Science.gov

Sample records for actual nuclear decay

  1. Combinedatomic-nuclear decay

    NASA Astrophysics Data System (ADS)

    Dzyublik, A. Ya.

    2016-05-01

    We analyzed in details the combined decay of the atomic-nuclear state, which consists of the excited 3/2+ level of 63 153 Eu and K hole, formed in the K capture by 153Gd. This decay proceeds in two stages. First, the nucleus transfers its energy to 2 p electron, which flies into the continuum spectrum, and then returns into 1s hole, emitting γ quantum with the energy equal to the sum of energies of the nuclear and atomic transitions. We estimated the decay probability to be 2.2 × 10-13, that is much less than the recent experimental findings.

  2. Proton decay and nuclear dynamics

    SciTech Connect

    Alvioli, M.; Strikman, M.; Benhar, O.; Ericson, M.

    2010-04-15

    The kinematics of the decay of a bound proton is governed by the proton spectral function. We evaluate this quantity in {sup 16}O using the information from nuclear physics experiments. It also includes a correlated part. The reliability of this evaluation is sufficient to open the possibility of correlated cuts in the missing mass and momentum variables to identify the decay events from the bound protons with a possible increase of the signal-to-noise ratio.

  3. Nuclear structure from radioactive decay

    SciTech Connect

    Wood, J.L.

    1991-09-30

    This report discusses nuclear structure from radioactive decay of the following: Neutron-Deficient Iridium Isotopes; Neutron-Deficient Platinum Isotopes; Neutron-Deficient Gold Isotopes; Neutron-Deficient Mercury Isotopes; Neutron-Deficient Thallium Isotopes; Neutron-Deficient Lead Isotopes; Neutron-Deficient Samarium Isotopes; Neutron-Deficient Promethium Isotopes; Neutron-Deficient Neodymium Isotopes; and Neutron-Deficient Praseodymium Isotopes. Also discussed are Nuclear Systematics and Models.

  4. Nuclear structure from radioactive decay

    SciTech Connect

    Wood, J.L.

    1990-09-30

    This report discusses the nuclear structure of the following isotopes as a result of radioactive decays: neutron-deficient iridium isotopes; neutron-deficient platinum isotopes; neutron-deficient gold isotopes; neutron-deficient mercury isotopes; neutron-deficient thallium isotopes; neutron-deficient lead isotopes; neutron-deficient promethium isotopes; and neutron-deficient samarium isotopes.

  5. Nuclear Data Compilation for Beta Decay Isotope

    NASA Astrophysics Data System (ADS)

    Olmsted, Susan; Kelley, John; Sheu, Grace

    2015-10-01

    The Triangle Universities Nuclear Laboratory nuclear data group works with the Nuclear Structure and Decay Data network to compile and evaluate data for use in nuclear physics research and applied technologies. Teams of data evaluators search through the literature and examine the experimental values for various nuclear structure parameters. The present activity focused on reviewing all available literature to determine the most accurate half-life values for beta unstable isotopes in the A = 3-20 range. This analysis will eventually be folded into the ENSDF (Evaluated Nuclear Structure Data File). By surveying an accumulated compilation of reference articles, we gathered all of the experimental half-life values for the beta decay nuclides. We then used the Visual Averaging Library, a data evaluation software package, to find half-life values using several different averaging techniques. Ultimately, we found recommended half-life values for most of the mentioned beta decay isotopes, and updated web pages on the TUNL webpage to reflect these evaluations. To summarize, we compiled and evaluated literature reports on experimentally determined half-lives. Our findings have been used to update information given on the TUNL Nuclear Data Evaluation group website. This was an REU project with Triangle Universities Nuclear Laboratory.

  6. Power spectrum analyses of nuclear decay rates

    NASA Astrophysics Data System (ADS)

    Javorsek, D.; Sturrock, P. A.; Lasenby, R. N.; Lasenby, A. N.; Buncher, J. B.; Fischbach, E.; Gruenwald, J. T.; Hoft, A. W.; Horan, T. J.; Jenkins, J. H.; Kerford, J. L.; Lee, R. H.; Longman, A.; Mattes, J. J.; Morreale, B. L.; Morris, D. B.; Mudry, R. N.; Newport, J. R.; O'Keefe, D.; Petrelli, M. A.; Silver, M. A.; Stewart, C. A.; Terry, B.

    2010-10-01

    We provide the results from a spectral analysis of nuclear decay data displaying annually varying periodic fluctuations. The analyzed data were obtained from three distinct data sets: 32Si and 36Cl decays reported by an experiment performed at the Brookhaven National Laboratory (BNL), 56Mn decay reported by the Children's Nutrition Research Center (CNRC), but also performed at BNL, and 226Ra decay reported by an experiment performed at the Physikalisch-Technische Bundesanstalt (PTB) in Germany. All three data sets exhibit the same primary frequency mode consisting of an annual period. Additional spectral comparisons of the data to local ambient temperature, atmospheric pressure, relative humidity, Earth-Sun distance, and their reciprocals were performed. No common phases were found between the factors investigated and those exhibited by the nuclear decay data. This suggests that either a combination of factors was responsible, or that, if it was a single factor, its effects on the decay rate experiments are not a direct synchronous modulation. We conclude that the annual periodicity in these data sets is a real effect, but that further study involving additional carefully controlled experiments will be needed to establish its origin.

  7. Decay heat studies for nuclear energy

    NASA Astrophysics Data System (ADS)

    Algora, A.; Jordan, D.; Taín, J. L.; Rubio, B.; Agramunt, J.; Caballero, L.; Nácher, E.; Perez-Cerdan, A. B.; Molina, F.; Estevez, E.; Valencia, E.; Krasznahorkay, A.; Hunyadi, M. D.; Gulyás, J.; Vitéz, A.; Csatlós, M.; Csige, L.; Eronen, T.; Rissanen, J.; Saastamoinen, A.; Moore, I. D.; Penttilä, H.; Kolhinen, V. S.; Burkard, K.; Hüller, W.; Batist, L.; Gelletly, W.; Nichols, A. L.; Yoshida, T.; Sonzogni, A. A.; Peräjärvi, K.

    2014-01-01

    The energy associated with the decay of fission products plays an important role in the estimation of the amount of heat released by nuclear fuel in reactors. In this article we present results of the study of the beta decay of some refractory isotopes that were considered important contributors to the decay heat in reactors. The measurements were performed at the IGISOL facility of the University of Jyväskylä, Finland. In these studies we have combined for the first time a Penning trap (JYFLTRAP), which was used as a high resolution isobaric separator, with a total absorption spectrometer. The results of the measurements as well as their consequences for decay heat summation calculations are discussed.

  8. Decay Spectroscopy for Nuclear Astrophysics: {beta}-delayed Proton Decay

    SciTech Connect

    Trache, L.; Simmons, E.; Spiridon, A.; McCleskey, M.; Roeder, B. T.; Tribble, R. E.; Saastamoinen, A.; Jokinen, A.; Aysto, J.; Davinson, T.; Woods, P. J.; Pollacco, E.; Kebbiri, M.

    2011-11-30

    Decay spectroscopy is one of the oldest indirect methods in nuclear astrophysics. We have developed at TAMU techniques to measure beta- and beta-delayed proton decay of sd-shell, proton-rich nuclei. The short-lived radioactive species are produced in-flight, separated, then slowed down (from about 40 MeV/u) and implanted in the middle of very thin Si detectors. These allowed us to measure protons with energies as low as 200 keV from nuclei with lifetimes of 100 ms or less. At the same time we measure gamma-rays up to 8 MeV with high resolution HPGe detectors. We have studied the decay of {sup 23}Al, {sup 27}P, {sup 31}Cl, all important for understanding explosive H-burning in novae. The technique has shown a remarkable selectivity to beta-delayed charged-particle emission and works even at radioactive beam rates of a few pps. The states populated are resonances for the radiative proton capture reactions {sup 22}Na(p,{gamma}){sup 23}Mg(crucial for the depletion of {sup 22}Na in novae), {sup 26m}Al(p,{gamma}){sup 27}Si and {sup 30}P(p,{gamma}){sup 31}S(bottleneck in novae and XRB burning), respectively. More recently we have radically improved the technique using a gas based detector we call AstroBox.

  9. Preferred Modes of Decay in Nuclear Fragmentation

    NASA Astrophysics Data System (ADS)

    Aranda, Alfredo; López, Jorge A.; Wu, Zehua

    1997-04-01

    Recent experiments show a characteristic energy dependence of the different fragmentation modes in heavy ion reactions at intermediate energies. In this work we study this effect and find that, in nuclear fragmentation, like in binary fission, some modes of decay are more probable than the rest. We argue that these high probability mass partitions are ultimately responsible for the observed energy dependence. This work was supported by the National Science Foundation grant PHY-9600038 and Artemio de la Vega Foundation.

  10. Nuclear Structure and Decay Data Evaluation: Challenges and Perspectives

    NASA Astrophysics Data System (ADS)

    Kondev, F. G.; Tuli, J. K.

    2003-10-01

    The expression ``Nuclear Structure and Decay Data'' refers to complex nuclear level schemes and tables of numerical values, which quantify fundamental properties of nuclear structure, such as level energies, quantum numbers and state lifetimes, as well as various decay modes and associated radiation. These data are not only at the core of basic nuclear structure and nuclear astrophysics research, but they are also relevant for many applied technologies, including nuclear energy production, reactor design and safety, medical diagnostic and radiotherapy, health physics, environmental research and monitoring, safeguards, material analysis, etc. The mission of the Nuclear Structure and Decay Data Working Group of the US DOE funded Nuclear Data Program is to evaluate, compile, maintain, and disseminate nuclear structure and decay data for all known nuclei (more than 2900!). The network's principal effort is devoted to the timely revision of information in the ENSDF (Evaluated Nuclear Structure Data File) database. However, in recent years, special attention has been given to topical evaluations of properties of particular interest to the nuclear structure community, such as log ft values, α- and proton decay properties, super-deformed and magnetic dipole collective structures, nuclear moments, and nuclear isomers (under development). This presentation will briefly review recent achievements of the network, present on-going activities, and reflect on ideas for future projects and challenges in the field of nuclear structure and decay data evaluation.

  11. Decay Data Evaluation Project: Evaluation of (52)Fe nuclear decay data.

    PubMed

    Luca, Aurelian

    2016-03-01

    Within the Decay Data Evaluation Project (DDEP) and the IAEA Coordinated Research Project no. F41029, the evaluation of the nuclear decay data of (52)Fe, a radionuclide of interest in nuclear medicine, was performed. The main nuclear decay data evaluated are: the half-life, decay energy, energies and probabilities of the electron capture and β(+) transitions, internal conversion coefficients and gamma-ray energies and emission intensities. This new evaluation, made using the DDEP methodology and tools, was included in the DDEP database NUCLEIDE. PMID:26688358

  12. Imperfect World of beta beta-decay Nuclear Data Sets

    SciTech Connect

    Pritychenko, B.

    2015-01-03

    The precision of double-beta ββ-decay experimental half lives and their uncertainties is reanalyzed. The method of Benford's distributions has been applied to nuclear reaction, structure and decay data sets. First-digit distribution trend for ββ-decay T2v1/2 is consistent with large nuclear reaction and structure data sets and provides validation of experimental half-lives. A complementary analysis of the decay uncertainties indicates deficiencies due to small size of statistical samples, and incomplete collection of experimental information. Further experimental and theoretical efforts would lead toward more precise values of-decay half-lives and nuclear matrix elements.

  13. Searches for exotic interactions in nuclear beta decay

    NASA Astrophysics Data System (ADS)

    Naviliat-Cuncic, O.

    2016-07-01

    This contribution presents current efforts in the search for exotic interactions in nuclear β decay using a calorimetric technique for the measurement of the β energy spectrum shape. We describe the criteria for the choice of sensitive candidates in Gamow-Teller transitions and present the status of measurements performed in 6He and 20F decay.

  14. Nuclear structure notes on element 115 decay chains

    SciTech Connect

    Rudolph, D. Sarmiento, L. G.; Forsberg, U.

    2015-10-15

    Hitherto collected data on more than hundred α-decay chains stemming from element 115 are combined to probe some aspects of the underlying nuclear structure of the heaviest atomic nuclei yet created in the laboratory.

  15. Observation of the competitive double-gamma nuclear decay.

    PubMed

    Walz, C; Scheit, H; Pietralla, N; Aumann, T; Lefol, R; Ponomarev, V Yu

    2015-10-15

    The double-gamma (γγ)-decay of a quantum system in an excited state is a fundamental second-order process of quantum electrodynamics. In contrast to the well-known single-gamma (γ)-decay, the γγ-decay is characterized by the simultaneous emission of two γ quanta, each with a continuous energy spectrum. In nuclear physics, this exotic decay mode has only been observed for transitions between states with spin-parity quantum numbers J(π) = 0(+) (refs 1-3). Single-gamma decays-the main experimental obstacle to observing the γγ-decay-are strictly forbidden for these 0(+) → 0(+) transitions. Here we report the observation of the γγ-decay of an excited nuclear state (J(π) = 11/2(-)) that is directly competing with an allowed γ-decay (to ground state J(π) = 3/2(+)). The branching ratio of the competitive γγ-decay of the 11/2(-) isomer of (137)Ba to the ground state relative to its single γ-decay was determined to be (2.05 ± 0.37) × 10(-6). From the measured angular correlation and the shape of the energy spectra of the individual γ-rays, the contributing combinations of multipolarities of the γ radiation were determined. Transition matrix elements calculated using the quasiparticle-phonon model reproduce our measurements well. The γγ-decay rate gives access to so far unexplored important nuclear structure information, such as the generalized (off-diagonal) nuclear electric polarizabilities and magnetic susceptibilities. PMID:26469051

  16. Nuclear Decay Data Evaluations at IFIN-HH, Romania

    NASA Astrophysics Data System (ADS)

    Luca, A.

    2014-06-01

    An IAEA Coordinated Research Project (CRP) on Updated Decay Data Library for Actinides was implemented during the period 2005-2012. The author participated in the CRP, as a representative of the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), the Radionuclide Metrology Laboratory. Decay data for five actinide nuclides were evaluated by the author, according to the procedures and rules of the international cooperation Decay Data Evaluation Project (DDEP): 236U, 234Th, 228Ra, 211Bi and 211Po. The most important results, conclusions and some recommendations of the evaluator are presented. The IFIN-HH involvement in several new international and national research projects in the field is briefly mentioned; new evaluations and experimental determination of some nuclear decay data (photon absolute emission probability, half-life) for nuclear medicine applications are foreseen.

  17. Nuclear Decay Data Evaluations at IFIN-HH, Romania

    SciTech Connect

    Luca, A.

    2014-06-15

    An IAEA Coordinated Research Project (CRP) on Updated Decay Data Library for Actinides was implemented during the period 2005-2012. The author participated in the CRP, as a representative of the Horia Hulubei National Institute of Physics and Nuclear Engineering (IFIN-HH), the Radionuclide Metrology Laboratory. Decay data for five actinide nuclides were evaluated by the author, according to the procedures and rules of the international cooperation Decay Data Evaluation Project (DDEP): {sup 236}U, {sup 234}Th, {sup 228}Ra, {sup 211}Bi and {sup 211}Po. The most important results, conclusions and some recommendations of the evaluator are presented. The IFIN-HH involvement in several new international and national research projects in the field is briefly mentioned; new evaluations and experimental determination of some nuclear decay data (photon absolute emission probability, half-life) for nuclear medicine applications are foreseen.

  18. Influences of the astrophysical environment on nuclear decay rates

    SciTech Connect

    Norman, E.B.

    1987-09-01

    In many astronomical environments, physical conditions are so extreme that nuclear decay rates can be significantly altered from their laboratory values. Such effects are relevant to a number of current problems in nuclear astrophysics. Experiments related to these problems are now being pursued, and will be described in this talk. 19 refs., 5 figs.

  19. Microscopic description of complex nuclear decay: Multimodal fission

    SciTech Connect

    Staszczak, A.; Baran, A.; Dobaczewski, J.; Nazarewicz, W.

    2009-07-15

    Our understanding of nuclear fission, a fundamental nuclear decay, is still incomplete due to the complexity of the process. In this paper, we describe a study of spontaneous fission using the symmetry-unrestricted nuclear density functional theory. Our results show that the observed bimodal fission can be explained in terms of pathways in multidimensional collective space corresponding to different geometries of fission products. We also predict a new phenomenon of trimodal spontaneous fission for some rutherfordium, seaborgium, and hassium isotopes.

  20. Microscopic description of complex nuclear decay: Multimodal fission

    NASA Astrophysics Data System (ADS)

    Staszczak, A.; Baran, A.; Dobaczewski, J.; Nazarewicz, W.

    2009-07-01

    Our understanding of nuclear fission, a fundamental nuclear decay, is still incomplete due to the complexity of the process. In this paper, we describe a study of spontaneous fission using the symmetry-unrestricted nuclear density functional theory. Our results show that the observed bimodal fission can be explained in terms of pathways in multidimensional collective space corresponding to different geometries of fission products. We also predict a new phenomenon of trimodal spontaneous fission for some rutherfordium, seaborgium, and hassium isotopes.

  1. Possible Stimulation of Nuclear alpha Decay by Superfluid Helium

    SciTech Connect

    Barabanov, A. L.

    2009-08-28

    It is suggested that superfluid helium (condensate of {sup 4}He atoms) may stimulate nuclear alpha decay in a situation when an alpha emitter moves through superfluid helium with fine-tuned velocity, so that the backward-emitted alpha particle is at rest in the laboratory frame. It is shown that the probability of stimulated alpha decay in this case may be sizable enough to be detected.

  2. Preferred modes of decay in nuclear fragmentation

    SciTech Connect

    Aranda, A.; Lopez, J.A.; Wu, Z.

    1997-02-01

    Recent experimental studies show a characteristic energy dependence of the different fragmentation modes in heavy-ion reactions at intermediate energies. In this work we study this dependence and find that, in multifragmentation, just like in low-energy fission, some modes of decay are more probable than the rest. We argue that these high-probability mass partitions are ultimately responsible for the observed energy dependence. {copyright} {ital 1997} {ital The American Physical Society}

  3. Nuclear isospin asymmetry in α decay of heavy nuclei

    NASA Astrophysics Data System (ADS)

    Shin, Eunkyoung; Lim, Yeunhwan; Hyun, Chang Ho; Oh, Yongseok

    2016-08-01

    The effects of nuclear isospin asymmetry on α -decay lifetimes of heavy nuclei are investigated within various phenomenological models of the nuclear potential for the α particle. We consider the widely used simple square-well potential and Woods-Saxon potential and modify them by including an isospin asymmetry term. We then suggest a model for the potential of the α particle motivated by a microscopic phenomenological approach of the Skyrme force model, which naturally introduces the isospin-dependent form of the nuclear potential for the α particle. The empirical α -decay lifetime formula of Viola and Seaborg [J. Inorg. Nucl. Chem. 28, 741 (1966), 10.1016/0022-1902(66)80412-8] is also modified to include isospin asymmetry effects. The obtained α -decay half-lives are in good agreement with the experimental data, and we find that including the nuclear isospin effects somehow improves the theoretical results for α -decay half-lives. The implications of these results are discussed, and the predictions on the α -decay lifetimes of superheavy elements are also presented.

  4. Nuclear Structure and Decay Data: Current Status and Future Perspectives

    SciTech Connect

    Kondev, Filip G.; Tuli, Jagdish K.

    2006-03-13

    The nuclear structure databases provide physicists around the world with a useful collection of reliable and well documented datasets. The Evaluated Nuclear Structure Data File (ENSDF) database, produced by the International Nuclear Structure and Decay Data Network (NSDD) under the auspices of the International Atomic Energy Agency (IAEA), contains evaluated experimental information for all known nuclei. The bibliographical database Nuclear Science References (NSR) provides references to published data in the field of Nuclear Physics. The Experimental Unevaluated Nuclear Data List (XUNDL) provides a method for rapid access to formatted (compiled) data from recently published articles. Detailed information regarding these databases, as well as other products and services, can be found at the National Nuclear Data Center (NNDC) and IAEA web portals.

  5. Nuclear structure from radioactive decay. Annual progress report

    SciTech Connect

    Wood, J.L.

    1991-09-30

    This report discusses nuclear structure from radioactive decay of the following: Neutron-Deficient Iridium Isotopes; Neutron-Deficient Platinum Isotopes; Neutron-Deficient Gold Isotopes; Neutron-Deficient Mercury Isotopes; Neutron-Deficient Thallium Isotopes; Neutron-Deficient Lead Isotopes; Neutron-Deficient Samarium Isotopes; Neutron-Deficient Promethium Isotopes; Neutron-Deficient Neodymium Isotopes; and Neutron-Deficient Praseodymium Isotopes. Also discussed are Nuclear Systematics and Models.

  6. Nuclear matrix elements for double-β decay

    SciTech Connect

    Engel, Jonathan

    2015-07-15

    Recent progress in nuclear-structure theory has been dramatic. I describe applications in progress of ab inito calculations to double-beta decay, and discuss the recent and future application of generator-coordinate methods to the same problem. I also discuss the old and vexing problem of the renormalization of the weak nuclear axial-vector coupling constant “in medium” and plans to resolve it.

  7. Searches for massive neutrinos in nuclear beta decay

    SciTech Connect

    Jaros, J.A.

    1992-10-01

    The status of searches for massive neutrinos in nuclear beta decay is reviewed. The claim by an ITEP group that the electron antineutrino mass > 17eV has been disputed by all the subsequent experiments. Current measurements of the tritium beta spectrum limit m[sub [bar [nu

  8. Nudat: Nuclear Structure and Decay Data from the National Nuclear Data Center (NNDC)

    DOE Data Explorer

    NuDat allows users to search and plot nuclear structure and decay data interactively. NuDat was developed by the National Nuclear Data Center (NNDC)but utilizes contributions from physicists around the world. It provides an interface between web users and several databases containing nuclear structure, nuclear decay and some neutron-induced nuclear reaction information. Users can search for nuclear level properties (energy, half-life, spinparity), gamma-ray information (energy, intensity, multipolarity, coincidences), radiation information following nuclear decay (energy, intensity, dose), and neutron-induced reaction data from the BNL-325 book (thermal cross section and resonance integral). The information provided by NuDat 2 can be viewed in tables, level schemes and an interactive chart of nuclides.

  9. Nuclear decay data files of the Dosimetry Research Group

    SciTech Connect

    Eckerman, K.F.; Westfall, R.J.; Ryman, J.C.; Cristy, M.

    1993-12-01

    This report documents the nuclear decay data files used by the Dosimetry Research Group at Oak Ridge National Laboratory and the utility DEXRAX which provides access to the files. The files are accessed, by nuclide, to extract information on the intensities and energies of the radiations associated with spontaneous nuclear transformation of the radionuclides. In addition, beta spectral data are available for all beta-emitting nuclides. Two collections of nuclear decay data are discussed. The larger collection contains data for 838 radionuclides, which includes the 825 radionuclides assembled during the preparation of Publications 30 and 38 of the International Commission on Radiological Protection (ICRP) and 13 additional nuclides evaluated in preparing a monograph for the Medical Internal Radiation Dose (MIRD) Committee of the Society of Nuclear Medicine. The second collection is composed of data from the MIRD monograph and contains information for 242 radionuclides. Abridged tabulations of these data have been published by the ICRP in Publication 38 and by the Society of Nuclear Medicine in a monograph entitled ``MIRD: Radionuclide Data and Decay Schemes.`` The beta spectral data reported here have not been published by either organization. Electronic copies of the files and the utility, along with this report, are available from the Radiation Shielding Information Center at Oak Ridge National Laboratory.

  10. Nuclear Properties and Decay Data Chart of Nuclides.

    2008-04-04

    Version 00 NUCHART displays nuclear decay data graphically on a PC and, includes a search routine for assigning gamma-ray energies to radionuclides. The numerical data included in NUCHART were taken from the online database "NUDAT" Version of March 1994. The following information is presented: (1) Nuclide information: for each nuclide, abundance, mass excess, (main) decay mode, half-life and uncertainty, branching ratio, decay Q; (2) decay radiation: for each nuclide, tables of radiation energy, intensity andmore » equivalent dose for the 5 most intense decay radiations of beta+, beta-, conversion electrons, gammas, alphas and x-rays, including electron Augers; (3) adopted gammas: for each nuclide, table containing energy, relative intensity, energy level of the main gamma lines and year of publication in Nuclear Data Sheets; (4) search gamma energies: for a specified interval of gamma energies all know gamma lines and their nuclides are displayed; the database contains 132,000 gamma lines; (5) a search mode by specific nuclide is also available. For the latest data and online tools for viewing the data, see NuDat 2.4 on the NNDC and IAEA NDS websites: http://www.nndc.bnl.gov/ and http://www-nds.iaea.org/.« less

  11. Radioactive decay as a forced nuclear chemical process: Phenomenology

    NASA Astrophysics Data System (ADS)

    Timashev, S. F.

    2015-11-01

    Concepts regarding the mechanism of radioactive decay of nuclei are developed on the basis of a hypothesis that there is a dynamic relationship between the electronic and nuclear subsystems of an atom, and that fluctuating initiating effects of the electronic subsystem on a nucleus are possible. Such relationship is reflected in experimental findings that show the radioactive decay of nuclei might be determined by a positive difference between the mass of an initial nucleus and the mass of an atom's electronic subsystem, i.e., the mass of the entire atom (rather than that of its nucleus) and the total mass of the decay products. It is established that an intermediate nucleus whose charge is lower by unity than the charge of the initial radioactive nucleus is formed as a result of the above fluctuating stimuli that initiate radioactive decay, and its nuclear matter is thus in an unbalanced metastable state of inner shakeup, affecting the quark subsystem of nucleons. The intermediate nucleus thus experiences radioactive decay with the emission of α or β particles. At the same time, the high energy (with respect to the chemical scale) of electrons in plasma served as a factor initiating the processes in different nuclear chemical transformations and radioactive decays in low-temperature plasma studied earlier, particularly during the laser ablation of metals in aqueous solutions of different compositions and in near-surface cathode layers upon glow discharge. It is shown that a wide variety of nucleosynthesis processes in the Universe can be understood on the same basis, and a great many questions regarding the formation of light elements in the solar atmosphere and some heavy elements (particularly p-nuclei) in the interiors of massive stars at late stages of their evolution can also be resolved.

  12. Studies of Nuclear Structure and Decay Properties of Actinide Nuclei

    SciTech Connect

    Kondev, F. G.; Ahmad, I.; Carpenter, M. P.; Chiara, C. J.; Greene, J. P.; Janssens, R. V. F.; Khoo, T. L.; Lauritsen, T.; Lister, C. J.; Moore, E. F.; Seweryniak, D.; Zhu, S.; Kellett, M. A.; Nichols, A. L.

    2009-01-28

    The identification of single-particle states in heavy actinide nuclei by means of studying their decay schemes plays a seminal role in understanding the structure of the heaviest elements and testing the predictive power of modern theoretical models. The heaviest odd-mass nuclides available in sufficient quantity for detailed decay spectroscopic studies are 20-h {sup 255} Fm(for neutrons) and 20-d {sup 253}Es(for protons). Decay spectra of these isotopes, together with those for the odd-odd 276-d {sup 254}Es nuclide, were measured using a variety of {alpha}-particle and {gamma}-ray spectroscopy techniques. Well-defined decay data are also essential pre-requisites for the detection and accurate characterization of fissile radionuclides. The parameters of greatest relevance include actinide half-lives, branching fractions, and {alpha}-particle and {gamma}-ray energies and emission probabilities. Their quantification to good accuracy provides the means of monitoring their presence, behavior and transport in nuclear facilities as well as any clandestine movement and usage. As a consequence of recommendations made at recent IAEA research coordination meetings on 'Updated Decay Data Library for Actinides,' measurements were undertaken to determine specific decay data of the more inadequately defined radionuclides.

  13. Total Absorption Study of Beta Decays Relevant for Nuclear Applications and Nuclear Structure

    SciTech Connect

    Algora, A.; Valencia, E.; Taín, J.L.; Jordan, M.D.; Agramunt, J.; Rubio, B.; Estevez, E.; Molina, F.; Montaner, A.; Guadilla, V.; Fallot, M.; Porta, A.; Zakari-Issoufou, A.-A.; Bui, V.M.; and others

    2014-06-15

    An overview is given of our activities related to the study of the beta decay of neutron rich nuclei relevant for nuclear applications. Recent results of the study of the beta decay of {sup 87,88}Br using a new segmented total absorption spectrometer are presented. The measurements were performed at the IGISOL facility using trap-assisted total absorption spectroscopy.

  14. Searches for massive neutrinos in nuclear beta decay

    SciTech Connect

    Jaros, J.A.

    1992-10-01

    The status of searches for massive neutrinos in nuclear beta decay is reviewed. The claim by an ITEP group that the electron antineutrino mass > 17eV has been disputed by all the subsequent experiments. Current measurements of the tritium beta spectrum limit m{sub {bar {nu}}e} < 10 eV. The status of the 17 keV neutrino is reviewed. The strong null results from INS Tokyo and Argonne, and deficiencies in the experiments which reported positive effects, make it unreasonable to ascribe the spectral distortions seen by Simpson, Hime, and others to a 17keV neutrino. Several new ideas on how to search for massive neutrinos in nuclear beta decay are discussed.

  15. Neutrinoless double-β decay and nuclear transition matrix elements

    SciTech Connect

    Rath, P. K.

    2015-10-28

    Within mechanisms involving the light Majorana neutrinos, squark-neutrino, Majorons, sterile neutrinos and heavy Majorana neutrino, nuclear transition matrix elements for the neutrinoless (β{sup −}β{sup −}){sub 0ν} decay of {sup 96}Zr, {sup 100}Mo, {sup 128,130}Te and {sup 150}Nd nuclei are calculated by employing the PHFB approach. Effects due to finite size of nucleons, higher order currents, short range correlations, and deformations of parent as well as daughter nuclei on the calculated matrix elements are estimated. Uncertainties in nuclear transition matrix elements within long-ranged mechanisms but for double Majoron accompanied (β{sup −}β{sup −}ϕϕ){sub 0ν} decay modes are 9%–15%. In the case of short ranged heavy Majorona neutrino exchange mechanism, the maximum uncertainty is about 35%. The maximum systematic error within the mechanism involving the exchange of light Majorana neutrino is about 46%.

  16. Neutrinoless double-β decay and nuclear transition matrix elements

    NASA Astrophysics Data System (ADS)

    Rath, P. K.

    2015-10-01

    Within mechanisms involving the light Majorana neutrinos, squark-neutrino, Majorons, sterile neutrinos and heavy Majorana neutrino, nuclear transition matrix elements for the neutrinoless (β-β-)0ν decay of 96Zr, 100Mo, 128,130Te and 150Nd nuclei are calculated by employing the PHFB approach. Effects due to finite size of nucleons, higher order currents, short range correlations, and deformations of parent as well as daughter nuclei on the calculated matrix elements are estimated. Uncertainties in nuclear transition matrix elements within long-ranged mechanisms but for double Majoron accompanied (β-β-ϕϕ)0ν decay modes are 9%-15%. In the case of short ranged heavy Majorona neutrino exchange mechanism, the maximum uncertainty is about 35%. The maximum systematic error within the mechanism involving the exchange of light Majorana neutrino is about 46%.

  17. NUCLEAR STRUCTURE AND DECAY DATA: INTRODUCTION TO RELEVANT WEB PAGES.

    SciTech Connect

    BURROWS, T.W.; MCLAUGHLIN, P.D.; NICHOLS, A.L.

    2005-04-04

    A brief description is given of the nuclear data centers around the world able to provide access to those databases and programs of highest relevance to nuclear structure and decay data specialists. A number of Web-page addresses are also provided for the reader to inspect and investigate these data and codes for study, evaluation and calculation. These instructions are not meant to be comprehensive, but should provide the reader with a reasonable means of electronic access to the most important data sets and programs.

  18. Radionuclide mass inventory, activity, decay heat, and dose rate parametric data for TRIGA spent nuclear fuels

    SciTech Connect

    Sterbentz, J.W.

    1997-03-01

    Parametric burnup calculations are performed to estimate radionuclide isotopic mass and activity concentrations for four different Training, Research, and Isotope General Atomics (TRIGA) nuclear reactor fuel element types: (1) Aluminum-clad standard, (2) Stainless Steel-clad standard, (3) High-enrichment Fuel Life Improvement Program (FLIP), and (4) Low-enrichment Fuel Life Improvement Program (FLIP-LEU-1). Parametric activity data are tabulated for 145 important radionuclides that can be used to generate gamma-ray emission source terms or provide mass quantity estimates as a function of decay time. Fuel element decay heats and dose rates are also presented parametrically as a function of burnup and decay time. Dose rates are given at the fuel element midplane for contact, 3.0-feet, and 3.0-meter detector locations in air. The data herein are estimates based on specially derived Beginning-of-Life (BOL) neutron cross sections using geometrically-explicit TRIGA reactor core models. The calculated parametric data should represent good estimates relative to actual values, although no experimental data were available for direct comparison and validation. However, because the cross sections were not updated as a function of burnup, the actinide concentrations may deviate from the actual values at the higher burnups.

  19. Nuclear-structure aspects of double beta decay

    SciTech Connect

    Suhonen, Jouni

    2010-11-24

    Neutrinoless double beta (0{nu}{beta}{beta}) decay of nuclei is a process that requires the neutrino to be a massive Majorana particle and thus cannot proceed in the standard model of electro-weak interactions. Recent results of the neutrino-oscillation experiments have produced accurate information on the mixing of neutrinos and their squared mass differences. The 0{nu}{beta}{beta} decay takes place in atomic nuclei where it can be observed, at least in principle, by underground neutrino experiments. The need of nuclei in observation of the 0{nu}{beta}{beta} decay bears two facets: The nucleus serves as laboratory for detection but at the same time its complicated many-nucleon structure interferes strongly with the analysis of the experimental data. The information about the weak-interaction observables, like the neutrino mass, has to be filtered from the data through the nuclear matrix elements (NMEs). Hence, exact knowledge about the NMEs is of paramount importance in the analysis of the data provided by the expensive and time-consuming underground experiments.

  20. Shell model nuclear matrix elements for competing mechanisms contributing to double beta decay

    SciTech Connect

    Horoi, Mihai

    2013-12-30

    Recent progress in the shell model approach to the nuclear matrix elements for the double beta decay process are presented. This includes nuclear matrix elements for competing mechanisms to neutrionless double beta decay, a comparison between closure and non-closure approximation for {sup 48}Ca, and an updated shell model analysis of nuclear matrix elements for the double beta decay of {sup 136}Xe.

  1. Strontium and Actinide Separations from High Level Nuclear Waste Solutions using Monosodium Titanate - Actual Waste Testing

    SciTech Connect

    Peters, T.B.; Barnes, M.J.; Hobbs,D.T.; Walker, D.D.; Fondeur, F.F.; Norato, M.A.; Pulmano, R.L.; Fink, S.D.

    2005-11-01

    Pretreatment processes at the Savannah River Site will separate {sup 90}Sr, alpha-emitting and radionuclides (i.e., actinides) and {sup 137}Cs prior to disposal of the high-level nuclear waste. Separation of {sup 90}Sr and alpha-emitting radionuclides occurs by ion exchange/adsorption using an inorganic material, monosodium titanate (MST). Previously reported testing with simulants indicates that the MST exhibits high selectivity for strontium and actinides in high ionic strength and strongly alkaline salt solutions. This paper provides a summary of data acquired to measure the performance of MST to remove strontium and actinides from actual waste solutions. These tests evaluated the effects of ionic strength, mixing, elevated alpha activities, and multiple contacts of the waste with MST. Tests also provided confirmation that MST performs well at much larger laboratory scales (300-700 times larger) and exhibits little affinity for desorption of strontium and plutonium during washing.

  2. Nuclear Decay Data: On-going Studies to Address and Improve Radionuclide Decay Characteristics

    NASA Astrophysics Data System (ADS)

    Nichols, Alan L.

    2005-05-01

    Representative decay data studies are described and reviewed, ranging from various measurement programmes to the maintenance of evaluated decay-data libraries. Gross beta-decay measurements are essential to address the decay-data requirements for short-lived fission products, well-defined half-lives are required in assessments of the storage of long-lived radionuclides in waste depositories, and improved decay data continue to be demanded in safeguards, to improve detector-calibration standards, and for medical and analytical applications. Such needs require the measurement of good quality decay data, along with multinational evaluations of decay schemes by means of agreed procedures.

  3. New studies of nuclear decay {gamma}-rays from novae

    SciTech Connect

    Starrfield, S.; Truran, J.W.; Wiescher, M.C.

    1997-11-01

    The cause of the nova outburst is a thermonuclear runaway (TNR) in hydrogen rich material transferred by a companion onto a white dwarf. Studies of this phenomenon have shown that the TNR produces large concentrations of the short lived positron unstable isotopes of the CNO nuclei which are transported to the surface by convection so that early in the outburst we expect significant numbers of radioactive decays to occur at the surface. The resulting {gamma}-ray emission may be detectable from nearby novae early in their outbursts. The TNR is also expected to produce substantial amounts of {sup 7}Be and {sup 22}Na. Their decays also yield potentially detectable levels of {gamma}-ray emission for relatively nearby novae. We are also interested in the role played by novae in the production of the {approximately}2M{circle_dot} of {sup 26}Al found in the galaxy. In order to improve our predictions of this phenomenon, we have performed a new set of calculations of TNR`s on ONeMg and CO white dwarfs with an updated nuclear reaction network and opacities.

  4. Superallowed nuclear beta decay: Precision measurements for basic physics

    SciTech Connect

    Hardy, J. C.

    2012-11-20

    For 60 years, superallowed 0{sup +}{yields}0{sup +} nuclear beta decay has been used to probe the weak interaction, currently verifying the conservation of the vector current (CVC) to high precision ({+-}0.01%) and anchoring the most demanding available test of the unitarity of the Cabibbo-Kobayashi-Maskawa (CKM) matrix ({+-}0.06%), a fundamental pillar of the electroweak standard model. Each superallowed transition is characterized by its ft-value, a result obtained from three measured quantities: the total decay energy of the transition, its branching ratio, and the half-life of the parent state. Today's data set is composed of some 150 independent measurements of 13 separate superallowed transitions covering a wide range of parent nuclei from {sup 10}C to {sup 74}Rb. Excellent consistency among the average results for all 13 transitions - a prediction of CVC - also confirms the validity of the small transition-dependent theoretical corrections that have been applied to account for isospin symmetry breaking. With CVC consistency established, the value of the vector coupling constant, G{sub V}, has been extracted from the data and used to determine the top left element of the CKM matrix, V{sub ud}. With this result the top-row unitarity test of the CKM matrix yields the value 0.99995(61), a result that sets a tight limit on possible new physics beyond the standard model. To have any impact on these fundamental weak-interaction tests, any measurement must be made with a precision of 0.1% or better - a substantial experimental challenge well beyond the requirements of most nuclear physics measurements. I overview the current state of the field and outline some of the requirements that need to be met by experimentalists if they aim to make measurements with this high level of precision.

  5. A triggerless digital data acquisition system for nuclear decay experiments

    SciTech Connect

    Agramunt, J.; Tain, J. L.; Albiol, F.; Algora, A.; Estevez, E.; Giubrone, G.; Jordan, M. D.; Molina, F.; Rubio, B.; Valencia, E.

    2013-06-10

    In nuclear decay experiments an important goal of the Data Acquisition (DAQ) system is to allow the reconstruction of time correlations between signals registered in different detectors. Classically DAQ systems are based in a trigger that starts the event acquisition, and all data related with the event of that trigger are collected as one compact structure. New technologies and electronics developments offer new possibilities to nuclear experiments with the use of sampling ADC-s. This type of ADC-s is able to provide the pulse shape, height and a time stamp of the signal. This new feature (time stamp) allows new systems to run without an event trigger. Later, the event can be reconstructed using the time stamp information. In this work we present a new DAQ developed for {beta}-delayed neutron emission experiments. Due to the long moderation time of neutrons, we opted for a self-trigger DAQ based on commercial digitizers. With this DAQ a negligible acquisition dead time was achieved while keeping a maximum of event information and flexibility in time correlations.

  6. Nuclear Decay Data in the MIRD (Medical Internal Radiation Dose) Format

    DOE Data Explorer

    MIRD is a database of evaluated nuclear decay data for over 2,100 radioactive nuclei. Data are extracted from ENSDF, processed by the program RadList, and used for medical internal radiation dose calculations. When using the MIRD interface, tables of nuclear and atomic radiations from nuclear decay and decay scheme drawings will be produced in the MIRD format from the Evaluated Nuclear Structure Data File (ENSDF) for the specified nuclide. Output may be either HTML-formatted tables and JPEG drawings, PostScript tables and drawings, or PDF tables and drawings.

  7. Decay data of radionuclides along the valley of nuclear stability for astrophysical applications.

    PubMed

    Chechev, Valery P; Huang, Xiaolong

    2015-11-01

    Several directions of the demand for decay data in nuclear astrophysics are discussed for radionuclides near the valley of nuclear stability. The current half-life and gamma-ray intensity evaluation results are presented for some radionuclides of astrophysical interest. An extended list of such nuclides is offered for their nuclear characteristics to be further evaluated by the Decay Data Evaluation Project collaboration participants. PMID:26275948

  8. Heavy Neutrino Emission in Nuclear Beta Decay Spectra

    NASA Astrophysics Data System (ADS)

    Hime, Andrew

    Available from UMI in association with The British Library. Requires signed TDF. A modest spectrometer has been constructed and employed in measurements of electron energy spectra from the beta decay of ^ {35}S and ^{63} Ni. In both cases studied the data exhibit a threshold distortion 17 keV below the endpoint which is well described by the hypothesis that the electron neutrino couples to a heavy mass eigenstate. In terms of a two state mixing scheme and after radiative corrections, the ^ {35}S data indicate an M_2 = 16.95 +/- 0.35 keV component coupling with a mixing probability of sin^2 theta = 0.0078 +/- 0.0008. Data from a ^{63}Ni measurement yield a similar result with M_2 = 16.75 +/- 0.38 keV and sin ^2theta = 0.0101 +/- 0.0021. The errors quoted include both statistical and systematic contributions where systematic effects arise, predominantly, through small uncertainties in the electron response function. The electron response function has been measured from internal conversion electrons following electron capture, details of which are described. These results agree with earlier observations in the beta^ectra of ^3 H and ^{35}S as well as more recent studies of the ^{14 }C spectrum. On the other hand, experiments employing magnetic spectrometers provide no such evidence for heavy neutrino emission in nuclear beta decay. While this leaves the experimental situation unsettled some thoughts are provided on possible shortcomings of these experiments. In addition, a discussion is given on the possibility of alternative descriptions of the data providing positive evidence for the 17-keV neutrino as well as to how the experimental situation might be improved in the future. A technique is proposed which can serve to resolve the issue both with respect to experiments employing solid state detectors as well as those using magnetic spectrometers. If the interpretation of the anomalies observed in beta spectra is correct then we have our first glimpse that neutrinos

  9. The human nuclear poly(a)-binding protein promotes RNA hyperadenylation and decay.

    PubMed

    Bresson, Stefan M; Conrad, Nicholas K

    2013-01-01

    Control of nuclear RNA stability is essential for proper gene expression, but the mechanisms governing RNA degradation in mammalian nuclei are poorly defined. In this study, we uncover a mammalian RNA decay pathway that depends on the nuclear poly(A)-binding protein (PABPN1), the poly(A) polymerases (PAPs), PAPα and PAPγ, and the exosome subunits RRP6 and DIS3. Using a targeted knockdown approach and nuclear RNA reporters, we show that PABPN1 and PAPα, redundantly with PAPγ, generate hyperadenylated decay substrates that are recognized by the exosome and degraded. Poly(A) tail extension appears to be necessary for decay, as cordycepin treatment or point mutations in the PAP-stimulating domain of PABPN1 leads to the accumulation of stable transcripts with shorter poly(A) tails than controls. Mechanistically, these data suggest that PABPN1-dependent promotion of PAP activity can stimulate nuclear RNA decay. Importantly, efficiently exported RNAs are unaffected by this decay pathway, supporting an mRNA quality control function for this pathway. Finally, analyses of both bulk poly(A) tails and specific endogenous transcripts reveals that a subset of nuclear RNAs are hyperadenylated in a PABPN1-dependent fashion, and this hyperadenylation can be either uncoupled or coupled with decay. Our results highlight a complex relationship between PABPN1, PAPα/γ, and nuclear RNA decay, and we suggest that these activities may play broader roles in the regulation of human gene expression. PMID:24146636

  10. Inhomogeneous dynamic nuclear polarization and suppression of electron polarization decay in a quantum dot

    NASA Astrophysics Data System (ADS)

    Wu, Na; Ding, Wenkui; Shi, Anqi; Zhang, Wenxian

    2016-08-01

    We investigate the dynamic nuclear polarization in a quantum dot. Due to the suppression of direct dipolar and indirect electron-mediated nuclear spin interactions by frequently injected electron spins, our analytical results under independent spin approximation agree well with quantum numerical simulations for a small number of nuclear spins. We find that the acquired nuclear polarization is highly inhomogeneous, proportional to the square of the local electron-nuclear hyperfine interaction constant. Starting from the inhomogeneously polarized nuclear spins, we further show that the electron polarization decay time can be extended 100 times even at a relatively low nuclear polarization.

  11. Influence of Pairing on the Nuclear Matrix Elements of the Neutrinoless {beta}{beta} Decays

    SciTech Connect

    Caurier, E.; Nowacki, F.

    2008-02-08

    We study in this Letter the neutrinoless double beta decay nuclear matrix elements (NME's) in the framework of the interacting shell model. We analyze them in terms of the total angular momentum of the decaying neutron pair and as a function of the seniority truncations in the nuclear wave functions. This point of view turns out to be very adequate to gauge the accuracy of the NME's predicted by different nuclear models. In addition, it gives back the protagonist role in this process to the pairing interaction, the one which is responsible for the very existence of double beta decay emitters. We show that low seniority approximations, comparable to those implicit in the quasiparticle RPA in a spherical basis, tend to overestimate the NME's in several decays.

  12. Influence of Pairing on the Nuclear Matrix Elements of the Neutrinoless ββ Decays

    NASA Astrophysics Data System (ADS)

    Caurier, E.; Menéndez, J.; Nowacki, F.; Poves, A.

    2008-02-01

    We study in this Letter the neutrinoless double beta decay nuclear matrix elements (NME’s) in the framework of the interacting shell model. We analyze them in terms of the total angular momentum of the decaying neutron pair and as a function of the seniority truncations in the nuclear wave functions. This point of view turns out to be very adequate to gauge the accuracy of the NME’s predicted by different nuclear models. In addition, it gives back the protagonist role in this process to the pairing interaction, the one which is responsible for the very existence of double beta decay emitters. We show that low seniority approximations, comparable to those implicit in the quasiparticle RPA in a spherical basis, tend to overestimate the NME’s in several decays.

  13. Modeling Nuclear Decay: A Point of Integration between Chemistry and Mathematics.

    ERIC Educational Resources Information Center

    Crippen, Kent J.; Curtright, Robert D.

    1998-01-01

    Describes four activities that use graphing calculators to model nuclear-decay phenomena. Students ultimately develop a notion about the radioactive waste produced by nuclear fission. These activities are in line with national educational standards and allow for the integration of science and mathematics. Contains 13 references. (Author/WRM)

  14. Co-ordination of the International Network of Nuclear Structure and Decay Data Evaluators

    SciTech Connect

    Ricard-McCutchan, E.; Dimitriou, P.; Nichols, A. L.

    2015-08-01

    The 21st meeting of the International Network of Nuclear Structure and Decay Data Evaluators was convened at the IAEA Headquarters, Vienna, from 20 to 24 April 2015 under the auspices of the IAEA Nuclear Data Section. This meeting was attended by 36 scientists from 15 Member States, plus IAEA staff, concerned with the compilation, evaluation and dissemination of nuclear structure and decay data. A summary of the meeting, data centre reports, various proposals considered, and actions agreed by the participants, as well as recommendations/conclusions are presented within this document.

  15. Decay chains and photofission investigation based on nuclear spectroscopy of highly enriched uranium sample.

    PubMed

    Sibczynski, P; Kownacki, J; Syntfeld-Kazuch, A; Moszynski, M; Kisielinski, M; Czarnacki, W; Kosinski, K; Matusiak, M; Klimasz, M; Kowalczyk, M; Abraham, T; Mierzejewski, J; Srebrny, J

    2013-12-01

    Nuclear spectroscopy experiments were performed for 100g metallic uranium rod enriched to 93% (235)U, in order to establish and characterize the most prominent γ-rays in the natural decay series and photofission reaction. Single γ-ray spectra and γ-γ coincidences measurements were conducted before irradiation. The uranium sample was subsequently irradiated with 15 MeV bremsstrahlung photons. Relative intensities of γ-lines and several values of half-lives of the fission fragments decays were determined. The obtained information can be utilized in detection of smuggled nuclear materials and characterization of bulky nuclear waste packages. PMID:24013389

  16. A Test of the Exponential Decay Law by Photo-Production of Nuclear Isomers

    NASA Astrophysics Data System (ADS)

    Wells, Douglas P.; Scates, Wade W.; Harmon, Frank J.; Spaulding, Randy; Selim, Farida

    2001-10-01

    Modern tests of grand unification theories and the standard model spend considerable experimental effort in pursuit of rare decays. A common feature of these experiments is that they involve extremely rare decay processes and probe regions of the systems' decay curves which are very short compared to their mean lifetimes. A potential complication to interpretations of such experiments is the approximate nature of the exponential decay law for quasi-stationary states [1,2]. We use the decay of the isomeric nuclear states 207mPb(t1/2=0.8 s), 90mZr(t1/2=0.8 s) and 137mBa(t1/2=153 s) 136mBa(t1/2=0.3 s) in the short time limit to search for predicted deviations from the exponential decay law. These experiments address the short-time electromagnetic decays of nuclei with half-lives of order a few seconds, and explore the as-yet untapped electromagnetic sector for short-time (tmin/t1/2 approximate 1E-8) violations of the exponential decay law. Isomeric states are populated with photo-nuclear reactions from a bremsstrahlung beam from ISU's 30 MeV pulsed electron linac. [1] Eugene Merzbacher, Quantum Mechanics, second edition, 1970. [2] L. Fonda, G.C. Ghirardi, A. Rimini, Rep. Progr. Phys. 41, (1978) 587.

  17. Study of Analytic Statistical Model for Decay of Light and Medium Mass Nuclei in Nuclear Fragmentation

    NASA Technical Reports Server (NTRS)

    Cucinotta, Francis A.; Wilson, John W.

    1996-01-01

    The angular momentum independent statistical decay model is often applied using a Monte-Carlo simulation to describe the decay of prefragment nuclei in heavy ion reactions. This paper presents an analytical approach to the decay problem of nuclei with mass number less than 60, which is important for galactic cosmic ray (GCR) studies. This decay problem of nuclei with mass number less than 60 incorporates well-known levels of the lightest nuclei (A less than 11) to improve convergence and accuracy. A sensitivity study of the model level density function is used to determine the impact on mass and charge distributions in nuclear fragmentation. This angular momentum independent statistical decay model also describes the momentum and energy distribution of emitted particles (n, p, d, t, h, and a) from a prefragment nucleus.

  18. Sub-Barrier Fusion in the HI + 208Pb Systems and Nuclear Potentials for Cluster Decay

    SciTech Connect

    Sagaidak, R.N.; Tretyakova, S.P.; Khlebnikov, S.V.; Ogloblin, A.A.; Rowley, N.

    2005-11-21

    Near-barrier fusion excitation functions for the 12,14C, 16,18O + 208Pb reactions have been analyzed in the framework of the barrier-passing model using different forms of the nuclear potential and the phenomenology of a fluctuating barrier. The best-fit fusion potentials were used to estimate cluster decay probabilities from the corresponding ground states of Ra and Th, i.e., for the inverse decay process. The analysis supports the 'alpha-decay-like' scenario for carbon and oxygen emission from these nuclei.

  19. The Nuclear and Particle Physics of Neutrinoless Double Beta Decay

    NASA Astrophysics Data System (ADS)

    Haxton, Wick

    2014-03-01

    Fortuitous properties of nuclei allow us to isolate and study the rare second-order weak process of double beta decay. In particular, the decay channel in which a final state of two electrons and no neutrinos is produced - neutrinoless double beta decay - provides our best test of lepton number conservation and the Majorana mass of the electron neutrino. I will describe the connections between this process and the charge conjugation properties of the neutrino, including the possibility that the presence of both Dirac and Majorana masses accounts for the anomalous scale of neutrino masses. The extraordinary progress made over the past two decades has prepared the way for next-generation experiments that will probe Majorana masses at levels where nonzero rates may be found, given what we now know about neutrino mass splittings. I will describe some of the heroic efforts underway to develop detectors of unprecedented size, radiopurity, depth, and thus sensitivity. Work supported by the Office of Science, US DOE.

  20. Interplay of particle, nuclear and atomic physics in rare weak decays

    NASA Astrophysics Data System (ADS)

    Suhonen, Jouni

    2010-11-01

    The neutrinoless double beta decays of atomic nuclei are considered at the present the most viable way to access the fundamenntal nature and absolute mass scale of the neutrino. Recently one sub-class of these decays, the neutrinoless double electron capture (0νECEC), has attracted a lot of attention due to its potential of detection. In particular, the resonant 0νECEC is of interest owing to the possible huge enhancement of the corresponding decay rate by a resonance condition. At present the mass differences of the involved atom pairs are being measured by the Penning trap technique for several potential resonant 0νECEC decays. By evaluating the associated nuclear matrix elements using nuclear-structure models one can access the half-lives of these decays and thus predict their detection potential in underground experiments in the future. The absolute mass scale of the neutrino can also be accessed through beta decays of small decay energy. In these cases the effects of atomic origin may introduce non-negligible, even dramatic effects for Q values in the regime of few hundreds of eV and below.

  1. Neutrino propagation in nuclear medium and neutrinoless double-β decay.

    PubMed

    Kovalenko, S; Krivoruchenko, M I; Simkovic, F

    2014-04-11

    We discuss a novel effect in neutrinoless double-β (0νββ) decay related with the fact that its underlying mechanisms take place in the nuclear matter environment. We study the neutrino exchange mechanism and demonstrate the possible impact of nuclear medium via lepton-number-violating (LNV) four-fermion interactions of neutrinos with quarks from a decaying nucleus. The net effect of these interactions is the generation of an effective in-medium Majorana neutrino mass matrix. The enhanced rate of the 0νββ decay can lead to the apparent incompatibility of observations of the 0νββ decay with the value of the neutrino mass determined or restricted by the β-decay and cosmological data. The effective neutrino masses and mixing are calculated for the complete set of the relevant four-fermion neutrino-quark operators. Using experimental data on the 0νββ decay in combination with the β-decay and cosmological data, we evaluate the characteristic scales of these operators: ΛLNV≥2.4  TeV. PMID:24765948

  2. Correlation measurements in nuclear {beta}-decay using traps and polarized low energy beams

    SciTech Connect

    Naviliat-Cuncic, Oscar

    2013-05-06

    Precision measurements in nuclear {beta}-decay provide sensitive means to test discrete symmetries in the weak interaction and to determine some of the fundamental constants in semi-leptonic decays, like the coupling of the lightest quarks to charged weak bosons. The main motivation of such measurements is to find deviations from Standard Model predictions as possible indications of new physics. In this contribution I will focus on two topics related to precision measurements in nuclear {beta}-decay: i) the determination of the V{sub ud} element of the Cabibbo-Kobayashi-Maskawa quark mixing matrix from nuclear mirror transitions and ii) the search for exotic scalar or tensor contributions from {beta}{nu} angular correlations. The purpose is to underline the role being played by experimental techniques based on the confinement of radioactive species with atom and ion traps as well as the plans to use low energy polarized beams.

  3. Testing JEFF-3.1.1 and ENDF/B-VII.1 Decay and Fission Yield Nuclear Data Libraries with Fission Pulse Neutron Emission and Decay Heat Experiments

    NASA Astrophysics Data System (ADS)

    Cabellos, O.; de Fusco, V.; Diez de la Obra, C. J.; Martinez, J. S.; Gonzalez, E.; Cano-Ott, D.; Alvarez-Velarde, F.

    2014-04-01

    The aim of this work is to test the present status of Evaluated Nuclear Decay and Fission Yield Data Libraries to predict decay heat and delayed neutron emission rate, average neutron energy and neutron delayed spectra after a neutron fission pulse. Calculations are performed with JEFF-3.1.1 and ENDF/B-VII.1, and these are compared with experimental values. An uncertainty propagation assessment of the current nuclear data uncertainties is performed.

  4. Nuclear beta-decay, Atomic Parity Violation, and New Physics

    SciTech Connect

    Michael Ramsey-Musolf

    2000-08-01

    Determinations of vuds with super-allowed Fermi beta-decay in nuclei and of the weak charge of the cesium in atomic parity-violation deviate from the Standard Model predictions by 2 sigma or more. In both cases, the Standard Model over-predicts the magnitudes of the relevant observables. I discuss the implications of these results for R-parity violating (RPV) extensions of the minimal supersymmetric Standard Model. I also explore the possible consequences for RPV supersymmetry of prospective future low-energy electroweak measurements.

  5. Phase-space exploration in nuclear giant resonance decay

    SciTech Connect

    Drozdz, S.; Nishizaki, S.; Wambach, J.; Speth, J. Institute of Nuclear Physics, PL-31-342 Krakow Department of Physics, University of Illinois at Urbana, Illinois 61801 College of Humanities and Social Sciences, Iwate University, Ueda 3-18-34, Morioka 020 )

    1995-02-13

    The rate of phase-space exploration in the decay of isovector and isoscalar giant quadrupole resonances in [sup 40]Ca is analyzed. The study is based on the time dependence of the survival probability and of the spectrum of generalized entropies evaluated in the space of one-particle--one-hole (1p-1h) and 2p-2h states. Three different cases for the level distribution of 2p-2h background states, corresponding to (a) high degeneracy, (b) classically regular motion, and (c) classically chaotic motion, are studied. In the latter case the isovector excitation evolves almost statistically while the isoscalar excitation remains largely localized, even though it penetrates the whole available phase space.

  6. Decay heat removal from a Particle Bed Reactor Nuclear Thermal Rocket engine

    SciTech Connect

    Gustafson, E.

    1993-06-01

    Nuclear Thermal Rockets used in propulsion systems for planetary exploration will generate significant amounts of heat following normal engine shutdown due to the buildup of and decay of radioactive fission products. The amount of energy that is generated as decay heat is approximately 2-5 percent of the energy released during nominal operation. Various schemes are possible for removing this heat, including using primary coolant (hydrogen) to cool the reactor. Depending on the amount of coolant required, this may result in a large weight penalty for the mission. This paper quantifies the amount of decay heat that must be removed from the engine, shows the resulting impact on the vehicle design for particular missions, and examines possible approaches for reducing the amount of coolant required for decay heat removal. The costs and benefits of these schemes will be shown for several different missions. The missions that will be considered include both manned Mars missions and unmanned planetary exploration missions. 6 refs.

  7. Nuclear structure relevant to neutrinoless double beta decay candidate {sup 130}Te and other recent results

    SciTech Connect

    Kay, B. P.

    2013-12-30

    We have undertaken a series of single-nucleon and pair transfer reaction measurements to help constrain calculations of the nuclear matrix elements for neutrinoless double beta decay. In this talk, a short overview of measurements relevant to the {sup 130}Te→{sup 130}Xe system is given. Brief mention is made of other recent and forthcoming results.

  8. Neutrinoless double {beta}-decay nuclear matrix elements within the SRQRPA with self-consistent short range correlations

    SciTech Connect

    Benes, Petr; Simkovic, Fedor

    2009-11-09

    The nuclear matrix elements M{sup 0v} of the neutrinoless double beta decay (0v{beta}{beta}-decay) are systematically evaluated using the self-consistent renormalized quasiparticle random phase approximation (SRQRPA). The residual interaction and the two-nucleon short-range correlations are derived from the charge-dependent Bonn (CD-Bonn) potential. The importance of further progress in the calculation of the 0v{beta}{beta}-decay nuclear matrix elements is stressed.

  9. The rate of decay of fresh fission products from a nuclear reactor

    NASA Astrophysics Data System (ADS)

    Dolan, David J.

    Determining the rate of decay of fresh fission products from a nuclear reactor is complex because of the number of isotopes involved, different types of decay, half-lives of the isotopes, and some isotopes decay into other radioactive isotopes. Traditionally, a simplified rule of 7s and 10s is used to determine the dose rate from nuclear weapons and can be to estimate the dose rate from fresh fission products of a nuclear reactor. An experiment was designed to determine the dose rate with respect to time from fresh fission products of a nuclear reactor. The experiment exposed 0.5 grams of unenriched Uranium to a fast and thermal neutron flux from a TRIGA Research Reactor (Lakewood, CO) for ten minutes. The dose rate from the fission products was measured by four Mirion DMC 2000XB electronic personal dosimeters over a period of six days. The resulting dose rate following a rule of 10s: the dose rate of fresh fission products from a nuclear reactor decreases by a factor of 10 for every 10 units of time.

  10. Universal Long-Time Behavior of Nuclear Spin Decays in a Solid

    NASA Astrophysics Data System (ADS)

    Morgan, S. W.; Fine, B. V.; Saam, B.

    2008-08-01

    Magnetic resonance studies of nuclear spins in solids are exceptionally well suited to probe the limits of statistical physics. We report experimental results indicating that isolated macroscopic systems of interacting nuclear spins possess the following fundamental property: spin decays that start from different initial configurations quickly evolve towards the same long-time behavior. This long-time behavior is characterized by the shortest ballistic microscopic time scale of the system and therefore falls outside of the validity range for conventional approximations of statistical physics. We find that the nuclear free-induction decay and different solid echoes in hyperpolarized solid xenon all exhibit sinusoidally modulated exponential long-time behavior characterized by identical time constants. This universality was previously predicted on the basis of analogy with resonances in classical chaotic systems.

  11. Study of Nuclear Decay Data Contribution to Uncertainties in Heat Load Estimations for Spent Fuel Pools

    NASA Astrophysics Data System (ADS)

    Ferroukhi, H.; Leray, O.; Hursin, M.; Vasiliev, A.; Perret, G.; Pautz, A.

    2014-04-01

    At the Paul Scherrer Institut (PSI), a methodology for nuclear data uncertainty propagation in CASMO-5M (C5M) assembly calculations is under development. This paper presents a preliminary application of this methodology to C5M decay heat calculations. Applying a stochastic sampling method, nuclear decay data uncertainties are first propagated for the cooling phase only. Thereafter, the uncertainty propagation is enlarged to gradually account for cross-section as well as fission yield uncertainties during the depletion phase. On that basis, assembly heat load uncertainties as well as total uncertainty for the entire pool are quantified for cooling times up to one year. The relative contributions from the various types of nuclear data uncertainties are in this context also estimated.

  12. Effect of Nuclear Deformation on the α-DECAY Half-Lives

    NASA Astrophysics Data System (ADS)

    Guo, Shu Qing; Bao, Xiao Jun; Zhang, Hong Fei

    The influence of nuclear deformation on the α-decay half-lives of even-even nuclei from ground states to ground states is systematically investigated within the framework of a generalized liquid drop model (GLDM) by taking into account the deformation of the daughter nucleus. The preformation factors of α particle are extracted from the experimental α-decay half-lives of 158 even-even nuclei for 62 ≤ Z ≤ 118, and an analytic expression for calculating α clustering factor is proposed. The experimental half-lives are accurately reproduced and some predictions are reasonably made by employing the proposed preformation formula.

  13. Nuclear Structure of 124Xe Studied with β+/EC-Decay

    NASA Astrophysics Data System (ADS)

    Radich, A. J.; Garrett, P. E.; Allmond, J. M.; Andreoiu, C.; Ball, G. C.; Bianco, L.; Bildstein, V.; Chagnon-Lessard, S.; Cross, D. S.; Diaz Varela, A.; Dunlop, R.; Finlay, P.; Garnsworthy, A. B.; Hackman, G.; Hadinia, B.; Jigmeddorj, B.; Laffoley, A. T.; Leach, K. G.; Michetti-Wilson, J.; Orce, J. N.; Rajabali, M. M.; Rand, E.; Starosta, K.; Sumithrarachchi, C. S.; Svensson, C. E.; Triambak, S.; Wang, Z. M.; Wood, J. L.; Wong, J.; Williams, S. J.; Yates, S. W.

    The nuclear structure of 124Xe was investigated using γ-ray spectroscopy following the β+/EC-decay of 124Cs. A very high-statistics data set was collected and γγ coincidence data was analyzed, greatly adding to the 124Xe level scheme. A new decay branch from the high-spin isomer of 124Cs was observed as well as weak E2 transitions into excited 0+ states in 124Xe. B(E2) transition strengths of such low-spin transitions are very important in determining collective properties, which are currently poorly characterized in the region of neutron-deficient xenon isotopes.

  14. Search for rare nuclear decays with HPGe detectors at the STELLA facility of the LNGS

    SciTech Connect

    Belli, P.; Di Marco, A.; Bernabei, R.; D'Angelo, S.; Cappella, F.; D'Angelo, A.; Incicchitti, A.; Cerulli, R.; Di Vacri, M. L.; Laubenstein, M.; Nisi, S.; Danevich, F. A.; Kobychev, V. V.; Poda, D. V.; Tretyak, V. I.; Kovtun, G. P.; Kovtun, N. G.; Shcherban, A. P.; Solopikhin, D. A.; Polischuk, O. G.; and others

    2013-12-30

    Results on the search for rare nuclear decays with the ultra low background facility STELLA at the LNGS using gamma ray spectrometry are presented. In particular, the best T{sub 1/2} limits were obtained for double beta processes in {sup 96}Ru and {sup 104}Ru. Several isotopes, which potentially decay through different 2β channels, including also possible resonant double electron captures, were investigated for the first time ({sup 156}Dy, {sup 158}Dy, {sup 184}Os, {sup 192}Os, {sup 190}Pt, {sup 198}Pt). Search for resonant absorption of solar {sup 7}Li axions in a LiF crystal gave the best limit for the mass of {sup 7}Li axions (< 8.6 keV). Rare alpha decay of {sup 190}Pt to the first excited level of {sup 186}Os(E{sub exc} = 137.2keV) was observed for the first time.

  15. Atomic excitations during the nuclear {beta}{sup -} decay in light atoms

    SciTech Connect

    Frolov, Alexei M.; Ruiz, Maria Belen

    2010-10-15

    Probabilities of various final states are determined numerically for {beta}{sup -}-decaying He, Li, and Be atoms. In our evaluations of the final-state probabilities we have used the highly accurate atomic wave functions constructed for each few-electron atom or ion. We also discuss an experimental possibility to observe negatively charged ions which form during the nuclear {beta}{sup +} decays. Corrections on direct interaction between atomic electrons and fast {beta} electrons or positrons are considered. It is shown that for our results obtained for {beta}{sup {+-}} decays in few-electron atoms with the use of the sudden approximation such corrections are very small ({approx_equal}{alpha}{sup 4}) and can be neglected.

  16. Impact of nuclear dynamics on interatomic Coulombic decay in a He dimer

    SciTech Connect

    Sisourat, Nicolas; Kryzhevoi, Nikolai V.; Cederbaum, Lorenz S.; Kolorenc, Premysl; Scheit, Simona

    2010-11-15

    After simultaneous ionization and excitation of one helium atom within the giant weakly bound helium dimer, the excited ion can relax via interatomic Coulombic decay (ICD) and the excess energy is transferred to ionize the neighboring helium atom. We showed [Sisourat et al. Nature Phys. 6, 508 (2010)] that the distributions of the kinetic energy released by the two ions reflect the nodal structures of the ICD-involved vibrational wave functions. We also demonstrated that energy transfer via ICD between the two helium atoms can take place over more than 14 A. We report here a more detailed analysis of the ICD process and of the impact of the nuclear dynamics on the electronic decay. Nonadiabatic effects during the ICD process and the accuracy of the potential energy curve of helium dimer and of the computed decay rates are also investigated.

  17. EDISTR: a computer program to obtain a nuclear decay data base for radiation dosimetry

    SciTech Connect

    Dillman, L.T.

    1980-01-01

    This report provides documentation for the computer program EDISTR. EDISTR uses basic radioactive decay data from the Evaluated Nuclear Structure Data File developed and maintained by the Nuclear Data Project at the Oak Ridge National Laboratory as input, and calculates the mean energies and absolute intensities of all principal radiations associated with the radioactive decay of a nuclide. The program is intended to provide a physical data base for internal dosimetry calculations. The principal calculations performed by EDISTR are the determination of (1) the average energy of beta particles in a beta transition, (2) the beta spectrum as function of energy, (3) the energies and intensities of x-rays and Auger electrons generated by radioactive decay processes, (4) the bremsstrahlung spectra accompanying beta decay and monoenergetic Auger and internal conversion electrons, and (5) the radiations accompanying spontaneous fission. This report discusses the theoretical and empirical methods used in EDISTR and also practical aspects of the computer implementation of the theory. Detailed instructions for preparing input data for the computer program are included, along with examples and discussion of the output data generated by EDISTR.

  18. The relation IBM/PC nuclear structure and decay data base

    SciTech Connect

    Boboshin, I.N.; Varlamov, V.V.; Trukhanov, S.K.

    1994-12-31

    The Evaluated Nuclear Structure Data File (ENSDF) is now apparently one of the most complete nuclear structure and decay data bank. The most important characteristics from ENSDF are the following: for levels - excitation energy, spin, parity, half-life time, decay branching ratio, electric and magnetic moment; for gamma-transitions -energy, intensity, multipolarity, mixing ratio, for alpha- and beta-decays - energy and itensity. The high frequency personal computers (PC) dissemination, the development of data base management systems (DBMS) with advanced interface and convenient and power required languages allow to put the problem of creation of the universal data base (DB) using the ENSDF information. At bottom the point is in the ENSDF data adaptation to such DBMS in such manner that all possible requests to the ENSDF set to be completely exceeded by the standard resources of DBMS> The data base management system PARADOX (trade mark registered by Borland International) was chosen as a program tool for new universal data base on decay and structure of nuclei.

  19. Preliminary Results from Nuclear Decay Experiments Performed During the Solar Eclipse of August 1, 2008

    SciTech Connect

    Javorsek, D. II; Kerford, J. L.; Stewart, C. A.; Hoft, A. W.; Horan, T. J.; Buncher, J. B.; Fischbach, E.; Gruenwald, J. T.; Heim, J.; Kohler, M.; Longman, A.; Mattes, J. J.; Mohsinally, T.; Newport, J. R.; Jenkins, J. H.; Lee, R. H.; Morreale, B.; Morris, D. B.; O'Keefe, D.; Terry, B.

    2010-08-04

    Recent developments in efforts to determine the cause of anomalous experimental nuclear decay fluctuations suggest a possible solar influence. Here we report on the preliminary results from several nuclear decay experiments performed at Thule Air Base in Greenland during the Solar Eclipse that took place on 1 August 2008. Because of the high northern latitude and time of year, the Sun never set and thereby provided relatively stabilized conditions for nearly all environmental factors. An exhaustive list of relevant factors were monitored during the eclipse to help rule out possible systematic effects due to external influences. In addition to the normal temperature, pressure, humidity, and cloud cover associated with the outside ambient observations, we included similar measurements within the laboratory along with monitoring of the power supply output, local neutron count rates, and the Earth's local magnetic and electric fields.

  20. THE AIMS AND ACTIVITIES OF THE INTERNATIONAL NETWORK OF NUCLEAR STRUCTURE AND DECAY DATA EVALUATORS.

    SciTech Connect

    NICHOLS,A.L.; TULI, J.K.

    2007-04-22

    International Network of Nuclear Structure and Decay Data (NSDD) Evaluators consists of a number of evaluation groups and data service centers in several countries that appreciate the merits of working together to maintain and ensure the quality and comprehensive content of the ENSDF database (Evaluated Nuclear Structure Data File). Biennial meetings of the network are held under the auspices of the International Atomic Energy Agency (IAEA) to assign evaluation responsibilities, monitor progress, discuss improvements and emerging difficulties, and agree on actions to be undertaken by individual members. The evaluated data and bibliographic details are made available to users via various media, such as the journals ''Nuclear Physics A'' and ''Nuclear Data Sheets'', the World Wide Web, on CD-ROM, wall charts of the nuclides and ''Nuclear Wallet Cards''. While the ENSDF master database is maintained by the US National Nuclear Data Center at the Brookhaven National Laboratory, these data are also available from other nuclear data centers including the IAEA Nuclear Data Section. The Abdus Salam International Centre for Theoretical Physics (ICTP), Trieste, Italy, in cooperation with the IAEA, organizes workshops on NSDD at regular intervals. The primary aims of these particular workshops are to provide hands-on training in the data evaluation processes, and to encourage new evaluators to participate in NSDD activities. The technical contents of these NSDD workshops are described, along with the rationale for the inclusion of various topics.

  1. New limits for the 2 νββ decay of 96Zr to excited nuclear states of 96Mo

    NASA Astrophysics Data System (ADS)

    Finch, Sean; Tornow, Werner

    2015-10-01

    The final results from our search for the 2 νββ decay of 96Zr to excited 0+ and 2+ states of 96Mo are presented. Such measurements provide valuable test cases for 2 νββ -decay nuclear matrix element calculations, which in turn are used to tune 0 νββ -decay nuclear matrix element calculations. After undergoing double- β decay to an excited state, the excited daughter nucleus decays to the ground state, emitting two coincident γ rays. These two γ rays are detected in coincidence by two HPGe detectors sandwiching the 96Zr sample, with a NaI veto in anti-coincidence. This experimental apparatus, located at the Kimballton Underground Research Facility (KURF), has previously measured the 2 νββ decay of 100Mo and 150Nd to excited nuclear states. Experimental limits on the T1 / 2 and corresponding nuclear matrix element are presented for each of these decays. As a byproduct of this experiment, limits were also set on the single- β decay of 96Zr. Supported by DOE Grant: DE-FG02-97ER41033.

  2. Nuclear reaction uncertainties, massive gravitino decays and the cosmological lithium problem

    SciTech Connect

    Cyburt, Richard H.; Ellis, John; Fields, Brian D.; Luo, Feng; Olive, Keith A.; Spanos, Vassilis C. E-mail: john.ellis@cern.ch E-mail: fluo@physics.umn.edu E-mail: spanos@physics.umn.edu

    2010-10-01

    We consider the effects of uncertainties in nuclear reaction rates on the cosmological constraints on the decays of unstable particles during or after Big-Bang nucleosynthesis (BBN). We identify the nuclear reactions due to non-thermal hadrons that are the most important in perturbing standard BBN, then quantify the uncertainties in these reactions and in the resulting light-element abundances. These results also indicate the key nuclear processes for which improved cross section data would allow different light-element abundances to be determined more accurately, thereby making possible more precise probes of BBN and evaluations of the cosmological constraints on unstable particles. Applying this analysis to models with unstable gravitinos decaying into neutralinos, we calculate the likelihood function for the light-element abundances measured currently, taking into account the current experimental errors in the determinations of the relevant nuclear reaction rates. We find a region of the gravitino mass and abundance in which the abundances of deuterium, {sup 4}He and {sup 7}Li may be fit with χ{sup 2} = 5.5, compared with χ{sup 2} = 31.7 if the effects of gravitino decays are unimportant. The best-fit solution is improved to χ{sup 2} ∼ 2.0 when the lithium abundance is taken from globular cluster data. Some such re-evaluation of the observed light-element abundances and/or nuclear reaction rates would be needed if this region of gravitino parameters is to provide a complete solution to the cosmological {sup 7}Li problem.

  3. Canonical Poly(A) Polymerase Activity Promotes the Decay of a Wide Variety of Mammalian Nuclear RNAs

    PubMed Central

    Bresson, Stefan M.; Hunter, Olga V.; Hunter, Allyson C.; Conrad, Nicholas K.

    2015-01-01

    The human nuclear poly(A)-binding protein PABPN1 has been implicated in the decay of nuclear noncoding RNAs (ncRNAs). In addition, PABPN1 promotes hyperadenylation by stimulating poly(A)-polymerases (PAPα/γ), but this activity has not previously been linked to the decay of endogenous transcripts. Moreover, the mechanisms underlying target specificity have remained elusive. Here, we inactivated PAP-dependent hyperadenylation in cells by two independent mechanisms and used an RNA-seq approach to identify endogenous targets. We observed the upregulation of various ncRNAs, including snoRNA host genes, primary miRNA transcripts, and promoter upstream antisense RNAs, confirming that hyperadenylation is broadly required for the degradation of PABPN1-targets. In addition, we found that mRNAs with retained introns are susceptible to PABPN1 and PAPα/γ-mediated decay (PPD). Transcripts are targeted for degradation due to inefficient export, which is a consequence of reduced intron number or incomplete splicing. Additional investigation showed that a genetically-encoded poly(A) tail is sufficient to drive decay, suggesting that degradation occurs independently of the canonical cleavage and polyadenylation reaction. Surprisingly, treatment with transcription inhibitors uncouples polyadenylation from decay, leading to runaway hyperadenylation of nuclear decay targets. We conclude that PPD is an important mammalian nuclear RNA decay pathway for the removal of poorly spliced and nuclear-retained transcripts. PMID:26484760

  4. Radiotoxicity and decay heat power of spent nuclear fuel of VVER type reactors at long-term storage.

    PubMed

    Bergelson, B R; Gerasimov, A S; Tikhomirov, G V

    2005-01-01

    Radiotoxicity and decay heat power of the spent nuclear fuel of VVER-1000 type reactors are calculated during storage time up to 300,000 y. Decay heat power of radioactive waste (radwaste) determines parameters of the heat removal system for the safe storage of spent nuclear fuel. Radiotoxicity determines the radiological hazard of radwaste after its leakage and penetration into the environment. PMID:16381764

  5. Determination of the cross section for nuclear reactions in complex nuclear decay chains.

    PubMed

    Adam, J; Balabekyan, A; Pronskikh, V S; Kalinnikov, V G; Mrázek, J

    2002-04-01

    In the present paper decays of genetically connected nuclei are considered and equations for their independent cross sections are derived. An optimisation parameter is proposed for an experiment where spectra of the residual nuclei are studied by the induced activity method. This parameter depends on irradiation time, delay time and spectrum measurement time. PMID:11999159

  6. New Decay Data Sub-library for Calculation of Nuclear Reactors Antineutrino Spectra

    NASA Astrophysics Data System (ADS)

    Sonzogni, Alejandro; McCutchan, Elizabeth; Johnson, Timothy

    2015-10-01

    The ENDF/B-VII.1 decay data sub-library contains up-to-date decay properties for all known nuclides and can be used in a wide variety of applications such as decay heat, delayed nu-bar and astrophysics. We have recently completed an upgrade to the ENDF/B-VII.1 decay data sub-library in order to better calculate antineutrino spectra from fission of actinide nuclides. This sub-library has been used to identify the main contributors to the antineutrino spectra as well as to derive a systematic behavior of the energy integrated spectra similar to that of the beta-delayed neutron multiplicities. The main improvements have been the use of the TAGS data from Algora et al and Greenwood et al, as well as some of the single beta spectrum data from Rudstam et al to obtain beta minus level feedings. Additionally, we have calculated the antineutrino spectra for neutron energies higher than thermal, needed for highly-enriched uranium cores, such as the HFIR in ORNL that will be used in the PROSPECT experiment. These calculations are relevant since the high precision beta spectra which are used in many antineutrino calculations were measured at thermal energies. The impact of the fission yield data on these calculations will be discussed. This work was sponsored by the Office of Nuclear Physics, Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-98CH10886.

  7. Theoretical uncertainties in the nuclear matrix elements of neutrinoless double beta decay: The transition operator

    SciTech Connect

    Menéndez, Javier

    2013-12-30

    We explore the theoretical uncertainties related to the transition operator of neutrinoless double-beta (0νββ) decay. The transition operator used in standard calculations is a product of one-body currents, that can be obtained phenomenologically as in Tomoda [1] or Šimkovic et al. [2]. However, corrections to the operator are hard to obtain in the phenomenological approach. Instead, we calculate the 0νββ decay operator in the framework of chiral effective theory (EFT), which gives a systematic order-by-order expansion of the transition currents. At leading orders in chiral EFT we reproduce the standard one-body currents of Refs. [1] and [2]. Corrections appear as two-body (2b) currents predicted by chiral EFT. We compute the effects of the leading 2b currents to the nuclear matrix elements of 0νββ decay for several transition candidates. The 2b current contributions are related to the quenching of Gamow-Teller transitions found in nuclear structure calculations.

  8. Uncertainties in nuclear transition matrix elements of neutrinoless ββ decay

    SciTech Connect

    Rath, P. K.

    2013-12-30

    To estimate the uncertainties associated with the nuclear transition matrix elements M{sup (K)} (K=0ν/0N) for the 0{sup +} → 0{sup +} transitions of electron and positron emitting modes of the neutrinoless ββ decay, a statistical analysis has been performed by calculating sets of eight (twelve) different nuclear transition matrix elements M{sup (K)} in the PHFB model by employing four different parameterizations of a Hamiltonian with pairing plus multipolar effective two-body interaction and two (three) different parameterizations of Jastrow short range correlations. The averages in conjunction with their standard deviations provide an estimate of the uncertainties associated the nuclear transition matrix elements M{sup (K)} calculated within the PHFB model, the maximum of which turn out to be 13% and 19% owing to the exchange of light and heavy Majorana neutrinos, respectively.

  9. Neutrino nuclear responses for double beta decays and astro neutrinos by charge exchange reactions

    NASA Astrophysics Data System (ADS)

    Ejiri, Hiroyasu

    2014-09-01

    Neutrino nuclear responses are crucial for neutrino studies in nuclei. Charge exchange reactions (CER) are shown to be used to study charged current neutrino nuclear responses associated with double beta decays(DBD)and astro neutrino interactions. CERs to be used are high energy-resolution (He3 ,t) reactions at RCNP, photonuclear reactions via IAR at NewSUBARU and muon capture reactions at MUSIC RCNP and MLF J-PARC. The Gamow Teller (GT) strengths studied by CERs reproduce the observed 2 neutrino DBD matrix elements. The GT and spin dipole (SD) matrix elements are found to be reduced much due to the nucleon spin isospin correlations and the non-nucleonic (delta isobar) nuclear medium effects. Impacts of the reductions on the DBD matrix elements and astro neutrino interactions are discussed.

  10. Passive decay heat removal system for water-cooled nuclear reactors

    DOEpatents

    Forsberg, Charles W.

    1991-01-01

    A passive decay-heat removal system for a water-cooled nuclear reactor employs a closed heat transfer loop having heat-exchanging coils inside an open-topped, insulated box located inside the reactor vessel, below its normal water level, in communication with a condenser located outside of containment and exposed to the atmosphere. The heat transfer loop is located such that the evaporator is in a position where, when the water level drops in the reactor, it will become exposed to steam. Vapor produced in the evaporator passes upward to the condenser above the normal water level. In operation, condensation in the condenser removes heat from the system, and the condensed liquid is returned to the evaporator. The system is disposed such that during normal reactor operations where the water level is at its usual position, very little heat will be removed from the system, but during emergency, low water level conditions, substantial amounts of decay heat will be removed.

  11. Signals of Bose Einstein condensation and Fermi quenching in the decay of hot nuclear systems

    NASA Astrophysics Data System (ADS)

    Marini, P.; Zheng, H.; Boisjoli, M.; Verde, G.; Chbihi, A.; Napolitani, P.; Ademard, G.; Augey, L.; Bhattacharya, C.; Borderie, B.; Bougault, R.; Frankland, J. D.; Fable, Q.; Galichet, E.; Gruyer, D.; Kundu, S.; La Commara, M.; Lombardo, I.; Lopez, O.; Mukherjee, G.; Parlog, M.; Rivet, M. F.; Rosato, E.; Roy, R.; Spadaccini, G.; Vigilante, M.; Wigg, P. C.; Bonasera, A.

    2016-05-01

    We report on first experimental observations of nuclear fermionic and bosonic components displaying different behaviours in the decay of hot Ca projectile-like sources produced in mid-peripheral collisions at sub-Fermi energies. The experimental setup, constituted by the coupling of the INDRA 4π detector array to the forward angle VAMOS magnetic spectrometer, allowed to reconstruct the mass, charge and excitation energy of the decaying hot projectile-like sources. By means of quantum-fluctuation analysis techniques, temperatures and local partial densities of bosons and fermions could be correlated to the excitation energy of the reconstructed system. The results are consistent with the production of dilute mixed systems of bosons and fermions, where bosons experience higher phase-space and energy density as compared to the surrounding fermionic gas. Our findings recall phenomena observed in the study of Bose condensates and Fermi gases in atomic traps despite the different scales.

  12. Nuclear-Structure Data Relevant to Neutinoless-Double-Beta-Decay Matrix Elements

    NASA Astrophysics Data System (ADS)

    Kay, Benjamin

    2015-10-01

    An observation of neutrinoless double beta decay is one of the most exciting prospects in contemporary physics. It follows that calculations of the nuclear matrix elements for this process are of high priority. The change in the wave functions between the initial and final states of the neutrinoless-double-beta-decay candidates 76Ge-->76Se, 100Mo-->100Ru, 130Te-->130Xe, and 136Xe-->136Ba have been studied with transfer reactions. The data are focused on the change in the occupancies of the valence orbitals in the ground states as two neutrons decay into two protons. The results set a strict constraint on any theoretical calculations describing this rearrangement and thus on the magnitude of the nuclear matrix elements for this process, which currently exhibit uncertainties at the factor of 2-4 level. Prior to these measurements there were limited experimental data were available A = 76 and 100 systems, and very limited data for the A = 130 and 136 systems, in a large part due to the gaseous Xe isotopes involved. The uncertainties on most of these data are estimated to range from 0.1-0.3 nucleons. The program started with the A = 76 system, with subsequent calculations, modified to reproduce the experimental occupancies, exhibiting a significant reduction in the discrepancy between various models. New data are available for the A = 100 , 130, and 136 systems. I review the program, making detailed comparisons between the latest theoretical calculations and the experimental data where available. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under Contract Number DE-AC02-06CH11357.

  13. Many-body correlations of QRPA in nuclear matrix elements of double-beta decay

    SciTech Connect

    Terasaki, J.

    2015-10-28

    We present two new ideas on the quasiparticle random-phase approximation (QRPA) approach for calculating nuclear matrix elements of double-beta decay. First, it is necessary to calculate overlaps of the QRPA states obtained on the basis of the ground states of different nuclei. We calculate this overlap using quasiboson vacua as the QRPA ground states. Second, we show that two-particle transfer paths are possible to use for the calculation under the closure approximation. A calculation is shown for {sup 150}Nd→{sup 150}Sm using these two new ideas, and their implication is discussed.

  14. Nuclear structure of 122Xe studied via high-statistics β+/EC-decay

    NASA Astrophysics Data System (ADS)

    Jigmeddorj, B.; Garrett, P. E.; Andreoiu, C.; Ball, G. C.; Bruhn, T.; Cross, D. S.; Garnsworthy, A. B.; Hackman, G.; Hadinia, B.; Moukaddam, M.; Park, J.; Pore, J. L.; Radich, A. J.; Rajabali, M. M.; Rand, E. T.; Rizman, U.; Svensson, C. E.; Voss, P.; Wang, Z. M.; Wood, J. L.; Yates, S. W.

    2016-01-01

    The nuclear structure of 122Xe has been investigated with measurements of the β+/EC decay of 122Cs with the 8 π γ-ray spectrometer at the TRIUMF-ISAC facility. The data collected have enabled the determination of relative B(E2) values of some low-energy transitions, and the in-band transitions of the excited 0+ bands have been observed. As a result, the 2+ rotational band members for the 0+2 and 0+3 states have been firmly identified.

  15. Neutrino nuclear responses for double beta decays and astro neutrino interactions

    NASA Astrophysics Data System (ADS)

    Akimune, Hidetoshi; Ejiri, Hiroyasu

    2015-10-01

    Neutrino nuclear matrix elements (NMEs), are crucial to extract neutrino properties from double beta decay (DBD) experiments, and to evaluate astro-neutrino nuclear interaction and nucleosynthesis rates. NMEs are very sensitive to nucleon nucleon spin-isospin(στ) and nuclear medium effects. Theoretical calculations for NMEs are very hard. Experimental inputs from charge exchange reactions such as (3He,t) and (μ ,νμ xnγ) are very important for evaluating ν-weak NMEs for ββ and astro- ν processes. Gamow-Teller (GT) and spin dipole (SD) NMEs are studied. Note GT is major for 2 νββ , while SD is one of major components for 0 νββ . The observed NMEs for both GT and SD transitions are found to be reduced by kστ ~ 0.4-0.5 due to the nucleon στ correlation and to the one kNM ~ 0.5-0.6 due to the nuclear medium effects such as nucleon isobar (Δ) that are not explicitly included in the pnQRPA. The nuclear medium effects such as N Δ correlations are incorporated by using the effective coupling constant gAeff = (0.5-0.6) ×gA (free) for ββ and astro- ν NMEs.

  16. Systematic and Statistical Errors Associated with Nuclear Decay Constant Measurements Using the Counting Technique

    NASA Astrophysics Data System (ADS)

    Koltick, David; Wang, Haoyu; Liu, Shih-Chieh; Heim, Jordan; Nistor, Jonathan

    2016-03-01

    Typical nuclear decay constants are measured at the accuracy level of 10-2. There are numerous reasons: tests of unconventional theories, dating of materials, and long term inventory evolution which require decay constants accuracy at a level of 10-4 to 10-5. The statistical and systematic errors associated with precision measurements of decays using the counting technique are presented. Precision requires high count rates, which introduces time dependent dead time and pile-up corrections. An approach to overcome these issues is presented by continuous recording of the detector current. Other systematic corrections include, the time dependent dead time due to background radiation, control of target motion and radiation flight path variation due to environmental conditions, and the time dependent effects caused by scattered events are presented. The incorporation of blind experimental techniques can help make measurement independent of past results. A spectrometer design and data analysis is reviewed that can accomplish these goals. The author would like to thank TechSource, Inc. and Advanced Physics Technologies, LLC. for their support in this work.

  17. Nuclear mass inventory, photon dose rate and thermal decay heat of spent research reactor fuel assemblies

    SciTech Connect

    Pond, R.B.; Matos, J.E.

    1996-12-31

    This document has been prepared to assist research reactor operators possessing spent fuel containing enriched uranium of United States origin to prepare part of the documentation necessary to ship this fuel to the United States. Data are included on the nuclear mass inventory, photon dose rate, and thermal decay heat of spent research reactor fuel assemblies. Isotopic masses of U, Np, Pu and Am that are present in spent research reactor fuel are estimated for MTR, TRIGA and DIDO-type fuel assembly types. The isotopic masses of each fuel assembly type are given as functions of U-235 burnup in the spent fuel, and of initial U-235 enrichment and U-235 mass in the fuel assembly. Photon dose rates of spent MTR, TRIGA and DIDO-type fuel assemblies are estimated for fuel assemblies with up to 80% U-235 burnup and specific power densities between 0.089 and 2.857 MW/kg[sup 235]U, and for fission product decay times of up to 20 years. Thermal decay heat loads are estimated for spent fuel based upon the fuel assembly irradiation history (average assembly power vs. elapsed time) and the spent fuel cooling time.

  18. Toward a better parameterization of nuclear density for α-decay calculation

    NASA Astrophysics Data System (ADS)

    Ismail, M.; Ellithi, A. Y.; Adel, A.; Abdulghany, A. R.

    2016-03-01

    Starting from three-parameter Fermi distribution of nuclear densities, we used two formulas, for calculating the half-density radius, to study the effect of variation of radius of daughter nucleus on both α-decay half-life and α-preformation factor. We compared the results of the aforementioned two formulas with the corresponding results obtained from the nuclear densities of Hartree-Fock calculation derived from the BSk2 Skyrme force. We considered >60 isotopes of Po and Rn α-emitter elements and studied the variation of half-life and preformation factor with density parameters. We found that the variation of density parameters of daughter nuclei highly affects the calculated half-life and the extracted value of preformation factor, but the behavior of these two quantities with variation of parent neutron number is almost independent of the density parameters.

  19. Summary Report of a Specialized Workshop on Nuclear Structure and Decay Data (NSDD) Evaluations

    SciTech Connect

    Nichols, Alan L.; Dimitrious, P.; Kondev, F. G.; Ricard-McCutchan, E.

    2015-04-27

    A three-day specialised workshop on Nuclear Structure and Decay Data Evaluations was organised and held at the headquarters of the International Atomic Energy Agency in Vienna, Austria, from 27 to 29 April 2015. This workshop covered a wide range of important topics and issues addressed when evaluating and maintaining the Evaluated Nuclear Structure Data File (ENSDF). The primary aim was to improve evaluators’ abilities to identify and understand the most appropriate evaluation processes to adopt in the formulation of individual ENSDF data sets. Participants assessed and reviewed existing policies, procedures and codes, and round-table discussions included the debate and resolution of specific difficulties experienced by ENSDF evaluators (i.e., all workshop participants). The contents of this report constitute a record of this workshop, based on the presentations and subsequent discussions.

  20. Precise test of the unitarity of the CKM matrix via superallowed nuclear beta decay

    NASA Astrophysics Data System (ADS)

    Park, Hyo-In

    2016-03-01

    Superallowed 0+ --> 0+ nuclear beta decay between isospin T = 1 analogue states is a sensitive probe for studying the fundamental properties of the weak interaction. Today, the most precise measurements of the decay strengths (or ft values) of fourteen superallowed transitions, ranging from 10C to 74Rb, provide a direct determination of the vector coupling constant GV, and lead to the most precise value of Vud, the up-down quark-mixing element of the Cabbibo-Kobayashi-Maskawa (CKM) matrix. When Vud is combined with the other top-row elements, Vus and Vub, the sum of squares of the top-row elements of the CKM matrix satisfies the unitarity condition at the level of +/-0.06%. The impact of this result on searches for new physics beyond the Standard Model motivates further work to improve even further the precision of the CKM-matrix unitarity sum. Our current focus is on measurements to constrain the uncertainty in calculations of the isospin-symmetry-breaking corrections needed to determine Vud from the experimental data. This can be achieved with high-precision comparisons of the ft values from four pairs of accessible mirror superallowed decays with A <= 42 . This presentation reports our results for the mass-38 pair, 38Ca --> 38mK and 38mK --> 38Ar, and our progress on measuring 42Ti decay. The measured ratio of the mirror ft values for A = 38 agrees well with the corrections currently used, and points the way to even tighter constraints on the unitarity of the CKM matrix. If the three mirror pairs, with A = 26 , A = 34 and A = 42 confirm and strengthen our present conclusion, it will become possible to shrink the systematic uncertainty on Vud, reduce the uncertainty on the CKM-matrix unitarity sum, and further constrain the scope for possible extensions to the Standard Model.

  1. GT neutrino-nuclear responses for double beta decays and astro neutrinos

    NASA Astrophysics Data System (ADS)

    Ejiri, H.; Suhonen, J.

    2015-05-01

    Gamow-Teller nuclear matrix elements (NMEs) for pairs of {{β }+/- } {{1}+}≤ftrightarrow {{0}+} ground-state-to-ground-state transitions, in particular their geometric mean NME {{M}m}, are studied. The observed means Mexp m in the medium-heavy mass region are compared with the corresponding single-quasiparticle (qp) NMEs and the means MQRPAm calculated by the proton neutron qp random-phase approximation (pnQRPA). The {{M}m} NMEs turn out to be insensitive to the nucleon occupancy/vacancy amplitudes and to the particle-particle interaction parameter {{g}pp} of the pnQRPA. The observed mean NMEs are found to be reduced by a coefficient k≈ 0.23 relative to the effective qp NMEs and by a coefficient {{k}NM}≈ 0.6 with respect to the pnQRPA NMEs. The reductions associated with the spin isospin correlations and nuclear medium effects, and their impact on nuclear double beta decays and astro-neutrino-nuclear interactions are discussed.

  2. Experimental studies of nuclear matrix elements for neutrino-less ββ decays

    SciTech Connect

    Ejiri, H.

    2013-12-30

    Nuclear matrix elements M{sup 0ν} for neutrino less double beta decays (0νββ) are crucial for neutrino studies in 0νββ experiments. The neutrino mass to be studied is sensitive to M{sup 0ν}, while theoretical calculations for M{sup 0ν} are hard. Thus experimental studies of nuclear structures and single β matrix elements M{sub β} associated with 0νββ are useful to confirm and help the theoretical calculations. This reports briefly experimental methods and recent charge exchange reaction studies for M{sub β}. The single β elements for M{sup ±}(2{sup −}) associated with M{sup 0ν}(2{sup −}), which is the major component of M{sup 0ν}, are found to be reduced (quenched) much by the spin isospin correlation and the nuclear medium (non-nucleonic isobar) effect. The present result suggests that the spin isospin components of M{sup 0ν} is fairly reduced (quenched)

  3. The evaluation of half-lives and other decay data used in nuclear astrophysics and cosmochronology

    SciTech Connect

    Chechev, V. P.

    2011-12-15

    The current status of some decay data used in nuclear astrophysics and cosmochronology is presented. The half-life of {sup 79}Se has been evaluated as 3.6(3) Multiplication-Sign 10{sup 5} yr. The total energy of non-neutrino radiation released in act of {sup 37}Ar decay has been obtained being 2.709 (16) keV per disintegration. The recommended half-life values of the long-lived radionuclides (T{sub 1/2} Greater-Than-Or-Equivalent-To 10{sup 6} yr) of {sup 26}Al, {sup 40}K, {sup 53}Mn, {sup 60}Fe, {sup 87}Rb, {sup 93}Zr, {sup 98}Tc, {sup 107}Pd, {sup 129}I, {sup 135}Cs, {sup 146}Sm, {sup 176}Lu, {sup 182}Hf, {sup 187}Re, {sup 205}Pb, {sup 232}Th, {sup 235}U, {sup 238}U, {sup 244}Pu, and {sup 247}Cm are given based on the evaluations published until 2010.

  4. Nuclear structure of 37, 38Si investigated by decay spectroscopy of 37, 38Al

    NASA Astrophysics Data System (ADS)

    Steiger, K.; Nishimura, S.; Li, Z.; Gernhäuser, R.; Utsuno, Y.; Chen, R.; Faestermann, T.; Hinke, C.; Krücken, R.; Kurata-Nishimura, M.; Lorusso, G.; Miyashita, Y.; Shimizu, N.; Sugimoto, K.; Sumikama, T.; Watanabe, H.; Yoshinaga, K.

    2015-09-01

    We present a study on the β decays of the neutron-rich isotopes 37Al and 38Al, produced by projectile fragmentation of a 48Ca beam with an energy E = 345 A MeV at the RIKEN Nishina Center. The half-lives of 37Al and 38Al have been measured to 11.5(4)ms and 9.0(7)ms, respectively, using the CAITEN implantation and decay detector setup. The level schemes for 37Si and 38Si were deduced by employing γ- γ coincidence spectroscopy following the event-by-event identification of the implanted nuclei. Comparison to large scale nuclear shell model calculations allowed for a tentative assignment of spin and parity of the populated states. The data indicate that the classical shell gap at magic neutron number N = 28 between the νf 7/2 and νp 3/2 orbits gets reduced by 0.3 MeV in this region leading to low-energy states with intruder configuration in 37Si.

  5. Disordered Nuclear Pasta, Magnetic Field Decay, and Crust Cooling in Neutron Stars

    NASA Astrophysics Data System (ADS)

    Horowitz, C. J.; Berry, D. K.; Briggs, C. M.; Caplan, M. E.; Cumming, A.; Schneider, A. S.

    2015-01-01

    Nuclear pasta, with nonspherical shapes, is expected near the base of the crust in neutron stars. Large-scale molecular dynamics simulations of pasta show long lived topological defects that could increase electron scattering and reduce both the thermal and electrical conductivities. We model a possible low-conductivity pasta layer by increasing an impurity parameter Qimp . Predictions of light curves for the low-mass x-ray binary MXB 1659-29, assuming a large Qimp, find continued late time cooling that is consistent with Chandra observations. The electrical and thermal conductivities are likely related. Therefore, observations of late time crust cooling can provide insight on the electrical conductivity and the possible decay of neutron star magnetic fields (assuming these are supported by currents in the crust).

  6. Disordered nuclear pasta, magnetic field decay, and crust cooling in neutron stars

    NASA Astrophysics Data System (ADS)

    Horowitz, C. J.; Berry, D. K.; Briggs, C. M.; Caplan, M. E.; Cumming, A.; Schneider, A. S.

    2015-04-01

    Nuclear pasta, with non-spherical shapes, is expected near the base of the crust in neutron stars. Large scale molecular dynamics simulations of pasta show long lived topological defects that could increase electron scattering and reduce both the thermal and electrical conductivities. We model a possible low conductivity pasta layer by increasing an impurity parameter Qimp. Predictions of light curves for the low mass X-ray binary MXB 1659-29, assuming a large Qimp, find continued late time cooling that is consistent with Chandra observations. The electrical and thermal conductivities are likely related. Therefore observations of late time crust cooling can provide insight on the electrical conductivity and the possible decay of neutron star magnetic fields (assuming these are supported by currents in the crust). This research was supported in part by DOE Grants DE-FG02-87ER40365 (Indiana University) and DE-SC0008808 (NUCLEI SciDAC Collaboration).

  7. Impact of the new nuclear decay data of ICRP publication 107 on inhalation dose coefficients for workers

    SciTech Connect

    Manabe, K.; Endo, Akira; Eckerman, Keith F

    2010-03-01

    The impact a revision of nuclear decay data had on dose coefficients was studied using data newly published in ICRP Publication 107 (ICRP 107) and existing data from ICRP Publication 38 (ICRP 38). Committed effective dose coefficients for occupational inhalation of radionuclides were calculated using two sets of decay data with the dose and risk calculation software DCAL for 90 elements, 774 nuclides and 1572 cases. The dose coefficients based on ICRP 107 increased by over 10 % compared with those based on ICRP 38 in 98 cases, and decreased by over 10 % in 54 cases. It was found that the differences in dose coefficients mainly originated from changes in the radiation energy emitted per nuclear transformation. In addition, revisions of the half-lives, radiation types and decay modes also resulted in changes in the dose coefficients.

  8. Two decay paths for calculating the nuclear matrix element of neutrinoless double-β decay using quasiparticle random-phase approximation

    NASA Astrophysics Data System (ADS)

    Terasaki, J.

    2016-02-01

    It is possible to employ virtual decay paths, including two-particle transfer, to calculate the nuclear matrix element of neutrinoless double-β decay under the closure approximation, in addition to the true double-β path. In the quasiparticle random-phase approximation (QRPA) approach, it is necessary to introduce the product wave functions of the like-particle and proton-neutron QRPA ground states, for achieving consistency between the calculations of the true and virtual paths. Using these different paths, the problem of whether or not these two methods give equivalent nuclear matrix elements (NMEs) is investigated. It is found that the two results are inequivalent, resulting from the different many-body correlations included in the two QRPA methods, i.e., the use of the product wave functions alone is not sufficient. The author proposes introduction of the proton-neutron pairing interaction with an adequate strength in the double-β -path method, which carries less many-body correlations without this supplemental interaction, for obtaining the NME equivalent to that of the two-particle-transfer-path method. The validity of the proposed modified approach is examined.

  9. AIDA: A 16-channel amplifier ASIC to read out the advanced implantation detector array for experiments in nuclear decay spectroscopy

    SciTech Connect

    Braga, D.; Coleman-Smith, P. J.; Davinson, T.; Lazarus, I. H.; Page, R. D.; Thomas, S.

    2011-07-01

    We have designed a read-out ASIC for nuclear decay spectroscopy as part of the AIDA project - the Advanced Implantation Detector Array. AIDA will be installed in experiments at the Facility for Antiproton and Ion Research in GSI, Darmstadt. The AIDA ASIC will measure the signals when unstable nuclei are implanted into the detector, followed by the much smaller signals when the nuclei subsequently decay. Implant energies can be as high as 20 GeV; decay products need to be measured down to 25 keV within just a few microseconds of the initial implants. The ASIC uses two amplifiers per detector channel, one covering the 20 GeV dynamic range, the other selectable over a 20 MeV or 1 GeV range. The amplifiers are linked together by bypass transistors which are normally switched off. The arrival of a large signal causes saturation of the low-energy amplifier and a fluctuation of the input voltage, which activates the link to the high-energy amplifier. The bypass transistors switch on and the input charge is integrated by the high-energy amplifier. The signal is shaped and stored by a peak-hold, then read out on a multiplexed output. Control logic resets the amplifiers and bypass circuit, allowing the low-energy amplifier to measure the subsequent decay signal. We present simulations and test results, demonstrating the AIDA ASIC operation over a wide range of input signals. (authors)

  10. Inferring Nuclear Structure Trends of r-PROCESS Nuclei from β-DECAY Measurements

    NASA Astrophysics Data System (ADS)

    Pereira, J.

    2013-03-01

    The present paper reports on several r-process motivated β-decay experiments undertaken at the National Superconducting Cyclotron Laboratory. β-decay half-lives and β-delayed neutron-emission probabilities were measured for neutron-rich nuclei in the region A=80-110. The data are discussed on the basis of quasi-random phase approximation calculations. The emphasis is made on the impact of these data upon calculations of r-process abundances.

  11. Investigation of rare nuclear decays with BaF2 crystal scintillator contaminated by radium

    NASA Astrophysics Data System (ADS)

    Belli, P.; Bernabei, R.; Cappella, F.; Caracciolo, V.; Cerulli, R.; Danevich, F. A.; Di Marco, A.; Incicchitti, A.; Poda, D. V.; Polischuk, O. G.; Tretyak, V. I.

    2014-09-01

    The radioactive contamination of a BaF2 scintillation crystal with mass of 1.714 kg was measured over 101 hours in the low-background DAMA/R&D set-up deep underground (3600 m w.e.) at the Gran Sasso National Laboratories of INFN (LNGS, Italy). The half-life of 212Po (present in the crystal scintillator due to contamination by radium) was measured as = 298.8±0.8( stat.)±1.4( syst.) ns by the analysis of the events' pulse profiles. The 222Rn nuclide is known as 100% decaying via the emission of the particle with T 1/2 = 3.82 d; however, its decay is also energetically allowed with keV. Search for decay chains of events with specific pulse shapes characteristic for or for signals and with known energies and time differences allowed us to set, for the first time, the limit on the branching ratio of 222Rn relatively to decay as % at 90% C.L. (equivalent to limit on partial half-life y). The half-life limits of 212Pb, 222Rn and 226Ra relatively to 2 decays are also improved in comparison with the earlier results.

  12. The nuclear matrix elements of 0νββ decay and the NUMEN project at INFN-LNS

    NASA Astrophysics Data System (ADS)

    Cappuzzello, F.; Agodi, C.; Balestra, F.; Bijker, R.; Bonanno, D.; Bongiovanni, D.; Branchina, V.; Calabrese, S.; Calabretta, L.; Calanna, A.; Calvo, D.; Carbone, D.; Cavallaro, M.; Colonna, M.; Ferrero, S.; Foti, A.; Finocchiaro, P.; Giraudo, G.; Greco, V.; Iazzi, F.; Introzzi, R.; Lanzalone, G.; Lavagno, A.; Lo Presti, D.; Longhitano, F.; Muoio, A.; Pandola, L.; Rifuggiato, D.; Ruslan, M. V.; Santopinto, E.; Scaltrito, L.; Tudisco, S.; Zagatto, V.

    2016-05-01

    An innovative technique to access the nuclear matrix elements entering the expression of the life time of the double beta decay by relevant cross sections measurements of double charge exchange reactions is proposed. A key aspect of the project is the use of the MAGNEX large acceptance magnetic spectrometer, for the detection of the ejectiles, and of the LNS K800 Superconducting Cyclotron (CS), for the acceleration of the required high resolution and low emittance heavyion beams, already in operation at INFN Laboratory Nazionali del Sud in Catania (Italy).

  13. Connecting the "Hot Fusion Island" to the Nuclear Mainland: Search for 283,284,285Fl Decay Chains

    NASA Astrophysics Data System (ADS)

    Rykaczewski, K. P.; Utyonkov, V. K.; Brewer, N. T.; Grzywacz, R. K.; Miernik, K.; Roberto, J. B.; Oganessian, Yu. Ts.; Polyakov, A. N.; Tsyganov, Yu. S.; Voinov, A. A.; Abdullin, F. Sh.; Dmitriev, S. N.; Itkis, M. G.; Sabelnikov, A. V.; Sagaidak, R. N.; Shirokovsky, I. V.; Shumeiko, M. V.; Subbotin, V. G.; Sukhov, A. M.; Vostokin, G. K.; Hamilton, J. H.; Henderson, R. A.; Stoyer, M. A.

    The program of studies on superheavy nuclei to identify new isotopes anchoring the decay chains from the Hot Fusion Island to the Nuclear Mainland has been started at the Dubna Gas Filled Recoil Separator (DGFRS, JINR Dubna) in collaboration between Russia, US and Poland. These studies are performed with new detection and digital data acquisition system developed at ORNL (Oak Ridge) and UT (Knoxville). The evidence for fast fission of the new isotope 284Fl is presented. The low cross section for the 3n channel of 239Pu + 48Ca reaction is attributed to lower than expected fission barriers in 287-284Fl.

  14. Co-ordination of the International Network of Nuclear Structure and Decay Data Evaluators; Summary Report of an IAEA Technical Meeting

    SciTech Connect

    Abriola, D.; Tuli, J.

    2009-03-23

    The IAEA Nuclear Data Section convened the 18th meeting of the International Network of Nuclear Structure and Decay Data Evaluators at the IAEA Headquarters, Vienna, 23 to 27 March 2009. This meeting was attended by 22 scientists from 14 Member States, plus IAEA staff, concerned with the compilation, evaluation and dissemination of nuclear structure and decay data. A summary of the meeting, recommendations/conclusions, data centre reports, and various proposals considered, modified and agreed by the participants are contained within this document. The International Network of Nuclear Structure and Decay Data (NSDD) Evaluators holds biennial meetings under the auspices of the IAEA, and consists of evaluation groups and data service centres in several countries. This network has the objective of providing up-to-date nuclear structure and decay data for all known nuclides by evaluating all existing experimental data. Data resulting from this international evaluation collaboration is included in the Evaluated Nuclear Structure Data File (ENSDF) and published in the journals Nuclear Physics A and Nuclear Data Sheets (NDS).

  15. Nuclear β-decay half-lives in the relativistic point-coupling model

    NASA Astrophysics Data System (ADS)

    Wang, Z. Y.; Niu, Y. F.; Niu, Z. M.; Guo, J. Y.

    2016-08-01

    The self-consistent proton-neutron quasiparticle random phase approximation approach is employed to calculate β-decay half-lives of neutron-rich even-even nuclei with 8≤slant Z≤slant 30. A newly proposed nonlinear point-coupling effective interaction PC-PK1 is used in the calculations. It is found that the isoscalar proton-neutron pairing interaction can significantly reduce β-decay half-lives. With an isospin-dependent isoscalar proton-neutron pairing strength, our results well reproduce the experimental β-decay half-lives, although the pairing strength is not adjusted using the half-lives calculated in this study.

  16. Observation of the acceleration by an electromagnetic field of nuclear beta decay

    NASA Astrophysics Data System (ADS)

    Reiss, H. R.

    2008-02-01

    Measurements are reported of the acceleration of the first-forbidden beta decay of 137Cs by exposure to intense, low-frequency electromagnetic fields. Two separate experiments were done: one in a coaxial cavity, and the other in a coaxial transmission line. The first showed an increase in the beta decay rate of (6.8±3.2)×10-4 relative to the natural rate, and the other resulted in an increase of (6.5±2.0)×10- 4. In addition, a Fourier analysis of the rate of 662 keV gamma emission following from the beta decay in the standing-wave experiment showed a clear indication of the frequency with which the external field was switched on and off. A simultaneously detected gamma emission from a placebo nucleus showed no such peak.

  17. 0{nu}{beta}{beta}-decay nuclear matrix elements with self-consistent short-range correlations

    SciTech Connect

    Simkovic, Fedor; Faessler, Amand; Muether, Herbert; Rodin, Vadim; Stauf, Markus

    2009-05-15

    A self-consistent calculation of nuclear matrix elements of the neutrinoless double-beta decays (0{nu}{beta}{beta}) of {sup 76}Ge, {sup 82}Se, {sup 96}Zr, {sup 100}Mo, {sup 116}Cd, {sup 128}Te, {sup 130}Te, and {sup 136}Xe is presented in the framework of the renormalized quasiparticle random phase approximation (RQRPA) and the standard QRPA. The pairing and residual interactions as well as the two-nucleon short-range correlations are for the first time derived from the same modern realistic nucleon-nucleon potentials, namely, from the charge-dependent Bonn potential (CD-Bonn) and the Argonne V18 potential. In a comparison with the traditional approach of using the Miller-Spencer Jastrow correlations, matrix elements for the 0{nu}{beta}{beta} decay are obtained that are larger in magnitude. We analyze the differences among various two-nucleon correlations including those of the unitary correlation operator method (UCOM) and quantify the uncertainties in the calculated 0{nu}{beta}{beta}-decay matrix elements.

  18. Nuclear-decay studies of neutron-rich rare-earth nuclides

    SciTech Connect

    Chasteler, R.M. . Dept. of Chemistry Lawrence Berkeley Lab., CA )

    1990-04-26

    Neutron-rich rare-earth nuclei were produced in multinucleon transfer reactions of {sup 170}Er and {sup 176}Yb projectiles on {sup nat}W targets at the Lawrence Berkeley Laboratory SuperHILAC and their radioactive decays properties studied at the on-line mass separation facility OASIS. Two unknown isotopes, {sup 169}Dy (t {sub 1/2} {equals} 39 {plus minus} 8 s) and {sup 174}Er(t{sub 1/2} {equals} 3.3 {plus minus} 0.2 m) were discovered and their decay characteristics determined. The decay schemes for two previously identified isotopes, {sup 168}Dy (t{sub 1/2} {equals} 8.8 {plus minus} 0.3 m) and {sup 171}Ho (t{sub 1/2} {equals} 55 {plus minus} 3 s), were characterized. Evidence for a new isomer of 3.0 m {sup 168}Ho{sup g}, {sup 168}Ho{sup m} (t{sub 1/2} {equals} 132 {plus minus} 4 s) which decays by isomeric transition (IT) is presented. Beta particle endpoint energies were determined for the decay of {sup 168}Ho{sup g}, {sup 169}Dy, {sup 171}Ho, and {sup 174}Er, the resulting Q{beta}-values are: 2.93 {plus minus} 0.03, 3.2 {plus minus} 0.3, 3.2 {plus minus} 0.6, and 1.8 {plus minus} 0.2 MeV, respectively. These values were compared with values calculated using recent atomic mass formulae. Comparisons of various target/ion source geometries used in the OASIS mass separator facility for these multinucleon transfer reactions were performed. 73 refs., 40 figs., 11 tabs.

  19. Nuclear potentials for sub-barrier fusion and cluster decay in {sup 14}C, {sup 18}O+{sup 208}Pb systems

    SciTech Connect

    Sagaidak, R. N.; Tretyakova, S. P.; Khlebnikov, S. V.; Ogloblin, A. A.; Rowley, N.; Trzaska, W. H.

    2007-09-15

    Near-barrier fusion excitation functions for the {sup 14}C and {sup 18}O+{sup 208}Pb reactions have been analyzed in the framework of the barrier-passing model using different forms of the nuclear potential and the phenomenology of a fluctuating barrier. The best-fit fusion potentials were used to estimate cluster decay probabilities from the corresponding ground states of Ra and Th (i.e., for the inverse decay process). The analysis supports the ''{alpha}-decay-like'' scenario for carbon and oxygen emission from these nuclei.

  20. New Nuclear Structure and Decay Results in the {sup 76}Ge–{sup 76}As System

    SciTech Connect

    Domula, A.R.; Gehre, D.; Zuber, K.; Drohé, J.C.; Nankov, N.; Plompen, A.J.M.; Rouki, C.; Stanoiu, M.; Klix, A.; Buffler, A.; Geduld, D.; Smit, F.D.; Vermeulen, C.; Maleka, P.; Newman, R.T.; Nolte, R.; Wallner, A.

    2014-06-15

    The process of neutrinoless double beta decay (0νββ) plays a key role in modern neutrino physics. Experiments on {sup 76}Ge 0νββ-decay using germanium semiconductors are at the forefront in this field. Due to the extremely low count rates expected for this rare decay, any kind of background event in the detector, especially at energies close to Qββ=2039.006 keV must be avoided. Therefore, a careful investigation on the neutron-induced background was carried out. In this scope experiments investigating the inelastic neutron excitation of the lower lying and the 69{sup th} excited level of {sup 76}Ge have been performed. The existence of a 2040.7 keV gamma-ray, that occurs by the de-excitation of the 69{sup th} excited level, was confirmed. Interfering background from {sup 68}Ge was studied via cross-section measurements of the {sup nat}Ge(n,jn){sup 68}Ge reaction using quasi-monoenergetic neutrons and accelerator mass specrometry for {sup 68}Ge detection. In order to explore the matrix element for the transition between the {sup 76}Ge-{sup 76}As ground states, the electron–capture of {sup 76}As has been measured for the first time.

  1. CONCERNING THE PHASES OF THE ANNUAL VARIATIONS OF NUCLEAR DECAY RATES

    SciTech Connect

    Sturrock, P. A.; Buncher, J. B.; Fischbach, E.; Jenkins, J. H.; Mattes, J. J.; Javorsek, D. II

    2011-08-20

    Recent analyses of data sets acquired at the Brookhaven National Laboratory and at the Physikalisch-Technische Bundesanstalt both show evidence of pronounced annual variations, suggestive of a solar influence. However, the phases of decay-rate maxima do not correspond precisely to the phase of minimum Sun-Earth distance, as might then be expected. We here examine the hypothesis that decay rates are influenced by an unknown solar radiation, but that the intensity of the radiation is influenced not only by the variation in Sun-Earth distance, but also by a possible north-south asymmetry in the solar emission mechanism. We find that this can lead to phases of decay-rate maxima in the range 0-0.183 or 0.683-1 (September 6 to March 8) but that, according to this hypothesis, phases in the range of 0.183-0.683 (March 8 to September 6) are 'forbidden'. We find that phases of the three data sets analyzed here fall in the allowed range.

  2. Report on the workshop "Decay spectroscopy at CARIBU: advanced fuel cycle applications, nuclear structure and astrophysics". 14-16 April 2011, Argonne National Laboratory, USA.

    SciTech Connect

    Kondev, F.; Carpenter, M.P.; Chowdhury, P.; Clark, J.A.; Lister, C.J.; Nichols, A.L.; Swewryniak, D.

    2011-10-06

    A workshop on 'Decay Spectroscopy at CARIBU: Advanced Fuel Cycle Applications, Nuclear Structure and Astrophysics' will be held at Argonne National Laboratory on April 14-16, 2011. The aim of the workshop is to discuss opportunities for decay studies at the Californium Rare Isotope Breeder Upgrade (CARIBU) of the ATLAS facility with emphasis on advanced fuel cycle (AFC) applications, nuclear structure and astrophysics research. The workshop will consist of review and contributed talks. Presentations by members of the local groups, outlining the status of relevant in-house projects and availabile equipment, will also be organized. time will also be set aside to discuss and develop working collaborations for future decay studies at CARIBU. Topics of interest include: (1) Decay data of relevance to AFC applications with emphasis on reactor decay heat; (2) Discrete high-resolution gamma-ray spectroscopy following radioactive decya and related topics; (3) Calorimetric studies of neutron-rich fission framgents using Total ABsorption Gamma-Ray Spectrometry (TAGS) technique; (4) Beta-delayed neutron emissions and related topics; and (5) Decay data needs for nuclear astrophysics.

  3. Nuclear Structure Relevant to Double-beta Decay: Studies of 76Ge and 76Se using Inelastic Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Crider, Benjamin P.

    While neutrino oscillations indicate that neutrino flavors mix and that neutrinos have mass, they do not supply information on the absolute mass scale of the three flavors of neutrinos. Currently, the only viable way to determine this mass scale is through the observation of the theoretically predicted process of neutrinoless double-beta decay (0nubetabeta). This yet-to-be-observed decay process is speculated to occur in a handful of nuclei and has predicted half-lives greater than 1025 years. Observation of 0nubetabeta is the goal of several large-scale, multinational efforts and consists of detecting a sharp peak in the summed energies at the Q-value of the reaction. An exceptional candidate for the observation of 0nubetabeta is 76Ge, which offers an excellent combination of capabilities and sensitivities, and two such collaborations, MAJORANA and GERDA, propose tonne-scale experiments that have already begun initial phases using a fraction of the material. The absolute scale of the neutrino masses hinges on a matrix element, which depends on the ground-state wave functions for both the parent (76Ge) and daughter (76Se) nuclei in the 0nubetabeta decay and can only be calculated from nuclear structure models. Efforts to provide information on the applicability of these models have been undertaken at the University of Kentucky Accelerator Laboratory using gamma-ray spectroscopy following inelastic scattering reactions with monoenergetic, accelerator-produced fast neutrons. Information on new energy levels and transitions, spin and parity assignments, lifetimes, multipole mixing ratios, and transition probabilities have been determined for 76Se, the daughter of 76Ge 0nubetabeta, up to 3.0 MeV. Additionally, inaccuracies in the accepted level schemes have been addressed. Observation of 0nubetabeta requires precise knowledge of potential contributors to background within the region of interest, i.e., approximately 2039 keV for 76Ge. In addition to backgrounds

  4. Specific outcomes of the research on the radiation stability of the French nuclear glass towards alpha decay accumulation

    NASA Astrophysics Data System (ADS)

    Peuget, S.; Delaye, J.-M.; Jégou, C.

    2014-01-01

    This paper presents an overview of the main results of the French research on the long-term behavior of SON68 nuclear glass towards alpha decay accumulation. The effect of the radiation damage induced by alpha decay and also helium build-up were investigated by examining glass specimens, doped with a short-lived actinide 244Cm, irradiated by light and heavy ions. Additionally, atomistic simulations by molecular dynamics have provided further information on the atomic-scale effects of the macroscopic phenomena observed. These studies have shown that some macroscopic properties vary with the accumulation of alpha decay, but then stabilize after integrated doses of the order of 4 × 1018 α g-1. For example, the glass density diminishes by about 0.6%, its Young's modulus by about 15%, and its hardness by about 30%, while its fracture toughness increases by around 50%. The SEM and TEM characterization showed that the glass is still homogeneous. No phase separation, crystallization or bubbles formation was noticed up to an alpha decay dose corresponding to several thousand years of disposal of nuclear glass canister. Moreover the initial alteration rate of the glass is not significantly affected by the glass damage induced by alpha decays or heavy ions irradiations. The comparison of the macroscopic evolutions of the Cm doped glass with those obtained for glasses irradiated with light or heavy ions (from either experimental and molecular dynamic studies) suggests that the macroscopic evolutions are induced by the nuclear interactions induced by the recoil nuclei of alpha decay. The analysis of the behavior of the glass structure subjected to ballistic effects with various spectroscopic studies, together with the results of atomistic modeling by molecular dynamics, have identified some slight changes in the local order around some cations. Moreover a modification of the medium-range order has also been demonstrated through changes in the bond angles between network

  5. Nuclear transition matrix elements for Majoron-accompanied neutrinoless double-β decay within a projected-Hartree-Fock-Bogoliubov model

    NASA Astrophysics Data System (ADS)

    Rath, P. K.; Chandra, R.; Chaturvedi, K.; Lohani, P.; Raina, P. K.

    2016-02-01

    The model-dependent uncertainties in the nuclear transition matrix elements for the Majoron-accompanied neutrinoless double-β decay (0+→0+transition) of Zr,9694, 100Mo, Te,130128, and 150Nd isotopes are calculated by employing the projected-Hartree-Fock-Bogoliubov formalism with four different parametrizations of the pairing plus multipolar two-body interactions and three different parametrizations of the Jastrow short-range correlations. Uncertainties in the nuclear transition matrix elements turn out to be less than 15% and 21% for decays involving the emission of single and double Majorons, respectively.

  6. Search for the electromagnetic decay of {Delta}(1232) resonance in nuclear matter

    SciTech Connect

    Badala, A.; Barbera, R.; Gulino, M.; Palmeri, A.; Pappalardo, G.S.; Riggi, F.; Russo, A.C.; Russo, G.; Turrisi, R.; Barbera, R.; Gulino, M.; Riggi, F.; Russo, G.; Turrisi, R.; Bonasera, A.

    1998-01-01

    In order to inquire into the existence and significance of non-nucleonic degrees of freedom in the intermediate-energy regime, the production of protons and high-energy photons (E{sub {gamma}}{gt}30 MeV) emitted in the reaction {sup 36}Ar+{sup 27}Al at 95 MeV/nucleon has been studied. The quantitative analysis of the ({gamma}-p) invariant-mass and relative-angle distributions shows evidences of {Delta}(1232)-resonance excitation and {Delta}{r_arrow}N{gamma} decay. Experimental data are in agreement with microscopic theoretical calculations. {copyright} {ital 1998} {ital The American Physical Society}

  7. The Beta-Delayed Proton and Gamma Decay of 27P for Nuclear Astrophysics

    NASA Astrophysics Data System (ADS)

    Simmons, E.; Trache, L.; Banu, A.; McCleskey, M.; Roeder, B.; Spiridon, A.; Tribble, R. E.; Davinson, T.; Woods, P. J.; Lotay, G. J.; Wallace, J.; Doherty, D.; Saastamoinen, A.

    2013-03-01

    The creation site of 26Al is still under debate. It is thought to be produced in hydrogen burning and in explosive helium burning in novae and supernovae, and possibly also in the H-burning in outer shells of red giant stars. Also, the reactions for its creation or destruction are not completely known. When 26Al is created in novae, the reaction chain is: 24Mg(p,γ)25AI(β+v)25 Mg(p,γ)26Al, but this chain can be by-passed by another chain, 25Al(p, γ)26Si(p, γ)27P and it can also be destroyed directly. The reaction 26m Al (p, γ)27 Si* is another avenue to bypass the production of 26Al and it is dominated by resonant capture. We find and study these resonances by an indirect method, through the beta-decay of 27P. A clean and abundant source of 27P was produced for the first time and separated with MARS. A new implantation-decay station which allows increased efficiency for low energy protons and for high-energy gamma-rays was used. We measured gamma-rays and beta-delayed protons emitted from states above the proton threshold in the daughter nucleus 27Si to identify and characterize the resonances. The lifetime of 27P was also measured with accuracy under 2%.

  8. Occupancies of individual orbits, and the nuclear matrix element of the {sup 76}Ge neutrinoless {beta}{beta} decay

    SciTech Connect

    Menendez, J.; Poves, A.

    2009-10-15

    We discuss the variation of the nuclear matrix element (NME) for the neutrinoless double beta (0{nu}{beta}{beta}) decay of {sup 76}Ge when the wave functions are constrained to reproduce the experimental occupancies of the two nuclei involved in the transition. In the interacting shell model description the value of the NME is enhanced about 15% compared to previous calculations, whereas in the QRPA the NME's are reduced by 20%-30%. This diminishes the discrepancies between both approaches. In addition, we discuss the effect of the short-range correlations on the NME in light of the recently proposed parametrizations based on a consistent renormalization of the 0{nu}{beta}{beta} transition operator.

  9. The nuclear matrix elements of 0vββ decay and the NUMEN project at INFN-LNS

    NASA Astrophysics Data System (ADS)

    Cappuzzello, F.; Agodi, C.; Aciksoz, E.; Acosta, L.; Aslanouglou, X.; Auerbach, N.; Bijker, R.; Bonanno, D.; Bongiovanni, D.; Borello, T.; Boudhaim, S.; Bouhssa, M. L.; Boztosun, I.; Calabretta, L.; Calanna, A.; Carbone, D.; Cavallaro, M.; Calvo, D.; Chávez Lomelí, E. R.; Colonna, M.; D'Agostino, G.; Deshmukh, N.; de Faria, P. N.; Ferrero, A.; Foti, A.; Finocchiaro, P.; Gomes, P. R. S.; Greco, V.; Hacisalihoglu, A.; Housni, Z.; Khouaja, A.; Inchaou, J.; Lanzalone, G.; La Via, F.; Lay, J. A.; Lenske, H.; Linares, R.; Lubian, J.; Iazzi, F.; Introzzi, R.; Lavagno, A.; Lo Presti, D.; Medina, N.; Mendes, D. R.; Muoio, A.; Oliveira, J. R. B.; Pakou, A.; Pandola, L.; Rifuggiato, D.; Rodrigues, M. R. D.; Santagati, G.; Santopinto, E.; Scaltrito, L.; Sgouros, O.; Solakcı, S. O.; Soukeras, V.; Tudisco, S.; Vsevolodovna, R. I. M.; Zagatto, V.

    2016-07-01

    An innovative technique to access the nuclear matrix elements entering the expression of the life time of the double beta decay by relevant cross section measurements of double charge exchange reactions is proposed. A key aspect of the project is the use of the MAGNEX large acceptance magnetic spectrometer, for the detection of the ejectiles, and of the LNS K800 Superconducting Cyclotron (CS), for the acceleration of the required high resolution and low emittance heavy-ion beams, already in operation at INFN Laboratory Nazionali del Sud in Catania (Italy). However, a major upgrade is foreseen for the INFN-LNS research infrastructure to cope with beam currents as high as several ppA required by the project.

  10. Nuclear Shell Structure and Beta Decay I. Odd A Nuclei II. Even A Nuclei

    DOE R&D Accomplishments Database

    Mayer, M.G.; Moszkowski, S.A.; Nordheim, L.W.

    1951-05-01

    In Part I a systematics is given of all transitions for odd A nuclei for which sufficiently reliable data are available. The allowed or forbidden characters of the transitions are correlated with the positions of the initial and final odd nucleon groups in the nuclear shell scheme. The nuclear shells show definite characteristics with respect to parity of the ground states. The latter is the same as the one obtained from known spins and magnetic moments in a one-particle interpretation. In Part II a systematics of the beta transitions of even-A nuclei is given. An interpretation of the character of the transitions in terms of nuclear shell structure is achieved on the hypothesis that the odd nucleon groups have the same structure as in odd-A nuclei, together with a simple coupling rule between the neutron and proton groups in odd-odd nuclei.

  11. Can one measure nuclear matrix elements of neutrinoless double {beta} decay?

    SciTech Connect

    Rodin, Vadim; Faessler, Amand

    2009-10-15

    By making use of the isospin conservation by strong interaction, the Fermi 0{nu}{beta}{beta} nuclear matrix element M{sub F}{sup 0{nu}} is transformed to acquire the form of an energy-weighted double Fermi transition matrix element. This useful representation allows reconstruction of the total M{sub F}{sup 0{nu}} provided a small isospin-breaking Fermi matrix element between the isobaric analog state in the intermediate nucleus and the ground state of the daughter nucleus could be measured, e.g., by charge-exchange reactions. Such a measurement could set a scale for the 0{nu}{beta}{beta} nuclear matrix elements and help to discriminate between the different nuclear structure models in which calculated M{sub F}{sup 0{nu}} may differ by as much as a factor of 5 (that translates to about 20% difference in the total M{sup 0{nu}})

  12. ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data

    NASA Astrophysics Data System (ADS)

    Chadwick, M. B.; Herman, M.; Obložinský, P.; Dunn, M. E.; Danon, Y.; Kahler, A. C.; Smith, D. L.; Pritychenko, B.; Arbanas, G.; Arcilla, R.; Brewer, R.; Brown, D. A.; Capote, R.; Carlson, A. D.; Cho, Y. S.; Derrien, H.; Guber, K.; Hale, G. M.; Hoblit, S.; Holloway, S.; Johnson, T. D.; Kawano, T.; Kiedrowski, B. C.; Kim, H.; Kunieda, S.; Larson, N. M.; Leal, L.; Lestone, J. P.; Little, R. C.; McCutchan, E. A.; MacFarlane, R. E.; MacInnes, M.; Mattoon, C. M.; McKnight, R. D.; Mughabghab, S. F.; Nobre, G. P. A.; Palmiotti, G.; Palumbo, A.; Pigni, M. T.; Pronyaev, V. G.; Sayer, R. O.; Sonzogni, A. A.; Summers, N. C.; Talou, P.; Thompson, I. J.; Trkov, A.; Vogt, R. L.; van der Marck, S. C.; Wallner, A.; White, M. C.; Wiarda, D.; Young, P. G.

    2011-12-01

    The ENDF/B-VII.1 library is our latest recommended evaluated nuclear data file for use in nuclear science and technology applications, and incorporates advances made in the five years since the release of ENDF/B-VII.0. These advances focus on neutron cross sections, covariances, fission product yields and decay data, and represent work by the US Cross Section Evaluation Working Group (CSEWG) in nuclear data evaluation that utilizes developments in nuclear theory, modeling, simulation, and experiment. The principal advances in the new library are: (1) An increase in the breadth of neutron reaction cross section coverage, extending from 393 nuclides to 423 nuclides; (2) Covariance uncertainty data for 190 of the most important nuclides, as documented in companion papers in this edition; (3) R-matrix analyses of neutron reactions on light nuclei, including isotopes of He, Li, and Be; (4) Resonance parameter analyses at lower energies and statistical high energy reactions for isotopes of Cl, K, Ti, V, Mn, Cr, Ni, Zr and W; (5) Modifications to thermal neutron reactions on fission products (isotopes of Mo, Tc, Rh, Ag, Cs, Nd, Sm, Eu) and neutron absorber materials (Cd, Gd); (6) Improved minor actinide evaluations for isotopes of U, Np, Pu, and Am (we are not making changes to the major actinides 235,238U and 239Pu at this point, except for delayed neutron data and covariances, and instead we intend to update them after a further period of research in experiment and theory), and our adoption of JENDL-4.0 evaluations for isotopes of Cm, Bk, Cf, Es, Fm, and some other minor actinides; (7) Fission energy release evaluations; (8) Fission product yield advances for fission-spectrum neutrons and 14 MeV neutrons incident on 239Pu; and (9) A new decay data sublibrary. Integral validation testing of the ENDF/B-VII.1 library is provided for a variety of quantities: For nuclear criticality, the VII.1 library maintains the generally-good performance seen for VII.0 for a wide range

  13. Nuclear Structure Between N = 20 and N = 28: Beta-Decay in the Neutron-Rich Mg and Al Isotopes

    NASA Astrophysics Data System (ADS)

    Crawford, Heather; NSCL Experiment E14063 Team

    2015-10-01

    The structure of nuclei in the vicinity of expected nuclear shell closures away from stability has been, and continues to be, a cornerstone for nuclear structure study. The confirmation of certain ``magic numbers'' in exotic nuclei provides insight into the evolution of nucleon configurations with isospin, but perhaps even more light is shed into the structure of the atomic nucleus when expected shell closures are found to be weakened, or entirely disappear. Two instances where this has been the case are the N = 20 and N = 28 neutron shell closures in the neutron-rich Mg, Si and S nuclei. However, a question which is only beginning to be answered is the nature of the transitional nuclei between N = 20 and 28. Recent experimental work in the Mg isotopes has suggested a chain of prolate-deformed nuclei at Z = 12, but the nature of the Al and Si isotopes just above remains a question. An experiment was conducted at NSCL to study the β-decay of neutron-rich Na, Mg, Al and Si isotopes to provide additional, and in some cases, first information on the level structures of the daughter isotopes in the region between N = 20 and N = 28. First results from this work will be presented, and the implications for nuclear structural evolution in this region discussed. This work was supported by the NSF under Grant No. PHY-1068217 (NSCL) and by the U. S. Department of Energy, Office of Science, Office of Nuclear Physics under Contract No. DE-AC02-05CH11231 (LBNL).

  14. Complex fragment emission in binary and multifragment decay of very hot nuclear systems

    SciTech Connect

    Moretto, L.G.; Blumenfeld, Y.; Delis, D.; Wozniak, G.J.

    1990-07-01

    Low-energy compound nucleus emission of complex fragments in the reaction {sup 63}Cu + {sup 12}C is used to infer the associated ridge-line potential. Compound binary emission of complex fragments at higher energies is illustrated for a variety of reactions. Complex fragment emission from 35 and 40 MeV/N {sup 139}La + {sup 12}C, {sup 27}Al, {sup 40}Ca and {sup 51}V reactions has been studied. Multifragment events from these reactions were assigned to sources characterized by their energy and mass through the incomplete-fusion-model kinematics. Excitation functions for the various multifragment channels appear to be nearly independent of the system and bombarding energy. Preliminary comparisons of the data with sequential-statistical-decay calculations are discussed.

  15. Measurements of observables in the pion-nucleon system, nuclear a- dependence of heavy quark production and rare decays of D and B mesons

    SciTech Connect

    Sadler, M.E.; Isenhower, L.D.

    1992-02-15

    This report discusses research on the following topics: pion-nucleon interactions; detector tomography facility; nuclear dependence of charm and beauty quark production and a study of two-prong decays of neutral D and B mesons; N* collaboration at CEBAF; and pilac experiments. (LSP)

  16. Oscillator strengths and radiative decay rates for spin-changing S-P transitions in helium: finite nuclear mass effects

    NASA Astrophysics Data System (ADS)

    Morton, Donald C.; Schulhoff, Eva E.; Drake, G. W. F.

    2015-12-01

    We have calculated the electric dipole (E1) and magnetic quadrupole (M2) oscillator strengths and spontaneous decay rates for 24 spin-changing transitions of atomic helium. We included the effects of the finite nuclear mass and the anomalous magnetic moment of the electron augmented by the recently derived Pachucki term. The specific transitions for 4He are n{ }1{{{S}}}0-{n}\\prime { }3{{{P}}}{1,2} and n{ }3{{{S}}}1-{n}\\prime { }1{{{P}}}1 with n,{n}\\prime ≤slant 3 and n≤slant 10 for {n}\\prime =n. For the E1 calculations we used the Breit approximation and pseudostate expansions to perform the perturbation sums over intermediate states in both the length and velocity gauge as a check on both numerical accuracy and validity of the transition operators. The corrections for the nuclear mass and the electron anomaly tend to cancel, indicating that if one is included, then so should be the other. The tables give mass- and anomaly-dependent coefficients permitting the easy generation of results for the other isotopes of helium.

  17. ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data

    SciTech Connect

    Chadwick, M. B.; Herman, Micheal W; Oblozinsky, Pavel; Dunn, Michael E; Danon, Y.; Kahler, A.; Smith, Donald L.; Pritychenko, B; Arbanas, Goran; Arcilla, r; Brewer, R; Brown, D A; Capote, R.; Carlson, A. D.; Cho, Y S; Derrien, Herve; Guber, Klaus H; Hale, G. M.; Hoblit, S; Holloway, Shannon T.; Johnson, T D; Kawano, T.; Kiedrowski, B C; Kim, H; Kunieda, S; Larson, Nancy M; Leal, Luiz C; Lestone, J P; Little, R C; Mccutchan, E A; Macfarlane, R E; MacInnes, M; Matton, C M; Mcknight, R D; Mughabghab, S F; Nobre, G P; Palmiotti, G; Palumbo, A; Pigni, Marco T; Pronyaev, V. G.; Sayer, Royce O; Sonzogni, A A; Summers, N C; Talou, P; Thompson, I J; Trkov, A.; Vogt, R L; Van der Marck, S S; Wallner, A; White, M C; Wiarda, Dorothea; Young, P C

    2011-01-01

    The ENDF/B-VII.1 library is our latest recommended evaluated nuclear data file for use in nuclear science and technology applications, and incorporates advances made in the five years since the release of ENDF/B-VII.0. These advances focus on neutron cross sections, covariances, fission product yields and decay data, and represent work by the US Cross Section Evaluation Working Group (CSEWG) in nuclear data evaluation that utilizes developments in nuclear theory, modeling, simulation, and experiment. The principal advances in the new library are: (1) An increase in the breadth of neutron reaction cross section coverage, extending from 393 nuclides to 423 nuclides; (2) Covariance uncertainty data for 190 of the most important nuclides, as documented in companion papers in this edition; (3) R-matrix analyses of neutron reactions on light nuclei, including isotopes of He; Li, and Be; (4) Resonance parameter analyses at lower energies and statistical high energy reactions for isotopes of Cl; K; Ti, V, Mn, Cr, Ni, Zr and W; (5) Modifications to thermal neutron reactions on fission products (isotopes of Mo, Tc, Rh, Ag, Cs, Nd, Sm, Eu) and neutron absorber materials (Cd, Gd); (6) Improved minor actinide evaluations for isotopes of U, Np, Pu, and Am (we are not making changes to the major actinides (235,238)U and (239)Pu at this point, except for delayed neutron data and covariances, and instead we intend to update them after a further period of research in experiment and theory), and our adoption of JENDL-4.0 evaluations for isotopes of Cm, Bk, Cf, Es; Fm; and some other minor actinides; (7) Fission energy release evaluations; (8) Fission product yield advances for fission-spectrum neutrons and 14 MeV neutrons incident on (239)Pu; and (9) A new decay data sublibrary. Integral validation testing of the ENDF/B-VII.1 library is provided for a variety of quantities: For nuclear criticality, the VII.1 library maintains the generally-good performance seen for VII.0 for a wide

  18. Change of nuclear configurations in the neutrinoless double-β decay of 130Te →130Be and 136Xe136Ba

    NASA Astrophysics Data System (ADS)

    Entwisle, J. P.; Kay, B. P.; Tamii, A.; Adachi, S.; Aoi, N.; Clark, J. A.; Freeman, S. J.; Fujita, H.; Fujita, Y.; Furuno, T.; Hashimoto, T.; Hoffman, C. R.; Ideguchi, E.; Ito, T.; Iwamoto, C.; Kawabata, T.; Liu, B.; Miura, M.; Ong, H. J.; Schiffer, J. P.; Sharp, D. K.; Süsoy, G.; Suzuki, T.; Szwec, S. V.; Takaki, M.; Tsumura, M.; Yamamoto, T.

    2016-06-01

    The change in the configuration of valence protons between the initial and final states in the neutrinoless double-β decay of 130Te → 130Be and of 136Xe136Ba has been determined by measuring the cross sections of the (d ,3He) reaction with 101-MeV deuterons. Together with our recent determination of the relevant neutron configurations involved in the process, a quantitative comparison with the latest shell-model and interacting-boson-model calculations reveals significant discrepancies. These are the same calculations used to determine the nuclear matrix elements governing the rate of neutrinoless double-β decay in these systems.

  19. Nuclear matrix elements for 0νβ{sup −}β{sup −} decays: Comparative analysis of the QRPA, shell model and IBM predictions

    SciTech Connect

    Civitarese, Osvaldo; Suhonen, Jouni

    2013-12-30

    In this work we report on general properties of the nuclear matrix elements involved in the neutrinoless double β{sup −} decays (0νβ{sup −}β{sup −} decays) of several nuclei. A summary of the values of the NMEs calculated along the years by the Jyväskylä-La Plata collaboration is presented. These NMEs, calculated in the framework of the quasiparticle random phase approximation (QRPA), are compared with those of the other available calculations, like the Shell Model (ISM) and the interacting boson model (IBA-2)

  20. Nuclear mass inventory, photon dose rate and thermal decay heat of spent research reactor fuel assemblies

    SciTech Connect

    Pond, R.B.; Matos, J.E.

    1996-05-01

    As part of the Department of Energy`s spent nuclear fuel acceptance criteria, the mass of uranium and transuranic elements in spent research reactor fuel must be specified. These data are, however, not always known or readily determined. It is the purpose of this report to provide estimates of these data for some of the more common research reactor fuel assembly types. The specific types considered here are MTR, TRIGA and DIDO fuel assemblies. The degree of physical protection given to spent fuel assemblies is largely dependent upon the photon dose rate of the spent fuel material. These data also, are not always known or readily determined. Because of a self-protecting dose rate level of radiation (dose rate greater than 100 ren-x/h at I m in air), it is important to know the dose rate of spent fuel assemblies at all time. Estimates of the photon dose rate for spent MTR, TRIGA and DIDO-type fuel assemblies are given in this report.

  1. MOON for neutrino-less ββ decays and ββ nuclear matrix elements

    NASA Astrophysics Data System (ADS)

    Ejiri, H.

    2009-11-01

    The MOON project aims at spectroscopic 0vββ studies with the v-mass sensitivity of 100-30 meV by measuring two beta rays from 100Mo and/or 82Se. The detector is a compact super-module of multi-layer PL scintillator plates. R&D works made by the pro to-type MOON-1 and the small PL plate show the possible energy resolution of around σ~2.2%, as required for the mass sensitivity. Nuclear matrix elements M2v for 2vββ are shown to be given by the sum ΣLMk of the 2vββ matrix elements Mk through intermediate quasi-particle states in the Fermi-surface, where Mi is obtained experimentally by using the GT(Jπ = 1+) matrix elements of Mi(k) and Mf(k) for the successive single-β transitions through the k-th intermediate state.

  2. Effects of {alpha}-decay on mechanical properties of simulated nuclear waste glass

    SciTech Connect

    Inagaki, Y.; Furuya, H.; Ono, Y.; Idemitsu, K.; Banba, T.; Matsumoto, S.; Muraoka, S.

    1993-12-31

    A simulated nuclear waste glass was self-irradiated by doping with short-lived actinides of {sup 238}Pu and {sup 244}Cm. Changes in the hardness, the Young`s modulus and the fracture toughness, as a function of irradiation dose, were measured by use of identation techniques. The irradiated glass was annealed at temperatures from 573K to 723K for periods of up to 48 hours, and the recovery of these changes were measured as a function of annealing and time. It was observed that the hardness and the Young`s modulus decreased, while the fracture toughness increased exponentially with the cumulative dose. The maximum values of the relative changes in the hardness, the Young`s modulus and the fracture toughness were about -25%, -30% and +45%, respectively. The results of the annealing show that the hardness and the Young`s modulus were almost recovered to the original values at temperatures above 673 K within 10 hours, while the recovery of the fracture toughness was minimal in this region of temperature and time. The changes in the hardness and the Young`s modulus can be well explained by the model, in which the changes is proportional to the volume fraction of damaged zones, F, and the recovery of F is first order. On the other hand, the changes in the fracture toughness cannot be explained by the model, which suggests that the mechanism of the change in the fracture toughness is different from that in the hardness and the Young`s modulus.

  3. Fermi to Gamow-Teller Mixing Ratios in the Nuclear Beta Decays of COBALT-58 and COBALT-56.

    NASA Astrophysics Data System (ADS)

    Lee, Wen-Piao

    1981-06-01

    The Fermi to Gamow-Teller mixing ratios, y = C(,V)M(,F)/C(,A)M(,GT), in the isospin-hindered beta decays ((DELTA)J=0, T=('(+OR -))1) of ('58)Co and ('56)Co have been accurately determined from extensive and detailed studies of the directional distributions of beta rays and gamma rays emitted from oriented ('58)Co and ('56)Co nuclei. The cobalt nuclei were oriented in a thin foil of permendur (49%Co, 49%Fe, and 2%V) magnetically saturated at ultralow temperatures (10('-2o)K). The nuclear orientation system employed has the distinguished features of excellent long-term temperature stability and of allowing beta rays be measured at almost any desired angle with respect to the nuclear orientation axis with very little deflections from their original trajectories by the applied magnetizing fields. Beta-ray and gamma-ray spectra were measured, with a Si(Li) detector and a Ge(Li) detector respectively, at four different angles with respect to the nuclear orientation axis. The gamma-ray background in the beta-ray spectra is removed by means of a mechanical shutter. The beta -ray asymmetries and the gamma-ray anisotropies were determined independently at each angle by normalizing the cold ((TURNEQ)10(' -2o)K) spectra by the corresponding warm (4.2(DEGREES)K) spectra taken at the same angle. Necessary corrections made on the beta-ray spectra due to the various experimental effects are described in detail. The experimental beta -ray asymmetries after the proper corrections were found to be in very good agreement with the theoretical expectations over a wide energy region. Including all estimated systematic errors, the beta-ray asymmetry parameters, A(,(beta)), were determined to be A(,(beta))('58) = 0.341 (+OR-) 0.020 for ('58)Co and A('56) = 0.352 (+OR-) 0.015 for ('56)Co. The Fermi to Gamov-Teller mixing ratios y corresponding to these A(,(beta))'s are y('58) = -0.005 (+OR-) 0.012 for ('58)Co and y('56) = -0.086 (+OR-) 0.008 for ('56)Co. The obtained result of y('56) is in

  4. Experimental investigations on decay heat removal in advanced nuclear reactors using single heater rod test facility: Air alone in the annular gap

    SciTech Connect

    Bopche, Santosh B.; Sridharan, Arunkumar

    2010-11-15

    During a loss of coolant accident in nuclear reactors, radiation heat transfer accounts for a significant amount of the total heat transfer in the fuel bundle. In case of heavy water moderator nuclear reactors, the decay heat of a fuel bundle enclosed in the pressure tube and outer concentric calandria tube can be transferred to the moderator. Radiation heat transfer plays a significant role in removal of decay heat from the fuel rods to the moderator, which is available outside the calandria tube. A single heater rod test facility is designed and fabricated as a part of preliminary investigations. The objective is to anticipate the capability of moderator to remove decay heat, from the reactor core, generated after shut down. The present paper focuses mainly on the role of moderator in removal of decay heat, for situation with air alone in the annular gap of pressure tube and calandria tube. It is seen that the naturally aspirated air is capable of removing the heat generated in the system compared to the standstill air or stagnant water situations. It is also seen that the flowing moderator is capable of removing a greater fraction of heat generated by the heater rod compared to a stagnant pool of boiling moderator. (author)

  5. Decay Data Evaluation Project (DDEP): evaluation of the main 233Pa decay characteristics.

    PubMed

    Chechev, Valery P; Kuzmenko, Nikolay K

    2006-01-01

    The results of a decay data evaluation are presented for 233Pa (beta-) decay to nuclear levels in 233U. These evaluated data have been obtained within the Decay Data Evaluation Project using information published up to 2005. PMID:16574422

  6. Theoretical investigation of the dependence of double beta decay tracks in a Ge detector on particle and nuclear physics parameters and separation from gamma ray events

    SciTech Connect

    Klapdor-Kleingrothaus, H.V.; Krivosheina, I.V.; Titkova, I.V.

    2006-01-01

    The sizes of tracks of events of neutrinoless double-beta decay in a Germanium detector depend on particle physics and nuclear physics parameters such as neutrino mass, right-handed current parameters, etc., and nuclear matrix elements. In this paper for the first time Monte Carlo simulations of neutrino-accompanied (2{nu}{beta}{beta}) and neutrinoless double-beta decay (0{nu}{beta}{beta}) events, and of various kinds of background processes such as multiple and other {gamma} interactions are reported for a Ge detector. The time history of the evolution of the individual events is followed and the sizes of the events (partial volumes in the detector inside which the energy of the event is released) are investigated. Effects of the angular correlations of the two electrons in {beta}{beta} decay, which again depend on the above nuclear and (for 0{nu}{beta}{beta} decay) on particle physics parameters, are taken into account and have been calculated for this purpose for the first time on basis of the experimental half-life of {sup 76}Ge and of realistic nuclear matrix elements. The sizes determine, together with the location of the events in the detector, the pulse shapes to be observed. It is shown for {beta}{beta} decay of {sup 76}Ge, that {beta}{beta} events should be selectable with high efficiency by rejecting large size (high multiplicity) {gamma} events. Double-escape peaks of similar energy of {gamma} lines show concerning their sizes similar behavior as 0{nu}{beta}{beta} events, and in that sense can be of some use for corresponding 'calibration' of pulse shapes of the detector. The possibility to distinguish {beta}{beta} events from {gamma} events is found to be essentially independent of the particle physics parameters of the 0{nu}{beta}{beta} process. A brief outlook is given on the potential of future experiments with respect to determination of the particle physics parameters ,<{lambda}>,<{eta}>.

  7. Fermi to Gamow-Teller mixing ratios in the nuclear beta decays of /sup 58/Co and /sup 56/Co

    SciTech Connect

    Lee, W.P.

    1981-01-01

    The Fermi to Gamow-Teller mixing ratios, y = C/sub v/M/sub f//Ca/sub A/M/sub GT/, in the isospin-hindered beta decays (..delta..J = 0, T = /sup + -/1) of /sup 58/Co and /sup 56/Co have been accurately determined from extensive and detailed studies of the directional distributions of beta rays and gamma rays emitted from oriented /sup 58/Co and /sup 56/Co nuclei. The cobalt nuclei were oriented in a thin foil of permendur (49% Co, 49% Fe, and 2% V) magnetically saturated at ultralow temperatures (10/sup -20/K). Beta-ray and gamma-ray spectra were measured, with a Si(Li) detector and a Ge(Li) detector respectively, at four different angles with respect to the nuclear orientation axis. The gamma-ray background in the beta-ray spectra is removed by means of a mechanical shutter. The beta-ray asymmetries and the gamma-ray anisotropies were determined independently at each angle by normalizing the cold (approx. = 10/sup -20/K) spectra by the corresponding warm (4.2/sup 0/K) spectra taken at the same angle. Necessary corrections made on the beta-ray spectra due to the various experimental effects are described in detail. The experimental beta-ray asymmetries after the proper corrections were found to be in very good agreement with the theoretical expectations over a wide energy region. Including all estimated systematic errors, the beta-ray asymmetry parameters, A/sub ..beta../, were determined to be A/sub ..beta..//sup 58/ = 0.341 +- 0.020 for /sup 58/Co and A/sup 56/ = 0.352 +- 0.015 for /sup 56/Co. The Fermi to Gamow-Teller mixing ratios y corresponding to these A/sub ..beta../'s are y/sup 58/ = -0.005 +- 0.012 for /sup 58/Co and y/sup 56/ = -0.086 +- 0.008 for /sup 56/Co. The obtained result of y/sup 56/ is in very serious disagreement with the latest measurement.

  8. Nuclear-structure dependence of O (. alpha. ) corrections to Fermi decays and the value of the Kobayashi-Maskawa matrix element V sub ud

    SciTech Connect

    Jaus, W.; Rasche, G. )

    1990-01-01

    We calculate nuclear-structure corrections to the {ital ft} values of the eight accurately measured superallowed {beta}{sup +} decays. The statistical fit for the average {ital ft} value is very good. The resulting new value for the matrix element of the Kobayashi-Maskawa (KM) matrix is {vert bar}{ital V}{sub {ital ud}}{vert bar}=0.9735(5). The error in {vert bar}{ital V}{sub {ital ud}}{vert bar} has thus been reduced by 50%. Combining this value for {vert bar}{ital V}{sub {ital ud}}{vert bar} with the presently accepted results from kaon-, hyperon-, and {ital B}-decay constraints, the unitarity of the KM matrix for three generations of quarks seems to be violated.

  9. The Self Actualized Reader.

    ERIC Educational Resources Information Center

    Marino, Michael; Moylan, Mary Elizabeth

    A study examined the commonalities that "voracious" readers share, and how their experiences can guide parents, teachers, and librarians in assisting children to become self-actualized readers. Subjects, 25 adults ranging in age from 20 to 67 years, completed a questionnaire concerning their reading histories and habits. Respondents varied in…

  10. Tentative study of nuclear charge radii for neutron-deficient nuclei around the Z = 82 shell from experimental α decay data

    NASA Astrophysics Data System (ADS)

    Qian, Yibin; Ren, Zhongzhou

    2016-01-01

    We tentatively investigate the root-mean-square (rms) nuclear charge radii of odd-A Po and Pb isotopes plus Tl isotopes, particularly concerning these difficultly-detected nuclei along with short lifetimes, via various data on α decay. Within the density-dependent cluster model, the density distributions of studied daughter nuclei are determined by exactly reproducing the corresponding experimental α decay half-lives, which leads the final results of nuclear charge radii. In addition, our recently proposed formula deducing the charge radii is extended to this study for comparison. Whether it concerns the ground or isomeric state of target nuclei, the extracted nuclear charge radii are found to be in good agreement with the measured values. Sequential predictions on the rms charge radii are subsequently made for these neutron-deficient nuclei and especially for the rarely detected Bi isotopic chain, which are expected to be useful for future measurements. Moreover, the variety of α-preformation factors is analyzed in the scheme of valence nucleon number to pursue the further improvement of the model. This may be considered as an effective effort to obtain the charge radii of ground and even low-lying excited states for exotic nuclei near the proton-dripline.

  11. Characterization of Nuclear Recoils in High Pressure Xenon Gas: Towards a Simultaneous Search for WIMP Dark Matter and Neutrinoless Double Beta Decay

    DOE PAGESBeta

    Renner, J.; Gehman, V. M.; Goldschmidt, A.; Oliveira, C. A.B.; Nygren, D.

    2015-03-24

    Xenon has recently been the medium of choice in several large scale detectors searching for WIMP dark matter and neutrinoless double beta decay. Though present-day large scale experiments use liquid xenon, the gas phase offers advantages favorable to both types of searches such as improved intrinsic energy resolution and fewer fluctuations in the partition of deposited energy between scintillation and ionization channels. We recently constructed a high pressure xenon gas TPC as a prototype for the NEXT (Neutrino Experiment with a Xenon TPC) neutrinoless double beta decay experiment and have demonstrated the feasibility of 0.5% FWHM energy resolution at themore » 136Xe double beta Q-value with 3-D tracking capabilities. We now present results from this prototype on the simultaneous observation of scintillation and ionization produced by nuclear recoils at approximately 14 bar pressure. The recoils were produced by neutrons of approximately 2-6 MeV emitted from a radioisotope plutonium-beryllium source, and primary scintillation (S1) and electroluminescent photons produced by ionization (S2) were observed. We discuss the potential of gaseous xenon to distinguish between electron and nuclear recoils through the ratio of these two signals S2/S1. From these results combined with the possibility of using columnar recombination to sense nuclear recoil directionality at high pressures we envision a dual-purpose, ton-scale gaseous xenon detector capable of a combined search for WIMP dark matter and neutrinoless double beta decay. This work has been performed within the context of the NEXT collaboration.« less

  12. Characterization of Nuclear Recoils in High Pressure Xenon Gas: Towards a Simultaneous Search for WIMP Dark Matter and Neutrinoless Double Beta Decay

    NASA Astrophysics Data System (ADS)

    Renner, J.; Gehman, V. M.; Goldschmidt, A.; Oliveira, C. A. B.; Nygren, D.

    Xenon has recently been the medium of choice in several large scale detectors searching for WIMP dark matter and neutrinoless double beta decay. Though present-day large scale experiments use liquid xenon, the gas phase o_ers advantages favorable to both types of searches such as improved intrinsic energy resolution and fewer fluctuations in the partition of deposited energy between scintillation and ionization channels. We recently constructed a high pressure xenon gas TPC as a prototype for the NEXT (Neutrino Experiment with a Xenon TPC) neutrinoless double beta decay experiment and have demonstrated the feasibility of 0.5% FWHM energy resolution at the 136Xe double beta Q-value with 3-D tracking capabilities. We now present results from this prototype on the simultaneous observation of scintillation and ionization produced by nuclear recoils at approximately 14 bar pressure. The recoils were produced by neutrons of approximately 2-6 MeV emitted from a radioisotope plutonium-beryllium source, and primary scintillation (S1) and electroluminescent photons produced by ionization (S2) were observed. We discuss the potential of gaseous xenon to distinguish between electron and nuclear recoils through the ratio of these two signals S2/S1. From these results combined with the possibility of using columnar recombination to sense nuclear recoil directionality at high pressures we envision a dual-purpose, ton-scale gaseous xenon detector capable of a combined search for WIMP dark matter and neutrinoless double beta decay. This work has been performed within the context of the NEXT collaboration.

  13. Characterization of Nuclear Recoils in High Pressure Xenon Gas: Towards a Simultaneous Search for WIMP Dark Matter and Neutrinoless Double Beta Decay

    SciTech Connect

    Renner, J.; Gehman, V. M.; Goldschmidt, A.; Oliveira, C. A.B.; Nygren, D.

    2015-03-24

    Xenon has recently been the medium of choice in several large scale detectors searching for WIMP dark matter and neutrinoless double beta decay. Though present-day large scale experiments use liquid xenon, the gas phase offers advantages favorable to both types of searches such as improved intrinsic energy resolution and fewer fluctuations in the partition of deposited energy between scintillation and ionization channels. We recently constructed a high pressure xenon gas TPC as a prototype for the NEXT (Neutrino Experiment with a Xenon TPC) neutrinoless double beta decay experiment and have demonstrated the feasibility of 0.5% FWHM energy resolution at the 136Xe double beta Q-value with 3-D tracking capabilities. We now present results from this prototype on the simultaneous observation of scintillation and ionization produced by nuclear recoils at approximately 14 bar pressure. The recoils were produced by neutrons of approximately 2-6 MeV emitted from a radioisotope plutonium-beryllium source, and primary scintillation (S1) and electroluminescent photons produced by ionization (S2) were observed. We discuss the potential of gaseous xenon to distinguish between electron and nuclear recoils through the ratio of these two signals S2/S1. From these results combined with the possibility of using columnar recombination to sense nuclear recoil directionality at high pressures we envision a dual-purpose, ton-scale gaseous xenon detector capable of a combined search for WIMP dark matter and neutrinoless double beta decay. This work has been performed within the context of the NEXT collaboration.

  14. The file of evaluated decay data in ENDF/B

    SciTech Connect

    Reich, C.W. ); England, T.R. )

    1991-01-01

    One important application of nuclear decay data is the Evaluated Nuclear Data File/B, the base of evaluated nuclear data used in reactor research and technology activities within the US. This report discusses the decay data file.

  15. Analysis of nuclear materials by energy dispersive x-ray fluorescence and spectral effects of alpha decay

    SciTech Connect

    Worley, Christopher G

    2009-01-01

    Energy dispersive X-ray fluorescence (EDXRF) spectra collected from alpha emitters are complicated by artifacts inherent to the alpha decay process, particularly when using portable instruments. For example, {sup 239}Pu EDXRF spectra exhibit a prominent uranium L X-ray emission peak series due to sample alpha decay rather than source-induced X-ray fluorescence. A portable EDXRF instrument was used to collect spectra from plutonium, americium, and a Pu-contaminated steel sample. The plutonium sample was also analyzed by wavelength dispersive XRF to demonstrate spectral differences observed when using these very different instruments.

  16. NUCLEAR AND HEAVY ION PHYSICS: α-decay half-lives of superheavy nuclei and general predictions

    NASA Astrophysics Data System (ADS)

    Dong, Jian-Min; Zhang, Hong-Fei; Wang, Yan-Zhao; Zuo, Wei; Su, Xin-Ning; Li, Jun-Qing

    2009-08-01

    The generalized liquid drop model (GLDM) and the cluster model have been employed to calculate the α-decay half-lives of superheavy nuclei (SHN) using the experimental α-decay Q values. The results of the cluster model are slightly poorer than those from the GLDM if experimental Q values are used. The prediction powers of these two models with theoretical Q values from Audi et al. (QAudi) and Muntian et al. (QM) have been tested to find that the cluster model with QAudi and QM could provide reliable results for Z > 112 but the GLDM with QAudi for Z <= 112. The half-lives of some still unknown nuclei are predicted by these two models and these results may be useful for future experimental assignment and identification.

  17. Nuclear and particle physics aspects of the 2{nu}{beta}{beta}-decay of {sup 150}Nd

    SciTech Connect

    Dvornicky, R.; Simkovic, F.; Faessler, A.

    2007-10-12

    A discussion is given on possible realization of the Single State Dominance (SSD) hypothesis in the case of the two-neutrino double beta decay (2{nu}{beta}{beta}-decay) of {sup l50}Nd with 1{sup -} ground state of the intermediate nucleus. We conclude that the SSD hypothesis is expected to be ruled out by precision measurement of differential characteristics of this process in running NEMO 3 or planed SuperNEMO experiments unlike some unknown low-lying 1{sup +} state of {sup 150}Pm does exist. This problem can be solved via (d,{sup 2}He) charge-exchange experiment on {sup l50}Sm. Further, we address the question about possible violation of the Pauli exclusion principle for neutrinos and its consequences for the energy distributions of the 2{nu}{beta}{beta}-decay of {sup l50}Nd. This phenomenon might be a subject of interest of NEMO 3 and SuperNEMO experiments as well.

  18. Search for anomalies in the decay of radioactive Mn-54

    NASA Astrophysics Data System (ADS)

    Silverman, M. P.

    2016-06-01

    Recent papers have reported that 54Mn, which decays by electron capture (a weak nuclear interaction) with half-life ∼312 days, is influenced by solar activity. Should this actually occur, new physics would be needed to explain it. This paper reports results of an analysis of 54Mn activity measured over a time interval of ∼3.6 half-lives. If standard nuclear physics applies, the logarithmic residuals of 54Mn activities should form a stationary set of independent random variables whose statistics are determined solely by a constant decay rate λ and initial mean count μ. Analysis of the time-variation, autocorrelation, and power spectra of the 54Mn logarithmic residuals agrees exquisitely with standard nuclear physics. Computer-simulated activities exhibiting periodic decay of amplitude A=αλ show that anomalies would be detectable by these statistical tests for values of α as low as ∼1 part in 104. This limit is about 10 times lower than reported deviations from exponential decay.

  19. Electron-capture branch of {sup 100}Tc and tests of nuclear wave functions for double-{beta} decays.

    SciTech Connect

    Sjue, S. K. L.; Melconian, D.; Garcia, A.; Ahmad, I.; Algora, A.; Aysto, J.; Elomaa, V.-V.; Eronen, T.; Hakala, J.; Hoedl, S.; Kankainen, A.; Kessler, T.; Moore, I. D.; Naabe, F.; Penttila, H.; Rahaman, S.; Saastamoinen, A.; Swanson, H. E.; Weber, C.; Triambak, S.; Deryckx, K.; Physics; Univ. of Washington; Texas A&M Univ.; Univ. of Valencia; Hungarian Academy of Sciences; Univ. of Jyvaskyla; Univ. of Michigan

    2008-12-30

    We present a measurement of the electron-capture branch of {sup 100}Tc. Our value, B(EC) = (2.6 {+-} 0.4) x 10{sup -5}, implies that the {sup 100}Mo neutrino absorption cross section to the ground state of {sup 100}Tc is roughly 50% larger than previously thought. Disagreement between the experimental value and QRPA calculations relevant to double-{beta} decay matrix elements persists. We find agreement with previous measurements of the 539.5- and 590.8-keV {gamma}-ray intensities.

  20. Probing nuclear structures in the vicinity of 78Ni with β- and βn-decay spectroscopy of 84Ga

    NASA Astrophysics Data System (ADS)

    Kolos, K.; Verney, D.; Ibrahim, F.; Le Blanc, F.; Franchoo, S.; Sieja, K.; Nowacki, F.; Bonnin, C.; Cheikh Mhamed, M.; Cuong, P. V.; Didierjean, F.; Duchêne, G.; Essabaa, S.; Germogli, G.; Khiem, L. H.; Lau, C.; Matea, I.; Niikura, M.; Roussière, B.; Stefan, I.; Testov, D.; Thomas, J.-C.

    2013-10-01

    The decay of 84Ga has been reinvestigated at the PARRNe online mass separator of the electron-driven installation ALTO at IPN Orsay. The nominal primary electron beam of 10 μA (50 MeV) on a 238UCx target in combination with resonant laser ionization were used for the first time at ALTO. Improved level schemes of the neutron-rich 83,84Ge (Z=32) isotopes were obtained. The experimental results are compared with the state-of-the-art shell model calculations and discussed in terms of collectivity development in the natural valence space outside the 78Ni core.

  1. Nuclear cascades in Saturn's rings - Cosmic ray albedo neutron decay and origins of trapped protons in the inner magnetosphere

    NASA Astrophysics Data System (ADS)

    Cooper, J. F.

    1983-05-01

    The nearly equatorial trajectory of the Pioneer 11 spacecraft through Saturn's high energy proton radiation belts and under the main A-B-C rings provided a unique opportunity to study the radial dependence of the greater than 30 MeV proton intensities in the belts in terms of models for secondary nucleon production by cosmic ray interactions in the rings, in situ proton injection in the radiation belts by neutron beta decay, magnetospheric diffusion, and absorption by planetary rings and satellites. Maximum trapped proton intensities measured by Pioneer 11 in the radiation belts are compared with calculated intensities and found consistent with trapping times of roughly 40 years and a radial diffusion coefficient of about 10 to the -15th L to the 9th Rs squared/s. Differential energy spectra proportional to E to the -2 estimated from integral measurements of trapped photons with E greater than 100 MeV are consistent with the beta decay model, but an inferred turndown of the spectra toward lower energies and reported integral proton anisotropies of a specified form both indicate the need for more realistic calculations of the neutron source from the rings and the radiation belt loss processes.

  2. An analytical method for estimating the {sup 14}N nuclear quadrupole resonance parameters of organic compounds with complex free induction decays for radiation effects studies

    SciTech Connect

    Iselin, L.H.

    1992-12-31

    The use of {sup 14}N nuclear quadrupole resonance (NQR) as a radiation dosimetry tool has only recently been explored. An analytical method for analyzing {sup 14}N NQR complex free induction decays is presented with the background necessary to conduct pulsed NQR experiments. The {sup 14}N NQR energy levels and possible transitions are derived in step-by-step detail. The components of a pulsed NQR spectrometer are discussed along with the experimental techniques for conducting radiation effects experiments using the spectrometer. Three data analysis techniques -- the power spectral density Fourier transform, state space singular value decomposition (HSVD), and nonlinear curve fitting (using the downhill simplex method of global optimization and the Levenberg-Marquart method) -- are explained. These three techniques are integrated into an analytical method which uses these numerical techniques in this order to determine the physical NQR parameters. Sample data sets of urea and guanidine sulfate data are used to demonstrate how these methods can be employed to analyze both simple and complex free induction decays. By determining baseline values for biologically significant organics, radiation effects on the NQR parameters can be studied to provide a link between current radiation dosimetry techniques and the biological effects of radiation.

  3. Systematic study of nuclear matrix elements in neutrinoless double-β decay with a beyond-mean-field covariant density functional theory

    NASA Astrophysics Data System (ADS)

    Yao, J. M.; Song, L. S.; Hagino, K.; Ring, P.; Meng, J.

    2015-02-01

    We report a systematic study of nuclear matrix elements (NMEs) in neutrinoless double-β decays with a state-of-the-art beyond-mean-field covariant density functional theory. The dynamic effects of particle-number and angular-momentum conservations as well as quadrupole shape fluctuations are taken into account with projections and generator coordinate method for both initial and final nuclei. The full relativistic transition operator is adopted to calculate the NMEs. The present systematic studies show that in most of the cases there is a much better agreement with the previous nonrelativistic calculation based on the Gogny force than in the case of the nucleus 150Nd found by Song et al. [Phys. Rev. C 90, 054309 (2014), 10.1103/PhysRevC.90.054309]. In particular, we find that the total NMEs can be well approximated by the pure axial-vector coupling term with a considerable reduction of the computational effort.

  4. Measurements of observables in the pion-nucleon system, nuclear a- dependence of heavy quark production and rare decays of D and B mesons. Progress report, 1 December, 1990--15 February, 1992

    SciTech Connect

    Sadler, M.E.; Isenhower, L.D.

    1992-02-15

    This report discusses research on the following topics: pion-nucleon interactions; detector tomography facility; nuclear dependence of charm and beauty quark production and a study of two-prong decays of neutral D and B mesons; N* collaboration at CEBAF; and pilac experiments. (LSP)

  5. Uncertainty Quantification for Nuclear Currents: A Bayesian χ-EFT view of the Triton and β- Decay

    NASA Astrophysics Data System (ADS)

    Wendt, Kyle

    2014-09-01

    Chiral Effective Field Theory (χ-EFT) provides a framework for the generation and systematic improvement of model independent inter-nucleon interaction Hamiltonians and nuclear current operators. Within χ-EFT, short and mid distance physics is encoded through a gradient expansion and multiple pion exchange parameterized by a set of low energy constants (LECs). The LECs are often constrained via non-linear least squares using nuclear bound state and scattering observables. This has produced reasonable low-energy descriptions in the past, but has been plagued by LECs that are unnaturally large. Additional issues manifest in medium mass nuclei where the χ-EFT Hamiltonians fail to adequately describe saturation properties. It has been suggested that Bayesian approaches may remedy the unnaturally large LECs using carefully selected priors. Other analyses have suggested that the inclusion and feedback of nuclear currents into the constraints of the LECs may improve saturation properties. We combine these approaches using Markov chain Monte Carlo (MCMC) to study and quantify uncertainties in the Triton and the χ-EFT axial-vector current, with the aim of providing a foundation for quantifying χ-EFT uncertainties for weak processes in nuclei. Chiral Effective Field Theory (χ-EFT) provides a framework for the generation and systematic improvement of model independent inter-nucleon interaction Hamiltonians and nuclear current operators. Within χ-EFT, short and mid distance physics is encoded through a gradient expansion and multiple pion exchange parameterized by a set of low energy constants (LECs). The LECs are often constrained via non-linear least squares using nuclear bound state and scattering observables. This has produced reasonable low-energy descriptions in the past, but has been plagued by LECs that are unnaturally large. Additional issues manifest in medium mass nuclei where the χ-EFT Hamiltonians fail to adequately describe saturation properties. It has

  6. Tooth Decay

    MedlinePlus

    ... decay starts in the outer layer, called the enamel. Without a filling, the decay can get deep into the tooth and its nerves and cause a toothache or abscess. To help prevent cavities Brush your teeth every day with a fluoride toothpaste Clean between ...

  7. β-Decay half-lives and nuclear structure of exotic proton-rich waiting point nuclei under rp-process conditions

    NASA Astrophysics Data System (ADS)

    Nabi, Jameel-Un; Böyükata, Mahmut

    2016-03-01

    We investigate even-even nuclei in the A ∼ 70 mass region within the framework of the proton-neutron quasi-particle random phase approximation (pn-QRPA) and the interacting boson model-1 (IBM-1). Our work includes calculation of the energy spectra and the potential energy surfaces V (β , γ) of Zn, Ge, Se, Kr and Sr nuclei with the same proton and neutron number, N = Z. The parametrization of the IBM-1 Hamiltonian was performed for the calculation of the energy levels in the ground state bands. Geometric shape of the nuclei was predicted by plotting the potential energy surfaces V (β , γ) obtained from the IBM-1 Hamiltonian in the classical limit. The pn-QRPA model was later used to compute half-lives of the neutron-deficient nuclei which were found to be in very good agreement with the measured ones. The pn-QRPA model was also used to calculate the Gamow-Teller strength distributions and was found to be in decent agreement with the measured data. We further calculate the electron capture and positron decay rates for these N = Z waiting point (WP) nuclei in the stellar environment employing the pn-QRPA model. For the rp-process conditions, our total weak rates are within a factor two compared with the Skyrme HF +BCS +QRPA calculation. All calculated electron capture rates are comparable to the competing positron decay rates under rp-process conditions. Our study confirms the finding that electron capture rates form an integral part of the weak rates under rp-process conditions and should not be neglected in the nuclear network calculations.

  8. Probing α-relaxation with nuclear magnetic resonance echo decay and relaxation: a study on nitrile butadiene rubber.

    PubMed

    Sturniolo, Simone; Pieruccini, Marco; Corti, Maurizio; Rigamonti, Attilio

    2013-01-01

    One dimensional (1)H NMR measurements have been performed to probe slow molecular motions in nitrile butadiene rubber (NBR) around its calorimetric glass transition temperature Tg. The purpose is to show how software aided data analysis can extract meaningful dynamical data from these measurements. Spin-lattice relaxation time, free induction decay (FID) and magic sandwich echo (MSE) measurements have been carried out at different values of the static field, as a function of temperature. It has been evidenced how the efficiency of the MSE signal in reconstructing the original FID exhibits a sudden minimum at a given temperature, with a slight dependence from the measuring frequency. Computer simulations performed with the software SPINEVOLUTION have shown that the minimum in the efficiency reconstruction of the MSE signal corresponds to the average motional frequency taking a value around the inter-proton coupling. The FID signals have been fitted with a truncated form of a newly derived exact correlation function for the transverse magnetization of a dipolar interacting spin pair, which allows one to avoid the restriction of the stationary and Gaussian approximations. A direct estimate of the conformational dynamics on approaching the Tg is obtained, and the results are in agreement with the analysis performed via the MSE reconstruction efficiency. The occurrence of a wide distribution of correlation frequencies for the chains motion, with a Vogel-Fulcher type temperature dependence, is addressed. A route for a fruitful study of the dynamics accompanying the glass transition by a variety of NMR measurements is thus proposed. PMID:23379979

  9. Neutrinoless Double Beta Decay

    NASA Astrophysics Data System (ADS)

    Cremonesi, Oliviero

    2016-05-01

    After more than 3/4 of century from its proposal, Neutrinoless Double Beta Decay (NLDBD) is still missing observation and continues to represent the only practical method for investigating the Dirac/Majorana nature of neutrinos. In case neutrinos would be Majorana particles, NLDBD would provide unique informations on their properties (absolute mass scale and Majorana phases). Boosted by the discovery of neutrino oscillations, a number of experiments with improved sensitivity have been proposed in the past decade. Some of them have recently started operation and others are ready to start. They will push the experimental sensitivity on the decay halflife beyond 1026 year, starting to analyze the region of the inverted mass hierarchy. The status and perspectives of the ongoing experimental effort are reviewed. Uncertainties coming from the calculation othe decay nuclear matrix elements (NME) as well as the recently suggested possibility of a relevant quenching of the axial coupling constant are also discussed.

  10. A SnoRNA-derived piRNA interacts with human interleukin-4 pre-mRNA and induces its decay in nuclear exosomes.

    PubMed

    Zhong, Fudi; Zhou, Nan; Wu, Kang; Guo, Yubiao; Tan, Weiping; Zhang, Hong; Zhang, Xue; Geng, Guannan; Pan, Ting; Luo, Haihua; Zhang, Yijun; Xu, Zhibin; Liu, Jun; Liu, Bingfeng; Gao, Wenchao; Liu, Chao; Ren, Liangliang; Li, Jun; Zhou, Jie; Zhang, Hui

    2015-12-01

    PIWI interacting RNAs (piRNAs) are highly expressed in germline cells and are involved in maintaining genome integrity by silencing transposons. These are also involved in DNA/histone methylation and gene expression regulation in somatic cells of invertebrates. The functions of piRNAs in somatic cells of vertebrates, however, remain elusive. We found that snoRNA-derived and C (C')/D' (D)-box conserved piRNAs are abundant in human CD4 primary T-lymphocytes. piRNA (piR30840) significantly downregulated interleukin-4 (IL-4) via sequence complementarity binding to pre-mRNA intron, which subsequently inhibited the development of Th2 T-lymphocytes. Piwil4 and Ago4 are associated with this piRNA, and this complex further interacts with Trf4-Air2-Mtr4 Polyadenylation (TRAMP) complex, which leads to the decay of targeted pre-mRNA through nuclear exosomes. Taken together, we demonstrate a novel piRNA mechanism in regulating gene expression in highly differentiated somatic cells and a possible novel target for allergy therapeutics. PMID:26405199

  11. Modeling nuclear processes by Simulink

    NASA Astrophysics Data System (ADS)

    Rashid, Nahrul Khair Alang Md

    2015-04-01

    Modelling and simulation are essential parts in the study of dynamic systems behaviours. In nuclear engineering, modelling and simulation are important to assess the expected results of an experiment before the actual experiment is conducted or in the design of nuclear facilities. In education, modelling can give insight into the dynamic of systems and processes. Most nuclear processes can be described by ordinary or partial differential equations. Efforts expended to solve the equations using analytical or numerical solutions consume time and distract attention from the objectives of modelling itself. This paper presents the use of Simulink, a MATLAB toolbox software that is widely used in control engineering, as a modelling platform for the study of nuclear processes including nuclear reactor behaviours. Starting from the describing equations, Simulink models for heat transfer, radionuclide decay process, delayed neutrons effect, reactor point kinetic equations with delayed neutron groups, and the effect of temperature feedback are used as examples.

  12. Modeling nuclear processes by Simulink

    SciTech Connect

    Rashid, Nahrul Khair Alang Md

    2015-04-29

    Modelling and simulation are essential parts in the study of dynamic systems behaviours. In nuclear engineering, modelling and simulation are important to assess the expected results of an experiment before the actual experiment is conducted or in the design of nuclear facilities. In education, modelling can give insight into the dynamic of systems and processes. Most nuclear processes can be described by ordinary or partial differential equations. Efforts expended to solve the equations using analytical or numerical solutions consume time and distract attention from the objectives of modelling itself. This paper presents the use of Simulink, a MATLAB toolbox software that is widely used in control engineering, as a modelling platform for the study of nuclear processes including nuclear reactor behaviours. Starting from the describing equations, Simulink models for heat transfer, radionuclide decay process, delayed neutrons effect, reactor point kinetic equations with delayed neutron groups, and the effect of temperature feedback are used as examples.

  13. Poly(A) tail-mediated gene regulation by opposing roles of Nab2 and Pab2 nuclear poly(A)-binding proteins in pre-mRNA decay.

    PubMed

    Grenier St-Sauveur, Valérie; Soucek, Sharon; Corbett, Anita H; Bachand, François

    2013-12-01

    The 3' end of most eukaryotic transcripts is decorated by poly(A)-binding proteins (PABPs), which influence the fate of mRNAs throughout gene expression. However, despite the fact that multiple PABPs coexist in the nuclei of most eukaryotes, how functional interplay between these nuclear PABPs controls gene expression remains unclear. By characterizing the ortholog of the Nab2/ZC3H14 zinc finger PABP in Schizosaccharomyces pombe, we show here that the two major fission yeast nuclear PABPs, Pab2 and Nab2, have opposing roles in posttranscriptional gene regulation. Notably, we find that Nab2 functions in gene-specific regulation in a manner opposite to that of Pab2. By studying the ribosomal-protein-coding gene rpl30-2, which is negatively regulated by Pab2 via a nuclear pre-mRNA decay pathway that depends on the nuclear exosome subunit Rrp6, we show that Nab2 promotes rpl30-2 expression by acting at the level of the unspliced pre-mRNA. Our data support a model in which Nab2 impedes Pab2/Rrp6-mediated decay by competing with Pab2 for polyadenylated transcripts in the nucleus. The opposing roles of Pab2 and Nab2 reveal that interplay between nuclear PABPs can influence gene regulation. PMID:24081329

  14. The role of nuclear reactions in the problem of 0νββ decay and the NUMEN project at INFN-LNS

    NASA Astrophysics Data System (ADS)

    Cappuzzello, F.; Agodi, C.; Bondì, M.; Carbone, D.; Cavallaro, M.; Foti, A.

    2015-07-01

    An innovative technique to access the nuclear matrix elements entering the expression of the life time of the double beta decay by relevant cross sections of double charge exchange reactions is proposed. The basic point is the coincidence of the initial and final state wave-functions in the two classes of processes and the similarity of the transition operators, which in both cases present a superposition of Fermi, Gamow-Teller and rank-two tensor components with a relevant implicit momentum transfer. First pioneering experimental results obtained at the INFN-LNS laboratory for the 40Ca(18O,18Ne)40Ar reaction at 270 MeV, give encouraging indication on the capability of the proposed technique to access relevant quantitative information. A key aspect of the project is the use of the K800 Superconducting Cyclotron (CS) for the acceleration of the required high resolution and low emittance heavy- ion beams and of the MAGNEX large acceptance magnetic spectrometer for the detection of the ejectiles. The use of the high-order trajectory reconstruction technique, implemented in MAGNEX, allows to reach the high mass, angular and energy resolution required even at very low cross section. The LNS set-up is today an ideal one for this research even in a worldwide perspective. However a main limitation on the beam current delivered by the accelerator and the maximum rate accepted by the MAGNEX focal plane detector must be sensibly overcome in order to systematically provide accurate numbers to the neutrino physics community in all the studied cases. The upgrade of the LNS facilities in this view is part of this project.

  15. Linguistic Theory and Actual Language.

    ERIC Educational Resources Information Center

    Segerdahl, Par

    1995-01-01

    Examines Noam Chomsky's (1957) discussion of "grammaticalness" and the role of linguistics in the "correct" way of speaking and writing. It is argued that the concern of linguistics with the tools of grammar has resulted in confusion, with the tools becoming mixed up with the actual language, thereby becoming the central element in a metaphysical…

  16. Are presolar dust grains from novae actually from supernovae?

    NASA Astrophysics Data System (ADS)

    Nittler, L. R.; Hoppe, P.

    2005-05-01

    Meteorites contain presolar stardust grains that formed in prior generations of stars and exhibit large isotopic anomalies reflecting the nuclear processes that occurred in their individual parent stars. RGB and AGB stars and supernovae are well established as sources of many of these grains. Novae have been proposed as sources for a few SiC and graphite grains with low 12}C/{13C and 14}N/{15N ratios and unusual Si isotopic ratios (Amari et al., ApJ, 551, 1065). We have found three SiC grains from the Murchison meteorite with C and N isotopic ratios similar to the previously-reported putative nova grains. However, the isotopic signatures of Si, Ca, Al and Ti in one of the grains (334-2) clearly indicate a supernova origin, especially excess 28Si correlated with excess 44Ca. The latter signature is attributable to in situ decay of (half-life=50yr) 44Ti. Another 13C- and 15N-rich grain (151-4) has a large 47Ti enrichment. This signature is not expected for nova nucleosynthesis. Thus, the new isotopic data raise the possibility that the grains previously reported to have formed in novae actually formed in supernovae, and that novae have not left a record in the presolar grain populations that have been so far studied. Moreover, the results in grain 334-2 indicate that supernovae contain regions highly enriched in both 13C and 15N. This is not predicted by current models but may bear on the cosmic origin of 15N. This work was funded in part by NASA.

  17. An Experiment on the Decay of 58-Co.

    ERIC Educational Resources Information Center

    Ledingham, K. W. D.; Callaghan, A. H. C.

    1979-01-01

    Describes an experiment which uses a radioactive source, a Sodium Iodide detector, and a simple counting apparatus possessed by most universities and colleges. The decay scheme and the theory of nuclear beta decay are presented. (Author/SA)

  18. Nuclear particle decay in a multi-MeV beam ejected by pulsed-laser impact on ultra-dense hydrogen H(0)

    NASA Astrophysics Data System (ADS)

    Holmlid, Leif

    2015-10-01

    The multi-MeV particles ejected from pulsed laser-induced processes in ultra-dense hydrogen H(0) are observed in vacuum at three different distances up to 2m from the laser target. In previous publications, massive neutral particles with energy of 1-30MeVu-1 were identified. Direct energy spectra of the particles show energies well above 1MeV. The particles studied here interact with metallic collectors and give signals due to several processes like secondary electron emission and lepton pair production (published). Two experimental facts are immediate: (1) the signal per sr at large distance is up to 10 times higher than at short distance, (2) the signal at large distance is faster in real time than at short distance. These results show directly that the signal at long distance is mainly due to a mixture of intermediate particles formed by decay in the beam. The decaying signals have time constants of approximately 12 and 26ns for ultra-dense deuterium D(0) and 52 ns for ultra-dense protium p(0). These decay time constants agree well with those for decay of light mesons. These particles with narrow MeV energy distributions are formed by stepwise decay from particles like HN(0). The main result is that a decaying particle flux is formed by the laser-induced processes. The final muons produced may be useful for muon catalyzed fusion.

  19. The transient distributions of nuclear weapon-generated tritium and its decay product 3 He in the Mediterranean Sea, 1952-2011, and their oceanographic potential

    NASA Astrophysics Data System (ADS)

    Roether, W.; Jean-Baptiste, P.; Fourré, E.; Sültenfuß, J.

    2013-10-01

    We present a comprehensive account of tritium and 3He in the Mediterranean Sea since the appearance of the tritium generated by the atmospheric nuclear-weapon testing in the 1950s and early 1960s, based on essentially all available observations. Tritium in surface waters rose to 20-30 TU in 1964 (TU = 1018 × [3H]/H]), a factor of about 100 above the natural level, and thereafter declined 30-fold up to 2011. The decline was largely due to radioactive tritium decay, which produced significant amounts of its stable daughter 3He. We present the scheme by which we separate the tritiugenic part of 3He and the part due to release from the sea floor (terrigenic part). We show that the tritiugenic component can be quantified throughout the Mediterranean waters, typically to a ± 0.15 TU equivalent, mostly because the terrigenic part is low in 3He. This fact makes the Mediterranean unique in offering a potential for the use of tritiugenic 3He as a tracer. The transient distributions of the two tracers are illustrated by a number of sections spanning the entire sea and relevant features of their distributions are noted. By 2011, the 3He concentrations in the top few hundred metres had become low, in response to the decreasing tritium concentrations combined with a flushing out by the general westward drift of these waters. Tritium-3He ages in Levantine Intermediate Water (LIW) were obtained repeated in time at different locations, defining transit times from the LIW source region east of Rhodes. The ages show an upward trend with the time elapsed since the surface-water tritium maximum, which arises because the repeated observations represent increasingly slower moving parts of the full transit time spectrum of LIW. The transit time dispersion revealed by this new application of tritium-3He dating is considerable. We find mean transit times of 12 ± 2 yr up to the Strait of Sicily, 18 ± 3 yr up to the Tyrrhenian Sea, and 22 ± 4 yr up into the Western Mediterranean

  20. The transient distributions of nuclear weapon-generated tritium and its decay product 3He in the Mediterranean Sea, 1952-2011, and their oceanographic potential

    NASA Astrophysics Data System (ADS)

    Roether, W.; Jean-Baptiste, P.; Fourré, E.; Sültenfuß, J.

    2013-04-01

    We present a comprehensive account of tritium and 3He in the Mediterranean Sea since the appearance of the tritium generated by the atmospheric nuclear-weapon testing in the 1950's and early 1960's, based on essentially all available observations. Tritium in surface waters rose to 20-30 TU in 1964 (TU = 1018 · [3H]/[H]), a factor of about 100 above the natural level, and thereafter declined 30-fold up to 2011. The decline was largely due to radioactive tritium decay, which produced significant amounts of its stable daughter 3He. We present the scheme by which we separate the tritiugenic part of 3He and the part due to release from the sea floor (terrigenic part). We show that the tritiugenic component can be quantified throughout the Mediterranean waters, typically to a ±0.15 TU equivalent, mostly because the terrigenic part is low in 3He. This fact makes the Mediterranean unique in offering a potential for the use of tritiugenic 3He as a tracer. The transient distributions of the two tracers are illustrated by a number of sections spanning the entire sea and relevant features of their distributions are noted. By 2011, the 3He concentrations in the top few hundred meters had become low, in response to the decreasing tritium concentrations combined with a flushing out by the general westward drift of these waters. Tritium-3He ages in Levantine Intermediate Water (LIW) were obtained repeated in time at different locations, defining transit times from the LIW source region east of Rhodes. The ages show an upward trend with the time elapsed since the surface-water tritium maximum, which arises because the repeated observations represent increasingly slower moving parts of the full transit time spectrum of LIW. The transit time dispersion found by this new application of tritium-3He dating is considerable. We find mean transit times of 12 ± 2 yr up to the Strait of Sicily, 18 ± 3 yr up to the Tyrrhenian Sea, and 22 ± 4 yr up into the Western Mediterranean. We

  1. Seal Out Tooth Decay

    MedlinePlus

    ... Topics > Tooth Decay (Caries) > Seal Out Tooth Decay Seal Out Tooth Decay Main Content What are dental ... back teeth decay so easily? Who should get seal​ants? Should sealants be put on baby teeth? ...

  2. Bound-state beta decay of highly ionized atoms

    SciTech Connect

    Takahashi, K.; Boyd, R.N.; Mathews, G.J.; Yokoi, K.

    1987-10-01

    Nuclear ..beta.. decays of highly ionized atoms under laboratory conditions are studied. Theoretical predictions of ..beta..-decay rates are given for a few cases in which bound-state ..beta.. decay produces particularly interesting effects. A possible storage-ring experiment is proposed for measuring bound-state ..beta..-decay rates, which will be most easily applied to the decay of /sup 3/H/sup +/. .AE

  3. Primary retention following nuclear recoil in β-decay: Proposed synthesis of a metastable rare gas oxide ((38)ArO4) from ((38)ClO4(-)) and the evolution of chemical bonding over the nuclear transmutation reaction path.

    PubMed

    Timm, Matthew J; Matta, Chérif F

    2014-12-01

    Argon tetroxide (ArO4) is the last member of the N=50 e(-) isoelectronic and isosteric series of ions: SiO4(4-), PO4(3-), SO4(2-), and ClO4(-). A high level computational study demonstrated that while ArO4 is kinetically stable it has a considerable positive enthalpy of formation (of ~298kcal/mol) (Lindh et al., 1999. J. Phys. Chem. A 103, pp. 8295-8302) confirming earlier predictions by Pyykkö (1990. Phys. Scr. 33, pp. 52-53). ArO4 can be expected to be difficult to synthesize by traditional chemistry due to its metastability and has not yet been synthesized at the time of writing. A computational investigation of the changes in the chemical bonding of chlorate (ClO4(-)) when the central chlorine atom undergoes a nuclear transmutation from the unstable artificial chlorine isotope (38)Cl to the stable rare argon isotope (38)Ar through β-decay, hence potentially leading to the formation of ArO4, is reported. A mathematical model is presented that allows for the prediction of yields following the recoil of a nucleus upon ejecting a β-electron. It is demonstrated that below a critical angle between the ejected β-electron and that of the accompanying antineutrino their respective linear momentums can cancel to such an extent as imparting a recoil to the daughter atom insufficient for breaking the Ar-O bond. As a result, a primary retention yield of ~1% of ArO4 is predicted following the nuclear disintegration. The study is conducted at the quadratic configuration interaction with single and double excitations [QCISD/6-311+G(3df)] level of theory followed by an analysis of the electron density by the quantum theory of atoms in molecules (QTAIM). Crossed potential energy surfaces (PES) were used to construct a PES from the metastable ArO4 ground singlet state to the Ar-O bond dissociation product ArO3+O((3)P) from which the predicted barrier to dissociation is ca. 22kcal/mol and the exothermic reaction energy is ca. 28kcal/mol [(U)MP2/6-311+G(d)]. PMID:25222874

  4. How People Actually Use Thermostats

    SciTech Connect

    Meier, Alan; Aragon, Cecilia; Hurwitz, Becky; Mujumdar, Dhawal; Peffer, Therese; Perry, Daniel; Pritoni, Marco

    2010-08-15

    Residential thermostats have been a key element in controlling heating and cooling systems for over sixty years. However, today's modern programmable thermostats (PTs) are complicated and difficult for users to understand, leading to errors in operation and wasted energy. Four separate tests of usability were conducted in preparation for a larger study. These tests included personal interviews, an on-line survey, photographing actual thermostat settings, and measurements of ability to accomplish four tasks related to effective use of a PT. The interviews revealed that many occupants used the PT as an on-off switch and most demonstrated little knowledge of how to operate it. The on-line survey found that 89% of the respondents rarely or never used the PT to set a weekday or weekend program. The photographic survey (in low income homes) found that only 30% of the PTs were actually programmed. In the usability test, we found that we could quantify the difference in usability of two PTs as measured in time to accomplish tasks. Users accomplished the tasks in consistently shorter times with the touchscreen unit than with buttons. None of these studies are representative of the entire population of users but, together, they illustrate the importance of improving user interfaces in PTs.

  5. Nuclear Decay Data for the International Reactor Dosimetry Library for Fission and Fusion (IRDFF): Updated Evaluations of the Half-Lives and Gamma Ray Intensities

    NASA Astrophysics Data System (ADS)

    Chechev, Valery P.; Kuzmenko, Nikolay K.

    2016-02-01

    Updated evaluations of the half-lives and prominent gamma ray intensities have been presented for 20 radionuclides - dosimetry reaction residuals. The new values of these decay characteristics recommended for the IRDFF library were obtained using the approaches and methodology adopted by the working group of the Decay Data Evaluation Project (DDEP) cooperation. The experimental data published up to 2014 were taken into account in updated evaluations. The list of radionuclides includes 3H, 18F, 22Na, 24Na, 46Sc, 51Cr, 54Mn, 59Fe, 57Co, 60Co, 57Ni, 64Cu, 88Y, 132Te, 131I, 140Ba, 140La, 141Ce, 182Ta, 198Au.

  6. A,B,C`s of nuclear science

    SciTech Connect

    Noto, V.A.; Norman, E.B.; Chan, Yuen-Dat; Dairiki, J.; Matis, H.S.; McMahan, M.A.; Otto, R.

    1995-08-07

    This introductory level presentation contains information on nuclear structure, radioactivity, alpha decay, beta decay, gamma decay, half-life, nuclear reactions, fusion, fission, cosmic rays, and radiation protection. Nine experiments with procedures and test questions are included.

  7. Spectroscopy of element 115 decay chains

    SciTech Connect

    Rudolph, Dirk; Forsberg, U.; Golubev, P.; Sarmiento, L. G.; Yakushev, A.; Andersson, L.-L.; Di Nitto, A.; Duehllmann, Ch. E.; Gates, J. M.; Gregorich, K. E.; Gross, Carl J; Hessberger, F. P.; Herzberg, R.-D; Khuyagbaatar, J.; Kratz, J. V.; Rykaczewski, Krzysztof Piotr; Schaedel, M.; Aberg, S.; Ackermann, D.; Block, M.; Brand, H.; Carlsson, B. G.; Cox, D.; Derkx, X.; Eberhardt, K.; Even, J.; Fahlander, C.; Gerl, J.; Jaeger, E.; Kindler, B.; Krier, J.; Kojouharov, I.; Kurz, N.; Lommel, B.; Mistry, A.; Mokry, C.; Nitsche, H.; Omtvedt, J. P.; Papadakis, P.; Ragnarsson, I.; Runke, J.; Schaffner, H.; Schausten, B.; Thoerle-Pospiech, P.; Torres, T.; Traut, T.; Trautmann, N.; Tuerler, A.; Ward, A.; Ward, D. E.; Wiehl, N.

    2013-01-01

    A high-resolution a, X-ray and -ray coincidence spectroscopy experiment was conducted at the GSI Helmholtzzentrum fu r Schwerionenforschung. Thirty correlated a-decay chains were detected following the fusion-evaporation reaction 48Ca + 243Am. The observations are consistent with previous assignments of similar decay chains to originate from element Z = 115. The data includes first candidates of fingerprinting the decay step Mt --> Bh with characteristic X rays. For the first time, precise spectroscopy allows the derivation of excitation schemes of isotopes along the decay chains starting with elements Z > 112. Comprehensive Monte-Carlo simulations accompany the data analysis. Nuclear structure models provide a first level interpretation.

  8. Semileptonic Decays

    SciTech Connect

    Luth, Vera G.; /SLAC

    2012-10-02

    The following is an overview of the measurements of the CKM matrix elements |V{sub cb}| and |V{sub ub}| that are based on detailed studies of semileptonic B decays by the BABAR and Belle Collaborations and major advances in QCD calculations. In addition, a new and improved measurement of the ratios R(D{sup (*)}) = {Beta}({bar B} {yields} D{sup (*)}{tau}{sup -}{bar {nu}}{sub {tau}})/{Beta}({bar B} {yields} D{sup (*)}{ell}{sup -}{bar {nu}}{sub {ell}}) is presented. Here D{sup (*)} refers to a D or a D* meson and {ell} is either e or {mu}. The results, R(D) = 0.440 {+-} 0.058 {+-} 0.042 and R(D*) = 0.332 {+-} 0.024 {+-} 0.018, exceed the Standard Model expectations by 2.0{sigma} and 2.7{sigma}, respectively. Taken together, they disagree with these expectations at the 3.4{sigma} level. The excess of events cannot be explained by a charged Higgs boson in the type II two-Higgs-doublet model.

  9. ({sup 3}He,t) reaction on the double {beta} decay nucleus {sup 48}Ca and the importance of nuclear matrix elements

    SciTech Connect

    Grewe, E.-W.; Frekers, D.; Rakers, S.; Baeumer, C.; Dohmann, H.; Thies, J.; Adachi, T.; Fujita, Y.; Shimbara, Y.; Botha, N. T.; Fujita, H.; Hatanaka, K.; Nakanishi, K.; Sakemi, Y.; Shimizu, Y.; Tameshige, Y.; Tamii, A.; Negret, A.; Popescu, L.; Neveling, R.

    2007-11-15

    High-resolution ({sup 3}He,t) measurements on the double {beta}-decay ({beta}{beta}) nucleus {sup 48}Ca have been performed at RCNP (Osaka, Japan) to determine Gamow-Teller (GT{sup -}) transitions to the nucleus {sup 48}Sc, which represents the intermediate nucleus in the second-order perturbative description of the {beta}{beta} decay. At a bombarding energy of E{sub {sup 3}He}=420 MeV an excitation energy resolution of 40 keV was achieved. The measurements were performed at two angle positions of the Grand Raiden Spectrometer (GRS): 0 deg. and 2.5 deg. The results of both settings were combined to achieve angular distributions, by which the character of single transitions could be determined. To characterize the different multipoles, theoretical angular distributions for states with J{sup {pi}}=1{sup +},2{sup +},2{sup -}, and 3{sup +} were calculated using the distorted-wave Born approximation (DWBA) Code DW81. The GT{sup -} strength was extracted up to E{sub x}=7 MeV and combined with corresponding GT{sup +} strength deduced from the {sup 48}Ti(d,{sup 2}He){sup 48}Sc data to calculate the low-energy part of the {beta}{beta}-decay matrix element for the {sup 48}Ca 2{nu}{beta}{beta} decay. We show that after applying trivial momentum corrections to the ({sup 3}He,t) spectrum, the two reaction probes (p,n) and ({sup 3}He,t) reveal a spectral response to an impressively high degree of similarity in the region of low momentum transfer.

  10. Dental Caries (Tooth Decay)

    MedlinePlus

    ... Find Data by Topic > Dental Caries (Tooth Decay) Dental Caries (Tooth Decay) Main Content Dental caries (tooth decay) remains the most prevalent chronic ... important source of information on oral health and dental care in the United States since the early ...

  11. The actual goals of geoethics

    NASA Astrophysics Data System (ADS)

    Nemec, Vaclav

    2014-05-01

    The most actual goals of geoethics have been formulated as results of the International Conference on Geoethics (October 2013) held at the geoethics birth-place Pribram (Czech Republic): In the sphere of education and public enlightenment an appropriate needed minimum know how of Earth sciences should be intensively promoted together with cultivating ethical way of thinking and acting for the sustainable well-being of the society. The actual activities of the Intergovernmental Panel of Climate Changes are not sustainable with the existing knowledge of the Earth sciences (as presented in the results of the 33rd and 34th International Geological Congresses). This knowledge should be incorporated into any further work of the IPCC. In the sphere of legislation in a large international co-operation following steps are needed: - to re-formulate the term of a "false alarm" and its legal consequences, - to demand very consequently the needed evaluation of existing risks, - to solve problems of rights of individuals and minorities in cases of the optimum use of mineral resources and of the optimum protection of the local population against emergency dangers and disasters; common good (well-being) must be considered as the priority when solving ethical dilemmas. The precaution principle should be applied in any decision making process. Earth scientists presenting their expert opinions are not exempted from civil, administrative or even criminal liabilities. Details must be established by national law and jurisprudence. The well known case of the L'Aquila earthquake (2009) should serve as a serious warning because of the proven misuse of geoethics for protecting top Italian seismologists responsible and sentenced for their inadequate superficial behaviour causing lot of human victims. Another recent scandal with the Himalayan fossil fraud will be also documented. A support is needed for any effort to analyze and to disclose the problems of the deformation of the contemporary

  12. Development of JENDL Decay and Fission Yield Data Libraries

    NASA Astrophysics Data System (ADS)

    Katakura, J.

    2014-04-01

    Decay and fission yield data of fission products have been developed for decay heat calculations to constitute one of the special purpose files of JENDL (Japanese Nuclear Data Library). The decay data in the previous JENDL decay data file have been updated based on the data extracted from ENSDF (Evaluated Nuclear Structure Data File) and those by Total Absorption Gamma-ray Spectroscopy (TAGS) measurements reported recently. Fission yield data have also been updated in order to maintain consistency between the decay and yield data files. Decay heat calculations were performed using the updated decay and yield data, and the results were compared with measured decay heat data to demonstrate their applicability. The uncertainties of the calculated results were obtained by sensitivity analyses. The resulting JENDL calculations and their uncertainty were compared with those from the ENDF and JEFF evaluated files.

  13. Boehmite Actual Waste Dissolutions Studies

    SciTech Connect

    Snow, Lanee A.; Lumetta, Gregg J.; Fiskum, Sandra K.; Peterson, Reid A.

    2008-07-15

    The U.S. Department of Energy plans to vitrify approximately 60,000 metric tons of high-level waste (HLW) sludge from underground storage tanks at the Hanford Nuclear Reservation. To reduce the volume of HLW requiring treatment, a goal has been set to remove a significant quantity of the aluminum, which comprises nearly 70 percent of the sludge. Aluminum is found in the form of gibbsite, sodium aluminate and boehmite. Gibbsite and sodium aluminate can be easily dissolved by washing the waste stream with caustic. Boehmite, which comprises nearly half of the total aluminum, is more resistant to caustic dissolution and requires higher treatment temperatures and hydroxide concentrations. Samples were taken from four Hanford tanks and homogenized in order to give a sample that is representative of REDOX (Reduction Oxidation process for Pu recovery) sludge solids. Bench scale testing was performed on the homogenized waste to study the dissolution of boehmite. Dissolution was studied at three different hydroxide concentrations, with each concentration being run at three different temperatures. Samples were taken periodically over the 170 hour runs in order to determine leaching kinetics. Results of the dissolution studies and implications for the proposed processing of these wastes will be discussed.

  14. Superallowed 0+→0+ nuclear β decays: A critical survey with tests of the conserved vector current hypothesis and the standard model

    NASA Astrophysics Data System (ADS)

    Hardy, J. C.; Towner, I. S.

    2005-05-01

    A complete and critical survey is presented of all half-life, decay-energy, and branching-ratio measurements related to 20 superallowed 0+→0+ decays; no measurements are ignored, although some are rejected for cause and others updated. A new calculation of the statistical rate function f is described and experimental ft values determined. The associated theoretical corrections needed to convert these results into “corrected” Ft values are discussed, and careful attention is paid to the origin and magnitude of their uncertainties. As an exacting confirmation of the conserved vector current hypothesis, the corrected Ft values are seen to be constant to three parts in 104. These data are also used to set a new limit on any possible scalar interaction (assuming maximum parity violation) of CS/CV=-(0.00005±0.00130). The average Ft value obtained from the survey, when combined with the muon liftime, yields the up-down quark-mixing element of the Cabibbo-Kobayashi-Maskawa (CKM) matrix, Vud=0.9738±0.0004, and the unitarity test on the top row of the matrix becomes |Vud|2+|Vus|2+|Vub|2=0.9966±0.0014 using the Particle Data Group's currently recommended values for Vus and Vub. If Vus comes instead from two recent results on Ke3 decay, the unitarity sum becomes 0.9996(11). Either result can be expressed in terms of the possible existence of right-hand currents. Finally, we discuss the priorities for future theoretical and experimental work with the goal of making the CKM unitarity test more definitive.

  15. Proton decay theory

    SciTech Connect

    Marciano, W.J.

    1983-01-01

    Topics include minimal SU(5) predictions, gauge boson mediated proton decay, uncertainties in tau/sub p/, Higgs scalar effects, proton decay via Higgs scalars, supersymmetric SU(5), dimension 5 operators and proton decay, and Higgs scalars and proton decay. (WHK)

  16. Northrop Triga facility decommissioning plan versus actual results

    SciTech Connect

    Gardner, F.W.

    1986-01-01

    This paper compares the Triga facility decontamination and decommissioning plan to the actual results and discusses key areas where operational activities were impacted upon by the final US Nuclear Regulatory Commission (NRC)-approved decontamination and decommissioning plan. Total exposures for fuel transfer were a factor of 4 less than planned. The design of the Triga reactor components allowed the majority of the components to be unconditionally released.

  17. [Estimation of cost-saving for reducing radioactive waste from nuclear medicine facilities by implementing decay in storage (DIS) in Japan].

    PubMed

    Kida, Tetsuo; Hiraki, Hitoshi; Yamaguchi, Ichirou; Fujibuchi, Toshioh; Watanabe, Hiroshi

    2012-01-01

    DIS has not yet been implemented in Japan as of 2011. Therefore, even if risk was negligible, medical institutions have to entrust radioactive temporal waste disposal to Japan Radio Isotopes Association (JRIA) in the current situation. To decide whether DIS should be implemented in Japan or not, cost-saving effect of DIS was estimated by comparing the cost that nuclear medical facilities pay. By implementing DIS, the total annual cost for all nuclear medical facilities in Japan is estimated to be decreased to 30 million yen or less from 710 million yen. DIS would save 680 million yen (96%) per year. PMID:22516599

  18. Superallowed 0+→0+ nuclear β decays: A new survey with precision tests of the conserved vector current hypothesis and the standard model

    NASA Astrophysics Data System (ADS)

    Hardy, J. C.; Towner, I. S.

    2009-05-01

    A new critical survey is presented of all half-life, decay-energy, and branching-ratio measurements related to 20 superallowed 0+→0+β decays. Compared with our last review, there are numerous improvements: First, we have added 27 recently published measurements and eliminated 9 references, either because they have been superseded by much more precise modern results or because there are now reasons to consider them fatally flawed; of particular importance, the new data include a number of high-precision Penning-trap measurements of decay energies. Second, we have used the recently improved isospin symmetry-breaking corrections, which were motivated by these new Penning-trap results. Third, our calculation of the statistical rate function f now accounts for possible excitation in the daughter atom, a small effect but one that merits inclusion at the present level of experimental precision. Finally, we have re-examined the systematic uncertainty associated with the isospin symmetry-breaking corrections by evaluating the radial-overlap correction using Hartree-Fock radial wave functions and comparing the results with our earlier calculations, which used Saxon-Woods wave functions; the provision for systematic uncertainty has been changed as a consequence. The new “corrected” Ft values are impressively constant and their average, when combined with the muon lifetime, yields the up-down quark-mixing element of the Cabibbo-Kobayashi-Maskawa (CKM) matrix, Vud=0.97425±0.00022. The unitarity test on the top row of the matrix becomes |Vud|2+|Vus|2+|Vub|2=0.99995±0.00061. Both Vud and the unitarity sum have significantly reduced uncertainties compared with our previous survey, although the new value of Vud is statistically consistent with the old one. From these data we also set limits on the possible existence of scalar interactions, right-hand currents, and extra Z bosons. Finally, we discuss the priorities for future theoretical and experimental work with the goal

  19. Spectroscopy of element 115 decay chains.

    PubMed

    Rudolph, D; Forsberg, U; Golubev, P; Sarmiento, L G; Yakushev, A; Andersson, L-L; Di Nitto, A; Düllmann, Ch E; Gates, J M; Gregorich, K E; Gross, C J; Heßberger, F P; Herzberg, R-D; Khuyagbaatar, J; Kratz, J V; Rykaczewski, K; Schädel, M; Åberg, S; Ackermann, D; Block, M; Brand, H; Carlsson, B G; Cox, D; Derkx, X; Eberhardt, K; Even, J; Fahlander, C; Gerl, J; Jäger, E; Kindler, B; Krier, J; Kojouharov, I; Kurz, N; Lommel, B; Mistry, A; Mokry, C; Nitsche, H; Omtvedt, J P; Papadakis, P; Ragnarsson, I; Runke, J; Schaffner, H; Schausten, B; Thörle-Pospiech, P; Torres, T; Traut, T; Trautmann, N; Türler, A; Ward, A; Ward, D E; Wiehl, N

    2013-09-13

    A high-resolution α, x-ray, and γ-ray coincidence spectroscopy experiment was conducted at the GSI Helmholtzzentrum für Schwerionenforschung. Thirty correlated α-decay chains were detected following the fusion-evaporation reaction 48Ca + 243Am. The observations are consistent with previous assignments of similar decay chains to originate from element Z=115. For the first time, precise spectroscopy allows the derivation of excitation schemes of isotopes along the decay chains starting with elements Z>112. Comprehensive Monte Carlo simulations accompany the data analysis. Nuclear structure models provide a first level interpretation. PMID:24074079

  20. β -decay study of 94Kr

    NASA Astrophysics Data System (ADS)

    Miernik, K.; Rykaczewski, K. P.; Grzywacz, R.; Gross, C. J.; Madurga, M.; Miller, D.; Stracener, D. W.; Batchelder, J. C.; Brewer, N. T.; Cartegni, L.; Fijałkowska, A.; Karny, M.; Korgul, A.; Królas, W.; Mazzocchi, C.; Mendez, A. J., II; Padgett, S. W.; Paulauskas, S. V.; Winger, J. A.; Wolińska-Cichocka, M.; Zganjar, E. F.

    2016-08-01

    β decay of neutron-rich nuclide 94Kr was reinvestigated by means of a high resolution on-line mass separator and β -γ spectroscopy. In total 22 γ -ray transitions were assigned to the decay of 94Kr, and a new isomeric state was identified. The new information allows us to build detailed levels systematics in a chain of odd-odd rubidium isotopes and draw conclusions on nuclear structure for some of the observed states. The discussed level structure affects the evolution of β -decay half-lives for neutron-rich selenium, krypton, and strontium isotopes.

  1. Search for solar axion emission from {sup 7}Li and D(p, γ){sup 3}He nuclear decays with the CAST γ-ray calorimeter

    SciTech Connect

    Andriamonje, S.; Aune, S.; Dafni, T.; Ferrer-Ribas, E.; Autiero, D.; Barth, K.; Davenport, M.; Lella, L. Di; Belov, A.; Beltrán, B.; Carmona, J.M.; Cebrián, S.; Bräuninger, H.; Englhauser, J.; Friedrich, P.; Collar, J.I.; Eleftheriadis, C.; Fanourakis, G.; Fischer, H.; Franz, J.; Collaboration: CAST collaboration; and others

    2010-03-01

    We present the results of a search for a high-energy axion emission signal from {sup 7}Li (0.478 MeV) and D(p, γ){sup 3}He (5.5 MeV) nuclear transitions using a low-background γ-ray calorimeter during Phase I of the CAST experiment. These so-called ''hadronic axions'' could provide a solution to the long-standing strong-CP problem and can be emitted from the solar core from nuclear M1 transitions. This is the first such search for high-energy pseudoscalar bosons with couplings to nucleons conducted using a helioscope approach. No excess signal above background was found.

  2. Moral Reasoning in Hypothetical and Actual Situations.

    ERIC Educational Resources Information Center

    Sumprer, Gerard F.; Butter, Eliot J.

    1978-01-01

    Results of this investigation suggest that moral reasoning of college students, when assessed using the DIT format, is the same whether the dilemmas involve hypothetical or actual situations. Subjects, when presented with hypothetical situations, become deeply immersed in them and respond as if they were actual participants. (Author/BEF)

  3. Factors Related to Self-Actualization.

    ERIC Educational Resources Information Center

    Hogan, H. Wayne; McWilliams, Jettie M.

    1978-01-01

    Provides data to further support the notions that females score higher in self-actualization measures and that self-actualization scores correlate inversely to the degree of undesirability individuals assign to their heights and weights. Finds that, contrary to predictions, greater androgyny was related to lower, not higher, self-actualization…

  4. Moduli Decays and Gravitinos

    SciTech Connect

    Dine, Michael; Kitano, Ryuichiro; Morisse, Alexander; Shirman, Yuri

    2006-04-21

    One proposed solution of the moduli problem of string cosmology requires that the moduli are quite heavy, their decays reheating the universe to temperatures above the scale of nucleosynthesis. In many of these scenarios, the moduli are approximately supersymmetric; it is then crucial that the decays to gravitinos are helicity suppressed. In this paper, we discuss situations where these decays are, and are not, suppressed. We also comment on a possible gravitino problem from inaton decay.

  5. Baryonic B Decays

    NASA Astrophysics Data System (ADS)

    Chistov, R.

    2016-02-01

    In this talk the decays of B-mesons into baryons are discussed. Large mass of B-meson makes possible the decays of the type B → baryon (+mesons). Experimental observations and measurements of these decays at B-factories Belle and BaBar have stimulate the development of theoretical models in this field. We briefly review the experimental results together with the current theoretical models which describe baryonic B decays.

  6. Nuclear Reaction Data Centers

    SciTech Connect

    McLane, V.; Nordborg, C.; Lemmel, H.D.; Manokhin, V.N.

    1988-01-01

    The cooperating Nuclear Reaction Data Centers are involved in the compilation and exchange of nuclear reaction data for incident neutrons, charged particles and photons. Individual centers may also have services in other areas, e.g., evaluated data, nuclear structure and decay data, reactor physics, nuclear safety; some of this information may also be exchanged between interested centers. 20 refs., 1 tab.

  7. Computer code for double beta decay QRPA based calculations

    SciTech Connect

    Barbero, C. A.; Mariano, A.; Krmpotić, F.; Samana, A. R.; Ferreira, V. dos Santos; Bertulani, C. A.

    2014-11-11

    The computer code developed by our group some years ago for the evaluation of nuclear matrix elements, within the QRPA and PQRPA nuclear structure models, involved in neutrino-nucleus reactions, muon capture and β{sup ±} processes, is extended to include also the nuclear double beta decay.

  8. 10 CFR 35.92 - Decay-in-storage.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Decay-in-storage. 35.92 Section 35.92 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL General Technical Requirements § 35.92 Decay-in-storage. (a) A licensee may hold byproduct material with a physical half-life of less than or equal to 120 days for decay-in-storage before...

  9. Total absorption spectroscopy of the β decay of 76Ga

    NASA Astrophysics Data System (ADS)

    Dombos, A. C.; Fang, D.-L.; Spyrou, A.; Quinn, S. J.; Simon, A.; Brown, B. A.; Cooper, K.; Gehring, A. E.; Liddick, S. N.; Morrissey, D. J.; Naqvi, F.; Sumithrarachchi, C. S.; Zegers, R. G. T.

    2016-06-01

    The β decay of 76Ga was studied using the technique of total absorption spectroscopy for the first time. The experiment was performed at the National Superconducting Cyclotron Laboratory using the Summing NaI(Tl) detector. The extracted β -decay feeding intensity distribution and Gamow-Teller transition strength distribution are compared to shell-model calculations to help constrain nuclear matrix elements relevant to the neutrinoless double-β decay of 76Ge.

  10. Future Challenges for Double Beta Decay Experiments

    NASA Astrophysics Data System (ADS)

    Elliott, Steven

    2015-10-01

    Neutrino oscillation experiments have shown that at least one neutrino has a mass greater than 50 meV. In the inverted hierarchy pattern of neutrino masses, one would expect an effective Majorana neutrino mass of 15 meV or greater. This fact has led to a strong resurgence of interest in neutrinoless double beta decay experiments that can reach this mass target. If this rare nuclear decay process exists it would demonstrate that Lepton number conservation is violated, that neutrinos are their own anti-particles and the decay rate would give an indication of the neutrino mass. This presentation will summarize the double beta decay experimental program with a focus on the technical challenges that will be faced.

  11. Correlations and the neutrinoless double beta decay

    SciTech Connect

    Menendez, J.; Poves, A.; Caurier, E.; Nowacki, F.

    2009-11-09

    We explore the influence of the deformation on the nuclear matrix elements of the neutrinoless double beta decay (NME), concluding that the difference in deformation -or more generally on the amount of quadrupole correlations- between parent and grand daughter nuclei quenchs strongly the decay. We discuss how varies the nuclear matrix element of {sup 76}Ge decay when the wave functions of the two nuclei involved in the transition are constrained to reproduce the experimental occupancies. In the Interacting Shell Model description the value of the NME is enhanced about 15% compared to previous calculations, whereas in the QRPA the NME's are reduced by 20%-30%, thus, the discrepancies between both approaches diminish.

  12. 10 CFR 35.92 - Decay-in-storage.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Decay-in-storage. 35.92 Section 35.92 Energy NUCLEAR...-storage. (a) A licensee may hold byproduct material with a physical half-life of less than or equal to 120 days for decay-in-storage before disposal without regard to its radioactivity if it— (1)...

  13. 10 CFR 35.92 - Decay-in-storage.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Decay-in-storage. 35.92 Section 35.92 Energy NUCLEAR...-storage. (a) A licensee may hold byproduct material with a physical half-life of less than or equal to 120 days for decay-in-storage before disposal without regard to its radioactivity if it— (1)...

  14. 10 CFR 35.92 - Decay-in-storage.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Decay-in-storage. 35.92 Section 35.92 Energy NUCLEAR...-storage. (a) A licensee may hold byproduct material with a physical half-life of less than or equal to 120 days for decay-in-storage before disposal without regard to its radioactivity if it— (1)...

  15. 10 CFR 35.92 - Decay-in-storage.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Decay-in-storage. 35.92 Section 35.92 Energy NUCLEAR...-storage. (a) A licensee may hold byproduct material with a physical half-life of less than or equal to 120 days for decay-in-storage before disposal without regard to its radioactivity if it— (1)...

  16. Spectrometers for Beta Decay Electrons

    NASA Astrophysics Data System (ADS)

    Jiang, Yong; Hirshfield, Jay

    2015-04-01

    Inspired by the neutrino mass direct measurement experiment Project 8, precision spectrometers are proposed to simultaneously measure energy and momentum of beta-decay electrons produced in rare nuclear events with improved energy resolution. For detecting single beta decay electrons near the end-point from a gaseous source such as tritium, one type of spectrometer is proposed to utilize stimulated cyclotron resonance interaction of microwaves with electrons in a waveguide immersed in a magnetic mirror. In the external RF fields, on-resonance electrons will satisfy both the cyclotron resonance condition and waveguide dispersion relationship. By correlating the resonances at two waveguide modes, one can associate the frequencies with both the energy and longitudinal momentum of an on-resonance electron to account for the Doppler shifts. For detecting neutrino-less double-beta decay, another spectrometer is proposed with thin foil of double-beta-allowed material immersed in a magnetic field, and RF antenna array for detection of synchrotron radiation from electrons. It utilizes the correlation between the antenna signals including higher harmonics of radiation to reconstruct the total energy distribution.

  17. Axions from string decay

    SciTech Connect

    Hagmann, C., LLNL

    1998-07-09

    We have studied numerically the evolution and decay of axion strings. These global defects decay mainly by axion emission and thus contribute to the cosmological axion energy density. The relative importance of this source relative to misalignment production of axions depends on the spectrum. Radiation spectra for various string loop configurations are presented. They support the contention that the string decay contribution is of the same order of magnitude as the contribution from misalignment.

  18. Overview of nuclear data

    SciTech Connect

    Firestone, R.B.

    2003-06-30

    For many years, nuclear structure and decay data have been compiled and disseminated by an International Network of Nuclear Structure and Decay Data (NSDD) evaluators under the auspices of the International Nuclear Data Committee (INDC) of the International Atomic Energy Agency (IAEA). In this lecture I will discuss the kinds of data that are available and describe various ways to obtain this information. We will learn about some of the publications that are available and Internet sources of nuclear data. You will be introduced to Isotope Explorer software for retrieving and displaying nuclear structure and radioactive decay data. The on-line resources Table of Radioactive Isotopes, PGAA Database Viewer, Nuclear Science Reference Search, Table of Isotopes Educational Website, and other information sources will be discussed. Exercises will be provided to increase your ability to understand, access, and use nuclear data.

  19. Realizing actual feedback control of complex network

    NASA Astrophysics Data System (ADS)

    Tu, Chengyi; Cheng, Yuhua

    2014-06-01

    In this paper, we present the concept of feedbackability and how to identify the Minimum Feedbackability Set of an arbitrary complex directed network. Furthermore, we design an estimator and a feedback controller accessing one MFS to realize actual feedback control, i.e. control the system to our desired state according to the estimated system internal state from the output of estimator. Last but not least, we perform numerical simulations of a small linear time-invariant dynamics network and a real simple food network to verify the theoretical results. The framework presented here could make an arbitrary complex directed network realize actual feedback control and deepen our understanding of complex systems.

  20. 50 CFR 253.16 - Actual cost.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Actual cost. 253.16 Section 253.16 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE AID TO FISHERIES FISHERIES ASSISTANCE PROGRAMS Fisheries Finance Program §...

  1. 50 CFR 253.16 - Actual cost.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 50 Wildlife and Fisheries 11 2013-10-01 2013-10-01 false Actual cost. 253.16 Section 253.16 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE AID TO FISHERIES FISHERIES ASSISTANCE PROGRAMS Fisheries Finance Program §...

  2. Humanistic Education and Self-Actualization Theory.

    ERIC Educational Resources Information Center

    Farmer, Rod

    1984-01-01

    Stresses the need for theoretical justification for the development of humanistic education programs in today's schools. Explores Abraham Maslow's hierarchy of needs and theory of self-actualization. Argues that Maslow's theory may be the best available for educators concerned with educating the whole child. (JHZ)

  3. Children's Rights and Self-Actualization Theory.

    ERIC Educational Resources Information Center

    Farmer, Rod

    1982-01-01

    Educators need to seriously reflect upon the concept of children's rights. Though the idea of children's rights has been debated numerous times, the idea remains vague and shapeless; however, Maslow's theory of self-actualization can provide the children's rights idea with a needed theoretical framework. (Author)

  4. Culture Studies and Self-Actualization Theory.

    ERIC Educational Resources Information Center

    Farmer, Rod

    1983-01-01

    True citizenship education is impossible unless students develop the habit of intelligently evaluating cultures. Abraham Maslow's theory of self-actualization, a theory of innate human needs and of human motivation, is a nonethnocentric tool which can be used by teachers and students to help them understand other cultures. (SR)

  5. Group Counseling for Self-Actualization.

    ERIC Educational Resources Information Center

    Streich, William H.; Keeler, Douglas J.

    Self-concept, creativity, growth orientation, an integrated value system, and receptiveness to new experiences are considered to be crucial variables to the self-actualization process. A regular, year-long group counseling program was conducted with 85 randomly selected gifted secondary students in the Farmington, Connecticut Public Schools. A…

  6. Racial Discrimination in Occupations: Perceived and Actual.

    ERIC Educational Resources Information Center

    Turner, Castellano B.; Turner, Barbara F.

    The relationship between the actual representation of Blacks in certain occupations and individual perceptions of the occupational opportunity structure were examined. A scale which rated the degree of perceived discrimination against Blacks in 21 occupations was administered to 75 black male, 70 black female, 1,429 white male and 1,457 white…

  7. Developing Human Resources through Actualizing Human Potential

    ERIC Educational Resources Information Center

    Clarken, Rodney H.

    2012-01-01

    The key to human resource development is in actualizing individual and collective thinking, feeling and choosing potentials related to our minds, hearts and wills respectively. These capacities and faculties must be balanced and regulated according to the standards of truth, love and justice for individual, community and institutional development,…

  8. Radioactive Decay - An Analog.

    ERIC Educational Resources Information Center

    McGeachy, Frank

    1988-01-01

    Presents an analog of radioactive decay that allows the student to grasp the concept of half life and the exponential nature of the decay process. The analog is devised to use small, colored, plastic poker chips or counters. Provides the typical data and a graph which supports the analog. (YP)

  9. Whiteheadian Actual Entitities and String Theory

    NASA Astrophysics Data System (ADS)

    Bracken, Joseph A.

    2012-06-01

    In the philosophy of Alfred North Whitehead, the ultimate units of reality are actual entities, momentary self-constituting subjects of experience which are too small to be sensibly perceived. Their combination into "societies" with a "common element of form" produces the organisms and inanimate things of ordinary sense experience. According to the proponents of string theory, tiny vibrating strings are the ultimate constituents of physical reality which in harmonious combination yield perceptible entities at the macroscopic level of physical reality. Given that the number of Whiteheadian actual entities and of individual strings within string theory are beyond reckoning at any given moment, could they be two ways to describe the same non-verifiable foundational reality? For example, if one could establish that the "superject" or objective pattern of self- constitution of an actual entity vibrates at a specific frequency, its affinity with the individual strings of string theory would be striking. Likewise, if one were to claim that the size and complexity of Whiteheadian 'societies" require different space-time parameters for the dynamic interrelationship of constituent actual entities, would that at least partially account for the assumption of 10 or even 26 instead of just 3 dimensions within string theory? The overall conclusion of this article is that, if a suitably revised understanding of Whiteheadian metaphysics were seen as compatible with the philosophical implications of string theory, their combination into a single world view would strengthen the plausibility of both schemes taken separately. Key words: actual entities, subject/superjects, vibrating strings, structured fields of activity, multi-dimensional physical reality.

  10. Mesonic Decay of Charm Hypernuclei Λc+

    NASA Astrophysics Data System (ADS)

    Ghosh, Sabyasachi; Fontoura, Carlos E.; Krein, Gastão

    2016-03-01

    Λc+ hypernuclei are expected to have binding energies and other properties similar to those of strange hypernuclei in view of the similarity between the quark structures of the strange and charmed hyperons, namely Λ(uds) and Λc+(udc). One striking difference however occurs in their mesonic decays, as there is almost no Pauli blocking in the nucleonic decay of a charm hypernucleus because the final-state nucleons leave the nucleus at high energies. The nuclear medium nevertheless affects the mesonic decays of charm hypernucleus because the nuclear mean fields modify the masses of the charm hyperon. In the present communication we present results of a first investigation of the effects of finite baryon density on different weak mesonic decay channels of the Λc+ baryon. We found a non-negligible reduction of the decay widths as compared to their vacuum values.

  11. Hypernuclear Weak Decays

    NASA Astrophysics Data System (ADS)

    Itonaga, K.; Motoba, T.

    The recent theoretical studies of Lambda-hypernuclear weak decaysof the nonmesonic and pi-mesonic ones are developed with the aim to disclose the link between the experimental decay observables and the underlying basic weak decay interactions and the weak decay mechanisms. The expressions of the nonmesonic decay rates Gamma_{nm} and the decay asymmetry parameter alpha_1 of protons from the polarized hypernuclei are presented in the shell model framework. We then introduce the meson theoretical Lambda N -> NN interactions which include the one-meson exchanges, the correlated-2pi exchanges, and the chiral-pair-meson exchanges. The features of meson exchange potentials and their roles on the nonmesonic decays are discussed. With the adoption of the pi + 2pi/rho + 2pi/sigma + omega + K + rhopi/a_1 + sigmapi/a_1 exchange potentials, we have carried out the systematic calculations of the nonmesonic decay observables for light-to-heavy hypernuclei. The present model can account for the available experimental data of the decay rates, Gamma_n/Gamma_p ratios, and the intrinsic asymmetry parameters alpha_Lambda (alpha_Lambda is related to alpha_1) of emitted protons well and consistently within the error bars. The hypernuclear lifetimes are evaluated by converting the total weak decay rates Gamma_{tot} = Gamma_pi + Gamma_{nm} to tau, which exhibit saturation property for the hypernuclear mass A ≥ 30 and agree grossly well with experimental data for the mass range from light to heavy hypernuclei except for the very light ones. Future extensions of the model and the remaining problems are also mentioned. The pi-mesonic weak processes are briefly surveyed, and the calculations and predictions are compared and confirmed by the recent high precision FINUDA pi-mesonic decay data. This shows that the theoretical basis seems to be firmly grounded.

  12. Double-Beta Decay at TUNL

    NASA Astrophysics Data System (ADS)

    Kidd, Mary

    2007-10-01

    Studying double-beta decay at Triangle Universities Nuclear Laboratory (TUNL) is perhaps one of the most promising ways to pinpoint the neutrino mass. What they do not mention is that to study double-beta decay, you probably have to become a certified miner, and if you have a fear of goats, you should stay away. In this talk, I will tell you some of my experiences as a TUNL graduate student, and how I am now nearly qualified for a job in the mining industry.

  13. Sterile neutrinos in neutrinoless double beta decay

    SciTech Connect

    Benes, P.; Faessler, Amand; Simkovic, F.; Kovalenko, S.

    2005-04-01

    We study possible contribution of the Majorana neutrino mass eigenstate {nu}{sub h}, dominated by a sterile neutrino component, to neutrinoless double beta (0{nu}{beta}{beta}) decay. A special emphasis is made on accurate calculation of the corresponding nuclear matrix elements. From the current experimental lower bound on the 0{nu}{beta}{beta}-decay half-life of 76 Ge we derive stringent constraints on the {nu}{sub h}-{nu}{sub e} mixing in a wide region of the values of {nu}{sub h} mass. We discuss cosmological and astrophysical status of {nu}{sub h} in this mass region.

  14. {alpha} Decay of Deformed Actinide Nuclei

    SciTech Connect

    Stewart, T.L.; Kermode, M.W.; Beachey, D.J.; Rowley, N.; Grant, I.S.; Kruppa, A.T.

    1996-07-01

    {alpha} decay through a deformed potential barrier produces significant mixing of angular momenta when mapped from the nuclear interior to the outside. Using experimental branching ratios and either semiclassical or coupled-channels transmission matrices, we have found that there is a set of internal amplitudes which is essentially constant for all even-even actinide nuclei. These same amplitudes also give good results for the known anisotropic {alpha}-particle emission of the favored decays of odd nuclei in the same mass region. {copyright} {ital 1996 The American Physical Society.}

  15. Halley's comet - Its size and decay rate

    NASA Astrophysics Data System (ADS)

    Wallis, M. K.; Wickramasinghe, N. C.

    1985-09-01

    The outgassing rates inferred from the 1910 apparition and the brightness decay over the previous two millenia are compatible with the minimum nuclear brightness currently observed if the comet nucleus is small, 1.8 - 2.7 km radius with an albedo of 0.1 - 0.2. Outgassing is faster than from a bare nucleus of dirty H2O-ice, which is attributed either to a hot microdust coma or to an organic polymer composition. Halley's comet will decay away within another 45 - 65 apparitions.

  16. Thermal and statistical properties of nuclei and nuclear systems

    SciTech Connect

    Moretto, L.G.; Wozniak, G.J.

    1989-07-01

    The term statistical decay, statistical or thermodynamic equilibrium, thermalization, temperature, etc., have been used in nuclear physics since the introduction of the compound nucleus (CN) concept, and they are still used, perhaps even more frequently, in the context of intermediate- and high-energy heavy-ion reactions. Unfortunately, the increased popularity of these terms has not made them any clearer, and more often than not one encounters sweeping statements about the alleged statisticity of a nuclear process where the statistical'' connotation is a more apt description of the state of the speaker's mind than of the nuclear reaction. It is our goal, in this short set of lectures, to set at least some ideas straight on this broad and beautiful subject, on the one hand by clarifying some fundamental concepts, on the other by presenting some interesting applications to actual physical cases. 74 refs., 38 figs.

  17. The Actual Apollo 13 Prime Crew

    NASA Technical Reports Server (NTRS)

    1970-01-01

    The actual Apollo 13 lunar landing mission prime crew from left to right are: Commander, James A. Lovell Jr., Command Module pilot, John L. Swigert Jr.and Lunar Module pilot, Fred W. Haise Jr. The original Command Module pilot for this mission was Thomas 'Ken' Mattingly Jr. but due to exposure to German measles he was replaced by his backup, Command Module pilot, John L. 'Jack' Swigert Jr.

  18. Axions from wall decay

    SciTech Connect

    Chang, S; Hagmann, C; Sikivie, P

    2001-01-08

    The authors discuss the decay of axion walls bounded by strings and present numerical simulations of the decay process. In these simulations, the decay happens immediately, in a time scale of order the light travel time, and the average energy of the radiated axions is {approx_equal} 7m{sub a} for v{sub a}/m{sub a} {approx_equal} 500. is found to increase approximately linearly with ln(v{sub a}/m{sub a}). Extrapolation of this behavior yields {approx_equal} 60 m{sub a} in axion models of interest.

  19. Modulated curvaton decay

    SciTech Connect

    Assadullahi, Hooshyar; Wands, David; Firouzjahi, Hassan; Namjoo, Mohammad Hossein E-mail: firouz@mail.ipm.ir E-mail: david.wands@port.ac.uk

    2013-03-01

    We study primordial density perturbations generated by the late decay of a curvaton field whose decay rate may be modulated by the local value of another isocurvature field, analogous to models of modulated reheating at the end of inflation. We calculate the primordial density perturbation and its local-type non-Gaussianity using the sudden-decay approximation for the curvaton field, recovering standard curvaton and modulated reheating results as limiting cases. We verify the Suyama-Yamaguchi inequality between bispectrum and trispectrum parameters for the primordial density field generated by multiple field fluctuations, and find conditions for the bound to be saturated.

  20. Microscopic description of superallowed α -decay transitions

    NASA Astrophysics Data System (ADS)

    Patial, Monika; Liotta, R. J.; Wyss, R.

    2016-05-01

    It was recently found that the formation probabilities of α particles in Te isotopes are larger than the corresponding probabilities in Po isotopes. We have done a full microscopic calculation within the framework of the multistep shell model to analyze in detail the formation probabilities and subsequent decays of α particles from 212Po and 104Te. We have also calculated the spectra of these two decaying nuclei and found that the tentatively assigned spin (18+) at 2.922 MeV in 212Po (National Nuclear Data Center, www.nndc.bnl.gov) is predicted to be a state 16+. We also present for the first time the full energy spectrum of 104Te. The evaluated formation amplitudes in both nuclei show that in 104Te there is indeed a superallowed α -decay transition.

  1. Radiative B Decays

    SciTech Connect

    Bard, D.; /Imperial Coll., London

    2011-11-23

    I discuss recent results in radiative B decays from the Belle and BaBar collaborations. I report new measurements of the decay rate and CP asymmetries in b {yields} s{gamma} and b {yields} d{gamma} decays, and measurements of the photon spectrum in b {yields} s{gamma}. Radiative penguin decays are flavour changing neutral currents which do not occur at tree level in the standard model (SM), but must proceed via one loop or higher order diagrams. These transitions are therefore suppressed in the SM, but offer access to poorlyknown SM parameters and are also a sensitive probe of new physics. In the SM, the rate is dominated by the top quark contribution to the loop, but non-SM particles could also contribute with a size comparable to leading SM contributions. The new physics effects are potentially large which makes them theoretically very interesting, but due to their small branching fractions they are typically experimentally challenging.

  2. RARE KAON DECAYS.

    SciTech Connect

    LITTENBERG, L.

    2005-07-19

    Lepton flavor violation (LFV) experiments have probed sensitivities corresponding to mass scales of well over 100 TeV, making life difficult for models predicting accessible LFV in kaon decay and discouraging new dedicated experiments of this type.

  3. Tooth decay - early childhood

    MedlinePlus

    Bottle mouth; Bottle carries; Baby bottle tooth decay; Early childhood caries (ECC) ... chap 304. Ribeiro NM, Ribeiro MA. Breastfeeding and early childhood caries: a critical review. J Pediatr (Rio J) . ...

  4. Nuclear Fuel Reprocessing

    SciTech Connect

    Harold F. McFarlane; Terry Todd

    2013-11-01

    Reprocessing is essential to closing nuclear fuel cycle. Natural uranium contains only 0.7 percent 235U, the fissile (see glossary for technical terms) isotope that produces most of the fission energy in a nuclear power plant. Prior to being used in commercial nuclear fuel, uranium is typically enriched to 3–5% in 235U. If the enrichment process discards depleted uranium at 0.2 percent 235U, it takes more than seven tonnes of uranium feed to produce one tonne of 4%-enriched uranium. Nuclear fuel discharged at the end of its economic lifetime contains less one percent 235U, but still more than the natural ore. Less than one percent of the uranium that enters the fuel cycle is actually used in a single pass through the reactor. The other naturally occurring isotope, 238U, directly contributes in a minor way to power generation. However, its main role is to transmute into plutoniumby neutron capture and subsequent radioactive decay of unstable uraniumand neptuniumisotopes. 239Pu and 241Pu are fissile isotopes that produce more than 40% of the fission energy in commercially deployed reactors. It is recovery of the plutonium (and to a lesser extent the uranium) for use in recycled nuclear fuel that has been the primary focus of commercial reprocessing. Uraniumtargets irradiated in special purpose reactors are also reprocessed to obtain the fission product 99Mo, the parent isotope of technetium, which is widely used inmedical procedures. Among the fission products, recovery of such expensive metals as platinum and rhodium is technically achievable, but not economically viable in current market and regulatory conditions. During the past 60 years, many different techniques for reprocessing used nuclear fuel have been proposed and tested in the laboratory. However, commercial reprocessing has been implemented along a single line of aqueous solvent extraction technology called plutonium uranium reduction extraction process (PUREX). Similarly, hundreds of types of reactor

  5. Fast analysis of radionuclide decay chain migration

    NASA Astrophysics Data System (ADS)

    Chen, J. S.; Liang, C. P.; Liu, C. W.; Li, L.

    2014-12-01

    A novel tool for rapidly predicting the long-term plume behavior of an arbitrary length radionuclide decay chain is presented in this study. This fast tool is achieved based on generalized analytical solutions in compact format derived for a set of two-dimensional advection-dispersion equations coupled with sequential first-order decay reactions in groundwater system. The performance of the developed tool is evaluated by a numerical model using a Laplace transform finite difference scheme. The results of performance evaluation indicate that the developed model is robust and accurate. The developed model is then used to fast understand the transport behavior of a four-member radionuclide decay chain. Results show that the plume extents and concentration levels of any target radionuclide are very sensitive to longitudinal, transverse dispersion, decay rate constant and retardation factor. The developed model are useful tools for rapidly assessing the ecological and environmental impact of the accidental radionuclide releases such as the Fukushima nuclear disaster where multiple radionuclides leaked through the reactor, subsequently contaminating the local groundwater and ocean seawater in the vicinity of the nuclear plant.

  6. Nuclear analytical chemistry

    SciTech Connect

    Brune, D.; Forkman, B.; Persson, B.

    1984-01-01

    This book covers the general theories and techniques of nuclear chemical analysis, directed at applications in analytical chemistry, nuclear medicine, radiophysics, agriculture, environmental sciences, geological exploration, industrial process control, etc. The main principles of nuclear physics and nuclear detection on which the analysis is based are briefly outlined. An attempt is made to emphasise the fundamentals of activation analysis, detection and activation methods, as well as their applications. The book provides guidance in analytical chemistry, agriculture, environmental and biomedical sciences, etc. The contents include: the nuclear periodic system; nuclear decay; nuclear reactions; nuclear radiation sources; interaction of radiation with matter; principles of radiation detectors; nuclear electronics; statistical methods and spectral analysis; methods of radiation detection; neutron activation analysis; charged particle activation analysis; photon activation analysis; sample preparation and chemical separation; nuclear chemical analysis in biological and medical research; the use of nuclear chemical analysis in the field of criminology; nuclear chemical analysis in environmental sciences, geology and mineral exploration; and radiation protection.

  7. Air resistance measurements on actual airplane parts

    NASA Technical Reports Server (NTRS)

    Weiselsberger, C

    1923-01-01

    For the calculation of the parasite resistance of an airplane, a knowledge of the resistance of the individual structural and accessory parts is necessary. The most reliable basis for this is given by tests with actual airplane parts at airspeeds which occur in practice. The data given here relate to the landing gear of a Siemanms-Schuckert DI airplane; the landing gear of a 'Luftfahrzeug-Gesellschaft' airplane (type Roland Dlla); landing gear of a 'Flugzeugbau Friedrichshafen' G airplane; a machine gun, and the exhaust manifold of a 269 HP engine.

  8. Nuclear Data Sheets for A = 52

    SciTech Connect

    Dong, Yang; Junde, Huo

    2015-09-15

    The nuclear structure data belonging to all nuclei with mass number A=52 have been compiled and evaluated using experimental nuclear reaction data and decay data available before July 10, 2015. This evaluaton supersedes the previous publication for this msss chain (2007Hu08, Nuclear Data Sheets 108, 773 (2007)). The data for the ε decay of {sup 52}Co (104 ms) and the ε decay of {sup 52}Ni (40.8 ms) are both incomplete, so new studies would be useful.

  9. Neutrinos in Nuclear Physics

    SciTech Connect

    McKeown, Bob

    2015-06-01

    Since the discovery of nuclear beta decay, nuclear physicists have studied the weak interaction and the nature of neutrinos. Many recent and current experiments have been focused on the elucidation of neutrino oscillations and neutrino mass. The quest for the absolute value of neutrino mass continues with higher precision studies of the tritium beta decay spectrum near the endpoint. Neutrino oscillations are studied through measurements of reactor neutrinos as a function of baseline and energy. And experiments searching for neutrinoless double beta decay seek to discover violation of lepton number and establish the Majorana nature of neutrino masses.

  10. Radioactive Doses - Predicted and Actual - and Likely Health Effects.

    PubMed

    Nagataki, S; Takamura, N

    2016-04-01

    Five years have passed since the nuclear accident at Fukushima Daiichi Nuclear Power Stations on 11 March 2011. Here we refer to reports from international organisations as sources of predicted values obtained from environmental monitoring and dose estimation models, and reports from various institutes in Japan are used as sources of individual actual values. The World Health Organization, based on information available up to 11 September 2011 (and published in 2012), reported that characteristic effective doses in the first year after the accident, to all age groups, were estimated to be in the 10-50 mSv dose band in example locations in evacuation areas. Estimated characteristic thyroid doses to infants in Namie Town were within the 100-200 mSv dose band. A report from the United Nations Scientific Committee on the Effects of Atomic Radiation published in 2014 shows that the effective dose received by adults in evacuation areas during the first year after the accident was 1.1-13 mSv. The absorbed dose to the thyroid in evacuated settlements was 7.2-35 mSv in adults and 15-83 mSv in 1-year-old infants. Individual external radiation exposure in the initial 4 months after the accident, estimated by superimposing individual behaviour data on to a daily dose rate map, was less than 3 mSv in 93.9% of residents (maximum 15 mSv) in evacuation areas. Actual individual thyroid equivalent doses were less than 15 mSv in 98.8% of children (maximum 25 mSv) in evacuation areas. When uncertainty exists in dose estimation models, it may be sensible to err on the side of caution, and final estimated doses are often much greater than actual radiation doses. However, overestimation of the dose at the time of an accident has a great influence on the psychology of residents. More than 100 000 residents have not returned to the evacuation areas 5 years after the Fukushima accident because of the social and mental effects during the initial period of the disaster. Estimates of

  11. Actual and Simulated Weightlessness Inhibit Osteogenesis in Long Bone Metaphysis by Different Mechanisms

    NASA Technical Reports Server (NTRS)

    Roberts, W. E.

    1985-01-01

    Weightlessness and simulated weightlessness inhibit the rate of periosteal bone formation in long bones. Formation of preosteoblasts is suppressed in periodontal ligament (PDL) of maxillary molars, which suggests a generalized block in osteoblast histogenesis. Growth in length of long bones is decreased by simulated weightlessness, but there are no reliable data on the influence of actual weightlessness on metaphyseal growth. The nuclear size assay for assessing relative numbers of osteoblast precursor cells was utilized in the primary spongiosa of growing long bones subjected to actual and simulated weightlessness. It is found that: (1) Actual weightlessness decreases total number of osteogenic cells and inhibits differentiation of osteoblast precursor cells, (2) Simulated weightlessness suppresses only osteoblast differentation; and (3) The nuclear morphometric assay is an effective means of assessing osteogenic activity in the growing metaphysis or long bones.

  12. Decay of metastable topological defects

    SciTech Connect

    Preskill, J. ); Vilenkin, A. Lyman Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138 )

    1993-03-15

    We systematically analyze the decay of metastable topological defects that arise from the spontaneous breakdown of gauge or global symmetries. Quantum-mechanical tunneling rates are estimated for a variety of decay processes. The decay rate for a global string, vortex, domain wall, or kink is typically suppressed compared to the decay rate for its gauged counterpart. We also discuss the decay of global texture, and of semilocal and electroweak strings.

  13. The A=96 system in ββ decay

    SciTech Connect

    Alanssari, M.

    2015-10-28

    Properties of the single and double beta decays of {sup 96}Zr are discussed. It is argued that the single beta decay can provide important information to the neutrinoless variant of β β decay, as it provides a test of theories aimed at calculating the nuclear matrix elements (NME) for both decays. An experimental extraction of the NME for the single β decay requires a measurement of the decay Q-value and half-life. It is shown that the present Q-value of the {sup 96}Zr single β decay is insufficiently well known and requires a re-measurement, preferentially using high-precision ion traps. We also describe the geochemical method to determine the total half-life of {sup 96}Zr, from which to set a limit on the single β -decay half-life at a level of ≈15 × 10{sup 19}yr. Further, the geochemical analysis will allow setting a limit on a rather exotic quadruple β decay of {sup 96}Zr.

  14. What can we learn from neutrinoless double beta decay experiments?

    SciTech Connect

    Bahcall, John N.; Murayama, Hitoshi; Pena-Garay, Carlos

    2004-04-08

    We assess how well next generation neutrinoless double beta decay and normal neutrino beta decay experiments can answer four fundamental questions. 1) If neutrinoless double beta decay searches do not detect a signal, and if the spectrum is known to be inverted hierarchy, can we conclude that neutrinos are Dirac particles? 2) If neutrinoless double beta decay searches are negative and a next generation ordinary beta decay experiment detects the neutrino mass scale, can we conclude that neutrinos are Dirac particles? 3) If neutrinoless double beta decay is observed with a large neutrino mass element, what is the total mass in neutrinos? 4) If neutrinoless double beta decay is observed but next generation beta decay searches for a neutrino mass only set a mass upper limit, can we establish whether the mass hierarchy is normal or inverted? We base our answers on the expected performance of next generation neutrinoless double beta decay experiments and on simulations of the accuracy of calculations of nuclear matrix elements.

  15. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The...

  16. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The...

  17. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The...

  18. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The...

  19. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The...

  20. The actual status of Astronomy in Moldova

    NASA Astrophysics Data System (ADS)

    Gaina, A.

    The astronomical research in the Republic of Moldova after Nicolae Donitch (Donici)(1874-1956(?)) were renewed in 1957, when a satellites observations station was open in Chisinau. Fotometric observations and rotations of first Soviet artificial satellites were investigated under a program SPIN put in action by the Academy of Sciences of former Socialist Countries. The works were conducted by Assoc. prof. Dr. V. Grigorevskij, which conducted also research in variable stars. Later, at the beginning of 60-th, an astronomical Observatory at the Chisinau State University named after Lenin (actually: the State University of Moldova), placed in Lozovo-Ciuciuleni villages was open, which were coordinated by Odessa State University (Prof. V.P. Tsesevich) and the Astrosovet of the USSR. Two main groups worked in this area: first conducted by V. Grigorevskij (till 1971) and second conducted by L.I. Shakun (till 1988), both graduated from Odessa State University. Besides this research areas another astronomical observations were made: Comets observations, astroclimate and atmospheric optics in collaboration with the Institute of the Atmospheric optics of the Siberian branch of the USSR (V. Chernobai, I. Nacu, C. Usov and A.F. Poiata). Comets observations were also made since 1988 by D. I. Gorodetskij which came to Chisinau from Alma-Ata and collaborated with Ukrainean astronomers conducted by K.I. Churyumov. Another part of space research was made at the State University of Tiraspol since the beggining of 70-th by a group of teaching staff of the Tiraspol State Pedagogical University: M.D. Polanuer, V.S. Sholokhov. No a collaboration between Moldovan astronomers and Transdniestrian ones actually exist due to War in Transdniestria in 1992. An important area of research concerned the Radiophysics of the Ionosphere, which was conducted in Beltsy at the Beltsy State Pedagogical Institute by a group of teaching staff of the University since the beginning of 70-th: N. D. Filip, E

  1. What Galvanic Vestibular Stimulation Actually Activates

    PubMed Central

    Curthoys, Ian S.; MacDougall, Hamish Gavin

    2012-01-01

    In a recent paper in Frontiers Cohen et al. (2012) asked “What does galvanic vestibular stimulation actually activate?” and concluded that galvanic vestibular stimulation (GVS) causes predominantly otolithic behavioral responses. In this Perspective paper we show that such a conclusion does not follow from the evidence. The evidence from neurophysiology is very clear: galvanic stimulation activates primary otolithic neurons as well as primary semicircular canal neurons (Kim and Curthoys, 2004). Irregular neurons are activated at lower currents. The answer to what behavior is activated depends on what is measured and how it is measured, including not just technical details, such as the frame rate of video, but the exact experimental context in which the measurement took place (visual fixation vs total darkness). Both canal and otolith dependent responses are activated by GVS. PMID:22833733

  2. MODIS Solar Diffuser: Modelled and Actual Performance

    NASA Technical Reports Server (NTRS)

    Waluschka, Eugene; Xiong, Xiao-Xiong; Esposito, Joe; Wang, Xin-Dong; Krebs, Carolyn (Technical Monitor)

    2001-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument's solar diffuser is used in its radiometric calibration for the reflective solar bands (VIS, NTR, and SWIR) ranging from 0.41 to 2.1 micron. The sun illuminates the solar diffuser either directly or through a attenuation screen. The attenuation screen consists of a regular array of pin holes. The attenuated illumination pattern on the solar diffuser is not uniform, but consists of a multitude of pin-hole images of the sun. This non-uniform illumination produces small, but noticeable radiometric effects. A description of the computer model used to simulate the effects of the attenuation screen is given and the predictions of the model are compared with actual, on-orbit, calibration measurements.

  3. Decay of superdeformed bands

    SciTech Connect

    Carpenter, M.P.; Khoo, T.L.; Lauritsen, T.

    1995-12-31

    One of the major challenges in the study of superdeformation is to directly connect the large number of superdeformed bands now known to the yrast states. In this way, excitation energies, spins and parities can be assigned to the levels in the second well which is essential to establish the collective and single-particle components of these bands. This paper will review some of the progress which has been made to understand the decay of superdeformed bands using the new arrays including the measurement of the total decay spectrum and the establishment of direct one-step decays from the superdeformed band to the yrast line in {sup 194}Hg. 42 refs., 5 figs.

  4. Suppressed Charmed B Decay

    SciTech Connect

    Snoek, Hella Leonie

    2009-06-02

    This thesis describes the measurement of the branching fractions of the suppressed charmed B0 → D*- a0+ decays and the non-resonant B0 → D*- ηπ+ decays in approximately 230 million Υ(4S) → B$\\bar{B}$ events. The data have been collected with the BABAR detector at the PEP-II B factory at the Stanford Linear Accelerator Center in California. Theoretical predictions of the branching fraction of the B0 → D*- a{sub 0}+ decays show large QCD model dependent uncertainties. Non-factorizing terms, in the naive factorization model, that can be calculated by QCD factorizing models have a large impact on the branching fraction of these decay modes. The predictions of the branching fractions are of the order of 10-6. The measurement of the branching fraction gives more insight into the theoretical models. In general a better understanding of QCD models will be necessary to conduct weak interaction physics at the next level. The presence of CP violation in electroweak interactions allows the differentiation between matter and antimatter in the laws of physics. In the Standard Model, CP violation is incorporated in the CKM matrix that describes the weak interaction between quarks. Relations amongst the CKM matrix elements are used to present the two relevant parameters as the apex of a triangle (Unitarity Triangle) in a complex plane. The over-constraining of the CKM triangle by experimental measurements is an important test of the Standard Model. At this moment no stringent direct measurements of the CKM angle γ, one of the interior angles of the Unitarity Triangle, are available. The measurement of the angle γ can be performed using the decays of neutral B mesons. The B0 → D*- a0+ decay is sensitive to the angle γ and, in comparison to the current decays that are being employed, could significantly

  5. Weak decay of hypernuclei

    SciTech Connect

    Grace, R.

    1983-01-01

    The Moby Dick spectrometer (at BNL) in coincidence with a range spectrometer and a TOF neutron detector will be used to study the weak decay modes of /sup 12/C. The Moby Dick spectrometer will be used to reconstruct and tag events in which specific hypernuclear states are formed in the reaction K/sup -/ + /sup 12/C ..-->.. ..pi../sup -/ + /sup 12/C. Subsequent emission of decay products (pions, protons and neutrons) in coincidence with the fast forward pion will be detected in a time and range spectrometer, and a neutron detector.

  6. Search for the decay

    NASA Astrophysics Data System (ADS)

    Aaij, R.; Adeva, B.; Adinolfi, M.; Affolder, A.; Ajaltouni, Z.; Akar, S.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Alvarez Cartelle, P.; Alves, A. A.; Amato, S.; Amerio, S.; Amhis, Y.; An, L.; Anderlini, L.; Anderson, J.; Andreotti, M.; Andrews, J. E.; Appleby, R. B.; Aquines Gutierrez, O.; Archilli, F.; d'Argent, P.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Baalouch, M.; Bachmann, S.; Back, J. J.; Badalov, A.; Baesso, C.; Baldini, W.; Barlow, R. J.; Barschel, C.; Barsuk, S.; Barter, W.; Batozskaya, V.; Battista, V.; Bay, A.; Beaucourt, L.; Beddow, J.; Bedeschi, F.; Bediaga, I.; Bel, L. J.; Belyaev, I.; Ben-Haim, E.; Bencivenni, G.; Benson, S.; Benton, J.; Berezhnoy, A.; Bernet, R.; Bertolin, A.; Bettler, M.-O.; van Beuzekom, M.; Bien, A.; Bifani, S.; Bird, T.; Birnkraut, A.; Bizzeti, A.; Blake, T.; Blanc, F.; Blouw, J.; Blusk, S.; Bocci, V.; Bondar, A.; Bondar, N.; Bonivento, W.; Borghi, S.; Borsato, M.; Bowcock, T. J. V.; Bowen, E.; Bozzi, C.; Braun, S.; Brett, D.; Britsch, M.; Britton, T.; Brodzicka, J.; Brook, N. H.; Bursche, A.; Buytaert, J.; Cadeddu, S.; Calabrese, R.; Calvi, M.; Calvo Gomez, M.; Campana, P.; Campora Perez, D.; Capriotti, L.; Carbone, A.; Carboni, G.; Cardinale, R.; Cardini, A.; Carniti, P.; Carson, L.; Carvalho Akiba, K.; Casanova Mohr, R.; Casse, G.; Cassina, L.; Castillo Garcia, L.; Cattaneo, M.; Cauet, Ch.; Cavallero, G.; Cenci, R.; Charles, M.; Charpentier, Ph.; Chefdeville, M.; Chen, S.; Cheung, S.-F.; Chiapolini, N.; Chrzaszcz, M.; Cid Vidal, X.; Ciezarek, G.; Clarke, P. E. L.; Clemencic, M.; Cliff, H. V.; Closier, J.; Coco, V.; Cogan, J.; Cogneras, E.; Cogoni, V.; Cojocariu, L.; Collazuol, G.; Collins, P.; Comerma-Montells, A.; Contu, A.; Cook, A.; Coombes, M.; Coquereau, S.; Corti, G.; Corvo, M.; Couturier, B.; Cowan, G. A.; Craik, D. C.; Crocombe, A.; Cruz Torres, M.; Cunliffe, S.; Currie, R.; D'Ambrosio, C.; Dalseno, J.; David, P. N. Y.; Davis, A.; De Bruyn, K.; De Capua, S.; De Cian, M.; De Miranda, J. M.; De Paula, L.; De Silva, W.; De Simone, P.; Dean, C.-T.; Decamp, D.; Deckenhoff, M.; Del Buono, L.; Déléage, N.; Derkach, D.; Deschamps, O.; Dettori, F.; Dey, B.; Di Canto, A.; Di Ruscio, F.; Dijkstra, H.; Donleavy, S.; Dordei, F.; Dorigo, M.; Dosil Suárez, A.; Dossett, D.; Dovbnya, A.; Dreimanis, K.; Dujany, G.; Dupertuis, F.; Durante, P.; Dzhelyadin, R.; Dziurda, A.; Dzyuba, A.; Easo, S.; Egede, U.; Egorychev, V.; Eidelman, S.; Eisenhardt, S.; Eitschberger, U.; Ekelhof, R.; Eklund, L.; El Rifai, I.; Elsasser, Ch.; Ely, S.; Esen, S.; Evans, H. M.; Evans, T.; Falabella, A.; Färber, C.; Farinelli, C.; Farley, N.; Farry, S.; Fay, R.; Ferguson, D.; Fernandez Albor, V.; Ferrari, F.; Ferreira Rodrigues, F.; Ferro-Luzzi, M.; Filippov, S.; Fiore, M.; Fiorini, M.; Firlej, M.; Fitzpatrick, C.; Fiutowski, T.; Fol, P.; Fontana, M.; Fontanelli, F.; Forty, R.; Francisco, O.; Frank, M.; Frei, C.; Frosini, M.; Fu, J.; Furfaro, E.; Gallas Torreira, A.; Galli, D.; Gallorini, S.; Gambetta, S.; Gandelman, M.; Gandini, P.; Gao, Y.; García Pardiñas, J.; Garofoli, J.; Garra Tico, J.; Garrido, L.; Gascon, D.; Gaspar, C.; Gastaldi, U.; Gauld, R.; Gavardi, L.; Gazzoni, G.; Geraci, A.; Gerick, D.; Gersabeck, E.; Gersabeck, M.; Gershon, T.; Ghez, Ph.; Gianelle, A.; Gianì, S.; Gibson, V.; Giubega, L.; Gligorov, V. V.; Göbel, C.; Golubkov, D.; Golutvin, A.; Gomes, A.; Gotti, C.; Grabalosa Gándara, M.; Graciani Diaz, R.; Granado Cardoso, L. A.; Graugés, E.; Graverini, E.; Graziani, G.; Grecu, A.; Greening, E.; Gregson, S.; Griffith, P.; Grillo, L.; Grünberg, O.; Gui, B.; Gushchin, E.; Guz, Yu.; Gys, T.; Hadjivasiliou, C.; Haefeli, G.; Haen, C.; Haines, S. C.; Hall, S.; Hamilton, B.; Hampson, T.; Han, X.; Hansmann-Menzemer, S.; Harnew, N.; Harnew, S. T.; Harrison, J.; He, J.; Head, T.; Heijne, V.; Hennessy, K.; Henrard, P.; Henry, L.; Hernando Morata, J. A.; van Herwijnen, E.; Heß, M.; Hicheur, A.; Hill, D.; Hoballah, M.; Hombach, C.; Hulsbergen, W.; Humair, T.; Hussain, N.; Hutchcroft, D.; Hynds, D.; Idzik, M.; Ilten, P.; Jacobsson, R.; Jaeger, A.; Jalocha, J.; Jans, E.; Jawahery, A.; Jing, F.; John, M.; Johnson, D.; Jones, C. R.; Joram, C.; Jost, B.; Jurik, N.; Kandybei, S.; Kanso, W.; Karacson, M.; Karbach, T. M.; Karodia, S.; Kelsey, M.; Kenyon, I. R.; Kenzie, M.; Ketel, T.; Khanji, B.; Khurewathanakul, C.; Klaver, S.; Klimaszewski, K.; Kochebina, O.; Kolpin, M.; Komarov, I.; Koopman, R. F.; Koppenburg, P.; Korolev, M.; Kravchuk, L.; Kreplin, K.; Kreps, M.; Krocker, G.; Krokovny, P.; Kruse, F.; Kucewicz, W.; Kucharczyk, M.; Kudryavtsev, V.; Kurek, K.; Kvaratskheliya, T.; La Thi, V. N.; Lacarrere, D.; Lafferty, G.; Lai, A.; Lambert, D.; Lambert, R. W.; Lanfranchi, G.; Langenbruch, C.; Langhans, B.; Latham, T.; Lazzeroni, C.; Le Gac, R.; van Leerdam, J.; Lees, J.-P.; Lefèvre, R.; Leflat, A.; Lefrançois, J.; Leroy, O.; Lesiak, T.; Leverington, B.; Li, Y.; Likhomanenko, T.; Liles, M.; Lindner, R.; Linn, C.; Lionetto, F.; Liu, B.; Lohn, S.; Longstaff, I.; Lopes, J. H.; Lucchesi, D.; Lucio Martinez, M.; Luo, H.; Lupato, A.; Luppi, E.; Lupton, O.; Machefert, F.; Maciuc, F.; Maev, O.; Malde, S.; Malinin, A.; Manca, G.; Mancinelli, G.; Manning, P.; Mapelli, A.; Maratas, J.; Marchand, J. F.; Marconi, U.; Marin Benito, C.; Marino, P.; Märki, R.; Marks, J.; Martellotti, G.; Martinelli, M.; Martinez Santos, D.; Martinez Vidal, F.; Martins Tostes, D.; Massafferri, A.; Matev, R.; Mathad, A.; Mathe, Z.; Matteuzzi, C.; Matthieu, K.; Mauri, A.; Maurin, B.; Mazurov, A.; McCann, M.; McCarthy, J.; McNab, A.; McNulty, R.; Meadows, B.; Meier, F.; Meissner, M.; Merk, M.; Milanes, D. A.; Minard, M.-N.; Mitzel, D. S.; Molina Rodriguez, J.; Monteil, S.; Morandin, M.; Morawski, P.; Mordà, A.; Morello, M. J.; Moron, J.; Morris, A. B.; Mountain, R.; Muheim, F.; Müller, J.; Müller, K.; Müller, V.; Mussini, M.; Muster, B.; Naik, P.; Nakada, T.; Nandakumar, R.; Nasteva, I.; Needham, M.; Neri, N.; Neubert, S.; Neufeld, N.; Neuner, M.; Nguyen, A. D.; Nguyen, T. D.; Nguyen-Mau, C.; Niess, V.; Niet, R.; Nikitin, N.; Nikodem, T.; Ninci, D.; Novoselov, A.; O'Hanlon, D. P.; Oblakowska-Mucha, A.; Obraztsov, V.; Ogilvy, S.; Okhrimenko, O.; Oldeman, R.; Onderwater, C. J. G.; Osorio Rodrigues, B.; Otalora Goicochea, J. M.; Otto, A.; Owen, P.; Oyanguren, A.; Palano, A.; Palombo, F.; Palutan, M.; Panman, J.; Papanestis, A.; Pappagallo, M.; Pappalardo, L. L.; Parkes, C.; Passaleva, G.; Patel, G. D.; Patel, M.; Patrignani, C.; Pearce, A.; Pellegrino, A.; Penso, G.; Pepe Altarelli, M.; Perazzini, S.; Perret, P.; Pescatore, L.; Petridis, K.; Petrolini, A.; Petruzzo, M.; Picatoste Olloqui, E.; Pietrzyk, B.; Pilař, T.; Pinci, D.; Pistone, A.; Playfer, S.; Plo Casasus, M.; Poikela, T.; Polci, F.; Poluektov, A.; Polyakov, I.; Polycarpo, E.; Popov, A.; Popov, D.; Popovici, B.; Potterat, C.; Price, E.; Price, J. D.; Prisciandaro, J.; Pritchard, A.; Prouve, C.; Pugatch, V.; Puig Navarro, A.; Punzi, G.; Qian, W.; Quagliani, R.; Rachwal, B.; Rademacker, J. H.; Rakotomiaramanana, B.; Rama, M.; Rangel, M. S.; Raniuk, I.; Rauschmayr, N.; Raven, G.; Redi, F.; Reichert, S.; Reid, M. M.; dos Reis, A. C.; Ricciardi, S.; Richards, S.; Rihl, M.; Rinnert, K.; Rives Molina, V.; Robbe, P.; Rodrigues, A. B.; Rodrigues, E.; Rodriguez Lopez, J. A.; Rodriguez Perez, P.; Roiser, S.; Romanovsky, V.; Romero Vidal, A.; Rotondo, M.; Rouvinet, J.; Ruf, T.; Ruiz, H.; Ruiz Valls, P.; Saborido Silva, J. J.; Sagidova, N.; Sail, P.; Saitta, B.; Salustino Guimaraes, V.; Sanchez Mayordomo, C.; Sanmartin Sedes, B.; Santacesaria, R.; Santamarina Rios, C.; Santovetti, E.; Sarti, A.; Satriano, C.; Satta, A.; Saunders, D. M.; Savrina, D.; Schiller, M.; Schindler, H.; Schlupp, M.; Schmelling, M.; Schmelzer, T.; Schmidt, B.; Schneider, O.; Schopper, A.; Schune, M.-H.; Schwemmer, R.; Sciascia, B.; Sciubba, A.; Semennikov, A.; Sepp, I.; Serra, N.; Serrano, J.; Sestini, L.; Seyfert, P.; Shapkin, M.; Shapoval, I.; Shcheglov, Y.; Shears, T.; Shekhtman, L.; Shevchenko, V.; Shires, A.; Silva Coutinho, R.; Simi, G.; Sirendi, M.; Skidmore, N.; Skillicorn, I.; Skwarnicki, T.; Smith, E.; Smith, E.; Smith, J.; Smith, M.; Snoek, H.; Sokoloff, M. D.; Soler, F. J. P.; Soomro, F.; Souza, D.; Souza De Paula, B.; Spaan, B.; Spradlin, P.; Sridharan, S.; Stagni, F.; Stahl, M.; Stahl, S.; Steinkamp, O.; Stenyakin, O.; Sterpka, F.; Stevenson, S.; Stoica, S.; Stone, S.; Storaci, B.; Stracka, S.; Straticiuc, M.; Straumann, U.; Stroili, R.; Sun, L.; Sutcliffe, W.; Swientek, K.; Swientek, S.; Syropoulos, V.; Szczekowski, M.; Szczypka, P.; Szumlak, T.; T'Jampens, S.; Tekampe, T.; Teklishyn, M.; Tellarini, G.; Teubert, F.; Thomas, C.; Thomas, E.; van Tilburg, J.; Tisserand, V.; Tobin, M.; Todd, J.; Tolk, S.; Tomassetti, L.; Tonelli, D.; Topp-Joergensen, S.; Torr, N.; Tournefier, E.; Tourneur, S.; Trabelsi, K.; Tran, M. T.; Tresch, M.; Trisovic, A.; Tsaregorodtsev, A.; Tsopelas, P.; Tuning, N.; Ukleja, A.; Ustyuzhanin, A.; Uwer, U.; Vacca, C.; Vagnoni, V.; Valenti, G.; Vallier, A.; Vazquez Gomez, R.; Vazquez Regueiro, P.; Vázquez Sierra, C.; Vecchi, S.; Velthuis, J. J.; Veltri, M.; Veneziano, G.; Vesterinen, M.; Viaud, B.; Vieira, D.; Vieites Diaz, M.; Vilasis-Cardona, X.; Vollhardt, A.; Volyanskyy, D.; Voong, D.; Vorobyev, A.; Vorobyev, V.; Voß, C.; de Vries, J. A.; Waldi, R.; Wallace, C.; Wallace, R.; Walsh, J.; Wandernoth, S.; Wang, J.; Ward, D. R.; Watson, N. K.; Websdale, D.; Weiden, A.; Whitehead, M.; Wiedner, D.; Wilkinson, G.; Wilkinson, M.; Williams, M.; Williams, M. P.; Williams, M.; Wilson, F. F.; Wimberley, J.; Wishahi, J.; Wislicki, W.; Witek, M.; Wormser, G.; Wotton, S. A.; Wright, S.; Wyllie, K.; Xie, Y.; Xu, Z.; Yang, Z.; Yuan, X.; Yushchenko, O.; Zangoli, M.; Zavertyaev, M.; Zhang, L.; Zhang, Y.; Zhelezov, A.; Zhokhov, A.; Zhong, L.

    2015-08-01

    A search for decays is performed using 3 .0 fb1- of pp collision data recorded by the LHCb experiment during 2011 and 2012. The f 0(980) meson is reconstructed through its decay to the π + π - final state in the mass window 900 MeV /c 2 < m( π + π -) < 1080 MeV /c 2. No significant signal is observed. The first upper limits on the branching fraction of are set at 90 % (95 %) confidence level. [Figure not available: see fulltext.

  7. Decay of relativistic hypernuclei

    SciTech Connect

    Majlingova, Olga

    2008-05-12

    The contribution is focused on the analysis of the hypernuclei decay. Hypernuclei, nuclei composed of nucleons and hyperon, enable us to more precise study baryon-baryon interaction, both weak and strong. Several experiments for study new hypernuclear objects are presently taking data or are planned in several laboratories in Italy, Germany, Russia, Japan and USA. The aim of the contribution is the introduction the catalogue of all possible decays of light hypernuclei (A{<=}12). Created catalogue could be exploited for planning next experiments.

  8. Herman Feshbach Prize in Theoretical Nuclear Physics Xiangdong Ji, University of Maryland PandaX-III: high-pressure gas TPC for Xe136 neutrinoless double beta decay at CJPL

    NASA Astrophysics Data System (ADS)

    Ji, Xiangdong; PandaX-III Collaboration

    2016-03-01

    The PandaX-III in China's Jinping Underground Lab is a new neutrinoless double beta decay experiment using Xe136 high-pressure gas TPC. The first phase of the experiment uses a 4 m3 gas detector with symmetric Micromegas charge readout planes. The gas TPC allows full reconstruction of the event topology, capable of distinguishing the two electron events from gamma background with high confidence level. The energy resolution can reach about 3% FWHM at the beta decay Q-value. The detector construction and the experimental lab is currently under active development. In this talk, the current status and future plan are reported.

  9. Neutron decay of the Giant Pairing Vibration in 15C

    NASA Astrophysics Data System (ADS)

    Cavallaro, M.; Agodi, C.; Assié, M.; Azaiez, F.; Cappuzzello, F.; Carbone, D.; de Séréville, N.; Foti, A.; Pandola, L.; Scarpaci, J. A.; Sgouros, O.; Soukeras, V.

    2016-06-01

    The neutron decay of the resonant states of light neutron-rich nuclei is an important and poorly explored property, useful to extract valuable nuclear structure information. The neutron decay of the 15C resonances populated via the two-neutron transfer reaction 13C(18O,16O n) at 84 MeV incident energy is studied using an innovative technique which couples the MAGNEX magnetic spectrometer and the EDEN neutron detector array. The data show that the recently observed 15C Giant Pairing Vibration at 13.7 MeV mainly decays via two-neutron emission.

  10. Measuring pion beta decay with high-energy pion beams

    SciTech Connect

    McFarlane, W.K. Temple Univ., Philadelphia, PA ); Hoffman, C.M. )

    1993-01-01

    Improved measurements of the pion beta decay rate are possible with an intense high-energy pion beam. The rate for the decay [pi][sup +] [yields] [pi][sup 0]e[sup +]v[epsilon] is predicted by the Standard Model (SM) to be R([pi][sup +] [yields] [pi][sup 0]e[sup +]v[epsilon]) = 0.3999[plus minus]0.0005 s[sup [minus]1]. The best experimental number, obtained using in-flight decays, is R([pi][sup +] [yields] [pi][sup 0]e[sup +]v[epsilon]) = 0.394 [plus minus] 0.015 s[sup [minus]1]. A precise measurement would test the SM by testing the unitarity of the Cabibbo-Kobayashi-Maskawa matrix for which one analysis of the nuclear beta decay data has shown a 0.4% discrepancy. Several nuclear correction factors, needed for nuclear decay, are not present for pion beta decay, so that an experiment at the 0.2% level would be a significant one. Detailed study of possible designs will be needed, as well as extensive testing of components. The reduction of systematic errors to the 0.1% level can only be done over a period of years with a highly stable apparatus and beam. At a minimum, three years of occupancy of a beam line, with 800 hours per year, would be required.

  11. Measuring pion beta decay with high-energy pion beams

    SciTech Connect

    McFarlane, W.K. |; Hoffman, C.M.

    1993-02-01

    Improved measurements of the pion beta decay rate are possible with an intense high-energy pion beam. The rate for the decay {pi}{sup +} {yields} {pi}{sup 0}e{sup +}v{epsilon} is predicted by the Standard Model (SM) to be R({pi}{sup +} {yields} {pi}{sup 0}e{sup +}v{epsilon}) = 0.3999{plus_minus}0.0005 s{sup {minus}1}. The best experimental number, obtained using in-flight decays, is R({pi}{sup +} {yields} {pi}{sup 0}e{sup +}v{epsilon}) = 0.394 {plus_minus} 0.015 s{sup {minus}1}. A precise measurement would test the SM by testing the unitarity of the Cabibbo-Kobayashi-Maskawa matrix for which one analysis of the nuclear beta decay data has shown a 0.4% discrepancy. Several nuclear correction factors, needed for nuclear decay, are not present for pion beta decay, so that an experiment at the 0.2% level would be a significant one. Detailed study of possible designs will be needed, as well as extensive testing of components. The reduction of systematic errors to the 0.1% level can only be done over a period of years with a highly stable apparatus and beam. At a minimum, three years of occupancy of a beam line, with 800 hours per year, would be required.

  12. The harmony between nuclear reactions and nuclear reactor structures and systems

    SciTech Connect

    Popa-Simil, L.

    2012-07-01

    Advanced nuclear energy is one extremely viable approach for achieving the required goals. With its extraordinarily high energy density (both, per unit mass and per unit volume), it produces over seven orders of magnitude less waste than fossil fuels per unit of energy generated. Applying nano-technologies to nuclear reactors could potentially produce the extraordinary performance required. The actual nuclear reactors lack of performances, the complexity and hazard of the fuel cycle are in part due to the lack of understanding of the nature's laws related to energy distribution applied to fission products, and in part to the current technologic capabilities that make the economical optimum. In order to produce the desired increase of performances a novel multi-scale multi-physics and engineering approach have been developed, starting from the nuclear reactions involved, analyzing in detail the key features and requirements of the 'key players' in the process (neutrons, compound nucleus, fission products, transmutation products, decay radiation), the consequences of their interaction with matter. That complex interaction generates new reactions and new key-players (knock-on electrons, photons, phonons) that further interact with the matter represented by the nuclear fuel, cladding, cooling agents, structural materials and control systems. The understanding of this complexity of problems from fm-ps scale up to macro-system and mitigating all the requirements drives to that desired harmony that provides a safe energy delivery. (authors)

  13. Caustic-Side Solvent Extraction: Prediction of Cesium Extraction for Actual Wastes and Actual Waste Simulants

    SciTech Connect

    Delmau, L.H.; Haverlock, T.J.; Sloop, F.V., Jr.; Moyer, B.A.

    2003-02-01

    This report presents the work that followed the CSSX model development completed in FY2002. The developed cesium and potassium extraction model was based on extraction data obtained from simple aqueous media. It was tested to ensure the validity of the prediction for the cesium extraction from actual waste. Compositions of the actual tank waste were obtained from the Savannah River Site personnel and were used to prepare defined simulants and to predict cesium distribution ratios using the model. It was therefore possible to compare the cesium distribution ratios obtained from the actual waste, the simulant, and the predicted values. It was determined that the predicted values agree with the measured values for the simulants. Predicted values also agreed, with three exceptions, with measured values for the tank wastes. Discrepancies were attributed in part to the uncertainty in the cation/anion balance in the actual waste composition, but likely more so to the uncertainty in the potassium concentration in the waste, given the demonstrated large competing effect of this metal on cesium extraction. It was demonstrated that the upper limit for the potassium concentration in the feed ought to not exceed 0.05 M in order to maintain suitable cesium distribution ratios.

  14. Decay Time of Cathodoluminescence

    ERIC Educational Resources Information Center

    Kraftmakher, Yaakov

    2009-01-01

    Simple measurements of the decay time of cathodoluminescence are described. Cathodoluminescence is used in many devices, including computer monitors, oscilloscopes, radar displays and television tubes. The experimental setup is simple and easy to build. Two oscilloscopes, a function generator, and a fast photodiode are needed for the experiments.…

  15. Chiral quirkonium decays

    NASA Astrophysics Data System (ADS)

    Fok, R.; Kribs, Graham D.

    2011-08-01

    We calculate the two-body decay rates of quirkonium states formed from quirks that acquire mass solely through electroweak symmetry breaking. We consider SU(N)ic infracolor with two flavors of quirks transforming under the electroweak group (but not QCD) of the standard model. In one case, the quirks are in a chiral representation of the electroweak group, while in the other case, a vectorlike representation. The differences in the dominant decay channels between “chiral quirkonia” versus “vectorlike quirkonia” are striking. Several chiral quirkonia states can decay into the unique two-body resonance channels WH, ZH, tt¯, tb¯/bt¯, and γH, which never dominate for vectorlike quirkonia. Additionally, the channels WW, WZ, ZZ, and Wγ, are shared among both chiral and vectorlike quirkonia. Resonances of dileptons or light quarks (dijets) can dominate for some vectorlike quirkonia states throughout their mass range, while these modes never dominate for chiral quirkonia unless the decays into pairs of gauge or Higgs bosons are kinematically forbidden.

  16. Chiral Quirkonium Decays

    SciTech Connect

    Fok, R.; Kribs, Graham D.; /Fermilab

    2011-06-01

    We calculate the two-body decay rates of quirkonium states formed from quirks that acquire mass solely through electroweak symmetry breaking. We consider SU(N){sub ic} infracolor with two flavors of quirks transforming under the electroweak group (but not QCD) of the standard model. In one case, the quirks are in a chiral representation of the electroweak group, while in the other case, a vectorlike representation. The differences in the dominant decay channels between 'chiral quirkonia' versus 'vectorlike quirkonia' are striking. Several chiral quirkonia states can decay into the unique two-body resonance channels WH, ZH, t{bar t}, t{bar b}/b{bar t}, and {gamma}H, which never dominate for vectorlike quirkonia. Additionally, the channels WW, WZ, ZZ, and W{gamma}, are shared among both chiral and vectorlike quirkonia. Resonances of dileptons or light quarks (dijets) can dominate for some vectorlike quirkonia states throughout their mass range, while these modes never dominate for chiral quirkonia unless the decays into pairs of gauge or Higgs bosons are kinematically forbidden.

  17. Anatomy of decays

    NASA Astrophysics Data System (ADS)

    Bel, Lennaert; De Bruyn, Kristof; Fleischer, Robert; Mulder, Mick; Tuning, Niels

    2015-07-01

    The decays B {/d 0} → D {/d -} D {/d +} and B {/s 0} → D {/s -} D {/s +} probe the CP-violating mixing phases ϕ d and ϕ s , respectively. The theoretical uncertainty of the corresponding determinations is limited by contributions from penguin topologies, which can be included with the help of the U-spin symmetry of the strong interaction. We analyse the currently available data for B {/d, s 0} → D {/d, s -} D {/d, s +} decays and those with similar dynamics to constrain the involved non-perturbative parameters. Using further information from semileptonic B {/d 0} → D {/d -} ℓ + ν ℓ decays, we perform a test of the factorisation approximation and take non-factorisable SU(3)-breaking corrections into account. The branching ratios of the B {/d 0} → D {/d -} D {/d +}, B {/s 0} → D {/s -} D {/d +} and B {/s 0} → D {/s -} D {/s +}, B {/d 0} → D {/d -} D {/s +} decays show an interesting pattern which can be accommodated through significantly enhanced exchange and penguin annihilation topologies. This feature is also supported by data for the B {/s 0} → D {/d -} D {/d +} channel. Moreover, there are indications of potentially enhanced penguin contributions in the B {/d 0} → D {/d -} D {/d +} and B {/s 0} → D {/s -} D {/s +} decays, which would make it mandatory to control these effects in the future measurements of ϕ d and ϕ s . We discuss scenarios for high-precision measurements in the era of Belle II and the LHCb upgrade.

  18. Nuclear Data Sheets for A = 202

    SciTech Connect

    Zhu, S.; Kondev, F.G.

    2008-03-15

    Evaluated nuclear structure and decay data for all nuclei within the A = 202 mass chain are presented. This work supersedes the earlier evaluation by M.R. Schmorak (1997Sc07), published in Nuclear Data Sheets80, 647 (1997)

  19. Nuclear Data Sheets for A = 203

    SciTech Connect

    Kondev, F.G.

    2005-05-01

    Evaluated nuclear structure and decay data for all nuclei within the A = 203 mass chain are presented. This work supersedes the earlier evaluation by S. Rab (1993Ra11), published in Nuclear Data Sheets 70, 173 (1993)

  20. Constraining decaying dark matter with neutron stars

    NASA Astrophysics Data System (ADS)

    Pérez-García, M. Ángeles; Silk, Joseph

    2015-05-01

    The amount of decaying dark matter, accumulated in the central regions in neutron stars together with the energy deposition rate from decays, may set a limit on the neutron star survival rate against transitions to more compact objects provided nuclear matter is not the ultimate stable state of matter and that dark matter indeed is unstable. More generally, this limit sets constraints on the dark matter particle decay time, τχ. We find that in the range of uncertainties intrinsic to such a scenario, masses (mχ /TeV) ≳ 9 ×10-4 or (mχ /TeV) ≳ 5 ×10-2 and lifetimes τχ ≲1055 s and τχ ≲1053 s can be excluded in the bosonic or fermionic decay cases, respectively, in an optimistic estimate, while more conservatively, it decreases τχ by a factor ≳1020. We discuss the validity under which these results may improve with other current constraints.

  1. Cluster decay investigation within a modified Woods-Saxon potential

    NASA Astrophysics Data System (ADS)

    Saidi, F.; Oudih, M. R.; Fellah, M.; Allal, N. H.

    2015-08-01

    The cluster decay process is studied in the WKB approximation based on the unified fission model. The cluster is considered to be emitted by tunneling through a potential barrier taken as the sum of the Coulomb potential, the centrifugal potential and the modified Woods-Saxon (MWS) nuclear potential. The results of our calculations are compared to those obtained by other theoretical models as well as experimental data. It is shown that the unified fission model with the MWS nuclear potential can be successfully used to evaluate the cluster decay half-lives of heavy nuclei.

  2. On the neutrinoless double β+/EC decays

    NASA Astrophysics Data System (ADS)

    Suhonen, Jouni

    2013-12-01

    The neutrinoless double positron-emission/electron-capture (0νβ+/EC) decays are studied for the magnitudes of the involved nuclear matrix elements (NMEs). Decays to the ground state, 0gs+, and excited 0+ states are discussed. The participant many-body wave functions are evaluated in the framework of the quasiparticle random-phase approximation (QRPA). Effective, G-matrix-derived nuclear forces are used in realistic single-particle model spaces. The channels β+β+, β+EC, and the resonant neutrinoless double electron capture (R0νECEC) are discussed.

  3. On the neutrinoless double β{sup +}/EC decays

    SciTech Connect

    Suhonen, Jouni

    2013-12-30

    The neutrinoless double positron-emission/electron-capture (0νβ{sup +}/EC) decays are studied for the magnitudes of the involved nuclear matrix elements (NMEs). Decays to the ground state, 0{sub gs}{sup +}, and excited 0{sup +} states are discussed. The participant many-body wave functions are evaluated in the framework of the quasiparticle random-phase approximation (QRPA). Effective, G-matrix-derived nuclear forces are used in realistic single-particle model spaces. The channels β{sup +}β{sup +}, β{sup +}EC, and the resonant neutrinoless double electron capture (R0νECEC) are discussed.

  4. Consequences of Predicted or Actual Asteroid Impacts

    NASA Astrophysics Data System (ADS)

    Chapman, C. R.

    2003-12-01

    Earth impact by an asteroid could have enormous physical and environmental consequences. Impactors larger than 2 km diameter could be so destructive as to threaten civilization. Since such events greatly exceed any other natural or man-made catastrophe, much extrapolation is necessary just to understand environmental implications (e.g. sudden global cooling, tsunami magnitude, toxic effects). Responses of vital elements of the ecosystem (e.g. agriculture) and of human society to such an impact are conjectural. For instance, response to the Blackout of 2003 was restrained, but response to 9/11 terrorism was arguably exaggerated and dysfunctional; would society be fragile or robust in the face of global catastrophe? Even small impacts, or predictions of impacts (accurate or faulty), could generate disproportionate responses, especially if news media reports are hyped or inaccurate or if responsible entities (e.g. military organizations in regions of conflict) are inadequately aware of the phenomenology of small impacts. Asteroid impact is the one geophysical hazard of high potential consequence with which we, fortunately, have essentially no historical experience. It is thus important that decision makers familiarize themselves with the hazard and that society (perhaps using a formal procedure, like a National Academy of Sciences study) evaluate the priority of addressing the hazard by (a) further telescopic searches for dangerous but still-undiscovered asteroids and (b) development of mitigation strategies (including deflection of an oncoming asteroid and on- Earth civil defense). I exemplify these issues by discussing several representative cases that span the range of parameters. Many of the specific physical consequences of impact involve effects like those of other geophysical disasters (flood, fire, earthquake, etc.), but the psychological and sociological aspects of predicted and actual impacts are distinctive. Standard economic cost/benefit analyses may not

  5. Rare Down Quark Decays

    NASA Astrophysics Data System (ADS)

    Tung, Kwong-Kwai Humphrey

    1992-01-01

    The rare decays bto sX are sensitive to strong interaction corrections. The effects can be estimated by a renormalization group technique which requires the evaluation of QCD mixing among effective operators. In the dimensional reduction and the naive dimensional regularization methods, there are discrepancies in evaluating the QCD mixing of the four-quark operators with the bto sgamma and bto s+gluon dipole operators. In this thesis, the problem is investigated by considering the contributions of the epsilon -scalar field and the epsilon -dimensional operators that distinguish between the two methods. The discrepancies are shown to come from the epsilon-dimensional four-quark operators in dimensional reduction and not from the epsilon -scalar field. In the decay bto sl^+l^ -, the intermediate of cc pairs in the charm-penguin diagram can form the resonance states J/psi and psi^'. In the published literature, there is a sign discrepancy in the Breit-Wigner amplitude for the resonance effects. Here, the sign difference is settled by considering the unitarity limit of the amplitude in the Argand diagram. The effects of the resonances are quite substantial on the invariant mass spectrum for this decay. However, they are shown to be negligible on the dilepton energy spectrum below 0.95 GeV. The energy spectrum is, thus, more useful than the invariant mass spectrum for measurements of the top -quark mass. The decays Bto K^*X are well modeled by the quark-level decays bto sX. In the quark model, the hadronization is done using a nonrelativistic wave function. In the decay B to K^*gamma, the large K ^* recoil creates an uncertainty in calculating the branching ratio using the quark model. The problem is explored by considering other meson processes where data exist. The data on the pi form factor and the omegapi^0 transition form factor suggest the necessity to retain relativistic spinor and meson normalizations in the quark -model; however, the data do not resolve the

  6. B Decays Involving Light Mesons

    SciTech Connect

    Eschrich, Ivo Gough; /UC, Irvine

    2007-01-09

    Recent BABAR results for decays of B-mesons to combinations of non-charm mesons are presented. This includes B decays to two vector mesons, B {yields} {eta}{prime}({pi}, K, {rho}) modes, and a comprehensive Dalitz Plot analysis of B {yields} KKK decays.

  7. Decay Dynamics of Tumors

    PubMed Central

    2016-01-01

    The fractional cell kill is a mathematical expression describing the rate at which a certain population of cells is reduced to a fraction of itself. We investigate the mathematical function that governs the rate at which a solid tumor is lysed by a cell population of cytotoxic lymphocytes. We do it in the context of enzyme kinetics, using geometrical and analytical arguments. We derive the equations governing the decay of a tumor in the limit in which it is plainly surrounded by immune cells. A cellular automaton is used to test such decay, confirming its validity. Finally, we introduce a modification in the fractional cell kill so that the expected dynamics is attained in the mentioned limit. We also discuss the potential of this new function for non-solid and solid tumors which are infiltrated with lymphocytes. PMID:27310010

  8. JUNO and neutrinoless double beta decay

    NASA Astrophysics Data System (ADS)

    Ge, Shao-Feng; Rodejohann, Werner

    2015-11-01

    We study the impact of the precision determination of oscillation parameters in the JUNO experiment on half-life predictions for neutrinoless double beta decay. We show that the solar neutrino mixing angle can be measured by JUNO with below 1% uncertainty. This implies in particular that the minimal value of the effective mass in the inverted mass ordering will be known essentially without uncertainty. We demonstrate that this reduces the range of half-life predictions in order to test this value by a factor of 2. The remaining uncertainty is caused by nuclear matrix elements. This has important consequences for future double beta decay experiments that aim at ruling out the inverted mass ordering or the Majorana nature of neutrinos.

  9. Theoretical challenges in Double Beta Decay

    NASA Astrophysics Data System (ADS)

    Stoica, Sabin

    2016-05-01

    The study of the double beta decay (DBD), particularly the neutrino less decay mode, is of great interest for testing the lepton number conservation (LNC) and getting information about neutrino properties, as the neutrinos character (Dirac or Majorana particles?), their absolute mass and hierarchy, etc. [1]-[2]. To make predictions of the DBD lifetimes and put constraints on the neutrino parameters, one needs accurate calculations of the nuclear matrix elements (NME) and phase space factors (PSF) entering the DBD lifetime expressions. In this paper I present recent calculations of these quantities, performed with approaches developed by our group. Then, I compare the theoretical predictions for the two-neutrino (2v) DBD lifetimes, for the most experimentally interesting nuclei, with the experimental ones, and comment on the reliability of the neutrinoless (0v) DBD calculations.

  10. Lepton flavor violating decays of vector mesons

    SciTech Connect

    Gutsche, Thomas; Lyubovitskij, Valery E.; Helo, Juan C.; Kovalenko, Sergey

    2010-02-01

    We estimate the rates of lepton flavor violating decays of the vector mesons {rho}, {omega}, and {phi}{yields}e{mu}. The theoretical tools are based on an effective Lagrangian approach without referring to any specific realization of the physics beyond the standard model responsible for lepton flavor violation (Le{sub f}). The effective lepton-vector meson couplings are extracted from the existing experimental bounds on the nuclear {mu}{sup -}-e{sup -} conversion. In particular, we derive an upper limit for the Le{sub f} branching ratio Br({phi}{yields}e{mu}){<=}1.3x10{sup -21} which is much more stringent than the recent experimental result Br({phi}{yields}e{mu})<2x10{sup -6} presented by the SND Collaboration. Very tiny limits on Le{sub f} decays of vector mesons derived in this paper make direct experimental observation of these processes unrealistic.

  11. Modeling Radionuclide Decay Chain Migration Using HYDROGEOCHEM

    NASA Astrophysics Data System (ADS)

    Lin, T. C.; Tsai, C. H.; Lai, K. H.; Chen, J. S.

    2014-12-01

    Nuclear technology has been employed for energy production for several decades. Although people receive many benefits from nuclear energy, there are inevitably environmental pollutions as well as human health threats posed by the radioactive materials releases from nuclear waste disposed in geological repositories or accidental releases of radionuclides from nuclear facilities. Theoretical studies have been undertaken to understand the transport of radionuclides in subsurface environments because that the radionuclide transport in groundwater is one of the main pathway in exposure scenarios for the intake of radionuclides. The radionuclide transport in groundwater can be predicted using analytical solution as well as numerical models. In this study, we simulate the transport of the radionuclide decay chain using HYDROGEOCHEM. The simulated results are verified against the analytical solution available in the literature. Excellent agreements between the numerical simulation and the analytical are observed for a wide spectrum of concentration. HYDROGECHEM is a useful tool assessing the ecological and environmental impact of the accidental radionuclide releases such as the Fukushima nuclear disaster where multiple radionuclides leaked through the reactor, subsequently contaminating the local groundwater and ocean seawater in the vicinity of the nuclear plant.

  12. Nuclear astrophysics

    NASA Astrophysics Data System (ADS)

    Penionzhkevich, Yu. E.

    2010-08-01

    The International Year of Astronomy 2009 (IYA2009) was declared by the 62nd General Assembly of the United Nations and was also endorsed by UNESCO. Investigations in the realms of particle and nuclear physicsmake a large contribution in the development of our ideas of the properties of the Universe. The present article discusses some problems of the evolution of the Universe, nucleosyntheses, and cosmochronology from the point of view of nuclear and particle physics. Processes occurring in the Universe are compared with the mechanisms of the production and decay of nuclei, as well as with the mechanisms of their interaction at high energies. Examples that demonstrate the potential of nuclearphysics methods for studying cosmic objects and the properties of the Universe are given. The results that come from investigations into nuclear reactions induced by beams of radioactive nuclei and which make it possible to take a fresh look at the nucleosynthesis scenario in the range at light nuclei are presented.

  13. RADIATIVE PENGUIN DECAYS FROM BABAR

    SciTech Connect

    Eigen, Gerald

    2003-08-28

    Electroweak penguin decays provide a promising hunting ground for Physics beyond the Standard Model (SM). The decay B {yields} X{sub s}{gamma}, which proceeds through an electromagnetic penguin loop, already provides stringent constraints on the supersymmetric (SUSY) parameter space. The present data samples of {approx}1 x 10{sup 8} B{bar B} events allow to explore radiative penguin decays with branching fractions of the order of 10{sup -6} or less. In this brief report they discuss a study of B {yields} K*{ell}{sup +}{ell}{sup -} decay modes and a search for B {yields} {rho}({omega}){gamma} decays.

  14. Charmless b decays at CDF

    SciTech Connect

    Donega, Mauro; /Geneva U.

    2005-07-01

    The authors report on the charmless B decays measurements performed on 180 pb{sup -1} of data collected with the CDF II detector at the Fermilab Tevatron collider. This paper describes: the first observation of the decay mode B{sub s} {yields} K{sup +}K{sup -} and the measurement of the direct Cp asymmetry in the ({bar B}){sub d} {yields} K{sup {+-}}{pi}{sup {-+}} decay; the first evidence of the decay mode B{sub s} {yields} {phi}{phi} and the branching ratio and Cp asymmetry for the B{sup {+-}} {yields} {phi}K{sup {+-}} decay.

  15. Decay Heat Measurements Using Total Absorption Gamma-ray Spectroscopy

    NASA Astrophysics Data System (ADS)

    Rice, S.; Valencia, E.; Algora, A.; Taín, J. L.; Regan, P. H.; Podolyák, Z.; Agramunt, J.; Gelletly, W.; Nichols, A. L.

    2012-09-01

    A knowledge of the decay heat emitted by thermal neutron-irradiated nuclear fuel is an important factor in ensuring safe reactor design and operation, spent fuel removal from the core, and subsequent storage prior to and after reprocessing, and waste disposal. Decay heat can be readily calculated from the nuclear decay properties of the fission products, actinides and their decay products as generated within the irradiated fuel. Much of the information comes from experiments performed with HPGe detectors, which often underestimate the beta feeding to states at high excitation energies. This inability to detect high-energy gamma emissions effectively results in the derivation of decay schemes that suffer from the pandemonium effect, although such a serious problem can be avoided through application of total absorption γ-ray spectroscopy (TAS). The beta decay of key radionuclei produced as a consequence of the neutron-induced fission of 235U and 239Pu are being re-assessed by means of this spectroscopic technique. A brief synopsis is given of the Valencia-Surrey (BaF2) TAS detector, and their method of operation, calibration and spectral analysis.

  16. Synthesis and decay properties of the heaviest nuclei

    NASA Astrophysics Data System (ADS)

    Oganessian, Yuri

    2006-07-01

    The formation and decay properties of the heaviest nuclei with Z=112-116 and 118 were studied in the reactions 238U, 242,244Pu, 243Am, 245,248Cm and 249Cf + 48Ca. The new nuclides mainly undergo sequential α-decay, which ends with spontaneous fission. The total time of decay ranges from 0.5 ms to ~1 day, depending on the proton and neutron numbers in the synthesized nuclei. The atomic number of the new elements 115 and 113 was confirmed also by an independent radiochemical experiment based on the identification of the neutron-rich isotope 268Db (TSF~30 h), the final product in the chain of α-decays of the odd-odd parent nucleus 288115. The comparison of the decay properties of 29 new nuclides with Z=104-118 and N=162-177 gives evidence of the decisive influence of the structure of superheavy elements on their stability with respect to different modes of radioactive decay. The investigations connected with the search for superheavy elements in Nature and prospects of superheavy element research are also presented. The experiments were carried out at the Flerov Laboratory of Nuclear Reactions (JINR, Dubna) in collaboration with the Analytical and Nuclear Chemistry Division of the Lawrence Livermore National Laboratory (USA).

  17. β -delayed γ-decay of 26 P

    NASA Astrophysics Data System (ADS)

    Perez-Loureiro, David; Wrede, C.; Bennett, M. B.; Liddick, S. N.; E10034 Collaboration

    2016-03-01

    The β-decay of proton-rich nuclei is a powerful tool in nuclear science; it can be used to probe quenching of the Gamow-Teller strength, isospin asymmetries, and nuclear astrophysics. 26P β-delayed γ-decay has been recently measured at the National Superconducting Cyclotron Laboratory at MSU with much higher sensitivity than the previous experiment. A fast 26P beam produced using nuclear fragmentation was implanted into a planar germaninum detector. This detector was surrounded by the SeGA germanium array in order to detect the γ rays emitted in coincidence with β-decays with high resolution. Absolute γ-ray intensities were measured and a complete decay scheme was built for the allowed transitions to bound excited states of 26Si. Log ft values and Gamow-Teller strengths were determined for each transition and compared to shell model calculations and the β-decay of its mirror nucleus 26Na. Results of this study, including a larger Gamow-Teller quenching than the sd shell average and a substantial mirror asymmetry between the β+ and β- transitions to the first excited states of 26Si and 26Mg, respectively, will be presented and interpreted. This work is supported by the U.S. NSF under Grants PHY-1102511 and PHY-0822648, the U.S. DOE under contract DE-FG02-97ER41020 and the US NNSA under contract NA0000979.

  18. Discovery of the alpha decay of 109I

    NASA Astrophysics Data System (ADS)

    Mazzocchi, C.; Grzywacz, R.; Bingham, C. R.; Simpson, D.; Gross, C. J.; Rykaczewski, K. P.; Batchelder, J. C.; Liddick, S. N.; Page, R. D.; Korgul, A.; Krolas, W.; Ilyushkin, S.; Winger, J. A.; Hamilton, J. H.; Hwang, J. K.; Li, K.

    2006-10-01

    Alpha emission is a rich source for nuclear-structure information [1]. The alpha-particle energies Eα, corrected for the recoil effect, yield the difference between the ground-state masses of parent and daughter nuclides (Qα). Far from stability the determination of Qα often represents the only way to determine the masses of ground and isomeric states. The evolution of Qα values along an alpha-decay chain are also a probe for shell effects. In the region above ^100Sn an alpha-decay island occurs, its presence is related to the strong Z=50, N=50 double shell-closure. In an experiment performed at the Recoil Mass Separator of the HRIBF at Oak Ridge National Laboratory, the first evidence for the alpha-decay branch of the proton-emitter ^109I was obtained. The results and the consequences for nuclear masses in this region will be discussed. [1] E. Roeckl, Alpha decay, in: Nuclear Decay Modes, ed. D.N. Poenaru, IoP Publishing, 1996, p. 237.

  19. Kinetics analysis and quantitative calculations for the successive radioactive decay process

    NASA Astrophysics Data System (ADS)

    Zhou, Zhiping; Yan, Deyue; Zhao, Yuliang; Chai, Zhifang

    2015-01-01

    The general radioactive decay kinetics equations with branching were developed and the analytical solutions were derived by Laplace transform method. The time dependence of all the nuclide concentrations can be easily obtained by applying the equations to any known radioactive decay series. Taking the example of thorium radioactive decay series, the concentration evolution over time of various nuclide members in the family has been given by the quantitative numerical calculations with a computer. The method can be applied to the quantitative prediction and analysis for the daughter nuclides in the successive decay with branching of the complicated radioactive processes, such as the natural radioactive decay series, nuclear reactor, nuclear waste disposal, nuclear spallation, synthesis and identification of superheavy nuclides, radioactive ion beam physics and chemistry, etc.

  20. NUCLEAR DATA RESOURCES FOR ADVANCED ANALYSIS AND SIMULATION.

    SciTech Connect

    PRITYCHENKO, B.

    2006-06-05

    The mission of the National Nuclear Data Center (NNDC) includes collection, evaluation, and dissemination of nuclear physics data for basic nuclear research and applied nuclear technologies. In 2004, to answer the needs of nuclear data users, NNDC completed a project to modernize storage and management of its databases and began offering new nuclear data Web services. Examples of nuclear reaction, nuclear structure and decay database applications along with a number of nuclear science codes are also presented.

  1. Experimental separation of virtual photon exchange and electron transfer in interatomic coulombic decay of neon dimers.

    PubMed

    Jahnke, T; Czasch, A; Schöffler, M; Schössler, S; Käsz, M; Titze, J; Kreidi, K; Grisenti, R E; Staudte, A; Jagutzki, O; Schmidt, L Ph H; Weber, Th; Schmidt-Böcking, H; Ueda, K; Dörner, R

    2007-10-12

    We investigate the interatomic Coulombic decay (ICD) of neon dimers following photoionization with simultaneous excitation of the ionized atom (shakeup) in a multiparticle coincidence experiment. We find that, depending on the parity of the excited state, which determines whether ICD takes place via virtual dipole photon emission or overlap of the wave functions, the decay happens at different internuclear distances, illustrating that nuclear dynamics heavily influence the electronic decay in the neon dimer. PMID:17995162

  2. New approach for alpha-decay calculations of deformed nuclei

    SciTech Connect

    Ni Dongdong; Ren Zhongzhou

    2010-06-15

    We present a new theoretical approach to evaluate alpha-decay properties of deformed nuclei, namely the multichannel cluster model (MCCM). The deformed alpha-nucleus potential is taken into full account, and the coupled-channel Schroedinger equation with outgoing wave boundary conditions is employed for quasibound states. Systematic calculations are carried out for well-deformed even-even nuclei with Z>=98 and isospin dependence of nuclear potentials is included in the calculations. Fine structure observed in alpha decay is well described by the four-channel microscopic calculation, which is performed for the first time in alpha-decay studies. The good agreement between experiment and theory is achieved for both total alpha-decay half-lives and branching ratios to the ground-state rotational band of daughter nuclei. Predictions on the branching ratios to high-spin daughter states are presented for superheavy nuclei, which may be important to interpret future observations.

  3. {lambda}(1405)-induced nonmesonic decay in kaonic nuclei

    SciTech Connect

    Sekihara, T.; Jido, D.; Kanada-En'yo, Y.

    2009-06-15

    Nonmesonic decay of kaonic nuclei is investigated under a {lambda}(1405) doorway picture in which the K absorptions in nuclei take place through the {lambda}(1405) resonance. Calculating {lambda}(1405)N{yields}YN transitions with one-meson exchange, we find that the nonmesonic decay ratio {gamma}{sub {lambda}}{sub N}/{gamma}{sub {sigma}{sup 0}}{sub N} depends strongly on the ratio of the couplings {lambda}(1405)-KN and {lambda}(1405)-{pi}{sigma}. Especially, a larger {lambda}(1405)-KN coupling leads to enhancement of the decay to {lambda}N. Using the chiral unitary approach for description of the KN amplitudes, we obtain {gamma}{sub {lambda}}{sub N}/{gamma}{sub {sigma}{sup 0}}{sub N}{approx_equal}1.2 almost independently of the nucleon density and find the total nonmesonic decay width calculated in uniform nuclear matter to be 22 MeV at the normal density.

  4. Theoretical description of the decay chain of the nucleus 294118

    NASA Astrophysics Data System (ADS)

    Sobiczewski, Adam

    2016-09-01

    The decay chain of the nucleus 294118, the heaviest nucleus observed (at JINR-Dubna) up to now, is analyzed theoretically. The α-decay energies {Q}α , the α-decay and the spontaneous-fission half-lives, {T}α and {T}{{sf}}, are studied. The analysis of the α decay is based on a phenomenological model using only three parameters. The calculations are performed in three variants using masses obtained with three nuclear-mass models accurately describing masses of heaviest nuclei. The experimental {Q}α energies are reconstructed with the average of the absolute values of the discrepancies: 180 keV, 270 keV and 290 keV, in the three variants considered. Measured half-lives {T}α are reproduced within the average ratios: 2.9, 9.8 and 5.2 in these variants.

  5. β-decay spectroscopy for the r-process nucleosynthesis

    SciTech Connect

    Nishimura, Shunji; Collaboration: RIBF Decay Collaborations

    2014-05-09

    Series of decay spectroscopy experiments, utilizing of high-purity Ge detectors and double-sided silicon-strip detectors, have been conducted to harvest the decay properties of very exotic nuclei relevant to the r-process nucleosynthesis at the RIBF. The decay properties such as β-decay half-lives, low-lying states, β-delayed neutron emissions, isomeric states, and possibly Q{sub β} of the very neutron-rich nuclei are to be measured to give significant constraints in the uncertainties of nuclear properties for the r-process nucleosynthesis. Recent results of βγ spectroscopy study using in-flight fission of {sup 238}U-beam will be presented together with our future perspectives.

  6. Shell model predictions for 124Sn double-β decay

    NASA Astrophysics Data System (ADS)

    Horoi, Mihai; Neacsu, Andrei

    2016-02-01

    Neutrinoless double-β (0 ν β β ) decay is a promising beyond standard model process. Two-neutrino double-β (2 ν β β ) decay is an associated process that is allowed by the standard model, and it was observed in about 10 isotopes, including decays to the excited states of the daughter. 124Sn was the first isotope whose double-β decay modes were investigated experimentally, and despite few other recent efforts, no signal has been seen so far. Shell model calculations were able to make reliable predictions for 2 ν β β decay half-lives. Here we use shell model calculations to predict the 2 ν β β decay half-life of 124Sn. Our results are quite different from the existing quasiparticle random-phase approximation results, and we envision that they will be useful for guiding future experiments. We also present shell model nuclear matrix elements for two potentially competing mechanisms to the 0 ν β β decay of 124Sn.

  7. Direct and indirect searches for anomalous beta decay

    NASA Astrophysics Data System (ADS)

    Nistor, Jonathan M.

    We present a treatment of time-varying nuclear transition rates intended to guide future experimental searches, focusing primarily on the concept of "self-induce decay.'' This investigation stems from a series of recent reports that suggest that the decay rates of several isotopes may have been influenced by solar activity (perhaps by solar neutrinos). A mechanism in which (anti)neutrinos can influence the decay process suggests that a sample of decaying nuclei emitting neutrinos could affect its own rate of decay. Past experiments have searched for this "self-induced decay" (SID) effect by measuring deviations from the expected decay rate for highly active samples of varying geometries. Here, we further develop a SID formalism which takes into account the activation process. In the course of the treatment, the observation is made that the SID behavior closely resembles the behavior of rate-related losses due to dead-time, and hence that standard dead-time corrections can result in the removal of possible SID-related behavior. Additionally, we discuss a long-running dark matter (DM) experiment which observes an annual signal predicted by standard DM models. Here, we consider the possibility that the annual signal seen by the DAMA collaboration, and interpreted by them as evidence for dark matter, may in fact be due to the radioactive contaminant 40K, which is known to be present in their detector. We also consider the possibility that part of the DAMA signal may arise from relic big-bang neutrinos.

  8. Concurrent tests of Lorentz invariance in β -decay experiments

    NASA Astrophysics Data System (ADS)

    Vos, K. K.; Wilschut, H. W.; Timmermans, R. G. E.

    2015-11-01

    Modern experiments on neutron and allowed nuclear β decay search for new semileptonic interactions, beyond the left-handed electroweak force. We show that ongoing and planned β -decay experiments, with isotopes at rest and in flight, can be exploited as sensitive tests of Lorentz invariance. The variety of correlations that involve the nuclear spin, the direction of the emitted β particle, and the recoil direction of the daughter nucleus allow for relatively simple experiments that give direct bounds on Lorentz violation. The pertinent observables are decay-rate asymmetries and their dependence on sidereal time. We discuss the potential of several asymmetries that together cover a large part of the parameter space for Lorentz violation in the gauge sector. High counting statistics is required.

  9. Rare B Decays

    SciTech Connect

    Jackson, P.D.; /Victoria U.

    2006-02-24

    Recent results from Belle and BaBar on rare B decays involving flavor-changing neutral currents or purely leptonic final states are presented. Measurements of the CP asymmetries in B {yields} K*{gamma} and b {yields} s{gamma} are reported. Also reported are updated limits on B{sup +} {yields} K{sup +}{nu}{bar {nu}}, B{sup +} {yields} {tau}{sup +}{nu}, B{sup +} {yields} {mu}{sup +}{nu} and the recent measurement of B {yields} X{sub s}{ell}{sup +}{ell}{sup -}.

  10. E6 Gamma Decay

    SciTech Connect

    Brown, B. Alex; Rae, W. D. M.

    2011-05-06

    Rare electric hexacontatetrapole (E6) transitions are studied in the full (f{sub 7/2},f{sub 5/2},p{sub 3/2},p{sub 1/2}) shell-model basis. Comparison of theory to the results from the gamma decay in {sup 53}Fe and from inelastic electron scattering on {sup 52}Cr provides unique and interesting tests of the valence wavefunctions, the models used for energy density functionals and into the origin of effective charge.

  11. Neutrinoless Double Beta Decay and {nu}-Mass Determination

    SciTech Connect

    Pedretti, M.

    2005-10-12

    The search for Neutrinoless Double Beta Decay could improve our knowledge on neutrino properties. After a brief discussion on the implications of the observation of this rare process, I will introduce the experimental approaches and review the prospects of the search for this nuclear transition.

  12. 10 CFR 35.2092 - Records of decay-in-storage.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Records of decay-in-storage. 35.2092 Section 35.2092 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2092 Records of decay-in-storage. A licensee shall maintain records of the disposal of licensed materials, as required...

  13. 10 CFR 35.2092 - Records of decay-in-storage.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Records of decay-in-storage. 35.2092 Section 35.2092 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2092 Records of decay-in-storage. A licensee shall maintain records of the disposal of licensed materials, as required...

  14. 10 CFR 35.2092 - Records of decay-in-storage.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Records of decay-in-storage. 35.2092 Section 35.2092 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2092 Records of decay-in-storage. A licensee shall maintain records of the disposal of licensed materials, as required...

  15. 10 CFR 35.2092 - Records of decay-in-storage.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Records of decay-in-storage. 35.2092 Section 35.2092 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2092 Records of decay-in-storage. A licensee shall maintain records of the disposal of licensed materials, as required...

  16. Dynamical cluster-decay model for hot and rotating light-mass nuclear systems applied to the low-energy {sup 32}S+{sup 24}Mg{yields}{sup 56}Ni{sup *} reaction

    SciTech Connect

    Gupta, Raj K.; Kumar, Rajesh; Singh, Dalip; Balasubramaniam, M.; Beck, C.

    2005-01-01

    The dynamical cluster-decay model (DCM) is developed further for the decay of hot and rotating compound nuclei (China) formed in light heavy-ion reactions. The model is worked out in terms of only one parameter, namely the neck-length parameter, which is related to the total kinetic energy TKE(T) or effective Q value Q{sub eff}(T) at temperature T of the hot CN and is defined in terms of the CN binding energy and ground-state binding energies of the emitted fragments. The emission of both the light particles (LP), with A{<=}4,Z{<=}2, as well as the complex intermediate mass fragments (IMF), with 42, is considered as the dynamical collective mass motion of preformed clusters through the barrier. Within the same dynamical model treatment, the LPs are shown to have different characteristics compared to those of the IMFs. The systematic variations of the LP emission cross section {sigma}{sub LP} and IMF emission cross section {sigma}{sub IMF} calculated from the present DCM match exactly the statistical fission model predictions. A nonstatistical dynamical description is developed for the first time for emission of light particles from hot and rotating CN. The model is applied to the decay of {sup 56}Ni* formed in the {sup 32}S+{sup 24}Mg reaction at two incident energies E{sub c.m.}=51.6 and 60.5 MeV. Both the IMFs and average TKE{sup lowbar} spectra are found to compare resonably well with the experimental data, favoring asymmetric mass distributions. The LPs' emission cross section is shown to depend strongly on the type of emitted particles and their multiplicities.

  17. Fundamentals in Nuclear Physics

    NASA Astrophysics Data System (ADS)

    Basdevant, Jean-Louis, Rich, James, Spiro, Michael

    This course on nuclear physics leads the reader to the exploration of the field from nuclei to astrophysical issues. Much nuclear phenomenology can be understood from simple arguments such as those based on the Pauli principle and the Coulomb barrier. This book is concerned with extrapolating from such arguments and illustrating nuclear systematics with experimental data. Starting with the basic concepts in nuclear physics, nuclear models, and reactions, the book covers nuclear decays and the fundamental electro-weak interactions, radioactivity, and nuclear energy. After the discussions of fission and fusion leading into nuclear astrophysics, there is a presentation of the latest ideas about cosmology. As a primer this course will lay the foundations for more specialized subjects. This book emerged from a series of topical courses the authors delivered at the Ecole Polytechnique and will be useful for graduate students and for scientists in a variety of fields.

  18. Wood decay at sea

    NASA Astrophysics Data System (ADS)

    Charles, François; Coston-Guarini, Jennifer; Guarini, Jean-Marc; Fanfard, Sandrine

    2016-08-01

    The oceans and seas receive coarse woody debris since the Devonian, but the kinetics of wood degradation remains one of many unanswered questions about the fate of driftwood in the marine environment. A simple gravimetric experiment was carried out at a monitoring station located at the exit of a steep, forested Mediterranean watershed in the Eastern Pyrenees. The objective was to describe and quantify, with standardized logs (in shape, structure and constitution), natural degradation of wood in the sea. Results show that the mass decrease of wood logs over time can be described by a sigmoidal curve. The primary process of wood decay observed at the monitoring station was due to the arrival and installation of wood-boring species that consumed more than half of the total wood mass in six months. Surprisingly, in a region where there is little remaining wood marine infrastructure, "shipworms", i.e. xylophagous bivalves, are responsible for an important part of this wood decay. This suggests that these communities are maintained probably by a frequent supply of a large quantity of riparian wood entering the marine environment adjacent to the watershed. By exploring this direct link between terrestrial and marine ecosystems, our long term objective is to determine how these supplies of terrestrial organic carbon can sustain wood-based marine communities as it is observed in the Mediterranean Sea.

  19. Introduction to nuclear physics.

    PubMed

    Patton, J A

    1998-01-01

    Photons for counting or imaging applications in nuclear medicine result from several processes. Gamma rays are produced from excited state transitions after beta decay and electron capture. Annihilation photons result from positron decay. The de-excitation of the atom after electron capture results in the production of characteristic x rays or Auger electrons. Metastable state transitions result in gamma ray emission or internal conversion electrons. All radiopharmaceuticals used in diagnostic nuclear medicine applications are tagged with radionuclides that emit photons as a result of one of these processes. PMID:9672982

  20. Alpha decay in electron surrounding

    SciTech Connect

    Igashov, S. Yu.; Tchuvil’sky, Yu. M.

    2013-12-15

    The influence of atomic electron shells on the constant of alpha decay of heavy and mediummass nuclei was considered in detail. A method for simultaneously taking into account the change in the potential-barrier shape and the effect of reflection of a diverging Coulomb wave in the classically allowed region was developed. The ratios of decay probabilities per unit time for a bare nucleus and the respective neutral atom were found for some alpha-decaying isotopes.

  1. Search for rare B decays

    NASA Astrophysics Data System (ADS)

    Albrecht, H.; Hamacher, T.; Hofmann, R. P.; Kirchhoff, T.; Mankel, R.; Nau, A.; Nowak, S.; Reßing, D.; Schröder, H.; Schulz, H. D.; Walter, M.; Wurth, R.; Hast, C.; Kapitza, H.; Kolanoski, H.; Kosche, A.; Lange, A.; Lindner, A.; Schieber, M.; Siegmund, T.; Spaan, B.; Thurn, H.; Töpfer, D.; Wegener, D.; Eckstein, P.; Frankl, C.; Graf, J.; Schmidtler, M.; Schramm, M.; Schubert, K. R.; Schwierz, R.; Waldi, R.; Reim, K.; Wegener, H.; Eckmann, R.; Kuipers, H.; Mai, O.; Mundt, R.; Oest, T.; Reiner, R.; Schmidt-Parzefall, W.; Stiewe, J.; Werner, S.; Ehret, K.; Hofmann, W.; Hüpper, A.; Knöpfle, K. T.; Spengler, J.; Krieger, P.; Macfarlane, D. B.; Prentice, J. D.; Saull, P. R. B.; Tzamariudaki, K.; van de Water, R. G.; Yoon, T.-S.; Schneider, M.; Weseler, S.; Kernel, G.; Križan, P.; Križnič, E.; Podobnik, T.; Živko, T.; Balagura, V.; Barsuk, S.; Belyaev, I.; Chistov, R.; Danilov, M.; Gershtein, L.; Gershtein, Yu.; Golutyin, A.; Korolko, I.; Kostina, G.; Litvintsev, D.; Pakhlov, P.; Semenov, S.; Snizhko, A.; Tichomirov, I.; Zaitsev, Yu.; Argus Collaboration

    1995-02-01

    Using the ARGUS detector at the e +e - storage ring DORIS II at DESY, we have searched for decays b → sgluon through full reconstruction of a whole event. Two B overlineB decays were found with one of B meson decaying into a final state without charmed particles. We also obtained an upper limit of Br(B + → τ+ντ) of 1.04% at 90% CL.

  2. A search for neutrinoless double beta decay of tellurium-130

    NASA Astrophysics Data System (ADS)

    Bryant, Adam Douglas

    This dissertation describes an experimental search for neutrinoless double beta (0nubetabeta) decay of 130Te. An observation of 0nubetabeta decay would establish that neutrinos are Majorana fermions and would constrain the neutrino mass scale. The data analyzed were collected by two bolometric experiments: CUORICINO and an R&D experiment for CUORE known as the Three Towers Test. Both experiments utilized arrays of TeO 2 crystals operated as bolometers at ˜10 mK in a dilution refrigerator. The bolometers measured the energy deposited by particle interactions in the crystals by recording the induced change in crystal temperature. Between the two experiments, there were 81 TeO2 bolometers used in the analysis, each of which was an independent detector of nuclear decays as well as a source of 130Te. The experiments were conducted underground at a depth of about 3300 meters water equivalent in Hall A of the Laboratori Nazionali del Gran Sasso in Assergi, Italy, in order to shield the detectors from cosmic rays. The data analyzed represent an exposure of 19.9 kg · y of 130Te (18.6 kg · y from CUORICINO and 1.3 kg · y from the Three Towers Test). In addition to the combined analysis of the two experiments, an analysis of CUORICINO data alone is presented in order to compare with an independent analysis being carried out by collaborators at the University of Milano-Bicocca. No signal due to 0nubetabeta decay is observed, and therefore a limit on the partial half-life for the decay is set. From a simultaneous fit to the 81 independent detectors, the rate of 0nubetabeta decay of 130Te is measured to be Gamma0nubetabeta( 130Te) = (-0.6+/-1.4 (stat.) +/- 0.4 (syst.)) x 10-25 y-1, which corresponds to a lower limit on the partial half-life for 0nubetabeta decay of 130Te of T0nbb1/2 (130Te) > 3.0x1024 y (90% C.L.). Converting the half-life limit to an upper limit on the effective Majorana neutrino mass, mbetabeta, using a set of recent nuclear matrix element calculations

  3. Monticello BWR spent fuel assembly decay heat predictions and measurements

    SciTech Connect

    McKinnon, M.A.; Doman, J.W.; Heeb, C.M.; Creer, J.M.

    1986-06-01

    This report compares pre-calorimetry predictions of rates of six 7 x 7 boiling water reactor (BWR) spent fuel assemblies with measured decay heat rates. The assemblies were from Northern States Power Company's Monticello Nuclear Generating Plant and had burnups of 9 to 21 GWd/MTU and cooling times of 9 to 10 years. Conclusions are: The agreement between ORIGEN2 predictions and decay heat measurements of Monticello spent fuel is dependent on the method used to calibrate the calorimeter and to make the decay heat measurements. The agreement between predictions and measurements of decay heat rates of Monticello fuel is the same as that for Cooper and Dresden fuel if the same measurement method is used. The predictions are within a standard deviation of +-15 W of the measurements. Using a different measurement method, ORIGEN2 underpredicts the measured decay heat output of Monticello fuel assemblies by a constant 20 +- 2 W. The 20-W offset appears to be an artifact of the calibration procedure. The constant term in the calibration curve (i.e., q/sub DH/ = mx + b) can account for measurement differences of 40 W based on the 1983, 1984, and 1985 calibration curves. The difference between ORIGEN2 predictions and calorimeter decay heat measurements does not appear to be dependent on the magnitude of decay heat output. Predicted axial decay heat profiles are in good agreement with measured axial gamma radiation profiles. Recommendations are: Predictions using other decay heat codes should be compared to experimental data contained in this report, to evaluate prediction capabilities. The source of the differences that exist among calorimeter calibration curves needs to be determined. Calorimeter operational methods need to be investigated further to determine cause and effect relationships between operational method and calorimeter precision and accuracy.

  4. Determination of antineutrino spectra from nuclear reactors

    SciTech Connect

    Huber, Patrick

    2011-08-15

    In this paper we study the effect of well-known higher-order corrections to the allowed {beta}-decay spectrum on the determination of antineutrino spectra resulting from the decays of fission fragments. In particular, we try to estimate the associated theory errors and find that induced currents like weak magnetism may ultimately limit our ability to improve the current accuracy and under certain circumstance could even greatly increase the theoretical errors. We also perform a critical evaluation of the errors associated with our method to extract the antineutrino spectrum using synthetic {beta} spectra. It turns out that a fit using only virtual {beta} branches with a judicious choice of the effective nuclear charge provides results with a minimal bias. We apply this method to actual data for {sup 235}U, {sup 239}Pu, and {sup 241}Pu and confirm, within errors, recent results, which indicate a net 3% upward shift in energy-averaged antineutrino fluxes. However, we also find significant shape differences which can, in principle, be tested by high-statistics antineutrino data samples.

  5. CP violation in K decays and rare decays

    SciTech Connect

    Buchalla, G.

    1996-12-01

    The present status of CP violation in decays of neutral kaons is reviewed. In addition selected rare decays of both K and B mesons are discussed. The emphasis is in particular on observables that can be reliably calculated and thus offer the possibility of clean tests of standard model flavor physics. 105 refs.

  6. Electron Screening Effects on {alpha}-decay

    SciTech Connect

    Musumarra, A.; Bonasera, A.; Del Zoppo, A.; Di Pietro, A.; Figuera, P.; Kimura, S.; Lattuada, M.; Pellegriti, M. G.; Scuderi, V.; Torresi, D.; Farinon, F.; Geissel, H.; Knoebel, R.; Prochazka, A.; Scheidenberger, C.; Nociforo, C.; Behr, K.-H.; Bosch, F.; Boutin, D.; Bruenle, A.

    2009-08-26

    An open problem in Nuclear Astrophysics concerns the understanding of electron-screening effects on nuclear reaction rates at stellar energies. In this framework, we have proposed to investigate the influence of the electron cloud on {alpha}-decay by measuring Q-values and {alpha}-decay half-lives of fully stripped, H-like and He-like ions. These kinds of measurements have been feasible just recently for highly-charged radioactive nuclides by fragmentation of {sup 238}U at relativistic energies at the FRS-ESR facility at GSI. In this way it is possible to produce, efficiently separate and store highly-charged {alpha}-emitters. Candidates for the proposed investigation were carefully selected and will be studied by using the Schottky Mass Spectroscopy technique. In order to establish a solid reference data set, lifetimes and Q{sub {alpha}}-value measurements of the corresponding neutrals have been performed directly at the FRS, by implanting the separated ions into an active Silicon stopper.

  7. Nuclear properties for astrophysical applications

    SciTech Connect

    Moeller, P.; Nix, J.R.; Kratz, K.L.

    1994-09-23

    We tabulate the ground-state odd-proton and odd-neutron spins, proton and neutron pairing gaps, binding energies, neuton separation energies, quantities related to {beta}-delayed one, two and three neutron emission probabilities, {beta}-decay Q values and half-lives with respect to Gamow-Teller decay, proton separation energies, and {alpha}-decay Q values and half-lives. The starting point of the calculations is a calculation of nuclear ground-states and (information based on the finite-range droplet model and the folded-Yukawa single-particle model published in a previous issue of ATOMIC DATA AND NUCLEAR DATA TABLES. The {beta}-delayed neutron-emission probabilities and Gamow-Teller {beta}-decay rates are obtained from a QRPA model that uses single-particle levels and wave-functions at the calculated nuclear ground-state shape as the starting point.

  8. Energy decay rate of the thermoelastic Bresse system

    NASA Astrophysics Data System (ADS)

    Liu, Zhuangyi; Rao, Bopeng

    2009-01-01

    In this paper, we study the energy decay rate for the thermoelastic Bresse system which describes the motion of a linear planar, shearable thermoelastic beam. If the longitudinal motion and heat transfer are neglected, this model reduces to the well-known thermoelastic Timoshenko beam equations. The system consists of three wave equations and two heat equations coupled in certain pattern. The two wave equations about the longitudinal displacement and shear angle displacement are effectively damped by the dissipation from the two heat equations. Actually, the corresponding energy decays exponentially like the classical one-dimensional thermoelastic system. However, the third wave equation about the vertical displacement is only weakly damped. Thus the decay rate of the energy of the overall system is still unknown. We will show that the exponentially decay rate is preserved when the wave speed of the vertical displacement coincides with the wave speed of longitudinal displacement or of the shear angle displacement. Otherwise, only a polynomial type decay rate can be obtained. These results are proved by verifying the frequency domain conditions.

  9. Synthesis and Decay Properties of Superheavy Nuclei

    NASA Astrophysics Data System (ADS)

    Oganessian, Yu. Ts.; Utyonkov, V. K.; Lobanov, Yu. V.; Abdullin, F. Sh.; Polyakov, A. N.; Shirokovsky, I. V.; Tsyganov, Yu. S.; Gulbekian, G. G.; Bogomolov, S. L.; Gikal, B. N.; Mezentsev, A. N.; Iliev, S.; Subbotin, V. G.; Sukhov, A. M.; Voinov, A. A.; Buklanov, G. V.; Subotic, K.; Zagrebaev, V. I.; Itkis, M. G.; Patin, J. B.; Moody, K. J.; Wild, J. F.; Stoyer, M. A.; Stoyer, N. J.; Shaughnessy, D. A.; Kenneally, J. M.; Wilk, P. A.; Lougheed, R. W.

    2005-09-01

    We have studied the dependence of the production cross sections of the isotopes 282,283112 and 286-288114 on the excitation energy of the compound nuclei 286112 and 290114. The maximum cross sections of the xn-evaporation channels for the reaction 238U(48Ca,xn)286-x112 were measured to be: σ 3n = 2.5{ - 1.1}{ + 1.8} pb and σ 4n = 0.6{ - 0.5}{ + 1.6} pb ; for the reaction 242Pu(48Ca,xn)290-x114: σ2n 0.5 pb, σ 3n = 3.6{ - 1.7}{ + 3.4} pb and σ 4n = 4.5{ - 1.9}{ + 3.6} pb . In the reaction 233U(48Ca,2-4n)277-279112 we measured an upper cross section limit of σxn≤0.6 pb. An increase of σER in the reactions of actinide targets with 48Ca is consistent with the expected increase of the survivability of the excited compound nucleus upon closer approach to the closed neutron shell N=184. The observed nuclear decay properties of the nuclides with Z=104-118 are compared with theoretical nuclear mass calculations and the systematic trends of α-decay properties. As a whole, they give a consistent pattern of decay of the 18 even-Z neutron-rich nuclides with Z=104-118 and N=163-177.

  10. Beta decay and other processes in strong electromagnetic fields

    SciTech Connect

    Akhmedov, E. Kh.

    2011-09-15

    We consider effects of the fields of strong electromagnetic waves on various characteristics of quantum processes. After a qualitative discussion of the effects of external fields on the energy spectra and angular distributions of the final-state particles as well as on the total probabilities of the processes (such as decay rates and total cross sections), we present a simple method of calculating the total probabilities of processes with production of nonrelativistic charged particles. Using nuclear {beta} decay as an example, we study the weak- and strong-field limits, as well as the field-induced {beta} decay of nuclei stable in the absence of the external fields, both in the tunneling and multiphoton regimes. We also consider the possibility of accelerating forbidden nuclear {beta} decays by lifting the forbiddeness due to the interaction of the parent or daughter nuclei with the field of a strong electromagnetic wave. It is shown that for currently attainable electromagnetic fields all effects on total {beta}-decay rates are unobservably small.

  11. Ground state occupation probabilities of neutrinoless double beta decay candidates

    NASA Astrophysics Data System (ADS)

    Kotila, Jenni; Barea, Jose

    2015-10-01

    A better understanding of nuclear structure can offer important constraints on the calculation of 0 νββ nuclear matrix elements. A simple way to consider differences between initial and final states of neutrinoless double beta decay candidates is to look at the ground state occupation probabilities of initial and final nuclei. As is well known, microscopic interacting boson model (IBM-2) has found to be very useful in the description of detailed aspects of nuclear structure. In this talk I will present results for ground state occupation probabilities obtained using IBM-2 for several interesting candidates of 0 νββ -decay. Comparison with recent experimental results is also made. This work was supported Academy of Finland (Project 266437) and Chilean Ministry of Education (Fondecyt Grant No. 1150564),

  12. Self-Driven Decay Heat Removal in a GCR Closed Brayton Cycle Power System

    SciTech Connect

    Wright, Steven A.; Lipinski, Ronald J.

    2006-07-01

    Closed Brayton Cycle (CBC) systems that are driven by Gas Cooled Reactors (GCR) are being evaluated for high-efficiency electricity generation. These systems were also selected by the Naval Reactor Prime Contractor team for use as space power systems. This paper describes the decay heat removal performance of these systems. A key question for such space or terrestrial based CBC systems is how to shut down the reactor while still removing the decay heat without using substantial amounts of auxiliary power. Tests in the Sandia Brayton Loop (SBL) show that the Brayton cycle is capable of operating on sensible heat for very long times ({approx} hour) after the reactor is shut down. This paper describes the measured and predicted results of generated electrical power produced as a function of time after the heat source had been turned off in the Sandia Brayton Loop. The measured results were obtained from an electrically heated closed Brayton cycle test loop (SBL) that Sandia fabricated and has operating within the laboratories. The predicted behavior is based on integrated dynamic system models that are capable of predicting both the transient and steady state behavior of nuclear heated or electrically heated Brayton cycle systems. The measured data was obtained by running the SBL and shutting off the electrical heater while adjusting the flow through the loop to keep the system operating at (or just above) its self-sustaining operating power level. During the test we were able to produce {approx}500 W of power for over 73 minutes after the heater power was turned off. Thus the Brayton loop was able to operate at self-sustaining conditions (or better) for over one hour. During this time the turbo-compressor was transporting the sensible heat in the heater, ducting, and recuperator to the waste heat rejection system for over an hour. For a reactor-driven system in space, this would give the shutdown decay power sufficient time to decay to levels where it could be

  13. Cluster decay in osmium isotopes using Hartree-Fock-Bogoliubov theory

    NASA Astrophysics Data System (ADS)

    Ashok, Nithu; Joseph, Deepthy Maria; Joseph, Antony

    2016-02-01

    Cluster radioactivity is a rare cold nuclear process which is intermediate between alpha decay and spontaneous fission. The present work is a theoretical investigation of the feasibility of alpha decay and cluster radioactivity from proton rich Osmium (Os) isotopes with mass number ranging from 162-190. Osmium forms a part of the transition region between highly deformed and spherical nuclei. Calculations have been done using unified fission model and Hartree-Fock-Bogoliubov (HFB) theory. We have chosen only those decays with half-lives falling in measurable range. Geiger-Nuttall plot has been successfully reproduced. The isotope which is most favorable to each decay mode has a magic daughter nucleus.

  14. 26 CFR 1.953-2 - Actual United States risks.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ..., and water damage risks incurred when property is actually located in the United States and marine... 26 Internal Revenue 10 2014-04-01 2013-04-01 true Actual United States risks. 1.953-2 Section 1... coverage as “.825% plus .3% fire, etc. risks plus .12% water risks = 1.245%”, a reasonable basis exists...

  15. Self-actualization: Its Use and Misuse in Teacher Education.

    ERIC Educational Resources Information Center

    Ivie, Stanley D.

    1982-01-01

    The writings of Abraham Maslow are analyzed to determine the meaning of the psychological term "self-actualization." After pointing out that self-actualization is a rare quality and that it has little to do with formal education, the author concludes that the concept has little practical relevance for teacher education. (PP)

  16. The Self-Actualization of Polk Community College Students.

    ERIC Educational Resources Information Center

    Pearsall, Howard E.; Thompson, Paul V., Jr.

    This article investigates the concept of self-actualization introduced by Abraham Maslow (1954). A summary of Maslow's Needs Hierarchy, along with a description of the characteristics of the self-actualized person, is presented. An analysis of humanistic education reveals it has much to offer as a means of promoting the principles of…

  17. From Self-Awareness to Self-Actualization

    ERIC Educational Resources Information Center

    Cangemi, Joseph P.; Englander, Meryl R.

    1974-01-01

    Highest priority of education is to help students utilize as much of their talent as is possible. Third Force psychologists would interpret this as becoming self-actualized. Self-awareness is required for psychological growth. Without self-awareness there can be no growth, no mental hygiene, and no self-actualization. (Author)

  18. 12 CFR 1806.203 - Selection Process, actual award amounts.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 12 Banks and Banking 7 2010-01-01 2010-01-01 false Selection Process, actual award amounts. 1806... OF THE TREASURY BANK ENTERPRISE AWARD PROGRAM Awards § 1806.203 Selection Process, actual award... round: (1) To select Applicants not previously selected, using the calculation and selection...

  19. Self-Actualization and the Effective Social Studies Teacher.

    ERIC Educational Resources Information Center

    Farmer, Rodney B.

    1980-01-01

    Discusses a study undertaken to investigate the relationship between social studies teachers' degrees of self-actualization and their teacher effectiveness. Investigates validity of using Maslow's theory of self-actualization as a way of identifying the effective social studies teacher personality. (Author/DB)

  20. Facebook as a Library Tool: Perceived vs. Actual Use

    ERIC Educational Resources Information Center

    Jacobson, Terra B.

    2011-01-01

    As Facebook has come to dominate the social networking site arena, more libraries have created their own library pages on Facebook to create library awareness and to function as a marketing tool. This paper examines reported versus actual use of Facebook in libraries to identify discrepancies between intended goals and actual use. The results of a…

  1. Perceived and Actual Student Support Needs in Distance Education.

    ERIC Educational Resources Information Center

    Visser, Lya; Visser, Yusra Laila

    2000-01-01

    This study sought to determine the academic, affective, and administrative support expectations of distance education students, and to compare actual expectations of distance education students with the instructor's perceptions of such expectations. Results demonstrated divergence between perceived and actual expectations of student support in…

  2. Gebrauchstexte im Fremdsprachenunterricht ("Actual" Texts in Foreign Language Teaching)

    ERIC Educational Resources Information Center

    Ziegesar, Detlef von

    1976-01-01

    Presents for analysis actual texts and texts specially written for teaching, arriving at a basis for a typology of actual texts. Defines teaching aims using such texts, and develops, from a TV program, a teaching unit used in a Karlsruhe school. (Text is in German.) (IFS/WGA)

  3. Self-Actualizing Men and Women: A Comparison Study.

    ERIC Educational Resources Information Center

    Hall, Eleanor G.; Hansen, Jan B.

    1997-01-01

    The self-actualization of 167 women who lived in the Martha Cook (MC) dormitory of the University of Michigan (1950-1970) was compared to that of a group of Ivy League men researched in another study. In addition, two groups of MC women were compared to each other to identify differences which might explain why some self-actualized while other did…

  4. SELF-ACTUALIZATION AND THE UTILIZATION OF TALENT.

    ERIC Educational Resources Information Center

    FRENCH, JOHN R.P.; MILLER, DANIEL R.

    THIS STUDY ATTEMPTED (1) TO DEVELOP A THEORY OF THE CAUSES AND CONSEQUENCES OF SELF-ACTUALIZATION AS RELATED TO THE UTILIZATION OF TALENT, (2) TO FIT THE THEORY TO EXISTING DATA, AND (3) TO PLAN ONE OR MORE RESEARCH PROJECTS TO TEST THE THEORY. TWO ARTICLES ON IDENTITY AND MOTIVATION AND SELF-ACTUALIZATION AND SELF-IDENTITY THEORY REPORTED THE…

  5. Self-Actualization Effects Of A Marathon Growth Group

    ERIC Educational Resources Information Center

    Jones, Dorothy S.; Medvene, Arnold M.

    1975-01-01

    This study examined the effects of a marathon group experience on university student's level of self-actualization two days and six weeks after the experience. Gains in self-actualization as a result of marathon group participation depended upon an individual's level of ego strength upon entering the group. (Author)

  6. 26 CFR 1.962-3 - Treatment of actual distributions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 10 2013-04-01 2013-04-01 false Treatment of actual distributions. 1.962-3... TAX (CONTINUED) INCOME TAXES (CONTINUED) Controlled Foreign Corporations § 1.962-3 Treatment of actual... a foreign corporation. (ii) Treatment of section 962 earnings and profits under § 1.959-3....

  7. School Guidance Counselors' Perceptions of Actual and Preferred Job Duties

    ERIC Educational Resources Information Center

    Edwards, John Dexter

    2010-01-01

    The purpose of this study was to provide process data for school counselors, administrators, and the public, regarding school counselors' actual roles within the guidance counselor preferred job duties and actual job duties. In addition, factors including National Certification or no National Certification, years of counseling experience, and…

  8. Slowly decaying waves on spherically symmetric spacetimes and ultracompact neutron stars

    NASA Astrophysics Data System (ADS)

    Keir, Joe

    2016-07-01

    We prove that, in a class of spherically symmetric spacetimes exhibiting stable trapping of null geodesics, linear waves cannot (uniformly) decay faster than logarithmically. When these linear waves are treated as a model for nonlinear perturbations, this slow decay is highly suggestive of nonlinear instability. We also prove that, in a large class of asymptotically flat, spherically symmetric spacetimes, logarithmic decay actually holds as a uniform upper bound. In the presence of stable trapping, this result is therefore the best one can obtain. In addition, we provide an application of these results to ultracompact neutron stars, suggesting that all stars with r\\lt 3M might be unstable.

  9. Tau decays: A theoretical perspective

    SciTech Connect

    Marciano, W.J.

    1992-11-01

    Theoretical predictions for various tau decay rates are reviewed. Effects of electroweak radiative corrections are described. Implications for precision tests of the standard model and ``new physics`` searches are discussed. A perspective on the tau decay puzzle and 1-prong problem is given.

  10. Tau decays: A theoretical perspective

    SciTech Connect

    Marciano, W.J.

    1992-11-01

    Theoretical predictions for various tau decay rates are reviewed. Effects of electroweak radiative corrections are described. Implications for precision tests of the standard model and new physics'' searches are discussed. A perspective on the tau decay puzzle and 1-prong problem is given.

  11. Theoretical understanding of charm decays

    SciTech Connect

    Bigi, I.I.

    1986-08-01

    A detailed description of charm decays has emerged. The various concepts involved are sketched. Although this description is quite successful in reproducing the data the chapter on heavy flavour decays is far from closed. Relevant questions like on th real strength of weak annihilation, Penguin operators, etc. are still unanswered. Important directions in future work, both on the experimental and theoretical side are identified.

  12. Counterflow driven by swirl decay

    NASA Astrophysics Data System (ADS)

    Shtern, Vladimir N.; Borissov, Anatoli A.

    2010-06-01

    The global meridional circulation of a viscous fluid, caused by swirl decay in a cylindrical container, is studied. To this end, a new solution to the Navier-Stokes equations is obtained, and simple experiments are performed to verify the predictions of the theory. The swirl decay mechanism explains elongated counterflows in hydrocyclones and vortex tubes sometimes extending over a hundred diameters.

  13. Top decays in extended models

    SciTech Connect

    Gaitan, R.; Miranda, O. G.; Cabral-Rosetti, L. G.

    2009-04-20

    Top quark decays are interesting as a mean to test the Standard Model (SM) predictions. The Cabbibo-Kobayashi-Maskawa (CKM)-suppressed process t{yields}cWW, and the rare decays t{yields}cZ, t{yields}H{sup 0}+c, and t{yields}c{gamma} an excellent window to probe the predictions of theories beyond the SM. We evaluate the flavor changing neutral currents (FCNC) decay t{yields}H{sup 0}+c in the context of Alternative Left-Right symmetric Models (ALRM) with extra isosinglet heavy fermions; the FCNC decays may place at tree level and are only supressed by the mixing between ordinary top and charm quarks. We also comment on the decay process t{yields}c+{gamma}, which involves radiative corrections.

  14. Logarithmic decays of unstable states

    NASA Astrophysics Data System (ADS)

    Giraldi, Filippo

    2015-01-01

    It is known that the survival amplitude of unstable quantum states deviates from exponential relaxations and exhibits decays that depend on the integral and analytic properties of the energy distribution density. In the same scenario, model independent dominant logarithmic decays t -1- α0log t of the survival amplitude are induced over long times by special conditions on the energy distribution density. While the instantaneous decay rate exhibits the dominant long time relaxation 1 / t, the instantaneous energy tends to the minimum value of the energy spectrum with the dominant logarithmic decay 1/( tlog 2 t) over long times. Similar logarithmic relaxations have already been found in the dynamics of short range potential systems with even dimensional space or in the Weisskopf-Wigner model of spontaneous emission from a two-level atom. Here, logarithmic decays are obtained as a pure model independent quantum effect in general unstable states.

  15. Towards a Conceptual Diagnostic Survey in Nuclear Physics

    ERIC Educational Resources Information Center

    Kohnle, Antje; Mclean, Stewart; Aliotta, Marialuisa

    2011-01-01

    Understanding students' prior beliefs in nuclear physics is a first step towards improving nuclear physics instruction. This paper describes the development of a diagnostic survey in nuclear physics covering the areas of radioactive decay, binding energy, properties of the nuclear force and nuclear reactions, that was administered to students at…

  16. Probabilistic approach for decay heat uncertainty estimation using URANIE platform and MENDEL depletion code

    NASA Astrophysics Data System (ADS)

    Tsilanizara, A.; Gilardi, N.; Huynh, T. D.; Jouanne, C.; Lahaye, S.; Martinez, J. M.; Diop, C. M.

    2014-06-01

    The knowledge of the decay heat quantity and the associated uncertainties are important issues for the safety of nuclear facilities. Many codes are available to estimate the decay heat. ORIGEN, FISPACT, DARWIN/PEPIN2 are part of them. MENDEL is a new depletion code developed at CEA, with new software architecture, devoted to the calculation of physical quantities related to fuel cycle studies, in particular decay heat. The purpose of this paper is to present a probabilistic approach to assess decay heat uncertainty due to the decay data uncertainties from nuclear data evaluation like JEFF-3.1.1 or ENDF/B-VII.1. This probabilistic approach is based both on MENDEL code and URANIE software which is a CEA uncertainty analysis platform. As preliminary applications, single thermal fission of uranium 235, plutonium 239 and PWR UOx spent fuel cell are investigated.

  17. New Limit on Time-Reversal Violation in Beta Decay

    SciTech Connect

    Mumm, H. P.; Chupp, T. E.; Cooper, R. L.; Coulter, K. P.; Freedman, S. J.; Fujikawa, B. K.; Garcia, A.; Jones, G. L.; Nico, J. S.; Thompson, A. K.; Trull, C. A.; Wietfeldt, F. E.; Wilkerson, J. F.

    2011-09-02

    We report the results of an improved determination of the triple correlation DP{center_dot}(p{sub e}xp{sub v}) that can be used to limit possible time-reversal invariance in the beta decay of polarized neutrons and constrain extensions to the standard model. Our result is D=[-0.96{+-}1.89(stat){+-}1.01(sys)]x10{sup -4}. The corresponding phase between g{sub A} and g{sub V} is {phi}{sub AV}=180.013 deg. {+-}0.028 deg. (68% confidence level). This result represents the most sensitive measurement of D in nuclear {beta} decay.

  18. Selected spectroscopic results on element 115 decay chains

    DOE PAGESBeta

    Rudolph, D.; Forsberg, U.; Golubev, P.; Sarmiento, L. G.; Yakushev, A.; Andersson, L. -L.; Di Nitto, A.; Düllmann, Ch. E.; Gates, J. M.; Gregorich, K. E.; et al

    2014-08-24

    We observed thirty correlated α-decay chains in an experiment studying the fusion-evaporation reaction 48Ca + 243Am at the GSI Helmholtzzentrum fur Schwerionenforschung. The decay characteristics of the majority of these 30 chains are consistent with previous observations and interpretations of such chains to originate from isotopes of element Z = 115. High-resolution α-photon coincidence spectroscopy in conjunction with comprehensive Monte-Carlo simulations allow to propose excitation schemes of atomic nuclei of the heaviest elements, thereby probing nuclear structure models near the 'Island of Stability' with unprecedented experimental precision.

  19. Selected spectroscopic results on element 115 decay chains

    SciTech Connect

    Rudolph, D.; Forsberg, U.; Golubev, P.; Sarmiento, L. G.; Yakushev, A.; Andersson, L. -L.; Di Nitto, A.; Düllmann, Ch. E.; Gates, J. M.; Gregorich, K. E.; Gross, C. J.; Herzberg, R. -D.; Heßberger, F. P.; Khuyagbaatar, J.; Kratz, J. V.; Rykaczewski, K.; Schädel, M.; Åberg, S.; Ackermann, D.; Block, M.; Brand, H.; Carlsson, B. G.; Cox, D.; Derkx, X.; Eberhardt, K.; Even, J.; Fahlander, C.; Gerl, J.; Jäger, E.; Kindler, B.; Krier, J.; Kojouharov, I.; Kurz, N.; Lommel, B.; Mistry, A.; Mokry, C.; Nitsche, H.; Omtvedt, J. P.; Papadakis, P.; Ragnarsson, I.; Runke, J.; Schaffner, H.; Schausten, B.; Thörle-Pospiech, P.; Torres, T.; Traut, T.; Trautmann, N.; Türler, A.; Ward, A.; Ward, D. E.; Wiehl, N.

    2014-08-24

    We observed thirty correlated α-decay chains in an experiment studying the fusion-evaporation reaction 48Ca + 243Am at the GSI Helmholtzzentrum fur Schwerionenforschung. The decay characteristics of the majority of these 30 chains are consistent with previous observations and interpretations of such chains to originate from isotopes of element Z = 115. High-resolution α-photon coincidence spectroscopy in conjunction with comprehensive Monte-Carlo simulations allow to propose excitation schemes of atomic nuclei of the heaviest elements, thereby probing nuclear structure models near the 'Island of Stability' with unprecedented experimental precision.

  20. 2007 Nuclear Data Review

    NASA Astrophysics Data System (ADS)

    Holden, N. E.

    2009-08-01

    The results of a review and evaluation of neutron and non-neutron nuclear data published in the scientific literature are presented. The status of new chemical elements is examined. Data on revised values for the isotopic composition of the elements are reviewed and recommended values are presented. Half-lives of very long-lived nuclides are presented, including double beta decay, double electron capture, long-lived alpha decay and long-lived beta decay. Data from new measurements on the very heavy elements (trans-meitnerium elements) are discussed and tabulated. The first observation of the radioactive decay mode of the free neutron is discussed. New measurements that have expanded the neutron drip line for magnesium and aluminum are discussed. Data on recent neutron cross-section and resonance integral measurements are also discussed.

  1. 2007 Nuclear Data Review

    SciTech Connect

    Holden,N.E.

    2008-05-05

    The results of a review and evaluation of neutron and non-neutron nuclear data published in the scientific literature are presented. The status of new chemical elements is examined. Data on revised values for the isotopic composition of the elements are reviewed and recommended values are presented. Half-lives of very long-lived nuclides are presented, including double beta decay, double electron capture, long-lived alpha decay and long-lived beta decay. Data from new measurements on the very heavy elements (trans-meitnerium elements) are discussed and tabulated. The first observation of the radioactive decay mode of the free neutron is discussed. New measurements that have expanded the neutron drip line for magnesium and aluminum are discussed. Data on recent neutron cross-section and resonance integral measurements are also discussed.

  2. Nuclear Weapons, Psychology, and International Relations

    ERIC Educational Resources Information Center

    Dougherty, James E.

    1976-01-01

    Fear of nuclear energy, nuclear weapons, and nuclear was is widespread among the peoples of the world. However, to what extent do the fears (both rational and irrational) of policy-making elites and political masses produce actual effects upon the behavior of governments (who, after all, control the use of nuclear weapons)? (Author/RK)

  3. Beauty meson decays to charmonium

    NASA Astrophysics Data System (ADS)

    Ershov, Alexey Valerievich

    2001-10-01

    We study decays of beauty (B) mesons into the final states containing charmonium mesons. The data were collected by the CLEO experiment at the Cornell Electron Storage Ring from 1990 to 1999. First, we describe a technique that significantly improves the reconstruction efficiency for decays of J/ y and y (2S) mesons into a pair of leptons. This reconstruction method is used in all the analyses presented in this dissertation. Then we present a study of B decays to the χc 1 and χc2 charmonium states and compare our results with the predictions of different theoretical models of charmonium production. After that we report the first observation of the decay B --> J/ y φK, which is the first B meson decay requiring a creation of an additional ss¯ quark pair. Then we measure the B0 and B+ meson masses from B0 --> y (') K0S and B+ --> y (') K+ decays. The method employed eliminates the dominant systematic uncertainty associated with the previous B meson mass measurements at the e+e- colliders and results in a significant improvement in precision. After that we present a study of three B0 decay modes useful for time-dependent CP asymmetry measurements. In this study we reconstruct B0 --> J/ y K0S , B0 --> χc 1 K0S , and B0 --> J/ y π0 decays. The latter two decay modes are observed for the first time. We describe a K0S --> π0π0 detection technique and its application to the reconstruction of the decay B 0 --> J/ y K0S . Then we present a sensitivity study for the measurement of the mixing-induced CP violation in the neutral B meson system (parameter sin 2β) at CLEO using the method that requires a measurement of the decay time of only one meson in a B0overline B0 pair. Finally, we search for direct CP violation in decays B+/- --> J/ y K+/- and B +/- --> y (2S) K+/- . The results of this search are consistent with the Standard Model expectations and provide the first experimental test of the assumption that direct CP violation is negligible in B --> y (') K decays.

  4. α -decay chains of recoiled superheavy nuclei: A theoretical study

    NASA Astrophysics Data System (ADS)

    Niyti, Sawhney, Gudveen; Sharma, Manoj K.; Gupta, Raj K.

    2015-05-01

    A systematic theoretical study of α -decay half-lives in the superheavy mass region of the periodic table of elements is carried out by extending the quantum-mechanical fragmentation theory based on the preformed cluster model (PCM) to include temperature (T ) dependence in its built-in preformation and penetration probabilities of decay fragments. Earlier, the α -decay chains of the isotopes of Z =115 were investigated by using the standard PCM for spontaneous decays, with"hot-optimum" orientation effects included, which required a constant scaling factor of 104 to approach the available experimental data. In the present approach of the PCM (T ≠0 ), the temperature effects are included via the recoil energy of the residual superheavy nucleus (SHN) left after x -neutron emission from the superheavy compound nucleus. The important result is that the α -decay half-lives calculated by the PCM (T ≠0 ) match the experimental data nearly exactly, without using any scaling factor of the type used in the PCM. Note that the PCM (T ≠0 ) is an equivalent of the dynamical cluster-decay model for heavy-ion collisions at angular momentum ℓ =0 . The only parameter of model is the neck-length parameter Δ R , which for the calculated half-lives of α -decay chains of various isotopes of Z =113 to 118 nuclei formed in "hot-fusion" reactions is found to be nearly constant, i.e., Δ R ≈0.95 ±0.05 fm for all the α -decay chains studied. The use of recoiled residue nucleus as a secondary heavy-ion beam for nuclear reactions has also been suggested in the past.

  5. Primordial nucleosynthesis with decaying particles. I - Entropy-producing decays. II - Inert decays

    NASA Technical Reports Server (NTRS)

    Scherrer, Robert J.; Turner, Michael S.

    1988-01-01

    The effect of a nonrelativistic particle X, which decays out of equilibrium, on primordial nucleosynthesis is investigated, including both the energy density of the X particle and the electromagnetic entropy production from its decay. The results are parametrized in terms of the X particle lifetime and the density parameter rm(X), where m(X) is the X particle mass and r is the ratio of X number density to photon number density prior to nucleosynthesis. The results rule out particle lifetimes greater than 1-10 s for large values of rm(X). The question of a decaying particle which produces no electromagnetic entropy in the course of its decay is addressed, and particles which produce both entropy and an inert component in their decay are discussed.

  6. Search for two-neutrino double-β decay of 96Zr to excited states of 96Mo

    NASA Astrophysics Data System (ADS)

    Finch, S. W.; Tornow, W.

    2015-10-01

    Background: Double-β decay is a rare second-order nuclear decay. The importance of this decay stems from the possibility of neutrinoless double-β decay and its applications to neutrino physics. Purpose: A search was conducted for the 2 ν β β decay of 96Zr to excited final states of the daughter nucleus, 96Mo. Measurements of this decay are important to test nuclear matrix element calculations, which are necessary to extract the neutrino mass from a measurement of the neutrinoless double-β decay half-life. Method: Two coaxial high-purity germanium detectors were used in coincidence to detect γ rays produced by the daughter nucleus as it de-excited to the ground state. The experiment was carried out at the Kimballton Underground Research Facility and produced 685.7 d of data with a 17.91 g enriched sample. Results: No counts were seen above background. For the decay to the first excited 0+ state, a limit of T1 /2>3.1 ×1020 yr was produced. Limits to higher excited states are also reported. Conclusion: The new limits on double-β decay are an improvement over previous experiments by a factor of 2 to 5 for the various excited states. The nuclear matrix element for the double-β decay to the first excited 0+ state is found to be <0.13 .

  7. Use of standards in nuclear analytical chemistry at ORNL - a historical perspective

    SciTech Connect

    Dyer, F.F.

    1994-12-31

    Standards, the glue that holds empirical science together, have long been recognized as important in nuclear analytical chemistry at Oak Ridge National Laboratory (ORNL). From the earliest days of the nuclear analytical program at ORNL, personnel have been vigorously involved with the evaluation of decay schemes and half-lives to improve radioactive standards. One of the more interesting uses of standards at ORNL was in the Apollo program, where radionuclides were determined in moon rocks by measuring samples containing known amounts of radionuclides that simulated the actual samples in size and shape. This paper briefly reviews some of the early uses of standards at ORNL and contrasts the application of standards in some current work in multielement neutron activation analysis (NAA) that uses germanium gamma-ray detectors with similar work that was performed in the 1960s that made use of NaI(Tl) detectors.

  8. Charm counting in b decays

    NASA Astrophysics Data System (ADS)

    Buskulic, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Lucotte, A.; Minard, M.-N.; Nief, J.-Y.; Odier, P.; Pietrzyk, B.; Casado, M. P.; Chmeissani, M.; Crespo, J. M.; Delfino, M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Garrido, Ll.; Juste, A.; Martinez, M.; Orteu, S.; Padilla, C.; Park, I. C.; Pascual, A.; Perlas, J. A.; Riu, I.; Sanchez, F.; Teubert, F.; Colaleo, A.; Creanza, D.; de Palma, M.; Gelao, G.; Girone, M.; Iaselli, G.; Maggi, G.; Maggi, M.; Marinelli, N.; Nuzzo, S.; Ranieri, A.; Raso, G.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Tricomi, A.; Zito, G.; Huang, X.; Lin, J.; Ouyang, Q.; Wang, T.; Xie, Y.; Xu, R.; Xue, S.; Zhang, J.; Zhang, L.; Zhao, W.; Alemany, R.; Bazarko, A. O.; Bonvicini, G.; Bright-Thomas, P.; Cattaneo, M.; Cerutti, F.; Comas, P.; Coyle, P.; Drevermann, H.; Forty, R. W.; Frank, M.; Hagelberg, R.; Harvey, J.; Janot, P.; Jost, B.; Kneringer, E.; Knobloch, J.; Lehraus, I.; Lutters, G.; Martin, E. B.; Mato, P.; Minten, A.; Miquel, R.; Mir, Ll. M.; Moneta, L.; Oest, T.; Pacheco, A.; Pusztaszeri, J.-F.; Ranjard, F.; Rensing, P.; Rizzo, G.; Rolandi, L.; Schlatter, D.; Schmelling, M.; Schmitt, M.; Schneider, O.; Tejessy, W.; Tomalin, I. R.; Venturi, A.; Wachsmuth, H.; Wagner, A.; Ajaltouni, Z.; Barrès, A.; Boyer, C.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Monteil, S.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Rosnet, P.; Rossignol, J.-M.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Nilsson, B. S.; Rensch, B.; Wäänänen, A.; Kyriakis, A.; Markou, C.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Bourdon, P.; Rougé, A.; Rumpf, M.; Valassi, A.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Focardi, E.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Jaffe, D. E.; Antonelli, A.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Casper, D.; Chiarella, V.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Curtis, L.; Dorris, S. J.; Halley, A. W.; Knowles, I. G.; Lynch, J. G.; O'Shea, V.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Teixeira-Dias, P.; Thompson, A. S.; Thomson, F.; Thorn, S.; Turnbull, R. M.; Becker, U.; Geweniger, C.; Graefe, G.; Hanke, P.; Hansper, G.; Hepp, V.; Kluge, E. E.; Putzer, A.; Schmidt, M.; Sommer, J.; Stenzel, H.; Tittel, K.; Werner, S.; Wunsch, M.; Abbaneo, D.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Dornan, P. J.; Moutoussi, A.; Nash, J.; Sedgbeer, J. K.; Stacey, A. M.; Williams, M. D.; Dissertori, G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Betteridge, A. P.; Bowdery, C. K.; Colrain, P.; Crawford, G.; Finch, A. J.; Foster, F.; Hughes, G.; Sloan, T.; Williams, M. I.; Galla, A.; Giehl, I.; Greene, A. M.; Hoffmann, C.; Jakobs, K.; Kleinknecht, K.; Quast, G.; Renk, B.; Rohne, E.; Sander, H.-G.; van Gemmeren, P.; Zeitnitz, C.; Aubert, J. J.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Bujosa, G.; Calvet, D.; Carr, J.; Diaconu, C.; Etienne, F.; Konstantinidis, N.; Payre, P.; Rousseau, D.; Talby, M.; Sadouki, A.; Thulasidas, M.; Trabelsi, K.; Aleppo, M.; Ragusa, F.; Bauer, C.; Berlich, R.; Blum, W.; Büscher, V.; Dietl, H.; Dydak, F.; Ganis, G.; Gotzhein, C.; Kroha, H.; Lütjens, G.; Lutz, G.; Männer, W.; Moser, H.-G.; Richter, R.; Rosado-Schlosser, A.; Schael, S.; Settles, R.; Seywerd, H.; Denis, R. St.; Stenzel, H.; Wiedenmann, W.; Wolf, G.; Boucrot, J.; Callot, O.; Choi, Y.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Höcker, A.; Jacholkowska, A.; Jacquet, M.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Nikolic, I.; Park, H. J.; Schune, M.-H.; Simion, S.; Veillet, J.-J.; Videau, I.; Zerwas, D.; Azzurri, P.; Bagliesi, G.; Batignani, G.; Bettarini, S.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Ciulli, V.; Dell'Orso, R.; Fantechi, R.; Ferrante, I.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Sanguinetti, G.; Sciabà, A.; Spagnolo, P.; Steinberger, J.; Tenchini, R.; Tonelli, G.; Vannini, C.; Verdini, P. G.; Blair, G. A.; Bryant, L. M.; Chambers, J. T.; Gao, Y.; Green, M. G.; Medcalf, T.; Perrodo, P.; Strong, J. A.; von Wimmersperg-Toeller, J. H.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Maley, P.; Norton, P. R.; Thompson, J. C.; Wright, A. E.; Bloch-Devaux, B.; Colas, P.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Perez, P.; Rander, J.; Renardy, J.-F.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Trabelsi, A.; Vallage, B.; Black, S. N.; Dann, J. H.; Johnson, R. P.; Kim, H. Y.; Litke, A. M.; McNeil, M. A.; Taylor, G.; Booth, C. N.; Boswell, R.; Brew, C. A. J.; Cartwright, S.; Combley, F.; Koksal, A.; Letho, M.; Newton, W. M.; Reeve, J.; Thompson, L. F.; Böhrer, A.; Brandt, S.; Cowan, G.; Grupen, C.; Minguet-Rodriguez, J.; Rivera, F.; Saraiva, P.; Smolik, L.; Stephan, F.; Apollonio, M.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Musolino, G.; Rothberg, J.; Wasserbaech, S.; Armstrong, S. R.; Elmer, P.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; González, S.; Grahl, J.; Greening, T. C.; Hayes, O. J.; Hu, H.; McNamara, P. A.; Nachtman, J. M.; Orejudos, W.; Pan, Y. B.; Saadi, Y.; Scott, I. J.; Walsh, A. M.; Walsh, J.; Wu, Sau Lan; Wu, X.; Yamartino, J. M.; Zheng, M.; Zobernig, G.; Aleph Collaboration

    1996-02-01

    The inclusive production of charmed particles in Z → b overlineb decays has been measured from the yield of D0, D+, Ds+ and Λc+ decays in a sample of q overlineq events with high b purity collected with the ALEPH detector from 1992 to 1995. From these measurements, adding the charmonia production rate and an estimate of the charmed strange baryon contribution, the average number of charm quarks per b decay is determined to be nc = 1.230 ± 0.036 ± 0.038 ± 0.053, where the uncertainties are due to statistics, systematic effects and branching ratios, respectively.

  9. Glueball decay in holographic QCD

    SciTech Connect

    Hashimoto, Koji; Tan, C.-I; Terashima, Seiji

    2008-04-15

    Using holographic QCD based on D4-branes and D8-anti-D8-branes, we have computed couplings of glueballs to light mesons. We describe glueball decay by explicitly calculating its decay widths and branching ratios. Interestingly, while glueballs remain less well understood both theoretically and experimentally, our results are found to be consistent with the experimental data for the scalar glueball candidate f{sub 0}(1500). More generally, holographic QCD predicts that decay of any glueball to 4{pi}{sup 0} is suppressed, and that mixing of the lightest glueball with qq mesons is small.

  10. Optimizing VANDLE for Decay Spectroscopy

    NASA Astrophysics Data System (ADS)

    Brewer, N. T.; Taylor, S. Z.; Grzywacz, R.; Madurga, M.; Paulauskas, S. V.; Cizewski, J. A.; Peters, W. A.; Vandle Collaboration

    2013-10-01

    Understanding the decay properties of neutron rich isotopes has well established importance to the path of the r-process and to the total decay heat for reactor physics. Specifically, the half-life, branching ratio and spectra for β-n decay is of particular interest. With that in mind, we have continued attempts to improve upon the Versatile Array of Neutron Detectors at Low Energy (VANDLE) in terms of efficiency and TOF resolution through the use of new and larger scintillators. Details of the new implementation, design and characterization of the array will be shown and compared to previous results.

  11. Radiative Leptonic B Decays

    SciTech Connect

    Chen, Edward Tann

    2007-01-01

    We present the results of a search for B+ meson decays into γℓ+v, where ℓ = e,μ. We use a sample of 232 million B$\\bar{B}$ meson pairs recorded at the Υ(4S) resonance with the BABAR detector at the PEP-II B factory. We measure a partial branching fraction Δβ in a restricted region of phase space that reduces the effect of theoretical uncertainties, requiring the lepton energy to be in the range 1.875 and 2.850 GeV, the photon energy to be in the range 0.45 and 2.35 GeV, and the cosine of the angle between the lepton and photon momenta to be less than -0.36, with all quantities computed in the Υ(4S) center-of-mass frame. We find Δβ(B+ → γℓ+v) = (-0.31.5+1.3(statistical) -0.6+0.6(systematic) ± 0.1(theoretical)) x 10-6, under the assumption of lepton universality. Interpreted as a 90% confidence-level Bayesian upper limit, the result corresponds to 1.7 x 10-6 for a prior at in amplitude, and 2.3 x 10-6 for a prior at in branching fraction.

  12. Data Evaluation for 56Co epsilon + beta+ Decay

    SciTech Connect

    Baglin, Coral M.; MacMahon, T. Desmond

    2005-02-28

    Recommended values for nuclear and atomic data pertaining to the {var_epsilon} + {beta}{sup +} decay of {sup 56}Co are provided here, followed by comments on evaluation procedures and a summary of all available experimental data. {sup 56}Co is a radionuclide which is potentially very useful for Ge detector efficiency calibration because it is readily produced via the {sup 56}Fe(p,n) reaction, its half-life of 77.24 days is conveniently long, and it provides a number of relatively strong {gamma} rays with energies up to {approx}3500 keV. The transition intensities recommended here for the strongest lines will be included in the forthcoming International Atomic Energy Agency Coordinated Research Programme document ''Update of X- and Gamma-ray Decay Data Standards for Detector Calibration and Other Applications'', and the analysis for all transitions along with relevant atomic data have been provided to the Decay Data Evaluation Project.

  13. - and -delayed neutron- decay of neutron-rich copper isotopes

    SciTech Connect

    Korgul, A.; Rykaczewski, Krzysztof Piotr; Winger, J. A.; Ilyushkin, S.; Gross, Carl J; Batchelder, J. C.; Bingham, C. R.; Borzov, Ivan N; Goodin, C.; Grzywacz, Robert Kazimierz; Hamilton, Joseph H; Krolas, W.; Liddick, S. N.; Mazzocchi, C.; Nelson, C.; Nowacki, F.; Padgett, Stephen; Piechaczek, A.; Rajabali, M. M.; Shapira, Dan; Sieja, K.; Zganjar, E. F.

    2012-01-01

    The {beta}-decay properties of neutron-rich Cu isotopes produced in proton-induced fission of {sup 238}U were studied at the Holifield Radioactive Ion Beam Facility at Oak Ridge National Laboratory. The data were collected using high-resolution online mass separation, reacceleration, and digital {beta}-{gamma} spectroscopy methods. An improved decay scheme of N = 49 {sup 78}Cu and the first observation of N = 50 {sup 79}Cu {beta}-delayed neutron decay followed by a gamma transition are reported. Spin and parity (5{sup -}) are deduced for {sup 78gs}Cu. The {beta}-delayed neutron branching ratios (P{sub {beta}n}) for the {sup 77}Cu and {sup 79}Cu precursors are analyzed with the help of nuclear structure models.

  14. Safety of patients--actual problem of modern medicine (review).

    PubMed

    Tsintsadze, Neriman; Samnidze, L; Beridze, T; Tsintsadze, M; Tsintsadze, Nino

    2011-09-01

    Safety of patients is actual problem of up-to-date medicine. The current successful treatment of various sicknesses is achieved by implementation in clinical practice such medical preparations (medications), which are characterized with the high therapeutic activity, low toxicity and prolonged effects. In spite of evidence of the pharmacotherapeutical advances, the frequency of complications after medication has grown - that is why the safety of patients is the acute actual problem of medicine and ecological state of human population today. PMID:22156680

  15. Nuclear Data Sheets for A = 201

    SciTech Connect

    Kondev, F.G.

    2007-02-15

    Evaluated nuclear structure and decay data for all nuclei within the A = 201 mass chain are presented. This work supersedes the earlier full evaluation by M. Schmorak (1986Sc31) published in Nuclear Data Sheets 49, 733 (1986) and the update by S. Rab (1994Ra12), published in Nuclear Data Sheets 71, 421 (1994)

  16. Nuclear Science References Database

    SciTech Connect

    Pritychenko, B.; Běták, E.; Singh, B.; Totans, J.

    2014-06-15

    The Nuclear Science References (NSR) database together with its associated Web interface, is the world's only comprehensive source of easily accessible low- and intermediate-energy nuclear physics bibliographic information for more than 210,000 articles since the beginning of nuclear science. The weekly-updated NSR database provides essential support for nuclear data evaluation, compilation and research activities. The principles of the database and Web application development and maintenance are described. Examples of nuclear structure, reaction and decay applications are specifically included. The complete NSR database is freely available at the websites of the National Nuclear Data Center (http://www.nndc.bnl.gov/nsr) and the International Atomic Energy Agency (http://www-nds.iaea.org/nsr)

  17. The decay of hot nuclei

    SciTech Connect

    Moretto, L.G.; Wozniak, G.J.

    1988-11-01

    The formation of hot compound nuclei in intermediate-energy heavy ion reactions is discussed. The statistical decay of such compound nuclei is responsible for the abundant emission of complex fragments and high energy gamma rays. 43 refs., 23 figs.

  18. Questions Students Ask: Beta Decay.

    ERIC Educational Resources Information Center

    Koss, Jordan; Hartt, Kenneth

    1988-01-01

    Answers a student's question about the emission of a positron from a nucleus. Discusses the problem from the aspects of the uncertainty principle, beta decay, the Fermi Theory, and modern physics. (YP)

  19. The Search for Proton Decay.

    ERIC Educational Resources Information Center

    Marshak, Marvin L.

    1984-01-01

    Provides the rationale for and examples of experiments designed to test the stability of protons and bound neutrons. Also considers the unification question, cosmological implications, current and future detectors, and current status of knowledge on proton decay. (JN)

  20. Overview of rare K decays

    SciTech Connect

    Littenberg, L.

    1995-05-01

    The status and future prospects of searches for and studies of forbidden and highly suppressed K decays are reviewed. Here the author discusses three areas of recent activity in rare K decay. These are lepton-flavor violating decays, which are entirely forbidden in the Standard Model, K{sub S} {yields} {pi}{sup +}{pi}{sup {minus}}{pi}{sup 0}, which is of interest from the point of view of CP-violation, and `one loop` decays of the form K{sup 0,{+-}} {yields} ({pi}{sup 0,{+-}})l{bar l}, that can throw light on Standard Model CP-violation and determine parameters such as V{sub td}.

  1. CP violation in K decays

    SciTech Connect

    Gilman, F.J.

    1989-05-01

    Recent theoretical and experimental progress on the manifestation of CP violation in K decays, and toward understanding whether CP violation originates in a phase, or phases, in the weak mixing matrix of quarks is reviewed. 23 refs., 10 figs.

  2. Natural circulation decay heat removal from an SP-100, 550 kWe power system for a lunar outpost

    NASA Technical Reports Server (NTRS)

    El-Genk, Mohamed S.; Xue, Huimin

    1992-01-01

    This research investigated the decay heat removal from the SP-100 reactor core of a 550-kWe power system for a lunar outpost by natural circulation of lithium coolant. A transient model that simulates the decay heat removal loop (DHRL) of the power system was developed and used to assess the system's decay heat removal capability. The effects of the surface area of the decay heat rejection radiator, the dimensions of the decay heat exchanger (DHE) flow duct, the elevation of the DHE, and the diameter of the rise and down pipes in the DHRL on the decay heat removal capability were examined. Also, to determine the applicability of test results at earth gravity to actual system performance on the lunar surface, the effect of the gravity constant (1 g and 1/6 g) on the thermal behavior of the system after shutdown was investigated.

  3. Thermal corrections to Electroweak Decays

    NASA Astrophysics Data System (ADS)

    Masood, Samina

    2016-03-01

    We study the electroweak processes at finite temperatures. This includes the decay rates of electroweak gauge bosons and beta decays. Major thermal corrections come from QED type radiative corrections. Heavy mass of the electroweak gauge bosons helps to suppress the radiative corrections due to the electroweak gauge boson loops. Therefore, dominant thermal corrections are due to the photon loops. We also discuss the relevance of our results to astrophysics and cosmology.

  4. Semileptonic B-Meson Decays

    SciTech Connect

    Volk, Alexei; /Dresden, Tech. U.

    2010-08-26

    The study of the semileptonic B-meson decays is the most accessible and cleanest way to determine the CKM matrix elements |V{sub cb}| and V{sub ub}. These decays also provide experimental access to study the QCD form-factors, heavy quark masses, and HQE parameters. The theoretical description of semileptonic B-meson decays at the parton level is very simple because there is no interaction between leptonic and hadronic currents. At the hadron level one needs to introduce corrections due to the strong interaction between quarks. Especially in the description of the inclusive B-meson decays the motion of the b-quark inside the B-meson plays a crucial role. All these effects are described in the frameworks of Heavy Quark Effective Theory (HQET) and Lattice QCD (LQCD). We give an overview about results of studies of semileptonic B-meson decays collected with the BABAR and Belle detectors at the PEP-II and the KEKB e{sup +}e{sup -}-storage rings. We present recent results on hadronic moments measured in inclusive B {yields} X{sub c}lv and B {yields} X{sub u}lv decays and extracted heavy quark masses m{sub b} and m{sub c} and dominant non-perturbative Heavy Quark Expansion (HQE) parameters. We also report the measurements of the CKM matrix elements |V{sub cb}| and |V{sub ub}| in inclusive and in exclusive semileptonic B-meson decays. We describe the studies of the form-factor parameters for the decay B{sup 0} {yields} D*{sup -}l{sup +}v and present the measurement of the B{sup 0} {yields} {pi}{sup -}l{sup +}v form-factor shape.

  5. Reionization and dark matter decay

    NASA Astrophysics Data System (ADS)

    Oldengott, Isabel M.; Boriero, Daniel; Schwarz, Dominik J.

    2016-08-01

    Cosmic reionization and dark matter decay can impact observations of the cosmic microwave sky in a similar way. A simultaneous study of both effects is required to constrain unstable dark matter from cosmic microwave background observations. We compare two reionization models with and without dark matter decay. We find that a reionization model that fits also data from quasars and star forming galaxies results in tighter constraints on the reionization optical depth τreio, but weaker constraints on the spectral index ns than the conventional parametrization. We use the Planck 2015 data to constrain the effective decay rate of dark matter to Γeff < 2.9 × 10‑25/s at 95% C.L. This limit is robust and model independent. It holds for any type of decaying dark matter and it depends only weakly on the chosen parametrization of astrophysical reionization. For light dark matter particles that decay exclusively into electromagnetic components this implies a limit of Γ < 5.3 × 10‑26/s at 95% C.L. Specifying the decay channels, we apply our result to the case of keV-mass sterile neutrinos as dark matter candidates and obtain constraints on their mixing angle and mass, which are comparable to the ones from the diffuse X-ray background.

  6. Nuclear Wallet Cards from the National Nuclear Data Center (NNDC)

    DOE Data Explorer

    Tuli, Jagdish K.

    Nuclear Wallet Cards present properties for ground and isomeric states of all known nuclides. Properties given are: spin and parity assignments, nuclear mass excesses, half-life, isotopic abundances, and decay modes. Appendices contain properties of elements, fundamental constants and other useful information. Nuclear Wallet Cards booklet is published by the National Nuclear Data Center and its electronic (current) version is periodically updated. The Nuclear Wallet Cards by Dr. Jagdish K. Tuli, presently in its 8th edition, is distributed in print as well as in PDA-adaptable Palm Pilot format; the data table as an ASCII file is available upon request. [Taken from http://www.nndc.bnl.gov/wallet/

  7. Majorana neutrino masses and the neutrinoless double-beta decay

    SciTech Connect

    Faessler, A.

    2006-12-15

    Neutrinoless double-beta decay is forbidden in the Standard Model of electroweak and strong interaction but allowed in most Grand Unified Theories (GUTs). Only if the neutrino is a Majorana particle (identical with its antiparticle) and if it has a mass is neutrinoless double-beta decay allowed. Apart from one claim that the neutrinoless double-beta decay in {sup 76}Ge is measured, one has only upper limits for this transition probability. But even the upper limits allow one to give upper limits for the electron Majorana neutrino mass and upper limits for parameters of GUTs and the minimal R-parity-violating supersymmetric model. One further can give lower limits for the vector boson mediating mainly the right-handed weak interaction and the heavy mainly right-handed Majorana neutrino in left-right symmetric GUTs. For that, one has to assume that the specific mechanism is the leading one for neutrinoless double-beta decay and one has to be able to calculate reliably the corresponding nuclear matrix elements. In the present work, one discusses the accuracy of the present status of calculating of the nuclear matrix elements and the corresponding limits of GUTs and supersymmetric parameters.

  8. Recent work of decay spectroscopy at RIBF

    NASA Astrophysics Data System (ADS)

    Söderström, Pär-Anders

    2014-09-01

    β- and isomer-decay spectroscopy are sensitive probes of nuclear structure, and are often the only techniques capable of providing data for exotic nuclei that are producted with very low rates. Decay properties of exotic nuclei are also essential to model astrophysical events responible for the evolution of the universe such as the rp- and r-process. The EURICA project (EUROBALL RIKEN Cluster Array) has been launched in 2012 with the goal of performing spectroscopy of very exotic nuclei. Since 2012, four experimental campaigns have been successfully completed using fragmentation of 124Xe beam and in-flight-fission of 238U beam, approaching for example the key nuclei 78Ni, 110Zr, 100Sn, 128Pd, and 138Sn. This contribution highlights the experiments performed, results obtained, and discusses the future perspective of the EURICA project. In collaboration with Shunji Nishimura, Hidetada Baba, RIKEN Nishina Center; Frank Browne, Brighton University; Pieter Doornenbal, RIKEN Nishina Center; Guillaume Gey, Universite Joseph Fourier Grenoble; Tadaaki Isobe and Giuseppe Lorusso, RIKEN Nishina Center; Daniel Lubos, Technische Universitat Munchen; Kevin Mochner, University of Cologne; Zena Patel and Simon Rice, University of Surrey; Hiroyoshi Sakurai, RIKEN Nishina Center; Laura Sinclair, University of York; Toshiyuki Sumikama, Tohoku University; Jan Taprogge, Universidad Autonoma de Madrid; Zsolt Vajta, MTA Atomki; Hiroshi Watanabe, Beihang University; Jin Wu, Peking University; and Zhengyu Xu, University of Tokyo.

  9. Quantitative imaging of disease signatures through radioactive decay signal conversion

    PubMed Central

    Thorek, Daniel LJ; Ogirala, Anuja; Beattie, Bradley J; Grimm, Jan

    2013-01-01

    In the era of personalized medicine there is an urgent need for in vivo techniques able to sensitively detect and quantify molecular activities. Sensitive imaging of gamma rays is widely used, but radioactive decay is a physical constant and signal is independent of biological interactions. Here we introduce a framework of novel targeted and activatable probes excited by a nuclear decay-derived signal to identify and measure molecular signatures of disease. This was accomplished utilizing Cerenkov luminescence (CL), the light produced by β-emitting radionuclides such as clinical positron emission tomography (PET) tracers. Disease markers were detected using nanoparticles to produce secondary Cerenkov-induced fluorescence. This approach reduces background signal compared to conventional fluorescence imaging. In addition to information from a PET scan, we demonstrate novel medical utility by quantitatively determining prognostically relevant enzymatic activity. This technique can be applied to monitor other markers and facilitates a shift towards activatable nuclear medicine agents. PMID:24013701

  10. Short range correlations in the weak decay of {Lambda} hypernuclei

    SciTech Connect

    Parreno, A.; Ramos, A.; Oset, E.

    1995-05-01

    The differences found in the relativistic and nonrelativistic methods used in the literature to account for short range nuclear correlations in the decay of {Lambda} hypernuclei are analyzed. By means of a schematic microscopic model for the origin of correlations, the appropriate method to include them in nuclear processes is derived and is found to be the same one used in the nonrelativistic approach. The differences do not stem from relativistic effects but from the improper implementation of the correlations in the relativistic approach, which leads to several pathologies as shown in the paper. General formulas are given to evaluate the nonmesonic decay width of finite hypernuclei and results are obtained for {sub {Lambda}}{sup 5}He and {sub {Lambda}}{sup 12}C.

  11. Photocounting distributions for exponentially decaying sources.

    PubMed

    Teich, M C; Card, H C

    1979-05-01

    Exact photocounting distributions are obtained for a pulse of light whose intensity is exponentially decaying in time, when the underlying photon statistics are Poisson. It is assumed that the starting time for the sampling interval (which is of arbitrary duration) is uniformly distributed. The probability of registering n counts in the fixed time T is given in terms of the incomplete gamma function for n >/= 1 and in terms of the exponential integral for n = 0. Simple closed-form expressions are obtained for the count mean and variance. The results are expected to be of interest in certain studies involving spontaneous emission, radiation damage in solids, and nuclear counting. They will also be useful in neurobiology and psychophysics, since habituation and sensitization processes may sometimes be characterized by the same stochastic model. PMID:19687829

  12. Modified OMP Algorithm for Exponentially Decaying Signals

    PubMed Central

    Kazimierczuk, Krzysztof; Kasprzak, Paweł

    2015-01-01

    A group of signal reconstruction methods, referred to as compressed sensing (CS), has recently found a variety of applications in numerous branches of science and technology. However, the condition of the applicability of standard CS algorithms (e.g., orthogonal matching pursuit, OMP), i.e., the existence of the strictly sparse representation of a signal, is rarely met. Thus, dedicated algorithms for solving particular problems have to be developed. In this paper, we introduce a modification of OMP motivated by nuclear magnetic resonance (NMR) application of CS. The algorithm is based on the fact that the NMR spectrum consists of Lorentzian peaks and matches a single Lorentzian peak in each of its iterations. Thus, we propose the name Lorentzian peak matching pursuit (LPMP). We also consider certain modification of the algorithm by introducing the allowed positions of the Lorentzian peaks' centers. Our results show that the LPMP algorithm outperforms other CS algorithms when applied to exponentially decaying signals. PMID:25609044

  13. Challenges in nuclear structure theory

    NASA Astrophysics Data System (ADS)

    Nazarewicz, W.

    2016-08-01

    The goal of nuclear structure theory is to build a comprehensive microscopic framework in which properties of nuclei and extended nuclear matter, and nuclear reactions and decays can all be consistently described. Due to novel theoretical concepts, breakthroughs in the experimentation with rare isotopes, increased exchange of ideas across different research areas, and the progress in computer technologies and numerical algorithms, nuclear theorists have been quite successful in solving various bits and pieces of the nuclear many-body puzzle and the prospects are exciting. This article contains a brief, personal perspective on the status of the field.

  14. Decay data: review of measurements, evaluations and compilations.

    PubMed

    Nichols, A L

    2001-07-01

    Decay data represent an important means of characterising and quantifying radioactive material, as well as providing an important route to our understanding of the structure of the nucleus. The principle decay parameters are defined in this review, prior to undertaking an applications-based assessment of the most relevant contemporary measurements, evaluations and compilations. Emphasis has been placed on the demands of a series of IAEA Co-ordinated Research Programmes that focus on decay data and gamma-ray standards. Some of the more important decay-data issues are also reviewed with respect to recent measurements that address the anomalies associated with intermediate- and long-lived radionuclides. Short-lived fission products pose significant characterisation problems due to their high degree of instability, although a combination of mass separation and complex detector arrays has resulted in rapid analyses and major advances in our understanding of their nuclear properties and structure. Finally, a select number of decay-data evaluations and compilations are discussed in terms of the powerful manipulation and communication capabilities of PCs, CD-ROMs and the Internet. PMID:11339533

  15. 137 Ba Double Gamma Decay Measurement with GAMMASPHERE

    DOE PAGESBeta

    Merchán, E.; Moran, K.; Lister, C. J.; Chowdhury, P.; McCutchan, E. A.; Greene, J. P.; Zhu, S.; Lauritsen, T.; Carpenter, M. P.; Shearman, R.

    2015-05-28

    The study of the electromagnetic moments (EM), and decay probability, provides detailed information about nuclear wave functions. The well-know properties of EM interactions are good for extracting information about the motion of nucleons. Higher order EM processes always occur, but are usually too weak to be measured. In the case of a 0+ → 0+ transitions, where a single gamma transition is forbidden, the simultaneous emission of two γ-rays has been studied. An interesting opportunity to further investigate 2-photon emission phenomena is by using a standard 137Cs source populating, via β-decay, the Jπ = 11/2- isomeric state at 662 keVmore » in 137Ba. In this case, two photon process can have contributions from quadrupole-quadrupole or dipole-octupole multipolarities in direct competition with the high multipolarity M4 decay. Since the yield of the double gamma decay is around six orders of magnitude less than the first order transition, very good statistics are needed in order to observe the phenomena and great care must be taken to suppress the first-order decay. The Gammasphere array is ideal since its configuration allows a good coverage of the angular distribution and the Compton events can be suppressed. Nevertheless the process to understand and eliminate the Compton background is a challenge. Geant4 simulations were carried out to help understand and correct for those factors.« less

  16. 137 Ba Double Gamma Decay Measurement with GAMMASPHERE

    SciTech Connect

    Merchán, E.; Moran, K.; Lister, C. J.; Chowdhury, P.; McCutchan, E. A.; Greene, J. P.; Zhu, S.; Lauritsen, T.; Carpenter, M. P.; Shearman, R.

    2015-05-28

    The study of the electromagnetic moments (EM), and decay probability, provides detailed information about nuclear wave functions. The well-know properties of EM interactions are good for extracting information about the motion of nucleons. Higher order EM processes always occur, but are usually too weak to be measured. In the case of a 0+ → 0+ transitions, where a single gamma transition is forbidden, the simultaneous emission of two γ-rays has been studied. An interesting opportunity to further investigate 2-photon emission phenomena is by using a standard 137Cs source populating, via β-decay, the Jπ = 11/2- isomeric state at 662 keV in 137Ba. In this case, two photon process can have contributions from quadrupole-quadrupole or dipole-octupole multipolarities in direct competition with the high multipolarity M4 decay. Since the yield of the double gamma decay is around six orders of magnitude less than the first order transition, very good statistics are needed in order to observe the phenomena and great care must be taken to suppress the first-order decay. The Gammasphere array is ideal since its configuration allows a good coverage of the angular distribution and the Compton events can be suppressed. Nevertheless the process to understand and eliminate the Compton background is a challenge. Geant4 simulations were carried out to help understand and correct for those factors.

  17. Nuclear data sheets for A = 244

    SciTech Connect

    Chukreev, F. E.; Shurshikov, E. N.; Bodulinskij, V. K.; Jaborov, J. F.; Hovanovich, A. I.

    1981-11-01

    Detailed level and decay schemes and the experimental reaction and decay data on which they are based are presented for all nuclei with mass number A = 244; the experimental data are evaluated. Adopted values for level and ..gamma..-ray energies, ..gamma..-intensities, as well as other nuclear properties are given.

  18. Nuclear Data Sheets for A = 148

    SciTech Connect

    Nica, N.

    2014-03-01

    The experimental nuclear structure data available through October 2013 have been reviewed. A summary of information obtained in various reaction and decay experiments is presented, together with adopted level schemes.

  19. Nuclear Data Sheets for A = 148

    SciTech Connect

    Nica, N.

    2014-04-02

    The experimental nuclear structure data available through October 2013 have been reviewed. A summary of information obtained in various reaction and decay experiments is presented, together with adopted level schemes.

  20. Nuclear Data Sheets for A = 143

    SciTech Connect

    Peker, L. K.

    1986-08-01

    The experimental nuclear structure data available through July 1985 have been reviewed. A symmary of information obtained in various reaction and decay experiments is presented, together with adopted level schemes.

  1. Nuclear Data Sheets for A -- 145

    SciTech Connect

    Peker, L. K.

    1986-09-01

    The experimental nuclear structure data available through January 1986 have been reviewed. A summary of information obtained in various reaction and decay experiments is presented, together with adopted level schemes.

  2. Nuclear data sheets for A = 226

    SciTech Connect

    Akovali, Y. A.

    1996-02-01

    The available nuclear structure information for all nuclei with mass number A = 226 is presented. Various decay and reaction data are evaluated and compared. Adopted data, levels, spin, parity and configuration assignments are given. 134 refs.

  3. Nuclear data sheets for A = 210

    SciTech Connect

    Harmatz, B.

    1981-01-01

    Nuclear structure information pertaining to A = 210 has been reviewed. The level properties obtained from decay and reaction experiments are shown in the drawings. Experimental methods, references, and comment are given in the text.

  4. Nuclear data sheets for A = 206

    SciTech Connect

    Browne, E.

    1999-09-01

    This evaluation presents data for all nuclei with mass number A=206, which includes level schemes deduced from radioactive decay and nuclear reaction studies. All data received by August 1999 were evaluated.

  5. Nuclear data sheets update for A = 201

    SciTech Connect

    Rab, Shaheen

    1994-02-01

    The experimental nuclear structure and decay data of ten nuclei of mass 201 (Pt, Au, Hg, Tl, Pb, Bi, Po, At, Rn, Fr) have been evaluated. Adopted levels and gammas for each of these nuclei have also been prepared.

  6. Nuclear data sheets update for A = 218

    SciTech Connect

    Akovali, Y. A.

    1995-11-01

    The available nuclear structure information for all nuclei with mass number A = 218 is presented. Various decay and reaction data are evaluated and compared. Adopted data, levels, spin, parity and configuration assignments are given.

  7. Nuclear data sheets update for A = 204

    SciTech Connect

    Schmorak, M. R.

    1994-07-01

    Experimental data pertaining to nuclear structure of nuclei with mass number A = 204 have been compiled and evaluated. A summary of information obtained in various reaction and decay experiments is presented, together with the adopted level schemes.

  8. Nuclear data sheets for A = 222

    SciTech Connect

    Akovali, Y. A.

    1996-01-01

    The available nuclear structure information for all nuclei with mass number A = 222 is presented. Various decay and reaction data are evaluated and compared. Adopted data, levels, spin, parity, and configuration assignments are given. 201 refs.

  9. Nuclear Data Sheets for A = 214

    SciTech Connect

    Akovali, Y. A.

    1988-12-01

    The available nuclear structure information for all nuclei with mass number A = 214 is presented. Various decay and reaction data are evaluated and compared. Adopted data, levels, spin and parities are given.

  10. Nuclear data sheets for A = 217

    SciTech Connect

    Akovali, Y. A.

    1991-06-01

    The available nuclear structure information for all nuclei with mass number A = 217 is presented. Various decay and reaction data are evaluated and compared. Adopted data, levels, and spin and parity assignments are given.

  11. Nuclear data sheets for A = 218

    SciTech Connect

    Ellis-Akovali, Y. A.

    1987-12-01

    The available nuclear structure information for all nuclei with mass number A = 218 is presented. Various decay and reaction data are evaluated and compared. Adopted data, levels, spin and parities are given. copyright 1987 Academic Press, Inc.

  12. Inverse Beta Decay Reconstruction in the Double Chooz Monte Carlo

    NASA Astrophysics Data System (ADS)

    Norrick, Anne

    2010-02-01

    The Double Chooz Experiment will search for neutrino oscillations using the ``Inverse Beta-Decay'' (IBD) interactions of electron antineutrinos from a nuclear reactor in Chooz, France. The experiment needs to isolate IBD events by detecting and reconstructing the positions and deposited energies of the outgoing positron and neutron. Methods for isolating this process will be described. In addition, results of simulation studies of two different reconstruction algorithms will be presented and their performances compared. )

  13. Radiative corrections to sup 10 C superallowed Fermi. beta. decay

    SciTech Connect

    Rasche, G.; Robustelli, D. ); Barker, F.C. )

    1991-07-01

    In view of new data on the {sup 10}C superallowed Fermi {beta} decay, the radiative corrections have been reevaluated. In particular we calculate and include the nuclear-structure-dependent part of the axial-vector-induced contribution to the {ital O}({alpha}) radiative correction. The resulting {ital V}{sub {ital u}{ital d}} is appreciably larger than a value recently published, which was based on the same data.

  14. Beta Decay Spectroscopy of Neutron-Rich Nuclei at RIBF

    NASA Astrophysics Data System (ADS)

    Lorusso, G.; Nishimura, S.; Baba, H.; Doornenbal, P.; Isobe, T.; Söderström, P.-A.; Browne, F.; Daido, R.; Yifan, F.; Nishibata, H.; Yagi, A.; Gey, G.; Li, Z.; Wu, J.; Lubos, D.; Moschner, K.; Patel, Z.; Rice, S.; Sinclair, L.; Sumikama, T.; Taprogge, J.; Vajta, Zs.; Watanabe, H.; Xu, Z. Y.; Yoshinaga, K.

    2015-11-01

    The development of a high intensity 238U beam at the Radioactive Isotope Beam Factory (RIBF) has opened a new opportunity to explore exotic regions of the nuclear chart that were not accessible before. Along with beam development, the installation of the high efficiency γ-detector EURICA has made β-decay spectroscopy measurements of these regions possible, and a large international effort named the EURICA project has been launched to take advantage of this new opportunity.

  15. 7 CFR 51.898 - Decay.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 2 2011-01-01 2011-01-01 false Decay. 51.898 Section 51.898 Agriculture Regulations... Standards for Grades of Table Grapes (European or Vinifera Type) 1 Definitions § 51.898 Decay. Decay means.... Slight surface development of green mold (Cladosporium) shall not be considered decay....

  16. NUCLEAR DATA REVIEW

    SciTech Connect

    HOLDEN,N.E.

    2004-12-01

    Non-neutron nuclear data are periodically reviewed and evaluated. The recommended values are published in the Table of the Isotopes of the Chemical Rubber Company's Handbook of Chemistry and Physics. A 2004 review has begun to re-examine some data of interest to the International Union of Geological Sciences (IUGS) sub-commission on Geochronology dealing with radioactive decay constants and isotopic abundance ratios. Among the decay constants that are being evaluated are those of the following nuclides: {sup 40}K, {sup 87}Rb, {sup 138}La, {sup 147}Sm, {sup 176}Lu, {sup 174}Hf, {sup 187}Re, {sup 190}Pt, {sup 232}Th, {sup 235}U, {sup 238}U.

  17. Recent developments in the theory of double beta decay

    SciTech Connect

    Iachello, F.; Kotila, J.; Barea, J.

    2013-12-30

    We report results of a novel calculation of phase space factors for 2νβ{sup +}β{sup +}, 2νβ{sup +}EC, 2νECEC, 0νβ{sup +}β{sup +}, and 0νβ{sup +}EC using exact Dirac wave functions, and finite nuclear size and electron screening corrections. We present results of expected half-lives for 0νβ{sup +}β{sup +} and 0νβ{sup +}EC decays obtained by combining the calculation of phase space factors with IBM-2 nuclear matrix elements.

  18. Structure and α-decay properties of the heaviest nuclei

    SciTech Connect

    Silişteanu, I. Budaca, A.I.

    2012-11-15

    The α-decay is considered from the viewpoint of the many body features of internal nuclear motion and the theory of resonance reactions, as well. The α-half-lives are derived from clustering and scattering amplitudes given by self-consistent nuclear models for the nuclear shell structure and reaction dynamics. Calculations are performed for superheavy nuclei with Z=102–120 using the measured E{sub α} values, microscopic (shell model) or macroscopic (one body) cluster formation amplitudes and resonance scattering amplitudes. Theoretical results for α-half-lives are compared to data and empirical estimates. We prove that the Brown systematics (logT{sub α} (s) vs. Z{sub d}{sup 0.6}Q{sub α}{sup −1/2}, where Q{sub α} (MeV) is the effective decay energy, and Z{sub d} is the charge number of the daughter nucleus) of current decay data is very useful in the analysis and interpretation of data and prediction of new results. It is shown that by adding even–odd corrections to the calculated α-half-lives, the agreement with experimental data is improved and basic trends in the systematics of data are well reproduced. Spectroscopic information is derived from the ratio of theoretical to experimental results. The accuracy of available experimental half-lives is discussed.

  19. Stability against {alpha} decay of some recently observed superheavy elements

    SciTech Connect

    Roy Chowdhury, Partha; Gangopadhyay, G.; Bhattacharyya, Abhijit

    2011-02-15

    The probability of {alpha}-particle emission for some recently observed superheavy nuclei (SHN) are investigated. The {alpha}-decay half-lives of SHN are calculated in a quantum tunneling model with density-dependent M3Y (DDM3Y) effective nuclear interaction using theoretical and measured Q{sub {alpha}} values. We determine the density distribution of {alpha} and daughter nuclei from the relativistic mean-field (RMF) theory using FSUGold force, NL3, and TM1 parameter sets. The double-folded nuclear potential is numerically calculated in a more microscopic manner using these density distributions. The estimated values of {alpha}-decay half-lives are in good agreement with the recent data. We compare our results with recently detected {alpha}-decay chains from a new element with atomic number Z=117 reported by the Joint Institute for Nuclear Research, Dubna. Finally, we determine the half-lives of superheavy elements with Z=108-120 and neutron number N=152-190 to explore the long-standing predictions of the existence of an 'island of stability' due to possible spherical proton (Z{approx}114) and neutron (N{approx}184) shell closures.

  20. Experimental philosophy of actual and counterfactual free will intuitions.

    PubMed

    Feltz, Adam

    2015-11-01

    Five experiments suggested that everyday free will and moral responsibility judgments about some hypothetical thought examples differed from free will and moral responsibility judgments about the actual world. Experiment 1 (N=106) showed that free will intuitions about the actual world measured by the FAD-Plus poorly predicted free will intuitions about a hypothetical person performing a determined action (r=.13). Experiments 2-5 replicated this result and found the relations between actual free will judgments and free will judgments about hypothetical determined or fated actions (rs=.22-.35) were much smaller than the differences between them (ηp(2)=.2-.55). These results put some pressure on theoretical accounts of everyday intuitions about freedom and moral responsibility. PMID:26126174

  1. Nuclear Data Sheets for A=69

    SciTech Connect

    Nesaraja, Caroline D

    2014-01-01

    Experimental data on ground- and excited-state properties for all known nuclei with mass number A=69 have been compiled and evaluated. States populated in radioactive decay, as well as in nuclear reactions, have been considered. For these nuclei, level and decay schemes, as well as tables of nuclear properties, are given in detail. This work supersedes the 2000 evaluation by M.R.Bhat and J.K.Tuli (2000Bh05).

  2. Nuclear Data Sheets for A=69

    SciTech Connect

    Nesaraja, C.D.

    2014-01-15

    Experimental data on ground– and excited–state properties for all known nuclei with mass number A=69 have been compiled and evaluated. States populated in radioactive decay, as well as in nuclear reactions, have been considered. For these nuclei, level and decay schemes, as well as tables of nuclear properties, are given in detail. This work supersedes the 2000 evaluation by M.R. Bhat and J.K. Tuli (2000Bh05)

  3. Nuclear data sheets update for A = 198

    SciTech Connect

    Chunmei, Zhou

    1995-02-01

    The 1990 version of nuclear data sheets for A = 198 has been updated on the basis of decay and reaction experiments, which lead to nuclei in the A = 198 mass chain. The data sets of experimental reaction and decay studies are presented in the drawings or tables. The adopted values of levels and their {gamma}-radiations, and as well as other nuclear properties are presented in tables. The experimental methods, references, and comments are given in the text.

  4. Unsolved problems in hadronic charm decay

    SciTech Connect

    Browder, T.E.

    1989-08-01

    This paper describes several outstanding problems in the study of hadronic decays of charmed mesons where further experimental work and theoretical understanding is needed. Four topics are stressed: double Cabibbo suppressed decays (DCSD) of D/sup +/ mesons, hadronic D/sub s/ decays, weak hadronic quasi-two-body decays to pairs of vector mesons, and penguin decays of D mesons. 24 refs., 10 figs., 5 tabs.

  5. Decay curve study in a standard electron capture decay

    SciTech Connect

    Nishimura, D.; Fukuda, M.; Kisamori, K.; Kuwada, Y.; Makisaka, K.; Matsumiya, R.; Matsuta, K.; Mihara, M.; Takagi, A.; Yokoyama, R.; Izumikawa, T.; Ohtsubo, T.; Suzuki, T.; Yamaguchi, T.

    2010-05-12

    We have searched for a time-modulated decay in a standard electron capture experiment for {sup 140}Pr, in order to confirm a report from GSI, where an oscillatory decay has been observed for hydrogen-like {sup 140}Pr and {sup 142}Pm ions in the cooler storage ring. {sup 140}Pr has been produced with the {sup 140}Ce(p, n) reaction by a pulsed proton beam accelerated from the Van de Graaff accelerator at Osaka University. Resultant time dependence of the K{sub a}lpha and K{sub b}eta X-ray intensities from the daughter shows no oscillatory behavior.

  6. Multi-modal fission in collinear ternary cluster decay of 252Cf(sf, fff)

    NASA Astrophysics Data System (ADS)

    von Oertzen, W.; Nasirov, A. K.; Tashkhodjaev, R. B.

    2015-06-01

    We discuss the multiple decay modes of collinear fission in 252Cf(sf, fff), with three fragments as suggested by the potential energy surface (PES). Fission as a statistical decay is governed by the phase space of the different decay channels, which are suggested in the PES-landscape. The population of the fission modes is determined by the minima in the PES at the scission points and on the internal potential barriers. The ternary collinear decay proceeds as a sequential process, in two steps. The originally observed ternary decay of 252Cf(sf) into three different masses (e.g. 132-140Sn, 52-48Ca, 68-72Ni), observed by the FOBOS group in the FLNR (Flerov Laboratory for Nuclear Reactions) of the JINR (Dubna) the collinear cluster tripartition (CCT), is one of the ternary fission modes. This kind of "true ternary fission" of heavy nuclei has often been predicted in theoretical works during the last decades. In the present note we discuss different ternary fission modes in the same system. The PES shows pronounced minima, which correspond to several modes of ternary fragmentations. These decays have very similar dynamical features as the previously observed CCT-decays. The data obtained in the experiments on CCT allow us to extract the yields for different decay modes using specific gates on the measured parameters, and to establish multiple modes of the ternary fission decay.

  7. Beta-decay rate and beta-delayed neutron emission probability of improved gross theory

    NASA Astrophysics Data System (ADS)

    Koura, Hiroyuki

    2014-09-01

    A theoretical study has been carried out on beta-decay rate and beta-delayed neutron emission probability. The gross theory of the beta decay is based on an idea of the sum rule of the beta-decay strength function, and has succeeded in describing beta-decay half-lives of nuclei overall nuclear mass region. The gross theory includes not only the allowed transition as the Fermi and the Gamow-Teller, but also the first-forbidden transition. In this work, some improvements are introduced as the nuclear shell correction on nuclear level densities and the nuclear deformation for nuclear strength functions, those effects were not included in the original gross theory. The shell energy and the nuclear deformation for unmeasured nuclei are adopted from the KTUY nuclear mass formula, which is based on the spherical-basis method. Considering the properties of the integrated Fermi function, we can roughly categorized energy region of excited-state of a daughter nucleus into three regions: a highly-excited energy region, which fully affect a delayed neutron probability, a middle energy region, which is estimated to contribute the decay heat, and a region neighboring the ground-state, which determines the beta-decay rate. Some results will be given in the presentation. A theoretical study has been carried out on beta-decay rate and beta-delayed neutron emission probability. The gross theory of the beta decay is based on an idea of the sum rule of the beta-decay strength function, and has succeeded in describing beta-decay half-lives of nuclei overall nuclear mass region. The gross theory includes not only the allowed transition as the Fermi and the Gamow-Teller, but also the first-forbidden transition. In this work, some improvements are introduced as the nuclear shell correction on nuclear level densities and the nuclear deformation for nuclear strength functions, those effects were not included in the original gross theory. The shell energy and the nuclear deformation for

  8. A Flawed Argument Against Actual Infinity in Physics

    NASA Astrophysics Data System (ADS)

    Perez Laraudogoitia, Jon

    2010-12-01

    In “Nonconservation of Energy and loss of Determinism II. Colliding with an Open Set” (2010) Atkinson and Johnson argue in favour of the idea that an actual infinity should be excluded from physics, at least in the sense that physical systems involving an actual infinity of component elements should not be admitted. In this paper I show that the argument Atkinson and Johnson use is erroneous and that an analysis of the situation considered by them is possible without requiring any type of rejection of the idea of infinity.

  9. Pilot Eye Scanning under Actual Single Pilot Instrument Flight

    NASA Astrophysics Data System (ADS)

    Rinoie, Kenichi; Sunada, Yasuto

    Operations under single pilot instrument flight rules for general aviation aircraft is known to be one of the most demanding pilot tasks. Scanning numerous instruments plays a key role for perception and decision-making during flight. Flight experiments have been done by a single engine light airplane to investigate the pilot eye scanning technique for IFR flights. Comparisons between the results by an actual flight and those by a PC-based flight simulator are made. The experimental difficulties of pilot eye scanning measurements during the actual IFR flight are discussed.

  10. Comparison of simulated and actual wind shear radar data products

    NASA Technical Reports Server (NTRS)

    Britt, Charles L.; Crittenden, Lucille H.

    1992-01-01

    Prior to the development of the NASA experimental wind shear radar system, extensive computer simulations were conducted to determine the performance of the radar in combined weather and ground clutter environments. The simulation of the radar used analytical microburst models to determine weather returns and synthetic aperture radar (SAR) maps to determine ground clutter returns. These simulations were used to guide the development of hazard detection algorithms and to predict their performance. The structure of the radar simulation is reviewed. Actual flight data results from the Orlando and Denver tests are compared with simulated results. Areas of agreement and disagreement of actual and simulated results are shown.

  11. Meson's correlation functions in a nuclear medium

    NASA Astrophysics Data System (ADS)

    Park, Chanyong

    2016-09-01

    We investigate meson's spectrum, decay constant and form factor in a nuclear medium through holographic two- and three-point correlation functions. To describe a nuclear medium composed of protons and neutrons, we consider a hard wall model on the thermal charged AdS geometry and show that due to the isospin interaction with a nuclear medium, there exist splittings of the meson's spectrum, decay constant and form factor relying on the isospin charge. In addition, we show that the ρ-meson's form factor describing an interaction with pseudoscalar fluctuation decreases when the nuclear density increases, while the interaction with a longitudinal part of an axial vector meson increases.

  12. Beta-decay properties of neutron-rich medium-mass nuclei

    NASA Astrophysics Data System (ADS)

    Sarriguren, Pedro

    2016-06-01

    β-decay properties of even-even and odd-A neutron-rich Ge, Se, Kr, Sr, Zr, Mo, Ru, and Pd isotopes involved in the astrophysical rapid neutron capture process are studied within a microscopic proton-neutron quasiparticle random-phase approximation. The underlying mean field is based on a self-consistent Skyrme Hartree-Fock + BCS calculation that includes deformation as a key ingredient. The isotopic evolution of the various nuclear equilibrium shapes and the corresponding charge radii are investigated in all the isotopic chains. The energy distributions of the Gamow-Teller strength, as well as the β-decay half-lives are discussed and compared with the available experimental information. It is shown that nuclear deformation plays a significant role in the description of the decay properties in this mass region. Reliable predictions of the strength distributions are essential to evaluate decay rates in astrophysical scenarios.

  13. The search for proton decay

    SciTech Connect

    Haines, T.; Kaneyuki, K.; McGrew, C.; Mohapatra, R.; Peterson, E.; Cline, D.B.

    1994-12-31

    The conservation of the quantum number called baryon number, like lepton (or family) number, is an empirical fact even though there are very good reasons to expect otherwise. Experimentalists have been searching for baryon number violating decays of the proton and neutron for decades now without success. Theorists have evolved deep understanding of the relationship between the natural forces in the development of various Grand Unified Theories (GUTs) that nearly universally predict baryon number violating proton decay, or related phenomena like n-{bar n} oscillations. With this in mind, the Proton Decay Working Group reviewed the current experimental and theoretical status of the search for baryon number violation with an eye to the advancement in the next decade.

  14. Tunneling decay of false kinks

    NASA Astrophysics Data System (ADS)

    Dupuis, Éric; Gobeil, Yan; MacKenzie, Richard; Marleau, Luc; Paranjape, M. B.; Ung, Yvan

    2015-07-01

    We consider the decay of "false kinks," that is, kinks formed in a scalar field theory with a pair of degenerate symmetry-breaking false vacua in 1 +1 dimensions. The true vacuum is symmetric. A second scalar field and a peculiar potential are added in order for the kink to be classically stable. We find an expression for the decay rate of a false kink. As with any tunneling event, the rate is proportional to exp (-SE) where SE is the Euclidean action of the bounce describing the tunneling event. This factor varies wildly depending on the parameters of the model. Of interest is the fact that for certain parameters SE can get arbitrarily small, implying that the kink is only barely stable. Thus, while the false vacuum itself may be very long-lived, the presence of kinks can give rise to rapid vacuum decay.

  15. Observable signatures of inflaton decays

    SciTech Connect

    Battefeld, Diana; Battefeld, Thorsten; Giblin, John T. Jr.; Pease, Evan K. E-mail: tbattefe@astro.physik.uni-goettingen.de E-mail: peasee@kenyon.edu

    2011-02-01

    We numerically compute features in the power-spectrum that originate from the decay of fields during inflation. Using a simple, phenomenological, multi-field setup, we increase the number of fields from a few to thousands. Whenever a field decays, its associated potential energy is transferred into radiation, causing a jump in the equation of state parameter and mode mixing at the perturbed level. We observe discrete steps in the power-spectrum if the number of fields is low, in agreement with analytic arguments in the literature. These features become increasingly smeared out once many fields decay within a given Hubble time. In this regime we confirm the validity of the analytic approach to staggered inflation, which is based on a coarse-graining procedure. Our numerical approach bridges the aforementioned analytic treatments, and can be used in more complicated scenarios.

  16. Free radical decay in adamantane

    SciTech Connect

    Tegowski, A.T.; Pratt, D.W.

    1984-01-11

    Kinetic electron paramagnetic resonance (EPR) techniques have been used to characterize the decay behavior of the ''stable'' free radical 2-cyclohexanonyl in the plastic crystal phase f an adamantane matrix over the temperature range 257-313 K. Typical plots of the EPR signal intensity as a function of time are biexponential in nature, suggesting the existence of at least two channels for free radical decay. The activation parameters for both processes have been measured in both protonated and deuterated samples. A comparison of these results with those in other systems suggests that the host does, as expected, considerably reduce the pre-exponential factors for decay of the radical by bimolecular processes but has relatively little influence on the corresponding activation energies. 3 figures.

  17. EC decay of 244Bk

    NASA Astrophysics Data System (ADS)

    Sodaye, Suparna; Tripathi, R.; Sudarshan, K.; Sharma, S. K.; Pujari, P. K.; Palit, R.; Mukhopadhyay, S.

    2014-12-01

    Berkelium isotopes have been produced in 11B-induced reaction on 238U. The EC decay of 244Bk → 244Cm has been studied by carrying out the single and coincidence measurements of the γ-rays emitted during the de-excitation of the 244Cm levels. Radiochemical separations have been carried out to minimize the contribution from the fission products and target. The new half-life of 244Bk is obtained as 5.02 ± 0.03 h, which is close to the theoretically calculated value. The relative intensities of the decay γ-rays have been re-evaluated. Based on the coincidence measurements, a tentative partial level scheme for 244Bk → 244Cm decay has been proposed.

  18. Heavy quark spectroscopy and decay

    SciTech Connect

    Schindler, R.H.

    1987-01-01

    The understanding of q anti q systems containing heavy, charmed, and bottom quarks has progressed rapidly in recent years, through steady improvements in experimental techniques for production and detection of their decays. These lectures are meant to be an experimentalist's review of the subject. In the first of two lectures, the existing data on the spectroscopy of the bound c anti c and b anti b systems will be discussed. Emphasis is placed on comparisons with the theoretical models. The second lecture covers the rapidly changing subject of the decays of heavy mesons (c anti q and b anti q), and their excited states. In combination, the spectroscopy and decays of heavy quarks are shown to provide interesting insights into both the strong and electroweak interactions of the heavy quarks. 103 refs., 39 figs.

  19. The role of g9/2 intruder state in the nuclear matrix elements of 76Ge → 76Se 2νββ(0+ → 0+) decay

    NASA Astrophysics Data System (ADS)

    Valencia, J. P.

    2016-07-01

    I propose a model for the upper-part of pf-shell, which consists of p1/2, p3/2, f5/2 and g9/2 single-particle orbits. While the pf-subshell (or d ˜s -subshell, i.e. η ˜=2 ,s˜1 /2,d˜3 /2,d˜5 /2) is governed by the SU˜S ˜T(4 )⊗U˜L ˜(6 ) symmetry, the g9/2 intruder state is governed by the seniority model. The nuclear states of 76Ge and 76Se are expressed as direct products of the d ˜s subshell component and the g-subshell one. The five-dimensional quasispin formalism with seniority zero restriction is used for a classification in the g-subshell. In the d ˜s -subshell, for each configuration [Mπ,Mν]d ˜s I choose only the most symmetric U˜L ˜(6 ) representations with total pseudo-spin S ˜=0 . Therefore, all the configurations are given by (0 Y 0 ˜) {4P2Y ˜} and (0 Y 0 -20 ˜) {4P +12Y -2 ˜} for 76Ge and 76Se, respectively with Y = 6-(nν - nπ)/2 and P = (4 - nπ)/2. I derive an explicit expression for the NME of the 2νββ(0+ → 0+) in the closure approximation.

  20. Two-step mechanisms of two-proton decays of nuclei

    NASA Astrophysics Data System (ADS)

    Kadmensky, S. G.; Ivankov, Yu. V.

    2014-08-01

    A formalism for describing two-step two-proton decays of nuclei is developed on the basis of the multiparticle theory of deep-subbarrier one-proton decays of nuclei that employs integral expression for the decay widths in question. This formalism relies on the idea that the interaction between the emitted protons has but a slight effect on the widths with respect to the two-proton decays being considered. It is shown that such a decay is naturally broken down into the sequential one-proton decays of an ( A, Z) parent nucleus and an ( A - 1, Z - 1) intermediate nucleus, these decays being related by the Green's function G( A - 1, Z - 1) that describes the intermediate nucleus with allowance for its real and virtual states, which give rise to, respectively, the sequential and the virtual two-step two-proton decay of the parent nucleus. It is also shown that the widths with respect to sequential two-step two-proton decays coincide with the analogous widths constructed within the R-matrix theory of nuclear reactions leading to the production of unstable particles and with their counterparts obtained with the aid of solving the set of kinetic equations for the chain of nuclei undergoing radioactive decays. It is found that the widths with respect to virtual two-step two-proton decays are close in structure to the widths constructed for the simultaneous two-proton decays of nuclei by using integrated formulas within a simplified model of the method of three-particle hyperspherical polynomials.

  1. Status and prospects of investigations into the collinear cluster decay of heavy nuclei

    SciTech Connect

    Pyatkov, Yu. V.; Kamanin, D. V.; Alexandrov, A. A.; Alexandrova, I. A.; Mkaza, N.; Zhuchko, V. E.; Kondratyev, N. A.; Kuznetsova, E. A. Mishinsky, G. V.; Malaza, V.; Strekalovsky, A. O.; Strekalovsky, O. V.

    2014-12-15

    Basic experimental results confirming the existence a new cluster-decay type called collinear cluster tripartition (CCT) are presented. Decays of this type manifest themselves, in particular, as a two-dimensional region of a locally enhanced yield of fragments (bump) that corresponds to specific missing-mass values in the mass-mass distribution of fission fragments. One of the decay modes that contribute to the bump can be treated as a cluster-decay type that is new in relation to the well-known heavy-ion or lead radioactivity. The conclusions drawn from an analysis of correlation mass distributions are confirmed by the results obtained from neutron-gated data, measurements of the nuclear charge for CCT events, and the direct detection of new-decay products.

  2. Status and prospects of investigations into the collinear cluster decay of heavy nuclei

    NASA Astrophysics Data System (ADS)

    Pyatkov, Yu. V.; Kamanin, D. V.; Alexandrov, A. A.; Alexandrova, I. A.; Mkaza, N.; Zhuchko, V. E.; Kondratyev, N. A.; Kuznetsova, E. A.; Mishinsky, G. V.; Malaza, V.; Strekalovsky, A. O.; Strekalovsky, O. V.

    2014-12-01

    Basic experimental results confirming the existence a new cluster-decay type called collinear cluster tripartition (CCT) are presented. Decays of this type manifest themselves, in particular, as a two-dimensional region of a locally enhanced yield of fragments (bump) that corresponds to specific missing-mass values in the mass-mass distribution of fission fragments. One of the decay modes that contribute to the bump can be treated as a cluster-decay type that is new in relation to the well-known heavy-ion or lead radioactivity. The conclusions drawn from an analysis of correlation mass distributions are confirmed by the results obtained from neutron-gated data, measurements of the nuclear charge for CCT events, and the direct detection of new-decay products.

  3. Radiative decay of neutron-unbound intruder states in 19O

    NASA Astrophysics Data System (ADS)

    Dungan, R.; Tabor, S. L.; Tripathi, Vandana; Volya, A.; Kravvaris, K.; Abromeit, B.; Caussyn, D. D.; Morrow, S.; Parker, J. J.; Tai, P.-L.; VonMoss, J. M.

    2016-02-01

    The 9Be(14C, α γ ) reaction at EL a b=30 and 35 MeV was used to study excited states of 19O. The Florida State University (FSU) γ detector array was used to detect γ radiation in coincidence with charged particles detected and identified with a silicon Δ E -E particle telescope. γ decays have been observed for the first time from six states ranging from 368 to 2147 keV above the neutron separation energy (Sn=3962 keV) in 19O. The γ -decaying states are interspersed among states previously observed to decay by neutron emission. The ability of electromagnetic decay to compete successfully with neutron decay is explained in terms of neutron angular momentum barriers and small spectroscopic factors implying higher spin and complex structure for these intruder states. These results illustrate the need for complementary experimental approaches to best illuminate the complete nuclear structure.

  4. The study of rare decays

    NASA Astrophysics Data System (ADS)

    Ju, Wan-Li; Wang, Guo-Li; Fu, Hui-Feng; Wang, Tian-Hong; Jiang, Yue

    2014-04-01

    In this paper, we study rare decays within the Standard Model. The penguin, box, annihilation, color-favored cascade and color-suppressed cascade contributions are included. Based on our calculation, the annihilation and color-favored cascade diagrams play important roles in the differential branching fractions, forward-backward asymmetries, longitudinal polarizations of the final vector mesons and leptonic longitudinal polarization asymmetries. More importantly, color-favored cascade decays largely enhance the resonance cascade contributions. To avoid the resonance cascade contribution pollution, new cutting regions are put forward.

  5. Laser-Assisted Muon Decay

    SciTech Connect

    Liu Aihua; Li Shumin; Berakdar, Jamal

    2007-06-22

    We show theoretically that the muon lifetime can be changed dramatically by embedding the decaying muon in a strong linearly polarized laser field. Evaluating the S-matrix elements taking all electronic multiphoton processes into account we find that a CO{sub 2} laser with an electric field amplitude of 10{sup 6} V cm{sup -1} results in an order of magnitude shorter lifetime of the muon. We also analyze the dependencies of the decay rate on the laser frequency and intensity.

  6. Actualizing Concepts in Home Management: Proceedings of a National Conference.

    ERIC Educational Resources Information Center

    American Home Economics Association, Washington, DC.

    The booklet prints the following papers delivered at a national conference: Actualizing Concepts in Home Management: Decision Making, Dorothy Z. Price; Innovations in Teaching: Ergonomics, Fern E. Hunt; Relevant Concepts of Home Management: Innovations in Teaching, Kay P. Edwards; Standards in a Managerial Context, Florence S. Walker; Organizing:…

  7. 26 CFR 513.8 - Addressee not actual owner.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... CONVENTIONS IRELAND Withholding of Tax § 513.8 Addressee not actual owner. (a) If any person with an address in Ireland who receives a dividend from a United States corporation with respect to which United... such reduced rate of 15 percent, such recipient in Ireland will withhold an additional amount of...

  8. Remote sensing estimates of actual evapotranspiration in an irrigation district

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Accurate estimates of the spatial distribution of actual evapotranspiration (AET) are useful in hydrology, but can be difficult to obtain. Remote sensing provides a potential capability for routinely monitoring AET by combining remotely sensed surface temperature and vegetation cover observations w...

  9. Self Actualization of Females in an Experimental Orientation Program

    ERIC Educational Resources Information Center

    Vander Wilt, Robert B.; Klocke, Ronald A.

    1971-01-01

    An alternative to the traditional orientation program was developed that forced students to consider their physical and psychological outer limits. Students were confronted in a new and unique way that contributed to the self actualization process of the female portion of the group. (Author/BY)

  10. Actual Leisure Participation of Norwegian Adolescents with Down Syndrome

    ERIC Educational Resources Information Center

    Dolva, Anne-Stine; Kleiven, Jo; Kollstad, Marit

    2014-01-01

    This article reports the actual participation in leisure activities by a sample of Norwegian adolescents with Down syndrome aged 14. Representing a first generation to grow up in a relatively inclusive context, they live with their families, attend mainstream schools, and are part of common community life. Leisure information was obtained in…

  11. Research into Students' Perceptions of Preferred and Actual Learning Environment.

    ERIC Educational Resources Information Center

    Hattie, John A.; And Others

    Measures of both preferred and actual classroom and school environment were administered to 1,675 secondary school students in New South Wales (Australia). Shortened versions of the My Class Inventory, Classroom Environment Scale, and Individualized Classroom Environment Questionnaire, as well as the Quality of School Life questionnaire were…

  12. MLCMS Actual Use, Perceived Use, and Experiences of Use

    ERIC Educational Resources Information Center

    Asiimwe, Edgar Napoleon; Grönlund, Åke

    2015-01-01

    Mobile learning involves use of mobile devices to participate in learning activities. Most e-learning activities are available to participants through learning systems such as learning content management systems (LCMS). Due to certain challenges, LCMS are not equally accessible on all mobile devices. This study investigates actual use, perceived…

  13. 40 CFR 74.22 - Actual SO2 emissions rate.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ....6 for natural gas For other fuels, the combustion source must specify the SO2 emissions factor. (c... (CONTINUED) SULFUR DIOXIDE OPT-INS Allowance Calculations for Combustion Sources § 74.22 Actual SO2 emissions rate. (a) Data requirements. The designated representative of a combustion source shall submit...

  14. What Does the Force Concept Inventory Actually Measure?

    ERIC Educational Resources Information Center

    Huffman, Douglas; Heller, Patricia

    1995-01-01

    The Force Concept Inventory (FCI) is a 29-question, multiple-choice test designed to assess students' Newtonian and non-Newtonian conceptions of force. Presents an analysis of FCI results as one way to determine what the inventory actually measures. (LZ)

  15. Progressive Digressions: Home Schooling for Self-Actualization.

    ERIC Educational Resources Information Center

    Rivero, Lisa

    2002-01-01

    Maslow's (1971) theory of primary creativeness is used as the basis for a self-actualization model of education. Examples of how to use the model in creative homeschooling are provided. Key elements include digressive and immersion learning, self-directed learning, and the integration of work and play. Teaching suggestions are provided. (Contains…

  16. A Taxometric Analysis of Actual Internet Sports Gambling Behavior

    ERIC Educational Resources Information Center

    Braverman, Julia; LaBrie, Richard A.; Shaffer, Howard J.

    2011-01-01

    This article presents findings from the first taxometric study of actual gambling behavior to determine whether we can represent the characteristics of extreme gambling as qualitatively distinct (i.e., taxonic) or as a point along a dimension. We analyzed the bets made during a 24-month study period by the 4,595 most involved gamblers among a…

  17. Theory of neutrinoless double-beta decay.

    PubMed

    Vergados, J D; Ejiri, H; Simkovic, F

    2012-10-01

    Neutrinoless double-beta decay, which is a very old and yet elusive process, is reviewed. Its observation will signal that the lepton number is not conserved and that the neutrinos are Majorana particles. More importantly it is our best hope for determining the absolute neutrino-mass scale at the level of a few tens of meV. To achieve the last goal certain hurdles must be overcome involving particle, nuclear and experimental physics. Nuclear physics is important for extracting useful information from the data. One must accurately evaluate the relevant nuclear matrix elements--a formidable task. To this end, we review the sophisticated nuclear structure approaches which have recently been developed, and which give confidence that the required nuclear matrix elements can be reliably calculated employing different methods: (a) the various versions of the quasiparticle random phase approximations, (b) the interacting boson model, (c) the energy density functional method and (d) the large basis interacting shell model. It is encouraging that, for the light neutrino-mass term at least, these vastly different approaches now give comparable results. From an experimental point of view it is challenging, since the life times are long and one has to fight against formidable backgrounds. One needs large isotopically enriched sources and detectors with high-energy resolution, low thresholds and very low background. If a signal is found, it will be a tremendous accomplishment. The real task then, of course, will be the extraction of the neutrino mass from the observations. This is not trivial, since current particle models predict the presence of many mechanisms other than the neutrino mass, which may contribute to or even dominate this process. In particular, we will consider the following processes: The neutrino induced, but neutrino-mass independent contribution. Heavy left and/or right-handed neutrino-mass contributions. Intermediate scalars (doubly charged, etc

  18. Theory of neutrinoless double-beta decay

    NASA Astrophysics Data System (ADS)

    Vergados, J. D.; Ejiri, H.; Šimkovic, F.

    2012-10-01

    Neutrinoless double-beta decay, which is a very old and yet elusive process, is reviewed. Its observation will signal that the lepton number is not conserved and that the neutrinos are Majorana particles. More importantly it is our best hope for determining the absolute neutrino-mass scale at the level of a few tens of meV. To achieve the last goal certain hurdles must be overcome involving particle, nuclear and experimental physics. Nuclear physics is important for extracting useful information from the data. One must accurately evaluate the relevant nuclear matrix elements—a formidable task. To this end, we review the sophisticated nuclear structure approaches which have recently been developed, and which give confidence that the required nuclear matrix elements can be reliably calculated employing different methods: (a) the various versions of the quasiparticle random phase approximations, (b) the interacting boson model, (c) the energy density functional method and (d) the large basis interacting shell model. It is encouraging that, for the light neutrino-mass term at least, these vastly different approaches now give comparable results. From an experimental point of view it is challenging, since the life times are long and one has to fight against formidable backgrounds. One needs large isotopically enriched sources and detectors with high-energy resolution, low thresholds and very low background. If a signal is found, it will be a tremendous accomplishment. The real task then, of course, will be the extraction of the neutrino mass from the observations. This is not trivial, since current particle models predict the presence of many mechanisms other than the neutrino mass, which may contribute to or even dominate this process. In particular, we will consider the following processes: The neutrino induced, but neutrino-mass independent contribution. Heavy left and/or right-handed neutrino-mass contributions. Intermediate scalars (doubly charged, etc

  19. 10 CFR 35.2092 - Records of decay-in-storage.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Records of decay-in-storage. 35.2092 Section 35.2092 Energy NUCLEAR REGULATORY COMMISSION MEDICAL USE OF BYPRODUCT MATERIAL Records § 35.2092 Records of decay-in-storage. A licensee shall maintain records of the disposal of licensed materials, as required by § 35.92, for 3 years. The record must include...

  20. Fission Product Decay Heat Calculations for Neutron Fission of 232Th

    NASA Astrophysics Data System (ADS)

    Son, P. N.; Hai, N. X.

    2016-06-01

    Precise information on the decay heat from fission products following times after a fission reaction is necessary for safety designs and operations of nuclear-power reactors, fuel storage, transport flasks, and for spent fuel management and processing. In this study, the timing distributions of fission products' concentrations and their integrated decay heat as function of time following a fast neutron fission reaction of 232Th were exactly calculated by the numerical method with using the DHP code.

  1. Observation of Doppler broadening in β -delayed proton- γ decay

    DOE PAGESBeta

    Schwartz, S. B.; Wrede, C.; Bennett, M. B.; Liddick, S. N.; Pérez-Loureiro, D.; Bowe, A.; Chen, A. A.; Chipps, K. A.; Cooper, N.; Irvine, D.; et al

    2015-09-14

    Background: The Doppler broadening of gamma-ray peaks is due to nuclear recoil from beta-delayed nucleon emission can be used to measure the energies of the nucleons. This method has never been tested using beta-delayed proton emission or applied to a recoil heavier than A = 10. Purpose: To test and apply this Doppler broadening method using gamma-ray peaks from the P-26(beta p gamma)Al-25 decay sequence. Methods: A fast beam of P-26 was implanted into a planar Ge detector, which was used as a P-26 beta-decay trigger. The SeGA array of high-purity Ge detectors was used to detect gamma rays frommore » the P-26(beta p gamma)Al-25 decay sequence. Results: Radiative Doppler broadening in beta-delayed proton-gamma decay was observed for the first time. Moreover, the Doppler broadening analysis method was verified using the 1613-keV gamma-ray line for which the proton energies were previously known. The 1776-keV gamma ray de-exciting the 2720 keV Al-25 level was observed in P-26(beta p gamma)Al-25 decay for the first time and used to determine that the center-of-mass energy of the proton emission feeding the 2720-keV level is 5.1 +/- 1.0 (stat.) +/- 0.6 (syst.) MeV, corresponding to a Si-26 excitation energy of 13.3 +/- 1.0 (stat.) +/- 0.6 (syst.) MeV for the proton-emitting level. Conclusions: Finally, the Doppler broadening method has been demonstrated to provide practical measurements of the energies for beta-delayed nucleon emissions populating excited states of nuclear recoils at least as heavy as A = 25.« less

  2. An Accelerated Radioactive Decay (ARD) Model for Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Rust, Bert W.; Leventhal, Marvin

    2016-01-01

    In 1975, Leventhal and McCall [Nature, 255, 690-692] presented a radioactive decay model 56N i --> 56Co --> 56Fe for the post-peak luminosity decay of Type I supernovae light curves, in which the two decay rates are both accelerated by a common factor. In 1976, Rust, Leventhal and McCall [Nature, 262, 118-120] used sums of exponentials fitting to confirm the acceleration hypothesis, but their result was nevertheless rejected by the astronomical community. Here, we model Type Ia light curves with a system of ODEs (describing the nuclear decays) forced by a Ni-deposition pulse modelled by a 3-parameter Weibull pdf, with all of this occuring in the center of a pre-existing, optically thick, spherical shell which thermalizes the emitted gamma rays. Fitting this model to observed light curves routinely gives fits which account for 99.9+% of the total variance in the observed record. The accelerated decay rates are so stable, for such a long time, that they must occur in an almost unchanging environment -- not it a turbulent expanding atmosphere. The amplitude of the Ni-deposition pulse indicates that its source is the fusion of hydrogen. Carbon and oxygen could not supply the large energy/nucleon that is observed. The secondary peak in the infrared light curve can be easily modelled as a light echo from dust in the back side of the pre-existing shell, and the separation between the peaks indicates a radius of ≈15 light days for the shell. The long-term stability of the acceleration suggests that it is a kinematic effect arising because the nuclear reactions occur either on the surface of a very rapidly rotating condensed object, or in a very tight orbit around such an object, like the fusion pulse in a tokomak reactor.

  3. Are nuclear and nonnuclear war related. Final report, August 1986-August 1987

    SciTech Connect

    Tritten, J.J.

    1987-08-01

    This report analyzes relationship of nuclear and non-nuclear warfare during the actual conduct of a war in either the conventional or nuclear stage and the relationship relative to deterrence and strategy.

  4. Measurement of fission products β decay properties using a total absorption spectrometer

    NASA Astrophysics Data System (ADS)

    Zakari-Issoufou, A.-A.; Porta, A.; Fallot, M.; Algora, A.; Tain, J. L.; Valencia, E.; Rice, S.; Agramunt, J.; Äystö, J.; Bowry, M.; Bui, V. M.; Caballero-Folch, R.; Cano-Ott, D.; Eloma, V.; Estévez, E.; Farrelly, G. F.; Garcia, A.; Gelletly, W.; Gomez-Hornillos, M. B.; Gorlychev, V.; Hakala, J.; Jokinen, A.; Jordan, M. D.; Kankainen, A.; Kondev, F. G.; Martinez, T.; Mendoza, E.; Molina, F.; Moore, I.; Perez, A.; Podolyak, Zs.; Penttilä, H.; Regan, P. H.; Rissanen, J.; Rubio, B.; Weber, C.

    2013-12-01

    In a nuclear reactor, the β decay of fission fragments is at the origin of decay heat and antineutrino flux. These quantities are not well known while they are very important for reactor safety and for our understanding of neutrino physics. One reason for the discrepancies observed in the estimation of the decay heat and antineutrinos flux coming from reactors could be linked with the Pandemonium effect. New measurements have been performed at the JYFL facility of Jyväskylä with a Total Absorption Spectrometer (TAS) in order to circumvent this effect. An overview of the TAS technique and first results from the 2009 measurement campaign will be presented.

  5. Single and Double Beta-Decay Q Values among the Triplet 96Zr, 96Nb, and 96Mo

    NASA Astrophysics Data System (ADS)

    Alanssari, M.; Frekers, D.; Eronen, T.; Canete, L.; Dilling, J.; Haaranen, M.; Hakala, J.; Holl, M.; Ješkovský, M.; Jokinen, A.; Kankainen, A.; Koponen, J.; Mayer, A. J.; Moore, I. D.; Nesterenko, D. A.; Pohjalainen, I.; Povinec, P.; Reinikainen, J.; Rinta-Antila, S.; Srivastava, P. C.; Suhonen, J.; Thompson, R. I.; Voss, A.; Wieser, M. E.

    2016-02-01

    The atomic mass relations among the mass triplet 96Zr, 96Nb, and 96Mo have been determined by means of high-precision mass measurements using the JYFLTRAP mass spectrometer at the IGISOL facility of the University of Jyväskylä. We report Q values for the 96Zr single and double β decays to 96Nb and 96decay to 96Mo, which are Qβ(96Zr)=163.96 (13 ) , Qβ β(96Zr)=3356.097 (86 ) , and Qβ(96Nb)=3192.05 (16 ) keV . Of special importance is the 96Zr single β -decay Q value, which has never been determined directly. The single β decay, whose main branch is fourfold unique forbidden, is an alternative decay path to the 96Zr β β decay, and its observation can provide one of the most direct tests of the neutrinoless β β -decay nuclear-matrix-element calculations, as these can be simultaneously performed for both decay paths with no further assumptions. The theoretical single β -decay rate has been re-evaluated using a shell-model approach, which indicates a 96Zr single β -decay lifetime within reach of an experimental verification. The uniqueness of the decay also makes such an experiment interesting for an investigation into the origin of the quenching of the axial-vector coupling constant gA.

  6. Multiple photon emission in heavy particle decays

    NASA Technical Reports Server (NTRS)

    Asakimori, K.; Burnett, T. H.; Cherry, M. L.; Christl, M. J.; Dake, S.; Derrickson, J. H.; Fountain, W. F.; Fuki, M.; Gregory, J. C.; Hayashi, T.

    1994-01-01

    Cosmic ray interactions, at energies above 1 TeV/nucleon, in emulsion chambers flown on high altitude balloons have yielded two events showing apparent decays of a heavy particle into one charged particle and four photons. The photons converted into electron pairs very close to the decay vertex. Attempts to explain this decay topology with known particle decays are presented. Unless both events represent a b yields u transition, which is statistically unlikely, then other known decay modes for charmed or bottom particles do not account satisfactorily for these observations. This could indicate, possibly, a new decay channel.

  7. Analysis of mechanisms that could contribute to neutrinoless double-beta decay

    NASA Astrophysics Data System (ADS)

    Horoi, Mihai; Neacsu, Andrei

    2016-06-01

    Neutrinoless double-beta decay is a beyond the Standard Model process that would indicate that neutrinos are Majorana fermions, and the lepton number is not conserved. It could be interesting to use the neutrinoless double-beta decay observations to distinguish between several beyond Standard Model mechanisms that could contribute to this process. Accurate nuclear structure calculations of the nuclear matrix elements necessary to analyze the decay rates could be helpful to narrow down the list of contributing mechanisms. We investigate the information one can get from the angular and energy distribution of the emitted electrons and from the half-lives of several isotopes, assuming that the right-handed currents exist. For the analysis of these distributions, we calculate the necessary nuclear matrix elements using shell model techniques, and we explicitly consider interference terms.

  8. Accurate Q-Value for the ^{74}Se Double Electron Capture Decay

    SciTech Connect

    Kolhinen, V. S.; Elomaa, V.-V.; Eronen, T.; Hakala, J.; Jokinen, A.; Kortelainen, M.; Suhonen, J.; Aysto, J.

    2010-01-01

    The Q value of the neutrinoless double electron capture (0{nu}ECEC) decay of ^{74}Se was measured by using the JYFLTRAP Penning trap. The determined value is 1209.169(49) keV, which practically excludes the possibility of a complete energy degeneracy with the second 2^{+} state (1204-205(7) keV) of ^{74}Ge in a resoant 0{nu}ECEC decay. We have also computed the associated nuclear matrix element by using a microscopic nuclear model with realistic two-nucleon interactions. The computed matrix element is found to be quite small. The failure of the resonant condition, combined with the small nuclear matrix element and needed p-wave capture, suppresses the decay rate strongly and thus excludes ^{74}Se as a possible candidate to search for resonant 0{nu}ECEC processes.

  9. Rare B decays at CDF

    SciTech Connect

    Farrington, Sinead M.; /Liverpool U.

    2006-10-01

    The confidence level limits of the CDF search for the B{sub s}{sup 0} and B{sub d}{sup 0} {yields} {mu}{sup +}{mu}{sup -} rare decays and the branching ratio measurement of B{sub s}{sup 0} {yields} D{sub s}{sup +} D{sub s}{sup -} are presented.

  10. Fermi's β-DECAY Theory

    NASA Astrophysics Data System (ADS)

    Yang, Chen Ning

    2013-05-01

    Throughout his lifetime Enrico Fermi (1901-1954) had considered his 1934 β-decay theory as his most important contribution to theoretical physics. E. Segrè (1905-1989) had vividly written about an episode at the inception of that paper:1...

  11. Review of tau lepton decays

    SciTech Connect

    Stoker, D.P.

    1991-07-01

    Measurements of the {tau} decay modes are reviewed and compared with the predictions of the Standard Model. While the agreement is generally good, the status of the 1-prong puzzle'' remains controversial and a discrepancy between the measured leptonic branching fractions and the {tau} lifetime persists. Prospects for precision measurements at a Tau-Charm Factory are also reviewed. 20 refs., 2 tabs.

  12. Entanglement entropy in particle decay

    NASA Astrophysics Data System (ADS)

    Lello, Louis; Boyanovsky, Daniel; Holman, Richard

    2013-11-01

    The decay of a parent particle into two or more daughter particles results in an entangled quantum state as a consequence of conservation laws in the decay process. Recent experiments at Belle and BaBar take advantage of quantum entanglement and the correlations in the time evolution of the product particles to study CP and T violations. If one (or more) of the product particles are not observed, their degrees of freedom are traced out of the pure state density matrix resulting from the decay, leading to a mixed state density matrix and an entanglement entropy. This entropy is a measure of the loss of information present in the original quantum correlations of the entangled state. We use the Wigner-Weisskopf method to construct an approximation to this state that evolves in time in a manifestly unitary way. We then obtain the entanglement entropy from the reduced density matrix of one of the daughter particles obtained by tracing out the unobserved states, and follow its time evolution. We find that it grows over a time scale determined by the lifetime of the parent particle to a maximum, which when the width of the parent particle is narrow, describes the phase space distribution of maximally entangled Bell-like states. The method is generalized to the case in which the parent particle is described by a wave packet localized in space. Possible experimental avenues to measure the entanglement entropy in the decay of mesons at rest are discussed.

  13. {beta} decay of odd-A As to Ge isotopes in the interacting boson-fermion model

    SciTech Connect

    Brant, S.; Yoshida, N.; Zuffi, L.

    2004-11-01

    The structure of odd-mass isotopes of As and Ge is described in the framework of the proton-neutron interacting boson-fermion model. The energy levels and the electromagnetic properties of {sup 69,71,73}As and {sup 69,71,73}Ge are calculated and compared with the experiment. The {beta}-decay rates from the As isotopes to the Ge isotopes are calculated. The calculated decays tend to be stronger than the observed ones. This may indicate a mixture of components outside the model space in the wave functions of actual nuclei. The effect of the higher-order terms in the decay operators seems small.

  14. Phase-space factors and half-life predictions for Majoron-emitting β-β- decay

    NASA Astrophysics Data System (ADS)

    Kotila, J.; Barea, J.; Iachello, F.

    2015-06-01

    A complete calculation of phase space factors (PSFs) for Majoron-emitting 0 ν β-β- decay modes is presented. The calculation makes use of exact Dirac wave functions with finite nuclear size and electron screening and includes lifetimes, single-electron spectra, summed electron spectra, and angular electron correlations. Combining these results with recent microscopic interacting boson model nuclear matrix elements (NMEs) we make half-life predictions for the ordinary Majoron decay (spectral index n =1 ). Furthermore, comparing theoretical predictions with the obtained experimental lower bounds for this decay mode we are able to set limits on the effective Majoron-neutrino coupling constant .

  15. Chart of Nuclides from the National Nuclear Data Center (NNDC)

    DOE Data Explorer

    The Chart of Nuclides is a software product that allows users to search and plot nuclear structure and nuclear decay data interactively. The Chart of Nuclides was developed by the National Nuclear Data Center (NNDC). It provides an interface between web users and several databases containing nuclear structure, nuclear decay and some neutron-induced nuclear reaction information. Using the Chart of Nuclides, it is possible to search for nuclear level properties (energy, half-life, spin-parity), gamma-ray information (energy, intensity, multipolarity, coincidences),radiation information following nuclear decay (energy, intensity, dose), and neutron-induced reaction data from the BNL-325 book (thermal cross section and resonance integral). The information provided by the Chart of Nuclides can be seen in tables, level schemes and an interactive chart of nuclides. (From the Chart of Nuclides Description at http://www.nndc.bnl.gov/chart/help/index.jsp?product=chart)

  16. Determination of {chi}{sub c} and {chi}{sub b} polarizations from dilepton angular distributions in radiative decays

    SciTech Connect

    Faccioli, Pietro; Lourenco, Carlos; Seixas, Joao; Woehri, Hermine K.

    2011-05-01

    The angular distributions of the decay products in the successive decays {chi}{sub c}({chi}{sub b}){yields}J/{psi}({Upsilon}){gamma} and J/{psi}({Upsilon}){yields}l{sup +}l{sup -} are calculated as a function of the angular momentum composition of the decaying {chi} meson and of the multipole structure of the photon radiation, using a formalism independent of production mechanisms and polarization frames. The polarizations of the {chi} states produced in high-energy collisions can be derived from the dilepton decay distributions of the daughter J/{psi} or {Upsilon} mesons, with a reduced dependence on the details of the photon reconstruction or simulation. Moreover, this method eliminates the dependence of the polarization measurement on the actual details of the multipole structure of the radiative transition. Problematic points in previous calculations of the {chi}{sub c} decay angular distributions are identified and clarified.

  17. Evaluated nuclear structure data file

    NASA Astrophysics Data System (ADS)

    Tuli, J. K.

    1996-02-01

    The Evaluated Nuclear Structure Data File (ENSDF) contains the evaluated nuclear properties of all known nuclides, as derived both from nuclear reaction and radioactive decay measurements. All experimental data are evaluated to create the adopted properties for each nuclide. ENSDF, together with other numeric and bibliographic files, can be accessed on-line through the INTERNET or modem, and some of the databases are also available on the World Wide Web. The structure and the scope of ENSDF are presented along with the on-line access system of the National Nuclear Data Center at Brookhaven National Laboratory.

  18. Evaluated nuclear structure data file

    NASA Astrophysics Data System (ADS)

    Tuli, J. K.

    The Evaluated Nuclear Structure Data File (ENSDF) contains the evaluated nuclear properties of all known nuclides. These properties are derived both from nuclear reaction and radioactive decay measurements. All experimental data are evaluated to create the adopted properties for each nuclide. ENSDF, together with other numeric and biographic files, can be accessed on-line through the INTERNET or modem. Some of the databases are also available on the World Wide Web. The structure and the scope of ENSDF are presented along with the on-line access system of the National Nuclear Data Center at Brookhaven National Laboratory.

  19. Actual curriculum development practices instrument: Testing for factorial validity

    NASA Astrophysics Data System (ADS)

    Foi, Liew Yon; Bakar, Kamariah Abu; Hamzah, Mohd Sahandri Gani; Alwi, Nor Hayati

    2014-09-01

    The Actual Curriculum Development Practices Instrument (ACDP-I) was developed and the factorial validity of the ACDP-I was tested (n = 107) using exploratory factor analysis procedures in the earlier work of [1]. Despite the ACDP-I appears to be content and construct valid instrument with very high internal reliability qualities for using in Malaysia, the accumulated evidences are still needed to provide a sound scientific basis for the proposed score interpretations. Therefore, the present study addresses this concern by utilising the confirmatory factor analysis to further confirm the theoretical structure of the variable Actual Curriculum Development Practices (ACDP) and enrich the psychometrical properties of ACDP-I. Results of this study have practical implication to both researchers and educators whose concerns focus on teachers' classroom practices and the instrument development and validation process.

  20. Na-22 decay gamma rays from classical novae

    NASA Technical Reports Server (NTRS)

    Truran, James W.

    1993-01-01

    NASA Grant NAG 5-1565 has provided support for a program of theoretical research in nuclear astrophysics and related areas, focusing upon the possibility of detecting gamma rays from nearby novae. Particular attention has been given to the evaluation of the theoretical expectations for gamma ray emission from four possible sources: (1) the positron decays of the unstable CNO and fluorine isotopes that are transported to the surface regions of the envelope in the earliest stages of the outbursts; (2) Be-7 decay gamma rays, (3) Na-22 decay gamma rays released in the later stages of the outbursts; and (4) Al-26 decay gamma rays from novae and their possible contribution to Galactic emission. The critical questions of (1) the frequency of occurrence of ONeMg-enriched novae; (2) the expected Galactic distribution of the novae that produce 26Al; and (3) the nature of the observed soft X-ray emission from classical novae, have also been addressed. Considerable progress in research has been achieved on many of these fronts. Brief summaries of the results of several research projects are presented.

  1. Two-Neutrino Double-Beta Decay.

    NASA Astrophysics Data System (ADS)

    Guerard Ortego, Carlos-Kjell

    1992-01-01

    Two previous independent reports of 2 nubetabeta-decay by the ITEP-YPI collaboration, rm T_sp{1/2} {2nu}=(9+/- 1) times 10^ {20} yr (1sigma), and PNL-USC group, rm T_sp{1/2 }{2nu}=(1.12_sp{-0.26} {+0.48}) times 10^{21} yr (2sigma), were confirmed using a 0.25 Kg Ge(Li) detector isotopically enriched to 86% in ^{76}Ge. The detector was operated in the PNL-USC ultralow background facility in the Homestake gold mine for 168 days. Following a single correction to the data, a spectrum resembling that of the earlier PNL-USC experiment, with about the same intensity per ^{76}Ge atom, per year, was observed with a measured half life of rm T_sp{1/2}{2nu}=(9.2 _sp{-0.4}{+0.7} times 10 ^{20} y (2sigma). This experiment is one of two presented in this dissertation as original work. The half-life of the 2nubeta beta-decay of ^{100} Mo to the 1130 keV level of ^{100 }Ru has been measured to be rm T_{1/2}=(1.1_sp{-0.2} {+0.3}) times 10^{21} y (90% C.L.), by observing the 590.76 and 539.53 keV gamma rays emitted in the 0_sp{1}{+ }to 2^+to 0^+ de -excitation cascade. A review of the most relevant nuclear structure calculations is given, and their predictions are compared to the measurements from our two experiments.

  2. FRACTIONAL CRYSTALLIZATION FLOWSHEET TESTS WITH ACTUAL TANK WASTE

    SciTech Connect

    HERTING, D.L.

    2006-10-18

    Laboratory-scale flowsheet tests of the fractional crystallization process were conducted with actual tank waste samples in a hot cell at the 222-S Laboratory. The process is designed to separate medium-curie liquid waste into a low-curie stream for feeding to supplemental treatment and a high-curie stream for double-shell tank storage. Separations criteria (for Cs-137 sulfate, and sodium) were exceeded in all three of the flowsheet tests that were performed.

  3. FRACTIONAL CRYSTALLIZATION FLOWSHEET TESTS WITH ACTUAL TANK WASTE

    SciTech Connect

    HERTING, D.L.

    2007-04-13

    Laboratory-scale flowsheet tests of the fractional crystallization process were conducted with actual tank waste samples in a hot cell at the 2224 Laboratory. The process is designed to separate medium-curie liquid waste into a low-curie stream for feeding to supplemental treatment and a high-curie stream for double-shell tank storage. Separations criteria (for Cesium-137 sulfate and sodium) were exceeded in all three of the flowsheet tests that were performed.

  4. 63. VIEW OF AUTOTRANSFERS. THE ACTUAL AUTOTRANSFERS ARE ENCLOSED IN ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    63. VIEW OF AUTOTRANSFERS. THE ACTUAL AUTOTRANSFERS ARE ENCLOSED IN THE OIL FILLED CYLINDERS ON THE RIGHT OF THE PHOTOGRAPH. THESE ELECTRICAL DEVICES BOOSTED THE GENERATOR OUTPUT OF 11,000 VOLTS TO 22,000 VOLTS PRIOR TO TRANSMISSION OUT TO THE MAIN FEEDER LINES. A SPARE INNER UNIT IS CONTAINED IN THE METAL BOX AT THE LEFT OF THE PHOTOGRAPH. - New York, New Haven & Hartford Railroad, Cos Cob Power Plant, Sound Shore Drive, Greenwich, Fairfield County, CT

  5. Stellar structures and the enigma of pulsars rotation frequency decay

    NASA Astrophysics Data System (ADS)

    de Oliveira, H. O.; Marinho, R. M., Jr.; Maglhaes, N. S.

    2015-07-01

    Pulsars are astrophysical objects normally modelled as compact neutron stars that originated from the collapse of another star. This model, that we name canonical, assumes that pulsars are described by spherical magnetized dipoles that rotate, usually with the magnetic axis misaligned to the rotation axis. This misalignment would be responsible for the observation of radiation emitted in well-defined time intervals in a certain direction (lighthouse effect), the typical observational characteristic of this kind of star. It has been noticed that the rotation frequency of pulsars is slowly decaying with time (spin down), implying a gradual decrease of the rotational angular velocity (Ω). Such decay can be quantified by a dimensionless parameter called “braking index” (“n”), given by n = ΩΩ/(Ω)2, where a dot indicates a time derivative. The canonical model predicts that this index has one only value for all pulsars, equal to three. However, observational data indicate that actual braking indices are less than three, representing an enigma. The main goal of this research is the exploration of a more precise model for pulsars’ rotation frequency decay.

  6. Quantization in Classical Mechanics and Diffusion Mechanism of Alpha Decay, Proton and Cluster Radioactivity, Spontaneous Fission

    SciTech Connect

    Rusov, V. D.; Vlasenko, D. S.; Deliyergiyev, M. A.; Mavrodiev, S. Cht.

    2010-01-01

    Based on the Chetaev generalized theorem the Schroedinger equation as the stability condition of trajectories in classical dynamics in the presence of dissipative forces is derived. In the framework of this approach the alternative model for unified description of alpha decay, spontaneous fission, cluster and proton radioactivity and is developed. We show the possibility of the classical (without tunneling) description of radioactive decay of heavy nuclei, when the so called noise-induced transition or, in other words, the stochastic channel of radioactive decay conditioned by the Kramers diffusion mechanism is generated under certain conditions.Using the ENSDF nuclear data, we have found the parametrized solutions of the Kramers equation of the Langevin type by the Alexandrov dynamic auto-regularization method (REGN-Dubna program). These solutions describe with high-accuracy the dependences of half-life (the decay probability) of heavy radioactive nuclei on total kinetic energy of daughter decay products.Verification of the inverse problem solution in the framework of the universal Kramers description of alpha decay, spontaneous fission, cluster and proton radioactivity, which based on the newest experimental data for alpha-decay of even-even superheavy nuclei (Z = 114, 116, 118), shows good coincidence of the experimental and theoretical dependences of half-life on alpha-decay energy.

  7. Quantization in Classical Mechanics and Diffusion Mechanism of Alpha Decay, Cluster Radioactivity, Spontaneous Fission

    SciTech Connect

    Rusov, V. D.; Vlasenko, D. S.; Deliyergiyev, M. A.; Mavrodiev, S. Cht.

    2010-05-04

    Based on the Chetaev generalized theorem the Schredinger equation as the stability condition of trajectories in classical dynamics in the presence of dissipative forces is derived. In the framework of this approach the alternative model for unified description of alpha decay, spontaneous fission, cluster radioactivity and is developed. We show the possibility of the classical (without tunneling) description of radioactive decay of heavy nuclei, when the so called noise-induced transition or, in other words, the stochastic channel of radioactive decay conditioned by the Kramers diffusion mechanism is generated under certain conditions.Using the ENSDF nuclear data, we have found the parametrized solutions of the Kramers equation of the Langevin type by the Alexandrov dynamic auto-regularization method (REGN-Dubna program). These solutions describe with high-accuracy the dependences of half-life (the decay probability) of heavy radioactive nuclei on total kinetic energy of daughter decay products.Verification of the inverse problem solution in the framework of the universal Kramers description of alpha decay, spontaneous fission, cluster radioactivity, which based on the newest experimental data for alpha-decay of even-even superheavy nuclei (Z = 114, 116, 118), shows good coincidence of the experimental and theoretical dependences of half-life on alpha-decay energy.

  8. Limit on Tensor Currents from ^{8}Li β Decay.

    PubMed

    Sternberg, M G; Segel, R; Scielzo, N D; Savard, G; Clark, J A; Bertone, P F; Buchinger, F; Burkey, M; Caldwell, S; Chaudhuri, A; Crawford, J E; Deibel, C M; Greene, J; Gulick, S; Lascar, D; Levand, A F; Li, G; Pérez Galván, A; Sharma, K S; Van Schelt, J; Yee, R M; Zabransky, B J

    2015-10-30

    In the standard model, the weak interaction is formulated with a purely vector-axial-vector (V-A) structure. Without restriction on the chirality of the neutrino, the most general limits on tensor currents from nuclear β decay are dominated by a single measurement of the β-ν[over ¯] correlation in ^{6}He β decay dating back over a half century. In the present work, the β-ν[over ¯]-α correlation in the β decay of ^{8}Li and subsequent α-particle breakup of the ^{8}Be^{*} daughter was measured. The results are consistent with a purely V-A interaction and in the case of couplings to right-handed neutrinos (C_{T}=-C_{T}^{'}) limits the tensor fraction to |C_{T}/C_{A}|^{2}<0.011 (95.5% C.L.). The measurement confirms the ^{6}He result using a different nuclear system and employing modern ion-trapping techniques subject to different systematic uncertainties. PMID:26565463

  9. Free induction decay caused by a dipole field

    NASA Astrophysics Data System (ADS)

    Ziener, C. H.; Kurz, F. T.; Kampf, T.

    2015-03-01

    We analyze the free induction decay of nuclear spins under the influence of restricted diffusion in a magnetic dipole field around cylindrical objects. In contrast to previous publications no restrictions or simplifications concerning the diffusion process are made. By directly solving the Bloch-Torrey equation, analytical expressions for the magnetization are given in terms of an eigenfunction expansion. The field strength-dependent complex nature of the eigenvalue spectrum significantly influences the shape of the free induction decay. As the dipole field is the lowest order of the multipole expansion, the obtained results are important for understanding fundamental mechanisms of spin dephasing in many other applied fields of nuclear magnetic resonance such as biophysics or material science. The analytical methods are applied to interpret the spin dephasing in the free induction decay in cardiac muscle and skeletal muscle. A simple expression for the relevant transverse relaxation time is found in terms of the underlying microscopic parameters of the muscle tissue. The analytical results are in agreement with experimental data. These findings are important for the correct interpretation of magnetic resonance images for clinical diagnosis at all magnetic field strengths and therapy of cardiovascular diseases.

  10. Free induction decay caused by a dipole field.

    PubMed

    Ziener, C H; Kurz, F T; Kampf, T

    2015-03-01

    We analyze the free induction decay of nuclear spins under the influence of restricted diffusion in a magnetic dipole field around cylindrical objects. In contrast to previous publications no restrictions or simplifications concerning the diffusion process are made. By directly solving the Bloch-Torrey equation, analytical expressions for the magnetization are given in terms of an eigenfunction expansion. The field strength-dependent complex nature of the eigenvalue spectrum significantly influences the shape of the free induction decay. As the dipole field is the lowest order of the multipole expansion, the obtained results are important for understanding fundamental mechanisms of spin dephasing in many other applied fields of nuclear magnetic resonance such as biophysics or material science. The analytical methods are applied to interpret the spin dephasing in the free induction decay in cardiac muscle and skeletal muscle. A simple expression for the relevant transverse relaxation time is found in terms of the underlying microscopic parameters of the muscle tissue. The analytical results are in agreement with experimental data. These findings are important for the correct interpretation of magnetic resonance images for clinical diagnosis at all magnetic field strengths and therapy of cardiovascular diseases. PMID:25871144

  11. Perceived accessibility versus actual physical accessibility of healthcare facilities.

    PubMed

    Sanchez, J; Byfield, G; Brown, T T; LaFavor, K; Murphy, D; Laud, P

    2000-01-01

    This study addressed how healthcare clinics perceive themselves in regard to accessibility for persons with spinal cord injuries (SCI). All 40 of the clinics surveyed reported that they were wheelchair accessible; however, there was significant variability in the number of sites that actually met the guidelines of the Americans with Disability Act. In general, a person using a wheelchair could enter the building, the examination room, and the bathroom. The majority of sites did not have an examination table that could be lowered to wheelchair level. Most reported limited experience in working with persons with (SCI), yet they claimed to be able to assist with difficult transfers. Only one site knew about autonomic dysreflexia. Problems of accessibility appeared to be seriously compounded by the clinics' perception of how they met physical accessibility guidelines without consideration of the actual needs of persons with SCI. This study addressed the perception of accessibility as reported by clinic managers versus actual accessibility in healthcare clinics in a Midwestern metropolitan area for persons using wheelchairs. PMID:10754921

  12. The actual citation impact of European oncological research.

    PubMed

    López-Illescas, Carmen; de Moya-Anegón, Félix; Moed, Henk F

    2008-01-01

    This study provides an overview of the research performance of major European countries in the field Oncology, the most important journals in which they published their research articles, and the most important academic institutions publishing them. The analysis was based on Thomson Scientific's Web of Science (WoS) and calculated bibliometric indicators of publication activity and actual citation impact. Studying the time period 2000-2006, it gives an update of earlier studies, but at the same time it expands their methodologies, using a broader definition of the field, calculating indicators of actual citation impact, and analysing new and policy relevant aspects. Findings suggest that the emergence of Asian countries in the field Oncology has displaced European articles more strongly than articles from the USA; that oncologists who have published their articles in important, more general journals or in journals covering other specialties, rather than in their own specialist journals, have generated a relatively high actual citation impact; and that universities from Germany, and--to a lesser extent--those from Italy, the Netherlands, UK, and Sweden, dominate a ranking of European universities based on number of articles in oncology. The outcomes illustrate that different bibliometric methodologies may lead to different outcomes, and that outcomes should be interpreted with care. PMID:18039565

  13. Neutron Beta Decay Studies with Nab

    SciTech Connect

    Baessler, S.; Alarcon, R.; Alonzi, L. P.; Balascuta, S.; Barron-Palos, L.; Bowman, James David; Bychkov, M. A.; Byrne, J.; Calarco, J; Chupp, T.; Cianciolo, T. V.; Crawford, C.; Frlez, E.; Gericke, M. T.; Glück, F.; Greene, G. L.; Grzywacz, R. K.; Gudkov, V.; Harrison, D.; Hersman, F. W.; Ito, T.; Makela, M.; Martin, J.; McGaughey, P. L.; McGovern, S.; Page, S.; Penttila, Seppo I; Pocanic, Dinko; Salas-Bacci, A.; Tompkins, Z.; Wagner, D.; Wilburn, W. S.; Young, A. R.

    2013-01-01

    Precision measurements in neutron beta decay serve to determine the coupling constants of beta decay and allow for several stringent tests of the standard model. This paper discusses the design and the expected performance of the Nab spectrometer.

  14. Atomic Radiations in the Decay of Medical Radioisotopes: A Physics Perspective

    PubMed Central

    Lee, B. Q.; Kibédi, T.; Stuchbery, A. E.; Robertson, K. A.

    2012-01-01

    Auger electrons emitted in nuclear decay offer a unique tool to treat cancer cells at the scale of a DNA molecule. Over the last forty years many aspects of this promising research goal have been explored, however it is still not in the phase of serious clinical trials. In this paper, we review the physical processes of Auger emission in nuclear decay and present a new model being developed to evaluate the energy spectrum of Auger electrons, and hence overcome the limitations of existing computations. PMID:22924061

  15. Beta decay rates of neutron-rich nuclei

    NASA Astrophysics Data System (ADS)

    Marketin, Tomislav; Huther, Lutz; Petković, Jelena; Paar, Nils; Martínez-Pinedo, Gabriel

    2016-06-01

    Heavy element nucleosynthesis models involve various properties of thousands of nuclei in order to simulate the intricate details of the process. By necessity, as most of these nuclei cannot be studied in a controlled environment, these models must rely on the nuclear structure models for input. Of all the properties, the beta-decay half-lives are one of the most important ones due to their direct impact on the resulting abundance distributions. In this study we present the results of a large-scale calculation based on the relativistic nuclear energy density functional, where both the allowed and the first-forbidden transitions are studied in more than 5000 neutron-rich nuclei. Aside from the astrophysical applications, the results of this calculation can also be employed in the modeling of the electron and antineutrino spectra from nuclear reactors.

  16. Time Modulation of the {beta}{sup +}-Decay Rate of H-Like {sup 140}Pr{sup 58+} Ions

    SciTech Connect

    Ivanov, A. N.; Kryshen, E. L.; Pitschmann, M.; Kienle, P.

    2008-10-31

    Recent experimental data at GSI on the rates of the number of daughter ions, produced by the nuclear K-shell electron capture (EC) decays of the H-like ions {sup 140}Pr{sup 58+} and {sup 142}Pm{sup 60+}, suggest that they are modulated in time with periods T{sub EC}{approx_equal}7 sec and amplitudes a{sub EC}{approx_equal}0.20. Since it is known that these ions are unstable also under the nuclear positron ({beta}{sup +}) decays, we study a possible time dependence of the nuclear {beta}{sup +}-decay rate of the H-like {sup 140}Pr{sup 58+} ion. We show that the time dependence of the {beta}{sup +}-decay rate of the H-like {sup 140}Pr{sup 58+} ion as well as any H-like heavy ions cannot be observed.

  17. Decays of near BPS heterotic strings

    SciTech Connect

    Gutperle, Michael; Krym, Darya

    2006-10-15

    The decay of highly excited massive string states in compactified heterotic string theories is discussed. We calculate the decay rate and spectrum of states carrying momentum and winding in the compactified direction. The longest lived states in the spectrum are near Bogomol'nyi-Prasad-Sommerfield (BPS) states whose decay is dominated by a single decay channel of massless radiation which brings the state closer to being BPS.

  18. Nuclear Structure Data for the Present Age

    NASA Astrophysics Data System (ADS)

    Baglin, Coral M.

    2005-05-01

    The US Nuclear Data Program maintains and provides easy and free access to several comprehensive databases that assist scientists to sift through and assess the vast quantity of published nuclear structure and decay data. These databases are an invaluable asset for nuclear-science experimentalists and theorists alike, and the recommended values provided for nuclear properties such as decay modes, level energies and lifetimes, and radiation properties can also be of great importance to specialists in other fields such as medicine, geophysics, and reactor design. The Evaluated Nuclear Structure Data File (ENSDF) contains experimental nuclear structure data for all known nuclides, evaluated by the US nuclear data program evaluators in collaboration with a number of international data groups; the Nuclear Science Reference (NSR) database provides complementary bibliographic information; the Experimental Unevaluated Nuclear Data Listing (XUNDL) exists to enable rapid access to experimental nuclear-structure data compiled from the most recent publications (primarily in high-spin physics). This paper presents an overview of the nuclear structure and decay data available through these databases, with emphasis on recent and forthcoming additions to and presentations of the available material.

  19. Nuclear Data Sheets for A = 54

    SciTech Connect

    Dong, Yang; Junde, Huo

    2014-09-15

    The 2005 evaluation for A=54 (2006Hu08) has been updated. Detailed experimental nuclear structure data and decay data for all nuclei with mass chain A=54 are presented in this current evaluation. The new data and information are given in following datasets: {sup 54}Ca: {sup 9}Be({sup 76}Ge, X) and Be({sup 55}Sc, p), ({sup 56}Ti, 2p) {sup 54}Sc: {sup 54}Ca β{sup −} decay and {sup 54}Sc IT decay {sup 54}Ti: {sup 54}Sc β{sup −} decay {sup 54}Cr: {sup 54}Mn ε decay, {sup 56}Fe(μ, nupng), and {sup 238}U({sup 64}Ni, Xγ) {sup 54}Mn: {sup 51}V({sup 20}Ne, Xγ), {sup 55}Mn(p, pn), and {sup 56}Fe(μ, nu2ng) {sup 54}Fe: {sup 58}Ni α decay, {sup 9}Be({sup 55}Co, Xγ), {sup 54}Fe(e, e'), {sup 54}Fe(p, p'), and Coulomb Excitation {sup 54}Co: {sup 54}Ni ε decay, {sup 55}Cu εp decay, {sup 28}Si({sup 32}S, αpnγ), {sup 54}Fe(p,n), and {sup 54}Fe({sup 3}He, t) {sup 54}Ni: {sup 54}Ni IT decay, {sup 55}Zn εp decay, {sup 9}Be({sup 55}Ni, Xγ), and {sup 24}Mg({sup 32}S, Xγ) {sup 54}Zn: Ni({sup 58}Ni, X)

  20. Penguin and rare decays in BABAR

    NASA Astrophysics Data System (ADS)

    Akar, Simon; Babar Collaboration

    2014-11-01

    We present recent results from the BABAR Collaboration on radiative decays. These include searches for new physics via measurements of several observables such as the time- dependent CP asymmetry in B0 → K0Sπ-π+γ exclusive decays, as well as direct CP asymmetries and branching fractions in B → Xsγ and B → Xsl+l- inclusive decays.