Science.gov

Sample records for actual material properties

  1. 14 CFR 25.613 - Material strength properties and material design values.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... individual item is tested before use to determine that the actual strength properties of that particular item... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Material strength properties and material... § 25.613 Material strength properties and material design values. (a) Material strength properties...

  2. Building Materials Property Table

    SciTech Connect

    2010-04-16

    This information sheet describes a table of some of the key technical properties of many of the most common building materials taken from ASHRAE Fundamentals - 2001, Moisture Control in Buildings, CMHC, NRC/IRC, IEA Annex 24, and manufacturer data.

  3. Rhenium material properties

    SciTech Connect

    Biaglow, J.A.

    1995-09-01

    Tensile data were obtained from four different types of rhenium at ambient and elevated temperatures. The four types of rhenium included chemical vapor deposition (CVD) and three powder metallurgy (PM) types, i.e., rolled sheet and pressed and sintered bars, with and without hot isostatic pressure (HIP) treatment. Results revealed a wide range of values with ultimate strengths at ambient temperatures varying from 663 MPa for CVD rhenium to 943 MPa for rolled sheet. A similar spread was also obtained for material tested at 1088 K and 1644 K. The wide variance observed with the different materials indicated that the rhenium manufacturing process, material composition and prior handling strongly dictated its properties. In addition to tensile properties, CVD, pressed and sintered material and HIP rhenium successfully completed 100 cycles of low cycle fatigue. Creep data were also obtained showing that CVD and pressed and sintered rhenium could sustain five hours of testing under a tension of 27.5 MPa at 1922 K.

  4. Rhenium material properties

    NASA Technical Reports Server (NTRS)

    Biaglow, James A.

    1995-01-01

    Tensile data were obtained from four different types of rhenium at ambient and elevated temperatures. The four types of rhenium included chemical vapor deposition (CVD) and three powder metallurgy (PM) types, i.e., rolled sheet and pressed and sintered bars, with and without hot isostatic pressure (HIP) treatment. Results revealed a wide range of values with ultimate strengths at ambient temperatures varying from 663 MPa for CVD rhenium to 943 MPa for rolled sheet. A similar spread was also obtained for material tested at 1088 K and 1644 K. The wide variance observed with the different materials indicated that the rhenium manufacturing process, material composition and prior handling strongly dictated its properties. In addition to tensile properties, CVD, pressed and sintered material and HIP rhenium successfully completed 100 cycles of low cycle fatigue. Creep data were also obtained showing that CVD and pressed and sintered rhenium could sustain five hours of testing under a tension of 27.5 MPa at 1922 K.

  5. Materials property measurements

    SciTech Connect

    Boyd, D.M.; Green, E.R.; Doctor, S.R.; Good, M.S.

    1990-04-19

    An in-depth review of the measurement techniques that could be used in materials characterization is presented. The measurement techniques to non-destructively determine the in-service or time-related aging of materials considered include ultrasonic velocity and attenuation, eddy current conductivity, neutron scattering and absorption, conventional and tomographic imaging for ultrasonic and radiation imaging, x-ray scattering, thermal impedance, and magnetic hysteresis. The three sections of the report include a review of failure mechanisms in steel and a discussion of nondestructive evaluation techniques and fracture mechanics, a description of a chart on Measurement Techniques versus Material Properties, and recommendations on the techniques and tests to be performed for the experimental investigations and analysis task of the project. 49 refs., 7 figs.

  6. Correlation of ideal and actual shear strengths of metals with their friction properties

    NASA Technical Reports Server (NTRS)

    Miyoshi, K.; Buckley, D. H.

    1981-01-01

    The relation between the ideal and actual shear strengths and friction properties of clean metals in contact with clean diamond, boron nitride, silicon carbide, manganese-zinc ferrite, and the metals themselves in vacuum is discussed. An estimate of the ideal shear strength for metals is obtained from the shear modulus, the repeat distance of atoms in the direction of shear of the metal, and the interplanar spacing of the shearing planes. The coefficient of friction for metals is shown to be correlated with both the ideal and actual shear strength of metals. The higher the strength of the metal, the lower the coefficient of friction occurs.

  7. Materials properties data base computerization

    NASA Technical Reports Server (NTRS)

    Baur, R. G.; Donthnier, M. L.; Moran, M. C.; Mortman, I.; Pinter, R. S.

    1984-01-01

    Material property data plays a key role in the design of jet engine components. Consistency, accuracy and efficient use of material property data is of prime importance to the engineering community. The system conception, development, implementation, and future plans for computer software that captures the Material Properties Handbook into a scientific data base are described. The engineering community is given access to raw data and property curves, display of multiple curves for material evaluation and selection, direct access by design analysis computer programs, display of the material specification, and a historical repository for the material evolution. The impact of this activity includes significant productivity gains and cost reductions; all users have access to the same information nd provides consistent, rapid response to the needs of the engineering community. Future plans include incorporating the materials properties data base into a network environment to access information from other data bases and download information to engineering work stations.

  8. Packaging Materials Properties Data

    SciTech Connect

    Leduc, D.

    1991-10-30

    Several energy absorbing materials are used in nuclear weapons component shipping containers recently designed for the Y-12 Plant Program Management Packaging Group. As a part of the independent review procedure leading to Certificates of Compliance, the U.S. Department of Energy Technical Safety Review Panels requested compression versus deflection . data on these materials. This report is a compilation of that data.

  9. Packaging materials properties data

    SciTech Connect

    Walker, M.S.

    1991-01-01

    Several energy absorbing materials are used in nuclear weapons component shipping containers recently designed for the Y-12 Plant Program Management Packaging Group. As a part of the independent review procedure leading to Certificates of Compliance, the US Department of Energy Technical Safety Review Panels requested compression versus deflection data on these materials. This report is a compilation of that data.

  10. Material Properties of Titanium Diboride

    PubMed Central

    Munro, Ronald G.

    2000-01-01

    The physical, mechanical, and thermal properties of polycrystalline TiB2 are examined with an emphasis on the significant dependence of the properties on the density and grain size of the material specimens. Using trend analysis, property relations, and interpolation methods, a coherent set of trend values for the properties of polycrystalline TiB2 is determined for a mass fraction of TiB2 ⩾ 98 %, a density of (4.5±0.1) g/cm3, and a mean grain size of (9±1) µm. PMID:27551633

  11. Property Status of Lunar Material

    NASA Astrophysics Data System (ADS)

    Pop, V.

    Most of the lunar material in private hands is of meteoric origin, and its property sta- tus does not present many challenges. The intention of Applied Space Resources, Inc, to fly a commercial lunar sample return mission and to subsequently offer lunar ma- terial for sale, raises the issue of the legality of exploitation and private ownership of retrieved lunar material. Lunar samples have been returned in the past by means of the Apollo (US) and Luna (USSR) missions and, while most of the material re- mains government property and is used for scientific means, a small fraction has been transferred abroad and some has entered the private market. Apollo-collected moon- rocks have been offered, symbolically, to heads of States, and some foreign nations have subsequently transferred ownership to private individuals. The same, lunar ma- terial of Soviet provenience has entered the private market, this forming a valuable legal precedent for the lawfulness of sale of lunar material. Recently, plans were made public to award the Apollo astronauts with lunar rocks. While in the US there is a popular misconception that it is illegal to own lunar material, the truth lies elsewhere. As the Apollo samples are the property of the US government and a small fraction was stolen, lost, or misplaced, the US government intends to recover this material, unlawfully owned. In the same time, a significant number of individuals have been prosecuted for offering for sale fake lunar rocks. The present paper will analyse the different categories of lunar material according to its ownership status, and will as- sert that private property of lunar material is lawful, and lunar material that will be returned in the future will be able to enter the market without hindrances.

  12. Materials with controllable signature properties

    NASA Astrophysics Data System (ADS)

    Dickman, O.; Holmberg, B.; Karlsson, T.; Savage, S.

    1995-02-01

    We have in this report considered some types of material with potential for use in signature control of structures. The material types selected for inclusion in this study were electrically conductive polymers, fullerenes, nanostructured materials and Langmuir-Blodgett films. To control the signature of a structure in real time it must be possible to vary the material emissivity, structural transmission, and reflection or absorption of electromagnetic radiation in the relevant wavelength region. This may be achieved by changes in temperature, pressure, electrical or magnetic field or by the concentration of a chemical substance within the material. It is concluded that it is feasible to develop electrically conductive polymeric materials with controllable properties for practical signature control application within 5 to 10 years.

  13. Thermal properties of granulated materials.

    NASA Technical Reports Server (NTRS)

    Wechsler, A. E.; Glaser, P. E.; Fountain, J. A.

    1972-01-01

    Review of the thermophysical properties of granular materials or silicates believed to simulate the lunar surface layer. Emphasis is placed on thermal conductivity data and the effects of material and environmental variables on the thermal conductivity. There are three basic mechanisms of heat transfer in particulate materials: conduction by the gas contained in the void spaces between the particles; conduction within the solid particles and across the interparticle contacts; and thermal radiation within the particles, across the void spaces between particle surfaces, and between void spaces themselves. Gas and solid conduction, thermal radiation, and the interaction between conduction and radiation are considered.

  14. IMAP: Interferometry for Material Property Measurement in MEMS

    SciTech Connect

    Jensen, B.D.; Miller, S.L.; de Boer, M.P.

    1999-03-10

    An interferometric technique has been developed for non-destructive, high-confidence, in-situ determination of material properties in MEMS. By using interferometry to measure the full deflection curves of beams pulled toward the substrate under electrostatic loads, the actual behavior of the beams has been modeled. No other method for determining material properties allows such detailed knowledge of device behavior to be gathered. Values for material properties and non-idealities (such as support post compliance) have then been extracted which minimize the error between the measured and modeled deflections. High accuracy and resolution have been demonstrated, allowing the measurements to be used to enhance process control.

  15. Satellite material contaminant optical properties

    NASA Technical Reports Server (NTRS)

    Wood, B. E.; Bertrand, W. T.; Seiber, B. L.; Kiech, E. L.; Falco, P. M.; Holt, J. D.

    1990-01-01

    The Air Force Wright Research and Development Center and the Arnold Engineering Development Center are continuing a program for measuring optical effects of satellite material outgassing products on cryo-optic surfaces. Presented here are infrared (4000 to 700 cm(-1)) transmittance data for contaminant films condensed on a 77 K geranium window. From the transmittance data, the contaminant film refractive and absorptive indices (n, k) were derived using an analytical thin-film interference model with a nonlinear least-squares algorithm. To date 19 materials have been studied with the optical contents determined for 13 of those. The materials include adhesives, paints, composites, films, and lubricants. This program is continuing and properties for other materials will be available in the future.

  16. Satellite material contaminant optical properties

    NASA Astrophysics Data System (ADS)

    Wood, B. E.; Bertrand, W. T.; Seiber, B. L.; Kiech, E. L.; Falco, P. M.

    The Air Force Wright Research and Development Center and the Arnold Engineering Development Center are continuing a program for measuring optical effects of satellite material outgassing products on cryo-optic surfaces. Presented here are infrared (4000 to 700/cm) transmittance data for contaminant films condensed on a 77 K germanium window. From the transmittance data, the contaminant film refractive and absorptive indices (n, k) were derived using an analytical thin-film interference model with a nonlinear least-squares algorithm. To date 19 materials have been studied with the optical contents determined for 13 of those. The materials include adhesives, paints, composites, films, and lubricants. This program is continuing, and properties for other materials will be available in the future.

  17. Satellite material contaminant optical properties

    NASA Astrophysics Data System (ADS)

    Wood, B. E.; Bertrand, W. T.; Seiber, B. L.; Kiech, E. L.; Falco, P. M.; Holt, J. D.

    1990-03-01

    The Air Force Wright Research and Development Center and the Arnold Engineering Development Center are continuing a program for measuring optical effects of satellite material outgassing products on cryo-optic surfaces. Presented here are infrared (4000 to 700 cm(-1)) transmittance data for contaminant films condensed on a 77 K germanium window. From the transmittance data, the contaminant film refractive and absorptive indices (n, k) were derived using an analytical thin-film interference model with a nonlinear least-squares algorithm. To date 19 materials have been studied with the optical contents determined for 13 of those. The materials include adhesives, paints, composites, films, and lubricants. This program is continuing and properties for other materials will be available in the future.

  18. Satellite Material Contaminant Optical Properties

    NASA Astrophysics Data System (ADS)

    Wood, Bobby E.; Bertrand, William T.; Seiber, Bryan L.; Kiech, E. L.; Falco, Patrick M.; Holt, J. D.

    1990-01-01

    The Air Force Wright Research and Development Center and the Arnold Engineering Development Center are continuing a program for measuring optical effects of satellite material outgassing products on cryo-optic surfaces. This paper presents infrared (4000 to 700 cm-1) transmittance data for contaminant films condensed on a 77 K geranium window. From the transmittance data, the contaminant film refractive and absorptive indices (n, k) were derived using an analytical thin-film interference model with a nonlinear least-squares algorithm. To date 19 materials have been studied with the optical contants determined for 13 of those. The materials include adhesives, paints, composites, films, and lubricants. This program is continuing and properties for other materials will be available in the future.

  19. Material properties for asteroid deflection

    NASA Astrophysics Data System (ADS)

    Bruck Syal, M.; Bernier, J.; Chen, L.; Coppari, F.; Dearborn, D.; Herbold, E.; Howley, K.; Kraus, R.; Kumar, M.; Millot, M.; Owen, J. M.; Swift, D.; Wasem, J.; Mulford, R.; Root, S.; Cotto-Figueroa, D.; Asphaug, E.; Schultz, P.; Nuth, J.; Arnold, J.; Burkhard, C.; Dotson, J.; Lee, T.; Sears, D.; Miller, P.

    2015-06-01

    Impulsive strategies to prevent asteroid impacts depend upon knowledge of asteroidal material state and response at extreme conditions. Numerical modeling of kinetic impactor and nuclear ablation scenarios to deflect or disrupt asteroids reveals sensitivities to equation of state, strength, and porosity. We report advances in material models for asteroid mitigation simulations. Equation of state development focuses on asteroidal materials, such as hydrated silicates. Shock experiments are being performed to measure properties of meteoritic material; initial sample temperature can be controlled from 100-1000 K, important for different intercept scenarios. New constitutive models allow improved thermomechanical response predictions for porous asteroids. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  20. Dynamic properties of ceramic materials

    SciTech Connect

    Grady, D.E.; Wise, J.L.

    1993-09-01

    Controlled impact methods have been employed to obtain dynamic response properties of armor materials. Experimental data have been obtained for high-strength ceramics. Continued analysis of time-resolved velocity interferometer measurements has produced systematic material-property data for Hugoniot and release response, initial and post-yield strength, pressure-induced phase transformation, and dynamic fracture strength. A new technique has been developed to measure hydrodynamic properties of ceramic through shock-wave experiments on metal-ceramic composites and data obtained for silicon carbide. Additional data on several titanium diboride ceramics and high-quality aluminum oxide ceramic have been acquired, and issues regarding the influence of microstructure on dynamic properties have emerged. Comparison of dynamic (Hugoniot elastic limit) strength and indentation hardness data has been performed and important correlations revealed. Innovative impact experiments on confined and unconfined alumina rods using axial and transverse VISAR diagnostics have been demonstrated which permit acquisition of multiaxial dynamic response data. Dynamic failure properties of a high-density aluminosilicate glass, similar in composition to the intergranular glassy phase of some aluminas, have been investigated with regard to yield, spall, and failure-wave propagation.

  1. Ferrocyanide Safety Project: Comparison of actual and simulated ferrocyanide waste properties

    SciTech Connect

    Scheele, R.D.; Burger, L.L.; Sell, R.L.; Bredt, P.R.; Barrington, R.J.

    1994-09-01

    In the 1950s, additional high-level radioactive waste storage capacity was needed to accommodate the wastes that would result from the production of recovery of additional nuclear defense materials. To provide this additional waste storage capacity, the Hanford Site operating contractor developed a process to decontaminate aqueous wastes by precipitating radiocesium as an alkali nickel ferrocyanide; this process allowed disposal of the aqueous waste. The radiocesium scavenging process as developed was used to decontaminate (1) first-cycle bismuth phosphate (BiPO{sub 4}) wastes, (2) acidic wastes resulting from uranium recovery operations, and (3) the supernate from neutralized uranium recovery wastes. The radiocesium scavenging process was often coupled with other scavenging processes to remove radiostrontium and radiocobalt. Because all defense materials recovery processes used nitric acid solutions, all of the wastes contained nitrate, which is a strong oxidizer. The variety of wastes treated, and the occasional coupling of radiostrontium and radiocobalt scavenging processes with the radiocesium scavenging process, resulted in ferrocyanide-bearing wastes having many different compositions. In this report, we compare selected physical, chemical, and radiochemical properties measured for Tanks C-109 and C-112 wastes and selected physical and chemical properties of simulated ferrocyanide wastes to assess the representativeness of stimulants prepared by WHC.

  2. Property Data Summaries for Advanced Materials

    National Institute of Standards and Technology Data Gateway

    SRD 150 NIST Property Data Summaries for Advanced Materials (Web, free access)   Property Data Summaries are topical collections of property values derived from surveys of published data. Thermal, mechanical, structural, and chemical properties are included in the collections.

  3. Studies of molecular properties of polymeric materials

    NASA Technical Reports Server (NTRS)

    Harries, W. L.; Long, Sheila Ann T.; Long, Edward R., Jr.

    1990-01-01

    Aerospace environment effects (high energy electrons, thermal cycling, atomic oxygen, and aircraft fluids) on polymeric and composite materials considered for structural use in spacecraft and advanced aircraft are examined. These materials include Mylar, Ultem, and Kapton. In addition to providing information on the behavior of the materials, attempts are made to relate the measurements to the molecular processes occurring in the material. A summary and overview of the technical aspects are given along with a list of the papers that resulted from the studies. The actual papers are included in the appendices and a glossary of technical terms and definitions is included in the front matter.

  4. Individual actual or perceived property flood risk: did it predict evacuation from Hurricane Isabel in North Carolina, 2003?

    PubMed

    Horney, Jennifer A; Macdonald, Pia D M; Van Willigen, Marieke; Berke, Philip R; Kaufman, Jay S

    2010-03-01

    Individual perception of risk has consistently been considered an important determinant of hurricane evacuation in published studies and reviews. Adequate risk assessment is informed by environmental and social cues, as well as evacuation intentions and past disaster experience. This cross-sectional study measured perceived flood risk of 570 residents of three coastal North Carolina counties, compared their perception with actual risk determined by updated flood plain maps, and determined if either was associated with evacuation from Hurricane Isabel in 2003. Census blocks were stratified by flood zone and 30 census blocks were randomly selected from each flood zone. Seven interviews were conducted at random locations within selected blocks. Bivariate and multivariable analyses were conducted to produce crude and adjusted risk differences. Neither the designated flood zone of the parcel where the home was located nor the residents' perceived flood risk was associated with evacuation from Hurricane Isabel in the bivariate analysis. In the multivariable analysis, intention to evacuate and home type were important confounders of the association between actual risk and evacuation. The belief that one is at high risk of property damage or injury is important in evacuation decision making. However, in this study, while coastal residents' perceived risk of flooding was correlated with their actual flood risk, neither was associated with evacuation. These findings provide important opportunities for education and intervention by policymakers and authorities to improve hurricane evacuation rates and raise flood risk awareness. PMID:20136748

  5. Individual actual or perceived property flood risk: did it predict evacuation from Hurricane Isabel in North Carolina, 2003?

    PubMed

    Horney, Jennifer A; Macdonald, Pia D M; Van Willigen, Marieke; Berke, Philip R; Kaufman, Jay S

    2010-03-01

    Individual perception of risk has consistently been considered an important determinant of hurricane evacuation in published studies and reviews. Adequate risk assessment is informed by environmental and social cues, as well as evacuation intentions and past disaster experience. This cross-sectional study measured perceived flood risk of 570 residents of three coastal North Carolina counties, compared their perception with actual risk determined by updated flood plain maps, and determined if either was associated with evacuation from Hurricane Isabel in 2003. Census blocks were stratified by flood zone and 30 census blocks were randomly selected from each flood zone. Seven interviews were conducted at random locations within selected blocks. Bivariate and multivariable analyses were conducted to produce crude and adjusted risk differences. Neither the designated flood zone of the parcel where the home was located nor the residents' perceived flood risk was associated with evacuation from Hurricane Isabel in the bivariate analysis. In the multivariable analysis, intention to evacuate and home type were important confounders of the association between actual risk and evacuation. The belief that one is at high risk of property damage or injury is important in evacuation decision making. However, in this study, while coastal residents' perceived risk of flooding was correlated with their actual flood risk, neither was associated with evacuation. These findings provide important opportunities for education and intervention by policymakers and authorities to improve hurricane evacuation rates and raise flood risk awareness.

  6. Residual stresses calculation in autofrettage using variable material properties method

    SciTech Connect

    Jahed, H.; Dubey, R.N.

    1996-12-01

    Autofrettaged cylinders are used for variety of applications in chemical and nuclear industries where large internal pressures have to be withstood. Autofrettage is in the process by which beneficial residual stresses are introduced into thick-walled tubes by initially subjected the tube to high internal pressure which causes inelastic deformation. Here, the variable material properties method is employed to obtain elastic-plastic analysis of an autofrettaged tube. This method develops inelastic solution from the elastic solution by treating the material properties as field variables. The distribution of these parameters are obtained in an iterative manner as a part of the solution. An energy based scheme is used to update these variables. The residual stress field of autofrettaged tubes based on the actual material curve and isotropic and kinematic hardening models are obtained. The results are shown to be in good agreement with the published experimental and finite element results.

  7. Dynamic properties of ceramic materials

    SciTech Connect

    Grady, D.E.

    1995-02-01

    The present study offers new data and analysis on the transient shock strength and equation-of-state properties of ceramics. Various dynamic data on nine high strength ceramics are provided with wave profile measurements, through velocity interferometry techniques, the principal observable. Compressive failure in the shock wave front, with emphasis on brittle versus ductile mechanisms of deformation, is examined in some detail. Extensive spall strength data are provided and related to the theoretical spall strength, and to energy-based theories of the spall process. Failure waves, as a mechanism of deformation in the transient shock process, are examined. Strength and equation-of-state analysis of shock data on silicon carbide, boron carbide, tungsten carbide, silicon dioxide and aluminum nitride is presented with particular emphasis on phase transition properties for the latter two. Wave profile measurements on selected ceramics are investigated for evidence of rate sensitive elastic precursor decay in the shock front failure process.

  8. Fundamental properties of semiconductor materials, and material performance in detectors

    NASA Technical Reports Server (NTRS)

    Casper, K. J.

    1973-01-01

    Procedures for determining fundamental properties of semiconductor materials, their performance as radiation detectors, and their service life as such detectors are given. Relationships were established between the minority carrier lifetime in the bulk of the material and the charge collection efficiency of the detector.

  9. Learning targeted materials properties from data

    NASA Astrophysics Data System (ADS)

    Lookman, Turab; Balachandran, Prasanna V.; Dezhen, Xue; Theiler, James; Hogden, John

    We compare several strategies using a data set of 223 M2AX family of compounds for which the elastic properties [bulk (B), shear (G), and Young's (E) modulus] have been computed using density functional theory. The strategy is decomposed into two steps: a regressor is trained to predict elastic properties in terms of elementary orbital radii of the individual components of the materials; and a selector uses these predictions to choose the next material to investigate. The ultimate goal is to obtain a material with desired elastic properties. We examine how the choice of data set size, regressor and selector impact the results.

  10. Materials Properties Research at MSFC

    NASA Technical Reports Server (NTRS)

    Presson, Joan B.; Burdine, Robert (Technical Monitor)

    2002-01-01

    MSFC is currently planning, organizing and directing test coupon fabrication and subsequent CTE testing for two mirror materials of specific interest to the AMSD and NGST programs, Beryllium 0-30H (Be 0-30H) and Ultra Low Expansion glass (ULE). The ULE test coupons are being fabricated at MSFC from AMSD core residuals provided by Kodak, The Be 0-30H test coupons are being fabricated at Brush Wellman using residuals from the SBMD. Both sets of test coupons will be sent to a test vendor selected through the NASA competitive proposal process with the test results being provided by written report to MSFC by the end of the fiscal year. The test results will become model input data for the AMSD analysts, both MSFC and contractor, providing an enhancement to the historical CTE data currently available.

  11. Spacecraft Charging Sensitivity to Material Properties

    NASA Technical Reports Server (NTRS)

    Minow, Joseph I.; Edwards, David L.

    2015-01-01

    Evaluating spacecraft charging behavior of a vehicle in the space environment requires knowledge of the material properties relevant to the charging process. Implementing surface and internal charging models requires a user to specify a number of material electrical properties including electrical resistivity parameters (dark and radiation induced), dielectric constant, secondary electron yields, photoemission yields, and breakdown strength in order to correctly evaluate the electric discharge threat posed by the increasing electric fields generated by the accumulating charge density. In addition, bulk material mass density and/or chemical composition must be known in order to analyze radiation shielding properties when evaluating internal charging. We will first describe the physics of spacecraft charging and show how uncertainties in material properties propagate through spacecraft charging algorithms to impact the results obtained from charging models. We then provide examples using spacecraft charging codes to demonstrate their sensitivity to material properties. The goal of this presentation is to emphasize the importance in having good information on relevant material properties in order to best characterize on orbit charging threats.

  12. Quantitative ultrasonic evaluation of mechanical properties of engineering materials

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1978-01-01

    Current progress in the application of ultrasonic techniques to nondestructive measurement of mechanical strength properties of engineering materials is reviewed. Even where conventional NDE techniques have shown that a part is free of overt defects, advanced NDE techniques should be available to confirm the material properties assumed in the part's design. There are many instances where metallic, composite, or ceramic parts may be free of critical defects while still being susceptible to failure under design loads due to inadequate or degraded mechanical strength. This must be considered in any failure prevention scheme that relies on fracture analysis. This review will discuss the availability of ultrasonic methods that can be applied to actual parts to assess their potential susceptibility to failure under design conditions.

  13. Emergent properties of magnetic materials

    NASA Astrophysics Data System (ADS)

    Ratcliff, William Davis, II

    In Tolstoy's War and Peace, history is presented as a tapestry spun from the daily interactions of large numbers of individuals. Even if one understands individuals, it is very difficult to predict history. Similarly, the interactions of large numbers of electrons give rise to properties that one would not initially guess from their microscopic interactions. During the course of my dissertation, I have explored emergent phenomena in a number of contexts. In ZnCr2O4, geometric frustration gives rise to a plethora of equivalent ground states. From these, a lower dimensional set of collinear spins on hexagons are selected to form the building blocks of the lattice. In MgTi2O4, quantum spins dimerize and form a unique chiral ordering pattern on the spinel lattice. Descending into two dimensions, differences in size and charge give rise to an ordering between triangular layers of magnetic and nonmagnetic ions. This triangular lattice allows for the possibility of observing the RVB spin liquid state, or perhaps a valence bond crystal and initial measurements are promising. Also, on the spinel lattice, ionic ordering gives rise to one dimensional chains with their own interesting physics. Finally, in the SrCoxTi1-x O3, system we find that upon reduction, tiny clusters of Co metal precipitate out and chemical inhomogeneity on the microscale may determine much of the physics. This has relevance to a number of recent claims of room temperature ferromagnism in dilute magnetic systems. In all of these systems, complex behavior emerges from well understood microscopic behavior. For me, this is the fascination of strongly correlated electronic systems.

  14. Repair material properties for effective structural application

    SciTech Connect

    Mangat, P.S.; Limbachiya, M.C.

    1997-04-01

    Strength and engineering properties of three generic repair materials which are likely to influence long-term performance of repaired concrete structures were studied. Measured properties include strength, stiffness, shrinkage and creep deformations, together with the complete compressive stress-strain characteristics including post-cracking behavior. The repair materials considered in this investigation are commercially available and widely used. These included a high performance non-shrinkable concrete, a mineral based cementitious material with no additives or coarse aggregate size particles, and a cementitious mortar containing styrene acrylic copolymer with fiber additives. Performance comparisons are also made between these materials and plain concrete mixes of similar strength and stiffness, suitable for repair applications. The results show that shrinkage of the repair materials was significantly greater than the shrinkage of normal concrete. Moreover, the shrinkage of those modified with a polymer admixture was found to be very sensitive to the relative humidity of the exposure compared to normal concrete. The post-peak strain capacity of the material modified with a polymer admixture was markedly improved leading to a more pronounced falling branch of stress-strain curve. The ultimate stress level (at a maximum load) of specially formulated repair materials varies significantly, the lowest ultimate stress being recorded for the porous mineral-based material. The inclusion of aggregates improves the mechanical properties and dimensional stability of repair materials.

  15. From Microstructures to Predict Properties of Materials

    NASA Astrophysics Data System (ADS)

    Wang, Ke-Gang

    2010-03-01

    Understanding the precise and fundamental manner in which materials structures (nanostructures or microstructures) and their evolution influences properties and service lifetimes of advanced materials profoundly impacts material design and today materials design plays an increasingly important rôle in many engineering applications. Linking structures to properties and predicting properties of materials is fundamental step for materials design. First, a framework of applications of multiscale modeling to property prediction of advanced materials will be briefly presented. As an example, a methodology will be shown to link micro-scale to the continuum scale, integrating microstructure modeling with the large Thermo-Calc^ database. This paradigm was successfully applied to the case of Fe-12Ni-6Mn maraging steel. Next, methodology for integrating first-principle calculation into simulations of microstructure evolution will be reviewed. Our methods are sufficiently reliable to permit control and fabrication of quantum-dots structures, nanocrystals, and particle-reinforced nanocomposites, as well as assist in the predictive behavior of macro-scale colloids, aerosols, and other soft matter systems.

  16. Tactual perception of liquid material properties.

    PubMed

    Bergmann Tiest, Wouter M

    2015-04-01

    In this paper, studies into the tactual perception of two liquid material properties, viscosity and wetness, are reviewed. These properties are very relevant in the context of interaction with liquids, both real, such as cosmetics or food products, and simulated, as in virtual reality or teleoperation. Both properties have been the subject of psychophysical characterisation in terms of magnitude estimation experiments and discrimination experiments, which are discussed. For viscosity, both oral and manual perception is discussed, as well as the perception of the viscosity of a mechanical system. For wetness, the relevant cues are identified and factors affecting perception are discussed. Finally, some conclusions are drawn pertaining to both properties.

  17. Tactual perception of liquid material properties.

    PubMed

    Bergmann Tiest, Wouter M

    2015-04-01

    In this paper, studies into the tactual perception of two liquid material properties, viscosity and wetness, are reviewed. These properties are very relevant in the context of interaction with liquids, both real, such as cosmetics or food products, and simulated, as in virtual reality or teleoperation. Both properties have been the subject of psychophysical characterisation in terms of magnitude estimation experiments and discrimination experiments, which are discussed. For viscosity, both oral and manual perception is discussed, as well as the perception of the viscosity of a mechanical system. For wetness, the relevant cues are identified and factors affecting perception are discussed. Finally, some conclusions are drawn pertaining to both properties. PMID:25128819

  18. Thermal protection materials: Thermophysical property data

    NASA Technical Reports Server (NTRS)

    Williams, S. D.; Curry, Donald M.

    1992-01-01

    This publication presents a thermophysical property survey on materials that could potentially be used for future spacecraft thermal protection systems (TPS). This includes data that was reported in the 1960's as well as more current information reported through the 1980's. An attempt was made to cite the manufacturers as well as the data source in the bibliography. This volume represents an attempt to provide in a single source a complete set of thermophysical data on a large variety of materials used in spacecraft TPS analysis. The property data is divided into two categories: ablative and reusable. The ablative materials have been compiled into twelve categories that are descriptive of the material composition. An attempt was made to define the Arrhenius equation for each material although this data may not be available for some materials. In a similar manner, char data may not be available for some of the ablative materials. The reusable materials have been divided into three basic categories: thermal protection materials (such as insulators), adhesives, and structural materials.

  19. ESTEC wiring test programme materials related properties

    NASA Technical Reports Server (NTRS)

    Judd, M. D.

    1994-01-01

    Electrical wires are considered as EEE parts and are covered within the ESA SCC specification series (ESA SCC 3901/XXX). This specification defines the principal properties of the wires including insulation/lay-up and electrical properties. Some additional space related materials requirements are also included, requirements such as outgassing and silver plating thickness. If a project has additional materials requirements over and above those covered by the relevant SCC specification, then additional testing is required. This is especially true for crewed spacecraft. The following topics are discussed in this context: additional requirements for manned spacecraft; flammability; arc tracking; thermal decomposition; microbial surface growth; and ageing.

  20. Intellectual property analysis of holographic materials business

    NASA Astrophysics Data System (ADS)

    Reingand, Nadya; Hunt, David

    2006-02-01

    The paper presents an overview of intellectual property in the field of holographic photosensitive materials and highlights the possibilities offered by patent searching and analysis. Thousands of patent documents relevant to holographic materials have been uncovered by the study. The search was performed in the following databases: U.S. Patent Office, European Patent Office, and Japanese Patent Office for the time frame of 1971 through November 2005. The patent analysis has unveiled trends in patent temporal distribution, leading IP portfolios, companies competition within the holographic materials market and other interesting insights.

  1. Systems and methods for predicting materials properties

    DOEpatents

    Ceder, Gerbrand; Fischer, Chris; Tibbetts, Kevin; Morgan, Dane; Curtarolo, Stefano

    2007-11-06

    Systems and methods for predicting features of materials of interest. Reference data are analyzed to deduce relationships between the input data sets and output data sets. Reference data includes measured values and/or computed values. The deduced relationships can be specified as equations, correspondences, and/or algorithmic processes that produce appropriate output data when suitable input data is used. In some instances, the output data set is a subset of the input data set, and computational results may be refined by optionally iterating the computational procedure. To deduce features of a new material of interest, a computed or measured input property of the material is provided to an equation, correspondence, or algorithmic procedure previously deduced, and an output is obtained. In some instances, the output is iteratively refined. In some instances, new features deduced for the material of interest are added to a database of input and output data for known materials.

  2. Electromagnetic properties of material coated surfaces

    NASA Technical Reports Server (NTRS)

    Beard, L.; Berrie, J.; Burkholder, R.; Dominek, A.; Walton, E.; Wang, N.

    1989-01-01

    The electromagnetic properties of material coated conducting surfaces were investigated. The coating geometries consist of uniform layers over a planar surface, irregularly shaped formations near edges and randomly positioned, electrically small, irregularly shaped formations over a surface. Techniques to measure the scattered field and constitutive parameters from these geometries were studied. The significance of the scattered field from these geometries warrants further study.

  3. Material properties of ceramics for dental applications

    NASA Astrophysics Data System (ADS)

    Quinn, Janet Bernice

    2000-12-01

    Ceramic tooth-replacement materials have been greatly improved since their introduction near the end of the eighteenth century, but still have problems concerning clinical performance and aesthetics. Material property testing has advanced as well as the ability to form new dental ceramics. The purpose of this study was to test some of the new materials according to recently developed standards, and to utilize the results to better understand, predict and determine how to improve dental material performance and machinability. Aspects of this study include unique applications of testing methodology and the development of a new edge chipping test. A new brittleness parameter, B, is introduced. Unlike previously suggested brittleness parameters, B has theoretical significance as a volume energy to surface energy ratio. The ascertained properties were used to evaluate the dental ceramics. Toughness-related parameters were important in the clinical results, and correlations with microstructural characteristics indicate potential improvements as well as limitations. A good fit to a model predicting toughness increases with grain size, for example, suggests processing-induced thermal mismatch stresses as a toughening mechanism in glass-ceramics. Stresses that are too high, however, can result in local microcracking and a decrease in toughness. Machinability is of particular importance in fabricating dental components, which have complicated shapes and tight tolerances. As there is no currently accepted quantitative definition of machinability, a subjective analysis involving professional machinists and a regression analysis was used. Material properties and a theoretical model for material removal rates, based on lateral crack formation, were compared with the subjective machinability rankings. Although there were differences among the machinists' criteria, hardness was found to be the single most effective property in predicting machinability. High temperature properties

  4. Properties of five toughened matrix composite materials

    NASA Technical Reports Server (NTRS)

    Cano, Roberto J.; Dow, Marvin B.

    1992-01-01

    The use of toughened matrix composite materials offers an attractive solution to the problem of poor damage tolerance associated with advanced composite materials. In this study, the unidirectional laminate strengths and moduli, notched (open-hole) and unnotched tension and compression properties of quasi-isotropic laminates, and compression-after-impact strengths of five carbon fiber/toughened matrix composites, IM7/E7T1-2, IM7/X1845, G40-800X/5255-3, IM7/5255-3, and IM7/5260 have been evaluated. The compression-after-impact (CAI) strengths were determined primarily by impacting quasi-isotropic laminates with the NASA Langley air gun. A few CAI tests were also made with a drop-weight impactor. For a given impact energy, compression after impact strengths were determined to be dependent on impactor velocity. Properties and strengths for the five materials tested are compared with NASA data on other toughened matrix materials (IM7/8551-7, IM6/1808I, IM7/F655, and T800/F3900). This investigation found that all five materials were stronger and more impact damage tolerant than more brittle carbon/epoxy composite materials currently used in aircraft structures.

  5. Thermal expansion properties of composite materials

    NASA Technical Reports Server (NTRS)

    Johnson, R. R.; Kural, M. H.; Mackey, G. B.

    1981-01-01

    Thermal expansion data for several composite materials, including generic epoxy resins, various graphite, boron, and glass fibers, and unidirectional and woven fabric composites in an epoxy matrix, were compiled. A discussion of the design, material, environmental, and fabrication properties affecting thermal expansion behavior is presented. Test methods and their accuracy are discussed. Analytical approaches to predict laminate coefficients of thermal expansion (CTE) based on lamination theory and micromechanics are also included. A discussion is included of methods of tuning a laminate to obtain a near-zero CTE for space applications.

  6. 14 CFR 25.613 - Material strength properties and material design values.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Material strength properties and material... § 25.613 Material strength properties and material design values. (a) Material strength properties must be based on enough tests of material meeting approved specifications to establish design values on...

  7. 14 CFR 25.613 - Material strength properties and material design values.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Material strength properties and material... § 25.613 Material strength properties and material design values. (a) Material strength properties must be based on enough tests of material meeting approved specifications to establish design values on...

  8. 14 CFR 25.613 - Material strength properties and material design values.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Material strength properties and material... § 25.613 Material strength properties and material design values. (a) Material strength properties must be based on enough tests of material meeting approved specifications to establish design values on...

  9. 14 CFR 25.613 - Material strength properties and material design values.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Material strength properties and material... § 25.613 Material strength properties and material design values. (a) Material strength properties must be based on enough tests of material meeting approved specifications to establish design values on...

  10. Material modeling of biofilm mechanical properties.

    PubMed

    Laspidou, C S; Spyrou, L A; Aravas, N; Rittmann, B E

    2014-05-01

    A biofilm material model and a procedure for numerical integration are developed in this article. They enable calculation of a composite Young's modulus that varies in the biofilm and evolves with deformation. The biofilm-material model makes it possible to introduce a modeling example, produced by the Unified Multi-Component Cellular Automaton model, into the general-purpose finite-element code ABAQUS. Compressive, tensile, and shear loads are imposed, and the way the biofilm mechanical properties evolve is assessed. Results show that the local values of Young's modulus increase under compressive loading, since compression results in the voids "closing," thus making the material stiffer. For the opposite reason, biofilm stiffness decreases when tensile loads are imposed. Furthermore, the biofilm is more compliant in shear than in compression or tension due to the how the elastic shear modulus relates to Young's modulus. PMID:24560820

  11. Acoustical properties of highly porous fibrous materials

    NASA Technical Reports Server (NTRS)

    Lambert, R. F.

    1979-01-01

    Highly porous, fibrous bulk sound absorbing materials are studied with a view toward understanding their acoustical properties and performance in a wide variety of applications including liners of flow ducts. The basis and criteria for decoupling of acoustic waves in the pores of the frame and compressional waves in the frame structure are established. The equations of motion are recast in a form that elucidates the coupling mechanisms. The normal incidence surface impedance and absorption coefficient of two types of Kevlar 29 and an open celled foam material are studied. Experimental values and theoretical results are brought into agreement when the structure factor is selected to provide a fit to the experimental data. A parametric procedure for achieving that fit is established. Both a bulk material quality factor and a high frequency impedance level are required to characterize the real and imaginary part of the surface impedance and absorption coefficient. A derivation of the concepts of equivalent density and dynamic resistance is presented.

  12. Material properties of common suture materials in orthopaedic surgery.

    PubMed

    Najibi, S; Banglmeier, R; Matta, Jm; Tannast, M

    2010-01-01

    Suture materials in orthopaedic surgery are used for closure of wounds, repair of fascia, muscles, tendons, ligaments, joint capsules, and cerclage or tension band of certain fractures. The purpose of this study was to compare the biomechanical properties of eleven commonly used sutures in orthopaedic surgery. Three types of braided non-absorbable and one type of braided absorbable suture material with different calibers (n=77) underwent biomechanical testing for maximum load to failure, strain, and stiffness. All samples were tied by one surgeon with a single SMC (Seoul Medical Center) knot and three square knots. The maximum load to failure and strain were highest for #5 FiberWire and lowest for #0 Ethibond Excel (p<0.001). The stiffness was highest for #5 FiberWire and lowest for #2-0 Vicryl (p<0.001). In all samples, the failure of the suture material occurred at the knot There was no slippage of the knot in any of the samples tested. This data will assist the orthopaedic surgeon in selection and application of appropriate suture materials and calibers to specific tasks. PMID:21045977

  13. MATERIAL PROPERTIES OF COMMON SUTURE MATERIALS IN ORTHOPAEDIC SURGERY

    PubMed Central

    Najibi, S; Banglmeier, R; Matta, JM; Tannast, M

    2010-01-01

    Suture materials in orthopaedic surgery are used for closure of wounds, repair of fascia, muscles, tendons, ligaments, joint capsules, and cerclage or tension band of certain fractures. The purpose of this study was to compare the biomechanical properties of eleven commonly used sutures in orthopaedic surgery. Three types of braided non-absorbable and one type of braided absorbable suture material with different calibers (n=77) underwent biomechanical testing for maximum load to failure, strain, and stiffness. All samples were tied by one surgeon with a single SMC (Seoul Medical Center) knot and three square knots. The maximum load to failure and strain were highest for #5 FiberWire and lowest for #0 Ethibond Excel (p<0.001). The stiffness was highest for #5 FiberWire and lowest for #2-0 Vicryl (p<0.001). In all samples, the failure of the suture material occurred at the knot There was no slippage of the knot in any of the samples tested. This data will assist the orthopaedic surgeon in selection and application of appropriate suture materials and calibers to specific tasks. PMID:21045977

  14. Exploring a Code's Material Properties Capability

    NASA Astrophysics Data System (ADS)

    Kaul, Ann

    2011-06-01

    LANL is moving its simulation workload to the laboratory's 2- and 3-D ASC hydrodynamic codes. Aggressive validation of these material simulation capabilities against experimental data is underway. Choosing appropriate material properties models and parameter values for a simulation is an area of particular concern. To address this issue, each material and experiment combination should be systematically examined through a set of code simulations. In addition to comparing competing materials models, the effect of simulation choices such as mesh size and ALE schemes for mesh untangling needs to be explored. Thoroughly understanding how such choices affect the calculated results of single physics simulations provides a user with a well-informed basis from which to ascertain how accurately a more complicated simulation portrays physical reality. Results for Lagrangian/ALE simulations of some experiments which are typically used for validation of strength and damage models will be presented. These material processes are the result of significant localization of strain and stress, which can be difficult to capture adequately on a finite-size mesh. Modeled strength experiments may include the lower strain rate (~104 s-1) gas gun driven Taylor impacts, the higher strain rate (~105 - 106 s-1) HE products driven perturbed plates, and the high shear tophats. Modeled damage experiments may include gas-gun driven flyer plates and electro-magnetically-driven cylindrical configurations.

  15. The role of material properties in adhesion

    NASA Technical Reports Server (NTRS)

    Buckley, D. H.

    1984-01-01

    When two solid surfaces are brought into contact strong adhesive bond forces can develop between the materials. The magnitude of the forces will depend upon the state of the surfaces, cleanliness and the fundamental properties of the two solids, both surface and bulk. Adhesion between solids is addressed from a theoretical consideration of the electronic nature of the surfaces and experimentally relating bond forces to the nature of the interface resulting from solid state contact. Surface properties correlated with adhesion include, atomic or molecular orientation, reconstruction and segregation as well as the chemistry of the surface specie. Where dissimilar solids are in contact the contribution of each is considered as is the role of their interactive chemistry on bond strength. Bulk properties examined include elastic and plastic behavior in the surficial regions, cohesive binding energies, crystal structure, crystallographic orientation and state. Materials examined with respect to interfacial adhesive interactions include metals, alloys, ceramics, polymers and diamond. They are reviewed both in single and polycrystalline form. The surfaces of the contacting solids are studied both in the atomic or molecularly clean state and in the presence of selected surface contaminants.

  16. Mechanical properties of thermal protection system materials.

    SciTech Connect

    Hardy, Robert Douglas; Bronowski, David R.; Lee, Moo Yul; Hofer, John H.

    2005-06-01

    An experimental study was conducted to measure the mechanical properties of the Thermal Protection System (TPS) materials used for the Space Shuttle. Three types of TPS materials (LI-900, LI-2200, and FRCI-12) were tested in 'in-plane' and 'out-of-plane' orientations. Four types of quasi-static mechanical tests (uniaxial tension, uniaxial compression, uniaxial strain, and shear) were performed under low (10{sup -4} to 10{sup -3}/s) and intermediate (1 to 10/s) strain rate conditions. In addition, split Hopkinson pressure bar tests were conducted to obtain the strength of the materials under a relatively higher strain rate ({approx}10{sup 2} to 10{sup 3}/s) condition. In general, TPS materials have higher strength and higher Young's modulus when tested in 'in-plane' than in 'through-the-thickness' orientation under compressive (unconfined and confined) and tensile stress conditions. In both stress conditions, the strength of the material increases as the strain rate increases. The rate of increase in LI-900 is relatively small compared to those for the other two TPS materials tested in this study. But, the Young's modulus appears to be insensitive to the different strain rates applied. The FRCI-12 material, designed to replace the heavier LI-2200, showed higher strengths under tensile and shear stress conditions. But, under a compressive stress condition, LI-2200 showed higher strength than FRCI-12. As far as the modulus is concerned, LI-2200 has higher Young's modulus both in compression and in tension. The shear modulus of FRCI-12 and LI-2200 fell in the same range.

  17. Synthesis of new materials with properties ameliorated

    NASA Astrophysics Data System (ADS)

    Baira, F.; Benfarhi, S.; Zidani, S.

    2012-09-01

    Cellulose is the most abundant polymer in nature. It is used mainly for the production of paper bet also as a reinforcement in the polymer matrixes[1]. The modification of this polysaccharide presents a great interest, for it is the main constituent of agricultural wastes. It is well known that the microcrystalline cellulose gives, after chemical modification, new biodegradable materials[2], which may be used, for instance, for packaging. The esterification of cellulose necessitates an acid pretreatment which makes hydroxyl groups more accessible by breaking hydrogen bonds. X-rays diffraction analysis showed a feeble diminution of the treated samples cristallinity[3]. Cellulose, activated in this way, is esterified in a classic way in DMF, in the presence of triethylamine, LiCl and acid chloride at 60C° for 24 hours[4]. The obtained ester is precipitated in MeOH. The residue, dissolved in CHCl3, gives after evaporation in the open air, a plastic film surface. The water drop test has shown the hydrophobe properties of the plastic film surface. Our work is the study of the preparation of composite materials from the basis of their derivatives. Well as the study of the photopolymerisation kinetic, and the chemical degradation. The obtained films were analyzed by IR-TF, and the volumetrie[5,6]. As a conclusion, we have prepared composite materials with improved properties with reference to the matrix alone.

  18. MEASUREMENT OF MATERIAL PROPERTIES OF DAMAGED ENERGETIC MATERIALS

    SciTech Connect

    Hsu, P C; Hust, G; Dehaven, M; Chidester, S; Glascoe, L; Hoffman, M; Maienschein, J L

    2010-03-10

    We recently conducted damaged experiments on three explosives (mechanical damage on LX-04 and thermal experiments on HPP and PBXN-9) and characterized the effect of damage on some material properties. The MTS equipment was used to apply compressive cycling to LX-04 pressed parts and the results showed that older LX-04 parts became mechanically weaker than newer parts. After repeated compressive cycling for over 20,000 times, older LX-04 parts failed but newer LX-04 parts survived. Thermal insults were applied to PBXN-9 and HPP at 180 C and 200 C, respectively in unconfined conditions for several hours. The thermally-damaged HPP sample suffered 12.0% weight losses and a volume expansion of 20% was observed. Porosity of the damaged HPP increased to 25% after thermal exposure, which led to higher gas permeability. Burn rates of damaged PBXN-9 were 2 orders of magnitude higher than those of pristine samples but burn rates of damaged HPP were only slightly higher than those of pristine HPP. Small-scale safety tests (impact, friction, and spark) showed no significant sensitization when the damaged samples were tested at room temperature. Gas permeation measurements showed that gas permeability in damaged materials was several orders of magnitude higher than that in pristine materials. In-situ measurements of gas permeability at high temperatures were made on HPP samples and the results showed that the gas permeability increased by 3 to 4 orders of magnitude.

  19. Physical Properties of Synthetic Resin Materials

    NASA Technical Reports Server (NTRS)

    Fishbein, Meyer

    1939-01-01

    A study was made to determine the physical properties of synthetic resins having paper, canvas, and linen reinforcements, and of laminated wood impregnated with a resin varnish. The results show that commercial resins have moduli of elasticity that are too low for structural considerations. Nevertheless, there do exist plastics that have favorable mechanical properties and, with further development, it should be possible to produce resin products that compare favorably with the light-metal alloys. The results obtained from tests on Compound 1840, resin-impregnated wood, show that this material can stand on its own merit by virtue of a compressive strength four times that of the natural wood. This increase in compressive strength was accomplished with an increase of density to a value slightly below three times the normal value and corrected one of the most serious defects of the natural product.

  20. New Monolayered Materials Exhibiting Unusual Electronic Properties

    NASA Astrophysics Data System (ADS)

    Lopez-Bezanilla, Alejandro; Martin, Ivar; Littlewood, Peter B.

    Computationally based approaches are allowing to progress in the discovery and design of nano-scaled materials. Here we propose a series of new mono-layered compounds with exotic properties. By means of density functional theory calculations we demonstrate that the pentagonal arrangement of SiC2 yields an inverted distribution of the p-bands which leads to an unusual electronic behaviour of the material under strain [J. Phys. Chem. C, 2015, 119 (33), pp 19469]. A different pentagonal arrangement of C atoms enables the formation of Dirac cones which, unlike graphene, exhibit a strain-mediated tunable band gap. This work is supported by DOE-BES under Contract No. DE-AC02-06CH11357.

  1. Physical Properties of Thin Film Semiconducting Materials

    NASA Astrophysics Data System (ADS)

    Bouras, N.; Djebbouri, M.; Outemzabet, R.; Sali, S.; Zerrouki, H.; Zouaoui, A.; Kesri, N.

    2005-10-01

    The physics and chemistry of semiconducting materials is a continuous question of debate. We can find a large stock of well-known properties but at the same time, many things are not understood. In recent years, porous silicon (PS-Si), diselenide of copper and indium (CuInSe2 or CIS) and metal oxide semiconductors like tin oxide (SnO2) and zinc oxide (ZnO) have been subjected to extensive studies because of the rising interest their potential applications in fields such as electronic components, solar panels, catalysis, gas sensors, in biocompatible materials, in Li-based batteries, in new generation of MOSFETS. Bulk structure and surface and interface properties play important roles in all of these applications. A deeper understanding of these fundamental properties would impact largely on technological application performances. In our laboratory, thin films of undoped and antimony-doped films of tin oxide have been deposited by chemical vapor deposition. Spray pyrolysis was used for ZnO. CIS was prepared by flash evaporation or close-space vapor transport. Some of the deposition parameters have been varied, such as substrate temperature, time of deposition (or anodization), and molar concentration of bath preparation. For some samples, thermal annealing was carried out under oxygen (or air), under nitrogen gas and under vacuum. Deposition and post-deposition parameters are known to strongly influence film structure and electrical resistivity. We investigated the influence of film thickness and thermal annealing on structural optical and electrical properties of the films. Examination of SnO2 by x-ray diffraction showed that the main films are polycrystalline with rutile structure. The x-ray spectra of ZnO indicated a hexagonal wurtzite structure. Characterizations of CIS films with compositional analysis, x-ray diffraction, scanning microscopy, spectrophotometry, and photoluminescence were carried out.

  2. Tailoring material properties of sputtered beryllium

    SciTech Connect

    McEachern, R.M.

    1999-03-01

    Doped beryllium is a material of considerable interest to both the ICF and the weapons communities, as well as finding application in specialized industrial settings (e.g., x-ray windows and mirrors). Some of these uses require conformal coating of thin films on (possibly) irregularly-shaped surfaces. Physical vapor deposition (PVD) is often used to accomplish this, and sputtering is often the technique of choice. Among its advantages are that the depositing atoms are relatively energetic, leading to more compact films. Moreover, by simply applying a voltage bias to the substrate, ambient noble gas ions will bombard the growing film, which can cause further densification and other modifications to the microstructure. Sputtering is also well suited to the introduction of dopants, even those that are insoluble. Most applications of these novel materials will require fundamental knowledge of their properties. Because so many can be devised, such information is generally unavailable. The objective of the effort has been to systematically study the properties of films produced under different conditions, with an emphasis on surface finish and permeability. They have made extensive use of atomic force microscopy (AFM) and electron microscopy to determine the microstructure of the films, along with composition probes (mainly x-ray fluorescence) to quantify the chemical structure. The studies can be roughly divided into three categories. First, there are those in which the properties of pure or Cu-doped Be films have been investigated, especially on randomly-agitated spherical capsules. Included are studies of the effects of a constant substrate bias ranging from 0 to 120 v and application of an intermittent bias during deposition. Second, there are experiments in which the structure of the depositing films has been modified via the incorporation of dopants, primarily boron. Finally, there have been numerous attempts to characterize the permeability of Be coatings at

  3. Interdisciplinary research on the nature and properties of ceramic materials

    NASA Technical Reports Server (NTRS)

    1980-01-01

    Several investigations concerning the properties and processing of brittle ceramic materials as related to design considerations are briefly described. Surface characterization techniques, fractography, high purity materials, creep properties, impact and thermal shock resistance, and reaction bonding are discussed.

  4. Microwave dielectric properties of plant materials

    NASA Technical Reports Server (NTRS)

    Ulaby, F. T.; Jedlicka, R. P.

    1984-01-01

    Three waveguide transmission systems covering the 1-2, 3.5-6.5, and 7.5-8.5 GHZ bands were used to measure the dielectric properties of vegetation material as a function of moisture content and microwave frequency. The materials measured included, primarily, the leaves and stalks of corn and wheat. Dielectric measurements also were made of the liquid included in the vegetation material after it was extracted from the vegetation by mechanical means. The extracted liquids were found to have an equivalent NaCl salinity of about 10 per mil, which can have a significant effect on the dielectric loss at frequencies below 5 GHz. The results of attempts to model the dielectric constant of the vegetatioon-water mixture in terms of the dielectric constants and volume fractions of its constituent parts (i.e., bulk vegetation, air, bound water, and free water) are discussed. Additionally, measurements of the temporal variations in the total attenuation at 10.2 GHz are presented for a corn canopy and a soybean canopy.

  5. Performance evaluation of 24 ion exchange materials for removing cesium and strontium from actual and simulated N-Reactor storage basin water

    SciTech Connect

    Brown, G.N.; Carson, K.J.; DesChane, J.R.; Elovich, R.J.

    1997-09-01

    This report describes the evaluation of 24 organic and inorganic ion exchange materials for removing cesium and strontium from actual and simulated waters from the 100 Area 105 N-Reactor fuel storage basin. The data described in this report can be applied for developing and evaluating ion exchange pre-treatment process flowsheets. Cesium and strontium batch distribution ratios (K{sub d}`s), decontamination factors (DF), and material loadings (mmol g{sup -1}) are compared as a function of ion exchange material and initial cesium concentration. The actual and simulated N-Basin waters contain relatively low levels of aluminum, barium, calcium, potassium, and magnesium (ranging from 8.33E-04 to 6.40E-05 M), with slightly higher levels of boron (6.63E-03 M) and sodium (1.62E-03 M). The {sup 137}Cs level is 1.74E-06 Ci L-{sup 1} which corresponds to approximately 4.87E-10 M Cs. The initial Na/Cs ratio was 3.33E+06. The concentration of total strontium is 4.45E-06 M, while the {sup 90}Sr radioactive component was measured to be 6.13E-06 Ci L{sup -1}. Simulant tests were conducted by contacting 0.067 g or each ion exchange material with approximately 100 mL of either the actual or simulated N-Basin water. The simulants contained variable initial cesium concentrations ranging from 1.00E-04 to 2.57E- 10 M Cs while all other components were held constant. For all materials, the average cesium K{sub d} was independent of cesium concentration below approximately 1.0E-06 M. Above this level, the average cesium K{sub d} values decreased significantly. Cesium K{sub d} values exceeding 1.0E+07 mL g{sup -1} were measured in the simulated N-Basin water. However, when measured in the actual N-Basin water the values were several orders of magnitude lower, with a maximum of 1.24E+05 mL g{sup -1} observed.

  6. Spacecraft dielectric material properties and spacecraft charging

    NASA Technical Reports Server (NTRS)

    Frederickson, A. R.; Wall, J. A.; Cotts, D. B.; Bouquet, F. L.

    1986-01-01

    The physics of spacecraft charging is reviewed, and criteria for selecting and testing semiinsulating polymers (SIPs) to avoid charging are discussed and illustrated. Chapters are devoted to the required properties of dielectric materials, the charging process, discharge-pulse phenomena, design for minimum pulse size, design to prevent pulses, conduction in polymers, evaluation of SIPs that might prevent spacecraft charging, and the general response of dielectrics to space radiation. SIPs characterized include polyimides, fluorocarbons, thermoplastic polyesters, poly(alkanes), vinyl polymers and acrylates, polymers containing phthalocyanine, polyacene quinones, coordination polymers containing metal ions, conjugated-backbone polymers, and 'metallic' conducting polymers. Tables summarizing the results of SIP radiation tests (such as those performed for the NASA Galileo Project) are included.

  7. Direct pore-scale computation of material and transport properties for North Sea reservoir rocks

    NASA Astrophysics Data System (ADS)

    Øren, P.-E.; Bakke, S.; Held, R.

    2007-12-01

    This work investigates two complex, heterogeneous sandstone lithofacies in a North Sea petroleum reservoir field. We compare samples acquired by X-ray microtomography with numerically reconstructed lithofacies, obtained from a geological process based reconstruction technique. Effective material and transport properties of these digitized rocks, such as electrical resistivity, elastic moduli, fluid permeability, and magnetic resonance (NMR), are computed. The comparison largely reveals an excellent agreement of calculated effective properties between the actual and reconstructed pore structures. A dependence of the effective properties on the specific mineralogy could be investigated in case of the reconstructed rocks. Our results allow for an interpretation of trends in effective medium properties and facilitate the construction of cross-property relations for the investigated lithofacies. The present study demonstrates the potential and feasibility of combining computer generated rocks with numerical calculations to derive material and transport properties for reservoir rocks.

  8. Interdisciplinary research on the nature and properties of ceramic materials

    NASA Technical Reports Server (NTRS)

    1980-01-01

    The advancement of material performance and design methodology as related to brittle materials was investigated. The processing and properties of ceramic materials as related to design requirements was also studied.

  9. Actual principles of the simulation of state-of-the-art technologies of laser processing of materials

    NASA Astrophysics Data System (ADS)

    Kovalev, Oleg B.

    2011-02-01

    Here we present the results of mathematical, numerical, and experimental simulation of the processes of interaction between the laser radiation and metals in the technologies of gas-laser cutting of thick-sheet materials and laser gas-powder cladding at the production of coatings and 3D objects by the DMD (Direct Material Deposition) method. The peculiarities of jet 3D flows of the working gases in narrow channels, geometrically identical to keyholes, are studied. It is demonstrated that during the stainless steel cutting, supersonic gas flows form local regions of separation flows which in turn result in the worse carry-away of the metal by the gas flow; these factors increase the roughness (striation) and worsen the surface quality. A vortex flow was found inside the cut at the subsonic jet flows typical for the oxygen gas-laser cutting of low-carbon steel; this flow causes slagging of the cut bottom edge. The processes running inside the laser cut at the fusible metals cutting with the low-power radiation were visualized under the laboratory conditions. Some new concepts of the processes running inside the keyhole have been gained; we also propose the explanations of the mechanisms of striation and other surface defects formation during the cutting of thick-sheet standard metals on the automate laser technological complex. A mathematical model of the volumetric laser-powder cladding is proposed. The submitted results concern the numerical simulation of multi-layer flows of shaping and carrier gases with the gas-jet transportation of powder particles into the laser spot on the substrate.

  10. Actual principles of the simulation of state-of-the-art technologies of laser processing of materials

    NASA Astrophysics Data System (ADS)

    Kovalev, Oleg B.

    2010-07-01

    Here we present the results of mathematical, numerical, and experimental simulation of the processes of interaction between the laser radiation and metals in the technologies of gas-laser cutting of thick-sheet materials and laser gas-powder cladding at the production of coatings and 3D objects by the DMD (Direct Material Deposition) method. The peculiarities of jet 3D flows of the working gases in narrow channels, geometrically identical to keyholes, are studied. It is demonstrated that during the stainless steel cutting, supersonic gas flows form local regions of separation flows which in turn result in the worse carry-away of the metal by the gas flow; these factors increase the roughness (striation) and worsen the surface quality. A vortex flow was found inside the cut at the subsonic jet flows typical for the oxygen gas-laser cutting of low-carbon steel; this flow causes slagging of the cut bottom edge. The processes running inside the laser cut at the fusible metals cutting with the low-power radiation were visualized under the laboratory conditions. Some new concepts of the processes running inside the keyhole have been gained; we also propose the explanations of the mechanisms of striation and other surface defects formation during the cutting of thick-sheet standard metals on the automate laser technological complex. A mathematical model of the volumetric laser-powder cladding is proposed. The submitted results concern the numerical simulation of multi-layer flows of shaping and carrier gases with the gas-jet transportation of powder particles into the laser spot on the substrate.

  11. Mechanical properties of low dimensional materials

    NASA Astrophysics Data System (ADS)

    Saini, Deepika

    Recent advances in low dimensional materials (LDMs) have paved the way for unprecedented technological advancements. The drive to reduce the dimensions of electronics has compelled researchers to devise newer techniques to not only synthesize novel materials, but also tailor their properties. Although micro and nanomaterials have shown phenomenal electronic properties, their mechanical robustness and a thorough understanding of their structure-property relationship are critical for their use in practical applications. However, the challenges in probing these mechanical properties dramatically increase as their dimensions shrink, rendering the commonly used techniques inadequate. This dissertation focuses on developing techniques for accurate determination of elastic modulus of LDMs and their mechanical responses under tensile and shear stresses. Fibers with micron-sized diameters continuously undergo tensile and shear deformations through many phases of their processing and applications. Significant attention has been given to their tensile response and their structure-tensile properties relations are well understood, but the same cannot be said about their shear responses or the structure-shear properties. This is partly due to the lack of appropriate instruments that are capable of performing direct shear measurements. In an attempt to fill this void, this dissertation describes the design of an inexpensive tabletop instrument, referred to as the twister, which can measure the shear modulus (G) and other longitudinal shear properties of micron-sized individual fibers. An automated system applies a pre-determined twist to the fiber sample and measures the resulting torque using a sensitive optical detector. The accuracy of the instrument was verified by measuring G for high purity copper and tungsten fibers. Two industrially important fibers, IM7 carbon fiber and KevlarRTM 119, were found to have G = 17 and 2.4 GPa, respectively. In addition to measuring the shear

  12. Kondo versus indirect exchange: the role of the lattice and the actual range of RKKY interactions in real materials

    NASA Astrophysics Data System (ADS)

    Allerdt, Andrew; Feiguin, Adrian; Busser, Carlos; Martins, George

    2015-03-01

    Magnetic impurities embedded in a metal interact via an effective Ruderman-Kittel-Kasuya-Yosida (RKKY) coupling mediated by the conduction electrons, which is commonly assumed to be long ranged, with an algebraic decay in the inter-impurity distance. However, they can also form a Kondo screened state that is oblivious to the presence of other impurities. We study the competition mechanisms between both effects on the square and cubic lattices by introducing an exact mapping onto an effective one-dimensional problem that we can solve with the density matrix renormalization group method (DMRG). We show a dramatic departure from the conventional RKKY theory, that can be attributed to the dimensionality and different densities of states, as well as the quantum nature of the magnetic moments. In particular, for dimension d > 1 , Kondo physics dominates even at short distances, while the ferromagnetic RKKY state is energetically unfavorable. Our findings can have clear implications in the interpretation of experiments and for tailoring the magnetic properties of surfaces.

  13. Non-invasive, energy-based assessment of patient-specific material properties of arterial tissue.

    PubMed

    Smoljkić, M; Vander Sloten, J; Segers, P; Famaey, N

    2015-10-01

    The mechanical properties of human biological tissue vary greatly. The determination of arterial material properties should be based on experimental data, i.e. diameter, length, intramural pressure, axial force and stress-free geometry. Currently, clinical data provide only non-invasively measured pressure-diameter data for superficial arteries (e.g. common carotid and femoral artery). The lack of information forces us to take into account certain assumptions regarding the in situ configuration to estimate material properties in vivo. This paper proposes a new, non-invasive, energy-based approach for arterial material property estimation. This approach is compared with an approach proposed in the literature. For this purpose, a simplified finite element model of an artery was used as a mock experimental situation. This method enables exact knowledge of the actual material properties, thereby allowing a quantitative evaluation of material property estimation approaches. The results show that imposing conditions on strain energy can provide a good estimation of the material properties from the non-invasively measured pressure and diameter data.

  14. Factors Influencing the Dielectric Properties of Agricultural and Food Materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dielectric properties of materials are defined, and the major factors that influence these properties of agricultural and food materials, namely, frequency of the applied radio-frequency or microwave electric fields, and water content, temperature, and density of the materials, are discussed on the ...

  15. Synthesis Properties and Electron Spin Resonance Properties of Titanic Materials

    SciTech Connect

    Cho, Jung Min; Lee, Jun; Kim, Tak Hee; Sun, Min Ho; Jang, Young Bae; Cho, Sung June

    2009-04-19

    Titanic materials were synthesized by hydrothermal method of TiO{sub 2} anatase in 10M LiOH, 10M NaOH, and 14M KOH at 130 deg. C for 30 hours. Alkaline media were removed from the synthesized products using 0.1N HCl aqueous solution. The as-prepared samples were characterized by scanning electron microscope, transmission electron microscope, X-ray diffraction, Brunauer-Emmett-Teller isotherm, and electron spin resonance. Different shapes of synthesized products were observed through the typical electron microscope and indicated that the formation of the different morphologies depends on the treatment conditions of highly alkaline media. Many micropores were observed in the cubic or octahedral type of TiO{sub 2} samples through the typical electron microscope and Langmuir adsorption-desorption isotherm of liquid nitrogen at 77 deg. K. Electron spin resonance studies have also been carried out to verify the existence of paramagnetic sites such as oxygen vacancies on the titania samples. The effect of alkali metal ions on the morphologies and physicochemical properties of nanoscale titania are discussed.

  16. Acoustic cloaking transformations from attainable material properties

    NASA Astrophysics Data System (ADS)

    Urzhumov, Yaroslav; Ghezzo, Fabrizia; Hunt, John; Smith, David R.

    2010-07-01

    We propose a general methodology and a set of practical recipes for the construction of ultra-broadband acoustic cloaks—structures that can render themselves and a concealed object undetectable by means of acoustic scattering. The acoustic cloaks presented here are designed and function analogously to electromagnetic cloaks. However, acoustic cloaks in a fluid medium do not suffer the bandwidth limitations imposed on their electromagnetic counterparts by the finite speed of light in vacuum. In the absence of specific metamaterials having arbitrary combinations of quasi-static speed of sound and mass density, we explore the flexibility of continuum transformations that produce approximate cloaking solutions. We show that an imperfect, eikonal acoustic cloak (that is, one which is not impedance matched but is valid in the geometrical optics regime) with negligible dispersion can be designed using a simple layered geometry. Since a practical cloaking device will probably be composed of combinations of solid materials rather than fluids, it is necessary to consider the full elastic properties of such media, which support shear waves in addition to the compression waves associated with the acoustic regime. We perform a systematic theoretical and numerical investigation of the role of shear waves in elastic cloaking devices. We find that for elastic metamaterials with Poisson's ratio ν>0.49, shear waves do not alter the cloaking effect. Such metamaterials can be built from nearly incompressible rubbers (with ν≈0.499) and fluids. We expect this finding to have applications in other acoustic devices based on the form-invariance of the scalar acoustic wave equation.

  17. Determination of Thermal Properties of Composting Bulking Materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal properties of compost bulking materials affect temperature and biodegradation during the composting process. Well determined thermal properties of compost feedstocks will therefore contribute to practical thermodynamic approaches. Thermal conductivity, thermal diffusivity, and volumetric hea...

  18. Determination of Thermal Properties of Composting Bulking Materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal properties of compost bulking materials affect temperature and biodegradation during the composting process. Well-determined thermal properties of compost feedstocks will therefore contribute to practical thermodynamic approaches. Thermal conductivity, thermal diffusivity, and volumetric hea...

  19. Magnetic properties of frictional volcanic materials

    NASA Astrophysics Data System (ADS)

    Kendrick, Jackie E.; Lavallée, Yan; Biggin, Andrew; Ferk, Annika; Leonhardt, Roman

    2015-04-01

    During dome-building volcanic eruptions, highly viscous magma extends through the upper conduit in a solid-like state. The outer margins of the magma column accommodate the majority of the strain, while the bulk of the magma is able to extrude, largely undeformed, to produce magma spines. Spine extrusion is often characterised by the emission of repetitive seismicity, produced in the upper <1 km by magma failure and slip at the conduit margins. The rheology of the magma controls the depth at which fracture can occur, while the frictional properties of the magma are important in controlling subsequent marginal slip processes. Upon extrusion, spines are coated by a carapace of volcanic fault rocks which provide insights into the deeper conduit processes. Frictional samples from magma spines at Mount St. Helens (USA), Soufriere Hills (Montserrat) and Mount Unzen (Japan) have been examined using structural, thermal and magnetic analyses to reveal a history of comminution, frictional heating, melting and cooling to form volcanic pseudotachylyte. Pseudotachylyte has rarely been noted in volcanic materials, and the recent observation of its syn-eruptive formation in dome-building volcanoes was unprecedented. The uniquely high thermal conditions of volcanic environments means that frictional melt remains at elevated temperatures for longer than usual, causing slow crystallisation, preventing the development of some signature "quench" characteristics. As such, rock-magnetic tests have proven to be some of the most useful tools in distinguishing pseudotachylytes from their andesite/ dacite hosts. In volcanic pseudotachylyte the mass normalised natural remanent magnetisation (NRM) when further normalised with the concentration dependent saturation remanence (Mrs) was found to be higher than the host rock. Remanence carriers are defined as low coercive materials across all samples, and while the remanence of the host rock displays similarities to an anhysteretic remanent

  20. Absorption properties of waste matrix materials

    SciTech Connect

    Briggs, J.B.

    1997-06-01

    This paper very briefly discusses the need for studies of the limiting critical concentration of radioactive waste matrix materials. Calculated limiting critical concentration values for some common waste materials are listed. However, for systems containing large quantities of waste materials, differences up to 10% in calculated k{sub eff} values are obtained by changing cross section data sets. Therefore, experimental results are needed to compare with calculation results for resolving these differences and establishing realistic biases.

  1. Metallurgy and properties of plasma spray formed materials

    NASA Technical Reports Server (NTRS)

    Mckechnie, T. N.; Liaw, Y. K.; Zimmerman, F. R.; Poorman, R. M.

    1992-01-01

    Understanding the fundamental metallurgy of vacuum plasma spray formed materials is the key to enhancing and developing full material properties. Investigations have shown that the microstructure of plasma sprayed materials must evolve from a powder splat morphology to a recrystallized grain structure to assure high strength and ductility. A fully, or near fully, dense material that exhibits a powder splat morphology will perform as a brittle material compared to a recrystallized grain structure for the same amount of porosity. Metallurgy and material properties of nickel, iron, and copper base alloys will be presented and correlated to microstructure.

  2. Dielectric properties of agricultural materials and their application

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book is prepared as a comprehensive source of information on dielectric properties of agricultural materials for scientific researchers and engineers involved in practical application of radio-frequency and microwave energy for potential problem solutions. Dielectric properties of materials det...

  3. Exposure effects on the optical properties of building materials

    NASA Astrophysics Data System (ADS)

    Lane, Sarah; Cathcart, J. Michael; Harrell, J. Timothy

    2008-04-01

    Georgia Tech recently initiated a weathering effects measurement program to monitor the optical properties of several common building materials. A set of common building materials were placed outdoors and optical property measurements made over a series of weeks to assess the impact of exposure on these properties. Both reflectivity and emissivity measurements were made. Materials in this program included aluminum flashing, plastic sheets, bricks, roof shingles, and tarps. This paper will discuss the measurement approach, experimental setup, and present preliminary results from the optical property measurements.

  4. "TPSX: Thermal Protection System Expert and Material Property Database"

    NASA Technical Reports Server (NTRS)

    Squire, Thomas H.; Milos, Frank S.; Rasky, Daniel J. (Technical Monitor)

    1997-01-01

    The Thermal Protection Branch at NASA Ames Research Center has developed a computer program for storing, organizing, and accessing information about thermal protection materials. The program, called Thermal Protection Systems Expert and Material Property Database, or TPSX, is available for the Microsoft Windows operating system. An "on-line" version is also accessible on the World Wide Web. TPSX is designed to be a high-quality source for TPS material properties presented in a convenient, easily accessible form for use by engineers and researchers in the field of high-speed vehicle design. Data can be displayed and printed in several formats. An information window displays a brief description of the material with properties at standard pressure and temperature. A spread sheet window displays complete, detailed property information. Properties which are a function of temperature and/or pressure can be displayed as graphs. In any display the data can be converted from English to SI units with the click of a button. Two material databases included with TPSX are: 1) materials used and/or developed by the Thermal Protection Branch at NASA Ames Research Center, and 2) a database compiled by NASA Johnson Space Center 9JSC). The Ames database contains over 60 advanced TPS materials including flexible blankets, rigid ceramic tiles, and ultra-high temperature ceramics. The JSC database contains over 130 insulative and structural materials. The Ames database is periodically updated and expanded as required to include newly developed materials and material property refinements.

  5. Organic materials with nonlinear optical properties

    DOEpatents

    Stupp, S.I.; Son, S.; Lin, H.C.

    1995-05-02

    The present invention is directed to organic materials that have the ability to double or triple the frequency of light that is directed through the materials. Particularly, the present invention is directed to the compound 4-[4-(2R)-2-cyano-7-(4{prime}-pentyloxy-4-biphenylcarbonyloxy)phenylheptylidenephenylcarbonyloxy]benzaldehyde, which can double the frequency of light that is directed through the compound. The invention is also directed to the compound (12-hydroxy-5,7-dodecadiynyl)-4{prime}-[(4{prime}-pentyloxy-4-biphenyl)carbonyloxy]-4-biphenylcarboxylate, and its polymeric form. The polymeric form can triple the frequency of light directed through it. 4 figs.

  6. Organic materials with nonlinear optical properties

    DOEpatents

    Stupp, Samuel I.; Son, Sehwan; Lin, Hong-Cheu

    1995-01-01

    The present invention is directed to organic materials that have the ability to double or triple the frequency of light that is directed through the materials. Particularly, the present invention is directed to the compound 4-[4-(2R)-2-cyano-7-(4'-pentyloxy-4-biphenylcarbonyloxy)phenylheptylidene) phenylcarbonyloxy]benzaldehyde, which can double the frequency of light that is directed through the compound. The invention is also directed to the compound (12-hydroxy-5,7-dodecadiynyl) 4'-[(4'-pentyloxy-4-biphenyl)carbonyloxy]-4-biphenylcarboxylate, and its polymeric form. The polymeric form can triple the frequency of light directed through it.

  7. Quantitative Ultrasonic Evaluation of Mechanical Properties of Engineering Materials

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1978-01-01

    Progress in the application of ultrasonic techniques to nondestructive measurement of mechanical strength of engineering materials is reviewed. A dormant concept in nondestructive evaluation (NDE) is invoked. The availability of ultrasonic methods that can be applied to actual parts to assess their potential susceptibility to failure under design conditions is discussed. It was shown that ultrasonic methods yield measurements of elastic moduli, microstructure, hardness, fracture toughness, tensile strength, yield strength, and shear strength for a wide range of materials (including many types of metals, ceramics, and fiber composites). It was also indicated that although most of these methods were shown feasible in laboratory studies, more work is needed before they can be used on actual parts in processing, assembly, inspection, and maintenance lines.

  8. Tuning Surface Properties of Low Dimensional Materials via Strain Engineering.

    PubMed

    Yang, Shengchun; Liu, Fuzhu; Wu, Chao; Yang, Sen

    2016-08-01

    The promising and versatile applications of low dimensional materials are largely due to their surface properties, which along with their underlying electronic structures have been well studied. However, these materials may not be directly useful for applications requiring properties other than their natal ones. In recent years, strain has been shown to be an additionally useful handle to tune the physical and chemical properties of materials by changing their geometric and electronic structures. The strategies for producing strain are summarized. Then, the electronic structure of quasi-two dimensional layered non-metallic materials (e.g., graphene, MX2, BP, Ge nanosheets) under strain are discussed. Later, the strain effects on catalytic properties of metal-catalyst loaded with strain are focused on. Both experimental and computational perspectives for dealing with strained systems are covered. Finally, an outlook on engineering surface properties utilizing strain is provided. PMID:27376498

  9. Tuning Surface Properties of Low Dimensional Materials via Strain Engineering.

    PubMed

    Yang, Shengchun; Liu, Fuzhu; Wu, Chao; Yang, Sen

    2016-08-01

    The promising and versatile applications of low dimensional materials are largely due to their surface properties, which along with their underlying electronic structures have been well studied. However, these materials may not be directly useful for applications requiring properties other than their natal ones. In recent years, strain has been shown to be an additionally useful handle to tune the physical and chemical properties of materials by changing their geometric and electronic structures. The strategies for producing strain are summarized. Then, the electronic structure of quasi-two dimensional layered non-metallic materials (e.g., graphene, MX2, BP, Ge nanosheets) under strain are discussed. Later, the strain effects on catalytic properties of metal-catalyst loaded with strain are focused on. Both experimental and computational perspectives for dealing with strained systems are covered. Finally, an outlook on engineering surface properties utilizing strain is provided.

  10. Problems of predicting material property retention during long term service

    NASA Astrophysics Data System (ADS)

    Gordeev, Yu. P.; Khomutov, A. M.

    1995-01-01

    A procedure of materials-science studies accompanying the process of product development, manufacture and service is offered. It provides correct selection of materials, trustworthy prediction of their behavior, high reliability of their operation in products of space-rocket application. Reliable prediction of material behavior during long-term service is achieved by breaking up the complex effect of the environment into individual factors and by analyzing the effect of each factor on the properties of the material.

  11. Data base for crack growth properties of materials

    NASA Technical Reports Server (NTRS)

    Forman, Royce G.; Lawrence, Victor B.; Nguy, Henry L.

    1988-01-01

    A computerized data base of crack growth properties of materials was developed for use in fracture control analysis of rocket engine components and other NASA space hardware. The software system has files of basic crack growth rate data, other fracture mechanics material properties such as fracture toughness and environmental crack growth threshold values, and plotting and fitting routines for deriving material properties for use in fracture control analysis. An extensive amount of data was collected and entered, and work is continuing on compiling additional data. The data base and software codes are useful both for fracture control analysis and for evaluation or development of improved crack growth theories.

  12. Optical techniques for determining dynamic material properties

    SciTech Connect

    Paisley, D.L.; Stahl, D.B.

    1996-12-31

    Miniature plates are laser-launched with a 10-Joule Nd:YAG for one-dimensional (1-D) impacts on to target materials much like gas gun experiments and explosive plane wave plate launch. By making the experiments small, flyer plates (3 mm diameter x 50 micron thick) and targets (10 mm diameter x 200 micron thick), 1-D impact experiments can be performed in a standard laser-optical laboratory with minimum confinement and collateral damage. The laser-launched plates do not require the traditional sabot on gas guns nor the explosives needed for explosive planewave lenses, and as a result are much more amenable to a wide variety of materials and applications. Because of the small size very high pressure gradients can be generated with relative ease. The high pressure gradients result in very high strains and strain rates that are not easily generated by other experimental methods. The small size and short shock duration (1 - 20 ns) are ideal for dynamically measuring bond strengths of micron-thick coatings. Experimental techniques, equipment, and dynamic material results are reported.

  13. CRC handbook of laser science and technology. Volume 4. Optical materials, Part 2 - Properties

    SciTech Connect

    Weber, M.J.

    1986-01-01

    This book examines the optical properties of laser materials. Topics considered include: fundamental properties; transmitting materials; crystals; glasses; plastics; filter materials; mirror and reflector materials; polarizer materials; special properties; linear electrooptic materials; magnetooptic materials; elastooptic materials; photorefractive materials; and liquid crystals.

  14. Spacecraft dielectric material properties and spacecraft charging

    SciTech Connect

    Frederickson, A.R.; Cotts, D.B.; Wall, J.A.; Bouquet, F.L.

    1986-01-01

    With an eye towards applications in the space radiation environment and in nuclear instrumentation, the contributors to this volume provide a multi-disciplinary review of theory and experimentation with conductivity in dielectrics, especially insulators, to establish guidelines for design of materials which do not electrically discharge or breakdown. The authors' analysis of polymer literature suggests several candidates for the purpose of proposing anti-static polymers for use in the space radiation environment. Experimental data is systematically referenced and suggestions for improving such data are made. The book also contains an extensive reference list.

  15. Mechanical properties of a porous mullite material

    NASA Technical Reports Server (NTRS)

    Viens, Michael J.

    1991-01-01

    Modulus of rupture specimens were used to determine crack growth parameters of a porous mullite material. Strength testing was performed in ambient and moist environments. The power law crack growth rate parameters n and 1n B in 50 percent relative humidity were found to be 44.98 and 0.94, respectively. The inert strength, fracture toughness, and elastic modulus were also determined and found to be 19 MPa, 055 MPa(m) exp 1/2, and 11.6 GPa, respectively.

  16. Properties of Optical and Laser-Related Materials: A Handbook

    NASA Astrophysics Data System (ADS)

    Nikogosyan, David N.

    2003-05-01

    Properties of Optical and Laser-Related Materials-A Handbook offers the reader a self-contained, concise and up-to-date collection of the key properties of 125 of the most common and important optical materials used in modern optics, laser physics and technology, spectroscopy and laser spectroscopy, nonlinear optics, quantum electronics and laser applications. This comprehensive volume presents not only the classical properties but also those that have appeared in the three decades since the invention of the laser. The presentation of the material is given in a clear tabular form with more than 1000 references. A wide variety of readers, ranging from workers in both industry and academia, to lecturers and students at postgraduate and undergraduate levels, will find Properties of Optical and Laser-Related Materials-A Handbook an invaluable resource.

  17. Interdisciplinary research concerning the nature and properties of ceramic materials

    NASA Technical Reports Server (NTRS)

    1975-01-01

    The nature and properties of ceramic materials as they relate to solid state physics and metallurgy are studied. Special attention was given to the applications of ceramics to NASA programs and national needs.

  18. Novel thermal properties of nanostructured materials.

    SciTech Connect

    Eastman, J. A.

    1999-01-13

    A new class of heat transfer fluids, termed nanofluids, has been developed by suspending nanocrystalline particles in liquids. Due to the orders-of-magnitude larger thermal conductivities of solids compared to those of liquids such as water, significantly enhanced thermal properties are obtained with nanofluids. For example, an approximately 20% improvement in effective thermal conductivity is observed when 5 vol.% CuO nanoparticles are added to water. Even more importantly, the heat transfer coefficient of water under dynamic flow conditions is increased more than 15% with the addition of less than 1 vol.% CuO particles. The use of nanofluids could impact many industrial sectors, including transportation, energy supply and production, electronics, textiles, and paper production by, for example, decreasing pumping power needs or reducing heat exchanger sizes. In contrast to the enhancement in effective thermal transport rates that is obtained when nanoparticles are suspended in fluids, nanocrystalline coatings are expected to exhibit reduced thermal conductivities compared to coarse-grained coatings. Reduced thermal conductivities are predicted to arise because of a reduction in the mean free path of phonons due to presence of grain boundaries. This behavior, combined with improved mechanical properties, makes nanostructured zirconia coatings excellent candidates for future applications as thermal barriers. Yttria-stabilized zirconia (YSZ) thin films are being produced by metal-organic chemical vapor deposition techniques. Preliminary results have indicated that the thermal conductivity is reduced by approximately a factor-of-two at room temperature in 10 nm grain-sized YSZ compared to coarse-grained or single crystal YSZ.

  19. Distributed databases for materials study of thermo-kinetic properties

    NASA Astrophysics Data System (ADS)

    Toher, Cormac

    2015-03-01

    High-throughput computational materials science provides researchers with the opportunity to rapidly generate large databases of materials properties. To rapidly add thermal properties to the AFLOWLIB consortium and Materials Project repositories, we have implemented an automated quasi-harmonic Debye model, the Automatic GIBBS Library (AGL). This enables us to screen thousands of materials for thermal conductivity, bulk modulus, thermal expansion and related properties. The search and sort functions of the online database can then be used to identify suitable materials for more in-depth study using more precise computational or experimental techniques. AFLOW-AGL source code is public domain and will soon be released within the GNU-GPL license.

  20. Thermal Properties of Structural Materials Used in LWR Vessels

    SciTech Connect

    J. E. Daw; J. L. Rempe; D. L. Knudson

    2011-01-01

    High temperature material property data for structural materials used in existing Light Water Reactors (LWRs) are limited. Often, extrapolated values recommended in the literature differ significantly. To reduce uncertainties in predictions relying upon extrapolated data for LWR vessel and penetration materials, high temperature tests were completed on SA533 Grade B, Class 1 (SA533B1) low alloy steel, Stainless Steel 304 (SS304), and Inconel 600 using material property measurement systems available in the High Temperature Test Laboratory (HTTL) at the Idaho National Laboratory (INL). Properties measured include thermal expansion, specific heat capacity, and thermal diffusivity for temperatures up to 1200 °C. From these results, thermal conductivity and density were calculated. Results show that, in some cases, previously recommended values for these materials differ significantly from measured values at high temperatures.

  1. Determining significant material properties: A discovery approach

    NASA Technical Reports Server (NTRS)

    Karplus, Alan K.

    1992-01-01

    The following is a laboratory experiment designed to further understanding of materials science. The experiment itself can be informative for persons of any age past elementary school, and even for some in elementary school. The preparation of the plastic samples is readily accomplished by persons with resonable dexterity in the cutting of paper designs. The completion of the statistical Design of Experiments, which uses Yates' Method, requires basic math (addition and subtraction). Interpretive work requires plotting of data and making observations. Knowledge of statistical methods would be helpful. The purpose of this experiment is to acquaint students with the seven classes of recyclable plastics, and provide hands-on learning about the response of these plastics to mechanical tensile loading.

  2. MIDAS (Material Implementation, Database, and Analysis Source): A comprehensive resource of material properties

    SciTech Connect

    Tang, M; Norquist, P; Barton, N; Durrenberger, K; Florando, J; Attia, A

    2010-12-13

    MIDAS is aimed to be an easy-to-use and comprehensive common source for material properties including both experimental data and models and their parameters. At LLNL, we will develop MIDAS to be the central repository for material strength related data and models with the long-term goal to encompass other material properties. MIDAS will allow the users to upload experimental data and updated models, to view and read materials data and references, to manipulate models and their parameters, and to serve as the central location for the application codes to access the continuously growing model source codes. MIDAS contains a suite of interoperable tools and utilizes components already existing at LLNL: MSD (material strength database), MatProp (database of materials properties files), and MSlib (library of material model source codes). MIDAS requires significant development of the computer science framework for the interfaces between different components. We present the current status of MIDAS and its future development in this paper.

  3. Analytic Thermoelectric Couple Modeling: Variable Material Properties and Transient Operation

    NASA Technical Reports Server (NTRS)

    Mackey, Jonathan A.; Sehirlioglu, Alp; Dynys, Fred

    2015-01-01

    To gain a deeper understanding of the operation of a thermoelectric couple a set of analytic solutions have been derived for a variable material property couple and a transient couple. Using an analytic approach, as opposed to commonly used numerical techniques, results in a set of useful design guidelines. These guidelines can serve as useful starting conditions for further numerical studies, or can serve as design rules for lab built couples. The analytic modeling considers two cases and accounts for 1) material properties which vary with temperature and 2) transient operation of a couple. The variable material property case was handled by means of an asymptotic expansion, which allows for insight into the influence of temperature dependence on different material properties. The variable property work demonstrated the important fact that materials with identical average Figure of Merits can lead to different conversion efficiencies due to temperature dependence of the properties. The transient couple was investigated through a Greens function approach; several transient boundary conditions were investigated. The transient work introduces several new design considerations which are not captured by the classic steady state analysis. The work helps to assist in designing couples for optimal performance, and also helps assist in material selection.

  4. Materials thermal and thermoradiative properties/characterization technology

    NASA Technical Reports Server (NTRS)

    Dewitt, D. P.; Ho, C. Y.

    1989-01-01

    Reliable properties data on well characterized materials are necessary for design of experiments and interpretation of experimental results. The activities of CINDAS to provide data bases and predict properties are discussed. An understanding of emissivity behavior is important in order to select appropriate methods for non-contact temperature determination. Related technical issues are identified and recommendations are offered.

  5. The design and modeling of periodic materials with novel properties

    NASA Astrophysics Data System (ADS)

    Berger, Jonathan Bernard

    Cellular materials are ubiquitous in our world being found in natural and engineered systems as structural materials, sound and energy absorbers, heat insulators and more. Stochastic foams made of polymers, metals and even ceramics find wide use due to their novel properties when compared to monolithic materials. Properties of these so called hybrid materials, those that combine materials or materials and space, are derived from the localization of thermomechanical stresses and strains on the mesoscale as a function of cell topology. The effects of localization can only be generalized in stochastic materials arising from their inherent potential complexity, possessing variations in local chemistry, microstructural inhomogeneity and topological variations. Ordered cellular materials on the other hand, such as lattices and honeycombs, make for much easier study, often requiring analysis of only a single unit-cell. Theoretical bounds predict that hybrid materials have the potential to push design envelopes offering lighter stiffer and stronger materials. Hybrid materials can achieve very low and even negative coefficients of thermal expansion (CTE) while retaining a relatively high stiffness -- properties completely unmatched by monolithic materials. In the first chapter of this thesis a two-dimensional lattice is detailed that possess near maximum stiffness, relative to the tightest theoretical bound, and low, zero and even appreciably negative thermal expansion. Its CTE and stiffness are given in closed form as a function of geometric parameters and the material properties. This result is confirmed with finite elements (FE) and experiment. In the second chapter the compressive stiffness of three-dimensional ordered foams, both closed and open cell, are predicted with FE and the results placed in property space in terms of stiffness and density. A novel structure is identified that effectively achieves theoretical bounds for Young's, shear and bulk modulus

  6. Thermophysical properties of materials based on silicon nitride

    SciTech Connect

    Blinder, A.V.; Bolgar, A.S.; Petrovskii, V.Ya.

    1995-09-01

    The heat capacity and thermal conductivity of materials based on Si{sub 3}N{sub 4} are investigated for the first time. The temperature dependence of the thermal diffusivity of the composites studied is calculated. The influence of structural changes on the nature of the thermophysical properties of materials based on {beta}-Si{sub 3}N{sub 4}.

  7. Heat Transmission Properties of Insulating and Building Materials

    National Institute of Standards and Technology Data Gateway

    SRD 81 NIST Heat Transmission Properties of Insulating and Building Materials (Web, free access)   NIST has accumulated a valuable and comprehensive collection of thermal conductivity data. Version 1.0 of the database includes data for over 2000 measurements, covering several categories of materials including concrete, fiberboard, plastics, thermal insulation, and rubber.

  8. Use of material dielectric properties for agricultural applications

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The use of dielectric properties of materials for applications in agriculture are reviewed, and research findings on use of dielectric heating of materials and on sensing of product moisture content and other quality factors are discussed. Dielectric heating applications, include treatment of seed...

  9. Multifunctional materials exhibiting spin crossover and liquid-crystalline properties

    NASA Astrophysics Data System (ADS)

    Seredyuk, M.; Gaspar, Ana B.; Ksenofontov, V.; Reiman, S.; Galyametdinov, Y.; Haase, W.; Rentschler, E.; Gütlich, P.

    2005-11-01

    The physical characterization of a new class of Fe(II) multifunctional SCO materials exhibiting spin crossover and liquid crystalline properties in the room temperatures region is reported. Mössbauer spectroscopy, magnetic, differential scanning calorimetry (DSC), X-ray powder diffraction (XRD) and optical polarizing microscopy studies have been performed on such materials.

  10. Perspective: Interactive material property databases through aggregation of literature data

    NASA Astrophysics Data System (ADS)

    Seshadri, Ram; Sparks, Taylor D.

    2016-05-01

    Searchable, interactive, databases of material properties, particularly those relating to functional materials (magnetics, thermoelectrics, photovoltaics, etc.) are curiously missing from discussions of machine-learning and other data-driven methods for advancing new materials discovery. Here we discuss the manual aggregation of experimental data from the published literature for the creation of interactive databases that allow the original experimental data as well additional metadata to be visualized in an interactive manner. The databases described involve materials for thermoelectric energy conversion, and for the electrodes of Li-ion batteries. The data can be subject to machine-learning, accelerating the discovery of new materials.

  11. Metamaterials: composite materials with unnatural electromagnetic properties

    NASA Astrophysics Data System (ADS)

    Pniewski, Jacek; Saj, W. M.; Antosiewicz, Tomasz; Szoplik, Tomasz

    2005-08-01

    The idea of a substance with simultaneously negative values of dielectric permittivity ɛ and magnetic permeability μ presented by Veselago in 1968 has been brought to reality. Firstly, negative permittivity ɛ(ω) of a three dimensional photonic structure composed of thin metal wires was experimentally demonstrated in the GHz range. Secondly, a concept of split ring resonator has appeared and a structure composed of such metal resonators was shown to have negative permeability μ. Consequently, in a so called double negative, both ɛ(ω) and μ(ω) < 0, composite material made of cells consisting of a split ring resonator and a wire unnatural phenomenon of negative refraction was experimentally observed in the microwave spectral region. Recently, perfect lenses made of metamaterial with negative refraction index, photonic crystal or metal slabs were used to focus light below the diffraction limit of resolution. Electromagnetic transport of energy in plasmon waveguides made of subwavelength metallic elements offers a great potential value for nanoscale photonic devices of the future.

  12. Investigation of test methods, material properties and processes for solar cell encapsulants

    NASA Technical Reports Server (NTRS)

    Willis, P. B.

    1985-01-01

    The historical development of ethylene vinyl acetate (EVA) is presented, including the functional requirements, polymer selection, curing, stabilization, production and module processing. The construction and use of a new method for the accelerated aging of polymers is detailed. The method more closely resembles the conditions that may be encountered in actual module field exposure and additionally may permit service life to be predicted accurately. The use of hardboard as a low cost candidate substrate material is studied. The performance of surface antisoiling treatments useful for imparting a self cleaning property to modules is updated.

  13. Properties of photon tunneling through single-negative materials.

    PubMed

    Kim, Kyoung-Youm

    2005-02-15

    The photon tunneling phenomena in the composite barriers of single-negative materials were analyzed. It was found that the tunneling through such a barrier shifts TE- and TM-polarization light waves laterally (parallel to the material interface) in two opposite directions, causing them to be divided into two waves after tunneling. This property could not be obtained with double-positive and (or) double-negative materials.

  14. Compact rock material gas permeability properties

    NASA Astrophysics Data System (ADS)

    Wang, Huanling; Xu, Weiya; Zuo, Jing

    2014-09-01

    Natural compact rocks, such as sandstone, granite, and rock salt, are the main materials and geological environment for storing underground oil, gas, CO2, shale gas, and radioactive waste because they have extremely low permeabilities and high mechanical strengths. Using the inert gas argon as the fluid medium, the stress-dependent permeability and porosity of monzonitic granite and granite gneiss from an underground oil storage depot were measured using a permeability and porosity measurement system. Based on the test results, models for describing the relationships among the permeability, porosity, and confining pressure of rock specimens were analyzed and are discussed. A power law is suggested to describe the relationship between the stress-dependent porosity and permeability; for the monzonitic granite and granite gneiss (for monzonitic granite (A-2), the initial porosity is approximately 4.05%, and the permeability is approximately 10-19 m2; for the granite gneiss (B-2), the initial porosity is approximately 7.09%, the permeability is approximately 10-17 m2; and the porosity-sensitivity exponents that link porosity and permeability are 0.98 and 3.11, respectively). Compared with moderate-porosity and high-porosity rocks, for which φ > 15%, low-porosity rock permeability has a relatively lower sensitivity to stress, but the porosity is more sensitive to stress, and different types of rocks show similar trends. From the test results, it can be inferred that the test rock specimens' permeability evolution is related to the relative particle movements and microcrack closure.

  15. Multiscale mechanics of hierarchical structure/property relationships in calcified tissues and tissue/material interfaces

    PubMed Central

    Katz, J. Lawrence; Misra, Anil; Spencer, Paulette; Wang, Yong; Bumrerraj, Sauwanan; Nomura, Tsutomu; Eppell, Steven J.; Tabib-Azar, Massood

    2007-01-01

    This paper presents a review plus new data that describes the role hierarchical nanostructural properties play in developing an understanding of the effect of scale on the material properties (chemical, elastic and electrical) of calcified tissues as well as the interfaces that form between such tissues and biomaterials. Both nanostructural and microstructural properties will be considered starting with the size and shape of the apatitic mineralites in both young and mature bovine bone. Microstructural properties for human dentin and cortical and trabecular bone will be considered. These separate sets of data will be combined mathematically to advance the effects of scale on the modeling of these tissues and the tissue/biomaterial interfaces as hierarchical material/structural composites. Interfacial structure and properties to be considered in greatest detail will be that of the dentin/adhesive (d/a) interface, which presents a clear example of examining all three material properties, (chemical, elastic and electrical). In this case, finite element modeling (FEA) was based on the actual measured values of the structure and elastic properties of the materials comprising the d/a interface; this combination provides insight into factors and mechanisms that contribute to premature failure of dental composite fillings. At present, there are more elastic property data obtained by microstructural measurements, especially high frequency ultrasonic wave propagation (UWP) and scanning acoustic microscopy (SAM) techniques. However, atomic force microscopy (AFM) and nanoindentation (NI) of cortical and trabecular bone and the dentin–enamel junction (DEJ) among others have become available allowing correlation of the nanostructural level measurements with those made on the microstructural level. PMID:18270549

  16. Improvement of materials surface properties by rf glow discharge treatment

    SciTech Connect

    Huang, T.B.; Chen, X.; Tian, X.Q.; Cha, L.Z.

    2006-07-15

    Materials surface properties were improved by the application of a rf glow discharge treatment for vacuum and electronic applications. The surface morphology was studied under different glow discharge treatments and it could be shown by experiments that the roughness of materials surface varied due to the glow discharge treating process and that a clean and smooth surface could be obtained after the treatment. The experimental results revealed that the outgassing rates for different gases decreased and the evacuating properties for the materials improved following the application of the glow discharge treatment.

  17. Understanding and Tailoring the Mechanical Properties of LIGA Fabricated Materials

    SciTech Connect

    Buchheit, T.E.; Christenson, T.R.; Lavan, D.A.; Schmale, D.T.

    1999-01-25

    LIGA fabricated materials and components exhibit several processing issues affecting their metallurgical and mechanical properties, potentially limiting their usefulness for MEMS applications. For example, LIGA processing by metal electrodeposition is very sensitive to deposition conditions which causes significant processing lot variations of mechanical and metallurgical properties. Furthermore, the process produces a material with a highly textured lenticular rnicrostructural morphology suggesting an anisotropic material response. Understanding and controlling out-of-plane anisotropy is desirable for LIGA components designed for out-of-plane flexures. Previous work by the current authors focused on results from a miniature servo-hydraulic mechanical test frame constructed for characterizing LIGA materials. Those results demonstrated microstructural and mechanical properties dependencies with plating bath current density in LIGA fabricated nickel (LIGA Ni). This presentation builds on that work and fosters a methodology for controlling the properties of LIGA fabricated materials through processing. New results include measurement of mechanical properties of LIGA fabricated copper (LIGA Cu), out-of-plane and localized mechanical property measurements using compression testing and nanoindentation of LIGA Ni and LIGA Cu.

  18. Characterization of the physical properties for solid granular materials

    SciTech Connect

    Tucker, Jonathan R.; Shadle, Lawrence J.; Guenther, Chris; Benyahia, Sofiane; Mei, Joseph S.; Banta, Larry

    2012-01-01

    Accurate prediction of the behavior of a system is strongly governed by the components within that system. For multiphase systems incorporating solid powder-like particles, there are many different physical properties which need to be known to some level of accuracy for proper design, modeling, or data analysis. In the past, the material properties were determined initially as a secondary part of the study or design. In an attempt to provide results with the least level of uncertainty, a procedure was developed and implemented to provide consistent analysis of several different types of materials. The properties that were characterized included particle sizing and size distributions, shape analysis, density (particle, skeletal and bulk), minimum fluidization velocities, void fractions, particle porosity, and assignment within the Geldart Classification. In the methods used for this experiment, a novel form of the Ergun equation was used to determine the bulk void fractions and particle density. Materials of known properties were initially characterized to validate the accuracy and methodology, prior to testing materials of unknown properties. The procedures used yielded valid and accurate results, with a high level of repeatability. A database of these materials has been developed to assist in model validation efforts and future designs. It is also anticipated that further development of these procedures wil be expanded increasing the properties included in the database.

  19. Chemical hydrogen storage material property guidelines for automotive applications

    SciTech Connect

    Semelsberger, Troy; Brooks, Kriston P.

    2015-04-01

    Chemical hydrogen storage is the sought after hydrogen storage media for automotive applications because of the expected low pressure operation (<20 atm), moderate temperature operation (<200 C), system gravimetric capacities (>0.05 kg H2/kg system), and system volumetric capacities (>0.05 kg H2/L system). Currently, the primary shortcomings of chemical hydrogen storage are regeneration efficiency, fuel cost and fuel phase (i.e., solid or slurry phase). Understanding the required material properties to meet the DOE Technical Targets for Onboard Hydrogen Storage Systems is a critical knowledge gap in the hydrogen storage research community. This study presents a set of fluid-phase chemical hydrogen storage material property guidelines for automotive applications meeting the 2017 DOE technical targets. Viable material properties were determined using a boiler-plate automotive system design. The fluid phase chemical hydrogen storage media considered in this study were neat liquids, solutions, and non-settling homogeneous slurries. Material properties examined include kinetics, heats of reaction, fuel-cell impurities, gravimetric and volumetric hydrogen storage capacities, and regeneration efficiency. The material properties, although not exhaustive, are an essential first step in identifying viable chemical hydrogen storage material propertiesdand most important, their implications on system mass, system volume and system performance.

  20. Fabrication and optical properties of pyrene-Eu hybrid materials.

    PubMed

    Zhao, Yan-Xia; Xu, Bo; Ding, Xun-Lei; He, Sheng-Gui

    2013-02-01

    Lanthanide-containing organic-inorganic hybrid materials have drawn much attention in the research of materials with multifunctional and modulated optical properties. Here, large area pyrene-Eu hybrid nanostructures constructed of a large amount of nanowires are successfully fabricated through physical vapor codeposition method at low temperature (77 K). Further optical property characterizations indicate that the pyrene-Eu hybrid nanostructures exhibit enhanced green light emission under blue light excitation compared with other fabricated samples (pyrene nanostructures, Eu nanoparticles, and pyrene/Cu hybrid nanostructures). The results indicate the occurrence of an energy transfer process from the sensitizing pyrene nanostructures to Eu. Pyrene-Eu hybrid nanostructures with unique photoluminescence properties may have promising applications in phosphors, light-emitting device, and UV-vis photo sensor. The results also prove that the physical vapor codeposition method is an effective way for design of organic-inorganic hybrid materials with controllable and tunable optical properties.

  1. A Summary of the Fatigue Properties of Wind Turbine Materials

    SciTech Connect

    SUTHERLAND, HERBERT J.

    1999-10-07

    Modern wind turbines are fatigue critical machines that are typically used to produce electrical power from the wind. The materials used to construct these machines are subjected to a unique loading spectrum that contains several orders of magnitude more cycles than other fatigue critical structures, e.g., an airplane. To facilitate fatigue designs, a large database of material properties has been generated over the past several years that is specialized to materials typically used in wind turbines. In this paper, I review these fatigue data. Major sections are devoted to the properties developed for wood, metals (primarily aluminum) and fiberglass. Special emphasis is placed on the fiberglass discussion because this material is current the material of choice for wind turbine blades. The paper focuses on the data developed in the U.S., but cites European references that provide important insights.

  2. Thermal properties of graphene and nanostructured carbon materials

    NASA Astrophysics Data System (ADS)

    Balandin, Alexander A.

    2011-08-01

    Recent years have seen a rapid growth of interest by the scientific and engineering communities in the thermal properties of materials. Heat removal has become a crucial issue for continuing progress in the electronic industry, and thermal conduction in low-dimensional structures has revealed truly intriguing features. Carbon allotropes and their derivatives occupy a unique place in terms of their ability to conduct heat. The room-temperature thermal conductivity of carbon materials span an extraordinary large range -- of over five orders of magnitude -- from the lowest in amorphous carbons to the highest in graphene and carbon nanotubes. Here, I review the thermal properties of carbon materials focusing on recent results for graphene, carbon nanotubes and nanostructured carbon materials with different degrees of disorder. Special attention is given to the unusual size dependence of heat conduction in two-dimensional crystals and, specifically, in graphene. I also describe the prospects of applications of graphene and carbon materials for thermal management of electronics.

  3. Perceived object stability depends on shape and material properties.

    PubMed

    Lupo, Julian; Barnett-Cowan, Michael

    2015-04-01

    Humans can detect whether an unstable object will fall or right itself, suggesting that the visual system can extract an object's center of mass (COM) and relate this to its base of support. While the COM can be approximated by its shape, this assumes uniform density. We created images of computer-generated goblets made of different materials to assess whether the visual system estimates an object's COM from both shape and material properties. The images were either uniformly dense (e.g., glass, gold, etc.) or made of composite materials (e.g., glass and gold) and positioned upright or upside-down near a table ledge. We compared each goblet's critical angle (CA), the angle at which each goblet is equally likely to fall or right itself, to the perceived CA in a two-alternative-forced-choice paradigm. Participants also rank-ordered 20 materials by density on a questionnaire. The results show that observers accurately estimate the CA for all goblets and are sensitive to subtle changes of an object's COM with change in shape and composite material properties. Importantly, rated density - as measured from the questionnaire - and true material density were positively correlated, suggesting that humans might maintain a representation of relative material density with which to assess object stability. We conclude that the brain is able to assess an object's behavior in a gravitational environment by forming a reliable assessment of an object's COM from both its geometric shape and material properties.

  4. Strength properties of fly ash based controlled low strength materials.

    PubMed

    Türkel, S

    2007-08-25

    Controlled low strength material (CLSM) is a flowable mixture that can be used as a backfill material in place of compacted soils. Flowable fill requires no tamping or compaction to achieve its strength and typically has a load carrying capacity much higher than compacted soils, but it can still be excavated easily. The selection of CLSM type should be based on technical and economical considerations for specific applications. In this study, a mixture of high volume fly ash (FA), crushed limestone powder (filler) and a low percentage of pozzolana cement have been tried in different compositions. The amount of pozzolana cement was kept constant for all mixes as, 5% of fly ash weight. The amount of mixing water was chosen in order to provide optimum pumpability by determining the spreading ratio of CLSM mixtures using flow table method. The shear strength of the material is a measure of the materials ability to support imposed stresses on the material. The shear strength properties of CLSM mixtures have been investigated by a series of laboratory tests. The direct shear test procedure was applied for determining the strength parameters Phi (angle of shearing resistance) and C(h) (cohesion intercept) of the material. The test results indicated that CLSM mixtures have superior shear strength properties compared to compacted soils. Shear strength, cohesion intercept and angle of shearing resistance values of CLSM mixtures exceeded conventional soil materials' similar properties at 7 days. These parameters proved that CLSM mixtures are suitable materials for backfill applications.

  5. Corrosion properties of second-generation conductive materials

    NASA Technical Reports Server (NTRS)

    Groshart, E.

    1984-01-01

    Since the introduction of silver-filled epoxy adhesives and silver-filled nitrocellulose lacquer as RFI control materials, a number of new materials have been introduced. The resin carriers have been changed in an effort to make the materials more usable or more EPA acceptable and the fillers have been varied in an effort to make the materials less costly. The corrosion-related properties of second-generation materials were assessed, including adhesives, caulks, and greases. Aluminum 2024 was used as the only substrate material. Ten days of salt fog was used as the corrosive environment. If a noble material such as silver, nickel, or carbon is sandwiched with aluminum an increase in dc resistance results given enough time. If this is unsatisfactory electrically it should either not be used or have all corrosive environments excluded.

  6. Material properties of brachiopod shell ultrastructure by nanoindentation.

    PubMed

    Pérez-Huerta, Alberto; Cusack, Maggie; Zhu, Wenzhong; England, Jennifer; Hughes, John

    2007-02-22

    Mineral-producing organisms exert exquisite control on all aspects of biomineral production. Among shell-bearing organisms, a wide range of mineral fabrics are developed reflecting diverse modes of life that require different material properties. Our knowledge of how biomineral structures relate to material properties is still limited because it requires the determination of these properties on a detailed scale. Nanoindentation, mostly applied in engineering and materials science, is used here to assess, at the microstructural level, material properties of two calcite brachiopods living in the same environment but with different modes of life and shell ultrastructure. Values of hardness (H) and the Young modulus of elasticity (E) are determined by nanoindentation. In brachiopod shells, calcite semi-nacre provides a harder and stiffer structure (H approximately 3-6 GPa; E=60-110/120 GPa) than calcite fibres (H=0-3 GPa; E=20-60/80 GPa). Thus, brachiopods with calcite semi-nacre can cement to a substrate and remain immobile during their adult life cycle. This correlation between mode of life and material properties, as a consequence of ultrastructure, begins to explain why organisms produce a wide range of structures using the same chemical components, such as calcium carbonate.

  7. Optical method for determining the mechanical properties of a material

    DOEpatents

    Maris, H.J.; Stoner, R.J.

    1998-12-01

    Disclosed is a method for characterizing a sample, comprising the steps of: (a) acquiring data from the sample using at least one probe beam wavelength to measure, for times less than a few nanoseconds, a change in the reflectivity of the sample induced by a pump beam; (b) analyzing the data to determine at least one material property by comparing a background signal component of the data with data obtained for a similar delay time range from one or more samples prepared under conditions known to give rise to certain physical and chemical material properties; and (c) analyzing a component of the measured time dependent reflectivity caused by ultrasonic waves generated by the pump beam using the at least one determined material property. The first step of analyzing may include a step of interpolating between reference samples to obtain an intermediate set of material properties. The material properties may include sound velocity, density, and optical constants. In one embodiment, only a correlation is made with the background signal, and at least one of the structural phase, grain orientation, and stoichiometry is determined. 14 figs.

  8. Optical method for determining the mechanical properties of a material

    DOEpatents

    Maris, Humphrey J.; Stoner, Robert J.

    1998-01-01

    Disclosed is a method for characterizing a sample, comprising the steps of: (a) acquiring data from the sample using at least one probe beam wavelength to measure, for times less than a few nanoseconds, a change in the reflectivity of the sample induced by a pump beam; (b) analyzing the data to determine at least one material property by comparing a background signal component of the data with data obtained for a similar delay time range from one or more samples prepared under conditions known to give rise to certain physical and chemical material properties; and (c) analyzing a component of the measured time dependent reflectivity caused by ultrasonic waves generated by the pump beam using the at least one determined material property. The first step of analyzing may include a step of interpolating between reference samples to obtain an intermediate set of material properties. The material properties may include sound velocity, density, and optical constants. In one embodiment, only a correlation is made with the background signal, and at least one of the structural phase, grain orientation, and stoichiometry is determined.

  9. High-rate mechanical properties of energetic materials

    NASA Astrophysics Data System (ADS)

    Walley, S. M.; Siviour, C. R.; Drodge, D. R.; Williamson, D. M.

    2010-01-01

    Compared to the many thousands of studies that have been performed on the energy release mechanisms of high energy materials, relatively few studies have been performed (a few hundred) into their mechanical properties. Since it is increasingly desired to model the high rate deformation of such materials, it is of great importance to gather data on their response so that predictive constitutive models can be constructed. This paper reviews the state of the art concerning what is known about the mechanical response of high energy materials. Examples of such materials are polymer bonded explosives (used in munitions), propellants (used to propel rockets), and pyrotechnics (used to initiate munitions and also in flares).

  10. Neural networks as tools for predicting materials properties

    SciTech Connect

    Sumpter, B.G.; Noid, D.W.

    1995-12-31

    Materials science is of fundamental significance to science and technology because our industrial base and society depend upon our ability to develop advanced materials. Materials and materials processing cuts across almost every sector of industry. The key in all of these areas is the ability to rapidly screen possible designs which will have significant impact. However up to now materials design and processing have been to a large extent empirical sciences. In addition we are still unable to design new alloys and polymers to meet application specific requirements. Being able to do so quickly and at minimum cost would provide an incredible advantage. Obviously, the ability to predict physical, chemical, or mechanical properties of compounds prior to their synthesis is of great technological value in optimizing their design, processing, or recycling. In addition, in order to realize the ultimate goal of materials by computational design, the reverse problem, prediction of chemical structure based on desired properties, has to be resolved. Research at ORNL has lead to the development of a novel computational paradigm (coupling computational neural networks with graph theory, genetic algorithms, wavelet theory, fuzzy logic, molecular dynamics, and quantum chemistry) capable of performing accurate computational synthesis (both predictions of properties or the design of compounds that have specified performance criteria). The computational paradigm represents a hybrid of a number of emerging technologies and has proven to work very well for test compounds ranging from small organic molecules to polymeric materials. Fundamental to the method is the neural network-based formulation of the correlations between structure and properties. The advantages of this method is in its ease of use, speed, accuracy, and that it can be used to predict both properties from structure, and also structure from properties.

  11. Mechanical Properties of Nanostructured Materials Determined Through Molecular Modeling Techniques

    NASA Technical Reports Server (NTRS)

    Clancy, Thomas C.; Gates, Thomas S.

    2005-01-01

    The potential for gains in material properties over conventional materials has motivated an effort to develop novel nanostructured materials for aerospace applications. These novel materials typically consist of a polymer matrix reinforced with particles on the nanometer length scale. In this study, molecular modeling is used to construct fully atomistic models of a carbon nanotube embedded in an epoxy polymer matrix. Functionalization of the nanotube which consists of the introduction of direct chemical bonding between the polymer matrix and the nanotube, hence providing a load transfer mechanism, is systematically varied. The relative effectiveness of functionalization in a nanostructured material may depend on a variety of factors related to the details of the chemical bonding and the polymer structure at the nanotube-polymer interface. The objective of this modeling is to determine what influence the details of functionalization of the carbon nanotube with the polymer matrix has on the resulting mechanical properties. By considering a range of degree of functionalization, the structure-property relationships of these materials is examined and mechanical properties of these models are calculated using standard techniques.

  12. Development and Demonstration of Material Properties Database and Software for the Simulation of Flow Properties in Cementitious Materials

    SciTech Connect

    Smith, F.; Flach, G.

    2015-03-30

    This report describes work performed by the Savannah River National Laboratory (SRNL) in fiscal year 2014 to develop a new Cementitious Barriers Project (CBP) software module designated as FLOExcel. FLOExcel incorporates a uniform database to capture material characterization data and a GoldSim model to define flow properties for both intact and fractured cementitious materials and estimate Darcy velocity based on specified hydraulic head gradient and matric tension. The software module includes hydraulic parameters for intact cementitious and granular materials in the database and a standalone GoldSim framework to manipulate the data. The database will be updated with new data as it comes available. The software module will later be integrated into the next release of the CBP Toolbox, Version 3.0. This report documents the development efforts for this software module. The FY14 activities described in this report focused on the following two items that form the FLOExcel package; 1) Development of a uniform database to capture CBP data for cementitious materials. In particular, the inclusion and use of hydraulic properties of the materials are emphasized; and 2) Development of algorithms and a GoldSim User Interface to calculate hydraulic flow properties of degraded and fractured cementitious materials. Hydraulic properties are required in a simulation of flow through cementitious materials such as Saltstone, waste tank fill grout, and concrete barriers. At SRNL these simulations have been performed using the PORFLOW code as part of Performance Assessments for salt waste disposal and waste tank closure.

  13. Design of meta-materials with novel thermoelastic properties

    NASA Astrophysics Data System (ADS)

    Watts, Seth

    The development of new techniques in micro-manufacturing in recent years has enabled the fabrication of material microstructures with essentially arbitrary designs, including those with multiple constituent materials and void space in nearly any geometry. With an essentially open design space, the onus is now on the engineer to design composite materials which are optimal for their purpose. These new materials, called meta-materials or materials with architected microstructures, offer the potential to mix and match properties in a way that exceeds that of traditional composites. We concentrate on the thermal and elastic properties of isotropic meta-materials, and design microstructures with combinations of Young's modulus, Poisson's ratio, thermal conductivity, thermal expansion, and mass density which are not found among naturally-occurring or traditional composite materials. We also produce designs with thermal expansion far below other materials. We use homogenization theory to predict the material properties of a bulk meta-material comprised of a periodic lattice of unit cells, then use topology optimization to rearrange two constituent materials and void space within the unit cell in order to extremize an objective function which yields the combinations of properties we seek. This method is quite general and can be extended to consider additional properties of interest. We constrain the design space to satisfy material isotropy directly (2D), or to satisfy cubic symmetry (3D), from which point an isotropy constraint function is easily applied. We develop and use filtering, nonlinear interpolation, and thresholding methods to render the design problem well-posed, and as a result ensure our designs are manufacturable. We have written two computer implementations of this design methodology. The first is for creating two-dimensional designs, which can run on a serial computer in approximately half an hour. The second is a parallel implementation to allow

  14. Molecule-based electrorheological material with luminescence property

    NASA Astrophysics Data System (ADS)

    Chen, Ming-Xing; Liao, Fu-Hui; Shang, Yan-Li; Jia, Yun-Ling; Li, Jun-Ran

    2013-02-01

    Molecule-based electrorheological (ER) materials with luminescence property, based on β-cyclodextrin [(C6O5H10)7, β-CD] inclusion compounds between β-CD (host) and the rare earth (RE) (RE=Tb, Eu) complex (guest), have been synthesized as a novel type of ER materials using β-CD, Tb(NO3)3, Eu(NO3)3, sulphosalicylic acid (C7H6O6S·2H2O, SSA) and m-phthalic acid (C8H6O4, MPA) as original materials. The composition, ER performance, luminescence property and dielectric property of the materials have been studied. The results show that the rare earth complex in the cavity of β-CD may enhance the ER performance of β-CD, and the complex (Tb-SSA) of Tb3+ can improve more effectively the ER activity of β-CD than that (Eu-MPA) of Eu3+ among both of the complexes. The composition and structure are the dominant factors in improving the ER effect. The fluorescence intensity, fluorescence lifetime and emission quantum yield of the particle materials and their suspensions in silicone oil have been tested, and fine luminescence performance has been detected. The material with ER activity and luminescence performance is a novel multifunctional material which would have wide application prospect.

  15. Biologic properties of surgical scaffold materials derived from dermal ECM.

    PubMed

    Kulig, Katherine M; Luo, Xiao; Finkelstein, Eric B; Liu, Xiang-Hong; Goldman, Scott M; Sundback, Cathryn A; Vacanti, Joseph P; Neville, Craig M

    2013-07-01

    Surgical scaffold materials manufactured from donor human or animal tissue are increasingly being used to promote soft tissue repair and regeneration. The clinical product consists of the residual extracellular matrix remaining after a rigorous decellularization process. Optimally, the material provides both structural support during the repair period and cell guidance cues for effective incorporation into the regenerating tissue. Surgical scaffold materials are available from several companies and are unique products manufactured by proprietary methodology. A significant need exists for a more thorough understanding of scaffold properties that impact the early steps of host cell recruitment and infiltration. In this study, a panel of in vitro assays was used to make direct comparisons of several similar, commercially-available materials: Alloderm, Medeor Matrix, Permacol, and Strattice. Differences in the materials were detected for both cell signaling and scaffold architecture-dependent cell invasion. Material-conditioned media studies found Medeor Matrix to have the greatest positive effect upon cell proliferation and induction of migration. Strattice provided the greatest chemotaxis signaling and best suppressed apoptotic induction. Among assays measuring structure-dependent properties, Medeor Matrix was superior for cell attachment, followed by Permacol. Only Alloderm and Medeor Matrix supported chemotaxis-driven cell invasion beyond the most superficial zone. Medeor Matrix was the only material in the chorioallantoic membrane assay to support substantial cell invasion. These results indicate that both biologic and structural properties need to be carefully assessed in the considerable ongoing efforts to develop new uses and products in this important class of biomaterials.

  16. Control over magnetic properties in bulk hybrid materials

    NASA Astrophysics Data System (ADS)

    Urban, Christian; Quesada, Adrian; Saerbeck, Thomas; Rubia, Miguel Angel De La; Garcia, Miguel Angel; Fernandez, Jose Francisco; Schuller, Ivan K.; UCSD Collaboration; Instituto de Ceramica, Madrid Collaboration; Institut Laue-Langevin, Grenoble Collaboration

    We present control of coercivity and remanent magnetization of a bulk ferromagnetic material embedded in bulk vanadium sesquioxide (V2O3) by using a standard bulk synthesis procedure. The method generalizes the use of structural phase transitions of one material to control structural and magnetic properties of another. A structural phase transition (SPT) in the V2O3 host material causes magnetic properties of Ni to change as function of temperature. The remanent magnetization and the coercivity are reversibly controlled by the SPT without additional external magnetic fields. The reversible tuning shown here opens the pathway for controlling the properties of a vast variety of magnetic hybrid bulk systems. This Work is supported by the Office of Basic Energy Science, U.S. Department of Energy, BES-DMS funded by the Department of Energy's Office of Basic Energy Science, DMR under grant DE FG02 87ER-45332.

  17. Atomistic methodologies for material properties of 2D materials at the nanoscale

    NASA Astrophysics Data System (ADS)

    Zhang, Zhen

    Research on two dimensional (2D) materials, such as graphene and MoS2, now involves thousands of researchers worldwide cutting across physics, chemistry, engineering and biology. Due to the extraordinary properties of 2D materials, research extends from fundamental science to novel applications of 2D materials. From an engineering point of view, understanding the material properties of 2D materials under various conditions is crucial for tailoring the electrical and mechanical properties of 2D-material-based devices at the nanoscale. Even at the nanoscale, molecular systems typically consist of a vast number of atoms. Molecular dynamics (MD) simulations enable us to understand the properties of assemblies of molecules in terms of their structure and the microscopic interactions between them. From a continuum approach, mechanical properties and thermal properties, such as strain, stress, and heat capacity, are well defined and experimentally measurable. In MD simulations, material systems are considered to be discrete, and only interatomic potential, interatomic forces, and atom positions are directly obtainable. Besides, most of the fracture mechanics concepts, such as stress intensity factors, are not applicable since there is no singularity in MD simulations. However, energy release rate still remains to be a feasible and crucial physical quantity to characterize the fracture mechanical property of materials at the nanoscale. Therefore, equivalent definition of a physical quantity both in atomic scale and macroscopic scale is necessary in order to understand molecular and continuum scale phenomena concurrently. This work introduces atomistic simulation methodologies, based on interatomic potential and interatomic forces, as a tool to unveil the mechanical properties, thermal properties and fracture mechanical properties of 2D materials at the nanoscale. Among many 2D materials, graphene and MoS2 have attracted intense interest. Therefore, we applied our

  18. Micro-mechanical properties of bio-materials

    NASA Astrophysics Data System (ADS)

    Zakiev, V.; Markovsky, A.; Aznakayev, E.; Zakiev, I.; Gursky, E.

    2005-09-01

    Investigation of physical-mechanical characteristics of stomatologic materials (ceramics for crowns, silver amalgam, cements and materials on a polymeric basis) properties by the modern methods and correspondence their physical-mechanical properties to the physical-mechanical properties of native teeth is represented. The universal device "Micron-Gamma" is built for this purpose. This device allows investigate the physical-mechanical characteristics of stomatologic materials (an elastic modulus, micro-hardness, destruction energy, resistance to scratching) by the methods of continuous indentation, scanning and pricking. A new effective method as well as its device application for the investigation of surface layers of materials and their physical-mechanical properties by means of the constant indenting of an indenter is realized. This method is based on the automatic registration of loading (P) on the indenter with the simultaneous measurement of its indentation depth (h). The results of investigations are presented on a loading diagram P=f(h) and as a digital imaging on the PC. This diagram allows get not only more diverse characteristics in the real time regime but also gives new information about the stomatologic material properties. Therefore, we can to investigate the wide range of the physical-mechanical properties of stomatologic materials. "Micron-alpha" is digital detection device for light imaging applications. It enables to detect the very low material surface relief heights and restoration of surface micro topography by a sequence data processing of interferential data of partially coherent light also. "Micron-alpha" allows: to build 2D and 3D imaging of a material surface; to estimate the quantitatively characteristics of a material surface; to observe the imaging interferential pictures both in the white and in the monochromatic light; to carry out the investigation of blood cells, microbes and biological macromolecules profiles. The method allows

  19. Physical properties of materials derived from diamondoid molecules

    NASA Astrophysics Data System (ADS)

    Clay, W. A.; Dahl, J. E. P.; Carlson, R. M. K.; Melosh, N. A.; Shen, Z.-X.

    2015-01-01

    Diamondoids are small hydrocarbon molecules which have the same rigid cage structure as bulk diamond. They can be considered the smallest nanoparticles of diamond. They exhibit a mixture of properties inherited from bulk cubic diamond as well as a number of unique properties related to their size and structure. Diamondoids with different sizes and shapes can be separated and purified, enabling detailed studies of the effects of size and structure on the diamondoids' properties and also allowing the creation of chemically functionalized diamondoids which can be used to create new materials. Most notable among these new materials are self-assembled monolayers of diamondoid-thiols, which exhibit a number of unique electron emission properties.

  20. Large scale Hugoniot material properties for Danby Marble

    SciTech Connect

    Rinehart, E.J.

    1993-11-01

    This paper presents the results of simulation experiments of nuclear underground testing carried out using the HYDROPLUS methodology for yield verifications of non-standard tests. The objective of this test series was to demonstrate the accuracy of stress and velocity measurements in hard, low porosity rock, to obtain comparisons of large-scale material properties with those obtained from laboratory testing of the same material, and to address the problems posed by a material having a clear precursor wave preceding the main shock wave. The test series consisted of three individual experimental tests. The first established material properties of the Danby marble selected for use in the experiments. The second and third tests looked at stress and velocity gage errors obtained when gages were placed in boreholes and grouted into place.

  1. Fibrous random materials: From microstructure to macroscopic properties

    NASA Astrophysics Data System (ADS)

    Yazdchi, K.; Luding, S.

    2013-06-01

    Fibrous porous materials are involved in a wide range of applications including composite materials, fuel cells, heat exchangers and (biological)filters. Fluid flow through these materials plays an important role in many engineering applications and processes, such as textiles and paper manufacturing or transport of (under)ground water and pollutants. While most porous materials have complex geometry, some can be seen as two-dimensional particulate/fibrous systems, in which we introduce several microscopic quantities, based on Voronoi and Delaunay tessellations, to characterize their microstructure. In particular, by analyzing the topological properties of Voronoi polygons, we observe a smooth transition from disorder to order, for increasing packing fraction. Using fully resolved finite element (FE) simulations of Newtonian, incompressible fluid flow perpendicular to the fibres, the macroscopic permeability is calculated in creeping flow regimes. The effect of fibre arrangement and local crystalline regions on the macroscopic permeability is discussed and the macroscopic property is linked to the microscopic structural quantities.

  2. Spectral reflectance properties of carbon-bearing materials

    NASA Technical Reports Server (NTRS)

    Cloutis, Edward A.; Gaffey, Michael J.; Moslow, Thomas F.

    1994-01-01

    The 0.3-2.6 micrometers spectral reflectance properties of carbon polymorphs (graphite, carbon black, diamond), carbides (silicon carbide, cementite), and macromolecular organic-bearing materials (coal, coal tar extract, oil sand, oil shale) are found to vary from sample to sample and among groups. The carbon polymorphs are readily distinguishable on the basis of their visible-near infrared spectral slopes and shapes. The spectra of macromolecular organic-bearing materials show increases in reflectance toward longer wavelengths, exceeding the reflectance rise of more carbon-rich materials. Reflectance spectra of carbonaceous materials are affected by the crystal structure, composition, and degree of order/disorder of the samples. The characteristic spectral properties can potentially be exploited to identify individual carbonaceous grains in meteorites (as separates or in situ) or to conduct remote sensing geothermometry and identification of carbonaceous phases on asteroids.

  3. Material Property Characterization of AS4/VRM-34 Textile Laminates

    NASA Technical Reports Server (NTRS)

    Grenoble, Ray W.; Johnston, William M

    2013-01-01

    Several material properties (modulus, strengths, and fracture toughness) of a textile composite have been evaluated to provide input data to analytical models of Pultruded Rod Stiffened Efficient Unitized Structure (PRSEUS). The material system is based on warp-knitted preforms of AS4 carbon fibers and VRM-34 epoxy resin, which have been processed via resin infusion and oven curing. Tensile, compressive, shear, and fracture toughness properties have been measured at ambient and elevated temperatures. All specimens were tested in as-fabricated (dry) condition. Specimens were tested with and without through-thickness stitching.

  4. Reflector and Shield Material Properties for Project Prometheus

    SciTech Connect

    J. Nash

    2005-11-02

    This letter provides updated reflector and shield preliminary material property information to support reactor design efforts. The information provided herein supersedes the applicable portions of Revision 1 to the Space Power Program Preliminary Reactor Design Basis (Reference (a)). This letter partially answers the request in Reference (b) to provide unirradiated and irradiated material properties for beryllium, beryllium oxide, isotopically enriched boron carbide ({sup 11}B{sub 4}C) and lithium hydride. With the exception of {sup 11}B{sub 4}C, the information is provided in Attachments 1 and 2. At the time of issuance of this document, {sup 11}B{sub 4}C had not been studied.

  5. Guidelines for identification of concrete in a materials property database

    SciTech Connect

    Oland, C.B.; Frohnsdorff, G.

    1995-12-31

    Guidelines for the identification of concrete in a materials property database are presented to address the complex problem of distinguishing one concrete from another. These guidelines are based on a logical scheme for systematically organizing and subdividing data and information about concrete and its constituents; they reflect consensus recommendations for a multilevel material description and designation system. Aspects of the guidelines include a classification system used to establish a series of primary identifiers, methods for reporting constituent information and mixture proportions, fields describing the source of the concrete and its processing history, and recommendations for reporting baseline or reference properties.

  6. Characterization of Viscoelastic Properties of Polymeric Materials Through Nanoindentation

    NASA Technical Reports Server (NTRS)

    Odegard, G. M.; Bandorawalla, T.; Herring, H. M.; Gates, T. S.

    2003-01-01

    Nanoindentation is used to determine the dynamic viscoelastic properties of six polymer materials. It is shown that varying the harmonic frequency of the nanoindentation does not have any significant effect on the measured storage and loss moduli of the polymers. Agreement is found between these results and data from DMA testing of the same materials. Varying the harmonic amplitude of the nanoindentation does not have a significant effect on the measured properties of the high performance resins, however, the storage modulus of the polyethylene decreases as the harmonic amplitude increases. Measured storage and loss moduli are also shown to depend on the density of the polyethylene.

  7. Characterization of mechanical properties of materials using ultrasound broadband spectroscopy.

    PubMed

    Agrawal, Megha; Prasad, Abhinav; Bellare, Jayesh R; Seshia, Ashwin A

    2016-01-01

    This article explores the characterization of homogenous materials (metals, alloys, glass and polymers) by a simple broadband ultrasonic interrogation method. The novelty lies in the use of ultrasound in a continuous way with very low input power (0 dBm or less) and analysis of the transmitted acoustic wave spectrum for material property characterization like speed of sound, density and dimensions of a material. Measurements were conducted on various thicknesses of samples immersed in liquid where continuous-wave, frequency swept ultrasonic energy was incident normal to the sample surface. The electro-acoustic transmission response is analyzed in the frequency domain with respect to a specifically constructed multi-layered analytical model. From the acoustic signature of the sample materials, material properties such as speed of sound and acoustic impedance can be calculated with experimentally derived values found to be in general agreement with the literature and with pulse-echo technique establishing the basis for a non-contact and non-destructive technique for material characterization. Further, by looking at the frequency spacing of the peaks of water when the sample is immersed, the thickness of the sample can be calculated independently from the acoustic response. This technique can prove to be an effective non-contact, non-destructive and fast material characterization technique for a wide variety of materials.

  8. Material properties and fracture mechanics in relation to ceramic machining

    SciTech Connect

    Griffith, L.V.

    1993-12-02

    Material removal rate, surface finish, and subsurface damage are largely governed by fracture mechanics and plastic deformation, when ceramics are machined using abrasive methods. A great deal of work was published on the fracture mechanics of ceramics in the late 1970s and early 1980s, although this work has never resulted in a comprehensive model of the fixed abrasive grinding process. However, a recently published model describes many of the most important features of the loose abrasive machining process, for example depth of damage, surface roughness, and material removal rate. Many of the relations in the loose abrasive machining model can be readily discerned from fracture mechanics models, in terms of material properties. By understanding the mechanisms of material removal, from a material properties perspective, we can better estimate how one material will machine in relation to another. Although the fracture mechanics models may have been developed for loose abrasive machining, the principles of crack initiation and propagation are equally valuable for fixed abrasive machining. This report provides a brief review of fracture in brittle materials, the stress distribution induced by abrasives, critical indenter loads, the extension of cracks, and the relation of the fracture process to material removal.

  9. Solar Sail Material Performance Property Response to Space Environmental Effects

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Semmel, Charles; Hovater, Mary; Nehls, Mary; Gray, Perry; Hubbs, Whitney; Wertz, George

    2004-01-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) continues research into the utilization of photonic materials for spacecraft propulsion. Spacecraft propulsion, using photonic materials, will be achieved using a solar sail. A solar sail operates on the principle that photons, originating from the sun, impart pressure to the sail and therefore provide a source for spacecraft propulsion. The pressure imparted to a solar sail can be increased, up to a factor of two, if the sun-facing surface is perfectly reflective. Therefore, these solar sails are generally composed of a highly reflective metallic sun-facing layer, a thin polymeric substrate and occasionally a highly emissive back surface. Near term solar sail propelled science missions are targeting the Lagrange point 1 (Ll) as well as locations sunward of L1 as destinations. These near term missions include the Solar Polar Imager and the L1 Diamond. The Environmental Effects Group at NASA s Marshall Space Flight Center (MSFC) continues to actively characterize solar sail material in preparation for these near term solar sail missions. Previous investigations indicated that space environmental effects on sail material thermo-optical properties were minimal and would not significantly affect the propulsion efficiency of the sail. These investigations also indicated that the sail material mechanical stability degrades with increasing radiation exposure. This paper will further quantify the effect of space environmental exposure on the mechanical properties of candidate sail materials. Candidate sail materials for these missions include Aluminum coated Mylar[TM], Teonex[TM], and CPl (Colorless Polyimide). These materials were subjected to uniform radiation doses of electrons and protons in individual exposures sequences. Dose values ranged from 100 Mrads to over 5 Grads. The engineering performance property responses of thermo-optical and mechanical properties were

  10. Database for the Tribological Properties of Self-Lubricating Materials

    NASA Technical Reports Server (NTRS)

    Jett, T. R.; Thom, R. L.

    1998-01-01

    A test program to determine the tribological properties of several self-lubricating composites was performed. Testing was done using an LFW-1 Friction and Wear machine. Each material was tested at four load levels (66 N, 133 N, 266 N, and 400 N) under ambient conditions. The coefficient of friction and wear rate was determined for each material, and a relative ranking of the composites was made.

  11. Corrosion and its effect on mechanical properties of materials for advanced combustion systems

    SciTech Connect

    Natesan, K.; Freeman, M.; Mathur, M.

    1996-05-01

    Conceptual designs of advanced combustion systems that utilize coal as a feedstock require high-temperature furnaces and heat transfer surfaces that can operate at temperatures much higher than those prevalent in current coal-fired power plants. The combination of elevated temperatures and hostile combustion environments necessitates development and application of advanced ceramic materials in these designs. The objectives of the present program are to evaluate (a) the chemistry of gaseous and condensed products that arise during combustion of coal; (b) the corrosion behavior of candidate materials in air, slag and salt environments for application in the combustion environments; and (c) the residual mechanical properties of the materials after corrosion. The program emphasizes temperatures in the range of 1000-1400{degrees}C for ceramic materials and 600-1000{degrees}C for metallic alloys. Coal/ash chemistries developed on the basis of thermodynamic/kinetic calculations, together with slags from actual combustors, are used in the program. The materials being evaluated include monolithic silicon carbide from several sources: silicon, nitride, silicon carbide in alumina composites, silicon carbide fibers in a silicon carbide- matrix composite, and some advanced nickel-base alloys. The paper presents results from an ongoing program on corrosion performance of candidate ceramic materials exposed to air, salt and slag environments and their affect on flexural strength and energy absorbed during fracture of these materials.

  12. Effective Mechanical Properties of Lattice Material Fabricated by Material Extrusion Additive Manufacturing

    SciTech Connect

    Park, Sang-In; Choi, Seung-kyum; Rosen, David W; Duty, Chad E

    2014-01-01

    In this paper, a two-step homogenization method is proposed and implemented for evaluating effective mechanical properties of lattice structured material fabricated by the material extrusion additive manufacturing process. In order to consider the characteristics of the additive manufacturing process in estimation procedures, the levels of scale for homogenization are divided into three stages the levels of layer deposition, structural element, and lattice structure. The method consists of two transformations among stages. In the first step, the transformation between layer deposition and structural element levels is proposed to find the geometrical and material effective properties of structural elements in the lattice structure. In the second step, the method to estimate effective mechanical properties of lattice material is presented, which uses a unit cell and is based on the discretized homogenization method for periodic structure. The method is implemented for cubic lattice structure and compared to experimental results for validation purposes.

  13. Compression molding and tensile properties of thermoplastic potato starch materials.

    PubMed

    Thunwall, Mats; Boldizar, Antal; Rigdahl, Mikael

    2006-03-01

    The mechanical and melt flow properties of two thermoplastic potato starch materials with different amylose contents were evaluated. The materials were prepared by mixing starch, glycerol, and water, mainly in the weight proportions of 10:3:4.5. Compression molding was used to produce sheets/films with a thickness in the range of 0.3-1 mm. After conditioning at 53% relative humidity (RH) and 23 C, the glycerol-plasticized sheets with a higher amylose content (HAP) were stronger and stiffer than the normal thermoplastic starch (NPS) with an amylose content typical for common potato starch. The tensile modulus at 53% RH was about 160 MPa for the high-amylose material and about 120 MPa for the plasticized NPS. The strain at break was about 50% for both materials. The stress at break was substantially higher for the HAP materials than for the NPS materials, 9.8 and 4.7 MPa, respectively. Capillary viscometry at 140 C showed that the high-amylose material had a higher melt viscosity and was more shear-thinning than the NPS. Dynamic mechanical measurements indicated a broad transition temperature range for both types of starch material. The main transition peaks for glycerol-plasticized starch were located at about room temperature with the transition for the HAP material being at a somewhat higher temperature than that of the NPS material with a lower amylose content. It was also noted that the processing conditions used during the compression molding markedly affected the mechanical properties of the starch material.

  14. Optical Properties of Selective Emitter Materials for Thermophotovoltaic Applications

    NASA Technical Reports Server (NTRS)

    Hambourger, Paul D.

    1996-01-01

    We investigate the optical properties of new "selective emitter" materials for possible use in high-efficiency thermophotovoltaic power systems. These are systems which directly convert heat to radiation at a wavelength closely matched to the bandgap energy of the solar cell. Candidate materials which have strong absorption lines fairly close to the bandgap of good solar-cell materials were chosen for study. Their emittance was measured as a function of wavelength to evaluate their promise as selective TPV emitters. Useful and informative results were obtained. Some of these results were presented at a January 1996 solar energy conference of the American Institute of Aeronautics and Astronautics.

  15. Learning to Apply Models of Materials While Explaining Their Properties

    ERIC Educational Resources Information Center

    Karpin, Tiia; Juuti, Kalle; Lavonen, Jari

    2014-01-01

    Background: Applying structural models is important to chemistry education at the upper secondary level, but it is considered one of the most difficult topics to learn. Purpose: This study analyses to what extent in designed lessons students learned to apply structural models in explaining the properties and behaviours of various materials.…

  16. Food material properties and early hominin processing techniques.

    PubMed

    Zink, Katherine D; Lieberman, Daniel E; Lucas, Peter W

    2014-12-01

    Although early Homo is hypothesized to have used tools more than australopiths to process foods prior to consumption, it is unknown how much the food processing techniques they used altered the material properties of foods, and therefore the masticatory forces they generated, and how well they were able to comminute foods. This study presents experimental data on changes to food material properties caused by mechanical tenderization (pounding with a stone tool) and cooking (dry roasting) of two foods likely to have been important components of the hominin diet: meat and tubers. Mechanical tenderization significantly decreased tuber toughness by 42%, but had no effect on meat toughness. Roasting significantly decreased several material properties of tubers correlated with masticatory effort including toughness (49%), fracture stress (28%) and elastic modulus (45%), but increased the toughness (77%), fracture stress (50%-222%), and elastic modulus of muscle fibers in meat (308%). Despite increasing many material properties of meat associated with higher masticatory forces, roasting also decreased measured energy loss by 28%, which likely makes it easier to chew. These results suggest that the use of food processing techniques by early Homo probably differed for meat and tubers, but together would have reduced masticatory effort, helping to relax selection to maintain large, robust faces and large, thickly enameled teeth.

  17. Studies of acoustical properties of bulk porous flexible materials

    NASA Technical Reports Server (NTRS)

    Lambert, R. F.

    1984-01-01

    Acoustic prediction and measurement of bulk porous materials with flexible frames is investigated. The acoustic properties of Kevlar 29 are examined. Various acoustic tests are employed to determine impedance, sound wave propagation, and wave pressure equations for the highly porous fiber composites. The derivation of design equations and future research goals are included.

  18. Thermal properties of hemp fibre non-woven materials

    NASA Astrophysics Data System (ADS)

    Freivalde, Liga; Kukle, Silvija; Russell, Stephen

    2013-12-01

    This review considers the thermal properties analysis of hemp fiber non-woven materials made by three different manufacturing technologies - thermal bonding, needle-punching and hydro-entanglement. For non-wovens development two hemp fibers cultivars grown in Latvia were used - Purini and Bialobrzeskie. Thermal resistance, conductivity and the effects of several parameters on thermal performance are revised.

  19. Material and Flexural Properties of Fiber-reinforced Rubber Concrete

    NASA Astrophysics Data System (ADS)

    Helminger, Nicholas P.

    The purpose of this research is to determine the material properties of rubber concrete with the addition of fibers, and to determine optimal mixture dosages of rubber and fiber in concrete for structural applications. Fiber-reinforced concrete and rubberized concrete have been researched separately extensively, but this research intends to combine both rubber and fiber in a concrete matrix in order to create a composite material, fiber-reinforced rubber concrete (FRRC). Sustainability has long been important in engineering design, but much of the previous research performed on sustainable concrete does not result in a material that can be used for practical purposes. While still achieving a material that can be used for structural applications, economical considerations were given when choosing the proportions and types of constituents in the concrete mix. Concrete mixtures were designed, placed, and tested in accordance with common procedures and standards, with an emphasis on practicality. Properties that were investigated include compressive strength, tensile strength, modulus of elasticity, toughness, and ductility. The basis for determining the optimal concrete mixture is one that is economical, practical, and exhibits ductile properties with a significant strength. Results show that increasing percentages of rubber tend to decrease workability, unit weight, compressive strength, split tensile strength, and modulus of elasticity while the toughness is increased. The addition of steel needle fibers to rubber concrete increases unit weight, compressive strength, split tensile strength, modulus of elasticity, toughness, and ductility of the composite material.

  20. Moisture effect on mechanical properties of polymeric composite materials

    NASA Astrophysics Data System (ADS)

    Airale, A. G.; Carello, M.; Ferraris, A.; Sisca, L.

    2016-05-01

    The influence of moisture on the mechanical properties of fibre-reinforced polymer matrix composites (PMCs) was investigated. Four materials had been take into account considering: both 2×2-Twill woven carbon fibre or glass fibre, thermosetting matrix (Epoxy Resin) or thermoplastic matrix (Polyphenylene Sulfide). The specimens were submitted for 1800 hours to a hygrothermic test to evaluate moisture absorption on the basis of the Fick's law and finally tested to verify the mechanical properties (ultimate tensile strength). The results showed that the absorbed moisture decreases those properties of composites which were dominated by the matrix or the interface, while was not detectable the influence of water on the considered fibre. An important result is that the diffusion coefficient is highest for glass/PPS and lowest for carbon/epoxy composite material. The results give useful suggestions for the design of vehicle components that are exposed to environmental conditions (rain, snow and humidity).

  1. Managing genetic material to protect intellectual property rights.

    PubMed

    Jong, S C; Cypess, R H

    1998-02-01

    One of the most important policy instruments for the promotion of further biotechnology development is intellectual property right (IPR) protection. However, one cannot improve upon a biotechnological invention without physical access to the germplasm, making exchanges of genetic material necessary. A formal transfer agreement, which addresses the key issues of ownership, access, use, and equitable benefit-sharing, is a powerful legal instrument for intellectual property. Other restrictions are generally imposed as a result of national and international safety regulations. Forming strategic alliances, such as joint ventures, collaborative research agreements, joint research and development agreements, and manufacturing and distribution alliances to exploit the economic value of genetic material, provides scientists with the mechanisms they need to bring their research material and products to the marketplace. PMID:9611821

  2. Material properties study of the MJ-2 grout

    SciTech Connect

    Larson, D.B.

    1988-08-01

    Material properties experimental tests using the high pressure testing equipment at LLNL have been performed on the grout used in the Mini Jade-2 event (MJ-2) as part of a high pressure equation of state study sponsored by the Defense Nuclear Agency in support of the Misty Echo experiment at the Nevada Test Site. The material properties tests performed at LLNL and included in this report are (1) pressure-volume compression studies to 3.6 GPa, (2) pressure-volume compression and unloading studies to /approximately/1 GPa, and (3) material strength versus confining pressure to /approximately/1 GPa. These data are compared with dynamic results and with other static data using this grout. 4 refs., 5 figs., 4 tabs.

  3. Thermoelastic analysis of solar cell arrays and their material properties

    NASA Technical Reports Server (NTRS)

    Salama, M. A.; Rowe, W. M.; Yasui, R. K.

    1973-01-01

    A thermoelastic stress analysis procedure is reported for predicting the thermally induced stresses and failures in silicon solar cell arrays. A prerequisite for the analysis is the characterization of the temperature-dependent thermal and mechanical properties of the solar cell materials. Extensive material property testing was carried out in the temperature range -200 to +200 C for the filter glass, P- and N-type silicon, interconnector metals, solder, and several candidate silicone rubber adhesives. The analysis procedure is applied to several solar cell array design configurations. Results of the analysis indicate the optimum design configuration, with respect to compatible materials, effect of the solder coating, and effect of the interconnector geometry. Good agreement was found between results of the analysis and the test program.

  4. Effects of Material Properties on Bacterial Adhesion and Biofilm Formation.

    PubMed

    Song, F; Koo, H; Ren, D

    2015-08-01

    Adhesion of microbes, such as bacteria and fungi, to surfaces and the subsequent formation of biofilms cause multidrug-tolerant infections in humans and fouling of medical devices. To address these challenges, it is important to understand how material properties affect microbe-surface interactions and engineer better nonfouling materials. Here we review the recent progresses in this field and discuss the main challenges and opportunities. In particular, we focus on bacterial biofilms and review the effects of surface energy, charge, topography, and stiffness of substratum material on bacterial adhesion. We summarize how these surface properties influence oral biofilm formation, and we discuss the important findings from nondental systems that have potential applications in dental medicine.

  5. Millimeter wave and terahertz dielectric properties of biological materials

    NASA Astrophysics Data System (ADS)

    Khan, Usman Ansar

    Broadband dielectric properties of materials can be employed to identify, detect, and characterize materials through their unique spectral signatures. In this study, millimeter wave, submillimeter wave, and terahertz dielectric properties of biological substances inclusive of liquids, solids, and powders were obtained using Dispersive Fourier Transform Spectroscopy (DFTS). Two broadband polarizing interferometers were constructed to test materials from 60 GHz to 1.2 THz. This is an extremely difficult portion of the frequency spectrum to obtain a material's dielectric properties since neither optical nor microwave-based techniques provide accurate data. The dielectric characteristics of liquids such as cyclohexane, chlorobenzene, benzene, ethanol, methanol, 1,4 dioxane, and 10% formalin were obtained using the liquid interferometer. Subsequently the solid interferometer was utilized to determine the dielectric properties of human breast tissues, which are fixed and preserved in 10% formalin. This joint collaboration with the Tufts New England Medical Center demonstrated a significant difference between the dielectric response of tumorous and non-tumorous breast tissues across the spectrum. Powders such as anthrax, flour, talc, corn starch, dry milk, and baking soda have been involved in a number of security threats and false alarms around the globe in the last decade. To be able to differentiate hoax attacks and serious security threats, the dielectric properties of common household powders were also examined using the solid interferometer to identify the powders' unique resonance peaks. A new sample preparation kit was designed to test the powder specimens. It was anticipated that millimeter wave and terahertz dielectric characterization will enable one to clearly distinguish one powder from the other; however most of the powders had relatively close dielectric responses and only Talc had a resonance signature recorded at 1.135 THz. Furthermore, due to

  6. Development and Analysis of Synthetic Composite Materials Emulating Patient AAA Wall Material Properties

    NASA Astrophysics Data System (ADS)

    Margossian, Christa M.

    Abdominal Aortic Aneurysm (AAA) rupture accounts for 14,000 deaths a year in the United States. Since the number of ruptures has not decreased significantly in recent years despite improvements in imaging and surgical procedures, there is a need for an accurate, noninvasive technique capable of establishing rupture risk for specific patients and discriminating lesions at high risk. In this project, synthetic composite materials replicating patient-specific wall stiffness and strength were developed and their material properties evaluated. Composites utilizing various fibers were developed to give a range of stiffness from 1825.75 kPa up through 8187.64 kPa with one base material, Sylgard 170. A range of strength from 631.12 kPa to 1083 kPa with the same base material was also found. By evaluating various base materials and various reinforcing fibers, a catalogue of stiffnesses and strengths was started to allow for adaptation to specific patient properties. Three specific patient properties were well-matched with two composites fabricated: silk thread-reinforced Sylgard 170 and silk thread-reinforced Dragon Skin 20. The composites showed similar stiffnesses to the specific patients while reaching target stresses at particular strains. Not all patients were matched with composites as of yet, but recommendations for future matches are able to be determined. These composites will allow for the future evaluation of flow-induced wall stresses in models replicating patient material properties and geometries.

  7. Material Properties Analysis of Structural Members in Pumpkin Balloons

    NASA Technical Reports Server (NTRS)

    Sterling, W. J.

    2003-01-01

    The efficient design, service-life qualification, and reliability predictions for lightweight aerospace structures require careful mechanical properties analysis of candidate structural materials. The demand for high-quality laboratory data is particularly acute when the candidate material or the structural design has little history. The pumpkin-shaped super-pressure balloon presents both challenges. Its design utilizes load members (tendons) extending from apex to base around the gas envelope to achieve a lightweight structure. The candidate tendon material is highly weight-efficient braided HM cord. Previous mechanical properties studies of Zylon have focused on fiber and yarn, and industrial use of the material in tensile applications is limited. For high-performance polymers, a carefully plamed and executed properties analysis scheme is required to ensure the data are relevant to the desired application. Because no directly-applicable testing standard was available, a protocol was developed based on guidelines fiom professional and industry organizations. Due to the liquid-crystalline nature of the polymer, the cord is very stiff, creeps very little, and does not yield. Therefore, the key material property for this application is the breaking strength. The pretension load and gauge length were found to have negligible effect on the measured breaking strength over the ranges investigated. Strain rate was found to have no effect on breaking strength, within the range of rates suggested by the standards organizations. However, at the lower rate more similar to ULDB operations, the strength was reduced. The breaking strength increased when the experiment temperature was decreased from ambient to 183K which is the lowest temperature ULDB is expected to experience. The measured strength under all test conditions was well below that resulting from direct scale-up of fiber strength based on the manufacturers data. This expected result is due to the effects of the

  8. Material Property Measurement in Hostile Environments using Laser Acoustics

    SciTech Connect

    Ken L. Telschow

    2004-08-01

    Acoustic methods are well known and have been used to measure various intrinsic material properties, such as, elastic coefficients, density, crystal axis orientation, microstructural texture, and residual stress. Extrinsic properties, such as, dimensions, motion variables or temperature are also readily determined from acoustic methods. Laser acoustics, employing optical generation and detection of elastic waves, has a unique advantage over other acoustic methods—it is noncontacting, uses the sample surface itself for transduction, requires no couplant or invasive sample surface preparation and can be utilized in any hostile environment allowing optical access to the sample surface. In addition, optical generation and detection probe beams can be focused to the micron scale and/or shaped to alter the transduction process with a degree of control not possible using contact transduction methods. Laser methods are amenable to both continuous wave and pulse-echo measurements and have been used from Hz to 100’s of GHz (time scales from sec to psec) and with amplitudes sufficient to fracture materials. This paper shall review recent applications of laser acoustic methods to determining material properties in hostile environments that preclude the use of contacting transduction techniques. Example environments include high temperature (>1000C) sintering and molten metal processing, thin film deposition by plasma techniques, materials moving at high velocity during the fabrication process and nuclear high radiation regions. Recent technological advances in solid-state lasers and telecommunications have greatly aided the development and implementation of laser acoustic methods, particularly at ultra high frequencies. Consequently, laser acoustic material property measurements exhibit high precision and reproducibility today. In addition, optical techniques provide methods of imaging acoustic motion that is both quantitative and rapid. Possible future directions for

  9. Properties of granular analogue model materials: A community wide survey

    NASA Astrophysics Data System (ADS)

    Klinkmüller, M.; Schreurs, G.; Rosenau, M.; Kemnitz, H.

    2016-08-01

    We report the material properties of 26 granular analogue materials used in 14 analogue modelling laboratories. We determined physical characteristics such as bulk density, grain size distribution, and grain shape, and performed ring shear tests to determine friction angles and cohesion, and uniaxial compression tests to evaluate the compaction behaviour. Mean grain size of the materials varied between c. 100 and 400 μm. Analysis of grain shape factors shows that the four different classes of granular materials (14 quartz sands, 5 dyed quartz sands, 4 heavy mineral sands and 3 size fractions of glass beads) can be broadly divided into two groups consisting of 12 angular and 14 rounded materials. Grain shape has an influence on friction angles, with most angular materials having higher internal friction angles (between c. 35° and 40°) than rounded materials, whereas well-rounded glass beads have the lowest internal friction angles (between c. 25° and 30°). We interpret this as an effect of intergranular sliding versus rolling. Most angular materials have also higher basal friction angles (tested for a specific foil) than more rounded materials, suggesting that angular grains scratch and wear the foil. Most materials have an internal cohesion in the order of 20-100 Pa except for well-rounded glass beads, which show a trend towards a quasi-cohesionless (C < 20 Pa) Coulomb-type material. The uniaxial confined compression tests reveal that rounded grains generally show less compaction than angular grains. We interpret this to be related to the initial packing density after sifting, which is higher for rounded grains than for angular grains. Ring-shear test data show that angular grains undergo a longer strain-hardening phase than more rounded materials. This might explain why analogue models consisting of angular grains accommodate deformation in a more distributed manner prior to strain localisation than models consisting of rounded grains.

  10. Characterization of the electromechanical properties of EAP materials

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Sherrita, Stewart; Bhattachary, Kaushik; Lih, Shyh-Shiuh

    2001-01-01

    Electroactive polymers (EAP) are an emerging class of actuation materials. Their large electrically induced strains (longitudinal or bending), low density, mechanical flexibility, and ease of processing offer advantages over traditional electroactive materials. However, before the capability of these materials can be exploited, their electrical and mechanical behavior must be properly quantified. Two general types of EAP can be identified. The first type is ionic EAP, which requires relatively low voltages (<10V) to achieve large bending deflections. This class usually needs to be hydrated and electrochemical reactions may occur. The second type is Electronic-EAP and it involves electrostrictive and/or Maxwell stresses. This type of materials requires large electric fields (>100MV/m) to achieve longitudinal deformations at the range from 4 - 360%. Some of the difficulties in characterizing EAP include: nonlinear properties, large compliance (large mismatch with metal electrodes), nonhomogeneity resulting from processing, etc. To support the need for reliable data, the authors are developing characterization techniques to quantify the electroactive responses and material properties of EAP materials. The emphasis of the current study is on addressing electromechanical issues related to the ion-exchange type EAP also known as IPMC. The analysis, experiments and test results are discussed in this paper.

  11. Dynamic viscoelastic properties of vinyl polysiloxane denture soft lining materials.

    PubMed

    Abe, Y; Taji, T; Hiasa, K; Tsuga, K; Akagawa, Y

    2009-12-01

    The aim of this study was to investigate the dynamic viscoelastic properties of seven commercially available vinyl polysiloxane denture soft lining materials. Five rectangular specimens (2 x 10 x 30 mm) were prepared from each material. The complex modulus E* (MPa) and loss tangent (tan delta) of each specimen were determined with a non-resonance forced vibration method using an automatic dynamic viscoelastometer at 1 Hz after 1 day of dry storage, and after 1, 30, 60, 90 and 180 days of wet storage at 37 degrees C. All data were analysed using one-way anova and Bonferroni/Dunn's test for multiple comparisons with a significance level of P < 0.01. All materials varied widely in terms of viscoelasticities and showed both an increase in E* and a decrease in tan delta at 1 Hz after the 1-day wet storage. After 60 days of wet storage, both E* and tan delta did not change significantly. The stiffer materials (>30% filler content) with high E* values (>2.00 MPa) showed elastic behaviour with tan delta values of around 0.03. The softer materials (6% filler content) with high tan delta values (initial value > 0.10) showed viscous behaviour and were easily affected by water absorption after the 1-day wet storage. It can be concluded that for the proper selection of vinyl polysiloxane denture soft lining materials, it is very important to evaluate the viscoelastic properties after 60 days of wet storage. PMID:19840358

  12. Auditory perception of geometry-invariant material properties.

    PubMed

    Ren, Zhimin; Yeh, Hengchin; Klatzky, Roberta; Lin, Ming C

    2013-04-01

    Accurately modeling the intrinsic material-dependent damping property for interactive sound rendering is a challenging problem. The Rayleigh damping model is commonly regarded as an adequate engineering model for interactive sound synthesis in virtual environment applications, but this assumption has never been rigorously analyzed. In this paper, we conduct a formal evaluation of this model. Our goal is to determine if auditory perception of material under Rayleigh damping assumption is 'geometry-invariant', i.e. if this approximation model is transferable across different shapes and sizes. First, audio recordings of same-material objects in various shapes and sizes are analyzed to determine if they can be approximated by the Rayleigh damping model with a single set of parameters. Next, we design and conduct a series of psychoacoustic experiments, in subjects evaluate if audio clips synthesized using the Rayleigh damping model are from the same material, when we alter the material, shape, and size parameters. Through both quantitative and qualitative evaluation, we show that the acoustic properties of the Rayleigh damping model for a single material is generally preserved across different geometries of objects consisting of homogeneous materials and is therefore a suitable, geometry-invariant sound model. Our study results also show that consistent with prior crossmodal expectations, visual perception of geometry can affect the auditory perception of materials. These findings facilitate the wide adoption of Rayleigh damping for interactive auditory systems and enable reuse of material parameters under this approximation model across different shapes and sizes, without laborious per-object parameter tuning.

  13. Auditory perception of geometry-invariant material properties.

    PubMed

    Ren, Zhimin; Yeh, Hengchin; Klatzky, Roberta; Lin, Ming C

    2013-04-01

    Accurately modeling the intrinsic material-dependent damping property for interactive sound rendering is a challenging problem. The Rayleigh damping model is commonly regarded as an adequate engineering model for interactive sound synthesis in virtual environment applications, but this assumption has never been rigorously analyzed. In this paper, we conduct a formal evaluation of this model. Our goal is to determine if auditory perception of material under Rayleigh damping assumption is 'geometry-invariant', i.e. if this approximation model is transferable across different shapes and sizes. First, audio recordings of same-material objects in various shapes and sizes are analyzed to determine if they can be approximated by the Rayleigh damping model with a single set of parameters. Next, we design and conduct a series of psychoacoustic experiments, in subjects evaluate if audio clips synthesized using the Rayleigh damping model are from the same material, when we alter the material, shape, and size parameters. Through both quantitative and qualitative evaluation, we show that the acoustic properties of the Rayleigh damping model for a single material is generally preserved across different geometries of objects consisting of homogeneous materials and is therefore a suitable, geometry-invariant sound model. Our study results also show that consistent with prior crossmodal expectations, visual perception of geometry can affect the auditory perception of materials. These findings facilitate the wide adoption of Rayleigh damping for interactive auditory systems and enable reuse of material parameters under this approximation model across different shapes and sizes, without laborious per-object parameter tuning. PMID:23428439

  14. Atomistic Simulations of Material Properties under Extreme Conditions

    NASA Astrophysics Data System (ADS)

    An, Qi

    Extreme conditions involve low or high temperatures (> 1500 K), high pressures (> 30 MPa), high strains or strain rates, high radiation fluxes (> 100 dpa), and high electromagnetic fields (> 15T). Material properties under extreme conditions can be extremely different from those under normal conditions. Understanding material properties and performance under extreme conditions, including their dynamic evolution over time, plays an essential role in improving material properties and developing novel materials with desired properties. To understand material properties under extreme conditions, we use molecular dynamics (MD) simulations with recently developed reactive force fields (ReaxFF) and traditional embedded atom methods (EAM) potentials to examine various materials (e.g., energetic materials and binary liquids) and processes. The key results from the simulations are summarized below. Anisotropic sensitivity of RDX crystals: Based on the compress-and-shear reactive dynamics (CS-RD) simulations of cyclotrimethylene trinitramine (RDX) crystals, we predict that for mechanical shocks between 3 and 7 GPa, RDX is the most sensitive to shocks perpendicular to the (100) and (210) planes, while it is insensitive to those perpendicular to the (120), (111), and (110) planes. The simulations demonstrate that the molecular origin of anisotropic shock sensitivity is the steric hindrance to shearing of adjacent slip planes. Mechanisms of hotspot formation in polymer bonded explosives (PBXs): The simulations of a realistic model of PBXs reveal that hotspots may form at the nonplanar interfaces where shear relaxation leads to a dramatic temperature increase that persists long after the shock front has passed the interface. For energetic materials this temperature increase is coupled to chemical reactions that eventually lead to detonation. We show that decreasing the density of the binder eliminates the hotspots or reduces the sensitivity. Cavitation in binary metallic liquids

  15. AB INITIO SIMULATIONS FOR MATERIAL PROPERTIES ALONG THE JUPITER ADIABAT

    SciTech Connect

    French, Martin; Becker, Andreas; Lorenzen, Winfried; Nettelmann, Nadine; Bethkenhagen, Mandy; Redmer, Ronald; Wicht, Johannes

    2012-09-15

    We determine basic thermodynamic and transport properties of hydrogen-helium-water mixtures for the extreme conditions along Jupiter's adiabat via ab initio simulations, which are compiled in an accurate and consistent data set. In particular, we calculate the electrical and thermal conductivity, the shear and longitudinal viscosity, and diffusion coefficients of the nuclei. We present results for associated quantities like the magnetic and thermal diffusivity and the kinematic shear viscosity along an adiabat that is taken from a state-of-the-art interior structure model. Furthermore, the heat capacities, the thermal expansion coefficient, the isothermal compressibility, the Grueneisen parameter, and the speed of sound are calculated. We find that the onset of dissociation and ionization of hydrogen at about 0.9 Jupiter radii marks a region where the material properties change drastically. In the deep interior, where the electrons are degenerate, many of the material properties remain relatively constant. Our ab initio data will serve as a robust foundation for applications that require accurate knowledge of the material properties in Jupiter's interior, e.g., models for the dynamo generation.

  16. Temporal properties of material categorization and material rating: visual vs non-visual material features.

    PubMed

    Nagai, Takehiro; Matsushima, Toshiki; Koida, Kowa; Tani, Yusuke; Kitazaki, Michiteru; Nakauchi, Shigeki

    2015-10-01

    Humans can visually recognize material categories of objects, such as glass, stone, and plastic, easily. However, little is known about the kinds of surface quality features that contribute to such material class recognition. In this paper, we examine the relationship between perceptual surface features and material category discrimination performance for pictures of materials, focusing on temporal aspects, including reaction time and effects of stimulus duration. The stimuli were pictures of objects with an identical shape but made of different materials that could be categorized into seven classes (glass, plastic, metal, stone, wood, leather, and fabric). In a pre-experiment, observers rated the pictures on nine surface features, including visual (e.g., glossiness and transparency) and non-visual features (e.g., heaviness and warmness), on a 7-point scale. In the main experiments, observers judged whether two simultaneously presented pictures were classified as the same or different material category. Reaction times and effects of stimulus duration were measured. The results showed that visual feature ratings were correlated with material discrimination performance for short reaction times or short stimulus durations, while non-visual feature ratings were correlated only with performance for long reaction times or long stimulus durations. These results suggest that the mechanisms underlying visual and non-visual feature processing may differ in terms of processing time, although the cause is unclear. Visual surface features may mainly contribute to material recognition in daily life, while non-visual features may contribute only weakly, if at all.

  17. Alkali-activated cementitious materials: Mechanisms, microstructure and properties

    NASA Astrophysics Data System (ADS)

    Jiang, Weimin

    The goal of this study was to examine the activation reaction, microstructure, properties, identify the mechanisms of activation, and achieve an enhanced understanding of activation processes occurring during the synthesis of alkali activated cementitious materials (AAC). The discussions classify the following categories. (1) alkali activated slag cement; (2) alkali activated portland-slag cement; (3) alkali activated fly ash-slag cement; (4) alkali activated pozzolana-lime cement; (5) alkali activated pozzolana cement. The activators involved are NaOH, KOH; Nasb2SOsb4;\\ Nasb2COsb3;\\ CaSOsb4, and soluble silicate of sodium and potassium. The effect of alkali activation on the microstructure of these materials were analyzed at the micro-nanometer scale by SEM, EDS, ESEM, and TEM. Also sp{29}Si and sp{27}Al MAS-NMR, IR, Raman, TGA, and DTA were performed to characterize the phase in these systems. Slag, fly ash, silica fume, as well as blended cements containing mixtures of these and other components were characterized. A set of ordinary portland cement paste samples served as a control. This study confirmed that AAC materials have great potential because they could generate very early high strength, greater durability and high performance. Among the benefits to be derived from this research is a better understanding of the factors that control concrete properties when using AAC materials, and by controlling the chemistry and processing to produce desired microstructures and properties, as well as their durability.

  18. Estimating Energy Conversion Efficiency of Thermoelectric Materials: Constant Property Versus Average Property Models

    NASA Astrophysics Data System (ADS)

    Armstrong, Hannah; Boese, Matthew; Carmichael, Cody; Dimich, Hannah; Seay, Dylan; Sheppard, Nathan; Beekman, Matt

    2016-08-01

    Maximum thermoelectric energy conversion efficiencies are calculated using the conventional "constant property" model and the recently proposed "cumulative/average property" model (Kim et al. in Proc Natl Acad Sci USA 112:8205, 2015) for 18 high-performance thermoelectric materials. We find that the constant property model generally predicts higher energy conversion efficiency for nearly all materials and temperature differences studied. Although significant deviations are observed in some cases, on average the constant property model predicts an efficiency that is a factor of 1.16 larger than that predicted by the average property model, with even lower deviations for temperature differences typical of energy harvesting applications. Based on our analysis, we conclude that the conventional dimensionless figure of merit ZT obtained from the constant property model, while not applicable for some materials with strongly temperature-dependent thermoelectric properties, remains a simple yet useful metric for initial evaluation and/or comparison of thermoelectric materials, provided the ZT at the average temperature of projected operation, not the peak ZT, is used.

  19. Rectangular waveguide material characterization: anisotropic property extraction and measurement validation

    NASA Astrophysics Data System (ADS)

    Crowgey, Benjamin Reid

    for characterization of a sample filling the cross-section of a waveguide. Due to the rectangular nature of the waveguide, typically three different samples are manufactured from the same material in order to characterize the six complex material parameters. The second technique for measuring the electromagnetic properties of a biaxially anisotropic material sample uses a reduced-aperture waveguide sample holder designed to accommodate a cubical sample. All the tensor material parameters can then be determined by measuring the reflection and transmission coefficients of a single sample placed into several orientations. The parameters are obtained using a root-searching algorithm by comparing theoretically computed and measured reflection and transmission coefficients. The theoretical coefficients are determined using a mode matching technique. The first technique for characterizing the electromagnetic properties of gyromagnetic materials considers requires filling the cross-section of a waveguide. The material parameters are extracted from the measured reflection and transmission coefficients. Since the cross-sectional dimensions of waveguides become prohibitively large at low frequencies, and it is at these frequencies that the gyromagnetic properties are most pronounced, sufficiently large samples may not be available. Therefore, the second technique uses a reduced-aperture sample holder that does not require the sample to fill the entire cross section of the guide. The theoretical reflection and transmission coefficients for both methods are determined using a mode matching technique. A nonlinear least squares method is employed to extract the gyromagnetic material parameters. Finally, this dissertation introduces a waveguide standard that acts as a surrogate material with both electric and magnetic properties and is useful for verifying systems designed to characterize engineered materials using the NRW technique. A genetic algorithm is used to optimize the all

  20. Structural and electrical properties of Ni-YSZ cermet materials

    NASA Astrophysics Data System (ADS)

    Haberko, K.; Jasinski, M.; Pasierb, P.; Radecka, M.; Rekas, M.

    Ceramic-metal composites (cermets) containing yttria-stabilized zirconia, YSZ, and Ni particles are commonly used as anode materials in solid oxide fuel cells. The long-term performance of fuel cells is strictly related to both the structural and electrical properties of anode materials. In order to achieve high mixed electrical conductivity and high activity of electrochemical reactions and hydrocarbon fuel reforming, it is necessary to select an appropriate chemical composition and a suitable method of preparation. Materials containing 8 mol% yttria-stabilized zirconia and Ni were prepared by means of two methods: co-precipitation and impregnation. The structure of the materials was characterized by means of X-ray diffraction (XRD), scanning electron microscopy (SEM) and porosity studies. The thermal expansion coefficient (TEC) was determined using the dilathometric method. Electrochemical impedance spectroscopy (EIS) and the Wagner polarization method were used to determine electrical conductivity and the electron transference numbers, respectively.

  1. Thermal property of insulation material for HTS power cable

    NASA Astrophysics Data System (ADS)

    Choi, Yeon Suk; Kim, D. L.; Shin, D. W.; Hwang, S. D.

    2012-06-01

    The thermal property of insulation material is essential in developing a high temperature superconductor (HTS) power cable operating at around liquid nitrogen temperature. The accurate estimate of the heat flux is difficult in the nonmetallic materials because nonmetallic materials have a high thermal resistance and low temperature gradient along the specimen. The objective of the present work is to develop a precise instrument for measuring the thermal conductivity of insulating materials over a temperature range of 30 K to approximately the room temperature by using a cryocooler. The thermal conductivity of Teflon is measured and the accuracy confirmation is carried out by comparing published data. In addition, the experimental results of apparent thermal conductivity of polypropylene laminated paper (PPLP) are presented and the temperature dependency is also discussed

  2. The in-plane shear properties of pultruded materials

    NASA Astrophysics Data System (ADS)

    Cho, Baik-Soon

    1998-12-01

    This thesis presents the details for a new in-plane shear test method applicable to pultruded materials reinforced with continuous strand mat (CSM) and rovings. The loading system and the size of the specimen are different from those currently used in the ASTM D-5379 specification in order to reduce the effect of the inherent heterogeneity of the pultruded materials. Then, the performance of the ASTM D-5379 V-notched beam test fixture and that of the newly developed test fixture at the Georgia Institute of Technology will be discussed. The thesis also presents various predicted techniques for estimating the in-plane shear modulus of pultruded materials from the properties of the constituents. Finally, a third-order polynomial shear stress---shear strain (tau - gamma) equation is proposed for more accurate structural analysis of pultruded materials reinforced with rovings and continuous strand mats.

  3. Correlation of macroscopic material properties with microscopic nuclear data

    SciTech Connect

    Simons, R.L.

    1981-12-18

    Two primary irradiation-induced changes occur during neutron irradiation: the displacement of atoms forming crystal defects and the transmutation of atoms into either gaseous or solid products. The material scientist studying irradiation damage to material by fusion-produced neutrons is faced with several questions: Is the nature of high-energy (14-MeV) displacement damage the same as or different from that caused by fission neutrons (< 2 MeV). How do the high helium concentrations expected in a fusion environment affect the material properties. What effects do solid transmutation products have on the behavior of the irradiated materials. In the past few years, much work has been done to answer these questions. This paper reviews recent work in this area.

  4. Transport properties of hierarchical micro-mesoporous materials.

    PubMed

    Schneider, Daniel; Mehlhorn, Dirk; Zeigermann, Philipp; Kärger, Jörg; Valiullin, Rustem

    2016-06-13

    Adding mesopore networks in microporous materials using the principles of hierarchical structure design is recognized as a promising route for eliminating their transport limitations and, therefore, for improving their value in technological applications. Depending on the routes of physico-chemical procedures or post-synthesis treatments used, very different geometries of the intentionally-added transport mesopores can be obtained. Understanding the structure-dynamics relationships in these complex materials with multiple porosities under different thermodynamical conditions remains a challenging task. In this review, we summarize the results obtained so far on experimental and theoretical studies of diffusion in micro-mesoporous materials. By considering four common classes of bi-porous materials, which are differing by the inter-connectivities of their sup-spaces as one of the most important parameter determining the transport rates, we discuss their generic transport properties and correlate the results delivered by the equilibrium and non-equilibrium techniques of diffusion measurements.

  5. An overview of laminate materials with enhanced dielectric properties

    NASA Astrophysics Data System (ADS)

    Mumby, Stephen J.

    1989-03-01

    This report focuses on laminate materials (resins and reinforcements) having potential applications in the manufacture of multi-layer printed wiring boards (PWBs) that are required to efficiently transmit high-speed digital pulses. It is intended to be a primer and a reference for selection of candidate materials for such high-performance PWBs. Included are dielectric and physical properties, and where available chemical composition and/or structure, commercial availability, compatibility with typical PWB processing schemes and approximate relative cost. Recommendations are made as to the most viable candidate materials for this type of PWB application, based on a comparison of electrical and physical properties together with processing and cost considerations. The cyanate ester resin system appears promising. Such a resin may be reinforced with regular E-glass, or the more newly available S-glass, to produce a laminate useful for intermediate performance applications. For more demanding applications the E-glass will have to be replaced by a material of much lower relative permittivity. The expanded-PTFE reinforced laminates from W. L. Gore appear to be a good choice for these applications. The processing of the Gore materials can be expected to deviate from that used with FR-4 type materials, but is likely to be less problematic than laminates comprised of a fluorinated resin. Processing is a key obstacle to the implementation of any of the new materials herein. If implementation is to be successful, programs must be established to develop and optimize processing procedures. Cost will remain an important issue. However, the higher cost of the new materials may be justified in high-end products by the performance they deliver.

  6. Elastic therapeutic tape: do they have the same material properties?

    PubMed Central

    Boonkerd, Chuanpis; Limroongreungrat, Weerawat

    2016-01-01

    [Purpose] Elastic therapeutic tape has been widely used for rehabilitation and treatment of sports injuries. Tapes with different elastic properties serve different treatment purposes with inappropriate tension reducing tape effectiveness. Many tapes are available in the market, but studies on tape properties are limited. The aim of this study was to examine the material properties of elastic therapeutic tape. [Subjects and Methods] Brands of elastic therapeutic tape included KinesioTex®, ATex, Mueller, 3M, and ThaiTape. The Material Testing System Insight® 1 Electromechanical Testing Systems was used to apply a tensile force on elastic therapeutic tape. Ten specimens of each brand were tested. Stress, load, and Young’s modulus at 25%, 50%, 75%, 100%, and maximum point were collected. One-way analysis of variance with post hoc testing was used to analyze tape parameters. [Results] Maximum elongation and Young’s modulus at all percentages were significantly different between brands. There were no differences in maximum load and maximum stress. [Conclusion] Mechanical properties are different for commercial elastic therapeutic tapes. Physiotherapists and other clinicians should be aware of mechanical tape properties to correctly apply kinesio tape. PMID:27190472

  7. Elastic therapeutic tape: do they have the same material properties?

    PubMed

    Boonkerd, Chuanpis; Limroongreungrat, Weerawat

    2016-04-01

    [Purpose] Elastic therapeutic tape has been widely used for rehabilitation and treatment of sports injuries. Tapes with different elastic properties serve different treatment purposes with inappropriate tension reducing tape effectiveness. Many tapes are available in the market, but studies on tape properties are limited. The aim of this study was to examine the material properties of elastic therapeutic tape. [Subjects and Methods] Brands of elastic therapeutic tape included KinesioTex(®), ATex, Mueller, 3M, and ThaiTape. The Material Testing System Insight(®) 1 Electromechanical Testing Systems was used to apply a tensile force on elastic therapeutic tape. Ten specimens of each brand were tested. Stress, load, and Young's modulus at 25%, 50%, 75%, 100%, and maximum point were collected. One-way analysis of variance with post hoc testing was used to analyze tape parameters. [Results] Maximum elongation and Young's modulus at all percentages were significantly different between brands. There were no differences in maximum load and maximum stress. [Conclusion] Mechanical properties are different for commercial elastic therapeutic tapes. Physiotherapists and other clinicians should be aware of mechanical tape properties to correctly apply kinesio tape.

  8. Statistically based material properties: A military handbook-17 perspective

    NASA Technical Reports Server (NTRS)

    Neal, Donald M.; Vangel, Mark G.

    1990-01-01

    The statistical procedures and their importance in obtaining composite material property values in designing structures for aircraft and military combat systems are described. The property value is such that the strength exceeds this value with a prescribed probability with 95 percent confidence in the assertion. The survival probabilities are the 99th percentile and 90th percentile for the A and B basis values respectively. The basis values for strain to failure measurements are defined in a similar manner. The B value is the primary concern.

  9. Electrostatic levitation technology for thermophysical properties of molten materials

    NASA Technical Reports Server (NTRS)

    Rhim, Won-Kyu

    1993-01-01

    Measurements of thermophysical properties of undercooled liquids often require some kind of levitator which isolates samples from container walls. We introduce in this presentation a high temperature/high vacuum electrostatic levitator (HTHVESL) which promises some unique capabilities for the studies of thermophysical properties of molten materials. Although substantial progress has been made in the past several months, this technology is still in the development stage, therefore, in this presentation we only focus on the present state of the HTHVESL(1) and point out other capabilities which might be realized in the near future.

  10. Effective material properties of thermoelectric composites with elliptical fibers

    NASA Astrophysics Data System (ADS)

    Wang, Yi-Ze

    2015-06-01

    In the present work, the effective material properties of thermoelectric composites with elliptical fibers are studied. Explicit solutions are derived by the conformal mapping function and Mori-Tanaka method. Numerical simulations are performed to present the behaviors of normalized effective material constants. From the results, it can be observed that both the effective electric and thermal conductivities can be reduced by increasing the filling ratio and a/ b. Such influences can also be found for the effective thermoelectric figure of merit. But they are different from those on the effective Seebeck and Peltier coefficients.

  11. Advances in optical property measurements of spacecraft materials

    NASA Technical Reports Server (NTRS)

    Smith, Charles A.; Dever, Joyce A.; Jaworske, Donald A.

    1997-01-01

    Some of the instruments and experimental approaches, used for measuring the optical properties of thermal control systems, are presented. The instruments' use in studies concerning the effects of combined contaminants and space environment on these materials, and in the qualification of hardware for spacecraft, are described. Instruments for measuring the solar absorptance and infrared emittance offer improved speed, accuracy and data handling. A transient method for directly measuring material infrared emittance is described. It is shown that oxygen exposure before measuring the solar absorptance should be avoided.

  12. Solar Sail Material Performance Property Response to Space Environmental Effects

    NASA Technical Reports Server (NTRS)

    Edwards, David L.; Semmel, Charles; Hovater, Mary; Nehls, Mary; Gray, Perry; Hubbs, Whitney; Wertz, George

    2004-01-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) continues research into the utilization of photonic materials for spacecraft propulsion. Spacecraft propulsion, using photonic materials, will be achieved using a solar sail. A solar sail operates on the principle that photons, originating from the sun, impart pressure to the sail and therefore provide a source for spacecraft propulsion. The pressure imparted to a solar sail can be increased, up to a factor of two if the sun-facing surface is perfectly reflective. Therefore, these solar sails are generally composed of a highly reflective metallic sun-facing layer, a thin polymeric substrate and occasionally a highly emissive back surface. Near term solar sail propelled science missions are targeting the Lagrange point 1 (L1) as well as locations sunward of L1 as destinations. These near term missions include the Solar Polar Imager' and the L1 Diamond '. The Environmental Effects Group at NASA's Marshall Space Fliglit Center (MSFC) continues to actively characterize solar sail material in preparation for these near term solar sail missions. Previous investigations indicated that space environmental effects on sail material thermo-optical properties were minimal and would not significantly affect the propulsion efficiency of the sail3-'. These investigations also indicated that the sail material mechanical stability degrades with increasing radiation exposure. This paper will further quantify the effect of space environmental exposure on the mechanical properties of candidate sail materials. Candidate sail materials for these missions include Aluminum coated Mylar TM, Teonexm, and CP1 (Colorless Polyimide). These materials were subjected to uniform radiation doses of electrons and protons in individual exposures sequences. Dose values ranged from 100 Mrads to over 5 Grads. The engineering performance property responses of thermo-optical and mechanical properties were

  13. Mechanical Properties of Elastomeric Impression Materials: An In Vitro Comparison

    PubMed Central

    De Angelis, Francesco; Caputi, Sergio; D'Amario, Maurizio; D'Arcangelo, Camillo

    2015-01-01

    Purpose. Although new elastomeric impression materials have been introduced into the market, there are still insufficient data about their mechanical features. The tensile properties of 17 hydrophilic impression materials with different consistencies were compared. Materials and Methods. 12 vinylpolysiloxane, 2 polyether, and 3 hybrid vinylpolyether silicone-based impression materials were tested. For each material, 10 dumbbell-shaped specimens were fabricated (n = 10), according to the ISO 37:2005 specifications, and loaded in tension until failure. Mean values for tensile strength, yield strength, strain at break, and strain at yield point were calculated. Data were statistically analyzed using one-way ANOVA and Tukey's tests (α = 0.05). Results. Vinylpolysiloxanes consistently showed higher tensile strength values than polyethers. Heavy-body materials showed higher tensile strength than the light bodies from the same manufacturer. Among the light bodies, the highest yield strength was achieved by the hybrid vinylpolyether silicone (2.70 MPa). Polyethers showed the lowest tensile (1.44 MPa) and yield (0.94 MPa) strengths, regardless of the viscosity. Conclusion. The choice of an impression material should be based on the specific physical behavior of the elastomer. The light-body vinylpolyether silicone showed high tensile strength, yield strength, and adequate strain at yield/brake; those features might help to reduce tearing phenomena in the thin interproximal and crevicular areas. PMID:26693227

  14. Mechanical Properties of Elastomeric Impression Materials: An In Vitro Comparison.

    PubMed

    Re, Dino; De Angelis, Francesco; Augusti, Gabriele; Augusti, Davide; Caputi, Sergio; D'Amario, Maurizio; D'Arcangelo, Camillo

    2015-01-01

    Purpose. Although new elastomeric impression materials have been introduced into the market, there are still insufficient data about their mechanical features. The tensile properties of 17 hydrophilic impression materials with different consistencies were compared. Materials and Methods. 12 vinylpolysiloxane, 2 polyether, and 3 hybrid vinylpolyether silicone-based impression materials were tested. For each material, 10 dumbbell-shaped specimens were fabricated (n = 10), according to the ISO 37:2005 specifications, and loaded in tension until failure. Mean values for tensile strength, yield strength, strain at break, and strain at yield point were calculated. Data were statistically analyzed using one-way ANOVA and Tukey's tests (α = 0.05). Results. Vinylpolysiloxanes consistently showed higher tensile strength values than polyethers. Heavy-body materials showed higher tensile strength than the light bodies from the same manufacturer. Among the light bodies, the highest yield strength was achieved by the hybrid vinylpolyether silicone (2.70 MPa). Polyethers showed the lowest tensile (1.44 MPa) and yield (0.94 MPa) strengths, regardless of the viscosity. Conclusion. The choice of an impression material should be based on the specific physical behavior of the elastomer. The light-body vinylpolyether silicone showed high tensile strength, yield strength, and adequate strain at yield/brake; those features might help to reduce tearing phenomena in the thin interproximal and crevicular areas.

  15. Mechanical Properties of Elastomeric Impression Materials: An In Vitro Comparison.

    PubMed

    Re, Dino; De Angelis, Francesco; Augusti, Gabriele; Augusti, Davide; Caputi, Sergio; D'Amario, Maurizio; D'Arcangelo, Camillo

    2015-01-01

    Purpose. Although new elastomeric impression materials have been introduced into the market, there are still insufficient data about their mechanical features. The tensile properties of 17 hydrophilic impression materials with different consistencies were compared. Materials and Methods. 12 vinylpolysiloxane, 2 polyether, and 3 hybrid vinylpolyether silicone-based impression materials were tested. For each material, 10 dumbbell-shaped specimens were fabricated (n = 10), according to the ISO 37:2005 specifications, and loaded in tension until failure. Mean values for tensile strength, yield strength, strain at break, and strain at yield point were calculated. Data were statistically analyzed using one-way ANOVA and Tukey's tests (α = 0.05). Results. Vinylpolysiloxanes consistently showed higher tensile strength values than polyethers. Heavy-body materials showed higher tensile strength than the light bodies from the same manufacturer. Among the light bodies, the highest yield strength was achieved by the hybrid vinylpolyether silicone (2.70 MPa). Polyethers showed the lowest tensile (1.44 MPa) and yield (0.94 MPa) strengths, regardless of the viscosity. Conclusion. The choice of an impression material should be based on the specific physical behavior of the elastomer. The light-body vinylpolyether silicone showed high tensile strength, yield strength, and adequate strain at yield/brake; those features might help to reduce tearing phenomena in the thin interproximal and crevicular areas. PMID:26693227

  16. Mechanical Properties of Materials with Nanometer Scale Microstructures

    SciTech Connect

    William D. Nix

    2004-10-31

    We have been engaged in research on the mechanical properties of materials with nanometer-scale microstructural dimensions. Our attention has been focused on studying the mechanical properties of thin films and interfaces and very small volumes of material. Because the dimensions of thin film samples are small (typically 1 mm in thickness, or less), specialized mechanical testing techniques based on nanoindentation, microbeam bending and dynamic vibration of micromachined structures have been developed and used. Here we report briefly on some of the results we have obtained over the past three years. We also give a summary of all of the dissertations, talks and publications completed on this grant during the past 15 years.

  17. Dielectric properties of certain biological materials at microwave frequencies.

    PubMed

    Kumar, S B; Mathew, K T; Raveendranath, U; Augustine, P

    2001-01-01

    In the medical field, microwaves play a larger role for treatment than diagnosis. For the detection of diseases by microwave methods, it is essential to know the dielectric properties of biological materials. For the present study, a cavity perturbation technique was employed to determine the dielectric properties of these materials. Rectangular cavity resonators were used to measure the complex permittivity of human bile, bile stones, gastric juice and saliva. The measurements were carried out in the S and J bands. It is observed that normal and infected bile have different dielectric constant and loss tangent. Dielectric constant of infected bile and gastric juice varies from patient to patient. Detection and extraction of bile stone with possible method of treatment is also discussed.

  18. Optical properties of glazing materials at normal incidence

    SciTech Connect

    Rubin, M.; Powles, R.

    2001-10-01

    Measurements of spectral transmittance T and reflectance R at normal incidence continue to be the most common and accurate source of energy performance data for glazing materials. Prediction of these radiometric properties from more fundamental materials data is often confounded by the complexity and uncertainty of coating structures. Angle-dependent radiometric properties of coated glazing will probably be predicted from normal-incidence data rather than being measured at many angles. The general error level demonstrated in round-robin tests is on the order 1-2%; it is often necessary to achieve better levels of performance. Based on results obtained following the round-robin tests, it is expected that accuracy of better than 0.5% can be generally achieved. A new type of absolute standard reference is described and tested with promising results.

  19. Effective Materials Property Information Management for the 21st Century

    NASA Technical Reports Server (NTRS)

    Ren, Weiju; Cebon, David; Arnold, Steve

    2009-01-01

    This paper discusses key principles for the development of materials property information management software systems. There are growing needs for automated materials information management in various organizations. In part these are fueled by the demands for higher efficiency in material testing, product design and engineering analysis. But equally important, organizations are being driven by the need for consistency, quality and traceability of data, as well as control of access to sensitive information such as proprietary data. Further, the use of increasingly sophisticated nonlinear, anisotropic and multi-scale engineering analyses requires both processing of large volumes of test data for development of constitutive models and complex materials data input for Computer-Aided Engineering (CAE) software. And finally, the globalization of economy often generates great needs for sharing a single "gold source" of materials information between members of global engineering teams in extended supply chains. Fortunately, material property management systems have kept pace with the growing user demands and evolved to versatile data management systems that can be customized to specific user needs. The more sophisticated of these provide facilities for: (i) data management functions such as access, version, and quality controls; (ii) a wide range of data import, export and analysis capabilities; (iii) data "pedigree" traceability mechanisms; (iv) data searching, reporting and viewing tools; and (v) access to the information via a wide range of interfaces. In this paper the important requirements for advanced material data management systems, future challenges and opportunities such as automated error checking, data quality characterization, identification of gaps in datasets, as well as functionalities and business models to fuel database growth and maintenance are discussed.

  20. Effective Materials Property Information Management for the 21st Century

    SciTech Connect

    Ren, Weiju; Cebon, David; Barabash, Oleg M

    2011-01-01

    This paper discusses key principles for the development of materials property information management software systems. There are growing needs for automated materials information management in various organizations. In part these are fuelled by the demands for higher efficiency in material testing, product design and engineering analysis. But equally important, organizations are being driven by the needs for consistency, quality and traceability of data, as well as control of access to proprietary or sensitive information. Further, the use of increasingly sophisticated nonlinear, anisotropic and multi-scale engineering analyses requires both processing of large volumes of test data for development of constitutive models and complex materials data input for Computer-Aided Engineering (CAE) software. And finally, the globalization of economy often generates great needs for sharing a single gold source of materials information between members of global engineering teams in extended supply-chains. Fortunately material property management systems have kept pace with the growing user demands and evolved to versatile data management systems that can be customized to specific user needs. The more sophisticated of these provide facilities for: (i) data management functions such as access, version, and quality controls; (ii) a wide range of data import, export and analysis capabilities; (iii) data pedigree traceability mechanisms; (iv) data searching, reporting and viewing tools; and (v) access to the information via a wide range of interfaces. In this paper the important requirements for advanced material data management systems, future challenges and opportunities such as automated error checking, data quality characterization, identification of gaps in datasets, as well as functionalities and business models to fuel database growth and maintenance are discussed.

  1. Clinical Biospecimens: Reference Materials, Certified for Nominal Properties?

    PubMed Central

    2014-01-01

    This report makes the case for clinical biospecimens to be certified for nominal properties, in particular the diagnosis, and to attain the level of Reference Materials. Clinical certified biospecimens that are collected, processed, characterized, stored, and distributed by biobanks are urgently needed to facilitate diagnostic test development, evaluation, and quality assurance. Four examples are provided to illustrate this purpose and the certification approaches that could be applied are proposed. PMID:24749878

  2. Measurement of Mechanical Properties of Cantilever Shaped Materials

    PubMed Central

    Finot, Eric; Passian, Ali; Thundat, Thomas

    2008-01-01

    Microcantilevers were first introduced as imaging probes in Atomic Force Microscopy (AFM) due to their extremely high sensitivity in measuring surface forces. The versatility of these probes, however, allows the sensing and measurement of a host of mechanical properties of various materials. Sensor parameters such as resonance frequency, quality factor, amplitude of vibration and bending due to a differential stress can all be simultaneously determined for a cantilever. When measuring the mechanical properties of materials, identifying and discerning the most influential parameters responsible for the observed changes in the cantilever response are important. We will, therefore, discuss the effects of various force fields such as those induced by mass loading, residual stress, internal friction of the material, and other changes in the mechanical properties of the microcantilevers. Methods to measure variations in temperature, pressure, or molecular adsorption of water molecules are also discussed. Often these effects occur simultaneously, increasing the number of parameters that need to be concurrently measured to ensure the reliability of the sensors. We therefore systematically investigate the geometric and environmental effects on cantilever measurements including the chemical nature of the underlying interactions. To address the geometric effects we have considered cantilevers with a rectangular or circular cross section. The chemical nature is addressed by using cantilevers fabricated with metals and/or dielectrics. Selective chemical etching, swelling or changes in Young's modulus of the surface were investigated by means of polymeric and inorganic coatings. Finally to address the effect of the environment in which the cantilever operates, the Knudsen number was determined to characterize the molecule-cantilever collisions. Also bimaterial cantilevers with high thermal sensitivity were used to discern the effect of temperature variations. When appropriate

  3. Thermophysical Properties of Automotive Metallic Brake Disk Materials

    NASA Astrophysics Data System (ADS)

    Kim, S. W.; Park, K.; Lee, S. H.; Kang, K. H.; Lim, K. T.

    2008-12-01

    The temperature distribution, the thermal deformation, and the thermal stress of automotive brake disks have quite close relations with car safety; therefore, much research in this field has been performed. However, successful and satisfactory results have not been obtained because the temperature-dependent thermophysical properties of brake disk materials are not sufficiently known. In this study, the thermophysical properties (thermal diffusivity, the specific heat, and the coefficient of thermal expansion) of three kinds of iron alloy series brake disk materials, FC250, FC170, and FCD50, and two kinds of aluminum alloy series brake disk materials, Al MMC and A356, were measured in the temperature range from room temperature to 500 °C, and the thermal conductivity was calculated using the measured thermal diffusivity, specific heat capacity, and density. As expected, the results show that the two series have significant differences in respect of the thermophysical properties, and to reduce the thermal deformation of the brake disk, the aluminum alloys with a high thermal conductivity and the iron alloys with low thermal expansion are recommended.

  4. Effects of prestresses on mechanical properties of isotropic graphite materials

    NASA Astrophysics Data System (ADS)

    Oku, T.; Kurumada, A.; Imamura, Y.; Kawamata, K.; Shiraishi, M.

    1998-10-01

    Graphite materials which are used for plasma facing components and other components are subjected to stresses due to the high heat flux from the fusion plasma. Some mechanical properties of graphite materials can change due to the prestresses. The property changes should be considered for the design of the plasma facing components. The purpose of this study is to examine the effects of prestresses on the mechanical properties of isotropic graphite materials. Compressive prestresses were applied to two kinds of isotropic fine-grained graphites (IG-430 and IG-11) at 298 K (both), 1873 K (IG-11), 2273 K (IG-11) and 2283 K (IG-430). As a result, the decrease in Young's modulus for IG-430 due to high-temperature prestressing was 56% which was much larger than the 6.4% that was due to prestressing at 298 K. The results for IG-11 were the same as those for IG-430 graphite. This finding was considered to be due primarily to a difference in degree of the preferred orientation of crystallites in the graphite on the basis of the Bacon anisotropy factor (BAF) obtained from X-ray diffraction measurement of the prestressed specimens. Furthermore, high-temperature compressive prestressing produced an increase in the strength of the isotropic graphite, although room temperature prestressing produced no such effect. The results obtained here suggest that the isotropic graphite which is subjected to high-temperature compressive stresses can become anisotropic in service.

  5. Ocean acidification alters the material properties of Mytilus edulis shells

    PubMed Central

    Fitzer, Susan C.; Zhu, Wenzhong; Tanner, K. Elizabeth; Phoenix, Vernon R.; Kamenos, Nicholas A.; Cusack, Maggie

    2015-01-01

    Ocean acidification (OA) and the resultant changing carbonate saturation states is threatening the formation of calcium carbonate shells and exoskeletons of marine organisms. The production of biominerals in such organisms relies on the availability of carbonate and the ability of the organism to biomineralize in changing environments. To understand how biomineralizers will respond to OA the common blue mussel, Mytilus edulis, was cultured at projected levels of pCO2 (380, 550, 750, 1000 µatm) and increased temperatures (ambient, ambient plus 2°C). Nanoindentation (a single mussel shell) and microhardness testing were used to assess the material properties of the shells. Young's modulus (E), hardness (H) and toughness (KIC) were measured in mussel shells grown in multiple stressor conditions. OA caused mussels to produce shell calcite that is stiffer (higher modulus of elasticity) and harder than shells grown in control conditions. The outer shell (calcite) is more brittle in OA conditions while the inner shell (aragonite) is softer and less stiff in shells grown under OA conditions. Combining increasing ocean pCO2 and temperatures as projected for future global ocean appears to reduce the impact of increasing pCO2 on the material properties of the mussel shell. OA may cause changes in shell material properties that could prove problematic under predation scenarios for the mussels; however, this may be partially mitigated by increasing temperature. PMID:25540244

  6. Ocean acidification alters the material properties of Mytilus edulis shells.

    PubMed

    Fitzer, Susan C; Zhu, Wenzhong; Tanner, K Elizabeth; Phoenix, Vernon R; Kamenos, Nicholas A; Cusack, Maggie

    2015-02-01

    Ocean acidification (OA) and the resultant changing carbonate saturation states is threatening the formation of calcium carbonate shells and exoskeletons of marine organisms. The production of biominerals in such organisms relies on the availability of carbonate and the ability of the organism to biomineralize in changing environments. To understand how biomineralizers will respond to OA the common blue mussel, Mytilus edulis, was cultured at projected levels of pCO2 (380, 550, 750, 1000 µatm) and increased temperatures (ambient, ambient plus 2°C). Nanoindentation (a single mussel shell) and microhardness testing were used to assess the material properties of the shells. Young's modulus (E), hardness (H) and toughness (KIC) were measured in mussel shells grown in multiple stressor conditions. OA caused mussels to produce shell calcite that is stiffer (higher modulus of elasticity) and harder than shells grown in control conditions. The outer shell (calcite) is more brittle in OA conditions while the inner shell (aragonite) is softer and less stiff in shells grown under OA conditions. Combining increasing ocean pCO2 and temperatures as projected for future global ocean appears to reduce the impact of increasing pCO2 on the material properties of the mussel shell. OA may cause changes in shell material properties that could prove problematic under predation scenarios for the mussels; however, this may be partially mitigated by increasing temperature.

  7. Characterization of ion-exchange membrane materials: properties vs structure.

    PubMed

    Berezina, N P; Kononenko, N A; Dyomina, O A; Gnusin, N P

    2008-06-22

    This review focuses on the preparation, structure and applications of ion-exchange membranes formed from various materials and exhibiting various functions (electrodialytic, perfluorinated sulphocation-exchange and novel laboratory-tested membranes). A number of experimental techniques for measuring electrotransport properties as well as the general procedure for membrane testing are also described. The review emphasizes the relationships between membrane structures, physical and chemical properties and mechanisms of electrochemical processes that occur in charged membrane materials. The water content in membranes is considered to be a key factor in the ion and water transfer and in polarization processes in electromembrane systems. We suggest the theoretical approach, which makes it possible to model and characterize the electrochemical properties of heterogeneous membranes using several transport-structural parameters. These parameters are extracted from the experimental dependences of specific electroconductivity and diffusion permeability on concentration. The review covers the most significant experimental and theoretical research on ion-exchange membranes that have been carried out in the Membrane Materials Laboratory of the Kuban State University. These results have been discussed at the conferences "Membrane Electrochemistry", Krasnodar, Russia for many years and were published mainly in Russian scientific sources.

  8. Materials property definition and generation for carbon-carbon and carbon phenolic materials

    NASA Technical Reports Server (NTRS)

    Canfield, A. R.; Mathis, J. R.; Starrett, H. S.; Koenig, J. R.

    1987-01-01

    A data base program to generate statistically significant material-property data for carbon-carbon and carbon phenolic materials to be used in designs of Space Shuttle is described. The program, which will provide data necessary for thermal and stress modeling of Shuttle nozzle and exit cone structures, includes evaluation of tension, compression, shear strength, shear modulus, thermal expansion, thermal conductivity, permeability, and emittance for both materials; the testing of carbon phenolic materials also includes CTE, off-gassing, pyrolysis, and RTG. Materials to be tested will be excised from Space Shuttle inlet, throat, and exit cone billets and modified involute carbon-carbon exit cones; coprocessed blocks, panels, and cylinders will also be tested.

  9. Correlation of materials properties with the atomic density concept

    NASA Technical Reports Server (NTRS)

    1975-01-01

    Based on the hypothesis that the number of atoms per unit volume, accurately calculable for any substance of known real density and chemical composition, various characterizing parameters (energy levels of electrons interacting among atoms of the same or different kinds, atomic mass, bond intensity) were chosen for study. A multiple exponential equation was derived to express the relationship. Various properties were examined, and correlated with the various parameters. Some of the properties considered were: (1) heat of atomization, (2) boiling point, (3) melting point, (4) shear elastic modulus of cubic crystals, (5) thermal conductivity, and (6) refractive index for transparent substances. The solid elements and alkali halides were the materials studied. It is concluded that the number of different properties can quantitively be described by a common group of parameters for the solid elements, and a wide variety of compounds.

  10. Transition metal chalcogenides: ultrathin inorganic materials with tunable electronic properties.

    PubMed

    Heine, Thomas

    2015-01-20

    CONSPECTUS: After the discovery of graphene and the development of powerful exfoliation techniques, experimental preparation of two-dimensional (2D) crystals can be expected for any layered material that is known to chemistry. Besides graphene and hexagonal boron nitride (h-BN), transition metal chalcogenides (TMC) are among the most studied ultrathin materials. In particular, single-layer MoS2, a direct band gap semiconductor with ∼1.9 eV energy gap, is popular in physics and nanoelectronics, because it nicely complements semimetallic graphene and insulating h-BN monolayer as a construction component for flexible 2D electronics and because it was already successfully applied in the laboratory as basis material for transistors and other electronic and optoelectronic devices. Two-dimensional crystals are subject to significant quantum confinement: compared with their parent layered 3D material, they show different structural, electronic, and optical properties, such as spontaneous rippling as free-standing monolayer, significant changes of the electronic band structure, giant spin-orbit splitting, and enhanced photoluminescence. Most of those properties are intrinsic for the monolayer and already absent for two-layer stacks of the same 2D crystal. For example, single-layer MoS2 is a direct band gap semiconductor with spin-orbit splitting of 150 meV in the valence band, while the bilayer of the same material is an indirect band gap semiconductor without observable spin-orbit splitting. All these properties have been observed experimentally and are in excellent agreement with calculations based on density-functional theory. This Account reports theoretical studies of a subgroup of transition metal dichalcogenides with the composition MX2, with M = Mo, or W and X = Se or S, also referred to as "MoWSeS materials". Results on the electronic structure, quantum confinement, spin-orbit coupling, spontaneous monolayer rippling, and change of electronic properties in the

  11. Hygrothermal Simulations of Foundations: Part 1 - Soil Material Properties

    SciTech Connect

    Pallin, Simon B; Kehrer, Manfred

    2013-01-01

    Hygrothermal performance of soils coupled to buildings is a complicated process. The computational approach for heat transfer via the ground is well defined (EN-ISO-13370:, 2007) together with simplified methods (Staszczuk, Radon, & Holm). Though the soil moisture transfer is generally ignored, it is proven not negligible (Janssen, Carmeliet, & Hens, 2004). Even though reliable material properties of soils are required to perform realistic hygrothermal calculations of soils coupled to buildings, such material properties have not been well defined in hygrothermal calculations tools. Typical building constructions which are greatly influenced by soils are basements, crawl spaces and slab on grade and reliable hygrothermal performance of such construction are highly requested; as it is ranked within the top 10 Building America Enclosure Research Ideas according to Enclosures STC - Residential Energy Efficiency Stakeholder Meeting, February 29, 2012 Austin, TX. There exists an extensive amount of measurements on soil properties in Soil Science though this information must be gathered as well as adapted to be applicable in Building Science and for hygrothermal simulation purposes. Soil properties are important when analyzing and designing both new building constructions and retrofitting measures, where the outer boundary of the buildings enclosure consists of soil materials. Concerning basement energy retrofits, interior solutions of improving the energy demand has to cooperate with the existing soil properties and must therefore be designed thereafter. In concerns of exterior retrofits, the soil material can be replaced, if needed, with a more suitable filling material, though this approach applies only for basement walls. The soil material beneath the basement floor can naturally not be replaced hence the soil properties of this part of the buildings enclosure still must be taken into consideration. This study is divided into several parts. The intention of the first

  12. A comparative evaluation of mechanical properties of nanofibrous materials

    NASA Astrophysics Data System (ADS)

    Lyubun, German P.; Bessudnova, Nadezda O.

    2014-01-01

    Restoration or replacement of lost or damaged hard tooth tissues remain a reconstructive clinical dentistry challenge. One of the most promising solutions to this problem is the development of novel concepts and methodologies of tissue engineering for the synthesis of three-dimensional graft constructs that are equivalent to original organs and tissues. This structural and functional compatibility can be reached by producing ultra-thin polymer filament scaffolds. This research aims through a series of studies to examine different methods of polymer filament material special preparation and test mechanical properties of the produced materials subjected to a tensile strain. Nanofibrous material preparation using chemically pure acetone and mixtures of ethanol/water has shown no significant changes in sample surface morphology. The high temperature impact on material morphology has resulted in the modification of fiber structure. In the course of mechanical tests it has been revealed the dependence of the material strength on the spinning solution compositions. The results achieved point to the possibility to develop nanofibrous materials with required parameters changing the methodology of spinning solution production.

  13. Material properties from contours: New insights on object perception.

    PubMed

    Pinna, Baingio; Deiana, Katia

    2015-10-01

    In this work we explored phenomenologically the visual complexity of the material attributes on the basis of the contours that define the boundaries of a visual object. The starting point is the rich and pioneering work done by Gestalt psychologists and, more in detail, by Rubin, who first demonstrated that contours contain most of the information related to object perception, like the shape, the color and the depth. In fact, by investigating simple conditions like those used by Gestalt psychologists, mostly consisting of contours only, we demonstrated that the phenomenal complexity of the material attributes emerges through appropriate manipulation of the contours. A phenomenological approach, analogous to the one used by Gestalt psychologists, was used to answer the following questions. What are contours? Which attributes can be phenomenally defined by contours? Are material properties determined only by contours? What is the visual syntactic organization of object attributes? The results of this work support the idea of a visual syntactic organization as a new kind of object formation process useful to understand the language of vision that creates well-formed attribute organizations. The syntax of visual attributes can be considered as a new way to investigate the modular coding and, more generally, the binding among attributes, i.e., the issue of how the brain represents the pairing of shape and material properties. PMID:26072333

  14. Silk/nano-material hybrid: properties and functions

    NASA Astrophysics Data System (ADS)

    Steven, Eden; Lebedev, Victor; Laukhina, Elena; Laukhin, Vladimir; Alamo, Rufina G.; Rovira, Concepcio; Veciana, Jaume; Brooks, James S.

    2014-03-01

    Silk continues to emerge as a material of interest in electronics. In this work, the interaction between silk and conducting nano-materials are investigated. Simple fabrication methods, physical, electronic, thermal, and actuation properties are reported for spider silk / carbon nanotube (CNT-SS) and Bombyx mori / (BEDT-TTF)-based organic molecular conductor hybrids (ET-S). The CNT-SS fibers are produced via water and shear assisted method, resulting in fibers that are tough, custom-shapeable, flexible, and electrically conducting. For ET-S bilayer films, a layer transfer technique is developed to deposit linked crystallites of (BEDT-TTF)2I3 molecular conductor onto silk films, generating highly piezoresistive semi-transparent films. In both cases, the hybridization allows us to gain additional functions by harnessing the water-dependent properties of silk materials, for example, as humidity sensor and electrical current- or water-driven actuators. SEM, TEM, FT-IR, and resistance measurements under varying temperature, strain, and relative humidity reveal the synergistic interactions between the bio- and nano-materials. E.S. is supported by NSF-DMR 1005293.

  15. Bridging Microstructure, Properties and Processing of Polymer Based Advanced Materials

    SciTech Connect

    Li, Dongsheng; Ahzi, Said; Khaleel, Mohammad A.

    2012-01-01

    This is a guest editorial for a special issue in Journal of Engineering Materials and Technology. The papers collected in this special issue emphasize significant challenges, current approaches and future strategies necessary to advance the development of polymer-based materials. They were partly presented at the symposium of 'Bridging microstructure, properties and processing of polymer based advanced materials' in the TMS 2011 annual conference meeting, which was held in San Diego, US, on Feb 28 to March 3, 2011. This symposium was organized by the Pacific Northwest National Laboratory (USA) and the Institute of Mechanics of Fluids and Solids of the University of Strasbourg (France). The organizers were D.S. Li, S. Ahzi, and M. Khaleel.

  16. Preparation and properties on hollow nano-structured smoke material

    NASA Astrophysics Data System (ADS)

    Liu, Xiang-cui; Dai, Meng-yan; Fang, Guo-feng; Shi, Wei-dong; Cheng, Xiang; Liu, Hai-feng; Zhang, Tong

    2013-09-01

    In recent years, the weapon systems of laser guidance and infrared (IR) imaging guidance have been widely used in modern warfare because of their high precision and strong anti-interference. Notwithstanding, military smoke, as a rapid and effective passive jamming means, can effectively counteract the attack of enemy precision-guided weapons by scattering and absorbability. Conventional smoke has good attenuation capability only to visible light (0.4-0.76 μm), but hardly any effect to other electromagnetic wave band. The weapon systems of laser guidance and IR imaging guidance usually work in broad band, including near IR (1-3 μm), middle IR (3-5 μm), far IR (8-14 μm), and so on. Accordingly, exploiting and using new efficient obscurant materials, which is one of the important factors that develop smoke technology, have become a focus and attracted more interests around the world. Then nano-structured materials that are developing very quickly have turned into our new choice. Hollow nano-structured materials (HNSM) have many special properties because of their nano-size wall-thickness and sub-micron grain-size. After a lot of HNSM were synthesized in this paper, their physical and chemical properties, including grain size, phase composition, microstructure, optical properties and resistivity were tested and analysed. Then the experimental results of the optical properties showed that HNSM exhibit excellent wave-absorbing ability in ultraviolet, visible and infrared regions. On the basis of the physicochemmical properties, HNSM are firstly applied in smoke technology field. And the obscuration performance of HNSM smoke was tested in smoke chamber. The testing waveband included 1.06μm and 10.6μm laser, 3-5μm and 8-14μm IR radiation. Then the main parameters were obtained, including the attenuation rate, the transmission rate, the mass extinction coefficient, the efficiency obscuring time, and the sedimentation rate, etc. The main parameters of HNSM smoke were

  17. Microstructure and mechanical properties of synthetic brow-suspension materials.

    PubMed

    Kwon, Kyung-Ah; Shipley, Rebecca J; Edirisinghe, Mohan; Ezra, Daniel George; Rose, Geoffrey E; Rayment, Andrew W; Best, Serena M; Cameron, Ruth E

    2014-02-01

    Levator palpebrae superioris (LPS) is a muscle responsible for lifting the upper eyelid and its malfunction leads to a condition called "ptosis", resulting in disfigurement and visual impairment. Severe ptosis is generally treated with "brow-suspension" surgery, whereby the eyelid is cross-connected to the mobile tissues above the eyebrow using a cord-like material, either natural (e.g. fascia lata harvested from the patient) or a synthetic cord. Synthetic brow-suspension materials are widely used, due to not requiring the harvesting of fascia lata that can be associated with pain and donor-site complications. The mechanical properties of some commonly-used synthetic brow-suspension materials were investigated--namely, monofilament polypropylene (Prolene®), sheathed braided polyamide (Supramid Extra® II), silicone frontalis suspension rod (Visitec® Seiff frontalis suspension set), woven polyester (Mersilene® mesh), and expanded polytetrafluoroethylene (Ptose-Up). Each material underwent a single tensile loading to the failure of the material, at three different displacement rates (1, 750 and 1500 mm/min). All the materials exhibited elastic-plastic tensile stress-strain behaviour with considerable differences in elastic modulus, ultimate tensile strength, elastic limit and work of fracture. The results suggest that, as compared to other materials, the silicone brow-suspension rod (Visitec® SFSS) might be the most suitable, providing relatively long-lasting stability and desirable performance. These findings, together with other factors such as commercial availability, cost and clinical outcomes, will provide clinicians with a more rational basis for selection of brow-suspension materials.

  18. Properties of granular analogue model materials: A community wide survey

    NASA Astrophysics Data System (ADS)

    Klinkmüller, Matthias; Schreurs, Guido; Rosenau, Matthias; Kemnitz, Helga

    2016-04-01

    We report the material properties of 26 granular analogue materials used in 14 analogue modelling laboratories. We determined physical characteristics such as bulk density, grain size distribution, and grain shape, and performed ring shear tests to determine friction angles and cohesion, and uniaxial compression tests to evaluate the compaction behaviour. Mean grain size of the materials varied between (c. 100 and 400 micrometer). Analysis of grain shape factors show that the four different classes of granular materials (14 quartz sands, 5 dyed quartz sands, 4 heavy mineral sands and 3 size fractions of glass beads) can be broadly divided into two groups consisting of 12 angular and 14 rounded materials. Grain shape has an influence on friction angles, with most angular materials having higher internal friction angles (between c. 35° and 40°) than rounded materials, whereas well-rounded glass beads have the lowest internal friction angles (between c. 25° and 30°). We interpret this as an effect of intergranular sliding versus rolling . Most angular materials have also higher basal friction angles (tested for a specific foil) than more rounded materials, suggesting that angular grains scratch and wear the foil., Most materials have a cohesion in the order of 10-100 Pa except for well-rounded glass beads, which show a trend towards a quasi-cohesionless (C <10 Pa) Coulomb-type material. The uniaxial confined compression tests reveal that rounded grains generally show less compaction than angular grains. We interpret this to be related to the initial packing density reached during sieving which is higher for rounded grains than for angular grains. Ring-shear test data show that angular grains undergo a longer strain-hardening phase than more rounded materials. This might explain why analogue models consisting of angular grains accommodate deformation in a more distributed manner prior to strain localisation than models consisting of rounded grains. Also, models

  19. Effective Materials Property Information Management for the 21st Century

    SciTech Connect

    Ren, Weiju; Cebon, David; Arnold, Steve

    2010-01-01

    This paper discusses key principles for the development of materials property information management software systems. There are growing needs for automated materials information management in industry, research organizations and government agencies. In part these are fuelled by the demands for higher efficiency in material testing, product design and development and engineering analysis. But equally important, organizations are being driven to employ sophisticated methods and software tools for managing their mission-critical materials information by the needs for consistency, quality and traceability of data, as well as control of access to proprietary or sensitive information. Furthermore the use of increasingly sophisticated nonlinear, anisotropic and multi-scale engineering analysis approaches, particularly for composite materials, requires both processing of much larger volumes of test data for development of constitutive models and much more complex materials data input requirements for Computer-Aided Engineering (CAE) software. And finally, the globalization of engineering processes and outsourcing of design and development activities generates much greater needs for sharing a single gold source of materials information between members of global engineering teams in extended supply-chains. Fortunately material property management systems have kept pace with the growing user demands. They have evolved from hard copy archives, through simple electronic databases, to versatile data management systems that can be customized to specific user needs. The more sophisticated of these provide facilities for: (i) data management functions such as access control, version control, and quality control; (ii) a wide range of data import, export and analysis capabilities; (iii) mechanisms for ensuring that all data is traceable to its pedigree sources: details of testing programs, published sources, etc; (iv) tools for searching, reporting and viewing the data; and (v

  20. Modeling composite wing aeroelastic behavior with uncertain damage severity and material properties

    NASA Astrophysics Data System (ADS)

    Georgiou, G.; Manan, A.; Cooper, J. E.

    2012-10-01

    The effect of uncertain material properties and severity of damage on the aeroelastic behavior of a finite element composite wing model are predicted by applying the Polynomial Chaos Expansion method (PCE). Different damage modes, including the transverse matrix cracking and broken fibers, are induced into pre-defined locations in the laminates and the aeroelastic stability and dynamic response of the wing due to "1-cosine" vertical gusts are evaluated. For this purpose, PCE models that predict the variation due to uncertainty of the flutter speed and an "Interesting Quantity" (root shear force) of the wing box are developed based upon a small sample of observations, exploiting the efficient Latin Hypercube sampling technique. The uncertainty propagation on the output responses, in the form of probability density functions, is evaluated at low computational cost, implementing the PCE models and verified successfully against the actual results.

  1. Scanning Probe Evaluation of Electronic, Mechanical and Structural Material Properties

    NASA Astrophysics Data System (ADS)

    Virwani, Kumar

    2011-03-01

    We present atomic force microscopy (AFM) studies of a range of properties from three different classes of materials: mixed ionic electronic conductors, low-k dielectrics, and polymer-coated magnetic nanoparticles. (1) Mixed ionic electronic conductors are being investigated as novel diodes to drive phase-change memory elements. Their current-voltage characteristics are measured with direct-current and pulsed-mode conductive AFM (C-AFM). The challenges to reliability of the C-AFM method include the electrical integrity of the probe, the sample and the contacts, and the minimization of path capacitance. The role of C-AFM in the optimization of these electro-active materials will be presented. (2) Low dielectric constant (low-k) materials are used in microprocessors as interlayer insulators, a role directly affected by their mechanical performance. The mechanical properties of nanoporous silicate low-k thin films are investigated in a comparative study of nanomechanics measured by AFM and by traditional nanoindentation. Both methods are still undergoing refinement as reliable analytical tools for determining nanomechanical properties. We will focus on AFM, the faster of the two methods, and its developmental challenges of probe shape, cantilever force constant, machine compliance and calibration standards. (3) Magnetic nanoparticles are being explored for their use in patterned media for magnetic storage. Current methods for visualizing the core-shell structure of polymer-coated magnetic nanoparticles include dye-staining the polymer shell to provide contrast in transmission electron microscopy. AFM-based fast force-volume measurements provide direct visualization of the hard metal oxide core within the soft polymer shell based on structural property differences. In particular, the monitoring of adhesion and deformation between the AFM tip and the nanoparticle, particle-by-particle, provides a reliable qualitative tool to visualize core-shell contrast without the use

  2. Method and apparatus for assessing material properties of sheet-like materials

    DOEpatents

    Telschow, Kenneth L.; Deason, Vance A.

    2002-01-01

    Apparatus for producing an indication of a material property of a sheet-like material according to the present invention may comprise an excitation source for vibrating the sheet-like material to produce at least one traveling wave therein. A light source configured to produce an object wavefront and a reference wavefront directs the object wavefront toward the sheet-like material to produce a modulated object wavefront. A modulator operatively associated with the reference wavefront modulates the reference wavefront in synchronization with the traveling wave on the sheet-like material to produce a modulated reference wavefront. A sensing medium positioned to receive the modulated object wavefront and the modulated reference wavefront produces an image of the traveling wave in the sheet-like material, the image of the anti-symmetric traveling wave being related to a displacement amplitude of the anti-symmetric traveling wave over a two-dimensional area of the vibrating sheet-like material. A detector detects the image of the traveling wave in the sheet-like material.

  3. Form and Actuality

    NASA Astrophysics Data System (ADS)

    Bitbol, Michel

    A basic choice underlies physics. It consists of banishing actual situations from theoretical descriptions, in order to reach a universal formal construct. Actualities are then thought of as mere local appearances of a transcendent reality supposedly described by the formal construct. Despite its impressive success, this method has left major loopholes in the foundations of science. In this paper, I document two of these loopholes. One is the problem of time asymmetry in statistical thermodynamics, and the other is the measurement problem of quantum mechanics. Then, adopting a broader philosophical standpoint, I try to turn the whole picture upside down. Here, full priority is given to actuality (construed as a mode of the immanent reality self-reflectively being itself) over formal constructs. The characteristic aporias of this variety of "Copernican revolution" are discussed.

  4. Synthesis and Engineering Materials Properties of Fluid Phase Chemical Hydrogen Storage Materials for Automotive Applications

    SciTech Connect

    Choi, Young Joon; Westman, Matthew P.; Karkamkar, Abhijeet J.; Chun, Jaehun; Ronnebro, Ewa

    2015-09-01

    Among candidates for chemical hydrogen storage in PEM fuel cell automotive applications, ammonia borane (AB, NH3BH3) is considered to be one of the most promising materials due to its high practical hydrogen content of 14-16 wt%. This material is selected as a surrogate chemical for a hydrogen storage system. For easier transition to the existing infrastructure, a fluid phase hydrogen storage material is very attractive and thus, we investigated the engineering materials properties of AB in liquid carriers for a chemical hydrogen storage slurry system. Slurries composed of AB and high temperature liquids were prepared by mechanical milling and sonication in order to obtain stable and fluidic properties. Volumetric gas burette system was adopted to observe the kinetics of the H2 release reactions of the AB slurry and neat AB. Viscometry and microscopy were employed to further characterize slurries engineering properties. Using a tip-sonication method we have produced AB/silicone fluid slurries at solid loadings up to 40wt% (6.5wt% H2) with viscosities less than 500cP at 25°C.

  5. Processing and nanostructure influences on mechanical properties of thermoelectric materials

    NASA Astrophysics Data System (ADS)

    Schmidt, Robert David

    Thermoelectric (TE) materials are materials that can generate an electric current from a thermal gradient, with possible service in recovery of waste heat such as engine exhaust. Significant progress has been made in improving TE conversion efficiency, typically reported according to the figure of merit, ZT, with several recent papers publishing ZT values above 2. Furthermore, cost reductions may be made by the use of lower cost elements such as Mg, Si, Sn, Pb, Se and S in TE materials, while achieving ZT values between 1.3 and 1.8. To be used in a device, the thermoelectric material must be able to withstand the applied thermal and mechanical forces without failure. However, these materials are brittle, with low fracture toughness typically less than 1.5 MPa-m1/2, and often less than 0.5 MPa-m1/2. For comparison, window glass is approximately 0.75 MPa-m1/2. They have been optimized with nanoprecipitates, nanoparticles, doping, alterations in stoichiometry, powder processing and other techniques, all of which may alter the mechanical properties. In this study, the effect of SiC nanoparticle additions in Mg2Si, SnTe and Ag nanoparticle additions in the skutterudite Ba0.3Co 4Sb12 on the elastic moduli, hardness and fracture toughness are measured. Large changes (˜20%) in the elastic moduli in SnTe 1+x as a function of x at 0 and 0.016 are shown. The effect on mechanical properties of doping and precipitates of CdS or ZnS in a PbS or PbSe matrix have been reported. Changes in sintering behavior of the skutterudite with the Ag nanoparticle additions were explored. Possible liquid phase sintering, with associated benefits in lower processing temperature, faster densification and lower cost, has been shown. A technique has been proposed for determining additional liquid phase sintering aids in other TE materials. The effects of porosity, grain size, powder processing method, and sintering method were explored with YbAl3 and Ba0.3Co4Sb 12, with the porosity dependence of

  6. [Mechanical properties and biological evaluation of buffalo horn material].

    PubMed

    Zhang, Quanbin; Zhou, Qunfei; Shan, Guanghua; Cao, Ping; Huang, Yaoxiong; Ao, Ningjian

    2014-12-01

    Mechanical properties and biological evaluation of buffalo horn material were examined in this study. The effects of sampling position of buffalo horn on mechanical properties were investigated with uniaxial tension and micron indentation tests. Meanwhile, the variation of element contents in different parts of buffalo horn was determined with elemental analysis, and the microstructure of the horn was measured with scanning electron microscopy. In addition, biological evaluation of buffalo horn was studied with hemolytic test, erythrocyte morphology, platelet and erythrocyte count, and implantation into mouse. Results showed that the buffalo horn had good mechanical properties and mechanical characteristic values of it gradually increased along with the growth direction of the horn, which may be closely related to its microstructure and element content of C, N, and S in different parts of the buffalo horn. On the other hand, because the buffalo horn does not have toxicity, it therefore does not cause hemolysis of erythrocyte and has a good affinity with it. Buffalo horn has good histocompatibility but meanwhile it may induce the platelet adhesion and aggregation. Even so, it does not continue to rise to induce a large number of platelet to aggregate with resulting blood clotting. Therefore, the buffalo horn material has been proved to possess good blood compatibility according to the preliminary evaluation. PMID:25868248

  7. Tooth and bone deformation: structure and material properties by ESPI

    NASA Astrophysics Data System (ADS)

    Zaslansky, Paul; Shahar, Ron; Barak, Meir M.; Friesem, Asher A.; Weiner, Steve

    2006-08-01

    In order to understand complex-hierarchical biomaterials such as bones and teeth, it is necessary to relate their structure and mechanical-properties. We have adapted electronic speckle pattern-correlation interferometry (ESPI) to make measurements of deformation of small water-immersed specimens of teeth and bones. By combining full-field ESPI with precision mechanical loading we mapped sub-micron displacements and determined material-properties of the samples. By gradually and elastically compressing the samples, we compensate for poor S/N-ratios and displacement differences of about 100nm were reliably determined along samples just 2~3mm long. We produced stress-strain curves well within the elastic performance range of these materials under biologically relevant conditions. For human tooth-dentin, Young's modulus in inter-dental areas of the root is 40% higher than on the outer sides. For cubic equine bone samples the compression modulus of axial orientations is about double the modulus of radial and tangential orientations (20 GPa versus 10 GPa respectively). Furthermore, we measured and reproduced a surprisingly low Poisson's ratio, which averaged about 0.1. Thus the non-contact and non-destructive measurements by ESPI produce high sensitivity analyses of mechanical properties of mineralized tissues. This paves the way for mapping deformation-differences of various regions of bones, teeth and other biomaterials.

  8. Effect of storage on tensile material properties of bovine liver.

    PubMed

    Lu, Yuan-Chiao; Kemper, Andrew R; Untaroiu, Costin D

    2014-01-01

    Cadaveric tissue models play an important role in the assessment and optimization of novel restraint systems for reducing abdominal injuries. However, the effect of tissue preservation by means of freezing on the material properties of abdominal tissues remains unknown. The goal of this study was to investigate the influence of frozen storage time on the material responses of the liver parenchyma in tensile loading. Specimens from ten bovine livers were equally divided into three groups: fresh, 30-day frozen storage, and 60-day frozen storage. All preserved specimens were stored at -12°C. Dog-bone specimens from each preservation group were randomly assigned to one of three strain rates (0.01s(-1), 0.1s(-1), and 1.0s(-1)) and tested to failure in tensile loading. The local material response recorded at the tear location and the global material response of the whole specimen of the liver parenchyma specimens were investigated based on the experimental data and optimized analytical material models. The local and global failure strains decreased significantly between fresh specimens and specimens preserved for 30 days (p<0.05), and between fresh specimens and specimens preserved for 60 days (p<0.05) for all three loading rates. Changes on the material model parameters were also observed between fresh and preserved specimens. Preservation by means of frozen storage was found to affect both the material and failure response of bovine liver parenchyma in tensile loading. The stiffness of the tissue increased with increased preservation time and increased strain rate. In summary, significant changes (p<0.05) between the failure strain of previously frozen liver parenchyma samples and fresh samples were demonstrated at both global and local levels in this study. In addition, nonlinear and viscoelastic characteristics of the liver parenchyma were observed in tension for both fresh and preserved samples.

  9. Oxide Thermoelectric Materials: A Structure-Property Relationship

    NASA Astrophysics Data System (ADS)

    Nag, Abanti; Shubha, V.

    2014-04-01

    Recent demand for thermoelectric materials for power harvesting from automobile and industrial waste heat requires oxide materials because of their potential advantages over intermetallic alloys in terms of chemical and thermal stability at high temperatures. Achievement of thermoelectric figure of merit equivalent to unity ( ZT ≈ 1) for transition-metal oxides necessitates a second look at the fundamental theory on the basis of the structure-property relationship giving rise to electron correlation accompanied by spin fluctuation. Promising transition-metal oxides based on wide-bandgap semiconductors, perovskite and layered oxides have been studied as potential candidate n- and p-type materials. This paper reviews the correlation between the crystal structure and thermoelectric properties of transition-metal oxides. The crystal-site-dependent electronic configuration and spin degeneracy to control the thermopower and electron-phonon interaction leading to polaron hopping to control electrical conductivity is discussed. Crystal structure tailoring leading to phonon scattering at interfaces and nanograin domains to achieve low thermal conductivity is also highlighted.

  10. Infrared optical properties of Mars soil analog materials: Palagonites

    NASA Technical Reports Server (NTRS)

    Roush, Ted L.

    1992-01-01

    The globally distributed bright soils on Mars represent products of chemical alteration of primary igneous materials. As such, understanding the chemistry and mineralogy of these soils provides clues about the nature of the parent materials and the type, duration, and extent of the chemical weathering environments on Mars. Such clues are key in developing an understanding of the interior and surficial processes that have operated throughout Mars' history to yield the surface as it is currently observed. The generally homogeneous nature of these soils is illustrated by a variety of observational data. These data include (1) direct determination of elemental abundances by the X-ray fluorescence instruments on both Viking Landers, (2) Earth-based telescopic observations, and (3) space-based observations. Based on their spectral properties in the visible and near-infrared, terrestrial palagonitic soils have been suggested as analogs for the bright regions on Mars. Palagonites represent the weathering products of basaltic glass and as such are composed of a variety of minerals/materials. In order to gain an understanding regarding the chemical, mineralogical, and spectral properties of a broad suite of palagonites, several samples were collected from the eastern and central regions of the island of Hawaii.

  11. The Study of the Thermoelectric Properties of Phase Change Materials

    NASA Astrophysics Data System (ADS)

    Yin, Ming; Abdi, Mohammed; Noimande, Zibusisu; Mbamalu, Godwin; Alameeri, Dheyaa; Datta, Timir

    We study thermoelectric property that is electrical phenomena occurring in conjunction with the flow of heat of phase-change materials (PCM) in particular GeSbTe (GST225). From given sets of material parameters, COMSOL Multiphysics heat-transfer module is used to compute maps of temperature and voltage distribution in the PCM samples. These results are used to design an apparatus including the variable temperature sample holder set up. An Arbitrary/ Function generator and a circuit setup is also designed to control the alternation of heaters embedded on the sample holder in order to ensure sequential back and forward flow of heat current from both sides of the sample. Accurate values of potential differences and temperature distribution profiles are obtained in order to compute the Seebeck coefficient of the sample. The results of elemental analysis and imaging studies such as XRD, UV-VIS, EDEX and SEM of the sample are obtained. Factors affecting the thermoelectric properties of phase change memory are also discussed. NNSA/ DOD Consortium for Materials and Energy Studies.

  12. Mechanical properties of irradiated multi-phase polycrystalline BCC materials

    NASA Astrophysics Data System (ADS)

    Song, Dingkun; Xiao, Xiazi; Xue, Jianming; Chu, Haijian; Duan, Huiling

    2015-04-01

    Structure materials under severe irradiations in nuclear environments are known to degrade because of irradiation hardening and loss of ductility, resulting from irradiation-induced defects such as vacancies, interstitials and dislocation loops, etc. In this paper, we develop an elastic-viscoplastic model for irradiated multi-phase polycrystalline BCC materials in which the mechanical behaviors of individual grains and polycrystalline aggregates are both explored. At the microscopic grain scale, we use the internal variable model and propose a new tensorial damage descriptor to represent the geometry character of the defect loop, which facilitates the analysis of the defect loop evolutions and dislocation-defect interactions. At the macroscopic polycrystal scale, the self-consistent scheme is extended to consider the multiphase problem and used to bridge the individual grain behavior to polycrystal properties. Based on the proposed model, we found that the work-hardening coefficient decreases with the increase of irradiation-induced defect loops, and the orientation/loading dependence of mechanical properties is mainly attributed to the different Schmid factors. At the polycrystalline scale, numerical results for pure Fe match well with the irradiation experiment data. The model is further extended to predict the hardening effect of dispersoids in oxide-dispersed strengthened steels by the considering the Orowan bowing. The influences of grain size and irradiation are found to compete to dominate the strengthening behaviors of materials.

  13. Learning to apply models of materials while explaining their properties

    NASA Astrophysics Data System (ADS)

    Karpin, Tiia; Juuti, Kalle; Lavonen, Jari

    2014-09-01

    Background:Applying structural models is important to chemistry education at the upper secondary level, but it is considered one of the most difficult topics to learn. Purpose:This study analyses to what extent in designed lessons students learned to apply structural models in explaining the properties and behaviours of various materials. Sample:An experimental group is 27 Finnish upper secondary school students and control group included 18 students from the same school. Design and methods:In quasi-experimental setting, students were guided through predict, observe, explain activities in four practical work situations. It was intended that the structural models would encourage students to learn how to identify and apply appropriate models when predicting and explaining situations. The lessons, organised over a one-week period, began with a teacher's demonstration and continued with student experiments in which they described the properties and behaviours of six household products representing three different materials. Results:Most students in the experimental group learned to apply the models correctly, as demonstrated by post-test scores that were significantly higher than pre-test scores. The control group showed no significant difference between pre- and post-test scores. Conclusions:The findings indicate that the intervention where students engage in predict, observe, explain activities while several materials and models are confronted at the same time, had a positive effect on learning outcomes.

  14. 14 CFR 29.613 - Material strength properties and design values.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Material strength properties and design... § 29.613 Material strength properties and design values. (a) Material strength properties must be based on enough tests of material meeting specifications to establish design values on a statistical...

  15. 14 CFR 27.613 - Material strength properties and design values.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 1 2013-01-01 2013-01-01 false Material strength properties and design....613 Material strength properties and design values. (a) Material strength properties must be based on enough tests of material meeting specifications to establish design values on a statistical basis....

  16. 14 CFR 29.613 - Material strength properties and design values.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Material strength properties and design... § 29.613 Material strength properties and design values. (a) Material strength properties must be based on enough tests of material meeting specifications to establish design values on a statistical...

  17. 14 CFR 27.613 - Material strength properties and design values.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Material strength properties and design....613 Material strength properties and design values. (a) Material strength properties must be based on enough tests of material meeting specifications to establish design values on a statistical basis....

  18. 14 CFR 29.613 - Material strength properties and design values.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Material strength properties and design... § 29.613 Material strength properties and design values. (a) Material strength properties must be based on enough tests of material meeting specifications to establish design values on a statistical...

  19. 14 CFR 29.613 - Material strength properties and design values.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Material strength properties and design... § 29.613 Material strength properties and design values. (a) Material strength properties must be based on enough tests of material meeting specifications to establish design values on a statistical...

  20. 14 CFR 27.613 - Material strength properties and design values.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Material strength properties and design....613 Material strength properties and design values. (a) Material strength properties must be based on enough tests of material meeting specifications to establish design values on a statistical basis....

  1. 14 CFR 23.613 - Material strength properties and design values.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Material strength properties and design... Design and Construction § 23.613 Material strength properties and design values. (a) Material strength properties must be based on enough tests of material meeting specifications to establish design values on...

  2. 14 CFR 27.613 - Material strength properties and design values.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 1 2012-01-01 2012-01-01 false Material strength properties and design....613 Material strength properties and design values. (a) Material strength properties must be based on enough tests of material meeting specifications to establish design values on a statistical basis....

  3. 14 CFR 23.613 - Material strength properties and design values.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 1 2014-01-01 2014-01-01 false Material strength properties and design... Design and Construction § 23.613 Material strength properties and design values. (a) Material strength properties must be based on enough tests of material meeting specifications to establish design values on...

  4. Research on lunar materials. [optical, chemical, and electrical properties

    NASA Technical Reports Server (NTRS)

    Gold, T.

    1978-01-01

    Abstracts of 14 research reports relating to investigations of lunar samples are presented. The principal topics covered include: (1) optical properties of surface and core samples; (2) chemical composition of the surface layers of lunar grains: Auger electron spectroscopy of lunar soil and ground rock samples; (3) high frequency electrical properties of lunar soil and rock samples and their relevance for the interpretation of lunar radar observations; (4) the electrostatic dust transport process; (5) secondary electron emission characteristics of lunar soil samples and their relevance to the dust transportation process; (6) grain size distribution in surface soil and core samples; and (7) the optical and chemical effects of simulated solar wind (2keV proton and a particle radiation) on lunar material.

  5. Pyrene based conjugated materials: synthesis, characterization and electroluminescent properties.

    PubMed

    Salunke, Jagadish K; Sonar, Prashant; Wong, F L; Roy, V A L; Lee, C S; Wadgaonkar, Prakash P

    2014-11-14

    In this work, three novel pyrene cored small conjugated molecules, namely 1,3,6,8-tetrakis(6-(octyloxy)naphthalene-2-yl)pyrene (PY-1), 1,3,6,8-tetrakis((E)-2-(6-(n-octyloxy)naphthalene-2-yl)vinyl)pyrene (PY-2) and 1,3,6,8-tetrakis((6-(n-octyloxy)naphthalene-2-yl)ethynyl)pyrene (PY-3) have been synthesized by Suzuki, heck and Sonogashira organometallic coupling reactions, respectively. The effects of single, double and triple bonds on their optical, electrochemical, and thermal properties are studied in detail. These are all materials fluorescent and they have been used in organic light-emitting diodes (OLEDs) and their electroluminescent properties have been studied.

  6. Hygrothermal Simulation of Foundations: Part 1 - Soil Material Properties

    SciTech Connect

    Kehrer, Manfred; Pallin, Simon B

    2012-10-01

    The hygrothermal performance of soils coupled to buildings is a complicated process. A computational approach for heat transfer through the ground has been well defined (EN ISO 13370:2007, 2007), and simplified methods have been developed (Staszczuk, Radon, and Holm 2010). However, these approaches generally ignore the transfer of soil moisture, which is not negligible (Janssen, Carmeliet, and Hens 2004). This study is divided into several parts. The intention of the first part is to gather, comprehend and adapt soil properties from Soil Science. The obtained information must be applicable to related tasks in Building Science and validated with hygrothermal calculation tools. Future parts of this study will focus on the validation aspect of the soil properties to be implemented. Basic changes in the software code may be requested at this time. Different types of basement construction will be created with a hygrothermal calculation tool, WUFI. Simulations from WUFI will be compared with existing or ongoing measurements. The intentions of the first part of this study have been fulfilled. The soil properties of interest in Building Science have been defined for 12 different soil textures. These properties will serve as input parameters when performing hygrothermal calculations of building constructions coupled to soil materials. The reliability of the soil parameters will be further evaluated with measurements in Part 2.

  7. Electronic, Vibrational and Thermoelectric Properties of Two-Dimensional Materials

    NASA Astrophysics Data System (ADS)

    Wickramaratne, Darshana

    The discovery of graphene's unique electronic and thermal properties has motivated the search for new two-dimensional materials. Examples of these materials include the layered two-dimensional transition metal dichalcogenides (TMDC) and metal mono-chalcogenides. The properties of the TMDCs (eg. MoS 2, WS2, TaS2, TaSe2) and the metal mono-chalcogenides (eg. GaSe, InSe, SnS) are diverse - ranging from semiconducting, semi-metallic and metallic. Many of these materials exhibit strongly correlated phenomena and exotic collective states such as exciton condensates, charge density waves, Lifshitz transitions and superconductivity. These properties change as the film thickness is reduced down to a few monolayers. We use first-principles simulations to discuss changes in the electronic and the vibrational properties of these materials as the film thickness evolves from a single atomic monolayer to the bulk limit. In the semiconducting TMDCs (MoS2, MoSe2, WS2 and WSe2) and monochalcogenides (GaS, GaSe, InS and InSe) we show confining these materials to their monolayer limit introduces large band degeneracies or non-parabolic features in the electronic structure. These changes in the electronic structure results in increases in the density of states and the number of conducting modes. Our first-principles simulations combined with a Landauer approach show these changes can lead to large enhancements up to an order of magnitude in the thermoelectric performance of these materials when compared to their bulk structure. Few monolayers of the TMDCs can be misoriented with respect to each other due to the weak van-der-Waals (vdW) force at the interface of two monolayers. Misorientation of the bilayer semiconducting TMDCs increases the interlayer van-der-Waals gap distance, reduces the interlayer coupling and leads to an increase in the magnitude of the indirect bandgap by up to 100 meV compared to the registered bilayer. In the semi-metallic and metallic TMDC compounds (TiSe2, Ta

  8. Properties and processing of nanocrystalline materials. Quarterly report

    SciTech Connect

    Valiev, R.Z.

    1996-01-22

    The present Report completes the investigations in the frame of the project for the first year. It is important to estimate our achievements in the investigation of properties of nanocrystalline materials obtained by severe plastic deformation and their production. We think that the main results obtained can be summarized as follows: (1) We performed an improvement of the die-set for equal channel (ECA) pressing and torsion under high pressure with the aim to increase dimensions of the samples produced and to conduct processing of low ductile materials. (2) It was established that in pure metals severe plastic deformation led to the formation of an ultra fine-grained structure with a mean grain size of 100-200 nm, while in alloys due to severe plastic deformation and/or special methods of treatment (a decrease in the temperature of deformation, an increase of the pressure applied etc.) the grain size could be decreased down to a few tens of manometers.

  9. Development and mechanical properties of structural materials from lunar simulants

    NASA Technical Reports Server (NTRS)

    Desai, Chandra S.; Girdner, K.; Saadatmanesh, H.; Allen, T.

    1991-01-01

    Development of the technologies for manufacture of structural and construction materials on the Moon, utilizing local lunar soil (regolith), without the use of water, is an important element for habitats and explorations in space. Here, it is vital that the mechanical behavior such as strength and flexural properties, fracture toughness, ductility and deformation characteristics be defined toward establishment of the ranges of engineering applications of the materials developed. The objective is to describe the research results in two areas for the above goal: (1) liquefaction of lunar simulant (at about 100 C) with different additives (fibers, powders, etc.); and (2) development and use of a new triaxial test device in which lunar simulants are first compressed under cycles of loading, and then tested with different vacuums and initial confining or in situ stress.

  10. Comparison of Electrical Properties between Fluoroapatite and Hydroxyapatite Materials

    NASA Astrophysics Data System (ADS)

    Laghzizil, A.; El Herch, N.; Bouhaouss, A.; Lorente, G.; Macquete, J.

    2001-01-01

    By appropriate modifications of existing precipitation methods, apatite samples of formula M10(PO4)6X2 (M=Ca, Pb, Ba and X=F, OH) were prepared at 80°C. Samples were characterized using X-ray diffraction, infrared, 31P NMR, SEM, and chemical analysis. By comparing the effect of fluoride and hydroxide ions on ionic conductivity measurements, it was concluded that the fluorinated materials (MFAp) were better conductors than other hydroxyapatites (MHAp). The F- and H+ ions are the main charge carriers, respectively, in fluoroapatite and in hydroxyapatite compounds. The most pronounced effect on the conduction properties was observed in the lead apatite material. These results should provide important physico-chemical information for ionic diffusion of the roles played by fluoride in inhibiting dental caries.

  11. Process design of press hardening with gradient material property influence

    SciTech Connect

    Neugebauer, R.; Schieck, F.; Rautenstrauch, A.

    2011-05-04

    Press hardening is currently used in the production of automotive structures that require very high strength and controlled deformation during crash tests. Press hardening can achieve significant reductions of sheet thickness at constant strength and is therefore a promising technology for the production of lightweight and energy-efficient automobiles. The manganese-boron steel 22MnB5 have been implemented in sheet press hardening owing to their excellent hot formability, high hardenability, and good temperability even at low cooling rates. However, press-hardened components have shown poor ductility and cracking at relatively small strains. A possible solution to this problem is a selective increase of steel sheet ductility by press hardening process design in areas where the component is required to deform plastically during crash tests. To this end, process designers require information about microstructure and mechanical properties as a function of the wide spectrum of cooling rates and sequences and austenitizing treatment conditions that can be encountered in production environments. In the present work, a Continuous Cooling Transformation (CCT) diagram with corresponding material properties of sheet steel 22MnB5 was determined for a wide spectrum of cooling rates. Heating and cooling programs were conducted in a quenching dilatometer. Motivated by the importance of residual elasticity in crash test performance, this property was measured using a micro-bending test and the results were integrated into the CCT diagrams to complement the hardness testing results. This information is essential for the process design of press hardening of sheet components with gradient material properties.

  12. Processing-microstructure-property relationships in graded materials

    NASA Astrophysics Data System (ADS)

    Ilschner, B.

    1996-05-01

    The desired macroscopic properties of functionally graded components depend (1) directly on the local composition function P(c) and (2) indirectly, because important microstructural parameters (porosity grain size) that develop during processing are also strong functions of the local composition. These complex relationships are discussed for the case of functionally graded material (FGM) fabrication by powder compaction and sintering. The conclusion is that the real making of high quality graded components may be much more difficult than calculating an optimal composition profile P(x).

  13. Measurement of Thermal Properties of Biosourced Building Materials

    NASA Astrophysics Data System (ADS)

    Pierre, Thomas; Colinart, Thibaut; Glouannec, Patrick

    2014-10-01

    This paper presents both experimental and theoretical works concerning the evaluation of the thermal conductivity and thermal diffusivity of hemp concrete. Experimental measurements of thermal properties are performed using a hot-strip technique for temperatures ranging from 3 to 30 and relative humidities ranging from 0 % to 95 %, thus creating a large database for this material. These experimental thermal conductivities are then compared with the results from the Krischer theoretical predictive model. The comparison shows good agreement, and a predictive analytical relation between the hemp concrete thermal conductivity, temperature, and relative humidity is determined.

  14. Dynamic Material Property Measurement of Steel Thin Sheets using Laser-Based Ultrasonics

    NASA Astrophysics Data System (ADS)

    Nagata, Y.; Yamada, H.; Hashiguchi, S.; Lim, C. S.; Park, H. C.; Huh, H. J.; Kang, M. K.; Oh, K. J.

    2014-06-01

    A material property measurement system for steel sheets using laser-based ultrasonics was developed. The system consists of a pulsed Nd:YAG laser for ultrasonic generation and multi-channel interferometer coupled with a CW single frequency laser for ultrasonic detection. The system can measure the frequency of the S1 Lamb wave mode of zero group velocity (S1f) as well as the longitudinal resonance frequencies without ablative damage to the steel surface. It was confirmed that Poisson's ratio could be directly obtained by combining the measured S1f value and the longitudinal resonance frequencies. To evaluate the applicability of this system in an actual steel production setting, the system was installed in hot rolling pilot plant that produces steel samples. As a result, it was demonstrated that the system can measure dynamic changes in Poisson's ratio values within steel sheets, even in the hot rolling pilot plant environment. Material property data, such as Poisson's ratio, during the thin sheet production process will be very useful for manufacturing high value-added steel, such as sheets with uniform quality.

  15. Investigating the Size Dependent Material Properties of Nanoceria

    NASA Astrophysics Data System (ADS)

    Alam, Bushra B.

    Nanoceria is widely being investigated for applications as support materials for fuel cell catalysts, free radical scavengers, and as chemical and mechanical abrasives due to its high antioxidant capacity and its oxygen buffering capacity. This antioxidant or oxygen buffering capacity has been reported to be highly size dependent and related to its redox properties. However, the quantification of this antioxidant capacity has not been well defined or understood and has been often been carried out using colorimetric assays which do not directly correlate to ceria nanoparticle properties. Fabrication rules for developing materials with optimal antioxidant/oxygen buffering capacities are not yet defined and one of the limitations has been the challenge of obtaining quantitative measurements of the antioxidant properties. In this work, we create our own library of ceria nanoparticles of various size distributions by two synthesis methods: sol-gel peroxo and thermal decomposition/calcination and annealing in open atmosphere at three different temperatures. The synthesis methods and conditions produce characteristic sizes and morphologies of ceria nanoparticles. Qualitative and quantitative approaches are used for characterization and to predict reactivity. Qualitative approaches include Brunauer-Emmett-Teller (BET) surface area measurements and Raman analysis while quantitative approaches include a combination of powder X-ray diffraction (XRD) Rietveld analysis, Transmission Electron Microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) to measure crystallite sizes, lattice parameters, oxygen site occupancies, and the relative abundance of Ce(III) ions in a nanoceria sample. These methods are discussed in detail in addition to their limitations and challenges. These methods are used to predict nanocrystalline or bulk-like behavior of ceria nanoparticles. The investigation of the material properties is also extended to test the redox properties of ceria

  16. Mechanisms Responsible for Microwave Properties in High Performance Dielectric Materials

    NASA Astrophysics Data System (ADS)

    Zhang, Shengke

    Microwave properties of low-loss commercial dielectric materials are optimized by adding transition-metal dopants or alloying agents (i.e. Ni, Co, Mn) to tune the temperature coefficient of resonant frequency (tau f) to zero. This occurs as a result of the temperature dependence of dielectric constant offsetting the thermal expansion. At cryogenic temperatures, the microwave loss in these dielectric materials is dominated by electron paramagnetic resonance (EPR) loss, which results from the spin-excitations of d-shell electron spins in exchange-coupled clusters. We show that the origin of the observed magnetically-induced shifts in the dielectric resonator frequency originates from the same mechanism, as described by the Kramers-Kronig relations. The temperature coefficient of resonator frequency, tauf, is related to three material parameters according to the equation, tau f = - (½ tauepsilon + ½ taumu + alphaL), where tauepsilon, taumu , and alphaL are the temperature coefficient of dielectric constant, magnetic permeability, and lattice constant, respectively. Each of these parameters for dielectric materials of interest are measured experimentally. These results, in combination with density functional simulations, developed a much improved understanding of the fundamental mechanisms responsible for tau f. The same experimental methods have been used to characterize in-situ the physical nature and concentration of performance-degrading point defects in the dielectrics of superconducting planar microwave resonators.

  17. Cryogenic Properties of Aluminum Beryllium and Beryllium Materials

    NASA Technical Reports Server (NTRS)

    Gamwell, Wayne R.; McGill, Preston B.

    2003-01-01

    Ultimate tensile strength, yield strength, and elongation were obtained for the aluminum-beryllium alloy, AlBeMetl62 (38%Al-62%Be), at cryogenic (-195.5 C (-320 F) and (-252.8 C) (-423 F)) temperatures, and for an optical grade beryllium, O-30H (99%Be), at -252.8 C. AlBeMetl62 material was purchased to the requirements of SAE-AMS7912, "Aluminum-Beryllium Alloy, Extrusions." O-30H material was purchased to the requirements of Brush Wellman Inc. specification O-30H Optical Grade Beryllium. The ultimate tensile and yield strengths for extruded AlBeMetl62 material increased with decreasing temperature, and the percent elongation decreased with decreasing temperature. Design properties for the ultimate tensile strength, yield strength, and percent elongation for extruded AlBeMetl62 were generated. It was not possible to distinguish a difference in the room and cryogenic ultimate strength for the hot isostatically pressed (HIP'ed) O-30H material. The O30H elongation decreased with decreasing temperature.

  18. Development and mechanical properties of structural materials from lunar simulant

    NASA Technical Reports Server (NTRS)

    Desai, Chandra S.

    1991-01-01

    Development of versatile engineering materials from locally available materials in space is an important step toward establishment of outposts such as on the moon and Mars. Here development of the technologies for manufacture of structural and construction materials on the moon, utilizing local lunar soil (regolith), without the use of water, is an important element for habitats and explorations in space. It is also vital that the mechanical behavior such as strength and flexural properties, fracture toughness, ductility, and deformation characteristics are defined toward establishment of the ranges of engineering applications of the materials developed. The objectives include two areas: (1) thermal liquefaction of lunar simulant (at about 1100 C) with different additives (fibers, powders, etc.); and (2) development and use of a traxial test device in which lunar simulants are first compacted under cycles of loading, and then tested with different vacuums and initial confining or insitu stress. The second area was described in previous progress reports and publications; since the presently available device allows vacuum levels up to only 10(exp -4) torr, it is recommended that a vacuum pump that can allow higher levels of vacuum is acquired.

  19. Development and mechanical properties of construction materials from lunar simulant

    NASA Technical Reports Server (NTRS)

    Desai, Chandra S.

    1992-01-01

    Development of versatile engineering materials from locally available materials in space is an important step toward the establishment of outposts on the Moon and Mars. Development of the technologies for manufacture of structural and construction materials on the Moon, utilizing local lunar soil (regolith), without the use of water, is an important element for habitats and explorations in space. It is also vital that the mechanical behavior such as strength and tensile, flexural properties, fracture toughness, ductility, and deformation characteristics are defined toward establishment of the ranges of engineering applications of the materials developed. The objectives include two areas: (1) thermal 'liquefaction' of lunar simulant (at about 1100 C) with different additives (fibers, powders, etc.), and (2) development and use of a new triaxial test device in which lunar simulants are first compacted under cycles of loading, and then tested with different vacuums and initial confining or in situ stress. Details of the development of intermediate ceramic composites (ICC) and testing for their flexural and compression characteristics were described in various reports and papers. The subject of behavior of compacted simulant under vacuum was described in previous progress reports and publications; since the presently available device allows vacuum levels up to only 10(exp -4) torr, it is recommended that a vacuum pump that can allow higher levels of vacuum be utilized for further investigation.

  20. Cryogenic Properties of Aluminum-Beryllium and Beryllium Materials

    NASA Technical Reports Server (NTRS)

    Gamwell, Wayne R.; McGill, Preston B.

    2003-01-01

    Ultimate tensile strength, yield strength, and elongation were obtained for the aluminum- beryllium alloy, AlBeMetl62 (38%Al-62%Be), at cryogenic (-195.5 C (-32O F) and (- 252.8 C) (-423 F)) temperatures, and for an optical grade beryllium, O-30H (99%Be), at -252.8 C. AlBeMet162 material was purchased to the requirements of SAE- AMs7912, "Aluminum-Beryllium Alloy, Extrusions". O-30H material was purchased to the requirements of Brush Wellman Inc. specification O-30H Optical Grade Beryllium. The ultimate tensile and yield strengths for extruded AlBeMet162 material increased with decreasing temperature, and the percent elongation decreased with decreasing temperature. Design properties for the ultimate tensile strength, yield strength, and percent elongation for extruded AlBeMetl62 were generated. It was not possible to distinguish a difference in the room and cryogenic ultimate strength for the hot isostatically pressed (HIP'ed) O-30H material. The O-30H elongation decreased with decreasing temperature.

  1. Creating Extreme Material Properties with High-Energy Laser Systems

    NASA Astrophysics Data System (ADS)

    Meyerhofer, David

    2005-07-01

    Laboratory for Laser Energetics, University of Rochester, 250 E. River Rd, Rochester, NY 14623 High-energy laser systems create extreme states of matter by coupling their energy into a target via ablation of the outer layers. In planar experiments on the OMEGA laser system, single-shock pressures can exceed 10 Mbar. In spherical geometry, the compressed target pressures can be significantly higher than 1 Gbar. These pressures will be increased by one or two orders of magnitude on the 1.8-MJUV National Ignition Facility, under construction at LLNL. The inherent flexibility of multibeam laser systems allows many techniques to be applied to studying the properties of materials under extreme conditions. Recent experiments have used Extended X-ray Absorption Fine Structure to observe shock-induced phase transformations in Fe on the ns time scale. Techniques are being used and/or developed to measure the equation of state of compressed materials, including solids, foams, and liquid D2, both on and off the Hugoniot. The coupling of high-energy petawatt (HEPW) lasers to high-energy laser systems will greatly extend the accessible range of material conditions. HEPW lasers produce extremely intense beams of electrons and protons that can be coupled with high-energy compression to access a large region of temperature and density space, for example, by heating a compressed target. These beams, along with the extremely bright x-ray emission, provide new diagnostic opportunities. This presentation will highlight some of the recent advances and future opportunities in creating and measuring extreme materials properties. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-92SF19460, the University of Rochester, and the NY State Energy Research and Development Authority. The support of DOE does not constitute an endorsement by DOE of the views expressed in this article.

  2. Research on the icephobic properties of fluoropolymer-based materials

    NASA Astrophysics Data System (ADS)

    Yang, Shuqing; Xia, Qiang; Zhu, Lin; Xue, Jian; Wang, Qingjun; Chen, Qing-min

    2011-03-01

    Fluoropolymer, because of the extremely low surface energy, could be non-stick to water and thus could be a good candidate as anti-icing materials. In this paper, the icephobic properties of a series of fluoropolymer materials including pristine PTFE plates (P-PTFE), sandblasted PTFE plates (SB-PTFE), two PTFE coatings (SNF-1 and SNF-CO1), a fluorinated room-temperature vulcanized silicone rubber coating (F-RTV) and a fluorinated polyurethane coating (F-PU) have been investigated by using SEM, XPS, ice adhesion strength (tensile and shear) tests, and static and dynamic water contact angle analysis. Results show that the fluoropolymer material with a smooth surface can significantly reduce ice adhesion strength but do not show obvious effect in reducing ice accretion at -8 °C. Fluoropolymers with sub-micron surface structures can improve the hydrophobicity at normal temperature. It leads to an efficient reduction in the ice accretion on the surface at -8 °C, due to the superhydrophobicity of the materials. But the hydrophobicity of this surface descends at a low temperature with high humidity. Consequently, once ice layer formed on the surface, the ice adhesion strength enhanced rapidly due to the existence of the sub-micron structures. Ice adhesion strength of fluoropolymers is highly correlated to CA reduction observed when the temperature was changed from 20 °C to -8 °C. This property is associated with the submicron structure on the surface, which allows water condensed in the interspace between the sub-micron protrudes at a low temperature, and leads to a reduced contact angle, as well as a significantly increased ice adhesion strength.

  3. MatProps: Material Properties Database and Associated Access Library

    SciTech Connect

    Durrenberger, J K; Becker, R C; Goto, D M; Neely, J R; Wallin, B K

    2007-08-13

    Coefficients for analytic constitutive and equation of state models (EOS), which are used by many hydro codes at LLNL, are currently stored in a legacy material database (Steinberg, UCRL-MA-106349). Parameters for numerous materials are available through this database, and include Steinberg-Guinan and Steinberg-Lund constitutive models for metals, JWL equations of state for high explosives, and Mie-Gruniesen equations of state for metals. These constitutive models are used in most of the simulations done by ASC codes today at Livermore. Analytic EOSs are also still used, but have been superseded in many cases by tabular representations in LEOS (http://leos.llnl.gov). Numerous advanced constitutive models have been developed and implemented into ASC codes over the past 20 years. These newer models have more physics and better representations of material strength properties than their predecessors, and therefore more model coefficients. However, a material database of these coefficients is not readily available. Therefore incorporating these coefficients with those of the legacy models into a portable database that could be shared amongst codes would be most welcome. The goal of this paper is to describe the MatProp effort at LLNL to create such a database and associated access library that could be used by codes throughout the DOE complex and beyond. We have written an initial version of the MatProp database and access library and our DOE/ASC code ALE3D (Nichols et. al., UCRL-MA-152204) is able to import information from the database. The database, a link to which exists on the Sourceforge server at LLNL, contains coefficients for many materials and models (see Appendix), and includes material parameters in the following categories--flow stress, shear modulus, strength, damage, and equation of state. Future versions of the Matprop database and access library will include the ability to read and write material descriptions that can be exchanged between codes. It will

  4. Transport properties of damaged materials. Cementitious barriers partnership

    SciTech Connect

    Langton, C.

    2014-11-01

    The objective of the Cementitious Barriers Partnership (CBP) project is to develop tools to improve understanding and prediction of the long-term structural, hydraulic, and chemical performance of cementitious barriers used in low-level waste storage applications. One key concern for the long-term durability of concrete is the degradation of the cementitious matrix, which occurs as a result of aggressive chemical species entering the material or leaching out in the environment, depending on the exposure conditions. The objective of the experimental study described in this report is to provide experimental data relating damage in cementitious materials to changes in transport properties, which can eventually be used to support predictive model development. In order to get results within a reasonable timeframe and to induce as much as possible uniform damage level in materials, concrete samples were exposed to freezing and thawing (F/T) cycles. The methodology consisted in exposing samples to F/T cycles and monitoring damage level with ultrasonic pulse velocity measurements. Upon reaching pre-selected damage levels, samples were tested to evaluate changes in transport properties. Material selection for the study was motivated by the need to get results rapidly, in order to assess the relevance of the methodology. Consequently, samples already available at SIMCO from past studies were used. They consisted in three different concrete mixtures cured for five years in wet conditions. The mixtures had water-to-cement ratios of 0.5, 0.65 and 0.75 and were prepared with ASTM Type I cement only. The results showed that porosity is not a good indicator for damage caused by the formation of microcracks. Some materials exhibited little variations in porosity even for high damage levels. On the other hand, significant variations in tortuosity were measured in all materials. This implies that damage caused by internal pressure does not necessarily create additional pore space in

  5. Elucidating the role of interfacial materials properties in microfluidic packages.

    SciTech Connect

    Edwards, Thayne L.

    2013-01-01

    The purpose of this work was to discover a method to investigate the properties of interfaces as described by a numerical physical model. The model used was adopted from literature and applied to a commercially available multiphysics software package. By doing this the internal properties of simple structures could be elucidated and then readily applied to more complex structures such as valves and pumps in laminate microfluidic structures. A numerical finite element multi-scale model of a cohesive interface comprised of heterogeneous material properties was used to elucidate irreversible damage from applied strain energy. An unknown internal state variable was applied to characterize the damage process. Using a constrained blister test, this unknown internal state variable could be determined for an adherend/adhesive/adherend body. This is particularly interesting for laminate systems with microfluidic and microstructures contained within the body. A laminate structure was designed and fabricated that could accommodate a variety of binary systems joined using nearly any technique such as adhesive, welding (solvent, laser, ultrasonic, RF, etc.), or thermal. The adhesive method was the most successful and easy to implement but also one of the more difficult to understand, especially over long periods of time. Welding methods are meant to achieve a bond that is similar to bulk properties and so are easier to predict. However, methods of welding often produce defects in the bonds.. Examples of the test structures used to elucidate the internal properties of the model were shown and demonstrated. The real life examples used this research to improve upon current designs and aided in creating complex structures for sensor and other applications.

  6. Material Properties of Three Candidate Elastomers for Space Seals Applications

    NASA Technical Reports Server (NTRS)

    Bastrzyk, Marta B.; Daniels, Christopher C.; Oswald, Jay J.; Dunlap, Patrick H., Jr.; Steinetz, Bruce M.

    2010-01-01

    A next-generation docking system is being developed by the National Aeronautics and Space Administration (NASA) to support Constellation Space Exploration Missions to low Earth orbit (LEO), to the Moon, and to Mars. A number of investigations were carried out to quantify the properties of candidate elastomer materials for use in the main interface seal of the Low Impact Docking System (LIDS). This seal forms the gas pressure seal between two mating spacecraft. Three candidate silicone elastomer compounds were examined: Esterline ELA-SA-401, Parker Hannifin S0383-70, and Parker Hannifin S0899-50. All three materials were characterized as low-outgassing compounds, per ASTM E595, so as to minimize the contamination of optical and solar array systems. Important seal properties such as outgas levels, durometer, tensile strength, elongation to failure, glass transition temperature, permeability, compression set, Yeoh strain energy coefficients, coefficients of friction, coefficients of thermal expansion, thermal conductivity and diffusivity were measured and are reported herein.

  7. Electrochromic & magnetic properties of electrode materials for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Zheng-Fei, Guo; Kun, Pan; Xue-Jin, Wang

    2016-01-01

    Progress in electrochromic lithium ion batteries (LIBs) is reviewed, highlighting advances and possible research directions. Methods for using the LIB electrode materials’ magnetic properties are also described, using several examples. Li4Ti5O12 (LTO) film is discussed as an electrochromic material and insertion compound. The opto-electrical properties of the LTO film have been characterized by electrical measurements and UV-Vis spectra. A prototype bi-functional electrochromic LIB, incorporating LTO as both electrochromic layer and anode, has also been characterized by charge- discharge measurements and UV-Vis transmittance. The results show that the bi-functional electrochromic LIB prototype works well. Magnetic measurement has proven to be a powerful tool to evaluate the quality of electrode materials. We introduce briefly the magnetism of solids in general, and then discuss the magnetic characteristics of layered oxides, spinel oxides, olivine phosphate LiFePO4, and Nasicon-type Li3Fe2(PO4)3. We also discuss what kind of impurities can be detected, which will guide us to fabricate high quality films and high performance devices. Project supported by the National High Technology Research and Development Program of China (Grant No. 2015AA034201) and the Chinese Universities Scientific Fund (Grant No. 2015LX002).

  8. Dynamic viscoelastic properties of experimental silicone soft lining materials.

    PubMed

    Santawisuk, Wallapat; Kanchanavasita, Widchaya; Sirisinha, Chakrit; Harnirattisai, Choltacha

    2010-08-01

    The purpose of this study was to evaluate the dynamic viscoelastic properties of experimental silicone soft lining materials, Silastic MDX 4-4210 reinforced with silica fillers. Storage modulus (E'), loss modulus (E") and damping factor (tan delta) were determined using a dynamic mechanical analyzer under a deformation strain level of 0.27% at test frequency and a temperature range of 1 Hz and 0 to 60 degrees C, respectively. The degree of silica dispersion was also studied using a field emission scanning electron microscopy (FE-SEM). One-way ANOVA and Tukey's HSD test results indicated that the prepared silicone elastomers provided a significantly greater damping factor, but less storage modulus than GC Reline Soft and Tokuyama Sofreliner Tough (p<0.001). The storage moduli, loss moduli and damping factor of the experimental silicone elastomers increased with increasing amounts of fumed silica. In conclusion, the experimental silicone elastomers revealed acceptable dynamic viscoelastic properties to be used as denture soft lining materials.

  9. Characterization of sapphire: For its material properties at high temperatures

    NASA Astrophysics Data System (ADS)

    Bal, Harman Singh

    There are numerous needs for sensing, one of which is in pressure sensing for high temperature application such as combustion related process and embedded in aircraft wings for reusable space vehicles. Currently, silicon based MEMS technology is used for pressure sensing. However, due to material properties the sensors have a limited range of approximately 600 °C which is capable of being pushed towards 1000 °C with active cooling. This can introduce reliability issues when you add more parts and high flow rates to remove large amounts of heat. To overcome this challenge, sapphire is investigated for optical based pressure transducers at temperatures approaching 1400 °C. Due to its hardness and chemical inertness, traditional cutting and etching methods used in MEMS technology are not applicable. A method that is being investigated as a possible alternative is laser machining using a picosecond laser. In this research, we study the material property changes that occur from laser machining and quantify the changes with the experimental results obtained by testing sapphire at high-temperature with a standard 4-point bending set-up.

  10. Relationships between laboratory measured HMA material and mixture properties and pavement performance at WesTrack

    NASA Astrophysics Data System (ADS)

    Hand, Adam J. T.

    For years researchers and practitioners alike in the pavements and materials industry have attempted to establish relationships between laboratory measured material and mixture properties and actual pavement performance. The ultimate goal of any highway agency is to have performance related specifications, which require such relationships. This sounds simple enough, but in reality such a task is not so simple due to the extremely complex behavior of hot mix asphalt. Due to the fact that it takes many years to evaluate new materials and methodologies, the use of accelerated loading facilities such as WesTrack for evaluation purposes becomes very advantageous. The research presented here produces multiple permanent deformation performance relationships for the WesTrack project, some of which may be extended to other environments. An attempt to develop similar fatigue performance relationships was unsuccessful due partially to the lack of fatigue distress at WesTrack to date. Additionally, mix design and some quality control data summaries are presented for the project along with an investigation into a potential cause of the premature rutting of coarse Superpave mixes. The investigation resulted in the development of precision statements for the ASTM D5821-95 coarse aggregate angularity test method and a better understanding of the sensitivity of coarse Superpave mixtures.

  11. Comparative analysis of physicochemical properties of root perforation sealer materials

    PubMed Central

    Dorileo, Maura Cristiane Gonçales Orçati; Pedro, Fábio Luis Miranda; Bandeca, Matheus Coelho; Guedes, Orlando Aguirre; Villa, Ricardo Dalla

    2014-01-01

    Objectives This study evaluated the solubility, dimensional alteration, pH, electrical conductivity, and radiopacity of root perforation sealer materials. Materials and Methods For the pH test, the samples were immersed in distilled water for different periods of time. Then, the samples were retained in plastic recipients, and the electrical conductivity of the solution was measured. The solubility, dimensional alteration, and radiopacity properties were evaluated according to Specification No. 57 of the American National Standards Institute/American Dental Association (ANSI/ADA). Statistical analyses were carried out using analysis of variance (ANOVA) and Tukey's test at a significance level of 5%. When the sample distribution was not normal, a nonparametric ANOVA was performed with a Kruskal-Wallis test (α = 0.05). Results The results showed that white structural Portland cement (PC) had the highest solubility, while mineral trioxide aggregate (MTA)-based cements, ProRoot MTA (Dentsply-Tulsa Dental) and MTA BIO (Ângelus Ind. Prod.), had the lowest values. MTA BIO showed the lowest dimensional alteration values and white PC presented the highest values. No differences among the tested materials were observed in the the pH and electrical conductivity analyses. Only the MTA-based cements met the ANSI/ADA recommendations regarding radiopacity, overcoming the three steps of the aluminum step wedge. Conclusions On the basis of these results, we concluded that the values of solubility and dimensional alteration of the materials were in accordance with the ANSI/ADA specifications. PCs did not fulfill the ANSI/ADA requirements regarding radiopacity. No differences were observed among the materials with respect to the pH and electrical conductivity analyses. PMID:25110644

  12. Hydrodynamics and Material Properties Experiments Using Pulsed Power Techniques*

    NASA Astrophysics Data System (ADS)

    Reinovsky, Robert; Trainor, R. James

    1999-06-01

    Within the last few years a new approach for exploring dynamic material properties and advanced hydrodynamics at extreme conditions has joined the traditional techniques of high velocity guns,and explosives. The principle tool is the high precision, magnetically imploded, near-solid density liner. The most attractive pulse power system for driving such experiments is an ultra-highcurrent, low impedance, microsecond time-scale source that is economical both the build and operate. Liner specifications vary but in general share requirements for a high degree of symmetry and uniformity after implosion. When imploded in free flight to velocities 10-30 km/sec and kinetic energies of from one to 25 MJ/cm of height, liners are attractive impactors for producing strong (>10 Mbar) shocks in the target. Simple geometries can, in principle, produce multi-shock environments to reach off-hugoniot states. When filled with a compressible material, liners can deliver almost adiabatic compression to the target. When the liner surrounds a (small)nearly incompressible target material, for example a condensed noble gas, a liner can deliver enormous pressure to the target almost isentropically. When the compressible material is a magnetic field, flux compression can results in compressed fields above 1000 tesla in macroscopic volumes for materials studies.In this paper we will review basic scaling argumentsthat set the scale of environments available. We will mention the pulse power technology under development at Los Alamos and provide a summary of results from experiments testing solid metal liners under magnetic drive and a few examples of experiments performed withinterim systems. Other papers in this conference will provide specific proposals for pulse power driven shock-wave experiments.

  13. Fundamental properties and applications of low- dimensional materials

    NASA Astrophysics Data System (ADS)

    Kim, Philip

    1999-11-01

    Physics in reduced dimensions has attracted much attention during the last decades owing to the discovery of new phenomena in low-dimensional materials and their potential importance in device applications. The unique properties of these low dimensional materials have been generally understood by considering the increased role of fluctuations and singularities in physical quantities due to the reduction in available phase space. In this thesis, I have investigated the fundamental physical properties of several low dimensional materials and have presented a technological application of these materials. Magnetic flux lines in high temperature superconductors (HTSCs) can be effectively treated as 2+1 dimensional systems due to the large anisotropy of HTSCs. The microscopic structure of the magnetic flux line lattice in Bi 2Sr2CaCu2O8 + x superconducting single crystals was studied at temperatures up to 77 K by Bitter magnetic decoration technique. Analysis of structural correlations shows that the flux line lattices are in the hexatic phase for the high temperature and low field regime, and enables us to estimate the flux line lattice freezing temperature. In addition, dislocation-free decoration images containing up to 80,000 vortices, which are two orders of magnitude larger number than that of previous studies, have been obtained. Analyses of these large length new data shows that the observed flux line lattices are in the random manifold regime with a roughening exponent of 0.44 for length scales up to 80-100 lattice constants. At larger length scales, the data exhibit nonequilibrium features that persist for different cooling rates and field histories. Charge density waves in transition-metal dichalcogenides are a good example of a two dispensional electronic system. A scanning tunneling microscope (STM) was used to fabricate T-phase tantalum diselenide (TaSe2) nanocrystals with sizes ranging from 7 to more than 100 nanometers within the surface layer of 2H phase

  14. ABINIT: First-principles approach to material and nanosystem properties

    NASA Astrophysics Data System (ADS)

    Gonze, X.; Amadon, B.; Anglade, P.-M.; Beuken, J.-M.; Bottin, F.; Boulanger, P.; Bruneval, F.; Caliste, D.; Caracas, R.; Côté, M.; Deutsch, T.; Genovese, L.; Ghosez, Ph.; Giantomassi, M.; Goedecker, S.; Hamann, D. R.; Hermet, P.; Jollet, F.; Jomard, G.; Leroux, S.; Mancini, M.; Mazevet, S.; Oliveira, M. J. T.; Onida, G.; Pouillon, Y.; Rangel, T.; Rignanese, G.-M.; Sangalli, D.; Shaltaf, R.; Torrent, M.; Verstraete, M. J.; Zerah, G.; Zwanziger, J. W.

    2009-12-01

    ABINIT [ http://www.abinit.org] allows one to study, from first-principles, systems made of electrons and nuclei (e.g. periodic solids, molecules, nanostructures, etc.), on the basis of Density-Functional Theory (DFT) and Many-Body Perturbation Theory. Beyond the computation of the total energy, charge density and electronic structure of such systems, ABINIT also implements many dynamical, dielectric, thermodynamical, mechanical, or electronic properties, at different levels of approximation. The present paper provides an exhaustive account of the capabilities of ABINIT. It should be helpful to scientists that are not familiarized with ABINIT, as well as to already regular users. First, we give a broad overview of ABINIT, including the list of the capabilities and how to access them. Then, we present in more details the recent, advanced, developments of ABINIT, with adequate references to the underlying theory, as well as the relevant input variables, tests and, if available, ABINIT tutorials. Program summaryProgram title: ABINIT Catalogue identifier: AEEU_v1_0 Distribution format: tar.gz Journal reference: Comput. Phys. Comm. Programming language: Fortran95, PERL scripts, Python scripts Computer: All systems with a Fortran95 compiler Operating system: All systems with a Fortran95 compiler Has the code been vectorized or parallelized?: Sequential, or parallel with proven speed-up up to one thousand processors. RAM: Ranges from a few Mbytes to several hundred Gbytes, depending on the input file. Classification: 7.3, 7.8 External routines: (all optional) BigDFT [1], ETSF IO [2], libxc [3], NetCDF [4], MPI [5], Wannier90 [6] Nature of problem: This package has the purpose of computing accurately material and nanostructure properties: electronic structure, bond lengths, bond angles, primitive cell size, cohesive energy, dielectric properties, vibrational properties, elastic properties, optical properties, magnetic properties, non-linear couplings, electronic and

  15. The compressive material properties of the plantar soft tissue.

    PubMed

    Ledoux, William R; Blevins, Joanna J

    2007-01-01

    The plantar soft tissue is the primary means of physical interaction between a person and the ground during locomotion. Dynamic loads greater than body weight are borne across the entire plantar surface during each step. However, most testing of these tissues has concentrated on the structural properties of the heel pad. The purpose of this study was to determine the material properties of the plantar soft tissue from six locations beneath: the great toe (subhallucal), the 1st, 3rd and 5th metatarsal heads (submetatarsal), the lateral midfoot (lateral submidfoot) and the heel (subcalcaneal). We obtained specimens from these locations from 11 young, non-diabetic donors; the tissue was cut into 2 cm x 2 cm blocks and the skin was removed. Stress relaxation experiments were conducted and the data were fit using the quasi-linear viscoelastic (QLV) theory. To determine tissue modulus, energy loss and the effect of test frequency, we also conducted displacement controlled triangle waves at five frequencies ranging from 0.005 to 10 Hz. The subcalcaneal tissue was found to have an increased relaxation time compared to the other areas. The subcalcaneal tissue was also found to have an increased modulus and decreased energy loss compared to the other areas. Across all areas, the modulus and energy loss increased for the 1 and 10 Hz tests compared to the other testing frequencies. This study is the first to generate material properties for all areas of the plantar soft tissue, demonstrating that the subcalcaneal tissue is different than the other plantar soft tissue areas. These data will have implications for foot computational modeling efforts and potentially for orthotic pressure reduction devices.

  16. Manipulating lipid bilayer material properties using biologically active amphipathic molecules

    NASA Astrophysics Data System (ADS)

    Ashrafuzzaman, Md; Lampson, M. A.; Greathouse, D. V.; Koeppe, R. E., II; Andersen, O. S.

    2006-07-01

    Lipid bilayers are elastic bodies with properties that can be manipulated/controlled by the adsorption of amphipathic molecules. The resulting changes in bilayer elasticity have been shown to regulate integral membrane protein function. To further understand the amphiphile-induced modulation of bilayer material properties (thickness, intrinsic monolayer curvature and elastic moduli), we examined how an enantiomeric pair of viral anti-fusion peptides (AFPs)—Z-Gly-D-Phe and Z-Gly-Phe, where Z denotes a benzyloxycarbonyl group, as well as Z-Phe-Tyr and Z-D-Phe-Phe-Gly—alters the function of enantiomeric pairs of gramicidin channels of different lengths in planar bilayers. For both short and long channels, the channel lifetimes and appearance frequencies increase as linear functions of the aqueous AFP concentration, with no apparent effect on the single-channel conductance. These changes in channel function do not depend on the chirality of the channels or the AFPs. At pH 7.0, the relative changes in channel lifetimes do not vary when the channel length is varied, indicating that these compounds exert their effects primarily by causing a positive-going change in the intrinsic monolayer curvature. At pH 4.0, the AFPs are more potent than at pH 7.0 and have greater effects on the shorter channels, indicating that these compounds now change the bilayer elastic moduli. When AFPs of different anti-fusion potencies are compared, the rank order of the anti-fusion activity and the channel-modifying activity is similar, but the relative changes in anti-fusion potency are larger than the changes in channel-modifying activity. We conclude that gramicidin channels are useful as molecular force transducers to probe the influence of small amphiphiles upon lipid bilayer material properties.

  17. Recommended Best Practices for the Characterization of Storage Properties of Hydrogen Storage Materials

    SciTech Connect

    2010-03-01

    This is a reference guide to common methodologies and protocols for measuring critical performance properties of advanced hydrogen storage materials. It helps users to communicate clearly the relevant performance properties of new materials as they are discovered and tested.

  18. Thermal and Thermoelectric Properties of Nanostructured Materials and Interfaces

    NASA Astrophysics Data System (ADS)

    Liao, Hao-Hsiang

    Many modern technologies are enabled by the use of thin films and/or nanostructured composite materials. For example, many thermoelectric devices, solar cells, power electronics, thermal barrier coatings, and hard disk drives contain nanostructured materials where the thermal conductivity of the material is a critical parameter for the device performance. At the nanoscale, the mean free path and wavelength of heat carriers may become comparable to or smaller than the size of a nanostructured material and/or device. For nanostructured materials made from semiconductors and insulators, the additional phonon scattering mechanisms associated with the high density of interfaces and boundaries introduces additional resistances that can significantly change the thermal conductivity of the material as compared to a macroscale counterpart. Thus, better understanding and control of nanoscale heat conduction in solids is important scientifically and for the engineering applications mentioned above. In this dissertation, I discuss my work in two areas dealing with nanoscale thermal transport: (1) I describe my development and advancement of important thermal characterization tools for measurements of thermal and thermoelectric properties of a variety of materials from thin films to nanostructured bulk systems, and (2) I discuss my measurements on several materials systems done with these characterization tools. First, I describe the development, assembly, and modification of a time-domain thermoreflectance (TDTR) system that we use to measure the thermal conductivity and the interface thermal conductance of a variety of samples including nanocrystalline alloys of Ni-Fe and Co-P, bulk metallic glasses, and other thin films. Next, a unique thermoelectric measurement system was designed and assembled for measurements of electrical resistivity and thermopower of thermoelectric materials in the temperature range of 20 to 350 °C. Finally, a commercial Anter Flashline 3000 thermal

  19. A thermodynamic approach to obtain materials properties for engineering applications

    NASA Technical Reports Server (NTRS)

    Chang, Y. Austin

    1993-01-01

    With the ever increases in the capabilities of computers for numerical computations, we are on the verge of using these tools to model manufacturing processes for improving the efficiency of these processes as well as the quality of the products. One such process is casting for the production of metals. However, in order to model metal casting processes in a meaningful way it is essential to have the basic properties of these materials in their molten state, solid state as well as in the mixed state of solid and liquid. Some of the properties needed may be considered as intrinsic such as the density, heat capacity or enthalpy of freezing of a pure metal, while others are not. For instance, the enthalpy of solidification of an alloy is not a defined thermodynamic quantity. Its value depends on the micro-segregation of the phases during the course of solidification. The objective of the present study is to present a thermodynamic approach to obtain some of the intrinsic properties and combining thermodynamics with kinetic models to estimate such quantities as the enthalpy of solidification of an alloy.

  20. Dynamic tensile material properties of human pelvic cortical bone.

    PubMed

    Kemper, Andrew R; McNally, Craig; Duma, Stefan M

    2008-01-01

    IIn order for finite element models of the human body to predict pelvic injuries accurately, the appropriate material properties must be applied. Therefore, the purpose of this study was to quantify the dynamic material properties of human pelvic cortical bone in tension. In order to accomplish this, a total of 20 tension coupon specimens were obtained from four regions of four human cadaver pelves: anterior ilium wing, posterior ilium wing, superior pubic ramus, and ischium body. For the anterior and posterior regions of the ilium wing, samples were taken in two orientations to investigate any direction dependence. A high-rate servo-hydraulic Material Testing System (MTS) with a custom slack adaptor was used to apply tension loads to failure at a constant loading rate of 0.5 strains/s. The horizontally oriented anterior ilium specimens were found to have a significantly larger ultimate stress (p=0.02), ultimate strain (p>0.01), and modulus (p=0.02) than the vertically oriented anterior ilium specimens. There were no significant differences in ultimate stress (p=0.27), ultimate strain (p=0.85), or modulus (p=0.87) found between horizontally oriented and vertically oriented posterior ilium specimens. However, additional testing should be conducted at specimen orientation 45 degree from the orientations used in the current study to further investigate the effect of specimen orientation on the posterior portion of the ilium wing. There were no significant differences in ultimate stress (p=0.79), ultimate strain (p=0.31), or modulus (p=0.15) found between the superior pubic ramus and ischium body specimens. However, the statistical comparison between superior pubic ramus and ischium body specimens was considered weak due to the limited samples and large variation between subjects. PMID:19141951

  1. Organoapatites: materials for artificial bone. II. Hardening reactions and properties.

    PubMed

    Stupp, S I; Mejicano, G C; Hanson, J A

    1993-03-01

    This article reports on chemical reactions and the properties they generated in artificial bone materials termed "organoapatites." These materials are synthesized using methodology we reported in the previous article of this series. Two different processes were studied here for the transition from organoapatite particles to implants suitable for the restoration of the skeletal system. One process involved the hardening of powder compacts by beams of blue light derived from a lamp or a laser and the other involved pressure-induced interdiffusion of polymers. In both cases, the hardening reaction involved the formation of a polyion complex between two polyelectrolytes. In the photo-induced reaction an anionic electrolyte polymerizes to form the coulombic network and in the pressure-induced one, pressure forms the complex by interdiffusion of two polyions. Model reactions were studied using various polycations. Based on these results the organoapatite selected for the study was that containing dispersed poly(L-lysine) and sodium acrylate as the anionic monomer. The organomineral particles can be pressed at room temperature into objects of great physical integrity and hydrolytic stability relative to anorganic controls. The remarkable fact about these objects is that intimate molecular dispersion of only 2-3% by weight organic material provides integrity to the mineral network in an aqueous medium and also doubles its tensile strength. This integrity is essentially nonexistent in "anorganic" samples prepared by the same methodology used in organoapatite synthesis. The improvement in properties was most effectively produced by molecular bridges formed by photopolymerization. The photopolymerization leads to the "hardening" of pellets prepared by pressing of organoapatite powders. The reaction was found to be more facile in the microstructure of the organomineral, and it is potentially useful in the surgical application of organoapatites as artificial bone.

  2. Optical properties of (nanometer MCM-41)-(malachite green) composite materials

    NASA Astrophysics Data System (ADS)

    Li, Xiao-Dong; Zhai, Qing-Zhou; Zou, Ming-Qiang

    2010-11-01

    Nanosized materials loaded with organic dyes are of interest with respect to novel optical applications. The optical properties of malachite green (MG) in MCM-41 are considerably influenced by the limited nanoporous channels of nanometer MCM-41. Nanometer MCM-41 was synthesized by tetraethyl orthosilicate (TEOS) as the source of silica and cetyltrimethylammonium bromide (CTMAB) as the template. The liquid-phase grafting method has been employed for incorporation of the malachite green molecules into the channels of nanometer MCM-41. A comparative study has been carried out on the adsorption of the malachite green into modified MCM-41 and unmodified MCM-41. The modified MCM-41 was synthesized using a silylation reagent, trimethychlorosilane (TMSCl), which functionalized the surface of nanometer MCM-41 for proper host-guest interaction. The prepared (nanometer MCM-41)-MG samples have been studied by powder X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, low-temperature nitrogen adsorption-desorption technique at 77 K, Raman spectra and luminescence studies. In the prepared (nanometer MCM-41)-MG composite materials, the frameworks of the host molecular sieve were kept intact and the MG located inside the pores of MCM-41. Compared with the MG, it is found that the prepared composite materials perform a considerable luminescence. The excitation and emission spectra of MG in both modified MCM-41 and unmodified MCM-41 were examined to explore the structural effects on the optical properties of MG. The results of luminescence spectra indicated that the MG molecules existed in monomer form within MCM-41. However, the luminescent intensity of MG incorporated in the modified MCM-41 are higher than that of MG encapsulated in unmodified MCM-41, which may be due to the anchored methyl groups on the channels of the nanometer MCM-41 and the strong host-guest interactions. The steric effect from the pore size of the host materials is significant. Raman

  3. Rheological properties of granular materials - Critical parameters and mixing rules

    NASA Astrophysics Data System (ADS)

    Vasilenko, Alisa Victoria

    2011-12-01

    Granular materials can be found at any stage of processing in many industries, such as food, pharmaceuticals, catalysts, and chemicals. These materials exhibit a variety of flow patterns, and their state and behavior differ from application to application. Since there is a lack of fundamental understanding of particulate or powder behavior, multiple problems can be encountered during routine manufacturing. Scale-up can also be a challenge, as the lack of constitutive equations for granular materials forces most scaleup efforts to follow the trial-and-error route. Powder characterization measurements are employed as both a selection tool and a predictive method for the material's process performance. Therefore, it plays a very important role in process and product development. The numerous existing methods used to characterize the flow properties of powders are mostly application-specific and it is not clear how they correlate with each other or with process performance. Moreover, understanding the relationships between the material properties and the processing conditions is necessary for a successful design of a continuous manufacturing system, which has been a major focus for pharmaceutical industry in the recent years. Before such changes can be implemented, a better understanding of fundamental physical phenomena governing powder flow behavior must be developed. In this work we study particulate/powder flow behavior experimentally using several characterization methods, including the Gravitational Displacement Rheometer (an avalanching tester), the rotational shear cell, and the compressibility tester. We establish the variables of interest through correlative comparison and study the differences and similarities between the methods in order to investigate particulate/powder flow behavior during processing and characterization. A mixing rule for principal stresses is developed through investigation of shear behavior of binary mixtures in a shear cell. In order

  4. Flexural stiffness of feather shafts: geometry rules over material properties.

    PubMed

    Bachmann, Thomas; Emmerlich, Jens; Baumgartner, Werner; Schneider, Jochen M; Wagner, Hermann

    2012-02-01

    Flight feathers of birds interact with the flow field during flight. They bend and twist under aerodynamic loads. Two parameters are mainly responsible for flexibility in feathers: the elastic modulus (Young's modulus, E) of the material (keratin) and the geometry of the rachises, more precisely the second moment of area (I). Two independent methods were employed to determine Young's modulus of feather rachis keratin. Moreover, the second moment of area and the bending stiffness of feather shafts from fifth primaries of barn owls (Tyto alba) and pigeons (Columba livia) were calculated. These species of birds are of comparable body mass but differ in wing size and flight style. Whether their feather material (keratin) underwent an adaptation in stiffness was previously unknown. This study shows that no significant variation in Young's modulus between the two species exists. However, differences in Young's modulus between proximal and distal feather regions were found in both species. Cross-sections of pigeon rachises were particularly well developed and rich in structural elements, exemplified by dorsal ridges and a well-pronounced transversal septum. In contrast, cross-sections of barn owl rachises were less profiled but had a higher second moment of area. Consequently, the calculated bending stiffness (EI) was higher in barn owls as well. The results show that flexural stiffness is predominantly influenced by the geometry of the feathers rather than by local material properties. PMID:22246249

  5. Investigation of the mechanical properties of ceramic breeder materials

    NASA Astrophysics Data System (ADS)

    Dienst, W.; Zimmermann, H.

    1988-07-01

    In order to characterize ceramic breeder materials for fusion reactors, mechanical properties were measured on Li 2SiO 3, Li 4SiO 4, and also on some LiAlO 2 samples for comparison. Literature data on thermal conductivity and thermal expansion of all breeder materials considered were compiled to compare their presumable sensitivity to thermal stresses. The highest level of thermal shock resistance is predicted for LiAlO 2, and the lowest level for Li 4SiO 4. Thermal shock tests, made by dipping pellets into a hot metal melt, confined the relation for LiAlO 2 and Li 4SiO 4. Young's modulus was determined by ultrasound velocity measurement, and fracture strength was measured on pellet samples under compression. The scatter in compressive strength is exceptionally large, partly due to various grain size, and does not suggest a definite ranking of the different breeder materials. Compressive creep tests were made at temperatures of 750-950°C for about 100 h each. An extrapolated creep rate of 10 -6/h was used to estimate a conservative temperature limit of total microstructure stability.

  6. Electron Transport Materials: Synthesis, Properties and Device Performance

    SciTech Connect

    Cosimbescu, Lelia; Wang, Liang; Helm, Monte L.; Polikarpov, Evgueni; Swensen, James S.; Padmaperuma, Asanga B.

    2012-06-01

    We report the design, synthesis and characterization, thermal and photophysical properties of two silane based electron transport materials, dibenzo[b,d]thiophen-2-yltriphenylsilane (Si{phi}87) and (dibenzo[b,d]thiophen-2-yl)diphenylsilane (Si{phi}88) and their performance in blue organic light emitting devices (OLEDs). The utility of these materials in blue OLEDs with iridium (III) bis[(4,6-difluorophenyl)-pyridinato-N,C']picolinate (Firpic) as the phosphorescent emitter was demonstrated. Using the silane Si{phi}87 as the electron transport material (ETm) an EQE of 18.2% was obtained, with a power efficiency of 24.3 lm/W (5.8V at 1mA/cm{sup 2}), in a heterostructure. When Si{phi}88 is used, the EQE is 18.5% with a power efficiency of 26.0 lm/W (5.5V at 1mA/cm{sup 2}).

  7. Characterization of Triaxial Braided Composite Material Properties for Impact Simulation

    NASA Technical Reports Server (NTRS)

    Roberts, Gary D.; Goldberg, Robert K.; Biniendak, Wieslaw K.; Arnold, William A.; Littell, Justin D.; Kohlman, Lee W.

    2009-01-01

    The reliability of impact simulations for aircraft components made with triaxial braided carbon fiber composites is currently limited by inadequate material property data and lack of validated material models for analysis. Improvements to standard quasi-static test methods are needed to account for the large unit cell size and localized damage within the unit cell. The deformation and damage of a triaxial braided composite material was examined using standard quasi-static in-plane tension, compression, and shear tests. Some modifications to standard test specimen geometries are suggested, and methods for measuring the local strain at the onset of failure within the braid unit cell are presented. Deformation and damage at higher strain rates is examined using ballistic impact tests on 61- by 61- by 3.2-mm (24- by 24- by 0.125-in.) composite panels. Digital image correlation techniques were used to examine full-field deformation and damage during both quasi-static and impact tests. An impact analysis method is presented that utilizes both local and global deformation and failure information from the quasi-static tests as input for impact simulations. Improvements that are needed in test and analysis methods for better predictive capability are examined.

  8. Interfacial properties and design of functional energy materials.

    PubMed

    Sumpter, Bobby G; Liang, Liangbo; Nicolaï, Adrien; Meunier, Vincent

    2014-11-18

    CONSPECTUS: The vital importance of energy to society continues to demand a relentless pursuit of energy responsive materials that can bridge fundamental chemical structures at the molecular level and achieve improved functionality and performance. This demand can potentially be realized by harnessing the power of self-assembly, a spontaneous process where molecules or much larger entities form ordered aggregates as a consequence of predominately noncovalent (weak) interactions. Self-assembly is the key to bottom-up design of molecular devices, because the nearly atomic-level control is very difficult to realize in a top-down, for example, lithographic, approach. However, while function in simple systems such as single crystals can often be evaluated a priori, predicting the function of the great variety of self-assembled molecular architectures is complicated by the lack of understanding and control over nanoscale interactions, mesoscale architectures, and macroscale order. To establish a foundation toward delivering practical solutions, it is critical to develop an understanding of the chemical and physical mechanisms responsible for the self-assembly of molecular and hybrid materials on various support substrates. Typical molecular self-assembly involves noncovalent intermolecular and substrate-molecule interactions. These interactions remain poorly understood, due to the combination of many-body interactions compounded by local or collective influences from the substrate atomic lattice and electronic structure. Progress toward unraveling the underlying physicochemical processes that control the structure and macroscopic physical, chemical, mechanical, electrical, and transport properties of materials increasingly requires tight integration of theory, modeling, and simulation with precision synthesis, advanced experimental characterization, and device measurements. Theory, modeling, and simulation can accelerate the process of materials understanding and design

  9. Interfacial properties and design of functional energy materials.

    PubMed

    Sumpter, Bobby G; Liang, Liangbo; Nicolaï, Adrien; Meunier, Vincent

    2014-11-18

    CONSPECTUS: The vital importance of energy to society continues to demand a relentless pursuit of energy responsive materials that can bridge fundamental chemical structures at the molecular level and achieve improved functionality and performance. This demand can potentially be realized by harnessing the power of self-assembly, a spontaneous process where molecules or much larger entities form ordered aggregates as a consequence of predominately noncovalent (weak) interactions. Self-assembly is the key to bottom-up design of molecular devices, because the nearly atomic-level control is very difficult to realize in a top-down, for example, lithographic, approach. However, while function in simple systems such as single crystals can often be evaluated a priori, predicting the function of the great variety of self-assembled molecular architectures is complicated by the lack of understanding and control over nanoscale interactions, mesoscale architectures, and macroscale order. To establish a foundation toward delivering practical solutions, it is critical to develop an understanding of the chemical and physical mechanisms responsible for the self-assembly of molecular and hybrid materials on various support substrates. Typical molecular self-assembly involves noncovalent intermolecular and substrate-molecule interactions. These interactions remain poorly understood, due to the combination of many-body interactions compounded by local or collective influences from the substrate atomic lattice and electronic structure. Progress toward unraveling the underlying physicochemical processes that control the structure and macroscopic physical, chemical, mechanical, electrical, and transport properties of materials increasingly requires tight integration of theory, modeling, and simulation with precision synthesis, advanced experimental characterization, and device measurements. Theory, modeling, and simulation can accelerate the process of materials understanding and design

  10. Interfacial Properties and Design of Functional Energy Materials

    SciTech Connect

    Sumpter, Bobby G; Liang, Liangbo; Nicolai, Adrien; Meunier, V.

    2014-01-01

    The vital importance of energy to society continues to demand a relentless pursuit of energy responsive materials that can bridge fundamental chemical structures at the molecular level and achieve improved functionality, such as efficient energy conversion/storage/transmission, over multiple length scales. This demand can potentially be realized by harnessing the power of self-assembly a spontaneous process where molecules or much larger entities form ordered aggregates as a consequence of predominately non-covalent (weak) interactions. Self-assembly is the key to bottom-up design of molecular devices, because the nearly atomic-level control is very difficult to realize in a top-down, e.g., lithographic approach. However, while function (e.g., charge mobility) in simple systems such as single crystals can often be predicted, predicting the function of the great variety of self-assembled molecular architectures is complicated by the lack of understanding and control over nanoscale interactions, mesoscale architectures, and macroscale (long-range) order. To establish a foundation toward delivering practical solutions, it is critical to develop an understanding of the chemical and physical mechanisms responsible for the self-assembly of molecular and hybrid materials on various substrates. Typically molecular self-assembly involves poorly understood non-covalent intermolecular and substrate-molecule interactions compounded by local and/or collective influences from the substrate atomic lattice (symmetry and/or topological features) and electronic structure. Thus, progress towards unraveling the underlying physicochemical processes that control the structure and macroscopic physical, mechanical, electrical, and transport properties of materials increasingly requires tight integration of theory, modeling and simulation with precision synthesis, advanced experimental characterization, and device measurements. In this mode, theory and simulation can greatly accelerate the

  11. Micropipet manipulation of lipid membranes: Direct measurement of the material properties of a cohesive structure that is only two molecules thick

    NASA Technical Reports Server (NTRS)

    Needham, David

    1993-01-01

    The objectives are to demonstrate how we can make direct measurements of the mechanical properties of a special structure in biology, namely the lipid bilayer membrane, using a micromanipulation technique, and how these properties compare and contrast with 'more traditional' technological/engineering materials. Given that the investment in equipment and expertise to carry out these experiments is probably beyond the scope of most teaching labs, the described experiment is not intended as one that can actually be demonstrated in a student laboratory class. The intention behind presenting this work is to begin to raise awareness in the Material Science community about the material properties of biological material that form a new (to us) category of soft engineering materials that have dimensions on the nanoscale.

  12. Quantitative property-structural relation modeling on polymeric dielectric materials

    NASA Astrophysics Data System (ADS)

    Wu, Ke

    Nowadays, polymeric materials have attracted more and more attention in dielectric applications. But searching for a material with desired properties is still largely based on trial and error. To facilitate the development of new polymeric materials, heuristic models built using the Quantitative Structure Property Relationships (QSPR) techniques can provide reliable "working solutions". In this thesis, the application of QSPR on polymeric materials is studied from two angles: descriptors and algorithms. A novel set of descriptors, called infinite chain descriptors (ICD), are developed to encode the chemical features of pure polymers. ICD is designed to eliminate the uncertainty of polymer conformations and inconsistency of molecular representation of polymers. Models for the dielectric constant, band gap, dielectric loss tangent and glass transition temperatures of organic polymers are built with high prediction accuracy. Two new algorithms, the physics-enlightened learning method (PELM) and multi-mechanism detection, are designed to deal with two typical challenges in material QSPR. PELM is a meta-algorithm that utilizes the classic physical theory as guidance to construct the candidate learning function. It shows better out-of-domain prediction accuracy compared to the classic machine learning algorithm (support vector machine). Multi-mechanism detection is built based on a cluster-weighted mixing model similar to a Gaussian mixture model. The idea is to separate the data into subsets where each subset can be modeled by a much simpler model. The case study on glass transition temperature shows that this method can provide better overall prediction accuracy even though less data is available for each subset model. In addition, the techniques developed in this work are also applied to polymer nanocomposites (PNC). PNC are new materials with outstanding dielectric properties. As a key factor in determining the dispersion state of nanoparticles in the polymer matrix

  13. Composite Materials with Magnetically Aligned Carbon Nanoparticles Having Enhanced Electrical Properties and Methods of Preparation

    NASA Technical Reports Server (NTRS)

    Hong, Haiping (Inventor); Peterson, G.P. (Bud) (Inventor); Salem, David R. (Inventor)

    2016-01-01

    Magnetically aligned carbon nanoparticle composites have enhanced electrical properties. The composites comprise carbon nanoparticles, a host material, magnetically sensitive nanoparticles and a surfactant. In addition to enhanced electrical properties, the composites can have enhanced mechanical and thermal properties.

  14. Quantitative measurement of nanomechanical properties in composite materials

    NASA Astrophysics Data System (ADS)

    Zhao, Wei

    results significantly, and new, power-law body of revolution models of the probe tip geometry have been applied. Due to the low yield strength of polymers compared with other engineering materials, elastic-plastic contact is considered to better represent the epoxy surface response and was used to acquire more accurate quantitative measurements. Visco-elastic contact response was introduced in the boundary condition of the AFAM cantilever vibration model, due to the creep nature of epoxy, to determine time-dependent effects. These methods have direct impact on the quantitative measurement capabilities of near-filler interphase regions in polymers and composites and the long-term influence of environmental conditions on composites. In addition, quantitative AFAM scans were made on distal surfaces of human bicuspids and molars, to determine the microstructural and spatial variation in nanomechanical properties of the enamel biocomposite. Single point AFAM measurements were performed on individual enamel prism and sheath locations to determine spatial elastic modulus. Mechanical property variation of enamel is associated to the differences in the mineral to organic content and the apatite crystal orientations within the enamel microstructure. Also, variation in the elastic modulus of the enamel ultrastructure was observed in measurements at the outer enamel versus near the dentine enamel junction (DEJ).

  15. Impact of fluorine based reactive chemistry on structure and properties of high moment magnetic material

    SciTech Connect

    Yang, Xiaoyu Chen, Lifan; Han, Hongmei; Fu, Lianfeng; Sun, Ming; Liu, Feng; Zhang, Jinqiu

    2014-05-07

    The impact of the fluorine-based reactive ion etch (RIE) process on the structural, electrical, and magnetic properties of NiFe and CoNiFe-plated materials was investigated. Several techniques, including X-ray fluorescence, 4-point-probe, BH looper, transmission electron microscopy (TEM), and electron energy loss spectroscopy (EELS), were utilized to characterize both bulk film properties such as thickness, average composition, Rs, ρ, Bs, Ms, and surface magnetic “dead” layers' properties such as thickness and element concentration. Experimental data showed that the majority of Rs and Bs changes of these bulk films were due to thickness reduction during exposure to the RIE process. ρ and Ms change after taking thickness reduction into account were negligible. The composition of the bulk films, which were not sensitive to surface magnetic dead layers with nano-meter scale, showed minimum change as well. It was found by TEM and EELS analysis that although both before and after RIE there were magnetic dead layers on the top surface of these materials, the thickness and element concentration of the layers were quite different. Prior to RIE, dead layer was actually native oxidation layers (about 2 nm thick), while after RIE dead layer consisted of two sub-layers that were about 6 nm thick in total. Sub-layer on the top was native oxidation layer, while the bottom layer was RIE “damaged” layer with very high fluorine concentration. Two in-situ RIE approaches were also proposed and tested to remove such damaged sub-layers.

  16. Amplified spontaneous emission properties of semiconducting organic materials.

    PubMed

    Calzado, Eva M; Boj, Pedro G; Díaz-García, María A

    2010-06-18

    This paper aims to review the recent advances achieved in the field of organic solid-state lasers with respect to the usage of semiconducting organic molecules and oligomers in the form of thin films as active laser media. We mainly focus on the work performed in the last few years by our research group. The amplified spontaneous emission (ASE) properties, by optical pump, of various types of molecules doped into polystyrene films in waveguide configuration, are described. The various systems investigated include N,N'-bis(3-methylphenyl)-N,N'-diphenylbenzidine (TPD), several perilenediimide derivatives (PDIs), as well as two oligo-phenylenevinylene derivatives. The ASE characteristics, i.e., threshold, emission wavelength, linewidth, and photostability are compared with that of other molecular materials investigated in the literature.

  17. Structures and properties of materials recovered from high shock pressures

    SciTech Connect

    Nellis, W.J.

    1994-03-01

    Shock compression produces high dynamic pressures, densities, temperatures, and their quench rates. Because of these extreme conditions, shock compression produces materials with novel crystal structures, microstructures, and physical properties. Using a 6.5-m-long two-stage gun, we perform experiments with specimens up to 10 mm in diameter and 0.001--1 mm thick. For example, oriented disks of melt-textured superconducting YBa{sub 2}Cu{sub 3}O{sub 7} were shocked to 7 GPa without macroscopic fracture. Lattice defects are deposited in the crystal, which improve magnetic hysteresis at {approximately}1 kOe. A computer code has been developed to simulate shock compaction of 100 powder particles. Computations will be compared with experiments with 15--20 {mu}m Cu powders. The method is applicable to other powders and dynamic conditions.

  18. Basis Function Sampling: A New Paradigm for Material Property Computation

    NASA Astrophysics Data System (ADS)

    Whitmer, Jonathan K.; Chiu, Chi-cheng; Joshi, Abhijeet A.; de Pablo, Juan J.

    2014-11-01

    Wang-Landau sampling, and the associated class of flat histogram simulation methods have been remarkably helpful for calculations of the free energy in a wide variety of physical systems. Practically, convergence of these calculations to a target free energy surface is hampered by reliance on parameters which are unknown a priori. Here, we derive and implement a method built upon orthogonal functions which is fast, parameter-free, and (importantly) geometrically robust. The method is shown to be highly effective in achieving convergence. An important feature of this method is its ability to attain arbitrary levels of description for the free energy. It is thus ideally suited to in silico measurement of elastic moduli and other material properties related to free energy perturbations. We demonstrate the utility of such applications by applying our method to calculate the Frank elastic constants of the Lebwohl-Lasher model of liquid crystals.

  19. Piezoelectric properties of rhombohedral ferroelectric materials with phase transition

    NASA Astrophysics Data System (ADS)

    Zhao, Xiaofang; Soh, A. K.

    2015-12-01

    The temporal evolution of domain structure and its piezoelectric behavior of ferroelectric material BaTiO3 during the transition process from rhombohedral to tetragonal phase under an applied electric field have been studied by employing Landau-Ginzburg theory and the phase-field method. The results obtained show that, during the transformation process, the intermediate phase was monoclinic MA phase, and several peak values of piezoelectric coefficient appeared at the stage where obvious change of domain pattern occurred. In addition, by comparing the cases of applied electric field with different frequencies, it was found that the maximum piezoelectric coefficient obtained decreased with increasing frequency value. These results are of great significance in tuning the properties of engineering domains in ferroelectrics, and could provide more fundamentals to the design of ferroelectric devices.

  20. Amplified Spontaneous Emission Properties of Semiconducting Organic Materials

    PubMed Central

    Calzado, Eva M.; Boj, Pedro G.; Díaz-García, María A.

    2010-01-01

    This paper aims to review the recent advances achieved in the field of organic solid-state lasers with respect to the usage of semiconducting organic molecules and oligomers in the form of thin films as active laser media. We mainly focus on the work performed in the last few years by our research group. The amplified spontaneous emission (ASE) properties, by optical pump, of various types of molecules doped into polystyrene films in waveguide configuration, are described. The various systems investigated include N,N′-bis(3-methylphenyl)-N,N′-diphenylbenzidine (TPD), several perilenediimide derivatives (PDIs), as well as two oligo-phenylenevinylene derivatives. The ASE characteristics, i.e., threshold, emission wavelength, linewidth, and photostability are compared with that of other molecular materials investigated in the literature. PMID:20640167

  1. Nonlinear elastic properties of various man-made materials

    SciTech Connect

    Darvennes, C.M.; Hou, X.

    1998-12-31

    Second harmonic generation was measured in several man-made materials for possible application of nonlinear elastic properties to non-destructive testing. Samples included several thicknesses of two types of carbon fiber/polymer matrix composites, three types of concretes, and plywood. Steel and Aluminum specimens were used as references and one of the composite samples was evaluated before and after fatigue cycles. Some interesting observations were made: (1) the two composites were much more nonlinear than the metals, (2) the concretes and the wood were extremely absorptive, (3) one of the concrete samples exhibited a third harmonic but no second harmonic, and (4) fatigue cycles significantly increased the second harmonic, even though no damage was observed by C-scan. The possible applications of these results to NDE will be discussed.

  2. Effects of cryogenic temperatures on materials properties. (Latest citations from the Aerospace database). Published Search

    SciTech Connect

    Not Available

    1994-08-01

    The bibliography contains citations concerning properties of materials at cryogenic temperatures. Cryogenic effects on mechanical, magnetic, electrical, and other physical properties of materials are described. Titanium, aluminum, copper, nickel, steels, ice, carbides, cermets, ceramics, composites, alloys, and polymers are among the materials discussed. Strength of materials at low temperatures, with particular regard to fatigue and shear cracking, is included.

  3. Hygrothermal Material Properties for Soils in Building Science

    SciTech Connect

    Pallin, Simon B; Kehrer, Manfred

    2013-01-01

    Hygrothermal performance of soils coupled to buildings is complicated because of the dearth of information on soil properties. However they are important when numerical simulation of coupled heat and moisture transport for below-grade building components are performed as their temperature and moisture content has an influence on the durability of the below-grade building component. Soils can be classified by soil texture. According to the Unified Soil Classification System (USCA), 12 different soils can be defined on the basis of three soil components: clay, sand, and silt. This study shows how existing material properties for typical American soils can be transferred and used for the calculation of the coupled heat and moisture transport of building components in contact with soil. Furthermore a thermal validation with field measurements under known boundary conditions is part of this study, too. Field measurements for soil temperature and moisture content for two specified soils are carried out right now under known boundary conditions. As these field measurements are not finished yet, the full hygrothermal validation is still missing.

  4. Analysis of nonlinear optical properties in donor–acceptor materials

    SciTech Connect

    Day, Paul N.; Pachter, Ruth; Nguyen, Kiet A.

    2014-05-14

    Time-dependent density functional theory has been used to calculate nonlinear optical (NLO) properties, including the first and second hyperpolarizabilities as well as the two-photon absorption cross-section, for the donor-acceptor molecules p-nitroaniline and dimethylamino nitrostilbene, and for respective materials attached to a gold dimer. The CAMB3LYP, B3LYP, PBE0, and PBE exchange-correlation functionals all had fair but variable performance when compared to higher-level theory and to experiment. The CAMB3LYP functional had the best performance on these compounds of the functionals tested. However, our comprehensive analysis has shown that quantitative prediction of hyperpolarizabilities is still a challenge, hampered by inadequate functionals, basis sets, and solvation models, requiring further experimental characterization. Attachment of the Au{sub 2}S group to molecules already known for their relatively large NLO properties was found to further enhance the response. While our calculations show a modest enhancement for the first hyperpolarizability, the enhancement of the second hyperpolarizability is predicted to be more than an order of magnitude.

  5. Radiological properties of a wax-gypsum compensator material

    SciTech Connect

    Plessis, F.C.P. du; Willemse, C.A.

    2005-05-01

    In this paper the radiological properties of a compensator material consisting of wax and gypsum is presented. Effective attenuation coefficients (EACs) have been determined from transmission measurements with an ion chamber in a Perspex phantom. Measurements were made at 80 and 100 cm source-to-skin distance (SSD) for beam energies of 6, 8, and 15 MV, for field sizes ranging from narrow beam geometries up to 40x40 cm{sup 2}, and at measurement depths of maximum dose build-up, 5 and 10 cm. A parametrization equation could be constructed to predict the EAC values within 4% uncertainty as a function of field size and depth of measurement. The EAC dependence on off-axis position was also quantified at each beam energy and SSD. It was found that the compensator material reduced the required thickness for compensation by 26% at 8 MV when compared to pure paraffin wax for a 10x10 cm{sup 2} field. Relative surface ionization (RSI) measurements have been made to quantify the effect of scattered electrons from the wax-gypsum compensator. Results indicated that for 80 cm SSD the RSI would exceed 50% for fields larger than 15x15 cm{sup 2}. At 100 cm SSD the RSI values were below 50% for all field sizes used.

  6. Optimizing material properties of composite plates for sound transmission problem

    NASA Astrophysics Data System (ADS)

    Tsai, Yu-Ting; Pawar, S. J.; Huang, Jin H.

    2015-01-01

    To calculate the specific transmission loss (TL) of a composite plate, the conjugate gradient optimization method is utilized to estimate and optimize material properties of the composite plate in this study. For an n-layer composite plate, a nonlinear dynamic stiffness matrix based on the thick plate theory is formulated. To avoid huge computational efforts due to the combination of different composite material plates, a transfer matrix approach is proposed to restrict the dynamic stiffness matrix of the composite plate to a 4×4 matrix. Moreover, the transfer matrix approach has also been used to simplify the complexity of the objective function gradient for the optimization method. Numerical simulations are performed to validate the present algorithm by comparing the TL of the optimal composite plate with that of the original plate. Small number of iterations required during convergence tests illustrates the efficiency of the optimization method. The results indicate that an excellent estimation for the composite plate can be obtained for the desired sound transmission.

  7. Designing functionally graded materials with superior load-bearing properties.

    PubMed

    Zhang, Yu; Sun, Ming-Jie; Zhang, Denzil

    2012-03-01

    Ceramic prostheses often fail from fracture and wear. We hypothesize that these failures may be substantially mitigated by an appropriate grading of elastic modulus at the ceramic surface. In this study, we elucidate the effect of elastic modulus profile on the flexural damage resistance of functionally graded materials (FGMs), providing theoretical guidelines for designing FGMs with superior load-bearing property. The Young's modulus of the graded structure is assumed to vary in a power-law relation with a scaling exponent n; this is in accordance with experimental observations from our laboratory and elsewhere. Based on the theory for bending of graded beams, we examine the effect of n value and bulk-to-surface modulus ratio (E(b)/E(s)) on stress distribution through the graded layer. Theory predicts that a low exponent (0.15materials with various n values and E(b)/E(s) ratios can be fabricated by infiltrating alumina and zirconia with a low-modulus glass. Flexural tests show that graded alumina and zirconia with suitable values of these parameters exhibit superior load-bearing capacity, 20-50% higher than their homogeneous counterparts. Improving load-bearing capacity of ceramic materials could have broad impacts on biomedical, civil, structural, and an array of other engineering applications.

  8. Material Properties of the Human Lumbar Facet Joint Capsule

    PubMed Central

    Little, Jesse S.; Khalsa, Partap S.

    2005-01-01

    The human facet joint capsule is one of the structures in the lumbar spine that constrains motions of vertebrae during global spine loading (e.g., physiological flexion). Computational models of the spine have not been able to include accurate nonlinear and viscoelastic material properties, as they have not previously been measured. Capsules were tested using a uniaxial ramp-hold protocol or a haversine displacement protocol using a commercially available materials testing device. Plane strain was measured optically. Capsules were tested both parallel and perpendicular to the dominant orientation of the collagen fibers in the capsules. Viscoelastic material properties were determined. Parallel to the dominant orientation of the collagen fibers, the complex modulus of elasticity was E* = 1.63MPa, with a storage modulus of E′ = 1.25MPa and a loss modulus of: E″ = 0.39MPa. The mean stress relaxation rates for static and dynamic loading were best fit with first-order polynomials: B (ɛ) = 0.1110 ɛ − 0.0733 and B (ɛ) = −0.1249ɛ 11794-8181 +0.0190, respectively. Perpendicular to the collagen fiber orientation, the viscous and elastic secant moduli were 1.81 and 1.00 MPa, respectively. The mean stress relaxation rate for static loading was best fit with a first-order polynomial: B (ɛ) = − 0.04ɛ − 0.06. Capsule strength parallel and perpendicular to collagen fiber orientation was 1.90 and 0.95 MPa, respectively, and extensibility was 0.65 and 0.60, respectively. Poisson’s ratio parallel and perpendicular to fiber orientation was 0.299 and 0.488, respectively. The elasticity moduli were nonlinear and anisotropic, and capsule strength was larger aligned parallel to the collagen fibers. The phase lag between stress and strain increased with haversine frequency, but the storage modulus remained large relative to the complex modulus. The stress relaxation rate was strain dependent parallel to the collagen fibers, but was strain independent perpendicularly

  9. Computational evaluation of optoelectronic properties for organic/carbon materials.

    PubMed

    Shuai, Zhigang; Wang, Dong; Peng, Qian; Geng, Hua

    2014-11-18

    CONSPECTUS: Organic optoelectronic materials are used in a variety of devices, including light-emitting diodes, field-effect transistors, photovoltaics, thermoelectrics, spintronics, and chemico- and biosensors. The processes that determine the intrinsic optoelectronic properties occur either in the photoexcited states or within the electron-pumped charged species, and computations that predict these optical and electrical properties would help researchers design new materials. In this Account, we describe recent advances in related density functional theory (DFT) methods and present case studies that examine the efficiency of light emission, carrier mobility, and thermoelectric figures of merit by calculation of the electron-vibration couplings. First we present a unified vibrational correlation function formalism to evaluate the excited-state radiative decay rate constant kr, the nonradiative decay rate constant knr, the intersystem crossing rate constant kISC, and the optical spectra. The molecular parameters that appear in the formalism, such as the electronic excited-state energy, vibrational modes, and vibronic couplings, require extensive DFT calculations. We used experiments for anthracene at both low and ambient temperatures to benchmark the calculated photophysical parameters. In the framework of Fermi's golden rule, we incorporated the non-adiabatic coupling and the spin-orbit coupling to evaluate the phosphorescence efficiency and emission spectrum. Both of these are in good agreement with experimental results for anthracene and iridium compounds. Band electron scattering and relaxation processes within Boltzmann theory can describe charge transport in two-dimensional carbon materials and closely packed organic solids. For simplicity, we considered only the acoustic phonon scattering as modeled by the deformation potential approximation coupled with extensive DFT calculations for band structures. We then related the carrier mobility to the band

  10. Interfacial and transport properties of nanoconstrained inorganic and organic materials

    NASA Astrophysics Data System (ADS)

    Kocherlakota, Lakshmi Suhasini

    Nanoscale constraints impact the material properties of both organic and inorganic systems. The systems specifically studied here are (i) nanoconstrained polymeric systems, poly(l-trimethylsilyl-1-propyne) (PTMSP) and poly(ethylene oxide) (PEO) relevant to gas separation membranes (ii) Zwitterionic polymers poly(sulfobetaine methacrylate)(pSBMA), poly(carboxybetaine acrylamide) (pCBAA), and poly(oligo(ethylene glycol) methyl methacrylate) (PEGMA) brushes critical for reducing bio-fouling (iii) Surface properties of N-layer graphene sheets. Interfacial constraints in ultrathin poly(l-trimethylsilyl-1-propyne) (PTMSP) membranes yielded gas permeabilities and CO2/helium selectivities that exceed bulk PTMSP membrane transport properties by up to three-fold for membranes of submicrometer thickness. Indicative of a free volume increase, a molecular energetic mobility analysis (involving intrinsic friction analysis) revealed enhanced methyl side group mobilities in thin PTMSP membranes with maximum permeation, compared to bulk films. Aging studies conducted over the timescales relevant to the conducted experiments signify that the free volume states in the thin film membranes are highly unstable in the presence of sorbing gases such as CO2. To maintain this high free volume configuration of polymer while improving the temporal stability an "inverse" architecture to conventional polymer nanocomposites was investigated, in which the polymer phase of PTMSP and PEO were interfacially and dimensionally constrained in nanoporous anodic aluminum oxide (AAO) membranes. While with this architecture the benefits of nanocomposite and ultrathin film membranes of PTMSP could be reproduced and improved upon, also the temporal stability could be enhanced substantially. The PEO-AAO nanocomposite membranes also revealed improved gas selectivity properties of CO2 over helium. In the thermal transition studies of zwitterionic pSBMA brushes a reversible critical transition temperature of 60

  11. Dielectric properties of pharmaceutical materials relevant to microwave processing: effects of field frequency, material density, and moisture content.

    PubMed

    Heng, Paul W S; Loh, Z H; Liew, Celine V; Lee, C C

    2010-02-01

    The rising popularity of microwaves for drying, material processing and quality sensing has fuelled the need for knowledge concerning dielectric properties of common pharmaceutical materials. This article represents one of the few reports on the density and moisture content dependence of the dielectric properties of primary pharmaceutical materials and their relevance to microwave-assisted processing. Dielectric constants (epsilon') and losses (epsilon'') of 13 pharmaceutical materials were measured over a frequency range of 1 MHz-1 GHz at 23 +/- 1 degrees C using a parallel-electrode measurement system. Effects of field frequency, material density and moisture content on dielectric properties were studied. Material dielectric properties varied considerably with frequency. At microwave frequencies, linear relationships were established between cube-root functions of the dielectric parameters [symbols: see text] and density which enabled dielectric properties of materials at various densities to be estimated by regression. Moisture content was the main factor that contributed to the disparities in dielectric properties and heating capabilities of the materials in a laboratory microwave oven. The effectiveness of a single frequency density-independent dielectric function for moisture sensing applications was explored and found to be suitable within low ranges of moisture contents for a model material.

  12. [Polyurethane denture base material "Pentalur" and modified polyurethane compositions: comparative study of mechanical properties].

    PubMed

    Al'ter, Iu M; Tkachuk, A-M P; Poiurovskaia, I Ia; Sutugina, T F; Ogorodnikov, M Iu

    2013-01-01

    Results of laboratory tests of polyurethane based material "Pentalur" conducted to determine its mechanical properties proved the material to meet basic requirements for removable dentures materials. The introduction of simple poluethers with certain molecular weight as well as 1,4-butanediol allows varying polyurethane properties in a fairly wide range. This range of polyurethane mechanical properties along with good biocompatibility opens new possibilities in creation of removable dentures with improved functional properties as well as maxillofacial prosthesis.

  13. Review of materials property data for nondestructive characterization of pipeline materials

    NASA Astrophysics Data System (ADS)

    Smart, Lucinda Jeanette

    The oil and gas industry relies on an aging infrastructure of pipeline for transportation and distribution of product; therefore, it is important to assess the condition of the pipeline, using accurate material and mechanical properties, to ensure failures are minimized. Nondestructive evaluation techniques are currently being used to assess pipeline, but necessary mechanical properties (yield strength, tensile strength, fracture toughness, and ductile-to-brittle transition temperature) are not yet able to be adequately characterized by these methods. There are many issues to consider when addressing this problem. There is variability within the manufacturing processes due to simple inaccuracies in the processes themselves, and changes in practices over the years. There is also variability in the destructive techniques used for assessment of mechanical properties before the pipe is put into service. Current focus in the industry tends to be on pipe installed in the 1950's and 1960's because about half of the pipe currently in service was installed during these time periods, but it is equally important to verify the properties of modern pipe Therefore, nondestructive methods of measurement are commonly used for determining defect severity (e.g. magnetic flux leakage and ultrasonic) are being explored to determine what other properties can be measured to relate to mechanical properties. For future activities, it is advised to compare the accuracies of both destructive and nondestructive methods of determining properties, should some method of nondestructive evaluation become a more viable technique for mechanical property measurements, either directly or indirectly. The relationships between what can be measured (chemical content, grain size, microstructure, hardness, coercivity, permeability, etc) and the mechanical properties desired listed previously, show that there is a strong relationship between hardness and yield strength. This is already well known in the

  14. Structure, Transport Properties, and Magnetism of Artificially-Structured Materials

    NASA Astrophysics Data System (ADS)

    Xiao, John Q.

    Structural, magnetic, and magneto-transport properties of three different classes of artificially structured materials: (1) multilayers (Fe(110)/Ag(111) and Fe(110)/W(110)), (2) Fe-nitrides, and (3) metallic granular solids (Co/Ag, Co/Cu Fe/Ag and (Ni-Fe)/Ag), prepared by magnetron sputtering are presented. In the multilayers, the structure has been characterized using both low-angle and high-angle x-ray diffraction together with theoretical modeling. The magnetic properties of the Fe/Ag and Fe/W multilayers have been studied when the layer thickness of Fe and the intervening Ag or W layers are systematically varied. In the case of Fe/Ag multilayers, the interfaces are sharp. The Fe magnetic moment slightly increases with decreasing Fe layer thickness. The magnetization shows a B T^{3/2} dependence with very large values of B. In the Fe/W multilayers, there are small intermixed regions of one or two monolayers at the interfaces. The Fe moments within this region are deteriorated, whereas the rest of the Fe moments maintain their bulk values. With reactive sputtering using a mixture of argon and ammonia gases, all stable Fe-nitrides (gamma ^'-Fe_4N, varepsilon-Fe_{2 -3}N, and zeta-Fe _2N) of single phase can be fabricated. The phase diagram of Fe-nitride composition as a function of pressure of NH_3 has been determined. The magnetic properties and the Mossbauer parameters are in excellent agreement with those from the bulk samples. The magneto-transport properties in metallic granular solids, related metastable alloys and in samples with mixed phases, have been extensively studied. We have investigated the magneto-transport properties as a function of the annealing temperature, temperatures, and the magnetic concentration. For the first time, giant magnetoresistance (GMR) has been observed in non-layered but granular solids. We have shown that the GMR is isotropic and is the extra resistivity due to scattering from the non-aligned ferromagnetic entities. This extra

  15. Assembling and properties of the polymer-particle nanostructured materials

    NASA Astrophysics Data System (ADS)

    Sheparovych, Roman

    Complementary properties of the soft and hard matter explain its common encounter in many natural and manmade applications. A combination of flexible organic macromolecules and hard mineral clusters results in new materials far advantageous than its constituents alone. In this work we study assembling of colloidal nanocrystals and polymers into complex nanostructures. Magnetism, surface wettability and adhesion comprise properties of interest for the obtained nanocomposites. Applying a magnetic field induces a reversible 1D ordering of the magnetically susceptible particles. This property was employed in the fabrication of the permanent chains of magnetite nanocrystals (d=15nm). In the assembling process the aligned particles were bound together using polyelectrolyte macromolecules. The basics of the binding process involved an electrostatic interaction between the positively charged polyelectrolyte and the negative surface of the particles (aqueous environment). Adsorption of the polymer molecules onto several adjacent particles in the aligned 1D aggregate results in the formation of the permanent particulate chains. Positive charges of the adsorbed polyelectrolyte molecules stabilize the dispersion of the obtained nanostructures in water. Magnetization measurements revealed that superparamagnetic nanoparticles, being assembled into 1D ordered structures, attain magnetic coercivity. This effect originates from the magnetostatic interaction between the neighboring magnetite nanocrystals. The preferable dipole alignment of the assembled nanoparticles is directed along the chain axis. Another system studied in this project includes polymer-particle responsive surface coatings. Tethered polymer chains and particles bearing different functionalities change surface properties upon restructuring of the composite layer. When the environment favors polymer swelling (good solvent), the polymer chains segregate to the surface and cover the particles. In the opposite case

  16. Synthesis, characterization, and properties of low-dimensional nanostructured materials

    NASA Astrophysics Data System (ADS)

    Hu, Xianluo

    2007-05-01

    Nanometer scale structures represent an exciting and rapidly expanding area of research. Studies on new physical/chemical properties and applications of nanomaterials and nanostructures are possible only when nanostructured materials are made available with desired size, morphology, crystal and microstructure, and composition. Thus, controlled synthesis of nanomaterials is the essential aspect of nanotechnology. This thesis describes the development of simple and versatile solution-based approaches to synthesize low-dimensional nanostructures. The first major goal of this research is to design and fabricate morphology-controlled alpha-Fe 2O3 nanoarchitectures in aqueous solution through a programmed microwave-assisted hydrothermal route, taking advantage of microwave irradiation and hydrothermal effects. Free-standing alpha-Fe2O3 nanorings are prepared by hydrolysis of FeCl3 in the presence of phosphate ions. The as-formed architecture of alpha-Fe2O 3 nanorings is an exciting new member in the family of iron oxide nanostructures. Our preliminary results demonstrate that sensors made of the alpha-Fe 2O3 nanorings exhibit high sensitivity not only for bio-sensing of hydrogen peroxide in a physiological solution but also for gas-sensing of alcohol vapor at room temperature. Moreover, monodisperse alpha-Fe 2O3 nanocrystals with continuous aspect-ratio tuning and fine shape control are achieved by controlling the experimental conditions. The as-formed alpha-Fe2O3 exhibits shape-dependent infrared optical properties. The growth process of colloidal alpha-Fe 2O3 crystals in the presence of phosphate ions is discussed. In addition, through an efficient microwave-assisted hydrothermal process, self-assembled hierarchical alpha-Fe2O3 nanoarchitectures are synthesized on a large scale. The second major goal of this research is to develop convenient microwave-hydrothermal approaches for the fabrication of carbon-based nanocomposites: (1) A one-pot solution-phase route, namely

  17. Hyperelastic Material Properties of Mouse Skin under Compression.

    PubMed

    Wang, Yuxiang; Marshall, Kara L; Baba, Yoshichika; Gerling, Gregory J; Lumpkin, Ellen A

    2013-01-01

    The skin is a dynamic organ whose complex material properties are capable of withstanding continuous mechanical stress while accommodating insults and organism growth. Moreover, synchronized hair cycles, comprising waves of hair growth, regression and rest, are accompanied by dramatic fluctuations in skin thickness in mice. Whether such structural changes alter skin mechanics is unknown. Mouse models are extensively used to study skin biology and pathophysiology, including aging, UV-induced skin damage and somatosensory signaling. As the skin serves a pivotal role in the transfer function from sensory stimuli to neuronal signaling, we sought to define the mechanical properties of mouse skin over a range of normal physiological states. Skin thickness, stiffness and modulus were quantitatively surveyed in adult, female mice (Mus musculus). These measures were analyzed under uniaxial compression, which is relevant for touch reception and compression injuries, rather than tension, which is typically used to analyze skin mechanics. Compression tests were performed with 105 full-thickness, freshly isolated specimens from the hairy skin of the hind limb. Physiological variables included body weight, hair-cycle stage, maturity level, skin site and individual animal differences. Skin thickness and stiffness were dominated by hair-cycle stage at young (6-10 weeks) and intermediate (13-19 weeks) adult ages but by body weight in mature mice (26-34 weeks). Interestingly, stiffness varied inversely with thickness so that hyperelastic modulus was consistent across hair-cycle stages and body weights. By contrast, the mechanics of hairy skin differs markedly with anatomical location. In particular, skin containing fascial structures such as nerves and blood vessels showed significantly greater modulus than adjacent sites. Collectively, this systematic survey indicates that, although its structure changes dramatically throughout adult life, mouse skin at a given location maintains a

  18. Material properties of zooplankton and nekton from the California current

    NASA Astrophysics Data System (ADS)

    Becker, Kaylyn

    This study measured the material properties of zooplankton, Pacific hake (Merluccius productus), Humboldt squid (Dosidicus gigas), and two species of myctophids (Symbolophorus californiensis and Diaphus theta) collected from the California Current ecosystem. The density contrast (g) was measured for euphausiids, decapods (Sergestes similis), amphipods (Primno macropa, Phronima sp., and Hyperiid spp.), siphonophore bracts, chaetognaths, larval fish, crab megalopae, larval squid, and medusae. Morphometric data (length, width, and height) were collected for these taxa. Density contrasts varied within and between zooplankton taxa. The mean and standard deviation for euphausiid density contrast were 1.059 +/- 0.009. Relationships between zooplankton density contrast and morphometric measurements, geographic location, and environmental conditions were investigated. Site had a significant effect on euphausiid density contrast. Density contrasts of euphausiids collected in the same geographic area approximately 4-10 days apart were significantly higher (p < 0.001). Sound speed contrast (h) was measured for euphausiids and pelagic decapods (S. similis) and it varied between taxa. The mean and standard deviation for euphausiid sound speed were 1.019 +/- 0.009. Euphausiid mass was calculated from density measurements and volume, and a relationship between euphausiid mass and length was produced. We determined that euphausiid from volumes could be accurately estimated two dimensional measurements of animal body shape, and that biomass (or biovolume) could be accurately calculated from digital photographs of animals. Density contrast (g) was measured for zooplankton, pieces of hake flesh, myctophid flesh, and of the following Humboldt squid body parts: mantle, arms, tentacle, braincase, eyes, pen, and beak. The density contrasts varied within and between fish taxa, as well as among squid body parts. Effects of animal length and environmental conditions on nekton density

  19. Bone material properties in premenopausal women with idiopathic osteoporosis

    PubMed Central

    Misof, BM; Gamsjaeger, S; Cohen, A; Hofstetter, B; Roschger, P; Stein, E; Nickolas, TL; Rogers, HF; Dempster, D; Zhou, H; Recker, R; Lappe, J; McMahon, D; Paschalis, EP; Fratzl, P; Shane, E; Klaushofer, K

    2012-01-01

    Idiopathic osteoporosis (IOP) in premenopausal women is characterized by fragility fractures at low or normal bone mineral density (BMD) in otherwise healthy women with normal gonadal function. Histomorphometric analysis of transiliac bone biopsy samples has revealed microarchitectural deterioration of cancellous bone and thinner cortices. To examine bone material quality, we measured the bone mineralization density distribution (BMDD) in biopsy samples by quantitative backscattered electron imaging (qBEI), and mineral/matrix ratio, mineral crystallinity/maturity, relative proteoglycan content and collagen cross-link ratio at actively bone forming trabecular surfaces by Raman and Fourier Transform Infrared (FTIRM) microspectroscopic techniques. The study groups included: premenopausal women with idiopathic fractures (IOP, n=45), or idiopathic low BMD (Z-score ≤-2.0 at spine and/or hip) but no fractures (ILBMD, n=19), and healthy controls (CONTROL, n=38). BMDD of cancellous bone showed slightly lower mineral content in IOP (both Cn.CaMean and Cn.CaPeak are 1.4% lower) and in ILBMD (both are 1.6% lower, p<0.05) versus CONTROL, but no difference between IOP and ILBMD. Similar differences were found when affected groups were combined versus CONTROL. The differences remained significant after adjustment for mineralizing surface (MS/BS), suggesting that the reduced mineralization of bone matrix cannot be completely accounted for by differences in bone turnover. Raman and FTIRM analysis at forming bone surfaces showed no differences between combined IOP/ILBMD groups versus CONTROL, with the exceptions of increased proteoglycan content per mineral content and increased collagen cross-link ratio. When the two affected subgroups were considered individually, mineral/matrix ratio and collagen cross-link ratio were higher in IOP than ILBMD. In conclusion, our findings suggest that bone material properties differ between premenopausal women with IOP/ILBMD and normal controls

  20. Method and apparatus for measuring properties of particle beams using thermo-resistive material properties

    DOEpatents

    Degtiarenko, Pavel V.; Dotson, Danny Wayne

    2007-10-09

    A beam position detector for measuring the properties of a charged particle beam, including the beam's position, size, shape, and intensity. One or more absorbers are constructed of thermo-resistive material and positioned to intercept and absorb a portion of the incoming beam power, thereby causing local heating of each absorber. The local temperature increase distribution across the absorber, or the distribution between different absorbers, will depend on the intensity, size, and position of the beam. The absorbers are constructed of a material having a strong dependence of electrical resistivity on temperature. The beam position detector has no moving parts in the vicinity of the beam and is especially suited to beam areas having high ionizing radiation dose rates or poor beam quality, including beams dispersed in the transverse direction and in their time radio frequency structure.

  1. Eutectics as improved pharmaceutical materials: design, properties and characterization.

    PubMed

    Cherukuvada, Suryanarayan; Nangia, Ashwini

    2014-01-28

    Eutectics are a long known class of multi-component solids with important and useful applications in daily life. In comparison to other multi-component crystalline solids, such as salts, solid solutions, molecular complexes and cocrystals, eutectics are less studied in terms of molecular structure organization and bonding interactions. Classically, a eutectic is defined based on its low melting point compared to the individual components. In this article, we attempt to define eutectics not just based on thermal methods but from a structural organization view point, and discuss their microstructures and properties as organic materials vis-a-vis solid solutions and cocrystals. The X-ray crystal structure of a cocrystal is different from that of the individual components whereas the unit cell of a solid solution is similar to that of one of the components. Eutectics are closer to the latter species in that their crystalline arrangement is similar to the parent components but they are different with respect to the structural integrity. A solid solution possesses structural homogeneity throughout the structure (single phase) but a eutectic is a heterogeneous ensemble of individual components whose crystal structures are like discontinuous solid solutions (phase separated). Thus, a eutectic may be better defined as a conglomerate of solid solutions. A structural analysis of cocrystals, solid solutions and eutectics has led to an understanding that materials with strong adhesive (hetero) interactions between the unlike components will lead to cocrystals whereas those having stronger cohesive (homo/self) interactions will more often give rise to solid solutions (for similar structures of components) and eutectics (for different structures of components). We demonstrate that the same crystal engineering principles which have been profitably utilized for cocrystal design in the past decade can now be applied to make eutectics as novel composite materials, illustrated by

  2. The analytical representation of viscoelastic material properties using optimization techniques

    NASA Astrophysics Data System (ADS)

    Hill, S. A.

    1993-02-01

    This report presents a technique to model viscoelastic material properties with a function of the form of the Prony series. Generally, the method employed to determine the function constants requires assuming values for the exponential constants of the function and then resolving the remaining constants through linear least-squares techniques. The technique presented here allows all the constants to be analytically determined through optimization techniques. This technique is employed in a computer program named PRONY and makes use of commercially available optimization tool developed by VMA Engineering, Inc. The PRONY program was utilized to compare the technique against previously determined models for solid rocket motor TP-H1148 propellant and V747-75 Viton fluoroelastomer. In both cases, the optimization technique generated functions that modeled the test data with at least an order of magnitude better correlation. This technique has demonstrated the capability to use small or large data sets and to use data sets that have uniformly or nonuniformly spaced data pairs. The reduction of experimental data to accurate mathematical models is a vital part of most scientific and engineering research. This technique of regression through optimization can be applied to other mathematical models that are difficult to fit to experimental data through traditional regression techniques.

  3. Accelerated search for materials with targeted properties by adaptive design

    PubMed Central

    Xue, Dezhen; Balachandran, Prasanna V.; Hogden, John; Theiler, James; Xue, Deqing; Lookman, Turab

    2016-01-01

    Finding new materials with targeted properties has traditionally been guided by intuition, and trial and error. With increasing chemical complexity, the combinatorial possibilities are too large for an Edisonian approach to be practical. Here we show how an adaptive design strategy, tightly coupled with experiments, can accelerate the discovery process by sequentially identifying the next experiments or calculations, to effectively navigate the complex search space. Our strategy uses inference and global optimization to balance the trade-off between exploitation and exploration of the search space. We demonstrate this by finding very low thermal hysteresis (ΔT) NiTi-based shape memory alloys, with Ti50.0Ni46.7Cu0.8Fe2.3Pd0.2 possessing the smallest ΔT (1.84 K). We synthesize and characterize 36 predicted compositions (9 feedback loops) from a potential space of ∼800,000 compositions. Of these, 14 had smaller ΔT than any of the 22 in the original data set. PMID:27079901

  4. Accelerated search for materials with targeted properties by adaptive design

    NASA Astrophysics Data System (ADS)

    Xue, Dezhen; Balachandran, Prasanna V.; Hogden, John; Theiler, James; Xue, Deqing; Lookman, Turab

    2016-04-01

    Finding new materials with targeted properties has traditionally been guided by intuition, and trial and error. With increasing chemical complexity, the combinatorial possibilities are too large for an Edisonian approach to be practical. Here we show how an adaptive design strategy, tightly coupled with experiments, can accelerate the discovery process by sequentially identifying the next experiments or calculations, to effectively navigate the complex search space. Our strategy uses inference and global optimization to balance the trade-off between exploitation and exploration of the search space. We demonstrate this by finding very low thermal hysteresis (ΔT) NiTi-based shape memory alloys, with Ti50.0Ni46.7Cu0.8Fe2.3Pd0.2 possessing the smallest ΔT (1.84 K). We synthesize and characterize 36 predicted compositions (9 feedback loops) from a potential space of ~800,000 compositions. Of these, 14 had smaller ΔT than any of the 22 in the original data set.

  5. Thermomechanical Property Characterization of Ultra Low-k Materials

    NASA Astrophysics Data System (ADS)

    Zhao, Jie-Hua; Gupta, Vikas; Mortensen, Clay D.; Lu, Kuan-Hsun; Edwards, Darvin R.; Johnson, David C.; Ho, Paul S.

    2009-06-01

    To meet electrical performance requirements, the industry is implementing ultra-low dielectric constant (ULK) materials in the back end of line interconnect structure. ULK dielectrics are inherently weak compared to traditional dielectrics and pose significant challenges to electronic packaging processes and reliability. Accurate mechanical properties are a pre-requisite for upfront risk assessments associated with low-k integration using numerical simulations. In this paper, techniques used to characterize ULK dielectric elastic modulus and in-plane/out-of-plane coefficient of thermal expansion will be presented and the data for a candidate ULK dielectric will be summarized. Nanoindentation of ULK films on substrate was used to determine the plane strain modulus. In the direction normal to the film, the temperature gradient of the thermal expansion strain along the film thickness was measured by x-ray reflectivity. In the plane of the film, the temperature gradient of the biaxial thermal stress was obtained by the substrate curvature measurements. A method to deduce Poisson's ratio of the thin ULK film is proposed using the data from the afore-mentioned characterization techniques.

  6. Structural properties of laminated Douglas fir/epoxy composite material

    NASA Technical Reports Server (NTRS)

    Spera, David A.; Esgar, Jack B.; Gougeon, Meade; Zuteck, Michael D.

    1990-01-01

    This publication contains a compilation of static and fatigue strength data for laminated-wood material made from Douglas fir and epoxy. Results of tests conducted by several organizations are correlated to provide insight into the effects of variables such as moisture, size, lamina-to-lamina joint design, wood veneer grade, and the ratio of cyclic stress to steady stress during fatigue testing. These test data were originally obtained during development of wood rotor blades for large-scale wind turbines of the horizontal-axis (propeller) configuration. Most of the strength property data in this compilation are not found in the published literature. Test sections ranged from round cylinders 2.25 in. in diameter to rectangular slabs 6 by 24 in. in cross section and approximately 30 ft. long. All specimens were made from Douglas fir veneers 0.10 in. thick, bonded together with the WEST epoxy system developed for fabrication and repair of wood boats. Loading was usually parallel to the grain. Size effects (reduction in strength with increase in test volume) are observed in some of the test data, and a simple mathematical model is presented that includes the probability of failure. General characteristics of the wood/epoxy laminate are discussed, including features that make it useful for a wide variety of applications.

  7. Structural properties of laminated Douglas fir/epoxy composite material

    SciTech Connect

    Spera, D.A. . Lewis Research Center); Esgar, J.B. ); Gougeon, M.; Zuteck, M.D. )

    1990-05-01

    This publication contains a compilation of static and fatigue and strength data for laminated-wood material made from Douglas fir and epoxy. Results of tests conducted by several organizations are correlated to provide insight into the effects of variables such as moisture, size, lamina-to-lamina joint design, wood veneer grade, and the ratio of cyclic stress to steady stress during fatigue testing. These test data were originally obtained during development of wood rotor blades for large-scale wind turbines of the horizontal-axis (propeller) configuration. Most of the strength property data in this compilation are not found in the published literature. Test sections ranged from round cylinders 2.25 in. in diameter to rectangular slabs 6 in. by 24 in. in cross section and approximately 30 ft long. All specimens were made from Douglas fir veneers 0.10 in. thick, bonded together with the WEST epoxy system developed for fabrication and repair of wood boats. Loading was usually parallel to the grain. Size effects (reduction in strength with increase in test volume) are observed in some of the test data, and a simple mathematical model is presented that includes the probability of failure. General characteristics of the wood/epoxy laminate are discussed, including features that make it useful for a wide variety of applications. 9 refs.

  8. Accelerated search for materials with targeted properties by adaptive design.

    PubMed

    Xue, Dezhen; Balachandran, Prasanna V; Hogden, John; Theiler, James; Xue, Deqing; Lookman, Turab

    2016-01-01

    Finding new materials with targeted properties has traditionally been guided by intuition, and trial and error. With increasing chemical complexity, the combinatorial possibilities are too large for an Edisonian approach to be practical. Here we show how an adaptive design strategy, tightly coupled with experiments, can accelerate the discovery process by sequentially identifying the next experiments or calculations, to effectively navigate the complex search space. Our strategy uses inference and global optimization to balance the trade-off between exploitation and exploration of the search space. We demonstrate this by finding very low thermal hysteresis (ΔT) NiTi-based shape memory alloys, with Ti50.0Ni46.7Cu0.8Fe2.3Pd0.2 possessing the smallest ΔT (1.84 K). We synthesize and characterize 36 predicted compositions (9 feedback loops) from a potential space of ∼800,000 compositions. Of these, 14 had smaller ΔT than any of the 22 in the original data set. PMID:27079901

  9. Accelerated search for materials with targeted properties by adaptive design.

    PubMed

    Xue, Dezhen; Balachandran, Prasanna V; Hogden, John; Theiler, James; Xue, Deqing; Lookman, Turab

    2016-04-15

    Finding new materials with targeted properties has traditionally been guided by intuition, and trial and error. With increasing chemical complexity, the combinatorial possibilities are too large for an Edisonian approach to be practical. Here we show how an adaptive design strategy, tightly coupled with experiments, can accelerate the discovery process by sequentially identifying the next experiments or calculations, to effectively navigate the complex search space. Our strategy uses inference and global optimization to balance the trade-off between exploitation and exploration of the search space. We demonstrate this by finding very low thermal hysteresis (ΔT) NiTi-based shape memory alloys, with Ti50.0Ni46.7Cu0.8Fe2.3Pd0.2 possessing the smallest ΔT (1.84 K). We synthesize and characterize 36 predicted compositions (9 feedback loops) from a potential space of ∼800,000 compositions. Of these, 14 had smaller ΔT than any of the 22 in the original data set.

  10. Structure-property relationships of multiferroic materials: A nano perspective

    NASA Astrophysics Data System (ADS)

    Bai, Feiming

    The integration of sensors, actuators, and control systems is an ongoing process in a wide range of applications covering automotive, medical, military, and consumer electronic markets. Four major families of ceramic and metallic actuators are under development: piezoelectrics, electrostrictors, magnetostrictors, and shape-memory alloys. All of these materials undergo at least two phase transformations with coupled thermodynamic order parameters. These transformations lead to complex domain wall behaviors, which are driven by electric fields (ferroelectrics), magnetic fields (ferromagnetics), or mechanical stress (ferroelastics) as they transform from nonferroic to ferroic states, contributing to the sensing and actuating capabilities. This research focuses on two multiferroic crystals, Pb(Mg1/3Nb 2/3)O3-PbTiO3 and Fe-Ga, which are characterized by the co-existence and coupling of ferroelectric polarization and ferroelastic strain, or ferro-magnetization and ferroelastic strain. These materials break the conventional boundary between piezoelectric and electrostrictors, or magnetostrictors and shape-memory alloys. Upon applying field or in a poled condition, they yield not only a large strain but also a large strain over field ratio, which is desired and much benefits for advanced actuator and sensor applications. In this thesis, particular attention has been given to understand the structure-property relationships of these two types of materials from atomic to the nano/macro scale. X-ray and neutron diffraction were used to obtain the lattice structure and phase transformation characteristics. Piezoresponse and magnetic force microscopy were performed to establish the dependence of domain configurations on composition, thermal history and applied fields. It has been found that polar nano regions (PNRs) make significant contributions to the enhanced electromechanical properties of PMN-x%PT crystals via assisting intermediate phase transformation. With increasing PT

  11. Correlation Between Domain Behavior and Magnetic Properties of Materials

    SciTech Connect

    Jeffrey Scott Leib

    2003-05-31

    Correlation between length scales in the field of magnetism has long been a topic of intensive study. The long-term desire is simple: to determine one theory that completely describes the magnetic behavior of matter from an individual atomic particle all the way up to large masses of material. One key piece to this puzzle is connecting the behavior of a material's domains on the nanometer scale with the magnetic properties of an entire large sample or device on the centimeter scale. In the first case study involving the FeSiAl thin films, contrast and spacing of domain patterns are clearly related to microstructure and stress. Case study 2 most clearly demonstrates localized, incoherent domain wall motion switching with field applied along an easy axis for a square hysteresis loop. In case study 3, axis-specific images of the complex Gd-Si-Ge material clearly show the influence of uniaxial anisotropy. Case study 4, the only study with the sole intent of creating domain structures for imaging, also demonstrated in fairly simple terms the effects of increasing stress on domain patterns. In case study 5, it was proven that the width of magnetoresistance loops could be quantitatively predicted using only MFM. When all of the case studies are considered together, a dominating factor seems to be that of anisotropy, both magneticrostaylline and stress induced. Any quantitative bulk measurements heavily reliant on K coefficients, such as the saturation fields for the FeSiAl films, H{sub c} in cases 1, 3, and 5, and the uniaxial character of the Gd{sub 5}(Si{sub 2}Ge{sub 2}), transferred to and from the domain scale quite well. In-situ measurements of domain rotation and switching, could also be strongly correlated with bulk magnetic properties, including coercivity, M{sub s}, and hysteresis loop shape. In most cases, the qualitative nature of the domain structures, when properly considered, matched quite well to what might have been expected from theory and calculation

  12. 15 CFR 270.322 - Voluntary permission to enter and inspect property where building components, materials...

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... inspect property where building components, materials, artifacts, and records with respect to a building... Voluntary permission to enter and inspect property where building components, materials, artifacts, and... components, materials, artifacts, and records with respect to the building failure are located, and...

  13. Frequency Response of Synthetic Vocal Fold Models with Linear and Nonlinear Material Properties

    ERIC Educational Resources Information Center

    Shaw, Stephanie M.; Thomson, Scott L.; Dromey, Christopher; Smith, Simeon

    2012-01-01

    Purpose: The purpose of this study was to create synthetic vocal fold models with nonlinear stress-strain properties and to investigate the effect of linear versus nonlinear material properties on fundamental frequency (F[subscript 0]) during anterior-posterior stretching. Method: Three materially linear and 3 materially nonlinear models were…

  14. Factors Influencing the Dielectric Properties of Agricultural Products and Food Materials

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Dielectric properties of materials are defined, and the major factors that influence these properties of agricultural and food materials, namely, frequency of the applied radio-frequency and microwave electric fields, water content, temperature, and density of the materials are discussed on the bas...

  15. Dynamic material properties of refractory materials: Tantalum and tantalum/tungsten alloys

    SciTech Connect

    Furnish, M.D.; Chhabildas, L.C.; Lassila, D.H.; Steinberg, D.J.

    1995-08-01

    We have made a careful set of impact wave-profile measurements (16 profiles) on tantalum and tantalum-tungsten alloys at relatively low stresses (to 15 GPa). Alloys used were Ta{sub 97.5}W{sub 2.5} and Ta{sub 90}W{sub 10} (wt. %) with oxygen contents of 30--70 ppM. Information available from these experiments includes Hugoniot, elastic limits, loading fates, spall strength, unloading paths, reshock structure and specimen thickness effects. Hugoniot and spall properties are illustrated, and are consistent with expectations from earlier work. Modeling the tests with the Steinberg-Lund rate-dependent material model provides for an excellent match of the shape of the plastic wave, although the release wave is not well modeled. There is also a discrepancy between experiments and calculations regarding the relative timing of the elastic and plastic waves that may be due to texture effects.

  16. Electronic Properties of Low-Dimensional Materials Under Periodic Potential

    NASA Astrophysics Data System (ADS)

    Jamei, Mehdi

    In the quest for the further miniaturization of electronic devices, numerous fabrication techniques have been developed. The semiconductor industry has been able to manifest miniaturization in highly complex and ultra low-power integrated circuits and devices, transforming almost every aspect of our lives. However, we may have come very close to the end of this trend. While advanced machines and techniques may be able to overcome technological barriers, theoretical and fundamental barriers are inherent to the top-down miniaturization approach and cannot be circumvented. As a result, the need for novel and natural alternatives to replace old materials is valued now more than ever. Fortunately, there exists a large group of materials that essentially has low-dimensional (quasi-one- or quasi-two-dimensional) structures. Graphene, a two-dimensional form of carbon, which has attracted a lot of attention in recent years, is a perfect example of a prime material from this group. Niobium tri-selenide (NbSe3), from a family of trichalcogenides, has a highly anisotropic structure and electrical conductivity. At sufficiently low temperatures, NbSe3 also exhibits two independent "sliding charge density waves"-- an exciting phenomenon, which could be altered by changing the overall size of the material. In NbSe3 (and Blue Bronze K0.3MoO3 which has a similar structure and electrical behavior), the effect of a periodic potential could be seen in creating a charge density wave (CDW) that is incommensurate to the underlying lattice. The required periodic potential is provided by the crystal ions when ordered in a particular way. The consequence is a peculiar non-linear conductivity behavior, as well as a unique narrow-band noise spectrum. Theoretical and experimental studies have concluded that the dynamic properties of resulting CDW are directly related to the crystal impurity density, and other pinning potentials. Therefore, reducing the overall size of the crystal could

  17. Mechanical properties of materials at micro/nano scales

    NASA Astrophysics Data System (ADS)

    Xu, Wei-Hua

    Mechanical properties of materials in small dimensions, including the depth-dependent hardness at the nano/micrometer scales, and the mechanical characterization of thin films and nanotubes, are reported. The surface effect on the depth-dependent nano/microhardness was studied and an apparent surface stress was introduced to represent the energy dissipated per unit area of a solid surface. A plastic bearing ratio model was proposed for the nanoindentation of rough surfaces. The energy dissipation occurring at the indented surface is among the factors that cause the Indentation Size Effect (ISE) at the micro/nanometer scales. Furthermore, an elastic-plastic bearing ratio model was developed for nanoindentation of rough surfaces with a flat indenter tip. The theoretical predictions agree with the experimental results and finite element simulations, from which the elastic constant and the surface hardness were extracted. The surface hardness exhibits an inverse ISE due to the interaction of asperities. The nanoindentation tests on Highly Oriented Pyrolytic Graphite (HOPG) may lead to the formation of carbon tubes, which are rolled up by the delaminated graphite layers. The nanoindentation loading-unloading curves reveal single pop-in and multiple pop-in phenomena, which is induced by fracture of the graphite layers and/or by delamination between the layers. From the load at pop-in, the fracture strength of the layers and/or the bonding strength between the layers can be estimated by the elastic field model for Hertzian contact including sliding friction for transverse isotropy. Two novel methods were developed to estimate the mechanical properties of films, including the Raman spectra method for the estimation of residual stresses in thin ferroelectric films and the microbridge testing method for the mechanical characterization of trilayer thin films. Mechanical characterization was also carried out on Tobacco Mosaic Virus (TMV) nanotubes with each being comprised of

  18. Mechanical properties of the beetle elytron, a biological composite material

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We determined the relationship between composition and mechanical properties of elytral (modified forewing) cuticle of the beetles Tribolium castaneum and Tenebrio molitor. Elytra of both species have similar mechanical properties at comparable stages of maturation (tanning). Shortly after adult ecl...

  19. Materials properties, loads, and stress analysis, Spartan REM: Appendix A

    NASA Technical Reports Server (NTRS)

    Marlowe, D. S.; West, E. J.

    1984-01-01

    The mechanical properties, load tests, and stress analysis of the Spartan Release Engagement Mechanism (REM) is presented. The fracture properties of the components of the unit are also discussed. Detailed engineering drawings are included.

  20. Development of a material property database on selected ceramic matrix composite materials

    NASA Technical Reports Server (NTRS)

    Mahanta, Kamala

    1996-01-01

    Ceramic Matrix Composites, with fiber/whisker/particulate reinforcement, possess the attractive properties of ceramics such as high melting temperature, high strength and stiffness at high temperature, low density, excellent environmental resistance, combined with improved toughness and mechanical reliability. These unique properties have made these composites an enabling technology for thermomechanically demanding applications in high temperature, high stress and aggressive environments. On a broader scale, CMC's are anticipated to be applicable in aircraft propulsion, space propulsion, power and structures, in addition to ground based applications. However, it is also true that for any serious commitment of the material toward any of the intended critical thermo-mechanical applications to materialize, vigorous research has to be conducted for a thorough understanding of the mechanical and thermal behavior of CMC's. The high technology of CMC'S is far from being mature. In view of this growing need for CMC data, researchers all over the world have found themselves drawn into the characterization of CMC's such as C/SiC, SiC/SiC, SiC/Al203, SiC/Glass, SiC/C, SiC/Blackglas. A significant amount of data has been generated by the industries, national laboratories and educational institutions in the United States of America. NASA/Marshall Space Flight Center intends to collect the 'pedigreed' CMC data and store those in a CMC database within MAPTIS (Materials and Processes Technical Information System). The task of compilation of the CMC database is a monumental one and requires efforts in various directions. The project started in the form of a summer faculty fellowship in 1994 and has spilled into the months that followed and into the summer faculty fellowship of 1995 and has the prospect of continuing into the future for a healthy growth, which of course depends to a large extent on how fast CMC data are generated. The 10-week long summer fellowship has concentrated

  1. SATURATED - UNSATURATED HYDRAULIC PROPERTIES OF SUBBASE COURSE MATERIAL AND SUBGRADE SOIL

    NASA Astrophysics Data System (ADS)

    Yano, Takao; Nishiyama, Satoshi; Nakashima, Shin-Ichiro; Moriishi, Kazushi; Ohnishi, Yuzo

    In order to evaluate the rainwate r storage and infiltration properties of the permeable pavement by unsaturated seepage analysis or gas-liquid two-phase flow analysis, it is important to know the unsaturated hydraulic properties of materials wh ich constitute the pavement. For this reason, we showed the unsaturated hydraulic properties of porous asphalt material s but we have not clarified the relation between the performance of the permeable pavement and the properties of all constituti on materials. In this paper, we try to determine the unsaturated hydraulic properties of subbase course and subgrade materials that greatly affect the rainwater storage and infiltration properties of the permeable pavement. We show from experiments that water retention characteristic and the un saturated hydraulic properties of subbase course and subgrade materials well match the van Genuchten model and the Irmay model.

  2. Viscoelastic properties of elastomeric materials for O-ring applications

    NASA Technical Reports Server (NTRS)

    Bower, Mark V.

    1989-01-01

    Redesign of the Space Shuttle Solid Rocket Booster necessitated re-evaluation of the material used in the field joint O-ring seals. This research project was established to determine the viscoelastic characteristics of five candidate materials. The five materials are: two fluorocarbon compounds, two nitrile compounds, and a silicon compound. The materials were tested in a uniaxial compression test to determine the characteristic relaxation functions. These tests were performed at five different temperatures. A master material curve was developed for each material from the experimental data. The results of this study are compared to tensile relaxation tests. Application of these results to the design analysis is discussed in detail.

  3. Material and structural properties of fin whale (Balaenoptera physalus) Zwischensubstanz.

    PubMed

    Pinto, Sheldon J D; Shadwick, Robert E

    2013-08-01

    The oral anatomy of the fin whale (Balaenoptera physalus) consists of several major structures crucial to its engulfment method of feeding, such as stiff keratinized baleen plates, a large flaccid tongue, and a prominent vomer. One under-documented part of this anatomy is the cream white Zwischensubstanz that holds the baleen plates to the rostrum at their dorsal base. The mechanical and structural properties of Zwischensubstanz play a key role in baleen plate dynamics and, on the grand scale, contribute to baleen whales' filtration efficiency and attainment of large body size. Compression and tensile tests on the Zwischensubstanz sampled from an 18 m fin whale showed that this material unexpectedly exhibits linear isotropic behaviour with Elastic Modulus of 2.56 ± 0.60 MPa and hysteresis of 0.44 ± 0.02 in compression despite apparent unidirectional growth. Acting similar to a soft rubber, the Zwischensubstanz absorbs and dissipates the enormous forces acting on baleen plates during engulfment feeding while maintaining spacing between the plates to maximize filtration efficiency. Microscopic analysis provided images of connective tissue papillae penetrating the base of the Zwischensubstanz and developing within it to emerge as fully formed, keratinized baleen plates. The plates develop from the papillae and a connective tissue sheet within the 5-7 cm deep Zwischensubstanz. The Zwischensubstanz provides a keratin matrix of concentrically oriented fibers around each papilla forming the hard baleen plates and frayed fringes used for filter feeding. During this formation, the Zwischensubstanz remains unchanged and appears to slough away to allow the baleen plate to grow unhindered. PMID:23640788

  4. Technical Progress Report for "Optical and Electrical Properties of III-Nitrides and Related Materials"

    SciTech Connect

    Jiang, Hongxing

    2008-10-31

    Investigations have been conducted focused on the fundamental material properties of AIN and high AI-content AIGaN alloys and further developed MOCVD growth technologies for obtaining these materials with improved crystalline quality and conductivities.

  5. 46 CFR 164.013-3 - Material properties and workmanship.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ..., AND MATERIALS: SPECIFICATIONS AND APPROVAL MATERIALS Foam, Unicellular Polyethylene (Buoyant, Slab... polyethylene foam shall be all new material complying with the requirements outlined in this specification. Unicellular polyethylene foam must comply with the requirements of UL 1191, sections 24, 25, and 26 and...

  6. 46 CFR 164.013-3 - Material properties and workmanship.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ..., AND MATERIALS: SPECIFICATIONS AND APPROVAL MATERIALS Foam, Unicellular Polyethylene (Buoyant, Slab... polyethylene foam shall be all new material complying with the requirements outlined in this specification. Unicellular polyethylene foam must comply with the requirements of UL 1191, sections 24, 25, and 26 and...

  7. 46 CFR 164.013-3 - Material properties and workmanship.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ..., AND MATERIALS: SPECIFICATIONS AND APPROVAL MATERIALS Foam, Unicellular Polyethylene (Buoyant, Slab... polyethylene foam shall be all new material complying with the requirements outlined in this specification. Unicellular polyethylene foam must comply with the requirements of UL 1191, sections 24, 25, and 26 and...

  8. 46 CFR 164.013-3 - Material properties and workmanship.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ..., AND MATERIALS: SPECIFICATIONS AND APPROVAL MATERIALS Foam, Unicellular Polyethylene (Buoyant, Slab... polyethylene foam shall be all new material complying with the requirements outlined in this specification. Unicellular polyethylene foam must comply with the requirements of UL 1191, sections 24, 25, and 26 and...

  9. 46 CFR 164.013-3 - Material properties and workmanship.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ..., AND MATERIALS: SPECIFICATIONS AND APPROVAL MATERIALS Foam, Unicellular Polyethylene (Buoyant, Slab... polyethylene foam shall be all new material complying with the requirements outlined in this specification. Unicellular polyethylene foam must comply with the requirements of UL 1191, sections 24, 25, and 26 and...

  10. Application for managing model-based material properties for simulation-based engineering

    DOEpatents

    Hoffman, Edward L.

    2009-03-03

    An application for generating a property set associated with a constitutive model of a material includes a first program module adapted to receive test data associated with the material and to extract loading conditions from the test data. A material model driver is adapted to receive the loading conditions and a property set and operable in response to the loading conditions and the property set to generate a model response for the material. A numerical optimization module is adapted to receive the test data and the model response and operable in response to the test data and the model response to generate the property set.

  11. Effects of cryogenic temperatures on materials properties. (Latest citations from the Aerospace database). Published Search

    SciTech Connect

    1995-03-01

    The bibliography contains citations concerning properties of materials at cryogenic temperatures. Cryogenic effects on mechanical, magnetic, electrical, and other physical properties of materials are described. Titanium, aluminum, copper, nickel, steels, ice, carbides, cermets, ceramics, composites, alloys, and polymers are among the materials discussed. Strength of materials at low temperatures, with particular regard to fatigue and shear cracking, is included. Cryogenic cooling systems are discussed in separate bibliographies. (Contains 250 citations and includes a subject term index and title list.)

  12. Electrochemical Properties of Nanoporous Carbon Material in Aqueous Electrolytes.

    PubMed

    Rachiy, Bogdan I; Budzulyak, Ivan M; Vashchynsky, Vitalii M; Ivanichok, Nataliia Ya; Nykoliuk, Marian O

    2016-12-01

    The paper is devoted to the study of the behavior of capacitor type electrochemical system in the К(+)-containing aqueous electrolytes. Nanoporous carbon material (NCM) was used as the electrode material, obtained by carbonization of plant raw materials with the following chemical activation. Optimization of pore size distribution was carried out by chemical-thermal method using potassium hydroxide as activator. It is shown that obtained materials have high values of capacitance which is realized by charge storage on the electrical double layer and by pseudocapacitive ion storage on the surface of the material. It is established that based on NCM, electrochemical capacitors are stable in all range of current density and material capacity essentially depends on appropriate choice of electrolyte.

  13. Material Property Correlations: Comparisons between FRAPCON-3.4, FRAPTRAN 1.4, and MATPRO

    SciTech Connect

    Luscher, Walter G.; Geelhood, Kenneth J.

    2010-08-01

    The U.S. Nuclear Regulatory Commission (NRC) uses the computer codes FRAPCON-3 and FRAPTRAN to model steady state and transient fuel behavior, respectively, in regulatory analysis. In order to effectively model fuel behavior, material property correlations must be used for a wide range of operating conditions (e.g. temperature and burnup). In this sense, a 'material property' is a physical characteristic of the material whose quantitative value is necessary in the analysis process. Further, the property may be used to compare the benefits of one material versus another. Generally speaking, the material properties of interest in regulatory analysis of nuclear fuel behavior are mechanical or thermodynamic in nature. The issue of what is and is not a 'material property' will never be universally resolved. In this report, properties such as thermal conductivity are included. Other characteristics of the material (e.g. fission gas release) are considered 'models' rather than properties, and are discussed elsewhere. Still others (e.g., neutron absorption cross-section) are simply not required in this specific analysis. The material property correlations for the FRAPCON-3 and FRAPTRAN computer codes were documented in NUREG/CR-6534 and NUREG/CR-6739, respectively. Some of these have been modified or updated since the original code documentation was published. The primary purpose of this report is to consolidate the current material property correlations used in FRAPCON-3 and FRAPTRAN into a single document. Material property correlations for oxide fuels, including uranium dioxide (UO2) and mixed oxide (MOX) fuels, are described in Section 2. Throughout this document, the term MOX will be used to describe fuels that are blends of uranium and plutonium oxides, (U,Pu)O2. The properties for uranium dioxide with other additives (e.g., gadolinia) are also discussed. Material property correlations for cladding materials and gases are described in Sections 3 and 4, respectively

  14. Insight into interfacial effect on effective physical properties of fibrous materials. I. The volume fraction of soft interfaces around anisotropic fibers

    NASA Astrophysics Data System (ADS)

    Xu, Wenxiang; Wang, Han; Niu, Yanze; Bai, Jingtao

    2016-01-01

    With advances in interfacial properties characterization technologies, the interfacial volume fraction is a feasible parameter for evaluating effective physical properties of materials. However, there is a need to determine the interfacial volume fraction around anisotropic fibers and a need to assess the influence of such the interfacial property on effective properties of fibrous materials. Either ways, the accurate prediction of interfacial volume fraction is required. Towards this end, we put forward both theoretical and numerical schemes to determine the interfacial volume fraction in fibrous materials, which are considered as a three-phase composite structure consisting of matrix, anisotropic hard spherocylinder fibers, and soft interfacial layers with a constant dimension coated on the surface of each fiber. The interfacial volume fraction actually represents the fraction of space not occupied by all hard fibers and matrix. The theoretical scheme that adopts statistical geometry and stereological theories is essentially an analytic continuation from spherical inclusions. By simulating such three-phase chopped fibrous materials, we numerically derive the interfacial volume fraction. The theoretical and numerical schemes provide a quantitative insight that the interfacial volume fraction depends strongly on the fiber geometries like fiber shape, geometric size factor, and fiber size distribution. As a critical interfacial property, the present contribution can be further drawn into assessing effective physical properties of fibrous materials, which will be demonstrated in another paper (Part II) of this series.

  15. Insight into interfacial effect on effective physical properties of fibrous materials. I. The volume fraction of soft interfaces around anisotropic fibers.

    PubMed

    Xu, Wenxiang; Wang, Han; Niu, Yanze; Bai, Jingtao

    2016-01-01

    With advances in interfacial properties characterization technologies, the interfacial volume fraction is a feasible parameter for evaluating effective physical properties of materials. However, there is a need to determine the interfacial volume fraction around anisotropic fibers and a need to assess the influence of such the interfacial property on effective properties of fibrous materials. Either ways, the accurate prediction of interfacial volume fraction is required. Towards this end, we put forward both theoretical and numerical schemes to determine the interfacial volume fraction in fibrous materials, which are considered as a three-phase composite structure consisting of matrix, anisotropic hard spherocylinder fibers, and soft interfacial layers with a constant dimension coated on the surface of each fiber. The interfacial volume fraction actually represents the fraction of space not occupied by all hard fibers and matrix. The theoretical scheme that adopts statistical geometry and stereological theories is essentially an analytic continuation from spherical inclusions. By simulating such three-phase chopped fibrous materials, we numerically derive the interfacial volume fraction. The theoretical and numerical schemes provide a quantitative insight that the interfacial volume fraction depends strongly on the fiber geometries like fiber shape, geometric size factor, and fiber size distribution. As a critical interfacial property, the present contribution can be further drawn into assessing effective physical properties of fibrous materials, which will be demonstrated in another paper (Part II) of this series. PMID:26747814

  16. Processing and Properties of HfB2 Based Materials

    NASA Technical Reports Server (NTRS)

    Johnson, Sylvia M.; Beckman, Sarah; Irby, Edward; Ellerby, Don; Gasch, Matthew; Gusman, Michael

    2003-01-01

    Contents include the following: Modified hot pressing schedule has significantly improved UHTC billet processing: density and microstructure uniformity have improved. 2 in. dia. x 2 in. tall UHTC billets have been successfully hot pressed: scaled up billets have slightly higher density gradients axially than 1 in. billets. Hot press schedule has not been optimized for scaled up billets. Strengths and strength distributions are improving with experience: need to evaluate strength uniformity in the center of the billets. CTE or ARC materials compares favorably with heritage materials. Thermal conductivity of ARC materials considerably different than that of heritage materials.

  17. Dielectric properties measurement of substrate and support materials

    NASA Technical Reports Server (NTRS)

    Wu, Te-Kao

    1990-01-01

    In this paper a fast and straightforward waveguide measurement technique is described for the determination of the dielectric constant and loss tangent of many commercially available materials. These dielectric materials include Cuflon, Teflon, Arlon's polyimides, Lockheed's ceramic foams, and Rogers Duroid materials. The effective dielectric constant and loss tangent of Hexsel's honeycomb material is also measured by this method and is compared to the predicted data obtained using the volume averaging theory. The accuracy and other features of this measurement technique are also discussed.

  18. Novel characterization method for fibrous materials using non-contact acoustics: material properties revealed by ultrasonic perturbations.

    PubMed

    Periyaswamy, Thamizhisai; Balasubramanian, Karthikeyan; Pastore, Christopher

    2015-02-01

    Fibrous materials are unique hierarchical complex structures exhibiting a range of mechanical, thermal, optical and electrical properties. The inherent discontinuity at micro and macro levels, heterogeneity and multi-scale porosity differentiates fibrous materials from other engineering materials that are typically continuum in nature. These structural complexities greatly influence the techniques and modalities that can be applied to characterize fibrous materials. Typically, the material response to an applied external force is measured and used as a characteristic number of the specimen. In general, a range of equipment is in use to obtain these numbers to signify the material properties. Nevertheless, obtaining these numbers for materials like fiber ensembles is often time consuming, destructive, and requires multiple modalities. It is hypothesized that the material response to an applied acoustic frequency would provide a robust alternative characterization mode for rapid and non-destructive material analysis. This research proposes applying air-coupled ultrasonic acoustics to characterize fibrous materials. Ultrasonic frequency waves transmitted through fibrous assemblies were feature extracted to understand the correlation between the applied frequency and the material properties. Mechanical and thermal characteristics were analyzed using ultrasonic features such as time of flight, signal velocity, power and the rate of attenuation of signal amplitude. Subsequently, these temporal and spectral characteristics were mapped with the standard low-stress mechanical and thermal properties via an empirical artificial intelligence engine. A high correlation of >0.92 (S.D. 0.06) was observed between the ultrasonic features and the standard measurements. The proposed ultrasonic technique can be used toward rapid characterization of dynamic behavior of flexible fibrous assemblies.

  19. Review of thermal properties of graphite composite materials

    NASA Technical Reports Server (NTRS)

    Kourtides, D. A.

    1987-01-01

    Flammability, thermal, and selected mechanical properties of composites fabricated with epoxy and other thermally stable resin matrices are described. Properties which were measured included limiting-oxygen index, smoke evolution, thermal degradation products, total-heat release, heat-release rates, mass loss, flame spread, ignition resistance, thermogravimetric analysis, and selected mechanical properties. The properties of 8 different graphite composite panels fabricated using four different resin matrices and two types of graphite reinforcement are described. The resin matrices included: XU71775/H795, a blend of vinyl polystyryl pyridine and bismaleimide; H795, a bismaleimide; Cycom 6162, a phenolic; and PSP 6022M, a polystyryl pyridine. The graphite fiber used was AS-4 in the form of either tape or fabric. The properties of these composites were compared with epoxy composites. It was determined that the blend of vinyl polystyryl pyridine and bismaleimide (XU71775/H795) with the graphite tape was the optimum design giving the lowest heat release rate.

  20. 14 CFR 27.613 - Material strength properties and design values.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Material strength properties and design values. 27.613 Section 27.613 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Design and Construction General § 27.613 Material strength properties...

  1. 14 CFR 29.613 - Material strength properties and design values.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 1 2011-01-01 2011-01-01 false Material strength properties and design values. 29.613 Section 29.613 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Design and Construction General § 29.613 Material strength properties...

  2. 29 CFR 779.336 - Sales of building materials for commercial property construction.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... property construction. Sales of building materials to a contractor or speculative builder for the... 29 Labor 3 2010-07-01 2010-07-01 false Sales of building materials for commercial property construction. 779.336 Section 779.336 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR...

  3. 29 CFR 779.336 - Sales of building materials for commercial property construction.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... property construction. Sales of building materials to a contractor or speculative builder for the... 29 Labor 3 2012-07-01 2012-07-01 false Sales of building materials for commercial property construction. 779.336 Section 779.336 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR...

  4. 29 CFR 779.336 - Sales of building materials for commercial property construction.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... property construction. Sales of building materials to a contractor or speculative builder for the... 29 Labor 3 2011-07-01 2011-07-01 false Sales of building materials for commercial property construction. 779.336 Section 779.336 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR...

  5. 29 CFR 779.336 - Sales of building materials for commercial property construction.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... property construction. Sales of building materials to a contractor or speculative builder for the... 29 Labor 3 2013-07-01 2013-07-01 false Sales of building materials for commercial property construction. 779.336 Section 779.336 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR...

  6. 29 CFR 779.336 - Sales of building materials for commercial property construction.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... property construction. Sales of building materials to a contractor or speculative builder for the... 29 Labor 3 2014-07-01 2014-07-01 false Sales of building materials for commercial property construction. 779.336 Section 779.336 Labor Regulations Relating to Labor (Continued) WAGE AND HOUR...

  7. Characterization of the variation of the material properties in a freestanding inhomogeneous thin film

    NASA Astrophysics Data System (ADS)

    Cao, Xiaoshan; Jin, Feng; Jeon, Insu

    2010-12-01

    This Letter presents a new technique for measuring the variation of the material properties along the thickness in a freestanding inhomogeneous thin film. The analytical results reveal a simple relation between the material properties and the set of cut-off frequencies of Lamb waves. The influence of the graded properties on the variation of cut-off frequencies in three different kinds of models, including artificial FGM model, sub-surface damage model, and nano-porous thin film model, is discussed. These results provide theoretical guidance for characterizing the material property variations of MEMS/NEMS.

  8. Outgassing and contamination properties of prospective Apollo Telescope Mount materials.

    NASA Technical Reports Server (NTRS)

    Poehlmann, H. C.

    1972-01-01

    Some of the test techniques used to evaluate the outgassing and contamination characteristics of prospective Apollo telescope mount (ATM) materials are reviewed. These include a screening test providing information on weight losses of materials, weights of their condensed outgas products, and white-light scattered by the condensed products. They also include an ultraviolet-region screening test and a comprehensive continuous in situ weight-loss test. Examples are presented of data obtained from each of the tests on various prospective ATM materials.

  9. Simple Experiment for Studying the Properties of a Ferromagnetic Material.

    ERIC Educational Resources Information Center

    Sood, B. R.; And Others

    1980-01-01

    Describes an undergraduate physics experiment for studying Curie temperature and Curie constant of a ferromagnetic material. The exchange field (Weiss field) has been estimated by using these parameters. (HM)

  10. Transport properties of novel molybdenum bronze oxide materials

    NASA Astrophysics Data System (ADS)

    Hagmann, Joseph; Le, Son; Schneemeyer, Lynn; Olsen, Patti; Siegrist, Theo; Richter, Curt; Seiler, David

    2015-03-01

    Reduced ternary molybdenum oxides, or bronzes, offer an attractive materials platform to study a wide variety of remarkable physical phenomena, including charge density waves and superconductivity, in a system with highly varied structural chemistry. Interesting electronic behaviors in these materials arise from the strong hybridization of the 4d states of high-valent Mo with O p orbitals (conditions amenable to itinerancy) and reduced dimensionality arising from ordered O vacancies. This study aims to demonstrate the transport phenomena in a series of novel molybdenum bronze materials, including the new electrochemically-grown molybdenum bronzes, K3Li3Mo15O47, and the rare earth molybdenum bronze, HoMo16O44, and relate these behaviors to their experimentally-characterized structures. Dependence of the transport behavior on numerous experimental parameters, including temperature, magnetic field, drive voltage and drive current, and gate voltage, is presented to fully reveal charge carrier transport in these materials.

  11. The dynamic shear properties of structural honeycomb materials

    NASA Astrophysics Data System (ADS)

    Adams, R. D.; Maheri, M. R.

    A technique is described for measuring the dynamic modulus and damping of honeycomb materials. Results of tests on both aluminium and Nomex honeycombs are presented and compared with those reported in the literature.

  12. "Diffuse Scattering and the Fundamental Properties of materials"

    SciTech Connect

    Barabash, Rozaliya; Ice, Gene E; Turchi, Dr. Patrice E.A.

    2009-01-01

    This book highlights emerging research areas that exploit the ability of diffuse scattering to characterize local structures in materials. An emphasis is placed on the coming renaissance in diffuse scattering driven by new sources, better instrumentation, novel new materials, and advanced theories and methods. This book will provide an overview of some of the most exciting recent advances in diffuse scattering and provides guidance for students and researchers interested in new methods to characterize their samples.

  13. Correlations among ultrasonic propagation factors and fracture toughness properties of metallic materials

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1976-01-01

    Empirical evidence was developed to show that a close relation exists among fracture toughness, yield strength, and ultrasonic attenuation properties of metallic materials. The evidence was obtained by ultrasonic probing of specimens of two maraging steels and a titanium alloy. It was concluded that nondestructive ultrasonic methods can be used to indirectly evaluate fracture-related material properties. The results suggest that these nondestructive ultrasonic measurements can also serve as an adjunct to destructive testing, measurement, and analysis of fracture properties.

  14. Method of determining elastic and plastic mechanical properties of ceramic materials using spherical indenters

    DOEpatents

    Adler, Thomas A.

    1996-01-01

    The invention pertains a method of determining elastic and plastic mechanical properties of ceramics, intermetallics, metals, plastics and other hard, brittle materials which fracture prior to plastically deforming when loads are applied. Elastic and plastic mechanical properties of ceramic materials are determined using spherical indenters. The method is most useful for measuring and calculating the plastic and elastic deformation of hard, brittle materials with low values of elastic modulus to hardness.

  15. Investigation of the electrical properties of some dental composite restorative materials before and after laser exposure.

    PubMed

    ElKestawy, M A; Saafan, S A; Shehata, M M; Saafan, A M

    2006-10-01

    Some electrical properties, such as piezoelectricity, ac conductivity, dielectric constant and loss tangent of nine commercial types of dental composite restorative materials, have been investigated before and after laser exposure for 3s to study the effect of a probable laser exposure during some surgeries on the electrical properties of these materials. No piezoelectric effect has been found in these materials before and after laser exposure. The materials were found to be good insulators (very poorly conducting materials). The temperature and frequency dependence of ac conductivity, dielectric constant and loss tangent have not shown significant changes in values after laser exposure.

  16. Acquisition of material properties in production for sheet metal forming processes

    SciTech Connect

    Heingärtner, Jörg; Hora, Pavel; Neumann, Anja; Hortig, Dirk; Rencki, Yasar

    2013-12-16

    In past work a measurement system for the in-line acquisition of material properties was developed at IVP. This system is based on the non-destructive eddy-current principle. Using this system, a 100% control of material properties of the processed material is possible. The system can be used for ferromagnetic materials like standard steels as well as paramagnetic materials like Aluminum and stainless steel. Used as an in-line measurement system, it can be configured as a stand-alone system to control material properties and sort out inapplicable material or as part of a control system of the forming process. In both cases, the acquired data can be used as input data for numerical simulations, e.g. stochastic simulations based on real world data.

  17. Characterization of temperature-dependent optical material properties of polymer powders

    SciTech Connect

    Laumer, Tobias; Stichel, Thomas; Bock, Thomas; Amend, Philipp; Schmidt, Michael

    2015-05-22

    In former works, the optical material properties of different polymer powders used for Laser Beam Melting (LBM) at room temperature have been analyzed. With a measurement setup using two integration spheres, it was shown that the optical material properties of polymer powders differ significantly due to multiple reflections within the powder compared to solid bodies of the same material. Additionally, the absorption behavior of the single particles shows an important influence on the overall optical material properties, especially the reflectance of the powder bed. Now the setup is modified to allow measurements at higher temperatures. Because crystalline areas of semi-crystalline thermoplastics are mainly responsible for the absorption of the laser radiation, the influence of the temperature increase on the overall optical material properties is analyzed. As material, conventional polyamide 12 and polypropylene as new polymer powder material, is used. By comparing results at room temperature and at higher temperatures towards the melting point, the temperature-dependent optical material properties and their influence on the beam-matter interaction during the process are discussed. It is shown that the phase transition during melting leads to significant changes of the optical material properties of the analyzed powders.

  18. Teaching Acoustic Properties of Materials in Secondary School: Testing Sound Insulators

    ERIC Educational Resources Information Center

    Hernandez, M. I.; Couso, D.; Pinto, R.

    2011-01-01

    Teaching the acoustic properties of materials is a good way to teach physics concepts, extending them into the technological arena related to materials science. This article describes an innovative approach for teaching sound and acoustics in combination with sound insulating materials in secondary school (15-16-year-old students). Concerning the…

  19. Study made of dielectric properties of promising materials for cryogenic capacitors

    NASA Technical Reports Server (NTRS)

    Mathes, K. N.; Minnich, S. H.

    1967-01-01

    Experimental investigations were conducted to determine dielectric properties of promising materials for cryogenic capacitors to be used in energy storage and pulse applications. The three classes of materials investigated were inorganic bonded ferroelectric materials, anodic coatings on metal foils, and polar low temperature liquids.

  20. Synthesis Properties and Electron Spin Resonance Properties of Titanic Materials (abstract)

    NASA Astrophysics Data System (ADS)

    Cho, Jung Min; Lee, Jun; Kim, Tak Hee; Sun, Min Ho; Jang, Young Bae; Cho, Sung June

    2009-04-01

    Titanic materials were synthesized by hydrothermal method of TiO2 anatase in 10M LiOH, 10M NaOH, and 14M KOH at 130° C for 30 hours. Alkaline media were removed from the synthesized products using 0.1N HCl aqueous solution. The as-prepared samples were characterized by scanning electron microscope, transmission electron microscope, X-ray diffraction, Brunauer-Emmett-Teller isotherm, and electron spin resonance. Different shapes of synthesized products were observed through the typical electron microscope and indicated that the formation of the different morphologies depends on the treatment conditions of highly alkaline media. Many micropores were observed in the cubic or octahedral type of TiO2 samples through the typical electron microscope and Langmuir adsorption-desorption isotherm of liquid nitrogen at 77° K. Electron spin resonance studies have also been carried out to verify the existence of paramagnetic sites such as oxygen vacancies on the titania samples. The effect of alkali metal ions on the morphologies and physicochemical properties of nanoscale titania are discussed.

  1. Ion exchange properties of novel hydrous metal oxide materials

    SciTech Connect

    Gardner, T.J.; McLaughlin, L.I.

    1996-12-31

    Hydrous metal oxide (HMO) materials are inorganic ion exchangers which have many desirable characteristics for catalyst support applications, including high cation exchange capacity, anion exchange capability, high surface area, ease of adjustment of acidity and basicity, bulk or thin film preparation, and similar chemistry for preparation of various transition metal oxides. Cation exchange capacity is engineered into these materials through the uniform incorporation of alkali cations via manipulation of alkoxide chemistry. Specific examples of the effects of Na stoichiometry and the addition of SiO{sub 2} to hydrous titanium oxide (HTO) on ion exchange behavior will be given. Acid titration and cationic metal precursor complex exchange will be used to characterize the ion exchange behavior of these novel materials.

  2. Frequency scanning capaciflector for capacitively determining the material properties

    NASA Technical Reports Server (NTRS)

    Campbell, Charles E. (Inventor)

    1996-01-01

    A capaciflector sensor system scanned in frequency is used to detect the permittivity of the material of an object being sensed. A capaciflector sensor element, coupled to current-measuring voltage follower circuitry, is driven by a frequency swept oscillator and generates an output which corresponds to capacity as a function of the input frequency. This swept frequency information is fed into apparatus e.g. a digital computer for comparing the shape of the capacitance vs. frequency curve against characteristic capacitor vs. frequency curves for a variety of different materials which are stored, for example, in a digital memory of the computer or a database. Using a technique of pattern matching, a determination is made as to the identification of the material. Also, when desirable, the distance between the sensor and the object can be determined.

  3. Development and mechanical properties of construction materials from lunar simulants

    NASA Technical Reports Server (NTRS)

    Desai, Chandra S.

    1990-01-01

    The development of construction materials such as concrete from lunar soils without the use of water requires a different methodology than that used for conventional terrestrial concrete. Currently, this research involves two aspects: (1) liquefaction of lunar simulants with various additives in a furnace so as to produce a construction material like an intermediate ceramic; and (2) cyclic loading of simulant with different initial vacuums and densities with respect to the theoretical maximum densities (TMD). In both cases, bending, triaxial compression, extension, and hydrostatic tests will be performed to define the stress-strain strength response of the resulting materials. In the case of the intermediate ceramic, bending and available multiaxial test devices will be used, while for the compacted case, tests will be performed directly in the new device. The tests will be performed by simulating in situ confining conditions. A preliminary review of high-purity metal is also conducted.

  4. The Stress and Ballistic Properties of Granular Materials

    NASA Astrophysics Data System (ADS)

    Proud, William

    2015-06-01

    Granular materials are widespread in nature and in manufacturing. Their particulate nature gives them compressive strength of a similar order of magnitude as many continuous solids, while also giving a vanishing small tensile strength and a variable shear strength which is highly dependent on loading conditions. Previous studies have shown the effect of composition, morphology and particle size. However, compared to metals and polymers, granular materials are not so well characterised or understood. The talk will present some recent results in this study of granular materials and show how these studies fit within the wider context of this area. In particular studies which examine the changes in stress transmission and ballistic response will be emphasized. This paper is presented in collaboration with Dr. Daniel Eakins and Dr. David Chapman of the Institute of Shock Physics. The Institute of Shock Physics acknowledges the support of the Atomic Weapons Establishment, Aldermaston, United Kingdom and Imperial.

  5. Nonlinear optical properties of organic materials: A theoretical study

    NASA Technical Reports Server (NTRS)

    Cardelino, Beatriz H.

    1991-01-01

    Replacement of electronic switching circuits in computing and telecommunication systems with purely optical devices offers the potential for extremely high throughput and compact information processing systems. The potential application of organic materials containing molecules with large nonresonant nonlinear effects in this area have triggered intensive research during the last decade. Interest on this area was due to two facts: (1) that many organic materials show nonlinearities that are orders of magnitude larger than those of conventional inorganic materials such as lithium niobate and potassium dihydrogen phosphate; and (2) that organic materials show much flexibility in terms of molecular designs. Some of the desirable characteristics that these materials should have are that they be transparent to the frequency of the incident laser and its second or third harmonic, that they have a high damage threshold, and, in the case of second-order effects, that their crystal structure or molecular orientation be accentric. Since polymeric assemblages can enhance the nonlinear response of organic molecules severalfold, efforts have been directed toward the synthesis of thin films with interpenetrating lattices of electroactive molecules. The goal of this theoretical investigation is to predict the magnitude of the molecular polarizabilities of organic molecules that could be incorporated into films. These calculations are intended to become a powerful tool to assist material scientists in screening for the best candidates for optical applications. The procedure that was developed for the present calculations is based on the static-field approach, and is a modification to the method developed by Dewar and Stewart, 1984 for calculating molecular linear polarizabilities.

  6. Mechanical properties of materials with nanometer scale dimensions and microstructures

    SciTech Connect

    Nix, William D.

    2015-08-05

    The three-year grant for which this final report is required extends from 2011 to 2015, including a one-year, no-cost extension. But this is just the latest in a long series of grants from the Division of Materials Sciences of DOE and its predecessor offices and agencies. These include contracts or grants from: the Metallurgy Branch of the U.S. Atomic Energy Commission (from the late 1960s to the mid-1970s), the Materials Science Program of the U.S. Energy Research and Development Administration (from the mid- to late- 1970s), and the Division of Materials Science of the Office of Basic Energy Sciences of the U.S. Department of Energy (from the early 1980s to the present time). Taken all together, these offices have provided nearly continuous support for our research for nearly 50 years. As we have said on many occasions, this research support has been the best we have ever had, by far. As we look back on the nearly five decades of support from the Division of Materials Sciences and the predecessor offices, we find that the continuity of support that we have enjoyed has allowed us to be most productive and terms of papers published, doctoral students graduated and influence on the field of materials science. This report will, of course, cover the three-year period of the present grant, in summary form, but will also make reference to the output that resulted from support of previous grants from the Division of Materials Sciences and its predecessor offices.

  7. Properties of Smoke from Overheated Materials in Low-Gravity

    NASA Technical Reports Server (NTRS)

    Urban, David L.; Ruff, Gary A.; Sheredy, William; Cleary, Thomas; Yang, Jiann; Mulholland, George; Yuan, Zeng-Guang

    2009-01-01

    Smoke particle size measurements were obtained under low-gravity conditions by overheating several materials typical of those found in spacecraft. The measurements included integral measurements of the smoke particles and physical sample of the particles for Transmission Electron Microscope analysis. The integral moments were combined to obtain geometric mean particle sizes and geometric standard deviations. These results are presented with the details of the instrument calibrations. The experimental results show that, for the materials tested, a substantial portion of the smoke particles are below 500 nm in diameter.

  8. Real and Imaginary Properties of Epsilon-Near-Zero Materials

    NASA Astrophysics Data System (ADS)

    Javani, Mohammad H.; Stockman, Mark I.

    2016-09-01

    From the fundamental principle of causality we show that epsilon-near-zero (ENZ) materials with a very low (asymptotically zero) intrinsic dielectric loss do necessarily possess a very low (asymptotically zero) group velocity of electromagnetic wave propagation. This leads to the loss function being singular and causes high nonradiative damping of the optical resonators and emitters (plasmonic nanoparticles, quantum dots, chromophore molecules) embedded into them or placed at their surfaces. Rough ENZ surfaces do not exhibit hot spots of local fields suggesting that surface modes are overdamped. Reflectors and waveguides also show very large losses both for realistic and idealized ENZ materials.

  9. Concepts and techniques for ultrasonic evaluation of material mechanical properties

    NASA Technical Reports Server (NTRS)

    Vary, A.

    1980-01-01

    Ultrasonic methods that can be used for material strength are reviewed. Emergency technology involving advanced ultrasonic techniques and associated measurements is described. It is shown that ultrasonic NDE is particularly useful in this area because it involves mechanical elastic waves that are strongly modulated by morphological factors that govern mechanical strength and also dynamic failure modes. These aspects of ultrasonic NDE are described in conjunction with advanced approaches and theoretical concepts for signal acquisition and analysis for materials characterization. It is emphasized that the technology is in its infancy and that much effort is still required before the techniques and concepts can be transferred from laboratory to field conditions.

  10. Electrical properties of materials for high temperature strain gage applications

    NASA Technical Reports Server (NTRS)

    Brittain, John O.

    1989-01-01

    A study was done on the electrical resistance of materials that are potentially useful as resistance strain gages at high temperatures under static strain conditions. Initially a number of binary alloys were investigated. Later, third elements were added to these alloys, all of which were prepared by arc melting. Several transition metals were selected for experimentation, most prepared as thin films. Difficulties with electrical contacts thwarted efforts to extend measurements to the targeted 1000 C, but results obtained did suggest ways of improving the electrical resistance characteristics of certain materials.

  11. Real and Imaginary Properties of Epsilon-Near-Zero Materials.

    PubMed

    Javani, Mohammad H; Stockman, Mark I

    2016-09-01

    From the fundamental principle of causality we show that epsilon-near-zero (ENZ) materials with a very low (asymptotically zero) intrinsic dielectric loss do necessarily possess a very low (asymptotically zero) group velocity of electromagnetic wave propagation. This leads to the loss function being singular and causes high nonradiative damping of the optical resonators and emitters (plasmonic nanoparticles, quantum dots, chromophore molecules) embedded into them or placed at their surfaces. Rough ENZ surfaces do not exhibit hot spots of local fields suggesting that surface modes are overdamped. Reflectors and waveguides also show very large losses both for realistic and idealized ENZ materials. PMID:27636495

  12. Transient Infrared Measurement of Laser Absorption Properties of Porous Materials

    NASA Astrophysics Data System (ADS)

    Marynowicz, Andrzej

    2016-06-01

    The infrared thermography measurements of porous building materials have become more frequent in recent years. Many accompanying techniques for the thermal field generation have been developed, including one based on laser radiation. This work presents a simple optimization technique for estimation of the laser beam absorption for selected porous building materials, namely clinker brick and cement mortar. The transient temperature measurements were performed with the use of infrared camera during laser-induced heating-up of the samples' surfaces. As the results, the absorbed fractions of the incident laser beam together with its shape parameter are reported.

  13. Direct measurement of local material properties within living embryonic tissues

    NASA Astrophysics Data System (ADS)

    Serwane, Friedhelm; Mongera, Alessandro; Rowghanian, Payam; Kealhofer, David; Lucio, Adam; Hockenbery, Zachary; Campàs, Otger

    The shaping of biological matter requires the control of its mechanical properties across multiple scales, ranging from single molecules to cells and tissues. Despite their relevance, measurements of the mechanical properties of sub-cellular, cellular and supra-cellular structures within living embryos pose severe challenges to existing techniques. We have developed a technique that uses magnetic droplets to measure the mechanical properties of complex fluids, including in situ and in vivo measurements within living embryos ,across multiple length and time scales. By actuating the droplets with magnetic fields and recording their deformation we probe the local mechanical properties, at any length scale we choose by varying the droplets' diameter. We use the technique to determine the subcellular mechanics of individual blastomeres of zebrafish embryos, and bridge the gap to the tissue scale by measuring the local viscosity and elasticity of zebrafish embryonic tissues. Using this technique, we show that embryonic zebrafish tissues are viscoelastic with a fluid-like behavior at long time scales. This technique will enable mechanobiology and mechano-transduction studies in vivo, including the study of diseases correlated with tissue stiffness, such as cancer.

  14. 41 CFR 101-42.209 - Cost of care and handling of hazardous materials and certain categories of property.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... of hazardous materials and certain categories of property. 101-42.209 Section 101-42.209 Public... OF PROPERTY 42.2-Utilization of Hazardous Materials and Certain Categories of Property § 101-42.209 Cost of care and handling of hazardous materials and certain categories of property. The...

  15. 41 CFR 101-42.206 - Special requirements for utilization of hazardous materials and certain categories of property.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... utilization of hazardous materials and certain categories of property. 101-42.206 Section 101-42.206 Public... OF PROPERTY 42.2-Utilization of Hazardous Materials and Certain Categories of Property § 101-42.206 Special requirements for utilization of hazardous materials and certain categories of property....

  16. Interdisciplinary research concerning the nature and properties of ceramic materials

    NASA Technical Reports Server (NTRS)

    Mueller, J. I.

    1973-01-01

    Research projects involving the development of ceramic materials are discussed. The following areas of research are reported: (1) refractory structural ceramics, (2) solid electrolyte ceramics, and (3) ceramic processing. The laboratory equipment used and the procedures followed for various development and evaluation techniques are described.

  17. Physical Properties of Various Materials Relevant to Granular Flow

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because of the ubiquitous nature of granular materials, ranging from natural avalanches to industrial storage and processing operations, interest in quantifying and predicting the dynamics of granular flow continues to increase. The objective of this study was to investigate various physical proper...

  18. Computational screening of organic materials towards improved photovoltaic properties

    NASA Astrophysics Data System (ADS)

    Dai, Shuo; Olivares-Amaya, Roberto; Amador-Bedolla, Carlos; Aspuru-Guzik, Alan; Borunda, Mario

    2015-03-01

    The world today faces an energy crisis that is an obstruction to the development of the human civilization. One of the most promising solutions is solar energy harvested by economical solar cells. Being the third generation of solar cell materials, organic photovoltaic (OPV) materials is now under active development from both theoretical and experimental points of view. In this study, we constructed a parameter to select the desired molecules based on their optical spectra performance. We applied it to investigate a large collection of potential OPV materials, which were from the CEPDB database set up by the Harvard Clean Energy Project. Time dependent density functional theory (TD-DFT) modeling was used to calculate the absorption spectra of the molecules. Then based on the parameter, we screened out the top performing molecules for their potential OPV usage and suggested experimental efforts toward their synthesis. In addition, from those molecules, we summarized the functional groups that provided molecules certain spectrum capability. It is hoped that useful information could be mined out to provide hints to molecular design of OPV materials.

  19. Materials with Adsorptive Properties from Agricultural By-Products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This presentation will summarize the use of agricultural by-products (e.g., animal manure and plant waste) as starting materials to adsorb environmental contaminants such as mercury from air, ammonia from air, metal ions from water, and chlorinated organics from water. The results show that the mat...

  20. PROPERTIES OF FIBERBOARD OVERPACK MATERIAL IN THE 9975 SHIPPING PACKAGE FOLLOWING THERMAL AGING

    SciTech Connect

    Daugherty, W

    2007-01-10

    Many radioactive material shipping packages incorporate cane fiberboard overpacks for thermal insulation and impact resistance. Mechanical, thermal and physical properties have been measured on cane fiberboard following thermal aging in several temperature/humidity environments. Several of the measured properties change significantly over time in the more severe environments, while other properties are relatively constant. These properties continue to be tracked, with the goal of developing a model for predicting a service life under long-term storage conditions.

  1. Mechanical Properties of Air Plasma Sprayed Environmental Barrier Coating (EBC) Materials

    NASA Technical Reports Server (NTRS)

    Richards, Bradley; Zhu, Dongming; Ghosn, Louis; Wadley, Haydn

    2015-01-01

    Development work in Environmental Barrier Coatings (EBCs) for Ceramic Matrix Composites (CMCs) has focused considerably on the identification of materials systems and coating architectures to meet application needs. The evolution of these systems has occurred so quickly that modeling efforts and requisite data for modeling lag considerably behind development. Materials property data exists for many systems in the bulk form, but the effects of deposition on the critical properties of strength and fracture behavior are not well studied. We have plasma sprayed bulk samples of baseline EBC materials (silicon, ytterbium disilicate) and tested the mechanical properties of these materials to elicit differences in strength and toughness. We have also endeavored to assess the mixed-mode fracture resistance, Gc, of silicon in a baseline EBC applied to SiCSiC CMC via four point bend test. These results are compared to previously determined properties of the comparable bulk material.

  2. The Cryogenic Properties of Several Aluminum-Beryllium Alloys and a Beryllium Oxide Material

    NASA Technical Reports Server (NTRS)

    Gamwell, Wayne R.; McGill, Preston B.

    2003-01-01

    Performance related mechanical properties for two aluminum-beryllium (Al-Be) alloys and one beryllium-oxide (BeO) material were developed at cryogenic temperatures. Basic mechanical properties (Le., ultimate tensile strength, yield strength, percent elongation, and elastic modulus were obtained for the aluminum-beryllium alloy, AlBeMetl62 at cryogenic [-195.5"C (-320 F) and -252.8"C (-423"F)I temperatures. Basic mechanical properties for the Be0 material were obtained at cyrogenic [- 252.8"C (-423"F)] temperatures. Fracture properties were obtained for the investment cast alloy Beralcast 363 at cryogenic [-252.8"C (-423"F)] temperatures. The AlBeMetl62 material was extruded, the Be0 material was hot isostatic pressing (HIP) consolidated, and the Beralcast 363 material was investment cast.

  3. Acousto-Ultrasonics to Assess Material and Structural Properties

    NASA Astrophysics Data System (ADS)

    Kautz, Harold E.

    2002-10-01

    This report was created to serve as a manual for applying the Acousto-Ultrasonic NDE method, as practiced at NASA Glenn, to the study of materials and structures for a wide range of applications. Three state of the art acousto-ultrasonic (A-U) analysis parameters, ultrasonic decay (UD) rate, mean time (or skewing factor, "s"), and the centroid of the power spectrum, "fc," have been studied and applied at GRC for NDE interrogation of various materials and structures of aerospace interest. In addition to this, a unique application of Lamb wave analysis is shown. An appendix gives a brief overview of Lamb Wave analysis. This paper presents the analysis employed to calculate these parameters and the development and reasoning behind their use. It also discusses the planning of A-U measurements for materials and structures to be studied. Types of transducer coupling are discussed including contact and non-contact via laser and air. Experimental planning includes matching transducer frequency range to material and geometry of the specimen to be studied. The effect on results of initially zeroing the DC component of the ultrasonic waveform is compared with not doing so. A wide range of interrogation problems are addressed via the application of these analysis parameters to real specimens is shown for five cases: Case 1: Differences in density in 0 SiC/RBSN ceramic matrix composite. Case 2: Effect of tensile fatigue cycling in +/-45 SiC/SiC ceramic matrix composite. Case 3: Detecting creep life, and failure, in Udimet 520 Nickel-Based Super Alloy. Case 4: Detecting Surface Layer Formation in T-650-35/PMR-15 Polymer Matrix Composites Panels due to Thermal Aging. Case 5: Detecting Spin Test Degradation in PMC Flywheels. Among these cases a wide range of materials and geometries are studied.

  4. Acousto-ultrasonics to Assess Material and Structural Properties

    NASA Technical Reports Server (NTRS)

    Kautz, Harold E.

    2002-01-01

    This report was created to serve as a manual for applying the Acousto-Ultrasonic NDE method, as practiced at NASA Glenn, to the study of materials and structures for a wide range of applications. Three state of the art acousto-ultrasonic (A-U) analysis parameters, ultrasonic decay (UD) rate, mean time (or skewing factor, "s"), and the centroid of the power spectrum, "f(sub c)," have been studied and applied at GRC for NDE interrogation of various materials and structures of aerospace interest. In addition to this, a unique application of Lamb wave analysis is shown. An appendix gives a brief overview of Lamb Wave analysis. This paper presents the analysis employed to calculate these parameters and the development and reasoning behind their use. It also discusses the planning of A-U measurements for materials and structures to be studied. Types of transducer coupling are discussed including contact and non-contact via laser and air. Experimental planning includes matching transducer frequency range to material and geometry of the specimen to be studied. The effect on results of initially zeroing the DC component of the ultrasonic waveform is compared with not doing so. A wide range of interrogation problems are addressed via the application of these analysis parameters to real specimens is shown for five cases: Case 1: Differences in density in [0] SiC/RBSN ceramic matrix composite. Case 2: Effect of tensile fatigue cycling in [+/-45] SiC/SiC ceramic matrix composite. Case 3: Detecting creep life, and failure, in Udimet 520 Nickel-Based Super Alloy. Case 4: Detecting Surface Layer Formation in T-650-35/PMR-15 Polymer Matrix Composites Panels due to Thermal Aging. Case 5: Detecting Spin Test Degradation in PMC Flywheels. Among these cases a wide range of materials and geometries are studied.

  5. Dielectric Characteristics of Microstructural Changes and Property Evolution in Engineered Materials

    NASA Astrophysics Data System (ADS)

    Clifford, Jallisa Janet

    Heterogeneous materials are increasingly used in a wide range of applications such as aerospace, civil infrastructure, fuel cells and many others. The ability to take properties from two or more materials to create a material with properties engineered to needs is always very attractive. Hence heterogeneous materials are evolving into more complex formulations in multiple disciplines. Design of microstructure at multiple scales control the global functional properties of these materials and their structures. However, local microstructural changes do not directly cause a proportional change to the global properties (such as strength and stiffness). Instead, local changes follow an evolution process including significant interactions. Therefore, in order to understand property evolution of engineered materials, microstructural changes need to be effectively captured. Characterizing these changes and representing them by material variables will enable us to further improve our material level understanding. In this work, we will demonstrate how microstructural features of heterogeneous materials can be described quantitatively using broadband dielectric spectroscopy (BbDS). The frequency dependent dielectric properties can capture the change in material microstructure and represent these changes in terms of material variables, such as complex permittivity. These changes in terms of material properties can then be linked to a number of different conditions, such as increasing damage due to impact or fatigue. Two different broadband dielectric spectroscopy scanning modes are presented: bulk measurements and continuous scanning to measure dielectric property change as a function of position across the specimen. In this study, we will focus on ceramic materials and fiber reinforced polymer matrix composites as test bed material systems. In the first part of the thesis, we will present how different micro-structural design of porous ceramic materials can be captured

  6. Numerical determination of the material properties of porous dust cakes

    NASA Astrophysics Data System (ADS)

    Paszun, D.; Dominik, C.

    2008-06-01

    The formation of planetesimals requires the growth of dust particles through collisions. Micron-sized particles must grow by many orders of magnitude in mass. To understand and model the processes during this growth, both the mechanical properties and the interaction cross sections of aggregates with surrounding gas must be well understood. Recent advances in experimental (laboratory) studies now provide the background for pushing numerical aggregate models to a new level. We present the calibration of a previously tested model of aggregate dynamics. We use plastic deformation of surface asperities as the physical model to match the velocities needed for sticking with experimental results. The modified code is then used to compute both the compression strength and the velocity of sound in the aggregate at different densities. We compare these predictions with experimental results and conclude that the new code is capable of studying the properties of small aggregates.

  7. Novel applications exploiting the thermal properties of nanostructured materials.

    SciTech Connect

    Eastman, J. A.

    1998-11-20

    A new class of heat transfer fluids, termed nanofluids, has been developed by suspending nanocrystalline particles in liquids. Due to the orders-of-magnitude larger thermal conductivities of solids compared to those of liquids such as water, significantly enhanced thermal properties are obtained with nanofluids. The use of nanofluids could impact many industrial sectors, including transportation, energy supply and production, electronics, textiles, and paper production by, for example, decreasing pumping power needs or reducing heat exchanger sizes. In contrast to the enhancement in effective thermal transport rates that is obtained when nanoparticles are suspended in fluids, nanocrystalline coatings are expected to exhibit reduced thermal conductivities compared to coarse-grained coatings. Reduced thermal conductivities are predicted to arise because of a reduction in the mean free path of phonons due to presence of grain boundaries. This behavior, combined with improved mechanical properties, makes nanostructured zirconia coatings excellent candidates for future applications as thermal barriers.

  8. State-of-the-art review of materials properties of nuclear waste forms.

    SciTech Connect

    Mendel, J. E.; Nelson, R. D.; Turcotte, R. P.; Gray, W. J.; Merz, M. D.; Roberts, F. P.; Weber, W. J.; Westsik, Jr., J. H.; Clark, D. E.

    1981-04-01

    The Materials Characterization Center (MCC) was established at the Pacific Northwest Laboratory to assemble a standardized nuclear waste materials data base for use in research, systems and facility design, safety analyses, and waste management decisions. This centralized data base will be provided through the means of a Nuclear Waste Materials Handbook. The first issue of the Handbook will be published in the fall of 1981 in looseleaf format so that it can be updated as additional information becomes available. To ensure utmost reliability, all materials data appearing in the Handbook will be obtained by standard procedures defined in the Handbook and approved by an independent Materials Review Board (MRB) comprised of materials experts from Department of Energy laboratories and from universities and industry. In the interim before publication of the Handbook there is need for a report summarizing the existing materials data on nuclear waste forms. This review summarizes materials property data for the nuclear waste forms that are being developed for immobilization of high-level radioactive waste. It is intended to be a good representation of the knowledge concerning the properties of HLW forms as of March 1981. The table of contents lists the following topics: introduction which covers waste-form categories, and important waste-form materials properties; physical properties; mechanical properties; chemical durability; vaporization; radiation effects; and thermal phase stability.

  9. Mechanical properties and material characterization of polysialate structural composites

    NASA Astrophysics Data System (ADS)

    Foden, Andrew James

    One of the major concerns in using Fiber Reinforced Composites in applications that are subjected to fire is their resistance to high temperature. Some of the fabrics used in FRC, such as carbon, are fire resistant. However, almost all the resins used cannot withstand temperatures higher than 200°C. This dissertation deals with the development and use of a potassium aluminosilicate (GEOPOLYMER) resin that is inorganic and can sustain more than 1000°C. The results presented include the mechanical properties of the unreinforced polysialate matrix in tension, flexure, and compression as well as the strain capacities and surface energy. The mechanical properties of the matrix reinforced with several different fabrics were obtained in flexure, tension, compression and shear. The strength and stiffness of the composite was evaluated for each loading condition. Tests were conducted on unexposed samples as well as samples exposed to temperatures from 200 to 1000°C. Fatigue properties were determined using flexural loading. A study of the effect of several processing variables on the properties of the composite was undertaken to determine the optimum procedure for manufacturing composite plates. The processing variables studied were the curing temperature and pressure, and the post cure drying time required to remove any residual water. The optimum manufacturing conditions were determined using the void content, density, fiber volume fraction, and flexural strength. Analytical models are presented based on both micro and macro mechanical analysis of the composite. Classic laminate theory is used to evaluate the state of the composite as it is being loaded to determine the failure mechanisms. Several failure criteria theories are considered. The analysis is then used to explain the mechanical behavior of the composite that was observed during the experimental study.

  10. Tensile properties of ADI material in water and gaseous environments

    SciTech Connect

    Rajnovic, Dragan; Balos, Sebastian; Sidjanin, Leposava; Eric Cekic, Olivera; Grbovic Novakovic, Jasmina

    2015-03-15

    Austempered ductile iron (ADI) is an advanced type of heat treated ductile iron, having comparable mechanical properties as forged steels. However, it was found that in contact with water the mechanical properties of austempered ductile irons decrease, especially their ductility. Despite considerable scientific attention, the cause of this phenomenon remains unclear. Some authors suggested that hydrogen or small atom chemisorption causes the weakening of the surface atomic bonds. To get additional reliable data of that phenomenon, in this paper, two different types of austempered ductile irons were tensile tested in various environments, such as: argon, helium, hydrogen gas and water. It was found that only the hydrogen gas and water gave a statistically significant decrease in mechanical properties, i.e. cause embrittlement. Furthermore, the fracture surface analysis revealed that the morphology of the embrittled zone near the specimen surface shares similarities to the fatigue micro-containing striation-like lines, which indicates that the morphology of the brittle zone may be caused by cyclic local-chemisorption, micro-embrittlement and local-fracture. - Highlights: • In contact with water and other liquids the ADI suddenly exhibits embrittlement. • The embrittlement is more pronounced in water than in the gaseous hydrogen. • The hydrogen chemisorption into ADI surface causes the formation of a brittle zone. • The ADI austempered at lower temperatures (300 °C) is more resistant to embrittlement.

  11. Development of graphene oxide materials with controllably modified optical properties

    NASA Astrophysics Data System (ADS)

    Naumov, Anton; Galande, Charudatta; Mohite, Aditya; Ajayan, Pulickel; Weisman, R. Bruce

    2015-03-01

    One of the major current goals in graphene research is modifying its optical and electronic properties through controllable generation of band gaps. To achieve this, we have studied the changes in optical properties of reduced graphene oxide (RGO) in water suspension upon the exposure to ozone. Ozonation for the periods of 5 to 35 minutes has caused a dramatic bleaching of its absorption and the concurrent appearance of strong visible fluorescence in previously nonemissive samples. These observed spectral changes suggest a functionalization-induced band gap opening. The sample fluorescence induced by ozonation was found to be highly pH-dependent: sharp and structured emission features resembling the spectra of molecular fluorophores were present at basic pH values, but this emission reversibly broadened and red-shifted in acidic conditions. These findings are consistent with excited state protonation of the emitting species in acidic media. Oxygen-containing addends resulting from the ozonation were detected by XPS and FTIR spectroscopy and related to optical transitions in localized graphene oxide fluorophores by computational modeling. Further research will be directed toward producing graphene-based optoelectronic devices with tailored and controllable optical properties.

  12. Materials design and properties of nitride phosphors for LEDs

    NASA Astrophysics Data System (ADS)

    Schmidt, Peter; Tuecks, Andreas; Meyer, Joerg; Bechtel, Helmut; Wiechert, Detlef; Mueller-Mach, Regina; Mueller, Gerd; Schnick, Wolfgang

    2007-09-01

    We have studied structure-property relations of Eu(II) doped nitridosilicates M IISi 5N 8 and MSi 7N 10 (M = Sr, Ba). For both systems that are described as being efficient LED phosphors, we show that a detailed examination of the local activator environment in combination with net positive charge calculations for Eu with the EHTB-MO method allows a qualitative prediction of the luminescence properties of nitridosilicate LED phosphors. The non-linear shift of the amber to red emission of solid solutions Ba 2-xSr xSi 5N 8:Eu is explained by a non-statistical distribution of Eu over the available lattice sites. The Stokes shift differences between the two available Eu sites are significantly larger for Ba IISi 5N 8:Eu than for Sr IISi 5N 8:Eu. In contradiction to literature data, BaSi 7N 10:Eu shows emission in the cyan spectral region and a large Stokes shift, in accordance with the host lattice geometry and the electronic structure calculations that were carried out. SiAlON formation as an additional design tool to tune nitridosilicate phosphor emission properties is demonstrated for Sr IISi 5 -xAl xO xN 8-x:Eu. (Al,O) incorporation leads to anisotropic changes of lattice constants and a red shift and broadening of the Eu emission.

  13. Imparting the unique properties of DNA into complex material architectures and functions

    PubMed Central

    Xu, Phyllis F.; Noh, Hyunwoo; Lee, Ju Hun; Domaille, Dylan W.; Nakatsuka, Matthew A.; Goodwin, Andrew P.; Cha, Jennifer N.

    2014-01-01

    While the remarkable chemical and biological properties of DNA have been known for decades, these properties have only been imparted into materials with unprecedented function much more recently. The inimitable ability of DNA to form programmable, complex assemblies through stable, specific, and reversible molecular recognition has allowed the creation of new materials through DNA’s ability to control a material’s architecture and properties. In this review we discuss recent progress in how DNA has brought unmatched function to materials, focusing specifically on new advances in delivery agents, devices, and sensors. PMID:25525408

  14. GIGABAR MATERIAL PROPERTIES EXPERIMENTS ON NIF AND OMEGA

    SciTech Connect

    Swift, D C; Hawreliak, J A; Braun, D; Kritcher, A; Glenzer, S; Collins, G W; Rothman, S D; Chapman, D; Rose, S

    2011-08-04

    The unprecedented laser capabilities of the National Ignition Facility (NIF) make it possible for the first time to countenance laboratory-scale experiments in which gigabar pressures can be applied to a reasonable volume of material, and sustained long enough for percent level equation of state measurements to be made. We describe the design for planned experiments at the NIF, using a hohlraum drive to induce a spherically-converging shock in samples of different materials. Convergence effects increase the shock pressure to several gigabars over a radius of over 100 microns. The shock speed and compression will be measured radiographically over a range of pressures using an x-ray streak camera. In some cases, we will use doped layers to allow a radiographic measurement of particle velocity.

  15. Investigation of composite materials property requirements for sonic fatigue research

    NASA Technical Reports Server (NTRS)

    Patrick, H. V. L.

    1985-01-01

    Experimental techniques for determining the extensional and bending stiffness characteristics for symmetric laminates are presented. Vibrational test techniques for determining the dynamic modulus and material damping are also discussed. Partial extensional stiffness results intially indicate that the laminate theory used for predicting stiffness is accurate. It is clearly shown that the laminate theory can only be as accurate as the physical characteristics describing the lamina, which may vary significantly. It is recommended that all of the stiffness characteristics in both extension and bending be experimentally determined to fully verify the laminate theory. Dynamic modulus should be experimentally evaluated to determine if static data adequately predicts dynamic behavior. Material damping should also be ascertained because laminate damping is an order of magnitude greater than found in common metals and can significantly effect the displacement response of composite panels.

  16. Materials Properties at Internal Interfaces: Fundamental Atomic Issues

    SciTech Connect

    Browning, Nigel

    2014-09-12

    During the course of this research, the microscopy methods were applied to many different systems (see publication list). However, the work can be broadly classified into three main areas: the statistical distribution of grain boundary structures under different doping conditions, the identification of individual dopant atoms in oxide materials, and the evaluation of nucleation and growth processes in liquid and more recently. The main results from each of these efforts will be discussed in the final report.

  17. Thermophysical properties data on graphite/polyimide composite materials

    NASA Technical Reports Server (NTRS)

    Campbell, M. D.; Burleigh, D. D.

    1979-01-01

    Experimental data for the thermal conductivity, thermal expansion, specific heat, and emittance of laminates of HTS/NR 150B2 and HTS/PMR 15 are presented. Measurements were made over the temperature range 116 K to 588 K. Results for the two materials were similar with some differences attributable to laminate quality. Higher expansion coefficients for the HTS/PMR 15 specimens in the resin-dominated directions indicate a higher coefficient for PMR 15 than NR 150B2.

  18. The Interpretation of XPS Spectra: Insights Into Materials Properties

    SciTech Connect

    Bagus, Paul S.; Ilton, Eugene S.; Nelin, Constance J.

    2013-06-01

    We review basic and advanced concepts needed for the correct analysis of XPS features. We place these concepts on rigorous foundations and explore their physical and chemical meanings without stressing the derivation of the mathematical formulations, which can be found in the cited literature. The significance and value of combining theory and experiment is demonstrated by discussions of the physical and chemical origins of the main and satellite XPS features for a variety of molecular and condensed phase materials.

  19. Non-Contact Measurements of Creep Properties of Refractory Materials

    NASA Technical Reports Server (NTRS)

    Lee, Jonghyun; Bradshaw, Richard C.; Hyers, Robert W.; Rogers, Jan R.; Rathz, Thomas J.; Wall, James J.; Choo, Hahn; Liaw, Peter

    2006-01-01

    State-of-the-art technologies for hypersonic aircraft, nuclear electric/thermal propulsion for spacecraft, and more efficient jet engines are driving ever more demanding needs for high-temperature (>2000 C) materials. At such high temperatures, creep rises as one of the most important design factors to be considered. Since conventional measurement techniques for creep resistance are limited to about 17OO0C, a new technique is in demand for higher temperatures. This paper presents a non-contact method using electrostatic levitation (ESL) which is applicable to both metallic and non-metallic materials. The samples were rotated quickly enough to cause creep deformation by centrifugal acceleration. The deformation of the samples was captured with a high speed camera and then the images were analyzed to estimate creep resistance. Finite element analyses were performed and compared to the experiments to verify the new method. Results are presented for niobium and tungsten, representative refractory materials at 2300 C and 2700 C respectively.

  20. Physicochemical Properties of Root Canal Filling Materials for Primary Teeth.

    PubMed

    Segato, Raquel Assed Bezerra; Pucinelli, Carolina Maschietto; Ferreira, Danielly Cunha Araújo; Daldegan, Andiara De Rossi; Silva, Roberto S da; Nelson-Filho, Paulo; Silva, Léa A B da

    2016-01-01

    This study evaluated physiochemical proprieties of a calcium hydroxide-based paste (Calen®) combined with a zinc oxide cement at different ratios (1:0.5, 1:0.65, 1:0.8 and 1:1). Materials were compared regarding setting time, pH variation, radiopacity, solubility, dimensional changes, flow and release of chemical elements. Data were analyzed statistically by ANOVA and Tukey's test (α=0.05). Longer setting time and higher dimensional changes and solubility values were exhibited by 1:0.65 and 1:0.5 ratios (p<0.05). The 1:0.5 and 1:0.65 ratios exhibited the highest pH values at all time points. All materials exhibited high radiopacity values. Significant differences were found only between 1:0.5 and 1:1 ratios for calcium and zinc release (p<0.05), whereas the amount of zirconium was similar among all groups (p>0.05). Considering the evaluated proprieties, combinations of Calen® paste with ZO at 1:0.5 and 1:0.65 ratios had the best results as root canal filling materials for use in primary teeth. PMID:27058384

  1. The actual goals of geoethics

    NASA Astrophysics Data System (ADS)

    Nemec, Vaclav

    2014-05-01

    The most actual goals of geoethics have been formulated as results of the International Conference on Geoethics (October 2013) held at the geoethics birth-place Pribram (Czech Republic): In the sphere of education and public enlightenment an appropriate needed minimum know how of Earth sciences should be intensively promoted together with cultivating ethical way of thinking and acting for the sustainable well-being of the society. The actual activities of the Intergovernmental Panel of Climate Changes are not sustainable with the existing knowledge of the Earth sciences (as presented in the results of the 33rd and 34th International Geological Congresses). This knowledge should be incorporated into any further work of the IPCC. In the sphere of legislation in a large international co-operation following steps are needed: - to re-formulate the term of a "false alarm" and its legal consequences, - to demand very consequently the needed evaluation of existing risks, - to solve problems of rights of individuals and minorities in cases of the optimum use of mineral resources and of the optimum protection of the local population against emergency dangers and disasters; common good (well-being) must be considered as the priority when solving ethical dilemmas. The precaution principle should be applied in any decision making process. Earth scientists presenting their expert opinions are not exempted from civil, administrative or even criminal liabilities. Details must be established by national law and jurisprudence. The well known case of the L'Aquila earthquake (2009) should serve as a serious warning because of the proven misuse of geoethics for protecting top Italian seismologists responsible and sentenced for their inadequate superficial behaviour causing lot of human victims. Another recent scandal with the Himalayan fossil fraud will be also documented. A support is needed for any effort to analyze and to disclose the problems of the deformation of the contemporary

  2. A measurement setup for acquiring the local magnetic properties of plastically deformed soft magnetic materials

    SciTech Connect

    Bi Shasha; Sutor, Alexander; Lerch, Reinhard; Xiao Yunshi

    2011-04-01

    This paper introduces a new measurement setup for extraction of the local magnetic properties. With the help of finite element method simulations, modifications are made on the previous double-C-yoke method. Small dimension measuring coils are applied in the stray field produced by the magnetic circuit to evaluate the local magnetic properties of the specified part of the specimen. Through the measurements with the plastically deformed materials at different temperatures, it indicates that the magnetic properties of soft magnetic materials are quite sensitive to plastic straining. After high-temperature thermal treatment on the plastically deformed specimen, the local magnetic properties exhibit an obvious recovery.

  3. Photophysical Properties of Novel Organic, Inorganic, and Hybrid Semiconductor Materials

    NASA Astrophysics Data System (ADS)

    Chang, Angela Yenchi

    For the past 200 years, novel materials have driven technological progress, and going forward these advanced materials will continue to deeply impact virtually all major industrial sectors. Therefore, it is vital to perform basic and applied research on novel materials in order to develop new technologies for the future. This dissertation describes the results of photophysical studies on three novel materials with electronic and optoelectronic applications, namely organic small molecules DTDCTB with C60 and C70, colloidal indium antimonide (InSb) nanocrystals, and an organic-inorganic hybrid perovskite with the composition CH3NH3PbI 3-xClx, using transient absorption (TA) and photoluminescence (PL) spectroscopy. In chapter 2, we characterize the timescale and efficiency of charge separation and recombination in thin film blends comprising DTDCTB, a narrow-band gap electron donor, and either C60 or C70 as an electron acceptor. TA and time-resolved PL studies show correlated, sub-picosecond charge separation times and multiple timescales of charge recombination. Our results indicate that some donors fail to charge separate in donor-acceptor mixed films, which suggests material manipulations may improve device efficiency. Chapter 3 describes electron-hole pair dynamics in strongly quantum-confined, colloidal InSb nanocrystal quantum dots. For all samples, TA shows a bleach feature that, for several picoseconds, dramatically red-shifts prior to reaching a time-independent position. We suggest this unusual red-shift relates transient population flow through two energetically comparable conduction band states. From pump-power-dependent measurements, we also determine biexciton lifetimes. In chapter 4, we examine carrier dynamics in polycrystalline methylammonium lead mixed halide perovskite (CH3NH3PbI3-xCl x) thin films as functions of temperature and photoexcitation wavelength. At room temperature, the long-lived TA signals stand in contrast to PL dynamics, where the

  4. Effects of cryogenic temperatures on materials properties. (Latest citations from the Aerospace database). Published Search

    SciTech Connect

    1995-10-01

    The bibliography contains citations concerning properties of materials at cryogenic temperatures. Cryogenic effects on mechanical, magnetic, electrical, and other physical properties of materials are described. Titanium, aluminum, copper, nickel, steels, ice, carbides, cermets, ceramics, composites, alloys, and polymers are among the materials discussed. Strength of materials at low temperatures, with particular regard to fatigue and shear cracking, is included. Cryogenic cooling systems are discussed in separate bibliographies.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  5. Effects of cryogenic temperatures on materials properties. (Latest citations from the Aerospace database). Published Search

    SciTech Connect

    1996-11-01

    The bibliography contains citations concerning properties of materials at cryogenic temperatures. Cryogenic effects on mechanical, magnetic, electrical, and other physical properties of materials are described. Titanium, aluminum, copper, nickel, steels, ice, carbides, cermets, ceramics, composites, alloys, and polymers are among the materials discussed. Strength of materials at low temperatures, with particular regard to fatigue and shear cracking, is included. Cryogenic cooling systems are discussed in separate bibliographies.(Contains 50-250 citations and includes a subject term index and title list.) (Copyright NERAC, Inc. 1995)

  6. Density functional theory and pseudopotentials: A panacea for calculating properties of materials

    SciTech Connect

    Cohen, M.L. |

    1995-09-01

    Although the microscopic view of solids is still evolving, for a large class of materials one can construct a useful first-principles or ``Standard Model`` of solids which is sufficiently robust to explain and predict many physical properties. Both electronic and structural properties can be studied and the results of the first-principles calculations can be used to predict new materials, formulate empirical theories and simple formulae to compute material parameters, and explain trends. A discussion of the microscopic approach, applications, and empirical theories is given here, and some recent results on nanotubes, hard materials, and fullerenes are presented.

  7. Superconducting and normal-state properties of novel materials

    SciTech Connect

    Crespi, V.H.

    1994-09-01

    Interest in solid state physics naturally gravitates towards novel systems such as the copper oxide superconductors or the alkali-doped fullerenes. This paper tackles high temperature superconductivity by extension of the BCS theory for ordinary superconductors, in particular, incorporation of anharmonicity in phonon dynamics and anisotropy in electron-phonon coupling. These refinements can account for many anomalous properties of the cuprates. Phonon anharmonicity is consistent with a small isotope effect at optimal doping and a larger isotope effect in suboptimal systems. Anisotropy in the interaction, a plausible consequence of certain anharmonic models, can circumvent objections to electron-phonon coupling based on transport measurements. Such anisotropy is consistent with gap anisotropy and strong temperature dependence of Hall coefficient. In contrast to cuprates, the doped fullerenes appear understandable within the standard model of single electron band theory and BCS theory. Microscopic parameters derivable from transport and critical field measurements yield a self-consistent picture of a disordered Type-2 BCS superconductor. Isotope effects imply that superconductivity is mediated by carbon phonons opposed to alkali atom vibrations. The novel properties of the fullerenes are generally traceable to their microscopic heterogeneity, being a collection of tightly bound but weakly overlapping molecules. Separation of electronic regimes into weak intermolecular overlap and strong carbon-carbon on-ball bonds yields a superconductor with both a large density of states and a high phonon frequency, properties consistent with a relatively high {Tc}. Disordered nature of intermolecular overlap produces a large residual resistivity and a universal dependence to the Hall coefficient. This disorder is also consistent with the anomalously large carbon isotope effect for heterogeneous isotopic substitution.

  8. Preliminary properties of a resin from ethynyl terminated materials

    NASA Technical Reports Server (NTRS)

    Hergenrother, Paul M.; Connell, John W.

    1991-01-01

    A blend composed of an ethynyl terminated aspartimide (brittle component) and an ethynyl terminated arylene ether oligomer (tough component) was thermally cured to yield a resin which underwent preliminary evaluation to determine the potential for use in structural applications on aerospace vehicles. The blend exhibited good compression moldability, allowing for fabrication of neat moldings, adhesive specimens and composites at temperatures of 250 C under a pressure of 1.4 MPa (200 psi). Neat resin moldings and adhesive specimens provided relatively high mechanical properties. Composite specimens provided promising results in spite of fiber misalignment, fiber washout, and a small amount of panel warpage.

  9. Workshop on the Thermophysical Properties of Molten Materials

    SciTech Connect

    Not Available

    1993-11-01

    The role of accurate thermophysical property data in the process design and modeling of solidification processes was the subject of a workshop held on 22-23 Oct. 1992 in Cleveland, Ohio. The workshop was divided into three sequential sessions dealing with (1) industrial needs and priorities for thermophysical data, (2) experimental capabilities for measuring the necessary data, and (3) theoretical capabilities for predicting the necessary data. In addition, a 2-hour panel discussion of the salient issues was featured as well as a 2-hour caucus that assessed priorities and identified action plans.

  10. Workshop on the Thermophysical Properties of Molten Materials

    NASA Technical Reports Server (NTRS)

    1993-01-01

    The role of accurate thermophysical property data in the process design and modeling of solidification processes was the subject of a workshop held on 22-23 Oct. 1992 in Cleveland, Ohio. The workshop was divided into three sequential sessions dealing with (1) industrial needs and priorities for thermophysical data, (2) experimental capabilities for measuring the necessary data, and (3) theoretical capabilities for predicting the necessary data. In addition, a 2-hour panel discussion of the salient issues was featured as well as a 2-hour caucus that assessed priorities and identified action plans.

  11. KLEGECELL: a new lightweight insulating material with superior properties

    SciTech Connect

    Hodges, L.

    1980-01-01

    Klegecell -- the brand name of a rigid polyvinyl chloride foam used extensively in the marine and aviation industries -- has substantial advantages over other rigid insulation for certain passive solar applications, particularly as movable insulation. It comes in lightweight rigid panels with high insulating values (R = 7 per inch) so that thin panels are adequate. Its low water vapor permeability makes it suitable for use on the inside of glazing in cold climates, since it prevents condensation from occurring. Its nonflammability is a particularly desirable property for interior use.

  12. Processing and property evaluation of metal matrix superconducting materials

    NASA Technical Reports Server (NTRS)

    Rao, Appajosula S.

    1995-01-01

    Metal - superconductor (YBCO) systems have been prepared and characterized by resistivity, ac susceptibility and dc SQUID magnetic moment measurements. The silver composites showed superconducting transition for all the composites processed and the superconducting transition temperature tends to depend upon the concentration of the silver in the composite. Aluminum composites showed an unusual resistivity results with two transitions around 90 K and 120 K. The superconducting property of silver composites can be explained qualitatively in terms of the proximity theory that has been suggested for the low temperature superconductors.

  13. Structure and Physical Properties of Natural Gellous Materials

    NASA Astrophysics Data System (ADS)

    Yudianti, Rike; Indrarti, Lucia; Azuma, Jun-Ichi

    This study presents two types of natural gellous materials as cellulose resources including gellous material synthesized by Acetobacter xylinum in fermentation process of coconut water with common name Bacterial Cellulose (BC) and gellous material isolated from seed of Ocimum americanum called hydrogel. Morphological surface of BC and hydrogel was observed by Scanning Electron Microscope (SEM). These images show randomly arrangement of fibres in three dimensional network having length of 1-5 µm and 3-12µm, respectively in forming a dense reticulated structure. Hydrated fibres were observed evidently by Atomic Force Microscope (AFM) showing that BC and hydrogel have fibres in nanometer scale diameter, 7-10 and 2-3 nm, respectively. At glance, X-Ray diffraction profile of hydrogel shows broadening peaks at 2θ, 16° and 22°. While BC has peaks at 2θ, 14.7, 16.7, 20.5 and 22.5°, attributed to lattice diffractions (100), (010), and (110), respectively. The sharp profile present in BC lead to ordered structure, confirmed by higher crystallinity degree of BC (75%) compared to that`s of hydrogel (35%). Water Holding Capacity (WHC) of BC and hydrogel has values about 5.5 and 39.2 mL g-1, respectively while swelling ability of BC and hydrogel in water is 6.2 and 102.2%, respectively. Neutral sugar compositions of BC resulted in less 0.1% arabinose and rhamnose, 1.1% galactose, 98.5% glucose, 0.2 xylose and 0.2 mannose indicating high cellulose content. Meanwhile, hydrogel contains 11.9% (arabinose), 4.5% (rhamnose), 18.6% (galactose), 50.5% (glucose), 13.2% (xylose), 1.3% (mannose) indicating high hemicellulose contents leading to branching of arabinogalactan attached to cellulose.

  14. Materials Characterization at Utah State University: Facilities and Knowledge-base of Electronic Properties of Materials Applicable to Spacecraft Charging

    NASA Technical Reports Server (NTRS)

    Dennison, J. R.; Thomson, C. D.; Kite, J.; Zavyalov, V.; Corbridge, Jodie

    2004-01-01

    In an effort to improve the reliability and versatility of spacecraft charging models designed to assist spacecraft designers in accommodating and mitigating the harmful effects of charging on spacecraft, the NASA Space Environments and Effects (SEE) Program has funded development of facilities at Utah State University for the measurement of the electronic properties of both conducting and insulating spacecraft materials. We present here an overview of our instrumentation and capabilities, which are particularly well suited to study electron emission as related to spacecraft charging. These measurements include electron-induced secondary and backscattered yields, spectra, and angular resolved measurements as a function of incident energy, species and angle, plus investigations of ion-induced electron yields, photoelectron yields, sample charging and dielectric breakdown. Extensive surface science characterization capabilities are also available to fully characterize the samples in situ. Our measurements for a wide array of conducting and insulating spacecraft materials have been incorporated into the SEE Charge Collector Knowledge-base as a Database of Electronic Properties of Materials Applicable to Spacecraft Charging. This Database provides an extensive compilation of electronic properties, together with parameterization of these properties in a format that can be easily used with existing spacecraft charging engineering tools and with next generation plasma, charging, and radiation models. Tabulated properties in the Database include: electron-induced secondary electron yield, backscattered yield and emitted electron spectra; He, Ar and Xe ion-induced electron yields and emitted electron spectra; photoyield and solar emittance spectra; and materials characterization including reflectivity, dielectric constant, resistivity, arcing, optical microscopy images, scanning electron micrographs, scanning tunneling microscopy images, and Auger electron spectra. Further

  15. Optical properties of plastic materials for medical vision applications

    NASA Astrophysics Data System (ADS)

    Sultanova, N. G.; Kasarova, S. N.; Nikolov, I. D.

    2012-12-01

    Several types of optical polymer materials suitable for ophthalmic or medical vision applications have been studied. We have measured refractive indices of studied plastics at various wavelengths in the visible and near-infrared spectral regions. Important optical characteristics as Abbe numbers, dispersion coefficients and curves, principal and relative partial dispersion have been evaluated. Calculated refractometric data at many laser emission wavelengths used for medical surgery, therapy and diagnostics is included. As an example of a medical vision application of plastics, optical design of a micro-triplet for use in disposable endoscopes is presented.

  16. Attenuation properties of diagnostic x-ray shielding materials.

    PubMed

    Archer, B R; Fewell, T R; Conway, B J; Quinn, P W

    1994-09-01

    Single- and three-phase broad-beam x-ray attenuation data have been obtained using lead, steel, plate glass, gypsum wallboard, lead acrylic, and wood. Tube voltages of 50, 70, 100, 125, and 150 kVp were employed and the resulting curves were compared to transmission data found in the literature. To simplify computation of barrier requirements, all data sets were parametrized by nonlinear least-squares fit to a previously described mathematical model. High attenuation half value layers and the lead equivalence of the alternate materials were also determined. PMID:7838062

  17. Image density property of optical information recording microcapsule material

    NASA Astrophysics Data System (ADS)

    Lai, Weidong; Li, Xiaowei; Li, Xinzheng; Fu, Guangsheng

    2009-05-01

    The microcapsules can act as novel optical functional material in which the optical recording substance such as color-forming substance, photoinitiator and prepolymer are encapsulated. In this paper, the microcapsules with average particle diameter of 300nm are prepared with interfacial polymerization method. The optical responding character of the microcapsule is analyzed based on IR spectra and image density technique. Results show that the microcapsule material encapsulated prepolymer TMPTA and photoinitiator Irgacure-ITX, TPO has thermal phase-change at 140°C, at which the penetrability of the microcapsule has the highest efficiency. With the increase of exposure time, the reduction in absorption intensities of the prepolymer TMPTA are observed at 1635cm-1 of C=C stretching and 898cm-1 of C-H stretching on the C=C molecular bond. Such a result can be ascribed to the double bond cleavage process of the prepolymer TMPTA is initiated by the optical-exposed photoinitiator, and superpolymer network is formed. The image density contrast between the unexposed and exposed microcapsule is enhanced with exposure time increased.

  18. Mechanical property tests on structural materials for ITER magnet system at low temperatures in China

    NASA Astrophysics Data System (ADS)

    Huang, Chuanjun; Huang, Rongjin; Li, Laifeng

    2014-01-01

    High field superconducting magnets need strong non-superconducting components for structural reinforcement. For instance, the ITER magnet system (MS) consists of cable-in-conduit conductor, coil case, magnet support, and insulating materials. Investigation of mechanical properties at magnet operation temperature with specimens machined at the final manufacturing stages of the conductor jacket materials, magnet support material, and insulating materials, even the component of the full-size conductor jacket is necessary to establish sound databases for the products. In China, almost all mechanical property tests of structural materials for the ITER MS, including conductor jacket materials of TF coils, PF coils, CCs, case material of CCs, conductor jacket materials of Main Busbars (MB) and Corrector Busbars (CB), material of magnet supports, and insulating materials of CCs have been carried out at the Technical Institute of Physics and Chemistry (TIPC), Chinese Academy of Sciences (CAS). In this paper, the mechanical property test facilities are briefly demonstrated and the mechanical tests on the structural materials for the ITER MS, highlighting test rigs as well as test methods, are presented.

  19. Further improvements in program to calculate electronic properties of narrow band gap materials

    NASA Technical Reports Server (NTRS)

    Patterson, James D.

    1991-01-01

    Research into the properties of narrow band gap materials during the period 15 Jun. to 15 Dec. 1991 is discussed. Abstracts and bibliographies from papers presented during this period are reported. Graphs are provided.

  20. A study of the effect of selected material properties on the ablation performance of artificial graphite

    NASA Technical Reports Server (NTRS)

    Maahs, H. G.

    1972-01-01

    Eighteen material properties were measured on 45 different, commercially available, artificial graphites. Ablation performance of these same graphites were also measured in a Mach 2 airstream at a stagnation pressure of 5.6 atm. Correlations were developed, where possible, between pairs of the material properties. Multiple regression equations were then formulated relating ablation performance to the various material properties, thus identifying those material properties having the strongest effect on ablation performance. These regression equations reveal that ablation performance in the present test environment depends primarily on maximum grain size, density, ash content, thermal conductivity, and mean pore radius. For optimization of ablation performance, grain size should be small, ash content low, density and thermal conductivity high, and mean pore radius large.

  1. Fluorescence Spectroscopic Properties of Normal and Abnormal Biomedical Materials

    NASA Astrophysics Data System (ADS)

    Pradhan, Asima

    Steady state and time-resolved optical spectroscopy and native fluorescence is used to study the physical and optical properties occurring in diseased and non-diseased biological human tissue, in particular, cancer of the human breast, artery and the dynamics of a photosensitizer useful in photodynamic therapy. The main focus of the research is on the optical properties of cancer and atherosclerotic tissues as compared to their normal counterparts using the different luminescence based spectroscopic techniques such as steady state fluorescence, time-resolved fluorescence, excitation spectroscopy and phosphorescence. The excitation and steady-state spectroscopic fluorescence using visible excitation wavelength displays a difference between normal and malignant tissues. This difference is attributed to absorption of the emission by hemoglobin in normal tissues. This method using 488nm fails to distinguish neoplastic tissue such as benign tissues and tumors from malignant tumors. The time-resolved fluorescence at visible, near -uv and uv excitation wavelengths display non-exponential profiles which are significantly different for malignant tumors as compared to non-malignant tissues only with uv excitation. The differences observed with visible and near-uv excitation wavelengths are not as significant. The non-exponential profiles are interpreted as due to a combination of fluorophores along with the action of non-radiative processes. Low temperature luminescence studies confirm the occurrence of non-radiative decay processes while temporal studies of various relevant biomolecules indicate the probable fluorophores responsible for the observed signal in tissues. Phosphorescence from human tissues have been observed for the first time and lifetimes of a few hundred nanoseconds are measured for malignant and benign tissues. Time-resolved fluorescence studies of normal artery and atherosclerotic plaque have shown that a combination of two excitation wavelengths can

  2. Thermal properties of composite materials: a complex systems approximation

    NASA Astrophysics Data System (ADS)

    Carrillo, J. L.; Bonilla, Beatriz; Reyes, J. J.; Dossetti, Victor

    We propose an effective media approximation to describe the thermal diffusivity of composite samples made of polyester resin and magnetite inclusions. By means of photoacoustic spectroscopy, the thermal diffusivity of the samples were experimentally measured. The volume fraction of the inclusions was systematically varied in order to study the changes in the effective thermal diffusivity of the composites. For some samples, a static magnetic field was applied during the polymerization process, resulting in anisotropic inclusion distributions. Our results show a significant difference in the thermal properties of the anisotropic samples, compared to the isotropic randomly distributed. We correlate some measures of the complexity of the inclusion structure with the observed thermal response through a multifractal analysis. In this way, we are able to describe, and at some extent predict, the behavior of the thermal diffusivity in terms of the lacunarity and other measures of the complexity of these samples Partial Financial Support by CONACyT México and VIEP-BUAP.

  3. Dispersion relation for bianisotropic materials and its symmetry properties

    NASA Technical Reports Server (NTRS)

    Graglia, Roberto D.; Uslenghi, Piergiorgio L. E.; Zich, Riccardo E.

    1991-01-01

    The dispersion relation for an arbitrary general bianisotropic medium is derived in Cartesian coordinates, in a form well suited to imposing the boundary conditions when dealing with layered media with planar and parallel interfaces. Special cases of practical interest are also considered. Eleven fundamental coefficient families are identified by considering in detail all the symmetries present in the dispersion relation. An ad hoc expression of the determinant of the sum of two 3 x 3 matrices permits the use of a simple procedure to obtain the coefficients of the dispersion equation. The discussed symmetry properties have general validity, and this technique to evaluate the coefficients may be useful in other fields of application where dispersion relations are of importance.

  4. TRITIUM EFFECTS ON DYNAMIC MECHANICAL PROPERTIES OF POLYMERIC MATERIALS

    SciTech Connect

    Clark, E

    2008-11-12

    Dynamic mechanical analysis has been used to characterize the effects of tritium gas (initially 1 atm. pressure, ambient temperature) exposure over times up to 2.3 years on several thermoplastics-ultrahigh molecular weight polyethylene (UHMW-PE), polytetrafluoroethylene (PTFE), and Vespel{reg_sign} polyimide, and on several formulations of elastomers based on ethylene propylene diene monomer (EPDM). Tritium exposure stiffened the elastic modulus of UHMW-PE up to about 1 year and then softened it, and reduced the viscous response monotonically with time. PTFE initially stiffened, however the samples became too weak to handle after nine months exposure. The dynamic properties of Vespel{reg_sign} were not affected. The glass transition temperature of the EPDM formulations increased approximately 4 C. following three months tritium exposure.

  5. Hygrothermal Material Properties for Soils in Building Science

    SciTech Connect

    Kehrer, Manfred; Pallin, Simon B

    2013-01-01

    Saving energy in buildings is top of mind with today s building professionals. Although designing energy-efficient walls and roofs is mostly a no-brainer, ensuring that below-grade foundations do not generate moisture problems has become even more complex, particularly because of how soil is involved. Hygrothermal performance of soils coupled to buildings is complicated because of the dearth of information on soil properties. A computational approach for heat transfer through the ground has been well-defined, and simplified methods have been developed. These approaches, however, generally ignore the transfer of soil moisture, which is not negligible. The intention of an ongoing study at Oak Ridge (TN) National Laboratory, therefore, is to gather, comprehend and adapt soil properties from soil science as well. The obtained information must be applicable to related tasks in building science and validated with hygrothermal calculation tools, where additional plugins to the existing software code WUFI (an acronym for Warme unde Felichte Instructionar, which translates to unsteady heat and moisture) are required. (See the sidebar, opposite page, for specifics on WUFI.)Simulation results from WUFI are being compared with existing thermal-only measurements and are being accomplished with ongoing hygrothermal measurements. The final outcome of the study will be the evaluation of several soil types in several climate zones for a number of basement assembly types. The study will define the type of soil, together with the type of building construction considered most and least reliable with respect to energy consumption and moisture safety. Furthermore, the study will determine the influences that different soils have on total energy loss through the ground.

  6. Material Properties of CorCap Passive Cardiac Support Device

    PubMed Central

    Chitsaz, Sam; Wenk, Jonathan F; Ge, Liang; Wisneski, Andrew; Mookhoek, Aart; Ratcliffe, Mark B; Guccione, Julius M; Tseng, Elaine E

    2012-01-01

    Background Ventricular remodeling deteriorates myocardial function in congestive heart failure patients. Ventricular restraint therapy using Cardiac Support Device (CSD) is designed to reduce the amount of stress inside the dilated ventricles which in turn halts remodeling. However, as an open mesh surrounding the heart, it is unknown what the mechanical properties of the CSD are in different fiber orientations. Methods Composite specimens of CorCap™ CSD fabric and silicone were constructed in different fiber orientations and tested on a custom-built biaxial stretcher. Silicone controls were made and stretched to detect parameters of the matrix. CSD coefficients were calculated using the composite and silicone matrix stress-strain data. Stiffness in different fiber orientations was determined. Results Silicone specimens exerted a linear behavior with stiffness of 2.57MPa. For the composites with one fiber set aligned with respect to the stretch axes, stiffness in the direction of the aligned fiber set was higher than that in the cross-fiber direction (14.39MPa vs. 5.66MPa), indicating greater compliance in the cross-fiber direction. When the orientation of the fiber sets in the composite were matched to the expected clinical orientation of the implanted CorCap, the stiffness in the circumferential axis (with respect to the heart) was greater than in the longitudinal axis (10.55MPa vs. 9.70MPa). Conclusions The mechanical properties of the CorCap demonstrate directionality with greater stiffness circumferentially than longitudinally. Implantation of CorCap clinically should take into account the directionality of the biomechanics to optimize ventricular restraint. PMID:22981255

  7. Measurement of material properties of 6000 Al-sheet for car body application using thermal imaging

    SciTech Connect

    Schleich, Ralf; Liewald, Mathias; Dillenz, Alexander

    2007-04-07

    The paper presents experimental results of thermo-graphical measurement of material properties. The analytical expression for the temperature variation of the specimen deformed in the elastic state is determined starting from the first law of thermodynamics. The experimental method for determining material properties based on the Joule-Thompson effect is presented in detail. The thermo-graphical method has been used to determine formability in different state of stresses of the AA 6016-T4 aluminium alloys.

  8. Extreme mechanical properties of materials under extreme pressure and temperature conditions (Invited)

    NASA Astrophysics Data System (ADS)

    Kavner, A.; Armentrout, M. M.; Xie, M.; Weinberger, M.; Kaner, R. B.; Tolbert, S. H.

    2010-12-01

    A strong synergy ties together the high-pressure subfields of mineral physics, solid-state physics, and materials engineering. The catalog of studies measuring the mechanical properties of materials subjected to large differential stresses in the diamond anvil cell demonstrates a significant pressure-enhancement of strength across many classes of materials, including elemental solids, salts, oxides, silicates, and borides and nitrides. High pressure techniques—both radial diffraction and laser heating in the diamond anvil cell—can be used to characterize the behavior of ultrahard materials under extreme conditions, and help test hypotheses about how composition, structure, and bonding work together to govern the mechanical properties of materials. The principles that are elucidated by these studies can then be used to help design engineering materials to encourage desired properties. Understanding Earth and planetary interiors requires measuring equations of state of relevant materials, including oxides, silicates, and metals under extreme conditions. If these minerals in the diamond anvil cell have any ability to support a differential stress, the assumption of quasi-hydrostaticity no longer applies, with a resulting non-salubrious effect on attempts to measure equation of state. We illustrate these applications with the results of variety of studies from our laboratory and others’ that have used high-pressure radial diffraction techniques and also laser heating in the diamond anvil cell to characterize the mechanical properties of a variety of ultrahard materials, especially osmium metal, osmium diboride, rhenium diboride, and tungsten tetraboride. We compare ambient condition strength studies such as hardness testing with high-pressure studies, especially radial diffraction under differential stress. In addition, we outline criteria for evaluating mechanical properties of materials at combination high pressures and temperatures. Finally, we synthesize our

  9. Mechanical properties of Al-mica particulate composite material

    NASA Technical Reports Server (NTRS)

    Nath, D.; Bhatt, R. T.; Rohatgi, P. K.; Biswas, S. K.

    1980-01-01

    Cast aluminum alloy mica particle composites of varying mica content were tested in tension, compression, and impact. With 2.2 percent mica (size range 40-120 microns) the tensile and compression strengths of aluminum alloy decreased by 56 and 22 percent, respectively. The corresponding decreases in percent elongation and percent reduction are 49 and 39 percent. Previous work shows that despite this decrease in strength the composite with 2.5 percent mica and having an UTS of 15 kg/sq mm and compression strength of 28 kg/sq mm performs well as a bearing material under severe running conditions. The differences in strength characteristics of cast aluminum-mica particle composites between tension and compression suggests that, as in cast iron, expansion of voids at the matrix particle interface may be the guiding mechanism of the deformation. SEM studies show that on the tensile fractured specimen surface, there are large voids at the particle matrix interface.

  10. A Novel Pectin Material: Extraction, Characterization and Gelling Properties

    PubMed Central

    Urias-Orona, Vania; Rascón-Chu, Agustin; Lizardi-Mendoza, Jaime; Carvajal-Millán, Elizabeth; Gardea, Alfonso A.; Ramírez-Wong, Benjamín

    2010-01-01

    A novel pectin was acid extracted from chickpea husk (CHP). CHP presented a 67% (w/w) of galacturonic acid, an intrinsic viscosity of 374 mL/g and a viscosimetric molecular weight of 110 kDa. Fourier transform infrared spectroscopy spectrum of CHP indicated a degree of esterification of about 10%. The CHP-calcium system formed ionic gels with a storage (G′) modulus of 40 Pa and gel set time (G′ > G″) of 3 min at 1% (w/v), and a G′ of 131 Pa and gel set time of 1 min at 2% (w/v). The G′ of CHP gels was not greatly affected by temperature. The results attained suggest that chickpea husk can be a potential source of a gelling pectin material. PMID:21152294

  11. High throughput screening of perfumery raw materials for antimicrobial properties.

    PubMed

    Rey, Sylvain; Anziani, Pauline; Seyfried, Markus

    2014-01-01

    A microdilution protocol was developed and automated using a liquid handling station, allowing the determination of minimum inhibitory concentrations (MIC) of hydrophobic raw materials commonly used in the perfume industry (essential oils and synthetic chemicals). Tests were performed in 96-well microtiter plates against standard bacterial test strains and skin isolates involved in underarm malodor. The comparison with data previously reported in the literature indicated that the protocol was suitable, yielding MIC values that were in general agreement with those derived from manual test methods. For the majority of active test compounds, results showed a pronounced difference in susceptibility pattern between the Gram-positive and Gram-negative test strains used in this study. For a group of acyclic aliphatic aldehydes, a structure-activity relationship depending on the chain length was found.

  12. A novel pectin material: extraction, characterization and gelling properties.

    PubMed

    Urias-Orona, Vania; Rascón-Chu, Agustin; Lizardi-Mendoza, Jaime; Carvajal-Millán, Elizabeth; Gardea, Alfonso A; Ramírez-Wong, Benjamín

    2010-09-28

    A novel pectin was acid extracted from chickpea husk (CHP). CHP presented a 67% (w/w) of galacturonic acid, an intrinsic viscosity of 374 mL/g and a viscosimetric molecular weight of 110 kDa. Fourier transform infrared spectroscopy spectrum of CHP indicated a degree of esterification of about 10%. The CHP-calcium system formed ionic gels with a storage (G') modulus of 40 Pa and gel set time (G' > G″) of 3 min at 1% (w/v), and a G' of 131 Pa and gel set time of 1 min at 2% (w/v). The G' of CHP gels was not greatly affected by temperature. The results attained suggest that chickpea husk can be a potential source of a gelling pectin material.

  13. [Integration properties of bone substitute materials. Experimental studies on animals].

    PubMed

    Günther, K P; Scharf, H P; Pesch, H J; Puhl, W

    1998-02-01

    In order to avoid the potential risks of disease transmission in allograft surgery, numerous substitute materials have been described. As the biological response to implant materials is different, we undertook the following study to assess type and amount of bone ingrowth in CaP-ceramics. 105 cylindrical bone defects with a diameter of 5.4 mm were created surgically in the femoral condyles of 53 skeletal mature NZW rabbits. The defects were filled with crushed coralline hydroxyapatite (HA) implants (n = 21), synthetically produced hydroxyapatite (n = 21) and surface-modified alpha-Tricalciumphosphate (TCP) grains (n = 21). 21 defects were left empty and other drill holes were filled with rabbit cancellous bone cylinders (n = 21) after 3 months of cryopreservation at -78 degrees C without sterilization. Following observation periods of 2, 4, 6, 8, 12, 26 and 52 weeks the femoral condyles were harvested for histological evaluation and quantitative analysis of bone ingrowth. Woven bone formation at implant periphery can be observed in all substances as early as 2 weeks postoperatively. At 4-week-intervals cryopreserved allografts show new bone apposition on surfaces of necrotic trabeculae and graft-host junctions by a predominantly osteoblastic reaction at the periphery of all cylinders, while in HA- and TCP-grains early bone formation in the center of drill holes is detectable as well. There is a direct contact between HA-/TCP-particles and newly formed bone without fibrous tissue formation at the implant surfaces. Central new bone formation in rabbit allografts can be observed after 6 to 8 weeks together with a secondary osteoclastic resorption of necrotic transplant trabeculae. The result of this remodeling process is a complete degradation of transplant cylinders with reorganization of vital trabeculae oriented in a mature pattern after 12 to 26 weeks. In contrast the HA- and TCP-implants did not show any signs of resorption. PMID:9530667

  14. Acoustic properties and durability of liner materials at non-standard atmospheric conditions

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Gaeta, R. J., Jr.; Hsu, J. S.

    1994-01-01

    This report documents the results of an experimental study on how acoustic properties of certain absorbing liner materials are affected by nonstandard atmospheric conditions. This study was motivated by the need to assess risks associated with incorporating acoustic testing capability in wind tunnels with semicryogenic high Reynolds number aerodynamic and/or low pressure capabilities. The study consisted of three phases: 1) measurement of acoustic properties of selected liner materials at subatmospheric pressure conditions, 2) periodic cold soak and high pressure exposure of liner materials for 250 cycles, and 3) determination of the effect of periodic cold soak on the acoustic properties of the liner materials at subatmospheric conditions and the effect on mechanical resiliency. The selected liner materials were Pyrell foam, Fiberglass, and Kevlar. A vacuum facility was used to create the subatmospheric environment in which an impedance tube was placed to measure acoustic properties of the test materials. An automated cryogenic cooling system was used to simulate periodic cold soak and high pressure exposure. It was found that lower ambient pressure reduced the absorption effectiveness of the liner materials to varying degrees. Also no significant change in the acoustic properties occurred after the periodic cold soak. Furthermore, mechanical resiliency tests indicated no noticeable change.

  15. Data on Material Properties and Panel Compressive Strength of a Plastic-bonded Material of Glass Cloth and Canvas

    NASA Technical Reports Server (NTRS)

    Zender, George W; Schuette, Evan H; Weinberger, Robert A

    1944-01-01

    Results are presented of tests for determining the tensile, compressive, and bending properties of a material of plastic-bonding glass cloth and canvas layers. In addition, 10 panel specimens were tested in compression. Although the material is not satisfactory for primary structural use in aircraft when compared on a strength-weight basis with other materials in common use, there appears to be potential strength in the material that will require research for development. These points are considered in some detail in the concluding discussion of the report. An appendix shows that a higher tensile strength can be obtained by changes in the type of weave used in the glass-cloth reinforcement.

  16. Multiscale Modeling of Carbon/Phenolic Composite Thermal Protection Materials: Atomistic to Effective Properties

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M.; Murthy, Pappu L.; Bednarcyk, Brett A.; Lawson, John W.; Monk, Joshua D.; Bauschlicher, Charles W., Jr.

    2016-01-01

    Next generation ablative thermal protection systems are expected to consist of 3D woven composite architectures. It is well known that composites can be tailored to achieve desired mechanical and thermal properties in various directions and thus can be made fit-for-purpose if the proper combination of constituent materials and microstructures can be realized. In the present work, the first, multiscale, atomistically-informed, computational analysis of mechanical and thermal properties of a present day - Carbon/Phenolic composite Thermal Protection System (TPS) material is conducted. Model results are compared to measured in-plane and out-of-plane mechanical and thermal properties to validate the computational approach. Results indicate that given sufficient microstructural fidelity, along with lowerscale, constituent properties derived from molecular dynamics simulations, accurate composite level (effective) thermo-elastic properties can be obtained. This suggests that next generation TPS properties can be accurately estimated via atomistically informed multiscale analysis.

  17. Study of friction properties of lunar surface material and its analogs

    NASA Technical Reports Server (NTRS)

    Dukhovskoy, Y. A.; Motovilov, E. A.; Silin, A. A.; Smorodinov, M. I.; Shvarev, V. V.

    1974-01-01

    A description is given of instruments for determining the friction properties of the surficial layer of lunar surface material returned by the Luna 16 automatic lunar station, as well as the friction properties of its analogs: andesite-basaltic sand and basalts. The experimental method and results are presented.

  18. Optical magnetic, and electrical properties of tektites, meteorites, and other space related materials

    NASA Technical Reports Server (NTRS)

    1974-01-01

    The scope of the project is reported to study the infrared absorption of water and the magnetic properties of the iron in tektites. Subsequently, the work was expanded to include the other properties of tektites and lunar materials. When the lunar samples became available, the emphasis of the research shifted from tektites to lunar samples.

  19. Nanostructured inorganic materials: Synthesis and associated electrochemical properties

    NASA Astrophysics Data System (ADS)

    Yau, Shali Zhu

    Synthetic strategy for preparing potential battery materials at low temperature was developed. Magnetite (Fe3O4), silver hollandnite (AgxMn8O16), magnesium manganese oxide (MgxMnO 2˙yH2O), and silver vanadium phosphorous oxide (Ag 2VO2PO4) were studied. Magnetite (Fe3O4) was prepared by coprecipitation induced by triethylamine from aqueous iron(II) and iron(III) chloride solutions of varying concentrations. Variation of the iron(II) and iron(III) concentrations results in crystallite size control of the Fe3O4 products. Materials characterization of the Fe3O4 samples is reported, including Brunauer-Emmitt-Teller (BET) surface area, x-ray powder diffraction (XRD), transmission electron microscopy (TEM), particle size, and saturation magnetization results. A strong correlation between discharge capacity and voltage recovery behavior versus crystallite size was observed when tested as an electrode material in lithium electrochemical cells. Silver hollandite (AgxMn8O16) was successfully synthesized through a low temperature reflux reaction. The crystallite size and silver content of AgxMn8O16 by varying the reactant ratio of silver permanganate (AgMnO4) and manganese sulfate monohydrate (MnSO4˙H2O). Silver hollandite was characterized by Brunauer-Emmitt-Teller (BET) surface area, inductively coupled plasma-optical emission (ICP-OES) spectrometry, helium pycnometry, simultaneous thermogravimetric analysis/differential scanning calorimetry (TGA/DSC), and x-ray powder diffraction (XRD). The crystallite size showed a strong correlation with silver content, BET surface area, and particle sizes. The silver hollandite cathode showed good discharge capacity retention in 30 cycles of discharge-charge. There were a good relationship between crystallite size and rate capability and pulse ability. Magnesium manganese oxide (MgxMnO2˙yH 2O) was made by redox reaction by mixing sodium hydroxide (NaOH), manganese sulfate monohydrate (MnSO4˙HO2), and potassium persulfate (K2S2O8

  20. Electronic environments and electrochemical properties in lithium storage materials

    NASA Astrophysics Data System (ADS)

    Graetz, Jason Allan

    One of the large controversies regarding lithium cathodes concerns the arrangement of the local electronic environments in the host material and how these environments are affected by lithium intercalation. Electron energy-loss spectrometry was used to study charge compensation in lithiated transition-metal oxides (e.g., LiCoO2 and LiNi0.8Co0.2O 2) during electrochemical cycling. The oxygen K-edge and transition metal L2,3 white lines were used to probe the oxygen 2p and transition metal 3d states, respectively. These results show a large increase in state occupancy of the oxygen 2p band during lithiation, suggesting that much of the lithium 2s electron is accommodated by the anion. Ab initio calculations of the oxygen 2p partial density of states curves confirm the increase in unoccupied states that accompany lithium extraction. In contrast with the large changes observed in the oxygen K-edge, much smaller changes were observed in the transition metal L2,3 white lines. Surprisingly, for layered LiCoO 2 and Li(Ni, Co)O2, the transition metal valence changes little during the charge compensation accompanying lithiation. Recent demand for alternatives to graphitic carbon for lithium anodes motivated an investigation into novel binary lithium alloys. The large volume expansions associated with lithium insertion is known to generate tremendous microstructural damage, making most alloys unsuitable for rechargeable lithium batteries. Electrodes of nanostructured lithium alloys were prepared in an attempt to mitigate the particle decrepitation that occurs during cycling and to shorten diffusion times for lithium. Anodes of silicon and germanium were prepared in thin film form as nanocrystalline particles (10 nm mean diameter) and as continuous amorphous thin films (60--250 nm thick). These nanostructured materials exhibited stable capacities up to six times larger than what is found in graphitic carbons, which are currently the industry standard. In addition, these

  1. Characterization of the heat transfer properties of thermal interface materials

    NASA Astrophysics Data System (ADS)

    Fullem, Travis Z.

    Physicists have studied the thermal conductivity of solids for decades. As a result of these efforts, thermal conduction in crystalline solids is well understood; there are detailed theories describing thermal conduction due to electrons and phonons. Phonon scattering and transmission at solid/solid interfaces, particularly above cryogenic temperatures, is not well understood and more work is needed in this area. The desire to solve engineering problems which require good thermal contact between mating surfaces has provided enhanced motivation for furthering the state of the art on this topic. Effective thermal management is an important design consideration in microelectronic systems. A common technique for removing excess heat from an electronic device is to attach a heatsink to the device; it is desirable to minimize the thermal resistance between the device and the heatsink. This can be accomplished by placing a thermal interface material (TIM) between the two surfaces. Due to the ever-increasing power densities found in electronic components, there is a desire to design better TIMs, which necessitates the ability to characterize TIM bondlines and to better understand the physics of heat conduction through TIM bondlines. A micro Fourier apparatus which employs Pt thin film thermometers of our design has been built and is capable of precisely quantifying the thermal resistance of thermal interface materials. In the present work several types of commercially available TIMs have been studied using this apparatus, including: greases, filled epoxies, and thermally conductive pads. In the case of filled epoxies, bondlines of various thicknesses, ranging from thirty microns to several hundred microns, have been measured. The microstructure of these bondlines has been investigated using optical microscopy and acoustic microscopy. Measured values of thermal conductivity are considered in terms of microstructural features such as percolation networks and filler particle

  2. Indentation testing and optimized property identification for viscoelastic materials using the finite element method

    NASA Astrophysics Data System (ADS)

    Resapu, Rajeswara Reddy

    The most common approaches to determining mechanical material properties of materials are tension and compression tests. However, tension and compression testing cannot be implemented under certain loading conditions (immovable object, not enough space to hold object for testing, etc). Similarly, tensile and compression testing cannot be performed on certain types of materials (delicate, bulk, non-machinable, those that cannot be separated from a larger structure, etc). For such cases, other material testing methods need to be implemented. Indentation testing is one such method; this approach is often non-destructive and can be used to characterize regions that are not compatible with other testing methods. However, indentation testing typically leads to force-displacement data as opposed to the direct stress-strain data normally used for the mechanical characterization of materials; this data needs to be analyzed using a suitable approach to determine the associated material properties. As such, methods to establish material properties from force-displacement indentation data need to be identified. In this work, a finite element approach using parameter optimization is developed to determine the mechanical properties from the experimental indentation data. Polymers and tissues tend to have time-dependent mechanical behavior; this means that their mechanical response under load changes with time. This dissertation seeks to characterize the properties of these materials using indentation testing under the assumption that they are linear viscoelastic. An example of a material of interest is the polymer poly vinyl chloride (PVC) that is used as the insulation of some aircraft wiring. Changes in the mechanical properties of this material over years of service can indicate degradation and a potential hazard to continued use. To investigate the validity of using indentation testing to monitor polymer insulation degradation, PVC film and PVC-insulated aircraft wiring are

  3. Ulta-Low Temperature Properties of Amorphous and Glassy Materials

    SciTech Connect

    Douglas D. Osheroff

    2013-01-10

    During the grant period we made detailed studies of the dynamics of two level tunneling systems in glasses at very low temperature and by the application of AC and DC electric fields. Models have been developed that now account for both the formation and subsequent breaking of resonant tunneling pairs, and strongly bound pairs in a swept electric field. Perhaps most importantly, we saw a critical field in the polymeric glass Mylar, beyond which recovery following the application of a strong electric field is substantially modified from the predictions of current models. It was essential during the final grant period to see how general these new properties were by testing for them in a new and broader set of glasses. At the same time, the discovery that tunneling systems with nuclei possessing electric quadrupole moments that couple the TS behavior to magnetic fields was studied in this laboratory, using some of the probes that we alone employ. Finally, we were developing our own dielectric pulsed echo system, operating for the first time at the low energy splittings and hence temperatures at which interactions between TS are important. We combined this technique with the sudden application of both electric and strain fields to better understand the dynamics of the response of TS in glasses on a much shorter time scale than is possible with our established probes.

  4. Stress effects on the elastic properties of amorphous polymeric materials.

    PubMed

    Caponi, S; Corezzi, S; Mattarelli, M; Fioretto, D

    2014-12-01

    Brillouin light scattering measurements have been used to study the stress induced modification in the elastic properties of two glass forming polymers: polybutadiene and epoxy-amine resin, prototypes of linear and network polymers, respectively. Following the usual thermodynamic path to the glass transition, polybutadiene has been studied as a function of temperature from the liquid well into the glassy phase. In the epoxy resin, the experiments took advantage of the system ability to reach the glass both via the chemical vitrification route, i.e., by increasing the number of covalent bonds among the constituent molecules, as well as via the physical thermal route, i.e., by decreasing the temperature. Independently from the particular way chosen to reach the glassy phase, the measurements reveal the signature of long range tensile stresses development in the glass. The stress presence modifies both the value of the sound velocities and their mutual relationship, so as to break the generalized Cauchy-like relation. In particular, when long range stresses, by improvise sample cracking, are released, the frequency of longitudinal acoustic modes increases more than 10% in polybutadiene and ∼4% in the epoxy resin. The data analysis suggests the presence of at least two different mechanisms acting on different length scales which strongly affect the overall elastic behaviour of the systems: (i) the development of tensile stress acting as a negative pressure and (ii) the development of anisotropy which increases its importance deeper and deeper in the glassy state. PMID:25481163

  5. Stress effects on the elastic properties of amorphous polymeric materials

    SciTech Connect

    Caponi, S. E-mail: silvia.corezzi@unipg.it; Fioretto, D.

    2014-12-07

    Brillouin light scattering measurements have been used to study the stress induced modification in the elastic properties of two glass forming polymers: polybutadiene and epoxy-amine resin, prototypes of linear and network polymers, respectively. Following the usual thermodynamic path to the glass transition, polybutadiene has been studied as a function of temperature from the liquid well into the glassy phase. In the epoxy resin, the experiments took advantage of the system ability to reach the glass both via the chemical vitrification route, i.e., by increasing the number of covalent bonds among the constituent molecules, as well as via the physical thermal route, i.e., by decreasing the temperature. Independently from the particular way chosen to reach the glassy phase, the measurements reveal the signature of long range tensile stresses development in the glass. The stress presence modifies both the value of the sound velocities and their mutual relationship, so as to break the generalized Cauchy-like relation. In particular, when long range stresses, by improvise sample cracking, are released, the frequency of longitudinal acoustic modes increases more than 10% in polybutadiene and ∼4% in the epoxy resin. The data analysis suggests the presence of at least two different mechanisms acting on different length scales which strongly affect the overall elastic behaviour of the systems: (i) the development of tensile stress acting as a negative pressure and (ii) the development of anisotropy which increases its importance deeper and deeper in the glassy state.

  6. Stress effects on the elastic properties of amorphous polymeric materials

    NASA Astrophysics Data System (ADS)

    Caponi, S.; Corezzi, S.; Mattarelli, M.; Fioretto, D.

    2014-12-01

    Brillouin light scattering measurements have been used to study the stress induced modification in the elastic properties of two glass forming polymers: polybutadiene and epoxy-amine resin, prototypes of linear and network polymers, respectively. Following the usual thermodynamic path to the glass transition, polybutadiene has been studied as a function of temperature from the liquid well into the glassy phase. In the epoxy resin, the experiments took advantage of the system ability to reach the glass both via the chemical vitrification route, i.e., by increasing the number of covalent bonds among the constituent molecules, as well as via the physical thermal route, i.e., by decreasing the temperature. Independently from the particular way chosen to reach the glassy phase, the measurements reveal the signature of long range tensile stresses development in the glass. The stress presence modifies both the value of the sound velocities and their mutual relationship, so as to break the generalized Cauchy-like relation. In particular, when long range stresses, by improvise sample cracking, are released, the frequency of longitudinal acoustic modes increases more than 10% in polybutadiene and ˜4% in the epoxy resin. The data analysis suggests the presence of at least two different mechanisms acting on different length scales which strongly affect the overall elastic behaviour of the systems: (i) the development of tensile stress acting as a negative pressure and (ii) the development of anisotropy which increases its importance deeper and deeper in the glassy state.

  7. The properties and weldability of materials for fusion reactor applications

    SciTech Connect

    Chin, B.A.; Kee, C.K.; Wilcox, R.C.; Zinkle, S.J.

    1991-11-15

    Low-activation austenitic stainless steels have been suggested for applications within fusion reactors. The use of these nickel-free steels will help to reduce the radioactive waste management problem after service. one requirement for such steels is the ability to obtain sound welds for fabrication purposes. Thus, two austenitic Fe-Cr-Mn alloys were studied to characterize the welded microstructure and mechanical properties. The two steels investigated were a Russian steel (Fe-11.6Cr19.3Mn-0.181C) and an US steel (Fe-12.lCr-19.4Mn-0.24C). Welding was performed using a gas tungsten arc welding (GTAW) process. Microscopic examinations of the structure of both steels were conducted. The as-received Russian steel was found to be in the annealed state. Only the fusion zone and the base metal were observed in the welded Russian steel. No visible heat affected zone was observed. Examination revealed that the as-received US steel was in the cold rolled condition. After welding, a fusion zone and a heat affected zone along with the base metal region were found.

  8. Radiative properties of advanced spacecraft heat shield materials

    NASA Technical Reports Server (NTRS)

    Cunnington, G. R.; Funai, A. I.; Mcnab, T. K.

    1983-01-01

    Experimental results are presented to show the effects of simulated reentry exposure by convective heating and by radiant heating on spectral and total emittance of statically oxidized Inconel 617 and Haynes HS188 superalloys to 1260 K and a silicide coatea (R512E) columbium 752 alloy to 1590 K. Convective heating exposures were conducted in a supersonic arc plasma wind tunnel using a wedge-shaped specimen configuration. Radiant tests were conducted at a pressure of .003 atmospheres of dry air at a flow velocity of several meters per second. Convective heating specimens were subjected to 8, 20, and 38 15-min heating cycles, and radiant heating specimens were tested for 10, 20, 50, and 100 30-min heating cycles. Changes in radiative properties are explained in terms of changes in composition resulting from simulated reentry tests. The methods used to evaluate morphological, compositional and crystallographic changes include: Auger electron spectroscopy; scanning electron microscopy; X-ray diffraction analysis; and electron microprobe analysis.

  9. Thermal and mechanical properties of advanced impregnation materials for HTS cables and coils

    NASA Astrophysics Data System (ADS)

    Bagrets, N.; Otten, S.; Weiss, K.-P.; Kario, A.; Goldacker, W.

    2015-12-01

    In the growing field of high-temperature superconducting (HTS) applications, finding an appropriate impregnation material for cables and coils remains a challenging task. In HTS cables and coils, tapes have to be able to withstand mechanical loads during operation. Impregnation is playing a role as mechanical stabilization. However, material properties usually change significantly when going to low temperatures which can decrease performance of superconducting devices. For example, a large mismatch in thermal expansion between a conductor and impregnation material at low temperatures can lead to delamination and to degradation of the critical current. Impregnation materials can insulate tapes thermally which can lead to damage of the superconducting device in case of quench. Thus, thermal conductivity is an important property which is responsible for the temperature distribution in a superconducting cable or in a coil. Due to Lorentz forces acting on structural materials in a superconducting device, the mechanical properties of these materials should be investigated at operating temperatures of this device. Therefore, it is important to identify an advanced impregnation material meeting all specific requirements. In this paper, thermal and mechanical properties of impregnation material candidates with added fillers are presented in a temperature range from 300 K to 4 K.

  10. Infants' Use of Material Properties to Guide Their Actions with Differently Weighted Objects

    ERIC Educational Resources Information Center

    Paulus, Markus; Hauf, Petra

    2011-01-01

    Two studies with 9-, 11- and 13-month-old infants were conducted to investigate infants' ability to use an object's material properties to guide their object-directed actions. In study 1, 9- and 11-month-old infants played in an exploration phase with two objects made of different materials, one very heavy and the other one light and playable.…

  11. Cyclic Material Properties Test to Determine Hardening/Softening Characteristics of HY-80 Steel

    SciTech Connect

    S.C. Hodge; J.M. Minicucci; T.F. Trimble

    2003-04-30

    The Cyclic Material Properties Test was structured to obtain and provide experimental data for determining cyclic hardening/softening characteristics of HY-80 steel. The inelastic strain history data generated by this test program and the resulting cyclic stress-strain curve will be used to enhance material models in the finite element codes used to perform nonlinear elastic-plastic analysis.

  12. Properties of two composite materials made of toughened epoxy resin and high-strain graphite fiber

    NASA Technical Reports Server (NTRS)

    Dow, Marvin B.; Smith, Donald L.

    1988-01-01

    Results are presented from an experimental evaluation of IM7/8551-7 and IM6/18081, two new toughened epoxy resin, high strain graphite fiber composite materials. Data include ply-level strengths and moduli, notched tension and compression strengths and compression-after-impact assessments. The measured properties are compared with those of other graphite-epoxy materials.

  13. Physical and mechanical properties of degraded waste surrogate material

    SciTech Connect

    Hansen, F.D.; Mellegard, K.D.

    1998-03-01

    This paper discusses rock mechanics testing of surrogate materials to provide failure criteria for compacted, degraded nuclear waste. This daunting proposition was approached by first assembling all known parameters such as the initial waste inventory and rock mechanics response of the underground setting after the waste is stored. Conservative assumptions allowing for extensive degradation processes helped quantify the lowest possible strength conditions of the future state of the waste. In the larger conceptual setting, computations involve degraded waste behavior in transient pressure gradients as gas exits the waste horizon into a wellbore. Therefore, a defensible evaluation of tensile strength is paramount for successful analyses and intentionally provided maximal failed volumes. The very conservative approach assumes rampant degradation to define waste surrogate composition. Specimens prepared from derivative degradation product were consolidated into simple geometries for rock mechanics testing. Tensile strength thus derived helped convince a skeptical peer review panel that drilling into the Waste Isolation Pilot Plant (WIPP) would not likely expel appreciable solids via the drill string.

  14. Thermal properties of composite materials with a complex fractal structure

    NASA Astrophysics Data System (ADS)

    Cervantes-Álvarez, F.; Reyes-Salgado, J. J.; Dossetti, V.; Carrillo, J. L.

    2014-06-01

    In this work, we report the thermal characterization of platelike composite samples made of polyester resin and magnetite inclusions. By means of photoacoustic spectroscopy and thermal relaxation, the thermal diffusivity, conductivity and volumetric heat capacity of the samples were experimentally measured. The volume fraction of the inclusions was systematically varied in order to study the changes in the effective thermal conductivity of the composites. For some samples, a static magnetic field was applied during the polymerization process, resulting in anisotropic inclusion distributions. Our results show a decrease in the thermal conductivity of some of the anisotropic samples, compared to the isotropic randomly distributed ones. Our analysis indicates that the development of elongated inclusion structures leads to the formation of magnetite and resin domains, causing this effect. We correlate the complexity of the inclusion structure with the observed thermal response through a multifractal and lacunarity analysis. All the experimental data are contrasted with the well known Maxwell-Garnett effective media approximation for composite materials.

  15. Pyroelectric Materials for Uncooled Infrared Detectors: Processing, Properties, and Applications

    NASA Technical Reports Server (NTRS)

    Aggarwal, M. D.; Batra, A. K.; Guggilla, P.; Edwards, M. E.; Penn, B. G.; Currie, J. R., Jr.

    2010-01-01

    Uncooled pyroelectric detectors find applications in diverse and wide areas such as industrial production; automotive; aerospace applications for satellite-borne ozone sensors assembled with an infrared spectrometer; health care; space exploration; imaging systems for ships, cars, and aircraft; and military and security surveillance systems. These detectors are the prime candidates for NASA s thermal infrared detector requirements. In this Technical Memorandum, the physical phenomena underlying the operation and advantages of pyroelectric infrared detectors is introduced. A list and applications of important ferroelectrics is given, which is a subclass of pyroelectrics. The basic concepts of processing of important pyroelectrics in various forms are described: single crystal growth, ceramic processing, polymer-composites preparation, and thin- and thick-film fabrications. The present status of materials and their characteristics and detectors figures-of-merit are presented in detail. In the end, the unique techniques demonstrated for improving/enhancing the performance of pyroelectric detectors are illustrated. Emphasis is placed on recent advances and emerging technologies such as thin-film array devices and novel single crystal sensors.

  16. Properties of composite materials used for bracket bonding.

    PubMed

    Gama, Ana Caroline Silva; Moraes, André Guaraci de Vito; Yamasaki, Lilyan Cardoso; Loguercio, Alessandro Dourado; Carvalho, Ceci Nunes; Bauer, José

    2013-01-01

    The purpose of this study was to evaluate in vitro the shear bond strength to enamel, flexural strength, flexural modulus, and contraction stress of one orthodontic composite and two flowable composites. Orthodontic brackets were bonded to 45 human maxillary premolars with the composites Transbond XT, Filtek Z-350 flow and Opallis flow and tested for shear bond strength. For measurement of flexural strength and flexural modulus, specimens were fabricated and tested under flexion. For the contraction stress test, cylindrical specimens were tested and an extensometer determined the height of the specimens. The data were subjected to one-way ANOVA and Tukey's test (α=0.05). The shear bond strength values were significantly lower (p<0.05) for the flowable composites compared with the orthodontic composite. For the flexural strength, no statistically significant difference was found among the composites (p>0.05) while the flexural modulus was significantly higher (p<0.05) for Transbond XT than for Filtek Z-350 flow and Opallis flow. The orthodontic composite presented significantly lower contraction stress values than the flowable composites (p<0.05). The light-activated orthodontic composite material presented higher flexural modulus and shear bond strength and lower contraction stress than both flowable composites. PMID:23969920

  17. Macroporous glass-ceramic materials with bioactive properties.

    PubMed

    Vitale-Brovarone, C; Di Nunzio, S; Bretcanu, O; Verné, E

    2004-03-01

    In the present research work, glass powders and three different organic starches were used to realize macroporous glass-ceramic scaffolds for bone substitutions. For this purpose, bioactive glass powders belonging to the system SiO2-CaO-Na2O-MgO were mixed in a liquid medium with the desired amount of the selected organic phase. Afterwards, by progressively raising the temperature, the water uptake of starches occurred and led to the gelling of the whole system. The resultant gel underwent two thermal treatments in order to eliminate the organic phase and to allow the sintering of the glassy phase. In this way, macroporous glass-ceramic scaffolds were successfully prepared. The samples were characterized by means of optical and scanning electron microscopy with compositional analysis. The volume and mean size of the obtained porosity were investigated by means of mercury intrusion porosimetry, whereas its morphology was assessed by means of microscopic observations. The structure of the original and the resultant materials were investigated by X-ray diffraction. In order to study the reactivity of the scaffolds towards physiological media, the samples were soaked in a simulated body fluid for various times. On their soaked surfaces, scanning electron microscopy and compositional analysis were carried out in order to assess their bioactivity.

  18. Properties of composite materials used for bracket bonding.

    PubMed

    Gama, Ana Caroline Silva; Moraes, André Guaraci de Vito; Yamasaki, Lilyan Cardoso; Loguercio, Alessandro Dourado; Carvalho, Ceci Nunes; Bauer, José

    2013-01-01

    The purpose of this study was to evaluate in vitro the shear bond strength to enamel, flexural strength, flexural modulus, and contraction stress of one orthodontic composite and two flowable composites. Orthodontic brackets were bonded to 45 human maxillary premolars with the composites Transbond XT, Filtek Z-350 flow and Opallis flow and tested for shear bond strength. For measurement of flexural strength and flexural modulus, specimens were fabricated and tested under flexion. For the contraction stress test, cylindrical specimens were tested and an extensometer determined the height of the specimens. The data were subjected to one-way ANOVA and Tukey's test (α=0.05). The shear bond strength values were significantly lower (p<0.05) for the flowable composites compared with the orthodontic composite. For the flexural strength, no statistically significant difference was found among the composites (p>0.05) while the flexural modulus was significantly higher (p<0.05) for Transbond XT than for Filtek Z-350 flow and Opallis flow. The orthodontic composite presented significantly lower contraction stress values than the flowable composites (p<0.05). The light-activated orthodontic composite material presented higher flexural modulus and shear bond strength and lower contraction stress than both flowable composites.

  19. Statistical distribution of mechanical properties for three graphite-epoxy material systems

    NASA Technical Reports Server (NTRS)

    Reese, C.; Sorem, J., Jr.

    1981-01-01

    Graphite-epoxy composites are playing an increasing role as viable alternative materials in structural applications necessitating thorough investigation into the predictability and reproducibility of their material strength properties. This investigation was concerned with tension, compression, and short beam shear coupon testing of large samples from three different material suppliers to determine their statistical strength behavior. Statistical results indicate that a two Parameter Weibull distribution model provides better overall characterization of material behavior for the graphite-epoxy systems tested than does the standard Normal distribution model that is employed for most design work. While either a Weibull or Normal distribution model provides adequate predictions for average strength values, the Weibull model provides better characterization in the lower tail region where the predictions are of maximum design interest. The two sets of the same material were found to have essentially the same material properties, and indicate that repeatability can be achieved.

  20. Computational assessment of the impact of gamma-ray detector material properties on spectroscopic performance

    NASA Astrophysics Data System (ADS)

    Jordan, David V.; Baciak, James E.; McDonald, Benjamin S.; Hensley, Walter K.; Miller, Erin A.; Wittman, Richard S.; Siciliano, Edward R.

    2011-09-01

    Pacific Northwest National Laboratory (PNNL) is performing a computational assessment of the impact of several important gamma-ray detector material properties (e.g. energy resolution and intrinsic detection efficiency) on the scenario-specific spectroscopic performance of these materials. The research approach combines 3D radiation transport calculations, detector response modeling, and spectroscopic analysis of simulated energy deposition spectra to map the functional dependence of detection performance on the underlying material properties. This assessment is intended to help guide formulation of performance goals for new detector materials within the context of materials discovery programs, with an emphasis on applications in the threat reduction, nonproliferation, and safeguards/ verification user communities. The research results will also provide guidance to the gamma-ray sensor design community in estimating relative spectroscopic performance merits of candidate materials for novel or notional detectors.

  1. Microstructures and properties of materials under repeated laser irradiation

    SciTech Connect

    Averback, Robert; Bellon, Pascal

    2007-02-12

    This research program has explored the stability of alloys under pulsed laser irradiation. Two primary directions were investigated: (i) phase transitions during a single laser pulse, and (ii) phase stability under repeated laser irradiation. The first theme was primarily concerned with both the crystalline to amorphous phase transition and the transition of liquids and glasses to crystalline matter. The second project examined the phase evolution during laser pulsing in situations where plastic deformation was prevalent (high-energy laser pulses). Both computer simulation and experimental programs were undertaken. Our work using computer simulations had several notable successes. For the work connected with multiple pulsing, we used molecular dynamics (MD) to simulate the behavior of alloys under severe plastic deformation. We found that during high strain-rate deformation atomic mixing of chemical species is random, independent of the detailed thermochemical properties of the system. This result contrasts with recent reports. In this work, we also developed two new methods of analyzing atomic mixing, one is based on relative mean square displacements (RMSD) of atoms and the other, Burgers vector analysis (BVA), on nearest neighbor displacements. The RMSD analysis is valuable in that it specifies the length scales over which deformation processes take place, and we applied it to understand deformation in nanocrystalline, amorphous and large-grained systems. The BVA analysis, on the other hand, reveals if the damage is homogeneous. Finally we showed that at elevated temperatures, the phase stability is not determined from a simple competition between shearing events and vacancy diffusion, which has long been assumed, but rather atomic mixing in the shearing events is temperature dependent. This work is significant in that it elucidates the fundamental mechanisms that underlie high strain rate deformation, and it provides computational tools for other researchers to

  2. Identification of Material Properties of PZT Single Crystals through Crystallographic Homogenization Method

    NASA Astrophysics Data System (ADS)

    Uetsuji, Yasutomo; Tanaka, Satoshi; Tsuchiya, Kazuyoshi; Ueda, Sei; Nakamachi, Eiji

    Single crystals of lead zirconium titanate (PZT) are difficult to fabricate. Thus, not all material properties of PZT have been fully characterized. In this paper, the mechanical and electrical properties of a PZT single crystal, which can be assumed to be identical to those of a crystal grain in a polycrystal, have been computed from those of a polycrystalline PZT ceramic by the steepest decent method and multiscale finite element modeling based on crystallographic homogenization method. Crystallographic homogenization enables us to predict macroscopic properties of ceramics taking into account the inhomogeneous microstructure of an aggregate of crystal grains. The crystal morphology of the PZT ceramic was measured by the SEM·EBSD technique, and the result was used in the microscopic finite element model. Then, the mechanical and electrical properties of the crystal grain were derived by the steepest decent method so that its macroscopic properties would correspond to the measured properties of the PZT ceramic. The proposed computational method was applied to barium titanate (BT) and validated by comparison of the computed material properties with known properties of the BT single crystal. Finally, the computed material properties, such as the elastic compliance, and the dielectric and piezoelectric constants, were presented for the PZT single crystal.

  3. Ultrathin coatings of nanoporous materials as property enhancements for advanced functional materials.

    SciTech Connect

    Coker, Eric Nicholas

    2010-11-01

    This report summarizes the findings of a five-month LDRD project funded through Sandia's NTM Investment Area. The project was aimed at providing the foundation for the development of advanced functional materials through the application of ultrathin coatings of microporous or mesoporous materials onto the surface of substrates such as silicon wafers. Prior art teaches that layers of microporous materials such as zeolites may be applied as, e.g., sensor platforms or gas separation membranes. These layers, however, are typically several microns to several hundred microns thick. For many potential applications, vast improvements in the response of a device could be realized if the thickness of the porous layer were reduced to tens of nanometers. However, a basic understanding of how to synthesize or fabricate such ultra-thin layers is lacking. This report describes traditional and novel approaches to the growth of layers of microporous materials on silicon wafers. The novel approaches include reduction of the quantity of nutrients available to grow the zeolite layer through minimization of solution volume, and reaction of organic base (template) with thermally-oxidized silicon wafers under a steam atmosphere to generate ultra-thin layers of zeolite MFI.

  4. Strain-rate and temperature dependent material properties of Agar and Gellan Gum used in biomedical applications.

    PubMed

    Schiavi, Alessandro; Cuccaro, Rugiada; Troia, Adriano

    2016-01-01

    Agar and Gellan Gum are biocompatible polymers extensively used in several fields of tissue engineering research (e.g. tissue replacement, tissue support, tissue mimicking), due to their mechanical behaviour effectively representative of actual biological tissues. Since mechanical properties of artificial tissues are related to biocompatibility and functionality of medical implants and significantly influence adhesion, growth and differentiation of cells in tissue-engineering scaffolds, an accurate characterization of Young׳s modulus and relaxation time processes is needed. In this study, the strain-rate and temperature dependent material properties of Agarose and one among the numerous kind of Gellan Gum commercially available, known as Phytagel(®), have been investigated. Nine hydrogel samples have been realized with different mechanical properties: the first one Agar-based as a reference material, the further eight samples Gellan Gum based in which the effect of dispersed solid particles like kieselguhr and SiC, as enhancing mechanical properties factors, have been investigated as a function of concentration. Stress-strain has been investigated in compression and relaxation time has been evaluated by means of the Kohlrausch-Williams-Watts time decay function. Mechanical properties have been measured as a function of temperature between 20 °C and 35 °C and at different strain rates, from ~10(-3)s(-1) and ~10(-2)s(-1) (or deformation rate from ~0.01 mms(-1) to ~0.1 mms(-1)). From experimental data, the combined temperature and strain-rate dependence of hydrogels Young׳s modulus is determined on the basis of a constitutive model. In addition to a dependence of Young׳s modulus on temperature, a remarkable influence of strain-rate has been observed, especially in the sample containing solid particles; in same ranges of temperature and strain-rate, also relaxation time variations have been monitored in order to identify a possible dependence of damping

  5. Physical Properties of Polyamide-12 versus PMMA Denture Base Material

    PubMed Central

    Wieckiewicz, Mieszko; Richter, Gert; Boening, Klaus W.

    2014-01-01

    Objectives. Polyamide-12 (PA) is a flexible material suited for denture bases and clasping. This study investigated its potential aging effects with a focus on surface roughness, color stability, and elasticity. Methods. PA specimens (Valplast) of 40 × 10 × 2 mm and equally measuring PMMA specimens (Palapress) as control were fabricated. Color changes after storage in air, water, coffee, and red wine (n = 10) were measured using the CIE L*a*b* color specification. Elasticity after thermocycling (1000, 3000, and 7000 cycles,  n = 15) was measured by three-point bending testing. Mean surface roughness (Ra) was determined after storage in the liquids mentioned above and thermocycling (n = 10). Results. Tukey's HSD test (P < 0.05) revealed statistically significant color changes of PA in red wine (ΔE = 4.27 after 12 days, ΔE = 6.90 after 12 days) and coffee (ΔE = 3.93 after 36 days) but no color changes in PMMA. Elastic modulus of PA was 845 MPa and not affected by thermocycling (Tukey's HSD test,  P > 0.81). Dry specimens showed significantly decreased elasticity (P < 0.001). Mean surface roughness (PA 0.20 μm, PMMA 0.28 μm) did not change significantly after thermocycling or storage (Mann-Whitney U-test,  0.16 < P < 0.65). Significance. PA exhibited a higher susceptibility to discoloration than PMMA. Neither surface roughness nor elasticity of PA was altered by artificial aging. PMID:24734225

  6. On the use of a loudspeaker for measuring the viscoelastic properties of sound absorbing materials.

    PubMed

    Doutres, Olivier; Dauchez, Nicolas; Génevaux, Jean-Michel; Lemarquand, Guy

    2008-12-01

    This paper investigates the feasibility to use an electrodynamic loudspeaker to determine viscoelastic properties of sound-absorbing materials in the audible frequency range. The loudspeaker compresses the porous sample in a cavity, and a measurement of its electrical impedance allows one to determine the mechanical impedance of the sample: no additional sensors are required. Viscoelastic properties of the material are then estimated by inverting a 1D Biot model. The method is applied to two sound-absorbing materials (glass wool and polymer foam). Results are in good agreement with the classical compression quasistatic method.

  7. Microstructure and properties of multiphase and functionally graded materials prepared by chemical vapor deposition

    SciTech Connect

    Lee, W.Y.

    1996-05-01

    The synthesis of multiphase and functionally graded materials by chemical vapor deposition is discussed from a perspective of controlling their composition and microstructure at a nano-scale level, and ultimately, tailoring their material properties. Prior research is briefly reviewed to address the current state of this novel material concept. Recent experimental results relating to controlling the selected properties of two multiphase systems, TiN + MoS{sub 2} and NiAl + Al{sub 2}O{sub 3}, are described to illustrate this concept`s potential merits and challenges for use in realistic applications.

  8. Influence of dissolved organic materials on turbid water optical properties and remote-sensing reflectance

    NASA Technical Reports Server (NTRS)

    Witte, W. G.; Whitlock, C. H.; Harriss, R. C.; Usry, J. W.; Poole, L. R.; Houghton, W. M.; Morris, W. D.; Gurganus, E. A.

    1982-01-01

    The effects of dissolved organic materials on turbid-water optical properties are assessed, by means of field measurements and laboratory simulations in which upwelled reflectance, attenuation, absorption, and backscatter spectral properties at wavelengths from 450 to 800 nm are examined in relation to water chemistry. The data show that dissolved organic materials decrease upwelled reflectance from turbid waters, and that the decrease in reflectance is a nonlinear function of concentration with the largest gradients at low carbon concentrations, depending on wavelength. Upwelled reflectance is found to be highly correlated with two backscatter-absorption parameters used in some optical models, which are nonlinear with dissolved organic material concentration change.

  9. Understanding Material Property Impacts on Co-Current Flame Spread: Improving Understanding Crucial for Fire Safety

    NASA Technical Reports Server (NTRS)

    Ruff, Gary (Technical Monitor); Rangwala, Ali S.; Buckley, Steven G.; Torero, Jose L.

    2004-01-01

    The prospect of long-term manned space flight brings fresh urgency to the development of an integrated and fundamental approach to the study of material flammability. Currently, NASA uses two tests, the upward flame propagation test and heat and visible smoke release rate test, to assess the flammability properties of materials to be used in space under microgravity conditions. The upward flame propagation test can be considered in the context of the 2-D analysis of Emmons. This solution incorporates material properties by a "mass transfer number", B in the boundary conditions.

  10. Moisture storage parameters of porous building materials as time-dependent properties

    NASA Astrophysics Data System (ADS)

    Záleská, Martina; Pavlíková, Milena; Pavlík, Zbyšek

    2016-06-01

    Three different types of bricks and two different types of sandstones are studied in terms of measurement moisture storage parameters for over-hygroscopic moisture area using pressure plate device. For researched materials, basic physical properties as bulk density, matrix density and total open porosity are determined. From the obtained data of moisture storage measurement, the water retention curves and curves of degree of saturation in dependence on suction pressure are constructed. Water retention curve (also called suction curve, capillary potential curve, capillary-pressure function and capillary-moisture relationship) is the basic material property used in models for simulation of moisture storage in porous building materials.

  11. Material Properties from Air Puff Corneal Deformation by Numerical Simulations on Model Corneas

    PubMed Central

    Dorronsoro, Carlos; de la Hoz, Andrés; Marcos, Susana

    2016-01-01

    Objective To validate a new method for reconstructing corneal biomechanical properties from air puff corneal deformation images using hydrogel polymer model corneas and porcine corneas. Methods Air puff deformation imaging was performed on model eyes with artificial corneas made out of three different hydrogel materials with three different thicknesses and on porcine eyes, at constant intraocular pressure of 15 mmHg. The cornea air puff deformation was modeled using finite elements, and hyperelastic material parameters were determined through inverse modeling, minimizing the difference between the simulated and the measured central deformation amplitude and central-peripheral deformation ratio parameters. Uniaxial tensile tests were performed on the model cornea materials as well as on corneal strips, and the results were compared to stress-strain simulations assuming the reconstructed material parameters. Results The measured and simulated spatial and temporal profiles of the air puff deformation tests were in good agreement (< 7% average discrepancy). The simulated stress-strain curves of the studied hydrogel corneal materials fitted well the experimental stress-strain curves from uniaxial extensiometry, particularly in the 0–0.4 range. Equivalent Young´s moduli of the reconstructed material properties from air-puff were 0.31, 0.58 and 0.48 MPa for the three polymer materials respectively which differed < 1% from those obtained from extensiometry. The simulations of the same material but different thickness resulted in similar reconstructed material properties. The air-puff reconstructed average equivalent Young´s modulus of the porcine corneas was 1.3 MPa, within 18% of that obtained from extensiometry. Conclusions Air puff corneal deformation imaging with inverse finite element modeling can retrieve material properties of model hydrogel polymer corneas and real corneas, which are in good correspondence with those obtained from uniaxial extensiometry

  12. Antibacterial Effect and Physical-Mechanical Properties of Temporary Restorative Material Containing Antibacterial Agents.

    PubMed

    Mushashe, Amanda Mahammad; Gonzaga, Carla Castiglia; Tomazinho, Paulo Henrique; da Cunha, Leonardo Fernandes; Leonardi, Denise Piotto; Pissaia, Janes Francio; Correr, Gisele Maria

    2015-01-01

    Introduction. For the maintenance of the aseptic chain created during the treatment the coronal sealing becomes paramount. Aim. Evaluating the antibacterial effect and the physical-mechanical properties of a temporary restorative material containing different antibacterial agents. Material and Methods. Two antibacterial agents (triclosan and chloramine T) were manually added to a temporary restorative material used as base (Coltosol). The antibacterial action of the material was analyzed using the agar diffusion method, in pure cultures of Escherichia coli (ATCC BAA-2336) and Staphylococcus aureus (ATCC 11632) and mixed culture of saliva collection. The microleakage rate was analyzed using bovine teeth, previously restored with the materials, and submitted to thermocycling, in a solution of 0.5% methylene blue, for a period of 24 hours. The physical and mechanical properties of the materials analyzed were setting time, water sorption, solubility, and compression strength. Results. No marginal leakage was observed for all groups. There was no statistical significant difference in antimicrobial activity, setting time, water sorption, solubility, and compression strength among the materials. Conclusion. The addition of antibacterial agents on a temporary restorative material did not optimize the antibacterial ability of the material and also did not change its physical-mechanical properties.

  13. 41 CFR 101-42.206 - Special requirements for utilization of hazardous materials and certain categories of property.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... utilization of hazardous materials and certain categories of property. 101-42.206 Section 101-42.206 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS UTILIZATION AND DISPOSAL 42-UTILIZATION AND DISPOSAL OF HAZARDOUS MATERIALS AND CERTAIN...

  14. 41 CFR 101-42.209 - Cost of care and handling of hazardous materials and certain categories of property.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... of hazardous materials and certain categories of property. 101-42.209 Section 101-42.209 Public Contracts and Property Management Federal Property Management Regulations System FEDERAL PROPERTY MANAGEMENT REGULATIONS UTILIZATION AND DISPOSAL 42-UTILIZATION AND DISPOSAL OF HAZARDOUS MATERIALS AND CERTAIN...

  15. Synthesis, properties and applications of bio-based materials

    NASA Astrophysics Data System (ADS)

    Srinivasan, Madhusudhan

    Bio-based feedstock have become very significant as they offer a value proposition in terms of carbon balance and also in terms of endowing biodegradability where needed. Thus a lot of attention is being given to the modification such feedstock for different applications. Soybean oil is one such feedstock. The oil is a triglyceride ester composed of different fatty acids, which are common to other plant oils. Thus soybean oil serves as a platform for plant oils, as modifications of this oil, can in theory be extended to cover other plant oils. Methyl oleate was used as a model fatty acid ester, to synthesize hydroxyesters with ethylene glycol via a two stage oxidative cleavage of the double bonds. Ozone was chosen as the oxidant due to its many advantages. The first stage involved oxidation of the double bond to aldehydes, ozonides and acetals, which were subsequently converted to hydroxyesters (hydroxy values of 220 - 270) in near quantitative yield by treatment with Oxone. This method could be extended to soybean oil to make "polyols" which could find applications in resin syntheses. Silylation was employed as another platform to functionalize soybean oil and fatty acid methyl esters with a reactive silane (vinyltrimethoxy silane). This simple modification produced materials that are cured by atmospheric moisture and are useful as coatings. The silylation was controlled by varying the grafting time, cure temperature and the concentration of the silane. Products with gel content as high as 90% could be achieved. The coating exhibited good adhesion to metal, glass, concrete and paper. Steel panels coated with these coatings exhibited good stability against corrosion in high humidity conditions and moderate stability against a salt spray. The silylation was also successfully utilized to improve the tensile strength of the blend of biodegradable polyester, poly (butylene adipate-co-terephthalate) with talc. A reactive extrusion process was employed to graft vinyl

  16. Preparation and sorption properties of materials from paper sludge.

    PubMed

    Hojamberdiev, M; Kameshima, Y; Nakajima, A; Okada, K; Kadirova, Z

    2008-03-01

    Three materials were prepared from paper sludge (PS) using different treatment processes and their sorption abilities for phosphate and methylene blue (MB) were determined. The samples were a powder sample prepared by heating PS in air (sample C), a pellet prepared by grinding, forming and heating PS in air (sample G) and a powder prepared by physical activation of PS in flowing wet nitrogen (sample A). The three samples were heated at 600-900 degrees C for 6h. On heating at 700-800 degrees C, the organic fibers, limestone (CaCO3), kaolinite (Al2Si2O5(OH)4) and talc (Mg3Si4O10(OH)2) in the original PS were converted to amorphous CaO-Al2O3-SiO2 (CAS) and talc in sample C, while CAS was formed in sample G and activated carbon, CAS and talc was formed in sample A. On heating at 900 degrees C the CAS converted to gehlenite (Ca2Al2SiO7) and anorthite (CaAl2Si2O8). The specific surface areas (SBET) of the three samples achieved maximum values of 23, 37 and 70 m2/g upon heating at 700, 600 and 600 degrees C, respectively. The SBET value of the activated sample A was distinctly lower than usually reported for activated carbon. The samples C, G and A achieved maximum phosphate sorption capacities of 2.04, 1.38 and 1.70 mmol/g, calculated from the Langmuir model, upon heating at 700, 700 and 800 degrees C, respectively. The maximum sorption capacity for phosphate in sample C is attributed to the sorption by CAS, namely, adsorption on the alumina component and precipitation as Ca-phosphates. The MB multifunctional sorption capacity of sample A was 0.11 mmol/g. The phosphate and MB sorption rates show better correlation with a pseudo-second order model than with other models.

  17. Reactor Materials Program - Baseline Material Property Handbook - Mechanical Properties of 1950's Vintage Stainless Steel Weldment Components, Task Number 89-23-A-1

    SciTech Connect

    Stoner, K.J.

    1999-11-05

    The Process Water System (primary coolant) piping of the nuclear production reactors constructed in the 1950''s at Savannah River Site is comprised primarily of Type 304 stainless steel with Type 308 stainless steel weld filler. A program to measure the mechanical properties of archival PWS piping and weld materials (having approximately six years of service at temperatures between 25 and 100 degrees C) has been completed. The results from the mechanical testing has been synthesized to provide a mechanical properties database for structural analyses of the SRS piping.

  18. Molecular dynamics studies of material property effects on thermal boundary conductance.

    PubMed

    Zhou, X W; Jones, R E; Duda, J C; Hopkins, P E

    2013-07-14

    Thermal boundary resistance (inverse of conductance) between different material layers can dominate the overall thermal resistance in nanostructures and therefore impact the performance of the thermal property limiting nano devices. Because relationships between material properties and thermal boundary conductance have not been fully understood, optimum devices cannot be developed through a rational selection of materials. Here we develop generic interatomic potentials to enable material properties to be continuously varied in extremely large molecular dynamics simulations to explore the dependence of thermal boundary conductance on the characteristic properties of materials such as atomic mass, stiffness, and interfacial crystallography. To ensure that our study is not biased to a particular model, we employ different types of interatomic potentials. In particular, both a Stillinger-Weber potential and a hybrid embedded-atom-method + Stillinger-Weber potential are used to study metal-on-semiconductor compound interfaces, and the results are analyzed considering previous work based upon a Lennard-Jones (LJ) potential. These studies, therefore, reliably provide new understanding of interfacial transport phenomena particularly in terms of effects of material properties on thermal boundary conductance. Our most important finding is that thermal boundary conductance increases with the overlap of the vibrational spectra between metal modes and the acoustic modes of the semiconductor compound, and increasing the metal stiffness causes a continuous shift of the metal modes. As a result, the maximum thermal boundary conductance occurs at an intermediate metal stiffness (best matched to the semiconductor stiffness) that maximizes the overlap of the vibrational modes.

  19. New materials graphyne, graphdiyne, graphone, and graphane: review of properties, synthesis, and application in nanotechnology

    PubMed Central

    Peng, Qing; Dearden, Albert K; Crean, Jared; Han, Liang; Liu, Sheng; Wen, Xiaodong; De, Suvranu

    2014-01-01

    Plenty of new two-dimensional materials including graphyne, graphdiyne, graphone, and graphane have been proposed and unveiled after the discovery of the “wonder material” graphene. Graphyne and graphdiyne are two-dimensional carbon allotropes of graphene with honeycomb structures. Graphone and graphane are hydrogenated derivatives of graphene. The advanced and unique properties of these new materials make them highly promising for applications in next generation nanoelectronics. Here, we briefly review their properties, including structural, mechanical, physical, and chemical properties, as well as their synthesis and applications in nanotechnology. Graphyne is better than graphene in directional electronic properties and charge carriers. With a band gap and magnetism, graphone and graphane show important applications in nanoelectronics and spintronics. Because these materials are close to graphene and will play important roles in carbon-based electronic devices, they deserve further, careful, and thorough studies for nanotechnology applications. PMID:24808721

  20. Performance Prediction of Commercial Thermoelectric Cooler Modules using the Effective Material Properties

    NASA Astrophysics Data System (ADS)

    Lee, HoSung; Attar, Alaa M.; Weera, Sean L.

    2015-06-01

    This work examines the validity of formulating the effective thermoelectric material properties as a way to predict thermoelectric module performance. The three maximum parameters (temperature difference, current, and cooling power) of a thermoelectric cooler were formulated on the basis of the hot junction temperature. Then, the effective material properties (Seebeck coefficient, electrical resistance, and thermal conductivity) were defined in terms of the three maximum parameters that were taken from either a commercial thermoelectric cooler module or the measurements. It is demonstrated that the simple standard equation with the effective material properties predicts well the performance curves of the four selected commercial products. Normalized parameters over the maximum parameters were also formulated to present the characteristics of the thermoelectric coolers along with the normalized charts. The normalized charts would be universal for a given thermoelectric material.