Research and Development Center and the Arnold Engineering Development Center are continuing a program for measuring optical effects of satellite material outgassing products on cryo-optic surfaces. Presented here are infrared (4000 to 700 cm(-1)) transmittance data for contaminant films condensed on a 77 K geranium window. From the transmittance data, the contaminant film refractive and absorptive indices (n, k) were derived using an analytical thin-film interference model with a nonlinear least-squares algorithm. To date 19 materials have been studied with the optical contents determined for 13 of those. The materials include adhesives, paints, composites, films, and lubricants. This program is continuing and properties for other materials will be available in the future.

  11. Dynamic properties of ceramic materials

    SciTech Connect

    Grady, D.E.; Wise, J.L.

    1993-09-01

    Controlled impact methods have been employed to obtain dynamic response properties of armor materials. Experimental data have been obtained for high-strength ceramics. Continued analysis of time-resolved velocity interferometer measurements has produced systematic material-property data for Hugoniot and release response, initial and post-yield strength, pressure-induced phase transformation, and dynamic fracture strength. A new technique has been developed to measure hydrodynamic properties of ceramic through shock-wave experiments on metal-ceramic composites and data obtained for silicon carbide. Additional data on several titanium diboride ceramics and high-quality aluminum oxide ceramic have been acquired, and issues regarding the influence of microstructure on dynamic properties have emerged. Comparison of dynamic (Hugoniot elastic limit) strength and indentation hardness data has been performed and important correlations revealed. Innovative impact experiments on confined and unconfined alumina rods using axial and transverse VISAR diagnostics have been demonstrated which permit acquisition of multiaxial dynamic response data. Dynamic failure properties of a high-density aluminosilicate glass, similar in composition to the intergranular glassy phase of some aluminas, have been investigated with regard to yield, spall, and failure-wave propagation.

  12. Thermoelectric properties of correlated materials

    NASA Astrophysics Data System (ADS)

    Tomczak, Jan; Haule, Kristjan; Miyake, Takashi; Georges, Antoine; Kotliar, Gabriel

    2011-03-01

    The discovery of large Seebeck coefficients in transition metal compounds such as FeSi, FeSb2, or the iron pnictides, has stirred renewed interest in the potential merits of electronic correlation effects for thermoelectric properties. The notorious sensitivity in this class of materials to small changes in composition (doping, chemical pressure) and external stimuli (temperature, pressure), makes a reliable and, possibly, predictive description cumbersome, while at the same time providing an arena of possibilities in the search for high performance thermoelectrics. Based on state-of-the-art electronic structure methods (density functional theory with the dynamical mean field theory) we here compute the thermoelectric response for several of the above mentioned exemplary materials from first principles. With the ultimate goal to understand the origin of a large thermoelectricity in these systems, we discuss various many-body renormalizations, and identify correlation controlled ingredients that are pivotal for thermopower enhancements.

  13. `PROBABILISTIC Knowledge' as `OBJECTIVE Knowledge' in Quantum Mechanics: Potential Immanent Powers Instead of Actual Properties

    NASA Astrophysics Data System (ADS)

    Ronde, Christian De

    In classical physics, probabilistic or statistical knowledge has been always related to ignorance or inaccurate subjective knowledge about an actual state of affairs. This idea has been extended to quantum mechanics through a completely incoherent interpretation of the Fermi-Dirac and Bose-Einstein statistics in terms of "strange" quantum particles. This interpretation, naturalized through a widespread "way of speaking" in the physics community, contradicts Born's physical account of Ψ as a "probability wave" which provides statistical information about outcomes that, in fact, cannot be interpreted in terms of `ignorance about an actual state of affairs'. In the present paper we discuss how the metaphysics of actuality has played an essential role in limiting the possibilities of understating things differently. We propose instead a metaphysical scheme in terms of immanent powers with definite potentia which allows us to consider quantum probability in a new light, namely, as providing objective knowledge about a potential state of affairs.

  14. Mechanical properties of some materials used in airplane construction

    NASA Technical Reports Server (NTRS)

    Wolff, E B; Van Ewijk, L J G

    1928-01-01

    Since lightness is desirable in airplane construction, greater stresses must be tolerated than in other kinds of construction. It is therefore necessary to have a more accurate knowledge of the greatest stresses that may occur and of the actual properties of the materials used. The Aeronautic Research Laboratories took the limit of elasticity as the basis of the strength calculations. Many tests were made of different steels, woods, aluminum alloys, and fabrics.

  15. Studies of molecular properties of polymeric materials

    NASA Technical Reports Server (NTRS)

    Harries, W. L.; Long, Sheila Ann T.; Long, Edward R., Jr.

    1990-01-01

    Aerospace environment effects (high energy electrons, thermal cycling, atomic oxygen, and aircraft fluids) on polymeric and composite materials considered for structural use in spacecraft and advanced aircraft are examined. These materials include Mylar, Ultem, and Kapton. In addition to providing information on the behavior of the materials, attempts are made to relate the measurements to the molecular processes occurring in the material. A summary and overview of the technical aspects are given along with a list of the papers that resulted from the studies. The actual papers are included in the appendices and a glossary of technical terms and definitions is included in the front matter.

  16. Property Data Summaries for Advanced Materials

    National Institute of Standards and Technology Data Gateway

    SRD 150 NIST Property Data Summaries for Advanced Materials (Web, free access)   Property Data Summaries are topical collections of property values derived from surveys of published data. Thermal, mechanical, structural, and chemical properties are included in the collections.

  17. Dynamic Deformation Properties of Energetic Composite Materials

    DTIC Science & Technology

    2002-12-01

    the dynamic mechanical properties and detonation of energetic materials. It also included some preliminary data on the effect of particle size on the...study of the dynamic mechanical properties and detonation of energetic materials. It also included some preliminary data on the effect of particle size...qualitative only. 33 5. DEFLAGRATION-TO- DETONATION (DDT) STUDIES As part of an on-going programme to investigate the properties of ultrafine energetic

  18. Physical Property and Rheological Testing of Actual Transuranic Waste from Hanford Single-Shell Tanks

    SciTech Connect

    Tingey, Joel M. ); Gao, Johnway ); Delegard, Calvin H. ); Bagaasen, Larry M. ); Wells, Beric E. )

    2003-08-25

    Composites of sludge from Hanford tanks 241-B-203 (B-203), 241-T-203 (T-203), 241-T-204 (T-204), and 241-T-110 (T-110) were prepared at the Hanford 222-S Laboratory and transferred to the Radiochemical Processing Laboratory at the Pacific Northwest National Laboratory (PNNL) for measurement of the composites' physical properties. These tank composites were prepared from core samples retieved from these tanks. These core samples may not be representative of the entire contents of the tank but provide some indication of the properties of the waste in these underground storage tanks. Dilutions in water were prepared from the composite samples. The measurements included paint filter tests, viscosity, shear strength, settling and centrifuging behavior, a qualitative test of stickiness, total solids concentration, and extrusion tests to estimate shear strength.

  19. Individual actual or perceived property flood risk: did it predict evacuation from Hurricane Isabel in North Carolina, 2003?

    PubMed

    Horney, Jennifer A; Macdonald, Pia D M; Van Willigen, Marieke; Berke, Philip R; Kaufman, Jay S

    2010-03-01

    Individual perception of risk has consistently been considered an important determinant of hurricane evacuation in published studies and reviews. Adequate risk assessment is informed by environmental and social cues, as well as evacuation intentions and past disaster experience. This cross-sectional study measured perceived flood risk of 570 residents of three coastal North Carolina counties, compared their perception with actual risk determined by updated flood plain maps, and determined if either was associated with evacuation from Hurricane Isabel in 2003. Census blocks were stratified by flood zone and 30 census blocks were randomly selected from each flood zone. Seven interviews were conducted at random locations within selected blocks. Bivariate and multivariable analyses were conducted to produce crude and adjusted risk differences. Neither the designated flood zone of the parcel where the home was located nor the residents' perceived flood risk was associated with evacuation from Hurricane Isabel in the bivariate analysis. In the multivariable analysis, intention to evacuate and home type were important confounders of the association between actual risk and evacuation. The belief that one is at high risk of property damage or injury is important in evacuation decision making. However, in this study, while coastal residents' perceived risk of flooding was correlated with their actual flood risk, neither was associated with evacuation. These findings provide important opportunities for education and intervention by policymakers and authorities to improve hurricane evacuation rates and raise flood risk awareness.

  20. Dynamic properties of ceramic materials

    SciTech Connect

    Grady, D.E.

    1995-02-01

    The present study offers new data and analysis on the transient shock strength and equation-of-state properties of ceramics. Various dynamic data on nine high strength ceramics are provided with wave profile measurements, through velocity interferometry techniques, the principal observable. Compressive failure in the shock wave front, with emphasis on brittle versus ductile mechanisms of deformation, is examined in some detail. Extensive spall strength data are provided and related to the theoretical spall strength, and to energy-based theories of the spall process. Failure waves, as a mechanism of deformation in the transient shock process, are examined. Strength and equation-of-state analysis of shock data on silicon carbide, boron carbide, tungsten carbide, silicon dioxide and aluminum nitride is presented with particular emphasis on phase transition properties for the latter two. Wave profile measurements on selected ceramics are investigated for evidence of rate sensitive elastic precursor decay in the shock front failure process.

  1. Mechanical Properties of Energetic Materials

    DTIC Science & Technology

    1977-01-01

    the fact that it is often not possible to grow large single crystals , and in addition safety considerations require that only small amounts of material... crystallization from acetone and aqueous ammonia soluions respectively. A diffusion technique was used to grow single crystals of a-PbN6. All the...EXPLOSIVES (a) Drop-weight impact Discussion (b) Particle impact; the role of localized plastic flow Initiation results (i) Single crystals wlt &t Po--I Duf Sd

  2. Properties of doped semiconducting materials

    NASA Astrophysics Data System (ADS)

    Zemskov, V. S.

    The papers contained in this volume focus on the physicochemical principles of the doping of semiconductor materials. Topics discussed include impurity atoms and atomic levels, phase diagrams of the semiconductor-dopant system, distribution coefficients, dopant diffusion, and macro- and microsegregation of doping components. Attention is also given to the interaction between dopant atoms and lattice defects and the structure and decomposition of semiconductor-dopant solid solutions. Experimental data are presented for single crystals and epitaxial films of III-V, IV-VI, and II-VI semiconductors.

  3. Characterizing the Mechanical Properties of Actual SAC105, SAC305, and SAC405 Solder Joints by Digital Image Correlation

    NASA Astrophysics Data System (ADS)

    Nguyen, T. T.; Yu, D.; Park, S. B.

    2011-06-01

    This paper presents the characterization of the mechanical properties of three lead-free solder alloys 95.5Sn-4.0Ag-0.5Cu (SAC405), 96.5Sn-3.0Ag-0.5Cu (SAC305), and 98.5Sn-1.0Ag-0.5Cu (SAC105) at the solder joint scale. Several actual ChipArray ® ball grid array (CABGA) packages were cross-sectioned, polished, and used as test vehicles. Compressive tests were performed using a nanocharacterization system over the temperature range of 25°C to 105°C. Images of the cross-sectioned solder joints were recorded by microscope during the tests. The recorded images were then processed by using a digital image correlation (DIC) program to calculate the displacement and strain fields on the solder joints. Finite-element method (FEM) modeling was used to extract the Poisson's ratio, Young's modulus, and coefficient of thermal expansion (CTE) of the solder alloys over the temperature range. The methodology developed in this paper enables characterization of the mechanical properties of the actual solder joints at low strain range with high accuracy.

  4. Spacecraft Charging Sensitivity to Material Properties

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Edwards, David L.

    2015-01-01

    Evaluating spacecraft charging behavior of a vehicle in the space environment requires knowledge of the material properties relevant to the charging process. Implementing surface and internal charging models requires a user to specify a number of material electrical properties including electrical resistivity parameters (dark and radiation induced), dielectric constant, secondary electron yields, photoemission yields, and breakdown strength in order to correctly evaluate the electric discharge threat posed by the increasing electric fields generated by the accumulating charge density. In addition, bulk material mass density and/or chemical composition must be known in order to analyze radiation shielding properties when evaluating internal charging. We will first describe the physics of spacecraft charging and show how uncertainties in material properties propagate through spacecraft charging algorithms to impact the results obtained from charging models. We then provide examples using spacecraft charging codes to demonstrate their sensitivity to material properties. The goal of this presentation is to emphasize the importance in having good information on relevant material properties in order to best characterize on orbit charging threats.

  5. Quantitative ultrasonic evaluation of mechanical properties of engineering materials

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1978-01-01

    Current progress in the application of ultrasonic techniques to nondestructive measurement of mechanical strength properties of engineering materials is reviewed. Even where conventional NDE techniques have shown that a part is free of overt defects, advanced NDE techniques should be available to confirm the material properties assumed in the part's design. There are many instances where metallic, composite, or ceramic parts may be free of critical defects while still being susceptible to failure under design loads due to inadequate or degraded mechanical strength. This must be considered in any failure prevention scheme that relies on fracture analysis. This review will discuss the availability of ultrasonic methods that can be applied to actual parts to assess their potential susceptibility to failure under design conditions.

  6. Dynamic strength properties of permeable fibrous materials

    SciTech Connect

    Ivanchuk, A.A.; Karpinos, D.M.; Kondrat'ev, Yu.V.; Nezhentsev, Yu.I.; Rutkovskii, A.E.; Bikernieks, V.Ya.; Peterson, O.O.; Pekhovich, V.A.

    1986-11-01

    The authors assess the porosity and fracture properties of porous samples of molybdenum, tungsten, and steel-Kh18N9T through a variety of mechanical tests including impact, bend, and notch. They study the interplay and interdependence of these properties in view of looking for materials suited for processes of transpiration cooling and sound and vibration damping.

  7. Advanced processing and properties of superhard materials

    SciTech Connect

    Narayan, J.

    1995-06-01

    The author reviews fundamental aspects of Superhard Materials with hardness close to that of diamond. These materials include cubic boron nitride (c-BN), carbon nitride ({beta}-C{sub 3}N{sub 4}) and diamondlike carbon. Since these materials are metastable at normal temperatures and pressures, novel methods of synthesis and processing of these materials are required. This review focuses on synthesis and processing, detailed materials characterization and properties of c-BN and {beta}C{sub 3}N{sub 4} and diamondlike carbon films.

  8. Mechanical Properties of Infrared Transmitting Materials

    DTIC Science & Technology

    1978-01-01

    72-0170, 1972. Touloukian , Y. S., Ed., "Thermophysical Properties of Matter" series. A Comprehensive Compilation of Data by the Thermophysical...Research Projects Agency, 675 North Randolph Street, Arlington, VA 22203-2114. DARPA ltr, 20 Mar 1980 RIA-78-0291 2 01010695 2 Iviecnanica Properties of...336 2. GOVT ACCESSION NO 3. RECIPIENT’S CATALOG NUMBER 4. TITLE (end Subtitle) Mechanical Properties of Infrared Transmitting Materials 5

  9. An apparatus for measuring the rheological properties of dental materials.

    PubMed

    Combe, E C; Moser, J B

    1976-01-01

    An indirect extrusion capillary viscometer has been developed. This has been tested for nonsetting Newtonian fluids and was found to give results close to, but slightly lower than the actual viscosity. The same apparatus has been successfully applied to a non-Newtonian fluid to determine the dependence of viscosity on shear rate. The technique described should meet the requirements for assessing the rheological characteristics important in the mixing and setting of dental materials. The developed viscometer must be coupled with a sensitive mechanical testing machine capable of an adequate range of crosshead speeds that can be changed rapidly. By obtaining force vs time curves at different shear rates for setting materials, viscosity can be calculated as a function of time. Also, the viscosity at any given time during the setting process can be calculated as a function of shear rate. This chould be of aid in the interpretation of changes in rheological properties during setting of dental materials.

  10. From Microstructures to Predict Properties of Materials

    NASA Astrophysics Data System (ADS)

    Wang, Ke-Gang

    2010-03-01

    Understanding the precise and fundamental manner in which materials structures (nanostructures or microstructures) and their evolution influences properties and service lifetimes of advanced materials profoundly impacts material design and today materials design plays an increasingly important rôle in many engineering applications. Linking structures to properties and predicting properties of materials is fundamental step for materials design. First, a framework of applications of multiscale modeling to property prediction of advanced materials will be briefly presented. As an example, a methodology will be shown to link micro-scale to the continuum scale, integrating microstructure modeling with the large Thermo-Calc^ database. This paradigm was successfully applied to the case of Fe-12Ni-6Mn maraging steel. Next, methodology for integrating first-principle calculation into simulations of microstructure evolution will be reviewed. Our methods are sufficiently reliable to permit control and fabrication of quantum-dots structures, nanocrystals, and particle-reinforced nanocomposites, as well as assist in the predictive behavior of macro-scale colloids, aerosols, and other soft matter systems.

  11. Thermal protection materials: Thermophysical property data

    NASA Technical Reports Server (NTRS)

    Williams, S. D.; Curry, Donald M.

    1992-01-01

    This publication presents a thermophysical property survey on materials that could potentially be used for future spacecraft thermal protection systems (TPS). This includes data that was reported in the 1960's as well as more current information reported through the 1980's. An attempt was made to cite the manufacturers as well as the data source in the bibliography. This volume represents an attempt to provide in a single source a complete set of thermophysical data on a large variety of materials used in spacecraft TPS analysis. The property data is divided into two categories: ablative and reusable. The ablative materials have been compiled into twelve categories that are descriptive of the material composition. An attempt was made to define the Arrhenius equation for each material although this data may not be available for some materials. In a similar manner, char data may not be available for some of the ablative materials. The reusable materials have been divided into three basic categories: thermal protection materials (such as insulators), adhesives, and structural materials.

  12. Tactual perception of liquid material properties.

    PubMed

    Bergmann Tiest, Wouter M

    2015-04-01

    In this paper, studies into the tactual perception of two liquid material properties, viscosity and wetness, are reviewed. These properties are very relevant in the context of interaction with liquids, both real, such as cosmetics or food products, and simulated, as in virtual reality or teleoperation. Both properties have been the subject of psychophysical characterisation in terms of magnitude estimation experiments and discrimination experiments, which are discussed. For viscosity, both oral and manual perception is discussed, as well as the perception of the viscosity of a mechanical system. For wetness, the relevant cues are identified and factors affecting perception are discussed. Finally, some conclusions are drawn pertaining to both properties.

  13. Accelerating materials property predictions using machine learning.

    PubMed

    Pilania, Ghanshyam; Wang, Chenchen; Jiang, Xun; Rajasekaran, Sanguthevar; Ramprasad, Ramamurthy

    2013-09-30

    The materials discovery process can be significantly expedited and simplified if we can learn effectively from available knowledge and data. In the present contribution, we show that efficient and accurate prediction of a diverse set of properties of material systems is possible by employing machine (or statistical) learning methods trained on quantum mechanical computations in combination with the notions of chemical similarity. Using a family of one-dimensional chain systems, we present a general formalism that allows us to discover decision rules that establish a mapping between easily accessible attributes of a system and its properties. It is shown that fingerprints based on either chemo-structural (compositional and configurational information) or the electronic charge density distribution can be used to make ultra-fast, yet accurate, property predictions. Harnessing such learning paradigms extends recent efforts to systematically explore and mine vast chemical spaces, and can significantly accelerate the discovery of new application-specific materials.

  14. Visual and haptic representations of material properties.

    PubMed

    Baumgartner, Elisabeth; Wiebel, Christiane B; Gegenfurtner, Karl R

    2013-01-01

    Research on material perception has received an increasing amount of attention recently. Clearly, both the visual and the haptic sense play important roles in the perception of materials, yet it is still unclear how both senses compare in material perception tasks. Here, we set out to investigate the degree of correspondence between the visual and the haptic representations of different materials. We asked participants to both categorize and rate 84 different materials for several material properties. In the haptic case, participants were blindfolded and asked to assess the materials based on haptic exploration. In the visual condition, participants assessed the stimuli based on their visual impressions only. While categorization performance was less consistent in the haptic condition than in the visual one, ratings correlated highly between the visual and the haptic modality. PCA revealed that all material samples were similarly organized within the perceptual space in both modalities. Moreover, in both senses the first two principal components were dominated by hardness and roughness. These are two material features that are fundamental for the haptic sense. We conclude that although the haptic sense seems to be crucial for material perception, the information it can gather alone might not be quite fine-grained and rich enough for perfect material recognition.

  15. ESTEC wiring test programme materials related properties

    NASA Technical Reports Server (NTRS)

    Judd, M. D.

    1994-01-01

    Electrical wires are considered as EEE parts and are covered within the ESA SCC specification series (ESA SCC 3901/XXX). This specification defines the principal properties of the wires including insulation/lay-up and electrical properties. Some additional space related materials requirements are also included, requirements such as outgassing and silver plating thickness. If a project has additional materials requirements over and above those covered by the relevant SCC specification, then additional testing is required. This is especially true for crewed spacecraft. The following topics are discussed in this context: additional requirements for manned spacecraft; flammability; arc tracking; thermal decomposition; microbial surface growth; and ageing.

  16. Upgrades to the TPSX Material Properties Database

    NASA Technical Reports Server (NTRS)

    Squire, T. H.; Milos, F. S.; Partridge, Harry (Technical Monitor)

    2001-01-01

    The TPSX Material Properties Database is a web-based tool that serves as a database for properties of advanced thermal protection materials. TPSX provides an easy user interface for retrieving material property information in a variety of forms, both graphical and text. The primary purpose and advantage of TPSX is to maintain a high quality source of often used thermal protection material properties in a convenient, easily accessible form, for distribution to government and aerospace industry communities. Last year a major upgrade to the TPSX web site was completed. This year, through the efforts of researchers at several NASA centers, the Office of the Chief Engineer awarded funds to update and expand the databases in TPSX. The FY01 effort focuses on updating correcting the Ames and Johnson thermal protection materials databases. In this session we will summarize the improvements made to the web site last year, report on the status of the on-going database updates, describe the planned upgrades for FY02 and FY03, and provide a demonstration of TPSX.

  17. Calibrating Nonlinear Soil Material Properties for Seismic Analysis Using Soil Material Properties Intended for Linear Analysis

    SciTech Connect

    Spears, Robert Edward; Coleman, Justin Leigh

    2015-08-01

    Seismic analysis of nuclear structures is routinely performed using guidance provided in “Seismic Analysis of Safety-Related Nuclear Structures and Commentary (ASCE 4, 1998).” This document, which is currently under revision, provides detailed guidance on linear seismic soil-structure-interaction (SSI) analysis of nuclear structures. To accommodate the linear analysis, soil material properties are typically developed as shear modulus and damping ratio versus cyclic shear strain amplitude. A new Appendix in ASCE 4-2014 (draft) is being added to provide guidance for nonlinear time domain SSI analysis. To accommodate the nonlinear analysis, a more appropriate form of the soil material properties includes shear stress and energy absorbed per cycle versus shear strain. Ideally, nonlinear soil model material properties would be established with soil testing appropriate for the nonlinear constitutive model being used. However, much of the soil testing done for SSI analysis is performed for use with linear analysis techniques. Consequently, a method is described in this paper that uses soil test data intended for linear analysis to develop nonlinear soil material properties. To produce nonlinear material properties that are equivalent to the linear material properties, the linear and nonlinear model hysteresis loops are considered. For equivalent material properties, the shear stress at peak shear strain and energy absorbed per cycle should match when comparing the linear and nonlinear model hysteresis loops. Consequently, nonlinear material properties are selected based on these criteria.

  18. Thermophysical Properties of Selected Aerospace Materials. Part 2. Thermophysical Properties of Seven Materials

    DTIC Science & Technology

    1977-01-01

    THERMOPHYSICAL PROPERTIES OF SELECTED MATERIALS 10 3.1. Aluminum Alloy 2024. . 10 a. Thermal Conductivity 11 b. Specific...figure are tabulated. 10 ■ I 3. THERMOPHYSICAL PROPERTIES OF SELECTED MATERIALS 3.1. Aluminum Alloy 2024 Aluminum Alloy 2024, formerly known... alloy does not have as good corrosion resistance properties as most other aluminum alloys and under certain conditions may be subjected to

  19. Systems and methods for predicting materials properties

    DOEpatents

    Ceder, Gerbrand; Fischer, Chris; Tibbetts, Kevin; Morgan, Dane; Curtarolo, Stefano

    2007-11-06

    Systems and methods for predicting features of materials of interest. Reference data are analyzed to deduce relationships between the input data sets and output data sets. Reference data includes measured values and/or computed values. The deduced relationships can be specified as equations, correspondences, and/or algorithmic processes that produce appropriate output data when suitable input data is used. In some instances, the output data set is a subset of the input data set, and computational results may be refined by optionally iterating the computational procedure. To deduce features of a new material of interest, a computed or measured input property of the material is provided to an equation, correspondence, or algorithmic procedure previously deduced, and an output is obtained. In some instances, the output is iteratively refined. In some instances, new features deduced for the material of interest are added to a database of input and output data for known materials.

  20. Electromagnetic properties of material coated surfaces

    NASA Technical Reports Server (NTRS)

    Beard, L.; Berrie, J.; Burkholder, R.; Dominek, A.; Walton, E.; Wang, N.

    1989-01-01

    The electromagnetic properties of material coated conducting surfaces were investigated. The coating geometries consist of uniform layers over a planar surface, irregularly shaped formations near edges and randomly positioned, electrically small, irregularly shaped formations over a surface. Techniques to measure the scattered field and constitutive parameters from these geometries were studied. The significance of the scattered field from these geometries warrants further study.

  1. 14 CFR 25.613 - Material strength properties and material design values.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Material strength properties and material... § 25.613 Material strength properties and material design values. (a) Material strength properties must..., compliance must be shown by selecting material design values which assure material strength with...

  2. 14 CFR 25.613 - Material strength properties and material design values.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Material strength properties and material... § 25.613 Material strength properties and material design values. (a) Material strength properties must..., compliance must be shown by selecting material design values which assure material strength with...

  3. 14 CFR 25.613 - Material strength properties and material design values.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Material strength properties and material... § 25.613 Material strength properties and material design values. (a) Material strength properties must..., compliance must be shown by selecting material design values which assure material strength with...

  4. 14 CFR 25.613 - Material strength properties and material design values.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Material strength properties and material... § 25.613 Material strength properties and material design values. (a) Material strength properties must..., compliance must be shown by selecting material design values which assure material strength with...

  5. 14 CFR 25.613 - Material strength properties and material design values.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Material strength properties and material... § 25.613 Material strength properties and material design values. (a) Material strength properties must..., compliance must be shown by selecting material design values which assure material strength with...

  6. Antibacterial properties of temporary filling materials.

    PubMed

    Slutzky, Hagay; Slutzky-Goldberg, I; Weiss, E I; Matalon, S

    2006-03-01

    The purpose of this study was to investigate the antibacterial properties of temporary fillings. The direct contact test (DCT) was used to evaluate the antibacterial properties of Revoltek LC, Tempit, Systemp inlay, and IRM. These were tested in contact with Streptococcus mutans and Enterococcus faecalis. The materials were examined immediately after setting, 1, 7, 14, and 30 days after aging in phosphate buffered saline (PBS). Statistical analysis included two-way ANOVA, one-way ANOVA, and Tukey multiple comparison. Systemp inlay, Tempit, and IRM exhibited antibacterial properties when in contact with S. mutans for at least 7 days, Tempit and IRM sustained this ability for at least 14 days. When in contact with E. faecalis Tempit and IRM were antibacterial immediately after setting, IRM sustained this ability for at least 1 day. Our study suggests that the difference in temporary filling materials may influence which microorganism will be able to invade the root canal system.

  7. Space-Time Transfinite Interpolation of Volumetric Material Properties.

    PubMed

    Sanchez, Mathieu; Fryazinov, Oleg; Adzhiev, Valery; Comninos, Peter; Pasko, Alexander

    2015-02-01

    The paper presents a novel technique based on extension of a general mathematical method of transfinite interpolation to solve an actual problem in the context of a heterogeneous volume modelling area. It deals with time-dependent changes to the volumetric material properties (material density, colour, and others) as a transformation of the volumetric material distributions in space-time accompanying geometric shape transformations such as metamorphosis. The main idea is to represent the geometry of both objects by scalar fields with distance properties, to establish in a higher-dimensional space a time gap during which the geometric transformation takes place, and to use these scalar fields to apply the new space-time transfinite interpolation to volumetric material attributes within this time gap. The proposed solution is analytical in its nature, does not require heavy numerical computations and can be used in real-time applications. Applications of this technique also include texturing and displacement mapping of time-variant surfaces, and parametric design of volumetric microstructures.

  8. Properties of five toughened matrix composite materials

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J.; Dow, Marvin B.

    1992-01-01

    The use of toughened matrix composite materials offers an attractive solution to the problem of poor damage tolerance associated with advanced composite materials. In this study, the unidirectional laminate strengths and moduli, notched (open-hole) and unnotched tension and compression properties of quasi-isotropic laminates, and compression-after-impact strengths of five carbon fiber/toughened matrix composites, IM7/E7T1-2, IM7/X1845, G40-800X/5255-3, IM7/5255-3, and IM7/5260 have been evaluated. The compression-after-impact (CAI) strengths were determined primarily by impacting quasi-isotropic laminates with the NASA Langley air gun. A few CAI tests were also made with a drop-weight impactor. For a given impact energy, compression after impact strengths were determined to be dependent on impactor velocity. Properties and strengths for the five materials tested are compared with NASA data on other toughened matrix materials (IM7/8551-7, IM6/1808I, IM7/F655, and T800/F3900). This investigation found that all five materials were stronger and more impact damage tolerant than more brittle carbon/epoxy composite materials currently used in aircraft structures.

  9. Thermal expansion properties of composite materials

    NASA Technical Reports Server (NTRS)

    Johnson, R. R.; Kural, M. H.; Mackey, G. B.

    1981-01-01

    Thermal expansion data for several composite materials, including generic epoxy resins, various graphite, boron, and glass fibers, and unidirectional and woven fabric composites in an epoxy matrix, were compiled. A discussion of the design, material, environmental, and fabrication properties affecting thermal expansion behavior is presented. Test methods and their accuracy are discussed. Analytical approaches to predict laminate coefficients of thermal expansion (CTE) based on lamination theory and micromechanics are also included. A discussion is included of methods of tuning a laminate to obtain a near-zero CTE for space applications.

  10. Temperature dependent phonon properties of thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Hellman, Olle; Broido, David; Fultz, Brent

    2015-03-01

    We present recent developments using the temperature dependent effective potential technique (TDEP) to model thermoelectric materials. We use ab initio molecular dynamics to generate an effective Hamiltonian that reproduce neutron scattering spectra, thermal conductivity, phonon self energies, and heat capacities. Results are presented for (among others) SnSe, Bi2Te3, and Cu2Se proving the necessity of careful modelling of finite temperature properties for strongly anharmonic materials. Supported by the Swedish Research Council (VR) Project Number 637-2013-7296.

  11. Optical properties of photochromic and thermochromic materials

    NASA Astrophysics Data System (ADS)

    Mo, Yeon-Gon

    The optical properties of some thin film materials can be altered by an external stimulus. Photochromic and thermochromic materials, including inorganic and organic substances, have optical properties that can be changed in a reversible manner by irradiation and temperature respectively. These materials can be used in applications such as radiation or thermal sensors, information storage devices and smart window applications in buildings and cars. In this work, major effort was concentrated on passive thermal control coatings based on photochromic and thermochromic materials. The inorganic photochromic materials were based on tungsten and molybdenum oxide films and the organic photochromic materials included spiropyrans and spirooxazines. In addition, photochromic composite organic-inorganic films and thermochromic vanadium oxide films were prepared. The samples were synthesized using sputtering, sol-gel process, and thermal oxidation. The optical properties were investigated for the first time by ultraviolet/visible/infrared (UV/VIS/IR) spectroscopic ellipsometry, attenuated total reflection (ATR) infrared ellipsometry, spectrophotometry, and X-ray diffraction (XRD). For amorphous oxide films, the oxygen deficiency was important in determining the photochromic properties of the films. In the mid-infrared region, no photochromism was observed for the films. The optical properties of organic-inorganic composite films changed in the VIS/NIR wavelength region markedly in a reversible process, with UV irradiation. The composite films containing tungsten heteropolyoxometalate (HPOM) showed faster coloration and bleaching than pure tungsten oxide films. The composite films with molybdenum HPOM showed faster coloration and much slower bleaching than tungsten HPOM. The spiropyran and spirooxazine doped polymeric films were investigated for the first time using infrared and ATR ellipsometry. The infrared optical functions obtained by ATR measurements were a little smaller

  12. Magnetic properties of Martian surface material

    NASA Technical Reports Server (NTRS)

    Hargraves, R. B.

    1984-01-01

    The hypothesis that the magnetic properties of the Martian surface material are due to the production of a magnetic phase in the clay mineral nontronite by transient shock heating is examined. In the course of the investigation a magnetic material is produced with rather unusual properties. Heating from 900 C to 1000 C, of natural samples of nontronite leads first to the production of what appears to be Si doped maghemite gamma (-Fe2O3). Although apparently metastable, the growth of gamma -Fe2O3 at these temprtures is unexpected, and its relative persistence of several hours at 1000 C is most surprising. Continued annealing of this material for longer periods promote the crystallization of alpha Fe2O3 and cristobalite (high temperature polymorph of SiO2). All available data correlate this new magnetic material with the cristobalite hence our naming it magnetic ferri cristobalite. Formation of this magnetic cristobalite, however, may require topotactic growth from a smectite precursor.

  13. Acoustical properties of highly porous fibrous materials

    NASA Technical Reports Server (NTRS)

    Lambert, R. F.

    1979-01-01

    Highly porous, fibrous bulk sound absorbing materials are studied with a view toward understanding their acoustical properties and performance in a wide variety of applications including liners of flow ducts. The basis and criteria for decoupling of acoustic waves in the pores of the frame and compressional waves in the frame structure are established. The equations of motion are recast in a form that elucidates the coupling mechanisms. The normal incidence surface impedance and absorption coefficient of two types of Kevlar 29 and an open celled foam material are studied. Experimental values and theoretical results are brought into agreement when the structure factor is selected to provide a fit to the experimental data. A parametric procedure for achieving that fit is established. Both a bulk material quality factor and a high frequency impedance level are required to characterize the real and imaginary part of the surface impedance and absorption coefficient. A derivation of the concepts of equivalent density and dynamic resistance is presented.

  14. Mechanical properties of thermal protection system materials.

    SciTech Connect

    Hardy, Robert Douglas; Bronowski, David R.; Lee, Moo Yul; Hofer, John H.

    2005-06-01

    An experimental study was conducted to measure the mechanical properties of the Thermal Protection System (TPS) materials used for the Space Shuttle. Three types of TPS materials (LI-900, LI-2200, and FRCI-12) were tested in 'in-plane' and 'out-of-plane' orientations. Four types of quasi-static mechanical tests (uniaxial tension, uniaxial compression, uniaxial strain, and shear) were performed under low (10{sup -4} to 10{sup -3}/s) and intermediate (1 to 10/s) strain rate conditions. In addition, split Hopkinson pressure bar tests were conducted to obtain the strength of the materials under a relatively higher strain rate ({approx}10{sup 2} to 10{sup 3}/s) condition. In general, TPS materials have higher strength and higher Young's modulus when tested in 'in-plane' than in 'through-the-thickness' orientation under compressive (unconfined and confined) and tensile stress conditions. In both stress conditions, the strength of the material increases as the strain rate increases. The rate of increase in LI-900 is relatively small compared to those for the other two TPS materials tested in this study. But, the Young's modulus appears to be insensitive to the different strain rates applied. The FRCI-12 material, designed to replace the heavier LI-2200, showed higher strengths under tensile and shear stress conditions. But, under a compressive stress condition, LI-2200 showed higher strength than FRCI-12. As far as the modulus is concerned, LI-2200 has higher Young's modulus both in compression and in tension. The shear modulus of FRCI-12 and LI-2200 fell in the same range.

  15. The role of material properties in adhesion

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1984-01-01

    When two solid surfaces are brought into contact strong adhesive bond forces can develop between the materials. The magnitude of the forces will depend upon the state of the surfaces, cleanliness and the fundamental properties of the two solids, both surface and bulk. Adhesion between solids is addressed from a theoretical consideration of the electronic nature of the surfaces and experimentally relating bond forces to the nature of the interface resulting from solid state contact. Surface properties correlated with adhesion include, atomic or molecular orientation, reconstruction and segregation as well as the chemistry of the surface specie. Where dissimilar solids are in contact the contribution of each is considered as is the role of their interactive chemistry on bond strength. Bulk properties examined include elastic and plastic behavior in the surficial regions, cohesive binding energies, crystal structure, crystallographic orientation and state. Materials examined with respect to interfacial adhesive interactions include metals, alloys, ceramics, polymers and diamond. They are reviewed both in single and polycrystalline form. The surfaces of the contacting solids are studied both in the atomic or molecularly clean state and in the presence of selected surface contaminants.

  16. Synthesis of new materials with properties ameliorated

    NASA Astrophysics Data System (ADS)

    Baira, F.; Benfarhi, S.; Zidani, S.

    2012-09-01

    Cellulose is the most abundant polymer in nature. It is used mainly for the production of paper bet also as a reinforcement in the polymer matrixes[1]. The modification of this polysaccharide presents a great interest, for it is the main constituent of agricultural wastes. It is well known that the microcrystalline cellulose gives, after chemical modification, new biodegradable materials[2], which may be used, for instance, for packaging. The esterification of cellulose necessitates an acid pretreatment which makes hydroxyl groups more accessible by breaking hydrogen bonds. X-rays diffraction analysis showed a feeble diminution of the treated samples cristallinity[3]. Cellulose, activated in this way, is esterified in a classic way in DMF, in the presence of triethylamine, LiCl and acid chloride at 60C° for 24 hours[4]. The obtained ester is precipitated in MeOH. The residue, dissolved in CHCl3, gives after evaporation in the open air, a plastic film surface. The water drop test has shown the hydrophobe properties of the plastic film surface. Our work is the study of the preparation of composite materials from the basis of their derivatives. Well as the study of the photopolymerisation kinetic, and the chemical degradation. The obtained films were analyzed by IR-TF, and the volumetrie[5,6]. As a conclusion, we have prepared composite materials with improved properties with reference to the matrix alone.

  17. Mechanical properties of nanostructure of biological materials

    NASA Astrophysics Data System (ADS)

    Ji, Baohua; Gao, Huajian

    2004-09-01

    Natural biological materials such as bone, teeth and nacre are nanocomposites of protein and mineral with superior strength. It is quite a marvel that nature produces hard and tough materials out of protein as soft as human skin and mineral as brittle as classroom chalk. What are the secrets of nature? Can we learn from this to produce bio-inspired materials in the laboratory? These questions have motivated us to investigate the mechanics of protein-mineral nanocomposite structure. Large aspect ratios and a staggered alignment of mineral platelets are found to be the key factors contributing to the large stiffness of biomaterials. A tension-shear chain (TSC) model of biological nanostructure reveals that the strength of biomaterials hinges upon optimizing the tensile strength of the mineral crystals. As the size of the mineral crystals is reduced to nanoscale, they become insensitive to flaws with strength approaching the theoretical strength of atomic bonds. The optimized tensile strength of mineral crystals thus allows a large amount of fracture energy to be dissipated in protein via shear deformation and consequently enhances the fracture toughness of biocomposites. We derive viscoelastic properties of the protein-mineral nanostructure and show that the toughness of biocomposite can be further enhanced by the viscoelastic properties of protein.

  18. Physical Properties of Synthetic Resin Materials

    NASA Technical Reports Server (NTRS)

    Fishbein, Meyer

    1939-01-01

    A study was made to determine the physical properties of synthetic resins having paper, canvas, and linen reinforcements, and of laminated wood impregnated with a resin varnish. The results show that commercial resins have moduli of elasticity that are too low for structural considerations. Nevertheless, there do exist plastics that have favorable mechanical properties and, with further development, it should be possible to produce resin products that compare favorably with the light-metal alloys. The results obtained from tests on Compound 1840, resin-impregnated wood, show that this material can stand on its own merit by virtue of a compressive strength four times that of the natural wood. This increase in compressive strength was accomplished with an increase of density to a value slightly below three times the normal value and corrected one of the most serious defects of the natural product.

  19. Mechanical properties of dental investment materials.

    PubMed

    Low, D; Swain, M V

    2000-07-01

    Measurement of the elastic modulus (E) of investment materials has been difficult because of their low strength. However, these values are essential for engineering simulation and there are many methods available to assess the elasticity of materials. The present study compared two different methods with one of the methods being non-destructive in nature and can be used for specimens prepared for other tests. Two different types of investment materials were selected, gypsum-and phosphate-bonded. Method 1 is a traditional three-point bending test. Twelve rectangular bars with dimension of (70 x 9 x 3 mm) were prepared and placed on supports 56.8 mm apart. The test was conducted at a cross-head speed of 1 mm/min by use of a universal testing machine. The load applied to the test specimen and the corresponding deflection were measured until the specimen fractured. The E value was calculated from a linear part of the stress-strain plot. Method 2 is an ultra micro-indentation system to determine near surface properties of materials with nanometer resolution. The measurement procedure was programmed such that the specimens were indented with an initial contact force of 5 mN then followed by a maximum force of 500 mN. Measurement consisted of 10 indentations conducted with a spherical stainless steel indenter (R = 250 microm) that were equally spaced (500 microm). The E value rose asymptotically with depth of penetration and would approach the three-point bending test value at approximately four time's maximum contact depth for both materials. Both methods are practical ways of measuring the E of investment materials.

  20. Material properties of the plantar aponeurosis.

    PubMed

    Kitaoka, H B; Luo, Z P; Growney, E S; Berglund, L J; An, K N

    1994-10-01

    Material properties of the plantar aponeurosis were determined by a two-dimensional video tracking method to simultaneously measure the aponeurosis deformation. Failure loads averaged 1189 +/- 244 N and were higher in men. Average stiffness of the intact fascia was 203.7 +/- 50.5 N/mm at a loading rate of 11.12 N/sec and it did not vary significantly for the loading rates of 11.12 to 1112 N/sec. The high tensile loads required for failure were consistent with clinical and biomechanical studies and indicated the importance of the aponeurosis in foot function and arch stability.

  1. Physical Properties of Thin Film Semiconducting Materials

    NASA Astrophysics Data System (ADS)

    Bouras, N.; Djebbouri, M.; Outemzabet, R.; Sali, S.; Zerrouki, H.; Zouaoui, A.; Kesri, N.

    2005-10-01

    The physics and chemistry of semiconducting materials is a continuous question of debate. We can find a large stock of well-known properties but at the same time, many things are not understood. In recent years, porous silicon (PS-Si), diselenide of copper and indium (CuInSe2 or CIS) and metal oxide semiconductors like tin oxide (SnO2) and zinc oxide (ZnO) have been subjected to extensive studies because of the rising interest their potential applications in fields such as electronic components, solar panels, catalysis, gas sensors, in biocompatible materials, in Li-based batteries, in new generation of MOSFETS. Bulk structure and surface and interface properties play important roles in all of these applications. A deeper understanding of these fundamental properties would impact largely on technological application performances. In our laboratory, thin films of undoped and antimony-doped films of tin oxide have been deposited by chemical vapor deposition. Spray pyrolysis was used for ZnO. CIS was prepared by flash evaporation or close-space vapor transport. Some of the deposition parameters have been varied, such as substrate temperature, time of deposition (or anodization), and molar concentration of bath preparation. For some samples, thermal annealing was carried out under oxygen (or air), under nitrogen gas and under vacuum. Deposition and post-deposition parameters are known to strongly influence film structure and electrical resistivity. We investigated the influence of film thickness and thermal annealing on structural optical and electrical properties of the films. Examination of SnO2 by x-ray diffraction showed that the main films are polycrystalline with rutile structure. The x-ray spectra of ZnO indicated a hexagonal wurtzite structure. Characterizations of CIS films with compositional analysis, x-ray diffraction, scanning microscopy, spectrophotometry, and photoluminescence were carried out.

  2. Interdisciplinary research on the nature and properties of ceramic materials

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Several investigations concerning the properties and processing of brittle ceramic materials as related to design considerations are briefly described. Surface characterization techniques, fractography, high purity materials, creep properties, impact and thermal shock resistance, and reaction bonding are discussed.

  3. Material Properties of the Posterior Human Sclera☆

    PubMed Central

    Grytz, Rafael; Fazio, Massimo A.; Girard, Michael J.A.; Libertiaux, Vincent; Bruno, Luigi; Gardiner, Stuart; Girkin, Christopher A.; Downs, J. Crawford

    2013-01-01

    To characterize the material properties of posterior and peripapillary sclera from human donors, and to investigate the macro- and micro-scale strains as potential control mechanisms governing mechanical homeostasis. Posterior scleral shells from 9 human donors aged 57–90 years were subjected to IOP elevations from 5 to 45 mmHg and the resulting full-field displacements were recorded using laser speckle interferometry. Eye-specific finite element models were generated based on experimentally measured scleral shell surface geometry and thickness. Inverse numerical analyses were performed to identify material parameters for each eye by matching experimental deformation measurements to model predictions using a microstructure-based constitutive formulation that incorporates the crimp response and anisotropic architecture of scleral collagen fibrils. The material property fitting produced models that fit both the overall and local deformation responses of posterior scleral shells very well. The nonlinear stiffening of the sclera with increasing IOP was well reproduced by the uncrimping of scleral collagen fibrils, and a circumferentially-aligned ring of collagen fibrils around the scleral canal was predicted in all eyes. Macroscopic in-plane strains were significantly higher in peripapillary region then in the mid-periphery. In contrast, the meso- and micro-scale strains at the collagen network and collagen fibril level were not significantly different between regions. The elastic response of the posterior human sclera can be characterized by the anisotropic architecture and crimp response of scleral collagen fibrils. The similar collagen fibril strains in the peripapillary and mid-peripheral regions support the notion that the scleral collagen architecture including the circumpapillary ring of collagen fibrils evolved to establish optimal load bearing conditions at the collagen fibril level. PMID:23684352

  4. Interdisciplinary research on the nature and properties of ceramic materials

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The advancement of material performance and design methodology as related to brittle materials was investigated. The processing and properties of ceramic materials as related to design requirements was also studied.

  5. Performance evaluation of 24 ion exchange materials for removing cesium and strontium from actual and simulated N-Reactor storage basin water

    SciTech Connect

    Brown, G.N.; Carson, K.J.; DesChane, J.R.; Elovich, R.J.

    1997-09-01

    This report describes the evaluation of 24 organic and inorganic ion exchange materials for removing cesium and strontium from actual and simulated waters from the 100 Area 105 N-Reactor fuel storage basin. The data described in this report can be applied for developing and evaluating ion exchange pre-treatment process flowsheets. Cesium and strontium batch distribution ratios (K{sub d}`s), decontamination factors (DF), and material loadings (mmol g{sup -1}) are compared as a function of ion exchange material and initial cesium concentration. The actual and simulated N-Basin waters contain relatively low levels of aluminum, barium, calcium, potassium, and magnesium (ranging from 8.33E-04 to 6.40E-05 M), with slightly higher levels of boron (6.63E-03 M) and sodium (1.62E-03 M). The {sup 137}Cs level is 1.74E-06 Ci L-{sup 1} which corresponds to approximately 4.87E-10 M Cs. The initial Na/Cs ratio was 3.33E+06. The concentration of total strontium is 4.45E-06 M, while the {sup 90}Sr radioactive component was measured to be 6.13E-06 Ci L{sup -1}. Simulant tests were conducted by contacting 0.067 g or each ion exchange material with approximately 100 mL of either the actual or simulated N-Basin water. The simulants contained variable initial cesium concentrations ranging from 1.00E-04 to 2.57E- 10 M Cs while all other components were held constant. For all materials, the average cesium K{sub d} was independent of cesium concentration below approximately 1.0E-06 M. Above this level, the average cesium K{sub d} values decreased significantly. Cesium K{sub d} values exceeding 1.0E+07 mL g{sup -1} were measured in the simulated N-Basin water. However, when measured in the actual N-Basin water the values were several orders of magnitude lower, with a maximum of 1.24E+05 mL g{sup -1} observed.

  6. Spacecraft dielectric material properties and spacecraft charging

    NASA Technical Reports Server (NTRS)

    Frederickson, A. R.; Wall, J. A.; Cotts, D. B.; Bouquet, F. L.

    1986-01-01

    The physics of spacecraft charging is reviewed, and criteria for selecting and testing semiinsulating polymers (SIPs) to avoid charging are discussed and illustrated. Chapters are devoted to the required properties of dielectric materials, the charging process, discharge-pulse phenomena, design for minimum pulse size, design to prevent pulses, conduction in polymers, evaluation of SIPs that might prevent spacecraft charging, and the general response of dielectrics to space radiation. SIPs characterized include polyimides, fluorocarbons, thermoplastic polyesters, poly(alkanes), vinyl polymers and acrylates, polymers containing phthalocyanine, polyacene quinones, coordination polymers containing metal ions, conjugated-backbone polymers, and 'metallic' conducting polymers. Tables summarizing the results of SIP radiation tests (such as those performed for the NASA Galileo Project) are included.

  7. Bone Material Properties in Osteogenesis Imperfecta.

    PubMed

    Bishop, Nick

    2016-04-01

    Osteogenesis imperfecta entrains changes at every level in bone tissue, from the disorganization of the collagen molecules and mineral platelets within and between collagen fibrils to the macroarchitecture of the whole skeleton. Investigations using an array of sophisticated instruments at multiple scale levels have now determined many aspects of the effect of the disease on the material properties of bone tissue. The brittle nature of bone in osteogenesis imperfecta reflects both increased bone mineralization density-the quantity of mineral in relation to the quantity of matrix within a specific bone volume-and altered matrix-matrix and matrix mineral interactions. Contributions to fracture resistance at multiple scale lengths are discussed, comparing normal and brittle bone. Integrating the available information provides both a better understanding of the effect of current approaches to treatment-largely improved architecture and possibly some macroscale toughening-and indicates potential opportunities for alternative strategies that can influence fracture resistance at longer-length scales.

  8. Melting curve of the deep mantle applied to properties of early magma ocean and actual core-mantle boundary

    NASA Astrophysics Data System (ADS)

    Andrault, Denis; Lo Nigro, Giacomo; Bolfan-Casanova, Nathalie; Bouhifd, Mohamed A.; Garbarino, Gaston; Mezouar, Mohamed

    2010-05-01

    Our planet experienced partial melting early in its history as a consequence of energy release due to accretion. Partial mantle melting could still happen today in the lowermost mantle. Occurrence of melting is primordial for the chemical segregation between the different Earth's reservoirs and for the dynamics of the whole planet. Melting of iron-alloys is relatively easy to achieve, but the silicated mantle happens to be more refractory. We investigated experimentally melting properties of two starting material, forsterite and chondritic-mantle, at pressures ranging from 25 to 140 GPa, using laser-heated diamond anvil cell coupled with synchrotron radiation. We show that partial melting in the lowermost mantle, as suggested by seismology on the basis of the ultra-low velocity zones (ULVZ), requires temperatures above 4200 K at the core-mantle boundary. At low pressures, our curve plots significantly lower than previous reports. Compared to recent estimates of mantle geotherm, while this temperature remains possible if the Earth's core is very hot, it is more likely that ULVZs correspond to high concentration of incompatible elements driven down to the D"-layer by subducting slabs or extracted out from the outer core. When our chondritic melting curve is coupled with recent isentropic temperature profiles for a magma ocean, we obtain a correlation between magma ocean depth and the potential temperature (Tp) at its surface; an ocean depth of 1000 km (equivalent to ~40 GPa) corresponds to Tp=2000 K, which happens to be significantly hotter than the estimated surface temperature of a sustained magma ocean. It emphasizes the importance of a lid at the magma ocean surface at an epoch as early as that of core-mantle segregation.

  9. Mechanical properties of low dimensional materials

    NASA Astrophysics Data System (ADS)

    Saini, Deepika

    Recent advances in low dimensional materials (LDMs) have paved the way for unprecedented technological advancements. The drive to reduce the dimensions of electronics has compelled researchers to devise newer techniques to not only synthesize novel materials, but also tailor their properties. Although micro and nanomaterials have shown phenomenal electronic properties, their mechanical robustness and a thorough understanding of their structure-property relationship are critical for their use in practical applications. However, the challenges in probing these mechanical properties dramatically increase as their dimensions shrink, rendering the commonly used techniques inadequate. This dissertation focuses on developing techniques for accurate determination of elastic modulus of LDMs and their mechanical responses under tensile and shear stresses. Fibers with micron-sized diameters continuously undergo tensile and shear deformations through many phases of their processing and applications. Significant attention has been given to their tensile response and their structure-tensile properties relations are well understood, but the same cannot be said about their shear responses or the structure-shear properties. This is partly due to the lack of appropriate instruments that are capable of performing direct shear measurements. In an attempt to fill this void, this dissertation describes the design of an inexpensive tabletop instrument, referred to as the twister, which can measure the shear modulus (G) and other longitudinal shear properties of micron-sized individual fibers. An automated system applies a pre-determined twist to the fiber sample and measures the resulting torque using a sensitive optical detector. The accuracy of the instrument was verified by measuring G for high purity copper and tungsten fibers. Two industrially important fibers, IM7 carbon fiber and KevlarRTM 119, were found to have G = 17 and 2.4 GPa, respectively. In addition to measuring the shear

  10. Actual principles of the simulation of state-of-the-art technologies of laser processing of materials

    NASA Astrophysics Data System (ADS)

    Kovalev, Oleg B.

    2010-07-01

    Here we present the results of mathematical, numerical, and experimental simulation of the processes of interaction between the laser radiation and metals in the technologies of gas-laser cutting of thick-sheet materials and laser gas-powder cladding at the production of coatings and 3D objects by the DMD (Direct Material Deposition) method. The peculiarities of jet 3D flows of the working gases in narrow channels, geometrically identical to keyholes, are studied. It is demonstrated that during the stainless steel cutting, supersonic gas flows form local regions of separation flows which in turn result in the worse carry-away of the metal by the gas flow; these factors increase the roughness (striation) and worsen the surface quality. A vortex flow was found inside the cut at the subsonic jet flows typical for the oxygen gas-laser cutting of low-carbon steel; this flow causes slagging of the cut bottom edge. The processes running inside the laser cut at the fusible metals cutting with the low-power radiation were visualized under the laboratory conditions. Some new concepts of the processes running inside the keyhole have been gained; we also propose the explanations of the mechanisms of striation and other surface defects formation during the cutting of thick-sheet standard metals on the automate laser technological complex. A mathematical model of the volumetric laser-powder cladding is proposed. The submitted results concern the numerical simulation of multi-layer flows of shaping and carrier gases with the gas-jet transportation of powder particles into the laser spot on the substrate.

  11. Actual principles of the simulation of state-of-the-art technologies of laser processing of materials

    NASA Astrophysics Data System (ADS)

    Kovalev, Oleg B.

    2011-02-01

    Here we present the results of mathematical, numerical, and experimental simulation of the processes of interaction between the laser radiation and metals in the technologies of gas-laser cutting of thick-sheet materials and laser gas-powder cladding at the production of coatings and 3D objects by the DMD (Direct Material Deposition) method. The peculiarities of jet 3D flows of the working gases in narrow channels, geometrically identical to keyholes, are studied. It is demonstrated that during the stainless steel cutting, supersonic gas flows form local regions of separation flows which in turn result in the worse carry-away of the metal by the gas flow; these factors increase the roughness (striation) and worsen the surface quality. A vortex flow was found inside the cut at the subsonic jet flows typical for the oxygen gas-laser cutting of low-carbon steel; this flow causes slagging of the cut bottom edge. The processes running inside the laser cut at the fusible metals cutting with the low-power radiation were visualized under the laboratory conditions. Some new concepts of the processes running inside the keyhole have been gained; we also propose the explanations of the mechanisms of striation and other surface defects formation during the cutting of thick-sheet standard metals on the automate laser technological complex. A mathematical model of the volumetric laser-powder cladding is proposed. The submitted results concern the numerical simulation of multi-layer flows of shaping and carrier gases with the gas-jet transportation of powder particles into the laser spot on the substrate.

  12. Non-invasive, energy-based assessment of patient-specific material properties of arterial tissue.

    PubMed

    Smoljkić, M; Vander Sloten, J; Segers, P; Famaey, N

    2015-10-01

    The mechanical properties of human biological tissue vary greatly. The determination of arterial material properties should be based on experimental data, i.e. diameter, length, intramural pressure, axial force and stress-free geometry. Currently, clinical data provide only non-invasively measured pressure-diameter data for superficial arteries (e.g. common carotid and femoral artery). The lack of information forces us to take into account certain assumptions regarding the in situ configuration to estimate material properties in vivo. This paper proposes a new, non-invasive, energy-based approach for arterial material property estimation. This approach is compared with an approach proposed in the literature. For this purpose, a simplified finite element model of an artery was used as a mock experimental situation. This method enables exact knowledge of the actual material properties, thereby allowing a quantitative evaluation of material property estimation approaches. The results show that imposing conditions on strain energy can provide a good estimation of the material properties from the non-invasively measured pressure and diameter data.

  13. Properties and promises of nanosized insertion materials for Li-ion batteries.

    PubMed

    Wagemaker, Marnix; Mulder, Fokko M

    2013-05-21

    The substantial influence of crystallite size on the properties of Li-ion storage materials has spurred intensive research in the emerging area of nanoionics. The development of nanoscale storage materials offers a promising strategy to increase the energy storage capabilities of Li-ion batteries, potentially making them suitable for electric vehicles. Nanosizing, which increases surface area, enhances the importance of interfaces and surfaces on directly observable materials properties such as the voltage profile and the phase diagram. As a result, nanosized materials can show improved storage properties, and materials inactive at the micro size can become excellent storage materials. We suggest novel surface storage mechanisms to explain these phenomena. First-order phase transitions, which are responsible for the batteries' constant voltage output, are partially suppressed at the nanoscale. So far the morphological changes during the phase transition remain unclear. A complete understanding of the equilibrium and non-equilibrium properties of a collection of nanosized electrode particles within an actual electrode remains a formidable challenge. In this Account, we describe the efforts toward understanding the effects of nanosizing and its applications in representative insertion materials. We are particularly interested in the mechanisms and properties that will help to increase the energy storage of Li-ion batteries. We review and discuss the nanosize properties of lithium insertion materials, olivine LiFePO4, and titanium oxides. Although nanosizing intrinsically destabilizes materials, which is potentially detrimental for battery performance, the relative stability of oxide and phosphate insertion compounds makes it possible to exploit the advantages of nanosizing in these materials. The larger capacities and typical voltage profiles in nanosized materials appear to be related to the surface and interface properties that become pronounced at the nanosize

  14. Synthesis Properties and Electron Spin Resonance Properties of Titanic Materials

    SciTech Connect

    Cho, Jung Min; Lee, Jun; Kim, Tak Hee; Sun, Min Ho; Jang, Young Bae; Cho, Sung June

    2009-04-19

    Titanic materials were synthesized by hydrothermal method of TiO{sub 2} anatase in 10M LiOH, 10M NaOH, and 14M KOH at 130 deg. C for 30 hours. Alkaline media were removed from the synthesized products using 0.1N HCl aqueous solution. The as-prepared samples were characterized by scanning electron microscope, transmission electron microscope, X-ray diffraction, Brunauer-Emmett-Teller isotherm, and electron spin resonance. Different shapes of synthesized products were observed through the typical electron microscope and indicated that the formation of the different morphologies depends on the treatment conditions of highly alkaline media. Many micropores were observed in the cubic or octahedral type of TiO{sub 2} samples through the typical electron microscope and Langmuir adsorption-desorption isotherm of liquid nitrogen at 77 deg. K. Electron spin resonance studies have also been carried out to verify the existence of paramagnetic sites such as oxygen vacancies on the titania samples. The effect of alkali metal ions on the morphologies and physicochemical properties of nanoscale titania are discussed.

  15. Transport and magnetic properties in topological materials

    NASA Astrophysics Data System (ADS)

    Liang, Tian

    The notion of topology has been the central topic of the condensed matter physics in recent years, ranging from 2D quantum hall (QH) and quantum spin hall (QSH) states, 3D topological insulators (TIs), topological crystalline insulators (TCIs), 3D Dirac/Weyl semimetals, and topological superconductors (TSCs) etc. The key notion of the topological materials is the bulk edge correspondence, i.e., in order to preserve the symmetry of the whole system (bulk+edge), edge states must exist to counter-compensate the broken symmetry of the bulk. Combined with the fact that the bulk is topologically protected, the edge states are robust due to the bulk edge correspondence. This leads to interesting phenomena of chiral edge states in 2D QH, helical edge states in 2D QSH, "parity anomaly'' (time reversal anomaly) in 3D TI, helical edge states in the mirror plane of TCI, chiral anomaly in Dirac/Weyl semimetals, Majorana fermions in the TSCs. Transport and magnetic properties of topological materials are investigated to yield intriguing phenomena. For 3D TI Bi1.1Sb0.9Te 2S, anomalous Hall effect (AHE) is observed, and for TCI Pb1-x SnxSe, Seebeck/Nernst measurements reveal the anomalous sign change of Nernst signals as well as the massive Dirac fermions. Ferroelectricity and pressure measurements show that TCI Pb1-xSnxTe undergoes quantum phase transition (QPT) from trivial insulator through Weyl semimetal to anomalous insulator. Dirac semimetals Cd3As2, Na 3Bi show interesting results such as the ultrahigh mobility 10 7cm2V-1s-1 protected from backscattering at zero magnetic field, as well as anomalous Nernst effect (ANE) for Cd3As2, and the negative longitudinal magnetoresistance (MR) due to chiral anomaly for Na3Bi. In-plane and out-of-plane AHE are observed for semimetal ZrTe5 by in-situ double-axes rotation measurements. For interacting system Eu2Ir2O7, full angle torque magnetometry measurements reveal the existence of orthogonal magnetization breaking the symmetry of

  16. Determination of Thermal Properties of Composting Bulking Materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal properties of compost bulking materials affect temperature and biodegradation during the composting process. Well determined thermal properties of compost feedstocks will therefore contribute to practical thermodynamic approaches. Thermal conductivity, thermal diffusivity, and volumetric hea...

  17. Nonlinear Dynamic Properties of Layered Composite Materials

    SciTech Connect

    Andrianov, Igor V.; Topol, Heiko; Weichert, Dieter; Danishevs'kyy, Vladyslav V.

    2010-09-30

    We present an application of the asymptotic homogenization method to study wave propagation in a one-dimensional composite material consisting of a matrix material and coated inclusions. Physical nonlinearity is taken into account by considering the composite's components as a Murnaghan material, structural nonlinearity is caused by the bonding condition between the components.

  18. Preliminary Material Properties Handbook. Volume 1: English Units

    DTIC Science & Technology

    2000-07-01

    good polishing characteristics. It is more isotropic than other grades of beryllium with 45,000 psi typical yield strength and 4,000 psi typical micro...Materials program provides the aerospace industry with typical properties of emerging materials and other materials of interest that have not met all the...described by industry, government, or company specifications. 15. SUBJECT TERMS emerging materials; typical properties; international metals 16

  19. Test Methods for Measuring Material Properties of Composite Materials in all Three Material Axes

    DTIC Science & Technology

    2012-01-24

    materials. Hara et al. [4] studied the out-of-plane tensile strength of CFRP laminates using the direct tensile method with specimens of various size...Composite Structures (35) (1996): 5-20. 3. Nielsen, A., Ibsen, J., & Thomsen, O. “Through-Thickness Tensile and Compressive Properties of Stitched CFRP ...Strength of Aligned CFRP Determined by Direct Tensile Method”. Composites Part A: Applied Science and Manufacturing (41) (10) (2010): 1425-1433. 6

  20. Material property data and their use in design and analysis for an elevated temperature solar code

    NASA Astrophysics Data System (ADS)

    Berman, I.

    1981-11-01

    Specific properties of the materials, temperatures, and operating parameters for elevated temperature solar thermal power plants are considered as a basis for developing standards of implementation. Physical and mechanical properties such as thermal conductivity, elastic modulus, expansion, strength, and creep are discussed and recommendations for ASME Code I and III materials are cited where feasible. Inelastic behavior tests involving beam bending, pipe ratcheting, torsion-torsion tests, and axial cyclic tests of various stainless steel specimens and Incoloy 800 material are reported. Peculiarities of problems for solar applications are noted to be a lack of information of basic material behavior due to the low amount of actual operational experience, a large number of transient temperature cycles, and primary creep.

  1. Cytocompatibility and Antibacterial Properties of Capping Materials

    PubMed Central

    Arciola, Carla Renata; Monaco, Annachiara; Lombardini, Marco

    2014-01-01

    The aim of this study was to evaluate and compare the antimicrobial activity and cytocompatibility of six different pulp-capping materials: Dycal (Dentsply), Calcicur (Voco), Calcimol LC (Voco), TheraCal LC (Bisco), MTA Angelus (Angelus), and Biodentine (Septodont). To evaluate antimicrobial activity, materials were challenged in vitro with Streptococcus mutans, Streptococcus salivarius, and Streptococcus sanguis in the agar disc diffusion test. Cytocompatibility of the assayed materials towards rat MDPC-23 cells was evaluated at different times by both MTT and apoptosis assays. Results significantly differed among the different materials tested. Both bacterial growth inhibition halos and cytocompatibility performances were significantly different among materials with different composition. MTA-based products showed lower cytotoxicity and valuable antibacterial activity, different from calcium hydroxide-based materials, which exhibited not only higher antibacterial activity but also higher cytotoxicity. PMID:24959601

  2. Magnetic properties of frictional volcanic materials

    NASA Astrophysics Data System (ADS)

    Kendrick, Jackie E.; Lavallée, Yan; Biggin, Andrew; Ferk, Annika; Leonhardt, Roman

    2015-04-01

    During dome-building volcanic eruptions, highly viscous magma extends through the upper conduit in a solid-like state. The outer margins of the magma column accommodate the majority of the strain, while the bulk of the magma is able to extrude, largely undeformed, to produce magma spines. Spine extrusion is often characterised by the emission of repetitive seismicity, produced in the upper <1 km by magma failure and slip at the conduit margins. The rheology of the magma controls the depth at which fracture can occur, while the frictional properties of the magma are important in controlling subsequent marginal slip processes. Upon extrusion, spines are coated by a carapace of volcanic fault rocks which provide insights into the deeper conduit processes. Frictional samples from magma spines at Mount St. Helens (USA), Soufriere Hills (Montserrat) and Mount Unzen (Japan) have been examined using structural, thermal and magnetic analyses to reveal a history of comminution, frictional heating, melting and cooling to form volcanic pseudotachylyte. Pseudotachylyte has rarely been noted in volcanic materials, and the recent observation of its syn-eruptive formation in dome-building volcanoes was unprecedented. The uniquely high thermal conditions of volcanic environments means that frictional melt remains at elevated temperatures for longer than usual, causing slow crystallisation, preventing the development of some signature "quench" characteristics. As such, rock-magnetic tests have proven to be some of the most useful tools in distinguishing pseudotachylytes from their andesite/ dacite hosts. In volcanic pseudotachylyte the mass normalised natural remanent magnetisation (NRM) when further normalised with the concentration dependent saturation remanence (Mrs) was found to be higher than the host rock. Remanence carriers are defined as low coercive materials across all samples, and while the remanence of the host rock displays similarities to an anhysteretic remanent

  3. Absorption properties of waste matrix materials

    SciTech Connect

    Briggs, J.B.

    1997-06-01

    This paper very briefly discusses the need for studies of the limiting critical concentration of radioactive waste matrix materials. Calculated limiting critical concentration values for some common waste materials are listed. However, for systems containing large quantities of waste materials, differences up to 10% in calculated k{sub eff} values are obtained by changing cross section data sets. Therefore, experimental results are needed to compare with calculation results for resolving these differences and establishing realistic biases.

  4. Metallurgy and properties of plasma spray formed materials

    NASA Technical Reports Server (NTRS)

    Mckechnie, T. N.; Liaw, Y. K.; Zimmerman, F. R.; Poorman, R. M.

    1992-01-01

    Understanding the fundamental metallurgy of vacuum plasma spray formed materials is the key to enhancing and developing full material properties. Investigations have shown that the microstructure of plasma sprayed materials must evolve from a powder splat morphology to a recrystallized grain structure to assure high strength and ductility. A fully, or near fully, dense material that exhibits a powder splat morphology will perform as a brittle material compared to a recrystallized grain structure for the same amount of porosity. Metallurgy and material properties of nickel, iron, and copper base alloys will be presented and correlated to microstructure.

  5. Thermoelectric Properties of Solution Synthesized Nanostructured Materials.

    PubMed

    Finefrock, Scott W; Yang, Haoran; Fang, Haiyu; Wu, Yue

    2015-01-01

    Thermoelectric nanocomposites made by solution synthesis and compression of nanostructured chalcogenides could potentially be low-cost, scalable alternatives to traditional solid-state synthesized materials. We review the progress in this field by comparing the power factor and/or the thermoelectric figure of merit, ZT, of four classes of materials: (Bi,Sb)2(Te,Se)3, PbTe, ternary and quaternary copper chalcogenides, and silver chalcogenides. We also discuss the thermal conductivity reduction associated with multiphased nanocomposites. The ZT of the best solution synthesized materials are, in several cases, shown to be equal to or greater than the corresponding bulk materials despite the generally reduced mobility associated with solution synthesized nanocomposites. For the solution synthesized materials with the highest performance, the synthesis and processing conditions are summarized to provide guidance for future work.

  6. NDE Elastic Properties of Fiber-Reinforced Composite Materials

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.

    1995-01-01

    Fiber-reinforced composites are increasingly replacing metallic alloys as structural materials for primary components of fracture-critical structures. This trend is a result of the growing understanding of material behavior and recognition of the desirable properties of composites. A research program was conducted on NDE methods for determining the elastic properties of composites.

  7. Dielectric properties of agricultural materials and their application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book is prepared as a comprehensive source of information on dielectric properties of agricultural materials for scientific researchers and engineers involved in practical application of radio-frequency and microwave energy for potential problem solutions. Dielectric properties of materials det...

  8. "TPSX: Thermal Protection System Expert and Material Property Database"

    NASA Technical Reports Server (NTRS)

    Squire, Thomas H.; Milos, Frank S.; Rasky, Daniel J. (Technical Monitor)

    1997-01-01

    The Thermal Protection Branch at NASA Ames Research Center has developed a computer program for storing, organizing, and accessing information about thermal protection materials. The program, called Thermal Protection Systems Expert and Material Property Database, or TPSX, is available for the Microsoft Windows operating system. An "on-line" version is also accessible on the World Wide Web. TPSX is designed to be a high-quality source for TPS material properties presented in a convenient, easily accessible form for use by engineers and researchers in the field of high-speed vehicle design. Data can be displayed and printed in several formats. An information window displays a brief description of the material with properties at standard pressure and temperature. A spread sheet window displays complete, detailed property information. Properties which are a function of temperature and/or pressure can be displayed as graphs. In any display the data can be converted from English to SI units with the click of a button. Two material databases included with TPSX are: 1) materials used and/or developed by the Thermal Protection Branch at NASA Ames Research Center, and 2) a database compiled by NASA Johnson Space Center 9JSC). The Ames database contains over 60 advanced TPS materials including flexible blankets, rigid ceramic tiles, and ultra-high temperature ceramics. The JSC database contains over 130 insulative and structural materials. The Ames database is periodically updated and expanded as required to include newly developed materials and material property refinements.

  9. Visual Vibrometry: Estimating Material Properties from Small Motions in Video.

    PubMed

    Davis, Abe; Bouman, Katherine L; Chen, Justin G; Rubinstein, Michael; Buyukozturk, Oral; Durand, Fredo; Freeman, William T

    2016-11-01

    The estimation of material properties is important for scene understanding, with many applications in vision, robotics, and structural engineering. This paper connects fundamentals of vibration mechanics with computer vision techniques in order to infer material properties from small, often imperceptible motion in video. Objects tend to vibrate in a set of preferred modes. The frequencies of these modes depend on the structure and material properties of an object. We show that by extracting these frequencies from video of a vibrating object, we can often make inferences about that object's material properties. We demonstrate our approach by estimating material properties for a variety of objects by observing their motion in high-speed and regular frame rate video.

  10. Magnetic porous composite material: Synthesis and properties

    NASA Astrophysics Data System (ADS)

    Peretyat'ko, P. I.; Kulikov, L. A.; Melikhov, I. V.; Perfil'ev, Yu. D.; Pal', A. F.; Timofeev, M. A.; Gudoshnikov, S. A.; Usov, N. A.

    2015-10-01

    A new method of obtaining magnetic porous composite materials is described, which is based on the self-propagating high-temperature synthesis (SHS) in the form of solid-phase combustion. The SHS process involves transformation of the nonmagnetic α-Fe2O3 particles (contained in the initial mixture) into magnetic Fe3O4 particles. The synthesized material comprises a porous carbonaceous matrix with immobilized Fe3O4 particles. The obtained composite has been characterized by electron microscopy, X-ray diffraction, Mössbauer spectroscopy, and magnetic measurements. The sorption capacity of the porous material has been studied.

  11. Millimeter Wave Dielectric Properties of Materials

    NASA Astrophysics Data System (ADS)

    Button, Kenneth J.; Afsar, M. N.

    1983-10-01

    Highly accurate continuous spectra of the absorption coefficient and refractive index of some potentially useful materials have been made over the 60-420 GHz range. Measurements have been made on some common ceramic, semiconductor, crystalline and glass materials. The absorption coefficient of low loss materials increases with frequency which implies that microwave data cannot be used for the design of millimeter wave dielectric waveguides, devices, windows and quasi-optical elements. The data in this paper show the millimeter wave frequency dependence of tan δ, the real and imaginary parts of the dielectric permittivity and the optical constants, namely, the refractive index and absorption coefficient. The measurements have been made in a plane-wave Michelson interferometer operating as a polarizing, dispersive Fourier transform spectrometer. The accuracy and reproducability of the refractive index is six significant figures.

  12. Quantitative Ultrasonic Evaluation of Mechanical Properties of Engineering Materials

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1978-01-01

    Progress in the application of ultrasonic techniques to nondestructive measurement of mechanical strength of engineering materials is reviewed. A dormant concept in nondestructive evaluation (NDE) is invoked. The availability of ultrasonic methods that can be applied to actual parts to assess their potential susceptibility to failure under design conditions is discussed. It was shown that ultrasonic methods yield measurements of elastic moduli, microstructure, hardness, fracture toughness, tensile strength, yield strength, and shear strength for a wide range of materials (including many types of metals, ceramics, and fiber composites). It was also indicated that although most of these methods were shown feasible in laboratory studies, more work is needed before they can be used on actual parts in processing, assembly, inspection, and maintenance lines.

  13. Organic materials with nonlinear optical properties

    DOEpatents

    Stupp, Samuel I.; Son, Sehwan; Lin, Hong-Cheu

    1995-01-01

    The present invention is directed to organic materials that have the ability to double or triple the frequency of light that is directed through the materials. Particularly, the present invention is directed to the compound 4-[4-(2R)-2-cyano-7-(4'-pentyloxy-4-biphenylcarbonyloxy)phenylheptylidene) phenylcarbonyloxy]benzaldehyde, which can double the frequency of light that is directed through the compound. The invention is also directed to the compound (12-hydroxy-5,7-dodecadiynyl) 4'-[(4'-pentyloxy-4-biphenyl)carbonyloxy]-4-biphenylcarboxylate, and its polymeric form. The polymeric form can triple the frequency of light directed through it.

  14. Organic materials with nonlinear optical properties

    DOEpatents

    Stupp, S.I.; Son, S.; Lin, H.C.

    1995-05-02

    The present invention is directed to organic materials that have the ability to double or triple the frequency of light that is directed through the materials. Particularly, the present invention is directed to the compound 4-[4-(2R)-2-cyano-7-(4{prime}-pentyloxy-4-biphenylcarbonyloxy)phenylheptylidenephenylcarbonyloxy]benzaldehyde, which can double the frequency of light that is directed through the compound. The invention is also directed to the compound (12-hydroxy-5,7-dodecadiynyl)-4{prime}-[(4{prime}-pentyloxy-4-biphenyl)carbonyloxy]-4-biphenylcarboxylate, and its polymeric form. The polymeric form can triple the frequency of light directed through it. 4 figs.

  15. Dynamic Deformation Properties of Energetic Composite Materials

    DTIC Science & Technology

    2005-04-01

    references are provided for further reading. Materials The materials that have been used are ultrafine PETN and RDX prepared by a proprietary method by ICI...density of the loose powder on delivery is ~15 % of the theoretical maximum density (TMD). The ultrafine HNS that was used was HNS IV as supplied by...ultrafine PETN . A - Point at which initiation takes place; B - Detonation wave travelling at 5.6 ± 0.3 mm ms-1. 37 Figure 1.31. Negative streak

  16. Structure and Properties of Energetic Materials

    DTIC Science & Technology

    1992-12-02

    1992, ISBN: 1-55899-168-9 Volume 274-Submicron Multiphase Materials. R. Baney. L . Gilliom, S.-A. Hirano. H. Schmidt, 1992, ISBN: 1-55899-169-7 Volume...1993, ISBN: 1-55899-177-8 Volume 283-Microcrystalline Semiconductors-Materials Science & Devices, Y. Aoyagi, L.T. Canham, P.M. Fauchet, L . Shimizu, C.C...at Los Alamos has been to synthesize an organic high explosive that has the performance of HMX (one of our best performing explosives in general use

  17. Fish gelatin: Material properties and applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The main difference between fish gelatin and mammalian gelatin is fish gelatin’s lower gelation temperature. This property limits the use of fish gelatin in applications that currently utilize mammalian gelatin. However, fish gelatin remains an attractive alterative to mammalian gelatin due to relig...

  18. Shaped Charge Liner Materials: Resources, Processes, Properties, Costs, and Applications

    DTIC Science & Technology

    1991-02-01

    SUBTITLE 5. FUNDING NUMBERS Shaped Charge Liner Materials: Resources, Processes, Properties, Costs, and Applications 2 6. AUTHOC Steven M. Buc 7...summaries of the mineral availability, Cq prmarymetal refinement processeb, material costs in raw form and as finished shaped charge liners , relevant... liner materials. 94-11479 gI 14, SUBJECT TERMS iSt NUMBER OF PAGIS 13chrg wrhad :xplosively formed penetrators material R. PRCE COEV" processing

  19. Size-Dependent Materials Properties Toward a Universal Equation

    PubMed Central

    2010-01-01

    Due to the lack of experimental values concerning some material properties at the nanoscale, it is interesting to evaluate this theoretically. Through a “top–down” approach, a universal equation is developed here which is particularly helpful when experiments are difficult to lead on a specific material property. It only requires the knowledge of the surface area to volume ratio of the nanomaterial, its size as well as the statistic (Fermi–Dirac or Bose–Einstein) followed by the particles involved in the considered material property. Comparison between different existing theoretical models and the proposed equation is done. PMID:20596422

  20. Data base for crack growth properties of materials

    NASA Technical Reports Server (NTRS)

    Forman, Royce G.; Lawrence, Victor B.; Nguy, Henry L.

    1988-01-01

    A computerized data base of crack growth properties of materials was developed for use in fracture control analysis of rocket engine components and other NASA space hardware. The software system has files of basic crack growth rate data, other fracture mechanics material properties such as fracture toughness and environmental crack growth threshold values, and plotting and fitting routines for deriving material properties for use in fracture control analysis. An extensive amount of data was collected and entered, and work is continuing on compiling additional data. The data base and software codes are useful both for fracture control analysis and for evaluation or development of improved crack growth theories.

  1. Permittivity spectroscopy - an insight into materials properties.

    PubMed

    Stoynov, Zdravko; Mladenova, Emiliya; Levi, Daniela; Vladikova, Daria

    2014-01-01

    Permittivity Spectroscopy is a branch of the Impedance Spectroscopy specially tuned for measurements and analyses of dielectrics permittivity properties. The present paper presents experimental results on permittivity properties of composite objects in which a polarizable dielectric is distributed in a fine non-polarizable matrix (solid or liquid) measured in frequency range 1 MHz down to 0.01 Hz. Two types of objects are studied - water in porous functional ceramics and lubricating oils. In both systems gigantic enhancement of the effective capacitance is observed. The first series of experiments was performed on porous membranes of yttrium doped barium cerate, which is a proton conducting ceramics with hydrophilic properties. At a given level of watering the measured capacitance is sharply increasing (3 to 5 orders of magnitude) in the lower frequency range. The second example covers permittivity study of lubricating oils, where the increase is 2-3 orders of magnitude. The phenomenon of gigantic enhancement of the effective capacitance could be related to a formation of dipole volume structures induced by the external alternating electrical field.

  2. Properties of cathode materials in alkaline cells

    NASA Astrophysics Data System (ADS)

    Salkind, A. J.; McBreen, J.; Freeman, R.; Parkhurst, W. A.

    1984-04-01

    Conventional and new cathode materials in primary and secondary alkaline cells were investigated for stability, structure, electrochemical reversibility and efficiency. Included were various forms of AgO for reserve type silver zinc batteries, a new material - AgNiO2 and several nickel electrodes for nickel cadmium and nickel hydrogen cells for aerospace applications. A comparative study was made of the stability of electroformed and chemically prepared AgO. Stability was correlated with impurities. After the first discharge AgNiO2 can be recharged to the monovalent level. The discharge product is predominantly silver. Plastic bonded nickel electrodes display a second plateau on discharge. Additions of Co(OH)2 largely eliminate this.

  3. Processing and Properties of Airframe Materials.

    DTIC Science & Technology

    1984-02-01

    the first year of the three-year program to characterize the relationship between microstruc - ture and fatigue behavior of beta processed Ti-6A1-4V...determine how the microstructural variables affect the macroscopic deformation behavior . Experiments have been performed with 7475 Al having various grain...sizes. The flow stress vs strain rate behavior for the mixed grain size materials is best described using the iso-strain rate concept. Observations of

  4. Optical properties of nanostructured materials: a review

    NASA Astrophysics Data System (ADS)

    Flory, François; Escoubas, Ludovic; Berginc, Gérard

    2011-01-01

    Depending on the size of the smallest feature, the interaction of light with structured materials can be very different. This fundamental problem is treated by different theories. If first order theories are sufficient to describe the scattering from low roughness surfaces, second order or even higher order theories must be used for high roughness surfaces. Random surface structures can then be designed to distribute the light in different propagation directions. For complex structures such as black silicon, which reflects very little light, the theory needs further development. When the material is periodically structured, we speak about photonic crystals or metamaterials. Different theoretical approaches have been developed and experimental techniques are rapidly progressing. However, some work still remains to understand the full potential of this field. When the material is structured in dimension much smaller than the wavelength, the notion of complex refractive index must be revisited. Plasmon resonance can be excited by a progressing wave on metallic nanoparticles inducing a shaping of the absorption band and of the dispersion of the extinction coefficient. This addresses the problem of the permittivity of such metallic nanoparticles. The coupling between several metallic nanoparticles induces a field enhancement in the surrounding media, which can increase phenomena like scattering, absorption, luminescence, or Raman scattering. For semiconductor nanoparticles, electron confinement also induces a modulated absorption spectra. The refractive index is then modified. The bandgap of the material is changed because of the discretization of the electron energy, which can be controlled by the nanometers size particles. Such quantum dots behave like atoms and become luminescent. The lifetime of the electron in the excited states are much larger than in continuous energy bands. Electrons in coupled quantum dots behave as they do in molecules. Many applications

  5. Molecularly imprinted materials: synthesis, properties, applications

    NASA Astrophysics Data System (ADS)

    Lisichkin, Georgii V.; Krutyakov, Yu A.

    2006-10-01

    This review is devoted to the method of molecular imprinting. The physicochemical fundamentals and mechanisms of covalent and non-covalent molecular imprinting aimed at the development of organic polymeric sorbents capable of molecular recognition are considered. Attention is focused on the preparation of molecular imprints on mineral supports. The mechanisms of molecular recognition in adsorption are discussed. Application fields of materials with molecular imprints are briefly surveyed.

  6. Optical techniques for determining dynamic material properties

    SciTech Connect

    Paisley, D.L.; Stahl, D.B.

    1996-12-31

    Miniature plates are laser-launched with a 10-Joule Nd:YAG for one-dimensional (1-D) impacts on to target materials much like gas gun experiments and explosive plane wave plate launch. By making the experiments small, flyer plates (3 mm diameter x 50 micron thick) and targets (10 mm diameter x 200 micron thick), 1-D impact experiments can be performed in a standard laser-optical laboratory with minimum confinement and collateral damage. The laser-launched plates do not require the traditional sabot on gas guns nor the explosives needed for explosive planewave lenses, and as a result are much more amenable to a wide variety of materials and applications. Because of the small size very high pressure gradients can be generated with relative ease. The high pressure gradients result in very high strains and strain rates that are not easily generated by other experimental methods. The small size and short shock duration (1 - 20 ns) are ideal for dynamically measuring bond strengths of micron-thick coatings. Experimental techniques, equipment, and dynamic material results are reported.

  7. Temperature dependent terahertz properties of energetic materials

    NASA Astrophysics Data System (ADS)

    Azad, Abul K.; Whitley, Von H.; Brown, Kathryn E.; Ahmed, Towfiq; Sorensen, Christian J.; Moore, David S.

    2016-04-01

    Reliable detection of energetic materials is still a formidable challenge which requires further investigation. The remote standoff detection of explosives using molecular fingerprints in the terahertz spectral range has been an evolving research area for the past two decades. Despite many efforts, identification of a particular explosive remains difficult as the spectral fingerprints often shift due to the working conditions of the sample such as temperature, crystal orientation, presence of binders, etc. In this work, we investigate the vibrational spectrum of energetic materials including RDX, PETN, AN, and 1,3-DNB diluted in a low loss PTFE host medium using terahertz time domain spectroscopy (THz-TDS) at cryogenic temperatures. The measured absorptions of these materials show spectral shifts of their characteristic peaks while changing their operating temperature from 300 to 7.5 K. We have developed a theoretical model based on first principles methods, which is able to predict most of the measured modes in 1, 3-DNB between 0.3 to 2.50 THz. These findings may further improve the security screening of explosives.

  8. Materials properties: heterogeneity and appropriate sampling modes.

    PubMed

    Esbensen, Kim H

    2015-01-01

    The target audience for this Special Section comprises parties related to the food and feed sectors, e.g., field samplers, academic and industrial scientists, laboratory personnel, companies, organizations, regulatory bodies, and agencies who are responsible for sampling, as well as project leaders, project managers, quality managers, supervisors, and directors. All these entities face heterogeneous materials, and the characteristics of heterogeneous materials needs to be competently understood by all of them. Before delivering analytical results for decision-making, one form or other of primary sampling is always necessary, which must counteract the effects of the sampling target heterogeneity. Up to five types of sampling error may arise as a specific sampling process interacts with a heterogeneous material; two sampling errors arise because of the heterogeneity of the sampling target, and three additional sampling errors are produced by the sampling process itself-if not properly understood, reduced, and/or eliminated, which is the role of Theory of Sampling. This paper discusses the phenomenon and concepts involved in understanding, describing, and managing the adverse effects of heterogeneity in sampling.

  9. Mechanical properties of a porous mullite material

    NASA Technical Reports Server (NTRS)

    Viens, Michael J.

    1991-01-01

    Modulus of rupture specimens were used to determine crack growth parameters of a porous mullite material. Strength testing was performed in ambient and moist environments. The power law crack growth rate parameters n and 1n B in 50 percent relative humidity were found to be 44.98 and 0.94, respectively. The inert strength, fracture toughness, and elastic modulus were also determined and found to be 19 MPa, 055 MPa(m) exp 1/2, and 11.6 GPa, respectively.

  10. Interdisciplinary research concerning the nature and properties of ceramic materials

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The nature and properties of ceramic materials as they relate to solid state physics and metallurgy are studied. Special attention was given to the applications of ceramics to NASA programs and national needs.

  11. Outgassing Properties of Chemically Polished Titanium Materials

    NASA Astrophysics Data System (ADS)

    Kurisu, Hiroki; Kimoto, Gou; Fujii, Hiroaki; Tanaka, Kazuhiko; Yamamoto, Setsuo; Matsuura, Mitsuru; Ishizawa, Katsunobu; Nomura, Takeru; Murashige, Nobuyuki

    We developed a chemical polishing (CP) for titanium materials applicable to ultrahigh vacuum (UHV) and extremely high vacuum (XHV) systems. The surface roughness, Ra, of the chemically polished titanium is obtained to be 25 nm by the atomic force microscopy measurement. This value is smaller than those of the base metal (BM) and the buff-polished (BP) samples. The thickness of the surface oxide layer of CP sample is estimated to be 7 nm by the cross section of transmission electron micrograph. Amount of desorption gas of CP sample obtained by the thermal desorption measurement is smaller than those of BM and BP sample, and is the same as that of the mechanochemically polished (MCP) sample. The outgassing rate of CP sample after baking at 150°C×20 h is obtained to be 7×10-13 Pa•m•s-1. This value is lower than that of standard vacuum materials by two orders of magnitude after the ordinary baking.

  12. MIDAS (Material Implementation, Database, and Analysis Source): A comprehensive resource of material properties

    SciTech Connect

    Tang, M; Norquist, P; Barton, N; Durrenberger, K; Florando, J; Attia, A

    2010-12-13

    MIDAS is aimed to be an easy-to-use and comprehensive common source for material properties including both experimental data and models and their parameters. At LLNL, we will develop MIDAS to be the central repository for material strength related data and models with the long-term goal to encompass other material properties. MIDAS will allow the users to upload experimental data and updated models, to view and read materials data and references, to manipulate models and their parameters, and to serve as the central location for the application codes to access the continuously growing model source codes. MIDAS contains a suite of interoperable tools and utilizes components already existing at LLNL: MSD (material strength database), MatProp (database of materials properties files), and MSlib (library of material model source codes). MIDAS requires significant development of the computer science framework for the interfaces between different components. We present the current status of MIDAS and its future development in this paper.

  13. Thermal Properties of Structural Materials Used in LWR Vessels

    SciTech Connect

    J. E. Daw; J. L. Rempe; D. L. Knudson

    2011-01-01

    High temperature material property data for structural materials used in existing Light Water Reactors (LWRs) are limited. Often, extrapolated values recommended in the literature differ significantly. To reduce uncertainties in predictions relying upon extrapolated data for LWR vessel and penetration materials, high temperature tests were completed on SA533 Grade B, Class 1 (SA533B1) low alloy steel, Stainless Steel 304 (SS304), and Inconel 600 using material property measurement systems available in the High Temperature Test Laboratory (HTTL) at the Idaho National Laboratory (INL). Properties measured include thermal expansion, specific heat capacity, and thermal diffusivity for temperatures up to 1200 °C. From these results, thermal conductivity and density were calculated. Results show that, in some cases, previously recommended values for these materials differ significantly from measured values at high temperatures.

  14. Distributed databases for materials study of thermo-kinetic properties

    NASA Astrophysics Data System (ADS)

    Toher, Cormac

    2015-03-01

    High-throughput computational materials science provides researchers with the opportunity to rapidly generate large databases of materials properties. To rapidly add thermal properties to the AFLOWLIB consortium and Materials Project repositories, we have implemented an automated quasi-harmonic Debye model, the Automatic GIBBS Library (AGL). This enables us to screen thousands of materials for thermal conductivity, bulk modulus, thermal expansion and related properties. The search and sort functions of the online database can then be used to identify suitable materials for more in-depth study using more precise computational or experimental techniques. AFLOW-AGL source code is public domain and will soon be released within the GNU-GPL license.

  15. Novel thermal properties of nanostructured materials.

    SciTech Connect

    Eastman, J. A.

    1999-01-13

    A new class of heat transfer fluids, termed nanofluids, has been developed by suspending nanocrystalline particles in liquids. Due to the orders-of-magnitude larger thermal conductivities of solids compared to those of liquids such as water, significantly enhanced thermal properties are obtained with nanofluids. For example, an approximately 20% improvement in effective thermal conductivity is observed when 5 vol.% CuO nanoparticles are added to water. Even more importantly, the heat transfer coefficient of water under dynamic flow conditions is increased more than 15% with the addition of less than 1 vol.% CuO particles. The use of nanofluids could impact many industrial sectors, including transportation, energy supply and production, electronics, textiles, and paper production by, for example, decreasing pumping power needs or reducing heat exchanger sizes. In contrast to the enhancement in effective thermal transport rates that is obtained when nanoparticles are suspended in fluids, nanocrystalline coatings are expected to exhibit reduced thermal conductivities compared to coarse-grained coatings. Reduced thermal conductivities are predicted to arise because of a reduction in the mean free path of phonons due to presence of grain boundaries. This behavior, combined with improved mechanical properties, makes nanostructured zirconia coatings excellent candidates for future applications as thermal barriers. Yttria-stabilized zirconia (YSZ) thin films are being produced by metal-organic chemical vapor deposition techniques. Preliminary results have indicated that the thermal conductivity is reduced by approximately a factor-of-two at room temperature in 10 nm grain-sized YSZ compared to coarse-grained or single crystal YSZ.

  16. Determining significant material properties: A discovery approach

    NASA Technical Reports Server (NTRS)

    Karplus, Alan K.

    1992-01-01

    The following is a laboratory experiment designed to further understanding of materials science. The experiment itself can be informative for persons of any age past elementary school, and even for some in elementary school. The preparation of the plastic samples is readily accomplished by persons with resonable dexterity in the cutting of paper designs. The completion of the statistical Design of Experiments, which uses Yates' Method, requires basic math (addition and subtraction). Interpretive work requires plotting of data and making observations. Knowledge of statistical methods would be helpful. The purpose of this experiment is to acquaint students with the seven classes of recyclable plastics, and provide hands-on learning about the response of these plastics to mechanical tensile loading.

  17. Chemical hydrogen storage material property guidelines for automotive applications

    NASA Astrophysics Data System (ADS)

    Semelsberger, Troy A.; Brooks, Kriston P.

    2015-04-01

    Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (<20 atm), moderate temperature operation (<200 °C), system gravimetric capacities (>0.05 kg H2/kgsystem), and system volumetric capacities (>0.05 kg H2/Lsystem). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storage material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid-phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material properties-and most important, their implications on system mass, system volume and system performance.

  18. Analytic Thermoelectric Couple Modeling: Variable Material Properties and Transient Operation

    NASA Technical Reports Server (NTRS)

    Mackey, Jonathan A.; Sehirlioglu, Alp; Dynys, Fred

    2015-01-01

    To gain a deeper understanding of the operation of a thermoelectric couple a set of analytic solutions have been derived for a variable material property couple and a transient couple. Using an analytic approach, as opposed to commonly used numerical techniques, results in a set of useful design guidelines. These guidelines can serve as useful starting conditions for further numerical studies, or can serve as design rules for lab built couples. The analytic modeling considers two cases and accounts for 1) material properties which vary with temperature and 2) transient operation of a couple. The variable material property case was handled by means of an asymptotic expansion, which allows for insight into the influence of temperature dependence on different material properties. The variable property work demonstrated the important fact that materials with identical average Figure of Merits can lead to different conversion efficiencies due to temperature dependence of the properties. The transient couple was investigated through a Greens function approach; several transient boundary conditions were investigated. The transient work introduces several new design considerations which are not captured by the classic steady state analysis. The work helps to assist in designing couples for optimal performance, and also helps assist in material selection.

  19. Materials thermal and thermoradiative properties/characterization technology

    NASA Technical Reports Server (NTRS)

    Dewitt, D. P.; Ho, C. Y.

    1989-01-01

    Reliable properties data on well characterized materials are necessary for design of experiments and interpretation of experimental results. The activities of CINDAS to provide data bases and predict properties are discussed. An understanding of emissivity behavior is important in order to select appropriate methods for non-contact temperature determination. Related technical issues are identified and recommendations are offered.

  20. Perspective: Interactive material property databases through aggregation of literature data

    NASA Astrophysics Data System (ADS)

    Seshadri, Ram; Sparks, Taylor D.

    2016-05-01

    Searchable, interactive, databases of material properties, particularly those relating to functional materials (magnetics, thermoelectrics, photovoltaics, etc.) are curiously missing from discussions of machine-learning and other data-driven methods for advancing new materials discovery. Here we discuss the manual aggregation of experimental data from the published literature for the creation of interactive databases that allow the original experimental data as well additional metadata to be visualized in an interactive manner. The databases described involve materials for thermoelectric energy conversion, and for the electrodes of Li-ion batteries. The data can be subject to machine-learning, accelerating the discovery of new materials.

  1. Material Properties for Fiber-Reinforced Silica Aerogels

    NASA Technical Reports Server (NTRS)

    White, Susan; Rouanet, Stephane; Moses, John; Arnold, James O. (Technical Monitor)

    1994-01-01

    Ceramic fiber-reinforced silica aerogels are novel materials for high performance insulation, including thermal protection materials. Experimental data are presented for the thermal and mechanical properties, showing the trends exhibited over a range of fiber loadings and silica aerogel densities. Test results are compared to that of unreinforced bulk aerogels.

  2. Composite Material Property Nondestructive Characterization Using Obliquely Insonified Ultrasonic Waves

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.; Mal, A. K.; Lih, S.

    1994-01-01

    The analysis of reflected ultrasonic waves induced by oblique insonification of composite materials is a powerful tool for providing informations about defects and material properties. A device was developed to manipulate a pair of transmitting and receiving transducers at vrious angles of wave incidence and propagation with the fiber orientation.

  3. Heat Transmission Properties of Insulating and Building Materials

    National Institute of Standards and Technology Data Gateway

    SRD 81 NIST Heat Transmission Properties of Insulating and Building Materials (Web, free access)   NIST has accumulated a valuable and comprehensive collection of thermal conductivity data. Version 1.0 of the database includes data for over 2000 measurements, covering several categories of materials including concrete, fiberboard, plastics, thermal insulation, and rubber.

  4. Use of material dielectric properties for agricultural applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of dielectric properties of materials for applications in agriculture are reviewed, and research findings on use of dielectric heating of materials and on sensing of product moisture content and other quality factors are discussed. Dielectric heating applications, include treatment of seed...

  5. Use of material dielectric properties in agricultural applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of dielectric properties of materials for applications in agriculture are reviewed, and research findings on use of dielectric heating of materials and on sensing of product moisture content and other quality factors are discussed. Dielectric heating applications, include treatment of seed...

  6. Tribological properties of aluminium-based materials

    NASA Astrophysics Data System (ADS)

    Iglesias Victoria, Patricia

    In order to improve the tribological performance of the aluminium-steel contact, two research lines have been followed: (1) Use of the ordered fluids liquid crystals and ionic liquids as lubricant additives. (2) Tribological behaviour of new powder metallurgy aluminium materials processed by mechanical milling. A parafinic-naftenic base oil modified by a 1wt% of four additives has been used: Three liquid crystals with increasing polarity: 4,4' -dibutylazobenzene (LC1) < colesteryl linoleate (LC2) < n-dodecyl ammonium chloride (LC3), and the ionic liquid 1-ethyl, 3-methyl-imidazolonium tetrafluoroborate. This is the first time that a ionic liquid is studied as lubricant additive. Viscosity measurements at 25 and 100°C, maximum number of molecules by unit aluminium surface and comparative costs of the additives showed the advantage of the ionic additives over the neutral ones. Pin-on-disk tests were performed according to ASTM G99. Influence of load, speed and temperature on friction and wear was studied for each additive. While the ionic liquid gives low friction (<0.1) and wear (≤10-5 mm3m-1), the performance of the liquid crystalline additives depends on the conditions. LC3 shows a higher lubricating ability than the neutral LC1 and LC2 under high load, speed or temperature. Only the ionic liquid shows tribochemical interaction (by SEM and EDS) with the steel and aluminium surfaces, with an increment in the fluorine content inside the wear track. The second line was to study the influence of the process conditions on the dry and lubricated wear of new powder-metallurgy aluminium materials. MA Al-NH3 milled under NH3 atmosphere was compared with (MA Al-Air) processed in air and with Al-1 which has not been mechanically alloyed. Conditions for mild to severe wear transition have been established. Al-1 is always under a severe wear regime. MA Al-NH3 shows transition to severe wear at 150°C, showing a 60% reduction in wear rate with respect to MA Al-Air and a two

  7. Investigation of test methods, material properties and processes for solar cell encapsulants

    NASA Technical Reports Server (NTRS)

    Willis, P. B.

    1985-01-01

    The historical development of ethylene vinyl acetate (EVA) is presented, including the functional requirements, polymer selection, curing, stabilization, production and module processing. The construction and use of a new method for the accelerated aging of polymers is detailed. The method more closely resembles the conditions that may be encountered in actual module field exposure and additionally may permit service life to be predicted accurately. The use of hardboard as a low cost candidate substrate material is studied. The performance of surface antisoiling treatments useful for imparting a self cleaning property to modules is updated.

  8. Thermophysical Properties of Polymer Materials with High Thermal Conductivity

    NASA Astrophysics Data System (ADS)

    Lebedev, S. M.; Gefle, O. S.; Dneprovskii, S. N.; Amitov, E. T.

    2015-06-01

    Results of studies on the main thermophysical properties of new thermally conductive polymer materials are presented. It is shown that modification of polymer dielectrics by micron-sized fillers allows thermally conductive materials with thermal conductivity not less than 2 W/(m K) to be produced, which makes it possible to use such materials as cooling elements of various electrical engineering and semiconductor equipment and devices.

  9. Multiscale mechanics of hierarchical structure/property relationships in calcified tissues and tissue/material interfaces

    PubMed Central

    Katz, J. Lawrence; Misra, Anil; Spencer, Paulette; Wang, Yong; Bumrerraj, Sauwanan; Nomura, Tsutomu; Eppell, Steven J.; Tabib-Azar, Massood

    2007-01-01

    This paper presents a review plus new data that describes the role hierarchical nanostructural properties play in developing an understanding of the effect of scale on the material properties (chemical, elastic and electrical) of calcified tissues as well as the interfaces that form between such tissues and biomaterials. Both nanostructural and microstructural properties will be considered starting with the size and shape of the apatitic mineralites in both young and mature bovine bone. Microstructural properties for human dentin and cortical and trabecular bone will be considered. These separate sets of data will be combined mathematically to advance the effects of scale on the modeling of these tissues and the tissue/biomaterial interfaces as hierarchical material/structural composites. Interfacial structure and properties to be considered in greatest detail will be that of the dentin/adhesive (d/a) interface, which presents a clear example of examining all three material properties, (chemical, elastic and electrical). In this case, finite element modeling (FEA) was based on the actual measured values of the structure and elastic properties of the materials comprising the d/a interface; this combination provides insight into factors and mechanisms that contribute to premature failure of dental composite fillings. At present, there are more elastic property data obtained by microstructural measurements, especially high frequency ultrasonic wave propagation (UWP) and scanning acoustic microscopy (SAM) techniques. However, atomic force microscopy (AFM) and nanoindentation (NI) of cortical and trabecular bone and the dentin–enamel junction (DEJ) among others have become available allowing correlation of the nanostructural level measurements with those made on the microstructural level. PMID:18270549

  10. Mechanical And Thermal Properties Of Optical Materials - A Review

    NASA Astrophysics Data System (ADS)

    Ballard, Stanley S.

    1980-02-01

    In selecting an optical material, the instrument designer's first consideration is optical properties, especially transmission region but also homogeneity, freedom from birefringence, perhaps refractive index and dispersion. Next in his hierarchy are the other physical properties: mechanical, thermal, and chemical (solubility, for example). In this review article, the several properties are listed, and data sources are given. No single compilation or handbook contains all the desired data, so many references are quoted. This review covers materials useful in the ultraviolet and esuecially the infrared spectral regions; it does not include the standard glasses used in the visible region.

  11. Characterization of the physical properties for solid granular materials

    SciTech Connect

    Tucker, Jonathan R.; Shadle, Lawrence J.; Guenther, Chris; Benyahia, Sofiane; Mei, Joseph S.; Banta, Larry

    2012-01-01

    Accurate prediction of the behavior of a system is strongly governed by the components within that system. For multiphase systems incorporating solid powder-like particles, there are many different physical properties which need to be known to some level of accuracy for proper design, modeling, or data analysis. In the past, the material properties were determined initially as a secondary part of the study or design. In an attempt to provide results with the least level of uncertainty, a procedure was developed and implemented to provide consistent analysis of several different types of materials. The properties that were characterized included particle sizing and size distributions, shape analysis, density (particle, skeletal and bulk), minimum fluidization velocities, void fractions, particle porosity, and assignment within the Geldart Classification. In the methods used for this experiment, a novel form of the Ergun equation was used to determine the bulk void fractions and particle density. Materials of known properties were initially characterized to validate the accuracy and methodology, prior to testing materials of unknown properties. The procedures used yielded valid and accurate results, with a high level of repeatability. A database of these materials has been developed to assist in model validation efforts and future designs. It is also anticipated that further development of these procedures wil be expanded increasing the properties included in the database.

  12. Chemical hydrogen storage material property guidelines for automotive applications

    SciTech Connect

    Semelsberger, Troy; Brooks, Kriston P.

    2015-04-01

    Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (<20 atm), moderate temperature operation (<200 C), system gravimetric capacities (>0.05 kg H2/kg system), and system volumetric capacities (>0.05 kg H2/L system). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storage material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material propertiesdand most important, their implications on system mass, system volume and system performance.

  13. Graphene-based materials: synthesis, characterization, properties, and applications.

    PubMed

    Huang, Xiao; Yin, Zongyou; Wu, Shixin; Qi, Xiaoying; He, Qiyuan; Zhang, Qichun; Yan, Qingyu; Boey, Freddy; Zhang, Hua

    2011-07-18

    Graphene, a two-dimensional, single-layer sheet of sp(2) hybridized carbon atoms, has attracted tremendous attention and research interest, owing to its exceptional physical properties, such as high electronic conductivity, good thermal stability, and excellent mechanical strength. Other forms of graphene-related materials, including graphene oxide, reduced graphene oxide, and exfoliated graphite, have been reliably produced in large scale. The promising properties together with the ease of processibility and functionalization make graphene-based materials ideal candidates for incorporation into a variety of functional materials. Importantly, graphene and its derivatives have been explored in a wide range of applications, such as electronic and photonic devices, clean energy, and sensors. In this review, after a general introduction to graphene and its derivatives, the synthesis, characterization, properties, and applications of graphene-based materials are discussed.

  14. A Summary of the Fatigue Properties of Wind Turbine Materials

    SciTech Connect

    SUTHERLAND, HERBERT J.

    1999-10-07

    Modern wind turbines are fatigue critical machines that are typically used to produce electrical power from the wind. The materials used to construct these machines are subjected to a unique loading spectrum that contains several orders of magnitude more cycles than other fatigue critical structures, e.g., an airplane. To facilitate fatigue designs, a large database of material properties has been generated over the past several years that is specialized to materials typically used in wind turbines. In this paper, I review these fatigue data. Major sections are devoted to the properties developed for wood, metals (primarily aluminum) and fiberglass. Special emphasis is placed on the fiberglass discussion because this material is current the material of choice for wind turbine blades. The paper focuses on the data developed in the U.S., but cites European references that provide important insights.

  15. Investigation of thermal properties of raw materials of asphalt mixtures

    NASA Astrophysics Data System (ADS)

    Géber, R.; Simon, A.; Kocserha, I.

    2017-02-01

    Asphalt mixtures are composite materials, which are made of different grades of mineral aggregates and bitumen. During the mixing process mineral materials were blended with bitumen at relatively high temperature (∼200 °C). As the binding process come off in these higher temperature range, thermal properties of asphaltic materials are important. The aim of this project is to reveal the thermal properties of raw materials. During our research two types of mineral aggregates were tested (limestone and dolomite) by different methods. Differential thermal analysis, thermal expansion and thermal conductivity were investigated at technologically important temperatures. The results showed that the structure of mineral materials did not change at elevated temperatures, expansion of samples was neglible, while thermal conductivity changed by temperature.

  16. Strength properties of fly ash based controlled low strength materials.

    PubMed

    Türkel, S

    2007-08-25

    Controlled low strength material (CLSM) is a flowable mixture that can be used as a backfill material in place of compacted soils. Flowable fill requires no tamping or compaction to achieve its strength and typically has a load carrying capacity much higher than compacted soils, but it can still be excavated easily. The selection of CLSM type should be based on technical and economical considerations for specific applications. In this study, a mixture of high volume fly ash (FA), crushed limestone powder (filler) and a low percentage of pozzolana cement have been tried in different compositions. The amount of pozzolana cement was kept constant for all mixes as, 5% of fly ash weight. The amount of mixing water was chosen in order to provide optimum pumpability by determining the spreading ratio of CLSM mixtures using flow table method. The shear strength of the material is a measure of the materials ability to support imposed stresses on the material. The shear strength properties of CLSM mixtures have been investigated by a series of laboratory tests. The direct shear test procedure was applied for determining the strength parameters Phi (angle of shearing resistance) and C(h) (cohesion intercept) of the material. The test results indicated that CLSM mixtures have superior shear strength properties compared to compacted soils. Shear strength, cohesion intercept and angle of shearing resistance values of CLSM mixtures exceeded conventional soil materials' similar properties at 7 days. These parameters proved that CLSM mixtures are suitable materials for backfill applications.

  17. Perceived object stability depends on shape and material properties.

    PubMed

    Lupo, Julian; Barnett-Cowan, Michael

    2015-04-01

    Humans can detect whether an unstable object will fall or right itself, suggesting that the visual system can extract an object's center of mass (COM) and relate this to its base of support. While the COM can be approximated by its shape, this assumes uniform density. We created images of computer-generated goblets made of different materials to assess whether the visual system estimates an object's COM from both shape and material properties. The images were either uniformly dense (e.g., glass, gold, etc.) or made of composite materials (e.g., glass and gold) and positioned upright or upside-down near a table ledge. We compared each goblet's critical angle (CA), the angle at which each goblet is equally likely to fall or right itself, to the perceived CA in a two-alternative-forced-choice paradigm. Participants also rank-ordered 20 materials by density on a questionnaire. The results show that observers accurately estimate the CA for all goblets and are sensitive to subtle changes of an object's COM with change in shape and composite material properties. Importantly, rated density - as measured from the questionnaire - and true material density were positively correlated, suggesting that humans might maintain a representation of relative material density with which to assess object stability. We conclude that the brain is able to assess an object's behavior in a gravitational environment by forming a reliable assessment of an object's COM from both its geometric shape and material properties.

  18. Properties of Extruded PS-212 Type Self-Lubricating Materials

    NASA Technical Reports Server (NTRS)

    Waters, W. J.; Sliney, H. E.; Soltis, R. F.

    1993-01-01

    Research has been underway at the NASA Lewis Research Center since the 1960's to develop high temperature, self-lubricating materials. The bulk of the research has been done in-house by a team of researchers from the Materials Division. A series of self-lubricating solid material systems has been developed over the years. One of the most promising is the composite material system referred to as PS-212 or PM-212. This material is a powder metallurgy product composed of metal bonded chromium carbide and two solid lubricating materials known to be self-lubricating over a wide temperature range. NASA feels this material has a wide potential in industrial applications. Simplified processing of this material would enhance its commercial potential. Processing changes have the potential to reduce processing costs, but tribological and physical properties must not be adversely affected. Extrusion processing has been employed in this investigation as a consolidation process for PM-212/PS-212. It has been successful in that high density bars of EX-212 (extruded PM-212) can readily be fabricated. Friction and strength data indicate these properties have been maintained or improved over the P.M. version. A range of extrusion temperatures have been investigated and tensile, friction, wear, and microstructural data have been obtained. Results indicate extrusion temperatures are not critical from a densification standpoint, but other properties are temperature dependent.

  19. Optical method for determining the mechanical properties of a material

    DOEpatents

    Maris, H.J.; Stoner, R.J.

    1998-12-01

    Disclosed is a method for characterizing a sample, comprising the steps of: (a) acquiring data from the sample using at least one probe beam wavelength to measure, for times less than a few nanoseconds, a change in the reflectivity of the sample induced by a pump beam; (b) analyzing the data to determine at least one material property by comparing a background signal component of the data with data obtained for a similar delay time range from one or more samples prepared under conditions known to give rise to certain physical and chemical material properties; and (c) analyzing a component of the measured time dependent reflectivity caused by ultrasonic waves generated by the pump beam using the at least one determined material property. The first step of analyzing may include a step of interpolating between reference samples to obtain an intermediate set of material properties. The material properties may include sound velocity, density, and optical constants. In one embodiment, only a correlation is made with the background signal, and at least one of the structural phase, grain orientation, and stoichiometry is determined. 14 figs.

  20. Optical method for determining the mechanical properties of a material

    DOEpatents

    Maris, Humphrey J.; Stoner, Robert J.

    1998-01-01

    Disclosed is a method for characterizing a sample, comprising the steps of: (a) acquiring data from the sample using at least one probe beam wavelength to measure, for times less than a few nanoseconds, a change in the reflectivity of the sample induced by a pump beam; (b) analyzing the data to determine at least one material property by comparing a background signal component of the data with data obtained for a similar delay time range from one or more samples prepared under conditions known to give rise to certain physical and chemical material properties; and (c) analyzing a component of the measured time dependent reflectivity caused by ultrasonic waves generated by the pump beam using the at least one determined material property. The first step of analyzing may include a step of interpolating between reference samples to obtain an intermediate set of material properties. The material properties may include sound velocity, density, and optical constants. In one embodiment, only a correlation is made with the background signal, and at least one of the structural phase, grain orientation, and stoichiometry is determined.

  1. Material properties derived from three-dimensional shape representations.

    PubMed

    Marlow, Phillip J; Anderson, Barton L

    2015-10-01

    Retinal image structure is due to a complex mixture of physical sources that includes the surface's 3D shape, light-reflectance and transmittance properties, and the light field. The visual system can somehow discriminate between these different sources of image structure and recover information about the objects and surfaces in the scene. There has been significant debate about the nature of the representations that are used to derive surface reflectance properties such as specularity (gloss). Specularity could be derived either directly from 2D image properties or by exploiting information that can only be derived from representations in which 3D shape has been made explicit. We recently provided evidence that 3D shape information can play a critical role in the perception of material specularity, but the shape manipulation in our prior study also significantly changed 2D image properties (Marlow, Todorović, & Anderson, 2015). Here, we held fixed all monocularly visible 2D image properties and manipulated 3D shape stereoscopically. When binocularly fused, the depicted 3D shapes induced striking transformations in the surfaces' apparent material properties, which vary from matte to 'metallic'. Our psychophysical measurements of perceived specularity reveal that 3D shape information can play a critical role in material perception for both singly-curved surfaces and more complex geometries that curve in two directions. These results provide strong evidence that the perception of material specularity can depend on physical constraints derived from representations in which three-dimensional shape has been made explicit.

  2. Cyclic cryopreservation affects the nanoscale material properties of trabecular bone.

    PubMed

    Landauer, Alexander K; Mondal, Sumona; Yuya, Philip A; Kuxhaus, Laurel

    2014-11-07

    Tissues such as bone are often stored via freezing, or cryopreservation. During an experimental protocol, bone may be frozen and thawed a number of times. For whole bone, the mechanical properties (strength and modulus) do not significantly change throughout five freeze-thaw cycles. Material properties at the trabecular and lamellar scales are distinct from whole bone properties, thus the impact of freeze-thaw cycling at this scale is unknown. To address this, the effect of repeated freezing on viscoelastic material properties of trabecular bone was quantified via dynamic nanoindentation. Vertebrae from five cervine spines (1.5-year-old, male) were semi-randomly assigned, three-to-a-cycle, to 0-10 freeze-thaw cycles. After freeze-thaw cycling, the vertebrae were dissected, prepared and tested. ANOVA (factors cycle, frequency, and donor) on storage modulus, loss modulus, and loss tangent, were conducted. Results revealed significant changes between cycles for all material properties for most cycles, no significant difference across most of the dynamic range, and significant differences between some donors. Regression analysis showed a moderate positive correlation between cycles and material property for loss modulus and loss tangent, and weak negative correlation for storage modulus, all correlations were significant. These results indicate that not only is elasticity unpredictably altered, but also that damping and viscoelasticity tend to increase with additional freeze-thaw cycling.

  3. Mechanical Properties of Nanostructured Materials Determined Through Molecular Modeling Techniques

    NASA Technical Reports Server (NTRS)

    Clancy, Thomas C.; Gates, Thomas S.

    2005-01-01

    The potential for gains in material properties over conventional materials has motivated an effort to develop novel nanostructured materials for aerospace applications. These novel materials typically consist of a polymer matrix reinforced with particles on the nanometer length scale. In this study, molecular modeling is used to construct fully atomistic models of a carbon nanotube embedded in an epoxy polymer matrix. Functionalization of the nanotube which consists of the introduction of direct chemical bonding between the polymer matrix and the nanotube, hence providing a load transfer mechanism, is systematically varied. The relative effectiveness of functionalization in a nanostructured material may depend on a variety of factors related to the details of the chemical bonding and the polymer structure at the nanotube-polymer interface. The objective of this modeling is to determine what influence the details of functionalization of the carbon nanotube with the polymer matrix has on the resulting mechanical properties. By considering a range of degree of functionalization, the structure-property relationships of these materials is examined and mechanical properties of these models are calculated using standard techniques.

  4. Development and Demonstration of Material Properties Database and Software for the Simulation of Flow Properties in Cementitious Materials

    SciTech Connect

    Smith, F.; Flach, G.

    2015-03-30

    This report describes work performed by the Savannah River National Laboratory (SRNL) in fiscal year 2014 to develop a new Cementitious Barriers Project (CBP) software module designated as FLOExcel. FLOExcel incorporates a uniform database to capture material characterization data and a GoldSim model to define flow properties for both intact and fractured cementitious materials and estimate Darcy velocity based on specified hydraulic head gradient and matric tension. The software module includes hydraulic parameters for intact cementitious and granular materials in the database and a standalone GoldSim framework to manipulate the data. The database will be updated with new data as it comes available. The software module will later be integrated into the next release of the CBP Toolbox, Version 3.0. This report documents the development efforts for this software module. The FY14 activities described in this report focused on the following two items that form the FLOExcel package; 1) Development of a uniform database to capture CBP data for cementitious materials. In particular, the inclusion and use of hydraulic properties of the materials are emphasized; and 2) Development of algorithms and a GoldSim User Interface to calculate hydraulic flow properties of degraded and fractured cementitious materials. Hydraulic properties are required in a simulation of flow through cementitious materials such as Saltstone, waste tank fill grout, and concrete barriers. At SRNL these simulations have been performed using the PORFLOW code as part of Performance Assessments for salt waste disposal and waste tank closure.

  5. Investigating the thermophysical properties of indurated materials on Mars

    NASA Astrophysics Data System (ADS)

    Murphy, Nathaniel William

    Indurated materials have been observed on the surface of Mars at every landing site and inferred from orbital remote-sensing data by the Viking, Mars Global Surveyor, and Mars Odyssey spacecraft. However, indurated materials on Mars are poorly understood because there is no ground truth for the indurated surfaces inferred from thermal remote-sensing data. I adopted two approaches to investigate indurated materials on Mars: (1) remote-sensing analysis of the Isidis basin, which shows some of the highest thermal inertia values derived from TES 1 observations, and (2) laboratory analyses of terrestrial indurated materials. To characterize the surface of the Isidis basin, I combined a variety of remote-sensing datasets, including thermal inertia data derived from TES and MO-THEMIS, TES albedo, THEMIS thermal and visible imaging, and Earth-based radar observations. From these observations I concluded that the thermal inertia values in the Isidis basin are likely the result of variations in the degree of cementation of indurated materials. To examine the thermophysical properties of indurated materials I collected four examples of terrestrial indurated materials. These included two types of gypcrete collected from a gypcrete deposit near Upham Hills, NM, clay-materials from Lunar Lake Playa, NV, and a pyroclastic material from the Bandelier Tuff near Los Alamos, NM. Despite significant differences in their physical properties and origins, all of these materials have thermal inertia values consistent with inferred indurated surfaces on Mars. There are no strong correlations between the thermal and physical properties of the collected samples due to thermal effects of the fabrics of the indurated materials. 1 Thermal Emission Spectrometer onboard the Mars Global Surveyor spacecraft. 2 Thermal Emission Imaging System onboard the Mars Odyssey spacecraft

  6. Atomistic methodologies for material properties of 2D materials at the nanoscale

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen

    Research on two dimensional (2D) materials, such as graphene and MoS2, now involves thousands of researchers worldwide cutting across physics, chemistry, engineering and biology. Due to the extraordinary properties of 2D materials, research extends from fundamental science to novel applications of 2D materials. From an engineering point of view, understanding the material properties of 2D materials under various conditions is crucial for tailoring the electrical and mechanical properties of 2D-material-based devices at the nanoscale. Even at the nanoscale, molecular systems typically consist of a vast number of atoms. Molecular dynamics (MD) simulations enable us to understand the properties of assemblies of molecules in terms of their structure and the microscopic interactions between them. From a continuum approach, mechanical properties and thermal properties, such as strain, stress, and heat capacity, are well defined and experimentally measurable. In MD simulations, material systems are considered to be discrete, and only interatomic potential, interatomic forces, and atom positions are directly obtainable. Besides, most of the fracture mechanics concepts, such as stress intensity factors, are not applicable since there is no singularity in MD simulations. However, energy release rate still remains to be a feasible and crucial physical quantity to characterize the fracture mechanical property of materials at the nanoscale. Therefore, equivalent definition of a physical quantity both in atomic scale and macroscopic scale is necessary in order to understand molecular and continuum scale phenomena concurrently. This work introduces atomistic simulation methodologies, based on interatomic potential and interatomic forces, as a tool to unveil the mechanical properties, thermal properties and fracture mechanical properties of 2D materials at the nanoscale. Among many 2D materials, graphene and MoS2 have attracted intense interest. Therefore, we applied our

  7. Design of meta-materials with novel thermoelastic properties

    NASA Astrophysics Data System (ADS)

    Watts, Seth

    The development of new techniques in micro-manufacturing in recent years has enabled the fabrication of material microstructures with essentially arbitrary designs, including those with multiple constituent materials and void space in nearly any geometry. With an essentially open design space, the onus is now on the engineer to design composite materials which are optimal for their purpose. These new materials, called meta-materials or materials with architected microstructures, offer the potential to mix and match properties in a way that exceeds that of traditional composites. We concentrate on the thermal and elastic properties of isotropic meta-materials, and design microstructures with combinations of Young's modulus, Poisson's ratio, thermal conductivity, thermal expansion, and mass density which are not found among naturally-occurring or traditional composite materials. We also produce designs with thermal expansion far below other materials. We use homogenization theory to predict the material properties of a bulk meta-material comprised of a periodic lattice of unit cells, then use topology optimization to rearrange two constituent materials and void space within the unit cell in order to extremize an objective function which yields the combinations of properties we seek. This method is quite general and can be extended to consider additional properties of interest. We constrain the design space to satisfy material isotropy directly (2D), or to satisfy cubic symmetry (3D), from which point an isotropy constraint function is easily applied. We develop and use filtering, nonlinear interpolation, and thresholding methods to render the design problem well-posed, and as a result ensure our designs are manufacturable. We have written two computer implementations of this design methodology. The first is for creating two-dimensional designs, which can run on a serial computer in approximately half an hour. The second is a parallel implementation to allow

  8. Molecule-based electrorheological material with luminescence property

    NASA Astrophysics Data System (ADS)

    Chen, Ming-Xing; Liao, Fu-Hui; Shang, Yan-Li; Jia, Yun-Ling; Li, Jun-Ran

    2013-02-01

    Molecule-based electrorheological (ER) materials with luminescence property, based on β-cyclodextrin [(C6O5H10)7, β-CD] inclusion compounds between β-CD (host) and the rare earth (RE) (RE=Tb, Eu) complex (guest), have been synthesized as a novel type of ER materials using β-CD, Tb(NO3)3, Eu(NO3)3, sulphosalicylic acid (C7H6O6S·2H2O, SSA) and m-phthalic acid (C8H6O4, MPA) as original materials. The composition, ER performance, luminescence property and dielectric property of the materials have been studied. The results show that the rare earth complex in the cavity of β-CD may enhance the ER performance of β-CD, and the complex (Tb-SSA) of Tb3+ can improve more effectively the ER activity of β-CD than that (Eu-MPA) of Eu3+ among both of the complexes. The composition and structure are the dominant factors in improving the ER effect. The fluorescence intensity, fluorescence lifetime and emission quantum yield of the particle materials and their suspensions in silicone oil have been tested, and fine luminescence performance has been detected. The material with ER activity and luminescence performance is a novel multifunctional material which would have wide application prospect.

  9. Biologic properties of surgical scaffold materials derived from dermal ECM.

    PubMed

    Kulig, Katherine M; Luo, Xiao; Finkelstein, Eric B; Liu, Xiang-Hong; Goldman, Scott M; Sundback, Cathryn A; Vacanti, Joseph P; Neville, Craig M

    2013-07-01

    Surgical scaffold materials manufactured from donor human or animal tissue are increasingly being used to promote soft tissue repair and regeneration. The clinical product consists of the residual extracellular matrix remaining after a rigorous decellularization process. Optimally, the material provides both structural support during the repair period and cell guidance cues for effective incorporation into the regenerating tissue. Surgical scaffold materials are available from several companies and are unique products manufactured by proprietary methodology. A significant need exists for a more thorough understanding of scaffold properties that impact the early steps of host cell recruitment and infiltration. In this study, a panel of in vitro assays was used to make direct comparisons of several similar, commercially-available materials: Alloderm, Medeor Matrix, Permacol, and Strattice. Differences in the materials were detected for both cell signaling and scaffold architecture-dependent cell invasion. Material-conditioned media studies found Medeor Matrix to have the greatest positive effect upon cell proliferation and induction of migration. Strattice provided the greatest chemotaxis signaling and best suppressed apoptotic induction. Among assays measuring structure-dependent properties, Medeor Matrix was superior for cell attachment, followed by Permacol. Only Alloderm and Medeor Matrix supported chemotaxis-driven cell invasion beyond the most superficial zone. Medeor Matrix was the only material in the chorioallantoic membrane assay to support substantial cell invasion. These results indicate that both biologic and structural properties need to be carefully assessed in the considerable ongoing efforts to develop new uses and products in this important class of biomaterials.

  10. Chemistry and properties of blends of acetylene terminated materials

    NASA Technical Reports Server (NTRS)

    Connell, John W.; Hergenrother, Paul M.

    1991-01-01

    As part of a NASA program to develop new high temperature/high performance structural materials, the chemistry and properties of acetylene-containing materials and their cured resins are under investigation. The objective of this work is to develop materials that are readily processable (i.e., 200-300 C and about 1.4 MPa or less) and possess usable mechanical properties at temperatures as high as 177 C. An acetylene-terminated aspartimide (ATA) was blended with an equal weight of an acetylene-terminated arylene ether (ATAE) oligomer. The blend was subsequently thermally cured to yield a resin which was evaluated in the form of neat resin moldings, adhesive specimens, and laminates. Adhesive specimens and laminates gave good mechanical properties to temperatures as high as 177 C. In addition, preliminary laminate work is presented on the resin from a blend of a new N-methyl substituted ATA and an ATAE.

  11. Heteroatom-doped graphene materials: syntheses, properties and applications.

    PubMed

    Wang, Xuewan; Sun, Gengzhi; Routh, Parimal; Kim, Dong-Hwan; Huang, Wei; Chen, Peng

    2014-01-01

    Heteroatom doping can endow graphene with various new or improved electromagnetic, physicochemical, optical, and structural properties. This greatly extends the arsenal of graphene materials and their potential for a spectrum of applications. Considering the latest developments, we comprehensively and critically discuss the syntheses, properties and emerging applications of the growing family of heteroatom-doped graphene materials. The advantages, disadvantages, and preferential doping features of current synthesis approaches are compared, aiming to provide clues for developing new and controllable synthetic routes. We emphasize the distinct properties resulting from various dopants, different doping levels and configurations, and synergistic effects from co-dopants, hoping to assist a better understanding of doped graphene materials. The mechanisms underlying their advantageous uses for energy storage, energy conversion, sensing, and gas storage are highlighted, aiming to stimulate more competent applications.

  12. Micro-mechanical properties of bio-materials

    NASA Astrophysics Data System (ADS)

    Zakiev, V.; Markovsky, A.; Aznakayev, E.; Zakiev, I.; Gursky, E.

    2005-09-01

    Investigation of physical-mechanical characteristics of stomatologic materials (ceramics for crowns, silver amalgam, cements and materials on a polymeric basis) properties by the modern methods and correspondence their physical-mechanical properties to the physical-mechanical properties of native teeth is represented. The universal device "Micron-Gamma" is built for this purpose. This device allows investigate the physical-mechanical characteristics of stomatologic materials (an elastic modulus, micro-hardness, destruction energy, resistance to scratching) by the methods of continuous indentation, scanning and pricking. A new effective method as well as its device application for the investigation of surface layers of materials and their physical-mechanical properties by means of the constant indenting of an indenter is realized. This method is based on the automatic registration of loading (P) on the indenter with the simultaneous measurement of its indentation depth (h). The results of investigations are presented on a loading diagram P=f(h) and as a digital imaging on the PC. This diagram allows get not only more diverse characteristics in the real time regime but also gives new information about the stomatologic material properties. Therefore, we can to investigate the wide range of the physical-mechanical properties of stomatologic materials. "Micron-alpha" is digital detection device for light imaging applications. It enables to detect the very low material surface relief heights and restoration of surface micro topography by a sequence data processing of interferential data of partially coherent light also. "Micron-alpha" allows: to build 2D and 3D imaging of a material surface; to estimate the quantitatively characteristics of a material surface; to observe the imaging interferential pictures both in the white and in the monochromatic light; to carry out the investigation of blood cells, microbes and biological macromolecules profiles. The method allows

  13. Fabrication, properties, and tritium recovery from solid breeder materials

    SciTech Connect

    Johnson, C.E. ); Kondo, T. ); Roux, N. ); Tanaka, S. ); Vollath, D. )

    1991-01-01

    The breeding blanket is a key component of the fusion reactor because it directly involves tritium breeding and energy extraction, both of which are critical to development of fusion power. The lithium ceramics continue to show promise as candidate breeder materials. This promise was recognized by the International Thermonuclear Experimental Reactor (ITER) design team in its selection of ceramics as the first option for the ITER breeder material. Blanket design studies have indicated properties in the candidate materials data base that need further investigation. Current studies are focusing on tritium release behavior at high burnup, changes in thermophysical properties with burnup, compatibility between the ceramic breeder and beryllium multiplier, and phase changes with burnup. Laboratory and in-reactor tests, some as part of an international collaboration for development of ceramic breeder materials, are underway. 133 refs., 1 fig.

  14. Spectral reflectance properties of carbon-bearing materials

    NASA Technical Reports Server (NTRS)

    Cloutis, Edward A.; Gaffey, Michael J.; Moslow, Thomas F.

    1994-01-01

    The 0.3-2.6 micrometers spectral reflectance properties of carbon polymorphs (graphite, carbon black, diamond), carbides (silicon carbide, cementite), and macromolecular organic-bearing materials (coal, coal tar extract, oil sand, oil shale) are found to vary from sample to sample and among groups. The carbon polymorphs are readily distinguishable on the basis of their visible-near infrared spectral slopes and shapes. The spectra of macromolecular organic-bearing materials show increases in reflectance toward longer wavelengths, exceeding the reflectance rise of more carbon-rich materials. Reflectance spectra of carbonaceous materials are affected by the crystal structure, composition, and degree of order/disorder of the samples. The characteristic spectral properties can potentially be exploited to identify individual carbonaceous grains in meteorites (as separates or in situ) or to conduct remote sensing geothermometry and identification of carbonaceous phases on asteroids.

  15. Large scale Hugoniot material properties for Danby Marble

    SciTech Connect

    Rinehart, E.J.

    1993-11-01

    This paper presents the results of simulation experiments of nuclear underground testing carried out using the HYDROPLUS methodology for yield verifications of non-standard tests. The objective of this test series was to demonstrate the accuracy of stress and velocity measurements in hard, low porosity rock, to obtain comparisons of large-scale material properties with those obtained from laboratory testing of the same material, and to address the problems posed by a material having a clear precursor wave preceding the main shock wave. The test series consisted of three individual experimental tests. The first established material properties of the Danby marble selected for use in the experiments. The second and third tests looked at stress and velocity gage errors obtained when gages were placed in boreholes and grouted into place.

  16. Predicting and Designing Optical Properties of Inorganic Materials

    NASA Astrophysics Data System (ADS)

    Rondinelli, James M.; Kioupakis, Emmanouil

    2015-07-01

    Modern first-principles calculations based on density functional theory and related techniques enable the predictive modeling of the linear and nonlinear optical properties of materials without adjustable or empirical parameters. Today, atomistic calculations are an indispensable tool by which to understand the interrelationship between the underlying structure and the measured optical properties and are particularly suited for the design of new materials with desirable optical responses and performance. In this article, we discuss the first-principles design methodology, and we review recent results from the literature that exemplify the predictive power of the method for numerous inorganic materials and nanostructures. We also discuss topics of active research and future opportunities that will enable the wider adoption of atomistic simulation techniques for predictive materials design.

  17. Reflector and Shield Material Properties for Project Prometheus

    SciTech Connect

    J. Nash

    2005-11-02

    This letter provides updated reflector and shield preliminary material property information to support reactor design efforts. The information provided herein supersedes the applicable portions of Revision 1 to the Space Power Program Preliminary Reactor Design Basis (Reference (a)). This letter partially answers the request in Reference (b) to provide unirradiated and irradiated material properties for beryllium, beryllium oxide, isotopically enriched boron carbide ({sup 11}B{sub 4}C) and lithium hydride. With the exception of {sup 11}B{sub 4}C, the information is provided in Attachments 1 and 2. At the time of issuance of this document, {sup 11}B{sub 4}C had not been studied.

  18. Characterization of Viscoelastic Properties of Polymeric Materials Through Nanoindentation

    NASA Technical Reports Server (NTRS)

    Odegard, G. M.; Bandorawalla, T.; Herring, H. M.; Gates, T. S.

    2003-01-01

    Nanoindentation is used to determine the dynamic viscoelastic properties of six polymer materials. It is shown that varying the harmonic frequency of the nanoindentation does not have any significant effect on the measured storage and loss moduli of the polymers. Agreement is found between these results and data from DMA testing of the same materials. Varying the harmonic amplitude of the nanoindentation does not have a significant effect on the measured properties of the high performance resins, however, the storage modulus of the polyethylene decreases as the harmonic amplitude increases. Measured storage and loss moduli are also shown to depend on the density of the polyethylene.

  19. Material Property Characterization of AS4/VRM-34 Textile Laminates

    NASA Technical Reports Server (NTRS)

    Grenoble, Ray W.; Johnston, William M

    2013-01-01

    Several material properties (modulus, strengths, and fracture toughness) of a textile composite have been evaluated to provide input data to analytical models of Pultruded Rod Stiffened Efficient Unitized Structure (PRSEUS). The material system is based on warp-knitted preforms of AS4 carbon fibers and VRM-34 epoxy resin, which have been processed via resin infusion and oven curing. Tensile, compressive, shear, and fracture toughness properties have been measured at ambient and elevated temperatures. All specimens were tested in as-fabricated (dry) condition. Specimens were tested with and without through-thickness stitching.

  20. Guidelines for identification of concrete in a materials property database

    SciTech Connect

    Oland, C.B.; Frohnsdorff, G.

    1995-12-31

    Guidelines for the identification of concrete in a materials property database are presented to address the complex problem of distinguishing one concrete from another. These guidelines are based on a logical scheme for systematically organizing and subdividing data and information about concrete and its constituents; they reflect consensus recommendations for a multilevel material description and designation system. Aspects of the guidelines include a classification system used to establish a series of primary identifiers, methods for reporting constituent information and mixture proportions, fields describing the source of the concrete and its processing history, and recommendations for reporting baseline or reference properties.

  1. Characterization of mechanical properties of materials using ultrasound broadband spectroscopy.

    PubMed

    Agrawal, Megha; Prasad, Abhinav; Bellare, Jayesh R; Seshia, Ashwin A

    2016-01-01

    This article explores the characterization of homogenous materials (metals, alloys, glass and polymers) by a simple broadband ultrasonic interrogation method. The novelty lies in the use of ultrasound in a continuous way with very low input power (0 dBm or less) and analysis of the transmitted acoustic wave spectrum for material property characterization like speed of sound, density and dimensions of a material. Measurements were conducted on various thicknesses of samples immersed in liquid where continuous-wave, frequency swept ultrasonic energy was incident normal to the sample surface. The electro-acoustic transmission response is analyzed in the frequency domain with respect to a specifically constructed multi-layered analytical model. From the acoustic signature of the sample materials, material properties such as speed of sound and acoustic impedance can be calculated with experimentally derived values found to be in general agreement with the literature and with pulse-echo technique establishing the basis for a non-contact and non-destructive technique for material characterization. Further, by looking at the frequency spacing of the peaks of water when the sample is immersed, the thickness of the sample can be calculated independently from the acoustic response. This technique can prove to be an effective non-contact, non-destructive and fast material characterization technique for a wide variety of materials.

  2. Mechanical properties of some polymer materials used for tooth positioners.

    PubMed

    Collett, A R; Cook, W D; West, V C

    1994-10-01

    The chemical composition, thermal behaviour and mechanical properties of three tooth positioner materials, Urethane P1 (P1), White Rubber (WR) and Elastocryl (EL) were investigated. Infra-red spectrophotometry indicated the P1 polyurethane material to be of the polyether type, and EL to be a blend of poly(ethyl methacrylate) and poly(methyl methacrylate) while WR appeared to be filled cis-poly (isoprene) (natural rubber). The glass transition temperature (Tg) for EL was determined as approximately 10 degrees C, and for both P1 and WR the Tg was less than -50 degrees C. The stress relaxation behaviour was assessed in compression by measuring the stress variation with time. The results for all three materials conformed to the superelastic theory of rubber elasticity. EL exhibited both a more rapid rate and higher degree of stress relaxation than did P1 and WR. Recovery from deformation was assessed by compressing cylinders for given periods of time and then measuring the level of reduced residual strain of the material with time. All three materials exhibited significant residual strain (epsilon(t)) over 'clinically relevant' time periods, and the reduced residual strain (epsilon(t)/epsilon(O)) following deformation was greater for EL than P1 or WR. There was some indication that the three materials have some permanent set following deformation. It was concluded that, in considering desirable mechanical properties of tooth positioner materials, EL is the least suitable of the three examined, with none of the materials being ideal.

  3. Realization of New and Enhanced Materials Properties Through Nanostructural Control

    DTIC Science & Technology

    2007-06-11

    methods have been used to guide the design of novel new organic electroactive materials (e.g., electro - optic binary chromophore organic glasses...These new materials have yielded electro - optic coefficients as high as 450 pm/V (15 times lithium niobate) with auxiliary properties of modest optical... electro - optic activity has been achieved for the first time and theoretical conclusions have been verified by a number of new measurement techniques

  4. Means for ultrasonic testing when material properties vary

    DOEpatents

    Beller, Laurence S.

    1979-01-01

    A device is provided for maintaining constant sensitivity in an ultrasonic testing device, despite varying attenuation due to the properties of the material being tested. The device includes a sensor transducer for transmitting and receiving a test signal and a monitor transducer positioned so as to receive ultrasonic energy transmitted through the material to be tested. The received signal of the monitor transducer is utilized in analyzing data obtained from the sensor transducer.

  5. Solar Sail Material Performance Property Response to Space Environmental Effects

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Semmel, Charles; Hovater, Mary; Nehls, Mary; Gray, Perry; Hubbs, Whitney; Wertz, George

    2004-01-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) continues research into the utilization of photonic materials for spacecraft propulsion. Spacecraft propulsion, using photonic materials, will be achieved using a solar sail. A solar sail operates on the principle that photons, originating from the sun, impart pressure to the sail and therefore provide a source for spacecraft propulsion. The pressure imparted to a solar sail can be increased, up to a factor of two, if the sun-facing surface is perfectly reflective. Therefore, these solar sails are generally composed of a highly reflective metallic sun-facing layer, a thin polymeric substrate and occasionally a highly emissive back surface. Near term solar sail propelled science missions are targeting the Lagrange point 1 (Ll) as well as locations sunward of L1 as destinations. These near term missions include the Solar Polar Imager and the L1 Diamond. The Environmental Effects Group at NASA s Marshall Space Flight Center (MSFC) continues to actively characterize solar sail material in preparation for these near term solar sail missions. Previous investigations indicated that space environmental effects on sail material thermo-optical properties were minimal and would not significantly affect the propulsion efficiency of the sail. These investigations also indicated that the sail material mechanical stability degrades with increasing radiation exposure. This paper will further quantify the effect of space environmental exposure on the mechanical properties of candidate sail materials. Candidate sail materials for these missions include Aluminum coated Mylar[TM], Teonex[TM], and CPl (Colorless Polyimide). These materials were subjected to uniform radiation doses of electrons and protons in individual exposures sequences. Dose values ranged from 100 Mrads to over 5 Grads. The engineering performance property responses of thermo-optical and mechanical properties were

  6. Characterization of Elastic Properties of Interfaces in Composite Materials

    DTIC Science & Technology

    1990-09-01

    29.50 ± 3.5*. Although this variance is too large to be explained by the shift in energy flow (analogous to the Goos - Hanchen shift in optics), its...JHU-CNDE-IW.7 AD-A228 119 Characterization of Elastic Properties of Interfaces in Composite Materials T.M. Hsieh, K.A. Hirshman, EA. Lindgren, M...Strategic Defense Initiative Organization has placed a great deal of emphasis on the development of new composite materials, specifically metal and

  7. Effective Mechanical Properties of Lattice Material Fabricated by Material Extrusion Additive Manufacturing

    SciTech Connect

    Park, Sang-In; Choi, Seung-kyum; Rosen, David W; Duty, Chad E

    2014-01-01

    In this paper, a two-step homogenization method is proposed and implemented for evaluating effective mechanical properties of lattice structured material fabricated by the material extrusion additive manufacturing process. In order to consider the characteristics of the additive manufacturing process in estimation procedures, the levels of scale for homogenization are divided into three stages the levels of layer deposition, structural element, and lattice structure. The method consists of two transformations among stages. In the first step, the transformation between layer deposition and structural element levels is proposed to find the geometrical and material effective properties of structural elements in the lattice structure. In the second step, the method to estimate effective mechanical properties of lattice material is presented, which uses a unit cell and is based on the discretized homogenization method for periodic structure. The method is implemented for cubic lattice structure and compared to experimental results for validation purposes.

  8. Stretchable polyurethane sponge reinforced magnetorheological material with enhanced mechanical properties

    NASA Astrophysics Data System (ADS)

    Ge, Lin; Xuan, Shouhu; Liao, Guojiang; Yin, Tiantian; Gong, Xinglong

    2015-03-01

    A stretchable magnetorheological material (SMRM) consisting of micro-meter carbonyl iron (CI) particles, low cross-linking polyurethane (PU) polymer and porous PU sponge has been developed. Due to the presence of the PU sponge, the high-performance MR material can be reversibly stretched or bent, just as MR elastomers. When the CI content increases to 80 wt%, the magnetic induced modulus of the MR material can reach as high as 7.34 MPa and the corresponding relative MR effect increases to 820%. A possible strengthening mechanism of the SMRM was proposed. The attractive mechanical properties make the SMRM a promising candidate for future high-performance devices.

  9. Determination of replicate composite bone material properties using modal analysis.

    PubMed

    Leuridan, Steven; Goossens, Quentin; Pastrav, Leonard; Roosen, Jorg; Mulier, Michiel; Denis, Kathleen; Desmet, Wim; Sloten, Jos Vander

    2017-02-01

    Replicate composite bones are used extensively for in vitro testing of new orthopedic devices. Contrary to tests with cadaveric bone material, which inherently exhibits large variability, they offer a standardized alternative with limited variability. Accurate knowledge of the composite's material properties is important when interpreting in vitro test results and when using them in FE models of biomechanical constructs. The cortical bone analogue material properties of three different fourth-generation composite bone models were determined by updating FE bone models using experimental and numerical modal analyses results. The influence of the cortical bone analogue material model (isotropic or transversely isotropic) and the inter- and intra-specimen variability were assessed. Isotropic cortical bone analogue material models failed to represent the experimental behavior in a satisfactory way even after updating the elastic material constants. When transversely isotropic material models were used, the updating procedure resulted in a reduction of the longitudinal Young's modulus from 16.00GPa before updating to an average of 13.96 GPa after updating. The shear modulus was increased from 3.30GPa to an average value of 3.92GPa. The transverse Young's modulus was lowered from an initial value of 10.00GPa to 9.89GPa. Low inter- and intra-specimen variability was found.

  10. Comparison of shrinkage related properties of various patch repair materials

    NASA Astrophysics Data System (ADS)

    Kristiawan, S. A.; Fitrianto, R. S.

    2017-02-01

    A patch repair material has been developed in the form of unsaturated polyester resin (UPR)-mortar. The performance and durability of this material are governed by its compatibility with the concrete being repaired. One of the compatibility issue that should be tackled is the dimensional compatibility as a result of differential shrinkage between the repair material and the concrete substrate. This research aims to evaluate such shrinkage related properties of UPR-mortar and to compare with those of other patch repair materials. The investigation includes the following aspects: free shrinkage, resistance to delamination and cracking. The results indicate that UPR-mortar poses a lower free shrinkage, lower risk of both delamination and cracking tendency in comparison to other repair materials.

  11. Influence of optical material properties on the perception of liquids.

    PubMed

    van Assen, Jan Jaap R; Fleming, Roland W

    2016-12-01

    In everyday life we encounter a wide range of liquids (e.g., water, custard, toothpaste) with distinctive optical appearances and viscosities. Optical properties (e.g., color, translucency) are physically independent of viscosity, but, based on experience with real liquids, we may associate specific appearances (e.g., water, caramel) with certain viscosities. Conversely, the visual system may discount optical properties, enabling "viscosity constancy" based primarily on the liquid's shape and motion. We investigated whether optical characteristics affect the perception of viscosity and other properties of liquids. We simulated pouring liquids with viscosities ranging from water to molten glass and rendered them with nine different optical characteristics. In Experiment 1, observers (a) adjusted a match stimulus until it had the same perceived viscosity as a test stimulus with different optical properties, and (b) rated six physical properties of the test stimuli (runniness, shininess, sliminess, stickiness, warmth, wetness). We tested moving and static stimuli. In Experiment 2, observers had to associate names with every liquid in the stimulus set. We find that observers' viscosity matches correlated strongly with the true viscosities and that optical properties had almost no effect. However, some ratings of liquid properties did show substantial interactions between viscosity and optical properties. Observers associate liquid names primarily with optical cues, although some materials are associated with a specific viscosity or combination of viscosity and optics. These results suggest viscosity is inferred primarily from shape and motion cues but that optical characteristics influence recognition of specific liquids and inference of other physical properties.

  12. Tailoring material properties of a nanofibrous extracellular matrix derived hydrogel

    NASA Astrophysics Data System (ADS)

    Johnson, Todd D.; Lin, Stephen Y.; Christman, Karen L.

    2011-12-01

    In the native tissue, the interaction between cells and the extracellular matrix (ECM) is essential for cell migration, proliferation, differentiation, mechanical stability, and signaling. It has been shown that decellularized ECMs can be processed into injectable formulations, thereby allowing for minimally invasive delivery. Upon injection and increase in temperature, these materials self-assemble into porous gels forming a complex network of fibers with nanoscale structure. In this study we aimed to examine and tailor the material properties of a self-assembling ECM hydrogel derived from porcine myocardial tissue, which was developed as a tissue specific injectable scaffold for cardiac tissue engineering. The impact of gelation parameters on ECM hydrogels has not previously been explored. We examined how modulating pH, temperature, ionic strength, and concentration affected the nanoscale architecture, mechanical properties, and gelation kinetics. These material characteristics were assessed using scanning electron microscopy, rheometry, and spectrophotometry, respectively. Since the main component of the myocardial matrix is collagen, many similarities between the ECM hydrogel and collagen gels were observed in terms of the nanofibrous structure and modulation of properties by altering ionic strength. However, variation from collagen gels was noted for the gelation temperature along with varied times and rates of gelation. These discrepancies when compared to collagen are likely due to the presence of other ECM components in the decellularized ECM based hydrogel. These results demonstrate how the material properties of ECM hydrogels could be tailored for future in vitro and in vivo applications.

  13. Studies of acoustical properties of bulk porous flexible materials

    NASA Technical Reports Server (NTRS)

    Lambert, R. F.

    1984-01-01

    Acoustic prediction and measurement of bulk porous materials with flexible frames is investigated. The acoustic properties of Kevlar 29 are examined. Various acoustic tests are employed to determine impedance, sound wave propagation, and wave pressure equations for the highly porous fiber composites. The derivation of design equations and future research goals are included.

  14. Measuring acoustic properties of materials and jet nozzles

    NASA Technical Reports Server (NTRS)

    Dean, P. D.; Plumblee, H. E.; Salikuddin, M.

    1980-01-01

    Method measures acoustic properties of sound-absorbent materials and jet-nozzle system. Advantages of impulse method over other methods are that test time and complication are reduced. Results obtained from impulse method have been compared with those from existing methods, both experimental and theoretical, and show excellent agreement.

  15. Fundamentals of ultrasonic NDE for microstructure/material property interrelations

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1982-01-01

    Some fundamental aspects of ultrasonic nondestructive evaluation for material properties and microstructure assessment are given. Ultrasonic wave interaction concepts, some recent findings, and practical ramifications are illustrated. The concepts are discussed in nonmathematical, narrative form. Additional information can be found in the references cited herein.

  16. Learning to Apply Models of Materials While Explaining Their Properties

    ERIC Educational Resources Information Center

    Karpin, Tiia; Juuti, Kalle; Lavonen, Jari

    2014-01-01

    Background: Applying structural models is important to chemistry education at the upper secondary level, but it is considered one of the most difficult topics to learn. Purpose: This study analyses to what extent in designed lessons students learned to apply structural models in explaining the properties and behaviours of various materials.…

  17. Food material properties and early hominin processing techniques.

    PubMed

    Zink, Katherine D; Lieberman, Daniel E; Lucas, Peter W

    2014-12-01

    Although early Homo is hypothesized to have used tools more than australopiths to process foods prior to consumption, it is unknown how much the food processing techniques they used altered the material properties of foods, and therefore the masticatory forces they generated, and how well they were able to comminute foods. This study presents experimental data on changes to food material properties caused by mechanical tenderization (pounding with a stone tool) and cooking (dry roasting) of two foods likely to have been important components of the hominin diet: meat and tubers. Mechanical tenderization significantly decreased tuber toughness by 42%, but had no effect on meat toughness. Roasting significantly decreased several material properties of tubers correlated with masticatory effort including toughness (49%), fracture stress (28%) and elastic modulus (45%), but increased the toughness (77%), fracture stress (50%-222%), and elastic modulus of muscle fibers in meat (308%). Despite increasing many material properties of meat associated with higher masticatory forces, roasting also decreased measured energy loss by 28%, which likely makes it easier to chew. These results suggest that the use of food processing techniques by early Homo probably differed for meat and tubers, but together would have reduced masticatory effort, helping to relax selection to maintain large, robust faces and large, thickly enameled teeth.

  18. Investigation of Effective Material Properties of Stony Meteorites

    NASA Technical Reports Server (NTRS)

    Agrawal, Parul; Carlozzi, Alex; Bryson, Kathryn

    2016-01-01

    To assess the threat posed by an asteroid entering Earth's atmosphere, one must predict if, when, and how it fragments during entry. A comprehensive understanding of the Asteroid material properties is needed to achieve this objective. At present, the meteorite material found on Earth are the only objects from an entering asteroid that can be used as representative material and be tested inside a laboratory setting. Therefore, unit cell models are developed to determine the effective material properties of stony meteorites and in turn deduce the properties of asteroids. The unit cell is representative volume that accounts for diverse minerals, porosity, and matrix composition inside a meteorite. The various classes under investigation includes H-class, L-class, and LL-class chondrites. The effective mechanical properties such as Young's Modulus and Poisson's Ratio of the unit cell are calculated by performing several hundreds of Monte-Carlo simulations. Terrestrial analogs such as Basalt and Gabbro are being used to validate the unit cell methodology.

  19. Thermal properties of hemp fibre non-woven materials

    NASA Astrophysics Data System (ADS)

    Freivalde, Liga; Kukle, Silvija; Russell, Stephen

    2013-12-01

    This review considers the thermal properties analysis of hemp fiber non-woven materials made by three different manufacturing technologies - thermal bonding, needle-punching and hydro-entanglement. For non-wovens development two hemp fibers cultivars grown in Latvia were used - Purini and Bialobrzeskie. Thermal resistance, conductivity and the effects of several parameters on thermal performance are revised.

  20. Experimental analysis of electrical properties of composite materials

    NASA Astrophysics Data System (ADS)

    Fiala, L.; Rovnaník, P.; Černý, R.

    2017-02-01

    Dry cement-based composites are electrically non-conductive materials that behave in electric field like dielectrics. However, a relatively low amount of electrically conductive admixture significantly increases the electrical conductivity which extends applicability of such materials in practice. Therefore, they can be used as self-monitoring sensors controlling development of cracks; as sensors monitoring moisture content or when treated by an external electrical voltage as heat sources used for deicing of material's surface layer. Alkali-activated aluminosilicates (AAA), as competing materials to cement-based materials, are intensively investigated in the present due to their superior durability and environmental impact. Whereas the electrical properties of AAA are similar to those cement-based, they can be enhanced in the same way. In both cases, it is crucial to find a reasonable amount of electrically conductive phase to design composites with a sufficient electrical conductivity at an affordable price. In this paper, electrical properties of composites based on AAA binder and electrically conductive admixture represented by carbon nanotubes (CNT) are investigated. Measurements of electrical properties are carried out by means of 2-probes DC technique on nine types of samples; reference sample without the conductive phase and samples with CNT admixture in amount of 0.1 % - 2.5 % by vol. A significant increase of the electrical conductivity starts from the amount of 0.5 % CNT admixture and in case of 2.5 % CNT is about three orders of magnitude higher compared to the reference sample.

  1. Material and Flexural Properties of Fiber-reinforced Rubber Concrete

    NASA Astrophysics Data System (ADS)

    Helminger, Nicholas P.

    The purpose of this research is to determine the material properties of rubber concrete with the addition of fibers, and to determine optimal mixture dosages of rubber and fiber in concrete for structural applications. Fiber-reinforced concrete and rubberized concrete have been researched separately extensively, but this research intends to combine both rubber and fiber in a concrete matrix in order to create a composite material, fiber-reinforced rubber concrete (FRRC). Sustainability has long been important in engineering design, but much of the previous research performed on sustainable concrete does not result in a material that can be used for practical purposes. While still achieving a material that can be used for structural applications, economical considerations were given when choosing the proportions and types of constituents in the concrete mix. Concrete mixtures were designed, placed, and tested in accordance with common procedures and standards, with an emphasis on practicality. Properties that were investigated include compressive strength, tensile strength, modulus of elasticity, toughness, and ductility. The basis for determining the optimal concrete mixture is one that is economical, practical, and exhibits ductile properties with a significant strength. Results show that increasing percentages of rubber tend to decrease workability, unit weight, compressive strength, split tensile strength, and modulus of elasticity while the toughness is increased. The addition of steel needle fibers to rubber concrete increases unit weight, compressive strength, split tensile strength, modulus of elasticity, toughness, and ductility of the composite material.

  2. Development and Analysis of Synthetic Composite Materials Emulating Patient AAA Wall Material Properties

    NASA Astrophysics Data System (ADS)

    Margossian, Christa M.

    Abdominal Aortic Aneurysm (AAA) rupture accounts for 14,000 deaths a year in the United States. Since the number of ruptures has not decreased significantly in recent years despite improvements in imaging and surgical procedures, there is a need for an accurate, noninvasive technique capable of establishing rupture risk for specific patients and discriminating lesions at high risk. In this project, synthetic composite materials replicating patient-specific wall stiffness and strength were developed and their material properties evaluated. Composites utilizing various fibers were developed to give a range of stiffness from 1825.75 kPa up through 8187.64 kPa with one base material, Sylgard 170. A range of strength from 631.12 kPa to 1083 kPa with the same base material was also found. By evaluating various base materials and various reinforcing fibers, a catalogue of stiffnesses and strengths was started to allow for adaptation to specific patient properties. Three specific patient properties were well-matched with two composites fabricated: silk thread-reinforced Sylgard 170 and silk thread-reinforced Dragon Skin 20. The composites showed similar stiffnesses to the specific patients while reaching target stresses at particular strains. Not all patients were matched with composites as of yet, but recommendations for future matches are able to be determined. These composites will allow for the future evaluation of flow-induced wall stresses in models replicating patient material properties and geometries.

  3. Moisture effect on mechanical properties of polymeric composite materials

    NASA Astrophysics Data System (ADS)

    Airale, A. G.; Carello, M.; Ferraris, A.; Sisca, L.

    2016-05-01

    The influence of moisture on the mechanical properties of fibre-reinforced polymer matrix composites (PMCs) was investigated. Four materials had been take into account considering: both 2×2-Twill woven carbon fibre or glass fibre, thermosetting matrix (Epoxy Resin) or thermoplastic matrix (Polyphenylene Sulfide). The specimens were submitted for 1800 hours to a hygrothermic test to evaluate moisture absorption on the basis of the Fick's law and finally tested to verify the mechanical properties (ultimate tensile strength). The results showed that the absorbed moisture decreases those properties of composites which were dominated by the matrix or the interface, while was not detectable the influence of water on the considered fibre. An important result is that the diffusion coefficient is highest for glass/PPS and lowest for carbon/epoxy composite material. The results give useful suggestions for the design of vehicle components that are exposed to environmental conditions (rain, snow and humidity).

  4. The properties of metal-reinforced glass ionomer materials.

    PubMed

    Chung, K H

    1993-01-01

    The physical properties and bond strengths of two glass ionomer materials reinforced with silver and amalgam alloy powders were compared with those of a conventional material from the same manufacture as well as two commercially available products. The diametral tensile strength, hardness and bonding strength are improved with the addition of either commercial available silver particles or fabricated high-copper amalgam alloy powders to the glass. Simple mixture of the metal or alloy powders with the glass ionomer cement seems to be feasible to improve the properties of the regular cement. However, further studies in formulating an optimal composition of metal or alloy, setting characteristics and long-term clinical evaluation are necessary before proposing uses for this new material.

  5. Thermoelastic analysis of solar cell arrays and their material properties

    NASA Technical Reports Server (NTRS)

    Salama, M. A.; Rowe, W. M.; Yasui, R. K.

    1973-01-01

    A thermoelastic stress analysis procedure is reported for predicting the thermally induced stresses and failures in silicon solar cell arrays. A prerequisite for the analysis is the characterization of the temperature-dependent thermal and mechanical properties of the solar cell materials. Extensive material property testing was carried out in the temperature range -200 to +200 C for the filter glass, P- and N-type silicon, interconnector metals, solder, and several candidate silicone rubber adhesives. The analysis procedure is applied to several solar cell array design configurations. Results of the analysis indicate the optimum design configuration, with respect to compatible materials, effect of the solder coating, and effect of the interconnector geometry. Good agreement was found between results of the analysis and the test program.

  6. Structure-property relationships in silica-siloxane nanocomposite materials

    SciTech Connect

    Ulibarri, T.A.; Derzon, D.K.; Wang, L.C.

    1997-03-01

    The simultaneous formation of a filler phase and a polymer matrix via in situ sol-gel techniques provides silica-siloxane nanocomposite materials of high strength. This study concentrates on the effects of temperature and relative humidity on a trimodal polymer system in an attempt to accelerate the reaction as well as evaluate subtle process- structure-property relations. It was found that successful process acceleration is only viable for high humidity systems when using the tin(IV) catalyst dibutyltin dilaurate. Processes involving low humidity were found to be very temperature and time dependent. Bimodal systems were investigated and demonstrated that the presence of a short-chain component led to enhanced material strength. This part of the study also revealed a link between the particle size and population density and the optimization of material properties.

  7. DNA-linked nanoparticle materials: optical, electrical, and structural properties

    NASA Astrophysics Data System (ADS)

    Lazarides, A.; Park, S.-J.; Mirkin, C.; Storhoff, J.; Schatz, G.; Brazis, P.; Kannewurf, C.

    2001-03-01

    Novel bioinorganic materials composed of Au nanoparticles linked with DNA have been developed as colorimetric DNA sensors. In the presence of complimentary DNA, particles dressed with one of two oligonucleotide sequences are linked to form binary nanoparticle aggregates. Assemblies linked at 298K have plasmon frequency shifts that decrease with increasing linker length; annealing, however, eliminates the length dependence of the shift. Neither sedimentation rate measurements nor theoretical studies of the optical properties provide unambiguous explanation. However, small-angle X-ray scattering (SAXS) measurements indicate that separations between nanoparticles with or without annealing are proportional to the number of base pairs in the oligonucleotide linkers. DNA is thus shown to offer a means for tuning separations in nanoparticle materials. We have also investigated the electrical and structural properties of dry Au nanoparticle films linked by DNA. The assemblies are semiconducting, which suggests that DNA can be used as a chemically specific scaffolding material for assembly of conductive structures.

  8. Material properties study of the MJ-2 grout

    SciTech Connect

    Larson, D.B.

    1988-08-01

    Material properties experimental tests using the high pressure testing equipment at LLNL have been performed on the grout used in the Mini Jade-2 event (MJ-2) as part of a high pressure equation of state study sponsored by the Defense Nuclear Agency in support of the Misty Echo experiment at the Nevada Test Site. The material properties tests performed at LLNL and included in this report are (1) pressure-volume compression studies to 3.6 GPa, (2) pressure-volume compression and unloading studies to /approximately/1 GPa, and (3) material strength versus confining pressure to /approximately/1 GPa. These data are compared with dynamic results and with other static data using this grout. 4 refs., 5 figs., 4 tabs.

  9. Homogeneity of material and optical properties in HEM grown sapphire

    NASA Astrophysics Data System (ADS)

    Stout, M.; Hibbard, D.

    2015-09-01

    Sapphire crystal boules, approximately 34 cm in diameter and 22 cm tall, grown by the Heat Exchanger Method (HEM) are currently being sliced, ground and polished for use as window substrates in a variety of aerospace applications. As the need for larger volumes of higher quality material increases, it is necessary to evaluate and understand the homogeneity of optical and material properties within sapphire boules to ensure the needs of the industry can be met. The optical homogeneity throughout the full useable thickness of a representative sapphire boule was evaluated by measuring the transmitted wavefront error of multiple thin slices. This approach allowed the creation of a full-volume three-dimensional homogeneity map. Additionally, the uniformity of other critical characteristics of the material was evaluated at multiple locations within a boule. Specific properties investigated were equibiaxial flexural strength, index of refraction, Knoop hardness, coefficient of thermal expansion and modulus of elasticity. The results of those evaluations will be reported.

  10. Millimeter wave and terahertz dielectric properties of biological materials

    NASA Astrophysics Data System (ADS)

    Khan, Usman Ansar

    Broadband dielectric properties of materials can be employed to identify, detect, and characterize materials through their unique spectral signatures. In this study, millimeter wave, submillimeter wave, and terahertz dielectric properties of biological substances inclusive of liquids, solids, and powders were obtained using Dispersive Fourier Transform Spectroscopy (DFTS). Two broadband polarizing interferometers were constructed to test materials from 60 GHz to 1.2 THz. This is an extremely difficult portion of the frequency spectrum to obtain a material's dielectric properties since neither optical nor microwave-based techniques provide accurate data. The dielectric characteristics of liquids such as cyclohexane, chlorobenzene, benzene, ethanol, methanol, 1,4 dioxane, and 10% formalin were obtained using the liquid interferometer. Subsequently the solid interferometer was utilized to determine the dielectric properties of human breast tissues, which are fixed and preserved in 10% formalin. This joint collaboration with the Tufts New England Medical Center demonstrated a significant difference between the dielectric response of tumorous and non-tumorous breast tissues across the spectrum. Powders such as anthrax, flour, talc, corn starch, dry milk, and baking soda have been involved in a number of security threats and false alarms around the globe in the last decade. To be able to differentiate hoax attacks and serious security threats, the dielectric properties of common household powders were also examined using the solid interferometer to identify the powders' unique resonance peaks. A new sample preparation kit was designed to test the powder specimens. It was anticipated that millimeter wave and terahertz dielectric characterization will enable one to clearly distinguish one powder from the other; however most of the powders had relatively close dielectric responses and only Talc had a resonance signature recorded at 1.135 THz. Furthermore, due to

  11. Material Properties Analysis of Structural Members in Pumpkin Balloons

    NASA Technical Reports Server (NTRS)

    Sterling, W. J.

    2003-01-01

    The efficient design, service-life qualification, and reliability predictions for lightweight aerospace structures require careful mechanical properties analysis of candidate structural materials. The demand for high-quality laboratory data is particularly acute when the candidate material or the structural design has little history. The pumpkin-shaped super-pressure balloon presents both challenges. Its design utilizes load members (tendons) extending from apex to base around the gas envelope to achieve a lightweight structure. The candidate tendon material is highly weight-efficient braided HM cord. Previous mechanical properties studies of Zylon have focused on fiber and yarn, and industrial use of the material in tensile applications is limited. For high-performance polymers, a carefully plamed and executed properties analysis scheme is required to ensure the data are relevant to the desired application. Because no directly-applicable testing standard was available, a protocol was developed based on guidelines fiom professional and industry organizations. Due to the liquid-crystalline nature of the polymer, the cord is very stiff, creeps very little, and does not yield. Therefore, the key material property for this application is the breaking strength. The pretension load and gauge length were found to have negligible effect on the measured breaking strength over the ranges investigated. Strain rate was found to have no effect on breaking strength, within the range of rates suggested by the standards organizations. However, at the lower rate more similar to ULDB operations, the strength was reduced. The breaking strength increased when the experiment temperature was decreased from ambient to 183K which is the lowest temperature ULDB is expected to experience. The measured strength under all test conditions was well below that resulting from direct scale-up of fiber strength based on the manufacturers data. This expected result is due to the effects of the

  12. Properties of granular analogue model materials: A community wide survey

    NASA Astrophysics Data System (ADS)

    Klinkmüller, M.; Schreurs, G.; Rosenau, M.; Kemnitz, H.

    2016-08-01

    We report the material properties of 26 granular analogue materials used in 14 analogue modelling laboratories. We determined physical characteristics such as bulk density, grain size distribution, and grain shape, and performed ring shear tests to determine friction angles and cohesion, and uniaxial compression tests to evaluate the compaction behaviour. Mean grain size of the materials varied between c. 100 and 400 μm. Analysis of grain shape factors shows that the four different classes of granular materials (14 quartz sands, 5 dyed quartz sands, 4 heavy mineral sands and 3 size fractions of glass beads) can be broadly divided into two groups consisting of 12 angular and 14 rounded materials. Grain shape has an influence on friction angles, with most angular materials having higher internal friction angles (between c. 35° and 40°) than rounded materials, whereas well-rounded glass beads have the lowest internal friction angles (between c. 25° and 30°). We interpret this as an effect of intergranular sliding versus rolling. Most angular materials have also higher basal friction angles (tested for a specific foil) than more rounded materials, suggesting that angular grains scratch and wear the foil. Most materials have an internal cohesion in the order of 20-100 Pa except for well-rounded glass beads, which show a trend towards a quasi-cohesionless (C < 20 Pa) Coulomb-type material. The uniaxial confined compression tests reveal that rounded grains generally show less compaction than angular grains. We interpret this to be related to the initial packing density after sifting, which is higher for rounded grains than for angular grains. Ring-shear test data show that angular grains undergo a longer strain-hardening phase than more rounded materials. This might explain why analogue models consisting of angular grains accommodate deformation in a more distributed manner prior to strain localisation than models consisting of rounded grains.

  13. Characterization of the electromechanical properties of EAP materials

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Sherrita, Stewart; Bhattachary, Kaushik; Lih, Shyh-Shiuh

    2001-01-01

    Electroactive polymers (EAP) are an emerging class of actuation materials. Their large electrically induced strains (longitudinal or bending), low density, mechanical flexibility, and ease of processing offer advantages over traditional electroactive materials. However, before the capability of these materials can be exploited, their electrical and mechanical behavior must be properly quantified. Two general types of EAP can be identified. The first type is ionic EAP, which requires relatively low voltages (<10V) to achieve large bending deflections. This class usually needs to be hydrated and electrochemical reactions may occur. The second type is Electronic-EAP and it involves electrostrictive and/or Maxwell stresses. This type of materials requires large electric fields (>100MV/m) to achieve longitudinal deformations at the range from 4 - 360%. Some of the difficulties in characterizing EAP include: nonlinear properties, large compliance (large mismatch with metal electrodes), nonhomogeneity resulting from processing, etc. To support the need for reliable data, the authors are developing characterization techniques to quantify the electroactive responses and material properties of EAP materials. The emphasis of the current study is on addressing electromechanical issues related to the ion-exchange type EAP also known as IPMC. The analysis, experiments and test results are discussed in this paper.

  14. New multifunction materials with both electrorheological performance and luminescence property

    NASA Astrophysics Data System (ADS)

    Chen, Ming-Xing; Shang, Yan-Li; Jia, Yun-Ling; Dong, Xiang-Yu; Ren, Jing; Li, Jun-Ran

    2017-02-01

    Novel multifunctional materials, the composites AlOOH-NaYFTb5 and AlOOH-NaYFTb10, containing AlO(OH) and β-NaYF4:5%Tb3+, have been synthesized via a facile hydrothermal route and a simple grinding method. The boehmite [AlO(OH)], yttrium nitrate [Y(NO3)3·6H2O], terbium nitrate, [Tb(NO3)3·6H2O], sodium citrate (Na3C6H5O7·2H2O) and sodium fluoride (NaF) were used as starting materials. The composition, electrorheological (ER) performance, and luminescence property of the functional materials were studied. Our results show that the composites not only have good electrorheological (ER) performance, but also have good optics property. The relative shear stress τ r ( τ r = τ E/ τ 0, τ E and τ 0 are the shear stresses at the electric field strength E = 4 and 0 kV/mm, respectively) values of the suspension (25 wt.%) of AlOOHNaYFTb5 material in silicone oil are all larger than 50 in a shear rate ranging from 0.06 to 26 s-1, the τr value reaches 1333 at a shear rate of 0.06 s-1. The material with such high ER activity and favorable luminescence performance is advantageous in its application as a multifunctional material.

  15. Auditory perception of geometry-invariant material properties.

    PubMed

    Ren, Zhimin; Yeh, Hengchin; Klatzky, Roberta; Lin, Ming C

    2013-04-01

    Accurately modeling the intrinsic material-dependent damping property for interactive sound rendering is a challenging problem. The Rayleigh damping model is commonly regarded as an adequate engineering model for interactive sound synthesis in virtual environment applications, but this assumption has never been rigorously analyzed. In this paper, we conduct a formal evaluation of this model. Our goal is to determine if auditory perception of material under Rayleigh damping assumption is 'geometry-invariant', i.e. if this approximation model is transferable across different shapes and sizes. First, audio recordings of same-material objects in various shapes and sizes are analyzed to determine if they can be approximated by the Rayleigh damping model with a single set of parameters. Next, we design and conduct a series of psychoacoustic experiments, in subjects evaluate if audio clips synthesized using the Rayleigh damping model are from the same material, when we alter the material, shape, and size parameters. Through both quantitative and qualitative evaluation, we show that the acoustic properties of the Rayleigh damping model for a single material is generally preserved across different geometries of objects consisting of homogeneous materials and is therefore a suitable, geometry-invariant sound model. Our study results also show that consistent with prior crossmodal expectations, visual perception of geometry can affect the auditory perception of materials. These findings facilitate the wide adoption of Rayleigh damping for interactive auditory systems and enable reuse of material parameters under this approximation model across different shapes and sizes, without laborious per-object parameter tuning.

  16. Temporal properties of material categorization and material rating: visual vs non-visual material features.

    PubMed

    Nagai, Takehiro; Matsushima, Toshiki; Koida, Kowa; Tani, Yusuke; Kitazaki, Michiteru; Nakauchi, Shigeki

    2015-10-01

    Humans can visually recognize material categories of objects, such as glass, stone, and plastic, easily. However, little is known about the kinds of surface quality features that contribute to such material class recognition. In this paper, we examine the relationship between perceptual surface features and material category discrimination performance for pictures of materials, focusing on temporal aspects, including reaction time and effects of stimulus duration. The stimuli were pictures of objects with an identical shape but made of different materials that could be categorized into seven classes (glass, plastic, metal, stone, wood, leather, and fabric). In a pre-experiment, observers rated the pictures on nine surface features, including visual (e.g., glossiness and transparency) and non-visual features (e.g., heaviness and warmness), on a 7-point scale. In the main experiments, observers judged whether two simultaneously presented pictures were classified as the same or different material category. Reaction times and effects of stimulus duration were measured. The results showed that visual feature ratings were correlated with material discrimination performance for short reaction times or short stimulus durations, while non-visual feature ratings were correlated only with performance for long reaction times or long stimulus durations. These results suggest that the mechanisms underlying visual and non-visual feature processing may differ in terms of processing time, although the cause is unclear. Visual surface features may mainly contribute to material recognition in daily life, while non-visual features may contribute only weakly, if at all.

  17. AB INITIO SIMULATIONS FOR MATERIAL PROPERTIES ALONG THE JUPITER ADIABAT

    SciTech Connect

    French, Martin; Becker, Andreas; Lorenzen, Winfried; Nettelmann, Nadine; Bethkenhagen, Mandy; Redmer, Ronald; Wicht, Johannes

    2012-09-15

    We determine basic thermodynamic and transport properties of hydrogen-helium-water mixtures for the extreme conditions along Jupiter's adiabat via ab initio simulations, which are compiled in an accurate and consistent data set. In particular, we calculate the electrical and thermal conductivity, the shear and longitudinal viscosity, and diffusion coefficients of the nuclei. We present results for associated quantities like the magnetic and thermal diffusivity and the kinematic shear viscosity along an adiabat that is taken from a state-of-the-art interior structure model. Furthermore, the heat capacities, the thermal expansion coefficient, the isothermal compressibility, the Grueneisen parameter, and the speed of sound are calculated. We find that the onset of dissociation and ionization of hydrogen at about 0.9 Jupiter radii marks a region where the material properties change drastically. In the deep interior, where the electrons are degenerate, many of the material properties remain relatively constant. Our ab initio data will serve as a robust foundation for applications that require accurate knowledge of the material properties in Jupiter's interior, e.g., models for the dynamo generation.

  18. Rectangular waveguide material characterization: anisotropic property extraction and measurement validation

    NASA Astrophysics Data System (ADS)

    Crowgey, Benjamin Reid

    for characterization of a sample filling the cross-section of a waveguide. Due to the rectangular nature of the waveguide, typically three different samples are manufactured from the same material in order to characterize the six complex material parameters. The second technique for measuring the electromagnetic properties of a biaxially anisotropic material sample uses a reduced-aperture waveguide sample holder designed to accommodate a cubical sample. All the tensor material parameters can then be determined by measuring the reflection and transmission coefficients of a single sample placed into several orientations. The parameters are obtained using a root-searching algorithm by comparing theoretically computed and measured reflection and transmission coefficients. The theoretical coefficients are determined using a mode matching technique. The first technique for characterizing the electromagnetic properties of gyromagnetic materials considers requires filling the cross-section of a waveguide. The material parameters are extracted from the measured reflection and transmission coefficients. Since the cross-sectional dimensions of waveguides become prohibitively large at low frequencies, and it is at these frequencies that the gyromagnetic properties are most pronounced, sufficiently large samples may not be available. Therefore, the second technique uses a reduced-aperture sample holder that does not require the sample to fill the entire cross section of the guide. The theoretical reflection and transmission coefficients for both methods are determined using a mode matching technique. A nonlinear least squares method is employed to extract the gyromagnetic material parameters. Finally, this dissertation introduces a waveguide standard that acts as a surrogate material with both electric and magnetic properties and is useful for verifying systems designed to characterize engineered materials using the NRW technique. A genetic algorithm is used to optimize the all

  19. Thermal property of insulation material for HTS power cable

    NASA Astrophysics Data System (ADS)

    Choi, Yeon Suk; Kim, D. L.; Shin, D. W.; Hwang, S. D.

    2012-06-01

    The thermal property of insulation material is essential in developing a high temperature superconductor (HTS) power cable operating at around liquid nitrogen temperature. The accurate estimate of the heat flux is difficult in the nonmetallic materials because nonmetallic materials have a high thermal resistance and low temperature gradient along the specimen. The objective of the present work is to develop a precise instrument for measuring the thermal conductivity of insulating materials over a temperature range of 30 K to approximately the room temperature by using a cryocooler. The thermal conductivity of Teflon is measured and the accuracy confirmation is carried out by comparing published data. In addition, the experimental results of apparent thermal conductivity of polypropylene laminated paper (PPLP) are presented and the temperature dependency is also discussed

  20. Mechanical Properties of Calcium Fluoride-Based Composite Materials

    PubMed Central

    Kleczewska, Joanna; Pryliński, Mariusz; Podlewska, Magdalena; Sokołowski, Jerzy; Łapińska, Barbara

    2016-01-01

    Aim of the study was to evaluate mechanical properties of light-curing composite materials modified with the addition of calcium fluoride. The study used one experimental light-curing composite material (ECM) and one commercially available flowable light-curing composite material (FA) that were modified with 0.5–5.0 wt% anhydrous calcium fluoride. Morphology of the samples and uniformity of CaF2 distribution were analyzed using Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS). Mechanical properties were tested after 24-hour storage of specimens in dry or wet conditions. Stored dry ECM enriched with 0.5–1.0 wt% CaF2 showed higher tensile strength values, while water storage of all modified ECM specimens decreased their tensile strength. The highest Vickers hardness tested after dry storage was observed for 2.5 wt% CaF2 content in ECM. The addition of 2.0–5.0 wt% CaF2 to FA caused significant decrease in tensile strength after dry storage and overall tensile strength decrease of modified FA specimens after water storage. The content of 2.0 wt% CaF2 in FA resulted in the highest Vickers hardness tested after wet storage. Commercially available composite material (FA), unmodified with fluoride addition, demonstrated overall significantly higher mechanical properties. PMID:28004001

  1. A material selection method based on material properties and operating parameters

    NASA Technical Reports Server (NTRS)

    Elber, W.; Davidson, J. R.

    1972-01-01

    The influence of strength, fracture toughness, and crack growth resistance on the design stress level has been determined from a mathematical model of crack growth and failure. The results show that to select materials properly, the operating parameters of desired life and initial flaw size must be considered simultaneously with the material properties. To do this, a method for constructing an operating surface is derived, discussed, and illustrated.

  2. An overview of laminate materials with enhanced dielectric properties

    NASA Astrophysics Data System (ADS)

    Mumby, Stephen J.

    1989-03-01

    This report focuses on laminate materials (resins and reinforcements) having potential applications in the manufacture of multi-layer printed wiring boards (PWBs) that are required to efficiently transmit high-speed digital pulses. It is intended to be a primer and a reference for selection of candidate materials for such high-performance PWBs. Included are dielectric and physical properties, and where available chemical composition and/or structure, commercial availability, compatibility with typical PWB processing schemes and approximate relative cost. Recommendations are made as to the most viable candidate materials for this type of PWB application, based on a comparison of electrical and physical properties together with processing and cost considerations. The cyanate ester resin system appears promising. Such a resin may be reinforced with regular E-glass, or the more newly available S-glass, to produce a laminate useful for intermediate performance applications. For more demanding applications the E-glass will have to be replaced by a material of much lower relative permittivity. The expanded-PTFE reinforced laminates from W. L. Gore appear to be a good choice for these applications. The processing of the Gore materials can be expected to deviate from that used with FR-4 type materials, but is likely to be less problematic than laminates comprised of a fluorinated resin. Processing is a key obstacle to the implementation of any of the new materials herein. If implementation is to be successful, programs must be established to develop and optimize processing procedures. Cost will remain an important issue. However, the higher cost of the new materials may be justified in high-end products by the performance they deliver.

  3. Estimating Energy Conversion Efficiency of Thermoelectric Materials: Constant Property Versus Average Property Models

    NASA Astrophysics Data System (ADS)

    Armstrong, Hannah; Boese, Matthew; Carmichael, Cody; Dimich, Hannah; Seay, Dylan; Sheppard, Nathan; Beekman, Matt

    2017-01-01

    Maximum thermoelectric energy conversion efficiencies are calculated using the conventional "constant property" model and the recently proposed "cumulative/average property" model (Kim et al. in Proc Natl Acad Sci USA 112:8205, 2015) for 18 high-performance thermoelectric materials. We find that the constant property model generally predicts higher energy conversion efficiency for nearly all materials and temperature differences studied. Although significant deviations are observed in some cases, on average the constant property model predicts an efficiency that is a factor of 1.16 larger than that predicted by the average property model, with even lower deviations for temperature differences typical of energy harvesting applications. Based on our analysis, we conclude that the conventional dimensionless figure of merit ZT obtained from the constant property model, while not applicable for some materials with strongly temperature-dependent thermoelectric properties, remains a simple yet useful metric for initial evaluation and/or comparison of thermoelectric materials, provided the ZT at the average temperature of projected operation, not the peak ZT, is used.

  4. Elastic therapeutic tape: do they have the same material properties?

    PubMed Central

    Boonkerd, Chuanpis; Limroongreungrat, Weerawat

    2016-01-01

    [Purpose] Elastic therapeutic tape has been widely used for rehabilitation and treatment of sports injuries. Tapes with different elastic properties serve different treatment purposes with inappropriate tension reducing tape effectiveness. Many tapes are available in the market, but studies on tape properties are limited. The aim of this study was to examine the material properties of elastic therapeutic tape. [Subjects and Methods] Brands of elastic therapeutic tape included KinesioTex®, ATex, Mueller, 3M, and ThaiTape. The Material Testing System Insight® 1 Electromechanical Testing Systems was used to apply a tensile force on elastic therapeutic tape. Ten specimens of each brand were tested. Stress, load, and Young’s modulus at 25%, 50%, 75%, 100%, and maximum point were collected. One-way analysis of variance with post hoc testing was used to analyze tape parameters. [Results] Maximum elongation and Young’s modulus at all percentages were significantly different between brands. There were no differences in maximum load and maximum stress. [Conclusion] Mechanical properties are different for commercial elastic therapeutic tapes. Physiotherapists and other clinicians should be aware of mechanical tape properties to correctly apply kinesio tape. PMID:27190472

  5. Elastic therapeutic tape: do they have the same material properties?

    PubMed

    Boonkerd, Chuanpis; Limroongreungrat, Weerawat

    2016-04-01

    [Purpose] Elastic therapeutic tape has been widely used for rehabilitation and treatment of sports injuries. Tapes with different elastic properties serve different treatment purposes with inappropriate tension reducing tape effectiveness. Many tapes are available in the market, but studies on tape properties are limited. The aim of this study was to examine the material properties of elastic therapeutic tape. [Subjects and Methods] Brands of elastic therapeutic tape included KinesioTex(®), ATex, Mueller, 3M, and ThaiTape. The Material Testing System Insight(®) 1 Electromechanical Testing Systems was used to apply a tensile force on elastic therapeutic tape. Ten specimens of each brand were tested. Stress, load, and Young's modulus at 25%, 50%, 75%, 100%, and maximum point were collected. One-way analysis of variance with post hoc testing was used to analyze tape parameters. [Results] Maximum elongation and Young's modulus at all percentages were significantly different between brands. There were no differences in maximum load and maximum stress. [Conclusion] Mechanical properties are different for commercial elastic therapeutic tapes. Physiotherapists and other clinicians should be aware of mechanical tape properties to correctly apply kinesio tape.

  6. Millimeter-wave dielectric properties of infrared window materials

    NASA Astrophysics Data System (ADS)

    Ho, W. W.

    1987-01-01

    The millimeter-wave dielectric properties of a series of IR window materials were determined over the temperature range 23-1000 C. Materials studied included Al2O3, ZnS, ZnSe, aluminum oxynitride (ALON), and magnesium-spinel (MgAl2O4). These materials all exhibited fairly high millimeter-wave dielectric constants, but with essentially negligible room-temperature losses for most applications. However, both the dielectric constant and loss tangent increase significantly with increasing temperatures. The increases in dielectric constant with temperature can be analyzed in terms of a macroscopic dielectric virial expansion model, and are primarily due to the effective increase in volume for each polarizable unit of the material. Consequently, a strategy to overcome this degradation would be to search for new materials or composite structures with low thermal expansion coefficients. The observed millimeter-wave loss properties are characteristic of contributions from intergranular impurities and show an onset of increased absorption at about 500. However, even at 1000 C, typical loss tangents are still below 0.05, and should be acceptable in most millimeter-wave window applications for reasonable thicknesses.

  7. Use of thermal-inertia properties for material identification

    NASA Technical Reports Server (NTRS)

    Schieldge, J. P.; Kahle, A. B.; Alley, R. E.; Gillespie, A. R.

    1980-01-01

    It is noted that a knowledge of the thermal inertia of the earth's surface can be used in geologic mapping as a complement to surface reflectance data as provided by Landsat. Thermal inertia, which is a body property, cannot be determined directly but can be inferred from radiation temperature measurements made at various times in the diurnal heating cycle, combined with a model of the surface heating processes. A model of this type is developed and applied along with temperature measurements made in the field and by satellite to determine thermal properties of surface materials. An example from a test site in western Nevada is used to demonstrate the utility of this technique.

  8. Electrostatic levitation technology for thermophysical properties of molten materials

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu

    1993-01-01

    Measurements of thermophysical properties of undercooled liquids often require some kind of levitator which isolates samples from container walls. We introduce in this presentation a high temperature/high vacuum electrostatic levitator (HTHVESL) which promises some unique capabilities for the studies of thermophysical properties of molten materials. Although substantial progress has been made in the past several months, this technology is still in the development stage, therefore, in this presentation we only focus on the present state of the HTHVESL(1) and point out other capabilities which might be realized in the near future.

  9. Statistically based material properties: A military handbook-17 perspective

    NASA Technical Reports Server (NTRS)

    Neal, Donald M.; Vangel, Mark G.

    1990-01-01

    The statistical procedures and their importance in obtaining composite material property values in designing structures for aircraft and military combat systems are described. The property value is such that the strength exceeds this value with a prescribed probability with 95 percent confidence in the assertion. The survival probabilities are the 99th percentile and 90th percentile for the A and B basis values respectively. The basis values for strain to failure measurements are defined in a similar manner. The B value is the primary concern.

  10. Mechanical Properties of Elastomeric Impression Materials: An In Vitro Comparison.

    PubMed

    Re, Dino; De Angelis, Francesco; Augusti, Gabriele; Augusti, Davide; Caputi, Sergio; D'Amario, Maurizio; D'Arcangelo, Camillo

    2015-01-01

    Purpose. Although new elastomeric impression materials have been introduced into the market, there are still insufficient data about their mechanical features. The tensile properties of 17 hydrophilic impression materials with different consistencies were compared. Materials and Methods. 12 vinylpolysiloxane, 2 polyether, and 3 hybrid vinylpolyether silicone-based impression materials were tested. For each material, 10 dumbbell-shaped specimens were fabricated (n = 10), according to the ISO 37:2005 specifications, and loaded in tension until failure. Mean values for tensile strength, yield strength, strain at break, and strain at yield point were calculated. Data were statistically analyzed using one-way ANOVA and Tukey's tests (α = 0.05). Results. Vinylpolysiloxanes consistently showed higher tensile strength values than polyethers. Heavy-body materials showed higher tensile strength than the light bodies from the same manufacturer. Among the light bodies, the highest yield strength was achieved by the hybrid vinylpolyether silicone (2.70 MPa). Polyethers showed the lowest tensile (1.44 MPa) and yield (0.94 MPa) strengths, regardless of the viscosity. Conclusion. The choice of an impression material should be based on the specific physical behavior of the elastomer. The light-body vinylpolyether silicone showed high tensile strength, yield strength, and adequate strain at yield/brake; those features might help to reduce tearing phenomena in the thin interproximal and crevicular areas.

  11. Synthesis & Properties of Nano-Composite Thermoelectric Materials

    NASA Astrophysics Data System (ADS)

    Tritt, Terry

    2007-03-01

    PbTe nanocrystals have been grown in our labs by chemical vapor deposition. These materials grow in size selective regions exhibiting very high yield and have size distributions of around 100 nm to 1000 nm. These nano-materials are incorporated into a bulk matrix, making a composite material in hopes of achieving a higher thermoelectric performance due to the increased phonon scattering that the nano-materials are expected to exhibit, as well as potential for enhancement of their Seebeck coefficient. Some of the advantages as well as the challenges will be discussed. These nanocomposites give a new level of potential control as a tuning parameter with which to vary the materials' thermoelectric properties. In addition, Bi2Te3, another state of the art thermoelectric material and skutterudites (CoSb3) have been synthesized as nanomaterials using hydrothermal techniques. A brief discussion of the synthesis techniques, the characterization techniques and highlights of several systems of materials will be presented. In collaboration with Xiaohua Ji, Jian He, Bo Zhang, Nick Gothard, and Paola Alboni, Dept. of Physics, Clemson University.

  12. Mechanical Properties of Elastomeric Impression Materials: An In Vitro Comparison

    PubMed Central

    De Angelis, Francesco; Caputi, Sergio; D'Amario, Maurizio; D'Arcangelo, Camillo

    2015-01-01

    Purpose. Although new elastomeric impression materials have been introduced into the market, there are still insufficient data about their mechanical features. The tensile properties of 17 hydrophilic impression materials with different consistencies were compared. Materials and Methods. 12 vinylpolysiloxane, 2 polyether, and 3 hybrid vinylpolyether silicone-based impression materials were tested. For each material, 10 dumbbell-shaped specimens were fabricated (n = 10), according to the ISO 37:2005 specifications, and loaded in tension until failure. Mean values for tensile strength, yield strength, strain at break, and strain at yield point were calculated. Data were statistically analyzed using one-way ANOVA and Tukey's tests (α = 0.05). Results. Vinylpolysiloxanes consistently showed higher tensile strength values than polyethers. Heavy-body materials showed higher tensile strength than the light bodies from the same manufacturer. Among the light bodies, the highest yield strength was achieved by the hybrid vinylpolyether silicone (2.70 MPa). Polyethers showed the lowest tensile (1.44 MPa) and yield (0.94 MPa) strengths, regardless of the viscosity. Conclusion. The choice of an impression material should be based on the specific physical behavior of the elastomer. The light-body vinylpolyether silicone showed high tensile strength, yield strength, and adequate strain at yield/brake; those features might help to reduce tearing phenomena in the thin interproximal and crevicular areas. PMID:26693227

  13. Advanced Materials Research Status and Requirements. Volume 2. Appendix: Material Properties Data Review

    DTIC Science & Technology

    1986-03-01

    APPENDIX: MATERIAL PROPERTIES DATA REVIEW FINAL REPORT CONTRACT DASG60-85-C-0087 SPONSORED BY: U.S. ARMY STRATEGIC DEFENSE COMMAND DTIC c. ELECTE... properties of general interest advanced metal matrix and polymer matrix systems. qa .1 ./’r ;) 20. ;is,-icI.rON/AIAiLAS16iT’fr. ASSTRACT 1.AaSTRAZT "C...thermal, and physical properties of general interest advanced metal matrix and polymer matrix composites. 4. .Accession For r., ~~NTIS ... I By-4

  14. Solar Sail Material Performance Property Response to Space Environmental Effects

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Semmel, Charles; Hovater, Mary; Nehls, Mary; Gray, Perry; Hubbs, Whitney; Wertz, George

    2004-01-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) continues research into the utilization of photonic materials for spacecraft propulsion. Spacecraft propulsion, using photonic materials, will be achieved using a solar sail. A solar sail operates on the principle that photons, originating from the sun, impart pressure to the sail and therefore provide a source for spacecraft propulsion. The pressure imparted to a solar sail can be increased, up to a factor of two if the sun-facing surface is perfectly reflective. Therefore, these solar sails are generally composed of a highly reflective metallic sun-facing layer, a thin polymeric substrate and occasionally a highly emissive back surface. Near term solar sail propelled science missions are targeting the Lagrange point 1 (L1) as well as locations sunward of L1 as destinations. These near term missions include the Solar Polar Imager' and the L1 Diamond '. The Environmental Effects Group at NASA's Marshall Space Fliglit Center (MSFC) continues to actively characterize solar sail material in preparation for these near term solar sail missions. Previous investigations indicated that space environmental effects on sail material thermo-optical properties were minimal and would not significantly affect the propulsion efficiency of the sail3-'. These investigations also indicated that the sail material mechanical stability degrades with increasing radiation exposure. This paper will further quantify the effect of space environmental exposure on the mechanical properties of candidate sail materials. Candidate sail materials for these missions include Aluminum coated Mylar TM, Teonexm, and CP1 (Colorless Polyimide). These materials were subjected to uniform radiation doses of electrons and protons in individual exposures sequences. Dose values ranged from 100 Mrads to over 5 Grads. The engineering performance property responses of thermo-optical and mechanical properties were

  15. Advances in optical property measurements of spacecraft materials

    NASA Technical Reports Server (NTRS)

    Smith, Charles A.; Dever, Joyce A.; Jaworske, Donald A.

    1997-01-01

    Some of the instruments and experimental approaches, used for measuring the optical properties of thermal control systems, are presented. The instruments' use in studies concerning the effects of combined contaminants and space environment on these materials, and in the qualification of hardware for spacecraft, are described. Instruments for measuring the solar absorptance and infrared emittance offer improved speed, accuracy and data handling. A transient method for directly measuring material infrared emittance is described. It is shown that oxygen exposure before measuring the solar absorptance should be avoided.

  16. Effective Materials Property Information Management for the 21st Century

    SciTech Connect

    Ren, Weiju; Cebon, David; Barabash, Oleg M

    2011-01-01

    This paper discusses key principles for the development of materials property information management software systems. There are growing needs for automated materials information management in various organizations. In part these are fuelled by the demands for higher efficiency in material testing, product design and engineering analysis. But equally important, organizations are being driven by the needs for consistency, quality and traceability of data, as well as control of access to proprietary or sensitive information. Further, the use of increasingly sophisticated nonlinear, anisotropic and multi-scale engineering analyses requires both processing of large volumes of test data for development of constitutive models and complex materials data input for Computer-Aided Engineering (CAE) software. And finally, the globalization of economy often generates great needs for sharing a single gold source of materials information between members of global engineering teams in extended supply-chains. Fortunately material property management systems have kept pace with the growing user demands and evolved to versatile data management systems that can be customized to specific user needs. The more sophisticated of these provide facilities for: (i) data management functions such as access, version, and quality controls; (ii) a wide range of data import, export and analysis capabilities; (iii) data pedigree traceability mechanisms; (iv) data searching, reporting and viewing tools; and (v) access to the information via a wide range of interfaces. In this paper the important requirements for advanced material data management systems, future challenges and opportunities such as automated error checking, data quality characterization, identification of gaps in datasets, as well as functionalities and business models to fuel database growth and maintenance are discussed.

  17. Effective Materials Property Information Management for the 21st Century

    NASA Technical Reports Server (NTRS)

    Ren, Weiju; Cebon, David; Arnold, Steve

    2009-01-01

    This paper discusses key principles for the development of materials property information management software systems. There are growing needs for automated materials information management in various organizations. In part these are fueled by the demands for higher efficiency in material testing, product design and engineering analysis. But equally important, organizations are being driven by the need for consistency, quality and traceability of data, as well as control of access to sensitive information such as proprietary data. Further, the use of increasingly sophisticated nonlinear, anisotropic and multi-scale engineering analyses requires both processing of large volumes of test data for development of constitutive models and complex materials data input for Computer-Aided Engineering (CAE) software. And finally, the globalization of economy often generates great needs for sharing a single "gold source" of materials information between members of global engineering teams in extended supply chains. Fortunately, material property management systems have kept pace with the growing user demands and evolved to versatile data management systems that can be customized to specific user needs. The more sophisticated of these provide facilities for: (i) data management functions such as access, version, and quality controls; (ii) a wide range of data import, export and analysis capabilities; (iii) data "pedigree" traceability mechanisms; (iv) data searching, reporting and viewing tools; and (v) access to the information via a wide range of interfaces. In this paper the important requirements for advanced material data management systems, future challenges and opportunities such as automated error checking, data quality characterization, identification of gaps in datasets, as well as functionalities and business models to fuel database growth and maintenance are discussed.

  18. Mechanical Properties of Materials with Nanometer Scale Microstructures

    SciTech Connect

    William D. Nix

    2004-10-31

    We have been engaged in research on the mechanical properties of materials with nanometer-scale microstructural dimensions. Our attention has been focused on studying the mechanical properties of thin films and interfaces and very small volumes of material. Because the dimensions of thin film samples are small (typically 1 mm in thickness, or less), specialized mechanical testing techniques based on nanoindentation, microbeam bending and dynamic vibration of micromachined structures have been developed and used. Here we report briefly on some of the results we have obtained over the past three years. We also give a summary of all of the dissertations, talks and publications completed on this grant during the past 15 years.

  19. Determination of thermal properties of composting bulking materials.

    PubMed

    Ahn, H K; Sauer, T J; Richard, T L; Glanville, T D

    2009-09-01

    Thermal properties of compost bulking materials affect temperature and biodegradation during the composting process. Well determined thermal properties of compost feedstocks will therefore contribute to practical thermodynamic approaches. Thermal conductivity, thermal diffusivity, and volumetric heat capacity of 12 compost bulking materials were determined in this study. Thermal properties were determined at varying bulk densities (1, 1.3, 1.7, 2.5, and 5 times uncompacted bulk density), particle sizes (ground and bulk), and water contents (0, 20, 50, 80% of water holding capacity and saturated condition). For the water content at 80% of water holding capacity, saw dust, soil compost blend, beef manure, and turkey litter showed the highest thermal conductivity (K) and volumetric heat capacity (C) (K: 0.12-0.81 W/m degrees C and C: 1.36-4.08 MJ/m(3) degrees C). Silage showed medium values at the same water content (K: 0.09-0.47 W/m degrees C and C: 0.93-3.09 MJ/m(3) degrees C). Wheat straw, oat straw, soybean straw, cornstalks, alfalfa hay, and wood shavings produced the lowest K and C values (K: 0.03-0.30 W/m degrees C and C: 0.26-3.45 MJ/m(3) degrees C). Thermal conductivity and volumetric heat capacity showed a linear relationship with moisture content and bulk density, while thermal diffusivity showed a nonlinear relationship. Since the water, air, and solid materials have their own specific thermal property values, thermal properties of compost bulking materials vary with the rate of those three components by changing water content, bulk density, and particle size. The degree of saturation was used to represent the interaction between volumes of water, air, and solids under the various combinations of moisture content, bulk density, and particle size. The first order regression models developed in this paper represent the relationship between degree of saturation and volumetric heat capacity (r=0.95-0.99) and thermal conductivity (r=0.84-0.99) well. Improved

  20. Measurement of Mechanical Properties of Cantilever Shaped Materials

    PubMed Central

    Finot, Eric; Passian, Ali; Thundat, Thomas

    2008-01-01

    Microcantilevers were first introduced as imaging probes in Atomic Force Microscopy (AFM) due to their extremely high sensitivity in measuring surface forces. The versatility of these probes, however, allows the sensing and measurement of a host of mechanical properties of various materials. Sensor parameters such as resonance frequency, quality factor, amplitude of vibration and bending due to a differential stress can all be simultaneously determined for a cantilever. When measuring the mechanical properties of materials, identifying and discerning the most influential parameters responsible for the observed changes in the cantilever response are important. We will, therefore, discuss the effects of various force fields such as those induced by mass loading, residual stress, internal friction of the material, and other changes in the mechanical properties of the microcantilevers. Methods to measure variations in temperature, pressure, or molecular adsorption of water molecules are also discussed. Often these effects occur simultaneously, increasing the number of parameters that need to be concurrently measured to ensure the reliability of the sensors. We therefore systematically investigate the geometric and environmental effects on cantilever measurements including the chemical nature of the underlying interactions. To address the geometric effects we have considered cantilevers with a rectangular or circular cross section. The chemical nature is addressed by using cantilevers fabricated with metals and/or dielectrics. Selective chemical etching, swelling or changes in Young's modulus of the surface were investigated by means of polymeric and inorganic coatings. Finally to address the effect of the environment in which the cantilever operates, the Knudsen number was determined to characterize the molecule-cantilever collisions. Also bimaterial cantilevers with high thermal sensitivity were used to discern the effect of temperature variations. When appropriate

  1. Ocean acidification alters the material properties of Mytilus edulis shells

    PubMed Central

    Fitzer, Susan C.; Zhu, Wenzhong; Tanner, K. Elizabeth; Phoenix, Vernon R.; Kamenos, Nicholas A.; Cusack, Maggie

    2015-01-01

    Ocean acidification (OA) and the resultant changing carbonate saturation states is threatening the formation of calcium carbonate shells and exoskeletons of marine organisms. The production of biominerals in such organisms relies on the availability of carbonate and the ability of the organism to biomineralize in changing environments. To understand how biomineralizers will respond to OA the common blue mussel, Mytilus edulis, was cultured at projected levels of pCO2 (380, 550, 750, 1000 µatm) and increased temperatures (ambient, ambient plus 2°C). Nanoindentation (a single mussel shell) and microhardness testing were used to assess the material properties of the shells. Young's modulus (E), hardness (H) and toughness (KIC) were measured in mussel shells grown in multiple stressor conditions. OA caused mussels to produce shell calcite that is stiffer (higher modulus of elasticity) and harder than shells grown in control conditions. The outer shell (calcite) is more brittle in OA conditions while the inner shell (aragonite) is softer and less stiff in shells grown under OA conditions. Combining increasing ocean pCO2 and temperatures as projected for future global ocean appears to reduce the impact of increasing pCO2 on the material properties of the mussel shell. OA may cause changes in shell material properties that could prove problematic under predation scenarios for the mussels; however, this may be partially mitigated by increasing temperature. PMID:25540244

  2. Ocean acidification alters the material properties of Mytilus edulis shells.

    PubMed

    Fitzer, Susan C; Zhu, Wenzhong; Tanner, K Elizabeth; Phoenix, Vernon R; Kamenos, Nicholas A; Cusack, Maggie

    2015-02-06

    Ocean acidification (OA) and the resultant changing carbonate saturation states is threatening the formation of calcium carbonate shells and exoskeletons of marine organisms. The production of biominerals in such organisms relies on the availability of carbonate and the ability of the organism to biomineralize in changing environments. To understand how biomineralizers will respond to OA the common blue mussel, Mytilus edulis, was cultured at projected levels of pCO2 (380, 550, 750, 1000 µatm) and increased temperatures (ambient, ambient plus 2°C). Nanoindentation (a single mussel shell) and microhardness testing were used to assess the material properties of the shells. Young's modulus (E), hardness (H) and toughness (KIC) were measured in mussel shells grown in multiple stressor conditions. OA caused mussels to produce shell calcite that is stiffer (higher modulus of elasticity) and harder than shells grown in control conditions. The outer shell (calcite) is more brittle in OA conditions while the inner shell (aragonite) is softer and less stiff in shells grown under OA conditions. Combining increasing ocean pCO2 and temperatures as projected for future global ocean appears to reduce the impact of increasing pCO2 on the material properties of the mussel shell. OA may cause changes in shell material properties that could prove problematic under predation scenarios for the mussels; however, this may be partially mitigated by increasing temperature.

  3. Aging and the Haptic Perception of Material Properties.

    PubMed

    Norman, J Farley; Adkins, Olivia C; Hoyng, Stevie C; Dowell, Catherine J; Pedersen, Lauren E; Gilliam, Ashley N

    2016-08-09

    The ability of 26 younger (mean age was 22.5 years) and older adults (mean age was 72.6 years) to haptically perceive material properties was evaluated. The participants manually explored (for 5 seconds) 42 surfaces twice and placed each of these 84 experimental stimuli into one of seven categories: paper, plastic, metal, wood, stone, fabric, and fur/leather. In general, the participants were best able to identify fur/leather and wood materials; in contrast, recognition performance was worst for stone and paper. Despite similar overall patterns of performance for younger and older participants, the younger adults' recognition accuracies were 26.5% higher. The participants' tactile acuities (assessed by tactile grating orientation discrimination) affected their ability to identify surface material. In particular, the Pearson r correlation coefficient relating the participants' grating orientation thresholds and their material identification performance was -0.8: The higher the participants' thresholds, the lower the material recognition ability. While older adults are able to effectively perceive the solid shape of environmental objects using the sense of touch, their ability to perceive surface materials is significantly compromised.

  4. Material properties of the heel fat pad across strain rates.

    PubMed

    Grigoriadis, Grigoris; Newell, Nicolas; Carpanen, Diagarajen; Christou, Alexandros; Bull, Anthony M J; Masouros, Spyros D

    2017-01-01

    The complex structural and material behaviour of the human heel fat pad determines the transmission of plantar loading to the lower limb across a wide range of loading scenarios; from locomotion to injurious incidents. The aim of this study was to quantify the hyper-viscoelastic material properties of the human heel fat pad across strains and strain rates. An inverse finite element (FE) optimisation algorithm was developed and used, in conjunction with quasi-static and dynamic tests performed to five cadaveric heel specimens, to derive specimen-specific and mean hyper-viscoelastic material models able to predict accurately the response of the tissue at compressive loading of strain rates up to 150s(-1). The mean behaviour was expressed by the quasi-linear viscoelastic (QLV) material formulation, combining the Yeoh material model (C10=0.1MPa, C30=7MPa, K=2GPa) and Prony׳s terms (A1=0.06, A2=0.77, A3=0.02 for τ1=1ms, τ2=10ms, τ3=10s). These new data help to understand better the functional anatomy and pathophysiology of the foot and ankle, develop biomimetic materials for tissue reconstruction, design of shoe, insole, and foot and ankle orthoses, and improve the predictive ability of computational models of the foot and ankle used to simulate daily activities or predict injuries at high rate injurious incidents such as road traffic accidents and underbody blast.

  5. Filter properties of seam material from paved urban soils

    NASA Astrophysics Data System (ADS)

    Nehls, T.; Jozefaciuk, G.; Sokolowska, Z.; Hajnos, M.; Wessolek, G.

    2007-08-01

    We studied pavement seam material. This is the soil substrate in joints of pervious pavements in urban areas. It is mostly 1 cm thick and develops from the original seam filling by depositions of all kinds of urban residues, including anthropogenic organic substances. It was investigated, how this unique form of organic matter influences the filter properties of seam material and how the seam material influences heavy metal transport through the pavement. The seam material is characterised by a darker munsell colour, higher organic carbon content, higher surface areas, higher cation exchange capacities, but a lower fraction of high adsorption energy sites compared to the original seam filling. The deposited anthropogenic organic matter itself could be characterised as particulate and non-polar. Compared to natural soils, it has a small surface area and a low surface charge density resulting in a small cation exchange capacity of only 75 cmol(+) kg-1C. The seam material shows stronger sorption of Pb and Cd compared to the original construction sand. The retardation capacity of seam material towards Pb is similar, towards Cd it is much smaller compared to natural soils. The simulated long term displacement scenarios for a street in Berlin do not indicate an acute contamination risk for Pb. For Cd the infiltration from ponds can lead to a displacement of Cd during only one decade.

  6. Mechanical Properties of Composite Material Using Coal Ash and Clay

    NASA Astrophysics Data System (ADS)

    Fukumoto, Isao; Kanda, Yasuyuki

    Coal ash is industry waste exhausted lots of amount by electric power plant. The particle sizes of coal ash, especially coal fly ash are very fine, and the chemical component are extremely resemble with Okinawa-Kucha clay. From the point of view that clay is composed of particles of micro meter size in diameter, we should try the application for fabrication of composite material using coal fly ash and clay. The comparison of the mechanical properties of composite material using coal fly ash and clay were performed during electric furnace burning and spark plasma sintering. As a result, the bending strength of composite material containing the coal ash 10% and fired at 1423K using the electric furnace after press forming at 30 MPa showed the highest value of 47 MPa. This phenomenon suggests a reinforcement role of coal ash particles to clay base material. In spark plasma sintering process, the bending strength of the composite material containing the clay 5-10% to fly ash base material fired at 1473K and pressured at 20 MPa showed the highest value of 88 MPa. This result indicates a binder effect of clay according to the liquid phase sintering of melted clay surrounding around coal fly ash particles surface.

  7. A comparative evaluation of mechanical properties of nanofibrous materials

    NASA Astrophysics Data System (ADS)

    Lyubun, German P.; Bessudnova, Nadezda O.

    2014-01-01

    Restoration or replacement of lost or damaged hard tooth tissues remain a reconstructive clinical dentistry challenge. One of the most promising solutions to this problem is the development of novel concepts and methodologies of tissue engineering for the synthesis of three-dimensional graft constructs that are equivalent to original organs and tissues. This structural and functional compatibility can be reached by producing ultra-thin polymer filament scaffolds. This research aims through a series of studies to examine different methods of polymer filament material special preparation and test mechanical properties of the produced materials subjected to a tensile strain. Nanofibrous material preparation using chemically pure acetone and mixtures of ethanol/water has shown no significant changes in sample surface morphology. The high temperature impact on material morphology has resulted in the modification of fiber structure. In the course of mechanical tests it has been revealed the dependence of the material strength on the spinning solution compositions. The results achieved point to the possibility to develop nanofibrous materials with required parameters changing the methodology of spinning solution production.

  8. Correlation of materials properties with the atomic density concept

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Based on the hypothesis that the number of atoms per unit volume, accurately calculable for any substance of known real density and chemical composition, various characterizing parameters (energy levels of electrons interacting among atoms of the same or different kinds, atomic mass, bond intensity) were chosen for study. A multiple exponential equation was derived to express the relationship. Various properties were examined, and correlated with the various parameters. Some of the properties considered were: (1) heat of atomization, (2) boiling point, (3) melting point, (4) shear elastic modulus of cubic crystals, (5) thermal conductivity, and (6) refractive index for transparent substances. The solid elements and alkali halides were the materials studied. It is concluded that the number of different properties can quantitively be described by a common group of parameters for the solid elements, and a wide variety of compounds.

  9. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.

    PubMed

    Heine, Thomas

    2015-01-20

    CONSPECTUS: After the discovery of graphene and the development of powerful exfoliation techniques, experimental preparation of two-dimensional (2D) crystals can be expected for any layered material that is known to chemistry. Besides graphene and hexagonal boron nitride (h-BN), transition metal chalcogenides (TMC) are among the most studied ultrathin materials. In particular, single-layer MoS2, a direct band gap semiconductor with ∼1.9 eV energy gap, is popular in physics and nanoelectronics, because it nicely complements semimetallic graphene and insulating h-BN monolayer as a construction component for flexible 2D electronics and because it was already successfully applied in the laboratory as basis material for transistors and other electronic and optoelectronic devices. Two-dimensional crystals are subject to significant quantum confinement: compared with their parent layered 3D material, they show different structural, electronic, and optical properties, such as spontaneous rippling as free-standing monolayer, significant changes of the electronic band structure, giant spin-orbit splitting, and enhanced photoluminescence. Most of those properties are intrinsic for the monolayer and already absent for two-layer stacks of the same 2D crystal. For example, single-layer MoS2 is a direct band gap semiconductor with spin-orbit splitting of 150 meV in the valence band, while the bilayer of the same material is an indirect band gap semiconductor without observable spin-orbit splitting. All these properties have been observed experimentally and are in excellent agreement with calculations based on density-functional theory. This Account reports theoretical studies of a subgroup of transition metal dichalcogenides with the composition MX2, with M = Mo, or W and X = Se or S, also referred to as "MoWSeS materials". Results on the electronic structure, quantum confinement, spin-orbit coupling, spontaneous monolayer rippling, and change of electronic properties in the

  10. Hygrothermal Simulations of Foundations: Part 1 - Soil Material Properties

    SciTech Connect

    Pallin, Simon B; Kehrer, Manfred

    2013-01-01

    Hygrothermal performance of soils coupled to buildings is a complicated process. The computational approach for heat transfer via the ground is well defined (EN-ISO-13370:, 2007) together with simplified methods (Staszczuk, Radon, & Holm). Though the soil moisture transfer is generally ignored, it is proven not negligible (Janssen, Carmeliet, & Hens, 2004). Even though reliable material properties of soils are required to perform realistic hygrothermal calculations of soils coupled to buildings, such material properties have not been well defined in hygrothermal calculations tools. Typical building constructions which are greatly influenced by soils are basements, crawl spaces and slab on grade and reliable hygrothermal performance of such construction are highly requested; as it is ranked within the top 10 Building America Enclosure Research Ideas according to Enclosures STC - Residential Energy Efficiency Stakeholder Meeting, February 29, 2012 Austin, TX. There exists an extensive amount of measurements on soil properties in Soil Science though this information must be gathered as well as adapted to be applicable in Building Science and for hygrothermal simulation purposes. Soil properties are important when analyzing and designing both new building constructions and retrofitting measures, where the outer boundary of the buildings enclosure consists of soil materials. Concerning basement energy retrofits, interior solutions of improving the energy demand has to cooperate with the existing soil properties and must therefore be designed thereafter. In concerns of exterior retrofits, the soil material can be replaced, if needed, with a more suitable filling material, though this approach applies only for basement walls. The soil material beneath the basement floor can naturally not be replaced hence the soil properties of this part of the buildings enclosure still must be taken into consideration. This study is divided into several parts. The intention of the first

  11. Material properties from contours: New insights on object perception.

    PubMed

    Pinna, Baingio; Deiana, Katia

    2015-10-01

    In this work we explored phenomenologically the visual complexity of the material attributes on the basis of the contours that define the boundaries of a visual object. The starting point is the rich and pioneering work done by Gestalt psychologists and, more in detail, by Rubin, who first demonstrated that contours contain most of the information related to object perception, like the shape, the color and the depth. In fact, by investigating simple conditions like those used by Gestalt psychologists, mostly consisting of contours only, we demonstrated that the phenomenal complexity of the material attributes emerges through appropriate manipulation of the contours. A phenomenological approach, analogous to the one used by Gestalt psychologists, was used to answer the following questions. What are contours? Which attributes can be phenomenally defined by contours? Are material properties determined only by contours? What is the visual syntactic organization of object attributes? The results of this work support the idea of a visual syntactic organization as a new kind of object formation process useful to understand the language of vision that creates well-formed attribute organizations. The syntax of visual attributes can be considered as a new way to investigate the modular coding and, more generally, the binding among attributes, i.e., the issue of how the brain represents the pairing of shape and material properties.

  12. Characterization of Secondary Electron Emission Properties of Plasma Facing Materials

    NASA Astrophysics Data System (ADS)

    Patino, Marlene I.; Capece, Angela M.; Raitses, Yevgeny; Koel, Bruce E.

    2015-11-01

    The behavior of wall-bounded plasmas is significantly affected by the plasma-wall interactions, including the emission of secondary electrons (SEE) from the wall materials due to bombardment by primary electrons. The importance of SEE has prompted previous investigations of SEE properties of materials especially with applications to magnetic fusion, plasma thrusters, and high power microwave devices. In this work, we present results of measurements of SEE properties of graphite and lithium materials relevant for the divertor region of magnetic fusion devices. Measurements of total SEE yield (defined as the number of emitted secondary electrons per incident primary electron) for lithium are extended up to 5 keV primary electron energy, and the energy distributions of secondary electrons are provided for graphite and lithium. Additionally, the effect of contamination on the total SEE yield of lithium was explored by exposing the material to water vapor. Auger electron spectroscopy (AES) was used to determine surface composition and temperature programmed desorption (TPD) was used to determine lithium film thickness. Results show an order of magnitude increase in total SEE yield for lithium exposed to water vapor. This work was supported by DOE contract DE-AC02-09CH11466; AFOSR grants FA9550-14-1-0053, FA9550-11-1-0282, and AF9550-09-1-0695; and DOE Office of Science Graduate Student Research Program.

  13. PREFACE: Workshop on Oxide Materials 2014: Novel Multifunctional Properties

    NASA Astrophysics Data System (ADS)

    Gómez, M. E.; Lopera, W.

    2015-07-01

    The 2014 Workshop on Oxide Materials: Novel Multifunctional Properties was held in Cali, Colombia, from September 15 to September 19 on the campus of Universidad del Valle. It was a great privilege to have had this workshop in Cali after the first workshop on oxide materials commemorating the first centennial of the discovery of the superconductivity in 2011. The meeting gathered an audience of 80 participants, 10 invited speakers with two or three plenary talks each, 20 short oral contributions, two poster sessions with 20 presentations each. This proceedings volume contains papers reported at the conference. The Proceedings of the 2014 Workshop on Oxide Materials: Novel Multifunctional Properties were edited by Maria Elena Gomez and Wilson Lopera with the assistance of Carlos William Sanchez and Albert Ortiz as copy editor. We are grateful for the financial support from COLCIENCIAS through research project COLCIENCIAS-UNIVALLE contract 002/2013; Universidad de Valle through Professor Ivan Ramos, Rector; the Faculty of Science with Professor Jaime Cantera, Dean; the Center of Excellence on Novel Materials with Professor Pedro Prieto, Director; ICETEX, and INTECO Ltda. Further details about the conference, including details of the invited speakers and plenary sessions are available in the PDF. Maria Elena Gómez, Editor Wilson Lopera, Editor

  14. Nanoscale defect architectures and their influence on material properties

    NASA Astrophysics Data System (ADS)

    Campbell, Branton

    2006-10-01

    Diffraction studies of long-range order often permit one to unambiguously determine the atomic structure of a crystalline material. Many interesting material properties, however, are dominated by nanoscale crystal defects that can't be characterized in this way. Fortunately, advances in x-ray detector technology, synchrotron x-ray source brightness, and computational power make it possible to apply new methods to old problems. Our research group uses multi-megapixel x-ray cameras to map out large contiguous volumes of reciprocal space, which can then be visually explored using graphics engines originally developed by the video-game industry. Here, I will highlight a few recent examples that include high-temperature superconductors, colossal magnetoresistors and piezoelectric materials.

  15. Selected mechanical properties of fluoride-releasing restorative materials.

    PubMed

    Iazzetti, G; Burgess, J O; Gardiner, D

    2001-01-01

    Mechanical properties, diametral tensile strength (DTS) and flexural strength (FS) of six fluoride releasing materials were measured and compared. The samples were prepared and tested according to ISO specifications. The materials included a glass ionomer (Fuji IX), a resin-modified glass ionomer (Photac-Fil), two compomers (F 2000; Dyract AP) and two composites (Solitaire; Tetric Ceram). The tests were performed after the materials were stored in distilled water (DTS) and phosphate buffered saline solution (FS) at 37 degrees C for 24 hours and one week. Fluoride-releasing composite resin had the highest flexural and diametral tensile strengths and were statistically stronger than compomers, followed by resin-modified glass ionomer and conventional glass ionomer. However, a notable exception to this general trend was Solitaire, a fluoride-releasing composite resin.

  16. New Correlations Between Monotonic and Cyclic Properties of Metallic Materials

    NASA Astrophysics Data System (ADS)

    Zonfrillo, Giovanni

    2017-03-01

    Knowledge of the cyclic properties of metallic materials is often critical to correctly design structural components. However, cyclic data are not easily available in the literature, while tensile test data are easier to find in specialized sites or vendor catalogs. In this study, the cyclic strength coefficient and the cyclic strain hardening exponent of the Ramberg-Osgood law were evaluated using exclusively data obtained through monotonic tensile tests. The analyses were carried out on a large set of materials. The database used is composed of 338 alloys, mainly iron alloys, but also titanium and aluminum alloys. New subdivisions of the materials were introduced. Several original relations were suggested to correlate static and cyclic strength parameters. The evaluated values of both cyclic strength coefficient and cyclic strain hardening exponent were compared with experimental values coming from cyclic test, obtaining a satisfactory agreement and a higher accuracy if compared with similar relations found in the literature.

  17. Rheological properties of elastomeric impression materials before and during setting.

    PubMed

    McCabe, J F; Arikawa, H

    1998-11-01

    In this study, we examined the rheological properties of elastomeric impression materials, both before and during setting, to assess the clinical significance of certain key characteristics such as viscosity, pseudoplasticity, and the rate of development of elasticity. The hypothesis to be tested was that monitoring the change in tan delta is the most appropriate means of monitoring the setting characteristics of elastomers. The loss tangent (tan delta) and the dynamic viscosity (eta') for five impression materials (both unmixed pastes and mixed/setting materials) were measured by means of a controlled-stress rheometer in a cone/plate configuration. For unmixed pastes, tests were performed at various frequencies (0.1 to 10 Hz) and torques (from 1 to 50 x 10(-4) Nm), while testing on setting materials was performed at constant frequency (1 Hz) and torque (3 x 10(-3) Nm). Most base and catalyst pastes were pseudoplastic before being mixed. Immediately after being mixed, the polyether (tan delta = 9.85) and polysulfide (tan delta = 9.54) elastomers showed tan delta markedly higher than those of other mixed materials (tan delta = 4.96 to 3.01). The polyvinylsiloxane elastomers showed lower initial tan delta, which rapidly reduced even further with time. This suggests that these materials should be used as soon as possible after being mixed. The polyether elastomer had a comparatively long induction period during which the tan delta remained at a high value. These characteristics are thought to be key factors in controlling clinical efficacy and therefore support the hypothesis that monitoring tan delta is an appropriate method for evaluating the setting characteristics of elastomers. One limitation was that the controlled-stress rheometer was unable to monitor rheological properties through to completion of setting.

  18. Characterization of damping properties of nonlinear viscoelastic materials

    NASA Astrophysics Data System (ADS)

    Ganeriwala, Surendra N.

    1995-05-01

    The dynamic behavior of most polymeric materials become non-linear at a moderately large strain amplitude excitation. In order to optimize their uses for noise and vibration attenuation, it is necessary to characterize their damping properties as a function of strain amplitude. This work reports the strain amplitude dependent non-linear dynamic behavior of two elastomer compounds, NBR and Neoprene, studied at various frequencies and strain amplitudes using the Fourier transform mechanical analysis (FTMA) technique, developed by us. The basic theory and experimental results are presented for a one-dimensional isothermal simple shear deformation. The Green-Rivlin constitutive equation was used to model the observed behavior. The results indicate that a complete characterization of non-linear dynamic properties is rather complex. The energy dissipation is governed, however, by a simple mechanism. It is shown that the energy dissipation is governed only by the first harmonic loss modulus term of the Green-Rivlin representation, but the energy storage is related to many material functions. An expression for the energy dissipation of a non-linear viscoelastic material is derived. It is also shown that irrespective of the material constitutive law the energy dissipation can occur only at the frequency of excitation but it can be stored in a complex manner. The results are rather generalized to show that the amplitude dependence can be modeled by a power law function. It is also shown that an examination of the stress Fourier spectra can give a quantitative indication of material non-linearity and suggest a direction for developing an adequate model of these complex materials.

  19. Preparation and properties on hollow nano-structured smoke material

    NASA Astrophysics Data System (ADS)

    Liu, Xiang-cui; Dai, Meng-yan; Fang, Guo-feng; Shi, Wei-dong; Cheng, Xiang; Liu, Hai-feng; Zhang, Tong

    2013-09-01

    In recent years, the weapon systems of laser guidance and infrared (IR) imaging guidance have been widely used in modern warfare because of their high precision and strong anti-interference. Notwithstanding, military smoke, as a rapid and effective passive jamming means, can effectively counteract the attack of enemy precision-guided weapons by scattering and absorbability. Conventional smoke has good attenuation capability only to visible light (0.4-0.76 μm), but hardly any effect to other electromagnetic wave band. The weapon systems of laser guidance and IR imaging guidance usually work in broad band, including near IR (1-3 μm), middle IR (3-5 μm), far IR (8-14 μm), and so on. Accordingly, exploiting and using new efficient obscurant materials, which is one of the important factors that develop smoke technology, have become a focus and attracted more interests around the world. Then nano-structured materials that are developing very quickly have turned into our new choice. Hollow nano-structured materials (HNSM) have many special properties because of their nano-size wall-thickness and sub-micron grain-size. After a lot of HNSM were synthesized in this paper, their physical and chemical properties, including grain size, phase composition, microstructure, optical properties and resistivity were tested and analysed. Then the experimental results of the optical properties showed that HNSM exhibit excellent wave-absorbing ability in ultraviolet, visible and infrared regions. On the basis of the physicochemmical properties, HNSM are firstly applied in smoke technology field. And the obscuration performance of HNSM smoke was tested in smoke chamber. The testing waveband included 1.06μm and 10.6μm laser, 3-5μm and 8-14μm IR radiation. Then the main parameters were obtained, including the attenuation rate, the transmission rate, the mass extinction coefficient, the efficiency obscuring time, and the sedimentation rate, etc. The main parameters of HNSM smoke were

  20. Properties of granular analogue model materials: A community wide survey

    NASA Astrophysics Data System (ADS)

    Klinkmüller, Matthias; Schreurs, Guido; Rosenau, Matthias; Kemnitz, Helga

    2016-04-01

    We report the material properties of 26 granular analogue materials used in 14 analogue modelling laboratories. We determined physical characteristics such as bulk density, grain size distribution, and grain shape, and performed ring shear tests to determine friction angles and cohesion, and uniaxial compression tests to evaluate the compaction behaviour. Mean grain size of the materials varied between (c. 100 and 400 micrometer). Analysis of grain shape factors show that the four different classes of granular materials (14 quartz sands, 5 dyed quartz sands, 4 heavy mineral sands and 3 size fractions of glass beads) can be broadly divided into two groups consisting of 12 angular and 14 rounded materials. Grain shape has an influence on friction angles, with most angular materials having higher internal friction angles (between c. 35° and 40°) than rounded materials, whereas well-rounded glass beads have the lowest internal friction angles (between c. 25° and 30°). We interpret this as an effect of intergranular sliding versus rolling . Most angular materials have also higher basal friction angles (tested for a specific foil) than more rounded materials, suggesting that angular grains scratch and wear the foil., Most materials have a cohesion in the order of 10-100 Pa except for well-rounded glass beads, which show a trend towards a quasi-cohesionless (C <10 Pa) Coulomb-type material. The uniaxial confined compression tests reveal that rounded grains generally show less compaction than angular grains. We interpret this to be related to the initial packing density reached during sieving which is higher for rounded grains than for angular grains. Ring-shear test data show that angular grains undergo a longer strain-hardening phase than more rounded materials. This might explain why analogue models consisting of angular grains accommodate deformation in a more distributed manner prior to strain localisation than models consisting of rounded grains. Also, models

  1. Method and apparatus for assessing material properties of sheet-like materials

    DOEpatents

    Telschow, Kenneth L.; Deason, Vance A.

    2002-01-01

    Apparatus for producing an indication of a material property of a sheet-like material according to the present invention may comprise an excitation source for vibrating the sheet-like material to produce at least one traveling wave therein. A light source configured to produce an object wavefront and a reference wavefront directs the object wavefront toward the sheet-like material to produce a modulated object wavefront. A modulator operatively associated with the reference wavefront modulates the reference wavefront in synchronization with the traveling wave on the sheet-like material to produce a modulated reference wavefront. A sensing medium positioned to receive the modulated object wavefront and the modulated reference wavefront produces an image of the traveling wave in the sheet-like material, the image of the anti-symmetric traveling wave being related to a displacement amplitude of the anti-symmetric traveling wave over a two-dimensional area of the vibrating sheet-like material. A detector detects the image of the traveling wave in the sheet-like material.

  2. Strain weakening and localisation: material properties or boundary effects?

    NASA Astrophysics Data System (ADS)

    Ritter, Malte C.; Leever, Karen; Rosenau, Matthias; Oncken, Onno

    2015-04-01

    Strain weakening is commonly seen as one of the major causes of localisation of deformation into shear zones in brittle media. Several studies, both numerical and physical experiments, investigate its influence. Typically, these studies choose a certain model configuration and test various material properties and their influence on localisation in that particular configuration. This approach, however, does not take into account the fundamental importance of boundary conditions on the processes of localisation, weakening and overall shear zone evolution. To address this issue, we perform physical experiments in granular materials. We create shear fractures within a sample of granular material (sand) using different experimental apparatuses that apply different boundary conditions. Among them are standard machines such as a Ring-Shear Tester and the classical Riedel set up, as well as a newly designed set up. Boundary conditions can be varied from purely kinematic to more dynamically controlled and from laterally confined to unconfined. Nevertheless, the final result of deformation is an approximately straight strike-slip shear zone in all cases. We monitor boundary force (i. e. material strength) and, where experimentally accessible, strain, at high temporal resolution during deformation. With our different set ups we are able to produce very different patterns of deformation and weakening in the same material under the same constant rate of shearing and with the same final result. Observed patterns span from nearly instantaneous formation of one single through-going shear zone to slow, step-wise growth of a complex network of interacting cracks. Weakening in all cases matches well the structural evolution. Variations of weakening for a given material in different set ups are larger than for different materials in a given set up. Our results show that for a given material the style and rate of localisation can change drastically, depending on only slight changes of

  3. Effective Materials Property Information Management for the 21st Century

    SciTech Connect

    Ren, Weiju; Cebon, David; Arnold, Steve

    2010-01-01

    This paper discusses key principles for the development of materials property information management software systems. There are growing needs for automated materials information management in industry, research organizations and government agencies. In part these are fuelled by the demands for higher efficiency in material testing, product design and development and engineering analysis. But equally important, organizations are being driven to employ sophisticated methods and software tools for managing their mission-critical materials information by the needs for consistency, quality and traceability of data, as well as control of access to proprietary or sensitive information. Furthermore the use of increasingly sophisticated nonlinear, anisotropic and multi-scale engineering analysis approaches, particularly for composite materials, requires both processing of much larger volumes of test data for development of constitutive models and much more complex materials data input requirements for Computer-Aided Engineering (CAE) software. And finally, the globalization of engineering processes and outsourcing of design and development activities generates much greater needs for sharing a single gold source of materials information between members of global engineering teams in extended supply-chains. Fortunately material property management systems have kept pace with the growing user demands. They have evolved from hard copy archives, through simple electronic databases, to versatile data management systems that can be customized to specific user needs. The more sophisticated of these provide facilities for: (i) data management functions such as access control, version control, and quality control; (ii) a wide range of data import, export and analysis capabilities; (iii) mechanisms for ensuring that all data is traceable to its pedigree sources: details of testing programs, published sources, etc; (iv) tools for searching, reporting and viewing the data; and (v

  4. Scanning Probe Evaluation of Electronic, Mechanical and Structural Material Properties

    NASA Astrophysics Data System (ADS)

    Virwani, Kumar

    2011-03-01

    We present atomic force microscopy (AFM) studies of a range of properties from three different classes of materials: mixed ionic electronic conductors, low-k dielectrics, and polymer-coated magnetic nanoparticles. (1) Mixed ionic electronic conductors are being investigated as novel diodes to drive phase-change memory elements. Their current-voltage characteristics are measured with direct-current and pulsed-mode conductive AFM (C-AFM). The challenges to reliability of the C-AFM method include the electrical integrity of the probe, the sample and the contacts, and the minimization of path capacitance. The role of C-AFM in the optimization of these electro-active materials will be presented. (2) Low dielectric constant (low-k) materials are used in microprocessors as interlayer insulators, a role directly affected by their mechanical performance. The mechanical properties of nanoporous silicate low-k thin films are investigated in a comparative study of nanomechanics measured by AFM and by traditional nanoindentation. Both methods are still undergoing refinement as reliable analytical tools for determining nanomechanical properties. We will focus on AFM, the faster of the two methods, and its developmental challenges of probe shape, cantilever force constant, machine compliance and calibration standards. (3) Magnetic nanoparticles are being explored for their use in patterned media for magnetic storage. Current methods for visualizing the core-shell structure of polymer-coated magnetic nanoparticles include dye-staining the polymer shell to provide contrast in transmission electron microscopy. AFM-based fast force-volume measurements provide direct visualization of the hard metal oxide core within the soft polymer shell based on structural property differences. In particular, the monitoring of adhesion and deformation between the AFM tip and the nanoparticle, particle-by-particle, provides a reliable qualitative tool to visualize core-shell contrast without the use

  5. Synthesis and Engineering Materials Properties of Fluid Phase Chemical Hydrogen Storage Materials for Automotive Applications

    SciTech Connect

    Choi, Young Joon; Westman, Matthew P.; Karkamkar, Abhijeet J.; Chun, Jaehun; Ronnebro, Ewa

    2015-09-01

    Among candidates for chemical hydrogen storage in PEM fuel cell automotive applications, ammonia borane (AB, NH3BH3) is considered to be one of the most promising materials due to its high practical hydrogen content of 14-16 wt%. This material is selected as a surrogate chemical for a hydrogen storage system. For easier transition to the existing infrastructure, a fluid phase hydrogen storage material is very attractive and thus, we investigated the engineering materials properties of AB in liquid carriers for a chemical hydrogen storage slurry system. Slurries composed of AB and high temperature liquids were prepared by mechanical milling and sonication in order to obtain stable and fluidic properties. Volumetric gas burette system was adopted to observe the kinetics of the H2 release reactions of the AB slurry and neat AB. Viscometry and microscopy were employed to further characterize slurries engineering properties. Using a tip-sonication method we have produced AB/silicone fluid slurries at solid loadings up to 40wt% (6.5wt% H2) with viscosities less than 500cP at 25°C.

  6. 41 CFR 101-42.207 - Transfer of hazardous materials and certain categories of property.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... materials and certain categories of property. 101-42.207 Section 101-42.207 Public Contracts and Property... AND DISPOSAL 42-UTILIZATION AND DISPOSAL OF HAZARDOUS MATERIALS AND CERTAIN CATEGORIES OF PROPERTY 42.2-Utilization of Hazardous Materials and Certain Categories of Property § 101-42.207 Transfer...

  7. 41 CFR 101-42.207 - Transfer of hazardous materials and certain categories of property.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... materials and certain categories of property. 101-42.207 Section 101-42.207 Public Contracts and Property... AND DISPOSAL 42-UTILIZATION AND DISPOSAL OF HAZARDOUS MATERIALS AND CERTAIN CATEGORIES OF PROPERTY 42.2-Utilization of Hazardous Materials and Certain Categories of Property § 101-42.207 Transfer...

  8. 41 CFR 101-42.207 - Transfer of hazardous materials and certain categories of property.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... materials and certain categories of property. 101-42.207 Section 101-42.207 Public Contracts and Property... AND DISPOSAL 42-UTILIZATION AND DISPOSAL OF HAZARDOUS MATERIALS AND CERTAIN CATEGORIES OF PROPERTY 42.2-Utilization of Hazardous Materials and Certain Categories of Property § 101-42.207 Transfer...

  9. 41 CFR 101-42.207 - Transfer of hazardous materials and certain categories of property.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... materials and certain categories of property. 101-42.207 Section 101-42.207 Public Contracts and Property... AND DISPOSAL 42-UTILIZATION AND DISPOSAL OF HAZARDOUS MATERIALS AND CERTAIN CATEGORIES OF PROPERTY 42.2-Utilization of Hazardous Materials and Certain Categories of Property § 101-42.207 Transfer...

  10. 41 CFR 101-42.207 - Transfer of hazardous materials and certain categories of property.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... materials and certain categories of property. 101-42.207 Section 101-42.207 Public Contracts and Property... AND DISPOSAL 42-UTILIZATION AND DISPOSAL OF HAZARDOUS MATERIALS AND CERTAIN CATEGORIES OF PROPERTY 42.2-Utilization of Hazardous Materials and Certain Categories of Property § 101-42.207 Transfer...

  11. Effect of storage on tensile material properties of bovine liver.

    PubMed

    Lu, Yuan-Chiao; Kemper, Andrew R; Untaroiu, Costin D

    2014-01-01

    Cadaveric tissue models play an important role in the assessment and optimization of novel restraint systems for reducing abdominal injuries. However, the effect of tissue preservation by means of freezing on the material properties of abdominal tissues remains unknown. The goal of this study was to investigate the influence of frozen storage time on the material responses of the liver parenchyma in tensile loading. Specimens from ten bovine livers were equally divided into three groups: fresh, 30-day frozen storage, and 60-day frozen storage. All preserved specimens were stored at -12°C. Dog-bone specimens from each preservation group were randomly assigned to one of three strain rates (0.01s(-1), 0.1s(-1), and 1.0s(-1)) and tested to failure in tensile loading. The local material response recorded at the tear location and the global material response of the whole specimen of the liver parenchyma specimens were investigated based on the experimental data and optimized analytical material models. The local and global failure strains decreased significantly between fresh specimens and specimens preserved for 30 days (p<0.05), and between fresh specimens and specimens preserved for 60 days (p<0.05) for all three loading rates. Changes on the material model parameters were also observed between fresh and preserved specimens. Preservation by means of frozen storage was found to affect both the material and failure response of bovine liver parenchyma in tensile loading. The stiffness of the tissue increased with increased preservation time and increased strain rate. In summary, significant changes (p<0.05) between the failure strain of previously frozen liver parenchyma samples and fresh samples were demonstrated at both global and local levels in this study. In addition, nonlinear and viscoelastic characteristics of the liver parenchyma were observed in tension for both fresh and preserved samples.

  12. Filter properties of seam material from paved urban soils

    NASA Astrophysics Data System (ADS)

    Nehls, T.; Jozefaciuk, G.; Sokolowska, Z.; Hajnos, M.; Wessolek, G.

    2008-04-01

    Depositions of all kinds of urban dirt and dust including anthropogenic organic substances like soot change the filter properties of the seam filling material of pervious pavements and lead to the formation of a new soil substrate called seam material. In this study, the impact of the particular urban form of organic matter (OM) on the seam materials CECpot, the specific surface area (As), the surface charge density (SCD), the adsorption energies (Ea) and the adsorption of Cd and Pb were assessed. The Cd and Pb displacement through the pavement system has been simulated in order to assess the risk of soil and groundwater contamination from infiltration of rainwater in paved urban soils. As, Ea and SCD derived from water vapor adsorption isotherms, CECpot, Pb and Cd adsorption isotherms where analyzed from adsorption experiments. The seam material is characterized by a darker munsell-color and a higher Corg (12 to 48g kg-1) compared to the original seam filling. Although, the increased Corg leads to higher As (16m2g-1) and higher CECpot (0.7 to 4.8cmolckg-1), with 78cmolckg-1C its specific CECpot is low compared to OM of non-urban soils. This can be explained by a low SCD of 1.2×10-6molc m-2 and a low fraction of high adsorption energy sites which is likely caused by the non-polar character of the accumulated urban OM in the seam material. The seam material shows stronger sorption of Pb and Cd compared to the original construction sand. The retardation capacity of seam material for Pb is similar, for Cd it is much smaller compared to natural sandy soils with similar Corg concentrations. The simulated long term displacement scenarios for a street in Berlin do not indicate an acute contamination risk for Pb . For Cd the infiltration from puddles can lead to a breakthrough of Cd through the pavement system during only one decade. Although they contain contaminations itself, the accumulated forms of urban OM lead to improved filter properties of the seam material and

  13. 14 CFR 27.613 - Material strength properties and design values.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Material strength properties and design....613 Material strength properties and design values. (a) Material strength properties must be based on... be shown by selecting design values that assure material strength with the following probability—...

  14. 14 CFR 27.613 - Material strength properties and design values.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Material strength properties and design....613 Material strength properties and design values. (a) Material strength properties must be based on... be shown by selecting design values that assure material strength with the following probability—...

  15. 14 CFR 29.613 - Material strength properties and design values.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Material strength properties and design... § 29.613 Material strength properties and design values. (a) Material strength properties must be based... be shown by selecting design values that assure material strength with the following probability—...

  16. 14 CFR 27.613 - Material strength properties and design values.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Material strength properties and design....613 Material strength properties and design values. (a) Material strength properties must be based on... be shown by selecting design values that assure material strength with the following probability—...

  17. 14 CFR 29.613 - Material strength properties and design values.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Material strength properties and design... § 29.613 Material strength properties and design values. (a) Material strength properties must be based... be shown by selecting design values that assure material strength with the following probability—...

  18. 14 CFR 27.613 - Material strength properties and design values.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Material strength properties and design....613 Material strength properties and design values. (a) Material strength properties must be based on... be shown by selecting design values that assure material strength with the following probability—...

  19. 14 CFR 29.613 - Material strength properties and design values.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Material strength properties and design... § 29.613 Material strength properties and design values. (a) Material strength properties must be based... be shown by selecting design values that assure material strength with the following probability—...

  20. 14 CFR 29.613 - Material strength properties and design values.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Material strength properties and design... § 29.613 Material strength properties and design values. (a) Material strength properties must be based... be shown by selecting design values that assure material strength with the following probability—...

  1. 14 CFR 27.613 - Material strength properties and design values.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Material strength properties and design....613 Material strength properties and design values. (a) Material strength properties must be based on... be shown by selecting design values that assure material strength with the following probability—...

  2. 14 CFR 29.613 - Material strength properties and design values.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Material strength properties and design... § 29.613 Material strength properties and design values. (a) Material strength properties must be based... be shown by selecting design values that assure material strength with the following probability—...

  3. Material properties of bovine intervertebral discs across strain rates.

    PubMed

    Newell, Nicolas; Grigoriadis, Grigorios; Christou, Alexandros; Carpanen, Diagarajen; Masouros, Spyros D

    2017-01-01

    The intervertebral disc (IVD) is a complex structure responsible for distributing compressive loading to adjacent vertebrae and allowing the vertebral column to bend and twist. To study the mechanical behaviour of individual components of the IVD, it is common for specimens to be dissected away from their surrounding tissues for mechanical testing. However, disrupting the continuity of the IVD to obtain material properties of each component separately may result in erroneous values. In this study, an inverse finite element (FE) modelling optimisation algorithm has been used to obtain material properties of the IVD across strain rates, therefore bypassing the need to harvest individual samples of each component. Uniaxial compression was applied to ten fresh-frozen bovine intervertebral discs at strain rates of 10(-3)-1/s. The experimental data were fed into the inverse FE optimisation algorithm and each experiment was simulated using the subject specific FE model of the respective specimen. A sensitivity analysis revealed that the IVD's response was most dependent upon the Young's modulus (YM) of the fibre bundles and therefore this was chosen to be the parameter to optimise. Based on the obtained YM values for each test corresponding to a different strain rate (ε̇), the following relationship was derived:YM=35.5lnε̇+527.5. These properties can be used in finite element models of the IVD that aim to simulate spinal biomechanics across loading rates.

  4. Tooth and bone deformation: structure and material properties by ESPI

    NASA Astrophysics Data System (ADS)

    Zaslansky, Paul; Shahar, Ron; Barak, Meir M.; Friesem, Asher A.; Weiner, Steve

    2006-08-01

    In order to understand complex-hierarchical biomaterials such as bones and teeth, it is necessary to relate their structure and mechanical-properties. We have adapted electronic speckle pattern-correlation interferometry (ESPI) to make measurements of deformation of small water-immersed specimens of teeth and bones. By combining full-field ESPI with precision mechanical loading we mapped sub-micron displacements and determined material-properties of the samples. By gradually and elastically compressing the samples, we compensate for poor S/N-ratios and displacement differences of about 100nm were reliably determined along samples just 2~3mm long. We produced stress-strain curves well within the elastic performance range of these materials under biologically relevant conditions. For human tooth-dentin, Young's modulus in inter-dental areas of the root is 40% higher than on the outer sides. For cubic equine bone samples the compression modulus of axial orientations is about double the modulus of radial and tangential orientations (20 GPa versus 10 GPa respectively). Furthermore, we measured and reproduced a surprisingly low Poisson's ratio, which averaged about 0.1. Thus the non-contact and non-destructive measurements by ESPI produce high sensitivity analyses of mechanical properties of mineralized tissues. This paves the way for mapping deformation-differences of various regions of bones, teeth and other biomaterials.

  5. Learning to apply models of materials while explaining their properties

    NASA Astrophysics Data System (ADS)

    Karpin, Tiia; Juuti, Kalle; Lavonen, Jari

    2014-09-01

    Background:Applying structural models is important to chemistry education at the upper secondary level, but it is considered one of the most difficult topics to learn. Purpose:This study analyses to what extent in designed lessons students learned to apply structural models in explaining the properties and behaviours of various materials. Sample:An experimental group is 27 Finnish upper secondary school students and control group included 18 students from the same school. Design and methods:In quasi-experimental setting, students were guided through predict, observe, explain activities in four practical work situations. It was intended that the structural models would encourage students to learn how to identify and apply appropriate models when predicting and explaining situations. The lessons, organised over a one-week period, began with a teacher's demonstration and continued with student experiments in which they described the properties and behaviours of six household products representing three different materials. Results:Most students in the experimental group learned to apply the models correctly, as demonstrated by post-test scores that were significantly higher than pre-test scores. The control group showed no significant difference between pre- and post-test scores. Conclusions:The findings indicate that the intervention where students engage in predict, observe, explain activities while several materials and models are confronted at the same time, had a positive effect on learning outcomes.

  6. The Study of the Thermoelectric Properties of Phase Change Materials

    NASA Astrophysics Data System (ADS)

    Yin, Ming; Abdi, Mohammed; Noimande, Zibusisu; Mbamalu, Godwin; Alameeri, Dheyaa; Datta, Timir

    We study thermoelectric property that is electrical phenomena occurring in conjunction with the flow of heat of phase-change materials (PCM) in particular GeSbTe (GST225). From given sets of material parameters, COMSOL Multiphysics heat-transfer module is used to compute maps of temperature and voltage distribution in the PCM samples. These results are used to design an apparatus including the variable temperature sample holder set up. An Arbitrary/ Function generator and a circuit setup is also designed to control the alternation of heaters embedded on the sample holder in order to ensure sequential back and forward flow of heat current from both sides of the sample. Accurate values of potential differences and temperature distribution profiles are obtained in order to compute the Seebeck coefficient of the sample. The results of elemental analysis and imaging studies such as XRD, UV-VIS, EDEX and SEM of the sample are obtained. Factors affecting the thermoelectric properties of phase change memory are also discussed. NNSA/ DOD Consortium for Materials and Energy Studies.

  7. Infrared optical properties of Mars soil analog materials: Palagonites

    NASA Technical Reports Server (NTRS)

    Roush, Ted L.

    1992-01-01

    The globally distributed bright soils on Mars represent products of chemical alteration of primary igneous materials. As such, understanding the chemistry and mineralogy of these soils provides clues about the nature of the parent materials and the type, duration, and extent of the chemical weathering environments on Mars. Such clues are key in developing an understanding of the interior and surficial processes that have operated throughout Mars' history to yield the surface as it is currently observed. The generally homogeneous nature of these soils is illustrated by a variety of observational data. These data include (1) direct determination of elemental abundances by the X-ray fluorescence instruments on both Viking Landers, (2) Earth-based telescopic observations, and (3) space-based observations. Based on their spectral properties in the visible and near-infrared, terrestrial palagonitic soils have been suggested as analogs for the bright regions on Mars. Palagonites represent the weathering products of basaltic glass and as such are composed of a variety of minerals/materials. In order to gain an understanding regarding the chemical, mineralogical, and spectral properties of a broad suite of palagonites, several samples were collected from the eastern and central regions of the island of Hawaii.

  8. Mechanical Properties and Simulated Wear of Provisional Resin Materials.

    PubMed

    Takamizawa, T; Barkmeier, W W; Tsujimoto, A; Scheidel, D; Erickson, R L; Latta, M A; Miyazaki, M

    2015-01-01

    The purpose of this study was to determine flexural properties and erosive wear behavior of provisional resin materials. Three bis-acryl base provisional resins-1) Protemp Plus (PP), 2) Integrity (IG), 3) Luxatemp Automix Plus (LX)-and a conventional poly(methylmethacrylate) (PMMA) resin, UniFast III (UF), were evaluated. A resin composite, Z100 Restorative (Z1), was included as a benchmark material. Six specimens for each of the four materials were used to determine flexural strength and elastic modulus according to ISO Standard 4049. Twelve specimens for each material were used to examine wear using a generalized wear simulation model. The test materials were each subjected to wear challenges of 25,000, 50,000, 100,000, and 200,000 cycles in a Leinfelder-Suzuki (Alabama) wear simulator. The materials were placed in custom cylinder-shaped stainless-steel fixtures, and wear was generated using a cylindrical-shaped flat-ended stainless-steel antagonist in a slurry of nonplasticized PMMA beads. Wear (mean facet depth [μm] and volume loss [mm(3)]) was determined using a noncontact profilometer (Proscan 2100) with Proscan and AnSur 3D software. The laboratory data were evaluated using two-way analysis of variance (ANOVA; factors: 1) material and 2) cycles) followed by Tukey HSD post hoc test (α=0.05). The flexural strength ranged from 68.2 to 150.6 MPa, and the elastic modulus ranged from 2.0 to 15.9 GPa. All of the bis-acryl provisional resins (PP, IG, and LX) demonstrated significantly higher values than the PMMA resin (UF) in flexural strength and elastic modulus (p<0.05). However, there was no significant difference (p>0.05) in flexural properties among three bis-acryl base provisional resins (PP, IG, and LX). Z1 demonstrated significantly (p<0.05) higher flexural strength and elastic modulus than the other materials tested. The results for mean facet wear depth (μm) and standard deviations (SD) for 200,000 cycles were as follows: PP, 22.4 (5.0); IG, 51.0 (6

  9. Optical properties of polymer/chalcogenide glass composite materials

    NASA Astrophysics Data System (ADS)

    Bormashenko, Edward; Pogreb, Roman; Sutovski, Semion

    2000-06-01

    The novel composite material based on middle density polyethylene on one hand and thermoplastic chalcogenide glass on other hand has been worked out. Both materials used in the research are highly transparent in the middle and far IR but refraction indexes of components differ dramatically. The basic materials, polymer and glass, have close viscosities at the temperature of polyethylene processing. This fact allowed use of the extrusion technique for homogenization purposes. We proved, that the controlled structure of a composite could be derived through the varying of technological parameters of the mixing process. Single- and twin screw extrusion processes obtained compositions, which contain up to 50% particles of chalcogenide glass, which were dispersed in the polymer matrix. The highly homogeneous compositions that contain perfect spherical glass particles of 1-2 micrometers in diameter dispersed into polymer matrix were obtained as well. Highly oriented structures involving chalcogenide glass fibers immersed in the polymer matrix were prepared under high stretch speeds as well. Such fiberlike structures exhibited pronounced polarization properties. We studied the optical properties of the composite and came to the conclusion that the controlled structure of the composite allows variation in its optical properties. It was established that it is possible to produce a composite that is opaque in the visible and near IR, and highly transparent in the 2-25-micrometers wave length band. Light scattering on oriented and disordered structures was studied by the IR spectro-goniometer. The novel composite which was developed by our group is intended for various IR-optics applications.

  10. Research on lunar materials. [optical, chemical, and electrical properties

    NASA Technical Reports Server (NTRS)

    Gold, T.

    1978-01-01

    Abstracts of 14 research reports relating to investigations of lunar samples are presented. The principal topics covered include: (1) optical properties of surface and core samples; (2) chemical composition of the surface layers of lunar grains: Auger electron spectroscopy of lunar soil and ground rock samples; (3) high frequency electrical properties of lunar soil and rock samples and their relevance for the interpretation of lunar radar observations; (4) the electrostatic dust transport process; (5) secondary electron emission characteristics of lunar soil samples and their relevance to the dust transportation process; (6) grain size distribution in surface soil and core samples; and (7) the optical and chemical effects of simulated solar wind (2keV proton and a particle radiation) on lunar material.

  11. Controlling the Casimir force via the electromagnetic properties of materials

    SciTech Connect

    Yang Yaping; Chen Hong; Zeng Ran; Zhu Shiyao; Zubairy, M. Suhail

    2010-02-15

    The control of the Casimir force between two parallel plates can be achieved through adjusting the frequency-dependent electromagnetic properties of materials of the two plates. We show that, for different plate separations, the main contribution to the Casimir force comes from different frequency regions: For smaller (larger) separation, it comes from the higher (lower) frequency region. When the separation of the plates increases, the Casimir force can vary from attractive to repulsive and/or vice versa, by selecting the two plates with suitable electromagnetic properties. We discuss how a restoring Casimir force, which varies from repulsive to attractive by increasing the separation, can be realized and that the stable equilibrium is formed at zero Casimir force.

  12. Hygrothermal Simulation of Foundations: Part 1 - Soil Material Properties

    SciTech Connect

    Kehrer, Manfred; Pallin, Simon B

    2012-10-01

    The hygrothermal performance of soils coupled to buildings is a complicated process. A computational approach for heat transfer through the ground has been well defined (EN ISO 13370:2007, 2007), and simplified methods have been developed (Staszczuk, Radon, and Holm 2010). However, these approaches generally ignore the transfer of soil moisture, which is not negligible (Janssen, Carmeliet, and Hens 2004). This study is divided into several parts. The intention of the first part is to gather, comprehend and adapt soil properties from Soil Science. The obtained information must be applicable to related tasks in Building Science and validated with hygrothermal calculation tools. Future parts of this study will focus on the validation aspect of the soil properties to be implemented. Basic changes in the software code may be requested at this time. Different types of basement construction will be created with a hygrothermal calculation tool, WUFI. Simulations from WUFI will be compared with existing or ongoing measurements. The intentions of the first part of this study have been fulfilled. The soil properties of interest in Building Science have been defined for 12 different soil textures. These properties will serve as input parameters when performing hygrothermal calculations of building constructions coupled to soil materials. The reliability of the soil parameters will be further evaluated with measurements in Part 2.

  13. Electronic, Vibrational and Thermoelectric Properties of Two-Dimensional Materials

    NASA Astrophysics Data System (ADS)

    Wickramaratne, Darshana

    The discovery of graphene's unique electronic and thermal properties has motivated the search for new two-dimensional materials. Examples of these materials include the layered two-dimensional transition metal dichalcogenides (TMDC) and metal mono-chalcogenides. The properties of the TMDCs (eg. MoS 2, WS2, TaS2, TaSe2) and the metal mono-chalcogenides (eg. GaSe, InSe, SnS) are diverse - ranging from semiconducting, semi-metallic and metallic. Many of these materials exhibit strongly correlated phenomena and exotic collective states such as exciton condensates, charge density waves, Lifshitz transitions and superconductivity. These properties change as the film thickness is reduced down to a few monolayers. We use first-principles simulations to discuss changes in the electronic and the vibrational properties of these materials as the film thickness evolves from a single atomic monolayer to the bulk limit. In the semiconducting TMDCs (MoS2, MoSe2, WS2 and WSe2) and monochalcogenides (GaS, GaSe, InS and InSe) we show confining these materials to their monolayer limit introduces large band degeneracies or non-parabolic features in the electronic structure. These changes in the electronic structure results in increases in the density of states and the number of conducting modes. Our first-principles simulations combined with a Landauer approach show these changes can lead to large enhancements up to an order of magnitude in the thermoelectric performance of these materials when compared to their bulk structure. Few monolayers of the TMDCs can be misoriented with respect to each other due to the weak van-der-Waals (vdW) force at the interface of two monolayers. Misorientation of the bilayer semiconducting TMDCs increases the interlayer van-der-Waals gap distance, reduces the interlayer coupling and leads to an increase in the magnitude of the indirect bandgap by up to 100 meV compared to the registered bilayer. In the semi-metallic and metallic TMDC compounds (TiSe2, Ta

  14. Development and mechanical properties of structural materials from lunar simulants

    NASA Technical Reports Server (NTRS)

    Desai, Chandra S.; Girdner, K.; Saadatmanesh, H.; Allen, T.

    1991-01-01

    Development of the technologies for manufacture of structural and construction materials on the Moon, utilizing local lunar soil (regolith), without the use of water, is an important element for habitats and explorations in space. Here, it is vital that the mechanical behavior such as strength and flexural properties, fracture toughness, ductility and deformation characteristics be defined toward establishment of the ranges of engineering applications of the materials developed. The objective is to describe the research results in two areas for the above goal: (1) liquefaction of lunar simulant (at about 100 C) with different additives (fibers, powders, etc.); and (2) development and use of a new triaxial test device in which lunar simulants are first compressed under cycles of loading, and then tested with different vacuums and initial confining or in situ stress.

  15. Fracture properties of bioabsorbable HA/PLLA/PCL composite material

    NASA Astrophysics Data System (ADS)

    Park, S. D.; Todo, M.; Arakawa, K.; Tsuji, H.; Takenoshita, Y.

    2005-04-01

    Hydroxyapatite particle filled poly(L-lactic acid)/poly(e-caprolactone) blend (HA/PLLA/PCL) composite materials were developed by melt-mixing, and their bending mechanical properties and fracture toughness were examined. It was found that the fracture absorbed energy and fracture toughness are maximized with the PCL content of 5wt%. Local plastic deformation of PLLA/PCL matrix is the main mechanism of energy dissipation during fracture. This ductile deformation is considered to be initiated in the surroundings of voids formed due to interfacial debonding at HA/matrix interfaces and phase separation of PLLA and PCL. On the other hand, fracture toughness of HA/PLLA/PCL with the PCL contents of 10 and 15wt% becomes lower than that of HA/PLLA. In these composites, void formation causes severe local stress concentration and therefore degrades the materials rather than improving the fracture resistance.

  16. Properties and processing of nanocrystalline materials. Quarterly report

    SciTech Connect

    Valiev, R.Z.

    1996-01-22

    The present Report completes the investigations in the frame of the project for the first year. It is important to estimate our achievements in the investigation of properties of nanocrystalline materials obtained by severe plastic deformation and their production. We think that the main results obtained can be summarized as follows: (1) We performed an improvement of the die-set for equal channel (ECA) pressing and torsion under high pressure with the aim to increase dimensions of the samples produced and to conduct processing of low ductile materials. (2) It was established that in pure metals severe plastic deformation led to the formation of an ultra fine-grained structure with a mean grain size of 100-200 nm, while in alloys due to severe plastic deformation and/or special methods of treatment (a decrease in the temperature of deformation, an increase of the pressure applied etc.) the grain size could be decreased down to a few tens of manometers.

  17. Fabrication of nanoscale to macroscale nickel-multiwall carbon nanotube hybrid materials with tunable material properties

    NASA Astrophysics Data System (ADS)

    Abdalla, Ahmed M.; Majdi, Tahereh; Ghosh, Suvojit; Puri, Ishwar K.

    2016-12-01

    To utilize their superior properties, multiwall carbon nanotubes (MWNTs) must be manipulated and aligned end-to-end. We describe a nondestructive method to magnetize MWNTs and provide a means to remotely manipulate them through the electroless deposition of magnetic nickel nanoparticles on their surfaces. The noncovalent bonds between Ni nanoparticles and MWNTs produce a Ni-MWNT hybrid material (NiCH) that is electrically conductive and has an enhanced magnetic susceptibility and elastic modulus. Our experiments show that MWNTs can be plated with Ni for Ni:MWNT weight ratios of γ = 1, 7, 14 and 30, to control the material properties. The phase, atom-level, and morphological information from x-ray diffraction, energy dispersive x-ray spectroscopy, scanning electron microscopy, transmission electron microscopy, dark field STEM, and atomic force microscopy clarify the plating process and reveal the mechanical properties of the synthesized material. Ni metalizes at the surface of the Pd catalyst, forming a continuous wavy layer that encapsulates the MWNT surfaces. Subsequently, Ni acts as an autocatalyst, allowing the plating to continue even after the original Pd catalyst has been completely covered. Raising γ increases the coating layer thickness from 10 to 150 nm, which influences the NiCH magnetic properties and tunes its elastic modulus from 12.5 to 58.7 GPa. The NiCH was used to fabricate Ni-MWNT macrostructures and tune their morphologies by changing the direction of an applied magnetic field. Leveraging the hydrophilic Ni-MWNT outer surface, a water-based conductive ink was created and used to print a conductive path that had an electrical resistivity of 5.9 Ω m, illustrating the potential of this material for printing electronic circuits.

  18. Material properties and fractography of an indirect dental resin composite

    PubMed Central

    Quinn, Janet B.; Quinn, George D.

    2011-01-01

    Objectives Determination of material and fractographic properties of a dental indirect resin composite material. Methods A resin composite (Paradigm, 3M-ESPE, MN) was characterized by strength, static elastic modulus, Knoop hardness, fracture toughness and edge toughness. Fractographic analyses of the broken bar surfaces was accomplished with a combination of optical and SEM techniques, and included determination of the type and size of the failure origins, and fracture mirror and branching constants. Results The flexure test mean strength ± standard deviation was 145 MPA ± 17 MPa, and edge toughness, Te, was 172 N/mm ±12 N/mm. Knoop hardness was load dependent, with a plateau at 0.99 GPa ± .02 GPa. Mirrors in the bar specimens were measured with difficulty, resulting in a mirror constant of approximately 2.6 MPa·m1/2. Fracture in the bar specimens initiated at equiaxed material flaws that had different filler concentrations that sometimes were accompanied by partial microcracks. Using the measured flaw sizes, which ranged from 35 µm to 100 µm in size, and estimates of the stress intensity shape factors, fracture toughness was estimated to be 1.1 MPa·m1/2 ± 0.2 MPa·m1/2. Significance Coupling the flexure tests with fractographic examination enabled identification of the intrinsic strength limiting flaws. The same techniques could be useful in determining if clinical restorations of similar materials fail from the same causes. The existence of a strong load-dependence of the Knoop hardness of the resin composite is not generally mentioned in the literature, and is important for material comparisons and wear evaluation studies. Finally, the edge toughness test was found promising as a quantitative measure of resistance to edge chipping, an important failure mode in this class of materials. PMID:20304478

  19. Failure criterion for materials with spatially correlated mechanical properties.

    PubMed

    Faillettaz, J; Or, D

    2015-03-01

    The role of spatially correlated mechanical elements in the failure behavior of heterogeneous materials represented by fiber bundle models (FBMs) was evaluated systematically for different load redistribution rules. Increasing the range of spatial correlation for FBMs with local load sharing is marked by a transition from ductilelike failure characteristics into brittlelike failure. The study identified a global failure criterion based on macroscopic properties (external load and cumulative damage) that is independent of spatial correlation or load redistribution rules. This general metric could be applied to assess the mechanical stability of complex and heterogeneous systems and thus provide an important component for early warning of a class of geophysical ruptures.

  20. Estimation of material properties of a nonlinearly elastic bar

    NASA Technical Reports Server (NTRS)

    Baker, B. E.; Childs, B.

    1974-01-01

    A method of determining certain characteristic flexural rigidities and elastic properties of nonlinearly elastic materials is presented. An estimation method utilizing perturbation methods and a least squares fitting technique is used to solve the nonlinear differential equation derived from the moment curvature relation, subject to boundary values representing deflections of the bar at discrete points. Deflection data from numerical simulations of a nonlinearly elastic, prismatic bar are used to demonstrate the estimation method. Numerical experiments relating the accuracy of the identification to the number and accuracy of the boundary values are presented. Conclusions based on the numerical experiments are included.

  1. Distributional properties of stochastic shortest paths for smuggled nuclear material

    SciTech Connect

    Cuellar, Leticia; Pan, Feng; Roach, Fred; Saeger, Kevin J

    2011-01-05

    The shortest path problem on a network with fixed weights is a well studied problem with applications to many diverse areas such as transportation and telecommunications. We are particularly interested in the scenario where a nuclear material smuggler tries to succesfully reach herlhis target by identifying the most likely path to the target. The identification of the path relies on reliabilities (weights) associated with each link and node in a multi-modal transportation network. In order to account for the adversary's uncertainty and to perform sensitivity analysis we introduce random reliabilities. We perform some controlled experiments on the grid and present the distributional properties of the resulting stochastic shortest paths.

  2. Measurement of Thermal Properties of Biosourced Building Materials

    NASA Astrophysics Data System (ADS)

    Pierre, Thomas; Colinart, Thibaut; Glouannec, Patrick

    2014-10-01

    This paper presents both experimental and theoretical works concerning the evaluation of the thermal conductivity and thermal diffusivity of hemp concrete. Experimental measurements of thermal properties are performed using a hot-strip technique for temperatures ranging from 3 to 30 and relative humidities ranging from 0 % to 95 %, thus creating a large database for this material. These experimental thermal conductivities are then compared with the results from the Krischer theoretical predictive model. The comparison shows good agreement, and a predictive analytical relation between the hemp concrete thermal conductivity, temperature, and relative humidity is determined.

  3. Process design of press hardening with gradient material property influence

    SciTech Connect

    Neugebauer, R.; Schieck, F.; Rautenstrauch, A.

    2011-05-04

    Press hardening is currently used in the production of automotive structures that require very high strength and controlled deformation during crash tests. Press hardening can achieve significant reductions of sheet thickness at constant strength and is therefore a promising technology for the production of lightweight and energy-efficient automobiles. The manganese-boron steel 22MnB5 have been implemented in sheet press hardening owing to their excellent hot formability, high hardenability, and good temperability even at low cooling rates. However, press-hardened components have shown poor ductility and cracking at relatively small strains. A possible solution to this problem is a selective increase of steel sheet ductility by press hardening process design in areas where the component is required to deform plastically during crash tests. To this end, process designers require information about microstructure and mechanical properties as a function of the wide spectrum of cooling rates and sequences and austenitizing treatment conditions that can be encountered in production environments. In the present work, a Continuous Cooling Transformation (CCT) diagram with corresponding material properties of sheet steel 22MnB5 was determined for a wide spectrum of cooling rates. Heating and cooling programs were conducted in a quenching dilatometer. Motivated by the importance of residual elasticity in crash test performance, this property was measured using a micro-bending test and the results were integrated into the CCT diagrams to complement the hardness testing results. This information is essential for the process design of press hardening of sheet components with gradient material properties.

  4. Development and mechanical properties of structural materials from lunar simulant

    NASA Technical Reports Server (NTRS)

    Desai, Chandra S.

    1991-01-01

    Development of versatile engineering materials from locally available materials in space is an important step toward establishment of outposts such as on the moon and Mars. Here development of the technologies for manufacture of structural and construction materials on the moon, utilizing local lunar soil (regolith), without the use of water, is an important element for habitats and explorations in space. It is also vital that the mechanical behavior such as strength and flexural properties, fracture toughness, ductility, and deformation characteristics are defined toward establishment of the ranges of engineering applications of the materials developed. The objectives include two areas: (1) thermal liquefaction of lunar simulant (at about 1100 C) with different additives (fibers, powders, etc.); and (2) development and use of a traxial test device in which lunar simulants are first compacted under cycles of loading, and then tested with different vacuums and initial confining or insitu stress. The second area was described in previous progress reports and publications; since the presently available device allows vacuum levels up to only 10(exp -4) torr, it is recommended that a vacuum pump that can allow higher levels of vacuum is acquired.

  5. Development and mechanical properties of construction materials from lunar simulant

    NASA Technical Reports Server (NTRS)

    Desai, Chandra S.

    1992-01-01

    Development of versatile engineering materials from locally available materials in space is an important step toward the establishment of outposts on the Moon and Mars. Development of the technologies for manufacture of structural and construction materials on the Moon, utilizing local lunar soil (regolith), without the use of water, is an important element for habitats and explorations in space. It is also vital that the mechanical behavior such as strength and tensile, flexural properties, fracture toughness, ductility, and deformation characteristics are defined toward establishment of the ranges of engineering applications of the materials developed. The objectives include two areas: (1) thermal 'liquefaction' of lunar simulant (at about 1100 C) with different additives (fibers, powders, etc.), and (2) development and use of a new triaxial test device in which lunar simulants are first compacted under cycles of loading, and then tested with different vacuums and initial confining or in situ stress. Details of the development of intermediate ceramic composites (ICC) and testing for their flexural and compression characteristics were described in various reports and papers. The subject of behavior of compacted simulant under vacuum was described in previous progress reports and publications; since the presently available device allows vacuum levels up to only 10(exp -4) torr, it is recommended that a vacuum pump that can allow higher levels of vacuum be utilized for further investigation.

  6. Cryogenic Properties of Aluminum Beryllium and Beryllium Materials

    NASA Technical Reports Server (NTRS)

    Gamwell, Wayne R.; McGill, Preston B.

    2003-01-01

    Ultimate tensile strength, yield strength, and elongation were obtained for the aluminum-beryllium alloy, AlBeMetl62 (38%Al-62%Be), at cryogenic (-195.5 C (-320 F) and (-252.8 C) (-423 F)) temperatures, and for an optical grade beryllium, O-30H (99%Be), at -252.8 C. AlBeMetl62 material was purchased to the requirements of SAE-AMS7912, "Aluminum-Beryllium Alloy, Extrusions." O-30H material was purchased to the requirements of Brush Wellman Inc. specification O-30H Optical Grade Beryllium. The ultimate tensile and yield strengths for extruded AlBeMetl62 material increased with decreasing temperature, and the percent elongation decreased with decreasing temperature. Design properties for the ultimate tensile strength, yield strength, and percent elongation for extruded AlBeMetl62 were generated. It was not possible to distinguish a difference in the room and cryogenic ultimate strength for the hot isostatically pressed (HIP'ed) O-30H material. The O30H elongation decreased with decreasing temperature.

  7. Cryogenic Properties of Aluminum-Beryllium and Beryllium Materials

    NASA Technical Reports Server (NTRS)

    Gamwell, Wayne R.; McGill, Preston B.

    2003-01-01

    Ultimate tensile strength, yield strength, and elongation were obtained for the aluminum- beryllium alloy, AlBeMetl62 (38%Al-62%Be), at cryogenic (-195.5 C (-32O F) and (- 252.8 C) (-423 F)) temperatures, and for an optical grade beryllium, O-30H (99%Be), at -252.8 C. AlBeMet162 material was purchased to the requirements of SAE- AMs7912, "Aluminum-Beryllium Alloy, Extrusions". O-30H material was purchased to the requirements of Brush Wellman Inc. specification O-30H Optical Grade Beryllium. The ultimate tensile and yield strengths for extruded AlBeMet162 material increased with decreasing temperature, and the percent elongation decreased with decreasing temperature. Design properties for the ultimate tensile strength, yield strength, and percent elongation for extruded AlBeMetl62 were generated. It was not possible to distinguish a difference in the room and cryogenic ultimate strength for the hot isostatically pressed (HIP'ed) O-30H material. The O-30H elongation decreased with decreasing temperature.

  8. Mechanical properties of new dental pulp-capping materials.

    PubMed

    Nielsen, Matthew J; Casey, Jeffery A; VanderWeele, Richard A; Vandewalle, Kraig S

    2016-01-01

    The mechanical properties of pulp-capping materials may affect their resistance to fracture during placement of a final restorative material or while supporting an overlying restoration over time. The purpose of this study was to compare the compressive strength, flexural strength, and flexural modulus of 2 new pulp-capping materials (TheraCal LC and Biodentine), mineral trioxide aggregate (MTA), and calcium hydroxide over time. Specimens were created in molds and tested to failure in a universal testing machine after 15 minutes, 3 hours, and 24 hours. The MTA specimens did not set at 15 minutes. At all time periods, TheraCal LC had the greatest compressive and flexural strengths. After 3 and 24 hours, Biodentine had the greatest flexural modulus. TheraCal LC had greater early strength to potentially resist fracture during immediate placement of a final restorative material. Biodentine had greater stiffness after 3 hours to potentially provide better support of an overlying restoration under function over time.

  9. Research on the icephobic properties of fluoropolymer-based materials

    NASA Astrophysics Data System (ADS)

    Yang, Shuqing; Xia, Qiang; Zhu, Lin; Xue, Jian; Wang, Qingjun; Chen, Qing-min

    2011-03-01

    Fluoropolymer, because of the extremely low surface energy, could be non-stick to water and thus could be a good candidate as anti-icing materials. In this paper, the icephobic properties of a series of fluoropolymer materials including pristine PTFE plates (P-PTFE), sandblasted PTFE plates (SB-PTFE), two PTFE coatings (SNF-1 and SNF-CO1), a fluorinated room-temperature vulcanized silicone rubber coating (F-RTV) and a fluorinated polyurethane coating (F-PU) have been investigated by using SEM, XPS, ice adhesion strength (tensile and shear) tests, and static and dynamic water contact angle analysis. Results show that the fluoropolymer material with a smooth surface can significantly reduce ice adhesion strength but do not show obvious effect in reducing ice accretion at -8 °C. Fluoropolymers with sub-micron surface structures can improve the hydrophobicity at normal temperature. It leads to an efficient reduction in the ice accretion on the surface at -8 °C, due to the superhydrophobicity of the materials. But the hydrophobicity of this surface descends at a low temperature with high humidity. Consequently, once ice layer formed on the surface, the ice adhesion strength enhanced rapidly due to the existence of the sub-micron structures. Ice adhesion strength of fluoropolymers is highly correlated to CA reduction observed when the temperature was changed from 20 °C to -8 °C. This property is associated with the submicron structure on the surface, which allows water condensed in the interspace between the sub-micron protrudes at a low temperature, and leads to a reduced contact angle, as well as a significantly increased ice adhesion strength.

  10. Investigating the Size Dependent Material Properties of Nanoceria

    NASA Astrophysics Data System (ADS)

    Alam, Bushra B.

    Nanoceria is widely being investigated for applications as support materials for fuel cell catalysts, free radical scavengers, and as chemical and mechanical abrasives due to its high antioxidant capacity and its oxygen buffering capacity. This antioxidant or oxygen buffering capacity has been reported to be highly size dependent and related to its redox properties. However, the quantification of this antioxidant capacity has not been well defined or understood and has been often been carried out using colorimetric assays which do not directly correlate to ceria nanoparticle properties. Fabrication rules for developing materials with optimal antioxidant/oxygen buffering capacities are not yet defined and one of the limitations has been the challenge of obtaining quantitative measurements of the antioxidant properties. In this work, we create our own library of ceria nanoparticles of various size distributions by two synthesis methods: sol-gel peroxo and thermal decomposition/calcination and annealing in open atmosphere at three different temperatures. The synthesis methods and conditions produce characteristic sizes and morphologies of ceria nanoparticles. Qualitative and quantitative approaches are used for characterization and to predict reactivity. Qualitative approaches include Brunauer-Emmett-Teller (BET) surface area measurements and Raman analysis while quantitative approaches include a combination of powder X-ray diffraction (XRD) Rietveld analysis, Transmission Electron Microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) to measure crystallite sizes, lattice parameters, oxygen site occupancies, and the relative abundance of Ce(III) ions in a nanoceria sample. These methods are discussed in detail in addition to their limitations and challenges. These methods are used to predict nanocrystalline or bulk-like behavior of ceria nanoparticles. The investigation of the material properties is also extended to test the redox properties of ceria

  11. MatProps: Material Properties Database and Associated Access Library

    SciTech Connect

    Durrenberger, J K; Becker, R C; Goto, D M; Neely, J R; Wallin, B K

    2007-08-13

    Coefficients for analytic constitutive and equation of state models (EOS), which are used by many hydro codes at LLNL, are currently stored in a legacy material database (Steinberg, UCRL-MA-106349). Parameters for numerous materials are available through this database, and include Steinberg-Guinan and Steinberg-Lund constitutive models for metals, JWL equations of state for high explosives, and Mie-Gruniesen equations of state for metals. These constitutive models are used in most of the simulations done by ASC codes today at Livermore. Analytic EOSs are also still used, but have been superseded in many cases by tabular representations in LEOS (http://leos.llnl.gov). Numerous advanced constitutive models have been developed and implemented into ASC codes over the past 20 years. These newer models have more physics and better representations of material strength properties than their predecessors, and therefore more model coefficients. However, a material database of these coefficients is not readily available. Therefore incorporating these coefficients with those of the legacy models into a portable database that could be shared amongst codes would be most welcome. The goal of this paper is to describe the MatProp effort at LLNL to create such a database and associated access library that could be used by codes throughout the DOE complex and beyond. We have written an initial version of the MatProp database and access library and our DOE/ASC code ALE3D (Nichols et. al., UCRL-MA-152204) is able to import information from the database. The database, a link to which exists on the Sourceforge server at LLNL, contains coefficients for many materials and models (see Appendix), and includes material parameters in the following categories--flow stress, shear modulus, strength, damage, and equation of state. Future versions of the Matprop database and access library will include the ability to read and write material descriptions that can be exchanged between codes. It will

  12. Transport properties of damaged materials. Cementitious barriers partnership

    SciTech Connect

    Langton, C.

    2014-11-01

    The objective of the Cementitious Barriers Partnership (CBP) project is to develop tools to improve understanding and prediction of the long-term structural, hydraulic, and chemical performance of cementitious barriers used in low-level waste storage applications. One key concern for the long-term durability of concrete is the degradation of the cementitious matrix, which occurs as a result of aggressive chemical species entering the material or leaching out in the environment, depending on the exposure conditions. The objective of the experimental study described in this report is to provide experimental data relating damage in cementitious materials to changes in transport properties, which can eventually be used to support predictive model development. In order to get results within a reasonable timeframe and to induce as much as possible uniform damage level in materials, concrete samples were exposed to freezing and thawing (F/T) cycles. The methodology consisted in exposing samples to F/T cycles and monitoring damage level with ultrasonic pulse velocity measurements. Upon reaching pre-selected damage levels, samples were tested to evaluate changes in transport properties. Material selection for the study was motivated by the need to get results rapidly, in order to assess the relevance of the methodology. Consequently, samples already available at SIMCO from past studies were used. They consisted in three different concrete mixtures cured for five years in wet conditions. The mixtures had water-to-cement ratios of 0.5, 0.65 and 0.75 and were prepared with ASTM Type I cement only. The results showed that porosity is not a good indicator for damage caused by the formation of microcracks. Some materials exhibited little variations in porosity even for high damage levels. On the other hand, significant variations in tortuosity were measured in all materials. This implies that damage caused by internal pressure does not necessarily create additional pore space in

  13. Vanadium oxide based materials: Synthesis, characterization and gas sensing properties

    NASA Astrophysics Data System (ADS)

    Ayesh, Samar I.

    In recent years, the demand for gas sensors based on safety and process control requirements has been expanding. The reason for such demand sterns from environmental and safety concerns since the toxic gases released from automobile exhausts and chemical plants can directly or indirectly pollute our environment and affect our health. Among the chemicals studied, nitrogen oxide (NOx) gases are among the most dangerous air pollutants. Transition metal oxide clusters (or polyoxometalates) provide an exciting opportunity for the design and synthesis of a new generation of materials for efficient NOx sensing. Polyoxometalates are an important and fast emerging class of compounds that exhibit many remarkable properties. Chapter 1 provides introduction and background of chemical sensors. It describes the need for gas sensors and the current status of research in the area of NOx gas sensors in particular. A description of polyoxmetalates and their relevance as potential novel gas sensor materials is also given. Chapter 2 describes the synthesis and characterization by FTIR spectroscopy, elemental analysis, thermogravimetric analysis, manganometric titration, bond valence sum calculation, temperature dependent magnetic properties studies, electron paramagnetic resonance, and complete single crystal X-ray diffraction analysis of newly prepared vanadium oxide based-systems that have been discovered during the course of this work. First, the system containing arrays of decavanadates networked by extensive hydrogen bonding with cyclic nitrogen bases are described. This is followed by the mixed-valence vanadium oxide cluster, [VV 13VIV3O42(Cl)]-7, containing a hitherto unknown vanadium oxide framework structure. Finally the synthesis of 3D-framework materials is described. These compounds have highly symmetrical closely related three-dimensional framework structures consisting vanadium oxide shells {V18O42(XO4)} linked via heterometallic atoms {M' = Cd, Zn} into three

  14. Elucidating the role of interfacial materials properties in microfluidic packages.

    SciTech Connect

    Edwards, Thayne L.

    2013-01-01

    The purpose of this work was to discover a method to investigate the properties of interfaces as described by a numerical physical model. The model used was adopted from literature and applied to a commercially available multiphysics software package. By doing this the internal properties of simple structures could be elucidated and then readily applied to more complex structures such as valves and pumps in laminate microfluidic structures. A numerical finite element multi-scale model of a cohesive interface comprised of heterogeneous material properties was used to elucidate irreversible damage from applied strain energy. An unknown internal state variable was applied to characterize the damage process. Using a constrained blister test, this unknown internal state variable could be determined for an adherend/adhesive/adherend body. This is particularly interesting for laminate systems with microfluidic and microstructures contained within the body. A laminate structure was designed and fabricated that could accommodate a variety of binary systems joined using nearly any technique such as adhesive, welding (solvent, laser, ultrasonic, RF, etc.), or thermal. The adhesive method was the most successful and easy to implement but also one of the more difficult to understand, especially over long periods of time. Welding methods are meant to achieve a bond that is similar to bulk properties and so are easier to predict. However, methods of welding often produce defects in the bonds.. Examples of the test structures used to elucidate the internal properties of the model were shown and demonstrated. The real life examples used this research to improve upon current designs and aided in creating complex structures for sensor and other applications.

  15. Material Properties of Three Candidate Elastomers for Space Seals Applications

    NASA Technical Reports Server (NTRS)

    Bastrzyk, Marta B.; Daniels, Christopher C.; Oswald, Jay J.; Dunlap, Patrick H., Jr.; Steinetz, Bruce M.

    2010-01-01

    A next-generation docking system is being developed by the National Aeronautics and Space Administration (NASA) to support Constellation Space Exploration Missions to low Earth orbit (LEO), to the Moon, and to Mars. A number of investigations were carried out to quantify the properties of candidate elastomer materials for use in the main interface seal of the Low Impact Docking System (LIDS). This seal forms the gas pressure seal between two mating spacecraft. Three candidate silicone elastomer compounds were examined: Esterline ELA-SA-401, Parker Hannifin S0383-70, and Parker Hannifin S0899-50. All three materials were characterized as low-outgassing compounds, per ASTM E595, so as to minimize the contamination of optical and solar array systems. Important seal properties such as outgas levels, durometer, tensile strength, elongation to failure, glass transition temperature, permeability, compression set, Yeoh strain energy coefficients, coefficients of friction, coefficients of thermal expansion, thermal conductivity and diffusivity were measured and are reported herein.

  16. Ultrafast control and monitoring of material properties using terahertz pulses

    SciTech Connect

    Bowlan, Pamela Renee

    2016-05-02

    These are a set of slides on ultrafast control and monitoring of material properties using terahertz pulses. A few of the topics covered in these slides are: How fast is a femtosecond (fs), Different frequencies probe different properties of molecules or solids, What can a THz pulse do to a material, Ultrafast spectroscopy, Generating and measuring ultrashort THz pulses, Tracking ultrafast spin dynamics in antiferromagnets through spin wave resonances, Coherent two-dimensional THz spectroscopy, and Probing vibrational dynamics at a surface. Conclusions are: Coherent two-dimensional THz spectroscopy: a powerful approach for studying coherence and dynamics of low energy resonances. Applying this to graphene we investigated the very strong THz light mater interaction which dominates over scattering. Useful for studying coupled excitations in multiferroics and monitoring chemical reactions. Also, THz-pump, SHG-probe spectoscopy: an ultrafast, surface sensitive probe of atomic-scale symmetry changes and nonlinear phonon dymanics. We are using this in Bi2Se3 to investigate the nonlinear surface phonon dynamics. This is potentially very useful for studying catalysis.

  17. Comparative analysis of physicochemical properties of root perforation sealer materials

    PubMed Central

    Dorileo, Maura Cristiane Gonçales Orçati; Pedro, Fábio Luis Miranda; Bandeca, Matheus Coelho; Guedes, Orlando Aguirre; Villa, Ricardo Dalla

    2014-01-01

    Objectives This study evaluated the solubility, dimensional alteration, pH, electrical conductivity, and radiopacity of root perforation sealer materials. Materials and Methods For the pH test, the samples were immersed in distilled water for different periods of time. Then, the samples were retained in plastic recipients, and the electrical conductivity of the solution was measured. The solubility, dimensional alteration, and radiopacity properties were evaluated according to Specification No. 57 of the American National Standards Institute/American Dental Association (ANSI/ADA). Statistical analyses were carried out using analysis of variance (ANOVA) and Tukey's test at a significance level of 5%. When the sample distribution was not normal, a nonparametric ANOVA was performed with a Kruskal-Wallis test (α = 0.05). Results The results showed that white structural Portland cement (PC) had the highest solubility, while mineral trioxide aggregate (MTA)-based cements, ProRoot MTA (Dentsply-Tulsa Dental) and MTA BIO (Ângelus Ind. Prod.), had the lowest values. MTA BIO showed the lowest dimensional alteration values and white PC presented the highest values. No differences among the tested materials were observed in the the pH and electrical conductivity analyses. Only the MTA-based cements met the ANSI/ADA recommendations regarding radiopacity, overcoming the three steps of the aluminum step wedge. Conclusions On the basis of these results, we concluded that the values of solubility and dimensional alteration of the materials were in accordance with the ANSI/ADA specifications. PCs did not fulfill the ANSI/ADA requirements regarding radiopacity. No differences were observed among the materials with respect to the pH and electrical conductivity analyses. PMID:25110644

  18. Dielectric properties of amorphous phase-change materials

    NASA Astrophysics Data System (ADS)

    Chen, C.; Jost, P.; Volker, H.; Kaminski, M.; Wirtssohn, M.; Engelmann, U.; Krüger, K.; Schlich, F.; Schlockermann, C.; Lobo, R. P. S. M.; Wuttig, M.

    2017-03-01

    The dielectric function of several amorphous phase-change materials has been determined by employing a combination of impedance spectroscopy (9 kHz-3 GHz) and optical spectroscopy from the far- (20 c m-1 , 0.6 THz) to the near- (12 000 c m-1 , 360 THz) infrared, i.e., from the DC limit to the first interband transition. While phase-change materials undergo a change from covalent bonding to resonant bonding on crystallization, the amorphous and crystalline phases of ordinary chalcogenide semiconductors are both governed by virtually the same covalent bonds. Here, we study the dielectric properties of amorphous phase-change materials on the pseudobinary line between GeTe and S b2T e3 . These data provide important insights into the charge transport and the nature of bonding in amorphous phase-change materials. No frequency dependence of permittivity and conductivity is discernible in the impedance spectroscopy measurements. Consequently, there are no dielectric relaxations. The frequency-independent conductivity is in line with charge transport via extended states. The static dielectric constant significantly exceeds the optical dielectric constant. This observation is corroborated by transmittance measurements in the far infrared, which show optical phonons. From the intensity of these phonon modes, a large Born effective charge is derived. Nevertheless, it is known that crystalline phase-change materials such as GeTe possess even significantly larger Born effective charges. Crystallization is hence accompanied by a huge increase in the Born effective charge, which reveals a significant change of bonding upon crystallization. In addition, a clear stoichiometry trend in the static dielectric constant along the pseudobinary line between GeTe and S b2T e3 has been identified.

  19. Structure and Thermoelectric Properties of Zinc Oxide Based Materials

    NASA Astrophysics Data System (ADS)

    Liang, Xin

    The present dissertation investigates the relationship between the structure and thermoelectric properties of ZnO based materials, with a focus on trivalent element doping on engineering the microstructure and altering the electrical and thermal transport properties. Within the solubility range, the addition of trivalent elements, such as In3+, Fe 3+ and Ga3+, is observed to increase the electrical conductivity of ZnO and decrease the thermal conductivity. As the solubility is exceeded, the consequent structure and thermoelectric properties varies with dopant species. The ZnO-In2O3 binary system, which we have chosen as one of the model systems, is of particular interests as it contains a variety of phase equilibria and microstructures. The In2O3(ZnO)k superlattice structures, which form as the indium solubility is reached, are observed to strongly scatter phonons while relatively permissive to electrons, resulting in a low thermal conductivity of about 2 W/mK and improved electrical conductivity. The thermal (Kapitza) resistance of In2O3(ZnO)k superlattice interfaces is found to be 5.0 +/- 0.6 x 10-10 m 2K/W by fitting the modified Klemens-Callaway's thermal conductivity model to the experimental data. Across the phase diagram, the materials behave as n-type free-electron semiconductors at high temperatures. An effective medium approximation model is for the first time successfully tested on the thermoelectrics of two-phase regions. Both Fe2O3-ZnO and Ga2O3-ZnO binary systems are also investigated. In the Fe doped ZnO system, a highly Fe concentrated ZnO solid solution phase as well as the significant grain refinement are observed after high temperature annealing. The Ga2O 3(ZnO)9 homologous superlattices in Ga2O 3-ZnO system is also found to strongly scatter phonons and induces a drastic reduction in thermal conductivity. Thermal conductivity, as one of the key factors in thermoelectrics, is highly sensitive to material defects. In this dissertation, I also

  20. The Course of Actualization

    ERIC Educational Resources Information Center

    De Smet, Hendrik

    2012-01-01

    Actualization is traditionally seen as the process following syntactic reanalysis whereby an item's new syntactic status manifests itself in new syntactic behavior. The process is gradual in that some new uses of the reanalyzed item appear earlier or more readily than others. This article accounts for the order in which new uses appear during…

  1. Recommended Best Practices for the Characterization of Storage Properties of Hydrogen Storage Materials

    SciTech Connect

    2010-03-01

    This is a reference guide to common methodologies and protocols for measuring critical performance properties of advanced hydrogen storage materials. It helps users to communicate clearly the relevant performance properties of new materials as they are discovered and tested.

  2. Thermal and Thermoelectric Properties of Nanostructured Materials and Interfaces

    NASA Astrophysics Data System (ADS)

    Liao, Hao-Hsiang

    Many modern technologies are enabled by the use of thin films and/or nanostructured composite materials. For example, many thermoelectric devices, solar cells, power electronics, thermal barrier coatings, and hard disk drives contain nanostructured materials where the thermal conductivity of the material is a critical parameter for the device performance. At the nanoscale, the mean free path and wavelength of heat carriers may become comparable to or smaller than the size of a nanostructured material and/or device. For nanostructured materials made from semiconductors and insulators, the additional phonon scattering mechanisms associated with the high density of interfaces and boundaries introduces additional resistances that can significantly change the thermal conductivity of the material as compared to a macroscale counterpart. Thus, better understanding and control of nanoscale heat conduction in solids is important scientifically and for the engineering applications mentioned above. In this dissertation, I discuss my work in two areas dealing with nanoscale thermal transport: (1) I describe my development and advancement of important thermal characterization tools for measurements of thermal and thermoelectric properties of a variety of materials from thin films to nanostructured bulk systems, and (2) I discuss my measurements on several materials systems done with these characterization tools. First, I describe the development, assembly, and modification of a time-domain thermoreflectance (TDTR) system that we use to measure the thermal conductivity and the interface thermal conductance of a variety of samples including nanocrystalline alloys of Ni-Fe and Co-P, bulk metallic glasses, and other thin films. Next, a unique thermoelectric measurement system was designed and assembled for measurements of electrical resistivity and thermopower of thermoelectric materials in the temperature range of 20 to 350 °C. Finally, a commercial Anter Flashline 3000 thermal

  3. Mechanical properties of high-temperature brazed titanium materials

    SciTech Connect

    Lugscheider, E.; Broich, U.; Koetzing, B.

    1994-12-31

    Titanium and its alloys are of main interest for several fields of application. Because of rising demands on permanent structural parts and increasing complexity of components, it is important to obtain an adequate joining technique, which on the one hand does not restrict the mechanical properties of the parent metal too much and on the other hand is inexpensive and flexible. These requirements can be fulfilled best by application of high-temperature brazing technology, employing titanium base filler metals. Among existing joining techniques, the vacuum brazing process conducted in a vacuum furnace and the induction brazing process are of practical relevance. The mechanical properties of high-temperature brazed titanium materials are strongly dependent on process parameters, such as brazing time and brazing temperature and even more crucially on brazing gap size. Under optimized brazing conditions, the tensile strength of high-temperature brazed TiAl6V4-joints, for example, reach about 950 MPa, where the Pd-containing alloy is slightly superior to TiCu20Ni20 filler metal. Most of the tensile specimens break in the base metal at some distance to the brazing zone, indicating that the tensile strength of the joint is comparable to that of the bulk material. The thermal stability of the brazed titanium joints has been investigated by doing tensile tests at elevated temperatures. These experiments have shown that the tensile strength of TiAl6VA- joints for example are going to be reduced by 30% when exposing the brazed samples to 300{degrees}C. However, the tensile specimen broke in the bulk material, indicating that the tensile strength of bulk TiAl6V4 is also reduced at elevated temperatures.

  4. Organoapatites: materials for artificial bone. II. Hardening reactions and properties.

    PubMed

    Stupp, S I; Mejicano, G C; Hanson, J A

    1993-03-01

    This article reports on chemical reactions and the properties they generated in artificial bone materials termed "organoapatites." These materials are synthesized using methodology we reported in the previous article of this series. Two different processes were studied here for the transition from organoapatite particles to implants suitable for the restoration of the skeletal system. One process involved the hardening of powder compacts by beams of blue light derived from a lamp or a laser and the other involved pressure-induced interdiffusion of polymers. In both cases, the hardening reaction involved the formation of a polyion complex between two polyelectrolytes. In the photo-induced reaction an anionic electrolyte polymerizes to form the coulombic network and in the pressure-induced one, pressure forms the complex by interdiffusion of two polyions. Model reactions were studied using various polycations. Based on these results the organoapatite selected for the study was that containing dispersed poly(L-lysine) and sodium acrylate as the anionic monomer. The organomineral particles can be pressed at room temperature into objects of great physical integrity and hydrolytic stability relative to anorganic controls. The remarkable fact about these objects is that intimate molecular dispersion of only 2-3% by weight organic material provides integrity to the mineral network in an aqueous medium and also doubles its tensile strength. This integrity is essentially nonexistent in "anorganic" samples prepared by the same methodology used in organoapatite synthesis. The improvement in properties was most effectively produced by molecular bridges formed by photopolymerization. The photopolymerization leads to the "hardening" of pellets prepared by pressing of organoapatite powders. The reaction was found to be more facile in the microstructure of the organomineral, and it is potentially useful in the surgical application of organoapatites as artificial bone.

  5. ABINIT: First-principles approach to material and nanosystem properties

    NASA Astrophysics Data System (ADS)

    Gonze, X.; Amadon, B.; Anglade, P.-M.; Beuken, J.-M.; Bottin, F.; Boulanger, P.; Bruneval, F.; Caliste, D.; Caracas, R.; Côté, M.; Deutsch, T.; Genovese, L.; Ghosez, Ph.; Giantomassi, M.; Goedecker, S.; Hamann, D. R.; Hermet, P.; Jollet, F.; Jomard, G.; Leroux, S.; Mancini, M.; Mazevet, S.; Oliveira, M. J. T.; Onida, G.; Pouillon, Y.; Rangel, T.; Rignanese, G.-M.; Sangalli, D.; Shaltaf, R.; Torrent, M.; Verstraete, M. J.; Zerah, G.; Zwanziger, J. W.

    2009-12-01

    ABINIT [ http://www.abinit.org] allows one to study, from first-principles, systems made of electrons and nuclei (e.g. periodic solids, molecules, nanostructures, etc.), on the basis of Density-Functional Theory (DFT) and Many-Body Perturbation Theory. Beyond the computation of the total energy, charge density and electronic structure of such systems, ABINIT also implements many dynamical, dielectric, thermodynamical, mechanical, or electronic properties, at different levels of approximation. The present paper provides an exhaustive account of the capabilities of ABINIT. It should be helpful to scientists that are not familiarized with ABINIT, as well as to already regular users. First, we give a broad overview of ABINIT, including the list of the capabilities and how to access them. Then, we present in more details the recent, advanced, developments of ABINIT, with adequate references to the underlying theory, as well as the relevant input variables, tests and, if available, ABINIT tutorials. Program summaryProgram title: ABINIT Catalogue identifier: AEEU_v1_0 Distribution format: tar.gz Journal reference: Comput. Phys. Comm. Programming language: Fortran95, PERL scripts, Python scripts Computer: All systems with a Fortran95 compiler Operating system: All systems with a Fortran95 compiler Has the code been vectorized or parallelized?: Sequential, or parallel with proven speed-up up to one thousand processors. RAM: Ranges from a few Mbytes to several hundred Gbytes, depending on the input file. Classification: 7.3, 7.8 External routines: (all optional) BigDFT [1], ETSF IO [2], libxc [3], NetCDF [4], MPI [5], Wannier90 [6] Nature of problem: This package has the purpose of computing accurately material and nanostructure properties: electronic structure, bond lengths, bond angles, primitive cell size, cohesive energy, dielectric properties, vibrational properties, elastic properties, optical properties, magnetic properties, non-linear couplings, electronic and

  6. Lifelong modelling of properties for materials with technological memory

    NASA Astrophysics Data System (ADS)

    Falaleev, AP; Meshkov, VV; Vetrogon, AA; Ogrizkov, SV; Shymchenko, AV

    2016-10-01

    An investigation of real automobile parts produced from dual phase steel during standard periods of life cycle is presented, which considers such processes as stamping, exploitation, automobile accident, and further repair. The development of the phenomenological model of the mechanical properties of such parts was based on the two surface plastic theory of Chaboche. As a consequence of the composite structure of dual phase steel, it was shown that local mechanical properties of parts produced from this material change significantly their during their life cycle, depending on accumulated plastic deformations and thermal treatments. Such mechanical property changes have a considerable impact on the accuracy of the computer modelling of automobile behaviour. The most significant errors of modelling were obtained at the critical operating conditions, such as crashes and accidents. The model developed takes into account the kinematics (Bauschinger effect), isotropic hardening, non-linear elastic steel behaviour and changes caused by the thermal treatment. Using finite element analysis, the model allows the evaluation of the passive safety of a repaired car body, and enables increased restoration accuracy following an accident. The model was confirmed experimentally for parts produced from dual phase steel DP780.

  7. A thermodynamic approach to obtain materials properties for engineering applications

    NASA Technical Reports Server (NTRS)

    Chang, Y. Austin

    1993-01-01

    With the ever increases in the capabilities of computers for numerical computations, we are on the verge of using these tools to model manufacturing processes for improving the efficiency of these processes as well as the quality of the products. One such process is casting for the production of metals. However, in order to model metal casting processes in a meaningful way it is essential to have the basic properties of these materials in their molten state, solid state as well as in the mixed state of solid and liquid. Some of the properties needed may be considered as intrinsic such as the density, heat capacity or enthalpy of freezing of a pure metal, while others are not. For instance, the enthalpy of solidification of an alloy is not a defined thermodynamic quantity. Its value depends on the micro-segregation of the phases during the course of solidification. The objective of the present study is to present a thermodynamic approach to obtain some of the intrinsic properties and combining thermodynamics with kinetic models to estimate such quantities as the enthalpy of solidification of an alloy.

  8. Rheological properties of granular materials - Critical parameters and mixing rules

    NASA Astrophysics Data System (ADS)

    Vasilenko, Alisa Victoria

    2011-12-01

    Granular materials can be found at any stage of processing in many industries, such as food, pharmaceuticals, catalysts, and chemicals. These materials exhibit a variety of flow patterns, and their state and behavior differ from application to application. Since there is a lack of fundamental understanding of particulate or powder behavior, multiple problems can be encountered during routine manufacturing. Scale-up can also be a challenge, as the lack of constitutive equations for granular materials forces most scaleup efforts to follow the trial-and-error route. Powder characterization measurements are employed as both a selection tool and a predictive method for the material's process performance. Therefore, it plays a very important role in process and product development. The numerous existing methods used to characterize the flow properties of powders are mostly application-specific and it is not clear how they correlate with each other or with process performance. Moreover, understanding the relationships between the material properties and the processing conditions is necessary for a successful design of a continuous manufacturing system, which has been a major focus for pharmaceutical industry in the recent years. Before such changes can be implemented, a better understanding of fundamental physical phenomena governing powder flow behavior must be developed. In this work we study particulate/powder flow behavior experimentally using several characterization methods, including the Gravitational Displacement Rheometer (an avalanching tester), the rotational shear cell, and the compressibility tester. We establish the variables of interest through correlative comparison and study the differences and similarities between the methods in order to investigate particulate/powder flow behavior during processing and characterization. A mixing rule for principal stresses is developed through investigation of shear behavior of binary mixtures in a shear cell. In order

  9. Viscoelastic properties of actin networks influence material transport

    NASA Astrophysics Data System (ADS)

    Stam, Samantha; Weirich, Kimberly; Gardel, Margaret

    2015-03-01

    Directed flows of cytoplasmic material are important in a variety of biological processes including assembly of a mitotic spindle, retraction of the cell rear during migration, and asymmetric cell division. Networks of cytoskeletal polymers and molecular motors are known to be involved in these events, but how the network mechanical properties are tuned to perform such functions is not understood. Here, we construct networks of either semiflexible actin filaments or rigid bundles with varying connectivity. We find that solutions of rigid rods, where unimpeded sliding of filaments may enhance transport in comparison to unmoving tracks, are the fastest at transporting network components. Entangled solutions of semiflexible actin filaments also transport material, but the entanglements provide resistance. Increasing the elasticity of the actin networks with crosslinking proteins slows network deformation further. However, the length scale of correlated transport in these networks is increased. Our results reveal how the rigidity and connectivity of biopolymers allows material transport to occur over time and length scales required for physiological processes. This work was supported by the U. Chicago MRSEC

  10. Gas adsorption properties of graphene-based materials.

    PubMed

    Szczęśniak, Barbara; Choma, Jerzy; Jaroniec, Mietek

    2017-03-20

    Clean energy sources and global warming are among the major challenges of the 21st century. One of the possible actions toward finding alternative energy sources and reducing global warming are storage of H2 and CH4, and capture of CO2 by using highly efficient and low-cost adsorbents. Graphene and graphene-based materials attracted a great attention around the world because of their potential for a variety applications ranging from electronics, gas sensing, energy storage and CO2 capture. Large specific surface area of these materials up to ~3000m(2)/g and versatile modification make them excellent adsorbents for diverse applications. Here, graphene-based adsorbents are reviewed with special emphasis on their adsorption affinity toward CO2, H2 and CH4. This review shows that graphene derivatives obtained mainly via "chemical exfoliation" of graphite and further modification with polymers and/or metal species can be very effective sorbents for CO2 and other gases and can compete with the currently used carbonaceous or non-carbonaceous adsorbents. The high adsorption capacities of graphene-based materials are mainly determined by their unique nanostructures, high specific surface areas and tailorable surface properties, which make them suitable for storage or capture of various molecules relevant for environmental and energy-related applications.

  11. Chemical and physical properties of waste package packing materials

    SciTech Connect

    Wood, M.I.; Relyea, J.F.; Lane, D.L.; Carlson, R.A.

    1983-08-01

    Data has been gathered to develop a preliminary understanding of the behavior of crushed basalt and sodium bentonite alone as well as mixtures of 75% crushed basalt-25% sodium bentonite, the current reference candidate material. The material properties investigated included: (1) chemical stability under dry thermal and hydrothermal conditions; (2) radionuclide sorption capacity and solubility limits; and (3) hydraulic conductivities as a function of material density and temperature. The primary results of these studies indicate that: (1) the phase structure and swelling potential of bentonite remain intact up to dehydration temperatures of 370{degree}C; (2) the primary hydrothermal reaction in a basalt-bentonite mixture is the alteration of basalt glass to smectites, zeolites, and quartz; (3) minor reaction of bentonite to form albite and quartz occurs with a slight enrichment of potassium in the bentonite phase; (4) the mobility of cationic radionuclides is low in the presence of basalt and bentonite under the expected reducing waste package geochemical conditions because of low solubility and high sorption; and (5) moderate density basalt-bentonite mixture ({ge}1.7 g/cm{sup 3}) are characterized by low hydraulic conductivities ({le}1 {times} 10{sup {minus}8} cm/sec).

  12. Characterization of Triaxial Braided Composite Material Properties for Impact Simulation

    NASA Technical Reports Server (NTRS)

    Roberts, Gary D.; Goldberg, Robert K.; Biniendak, Wieslaw K.; Arnold, William A.; Littell, Justin D.; Kohlman, Lee W.

    2009-01-01

    The reliability of impact simulations for aircraft components made with triaxial braided carbon fiber composites is currently limited by inadequate material property data and lack of validated material models for analysis. Improvements to standard quasi-static test methods are needed to account for the large unit cell size and localized damage within the unit cell. The deformation and damage of a triaxial braided composite material was examined using standard quasi-static in-plane tension, compression, and shear tests. Some modifications to standard test specimen geometries are suggested, and methods for measuring the local strain at the onset of failure within the braid unit cell are presented. Deformation and damage at higher strain rates is examined using ballistic impact tests on 61- by 61- by 3.2-mm (24- by 24- by 0.125-in.) composite panels. Digital image correlation techniques were used to examine full-field deformation and damage during both quasi-static and impact tests. An impact analysis method is presented that utilizes both local and global deformation and failure information from the quasi-static tests as input for impact simulations. Improvements that are needed in test and analysis methods for better predictive capability are examined.

  13. Micropipet manipulation of lipid membranes: Direct measurement of the material properties of a cohesive structure that is only two molecules thick

    NASA Technical Reports Server (NTRS)

    Needham, David

    1993-01-01

    The objectives are to demonstrate how we can make direct measurements of the mechanical properties of a special structure in biology, namely the lipid bilayer membrane, using a micromanipulation technique, and how these properties compare and contrast with 'more traditional' technological/engineering materials. Given that the investment in equipment and expertise to carry out these experiments is probably beyond the scope of most teaching labs, the described experiment is not intended as one that can actually be demonstrated in a student laboratory class. The intention behind presenting this work is to begin to raise awareness in the Material Science community about the material properties of biological material that form a new (to us) category of soft engineering materials that have dimensions on the nanoscale.

  14. Interfacial Properties and Design of Functional Energy Materials

    SciTech Connect

    Sumpter, Bobby G; Liang, Liangbo; Nicolai, Adrien; Meunier, V.

    2014-01-01

    The vital importance of energy to society continues to demand a relentless pursuit of energy responsive materials that can bridge fundamental chemical structures at the molecular level and achieve improved functionality, such as efficient energy conversion/storage/transmission, over multiple length scales. This demand can potentially be realized by harnessing the power of self-assembly a spontaneous process where molecules or much larger entities form ordered aggregates as a consequence of predominately non-covalent (weak) interactions. Self-assembly is the key to bottom-up design of molecular devices, because the nearly atomic-level control is very difficult to realize in a top-down, e.g., lithographic approach. However, while function (e.g., charge mobility) in simple systems such as single crystals can often be predicted, predicting the function of the great variety of self-assembled molecular architectures is complicated by the lack of understanding and control over nanoscale interactions, mesoscale architectures, and macroscale (long-range) order. To establish a foundation toward delivering practical solutions, it is critical to develop an understanding of the chemical and physical mechanisms responsible for the self-assembly of molecular and hybrid materials on various substrates. Typically molecular self-assembly involves poorly understood non-covalent intermolecular and substrate-molecule interactions compounded by local and/or collective influences from the substrate atomic lattice (symmetry and/or topological features) and electronic structure. Thus, progress towards unraveling the underlying physicochemical processes that control the structure and macroscopic physical, mechanical, electrical, and transport properties of materials increasingly requires tight integration of theory, modeling and simulation with precision synthesis, advanced experimental characterization, and device measurements. In this mode, theory and simulation can greatly accelerate the

  15. Quantitative property-structural relation modeling on polymeric dielectric materials

    NASA Astrophysics Data System (ADS)

    Wu, Ke

    Nowadays, polymeric materials have attracted more and more attention in dielectric applications. But searching for a material with desired properties is still largely based on trial and error. To facilitate the development of new polymeric materials, heuristic models built using the Quantitative Structure Property Relationships (QSPR) techniques can provide reliable "working solutions". In this thesis, the application of QSPR on polymeric materials is studied from two angles: descriptors and algorithms. A novel set of descriptors, called infinite chain descriptors (ICD), are developed to encode the chemical features of pure polymers. ICD is designed to eliminate the uncertainty of polymer conformations and inconsistency of molecular representation of polymers. Models for the dielectric constant, band gap, dielectric loss tangent and glass transition temperatures of organic polymers are built with high prediction accuracy. Two new algorithms, the physics-enlightened learning method (PELM) and multi-mechanism detection, are designed to deal with two typical challenges in material QSPR. PELM is a meta-algorithm that utilizes the classic physical theory as guidance to construct the candidate learning function. It shows better out-of-domain prediction accuracy compared to the classic machine learning algorithm (support vector machine). Multi-mechanism detection is built based on a cluster-weighted mixing model similar to a Gaussian mixture model. The idea is to separate the data into subsets where each subset can be modeled by a much simpler model. The case study on glass transition temperature shows that this method can provide better overall prediction accuracy even though less data is available for each subset model. In addition, the techniques developed in this work are also applied to polymer nanocomposites (PNC). PNC are new materials with outstanding dielectric properties. As a key factor in determining the dispersion state of nanoparticles in the polymer matrix

  16. Composite Materials with Magnetically Aligned Carbon Nanoparticles Having Enhanced Electrical Properties and Methods of Preparation

    NASA Technical Reports Server (NTRS)

    Hong, Haiping (Inventor); Peterson, G.P. (Bud) (Inventor); Salem, David R. (Inventor)

    2016-01-01

    Magnetically aligned carbon nanoparticle composites have enhanced electrical properties. The composites comprise carbon nanoparticles, a host material, magnetically sensitive nanoparticles and a surfactant. In addition to enhanced electrical properties, the composites can have enhanced mechanical and thermal properties.

  17. Crystal chemical characteristics and physical properties of ferrous minerals as the basis for the formation of functional materials

    NASA Astrophysics Data System (ADS)

    Shmakova, A.; Kanev, B.; Gömze, A. L.; Kotova, O.

    2017-02-01

    Crystal chemical characteristics and physical properties of ferrous minerals can be criteria for search and evaluation of mineral (natural) raw for the production of functional materials. Special attention will be given to new experimental methods of transformation of minerals at different methods of influence. As a probe to identify the relationship between the actual crystalline structure of the mineral and its technological properties we used the oxidation - reduction reactions of iron ore-forming minerals. We will show that the inexpensive and affordable methods of influence at ore and technological products result in the observed Fe2+— Fe3+ charge transfer, which result in the increase of the conversion degree of the structure and change of magnetic properties of the substance.

  18. Impact of fluorine based reactive chemistry on structure and properties of high moment magnetic material

    SciTech Connect

    Yang, Xiaoyu Chen, Lifan; Han, Hongmei; Fu, Lianfeng; Sun, Ming; Liu, Feng; Zhang, Jinqiu

    2014-05-07

    The impact of the fluorine-based reactive ion etch (RIE) process on the structural, electrical, and magnetic properties of NiFe and CoNiFe-plated materials was investigated. Several techniques, including X-ray fluorescence, 4-point-probe, BH looper, transmission electron microscopy (TEM), and electron energy loss spectroscopy (EELS), were utilized to characterize both bulk film properties such as thickness, average composition, Rs, ρ, Bs, Ms, and surface magnetic “dead” layers' properties such as thickness and element concentration. Experimental data showed that the majority of Rs and Bs changes of these bulk films were due to thickness reduction during exposure to the RIE process. ρ and Ms change after taking thickness reduction into account were negligible. The composition of the bulk films, which were not sensitive to surface magnetic dead layers with nano-meter scale, showed minimum change as well. It was found by TEM and EELS analysis that although both before and after RIE there were magnetic dead layers on the top surface of these materials, the thickness and element concentration of the layers were quite different. Prior to RIE, dead layer was actually native oxidation layers (about 2 nm thick), while after RIE dead layer consisted of two sub-layers that were about 6 nm thick in total. Sub-layer on the top was native oxidation layer, while the bottom layer was RIE “damaged” layer with very high fluorine concentration. Two in-situ RIE approaches were also proposed and tested to remove such damaged sub-layers.

  19. 14 CFR 23.613 - Material strength properties and design values.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Material strength properties and design... Design and Construction § 23.613 Material strength properties and design values. (a) Material strength... must be shown by selecting design values that ensure material strength with the following...

  20. 14 CFR 23.613 - Material strength properties and design values.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Material strength properties and design... Design and Construction § 23.613 Material strength properties and design values. (a) Material strength... must be shown by selecting design values that ensure material strength with the following...

  1. 14 CFR 23.613 - Material strength properties and design values.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Material strength properties and design... Design and Construction § 23.613 Material strength properties and design values. (a) Material strength... must be shown by selecting design values that ensure material strength with the following...

  2. 14 CFR 23.613 - Material strength properties and design values.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Material strength properties and design... Design and Construction § 23.613 Material strength properties and design values. (a) Material strength... must be shown by selecting design values that ensure material strength with the following...

  3. 14 CFR 23.613 - Material strength properties and design values.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Material strength properties and design... Design and Construction § 23.613 Material strength properties and design values. (a) Material strength... must be shown by selecting design values that ensure material strength with the following...

  4. Thermophysical Properties of Selected Aerospace Materials. Part 1. Thermal Radiative Properties

    DTIC Science & Technology

    1976-01-01

    aluminum alloys —stainless steels—titanium alloys — manganese steel— aluminum oxide—boron nitride—calcium aluminum ...Johnson ( Aluminum Alloy 2024), Dr. P. D. Desai ( Aluminum Alloy 7075 and Titanium Alloy Ti-6A1-4V), Mr. T. Y. R. Lee (AISI 304 Stainless Steel), Dr. R...RECOMMENDED VALUES . 24 4. THERMAL RADIATIVE PROPERTIES OF SELECTEP MATERIALS ... 26 4.1. Aluminum Alloy 2024 27 M. W. Johnson 4.2. Aluminum

  5. Quantitative measurement of nanomechanical properties in composite materials

    NASA Astrophysics Data System (ADS)

    Zhao, Wei

    results significantly, and new, power-law body of revolution models of the probe tip geometry have been applied. Due to the low yield strength of polymers compared with other engineering materials, elastic-plastic contact is considered to better represent the epoxy surface response and was used to acquire more accurate quantitative measurements. Visco-elastic contact response was introduced in the boundary condition of the AFAM cantilever vibration model, due to the creep nature of epoxy, to determine time-dependent effects. These methods have direct impact on the quantitative measurement capabilities of near-filler interphase regions in polymers and composites and the long-term influence of environmental conditions on composites. In addition, quantitative AFAM scans were made on distal surfaces of human bicuspids and molars, to determine the microstructural and spatial variation in nanomechanical properties of the enamel biocomposite. Single point AFAM measurements were performed on individual enamel prism and sheath locations to determine spatial elastic modulus. Mechanical property variation of enamel is associated to the differences in the mineral to organic content and the apatite crystal orientations within the enamel microstructure. Also, variation in the elastic modulus of the enamel ultrastructure was observed in measurements at the outer enamel versus near the dentine enamel junction (DEJ).

  6. Nonlinear elastic properties of various man-made materials

    SciTech Connect

    Darvennes, C.M.; Hou, X.

    1998-12-31

    Second harmonic generation was measured in several man-made materials for possible application of nonlinear elastic properties to non-destructive testing. Samples included several thicknesses of two types of carbon fiber/polymer matrix composites, three types of concretes, and plywood. Steel and Aluminum specimens were used as references and one of the composite samples was evaluated before and after fatigue cycles. Some interesting observations were made: (1) the two composites were much more nonlinear than the metals, (2) the concretes and the wood were extremely absorptive, (3) one of the concrete samples exhibited a third harmonic but no second harmonic, and (4) fatigue cycles significantly increased the second harmonic, even though no damage was observed by C-scan. The possible applications of these results to NDE will be discussed.

  7. Amplified spontaneous emission properties of semiconducting organic materials.

    PubMed

    Calzado, Eva M; Boj, Pedro G; Díaz-García, María A

    2010-06-18

    This paper aims to review the recent advances achieved in the field of organic solid-state lasers with respect to the usage of semiconducting organic molecules and oligomers in the form of thin films as active laser media. We mainly focus on the work performed in the last few years by our research group. The amplified spontaneous emission (ASE) properties, by optical pump, of various types of molecules doped into polystyrene films in waveguide configuration, are described. The various systems investigated include N,N'-bis(3-methylphenyl)-N,N'-diphenylbenzidine (TPD), several perilenediimide derivatives (PDIs), as well as two oligo-phenylenevinylene derivatives. The ASE characteristics, i.e., threshold, emission wavelength, linewidth, and photostability are compared with that of other molecular materials investigated in the literature.

  8. Piezoelectric properties of rhombohedral ferroelectric materials with phase transition

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaofang; Soh, A. K.

    2015-12-01

    The temporal evolution of domain structure and its piezoelectric behavior of ferroelectric material BaTiO3 during the transition process from rhombohedral to tetragonal phase under an applied electric field have been studied by employing Landau-Ginzburg theory and the phase-field method. The results obtained show that, during the transformation process, the intermediate phase was monoclinic MA phase, and several peak values of piezoelectric coefficient appeared at the stage where obvious change of domain pattern occurred. In addition, by comparing the cases of applied electric field with different frequencies, it was found that the maximum piezoelectric coefficient obtained decreased with increasing frequency value. These results are of great significance in tuning the properties of engineering domains in ferroelectrics, and could provide more fundamentals to the design of ferroelectric devices.

  9. Amplified Spontaneous Emission Properties of Semiconducting Organic Materials

    PubMed Central

    Calzado, Eva M.; Boj, Pedro G.; Díaz-García, María A.

    2010-01-01

    This paper aims to review the recent advances achieved in the field of organic solid-state lasers with respect to the usage of semiconducting organic molecules and oligomers in the form of thin films as active laser media. We mainly focus on the work performed in the last few years by our research group. The amplified spontaneous emission (ASE) properties, by optical pump, of various types of molecules doped into polystyrene films in waveguide configuration, are described. The various systems investigated include N,N′-bis(3-methylphenyl)-N,N′-diphenylbenzidine (TPD), several perilenediimide derivatives (PDIs), as well as two oligo-phenylenevinylene derivatives. The ASE characteristics, i.e., threshold, emission wavelength, linewidth, and photostability are compared with that of other molecular materials investigated in the literature. PMID:20640167

  10. Modeling the thermal properties and processing of composite materials

    SciTech Connect

    Pitchumani, R.

    1992-01-01

    The manufacture of partially cured, thermoset matrix composite systems is modeled. A generalized analysis, applicable to almost all the fiber-resin systems encountered in practice, is carried out in terms of four key dimensionless groups formed of the process and the product parameters - (1) the Damkohler number (K(sub o)) which is a relative measure of the conduction and the reaction time scales, (2) the dimensionless activation energy (E(sub o)), (3) the adiabatic reaction temperature (B(sub o)) which represents the temperature rise potential in the composite due to the heat of the cure reaction, and (4) the Biot number (B(sub i)) which characterizes the post-cure convective cooling of the composite product. Optimal cure cycles which yield a homogeneous cure in the composite, are obtained as a function of the dimensionless parameters. Design plots for the optimal cure temperature and duration are presented. Their use in practical situations is illustrated in the context of a commercially available graphite-epoxy prepreg from Hercules, which is widely used in the aerospace industry. The thermal properties of the composite namely, the transient thermal diffusivity and the steady state thermal conductivity, are essential parameters in the process modeling studies, as well for the design of composite materials for several high temperature applications. Transient heat conduction in fibrous composites is investigated with the aim of devising a criterion for the validity of the analysis of composite materials as homogeneous media having the effective thermal properties. A homogeneity criterion based on the composite thickness is derived in terms of the fiber volume fraction and the fiber diameter. The criterion, which is the first of its kind for fibrous composites, is valid in the practical range of composite parameters. An analytical means for evaluating the effective thermal diffusivity is also presented.

  11. Viscoelastic effective properties of two types of heterogeneous materials.

    NASA Astrophysics Data System (ADS)

    Cornet, Jan; Dabrowski, Marcin; Schmid, Daniel

    2015-04-01

    In the past, a lot of efforts have been put to describe two end cases of rock behaviors: elasticity and viscosity. In recent years, more focus has been brought on the intermediate viscoelastic cases which describe better the rheology of rocks such as shales. Shales are typically heterogeneous and the question arises as to how to derive their effective properties so that they can be approximated as homogeneous media. This question has already been dealt with at the elastic and viscous limit but still remains for some cases in between. Using MILAMIN, a fast finite element solver for large problems, we numerically investigate different approaches to derive the effective properties of several viscoelastic media. Two types of geometries are considered: layered and inclusion based media. We focus on two dimensional plane strain problems considering two phase composites deformed under pure shear. We start by investigating the case of transversely isotropic layered media made of two Maxwell materials. Using the Backus averaging method we discuss the degree of relevance of this averaging by considering some parameters as: layer periodicity, layer thickness and layer interface roughness. Other averaging methods are also discussed which provide a broader perspective on the performances of Backus averaging. In a second part we move on to inclusion based models. The advantage of these models compared to the previous one is that they provide a better approximation to real microstructures in rocks. The setup we consider in this part is the following: some viscous circular inclusions are embedded in an elastic matrix. Both the inclusions and the matrix are homogeneous but the inclusions are purely isotropic while the matrix can also be anisotropic. In order to derive the effective viscoelastic properties of the medium we use two approaches: the self-consistent averaging and the differential effective medium theory. The idea behind self-consistency is to assume that the inclusions

  12. Non-destructive evaluation of mechanical properties of magnetic materials

    SciTech Connect

    Kankolenski, K.P.; Hua, S.Z.; Yang, D.X.; Hicho, G.E.; Swartzendruber, L.J.; Zang, Z.; Chopra, H.D.

    2000-07-01

    A magnetic-based non-destructive evaluation (NDE) method, which employs Barkhausen effect and measurement of the hysteresis loops, is used to correlate the magnetic and mechanical properties of ultra low carbon (ULC) steel. In particular, the NDE method was used to detect small deviations from linearity that occur in the stress-strain curve well below the 0.2% offset strain, and which generally defines the yield point in materials. Results show that three parameters: jumpsum and jumpsum rate (derived from the Barkhausen spectrum), and the relative permeability (derived from the B-H loops) varies sensitively with small permanent strains, and can be related to the plastic deformation in ULC steels. Investigation of micromagnetic structure revealed that plastic deformation leaves a residual stress state in the samples; the associated magneto-elastic energy makes the favorable easy axis of magnetization in a given grain to be the one that lies closest to the tensile axis. The consequence of this realignment of domains is that wall motion becomes intergranular in nature (as opposed to intragranular in unstrained samples). As a result, the more complex grain boundaries instead of dislocations, become the dominant pinning sites for domain walls. These observations provide a microscopic interpretation of the observed changes in the measured magnetic properties.

  13. Uncovering structure-property relationships of materials by subgroup discovery

    NASA Astrophysics Data System (ADS)

    Goldsmith, Bryan R.; Boley, Mario; Vreeken, Jilles; Scheffler, Matthias; Ghiringhelli, Luca M.

    2017-01-01

    Subgroup discovery (SGD) is presented here as a data-mining approach to help find interpretable local patterns, correlations, and descriptors of a target property in materials-science data. Specifically, we will be concerned with data generated by density-functional theory calculations. At first, we demonstrate that SGD can identify physically meaningful models that classify the crystal structures of 82 octet binary (OB) semiconductors as either rocksalt or zincblende. SGD identifies an interpretable two-dimensional model derived from only the atomic radii of valence s and p orbitals that properly classifies the crystal structures for 79 of the 82 OB semiconductors. The SGD framework is subsequently applied to 24 400 configurations of neutral gas-phase gold clusters with 5–14 atoms to discern general patterns between geometrical and physicochemical properties. For example, SGD helps find that van der Waals interactions within gold clusters are linearly correlated with their radius of gyration and are weaker for planar clusters than for nonplanar clusters. Also, a descriptor that predicts a local linear correlation between the chemical hardness and the cluster isomer stability is found for the even-sized gold clusters.

  14. Analysis of nonlinear optical properties in donor–acceptor materials

    SciTech Connect

    Day, Paul N.; Pachter, Ruth; Nguyen, Kiet A.

    2014-05-14

    Time-dependent density functional theory has been used to calculate nonlinear optical (NLO) properties, including the first and second hyperpolarizabilities as well as the two-photon absorption cross-section, for the donor-acceptor molecules p-nitroaniline and dimethylamino nitrostilbene, and for respective materials attached to a gold dimer. The CAMB3LYP, B3LYP, PBE0, and PBE exchange-correlation functionals all had fair but variable performance when compared to higher-level theory and to experiment. The CAMB3LYP functional had the best performance on these compounds of the functionals tested. However, our comprehensive analysis has shown that quantitative prediction of hyperpolarizabilities is still a challenge, hampered by inadequate functionals, basis sets, and solvation models, requiring further experimental characterization. Attachment of the Au{sub 2}S group to molecules already known for their relatively large NLO properties was found to further enhance the response. While our calculations show a modest enhancement for the first hyperpolarizability, the enhancement of the second hyperpolarizability is predicted to be more than an order of magnitude.

  15. Optimizing material properties of composite plates for sound transmission problem

    NASA Astrophysics Data System (ADS)

    Tsai, Yu-Ting; Pawar, S. J.; Huang, Jin H.

    2015-01-01

    To calculate the specific transmission loss (TL) of a composite plate, the conjugate gradient optimization method is utilized to estimate and optimize material properties of the composite plate in this study. For an n-layer composite plate, a nonlinear dynamic stiffness matrix based on the thick plate theory is formulated. To avoid huge computational efforts due to the combination of different composite material plates, a transfer matrix approach is proposed to restrict the dynamic stiffness matrix of the composite plate to a 4×4 matrix. Moreover, the transfer matrix approach has also been used to simplify the complexity of the objective function gradient for the optimization method. Numerical simulations are performed to validate the present algorithm by comparing the TL of the optimal composite plate with that of the original plate. Small number of iterations required during convergence tests illustrates the efficiency of the optimization method. The results indicate that an excellent estimation for the composite plate can be obtained for the desired sound transmission.

  16. Ironless transducer for measuring the mechanical properties of porous materials

    NASA Astrophysics Data System (ADS)

    Doutres, Olivier; Dauchez, Nicolas; Genevaux, Jean-Michel; Lemarquand, Guy; Mezil, Sylvain

    2010-05-01

    This paper presents a measurement setup for determining the mechanical properties of porous materials at low and medium frequencies by extending toward higher frequencies the quasistatic method based on a compression test. Indeed, classical quasistatic methods generally neglect the inertia effect of the porous sample and the coupling between the surrounding fluid and the frame; they are restricted to low frequency range (<100 Hz) or specific sample shape. In the present method, the porous sample is placed in a cavity to avoid a lateral airflow. Then a specific electrodynamic ironless transducer is used to compress the sample. This highly linear transducer is used as actuator and sensor; the mechanical impedance of the porous sample is deduced from the measurement of the electrical impedance of the transducer. The loss factor and the Young's modulus of the porous material are estimated by inverse method based on the Biot's model. Experimental results obtained with a polymer foam show the validity of the method in comparison with quasistatic method. The frequency limit has been extended from 100 Hz to 500 Hz. The sensitivity of each input parameter is estimated in order to point out the limitations of the method.

  17. Interfacial and transport properties of nanoconstrained inorganic and organic materials

    NASA Astrophysics Data System (ADS)

    Kocherlakota, Lakshmi Suhasini

    Nanoscale constraints impact the material properties of both organic and inorganic systems. The systems specifically studied here are (i) nanoconstrained polymeric systems, poly(l-trimethylsilyl-1-propyne) (PTMSP) and poly(ethylene oxide) (PEO) relevant to gas separation membranes (ii) Zwitterionic polymers poly(sulfobetaine methacrylate)(pSBMA), poly(carboxybetaine acrylamide) (pCBAA), and poly(oligo(ethylene glycol) methyl methacrylate) (PEGMA) brushes critical for reducing bio-fouling (iii) Surface properties of N-layer graphene sheets. Interfacial constraints in ultrathin poly(l-trimethylsilyl-1-propyne) (PTMSP) membranes yielded gas permeabilities and CO2/helium selectivities that exceed bulk PTMSP membrane transport properties by up to three-fold for membranes of submicrometer thickness. Indicative of a free volume increase, a molecular energetic mobility analysis (involving intrinsic friction analysis) revealed enhanced methyl side group mobilities in thin PTMSP membranes with maximum permeation, compared to bulk films. Aging studies conducted over the timescales relevant to the conducted experiments signify that the free volume states in the thin film membranes are highly unstable in the presence of sorbing gases such as CO2. To maintain this high free volume configuration of polymer while improving the temporal stability an "inverse" architecture to conventional polymer nanocomposites was investigated, in which the polymer phase of PTMSP and PEO were interfacially and dimensionally constrained in nanoporous anodic aluminum oxide (AAO) membranes. While with this architecture the benefits of nanocomposite and ultrathin film membranes of PTMSP could be reproduced and improved upon, also the temporal stability could be enhanced substantially. The PEO-AAO nanocomposite membranes also revealed improved gas selectivity properties of CO2 over helium. In the thermal transition studies of zwitterionic pSBMA brushes a reversible critical transition temperature of 60

  18. Review of materials property data for nondestructive characterization of pipeline materials

    NASA Astrophysics Data System (ADS)

    Smart, Lucinda Jeanette

    The oil and gas industry relies on an aging infrastructure of pipeline for transportation and distribution of product; therefore, it is important to assess the condition of the pipeline, using accurate material and mechanical properties, to ensure failures are minimized. Nondestructive evaluation techniques are currently being used to assess pipeline, but necessary mechanical properties (yield strength, tensile strength, fracture toughness, and ductile-to-brittle transition temperature) are not yet able to be adequately characterized by these methods. There are many issues to consider when addressing this problem. There is variability within the manufacturing processes due to simple inaccuracies in the processes themselves, and changes in practices over the years. There is also variability in the destructive techniques used for assessment of mechanical properties before the pipe is put into service. Current focus in the industry tends to be on pipe installed in the 1950's and 1960's because about half of the pipe currently in service was installed during these time periods, but it is equally important to verify the properties of modern pipe Therefore, nondestructive methods of measurement are commonly used for determining defect severity (e.g. magnetic flux leakage and ultrasonic) are being explored to determine what other properties can be measured to relate to mechanical properties. For future activities, it is advised to compare the accuracies of both destructive and nondestructive methods of determining properties, should some method of nondestructive evaluation become a more viable technique for mechanical property measurements, either directly or indirectly. The relationships between what can be measured (chemical content, grain size, microstructure, hardness, coercivity, permeability, etc) and the mechanical properties desired listed previously, show that there is a strong relationship between hardness and yield strength. This is already well known in the

  19. Colour and Optical Properties of Materials: An Exploration of the Relationship Between Light, the Optical Properties of Materials and Colour

    NASA Astrophysics Data System (ADS)

    Tilley, Richard J. D.

    2003-05-01

    Colour is an important and integral part of everyday life, and an understanding and knowledge of the scientific principles behind colour, with its many applications and uses, is becoming increasingly important to a wide range of academic disciplines, from physical, medical and biological sciences through to the arts. Colour and the Optical Properties of Materials carefully introduces the science behind the subject, along with many modern and cutting-edge applications, chose to appeal to today's students. For science students, it provides a broad introduction to the subject and the many applications of colour. To more applied students, such as engineering and arts students, it provides the essential scientific background to colour and the many applications. Features: * Introduces the science behind the subject whilst closely connecting it to modern applications, such as colour displays, optical amplifiers and colour centre lasers * Richly illustrated with full-colour plates * Includes many worked examples, along with problems and exercises at the end of each chapter and selected answers at the back of the book * A Web site, including additional problems and full solutions to all the problems, which may be accessed at: www.cardiff.ac.uk/uwcc/engin/staff/rdjt/colour Written for students taking an introductory course in colour in a wide range of disciplines such as physics, chemistry, engineering, materials science, computer science, design, photography, architecture and textiles.

  20. Assembling and properties of the polymer-particle nanostructured materials

    NASA Astrophysics Data System (ADS)

    Sheparovych, Roman

    Complementary properties of the soft and hard matter explain its common encounter in many natural and manmade applications. A combination of flexible organic macromolecules and hard mineral clusters results in new materials far advantageous than its constituents alone. In this work we study assembling of colloidal nanocrystals and polymers into complex nanostructures. Magnetism, surface wettability and adhesion comprise properties of interest for the obtained nanocomposites. Applying a magnetic field induces a reversible 1D ordering of the magnetically susceptible particles. This property was employed in the fabrication of the permanent chains of magnetite nanocrystals (d=15nm). In the assembling process the aligned particles were bound together using polyelectrolyte macromolecules. The basics of the binding process involved an electrostatic interaction between the positively charged polyelectrolyte and the negative surface of the particles (aqueous environment). Adsorption of the polymer molecules onto several adjacent particles in the aligned 1D aggregate results in the formation of the permanent particulate chains. Positive charges of the adsorbed polyelectrolyte molecules stabilize the dispersion of the obtained nanostructures in water. Magnetization measurements revealed that superparamagnetic nanoparticles, being assembled into 1D ordered structures, attain magnetic coercivity. This effect originates from the magnetostatic interaction between the neighboring magnetite nanocrystals. The preferable dipole alignment of the assembled nanoparticles is directed along the chain axis. Another system studied in this project includes polymer-particle responsive surface coatings. Tethered polymer chains and particles bearing different functionalities change surface properties upon restructuring of the composite layer. When the environment favors polymer swelling (good solvent), the polymer chains segregate to the surface and cover the particles. In the opposite case

  1. Synthesis, characterization, and properties of low-dimensional nanostructured materials

    NASA Astrophysics Data System (ADS)

    Hu, Xianluo

    2007-05-01

    Nanometer scale structures represent an exciting and rapidly expanding area of research. Studies on new physical/chemical properties and applications of nanomaterials and nanostructures are possible only when nanostructured materials are made available with desired size, morphology, crystal and microstructure, and composition. Thus, controlled synthesis of nanomaterials is the essential aspect of nanotechnology. This thesis describes the development of simple and versatile solution-based approaches to synthesize low-dimensional nanostructures. The first major goal of this research is to design and fabricate morphology-controlled alpha-Fe 2O3 nanoarchitectures in aqueous solution through a programmed microwave-assisted hydrothermal route, taking advantage of microwave irradiation and hydrothermal effects. Free-standing alpha-Fe2O3 nanorings are prepared by hydrolysis of FeCl3 in the presence of phosphate ions. The as-formed architecture of alpha-Fe2O 3 nanorings is an exciting new member in the family of iron oxide nanostructures. Our preliminary results demonstrate that sensors made of the alpha-Fe 2O3 nanorings exhibit high sensitivity not only for bio-sensing of hydrogen peroxide in a physiological solution but also for gas-sensing of alcohol vapor at room temperature. Moreover, monodisperse alpha-Fe 2O3 nanocrystals with continuous aspect-ratio tuning and fine shape control are achieved by controlling the experimental conditions. The as-formed alpha-Fe2O3 exhibits shape-dependent infrared optical properties. The growth process of colloidal alpha-Fe 2O3 crystals in the presence of phosphate ions is discussed. In addition, through an efficient microwave-assisted hydrothermal process, self-assembled hierarchical alpha-Fe2O3 nanoarchitectures are synthesized on a large scale. The second major goal of this research is to develop convenient microwave-hydrothermal approaches for the fabrication of carbon-based nanocomposites: (1) A one-pot solution-phase route, namely

  2. Material properties of zooplankton and nekton from the California current

    NASA Astrophysics Data System (ADS)

    Becker, Kaylyn

    This study measured the material properties of zooplankton, Pacific hake (Merluccius productus), Humboldt squid (Dosidicus gigas), and two species of myctophids (Symbolophorus californiensis and Diaphus theta) collected from the California Current ecosystem. The density contrast (g) was measured for euphausiids, decapods (Sergestes similis), amphipods (Primno macropa, Phronima sp., and Hyperiid spp.), siphonophore bracts, chaetognaths, larval fish, crab megalopae, larval squid, and medusae. Morphometric data (length, width, and height) were collected for these taxa. Density contrasts varied within and between zooplankton taxa. The mean and standard deviation for euphausiid density contrast were 1.059 +/- 0.009. Relationships between zooplankton density contrast and morphometric measurements, geographic location, and environmental conditions were investigated. Site had a significant effect on euphausiid density contrast. Density contrasts of euphausiids collected in the same geographic area approximately 4-10 days apart were significantly higher (p < 0.001). Sound speed contrast (h) was measured for euphausiids and pelagic decapods (S. similis) and it varied between taxa. The mean and standard deviation for euphausiid sound speed were 1.019 +/- 0.009. Euphausiid mass was calculated from density measurements and volume, and a relationship between euphausiid mass and length was produced. We determined that euphausiid from volumes could be accurately estimated two dimensional measurements of animal body shape, and that biomass (or biovolume) could be accurately calculated from digital photographs of animals. Density contrast (g) was measured for zooplankton, pieces of hake flesh, myctophid flesh, and of the following Humboldt squid body parts: mantle, arms, tentacle, braincase, eyes, pen, and beak. The density contrasts varied within and between fish taxa, as well as among squid body parts. Effects of animal length and environmental conditions on nekton density

  3. Layered Metal Thiophosphite Materials: Magnetic, Electrochemical, and Electronic Properties.

    PubMed

    Mayorga-Martinez, Carmen C; Sofer, Zdeněk; Sedmidubský, David; Huber, Štěpán; Eng, Alex Yong Sheng; Pumera, Martin

    2017-03-29

    Beyond graphene, transitional metal dichalcogenides, and black phosphorus, there are other layered materials called metal thiophosphites (MPSx), which are recently attracting the attention of scientists. Here we present the synthesis, structural and morphological characterization, magnetic properties, electrochemical performance, and the calculated density of states of different layered metal thiophosphite materials with a general formula MPSx, and as a result of varying the metal component, we obtain CrPS4, MnPS3, FePS3, CoPS3, NiPS3, ZnPS3, CdPS3, GaPS4, SnPS3, and BiPS4. SnPS3, ZnPS3, CdPS3, GaPS4, and BiPS4 exhibit only diamagnetic behavior due to core electrons. By contrast, trisulfides with M = Mn, Fe, Co, and Ni, as well as CrPS4, are paramagnetic at high temperatures and undergo a transition to antiferromagnetic state on cooling. Within the trisulfides series the Néel temperature characterizing the transition from paramagnetic to antiferromagnetic phase increases with the increasing atomic number and the orbital component enhancing the total effective magnetic moment. Interestingly, in terms of catalysis NiPS3, CoPS3, and BiPS4 show the highest efficiency for hydrogen evolution reaction (HER), while for the oxygen evolution reaction (OER) the highest performance is observed for CoPS3. Finally, MnPS3 presents the highest oxygen reduction reaction (ORR) activity compared to the other MPSx studied here. This great catalytic performance reported for these MPSx demonstrates their promising capabilities in energy applications.

  4. Eutectics as improved pharmaceutical materials: design, properties and characterization.

    PubMed

    Cherukuvada, Suryanarayan; Nangia, Ashwini

    2014-01-28

    Eutectics are a long known class of multi-component solids with important and useful applications in daily life. In comparison to other multi-component crystalline solids, such as salts, solid solutions, molecular complexes and cocrystals, eutectics are less studied in terms of molecular structure organization and bonding interactions. Classically, a eutectic is defined based on its low melting point compared to the individual components. In this article, we attempt to define eutectics not just based on thermal methods but from a structural organization view point, and discuss their microstructures and properties as organic materials vis-a-vis solid solutions and cocrystals. The X-ray crystal structure of a cocrystal is different from that of the individual components whereas the unit cell of a solid solution is similar to that of one of the components. Eutectics are closer to the latter species in that their crystalline arrangement is similar to the parent components but they are different with respect to the structural integrity. A solid solution possesses structural homogeneity throughout the structure (single phase) but a eutectic is a heterogeneous ensemble of individual components whose crystal structures are like discontinuous solid solutions (phase separated). Thus, a eutectic may be better defined as a conglomerate of solid solutions. A structural analysis of cocrystals, solid solutions and eutectics has led to an understanding that materials with strong adhesive (hetero) interactions between the unlike components will lead to cocrystals whereas those having stronger cohesive (homo/self) interactions will more often give rise to solid solutions (for similar structures of components) and eutectics (for different structures of components). We demonstrate that the same crystal engineering principles which have been profitably utilized for cocrystal design in the past decade can now be applied to make eutectics as novel composite materials, illustrated by

  5. Method and apparatus for measuring properties of particle beams using thermo-resistive material properties

    DOEpatents

    Degtiarenko, Pavel V.; Dotson, Danny Wayne

    2007-10-09

    A beam position detector for measuring the properties of a charged particle beam, including the beam's position, size, shape, and intensity. One or more absorbers are constructed of thermo-resistive material and positioned to intercept and absorb a portion of the incoming beam power, thereby causing local heating of each absorber. The local temperature increase distribution across the absorber, or the distribution between different absorbers, will depend on the intensity, size, and position of the beam. The absorbers are constructed of a material having a strong dependence of electrical resistivity on temperature. The beam position detector has no moving parts in the vicinity of the beam and is especially suited to beam areas having high ionizing radiation dose rates or poor beam quality, including beams dispersed in the transverse direction and in their time radio frequency structure.

  6. Accelerated search for materials with targeted properties by adaptive design

    PubMed Central

    Xue, Dezhen; Balachandran, Prasanna V.; Hogden, John; Theiler, James; Xue, Deqing; Lookman, Turab

    2016-01-01

    Finding new materials with targeted properties has traditionally been guided by intuition, and trial and error. With increasing chemical complexity, the combinatorial possibilities are too large for an Edisonian approach to be practical. Here we show how an adaptive design strategy, tightly coupled with experiments, can accelerate the discovery process by sequentially identifying the next experiments or calculations, to effectively navigate the complex search space. Our strategy uses inference and global optimization to balance the trade-off between exploitation and exploration of the search space. We demonstrate this by finding very low thermal hysteresis (ΔT) NiTi-based shape memory alloys, with Ti50.0Ni46.7Cu0.8Fe2.3Pd0.2 possessing the smallest ΔT (1.84 K). We synthesize and characterize 36 predicted compositions (9 feedback loops) from a potential space of ∼800,000 compositions. Of these, 14 had smaller ΔT than any of the 22 in the original data set. PMID:27079901

  7. The analytical representation of viscoelastic material properties using optimization techniques

    NASA Technical Reports Server (NTRS)

    Hill, S. A.

    1993-01-01

    This report presents a technique to model viscoelastic material properties with a function of the form of the Prony series. Generally, the method employed to determine the function constants requires assuming values for the exponential constants of the function and then resolving the remaining constants through linear least-squares techniques. The technique presented here allows all the constants to be analytically determined through optimization techniques. This technique is employed in a computer program named PRONY and makes use of commercially available optimization tool developed by VMA Engineering, Inc. The PRONY program was utilized to compare the technique against previously determined models for solid rocket motor TP-H1148 propellant and V747-75 Viton fluoroelastomer. In both cases, the optimization technique generated functions that modeled the test data with at least an order of magnitude better correlation. This technique has demonstrated the capability to use small or large data sets and to use data sets that have uniformly or nonuniformly spaced data pairs. The reduction of experimental data to accurate mathematical models is a vital part of most scientific and engineering research. This technique of regression through optimization can be applied to other mathematical models that are difficult to fit to experimental data through traditional regression techniques.

  8. Structural properties of laminated Douglas fir/epoxy composite material

    SciTech Connect

    Spera, D.A. . Lewis Research Center); Esgar, J.B. ); Gougeon, M.; Zuteck, M.D. )

    1990-05-01

    This publication contains a compilation of static and fatigue and strength data for laminated-wood material made from Douglas fir and epoxy. Results of tests conducted by several organizations are correlated to provide insight into the effects of variables such as moisture, size, lamina-to-lamina joint design, wood veneer grade, and the ratio of cyclic stress to steady stress during fatigue testing. These test data were originally obtained during development of wood rotor blades for large-scale wind turbines of the horizontal-axis (propeller) configuration. Most of the strength property data in this compilation are not found in the published literature. Test sections ranged from round cylinders 2.25 in. in diameter to rectangular slabs 6 in. by 24 in. in cross section and approximately 30 ft long. All specimens were made from Douglas fir veneers 0.10 in. thick, bonded together with the WEST epoxy system developed for fabrication and repair of wood boats. Loading was usually parallel to the grain. Size effects (reduction in strength with increase in test volume) are observed in some of the test data, and a simple mathematical model is presented that includes the probability of failure. General characteristics of the wood/epoxy laminate are discussed, including features that make it useful for a wide variety of applications. 9 refs.

  9. Structural properties of laminated Douglas fir/epoxy composite material

    NASA Technical Reports Server (NTRS)

    Spera, David A.; Esgar, Jack B.; Gougeon, Meade; Zuteck, Michael D.

    1990-01-01

    This publication contains a compilation of static and fatigue strength data for laminated-wood material made from Douglas fir and epoxy. Results of tests conducted by several organizations are correlated to provide insight into the effects of variables such as moisture, size, lamina-to-lamina joint design, wood veneer grade, and the ratio of cyclic stress to steady stress during fatigue testing. These test data were originally obtained during development of wood rotor blades for large-scale wind turbines of the horizontal-axis (propeller) configuration. Most of the strength property data in this compilation are not found in the published literature. Test sections ranged from round cylinders 2.25 in. in diameter to rectangular slabs 6 by 24 in. in cross section and approximately 30 ft. long. All specimens were made from Douglas fir veneers 0.10 in. thick, bonded together with the WEST epoxy system developed for fabrication and repair of wood boats. Loading was usually parallel to the grain. Size effects (reduction in strength with increase in test volume) are observed in some of the test data, and a simple mathematical model is presented that includes the probability of failure. General characteristics of the wood/epoxy laminate are discussed, including features that make it useful for a wide variety of applications.

  10. NMR characterization of the hydrogen storage properties of microporous materials

    NASA Astrophysics Data System (ADS)

    Anderson, Robert James

    Nuclear magnetic resonance techniques were employed to study properties and characteristics related to hydrogen storage within a variety of carbon nanomaterials. NMR methods were established for studying adsorption at temperatures of 100 and 290 K, and hydrogen pressures up to 10 MPa. A standard interpretation of the NMR spectra of molecular hydrogen in microporous materials was developed. The characterization of three samples are included here: boron-doped graphite, activated PEEK (a polymer), and zeolite-templated carbon. In all of the studies discussed here, each sample necessitated a custom approach to interpreting the data. The chemical shift, a relaxation filter, and low temperature dynamics were needed to uncover a significantly enhanced binding energy in the boron-doped graphite. The key result of the activated PEEK work was that at 100 K, the pressure-dependent behavior of the chemical shift of the micropore spectral component could be directly linked to the dimensions of the pore. The zeolite-templated carbon displayed local paramagnetic behavior within its pores but was diamagnetic in the bulk form. Pressure-dependent chemical shift analysis revealed that the paramagnetic behavior could be related to the numerous edge sites present.

  11. Inversion of Scattered Waves for Material Properties in Fractured Rock

    SciTech Connect

    Gritto, Roland; Korneev, Valeri A.; Johnson, Lane R.

    1999-07-01

    The authors apply a recently developed low-frequency, non-linear inversion method which includes near and far field terms to a crosshole data set to determine the bulk and shear modulus, as well as the density for a fractured zone in a granitic rock mass. The method uses the scattered elastic wavefield which is extracted from the recorded data before the inversion is performed. The inversion result is appraised by investigating the resolution and standard deviation of the model estimates. The sensitivity of the three parameters to different features of the medium is revealed. While the bulk modulus appears to be sensitive to voids and welded contacts, the density is mostly affected by fractured zones. The shear modulus is least constrained due to the absence of S wave anisotropy information. It is shown that the three medium parameters are generally sensitive to other medium features than those determined by velocity inversions. Thus this method is viewed as a complimentary approach to travel time tomography which provides more insight into the material properties of inhomogeneous media.

  12. Development of Thermoelectric Power Generation and Peltier Cooling Properties of Materials for Thermoelectric Cryocooling Devices

    DTIC Science & Technology

    2015-05-12

    nanofabrication to develop nanostructured thermoelectric (TE) materials for application in high-efficiency thermoelectric power generators and solid...Distribution Unlimited Final Report: Development of Thermoelectric Power Generation and Peltier Cooling Properties of Materials for Thermoelectric...Thermoelectric Power Generation and Peltier Cooling Properties of Materials for Thermoelectric Cryocooling Devices Report Title The research

  13. 29 CFR 779.336 - Sales of building materials for commercial property construction.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Sales of building materials for commercial property... Service Establishments Sales Not Made for Resale § 779.336 Sales of building materials for commercial property construction. Sales of building materials to a contractor or speculative builder for...

  14. 29 CFR 779.336 - Sales of building materials for commercial property construction.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 29 Labor 3 2012-07-01 2012-07-01 false Sales of building materials for commercial property... Service Establishments Sales Not Made for Resale § 779.336 Sales of building materials for commercial property construction. Sales of building materials to a contractor or speculative builder for...

  15. 29 CFR 779.336 - Sales of building materials for commercial property construction.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 29 Labor 3 2013-07-01 2013-07-01 false Sales of building materials for commercial property... Service Establishments Sales Not Made for Resale § 779.336 Sales of building materials for commercial property construction. Sales of building materials to a contractor or speculative builder for...

  16. 29 CFR 779.336 - Sales of building materials for commercial property construction.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 29 Labor 3 2014-07-01 2014-07-01 false Sales of building materials for commercial property... Service Establishments Sales Not Made for Resale § 779.336 Sales of building materials for commercial property construction. Sales of building materials to a contractor or speculative builder for...

  17. 29 CFR 779.336 - Sales of building materials for commercial property construction.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 29 Labor 3 2011-07-01 2011-07-01 false Sales of building materials for commercial property... Service Establishments Sales Not Made for Resale § 779.336 Sales of building materials for commercial property construction. Sales of building materials to a contractor or speculative builder for...

  18. 15 CFR 270.322 - Voluntary permission to enter and inspect property where building components, materials...

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... inspect property where building components, materials, artifacts, and records with respect to a building... Voluntary permission to enter and inspect property where building components, materials, artifacts, and... components, materials, artifacts, and records with respect to the building failure are located, and...

  19. 15 CFR 270.322 - Voluntary permission to enter and inspect property where building components, materials...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... inspect property where building components, materials, artifacts, and records with respect to a building... Voluntary permission to enter and inspect property where building components, materials, artifacts, and... components, materials, artifacts, and records with respect to the building failure are located, and...

  20. 15 CFR 270.322 - Voluntary permission to enter and inspect property where building components, materials...

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... inspect property where building components, materials, artifacts, and records with respect to a building... Voluntary permission to enter and inspect property where building components, materials, artifacts, and... components, materials, artifacts, and records with respect to the building failure are located, and...

  1. 15 CFR 270.322 - Voluntary permission to enter and inspect property where building components, materials...

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... inspect property where building components, materials, artifacts, and records with respect to a building... Voluntary permission to enter and inspect property where building components, materials, artifacts, and... components, materials, artifacts, and records with respect to the building failure are located, and...

  2. 15 CFR 270.322 - Voluntary permission to enter and inspect property where building components, materials...

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... inspect property where building components, materials, artifacts, and records with respect to a building... Voluntary permission to enter and inspect property where building components, materials, artifacts, and... components, materials, artifacts, and records with respect to the building failure are located, and...

  3. Frequency Response of Synthetic Vocal Fold Models with Linear and Nonlinear Material Properties

    ERIC Educational Resources Information Center

    Shaw, Stephanie M.; Thomson, Scott L.; Dromey, Christopher; Smith, Simeon

    2012-01-01

    Purpose: The purpose of this study was to create synthetic vocal fold models with nonlinear stress-strain properties and to investigate the effect of linear versus nonlinear material properties on fundamental frequency (F[subscript 0]) during anterior-posterior stretching. Method: Three materially linear and 3 materially nonlinear models were…

  4. Correlation Between Domain Behavior and Magnetic Properties of Materials

    SciTech Connect

    Leib, Jeffrey Scott

    2003-01-01

    Correlation between length scales in the field of magnetism has long been a topic of intensive study. The long-term desire is simple: to determine one theory that completely describes the magnetic behavior of matter from an individual atomic particle all the way up to large masses of material. One key piece to this puzzle is connecting the behavior of a material's domains on the nanometer scale with the magnetic properties of an entire large sample or device on the centimeter scale. In the first case study involving the FeSiAl thin films, contrast and spacing of domain patterns are clearly related to microstructure and stress. Case study 2 most clearly demonstrates localized, incoherent domain wall motion switching with field applied along an easy axis for a square hysteresis loop. In case study 3, axis-specific images of the complex Gd-Si-Ge material clearly show the influence of uniaxial anisotropy. Case study 4, the only study with the sole intent of creating domain structures for imaging, also demonstrated in fairly simple terms the effects of increasing stress on domain patterns. In case study 5, it was proven that the width of magnetoresistance loops could be quantitatively predicted using only MFM. When all of the case studies are considered together, a dominating factor seems to be that of anisotropy, both magneticrostaylline and stress induced. Any quantitative bulk measurements heavily reliant on K coefficients, such as the saturation fields for the FeSiAl films, Hc in cases 1, 3, and 5, and the uniaxial character of the Gd5(Si2Ge2), transferred to and from the domain scale quite well. In-situ measurements of domain rotation and switching, could also be strongly correlated with bulk magnetic properties, including coercivity, Ms, and hysteresis loop shape. In most cases, the qualitative nature of the domain structures, when properly considered, matched quite well to what might have been expected from

  5. Structure-property relationships of multiferroic materials: A nano perspective

    NASA Astrophysics Data System (ADS)

    Bai, Feiming

    The integration of sensors, actuators, and control systems is an ongoing process in a wide range of applications covering automotive, medical, military, and consumer electronic markets. Four major families of ceramic and metallic actuators are under development: piezoelectrics, electrostrictors, magnetostrictors, and shape-memory alloys. All of these materials undergo at least two phase transformations with coupled thermodynamic order parameters. These transformations lead to complex domain wall behaviors, which are driven by electric fields (ferroelectrics), magnetic fields (ferromagnetics), or mechanical stress (ferroelastics) as they transform from nonferroic to ferroic states, contributing to the sensing and actuating capabilities. This research focuses on two multiferroic crystals, Pb(Mg1/3Nb 2/3)O3-PbTiO3 and Fe-Ga, which are characterized by the co-existence and coupling of ferroelectric polarization and ferroelastic strain, or ferro-magnetization and ferroelastic strain. These materials break the conventional boundary between piezoelectric and electrostrictors, or magnetostrictors and shape-memory alloys. Upon applying field or in a poled condition, they yield not only a large strain but also a large strain over field ratio, which is desired and much benefits for advanced actuator and sensor applications. In this thesis, particular attention has been given to understand the structure-property relationships of these two types of materials from atomic to the nano/macro scale. X-ray and neutron diffraction were used to obtain the lattice structure and phase transformation characteristics. Piezoresponse and magnetic force microscopy were performed to establish the dependence of domain configurations on composition, thermal history and applied fields. It has been found that polar nano regions (PNRs) make significant contributions to the enhanced electromechanical properties of PMN-x%PT crystals via assisting intermediate phase transformation. With increasing PT

  6. Development of a material property database on selected ceramic matrix composite materials

    NASA Technical Reports Server (NTRS)

    Mahanta, Kamala

    1996-01-01

    Ceramic Matrix Composites, with fiber/whisker/particulate reinforcement, possess the attractive properties of ceramics such as high melting temperature, high strength and stiffness at high temperature, low density, excellent environmental resistance, combined with improved toughness and mechanical reliability. These unique properties have made these composites an enabling technology for thermomechanically demanding applications in high temperature, high stress and aggressive environments. On a broader scale, CMC's are anticipated to be applicable in aircraft propulsion, space propulsion, power and structures, in addition to ground based applications. However, it is also true that for any serious commitment of the material toward any of the intended critical thermo-mechanical applications to materialize, vigorous research has to be conducted for a thorough understanding of the mechanical and thermal behavior of CMC's. The high technology of CMC'S is far from being mature. In view of this growing need for CMC data, researchers all over the world have found themselves drawn into the characterization of CMC's such as C/SiC, SiC/SiC, SiC/Al203, SiC/Glass, SiC/C, SiC/Blackglas. A significant amount of data has been generated by the industries, national laboratories and educational institutions in the United States of America. NASA/Marshall Space Flight Center intends to collect the 'pedigreed' CMC data and store those in a CMC database within MAPTIS (Materials and Processes Technical Information System). The task of compilation of the CMC database is a monumental one and requires efforts in various directions. The project started in the form of a summer faculty fellowship in 1994 and has spilled into the months that followed and into the summer faculty fellowship of 1995 and has the prospect of continuing into the future for a healthy growth, which of course depends to a large extent on how fast CMC data are generated. The 10-week long summer fellowship has concentrated

  7. Intrinsic mechanical properties and strengthening methods in inorganic crystalline materials

    NASA Astrophysics Data System (ADS)

    Mecking, H.; Hartig, Ch.; Seeger, J.

    1991-06-01

    The paper deals with strength and fracture in metals, ceramics and intermetallic compounds. The emphasis is on the interrelation between microstructure and macroscopic behavior and how the concepts for alloy design are mirroring this interrelationship. The three materials classes are distinguished by the physical nature of the atomic bonding forces. In metals metallic bonding predominates which causes high ductility but poor strength. Accordingly material development concentrates on production of microstructures which optimize the yield strength without unacceptable loss in ductility. In ceramics covalent bonding prevails which results in high hardness and high elastic stiffness but at the same time extreme brittleness. Contrary to the metal-ease material development aims at a kind of pseudo ductility in order to rise the fracture toughness to sufficiently high levels. In intermetallic phases the atomic bonds are a mixture of metallic and covalent bonding where depending on the alloying system the balance between the two contributions may be quite different. Accordingly the properties of intermetallics are in the range between metals and ceramics. By a variety of microstructural measures their properties can be changed in direction. either towards metallic or ceramic behavior. General rules for alloy design are not available, rather every system demands very specific experience since properties depend to a considerable part on intrinsic properties of lattice defects such as dislocations, antiphase boundaries, stacking faults and grain boundaries. Cet article traite de la résistance et de la fracture des métaux, des céramiques et des composés intermétalliques. L'accent est mis sur les correspondances entre la microstructure et le comportement macroscopique ainsi que sur la façon dont de tels concepts se reflètent dans la création de nouveaux alliages. C'est la nature des forces de liaisons qui distingue chaque type de matériaux. Dans les métaux, les

  8. Electronic Properties of Low-Dimensional Materials Under Periodic Potential

    NASA Astrophysics Data System (ADS)

    Jamei, Mehdi

    In the quest for the further miniaturization of electronic devices, numerous fabrication techniques have been developed. The semiconductor industry has been able to manifest miniaturization in highly complex and ultra low-power integrated circuits and devices, transforming almost every aspect of our lives. However, we may have come very close to the end of this trend. While advanced machines and techniques may be able to overcome technological barriers, theoretical and fundamental barriers are inherent to the top-down miniaturization approach and cannot be circumvented. As a result, the need for novel and natural alternatives to replace old materials is valued now more than ever. Fortunately, there exists a large group of materials that essentially has low-dimensional (quasi-one- or quasi-two-dimensional) structures. Graphene, a two-dimensional form of carbon, which has attracted a lot of attention in recent years, is a perfect example of a prime material from this group. Niobium tri-selenide (NbSe3), from a family of trichalcogenides, has a highly anisotropic structure and electrical conductivity. At sufficiently low temperatures, NbSe3 also exhibits two independent "sliding charge density waves"-- an exciting phenomenon, which could be altered by changing the overall size of the material. In NbSe3 (and Blue Bronze K0.3MoO3 which has a similar structure and electrical behavior), the effect of a periodic potential could be seen in creating a charge density wave (CDW) that is incommensurate to the underlying lattice. The required periodic potential is provided by the crystal ions when ordered in a particular way. The consequence is a peculiar non-linear conductivity behavior, as well as a unique narrow-band noise spectrum. Theoretical and experimental studies have concluded that the dynamic properties of resulting CDW are directly related to the crystal impurity density, and other pinning potentials. Therefore, reducing the overall size of the crystal could

  9. SATURATED - UNSATURATED HYDRAULIC PROPERTIES OF SUBBASE COURSE MATERIAL AND SUBGRADE SOIL

    NASA Astrophysics Data System (ADS)

    Yano, Takao; Nishiyama, Satoshi; Nakashima, Shin-Ichiro; Moriishi, Kazushi; Ohnishi, Yuzo

    In order to evaluate the rainwate r storage and infiltration properties of the permeable pavement by unsaturated seepage analysis or gas-liquid two-phase flow analysis, it is important to know the unsaturated hydraulic properties of materials wh ich constitute the pavement. For this reason, we showed the unsaturated hydraulic properties of porous asphalt material s but we have not clarified the relation between the performance of the permeable pavement and the properties of all constituti on materials. In this paper, we try to determine the unsaturated hydraulic properties of subbase course and subgrade materials that greatly affect the rainwater storage and infiltration properties of the permeable pavement. We show from experiments that water retention characteristic and the un saturated hydraulic properties of subbase course and subgrade materials well match the van Genuchten model and the Irmay model.

  10. Mechanical properties of materials at micro/nano scales

    NASA Astrophysics Data System (ADS)

    Xu, Wei-Hua

    Mechanical properties of materials in small dimensions, including the depth-dependent hardness at the nano/micrometer scales, and the mechanical characterization of thin films and nanotubes, are reported. The surface effect on the depth-dependent nano/microhardness was studied and an apparent surface stress was introduced to represent the energy dissipated per unit area of a solid surface. A plastic bearing ratio model was proposed for the nanoindentation of rough surfaces. The energy dissipation occurring at the indented surface is among the factors that cause the Indentation Size Effect (ISE) at the micro/nanometer scales. Furthermore, an elastic-plastic bearing ratio model was developed for nanoindentation of rough surfaces with a flat indenter tip. The theoretical predictions agree with the experimental results and finite element simulations, from which the elastic constant and the surface hardness were extracted. The surface hardness exhibits an inverse ISE due to the interaction of asperities. The nanoindentation tests on Highly Oriented Pyrolytic Graphite (HOPG) may lead to the formation of carbon tubes, which are rolled up by the delaminated graphite layers. The nanoindentation loading-unloading curves reveal single pop-in and multiple pop-in phenomena, which is induced by fracture of the graphite layers and/or by delamination between the layers. From the load at pop-in, the fracture strength of the layers and/or the bonding strength between the layers can be estimated by the elastic field model for Hertzian contact including sliding friction for transverse isotropy. Two novel methods were developed to estimate the mechanical properties of films, including the Raman spectra method for the estimation of residual stresses in thin ferroelectric films and the microbridge testing method for the mechanical characterization of trilayer thin films. Mechanical characterization was also carried out on Tobacco Mosaic Virus (TMV) nanotubes with each being comprised of

  11. Structure and electrooptical properties of orthoconic antiferroelectric liquid crystalline materials

    NASA Astrophysics Data System (ADS)

    Dąbrowski, R.; Czupryński, K.; Gąsowska, J.; Tykarska, M.; Kula, P.; Dziaduszek, J.; Oton, J.; Castillo, P.; Benis, N.

    2005-09-01

    The optic and electrooptic properties of recently prepared orthoconic antiferroelectrics have been revieved. Relation between their chemical structure and mesogenic properties, smectic layer structure and helical pitch is discussed.

  12. Materials properties, loads, and stress analysis, Spartan REM: Appendix A

    NASA Technical Reports Server (NTRS)

    Marlowe, D. S.; West, E. J.

    1984-01-01

    The mechanical properties, load tests, and stress analysis of the Spartan Release Engagement Mechanism (REM) is presented. The fracture properties of the components of the unit are also discussed. Detailed engineering drawings are included.

  13. Mechanical properties of the beetle elytron, a biological composite material

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We determined the relationship between composition and mechanical properties of elytral (modified forewing) cuticle of the beetles Tribolium castaneum and Tenebrio molitor. Elytra of both species have similar mechanical properties at comparable stages of maturation (tanning). Shortly after adult ecl...

  14. Material and structural properties of fin whale (Balaenoptera physalus) Zwischensubstanz.

    PubMed

    Pinto, Sheldon J D; Shadwick, Robert E

    2013-08-01

    The oral anatomy of the fin whale (Balaenoptera physalus) consists of several major structures crucial to its engulfment method of feeding, such as stiff keratinized baleen plates, a large flaccid tongue, and a prominent vomer. One under-documented part of this anatomy is the cream white Zwischensubstanz that holds the baleen plates to the rostrum at their dorsal base. The mechanical and structural properties of Zwischensubstanz play a key role in baleen plate dynamics and, on the grand scale, contribute to baleen whales' filtration efficiency and attainment of large body size. Compression and tensile tests on the Zwischensubstanz sampled from an 18 m fin whale showed that this material unexpectedly exhibits linear isotropic behaviour with Elastic Modulus of 2.56 ± 0.60 MPa and hysteresis of 0.44 ± 0.02 in compression despite apparent unidirectional growth. Acting similar to a soft rubber, the Zwischensubstanz absorbs and dissipates the enormous forces acting on baleen plates during engulfment feeding while maintaining spacing between the plates to maximize filtration efficiency. Microscopic analysis provided images of connective tissue papillae penetrating the base of the Zwischensubstanz and developing within it to emerge as fully formed, keratinized baleen plates. The plates develop from the papillae and a connective tissue sheet within the 5-7 cm deep Zwischensubstanz. The Zwischensubstanz provides a keratin matrix of concentrically oriented fibers around each papilla forming the hard baleen plates and frayed fringes used for filter feeding. During this formation, the Zwischensubstanz remains unchanged and appears to slough away to allow the baleen plate to grow unhindered.

  15. Intrinsic Impact and Fatigue Property Degradation of Composite Materials in Sea Water

    DTIC Science & Technology

    2010-05-26

    in a local buckling form. Unlike impact-induced delamination, its propagation is mainly opening- dominated. Delamination also appeared along the...actual experiment. A linear, elastic and isotropic material was chosen as only brittle materials are considered in this analysis . The specimen was meshed... analysis with the updated set of boundary conditions was carried out. This was done until convergence and the total applied load was obtained by

  16. Inverse Algorithm Optimization for Determining Optical Properties of Biological Materials from Spatially-Resolved Diffuse Reflectance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Optical characterization of biological materials is useful in many scientific and industrial applications like biomedical diagnosis and nondestructive quality evaluation of food and agricultural products. However, accurate determination of the optical properties from intact biological materials base...

  17. Technical Progress Report for "Optical and Electrical Properties of III-Nitrides and Related Materials"

    SciTech Connect

    Jiang, Hongxing

    2008-10-31

    Investigations have been conducted focused on the fundamental material properties of AIN and high AI-content AIGaN alloys and further developed MOCVD growth technologies for obtaining these materials with improved crystalline quality and conductivities.

  18. 46 CFR 164.013-3 - Material properties and workmanship.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., AND MATERIALS: SPECIFICATIONS AND APPROVAL MATERIALS Foam, Unicellular Polyethylene (Buoyant, Slab... polyethylene foam shall be all new material complying with the requirements outlined in this specification. Unicellular polyethylene foam must comply with the requirements of UL 1191, sections 24, 25, and 26 and...

  19. 46 CFR 164.013-3 - Material properties and workmanship.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., AND MATERIALS: SPECIFICATIONS AND APPROVAL MATERIALS Foam, Unicellular Polyethylene (Buoyant, Slab... polyethylene foam shall be all new material complying with the requirements outlined in this specification. Unicellular polyethylene foam must comply with the requirements of UL 1191, sections 24, 25, and 26 and...

  20. 46 CFR 164.013-3 - Material properties and workmanship.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., AND MATERIALS: SPECIFICATIONS AND APPROVAL MATERIALS Foam, Unicellular Polyethylene (Buoyant, Slab... polyethylene foam shall be all new material complying with the requirements outlined in this specification. Unicellular polyethylene foam must comply with the requirements of UL 1191, sections 24, 25, and 26 and...

  1. 46 CFR 164.013-3 - Material properties and workmanship.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., AND MATERIALS: SPECIFICATIONS AND APPROVAL MATERIALS Foam, Unicellular Polyethylene (Buoyant, Slab... polyethylene foam shall be all new material complying with the requirements outlined in this specification. Unicellular polyethylene foam must comply with the requirements of UL 1191, sections 24, 25, and 26 and...

  2. 46 CFR 164.013-3 - Material properties and workmanship.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., AND MATERIALS: SPECIFICATIONS AND APPROVAL MATERIALS Foam, Unicellular Polyethylene (Buoyant, Slab... polyethylene foam shall be all new material complying with the requirements outlined in this specification. Unicellular polyethylene foam must comply with the requirements of UL 1191, sections 24, 25, and 26 and...

  3. Application for managing model-based material properties for simulation-based engineering

    DOEpatents

    Hoffman, Edward L.

    2009-03-03

    An application for generating a property set associated with a constitutive model of a material includes a first program module adapted to receive test data associated with the material and to extract loading conditions from the test data. A material model driver is adapted to receive the loading conditions and a property set and operable in response to the loading conditions and the property set to generate a model response for the material. A numerical optimization module is adapted to receive the test data and the model response and operable in response to the test data and the model response to generate the property set.

  4. MICROWAVE INSPECTION TECHNIQUES FOR DETERMINING ABLATIVE SHIELD THICKNESS AND CERAMIC MATERIALS PROPERTIES.

    DTIC Science & Technology

    CERAMIC MATERIALS , NONDESTRUCTIVE TESTING, MICROWAVES, HEAT SHIELDS, ABLATION, THICKNESS, REENTRY VEHICLES, MICROWAVE EQUIPMENT, DIELECTRIC PROPERTIES, ATTENUATION, WAVE PROPAGATION, REFLECTION, X BAND, COATINGS.

  5. Composite Material Aircraft Electromagnetic Properties and Design Guidelines

    DTIC Science & Technology

    1981-01-01

    external RP sources. In this section, the mechanisms for interference and damage of semiconductor devices by RF signals is discussed in detail...Laser, Nuclear Thermal Radiation and Particle Beam Threat 2-28 2.3 References 2-31 3.0 Composition, Fabrication and Mechanical Properties of Composite...3.3 Mechanical Properties 3-9 3.3.1 Composite Fiber Properties 3-9 3.3.2 Compositia Matrix Properties 3-12 3.3.3 Single Laminate Composite Properties

  6. Method for the unique identification of hyperelastic material properties using full field measures. Application to the passive myocardium material response.

    PubMed

    Perotti, Luigi E; Ponnaluri, Aditya V; Krishnamoorthi, Shankarjee; Balzani, Daniel; Ennis, Daniel B; Klug, William S

    2017-01-18

    Quantitative measurement of the material properties (e.g., stiffness) of biological tissues is poised to become a powerful diagnostic tool. There are currently several methods in the literature to estimating material stiffness and we extend this work by formulating a framework that leads to uniquely identified material properties. We design an approach to work with full field displacement data - i.e., we assume the displacement field due to the applied forces is known both on the boundaries and also within the interior of the body of interest - and seek stiffness parameters that lead to balanced internal and external forces in a model. For in vivo applications, the displacement data can be acquired clinically using magnetic resonance imaging while the forces may be computed from pressure measurements, e.g., through catheterization. We outline a set of conditions under which the least-square force error objective function is convex, yielding uniquely identified material properties. An important component of our framework is a new numerical strategy to formulate polyconvex material energy laws that are linear in the material properties and provide one optimal description of the available experimental data. An outcome of our approach is the analysis of the reliability of the identified material properties, even for material laws that do not admit unique property identification. Lastly, we evaluate our approach using passive myocardium experimental data at the material point and show its application to identifying myocardial stiffness with an in silico experiment modeling the passive filling of the left ventricle. This article is protected by copyright. All rights reserved.

  7. Novel characterization method for fibrous materials using non-contact acoustics: material properties revealed by ultrasonic perturbations.

    PubMed

    Periyaswamy, Thamizhisai; Balasubramanian, Karthikeyan; Pastore, Christopher

    2015-02-01

    Fibrous materials are unique hierarchical complex structures exhibiting a range of mechanical, thermal, optical and electrical properties. The inherent discontinuity at micro and macro levels, heterogeneity and multi-scale porosity differentiates fibrous materials from other engineering materials that are typically continuum in nature. These structural complexities greatly influence the techniques and modalities that can be applied to characterize fibrous materials. Typically, the material response to an applied external force is measured and used as a characteristic number of the specimen. In general, a range of equipment is in use to obtain these numbers to signify the material properties. Nevertheless, obtaining these numbers for materials like fiber ensembles is often time consuming, destructive, and requires multiple modalities. It is hypothesized that the material response to an applied acoustic frequency would provide a robust alternative characterization mode for rapid and non-destructive material analysis. This research proposes applying air-coupled ultrasonic acoustics to characterize fibrous materials. Ultrasonic frequency waves transmitted through fibrous assemblies were feature extracted to understand the correlation between the applied frequency and the material properties. Mechanical and thermal characteristics were analyzed using ultrasonic features such as time of flight, signal velocity, power and the rate of attenuation of signal amplitude. Subsequently, these temporal and spectral characteristics were mapped with the standard low-stress mechanical and thermal properties via an empirical artificial intelligence engine. A high correlation of >0.92 (S.D. 0.06) was observed between the ultrasonic features and the standard measurements. The proposed ultrasonic technique can be used toward rapid characterization of dynamic behavior of flexible fibrous assemblies.

  8. Electrochemical Properties of Nanoporous Carbon Material in Aqueous Electrolytes.

    PubMed

    Rachiy, Bogdan I; Budzulyak, Ivan M; Vashchynsky, Vitalii M; Ivanichok, Nataliia Ya; Nykoliuk, Marian O

    2016-12-01

    The paper is devoted to the study of the behavior of capacitor type electrochemical system in the К(+)-containing aqueous electrolytes. Nanoporous carbon material (NCM) was used as the electrode material, obtained by carbonization of plant raw materials with the following chemical activation. Optimization of pore size distribution was carried out by chemical-thermal method using potassium hydroxide as activator. It is shown that obtained materials have high values of capacitance which is realized by charge storage on the electrical double layer and by pseudocapacitive ion storage on the surface of the material. It is established that based on NCM, electrochemical capacitors are stable in all range of current density and material capacity essentially depends on appropriate choice of electrolyte.

  9. Electrochemical Properties of Nanoporous Carbon Material in Aqueous Electrolytes

    NASA Astrophysics Data System (ADS)

    Rachiy, Bogdan I.; Budzulyak, Ivan M.; Vashchynsky, Vitalii M.; Ivanichok, Nataliia Ya.; Nykoliuk, Marian O.

    2016-01-01

    The paper is devoted to the study of the behavior of capacitor type electrochemical system in the K+-containing aqueous electrolytes. Nanoporous carbon material (NCM) was used as the electrode material, obtained by carbonization of plant raw materials with the following chemical activation. Optimization of pore size distribution was carried out by chemical-thermal method using potassium hydroxide as activator. It is shown that obtained materials have high values of capacitance which is realized by charge storage on the electrical double layer and by pseudocapacitive ion storage on the surface of the material. It is established that based on NCM, electrochemical capacitors are stable in all range of current density and material capacity essentially depends on appropriate choice of electrolyte.

  10. Material Property Correlations: Comparisons between FRAPCON-3.4, FRAPTRAN 1.4, and MATPRO

    SciTech Connect

    Luscher, Walter G.; Geelhood, Kenneth J.

    2010-08-01

    The U.S. Nuclear Regulatory Commission (NRC) uses the computer codes FRAPCON-3 and FRAPTRAN to model steady state and transient fuel behavior, respectively, in regulatory analysis. In order to effectively model fuel behavior, material property correlations must be used for a wide range of operating conditions (e.g. temperature and burnup). In this sense, a 'material property' is a physical characteristic of the material whose quantitative value is necessary in the analysis process. Further, the property may be used to compare the benefits of one material versus another. Generally speaking, the material properties of interest in regulatory analysis of nuclear fuel behavior are mechanical or thermodynamic in nature. The issue of what is and is not a 'material property' will never be universally resolved. In this report, properties such as thermal conductivity are included. Other characteristics of the material (e.g. fission gas release) are considered 'models' rather than properties, and are discussed elsewhere. Still others (e.g., neutron absorption cross-section) are simply not required in this specific analysis. The material property correlations for the FRAPCON-3 and FRAPTRAN computer codes were documented in NUREG/CR-6534 and NUREG/CR-6739, respectively. Some of these have been modified or updated since the original code documentation was published. The primary purpose of this report is to consolidate the current material property correlations used in FRAPCON-3 and FRAPTRAN into a single document. Material property correlations for oxide fuels, including uranium dioxide (UO2) and mixed oxide (MOX) fuels, are described in Section 2. Throughout this document, the term MOX will be used to describe fuels that are blends of uranium and plutonium oxides, (U,Pu)O2. The properties for uranium dioxide with other additives (e.g., gadolinia) are also discussed. Material property correlations for cladding materials and gases are described in Sections 3 and 4, respectively

  11. Modeling of Impact Properties of Auxetic Materials: Phase 1

    DTIC Science & Technology

    2013-08-01

    underlying metal substrate from impact damage will be determined, and compared to the effect of solid polymer coatings (containing no honeycomb shaped air...higher indentation resistance, higher fracture toughness and greater resistance to impact damage . These unique features of the auxetic materials make... Elastoplasticity of auxetic materials, Computational Material Science, in press. [24] Horrigan, E.J., Smith, C.W., Scarpa, F.L., Gaspar, N., Javadi, A.A

  12. Materialism.

    PubMed

    Melnyk, Andrew

    2012-05-01

    Materialism is nearly universally assumed by cognitive scientists. Intuitively, materialism says that a person's mental states are nothing over and above his or her material states, while dualism denies this. Philosophers have introduced concepts (e.g., realization and supervenience) to assist in formulating the theses of materialism and dualism with more precision, and distinguished among importantly different versions of each view (e.g., eliminative materialism, substance dualism, and emergentism). They have also clarified the logic of arguments that use empirical findings to support materialism. Finally, they have devised various objections to materialism, objections that therefore serve also as arguments for dualism. These objections typically center around two features of mental states that materialism has had trouble in accommodating. The first feature is intentionality, the property of representing, or being about, objects, properties, and states of affairs external to the mental states. The second feature is phenomenal consciousness, the property possessed by many mental states of there being something it is like for the subject of the mental state to be in that mental state. WIREs Cogn Sci 2012, 3:281-292. doi: 10.1002/wcs.1174 For further resources related to this article, please visit the WIREs website.

  13. Review of thermal properties of graphite composite materials

    SciTech Connect

    Kourtides, D.A.

    1987-12-01

    Flammability, thermal, and selected mechanical properties of composites fabricated with epoxy and other thermally stable resin matrices are described. Properties which were measured included limiting-oxygen index, smoke evolution, thermal degradation products, total-heat release, heat-release rates, mass loss, flame spread, ignition resistance, thermogravimetric analysis, and selected mechanical properties. The properties of 8 different graphite composite panels fabricated using four different resin matrices and two types of graphite reinforcement are described. The resin matrices included: XU71775/H795, a blend of vinyl polystyryl pyridine and bismaleimide; H795, a bismaleimide; Cycom 6162, a phenolic; and PSP 6022M, a polystyryl pyridine. The graphite fiber used was AS-4 in the form of either tape or fabric. The properties of these composites were compared with epoxy composites. It was determined that the blend of vinyl polystyryl pyridine and bismaleimide (XU71775/H795) with the graphite tape was the optimum design giving the lowest heat release rate.

  14. Review of thermal properties of graphite composite materials

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.

    1987-01-01

    Flammability, thermal, and selected mechanical properties of composites fabricated with epoxy and other thermally stable resin matrices are described. Properties which were measured included limiting-oxygen index, smoke evolution, thermal degradation products, total-heat release, heat-release rates, mass loss, flame spread, ignition resistance, thermogravimetric analysis, and selected mechanical properties. The properties of 8 different graphite composite panels fabricated using four different resin matrices and two types of graphite reinforcement are described. The resin matrices included: XU71775/H795, a blend of vinyl polystyryl pyridine and bismaleimide; H795, a bismaleimide; Cycom 6162, a phenolic; and PSP 6022M, a polystyryl pyridine. The graphite fiber used was AS-4 in the form of either tape or fabric. The properties of these composites were compared with epoxy composites. It was determined that the blend of vinyl polystyryl pyridine and bismaleimide (XU71775/H795) with the graphite tape was the optimum design giving the lowest heat release rate.

  15. Modeling Mechanical Properties of Carbon Molecular Clusters and Carbon Nanostructural Materials

    DTIC Science & Technology

    2003-01-01

    UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP014264 TITLE: Modeling Mechanical Properties of Carbon Molecular...Clusters and Carbon Nanostructural Materials DISTRIBUTION: Approved for public release, distribution unlimited This paper is part of the following report...Res. Soc. Symp. Proc. Vol. 740 © 2003 Materials Research Society 17.2 Modeling mechanical properties of carbon molecular clusters and carbon

  16. Prediction of Natural Frequency and Buckling Load Variability due to Uncertainty in Material Properties by Convex Modeling

    NASA Technical Reports Server (NTRS)

    Li, Y. W.; Elishakoff, Isaac; Starnes, J. H., Jr.; Shinozuka, M.

    1998-01-01

    Composite materials are widely used in various types of engineering structures. To a large extent, the properties of composite materials are dependent on the fabrication process. But even the composite materials manufactured by the same process may demonstrate differences in their elastic properties. For design purposes, one should be aware of the potential variations in load-carrying capacity and dynamic behavior of such structures that can arise due to the uncertainty in elastic moduli. A more realistic analysis of composite structures should be performed with the variations of the elastic moduli being taken into consideration at the same time. The present paper is a generalization of a study where the influence of uncertainty in elastic moduli on the axial buckling load was discussed. Here, we consider another case of buckling, shells under uniform external pressure. In addition, this paper deals with the variability of natural frequencies by use of convex modeling, which is apparently the first study of this kind in the literature. A numerical approach to the uncertainty problem is nonlinear programming, which we apply to solve the same problem to generate a set of comparable numerical data. The results from both methods show good agreement throughout. Thus, the effectiveness of the analytic convex modeling is clearly demonstrated. The bounds of he natural frequency and the buckling load provide the designer with a better view of the vibrational behavior and the actual load carrying capacities possessed by the composite structure.

  17. The role of structure-to-property-relationships in materials characterization

    SciTech Connect

    Morgner, W.

    2000-07-01

    The paper deals with questions concerning the material characterization for steels in the field of engineering and metallurgy. Based on the structure-to-property-relationships, a procedure is proposed to strengthen the systematical development of methods for nondestructive characterization of materials. The state of the nondestructive characterization of metals is reviewed and applications are described in which adequate macroscopic physical properties are measured in order to characterize the materials state and properties nondestructively. The materials characterization of ball bearing steel and cast iron using multiparametrical approaches is discussed in detail.

  18. Temperature dependence of nonlinear optical properties in Li doped nano-carbon bowl material

    NASA Astrophysics Data System (ADS)

    Li, Wei-qi; Zhou, Xin; Chang, Ying; Quan Tian, Wei; Sun, Xiu-Dong

    2013-04-01

    The mechanism for change of nonlinear optical (NLO) properties with temperature is proposed for a nonlinear optical material, Li doped curved nano-carbon bowl. Four stable conformations of Li doped corannulene were located and their electronic properties were investigated in detail. The NLO response of those Li doped conformations varies with relative position of doping agent on the curved carbon surface of corannulene. Conversion among those Li doped conformations, which could be controlled by temperature, changes the NLO response of bulk material. Thus, conformation change of alkali metal doped carbon nano-material with temperature rationalizes the variation of NLO properties of those materials.

  19. Porous Materials with Tunable Structure and Mechanical Properties via Templated Layer-by-Layer Assembly.

    PubMed

    Ziminska, Monika; Dunne, Nicholas; Hamilton, Andrew R

    2016-08-31

    The deposition of stiff and strong coatings onto porous templates offers a novel strategy for fabricating macroscale materials with controlled architectures at the micro- and nanoscale. Here, layer-by-layer assembly is utilized to fabricate nanocomposite-coated foams with highly customizable properties by depositing polymer-nanoclay coatings onto open-cell foam templates. The compressive mechanical behavior of these materials evolves in a predictable manner that is qualitatively captured by scaling laws for the mechanical properties of cellular materials. The observed and predicted properties span a remarkable range of density-stiffness space, extending from regions of very soft elastomer foams to very stiff, lightweight honeycomb and lattice materials.

  20. Materials design using correlated oxides: Optical properties of vanadium dioxide

    NASA Astrophysics Data System (ADS)

    Tomczak, J. M.; Biermann, S.

    2009-05-01

    Materials with strong electronic Coulomb interactions play an increasing role in modern materials applications. "Thermochromic" systems, that exhibit thermally induced changes in their optical response, provide a particularly interesting case. The optical switching associated with the metal-insulator transition of vanadium dioxide (VO2), for example, has been proposed for use in "intelligent" windows that selectively filter radiative heat in hot weather conditions. In this work, we develop the theoretical tools for describing such a behaviour. Using a novel scheme for the calculation of the optical conductivity of correlated materials, we obtain quantitative agreement with experiments for both phases of VO2. On the example of an optimized energy-saving window setup, we further demonstrate that theoretical materials design has now come into reach, even for the particularly challenging class of correlated electron systems.

  1. Simple Experiment for Studying the Properties of a Ferromagnetic Material.

    ERIC Educational Resources Information Center

    Sood, B. R.; And Others

    1980-01-01

    Describes an undergraduate physics experiment for studying Curie temperature and Curie constant of a ferromagnetic material. The exchange field (Weiss field) has been estimated by using these parameters. (HM)

  2. "Diffuse Scattering and the Fundamental Properties of materials"

    SciTech Connect

    Barabash, Rozaliya; Ice, Gene E; Turchi, Dr. Patrice E.A.

    2009-01-01

    This book highlights emerging research areas that exploit the ability of diffuse scattering to characterize local structures in materials. An emphasis is placed on the coming renaissance in diffuse scattering driven by new sources, better instrumentation, novel new materials, and advanced theories and methods. This book will provide an overview of some of the most exciting recent advances in diffuse scattering and provides guidance for students and researchers interested in new methods to characterize their samples.

  3. Measurement of Thermal Properties of Infrared Materials (Preprint)

    DTIC Science & Technology

    2007-05-01

    General Dynamics Information Technology, Inc. 5100 Springfield Pike, Suite 509 Dayton, OH 45431- 1264 Hardened Materials Branch (AFRL/MLPJ...flash method utilizing a Holometrix Thermaflash 2200 instrument.4 Both the instrument and method conform to ASTM EI461-01, Standard Test Methodfor...5. Test Method E1461-01 in Annual Book of ASTM Standards (American Society for Testing Materials, Philadelphia, Pa., 2001), Vol. 14.02, pp. 1-13. 6

  4. Mechanical properties and DIC analyses of CAD/CAM materials

    PubMed Central

    Roperto, Renato; Akkus, Anna; Akkus, Ozan; Porto-Neto, Sizenando; Teich, Sorin; Lang, Lisa; Campos, Edson

    2016-01-01

    Background This study compared two well-known computer-aided-design/computer-aided-manufactured (CAD/CAM) blocks (Paradigm MZ100 [3M ESPE] and Vitablocs Mark II [Vita] in terms of fracture toughness (Kic), index of brittleness (BI) and stress/strain distributions. Material and Methods Three-point bending test was used to calculate the fracture toughness, and the relationship between the Kic and the Vickers hardness was used to calculate the index of brittleness. Additionally, digital image correlation (DIC) was used to analyze the stress/strain distribution on both materials. Results The values for fracture toughness obtained under three-point bending were 1.87Pa√m (±0.69) for Paradigm MZ100 and 1.18Pa√m (±0.17) for Vitablocs Mark II. For the index of brittleness, the values for Paradigm and Vitablocs were 73.13μm-1/2 (±30.72) and 550.22μm-1/2 (±82.46). One-way ANOVA was performed to find differences (α=0.05) and detected deviation between the stress/strain distributions on both materials. Conclusions Both CAD/CAM materials tested presented similar fracture toughness, but, different strain/stress distributions. Both materials may perform similarly when used in CAD/CAM restorations. Key words:Ceramic, CAD/CAM, hybrid materials, composite resin, fracture toughness. PMID:27957262

  5. Method of determining elastic and plastic mechanical properties of ceramic materials using spherical indenters

    DOEpatents

    Adler, Thomas A.

    1996-01-01

    The invention pertains a method of determining elastic and plastic mechanical properties of ceramics, intermetallics, metals, plastics and other hard, brittle materials which fracture prior to plastically deforming when loads are applied. Elastic and plastic mechanical properties of ceramic materials are determined using spherical indenters. The method is most useful for measuring and calculating the plastic and elastic deformation of hard, brittle materials with low values of elastic modulus to hardness.

  6. The effects of the size of nanocrystalline materials on their thermodynamic and mechanical properties.

    PubMed

    Yu, Xiaohua; Zhan, Zhaolin

    2014-01-01

    This work has considered the intrinsic influence of bond energy on the macroscopic, thermodynamic, and mechanical properties of crystalline materials. A general criterion is proposed to evaluate the properties of nanocrystalline materials. The interrelation between the thermodynamic and mechanical properties of nanomaterials is presented and the relationship between the variation of these properties and the size of the nanomaterials is explained. The results of our work agree well with thermodynamics, molecular dynamics simulations, and experimental results. This method is of significance in investigating the size effects of nanomaterials and provides a new approach for studying their thermodynamic and mechanical properties.

  7. Acquisition of material properties in production for sheet metal forming processes

    SciTech Connect

    Heingärtner, Jörg; Hora, Pavel; Neumann, Anja; Hortig, Dirk; Rencki, Yasar

    2013-12-16

    In past work a measurement system for the in-line acquisition of material properties was developed at IVP. This system is based on the non-destructive eddy-current principle. Using this system, a 100% control of material properties of the processed material is possible. The system can be used for ferromagnetic materials like standard steels as well as paramagnetic materials like Aluminum and stainless steel. Used as an in-line measurement system, it can be configured as a stand-alone system to control material properties and sort out inapplicable material or as part of a control system of the forming process. In both cases, the acquired data can be used as input data for numerical simulations, e.g. stochastic simulations based on real world data.

  8. Teaching Acoustic Properties of Materials in Secondary School: Testing Sound Insulators

    ERIC Educational Resources Information Center

    Hernandez, M. I.; Couso, D.; Pinto, R.

    2011-01-01

    Teaching the acoustic properties of materials is a good way to teach physics concepts, extending them into the technological arena related to materials science. This article describes an innovative approach for teaching sound and acoustics in combination with sound insulating materials in secondary school (15-16-year-old students). Concerning the…

  9. Characterization of temperature-dependent optical material properties of polymer powders

    SciTech Connect

    Laumer, Tobias; Stichel, Thomas; Bock, Thomas; Amend, Philipp; Schmidt, Michael

    2015-05-22

    In former works, the optical material properties of different polymer powders used for Laser Beam Melting (LBM) at room temperature have been analyzed. With a measurement setup using two integration spheres, it was shown that the optical material properties of polymer powders differ significantly due to multiple reflections within the powder compared to solid bodies of the same material. Additionally, the absorption behavior of the single particles shows an important influence on the overall optical material properties, especially the reflectance of the powder bed. Now the setup is modified to allow measurements at higher temperatures. Because crystalline areas of semi-crystalline thermoplastics are mainly responsible for the absorption of the laser radiation, the influence of the temperature increase on the overall optical material properties is analyzed. As material, conventional polyamide 12 and polypropylene as new polymer powder material, is used. By comparing results at room temperature and at higher temperatures towards the melting point, the temperature-dependent optical material properties and their influence on the beam-matter interaction during the process are discussed. It is shown that the phase transition during melting leads to significant changes of the optical material properties of the analyzed powders.

  10. Characterization of temperature-dependent optical material properties of polymer powders

    NASA Astrophysics Data System (ADS)

    Laumer, Tobias; Stichel, Thomas; Bock, Thomas; Amend, Philipp; Schmidt, Michael

    2015-05-01

    In former works, the optical material properties of different polymer powders used for Laser Beam Melting (LBM) at room temperature have been analyzed. With a measurement setup using two integration spheres, it was shown that the optical material properties of polymer powders differ significantly due to multiple reflections within the powder compared to solid bodies of the same material. Additionally, the absorption behavior of the single particles shows an important influence on the overall optical material properties, especially the reflectance of the powder bed. Now the setup is modified to allow measurements at higher temperatures. Because crystalline areas of semi-crystalline thermoplastics are mainly responsible for the absorption of the laser radiation, the influence of the temperature increase on the overall optical material properties is analyzed. As material, conventional polyamide 12 and polypropylene as new polymer powder material, is used. By comparing results at room temperature and at higher temperatures towards the melting point, the temperature-dependent optical material properties and their influence on the beam-matter interaction during the process are discussed. It is shown that the phase transition during melting leads to significant changes of the optical material properties of the analyzed powders.

  11. The stress and ballistic properties of granular materials

    NASA Astrophysics Data System (ADS)

    Proud, William G.; Chapman, David J.; Eakins, Daniel E.

    2017-01-01

    Granular materials are widespread in nature and in manufacturing. Their particulate nature gives a compressive strength of a similar order of magnitude as many continuous solids, a vanishingly small tensile strength and variable shear strength, highly dependent on the loading conditions. Previous studies have shown the effect of composition, morphology and particle size, however, compared to metals and polymers, granular materials are not so well understood. This paper will present some recent results for granular materials, placing these within the wider context. Two areas will be dealt with (i) the effect of the skeletal strength of the material and (ii) the displacements associated with ballistic impact. One clear observation is the similarity of behavior of quartz-sands in compression across a range of particle size. However, the precise pathway of compression is strongly dependent on the initial conditions e.g. density and connectivity within the granular bed, as emphasized by some data for quasi-static compression of sand. To fully embrace the range of behaviours seen requires the development of a suitable parameter to describe the material, the paper concludes with a discussion of one of those approaches.

  12. Research in High Dielectric Properties of Ferroelectric Materials

    DTIC Science & Technology

    1992-01-01

    22 5.0 GROWTH OF PEROVSKITE PZT AND PLZT THIN FILMS.............. 36 6.0 FERROELECTRIC PROPERTIES OF LANTHANUM -MODIFIED Sro...properties. 23 C 1151ODM/bje o Rockwell International Science Center SC5345.FR INTRODUCTION A lanthanum -modified lead-zirconate-titanate solid solution...BISMUTH FERRITE SC44827 HIGH TC CUBIC ,,7000 MORPHOTROPIC T BOUNDARY Wi C HOW WIDE? TETRAGONAL RH PbTiOl BiFeO 3 VERY LARGE STRAIN Pb0 7 Bi *3T 10.7 Fe

  13. Development and mechanical properties of construction materials from lunar simulants

    NASA Technical Reports Server (NTRS)

    Desai, Chandra S.

    1990-01-01

    The development of construction materials such as concrete from lunar soils without the use of water requires a different methodology than that used for conventional terrestrial concrete. Currently, this research involves two aspects: (1) liquefaction of lunar simulants with various additives in a furnace so as to produce a construction material like an intermediate ceramic; and (2) cyclic loading of simulant with different initial vacuums and densities with respect to the theoretical maximum densities (TMD). In both cases, bending, triaxial compression, extension, and hydrostatic tests will be performed to define the stress-strain strength response of the resulting materials. In the case of the intermediate ceramic, bending and available multiaxial test devices will be used, while for the compacted case, tests will be performed directly in the new device. The tests will be performed by simulating in situ confining conditions. A preliminary review of high-purity metal is also conducted.

  14. Frequency scanning capaciflector for capacitively determining the material properties

    NASA Technical Reports Server (NTRS)

    Campbell, Charles E. (Inventor)

    1996-01-01

    A capaciflector sensor system scanned in frequency is used to detect the permittivity of the material of an object being sensed. A capaciflector sensor element, coupled to current-measuring voltage follower circuitry, is driven by a frequency swept oscillator and generates an output which corresponds to capacity as a function of the input frequency. This swept frequency information is fed into apparatus e.g. a digital computer for comparing the shape of the capacitance vs. frequency curve against characteristic capacitor vs. frequency curves for a variety of different materials which are stored, for example, in a digital memory of the computer or a database. Using a technique of pattern matching, a determination is made as to the identification of the material. Also, when desirable, the distance between the sensor and the object can be determined.

  15. Ion exchange properties of novel hydrous metal oxide materials

    SciTech Connect

    Gardner, T.J.; McLaughlin, L.I.

    1996-12-31

    Hydrous metal oxide (HMO) materials are inorganic ion exchangers which have many desirable characteristics for catalyst support applications, including high cation exchange capacity, anion exchange capability, high surface area, ease of adjustment of acidity and basicity, bulk or thin film preparation, and similar chemistry for preparation of various transition metal oxides. Cation exchange capacity is engineered into these materials through the uniform incorporation of alkali cations via manipulation of alkoxide chemistry. Specific examples of the effects of Na stoichiometry and the addition of SiO{sub 2} to hydrous titanium oxide (HTO) on ion exchange behavior will be given. Acid titration and cationic metal precursor complex exchange will be used to characterize the ion exchange behavior of these novel materials.

  16. Mechanical properties of materials with nanometer scale dimensions and microstructures

    SciTech Connect

    Nix, William D.

    2015-08-05

    The three-year grant for which this final report is required extends from 2011 to 2015, including a one-year, no-cost extension. But this is just the latest in a long series of grants from the Division of Materials Sciences of DOE and its predecessor offices and agencies. These include contracts or grants from: the Metallurgy Branch of the U.S. Atomic Energy Commission (from the late 1960s to the mid-1970s), the Materials Science Program of the U.S. Energy Research and Development Administration (from the mid- to late- 1970s), and the Division of Materials Science of the Office of Basic Energy Sciences of the U.S. Department of Energy (from the early 1980s to the present time). Taken all together, these offices have provided nearly continuous support for our research for nearly 50 years. As we have said on many occasions, this research support has been the best we have ever had, by far. As we look back on the nearly five decades of support from the Division of Materials Sciences and the predecessor offices, we find that the continuity of support that we have enjoyed has allowed us to be most productive and terms of papers published, doctoral students graduated and influence on the field of materials science. This report will, of course, cover the three-year period of the present grant, in summary form, but will also make reference to the output that resulted from support of previous grants from the Division of Materials Sciences and its predecessor offices.

  17. Concepts and techniques for ultrasonic evaluation of material mechanical properties

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1980-01-01

    Ultrasonic methods that can be used for material strength are reviewed. Emergency technology involving advanced ultrasonic techniques and associated measurements is described. It is shown that ultrasonic NDE is particularly useful in this area because it involves mechanical elastic waves that are strongly modulated by morphological factors that govern mechanical strength and also dynamic failure modes. These aspects of ultrasonic NDE are described in conjunction with advanced approaches and theoretical concepts for signal acquisition and analysis for materials characterization. It is emphasized that the technology is in its infancy and that much effort is still required before the techniques and concepts can be transferred from laboratory to field conditions.

  18. Transient Infrared Measurement of Laser Absorption Properties of Porous Materials

    NASA Astrophysics Data System (ADS)

    Marynowicz, Andrzej

    2016-06-01

    The infrared thermography measurements of porous building materials have become more frequent in recent years. Many accompanying techniques for the thermal field generation have been developed, including one based on laser radiation. This work presents a simple optimization technique for estimation of the laser beam absorption for selected porous building materials, namely clinker brick and cement mortar. The transient temperature measurements were performed with the use of infrared camera during laser-induced heating-up of the samples' surfaces. As the results, the absorbed fractions of the incident laser beam together with its shape parameter are reported.

  19. Properties of Smoke from Overheated Materials in Low-Gravity

    NASA Technical Reports Server (NTRS)

    Urban, David L.; Ruff, Gary A.; Sheredy, William; Cleary, Thomas; Yang, Jiann; Mulholland, George; Yuan, Zeng-Guang

    2009-01-01

    Smoke particle size measurements were obtained under low-gravity conditions by overheating several materials typical of those found in spacecraft. The measurements included integral measurements of the smoke particles and physical sample of the particles for Transmission Electron Microscope analysis. The integral moments were combined to obtain geometric mean particle sizes and geometric standard deviations. These results are presented with the details of the instrument calibrations. The experimental results show that, for the materials tested, a substantial portion of the smoke particles are below 500 nm in diameter.

  20. 41 CFR 101-42.209 - Cost of care and handling of hazardous materials and certain categories of property.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of hazardous materials and certain categories of property. 101-42.209 Section 101-42.209 Public... OF PROPERTY 42.2-Utilization of Hazardous Materials and Certain Categories of Property § 101-42.209 Cost of care and handling of hazardous materials and certain categories of property. The...

  1. 41 CFR 101-42.209 - Cost of care and handling of hazardous materials and certain categories of property.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... of hazardous materials and certain categories of property. 101-42.209 Section 101-42.209 Public... OF PROPERTY 42.2-Utilization of Hazardous Materials and Certain Categories of Property § 101-42.209 Cost of care and handling of hazardous materials and certain categories of property. The...

  2. 41 CFR 101-42.209 - Cost of care and handling of hazardous materials and certain categories of property.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... handling of hazardous materials and certain categories of property. 101-42.209 Section 101-42.209 Public... OF PROPERTY 42.2-Utilization of Hazardous Materials and Certain Categories of Property § 101-42.209 Cost of care and handling of hazardous materials and certain categories of property. The...

  3. 41 CFR 101-42.209 - Cost of care and handling of hazardous materials and certain categories of property.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of hazardous materials and certain categories of property. 101-42.209 Section 101-42.209 Public... OF PROPERTY 42.2-Utilization of Hazardous Materials and Certain Categories of Property § 101-42.209 Cost of care and handling of hazardous materials and certain categories of property. The...

  4. Synthesis Properties and Electron Spin Resonance Properties of Titanic Materials (abstract)

    NASA Astrophysics Data System (ADS)

    Cho, Jung Min; Lee, Jun; Kim, Tak Hee; Sun, Min Ho; Jang, Young Bae; Cho, Sung June

    2009-04-01

    Titanic materials were synthesized by hydrothermal method of TiO2 anatase in 10M LiOH, 10M NaOH, and 14M KOH at 130° C for 30 hours. Alkaline media were removed from the synthesized products using 0.1N HCl aqueous solution. The as-prepared samples were characterized by scanning electron microscope, transmission electron microscope, X-ray diffraction, Brunauer-Emmett-Teller isotherm, and electron spin resonance. Different shapes of synthesized products were observed through the typical electron microscope and indicated that the formation of the different morphologies depends on the treatment conditions of highly alkaline media. Many micropores were observed in the cubic or octahedral type of TiO2 samples through the typical electron microscope and Langmuir adsorption-desorption isotherm of liquid nitrogen at 77° K. Electron spin resonance studies have also been carried out to verify the existence of paramagnetic sites such as oxygen vacancies on the titania samples. The effect of alkali metal ions on the morphologies and physicochemical properties of nanoscale titania are discussed.

  5. The Cryogenic Properties of Several Aluminum-Beryllium Alloys and a Beryllium Oxide Material

    NASA Technical Reports Server (NTRS)

    Gamwell, Wayne R.; McGill, Preston B.

    2003-01-01

    Performance related mechanical properties for two aluminum-beryllium (Al-Be) alloys and one beryllium-oxide (BeO) material were developed at cryogenic temperatures. Basic mechanical properties (Le., ultimate tensile strength, yield strength, percent elongation, and elastic modulus were obtained for the aluminum-beryllium alloy, AlBeMetl62 at cryogenic [-195.5"C (-320 F) and -252.8"C (-423"F)I temperatures. Basic mechanical properties for the Be0 material were obtained at cyrogenic [- 252.8"C (-423"F)] temperatures. Fracture properties were obtained for the investment cast alloy Beralcast 363 at cryogenic [-252.8"C (-423"F)] temperatures. The AlBeMetl62 material was extruded, the Be0 material was hot isostatic pressing (HIP) consolidated, and the Beralcast 363 material was investment cast.

  6. Mechanical Properties of Air Plasma Sprayed Environmental Barrier Coating (EBC) Materials

    NASA Technical Reports Server (NTRS)

    Richards, Bradley; Zhu, Dongming; Ghosn, Louis; Wadley, Haydn

    2015-01-01

    Development work in Environmental Barrier Coatings (EBCs) for Ceramic Matrix Composites (CMCs) has focused considerably on the identification of materials systems and coating architectures to meet application needs. The evolution of these systems has occurred so quickly that modeling efforts and requisite data for modeling lag considerably behind development. Materials property data exists for many systems in the bulk form, but the effects of deposition on the critical properties of strength and fracture behavior are not well studied. We have plasma sprayed bulk samples of baseline EBC materials (silicon, ytterbium disilicate) and tested the mechanical properties of these materials to elicit differences in strength and toughness. We have also endeavored to assess the mixed-mode fracture resistance, Gc, of silicon in a baseline EBC applied to SiCSiC CMC via four point bend test. These results are compared to previously determined properties of the comparable bulk material.

  7. Mechanical and thermal properties of composite material system reinforced with micro glass balloons

    NASA Astrophysics Data System (ADS)

    Ozawa, Y.; Watanabe, M.; Kikuchi, T.; Ishiwatari, H.

    2010-06-01

    The mechanical and thermal properties of polymer composites reinforced with micro glass balloons are investigated in temperature conditions. The matrix resin of the composite is epoxy resin and its dispersion is micro glassy spherical shells of Sirasu Balloon. The composite system developed is a kind of micro porous materials with lightweight. From the experimental data of bending and tension tests, mechanical behaviours of the composites were clarified, and the effects of material properties and configurations on the mechanical properties of composites were discussed from the viewpoint of micromechanical study. A homogenization theory with multi-scale analytical method has been applied in order to evaluate the composite material system in temperature conditions. Numerical calculations were performed by using a model of micro porous materials and setting properties of each material at the temperature. Analytical results for the mechanical behaviour made a good agreement with experimental result of the composites in temperature conditions.

  8. Catalytic properties of carbon materials for wet oxidation of aniline.

    PubMed

    Gomes, Helder T; Machado, Bruno F; Ribeiro, Andreia; Moreira, Ivo; Rosário, Márcio; Silva, Adrián M T; Figueiredo, José L; Faria, Joaquim L

    2008-11-30

    A mesoporous carbon xerogel with a significant amount of oxygen functional groups and a commercial activated carbon, were tested in the catalytic wet air oxidation of aniline at 200 degrees C and 6.9 bar of oxygen partial pressure. Both carbon materials showed high activity in aniline and total organic carbon removal, a clear increase in the removal efficiency relatively to non-catalytic wet air oxidation being observed. The best results in terms of aniline removal were obtained with carbon xerogel, an almost complete aniline conversion after 1h oxidation with high selectivity to non-organic compounds being achieved. The materials were characterized by thermogravimetric analysis, temperature programmed desorption, N(2) adsorption and scanning electron microscopy, in order to relate their performances to the chemical and textural characteristics. It was concluded that the removal efficiency, attributed to both adsorption and catalytic activity, is related to the mesoporous character of the materials and to the presence of specific oxygen containing functional groups at their surface. The effect of catalytic activity was found to be more important in the removal of aniline than the effect of adsorption at the materials surface. The results obtained indicate that mesoporous carbon xerogels are promising catalysts for CWAO processes.

  9. Computational screening of organic materials towards improved photovoltaic properties

    NASA Astrophysics Data System (ADS)

    Dai, Shuo; Olivares-Amaya, Roberto; Amador-Bedolla, Carlos; Aspuru-Guzik, Alan; Borunda, Mario

    2015-03-01

    The world today faces an energy crisis that is an obstruction to the development of the human civilization. One of the most promising solutions is solar energy harvested by economical solar cells. Being the third generation of solar cell materials, organic photovoltaic (OPV) materials is now under active development from both theoretical and experimental points of view. In this study, we constructed a parameter to select the desired molecules based on their optical spectra performance. We applied it to investigate a large collection of potential OPV materials, which were from the CEPDB database set up by the Harvard Clean Energy Project. Time dependent density functional theory (TD-DFT) modeling was used to calculate the absorption spectra of the molecules. Then based on the parameter, we screened out the top performing molecules for their potential OPV usage and suggested experimental efforts toward their synthesis. In addition, from those molecules, we summarized the functional groups that provided molecules certain spectrum capability. It is hoped that useful information could be mined out to provide hints to molecular design of OPV materials.

  10. Material Properties and Defects Characterization Using LLW Data

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.; Mal, A.; Chang, Z.

    1998-01-01

    Leaky Lamb Wave (LLW) propagation in composite materials has been studied extensively since it was first observed in 1982. The wave is induced using a pitch-catch arrangement and the plate wave modes are detected by identifying minima in the reflected spectra to obtain the dispersion data.

  11. Materials with Adsorptive Properties from Agricultural By-Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This presentation will summarize the use of agricultural by-products (e.g., animal manure and plant waste) as starting materials to adsorb environmental contaminants such as mercury from air, ammonia from air, metal ions from water, and chlorinated organics from water. The results show that the mat...

  12. Physical Properties of Various Materials Relevant to Granular Flow

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because of the ubiquitous nature of granular materials, ranging from natural avalanches to industrial storage and processing operations, interest in quantifying and predicting the dynamics of granular flow continues to increase. The objective of this study was to investigate various physical proper...

  13. Realization of New and Enhanced Materials Properties Through Nanostructural Control

    DTIC Science & Technology

    2006-05-15

    Fifield, L. R. Dalton, A. Mazzoldi, D. De-Rossi, I. I. Khayrullin , and R. H. Baughman, "Pneumatic Carbon Nanotube Actuators," Adv. Mater., 14, 1728-32 (2002... Khayrullin , and B. H. Baughman, "Pneumatic Actuator Response from Carbon Nanotube Sheets," Materials Research Society Symposium Proceedings, v. 706

  14. Interdisciplinary research concerning the nature and properties of ceramic materials

    NASA Technical Reports Server (NTRS)

    Mueller, J. I.

    1973-01-01

    Research projects involving the development of ceramic materials are discussed. The following areas of research are reported: (1) refractory structural ceramics, (2) solid electrolyte ceramics, and (3) ceramic processing. The laboratory equipment used and the procedures followed for various development and evaluation techniques are described.

  15. Adaptive mechanical properties of topologically interlocking material systems

    NASA Astrophysics Data System (ADS)

    Khandelwal, S.; Siegmund, T.; Cipra, R. J.; Bolton, J. S.

    2015-04-01

    Topologically interlocked material systems are two-dimensional granular crystals created as ordered and adhesion-less assemblies of unit elements of the shape of platonic solids. The assembly resists transverse forces due to the interlocking geometric arrangement of the unit elements. Topologically interlocked material systems yet require an external constraint to provide resistance under the action of external load. Past work considered fixed and passive constraints only. The objective of the present study is to consider active and adaptive external constraints with the goal to achieve variable stiffness and energy absorption characteristics of the topologically interlocked material system through an active control of the in-plane constraint conditions. Experiments and corresponding model analysis are used to demonstrate control of system stiffness over a wide range, including negative stiffness, and energy absorption characteristics. The adaptive characteristics of the topologically interlocked material system are shown to solve conflicting requirements of simultaneously providing energy absorption while keeping loads controlled. Potential applications can be envisioned in smart structure enhanced response characteristics as desired in shock absorption, protective packaging and catching mechanisms.

  16. Selective polymer materials: absolute determination of their sorption properties

    NASA Astrophysics Data System (ADS)

    Jakusch, Michael; Mizaikoff, Boris

    2001-02-01

    Several types of selective materials are frequently used in chemical sensors such as natural antibodies, synthetic host substances (calixarenes, cyclodextrines, etc.) molecularly imprinted materials, or conventional polymers. For a systematic development of those materials, their sorption behavior for interesting analyte substances and potentially interfering compounds has to be thoroughly characterized, which can be a time-consuming and error-prone task. Moreover, using the respective sensor principle itself for this characterization an exact relation between the sensor signal and the underlying partition coefficient or sorption isotherm can often not be obtained. In this paper, we present an automated method for the direct determination of polymer/water partition coefficients of volatile organic compounds that consists of an automated fluid handling system, a dedicated partitioning cell and a purge-and-trap gas chromatography (PT-GC) unit. The main application of this novel system is the characterization of layer materials for infrared evanescent wave spectroscopic (IR-EWS) sensors, however an extension to other problems is conceivable. The whole experimental procedure comprising calibration of the GC system, preparation of test solutions, analyte partitioning, sample analysis, as well as the necessary cleaning steps is performed automatically under computer control. Hence, this system can be operated unattendedly, yielding a reasonable throughput with comparatively low expenditure of human labor.

  17. Mechanical properties of aircraft materials subjected to long periods of service usage

    SciTech Connect

    Scheuring, J.N.; Grandt, A.F. Jr.

    1997-10-01

    This paper evaluates changes in the behavior of aircraft materials which result from aging and/or corrosion that occurs during long periods of service usage. The primary objective was to determine whether damage tolerant analyses for older aircraft should employ updated properties that more accurately represent the current state of the material, or if the virgin material properties continue to properly characterize the aged/corroded alloy. Specifically, tensile stress-strain curves, cyclic stress life (SN) tests, and fatigue crack growth tests were used to characterize the aged aircraft materials. These properties were compared with handbook properties for virgin material of the same pedigree. The aluminum alloys tested were obtained from fuselage and wing panels of retired KC-135 aircraft. Computer controlled tests were conducted using specimens machined from the retired aircraft components. Different configurations were used to observe the effects of aging and/or corrosion on material behavior. In the crack growth specimens, various levels of corrosion were observed, thus the crack growth rates could be categorized as a function of the level of corrosion present. The SN and da/dN-{Delta}K curves for the aged only materials were compared with the fatigue properties of virgin material of the same alloy. Similar comparisons were performed for the tensile stress-strain properties.

  18. Acousto-ultrasonics to Assess Material and Structural Properties

    NASA Technical Reports Server (NTRS)

    Kautz, Harold E.

    2002-01-01

    This report was created to serve as a manual for applying the Acousto-Ultrasonic NDE method, as practiced at NASA Glenn, to the study of materials and structures for a wide range of applications. Three state of the art acousto-ultrasonic (A-U) analysis parameters, ultrasonic decay (UD) rate, mean time (or skewing factor, "s"), and the centroid of the power spectrum, "f(sub c)," have been studied and applied at GRC for NDE interrogation of various materials and structures of aerospace interest. In addition to this, a unique application of Lamb wave analysis is shown. An appendix gives a brief overview of Lamb Wave analysis. This paper presents the analysis employed to calculate these parameters and the development and reasoning behind their use. It also discusses the planning of A-U measurements for materials and structures to be studied. Types of transducer coupling are discussed including contact and non-contact via laser and air. Experimental planning includes matching transducer frequency range to material and geometry of the specimen to be studied. The effect on results of initially zeroing the DC component of the ultrasonic waveform is compared with not doing so. A wide range of interrogation problems are addressed via the application of these analysis parameters to real specimens is shown for five cases: Case 1: Differences in density in [0] SiC/RBSN ceramic matrix composite. Case 2: Effect of tensile fatigue cycling in [+/-45] SiC/SiC ceramic matrix composite. Case 3: Detecting creep life, and failure, in Udimet 520 Nickel-Based Super Alloy. Case 4: Detecting Surface Layer Formation in T-650-35/PMR-15 Polymer Matrix Composites Panels due to Thermal Aging. Case 5: Detecting Spin Test Degradation in PMC Flywheels. Among these cases a wide range of materials and geometries are studied.

  19. Dielectric Characteristics of Microstructural Changes and Property Evolution in Engineered Materials

    NASA Astrophysics Data System (ADS)

    Clifford, Jallisa Janet

    Heterogeneous materials are increasingly used in a wide range of applications such as aerospace, civil infrastructure, fuel cells and many others. The ability to take properties from two or more materials to create a material with properties engineered to needs is always very attractive. Hence heterogeneous materials are evolving into more complex formulations in multiple disciplines. Design of microstructure at multiple scales control the global functional properties of these materials and their structures. However, local microstructural changes do not directly cause a proportional change to the global properties (such as strength and stiffness). Instead, local changes follow an evolution process including significant interactions. Therefore, in order to understand property evolution of engineered materials, microstructural changes need to be effectively captured. Characterizing these changes and representing them by material variables will enable us to further improve our material level understanding. In this work, we will demonstrate how microstructural features of heterogeneous materials can be described quantitatively using broadband dielectric spectroscopy (BbDS). The frequency dependent dielectric properties can capture the change in material microstructure and represent these changes in terms of material variables, such as complex permittivity. These changes in terms of material properties can then be linked to a number of different conditions, such as increasing damage due to impact or fatigue. Two different broadband dielectric spectroscopy scanning modes are presented: bulk measurements and continuous scanning to measure dielectric property change as a function of position across the specimen. In this study, we will focus on ceramic materials and fiber reinforced polymer matrix composites as test bed material systems. In the first part of the thesis, we will present how different micro-structural design of porous ceramic materials can be captured

  20. State-of-the-art review of materials properties of nuclear waste forms.

    SciTech Connect

    Mendel, J. E.; Nelson, R. D.; Turcotte, R. P.; Gray, W. J.; Merz, M. D.; Roberts, F. P.; Weber, W. J.; Westsik, Jr., J. H.; Clark, D. E.

    1981-04-01

    The Materials Characterization Center (MCC) was established at the Pacific Northwest Laboratory to assemble a standardized nuclear waste materials data base for use in research, systems and facility design, safety analyses, and waste management decisions. This centralized data base will be provided through the means of a Nuclear Waste Materials Handbook. The first issue of the Handbook will be published in the fall of 1981 in looseleaf format so that it can be updated as additional information becomes available. To ensure utmost reliability, all materials data appearing in the Handbook will be obtained by standard procedures defined in the Handbook and approved by an independent Materials Review Board (MRB) comprised of materials experts from Department of Energy laboratories and from universities and industry. In the interim before publication of the Handbook there is need for a report summarizing the existing materials data on nuclear waste forms. This review summarizes materials property data for the nuclear waste forms that are being developed for immobilization of high-level radioactive waste. It is intended to be a good representation of the knowledge concerning the properties of HLW forms as of March 1981. The table of contents lists the following topics: introduction which covers waste-form categories, and important waste-form materials properties; physical properties; mechanical properties; chemical durability; vaporization; radiation effects; and thermal phase stability.

  1. Validation of an efficient method of assigning material properties in finite element analysis of pelvic bone.

    PubMed

    Shim, Vickie B; Battley, Mark; Anderson, Iain A; Munro, Jacob T

    2015-01-01

    Bone in the pelvis is a composite material with a complex anatomical structure that is difficult to model computationally. Rather than assigning material properties to increasingly smaller elements to capture detail in three-dimensional finite element (FE) models, properties can be assigned to Gauss points within larger elements. As part of a validation process, we compared experimental and analytical results from a composite beam under four-point load to FE models with material properties assigned to refined elements and Gauss points within larger elements. Both FE models accurately predicted deformation and the analytical predictions of internal shear stress.

  2. Metal-ceramic materials. Study and prediction of effective mechanical properties

    NASA Astrophysics Data System (ADS)

    Karakulov, Valerii V.; Smolin, Igor Yu.

    2016-08-01

    Mechanical behavior of stochastic metal-ceramic composite materials was numerically simulated on mesoscopic scale level. Deformation of mesoscopic volumes of composites, whose structure consists of a metal matrix and randomly distributed ceramic inclusions, was numerically simulated. The results of the numerical simulation were used for evaluation of the effective elastic and strength properties of metal-ceramic materials with different parameters of the structure. The values of the effective mechanical properties of investigated materials were obtained, and the character of the dependence of the effective elastic and strength properties on the structure parameters of composites was determined.

  3. Novel applications exploiting the thermal properties of nanostructured materials.

    SciTech Connect

    Eastman, J. A.

    1998-11-20

    A new class of heat transfer fluids, termed nanofluids, has been developed by suspending nanocrystalline particles in liquids. Due to the orders-of-magnitude larger thermal conductivities of solids compared to those of liquids such as water, significantly enhanced thermal properties are obtained with nanofluids. The use of nanofluids could impact many industrial sectors, including transportation, energy supply and production, electronics, textiles, and paper production by, for example, decreasing pumping power needs or reducing heat exchanger sizes. In contrast to the enhancement in effective thermal transport rates that is obtained when nanoparticles are suspended in fluids, nanocrystalline coatings are expected to exhibit reduced thermal conductivities compared to coarse-grained coatings. Reduced thermal conductivities are predicted to arise because of a reduction in the mean free path of phonons due to presence of grain boundaries. This behavior, combined with improved mechanical properties, makes nanostructured zirconia coatings excellent candidates for future applications as thermal barriers.

  4. Mechanical properties of high-temperature brazed titanium materials

    SciTech Connect

    Lugscheider, E.; Broich, U.

    1995-05-01

    The mechanical properties of commercial titanium CPTi and Ti-Al6-V4 joints, brazed with Ti-based filler metals in the system Ti(Zr)-Cu-Ni-(Pd) are evaluated by tensile test at various temperatures, as well as by fatigue test at room temperature. The influence of the microstructure in the brazing zone on the mechanical properties of the joints was assessed by conducting metallographic analysis. A vacuum furnace and an induction heating furnace were used for the production of the metallographic and tensile samples. The results from the mechanical and metallographic investigations revealed a strong dependence of the tensile strength of the titanium joints on the microstructure of the brazing zone. The presence of the brittle intermetallic Ti-Cu and Ti-Ni phases in the brazing zone leads to the weakening of the joint. However, for the formation of these intermetallic phases can be avoided by using adequate brazing process parameters and by optimizing the joint clearance. In that case, it is possible to fabricate titanium joints with Ti-based filler metals that have excellent mechanical properties comparable to those of the base metal.

  5. Tensile properties of ADI material in water and gaseous environments

    SciTech Connect

    Rajnovic, Dragan; Balos, Sebastian; Sidjanin, Leposava; Eric Cekic, Olivera; Grbovic Novakovic, Jasmina

    2015-03-15

    Austempered ductile iron (ADI) is an advanced type of heat treated ductile iron, having comparable mechanical properties as forged steels. However, it was found that in contact with water the mechanical properties of austempered ductile irons decrease, especially their ductility. Despite considerable scientific attention, the cause of this phenomenon remains unclear. Some authors suggested that hydrogen or small atom chemisorption causes the weakening of the surface atomic bonds. To get additional reliable data of that phenomenon, in this paper, two different types of austempered ductile irons were tensile tested in various environments, such as: argon, helium, hydrogen gas and water. It was found that only the hydrogen gas and water gave a statistically significant decrease in mechanical properties, i.e. cause embrittlement. Furthermore, the fracture surface analysis revealed that the morphology of the embrittled zone near the specimen surface shares similarities to the fatigue micro-containing striation-like lines, which indicates that the morphology of the brittle zone may be caused by cyclic local-chemisorption, micro-embrittlement and local-fracture. - Highlights: • In contact with water and other liquids the ADI suddenly exhibits embrittlement. • The embrittlement is more pronounced in water than in the gaseous hydrogen. • The hydrogen chemisorption into ADI surface causes the formation of a brittle zone. • The ADI austempered at lower temperatures (300 °C) is more resistant to embrittlement.

  6. Determination of mechanical properties of polymer film materials

    NASA Technical Reports Server (NTRS)

    Hughes, E. J.; Rutherford, J. L.

    1975-01-01

    Five polymeric film materials, Tedlar, Teflon, Kapton H, Kapton F, and a fiberglass reinforced polyimide, PG-402, in thickness ranging from 0.002 to 0.005 inch, were tested over a temperature range of -195 to 200 C in the "machine" and transverse direction to determine: elastic modulus, Poisson's ratio, three percent offset yield stress, fracture stress, and strain to fracture. The elastic modulus, yield stress and fracture stress decreased with increasing temperature for all the materials while the fracture strain increased. Teflon and Tedlar had the greatest temperature dependence and PG-402 the least. At 200 C the Poisson ratio values ranged from 0.39 to 0.5; they diminished as the temperature decreased covering a range of 0.26 to 0.42 at -195 C. Shortening the gauge length from eight inches to one inch increased the strain to fracture and lowered the elastic modulus values.

  7. Investigation of composite materials property requirements for sonic fatigue research

    NASA Technical Reports Server (NTRS)

    Patrick, H. V. L.

    1985-01-01

    Experimental techniques for determining the extensional and bending stiffness characteristics for symmetric laminates are presented. Vibrational test techniques for determining the dynamic modulus and material damping are also discussed. Partial extensional stiffness results intially indicate that the laminate theory used for predicting stiffness is accurate. It is clearly shown that the laminate theory can only be as accurate as the physical characteristics describing the lamina, which may vary significantly. It is recommended that all of the stiffness characteristics in both extension and bending be experimentally determined to fully verify the laminate theory. Dynamic modulus should be experimentally evaluated to determine if static data adequately predicts dynamic behavior. Material damping should also be ascertained because laminate damping is an order of magnitude greater than found in common metals and can significantly effect the displacement response of composite panels.

  8. GIGABAR MATERIAL PROPERTIES EXPERIMENTS ON NIF AND OMEGA

    SciTech Connect

    Swift, D C; Hawreliak, J A; Braun, D; Kritcher, A; Glenzer, S; Collins, G W; Rothman, S D; Chapman, D; Rose, S

    2011-08-04

    The unprecedented laser capabilities of the National Ignition Facility (NIF) make it possible for the first time to countenance laboratory-scale experiments in which gigabar pressures can be applied to a reasonable volume of material, and sustained long enough for percent level equation of state measurements to be made. We describe the design for planned experiments at the NIF, using a hohlraum drive to induce a spherically-converging shock in samples of different materials. Convergence effects increase the shock pressure to several gigabars over a radius of over 100 microns. The shock speed and compression will be measured radiographically over a range of pressures using an x-ray streak camera. In some cases, we will use doped layers to allow a radiographic measurement of particle velocity.

  9. Property Screening and Evaluation of Ceramic Turbine Engine Materials

    DTIC Science & Technology

    1979-10-01

    doped with 1% MgO, 8% Y2 03, and 15% Y20 3 ) were of lower strength than the Norton NC-132 and NCX- 34 materials, Slow crick growth was in evidence...T.L. Francis and R.L. Coble, "Creep of Polycrystalline Silicon Carbide," Jour. Amer. Ceram. Soc., 51(2) pp. 115-6 (1968). 44. P.L. Farnsworth and R.L

  10. The Interpretation of XPS Spectra: Insights Into Materials Properties

    SciTech Connect

    Bagus, Paul S.; Ilton, Eugene S.; Nelin, Constance J.

    2013-06-01

    We review basic and advanced concepts needed for the correct analysis of XPS features. We place these concepts on rigorous foundations and explore their physical and chemical meanings without stressing the derivation of the mathematical formulations, which can be found in the cited literature. The significance and value of combining theory and experiment is demonstrated by discussions of the physical and chemical origins of the main and satellite XPS features for a variety of molecular and condensed phase materials.

  11. Multiple Scattering Theories for Optical Properties of Composite Materials.

    DTIC Science & Technology

    2014-09-26

    is going to be obtained. To solve this problem several works have used the Quantum Box Method within the Random Phase Approximation to calculate the...order of 1OOA or less.’ 3 To solve this problem several researchers have used the Quantum Box Method within the Random Phase Approximation to calculate...homogeneous materials (cermets). It has been found that correlation effects due to the formation process of cermets, quantum size corrections, and

  12. Materials Properties at Internal Interfaces: Fundamental Atomic Issues

    SciTech Connect

    Browning, Nigel D.

    2014-09-12

    During the course of this research, the microscopy methods were applied to many different systems (see publication list). However, the work can be broadly classified into three main areas: the statistical distribution of grain boundary structures under different doping conditions, the identification of individual dopant atoms in oxide materials, and the evaluation of nucleation and growth processes in liquid and more recently. The main results from each of these efforts will be discussed in the final report.

  13. Setting properties and sealing ability of hydraulic temporary sealing materials.

    PubMed

    Ogura, Yoko; Katsuumi, Ichiroh

    2008-09-01

    This study sought to investigate the setting progress and sealing ability of hydraulic temporary sealing materials used in endodontic treatment: Lumicon, Caviton, and HY-Seal. To evaluate setting progress, the materials were filled into glass tubes with one end sealed and immersed in water. After immersion, a measurement apparatus was inserted from the non-immersed end and the set area was determined by subtracting the unset area from the sample thickness. To evaluate sealing ability, materials were filled into glass tubes and divided into four groups based on different immersion times. Thermal cycling and dye penetration were performed. At 7 days, the setting depths of HY-Seal and Caviton were almost equivalent to full sample thickness, while that of Lumicon was only half of full sample thickness (p < 0.01). On sealing ability, Lumicon ranked the highest followed by Caviton, whereas HY-Seal was unstable (p < 0.01). These results suggested that there was no correlation between setting progress and sealing ability.

  14. Non-Contact Measurements of Creep Properties of Refractory Materials

    NASA Technical Reports Server (NTRS)

    Lee, Jonghyun; Bradshaw, Richard C.; Hyers, Robert W.; Rogers, Jan R.; Rathz, Thomas J.; Wall, James J.; Choo, Hahn; Liaw, Peter

    2006-01-01

    State-of-the-art technologies for hypersonic aircraft, nuclear electric/thermal propulsion for spacecraft, and more efficient jet engines are driving ever more demanding needs for high-temperature (>2000 C) materials. At such high temperatures, creep rises as one of the most important design factors to be considered. Since conventional measurement techniques for creep resistance are limited to about 17OO0C, a new technique is in demand for higher temperatures. This paper presents a non-contact method using electrostatic levitation (ESL) which is applicable to both metallic and non-metallic materials. The samples were rotated quickly enough to cause creep deformation by centrifugal acceleration. The deformation of the samples was captured with a high speed camera and then the images were analyzed to estimate creep resistance. Finite element analyses were performed and compared to the experiments to verify the new method. Results are presented for niobium and tungsten, representative refractory materials at 2300 C and 2700 C respectively.

  15. Synthesis of Microporous Materials and Their VSC Adsorption Properties

    NASA Astrophysics Data System (ADS)

    Yokogawa, Y.; Morikawa, H.; Sakanishi, M.; Utaka, H.; Nakamura, A.; Kishida, I.

    2011-10-01

    Oral malodor is caused by volatile sulfur compounds (VSC) such as hydrogen sulfide (H2S), methyl mercaptan and dimethyl sulfide produced in mouth. VSC induces permeability of mucous membrane and oral malodor formation. Thus, the adsorbent which highly adsorbs VSC should be useful for health in mouth and may prevent teeth from decaying. The microporous material, hydrotalcite, was synthesized by a wet method, and the H2S adsorption was studied. The samples, identified by powder X-ray diffraction method, were put into glass flask filled with H2S gas. The initial concentration of H2S was 30 ppm. The change in concentrations of H2S was measured at rt, and the amount of H2S absorbed on the hydrotalcite for 24 h was 300 micro L/g. The samples were taken out from the above glass flask and put into a pyrolysis plant attached to gas chromatography-mass spectrometry to determine the amount of H2S desorbed from samples. Only 3 % of H2S was desorbed when heated at 500 °C. H2S in water was also found to adsorb into hydrotalcite, which was confirmed by the headspace gas chromatography with flame photometric detector. The hydrotalcite material should be expected to be an adsorbent material, useful for health in mouth.

  16. A measurement setup for acquiring the local magnetic properties of plastically deformed soft magnetic materials

    SciTech Connect

    Bi Shasha; Sutor, Alexander; Lerch, Reinhard; Xiao Yunshi

    2011-04-01

    This paper introduces a new measurement setup for extraction of the local magnetic properties. With the help of finite element method simulations, modifications are made on the previous double-C-yoke method. Small dimension measuring coils are applied in the stray field produced by the magnetic circuit to evaluate the local magnetic properties of the specified part of the specimen. Through the measurements with the plastically deformed materials at different temperatures, it indicates that the magnetic properties of soft magnetic materials are quite sensitive to plastic straining. After high-temperature thermal treatment on the plastically deformed specimen, the local magnetic properties exhibit an obvious recovery.

  17. Photophysical Properties of Novel Organic, Inorganic, and Hybrid Semiconductor Materials

    NASA Astrophysics Data System (ADS)

    Chang, Angela Yenchi

    For the past 200 years, novel materials have driven technological progress, and going forward these advanced materials will continue to deeply impact virtually all major industrial sectors. Therefore, it is vital to perform basic and applied research on novel materials in order to develop new technologies for the future. This dissertation describes the results of photophysical studies on three novel materials with electronic and optoelectronic applications, namely organic small molecules DTDCTB with C60 and C70, colloidal indium antimonide (InSb) nanocrystals, and an organic-inorganic hybrid perovskite with the composition CH3NH3PbI 3-xClx, using transient absorption (TA) and photoluminescence (PL) spectroscopy. In chapter 2, we characterize the timescale and efficiency of charge separation and recombination in thin film blends comprising DTDCTB, a narrow-band gap electron donor, and either C60 or C70 as an electron acceptor. TA and time-resolved PL studies show correlated, sub-picosecond charge separation times and multiple timescales of charge recombination. Our results indicate that some donors fail to charge separate in donor-acceptor mixed films, which suggests material manipulations may improve device efficiency. Chapter 3 describes electron-hole pair dynamics in strongly quantum-confined, colloidal InSb nanocrystal quantum dots. For all samples, TA shows a bleach feature that, for several picoseconds, dramatically red-shifts prior to reaching a time-independent position. We suggest this unusual red-shift relates transient population flow through two energetically comparable conduction band states. From pump-power-dependent measurements, we also determine biexciton lifetimes. In chapter 4, we examine carrier dynamics in polycrystalline methylammonium lead mixed halide perovskite (CH3NH3PbI3-xCl x) thin films as functions of temperature and photoexcitation wavelength. At room temperature, the long-lived TA signals stand in contrast to PL dynamics, where the

  18. Density functional theory and pseudopotentials: A panacea for calculating properties of materials

    SciTech Connect

    Cohen, M.L. |

    1995-09-01

    Although the microscopic view of solids is still evolving, for a large class of materials one can construct a useful first-principles or ``Standard Model`` of solids which is sufficiently robust to explain and predict many physical properties. Both electronic and structural properties can be studied and the results of the first-principles calculations can be used to predict new materials, formulate empirical theories and simple formulae to compute material parameters, and explain trends. A discussion of the microscopic approach, applications, and empirical theories is given here, and some recent results on nanotubes, hard materials, and fullerenes are presented.

  19. Neutron scattering studies of industry-relevant materials : connecting microscopic behavior to applied properties.

    SciTech Connect

    Loong, C.-K.

    1999-01-04

    Certain systems of oxides, nitrides and carbides have been recognized as the basic components of advanced materials for applications as engineering and electronic ceramics, catalysts, sensors, etc. under extreme environments. An understanding of the basic atomic and electronic properties of these systems will benefit enormously the industrial development, of new materials featuring tailored properties. We present an overview of neutron-scattering studies of the crystal phases, microstructure, phonon and magnetic excitations of key materials including rare-earth phosphates, phosphate glasses, nanostructured metal oxides, as well as silicon nitride and silicon carbide ceramics. A close collaboration among neutron-scattering experimentation, molecular-dynamics simulation and material synthesis is emphasized.

  20. New Explosive Materials and Pyrotechnic Formulations with Improved Safety and Sensitivity Properties

    DTIC Science & Technology

    1996-08-01

    materials as they are aged. For TiHx/KClO4 materials the general stability reaction is as follows. 2TiHx + (1+0.25x) KClO4 ----> 2 TiO2 + (1+0.25x) KCL...Decomposition and function result in the inert reaction products- TiO2 , KCl, and water. Table 2 Energetic Material Properties Material Lead Lead Property Azide...development work has been done at Unidynamics/Phoenix, Inc., now Pacific Scientific Co ., Energy Dynamics Division, Chandler, Arizona under partial support from

  1. The effects of variability in bank material properties on riverbank stability: Goodwin Creek, Mississippi

    NASA Astrophysics Data System (ADS)

    Parker, Chris; Simon, Andrew; Thorne, Colin R.

    2008-11-01

    Bank retreat is an important area of research within fluvial geomorphology and is a land management problem of global significance. The Yazoo River Basin in Mississippi is one example of a system which is experiencing excessive erosion and bank instability. The properties of bank materials are important in controlling the stability of stream banks and past studies have found that these properties are often variable spatially. Through an investigation of bank material properties on a stretch of Goodwin Creek in the Yazoo Basin, Mississippi, this study focuses on: i) how and why effective bank material properties vary through different scales; ii) how this variation impacts on the outputs from a bank stability model; and iii) how best to appropriately represent this variability within a bank stability model. The study demonstrates the importance that the variability of effective bank material properties has on bank stability: at both the micro-scale within a site, and at the meso-scale between sites in a reach. This variability was shown to have important implications for the usage of the Bank Stability and Toe Erosion Model (BSTEM), a deterministic bank stability model that currently uses a single value to describe each bank material property. As a result, a probabilistic representation of effective bank material strength parameters is recommended as a potential solution for any bank stability model that wishes to account for the important influence of the inherent variability of soil properties.

  2. Materials Characterization at Utah State University: Facilities and Knowledge-base of Electronic Properties of Materials Applicable to Spacecraft Charging

    NASA Technical Reports Server (NTRS)

    Dennison, J. R.; Thomson, C. D.; Kite, J.; Zavyalov, V.; Corbridge, Jodie

    2004-01-01

    In an effort to improve the reliability and versatility of spacecraft charging models designed to assist spacecraft designers in accommodating and mitigating the harmful effects of charging on spacecraft, the NASA Space Environments and Effects (SEE) Program has funded development of facilities at Utah State University for the measurement of the electronic properties of both conducting and insulating spacecraft materials. We present here an overview of our instrumentation and capabilities, which are particularly well suited to study electron emission as related to spacecraft charging. These measurements include electron-induced secondary and backscattered yields, spectra, and angular resolved measurements as a function of incident energy, species and angle, plus investigations of ion-induced electron yields, photoelectron yields, sample charging and dielectric breakdown. Extensive surface science characterization capabilities are also available to fully characterize the samples in situ. Our measurements for a wide array of conducting and insulating spacecraft materials have been incorporated into the SEE Charge Collector Knowledge-base as a Database of Electronic Properties of Materials Applicable to Spacecraft Charging. This Database provides an extensive compilation of electronic properties, together with parameterization of these properties in a format that can be easily used with existing spacecraft charging engineering tools and with next generation plasma, charging, and radiation models. Tabulated properties in the Database include: electron-induced secondary electron yield, backscattered yield and emitted electron spectra; He, Ar and Xe ion-induced electron yields and emitted electron spectra; photoyield and solar emittance spectra; and materials characterization including reflectivity, dielectric constant, resistivity, arcing, optical microscopy images, scanning electron micrographs, scanning tunneling microscopy images, and Auger electron spectra. Further

  3. Real-time probe based quantitative determination of material properties at the nanoscale.

    PubMed

    Saraswat, G; Agarwal, P; Haugstad, G; Salapaka, M V

    2013-07-05

    Tailoring the properties of a material at the nanoscale holds the promise of achieving hitherto unparalleled specificity of the desired behavior of the material. Key to realizing this potential of tailoring materials at the nanoscale are methods for rapidly estimating physical properties of the material at the nanoscale. In this paper, we report a method for simultaneously determining the topography, stiffness and dissipative properties of materials at the nanoscale in a probe based dynamic mode operation. The method is particularly suited for investigating soft-matter such as polymers and bio-matter. We use perturbation analysis tools for mapping dissipative and stiffness properties of material into parameters of an equivalent linear time-invariant model. Parameters of the equivalent model are adaptively estimated, where, for robust estimation, a multi-frequency excitation of the probe is introduced. We demonstrate that the reported method of simultaneously determining multiple material properties can be implemented in real-time on existing probe based instruments. We further demonstrate the effectiveness of the method by investigating properties of a polymer blend in real-time.

  4. Stochastic identification of composite material properties from limited experimental databases, part I: Experimental database construction

    NASA Astrophysics Data System (ADS)

    Mehrez, Loujaine; Moens, David; Vandepitte, Dirk

    2012-02-01

    Composite materials exhibit variability and uncertainties in their material properties with relation to their compositions and manufacturing processes. Conventional deterministic identification of composite material properties involves numerical-experimental characterisation techniques. These techniques do not account for the associated spatial variability and uncertainties in the identified properties. The objective of this work is to characterise spatially-stochastic macroscopic material properties of heterogeneous composite fabrics from limited-size macro-scale experimental measurements. The work is organised in a sequence of two papers. The first paper, present manuscript, is concerned with the construction of an experimental database of macroscopic material properties of heterogeneous composite fabrics from limited-size macro-scale experimental measurements. The mobility frequency response functions from a number of cantilever-beam specimens of the composite material are measured at selected points along each beam. These direct measurements are introduced to a set of deterministic inverse problems in order to reconstruct a database of heterogeneous Young's modulus spatial fields. The constructed database will be used, in the second paper of the sequence, to construct a stochastic model of the material properties that account for both aleatory uncertainties, related to sample inter-variability, as well as epistemic uncertainties due to insufficiency of the available data.

  5. Superconducting and normal-state properties of novel materials

    SciTech Connect

    Crespi, Vincent Henry

    1994-09-01

    Interest in solid state physics naturally gravitates towards novel systems such as the copper oxide superconductors or the alkali-doped fullerenes. This paper tackles high temperature superconductivity by extension of the BCS theory for ordinary superconductors, in particular, incorporation of anharmonicity in phonon dynamics and anisotropy in electron-phonon coupling. These refinements can account for many anomalous properties of the cuprates. Phonon anharmonicity is consistent with a small isotope effect at optimal doping and a larger isotope effect in suboptimal systems. Anisotropy in the interaction, a plausible consequence of certain anharmonic models, can circumvent objections to electron-phonon coupling based on transport measurements. Such anisotropy is consistent with gap anisotropy and strong temperature dependence of Hall coefficient. In contrast to cuprates, the doped fullerenes appear understandable within the standard model of single electron band theory and BCS theory. Microscopic parameters derivable from transport and critical field measurements yield a self-consistent picture of a disordered Type-2 BCS superconductor. Isotope effects imply that superconductivity is mediated by carbon phonons opposed to alkali atom vibrations. The novel properties of the fullerenes are generally traceable to their microscopic heterogeneity, being a collection of tightly bound but weakly overlapping molecules. Separation of electronic regimes into weak intermolecular overlap and strong carbon-carbon on-ball bonds yields a superconductor with both a large density of states and a high phonon frequency, properties consistent with a relatively high {Tc}. Disordered nature of intermolecular overlap produces a large residual resistivity and a universal dependence to the Hall coefficient. This disorder is also consistent with the anomalously large carbon isotope effect for heterogeneous isotopic substitution.

  6. Processing and property evaluation of metal matrix superconducting materials

    NASA Technical Reports Server (NTRS)

    Rao, Appajosula S.

    1995-01-01

    Metal - superconductor (YBCO) systems have been prepared and characterized by resistivity, ac susceptibility and dc SQUID magnetic moment measurements. The silver composites showed superconducting transition for all the composites processed and the superconducting transition temperature tends to depend upon the concentration of the silver in the composite. Aluminum composites showed an unusual resistivity results with two transitions around 90 K and 120 K. The superconducting property of silver composites can be explained qualitatively in terms of the proximity theory that has been suggested for the low temperature superconductors.

  7. Modeling Spin Testing Using Location Specific Material Properties

    DTIC Science & Technology

    2012-04-01

    Table 2. Strength per percent of alloying elements Units Al Cr Co Mo Ti V W Nb Ta Zr MPa/pct1.5 225 337 39.4 1015 775 408 977 1183 1191 2359... term in the denominator of the creep strain rate equation. Thus, the larger the grain size, the smaller the creep strain rate, as is the case when...turbine engine disks", Shen, 1994 3 "Thermal and Mechanical Property Characterization of the Advanced Disk Alloy LSHR" NASA/ CR - 213645 4

  8. Workshop on the Thermophysical Properties of Molten Materials

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The role of accurate thermophysical property data in the process design and modeling of solidification processes was the subject of a workshop held on 22-23 Oct. 1992 in Cleveland, Ohio. The workshop was divided into three sequential sessions dealing with (1) industrial needs and priorities for thermophysical data, (2) experimental capabilities for measuring the necessary data, and (3) theoretical capabilities for predicting the necessary data. In addition, a 2-hour panel discussion of the salient issues was featured as well as a 2-hour caucus that assessed priorities and identified action plans.

  9. KLEGECELL: a new lightweight insulating material with superior properties

    SciTech Connect

    Hodges, L.

    1980-01-01

    Klegecell -- the brand name of a rigid polyvinyl chloride foam used extensively in the marine and aviation industries -- has substantial advantages over other rigid insulation for certain passive solar applications, particularly as movable insulation. It comes in lightweight rigid panels with high insulating values (R = 7 per inch) so that thin panels are adequate. Its low water vapor permeability makes it suitable for use on the inside of glazing in cold climates, since it prevents condensation from occurring. Its nonflammability is a particularly desirable property for interior use.

  10. Development of Composite Materials with High Passive Damping Properties

    DTIC Science & Technology

    2006-05-15

    SPONSOR/MONITOR’S REPORT NUMBER(S) 12. DISTRIBUTION/AVAILABILITY STATEMENT 13. SUPPLEMENTARY NOTES 14 . ABSTRACT The structures studied in this ONR...2.1.2 Measures of damping 8 2.1.3 Measurement methods 9 2.2 Damping in Sandwich Structures. 9 2.2.1 Analytical models 10 2.2.2 Damping and damage 14 ...2.2.3 Finite element models 14 2.2.4 Statistical energy analysis method 15 CHAPTER 3 ANALYSIS OF DAMPING IN SANDWICH MATERIALS. 24 3.1 Equation of

  11. Optical properties of plastic materials for medical vision applications

    NASA Astrophysics Data System (ADS)

    Sultanova, N. G.; Kasarova, S. N.; Nikolov, I. D.

    2012-12-01

    Several types of optical polymer materials suitable for ophthalmic or medical vision applications have been studied. We have measured refractive indices of studied plastics at various wavelengths in the visible and near-infrared spectral regions. Important optical characteristics as Abbe numbers, dispersion coefficients and curves, principal and relative partial dispersion have been evaluated. Calculated refractometric data at many laser emission wavelengths used for medical surgery, therapy and diagnostics is included. As an example of a medical vision application of plastics, optical design of a micro-triplet for use in disposable endoscopes is presented.

  12. Laboratory Determination of Thermal Protection System Materials Surface Catalytic Properties

    DTIC Science & Technology

    2007-07-01

    using a variety of electrical discharge sources. Traditional methods of atom detection have included chemical titration,41 electron spin resonance...Probabilities Material Experiments γO, × 10-3 Quartz 11 0.098 ± 0.013 SS304 (Cr 18%, Ni 10%, Fe balance) 11 16 ± 7 Constantan (Ni 45%, Cu balance) 10 46...or b. Similar measurements with Inconel 617 at room temperature,76 and SS304 , Constantan, and Chromel at room temperature and 250 °C,68 also

  13. Investigations of physicochemical properties of bottom-ash materials for use them as secondary raw materials

    NASA Astrophysics Data System (ADS)

    Mal'chik, A. G.; Litovkin, S. V.; Rodionov, P. V.

    2015-09-01

    In this paper chemical content and particle size distribution of bottom-ash material are defined; results of differential thermal and X-ray analyzes are given; processes of phase transformations occurring during heating, are examined for possible use of the waste to produce ceramic products. Studies have shown that effective specific activity of radionuclides in the material under examination would have no effect on radiation safety of the finished product.

  14. Mechanical properties of the beetle elytron, a biological composite material.

    PubMed

    Lomakin, Joseph; Huber, Patricia A; Eichler, Christian; Arakane, Yasuyuki; Kramer, Karl J; Beeman, Richard W; Kanost, Michael R; Gehrke, Stevin H

    2011-02-14

    We determined the relationship between composition and mechanical properties of elytra (modified forewings that are composed primarily of highly sclerotized dorsal and less sclerotized ventral cuticles) from the beetles Tribolium castaneum (red flour beetle) and Tenebrio molitor (yellow mealworm). Elytra of both species have similar mechanical properties at comparable stages of maturation (tanning). Shortly after adult eclosion, the elytron of Tenebrio is ductile and soft with a Young's modulus (E) of 44 ± 8 MPa, but it becomes brittle and stiff with an E of 2400 ± 1100 MPa when fully tanned. With increasing tanning, dynamic elastic moduli (E') increase nearly 20-fold, whereas the frequency dependence of E' diminishes. These results support the hypothesis that cuticle tanning involves cross-linking of components, while drying to minimize plasticization has a lesser impact on cuticular stiffening and frequency dependence. Suppression of the tanning enzymes laccase-2 (TcLac2) or aspartate 1-decarboxylase (TcADC) in Tribolium altered mechanical characteristics consistent with hypotheses that (1) ADC suppression favors formation of melanic pigment with a decrease in protein cross-linking and (2) Lac2 suppression reduces both cuticular pigmentation and protein cross-linking.

  15. Materials Property Profiles for Actively Cooled Panels: An Illustration for Scramjet Applications

    NASA Astrophysics Data System (ADS)

    Vermaak, N.; Valdevit, L.; Evans, A. G.

    2009-04-01

    A scheme for identifying and visualizing the material properties that limit the performance of candidate materials for actively cooled aerospace propulsion components is presented and illustrated for combustor panels for Mach 7 hypersonic vehicles. The method provides a framework for exploring the nonlinear interactions between design and materials optimization. By probing the active constraints along the border of feasible design space, the limiting properties have been elucidated for a representative group of candidate materials. Property vectors that enhance design options have also been determined. For one of the promising candidate alloys (the Ni-based superalloy, INCONEL X-750), the possibilities of reclaiming design space and lowering optimal combustor panel weight by tailoring its strength properties are assessed.

  16. A study of the effect of selected material properties on the ablation performance of artificial graphite

    NASA Technical Reports Server (NTRS)

    Maahs, H. G.

    1972-01-01

    Eighteen material properties were measured on 45 different, commercially available, artificial graphites. Ablation performance of these same graphites were also measured in a Mach 2 airstream at a stagnation pressure of 5.6 atm. Correlations were developed, where possible, between pairs of the material properties. Multiple regression equations were then formulated relating ablation performance to the various material properties, thus identifying those material properties having the strongest effect on ablation performance. These regression equations reveal that ablation performance in the present test environment depends primarily on maximum grain size, density, ash content, thermal conductivity, and mean pore radius. For optimization of ablation performance, grain size should be small, ash content low, density and thermal conductivity high, and mean pore radius large.

  17. Further improvements in program to calculate electronic properties of narrow band gap materials

    NASA Technical Reports Server (NTRS)

    Patterson, James D.

    1991-01-01

    Research into the properties of narrow band gap materials during the period 15 Jun. to 15 Dec. 1991 is discussed. Abstracts and bibliographies from papers presented during this period are reported. Graphs are provided.

  18. Glassy materials for lithium batteries: electrochemical properties and devices performances

    NASA Astrophysics Data System (ADS)

    Duclot, Michel; Souquet, Jean-Louis

    Amorphous or glassy materials may be used as electrolyte or electrode materials for lithium primary or secondary batteries. A first generation proceeded from classical coin cells in which the organic electrolyte was replaced by a high lithium conductive glassy electrolyte. The solid components were assembled under isostatic pressure. The main advantages of such cells are a good storage stability and ability to operate until 200°C. Nevertheless, the high resistivity of the glassy electrolyte below room temperature and a limited depth for charge and discharge cycles makes these cells not competitive compared to conventional lithium-ion batteries. More promising, are the thin films solid state microbatteries realised by successive depositions of electrodes and electrolyte. The low resistance of the electrolyte amorphous layer allows cycling at temperatures as low as -10°C. The total thickness of thin film batteries, including packaging is less than 100 μm. A capacity of about 100 μAh cm -2 with over 10 4 charge-discharge cycles at 90% in depth of discharge is well suited for energy independent smart cards or intelligent labels, which represent for these devices a large and unrivalled market.

  19. Chitosan-nanosilica hybrid materials: Preparation and properties

    NASA Astrophysics Data System (ADS)

    Podust, T. V.; Kulik, T. V.; Palyanytsya, B. B.; Gun'ko, V. M.; Tóth, A.; Mikhalovska, L.; Menyhárd, A.; László, K.

    2014-11-01

    The research focuses on the synthesis of novel organic-inorganic hybrid materials based on polysaccharide chitosan and nanosilicas (SiO2, TiO2/SiO2 and Al2O3/SiO2). The chitosan modified nanooxides were obtained by the equilibrium adsorption method. The chitosan adsorption capacities of silica/titania and silica/alumina are higher than of the plain silica due to the additional active sites present on the surfaces of the mixed oxides. The hybrid materials were characterized by low-temperature nitrogen adsorption/desorption, photon correlation spectroscopy (PCS), scanning electron microscopy (SEM), thermogravimetry (TG/DTG) and temperature-programmed desorption with mass spectrometry control (TPD MS) methods. The chitosan treatment only modestly influences the surface area SBET of the nanooxides but the rearrangement of the secondary and tertiary structures (aggregates and agglomerates) results in an enhancement of the mesoporosity and affects the size of the aggregates. The more severe thermodestruction of the polysaccharide desorbing from the modified mixed silicas indicates a stronger interaction between the chitosan and the mixed oxides compared to the silanol groups of the plain silica surface.

  20. On the thermoelastic analysis of solar cell arrays and related material properties

    NASA Technical Reports Server (NTRS)

    Salama, M. A.; Bouquet, F. L.

    1976-01-01

    Accurate prediction of failure of solar cell arrays requires accuracy in the computation of thermally induced stresses. This was accomplished by using the finite element technique. Improved procedures for stress calculation were introduced together with failure criteria capable of describing a wide range of ductile and brittle material behavior. The stress distribution and associated failure mechanisms in the N-interconnect junction of two solar cell designs were then studied. In such stress and failure analysis, it is essential to know the thermomechanical properties of the materials involved. Measurements were made of properties of materials suitable for the design of lightweight arrays: microsheet-0211 glass material for the solar cell filter, and Kapton-H, Kapton F, Teflon, Tedlar, and Mica Ply PG-402 for lightweight substrates. The temperature-dependence of the thermal coefficient of expansion for these materials was determined together with other properties such as the elastic moduli, Poisson's ratio, and the stress-strain behavior up to failure.

  1. Fluorescence Spectroscopic Properties of Normal and Abnormal Biomedical Materials

    NASA Astrophysics Data System (ADS)

    Pradhan, Asima

    Steady state and time-resolved optical spectroscopy and native fluorescence is used to study the physical and optical properties occurring in diseased and non-diseased biological human tissue, in particular, cancer of the human breast, artery and the dynamics of a photosensitizer useful in photodynamic therapy. The main focus of the research is on the optical properties of cancer and atherosclerotic tissues as compared to their normal counterparts using the different luminescence based spectroscopic techniques such as steady state fluorescence, time-resolved fluorescence, excitation spectroscopy and phosphorescence. The excitation and steady-state spectroscopic fluorescence using visible excitation wavelength displays a difference between normal and malignant tissues. This difference is attributed to absorption of the emission by hemoglobin in normal tissues. This method using 488nm fails to distinguish neoplastic tissue such as benign tissues and tumors from malignant tumors. The time-resolved fluorescence at visible, near -uv and uv excitation wavelengths display non-exponential profiles which are significantly different for malignant tumors as compared to non-malignant tissues only with uv excitation. The differences observed with visible and near-uv excitation wavelengths are not as significant. The non-exponential profiles are interpreted as due to a combination of fluorophores along with the action of non-radiative processes. Low temperature luminescence studies confirm the occurrence of non-radiative decay processes while temporal studies of various relevant biomolecules indicate the probable fluorophores responsible for the observed signal in tissues. Phosphorescence from human tissues have been observed for the first time and lifetimes of a few hundred nanoseconds are measured for malignant and benign tissues. Time-resolved fluorescence studies of normal artery and atherosclerotic plaque have shown that a combination of two excitation wavelengths can

  2. The actual goals of geoethics

    NASA Astrophysics Data System (ADS)

    Nemec, Vaclav

    2014-05-01

    The most actual goals of geoethics have been formulated as results of the International Conference on Geoethics (October 2013) held at the geoethics birth-place Pribram (Czech Republic): In the sphere of education and public enlightenment an appropriate needed minimum know how of Earth sciences should be intensively promoted together with cultivating ethical way of thinking and acting for the sustainable well-being of the society. The actual activities of the Intergovernmental Panel of Climate Changes are not sustainable with the existing knowledge of the Earth sciences (as presented in the results of the 33rd and 34th International Geological Congresses). This knowledge should be incorporated into any further work of the IPCC. In the sphere of legislation in a large international co-operation following steps are needed: - to re-formulate the term of a "false alarm" and its legal consequences, - to demand very consequently the needed evaluation of existing risks, - to solve problems of rights of individuals and minorities in cases of the optimum use of mineral resources and of the optimum protection of the local population against emergency dangers and disasters; common good (well-being) must be considered as the priority when solving ethical dilemmas. The precaution principle should be applied in any decision making process. Earth scientists presenting their expert opinions are not exempted from civil, administrative or even criminal liabilities. Details must be established by national law and jurisprudence. The well known case of the L'Aquila earthquake (2009) should serve as a serious warning because of the proven misuse of geoethics for protecting top Italian seismologists responsible and sentenced for their inadequate superficial behaviour causing lot of human victims. Another recent scandal with the Himalayan fossil fraud will be also documented. A support is needed for any effort to analyze and to disclose the problems of the deformation of the contemporary

  3. Dispersion relation for bianisotropic materials and its symmetry properties

    NASA Technical Reports Server (NTRS)

    Graglia, Roberto D.; Uslenghi, Piergiorgio L. E.; Zich, Riccardo E.

    1991-01-01

    The dispersion relation for an arbitrary general bianisotropic medium is derived in Cartesian coordinates, in a form well suited to imposing the boundary conditions when dealing with layered media with planar and parallel interfaces. Special cases of practical interest are also considered. Eleven fundamental coefficient families are identified by considering in detail all the symmetries present in the dispersion relation. An ad hoc expression of the determinant of the sum of two 3 x 3 matrices permits the use of a simple procedure to obtain the coefficients of the dispersion equation. The discussed symmetry properties have general validity, and this technique to evaluate the coefficients may be useful in other fields of application where dispersion relations are of importance.

  4. Study of rheological properties of polypropylene/organoclay hybrid materials.

    PubMed

    Yu, Suzhu; Liu, Songlin; Zhao, Jianhong; Yong, Ming Shyan

    2006-12-01

    Polypropylene nanocomposites reinforced with organic modified montmorillonite clay have been fabricated by melt compounding using extrusion. The morphology of the composites is studied with transmission electron microscopy and X-ray diffraction. The melt-state rheological properties of the nanocomposites have been investigated as a function of temperature and organoclay loading. It is found that the organoclays are intercalated and dispersed evenly in the matrix. The storage and loss moduli of the hybrid composites decrease with temperature and increase with organoclay concentration. Both polypropylene and its composites demonstrate a melt-like rheological behavior, indicating the low degree of exfoliation of the organoclay. A shear thinning behavior is found for both polypropylene and its composites, but the onset of shear thinning for organoclay composites occurs at lower shear rates.

  5. Thermal properties of composite materials: a complex systems approximation

    NASA Astrophysics Data System (ADS)

    Carrillo, J. L.; Bonilla, Beatriz; Reyes, J. J.; Dossetti, Victor

    We propose an effective media approximation to describe the thermal diffusivity of composite samples made of polyester resin and magnetite inclusions. By means of photoacoustic spectroscopy, the thermal diffusivity of the samples were experimentally measured. The volume fraction of the inclusions was systematically varied in order to study the changes in the effective thermal diffusivity of the composites. For some samples, a static magnetic field was applied during the polymerization process, resulting in anisotropic inclusion distributions. Our results show a significant difference in the thermal properties of the anisotropic samples, compared to the isotropic randomly distributed. We correlate some measures of the complexity of the inclusion structure with the observed thermal response through a multifractal analysis. In this way, we are able to describe, and at some extent predict, the behavior of the thermal diffusivity in terms of the lacunarity and other measures of the complexity of these samples Partial Financial Support by CONACyT México and VIEP-BUAP.

  6. Evolutionary optimization of material properties of a tropical seed

    PubMed Central

    Lucas, Peter W.; Gaskins, John T.; Lowrey, Timothy K.; Harrison, Mark E.; Morrogh-Bernard, Helen C.; Cheyne, Susan M.; Begley, Matthew R.

    2012-01-01

    Here, we show how the mechanical properties of a thick-shelled tropical seed are adapted to permit them to germinate while preventing their predation. The seed has evolved a complex heterogeneous microstructure resulting in hardness, stiffness and fracture toughness values that place the structure at the intersection of these competing selective constraints. Analyses of different damage mechanisms inflicted by beetles, squirrels and orangutans illustrate that cellular shapes and orientations ensure damage resistance to predation forces imposed across a broad range of length scales. This resistance is shown to be around the upper limit that allows cracking the shell via internal turgor pressure (i.e. germination). Thus, the seed appears to strike an exquisitely delicate adaptive balance between multiple selection pressures. PMID:21613287

  7. TRITIUM EFFECTS ON DYNAMIC MECHANICAL PROPERTIES OF POLYMERIC MATERIALS

    SciTech Connect

    Clark, E

    2008-11-12

    Dynamic mechanical analysis has been used to characterize the effects of tritium gas (initially 1 atm. pressure, ambient temperature) exposure over times up to 2.3 years on several thermoplastics-ultrahigh molecular weight polyethylene (UHMW-PE), polytetrafluoroethylene (PTFE), and Vespel{reg_sign} polyimide, and on several formulations of elastomers based on ethylene propylene diene monomer (EPDM). Tritium exposure stiffened the elastic modulus of UHMW-PE up to about 1 year and then softened it, and reduced the viscous response monotonically with time. PTFE initially stiffened, however the samples became too weak to handle after nine months exposure. The dynamic properties of Vespel{reg_sign} were not affected. The glass transition temperature of the EPDM formulations increased approximately 4 C. following three months tritium exposure.

  8. Hygrothermal Material Properties for Soils in Building Science

    SciTech Connect

    Kehrer, Manfred; Pallin, Simon B

    2013-01-01

    Saving energy in buildings is top of mind with today s building professionals. Although designing energy-efficient walls and roofs is mostly a no-brainer, ensuring that below-grade foundations do not generate moisture problems has become even more complex, particularly because of how soil is involved. Hygrothermal performance of soils coupled to buildings is complicated because of the dearth of information on soil properties. A computational approach for heat transfer through the ground has been well-defined, and simplified methods have been developed. These approaches, however, generally ignore the transfer of soil moisture, which is not negligible. The intention of an ongoing study at Oak Ridge (TN) National Laboratory, therefore, is to gather, comprehend and adapt soil properties from soil science as well. The obtained information must be applicable to related tasks in building science and validated with hygrothermal calculation tools, where additional plugins to the existing software code WUFI (an acronym for Warme unde Felichte Instructionar, which translates to unsteady heat and moisture) are required. (See the sidebar, opposite page, for specifics on WUFI.)Simulation results from WUFI are being compared with existing thermal-only measurements and are being accomplished with ongoing hygrothermal measurements. The final outcome of the study will be the evaluation of several soil types in several climate zones for a number of basement assembly types. The study will define the type of soil, together with the type of building construction considered most and least reliable with respect to energy consumption and moisture safety. Furthermore, the study will determine the influences that different soils have on total energy loss through the ground.

  9. Data on Material Properties and Panel Compressive Strength of a Plastic-bonded Material of Glass Cloth and Canvas

    NASA Technical Reports Server (NTRS)

    Zender, George W; Schuette, Evan H; Weinberger, Robert A

    1944-01-01

    Results are presented of tests for determining the tensile, compressive, and bending properties of a material of plastic-bonding glass cloth and canvas layers. In addition, 10 panel specimens were tested in compression. Although the material is not satisfactory for primary structural use in aircraft when compared on a strength-weight basis with other materials in common use, there appears to be potential strength in the material that will require research for development. These points are considered in some detail in the concluding discussion of the report. An appendix shows that a higher tensile strength can be obtained by changes in the type of weave used in the glass-cloth reinforcement.

  10. Materials for ULSI metallization - Overview of Electrical Properties

    NASA Astrophysics Data System (ADS)

    Tsukimoto, S.; Ito, K.; Murakami, M.

    Since performance of ULSI Si devices was found to be controlled by RC delay (where R is the electrical resistance at the interconnects and C is the capacitance of the insulators), efforts have been continued to reduce the wiring resistance and the insulator capacitance. Replacement of aluminum alloy interconnect materials by copper (which has about 40% lower resistivity compared with the aluminum alloy) reduced not only the device switching times but also the fabrication cost. However, the resistivity of the Cu wires was demonstrated experimentally to increase rapidly [1, 2] when the line width approached to the mean free path (˜39 nm) of the conducting electrons as predicted by theories [3-5]. Figure 9.1 shows theoretical resistivity calculated as a function of line widths with two average grain sizes (D) using Mayadas and Shatzkes (MS) model [5] with P = 0 and R = 0.5, which were experimentally determined [2].

  11. Multivariate analysis approach for correlations between material properties and tablet tensile strength of microcrystalline cellulose.

    PubMed

    Liao, Zhenggen; Zhang, Nan; Zhao, Guowei; Zhang, Jing; Liang, Xinli; Zhong, Shaojin; Wang, Guangfa; Chen, Xulong

    2012-09-01

    In this study we applied statistical multivariate analysis techniques to establish correlations between material properties and tablet tensile strength (TS) of microcrystalline cellulose (MCC) with different types and manufacturers. There were sixteen MCC samples included in this analysis described by 22 material parameters. For data analysis, principal component analysis (PCA) was used to model and evaluate the various relationships between the material properties and TS. Furthermore, partial least squares regression (PLS) analysis was performed to quantify the relationships between the material properties and TS and to predict the most influential MCC parameters contributing to the compactibility. The results showed that the moisture content, hygroscopicity and crystallinity did not exhibit significant impact on TS. The turgidity, maximum water uptake, degree of polymerization and molecular weight presented a strong positive influence on TS, while the density property, bulk and tap density, exhibited an obvious negative impact. The present work demonstrated that multivariate data analysis techniques (PCA and PLS) are useful for interpreting complex relations between 22 material properties and the tabletting properties of MCC. Furthermore, the method can be used for material classification.

  12. Acoustic properties and durability of liner materials at non-standard atmospheric conditions

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Gaeta, R. J., Jr.; Hsu, J. S.

    1994-01-01

    This report documents the results of an experimental study on how acoustic properties of certain absorbing liner materials are affected by nonstandard atmospheric conditions. This study was motivated by the need to assess risks associated with incorporating acoustic testing capability in wind tunnels with semicryogenic high Reynolds number aerodynamic and/or low pressure capabilities. The study consisted of three phases: 1) measurement of acoustic properties of selected liner materials at subatmospheric pressure conditions, 2) periodic cold soak and high pressure exposure of liner materials for 250 cycles, and 3) determination of the effect of periodic cold soak on the acoustic properties of the liner materials at subatmospheric conditions and the effect on mechanical resiliency. The selected liner materials were Pyrell foam, Fiberglass, and Kevlar. A vacuum facility was used to create the subatmospheric environment in which an impedance tube was placed to measure acoustic properties of the test materials. An automated cryogenic cooling system was used to simulate periodic cold soak and high pressure exposure. It was found that lower ambient pressure reduced the absorption effectiveness of the liner materials to varying degrees. Also no significant change in the acoustic properties occurred after the periodic cold soak. Furthermore, mechanical resiliency tests indicated no noticeable change.

  13. Multiscale Modeling of Carbon/Phenolic Composite Thermal Protection Materials: Atomistic to Effective Properties

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Murthy, Pappu L.; Bednarcyk, Brett A.; Lawson, John W.; Monk, Joshua D.; Bauschlicher, Charles W., Jr.

    2016-01-01

    Next generation ablative thermal protection systems are expected to consist of 3D woven composite architectures. It is well known that composites can be tailored to achieve desired mechanical and thermal properties in various directions and thus can be made fit-for-purpose if the proper combination of constituent materials and microstructures can be realized. In the present work, the first, multiscale, atomistically-informed, computational analysis of mechanical and thermal properties of a present day - Carbon/Phenolic composite Thermal Protection System (TPS) material is conducted. Model results are compared to measured in-plane and out-of-plane mechanical and thermal properties to validate the computational approach. Results indicate that given sufficient microstructural fidelity, along with lowerscale, constituent properties derived from molecular dynamics simulations, accurate composite level (effective) thermo-elastic properties can be obtained. This suggests that next generation TPS properties can be accurately estimated via atomistically informed multiscale analysis.

  14. AFLOWLIB.ORG: a Distributed Materials Properties Repository from High-throughput Ab initio Calculations

    DTIC Science & Technology

    2011-11-15

    919 660 8963 Abstract Empirical databases of crystal structures and thermodynamic properties are fundamental tools for materials research. Recent...for structure discovery and optimization, including uncovering of unsuspected compounds, metastable structures and correlations between various...diagrams, electronic structure and magnetic properties, gen- erated by the high-throughput framework A. This continuously updated compilation currently

  15. Study of friction properties of lunar surface material and its analogs

    NASA Technical Reports Server (NTRS)

    Dukhovskoy, Y. A.; Motovilov, E. A.; Silin, A. A.; Smorodinov, M. I.; Shvarev, V. V.

    1974-01-01

    A description is given of instruments for determining the friction properties of the surficial layer of lunar surface material returned by the Luna 16 automatic lunar station, as well as the friction properties of its analogs: andesite-basaltic sand and basalts. The experimental method and results are presented.

  16. Indentation testing and optimized property identification for viscoelastic materials using the finite element method

    NASA Astrophysics Data System (ADS)

    Resapu, Rajeswara Reddy

    The most common approaches to determining mechanical material properties of materials are tension and compression tests. However, tension and compression testing cannot be implemented under certain loading conditions (immovable object, not enough space to hold object for testing, etc). Similarly, tensile and compression testing cannot be performed on certain types of materials (delicate, bulk, non-machinable, those that cannot be separated from a larger structure, etc). For such cases, other material testing methods need to be implemented. Indentation testing is one such method; this approach is often non-destructive and can be used to characterize regions that are not compatible with other testing methods. However, indentation testing typically leads to force-displacement data as opposed to the direct stress-strain data normally used for the mechanical characterization of materials; this data needs to be analyzed using a suitable approach to determine the associated material properties. As such, methods to establish material properties from force-displacement indentation data need to be identified. In this work, a finite element approach using parameter optimization is developed to determine the mechanical properties from the experimental indentation data. Polymers and tissues tend to have time-dependent mechanical behavior; this means that their mechanical response under load changes with time. This dissertation seeks to characterize the properties of these materials using indentation testing under the assumption that they are linear viscoelastic. An example of a material of interest is the polymer poly vinyl chloride (PVC) that is used as the insulation of some aircraft wiring. Changes in the mechanical properties of this material over years of service can indicate degradation and a potential hazard to continued use. To investigate the validity of using indentation testing to monitor polymer insulation degradation, PVC film and PVC-insulated aircraft wiring are

  17. Cyclic Material Properties Test to Determine Hardening/Softening Characteristics of HY-80 Steel

    SciTech Connect

    S.C. Hodge; J.M. Minicucci; T.F. Trimble

    2003-04-30

    The Cyclic Material Properties Test was structured to obtain and provide experimental data for determining cyclic hardening/softening characteristics of HY-80 steel. The inelastic strain history data generated by this test program and the resulting cyclic stress-strain curve will be used to enhance material models in the finite element codes used to perform nonlinear elastic-plastic analysis.

  18. Infants' Use of Material Properties to Guide Their Actions with Differently Weighted Objects

    ERIC Educational Resources Information Center

    Paulus, Markus; Hauf, Petra

    2011-01-01

    Two studies with 9-, 11- and 13-month-old infants were conducted to investigate infants' ability to use an object's material properties to guide their object-directed actions. In study 1, 9- and 11-month-old infants played in an exploration phase with two objects made of different materials, one very heavy and the other one light and playable.…

  19. Characterization of the heat transfer properties of thermal interface materials

    NASA Astrophysics Data System (ADS)

    Fullem, Travis Z.

    Physicists have studied the thermal conductivity of solids for decades. As a result of these efforts, thermal conduction in crystalline solids is well understood; there are detailed theories describing thermal conduction due to electrons and phonons. Phonon scattering and transmission at solid/solid interfaces, particularly above cryogenic temperatures, is not well understood and more work is needed in this area. The desire to solve engineering problems which require good thermal contact between mating surfaces has provided enhanced motivation for furthering the state of the art on this topic. Effective thermal management is an important design consideration in microelectronic systems. A common technique for removing excess heat from an electronic device is to attach a heatsink to the device; it is desirable to minimize the thermal resistance between the device and the heatsink. This can be accomplished by placing a thermal interface material (TIM) between the two surfaces. Due to the ever-increasing power densities found in electronic components, there is a desire to design better TIMs, which necessitates the ability to characterize TIM bondlines and to better understand the physics of heat conduction through TIM bondlines. A micro Fourier apparatus which employs Pt thin film thermometers of our design has been built and is capable of precisely quantifying the thermal resistance of thermal interface materials. In the present work several types of commercially available TIMs have been studied using this apparatus, including: greases, filled epoxies, and thermally conductive pads. In the case of filled epoxies, bondlines of various thicknesses, ranging from thirty microns to several hundred microns, have been measured. The microstructure of these bondlines has been investigated using optical microscopy and acoustic microscopy. Measured values of thermal conductivity are considered in terms of microstructural features such as percolation networks and filler particle

  20. Statistical distribution of mechanical properties for three graphite-epoxy material systems

    NASA Technical Reports Server (NTRS)

    Reese, C.; Sorem, J., Jr.

    1981-01-01

    Graphite-epoxy composites are playing an increasing role as viable alternative materials in structural applications necessitating thorough investigation into the predictability and reproducibility of their material strength properties. This investigation was concerned with tension, compression, and short beam shear coupon testing of large samples from three different material suppliers to determine their statistical strength behavior. Statistical results indicate that a two Parameter Weibull distribution model provides better overall characterization of material behavior for the graphite-epoxy systems tested than does the standard Normal distribution model that is employed for most design work. While either a Weibull or Normal distribution model provides adequate predictions for average strength values, the Weibull model provides better characterization in the lower tail region where the predictions are of maximum design interest. The two sets of the same material were found to have essentially the same material properties, and indicate that repeatability can be achieved.