Science.gov

Sample records for actual observed spectral

  1. Apparent and Actual Use of Observational Frameworks by Experienced Teachers.

    ERIC Educational Resources Information Center

    Satern, Miriam N.

    This study investigated observational strategies that were used by six experienced physical education teachers when viewing a videotape of motor skills (standing vertical jump, overarm throw, tennis serve, basketball jump shot and dance sequence). Four observational frameworks were proposed as being representative of subdisciplinary knowledge…

  2. SHIELD II: WSRT HI Spectral Line Observations

    NASA Astrophysics Data System (ADS)

    Gordon, Alex Jonah Robert; Cannon, John M.; Adams, Elizabeth A.; SHIELD II Team

    2016-01-01

    The "Survey of HI in Extremely Low-mass Dwarfs II" ("SHIELD II") is a multiwavelength, legacy-class observational campaign that is facilitating the study of both internal and global evolutionary processes in low-mass dwarf galaxies discovered by the Arecibo Legacy Fast ALFA (ALFALFA) survey. We present new results from WSRT HI spectral line observations of 22 galaxies in the SHIELD II sample. We explore the morphology and kinematics by comparing images of the HI surface densities and the intensity weighted velocity fields with optical images from HST, SDSS, and WIYN. In most cases the HI and stellar populations are cospatial; projected rotation velocities range from less than 10 km/s to roughly 30 km/s.Support for this work was provided by NSF grant AST-1211683 to JMC at Macalester College, and by NASA through grant GO-13750 from the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS5-26555.

  3. SHIELD II: VLA HI Spectral Line Observations

    NASA Astrophysics Data System (ADS)

    Lee, Eojin; Cannon, John M.; McNichols, Andrew; Teich, Yaron; SHIELD II Team

    2016-01-01

    The "Survey of HI in Extremely Low-mass Dwarfs II" ("SHIELD II") is a multiwavelength, legacy-class observational campaign that is facilitating the study of both internal and global evolutionary processes in low-mass dwarf galaxies discovered by the Arecibo Legacy Fast ALFA (ALFALFA) survey. We present new results from low-resolution D-configuration VLA HI spectral line observations of 6 galaxies in the SHIELD II sample. We explore the morphology and kinematics by comparing images of the HI surface densities and the intensity weighted velocity fields with optical images from SDSS and WIYN. These data allow us to localize the HI gas and to study the bulk neutral gas kinematics.Support for this work was provided by NSF grant AST-1211683 to JMC at Macalester College.

  4. Multi-spectral observations of flares

    NASA Astrophysics Data System (ADS)

    Zuccarello, F.

    2016-11-01

    Observations show that during solar flares radiation can be emitted across the entire electromagnetic spectrum, spanning from gamma rays to radio waves. These emissions, related to the conversion of magnetic energy into other forms of energy (kinetic, thermal, waves) through magnetic reconnection, are due to different physical processes that can occur in different layers of the Sun. This means that flare observations need to be carried out using instruments operating in different wave-bands in order to achieve a complete scenario of the processes going on. Taking into account that most of the radiative energy is emitted at optical and UV wavelengths, observations carried out from space, need to be complemented by observations carried out from ground-based telescopes. Nowadays, the possibility to carry on high temporal, spatial and spectral resolution from ground-based telescopes in coordinated campaigns with space-borne instruments (like, i.e., IRIS and HINODE) gives the opportunity to investigate the details of the flare emission at different wavelengths and can provide useful hints to understand these phenomena and compare observations with models. However, it is undoubted that sometimes the pointing to the flaring region is not an easy task, due to the necessity to provide the target coordinates to satellites with some hours in advance. Some problems arising from this issue will be discussed. Moreover, new projects related to flare catalogues and archives will be presented.

  5. Spectral observations of the extreme ultraviolet background.

    PubMed

    Labov, S E; Bowyer, S

    1991-04-20

    A grazing incidence spectrometer was designed to measure the diffuse extreme ultraviolet background. It was flown on a sounding rocket, and data were obtained on the diffuse background between 80 and 650 angstroms. These are the first spectral measurements of this background below 520 angstroms. Several emission features were detected, including interplanetary He I 584 angstroms emission and geocoronal He II 304 angstroms emission. Other features observed may originate in a hot ionized interstellar gas, but if this interpretation is correct, gas at several different temperatures is present. The strongest of these features is consistent with O V emission at 630 angstroms. This emission, when combined with upper limits for other lines, restricts the temperature of this component to 5.5 < log T < 5.7, in agreement with temperatures derived from O VI absorption studies. A power-law distribution of temperatures is consistent with this feature only if the power-law coefficient is negative, as is predicted for saturated evaporation of clouds in a hot medium. In this case, the O VI absorption data confine the filling factor of the emission of f < or = 4% and the pressure to more than 3.7 x 10(4) cm-3 K, substantially above ambient interstellar pressure. Such a pressure enhancement has been predicted for clouds undergoing saturated evaporation. Alternatively, if the O V emission covers a considerable fraction of the sky, it would be a major source of ionization. A feature centered at about 99 angstroms is well fitted by a cluster of Fe XVIII and Fe XIX lines from gas at log T = 6.6-6.8. These results are consistent with previous soft X-ray observations with low-resolution detectors. A feature found near 178 angstroms is consistent with Fe X and Fe XI emission from gas at log T = 6; this result is consistent with results from experiments employing broad-band soft X-ray detectors.

  6. Remote sensing cloud properties from high spectral resolution infrared observations

    NASA Technical Reports Server (NTRS)

    Smith, William L.; Ma, Xia L.; Ackerman, Steven A.; Revercomb, H. E.; Knuteson, R. O.

    1993-01-01

    A technique for estimating cloud radiative properties (spectral emissivity and reflectivity) in the IR is developed based on observations at a spectral resolution of approximately 0.5/cm. The algorithm uses spectral radiance observations and theoretical calculations of the IR spectra for clear and cloudy conditions along with lidar-determined cloud-base and cloud-top pressure. An advantage of the high spectral resolution observations is that the absorption effects of atmospheric gases are minimized by analyzing between gaseous absorption lines. The technique is applicable to both ground-based and aircraft-based platforms and derives the effective particle size and associated cloud water content required to satisfy, theoretically, the observed cloud IR spectra. The algorithm is tested using theoretical simulations and applied to observations made with the University of Wisconsin's ground-based and NASA ER-2 aircraft High-Resolution Infrared Spectrometer instruments.

  7. Observation results of actual phase defects using micro coherent EUV scatterometry microscope

    NASA Astrophysics Data System (ADS)

    Hashimoto, Hiraku; Harada, Tetsuo; Watanabe, Takeo

    2016-10-01

    One of the critical issue of EUV lithography is fabrication of defect-free mask. The origin of the defect is a particle inside the multilayer and bump or pit on glass substrate. This type of defect is called a phase defect. If there is a phase defect, the reflection phase is disordered. As a result, the phase structure is printed as a defect on a wafer. Thus, we have developed micro coherent EUV scatterometry microscope (we called micro-CSM) for phase defect characterization. Micro-CSM records scattering signal from a defect directly exposed by focused coherent EUV having a spot size of φ140-nm in diameter. An off-axis-type Fresnel zone plate was employed as a focusing optics. Phase distribution of the defect is reconstructed with the scattering image by the coherent-diffraction-imaging method. We observed actual phase defects in this work. Actual phase defects were on a mask blanks which was the same grade of the pre-production mask of the semiconductor devices. The positions of actual phase defects have been already inspected by the actinic blank inspection tool. And, the actual phase defects have been already observed using an atomic force microscope. A purpose of this work is observation of these actual defects using micro-CSM and comparison of the results.

  8. Solar spectral irradiance variability in cycle 24: observations and models

    NASA Astrophysics Data System (ADS)

    Marchenko, Sergey V.; DeLand, Matthew T.; Lean, Judith L.

    2016-12-01

    Utilizing the excellent stability of the Ozone Monitoring Instrument (OMI), we characterize both short-term (solar rotation) and long-term (solar cycle) changes of the solar spectral irradiance (SSI) between 265 and 500 nm during the ongoing cycle 24. We supplement the OMI data with concurrent observations from the Global Ozone Monitoring Experiment-2 (GOME-2) and Solar Radiation and Climate Experiment (SORCE) instruments and find fair-to-excellent, depending on wavelength, agreement among the observations, and predictions of the Naval Research Laboratory Solar Spectral Irradiance (NRLSSI2) and Spectral And Total Irradiance REconstruction for the Satellite era (SATIRE-S) models.

  9. Corrective Feedback in L2 Latvian Classrooms: Teacher Perceptions versus the Observed Actualities of Practice

    ERIC Educational Resources Information Center

    Dilans, Gatis

    2016-01-01

    This two-part study aims to investigate teacher perceptions about providing oral corrective feedback (CF) to minority students of Latvian as a second language and compare the perceptions to the actual provision of CF in L2 Latvian classrooms. The survey sample represents sixty-six L2 Latvian teachers while the classroom observations involved 13…

  10. Lyman alpha solar spectral irradiance line profile observations and models

    NASA Astrophysics Data System (ADS)

    Snow, Martin; Machol, Janet; Quemerais, Eric; Curdt, Werner; Kretschmar, Matthieu; Haberreiter, Margit

    2016-04-01

    Solar lyman alpha solar spectral irradiance measurements are available on a daily basis, but only the 1-nm integrated flux is typically published. The International Space Science Institute (ISSI) in Bern, Switzerland has sponsored a team to make higher spectral resolution data available to the community. Using a combination of SORCE/SOLSTICE and SOHO/SUMER observations plus empirical and semi-empirical modeling, we will produce a dataset of the line profile. Our poster will describe progress towards this goal.

  11. Infrared Spectral Observations While Drilling into a Frozen Lunar Simulant

    NASA Technical Reports Server (NTRS)

    Roush, Ted L.; Colaprete, Anthony; Thompson, Sarah; Cook, Amanda; Kleinhenz, Julie

    2014-01-01

    Past and continuing observations indicate an enrichment of volatile materials in lunar polar regions. While these volatiles may be located near the surface, access to them will likely require subsurface sampling, during which it is desirable to monitor the volatile content. In a simulation of such activities, a multilayer lunar simulant was prepared with differing water content, and placed inside a thermal vacuum chamber at Glenn Research Center (GRC). The soil profile was cooled using liquid nitrogen. In addition to the soil, a drill and infrared (IR) spectrometer (1600-3400 nm) were also located in the GRC chamber. We report the spectral observations obtained during a sequence where the drill was repeatedly inserted and extracted, to different depths, at the same location. We observe an overall increase in the spectral signature of water ice over the duration of the test. Additionally, we observe variations in the water ice spectral signature as the drill encounters different layers.

  12. Spectral Observations of Two Galaxies with UV Excess

    NASA Astrophysics Data System (ADS)

    Karapetyan, E. L.

    2016-09-01

    Spectral observations of two galaxies with UV-excess from Kazarian's list are reported. The spectra were obtained with the 2.6-m telescope at the Byurakan Observatory using the SCORPIO spectral camera. A grism was used to obtain spectra in the wavelength interval λλ7420-3920 Å. The spectra of Kaz 151, Kaz 153 have Sy2 features. In the spectra of the Kaz 151, and Kaz 153 galaxies absorption lines are observed along with high excitation emission lines such as HeI λ5876 Å and HeII λ4686 Å.

  13. Inferring spectral characteristics of the Hα spectral line observed by the DOT Lyot filter

    NASA Astrophysics Data System (ADS)

    Koza, J.; Rybák, J.; Gömöry, P.; Kučera, A.

    2014-04-01

    A tunable Lyot filter can serve as a spectroscopic device rendering wide-field 2-D pseudospectroscopy of solar structures and follow-up crude reconstruction of a spectral line profile at each pixel within the field of view. We developed a method of inferring of the Doppler shift, the core intensity, the core width, and the core asymmetry of the Hα spectral line observed by the Lyot filter installed on the Dutch Open Telescope (DOT). The spectral characteristics are inferred through the fitting of five intensity samples, separated from each other by 0.35 Å, by a 4th-order polynomial, a Gaussian, and a parabola. We use the atlas Hα profile as a reference in estimating deviations of the derived spectral characteristics. The Gaussian is the most preferable means for measurements of the Doppler shift with deviations smaller than 1 km s-1. When using the 4th-order polynomial, deviations are within the interval ±2.5 km s-1, but it renders comparable deviations of the core intensity and the width as the Gaussian. The deviations are largely insensitive to the shape of the filter transmission, but depend mostly non-linearly on the Doppler shift. Therefore, they do not cancel out if the spectral characteristics are represented by their relative variations. Results can be used as corrections of spectral characteristics extracted from area-averaged Hα profiles acquired by the DOT Lyot filter.

  14. Constraining the Noncommutative Spectral Action via Astrophysical Observations

    SciTech Connect

    Nelson, William; Ochoa, Joseph; Sakellariadou, Mairi

    2010-09-03

    The noncommutative spectral action extends our familiar notion of commutative spaces, using the data encoded in a spectral triple on an almost commutative space. Varying a rather simple action, one can derive all of the standard model of particle physics in this setting, in addition to a modified version of Einstein-Hilbert gravity. In this Letter we use observations of pulsar timings, assuming that no deviation from general relativity has been observed, to constrain the gravitational sector of this theory. While the bounds on the coupling constants remain rather weak, they are comparable to existing bounds on deviations from general relativity in other settings and are likely to be further constrained by future observations.

  15. Ion spectral structures observed by the Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Ferradas, C.; Zhang, J.; Spence, H. E.; Kistler, L. M.; Larsen, B.; Reeves, G. D.; Skoug, R. M.; Funsten, H. O.

    2015-12-01

    During the last decades several missions have recorded the presence of dynamic spectral features of energetic ions in the inner magnetosphere. Previous studies have reported single "nose-like" structures occurring alone and simultaneous nose-like structures (up to three). These ion structures are named after the characteristic shapes of energy bands or gaps in the energy-time spectrograms of in situ measured ion fluxes. They constitute the observational signatures of ion acceleration, transport, and loss in the global magnetosphere. The HOPE mass spectrometer onboard the Van Allen Probes measures energetic hydrogen, helium, and oxygen ions near the inner edge of the plasma sheet, where these ion structures are observed. We present a statistical study of nose-like structures, using 2-years measurements from the HOPE instrument. The results provide important details about the spatial distribution (dependence on geocentric distance), spectral features of the structures (differences among species), and geomagnetic conditions under which these structures occur.

  16. Observation of the Optical and Spectral Characteristics of Ball Lightning

    NASA Astrophysics Data System (ADS)

    Cen, Jianyong; Yuan, Ping; Xue, Simin

    2014-01-01

    Ball lightning (BL) has been observed with two slitless spectrographs at a distance of 0.9 km. The BL is generated by a cloud-to-ground lightning strike. It moves horizontally during the luminous duration. The evolution of size, color, and light intensity is reported in detail. The spectral analysis indicates that the radiation from soil elements is present for the entire lifetime of the BL.

  17. Spectral types for early-type stars observed by Skylab

    NASA Technical Reports Server (NTRS)

    Roman, N. G.

    1978-01-01

    MK spectral types are presented for 246 early-type stars observed with the S-019 ultraviolet stellar astronomy experiment on Skylab. K-line types are also given where applicable, and various peculiar stars are identified. The peculiar stars include five silicon stars, a shell star, a helium-rich star, a silicon-strontium star, a chromium-europium star, and two marginal metallic-line stars.

  18. Hyperspectral imagery for observing spectral signature change in Aspergillus flavus

    NASA Astrophysics Data System (ADS)

    DiCrispino, Kevin; Yao, Haibo; Hruska, Zuzana; Brabham, Kori; Lewis, David; Beach, Jim; Brown, Robert L.; Cleveland, Thomas E.

    2005-11-01

    Aflatoxin contaminated corn is dangerous for domestic animals when used as feed and cause liver cancer when consumed by human beings. Therefore, the ability to detect A. flavus and its toxic metabolite, aflatoxin, is important. The objective of this study is to measure A. flavus growth using hyperspectral technology and develop spectral signatures for A. flavus. Based on the research group's previous experiments using hyperspectral imaging techniques, it has been confirmed that the spectral signature of A. flavus is unique and readily identifiable against any background or surrounding surface and among other fungal strains. This study focused on observing changes in the A. flavus spectral signature over an eight-day growth period. The study used a visible-near-infrared hyperspectral image system for data acquisition. This image system uses focal plane pushbroom scanning for high spatial and high spectral resolution imaging. Procedures previously developed by the research group were used for image calibration and image processing. The results showed that while A. flavus gradually progressed along the experiment timeline, the day-to-day surface reflectance of A. flavus displayed significant difference in discreet regions of the wavelength spectrum. External disturbance due to environmental changes also altered the growth and subsequently changed the reflectance patterns of A. flavus.

  19. Is Ecosystem-Atmosphere Observation in Long-Term Networks actually Science?

    NASA Astrophysics Data System (ADS)

    Schmid, H. P. E.

    2015-12-01

    Science uses observations to build knowledge by testable explanations and predictions. The "scientific method" requires controlled systematic observation to examine questions, hypotheses and predictions. Thus, enquiry along the scientific method responds to questions of the type "what if …?" In contrast, long-term observation programs follow a different strategy: we commonly take great care to minimize our influence on the environment of our measurements, with the aim to maximize their external validity. We observe what we think are key variables for ecosystem-atmosphere exchange and ask questions such as "what happens next?" or "how did this happen?" This apparent deviation from the scientific method begs the question whether any explanations we come up with for the phenomena we observe are actually contributing to testable knowledge, or whether their value remains purely anecdotal. Here, we present examples to argue that, under certain conditions, data from long-term observations and observation networks can have equivalent or even higher scientific validity than controlled experiments. Internal validity is particularly enhanced if observations are combined with modeling. Long-term observations of ecosystem-atmosphere fluxes identify trends and temporal scales of variability. Observation networks reveal spatial patterns and variations, and long-term observation networks combine both aspects. A necessary condition for such observations to gain validity beyond the anecdotal is the requirement that the data are comparable: a comparison of two measured values, separated in time or space, must inform us objectively whether (e.g.) one value is larger than the other. In turn, a necessary condition for the comparability of data is the compatibility of the sensors and procedures used to generate them. Compatibility ensures that we compare "apples to apples": that measurements conducted in identical conditions give the same values (within suitable uncertainty intervals

  20. Wind wave spectral observations in Currituck Sound, North Carolina

    NASA Astrophysics Data System (ADS)

    Long, Charles E.; Resio, Donald T.

    2007-05-01

    We examine a set of 1626 high-resolution frequency-direction wind wave spectra and collocated winds collected during a 7-month period at a site in Currituck Sound, North Carolina, in terms of one-dimensional spectral structure and directional distribution functions. The data set includes cases of shore-normal winds in broad-fetch conditions as well as winds oblique to the basin geometry, with all fetches of order 10 km or less. Using equilibrium-range scaling, all one-dimensional spectra have a spectral peak region, an equilibrium range of finite bandwidth following an f-4 slope at slightly higher frequencies, and a high-frequency tail that falls off more rapidly than f-4. For shore-normal winds, spectral peakedness appears to be high and approximately constant for young waves, low and approximately constant for old waves, and steeply graded for intermediate inverse wave ages in the range 1.0 < u10/cp < 1.7. Equilibrium-range bandwidth seems to be narrow for young waves and increases with increasing wave age. Directional distribution functions in shore-normal winds are symmetric about the wind direction, narrow at spectral peaks, and broad at high frequencies with distinct directionally bimodal peaks, consistent with other observations. In oblique-wind cases, directional distribution functions are asymmetric and directionally sheared in spectral peak regions, with peak directions aligned with longer fetch directions. At high frequencies, directional distributions are more nearly symmetric about the wind direction. One-dimensional spectra tend to have reduced spectral peakedness and highly variable equilibrium-range bandwidths in oblique-wind conditions, clearly indicating a more complex balance of source terms in these cases than in the more elementary situation of shore-normal winds. These complications are not without consequence in wave modeling, as any bounded or semibounded lake or estuary will be subject to oblique winds, and current operational models do not

  1. ALMA capabilities for observations of spectral line emission

    NASA Astrophysics Data System (ADS)

    Wootten, Alwyn

    2008-01-01

    The Atacama Large Millimeter/submillimeter Array (ALMA) (The Enhanced Atacama Large Millimeter/submillimeter Array (known as ALMA) is an international astronomy facility. ALMA is a partnership between North America, Europe, and Japan/Taiwan, in cooperation with the Republic of Chile, and is funded in Europe by the European Southern Observatory (ESO) and Spain, in North America by the U.S. National Science Foundation (NSF) in cooperation with the National Research Council of Canada (NRC), and in Japan by the National Institutes of Natural Sciences (NINS) in cooperation with the Academia Sinica in Taiwan. ALMA construction and operations are led on behalf of Japan/Taiwan by the National Astronomical Observatory of Japan (NAOJ), on behalf of North America by the National Radio Astronomy Observatory (NRAO), which is managed by Associated Universities, Inc. (AUI), and on behalf of Europe by ESO) combines large collecting area and location on a high dry site to provide it with unparalleled potential for sensitive millimeter/submillimeter spectral line observations. Its wide frequency coverage, superb receivers and flexible spectrometer will ensure that its potential is met. Since the 1999 meeting on ALMA Science (Wootten, ASP Conf. Ser. 235, 2001), the ALMA team has substantially enhanced its capability for line observations. ALMA’s sensitivity increased when Japan joined the project, bringing the 16 antennas of the Atacama Compcat Array (ACA), equivalent to eight additional 12 m telescopes. The first four receiver cartridges for the baseline ALMA (Japan’s entry has brought two additional bands to ALMA’s receiver retinue) have been accepted, with performance above the already-challenging specifications. ALMA’s flexibility has increased with the enhancement of the baseline correlator with additional channels and flexibility, and with the addition of a separate correlator for the ACA. As an example of the increased flexibility, ALMA is now capable of multi-spectral

  2. Spectral changes associated with rain on Titan: observations by VIMS

    NASA Astrophysics Data System (ADS)

    Buratti, B. J.; Dalba, P. A.; Barnes, J.; Baines, K. H.; Brown, R. H.; Clark, R. N.; Nicholson, P. D.; Sotin, C.

    2012-04-01

    Titan has an erosional cycle similar to that on the Earth, with solid, liquid, and gaseous methane taking the place of the Earth’s water. Lakes and ponds, drainage and fluvial features, and clouds all suggest that rain is falling on Titan. A darkening event near clouds covering the Huygens landing site, followed by a return to the previous state, strongly suggested rainfall followed by evaporation (Turtle et al., 2011). The Cassini Visual infrared Mapping Spectrometer (VIMS) obtains medium resolution spectra in the 0.35-5.1 μm spectral region, which includes several atmospheric “windows” that offer glimpses of Titan’s surface. The albedo of the surface can be measured in these windows, and some compositional information, including changes through time, can be derived. VIMS observed an area near 15º south latitude and 330º longitude at two separate times: in August 2009 during T61 and in May 2011 during T76. A spectral analysis of this region, including compensation for varying atmospheric path lengths, shows substantial spectral changes in the two and five micron atmospheric windows. A comparison of the changes with that expected from the deposition and later evaporation of liquid methane or another hydrocarbon shows them to be consistent with rain on Titan. Ackowledgements: This research was carried out at the Jet Propulsion Laboratory, California Institute of Technology under contract to the National Aeronautics and Space Administration. Copyright 2012 all rights reserved. References: Turtle, E. P. et al. (2011) Science 331, 1414.

  3. Spectrally resolved infrared radiances from AIRS observation and GCM simulation

    NASA Astrophysics Data System (ADS)

    Huang, Y.; Ramaswamy, V.

    2007-12-01

    Global multi-year spectrally resolved infrared radiances observed by the Atmospheric Infrared Sound (AIRS) satellite instrument and simulated from the General Circulation Models (GCMs) of the Geophysical Fluid Dynamics Lab (GFDL) are processed to obtain long-term global and regional means as well as the associated spatial and temporal variability. The accumulated radiance data comprise a host of phenomena that are still largely unrecognized but reveal important physical processes. For instance, the correlation between the radiances and the Sea Surface Temperatures (SSTs) discloses the roles of water vapor in both upper (via its v2 band) and lower (via the continuum in the window region) troposphere, and that of clouds regarding the so called "super greenhouse effect" in Tropics. A comparison between observed and simulated radiances demonstrates that radiance affords a stricter and more insightful metric than the broadband flux. A seemingly good agreement of OLR flux may arise from cancellation of errors of opposite signs in different spectral regions; radiance biases are indicative of physical causes because the radiances at each frequency are sensitive to factor(s) at different levels. Model validation at the radiance level thus provides a complementary and integrative perspective to that obtained using meteorological variables. It is demonstrated that the radiance discrepancies between the GFDL model and the observation are consistent with the model biases in temperature, water vapor and clouds.

  4. Improving a Spectral Bin Microphysical Scheme Using TRMM Satellite Observations

    NASA Technical Reports Server (NTRS)

    Li, Xiaowen; Tao, Wei-Kuo; Matsui, Toshihisa; Liu, Chuntao; Masunaga, Hirohiko

    2010-01-01

    Comparisons between cloud model simulations and observations are crucial in validating model performance and improving physical processes represented in the mod Tel.hese modeled physical processes are idealized representations and almost always have large rooms for improvements. In this study, we use data from two different sensors onboard TRMM (Tropical Rainfall Measurement Mission) satellite to improve the microphysical scheme in the Goddard Cumulus Ensemble (GCE) model. TRMM observed mature-stage squall lines during late spring, early summer in central US over a 9-year period are compiled and compared with a case simulation by GCE model. A unique aspect of the GCE model is that it has a state-of-the-art spectral bin microphysical scheme, which uses 33 different bins to represent particle size distribution of each of the seven hydrometeor species. A forward radiative transfer model calculates TRMM Precipitation Radar (PR) reflectivity and TRMM Microwave Imager (TMI) 85 GHz brightness temperatures from simulated particle size distributions. Comparisons between model outputs and observations reveal that the model overestimates sizes of snow/aggregates in the stratiform region of the squall line. After adjusting temperature-dependent collection coefficients among ice-phase particles, PR comparisons become good while TMI comparisons worsen. Further investigations show that the partitioning between graupel (a high-density form of aggregate), and snow (a low-density form of aggregate) needs to be adjusted in order to have good comparisons in both PR reflectivity and TMI brightness temperature. This study shows that long-term satellite observations, especially those with multiple sensors, can be very useful in constraining model microphysics. It is also the first study in validating and improving a sophisticated spectral bin microphysical scheme according to long-term satellite observations.

  5. First Radio Burst Imaging Observation From Mingantu Ultrawide Spectral Radioheliograph

    NASA Astrophysics Data System (ADS)

    Yan, Yihua; Chen, Linjie; Yu, Sijie; CSRH Team

    2015-08-01

    Radio imaging spectroscopy over wide range wavelength in dm/cm-bands will open new windows on solar flares and coronal mass ejections by tracing the radio emissions from accelerated electrons. The Chinese Spectral Radioheliograph (CSRH) with two arrays in 400MHz-2GHz /2-15GHz ranges with 64/532 frequency channels have been established in Mingantu Observing Station, Inner Mongolia of China, since 2013 and is in test observations now. CSRH is renamed as MUSER (Mingantu Ultrawide SpEctral Radioheliograph) after it's accomplishment We will introduce the progress and current status of CSRH. Some preliminary results of CSRH will be presented.On 11 Nov2014, the first burst event was registered by MUSER-I array at 400MHz-2GHz waveband. According to SGD event list there was a C-class flare peaked at 04:49UT in the disk center and the radio bursts around 04:22-04:24UT was attributed to this flare. However, MUSER-I image observation of the burst indicates that the radio burst peaked around 04:22UT was due to the eruption at the east limb of the Sun and connected to a CME appeared in that direction about 1 hour later. This demonstrate the importance of the spectroscopy observation of the solar radio burst.Acknowledgement: The CSRH team includes Wei Wang, Zhijun Chen, Fei Liu, Lihong Geng and Jian Zhang and CSRH project is supported by National Major Scientific Equipment R&D Project ZDYZ2009-3. The research was also supported by NSFC grants (11433006, 11221063), MOST grant (MOST2011CB811401), CAS Pilot-B Project (XDB09000000) and Marie Curie PIRSES- GA-295272-RADIOSUN.

  6. Numerical observer for atherosclerotic plaque classification in spectral computed tomography.

    PubMed

    Lorsakul, Auranuch; Fakhri, Georges El; Worstell, William; Ouyang, Jinsong; Rakvongthai, Yothin; Laine, Andrew F; Li, Quanzheng

    2016-07-01

    Spectral computed tomography (SCT) generates better image quality than conventional computed tomography (CT). It has overcome several limitations for imaging atherosclerotic plaque. However, the literature evaluating the performance of SCT based on objective image assessment is very limited for the task of discriminating plaques. We developed a numerical-observer method and used it to assess performance on discrimination vulnerable-plaque features and compared the performance among multienergy CT (MECT), dual-energy CT (DECT), and conventional CT methods. Our numerical observer was designed to incorporate all spectral information and comprised two-processing stages. First, each energy-window domain was preprocessed by a set of localized channelized Hotelling observers (CHO). In this step, the spectral image in each energy bin was decorrelated using localized prewhitening and matched filtering with a set of Laguerre-Gaussian channel functions. Second, the series of the intermediate scores computed from all the CHOs were integrated by a Hotelling observer with an additional prewhitening and matched filter. The overall signal-to-noise ratio (SNR) and the area under the receiver operating characteristic curve (AUC) were obtained, yielding an overall discrimination performance metric. The performance of our new observer was evaluated for the particular binary classification task of differentiating between alternative plaque characterizations in carotid arteries. A clinically realistic model of signal variability was also included in our simulation of the discrimination tasks. The inclusion of signal variation is a key to applying the proposed observer method to spectral CT data. Hence, the task-based approaches based on the signal-known-exactly/background-known-exactly (SKE/BKE) framework and the clinical-relevant signal-known-statistically/background-known-exactly (SKS/BKE) framework were applied for analytical computation of figures of merit (FOM). Simulated data of a

  7. Ion nose spectral structures observed by the Van Allen Probes

    NASA Astrophysics Data System (ADS)

    Ferradas, C. P.; Zhang, J.-C.; Spence, H. E.; Kistler, L. M.; Larsen, B. A.; Reeves, G.; Skoug, R.; Funsten, H.

    2016-12-01

    We present a statistical study of nose-like structures observed in energetic hydrogen, helium, and oxygen ions near the inner edge of the plasma sheet. Nose structures are spectral features named after the characteristic shapes of energy bands or gaps in the energy-time spectrograms of in situ measured ion fluxes. Using 22 months of observations from the Helium Oxygen Proton Electron instrument onboard Van Allen Probe A, we determine the number of noses observed, and the minimum L shell reached and energy of each nose on each pass through the inner magnetosphere. We find that multiple noses occur more frequently in heavy ions than in H+ and are most often observed during quiet times. The heavy-ion noses penetrate to lower L shells than H+ noses, and there is an energy-magnetic local time (MLT) dependence in the nose locations and energies that is similar for all species. The observations are interpreted by using a steady state model of ion drift in the inner magnetosphere. The model is able to explain the energy and MLT dependence of the different types of nose structures. Different ion charge-exchange lifetimes are the main cause for the deeper penetration of heavy-ion noses. The species dependence and preferred geomagnetic conditions of multiple-nose events indicate that they must be on long drift paths, leading to strong charge-exchange effects. The results provide important insight into the spatial distribution, species dependence, and geomagnetic conditions under which nose structures occur.

  8. Simultaneous Spectral and Timing Observations of Accreting Neuron Stars

    NASA Technical Reports Server (NTRS)

    Kaaret, P.; Oliversen, Ronald J. (Technical Monitor)

    2002-01-01

    The goal of this proposal is to perform simultaneous x-ray spectral and millisecond timing observations of accreting neutron stars to further our understanding of their accretion dynamics and in the hope of using these systems as probes of the physics of strong gravitational fields. NAG5-9104 is the successor grant to NAG5-8408. Observations using the Rossi X-Ray Timing Explorer (RXTE) and BeppoSAX were performed of 4U1702-429, 4U1735-44, and Cyg X-2. Unfortunately, only a small fraction of the approved observing time was obtained for the first two targets and the data are of limited scientific value. Data analysis has been completed on the observations of Cyg X-2. We discovered a correlation between the frequency of the horizontal branch oscillations (HBO) and a soft, thermal component of the x-ray spectrum likely associated with emission from the accretion disk. This correlation may place constraints on models of the oscillations. A paper based on these results appeared in the Astrophysical Journal.

  9. Spectral observations of the extreme ultraviolet astronomical background radiation

    NASA Technical Reports Server (NTRS)

    Labov, S.; Bowyer, S.

    1988-01-01

    Observations in the FUV and soft X-ray bands suggest that the ISM contains several components of high-temperature gas (100,000-1 million K). If large volumes of local interstellar space are filled with this hot plasma, emission lines will be produced in the EUV. Diffuse EUV radiation, however, has only been detected with photometric instruments; no spectral measurements exist below 520 A. A unique grazing-incidence spectrometer to study the diffuse emission between 80 and 650 A with resolution 10-30 A was successfully flown on a sounding rocket in April 1986, and a preliminary analysis reveals several features. In addition to the expected interplanetary He I 584 A emission and the geocoronal He II 304 A emission, other features appear which may orginate in the hot ionized interstellar gas.

  10. Actual and prescribed energy and protein intakes for very low birth weight infants: An observational study

    NASA Astrophysics Data System (ADS)

    Allevato, Anthony J.

    Objectives: To determine (1) whether prescribed and delivered energy and protein intakes during the first two weeks of life met Ziegler's estimated requirements for Very Low Birth Weight (VLBW) infants, (2) if actual energy during the first week of life correlated with time to regain birth weight and reach full enteral nutrition (EN) defined as 100 kcal/kg/day, (3) if growth velocity from time to reach full EN to 36 weeks' postmenstrual age (PMA) met Ziegler's estimated fetal growth velocity (16 g/kg/day), and (4) growth outcomes at 36 weeks' PMA. Study design: Observational study of feeding, early nutrition and early growth of 40 VLBW infants <30 weeks GA at birth in three newborn intensive care units NICUs. Results: During the first week of life, the percentages of prescribed and delivered energy (69% [65 kcal/kg/day]) and protein (89% [3.1 g/kg/day]) were significantly less than theoretical estimated requirements. Delivered intakes were 15% less than prescribed because of numerous interruptions in delivery and medical complications. During the second week, the delivered intakes of energy (90% [86 kcal/kg/day]) and protein (102% [3.5 g/kg/day]) improved although the differences between prescribed and delivered were consistently 15%. Energy but not protein intake during the first week was significantly related to time to reach full EN. Neither energy nor protein intake significantly correlated with days to return to birth weight. The average growth velocity from the age that full EN was attained to 36 weeks' PMA (15 g/kg/day) was significantly less than the theoretical estimated fetal growth velocity (16 g/kg/day) (p<0.03). A difference of 1 g/kg/day represents a total deficit of 42 - 54 grams over the course of a month. At 36 weeks' PMA, 53% of the VLBW infants had extrauterine growth restriction, or EUGR (<10th percentile) on the Fenton growth grid and 34% had EUGR on the Lubchenco growth grid. Conclusions: The delivered nutrient intakes were consistently less

  11. Divergence of actual and reference evapotranspiration observations for irrigated sugarcane with windy tropical conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Standardized reference evapotranspiration (ET) and ecosystem-specific vegetation coefficients are frequently used to estimate actual ET. However, equations for calculating reference ET have not been well validated in more humid environments. We measured ET (ETEC) using Eddy Covariance (EC) towers a...

  12. Actual and Prescribed Energy and Protein Intakes for Very Low Birth Weight Infants: An Observational Study

    ERIC Educational Resources Information Center

    Abel, Deborah Marie

    2012-01-01

    Objectives: To determine (1) whether prescribed and delivered energy and protein intakes during the first two weeks of life met Ziegler's estimated requirements for Very Low Birth Weight (VLBW) infants, (2) if actual energy during the first week of life correlated with time to regain birth weight and reach full enteral nutrition (EN) defined as…

  13. Ion nose spectral structures observed by the Van Allen Probes

    DOE PAGES

    Ferradas, C. P.; Zhang, J. -C.; Spence, H. E.; ...

    2016-11-22

    Here, we present a statistical study of nose-like structures observed in energetic hydrogen, helium, and oxygen ions near the inner edge of the plasma sheet. Nose structures are spectral features named after the characteristic shapes of energy bands or gaps in the energy-time spectrograms of in situ measured ion fluxes. Using 22 months of observations from the Helium Oxygen Proton Electron (HOPE) instrument onboard Van Allen Probe A, we determine the number of noses observed, and the minimum L-shell reached and energy of each nose on each pass through the inner magnetosphere. We find that multiple noses occur more frequentlymore » in heavy ions than in H+, and are most often observed during quiet times. The heavy-ion noses penetrate to lower L shells than H+ noses and there is an energy-magnetic local time (MLT) dependence in the nose locations and energies that is similar for all species. The observations are interpreted using a steady-state model of ion drift in the inner magnetosphere. The model is able to explain the energy and MLT dependence of the different types of nose structures. Different ion charge exchange lifetimes are the main cause for the deeper penetration of heavy-ion noses. The species dependence and preferred geomagnetic conditions of multiple-nose events indicate that they must be on long drift paths, leading to strong charge-exchange effects. The results provide important insight into the spatial distribution, species dependence, and geomagnetic conditions under which nose structures occur.« less

  14. Ion nose spectral structures observed by the Van Allen Probes

    SciTech Connect

    Ferradas, C. P.; Zhang, J. -C.; Spence, H. E.; Kistler, L. M.; Larsen, Brian Arthur; Reeves, Geoffrey D.; Skoug, Ruth M.; Funsten, Herbert O.

    2016-11-22

    Here, we present a statistical study of nose-like structures observed in energetic hydrogen, helium, and oxygen ions near the inner edge of the plasma sheet. Nose structures are spectral features named after the characteristic shapes of energy bands or gaps in the energy-time spectrograms of in situ measured ion fluxes. Using 22 months of observations from the Helium Oxygen Proton Electron (HOPE) instrument onboard Van Allen Probe A, we determine the number of noses observed, and the minimum L-shell reached and energy of each nose on each pass through the inner magnetosphere. We find that multiple noses occur more frequently in heavy ions than in H+, and are most often observed during quiet times. The heavy-ion noses penetrate to lower L shells than H+ noses and there is an energy-magnetic local time (MLT) dependence in the nose locations and energies that is similar for all species. The observations are interpreted using a steady-state model of ion drift in the inner magnetosphere. The model is able to explain the energy and MLT dependence of the different types of nose structures. Different ion charge exchange lifetimes are the main cause for the deeper penetration of heavy-ion noses. The species dependence and preferred geomagnetic conditions of multiple-nose events indicate that they must be on long drift paths, leading to strong charge-exchange effects. The results provide important insight into the spatial distribution, species dependence, and geomagnetic conditions under which nose structures occur.

  15. Spectral Classification of NEOWISE Observed Near-Earth Asteroids

    NASA Astrophysics Data System (ADS)

    Desira, Christopher

    2017-01-01

    Near-Earth asteroids (NEAs) allow us to determine the properties of the smallest solar system bodies in the sub-kilometer size range. Large (>few km) NEAs have albedos which span a wide range from ~0.05 to ~0.3 and are known to correlate with asteroid composition, determined by analysing the shape of their optical reflectance spectra. It is, however, still unknown how this relationship extends into the sub-kilometer population.NEOWISE has performed a thermal infrared survey that provides the largest inventory to date of well-determined sizes and albedos for NEAs, including many in the sub-km population. This provides an opportunity to test the albedo-surface composition correlation in a new size regime. If it is found to hold, then a simple optical spectrum can give a well-constrained albedo and size estimate without the need for thermal IR measurements.The sizes and composition of many more sub-km sized NEAs are needed to aid in the understanding of the formation/evolution of the inner solar system and the characterisation of potentially hazardous objects, possible mission targets and even commercial mining operations.We obtained optical spectra of sub-kilometer NEOWISE-observed NEAs using the 1.5m Tillinghast telescope and the FAST spectrograph at the Whipple Observatory on Mt Hopkins, Arizona. We performed a taxonomic classification to identify their likely composition and combined this with NEOWISE data to look for known correlations between main belt asteroid spectral types and their optical albedos. Additionally, we tested the robustness of current data reduction methods in order to increase our confidence in the spectral classifications of NEAs.

  16. Shortwave Spectral Radiative Forcing of Cumulus Clouds from Surface Observations

    SciTech Connect

    Kassianov, Evgueni I.; Barnard, James C.; Berg, Larry K.; Long, Charles N.; Flynn, Connor J.

    2011-04-02

    The spectral changes of the total cloud radiative forcing (CRF) and its diffuse and direct components are examined by using spectrally resolved (visible spectral range) all-sky surface irradiances measured by Multi-Filter Rotating Shadowband Radiometer. We demonstrate: (i) the substantial contribution of the diffuse component to the total CRF, (ii) the well-defined spectral variations of total CRF in the visible spectral region, and (iii) the strong statistical relationship between spectral (500 nm) and shortwave broadband values of total CRF. Our results suggest that the framework based on the visible narrowband fluxes can provide important radiative quantities for rigorous evaluation of radiative transfer parameterizations and can be applied for estimation of the shortwave total CRF.

  17. Calibration of Herschel SPIRE FTS observations at different spectral resolutions

    NASA Astrophysics Data System (ADS)

    Marchili, N.; Hopwood, R.; Fulton, T.; Polehampton, E. T.; Valtchanov, I.; Zaretski, J.; Naylor, D. A.; Griffin, M. J.; Imhof, P.; Lim, T.; Lu, N.; Makiwa, G.; Pearson, C.; Spencer, L.

    2017-01-01

    The SPIRE Fourier Transform Spectrometer on-board the Herschel Space Observatory had two standard spectral resolution modes for science observations: high resolution (HR) and low resolution (LR), which could also be performed in sequence (H+LR). A comparison of the HR and LR resolution spectra taken in this sequential mode revealed a systematic discrepancy in the continuum level. Analysing the data at different stages during standard pipeline processing demonstrates that the telescope and instrument emission affect HR and H+LR observations in a systematically different way. The origin of this difference is found to lie in the variation of both the telescope and instrument response functions, while it is triggered by fast variation of the instrument temperatures. As it is not possible to trace the evolution of the response functions using housekeeping data from the instrument subsystems, the calibration cannot be corrected analytically. Therefore, an empirical correction for LR spectra has been developed, which removes the systematic noise introduced by the variation of the response functions.

  18. Simultaneous Spectral and Timing Observations of Accreting Neuron Stars

    NASA Technical Reports Server (NTRS)

    Kaaret, P.; West, Donald K. (Technical Monitor)

    2001-01-01

    The goal of this proposal was to perform simultaneous x-ray spectral and millisecond timing observations of accreting neutron stars to further our understanding of their accretion dynamics and in the hope of using these systems as probes of the physics of strong gravitational fields. Observations of the neutron star binaries 4U0614+091, 4U1728-34, 4U1820-30, and Cyg X-2 were carried out with RXTE and BeppoSAX, ASCA, and Chandra (not all simultaneously). In addition, archival data were analyzed for 4U0614+091 and 4U1820-30. This investigation led to publication of three papers in peer-reviewed journals. These are listed below. In addition, the results were presented at several meetings including the two poster presentations listed below. Dr. Santina Piraino visited SAO for 4 months during 2000 to collaborate on analysis of the data from NAG5-8408 and NAG5-9104.

  19. Optimizing Spectral Resolution and Observation Time for Measurements of Habitability

    NASA Astrophysics Data System (ADS)

    Khalfa, N.; Meadows, V. S.; Domagal-Goldman, S. D.

    2009-12-01

    The Terrestrial Planet Finder (TPF) is a NASA mission concept that will attempt to characterize and search for habitability and life on extrasolar planets. While detection of a planet in the habitable zone increases the probability that the planet is habitable, planetary characterization will be required to confirm habitability and thereby test predictions of the position of the habitable zone. The TPF-I mission will accomplish this with an interferometer, allowing the detection of Earth-mass planets around stars up to 15 pc away and production of mid-infrared spectra from those planets. The focus on the mid-infrared region of the spectrum (7-20 mm) is beneficial because this is where energy from Earth-like planets is strongest relative to the flux from their parent stars. To discover if such planets are habitable we need to know not only what to look for - biosignatures and indicators of habitability - but also how to look. In other words, we must determine the trade-off in telescope properties that will provide the best science return. Extensive models have been made of Earth-like planets to describe many planetary properties, including atmospheric chemistry and surface temperature. Those properties may be derived for extrasolar planets using these models if spectra are obtained for the target planet. When modeling a planet, we can calculate a very high-resolution spectrum that can show the detailed absorption features of gases such as CO2, H2O, and O3. However, the telescope resolution will necessarily be limited by low photon fluxes from the distant targets. Alternatively, the telescope could spend more time taking in photons from each target planet. A balance may have to be struck between the numbers of targets observed and the quality of the data obtained for each target. We will present a number of simulations of TPF instrument measurements of terrestrial spectra that parametrize spectral resolution and observation time. The relative errors of these various

  20. OBSERVED VARIABILITY OF THE SOLAR Mg II h SPECTRAL LINE

    SciTech Connect

    Schmit, D.; Pontieu, B. De; Bryans, P.; McIntosh, S.; Leenaarts, J.; Carlsson, M.

    2015-10-01

    The Mg ii h and k doublet are two of the primary spectral lines observed by the Sun-pointing Interface Region Imaging Spectrograph (IRIS). These lines are tracers of the magnetic and thermal environment that spans from the photosphere to the upper chromosphere. We use a double-Gaussian model to fit the Mg ii h profile for a full-Sun mosaic data set taken on 2014 August 24. We use the ensemble of high-quality profile fits to conduct a statistical study on the variability of the line profile as it relates the magnetic structure, dynamics, and center-to-limb viewing angle. The average internetwork profile contains a deeply reversed core and is weakly asymmetric at h2. In the internetwork, we find a strong correlation between h3 wavelength and profile asymmetry as well as h1 width and h2 width. The average reversal depth of the h3 core is inversely related to the magnetic field. Plage and sunspots exhibit many profiles that do not contain a reversal. These profiles also occur infrequently in the internetwork. We see indications of magnetically aligned structures in plage and network in statistics associated with the line core, but these structures are not clear or extended in the internetwork. The center-to-limb variations are compared to predictions of semi-empirical model atmospheres. We measure a pronounced limb darkening in the line core that is not predicted by the model. The aim of this work is to provide a comprehensive measurement baseline and preliminary analysis on the observed structure and formation of the Mg ii profiles observed by IRIS.

  1. [Contradiction and intention of actual situation and statistical observation on home custody of mental patients].

    PubMed

    Kanekawa, Hideo

    2012-01-01

    Actual Situation and Statistical Observation on Home Custody of Mental Patients (1918) by Kure and Kashida has diverse content but contains many contradictions. This book is a record of investigations performed by 15 psychiatrists regarding home custody of mental patients in 15 prefectures between 1910 and 1916. The book is written in archaic Japanese and contains a mixture of old Kanji characters and Katakana, so few people have read the entire book in recent years. We thoroughly read the book over 2 years, and presented the results of our investigation and analysis. The contents were initially published in Tokyo Journal of Medical Sciences as a series of 4 articles, and published as a book in 1918. The Department of the Interior distributed 100 copies of the book to relevant personnel. Until its dissolution in 1947, the Department of the Interior included the Police Department and had a great deal of authority. The Health and Welfare Ministry became independent from the Department of the Interior in 1938. Therefore, mental institutions were under the supervision of the police force for many years. At the time, an important task for police officers was to search for infectious disease patients and to seclude and restrain them. Thus, home custody for mental patients was also supervised under the direction of the Police Department. This book is a record of an external investigation performed by psychiatrists on home custody supervised by the police. When investigating the conditions, one of the psychiatrists obtained a copy of "Documents for mental patients under confinement" at the local police station. The contents of these documents included records of hearings by the police, as well as applications for confinement submitted by family members, as well as detailed specifications and drawings of the confinement room. With a local photographer, they traveled deep into the mountains to investigate the conditions under which mental patients were living. The book

  2. New results of the spectral observations of CP stars

    NASA Astrophysics Data System (ADS)

    Polosukhina, N. S.; Shavrina, A. V.; Drake, N. A.; Kudryavtsev, D. O.; Smirnova, M. A.

    2010-04-01

    The lithium problem in Ap-CP stars has been, for a long time, a subject of debate. Individual characteristics of CP stars, such as high abundance of the rare-earth elements presence of magnetic fields, complicate structure of the surface distribution of chemical elements, rapid oscillations of some CP-stars, make the detection of the lithium lines and the determination of the lithium abundance, a difficult task. During the International Meeting in Slovakia in 1996, the lithium problem in Ap-CP stars was discussed. The results of the Li study carried out in CrAO Polosukhina (1973-1976), the works of Hack & Faraggiana (1963), Wallerstein & Hack (1964), Faraggiana et al. (1992-1996) formed the basis of the International project ‘Lithium in the cool CP-stars with magnetic fields’. The main goal of the project was, using systematical observations of Ap-CP stars with phase rotation in the spectral regions of the resonance doublet Li I 6708 Å and subordinate 6104 Å lithium lines with different telescopes, to create a database, which will permit to explain the physical origin of anomalous Li abundance in the atmospheres of these stars.

  3. OBSERVATION AND SPECTRAL MEASUREMENTS OF THE CRAB NEBULA WITH MILAGRO

    SciTech Connect

    Abdo, A. A.; Allen, B. T.; Chen, C.; Atkins, R.; Aune, T.; Benbow, W.; Coyne, D. G.; Dorfan, D. E.; Berley, D.; Blaufuss, E.; Bussons, J.; Bonamente, E.; Galbraith-Frew, J.; Christopher, G. E.; Fleysher, L.; Fleysher, R.; DeYoung, T.; Falcone, A.; Dingus, B. L.; Ellsworth, R. W.; and others

    2012-05-01

    The Crab Nebula was detected with the Milagro experiment at a statistical significance of 17 standard deviations over the lifetime of the experiment. The experiment was sensitive to approximately 100 GeV-100 TeV gamma-ray air showers by observing the particle footprint reaching the ground. The fraction of detectors recording signals from photons at the ground is a suitable proxy for the energy of the primary particle and has been used to measure the photon energy spectrum of the Crab Nebula between {approx}1 and {approx}100 TeV. The TeV emission is believed to be caused by inverse-Compton upscattering of ambient photons by an energetic electron population. The location of a TeV steepening or cutoff in the energy spectrum reveals important details about the underlying electron population. We describe the experiment and the technique for distinguishing gamma-ray events from the much more-abundant hadronic events. We describe the calculation of the significance of the excess from the Crab and how the energy spectrum is fitted. The differential photon energy spectrum, including the statistical errors from the fit, obtained using a simple power-law hypothesis for data between 2005 September and 2008 March is (6.5 {+-} 0.4) Multiplication-Sign 10{sup -14}(E/10 TeV){sup -3.1{+-}0.1}(cm{sup 2} s TeV ){sup -1} between {approx}1 TeV and {approx}100 TeV. Allowing for a possible exponential cutoff, the photon energy spectrum is fitted as (2.5{sup +0.7}{sub -0.4}) Multiplication-Sign 10{sup -12}(E/3 TeV){sup -2.5{+-}0.4}exp (- E/32{sup +39}{sub -18} TeV) (cm{sup 2} s TeV){sup -1}. The results are subject to an {approx}30% systematic uncertainty in the overall flux and an {approx}0.1 systematic uncertainty in the power-law indices quoted. Uncertainty in the overall energy scale has been absorbed into these errors. Fixing the spectral index to values that have been measured below 1 TeV by IACT experiments (2.4-2.6), the fit to the Milagro data suggests that Crab exhibits a

  4. Development of actual EUV mask observation method for micro coherent EUV scatterometry microscope

    NASA Astrophysics Data System (ADS)

    Harada, T.; Hashimoto, H.; Watanabe, T.

    2016-10-01

    To review phase and amplitude defect on extreme ultraviolet (EUV) mask with EUV intensity and phase contrast, we have developed the micro coherent EUV scatterometry microscope (micro-CSM). A coherent EUV beam was focused on a defect using a Fresnel zoneplate, where the illumination size was 140 nm diameter. Diffraction from the defect was captured by an EUV CCD camera directly. The diffraction signal was depended on the zoneplate focus, where the defect signal was efficiently detected at a best focus position. To review an actual EUV mask that has no focus-alignment pattern on surface, we developed a focusing method using a speckle signal.

  5. A rapid retrieval methodology based on the spectrally integrated Voigt function for space observation spectral radiance data

    NASA Astrophysics Data System (ADS)

    Quine, Brendan M.; Abrarov, Sanjar M.; Jagpal, Raj K.

    2014-06-01

    In our recent publication, we proposed the application of the spectrally integrated Voigt function (SIVF) to a line-by-line (LBL) radiative transfer modelling1. We applied the GENSPECT LBL radiative transfer model that utilizes the HITRAN database to generate synthetic spectral data due to thermal or solar radiation of the Earth or planetary atmosphere2. It has been shown that the SIVF methodology enables the computation of a LBL radiative transfer at reduced spectral resolution model without loss in accuracy. In contrast to the traditional method of computation, the SIVF implementation accounts for the area under the Voigt function between adjacent grid points resulting in well-preserved shape of a spectral radiance even at low spectral resolution. This significant advantage of the SIVF methodology can be applied in the rapid retrieval of the space observation data, required for real-time control and decision making in future generation of the Argus3 remote-sensing microspectrometers. The spectrally integrated methodology can be generalized to other linebroadening profiles, such as Galatry, Rautian-Sobelman or speed dependent profiles, to prevent underestimation of the spectral radiance that always occurs at reduced spectral resolution1 in any LBL radiative transfer model using a traditional method of computation.

  6. Interpretation of planetary radar observations - The relationship between actual and inferred slope distributions

    NASA Astrophysics Data System (ADS)

    McCollom, T. M.; Jakosky, B. M.

    1993-01-01

    We examined the distribution of surface slopes of a variety of terrestrial surfaces by field measurement, representing surfaces formed by a wide range of processes, and compared the results to planetary radar data. Slope distributions of the measured surfaces differed considerably from the distributions assumed by accepted models of radar scattering. We also used Hagfors' model of radar scattering to predict the return that would be expected from surfaces where two discrete surface types were present within the radar field of view and found that the shapes of the resulting slope distributions differed from those predicted by the Hagfors model for homogeneous surfaces. Together, these results suggest that current methods of determining surface roughness from radar may significantly underestimate the roughness of planetary surfaces and that the derived rms slope can best be used as a qualitative guide to the physical interpretation of actual surface properties.

  7. Characterization of Spectral Absorption Properties of Aerosols Using Satellite Observations

    NASA Technical Reports Server (NTRS)

    Torres, O.; Jethva, H.; Bhartia, P. K.; Ahn, C.

    2012-01-01

    The wavelength-dependence of aerosol absorption optical depth (AAOD) is generally represented in terms of the Angstrom Absorption Exponent (AAE), a parameter that describes the dependence of AAOD with wavelength. The AAE parameter is closely related to aerosol composition. Black carbon (BC) containing aerosols yield AAE values near unity whereas Organic carbon (OC) aerosol particles are associated with values larger than 2. Even larger AAE values have been reported for desert dust aerosol particles. Knowledge of spectral AAOD is necessary for the calculation of direct radiative forcing effect of aerosols and for inferring aerosol composition. We have developed a satellitebased method of determining the spectral AAOD of absorbing aerosols. The technique uses high spectral resolution measurements of upwelling radiation from scenes where absorbing aerosols lie above clouds as indicated by the UV Aerosol Index. For those conditions, the satellite measured reflectance (rho lambda) is approximately given by Beer's law rho lambda = rho (sub 0 lambda) e (exp -mtau (sub abs lambda)) where rho(sub 0 lambda) is the cloud reflectance, m is the geometric slant path and tau (sub abs lambda) is the spectral AAOD. The rho (sub 0 lambda) term is determined by means of radiative transfer calculations using as input the cloud optical depth derived as described in Torres et al. [JAS, 2012] that accounts for the effects of aerosol absorption. In the second step, corrections for molecular and aerosol scattering effects are applied to the cloud reflectance term, and the spectral AAOD is then derived by inverting the equation above. The proposed technique will be discussed in detail and application results will be presented. The technique can be easily applied to hyper-spectral satellite measurements that include UV such as OMI, GOME and SCIAMACHY, or to multi-spectral visible measurements by other sensors provided that the aerosol-above-cloud events are easily identified.

  8. Spectral Observations and Analyses of Low-Redshift Type Ia Supernovae

    NASA Astrophysics Data System (ADS)

    Silverman, Jeffrey Michael

    , SNe Ia that show strong evidence for interaction with circumstellar material or an aspherical explosion are found to have the largest near-maximum expansion velocities and pEWs, possibly linking extreme values of spectral observables with specific progenitor or explosion scenarios. The fourth Chapter of this Thesis presents comparisons of spectral feature measurements to photometric properties of 115 low-redshift (z < 0.1) SNe Ia with optical spectra within 5 d of maximum brightness. The spectral data come from the BSNIP sample described in Chapter 2, and the photometric data come mainly from the Lick Observatory Supernova Search (LOSS) and are published by Ganeshalingam et al. (2010). The spectral measurements come from BSNIP II (Chapter 3 of this Thesis) and the light-curve fits and photometric parameters can be found in Ganeshalingam et al. (in preparation). A variety of previously proposed correlations between spectral and photometric parameters are investigated using the large and self-consistent BSNIP dataset. We also use a combination of light-curve parameters (specifically the SALT2 stretch and color parameters x1 and c) and spectral measurements to calculate distance moduli. The residuals from these models is then compared to the standard model which only uses light-curve stretch and color. The pEW of Si II lambda4000 is found to be a good indicator of light-curve width and the pEWs of the Mg II and Fe II complexes are relatively good proxies for color. Chapter 5 presents and analyzes optical photometry and spectra of the extremely luminous and slowly evolving Type Ia SN 2009dc, and offers evidence that it is a super-Chandrasekhar mass (SC) SN Ia and thus had a SC white dwarf (WD) progenitor. I calculate a lower limit to the peak bolometric luminosity of ˜2.4x1043 erg s-1, though the actual value is likely almost 40% larger. The high luminosity and low expansion velocities of SN 2009dc lead to a derived WD progenitor mass of more than 2 MSun and a 56Ni mass

  9. Spectral Longwave Cloud Radiative Forcing as Observed by AIRS

    NASA Technical Reports Server (NTRS)

    Blaisdell, John M.; Susskind, Joel; Lee, Jae N.; Iredell, Lena

    2016-01-01

    AIRS V6 products contain the spectral contributions to Outgoing Longwave Radiation (OLR), clear-sky OLR (OLR(sub CLR)), and Longwave Cloud Radiative Forcing (LWCRF) in 16 bands from 100 cm(exp -1) to 3260 cm(exp -1). We show climatologies of selected spectrally resolved AIRS V6 products over the period of September 2002 through August 2016. Spectrally resolved LWCRF can better describe the response of the Earth system to cloud and cloud feedback processes. The spectral LWCRF enables us to estimate the fraction of each contributing factor to cloud forcing, i.e.: surface temperature, mid to upper tropospheric water vapor, and tropospheric temperature. This presentation also compares the spatial characteristics of LWCRF from AIRS, CERES_EBAF Edition-2.8, and MERRA-2. AIRS and CERES LWCRF products show good agreement. The OLR bias between AIRS and CERES is very close to that of OLR(sub CLR). This implies that both AIRS and CERES OLR products accurately account for the effect of clouds on OLR.

  10. Spectral Invariance Principles Observed in Spectral Radiation Measurements of the Transition Zone

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander

    2011-01-01

    The main theme for our research is the understanding and closure of the surface spectral shortwave radiation problem in fully 3D cloud situations by combining the new ARM scanning radars, shortwave spectrometers, and microwave radiometers with the arsenal of radiative transfer tools developed by our group. In particular, we define first a large number of cloudy test cases spanning all 3D possibilities not just the customary uniform-overcast ones. Second, for each case, we define a "Best Estimate of Clouds That Affect Shortwave Radiation" using all relevant ARM instruments, notably the new scanning radars, and contribute this to the ARM Archive. Third, we test the ASR-signature radiative transfer model RRTMG_SW for those cases, focusing on the near-IR because of long-standing problems in this spectral region, and work with the developers to improve RRTMG_SW in order to increase its penetration into the modeling community.

  11. Observed Foreshock Ions which are Actually Behind the Martian Bow Shock

    NASA Astrophysics Data System (ADS)

    Frahm, Rudy A.; Yamauchi, Masatoshi; Winningham, J. David; Lundin, Rickard; Sharber, James R.; Nilsson, Hans; Coates, Andrew J.; Mukherjee, Joey

    2016-04-01

    The Mars Express (MEx) Analyzer of Space Plasmas and Energetic Atoms (ASPERA-3) experiment contains ion and electron instruments for conducting plasma measurements. On January 23, 2012, during in-bound travel of MEx in the southern hemisphere of Mars traveling from its dawn side toward periapsis at dusk, the plasma instruments measured foreshock-like ion beams extending from outside the bow shock and into the magnetosphere, continuing to a distance of about a proton gyroradius from the bow shock. These ion beams were mostly protons, were observed to have energies greater than solar wind protons, and were not gyrating, in agreement with reflections of the solar wind proton beam. Furthermore, in the foreshock region, the ion energy gradually decreased toward the magnetosheath, in agreement with an acceleration by an outward-directed electric field in the bow shock. The observations also suggest that this electric field exists even inside the magnetosheath, within the distance of a proton gyroradius from the bow shock.

  12. Observation of spectral interference for any path difference in an interferometer.

    PubMed

    Salazar-Serrano, Luis José; Valencia, Alejandra; Torres, Juan P

    2014-08-01

    We report the experimental observation of spectral interference in a Michelson interferometer, regardless of the relationship between the temporal path difference introduced between the arms of the interferometer and the spectral width of the input pulse. This observation is possible by introducing the polarization degree of freedom into a Michelson interferometer using a typical weak value amplification scenario.

  13. Observed Differences in Spectral Microphysical Retrievals from MODIS

    NASA Technical Reports Server (NTRS)

    Platnick, Steven E.; Zhang, Zhibo; Maddox, Brent; Ackeman, Steven A.

    2010-01-01

    The microphysical structure of clouds is of fundamental importance for understanding a variety of cloud radiation and physical processes. With the advent of MODIS (Moderate Resolution Imaging Spectroradiometer) on the NASA EOS Terra and Aqua platforms, simultaneous global/daily 1km retrievals of cloud effective particle size are available using the heritage 3.7 an band from AVHRR as well as the 1.6 and 2.1 m shortwave IR bands. The MODIS cloud product (MOD06/MYD06 for MODIS Terra and Aqua, respectively) provides separate effective radii results using each of these spectral bands. It has been found that significant differences can occur between the three size retrievals, mainly for liquid water marine boundary layer clouds and especially in broken (low cloud fraction) regimes. In particular, for such regimes, effective radii derived from the MODIS 2.1 lim band can be substantially larger than retrievals from the Heritage 3.7 lam band. In this paper, we present global and regional results of the differences, including correlations, view angle dependencies, and algorithm sensitivities for the existing MODIS Collection 5 product.

  14. Time-resolved High Spectral Resolution Observation of 2MASSW J0746425+200032AB

    NASA Astrophysics Data System (ADS)

    Wang, Ji; Prato, Lisa; Mawet, Dimitri

    2017-03-01

    Many brown dwarfs (BDs) exhibit photometric variability at levels from tenths to tens of percents. The photometric variability is related to magnetic activity or patchy cloud coverage, characteristic of BDs near the L–T transition. Time-resolved spectral monitoring of BDs provides diagnostics of cloud distribution and condensate properties. However, current time-resolved spectral studies of BDs are limited to low spectral resolution (R ∼ 100) with the exception of the study of Luhman 16 AB at a resolution of 100,000 using the VLT+CRIRES. This work yielded the first map of BD surface inhomogeneity, highlighting the importance and unique contribution of high spectral resolution observations. Here, we report on the time-resolved high spectral resolution observations of a nearby BD binary, 2MASSW J0746425+200032AB. We find no coherent spectral variability that is modulated with rotation. Based on simulations, we conclude that the coverage of a single spot on 2MASSW J0746425+200032AB is smaller than 1% or 6.25% if spot contrast is 50% or 80% of its surrounding flux, respectively. Future high spectral resolution observations aided by adaptive optics systems can put tighter constraints on the spectral variability of 2MASSW J0746425+200032AB and other nearby BDs.

  15. Observing transiting planets with JWST. Prime targets and their synthetic spectral observations

    NASA Astrophysics Data System (ADS)

    Mollière, P.; van Boekel, R.; Bouwman, J.; Henning, Th.; Lagage, P.-O.; Min, M.

    2017-03-01

    Context. The James Webb Space Telescope will enable astronomers to obtain exoplanet spectra of unprecedented precision. The MIRI instrument especially may shed light on the nature of the cloud particles obscuring planetary transmission spectra in the optical and near-infrared. Aims: We provide self-consistent atmospheric models and synthetic JWST observations for prime exoplanet targets in order to identify spectral regions of interest and estimate the number of transits needed to distinguish between model setups. Methods: We select targets that span a wide range of planetary temperatures and surface gravities, ranging from super-Earths to giant planets, that have a high expected signal-to-noise ratio. For all targets, we vary the enrichment, C/O ratio, presence of optical absorbers (TiO/VO), and cloud treatment. We calculate atmospheric structures, emission, and transmission spectra for all targets and use a radiometric model to obtain simulated observations. Further, we analyze JWST's ability to distinguish between various scenarios. Results: We find that in very cloudy planets, such as GJ 1214b, less than ten transits with NIRSpec may be enough to reveal molecular features. Furthermore, the presence of small silicate grains in atmospheres of hot Jupiters may be detectable with a single JWST MIRI transit. For a more detailed characterization of such particles less than ten transits are necessary. Finally, we find that some of the hottest hot Jupiters are well fitted by models which neglect the redistribution of the insolation and harbor inversions, and that 1-4 eclipse measurements with NIRSpec are needed to distinguish between the inversion models. Conclusions: Wet thus demonstrate the capabilities of JWST for solving some of the most intriguing puzzles in current exoplanet atmospheric research. Further, by publishing all models calculated for this study we enable the community to carry out similar studies, as well as retrieval analyses for all planets included

  16. Spectral analysis of observed aquifer water level fluctuations

    NASA Astrophysics Data System (ADS)

    McLin, Stephen

    2012-09-01

    A mathematical model is presented that describes small, periodic, water level perturbations in a fully screened observation well penetrating a homogeneous, isotropic, confined aquifer system. The analytical solution is formulated in terms of frequency and phase response functions that are controlled by aquifer transmissivity (T) and storage coefficient (S). Well casing storage effects are considered; however, well screen entrance losses associated with turbulence are neglected because piezometric head differences inside and outside the well are small. As the ratio of well casing radius to well screen radius (rc/rw) changes, these theoretical response functions are systematically altered. When rc/rw<1, water level fluctuations are increasingly amplified as (rc/rw)→0 and system responses associated with differences in T and S are accentuated. For (rc/rw)≥1, however, distinguishing between system responses is more complicated because well casing storage effects gradually dominate water level perturbations as rc/rw grows. Finally, in practical applications for any rc/rw value, obtaining unique estimates for T and S can be difficult in the presence of noise without the improved Levenberg-Marquardt (LM) optimization scheme developed here. Initially, a sigmoidal curve fitting algorithm and observed frequency and phase response functions are used to identify a starting estimate for T. This value is then used in the LM procedure and facilitates convergence to optimal system parameters while minimizing uncertainty. Without this approach, however, the LM scheme will not yield unique estimates. This methodology yields smaller aquifer parameters than traditional specific capacity tests, suggesting either a well bore skin effect or a scaling phenomenon similar to that reported in the literature for slug and aquifer test comparisons. Hence, this technique is probably best suited for monitoring wells where conventional aquifer test methods are impractical. This approach is

  17. RXTE Observation of Cygnus X-1. 1; Spectral Analysis

    NASA Technical Reports Server (NTRS)

    Dove, James B.; Wilms, Joern; Nowak, Michael A.; Vaughan, Brian A.; Begelman, Mitchell C.

    1998-01-01

    We present the results of the analysis of the broad-band spectrum of Cygnus X-1 from 3.0 to 200 keV, using data from a 10 ksec observation by the Rossi X-ray Timing Explorer. The spectrum can be well described phenomenologically by an exponentially cut-off power law with a photon index Gamma = 1.45(+0.01 -0.02) (a value considerably harder 0.02 than typically found), e-folding energy E(sub f) = 162(+9 -8) keV, plus a deviation from a power law that formally can be modeled as a thermal blackbody with temperature kT(sub bb) = 1.2(+0.0 -0.1) keV. Although the 3-30 keV portion of the spectrum can be fit with a reflected power law with Gamma = 1.81 + or - 0.01 and covering fraction f = 0.35 + or - 0.02, the quality of the fit is significantly reduced when the HEXTE data in the 30-100 keV range is included, as there is no observed hardening in the power law within this energy range. As a physical description of this system, we apply the accretion disc corona models of Dove, Wilms & Begelman (1997a) - where the temperature of the corona is determined self-consistently. A spherical corona with a total optical depth pi = 1.6 + or - 0.1 and an average temperature kT(sub c) = 87 + or - 5 keV, surrounded by an exterior cold disc, does provide a good description of the data (X(exp 2 sub red) = 1.55). These models deviate from red the data by up to 7% in the 5 - 10 keV range, and we discuss possible reasons for these discrepancies. However, considering bow successfully the spherical corona reproduces the 10 - 200 keV data, such "pboton-starved" coronal geometries seem very promising for explaining the accretion processes of Cygnus X-1.

  18. GBT spectral monitoring observations of megamaser disk systems

    NASA Astrophysics Data System (ADS)

    Pesce, Dominic; Braatz, James A.; Condon, James J.; Gao, Feng; Henkel, Christian; Litzinger, Eugenia; Lo, Fred K. Y.; Reid, Mark J.; Megamaser Cosmology Project

    2016-01-01

    We use single-dish radio spectra of known 22 GHz H2O megamasers, primarily gathered from the large data set observed by the Megamaser Cosmology Project, to investigate various aspects of the accretion disk physics. We characterize the several classes of variability present in the megamaser spectra, which have different timescales and presumed underlying physical causes. In doing so, we found rapid intra-day variability in the maser spectrum of ESO 558-G009 that is likely the result of interstellar scintillation, for which we favor a nearby (D~70 pc) scattering screen. We also set limits on the magnetic field strengths in seven sources, using strong flaring events to check for the presence of Zeeman splitting. These limits are typically 200-300 mG (1σ), but our most stringent limit reaches 73 mG for the galaxy NGC 1194. These measurements begin to probe the regime where the magnetic pressure becomes comparable to the gas pressure in the disk, thereby placing constraints on the vertical support mechanism.

  19. Observation and Spectral Measurements of the Crab Nebula with Milagro

    NASA Technical Reports Server (NTRS)

    Abdo, A. A.; Allen, B. T.; Aune, T.; Benbow, W.; Berley, D.; Chen, C.; Christopher, G. E.; DeYoung, T.; Dingus, B. L.; Falcone, A.; Fleysher, L.; Fleysher, R.; Gonzalez, M. M.; Goodman, J. A.; Gordo, J. B.; Hays, E.; Hoffman, C. M.; Huntemeyer, P. H.; Kolterman, B. E.; Linnemann, J. T.; McEnery, J. E.; Morgan, T.; Mincer, A. I.; Nemethy, P.

    2011-01-01

    The Crab Nebula was detected with the Milagro experiment at a statistical significance of 17 standard deviations over the lifetime of the experiment. The experiment was sensitive to approximately 100 GeV - 100 TeV gamma ray air showers by observing the particle footprint reaching the ground. The fraction of detectors recording signals from photons at the ground is a suitable proxy for the energy of the primary particle and has been used to measure the photon energy spectrum of the Crab Nebula between 1 and 100 TeV. The TeV emission is believed to be caused by inverse-Compton up-scattering scattering of ambient photons by an energetic electron population. The location of a Te V steepening or cutoff in the energy spectrum reveals important details about the underlying electron population. We describe the experiment and the technique for distinguishing gamma-ray events from the much more-abundant hadronic events. We describe the calculation of the significance of the excess from the Crab and how the energy spectrum is fit.

  20. Far-Infrared Spectral Observations of the Galaxy by COBE

    SciTech Connect

    Reach, W.T.; Dwek, E.; Fixsen, D.J.; Hewagama, T.; Mather, J.C.; Shafer, R.A.; Banday, A.J.; Bennett, C.L.; Cheng, E.S.; Eplee Jr., R.E.,; Leisawi tz, D.; Lubin, P.M.; Read, S.M.; Rosen, L.P.; Shuman, F.G.D.; Smoot, G.F.; Sodroski, T.J.; Wright, E.L.

    1994-10-27

    We derive Galactic continuum spectra from 5-96 cm(-1) fromCOBE/FIRAS observations. The spectra are dominated by warm dust emission,which may be fitted with a single temperature in the range 16-21 K (fornu(2) emissivity) along each line of sight. Dust heated by the attenuatedradiation field in molecular clouds gives rise tointermediate-temperature (10-14 K) emission in the inner Galaxy only. Awidespread, very cold component (4-7 K) with optical depth that isspatially correlated with the warm component is also detected. The coldcomponent is unlikely to be due to very cold dust shielded from starlightbecause it is present at high latitude. We consider hypotheses that thecold component is due to enhanced submillimeter emissivity of the dustthat gives rise to the warm component, or that it may be due to verysmall, large, or fractal particles. Lack of substantial power above theemission from warm dust places strong constraints on the amount of coldgas in the Galaxy. The microwave sky brightness due to interstellar dustis dominated by the cold component, and its angular variation could limitour ability to discern primordial fluctuations in the cosmic microwavebackground radiation.

  1. RXTE Observation of Cygnus X-1 Spectral Analysis

    NASA Technical Reports Server (NTRS)

    Dove, J. B.; Wilms, Joern; Nowak, M. A.; Vaughan, B. A.; Begelman, M. C.

    1998-01-01

    We present the results of the analysis of the broad-band spectrum of Cygnus X-1 from 3.0 to 200 keV, using data from a 10 ksec observation by the Rossi X-ray Timing Explorer. Although the spectrum can be well described phenomenologically by an exponentially cut-off power law (photon index Gamma = 1.45+0.01 -0.02 , e-folding energy e(sub f) = 162+9 -8 keV, plus a deviation from a power law that formally can be modeled as a thermal blackbody, with temperature kT(sub BB) = 1.2 +0.0 -0.1 keV), the inclusion of a reflection component does not improve the fit. As a physical description of this system, we apply the accretion disc corona (ADC) models. A slab-geometry ADC model is unable to describe the data. However, a spherical corona, with a total optical depth tau- = 1.6 + or - 0.1 and an average temperature kTc = 87 + or - 5 keV, surrounded by an exterior cold disc, does provide a good description of the data (X red (exp 2) = 1.55). These models deviate from the data bv up to 7% in the 5-10 keV range. However, considering how successfully the spherical corona reproduces the 10-200 keV data, such "photon-starved" coronal geometries seem very promising for explaining the accretion processes of Cygnus X-1.

  2. A Basic study on Navigators’ Visual Observation Area and Stress Level for ShipHandling by Actual Ships and Simulators

    NASA Astrophysics Data System (ADS)

    Murai, Koji; Hayashi, Yuji; Miyoshi, Yuichi; Inokuchi, Seiji

    A navigator gets navigational information for safe navigation from own ship and her environment through their five senses, and navigates her. We think that the most important thing is the ability to judge in various environments more than the knowledge of how to handle some instruments or equipments. What does the navigator do when he/she navigates? Recently, we use a ship handling simulator (simulator in short) to train the ship handling for safe navigation. We need to recognize the effect of training, the better usage of a simulator and the difference of stress level between actual ships and simulators. The purpose of this paper is to find characteristics of visual observation area and stress level of the navigator in the case of arriving and leaving port. In our experiments, we measured subject’s eye movement and heart rate variability which means the R-R interval. Our experimental ship is Training Ship FUKAE-MARU of Kobe University of Mercantile Marine (KUMM in short). The results show that characteristics of subject’s visual observation area and Sympathetic Nervous System (SNS in short) value calculated with R-R interval is how dependency of cue for both navigational environments.

  3. Inference of Surface Chemical and Physical Properties Using Mid-Infrared (MIR) Spectral Observations

    NASA Technical Reports Server (NTRS)

    Roush, Ted L.

    2016-01-01

    Reflected or emitted energy from solid surfaces in the solar system can provide insight into thermo-physical and chemical properties of the surface materials. Measurements have been obtained from instruments located on Earth-based telescopes and carried on several space missions. The characteristic spectral features commonly observed in Mid-Infrared (MIR) spectra of minerals will be reviewed, along with methods used for compositional interpretations of MIR emission spectra. The influence of surface grain size, and space weathering processes on MIR emissivity spectra will also be discussed. Methods used for estimating surface temperature, emissivity, and thermal inertias from MIR spectral observations will be reviewed.

  4. Spectral broadening of VLF transmitter signals observed on DE 1 - A quasi-electrostatic phenomenon?

    NASA Technical Reports Server (NTRS)

    Inan, U. S.; Bell, T. F.

    1985-01-01

    Spectrally broadened VLF transmitter signals are observed on the DE 1 satellite using alternatively both electric and magnetic field sensors. It is found that at times when the electric field component undergoes significant bandwidth expansion (up to about 110 Hz) the magnetic field component has a bandwidth of less than 10 Hz. The results support the theory that the off-carrier components are quasi-electrostatic in nature. Measurement of the absolute E and B field magnitudes of the broadened signals are used to determine the wave Poynting vector. It is found that the observed power levels can be understood without invoking any strong amplification process that operates in conjunction with the spectral broadening. The implications of this finding in distinguishing among the various possible mechanisms for spectral broadening are discussed.

  5. Using a Radar Shape Model to Interpret Spectral Observations of near-Earth Asteroid 4179 Toutatis

    NASA Astrophysics Data System (ADS)

    Howell, Ellen S.; Busch, M. W.; Reddy, V.; Vervack, R. J.; Nolan, M. C.; Magri, C.; Fernandez, Y. R.; Taylor, P. A.; Springmann, A.; Sanchez, J. A.; Scheeres, D. J.; Takahashi, Y.

    2013-10-01

    We have observed a number of near-Earth asteroids (NEAs) using radar to determine shape and spin characteristics, along with NASA IRTF near- and thermal infrared spectroscopy to determine composition and thermal properties. The radar shape model allows us to determine the orientation of the asteroid at the time of observation, and thus link spectra to specific parts of the asteroid, usually after the fact. Takahashi et al. (2013) have used extensive radar observations over several apparitions to determine the complex rotation state of NEA 4179 Toutatis. Busch et al. (2013) have refined the shape model derived by Hudson et al. (2003). The images of Chang'e 2 confirm the elongated shape of this asteroid, and show a more detailed view of the large end that was poorly resolved in the radar observations prior to 2012. Near-infrared spectra of Toutatis have been obtained by many observers at a variety of observing geometries. We can now connect these spectra to specific areas of the asteroid, and investigate spectral variations, and determine the extent to which phase reddening and regolith sorting may affect the measurements. Several observations consistently suggest that the larger end of this elongated body is spectrally different than the rest of the surface. This difference is contrary to the findings of Davies et al., (2007), who did not see any spectral changes over a large range of phase angles. We will explore the possible causes of these differences, and compare to other NEAs that also show spectral differences across the surface. Even objects with very similar compositions do not always show the same spectral trends, which makes generalizations hard to support.

  6. Spectral evolution of a subclass of gamma-ray bursts observed by batse

    NASA Technical Reports Server (NTRS)

    Bhat, P. N.; Fishman, Gerald J.; Meegan, Charles A.; Wilson, Robert B.; Kouveliotou, Chryssa; Paciesas, William S.; Pendleton, Geoffrey N.; Schaefer, Bradley E.

    1994-01-01

    Among the gamma-ray bursts (GRBs) observed by the Burst and Transient Source Experiment (BATSE) on board the Compton Gamma Ray Observatory we define a subclass of bursts based on similar morphology: a sharp rise followed by a longer decay time. About 7% of all the gamma-ray bursts observed by BATSE fall into this subclass. We study the spectral evolution of these bursts by fitting models to time-segmented burst spectra and find no clear distinction between the spectral evolutionary properties of this subclass and those of other bursts. Further, we study the high time resolution spectral evolution of this subclass of GRBs using their spectral hardness ratios. A majority of the bursts show hardness ratio leading the counting rate and also display a continuous hard to soft evolution. The time lag between the counting rate and the hardness ratio is found to be directly correlated with the rise time of the counting rate profile. We also find, for the first time, evidence for spectral variation in a timescale of 64 ms.

  7. Super Dual Auroral Radar Network observations of fluctuations in the spectral distribution of near range meteor

    NASA Astrophysics Data System (ADS)

    Upper Mesosphere, Echoes In The; Thermosphere , Lower

    2001-04-01

    The Doppler shifts of meteor echoes measured by the SuperDARN HF radar network have been used in several studies to observe neutral winds in the upper mesosphere and lower thermosphere region. In the absence of accurate height information for individual meteors, it has been necessary to assume a statistical mean meteor layer where the variations in altitude were not correlated to changes in the horizontal winds. Observations of spectral width distribution variations made by the radars allow an independent determination of the systematic error in the height. We have investigated the dependence of this distribution on a number of factors including the radar geometry, diurnal and seasonal cycles, variations in solar UV irradiance and geomagnetic activity. Changes in the altitude of the mean meteor layer observed at different radar ranges provide us with some insight into the structure of the upper mesosphere and the lower thermosphere within which the meteors are being ablated. An examination of the spectral widths, as measured by the CUT-LASS Finland radar, in the days preceding and following a Storm Sudden Commencement in April 1997, illustrates how the spectral properties of the observed region can be affected. The variations in the widths were consistent with model calculations of the changes to the temperature profile over this interval. Further refinements in the determination of the spectral width are outlined for future experiments.

  8. What Do Millimeter Continuum and Spectral Line Observations Tell Us about Solar System Bodies?

    NASA Technical Reports Server (NTRS)

    Milam, Stefanie N.

    2013-01-01

    Solar system objects are generally cold and radiate at low frequencies and tend to have strong molecular rotational transitions. Millimeter continuum and spectral line observations provide detailed information for nearly all solar system bodies. At these wavelengths, details of the bulk physical composition of icy surfaces, the size and albedo of small objects, the composition of planetary atmospheres can be measured as well as monitoring of time variable phenomena for extended periods (not restricted to nighttime observations), etc. Major issues in solar system science can be addressed by observations in the millimeter/sub-millimeter regime such as the origin of the solar system (isotope ratios, composition) and the evolution of solar system objects (dynamics, atmospheric constituents, etc). ALMA s exceptional sensitivity, large spectral bandwidth, high spectral resolution, and angular resolution (down to 10 milliarcsec) will enable researchers for the first time to better resolve the smallest bodies in the solar system and provide detailed maps of the larger objects. Additionally, measurements with nearly 8 GHz of instantaneous bandwidth to fully characterize solar system object s spectrum and detect trace species. The spatial information and line profiles can be obtained over 800 GHz of bandwidth in 8 receiver bands to not only assist in the identification of spectral lines and emission components for a given species but also to help elucidate the chemistry of the extraterrestrial bodies closest to us.

  9. RXTE Observations of A1744-361: Correlated Spectral and Timing Behavior

    NASA Technical Reports Server (NTRS)

    Bhattacharyya, Sudip; Strohmayer, Tod E.; Swank, Jean H.; Markwardt, Craig B.

    2007-01-01

    We analyze Rossi X-ray Timing Explorer (RXTE) Proportional Counter Array (PCA) data of the transient low mass X-ray binary (LMXB) system A1744-361. We explore the X-ray intensity and spectral evolution of the source, perform timing analysis, and find that A1744-361 is a weak LMXB, that shows atoll behavior at high intensity states. The color-color diagram indicates that this LMXB was observed in a low intensity spectrally hard (low-hard) state and in a high intensity banana state. The low-hard state shows a horizontal pattern in the color-color diagram, and the previously reported dipper QPO appears only during this state. We also perform energy spectral analyses, and report the first detection of broad iron emission line and iron absorption edge from A1744-361.

  10. Frequency Calibration of Spectral Observation System of the TM65m Radio Telescope

    NASA Astrophysics Data System (ADS)

    Juan, Li; Ya-jun, Wu; Hai-hua, Qiao; Jun-zhi, Wang; Xiu-ting, Zuo

    2016-10-01

    In order to carry out the spectral observation with the TM65m radio telescope, the frequency calibration and test of DIBAS (Digital Backend System) are performed, it is found that it has a good performance. First, by injecting the PCAL signals, the frequency resolution, frequency drift and the stability of frequency interval between two spectral lines of the DIBAS backend are measured. It is found that in one hour, the maximum frequency drift of a single spike is 0.03 channel, the maximum fluctuation of spike interval is 0.05 channel. Then, by the observations on the H2CO maser and absorbtion lines of massive star formation regions, and the comparison with the results observed by the GBT (Robert C. Byrd Green Bank Telescope), it is shown that the results of frequency calibration are correct. Finally, by the OH maser observations in more than one hour toward W3(OH), and the methanol maser observations in more than 5 hours, it is found that the spectral profiles keep consistent, and the observational noise is consistent with the theoretical value, indicating the stability and reliability of the frequency calibration program.

  11. Design of multivariable feedback control systems via spectral assignment using reduced-order models and reduced-order observers

    NASA Technical Reports Server (NTRS)

    Mielke, R. R.; Tung, L. J.; Carraway, P. I., III

    1984-01-01

    The feasibility of using reduced order models and reduced order observers with eigenvalue/eigenvector assignment procedures is investigated. A review of spectral assignment synthesis procedures is presented. Then, a reduced order model which retains essential system characteristics is formulated. A constant state feedback matrix which assigns desired closed loop eigenvalues and approximates specified closed loop eigenvectors is calculated for the reduced order model. It is shown that the eigenvalue and eigenvector assignments made in the reduced order system are retained when the feedback matrix is implemented about the full order system. In addition, those modes and associated eigenvectors which are not included in the reduced order model remain unchanged in the closed loop full order system. The full state feedback design is then implemented by using a reduced order observer. It is shown that the eigenvalue and eigenvector assignments of the closed loop full order system rmain unchanged when a reduced order observer is used. The design procedure is illustrated by an actual design problem.

  12. Design of multivariable feedback control systems via spectral assignment using reduced-order models and reduced-order observers

    NASA Technical Reports Server (NTRS)

    Mielke, R. R.; Tung, L. J.; Carraway, P. I., III

    1985-01-01

    The feasibility of using reduced order models and reduced order observers with eigenvalue/eigenvector assignment procedures is investigated. A review of spectral assignment synthesis procedures is presented. Then, a reduced order model which retains essential system characteristics is formulated. A constant state feedback matrix which assigns desired closed loop eigenvalues and approximates specified closed loop eigenvectors is calculated for the reduced order model. It is shown that the eigenvalue and eigenvector assignments made in the reduced order system are retained when the feedback matrix is implemented about the full order system. In addition, those modes and associated eigenvectors which are not included in the reduced order model remain unchanged in the closed loop full order system. The fulll state feedback design is then implemented by using a reduced order observer. It is shown that the eigenvalue and eigenvector assignments of the closed loop full order system remain unchanged when a reduced order observer is used. The design procedure is illustrated by an actual design problem.

  13. Understanding the Long-Term Spectral Variability of Cygnus X-1 from BATSE and ASM Observations

    NASA Technical Reports Server (NTRS)

    Zdziarski, Andrzej A.; Poutanen, Juri; Paciesas, William S.; Wen, Linqing; Six, N. Frank (Technical Monitor)

    2002-01-01

    We present a spectral analysis of observations of Cygnus X-1 by the RXTE/ASM (1.5-12 keV) and CGRO/BATSE (20-300 keV), including about 1200 days of simultaneous data. We find a number of correlations between intensities and hardnesses in different energy bands from 1.5 keV to 300 keV. In the hard (low) spectral state, there is a negative correlation between the ASM 1.5-12 keV flux and the hardness at any energy. In the soft (high) spectral state, the ASM flux is positively correlated with the ASM hardness (as previously reported) but uncorrelated with the BATSE hardness. In both spectral states, the BATSE hardness correlates with the flux above 100 keV, while it shows no correlation with the flux in the 20-100 keV range. At the same time, there is clear correlation between the BATSE fluxes below and above 100 keV. In the hard state, most of the variability can be explained by softening the overall spectrum with a pivot at approximately 50 keV. The observations show that there has to be another, independent variability pattern of lower amplitude where the spectral shape does not change when the luminosity changes. In the soft state, the variability is mostly caused by a variable hard (Comptonized) spectral component of a constant shape superimposed on a constant soft blackbody component. These variability patterns are in agreement with the dependence of the rms variability on the photon energy in the two states. We interpret the observed correlations in terms of theoretical Comptonization models. In the hard state, the variability appears to be driven mostly by changing flux in seed photons Comptonized in a hot thermal plasma cloud with an approximately constant power supply. In the soft state, the variability is consistent with flares of hybrid, thermal/nonthermal, plasma with variable power above a stable cold disk. Also, based on broadband pointed observations simultaneous with those of the ASM and BATSE, we find the intrinsic bolometric luminosity increases by a

  14. Stochastic analysis of multiple-passband spectral classifications systems affected by observation errors

    NASA Technical Reports Server (NTRS)

    Tsokos, C. P.

    1980-01-01

    The classification of targets viewed by a pushbroom type multiple band spectral scanner by algorithms suitable for implementation in high speed online digital circuits is considered. A class of algorithms suitable for use with a pipelined classifier is investigated through simulations based on observed data from agricultural targets. It is shown that time distribution of target types is an important determining factor in classification efficiency.

  15. The Lockman Hole project: LOFAR observations and spectral index properties of low-frequency radio sources

    NASA Astrophysics Data System (ADS)

    Mahony, E. K.; Morganti, R.; Prandoni, I.; van Bemmel, I. M.; Shimwell, T. W.; Brienza, M.; Best, P. N.; Brüggen, M.; Calistro Rivera, G.; de Gasperin, F.; Hardcastle, M. J.; Harwood, J. J.; Heald, G.; Jarvis, M. J.; Mandal, S.; Miley, G. K.; Retana-Montenegro, E.; Röttgering, H. J. A.; Sabater, J.; Tasse, C.; van Velzen, S.; van Weeren, R. J.; Williams, W. L.; White, G. J.

    2016-12-01

    The Lockman Hole is a well-studied extragalactic field with extensive multi-band ancillary data covering a wide range in frequency, essential for characterizing the physical and evolutionary properties of the various source populations detected in deep radio fields (mainly star-forming galaxies and AGNs). In this paper, we present new 150-MHz observations carried out with the LOw-Frequency ARray (LOFAR), allowing us to explore a new spectral window for the faint radio source population. This 150-MHz image covers an area of 34.7 square degrees with a resolution of 18.6 × 14.7 arcsec and reaches an rms of 160 μJy beam-1 at the centre of the field. As expected for a low-frequency selected sample, the vast majority of sources exhibit steep spectra, with a median spectral index of α _{150}^{1400}=-0.78± 0.015. The median spectral index becomes slightly flatter (increasing from α _{150}^{1400}=-0.84 to α _{150}^{1400}=-0.75) with decreasing flux density down to S150 ˜10 mJy before flattening out and remaining constant below this flux level. For a bright subset of the 150-MHz selected sample, we can trace the spectral properties down to lower frequencies using 60-MHz LOFAR observations, finding tentative evidence for sources to become flatter in spectrum between 60 and 150 MHz. Using the deep, multi-frequency data available in the Lockman Hole, we identify a sample of 100 ultra-steep-spectrum sources and 13 peaked-spectrum sources. We estimate that up to 21 per cent of these could have z > 4 and are candidate high-z radio galaxies, but further follow-up observations are required to confirm the physical nature of these objects.

  16. Assessing Spectral Shortwave Cloud Observations at the Southern Great Plains Facility

    NASA Technical Reports Server (NTRS)

    McBride, P. J.; Marshak, A.; Wiscombe, W. J.; Flynn, C. J.; Vogelmann, A. M.

    2012-01-01

    The Atmospheric Radiation Measurement (ARM) program (now Atmospheric System Research) was established, in part, to improve radiation models so that they could be used reliably to compute radiation fluxes through the atmosphere, given knowledge of the surface albedo, atmospheric gases, and the aerosol and cloud properties. Despite years of observations, discrepancies still exist between radiative transfer models and observations, particularly in the presence of clouds. Progress has been made at closing discrepancies in the spectral region beyond 3 micron, but the progress lags at shorter wavelengths. Ratios of observed visible and near infrared cloud albedo from aircraft and satellite have shown both localized and global discrepancies between model and observations that are, thus far, unexplained. The capabilities of shortwave surface spectrometry have been improved in recent years at the Southern Great Plains facility (SGP) of the ARM Climate Research Facility through the addition of new instrumentation, the Shortwave Array Spectroradiometer, and upgrades to existing instrumentation, the Shortwave Spectroradiometer and the Rotating Shadowband Spectroradiometer. An airborne-based instrument, the HydroRad Spectroradiometer, was also deployed at the ARM site during the Routine ARM Aerial Facility Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign. Using the new and upgraded spectral observations along with radiative transfer models, cloud scenes at the SGP are presented with the goal of characterizing the instrumentation and the cloud fields themselves.

  17. Ground-based observations of the corona in the visible and NIR spectral ranges

    NASA Technical Reports Server (NTRS)

    Epple, Alexander; Schwenn, Rainer

    1995-01-01

    Since late 1993 we have been using a mirror coronagraph on Pic du Midi (PICO) to observe the solar emission corona in several spectral lines of (FE-X), (FE-XIII), and (FE-XIV). For good meteorological conditions the diffuse corona and coronal holes in between can be seen out to 1.2 solar mass for sun center. Active regions can be mapped to bond 1.5 solar mass in the green and infrared lines. Recent observations of PICO are presented.

  18. Spectral signatures of the ionospheric Alfvén resonator to be observed by low-Earth orbit satellite

    NASA Astrophysics Data System (ADS)

    Surkov, V. V.; Pilipenko, V. A.

    2016-03-01

    Interference of an incident and reflected Alfvén pulses propagating inside the ionospheric Alfvén resonator (IAR) is studied on the basis of a simple one-dimensional model. Particular emphasis has been placed on the analysis of spectral features of ultralow frequency (˜1-15 Hz) electric perturbations recently observed by Communications/Navigation Outage Forecasting System satellite. This "fingerprint" multiband spectral structure was observed when satellite descended in the terminator vicinity. Among factors affecting spectral structure the satellite position and distance from the IAR boundaries are most significant. It is concluded that the observed spectrograms exhibit modulation with "period" depending on propagation delay time of reflected Alfvén pulses in such a way that this effect can mask a spectral resonance structure resulted from excitation of IAR eigenmodes. The proposed interference effect is capable to produce a spectral pattern resembling a fingerprint which is compatible with the satellite observations.

  19. X-RAY SPECTRAL COMPONENTS OBSERVED IN THE AFTERGLOW OF GRB 130925A

    SciTech Connect

    Bellm, Eric C.; Forster, Karl; Harrison, Fiona A.; Madsen, Kristin K.; Perley, Daniel A.; Rana, Vikram R.; Barrière, Nicolas M.; Boggs, Steven E.; Craig, William W.; Bhalerao, Varun; Cenko, S. Bradley; Christensen, Finn E.; Fryer, Chris L.; Hailey, Charles J.; Horesh, Assaf; Ofek, Eran O.; Kouveliotou, Chryssa; Reynolds, Stephen P.; Stern, Daniel; and others

    2014-04-01

    We have identified spectral features in the late-time X-ray afterglow of the unusually long, slow-decaying GRB 130925A using NuSTAR, Swift/X-Ray Telescope, and Chandra. A spectral component in addition to an absorbed power law is required at >4σ significance, and its spectral shape varies between two observation epochs at 2 × 10{sup 5} and 10{sup 6} s after the burst. Several models can fit this additional component, each with very different physical implications. A broad, resolved Gaussian absorption feature of several keV width improves the fit, but it is poorly constrained in the second epoch. An additive blackbody or second power-law component provide better fits. Both are challenging to interpret: the blackbody radius is near the scale of a compact remnant (10{sup 8} cm), while the second power-law component requires an unobserved high-energy cutoff in order to be consistent with the non-detection by Fermi/Large Area Telescope.

  20. X-Ray Spectral Components Observed in the Afterglow of GRB 130925A

    NASA Technical Reports Server (NTRS)

    Bellm, Eric C.; Barriere, Nicolas M.; Bhalerao, Varun; Boggs, Steven E.; Cenko, S. Bradley; Christensen, Finn E.; Craig, William W.; Forster, Karl; Fryer, Chris L.; Hailey, Charles J.; Harrison, Fiona A.; Horesh, Assaf; Kouveliotou, Chryssa; Madsen, Kristin K.; Miller, Jon M.; Ofek, Eran O.; Perley, Daniel A.; Rana, Vikram R.; Miller, Jon M.; Stern, Daniel; Tomsick, John A.; Zhang, William W.

    2014-01-01

    We have identified spectral features in the late-time X-ray afterglow of the unusually long, slow-decaying GRB 130925A using NuSTAR, Swift/X-Ray Telescope, and Chandra. A spectral component in addition to an absorbed power law is required at greater than 4 less than 1 significance, and its spectral shape varies between two observation epochs at 2 x 10 (sup 5) and 10 (sup 6) seconds after the burst. Several models can fit this additional component, each with very different physical implications. A broad, resolved Gaussian absorption feature of several kiloelectronvolts width improves the fit, but it is poorly constrained in the second epoch. An additive blackbody or second power-law component provide better fits. Both are challenging to interpret: the blackbody radius is near the scale of a compact remnant (10 (sup 8) centimeters), while the second power-law component requires an unobserved high-energy cutoff in order to be consistent with the non-detection by Fermi/Large Area Telescope.

  1. A falsely fat curvaton with an observable running of the spectral tilt

    SciTech Connect

    Peloso, Marco; Sorbo, Lorenzo; Tasinato, Gianmassimo E-mail: sorbo@physics.umass.edu

    2014-06-01

    In slow roll inflation, the running of the spectral tilt is generically proportional to the square of the deviation from scale invariance, α{sub s}∝(n{sub s}−1){sup 2}, and is therefore currently undetectable. We present a mechanism able to generate a much larger running within slow roll. The mechanism is based on a curvaton field with a large mass term, and a time evolving normalization. This may happen for instance to the angular direction of a complex field in presence of an evolving radial direction. At the price of a single tuning between the mass term and the rate of change of the normalization, the curvaton can be made effectively light at the CMB scales, giving a spectral tilt in agreement with observations. The lightness is not preserved at later times, resulting in a detectable running of the spectral tilt. This mechanism shows that fields with a large mass term do not necessarily decouple from the inflationary physics, and provides a new tool for model building in inflation.

  2. Chromospheric polarimetry through multiline observations of the 850-nm spectral region

    NASA Astrophysics Data System (ADS)

    Quintero Noda, C.; Shimizu, T.; Katsukawa, Y.; de la Cruz Rodríguez, J.; Carlsson, M.; Anan, T.; Oba, T.; Ichimoto, K.; Suematsu, Y.

    2017-02-01

    Future solar missions and ground-based telescopes aim to understand the magnetism of the solar chromosphere. We performed a supporting study in Quintero Noda et al. focused on the infrared Ca II 8542 Å line and we concluded that it is one of the best candidates because it is sensitive to a large range of atmospheric heights, from the photosphere to the middle chromosphere. However, we believe that it is worth trying to improve the results produced by this line observing additional spectral lines. In that regard, we examined the neighbourhood solar spectrum looking for spectral lines which could increase the sensitivity to the atmospheric parameters. Interestingly, we discovered several photospheric lines which greatly improve the photospheric sensitivity to the magnetic field vector. Moreover, they are located close to a second chromospheric line which also belongs to the Ca II infrared triplet, i.e. the Ca II 8498 Å line, and enhances the sensitivity to the atmospheric parameters at chromospheric layers. We conclude that the lines in the vicinity of the Ca II 8542 Å line not only increase its sensitivity to the atmospheric parameters at all layers, but also they constitute an excellent spectral window for chromospheric polarimetry.

  3. Spectral signatures of Earth's climate variability as observed from space and diagnosed from reanalyses

    NASA Astrophysics Data System (ADS)

    Brindley, Helen; Bantges, Richard; Russell, Jacqueline; Murray, Jonathan; Harries, John

    2015-04-01

    Measurements of the Earth's spectrally resolved outgoing longwave radiation have the intrinsic information content and link to the overall energy budget that implies that they are ideal candidates to monitor the climate and detect and attribute change. Theoretical studies have shown how distinct longwave spectral signals from different climate forcing and feedback mechanisms may be derived and appear to combine with a high degree of linearity. However, an open, important question which has not yet been fully addressed concerns the exact level of short-term variability seen in observed longwave spectra. We investigate this here by exploiting the emerging radiance record available from the Infrared Atmospheric Sounding Interferometer (IASI) on the Metop-A satellite. We use five years of IASI data to assess the level of interannual variability seen in all-sky spectra at different spatial scales. Maximum variability is seen at the smallest scales investigated (10° zonal means) at northern and southern high latitudes across the centre of the 15 μm CO2 band. As spatial scale increases, the overall magnitude of interannual variability reduces across the spectrum and the spectral shape of the variability changes. We show that the interannual variability manifested across the IASI spectra is less than 0.17 K in brightness temperature in the all-sky global annual mean, collapsing to a value of less than 0.05 K in the atmospheric window, a spectral region whose variability is dominated by fluctuations in surface and cloud properties. Spectrally integrating the IASI measurements to create pseudo broadband and window channels indicates a variation about the mean that is higher for the broadband than the window channel at the global and quasi-global scale and over the Southern Hemisphere. These findings are in agreement with observations from CERES Terra over the same period and imply that at the largest spatial scales, over the period considered here, fluctuations in mid

  4. The Spectral Classes of the Saturnian System Ices: Rings and Satellites Observations by Cassini-VIMS

    NASA Astrophysics Data System (ADS)

    Filacchione, G.; Capaccioni, F.; Tosi, F.; Coradini, A.; Cerroni, P.; Clark, R. N.; Cuzzi, J. N.; Nicholson, P. D.; Buratti, B. J.; Brown, R. H.; Cruikshank, D. P.; Jaumann, R.; Hedman, M. M.

    2008-12-01

    The entire population of the Saturnian system ices was investigated by VIMS (Visual and Infrared Mapping Spectrometer) experiment on board Cassini spacecraft. By the end of the nominal mission a very large dataset of hyperspectral data had been collected in the spectral range 0.35-5.0 micron, which includes the regular satellites (Mimas, Enceladus, Tethys, Dione, Rhea, Hyperion, Iapetus, Phoebe), minor moons (Atlas, Prometheus, Pandora, Janus, Epimetheus, Telesto, Calypso) and rings. In this work we present an analysis of spectrophotometric indicators selected to describe the properties of the ices (I/F continuum levels, visible spectral slopes, band depths and positions), and which were retrieved from about 1500 full-disk observations of satellites as well as from mosaics of the main rings (A, B, C, CD, F) sampled with a resolution of 125 km/pixel along the radial axis. This comparative method allows us to highlight the spectral differences in this population of objects orbiting in the Saturnian system. In particular we have retrieved the distribution of the water ice abundance, which varies between the almost pure icy surfaces of Enceladus and Calypso to the carbon dioxide- and organic-rich Hyperion, Iapetus and Phoebe. Noteworthy is that a significant dichotomy is observed between the two co-orbital moons Epimetheus and Janus, possibly indicating a different origin and evolutionary process: while the first shows a very red visible spectrum (similar to Hyperion), the second has more neutral visible colors, making it a very peculiar object in the Saturnian system. Rings have very peculiar spectral differences when compared with the icy satellites: in the visible range their spectra are characterized by a spectral knee at bluer wavelengths (at about 520 nm compared to 550 nm on satellites); in the infrared range the 1.5-2.0 micron water ice band depths are in general deeper across the A and B rings, indicative of a larger fraction of pure water ice in comparison to

  5. Low radio frequency observations and spectral modelling of the remnant of Supernova 1987A

    NASA Astrophysics Data System (ADS)

    Callingham, J. R.; Gaensler, B. M.; Zanardo, G.; Staveley-Smith, L.; Hancock, P. J.; Hurley-Walker, N.; Bell, M. E.; Dwarakanath, K. S.; Franzen, T. M. O.; Hindson, L.; Johnston-Hollitt, M.; Kapińska, A.; For, B.-Q.; Lenc, E.; McKinley, B.; Morgan, J.; Offringa, A. R.; Procopio, P.; Wayth, R. B.; Wu, C.; Zheng, Q.

    2016-10-01

    We present Murchison Widefield Array observations of the supernova remnant (SNR) 1987A between 72 and 230 MHz, representing the lowest frequency observations of the source to date. This large lever arm in frequency space constrains the properties of the circumstellar medium created by the progenitor of SNR 1987A when it was in its red supergiant phase. As of late 2013, the radio spectrum of SNR 1987A between 72 MHz and 8.64 GHz does not show any deviation from a non-thermal power law with a spectral index of -0.74 ± 0.02. This spectral index is consistent with that derived at higher frequencies, beneath 100 GHz, and with a shock in its adiabatic phase. A spectral turnover due to free-free absorption by the circumstellar medium has to occur below 72 MHz, which places upper limits on the optical depth of ≤0.1 at a reference frequency of 72 MHz, emission measure of ≲13 000 cm-6 pc, and an electron density of ≲110 cm-3. This upper limit on the electron density is consistent with the detection of prompt radio emission and models of the X-ray emission from the supernova. The electron density upper limit implies that some hydrodynamic simulations derived a red supergiant mass-loss rate that is too high, or a wind velocity that is too low. The mass-loss rate of ˜5 × 10-6 M⊙ yr-1 and wind velocity of 10 km s-1 obtained from optical observations are consistent with our upper limits, predicting a current turnover frequency due to free-free absorption between 5 and 60 MHz.

  6. A Compact Airborne High Spectral Resolution Lidar for Observations of Aerosol and Cloud Optical Properties

    NASA Technical Reports Server (NTRS)

    Hostetler, Chris A.; Hair, John W.; Cook, Anthony L.

    2002-01-01

    We are in the process of developing a nadir-viewing, aircraft-based high spectral resolution lidar (HSRL) at NASA Langley Research Center. The system is designed to measure backscatter and extinction of aerosols and tenuous clouds. The primary uses of the instrument will be to validate spaceborne aerosol and cloud observations, carry out regional process studies, and assess the predictions of chemical transport models. In this paper, we provide an overview of the instrument design and present the results of simulations showing the instrument's capability to accurately measure extinction and extinction-to-backscatter ratio.

  7. Observation of narrow isotopic optical magnetic resonances in individual emission spectral lines of neon

    SciTech Connect

    Saprykin, E G; Sorokin, V A; Shalagin, A M

    2015-07-31

    Narrow resonances are observed in the course of recording the individual emission lines of the glow discharge in the mixture of isotopes {sup 20}Ne and {sup 22}Ne, depending on the strength of the longitudinal magnetic field. The position of resonances in the magnetic scale corresponds to the compensation of the isotopic shift for certain spectral lines due to the Zeeman effect. It is found that the contrast of the resonances is higher for the transitions between the highly excited energy levels, and the resonances themselves are formed in the zone of longitudinal spatial nonuniformity of the magnetic field. (laser applications and other topics in quantum electronics)

  8. Hyper-spectral observations of greenhouse gases in Three Gorges Reservoir Region, China

    NASA Astrophysics Data System (ADS)

    Wang, Ding Yi; Zhang, Chun-ming; Qin, Lin; Zhang, Lu; Wang, Xiang-hong; Li, Hong-qun; Yang, Fu-Mo; Chen, Gang-Cai; Wang, Shu-peng; Zhang, Xing-ying; Zhang, Peng

    The Three Gorges Reservoir (TGR) is the most ambitious hydroelectric and flood control project in human history. Its riparian zone has areas of ~300 km2 with water levels fluctuating between 175m above the sea in winter and 145m in summer, and is a special type of wetlands at the low water levels. These wetlands may release CO2 and CH4 with significantly spatial and temporal variations, and have been misleadingly described as a “methane menace” and caused a worldwide concern. A joint research program for TGR greenhouse gases monitoring is operated by several institutions and based at Yangtze Normal Univ. in Fuling of Chongqing. It is characterized by the combined satellite, airship, and ground-based hyper-spectral observations, which serve to simultaneously measure various eco-environmental parameters in a large area with high spatial and spectral resolutions, and to model the status and key dynamic processes of the TGR greenhouse gases. In this talk, the retrieval algorithm of the gas species from satellite near-infrared observations is discussed with special attentions paid to the mountainous and foggy TGR region. The distributions and variations of TGR greenhouse gases are studied by using the AIRS and SCIAMACHY monthly means of multiple years. The airship and ground-based observation system is outlined and expected to provide unique data needed to address the TGR environmental issues, and to evolve towards operational service.

  9. PEAK FLUX DISTRIBUTIONS OF SOLAR RADIO TYPE-I BURSTS FROM HIGHLY RESOLVED SPECTRAL OBSERVATIONS

    SciTech Connect

    Iwai, K.; Masuda, S.; Miyoshi, Y.; Tsuchiya, F.; Morioka, A.; Misawa, H.

    2013-05-01

    Solar radio type-I bursts were observed on 2011 January 26 by high resolution observations with the radio telescope AMATERAS in order to derive their peak flux distributions. We have developed a two-dimensional auto burst detection algorithm that can distinguish each type-I burst element from complex noise storm spectra that include numerous instances of radio frequency interference (RFI). This algorithm removes RFI from the observed radio spectra by applying a moving median filter along the frequency axis. Burst and continuum components are distinguished by a two-dimensional maximum and minimum search of the radio dynamic spectra. The analysis result shows that each type-I burst element has one peak flux without double counts or missed counts. The peak flux distribution of type-I bursts derived using this algorithm follows a power law with a spectral index between 4 and 5.

  10. Development of quantitative diagnostic observables for age-related macular degeneration using Spectral Domain OCT

    NASA Astrophysics Data System (ADS)

    Bower, Bradley A.; Chiu, Stephanie J.; Davies, Emily; Davis, Anjul M.; Zawadzki, Robert J.; Fuller, Alfred R.; Wiley, David F.; Izatt, Joseph A.; Toth, Cynthia A.

    2007-02-01

    We report on the development of quantitative, reproducible diagnostic observables for age-related macular degeneration (AMD) based on high speed spectral domain optical coherence tomography (SDOCT). 3D SDOCT volumetric data sets (512 x 1000 x 100 voxels) were collected (5.7 seconds acquisition time) in over 50 patients with age-related macular degeneration and geographic atrophy using a state-of-the-art SDOCT scanner. Commercial and custom software utilities were used for manual and semi-automated segmentation of photoreceptor layer thickness, total drusen volume, and geographic atrophy cross-sectional area. In a preliminary test of reproducibility in segmentation of total drusen volume and geographic atrophy surface area, inter-observer error was less than 5%. Extracted volume and surface area of AMD-related drusen and geographic atrophy, respectively, may serve as useful observables for tracking disease state that were not accessible without the rapid 3D volumetric imaging capability unique to retinal SDOCT.

  11. Spectrally-resolved Soft X-ray Observations and the Temperature Structure of the Solar Corona

    NASA Astrophysics Data System (ADS)

    Caspi, Amir; Warren, Harry; McTiernan, James; Woods, Thomas N.

    2015-04-01

    Solar X-ray observations provide important diagnostics of plasma heating and particle acceleration, during solar flares and quiescent periods. How the corona is heated to its ~1-3 MK nominal temperature remains one of the fundamental unanswered questions of solar physics; heating of plasma to tens of MK during solar flares -- particularly to the hottest observed temperatures of up to ~50 MK -- is also still poorly understood. Soft X-ray emission (~0.1-10 keV; or ~0.1-10 nm) is particularly sensitive to hot coronal plasma and serves as a probe of the thermal processes driving coronal plasma heating. Spectrally- and temporally-resolved measurements are crucial for understanding these energetic processes, but there have historically been very few such observations. We present new solar soft X-ray spectra from the Amptek X123-SDD, measuring quiescent solar X-ray emission from ~0.5 to ~30 keV with ~0.15 keV FWHM resolution from two SDO/EVE calibration sounding rocket underflights in 2012 and 2013. Combined with observations from RHESSI, GOES/XRS, SDO/EVE, and SDO/AIA, the temperature distribution derived from these data suggest significant hot (5-10 MK) emission from active regions, and the 2013 spectra suggest a low-FIP enhancement of only ~1.6 relative to the photosphere, 40% of the usually-observed value from quiescent coronal plasma. We explore the implications of these findings on coronal heating. We discuss future missions for spectrally-resolved soft X-ray observations using the X123-SDD, including the upcoming MinXSS 3U CubeSat using the X123-SDD and scheduled for deployment in mid-2015, and the CubIXSS 6U CubeSat mission concept.

  12. High spectral resolution observation of extended sources in future interplanetary missions

    NASA Astrophysics Data System (ADS)

    Hosseini, Sona

    2016-10-01

    The most commonly used technique for high spectral resolution (R) studies are grating spectrometers. They can achieve broad bandpasses but they have small FOV and relatively low étendue so they have to be paired with large aperture telescopes such Keck (10m), Hubble (2.4m) or JWST (6.5m). Fabry-Pérot Interferometers (FPI) and FTS are the other best known types of high étendue, high R spectrometers used in astronomy. But their opto-mechnical tolerances becomes challenging and they use transmitting optics, where transmission drops especially below 130 nm. Spatial Heterodyne Spectrometer (SHS) is a candidate for high étendue, high spectral R spectroscopy in compact low cost, low-mass, low-power architecture using no or small aperture telescope for UV to IR wavelengths. High R spectrometers are usually limited by the telescope aperture size and complicated opto-mechanical tolerances but that's not the case for SHS. SHS provides integrated spectra at high spectral R, over a wide FOV in compact designs in which it offers the ability to make key science measurements for a variety of planetary targets. SHS could be implemented on a dedicated SmallSat or ISS that can sit and stare at its target for long duration of time that cannot be done from the ground or on big missions. SmallSats are lower cost, faster to build, relatively easy to correct and upgrade. For UV observation, currently HST is the only telescope capable of collecting the necessary observations and the next major UV space telescope might be able to fly in 10 years or more. SHS instrument can quickly fill the technology gap for UV space spectrometers.

  13. New Spectral Reflectance Observations of Hayabusa 2 Near-Earth Asteroid Target 162173 1999 JU3

    NASA Astrophysics Data System (ADS)

    Vilas, Faith

    2012-10-01

    The successful visit of the spacecraft Hayabusa to near-Earth asteroid 25143 Itokawa, and the successful return of samples of the asteroid's material, have spurred the Japanese Space Agency (JAXA) to mount a second mission (Hayabusa 2) to Apollo asteroid 162173 1999 JU3. JAXA's objective is to sample an asteroid having an unaltered or barely altered composition (C or D class). Asteroid 162173 1999 JU3 is targeted both for its easy accessibility from the Earth (a low ΔV of 3.238 km s-1) and its spectral class. Spectral reflectance observations of 162173 during two apparitions in 2003 and 2007 are both tantalizing and potentially inconclusive, with the suggestion that mineralogical variegation is revealed on the asteroid's surface. A spectrum from July 2007 suggests the presence of an absorption feature centered near 0.7 µm. The strength of the absorption feature suggests that the material contributing to the spectrum is largely concentrated iron-bearing phyllosilicates, however, the SNR is limited. Other spectra do not show this feature, but could contain other subtle absorption features. During the final opportunity to observe 162173 before the proposed launch of Hayabusa 2, reflectance spectra were obtained of 162173 (V ˜ 18.5) using the facility ES2 spectrograph with a red-sensitive CCD at McDonald Observatory's 2.1-m telescope on UT June 12 and 13, 2012. A preliminary examination of these spectra suggests that absorption features could be present and the surface variegation is real, however, the SNR remains limited. These new spectral will be presented and discussed in the context of our prior knowledge of 162173 1999 JU3.

  14. Fine spectral structures in Jovian decametric radio emission observed by ground-based radio telescope.

    NASA Astrophysics Data System (ADS)

    Panchenko, M.; Brazhenko, A. I.; Shaposhnikov, V. E.; Konovalenko, A. A.; Rucker, H. O.

    2014-04-01

    Jupiter with the largest planetary magnetosphere in the solar system emits intense coherent non-thermal radio emission in a wide frequency range. This emission is a result of a complicated interaction between the dynamic Jovian magnetosphere and energetic particles supplying the free energy from planetary rotation and the interaction between Jupiter and the Galilean moons. Decametric radio emission (DAM) is the strongest component of Jovian radiation observed in a frequency range from few MHz up to 40 MHz. This emission is generated via cyclotron maser mechanism in sources located along Jovian magnetic field lines. Depending on the time scales the Jovian DAMexhibits different complex spectral structures. We present the observations of the Jovian decametric radio emission using the large ground-based radio telescope URAN- 2 (Poltava, Ukraine) operated in the decametric frequency range. This telescope is one of the largest low frequency telescopes in Europe equipped with high performance digital radio spectrometers. The antenna array of URAN-2 consists of 512 crossed dipoles with an effective area of 28 000m2 and beam pattern size of 3.5 x 7 deg. (at 25 MHz). The instrument enables continuous observations of the Jovian radio during long period of times. Jovian DAM was observed continuously since Sep. 2012 (depending on Jupiter visibility) with relatively high time-frequency resolution (4 kHz - 100ms) in the broad frequency range (8-32MHz). We have detected a big amount of the fine spectral structures in the dynamic spectra of DAM such as trains of S-bursts, quasi-continuous narrowband emission, narrow-band splitting events and zebra stripe-like patterns. We analyzed mainly the fine structures associated with non-Io controlled DAM. We discuss how the observed narrowband structures which most probably are related to the propagation of the decametric radiation in the Jupiter's ionosphere can be used to study the plasma parameters in the inner Jovian magnetosphere.

  15. Ion Spectral Structures Observed by the Van Allen Probes and Cluster

    NASA Astrophysics Data System (ADS)

    Ferradas, C.; Zhang, J.; Luo, H.; Kistler, L. M.; Spence, H. E.; Larsen, B.; Skoug, R. M.; Funsten, H. O.; Reeves, G. D.

    2014-12-01

    During the last decades several missions have recorded the presence of dynamic spectral features of energetic ions in the inner magnetosphere. Previous studies have revealed single "nose-like" structures occurring alone and simultaneous nose-like structures (up to three). In this study we also include signatures of new types of ion structure, namely "trunk-like" and "tusk-like" structures. All the ion structures are named after the characteristic shapes of energy bands or gaps in the energy-time spectrograms of in situ measured ion fluxes. They constitute the observational signatures of ion acceleration, transport, and loss in the global magnetosphere. Multi-spacecraft analysis of these structures is important to understand their spatial distribution and temporal evolution. Mass spectrometers onboard Cluster (in a polar orbit) and the Van Allen Probes (in an equatorial orbit) measure energetic hydrogen, helium, and oxygen ions near the inner edge of the plasma sheet, where these ion structures are observed. We present a statistical study of the ion structures, using >1-year measurements from the two missions during the Van Allen Probes era. The results provide important details about the spatial distribution (dependence on geocentric distance and magnetic local time), spectral features of the structures (e.g., characteristic energy and differences among species), and geomagnetic and solar wind conditions under which these structures occur.

  16. High spectral resolution observations of fluorescent molecular hydrogen in molecular clouds

    NASA Technical Reports Server (NTRS)

    Burton, Michael G.; Geballe, T. R.; Brand, P. W. J. L.; Moorhouse, A.

    1990-01-01

    The 1-0 S(1) line of molecular hydrogen has been observed at high spectral resolution in several sources where the emission was suspected of being fluorescent. In NGC 2023, the Orion Bar, and Parsamyan 18, the S(1) line is unresolved, and the line center close to the rest velocity of the ambient molecular cloud. Such behavior is expected for UV-excited line emission. The H2 line widths in molecular clouds thus can serve as diagnostic for shocked and UV-excitation mechanisms. If the lines are broader than several km/s or velocity shifts are observed across a source it is likely that shocks are responsible for the excitation of the gas.

  17. P-MaNGA: full spectral fitting and stellar population maps from prototype observations

    NASA Astrophysics Data System (ADS)

    Wilkinson, David M.; Maraston, Claudia; Thomas, Daniel; Coccato, Lodovico; Tojeiro, Rita; Cappellari, Michele; Belfiore, Francesco; Bershady, Matthew; Blanton, Mike; Bundy, Kevin; Cales, Sabrina; Cherinka, Brian; Drory, Niv; Emsellem, Eric; Fu, Hai; Law, David; Li, Cheng; Maiolino, Roberto; Masters, Karen; Tremonti, Christy; Wake, David; Wang, Enci; Weijmans, Anne-Marie; Xiao, Ting; Yan, Renbin; Zhang, Kai; Bizyaev, Dmitry; Brinkmann, Jonathan; Kinemuchi, Karen; Malanushenko, Elena; Malanushenko, Viktor; Oravetz, Daniel; Pan, Kaike; Simmons, Audrey

    2015-05-01

    MaNGA (Mapping Nearby Galaxies at Apache Point Observatory) is a 6-yr SDSS-IV (Sloan Digital Sky Survey IV) survey that will obtain resolved spectroscopy from 3600 to 10 300 Å for a representative sample of over 10 000 nearby galaxies. In this paper, we derive spatially resolved stellar population properties and radial gradients by performing full spectral fitting of observed galaxy spectra from P-MaNGA, a prototype of the MaNGA instrument. These data include spectra for 18 galaxies, covering a large range of morphological type. We derive age, metallicity, dust, and stellar mass maps, and their radial gradients, using high spectral-resolution stellar population models, and assess the impact of varying the stellar library input to the models. We introduce a method to determine dust extinction which is able to give smooth stellar mass maps even in cases of high and spatially non-uniform dust attenuation. With the spectral fitting, we produce detailed maps of stellar population properties which allow us to identify galactic features among this diverse sample such as spiral structure, smooth radial profiles with little azimuthal structure in spheroidal galaxies, and spatially distinct galaxy sub-components. In agreement with the literature, we find the gradients for galaxies identified as early type to be on average flat in age, and negative (-0.15 dex/Re) in metallicity, whereas the gradients for late-type galaxies are on average negative in age (-0.39 dex/Re) and flat in metallicity. We demonstrate how different levels of data quality change the precision with which radial gradients can be measured. We show how this analysis, extended to the large numbers of MaNGA galaxies, will have the potential to shed light on galaxy structure and evolution.

  18. Spectral and Textural Changes Observed in Sulfate Soil Deposits at Gusev Crater, Mars

    NASA Astrophysics Data System (ADS)

    Rice, M. S.; Bell, J. F.; Wang, A.; Johnson, J. R.; Arvidson, R. E.

    2009-12-01

    The Mars Exploration Rover (MER) Spirit has discovered deposits of bright yellowish and whitish soils that have been confirmed by Spirit’s Alpha Particle X-Ray Spectrometer (APXS), Mössbauer spectrometer, and Miniature Thermal Emission Spectrometer (Mini-TES) instruments to contain ferric sulfates and/or opaline silica. These deposits have important implications for the history of water at Gusev Crater, as they have been interpreted by Squyres et al. (2008, Science, 316, 738) to have formed in a hydrothermal environment. Repeated Pancam 11 color visible to short-wave near-IR observations have been made at the Tyrone, Kit Carson and Ulysess soil exposures, and changes in Vis-NIR spectra and/or soil texture and morphology have been observed at all three sites. We have identified at least three possible explanations for the observed changes: 1) dust deposition; 2) aeolian sorting; and/or 3) a mineralogic change after exposure to martian surface conditions. To better characterize how and why these soils are changing with time, we present a detailed multispectral analysis of the seven Pancam image sequences at Tyrone, the two at Kit Carson, and the nine at Ulysses that have been acquired as of sol 2000 (August 18, 2009). At the Tyrone “yellow” soil, the blue-to-red (432 to 753 nm) spectral slope decreased after roughly 175 sols of exposure to the martian surface, as described by Wang et al. (2008, JGR, 114, 461). This spectral change is contrary to the “reddening” that would be expected from dust deposition, but could be consistent with dehydration pathways of certain ferric sulfates, such as from copiapite to amorphous ferric sulfates or to rhomboclase (Wang et al., 2008, AGU). The Tyrone “yellow” soil also exhibits increased 535 nm and 803 nm band depths with time, which is further suggestive of a mineralogic change. Pancam spectra of Kit Carson appear to have changed similarly to those of Tyrone, with 535 nm and 864 nm absorptions developing after four

  19. Solar spectral irradiance variation and its impact on earth's atmosphere as observed by SCIAMACHY

    NASA Astrophysics Data System (ADS)

    Weber, M.; Pagaran, J.; Burrows, J. P.; Dikty, S.; von Savigny, C.; DeLand, M. T.; Floyd, L. E.; Harder, J. W.; Langematz, U.

    2011-12-01

    SCIAMACHY is a UV/vis/NIR spectrometer aboard ENVISAT which provides routine observations of ozone and other trace gases in the earth's atmosphere since 2002. Ozone profile data are provided from limb, lunar, and solar occultation observations, while the nadir viewing geometry allows measurements of total ozone columns. For normalizing observed backscattered earth radiances for trace gas retrievals, daily measurements of solar irradiance at moderately high spectral resolution (<1.5 nm) from 230 nm to 2400 nm, with some gaps in the NIR, are made. From the solar observations a Mg II index can be derived that in combination with other satellite data becomes a useful solar UV activity proxy indicator during the satellite era (since 1978). Using solar proxies for faculae brightening and sunspot darkening fitted to SCIAMACHY irradiance time-series a SCIA proxy model has been derived that allows us to describe solar cycle irradiance changes covering several decades. This talk will present highlights from SCIAMACHY solar observations, comparisons with other satellite data, and presents results on solar influence on ozone, i. e. 27 day solar rotation signal in the upper stratosphere and solar cycle effects on polar ozone losses.

  20. CO Spectral Line Energy Distributions in Galactic Sources: Empirical Interpretation of Extragalactic Observations

    NASA Astrophysics Data System (ADS)

    Indriolo, Nick; Bergin, E. A.; Goicoechea, J. R.; Cernicharo, J.; Gerin, M.; Gusdorf, A.; Lis, D. C.; Schilke, P.

    2017-02-01

    The relative populations in rotational transitions of CO can be useful for inferring gas conditions and excitation mechanisms at work in the interstellar medium. We present CO emission lines from rotational transitions observed with Herschel/HIFI in the star-forming cores Orion S, Orion KL, Sgr B2(M), and W49N. Integrated line fluxes from these observations are combined with those from Herschel/PACS observations of the same sources to construct CO spectral line energy distributions (SLEDs) from 5 ≤ J u ≤ 48. These CO SLEDs are compared to those reported in other galaxies, with the intention of empirically determining which mechanisms dominate excitation in such systems. We find that CO SLEDs in Galactic star-forming cores cannot be used to reproduce those observed in other galaxies, although the discrepancies arise primarily as a result of beam filling factors. The much larger regions sampled by the Herschel beams at distances of several megaparsecs contain significant amounts of cooler gas, which dominate the extragalactic CO SLEDs, in contrast to observations of Galactic star-forming regions, which are focused specifically on cores containing primarily hot molecular gas. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  1. Spectral heterogeneity on Phobos and Deimos: HiRISE observations and comparisons to Mars Pathfinder results

    USGS Publications Warehouse

    Thomas, N.; Stelter, R.; Ivanov, A.; Bridges, N.T.; Herkenhoff, K. E.; McEwen, A.S.

    2011-01-01

    The High-Resolution Imaging Science Experiment (HiRISE) onboard Mars Reconnaissance Orbiter (MRO) has been used to observe Phobos and Deimos at spatial scales of around 6 and 20 m/px, respectively. HiRISE (McEwen et al.; JGR, 112, CiteID E05S02, DOI: 10.1029/2005JE002605, 2007) has provided, for the first time, high-resolution colour images of the surfaces of the Martian moons. When processed, by the production of colour ratio images for example, the data show considerable small-scale heterogeneity, which might be attributable to fresh impacts exposing different materials otherwise largely hidden by a homogenous regolith. The bluer material that is draped over the south-eastern rim of the largest crater on Phobos, Stickney, has been perforated by an impact to reveal redder material and must therefore be relatively thin. A fresh impact with dark crater rays has been identified. Previously identified mass-wasting features in Stickney and Limtoc craters stand out strongly in colour. The interior deposits in Stickney appear more inhomogeneous than previously suspected. Several other local colour variations are also evident. Deimos is more uniform in colour but does show some small-scale inhomogeneity. The bright streamers (Thomas et al.; Icarus, 123, 536556,1996) are relatively blue. One crater to the south-west of Voltaire and its surroundings appear quite strongly reddened with respect to the rest of the surface. The reddening of the surroundings may be the result of ejecta from this impact. The spectral gradients at optical wavelengths observed for both Phobos and Deimos are quantitatively in good agreement with those found by unresolved photometric observations made by the Imager for Mars Pathfinder (IMP; Thomas et al.; JGR, 104, 90559068, 1999). The spectral gradients of the blue and red units on Phobos bracket the results from IMP. ?? 2010 Elsevier Ltd. All rights reserved.

  2. Wideband very large array observations of A2256. I. Continuum, rotation measure, and spectral imaging

    SciTech Connect

    Owen, Frazer N.; Rau, Urvashi; Bhatnagar, Sanjay; Kogan, Leonid; Rudnick, Lawrence; Jean Eilek

    2014-10-10

    We report new observations of A2256 with the Karl G. Jansky Very Large Array (VLA) at frequencies between 1 and 8 GHz. These observations take advantage of the 2:1 bandwidths available during a single observation to study the spectral index, polarization, and rotation measure as well as using the associated higher sensitivity per unit time to image total intensity features down to ∼0.''5 resolution. We find that the Large Relic, which dominates the cluster, is made up of a complex of filaments that show correlated distributions in intensity, spectral index, and fractional polarization. The rotation measure varies across the face of the Large Relic but is not well correlated with the other properties of the source. The shape of individual filaments suggests that the Large Relic is at least 25 kpc thick. We detect a low surface brightness arc connecting the Large Relic to the Halo and other radio structures, suggesting a physical connection between these features. The center of the F-complex is dominated by a very steep-spectrum, polarized, ring-like structure, F2, without an obvious optical identification, but the entire F-complex does have interesting morphological similarities to the radio structure of NGC 1265. Source C, the Long Tail, is unresolved in width near the galaxy core and is ≲ 100 pc in diameter there. This morphology suggests either that C is a one-sided jet or that the bending of the tails takes place very near the core, consistent with the parent galaxy having undergone extreme stripping. Overall it seems that many of the unusual phenomena can be understood in the context of A2256 being near the pericenter of a slightly off-axis merger between a cluster and a smaller group. Given the lack of evidence for a strong shock associated with the Large Relic, other models should be considered, such as reconnection between two large-scale magnetic domains.

  3. Soft X-ray spectral observations of quasars and high X-ray luminosity Seyfert galaxies

    NASA Technical Reports Server (NTRS)

    Petre, R.; Mushotzky, R. F.; Krolik, J. H.; Holt, S. S.

    1983-01-01

    Results of the analysis of 28 Einstein SSS observations of 15 high X-ray luminosity (L(x) 10 to the 435 power erg/s) quasars and Seyfert type 1 nuclei are presented. The 0.75-4.5 keV spectra are in general well fit by a simple model consisting of a power law plus absorption by cold gas. The averager spectral index alpha is 0.66 + or - .36, consistent with alpha for the spectrum of these objects above 2 keV. In all but one case, no evidence was found for intrinsic absorption, with an upper limit of 2 x 10 to the 21st power/sq cm. Neither was evidence found for partial covering of the active nucleus by dense, cold matter (N(H) 10 to the 22nd power/sq cm; the average upper limit on the partial covering fraction is 0.5. There is no obvious correlation between spectral index and 0175-4.5 keV X-ray luminosity (which ranges from 3 x 10 to the 43rd to 47th powers erg/s or with other source properties. The lack of intrinsic X-ray absorption allows us to place constraints on the density and temperature of the broad-line emission region, and narrow line emission region, and the intergalactic medium.

  4. Inference of Ice Cloud Properties from High-spectral Resolution Infrared Observations. Appendix 4

    NASA Technical Reports Server (NTRS)

    Huang, Hung-Lung; Yang, Ping; Wei, Heli; Baum, Bryan A.; Hu, Yongxiang; Antonelli, Paolo; Ackerman, Steven A.

    2005-01-01

    The theoretical basis is explored for inferring the microphysical properties of ice crystal from high-spectral resolution infrared observations. A radiative transfer model is employed to simulate spectral radiances to address relevant issues. The extinction and absorption efficiencies of individual ice crystals, assumed as hexagonal columns for large particles and droxtals for small particles, are computed from a combination of the finite- difference time-domain (FDTD) technique and a composite method. The corresponding phase functions are computed from a combination of FDTD and an improved geometric optics method (IGOM). Bulk scattering properties are derived by averaging the single- scattering properties of individual particles for 30 particle size distributions developed from in situ measurements and for additional four analytical Gamma size distributions for small particles. The non-sphericity of ice crystals is shown to have a significant impact on the radiative signatures in the infrared (IR) spectrum; the spherical particle approximation for inferring ice cloud properties may result in an overest&ation of the optical thickness and an inaccurate retrieval of effective particle size. Furthermore, we show that the error associated with the use of the Henyey-Greenstein phase function can be as larger as 1 K in terms of brightness temperature for larger particle effective size at some strong scattering wavenumbers. For small particles, the difference between the two phase functions is much less, with brightness temperatures generally differing by less than 0.4 K. The simulations undertaken in this study show that the slope of the IR brightness temperature spectrum between 790-960/cm is sensitive to the effective particle size. Furthermore, a strong sensitivity of IR brightness temperature to cloud optical thickness is noted within the l050-1250/cm region. Based on this spectral feature, a technique is presented for the simultaneous retrieval of the visible

  5. Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations

    NASA Astrophysics Data System (ADS)

    Dubovik, O.; Herman, M.; Holdak, A.; Lapyonok, T.; Tanré, D.; Deuzé, J. L.; Ducos, F.; Sinyuk, A.; Lopatin, A.

    2010-11-01

    The proposed development is an attempt to enhance aerosol retrieval by emphasizing statistical optimization in inversion of advanced satellite observations. This optimization concept improves retrieval accuracy relying on the knowledge of measurement error distribution. Efficient application of such optimization requires pronounced data redundancy (excess of the measurements number over number of unknowns) that is not common in satellite observations. The POLDER imager on board of the PARASOL micro-satellite registers spectral polarimetric characteristics of the reflected atmospheric radiation at up to 16 viewing directions over each observed pixel. The completeness of such observations is notably higher than for most currently operating passive satellite aerosol sensors. This provides an opportunity for profound utilization of statistical optimization principles in satellite data inversion. The proposed retrieval scheme is designed as statistically optimized multi-variable fitting of the all available angular observations of total and polarized radiances obtained by POLDER sensor in the window spectral channels where absorption by gaseous is minimal. The total number of such observations by PARASOL always exceeds a hundred over each pixel and the statistical optimization concept promises to be efficient even if the algorithm retrieves several tens of aerosol parameters. Based on this idea, the proposed algorithm uses a large number of unknowns and is aimed on retrieval of extended set of parameters affecting measured radiation. The algorithm is designed to retrieve complete aerosol properties globally. Over land, the algorithm retrieves the parameters of underlying surface simultaneously with aerosol. In all situations, the approach is anticipated to achieve a robust retrieval of complete aerosol properties including information about aerosol particle sizes, shape, absorption and composition (refractive index). In order to achieve reliable retrieval from PARASOL

  6. Statistically optimized inversion algorithm for enhanced retrieval of aerosol properties from spectral multi-angle polarimetric satellite observations

    NASA Astrophysics Data System (ADS)

    Dubovik, O.; Herman, M.; Holdak, A.; Lapyonok, T.; Tanré, D.; Deuzé, J. L.; Ducos, F.; Sinyuk, A.; Lopatin, A.

    2011-05-01

    The proposed development is an attempt to enhance aerosol retrieval by emphasizing statistical optimization in inversion of advanced satellite observations. This optimization concept improves retrieval accuracy relying on the knowledge of measurement error distribution. Efficient application of such optimization requires pronounced data redundancy (excess of the measurements number over number of unknowns) that is not common in satellite observations. The POLDER imager on board the PARASOL micro-satellite registers spectral polarimetric characteristics of the reflected atmospheric radiation at up to 16 viewing directions over each observed pixel. The completeness of such observations is notably higher than for most currently operating passive satellite aerosol sensors. This provides an opportunity for profound utilization of statistical optimization principles in satellite data inversion. The proposed retrieval scheme is designed as statistically optimized multi-variable fitting of all available angular observations obtained by the POLDER sensor in the window spectral channels where absorption by gas is minimal. The total number of such observations by PARASOL always exceeds a hundred over each pixel and the statistical optimization concept promises to be efficient even if the algorithm retrieves several tens of aerosol parameters. Based on this idea, the proposed algorithm uses a large number of unknowns and is aimed at retrieval of extended set of parameters affecting measured radiation. The algorithm is designed to retrieve complete aerosol properties globally. Over land, the algorithm retrieves the parameters of underlying surface simultaneously with aerosol. In all situations, the approach is anticipated to achieve a robust retrieval of complete aerosol properties including information about aerosol particle sizes, shape, absorption and composition (refractive index). In order to achieve reliable retrieval from PARASOL observations even over very reflective

  7. Spectral observations of active region sources with RATAN-600 and WSRT. [Westerbork Synthesis Radio Telescope

    NASA Technical Reports Server (NTRS)

    Alissandrakis, C. E.; Gel'frejkh, G. B.; Borovik, V. N.; Korzhavin, A. N.; Bogod, V. M.; Nindos, A.; Kundu, M. R.

    1993-01-01

    We present spectral observations of neutral line and sunspot associated sources obtained with the RATAN-600 radio telescope and the WSRT in the wavelength range of 2 to 6 cm. Sources associated with large sunspots have flat spectra, while neutral line sources have very steep spectra. In the case of a large spot we estimated the magnetic field to be at least 2700 G at the base of the transition region and 1800 G in the low corona. We consider possible interpretations of the radio emission above the neutral lines. Gyroresonance emission at the fourth harmonic is inadequate, whereas emission from a small population of nonthermal electrons (total number 10 exp 30 to 10 exp 31) with a delta = 3 power law distribution seems to be sufficient.

  8. Two types of ion spectral gaps in the quiet inner magnetosphere: Interball-2 observations and modeling

    NASA Astrophysics Data System (ADS)

    Buzulukova, N. Y.; Galperin, Y. I.; Kovrazhkin, R. A.; Glazunov, A. L.; Vladimirova, G. A.; Stenuit, H.; Sauvaud, J. A.; Delcourt, D. C.

    2002-03-01

    We analyse measurements of ion spectral gaps (ISGs) observed by the ION particle spectrometer on board the Interball-2 satellite. The ISG represents a sharp decrease in H+ flux at a particular narrow energy range. ISGs are practically always observed in the inner magnetosphere in a wide MLT range during quiet times. Clear examples of ISG in the morning, dayside, evening and nightside sectors of the magnetosphere are selected for detailed analysis and modeling. To obtain a model ISG, the trajectories of ions drifting in the equatorial plane from their nightside source to the observation point were computed for the energy range 0.1 15 keV. Three global convection models (McIlwain, 1972, 1986; Volland, 1973; Stern, 1975) were tested to reproduce the observed ISGs in all MLT sectors. Qualitative agreement is obtained for all three models, but the better agreement for quiet times is reached with the McIlwain (1972) convection model. It is shown that the ISGs observed by the ION spectrometer throughout the inner magnetosphere are the result of super-position of the two effects, already described in the literature (e.g. McIlwain, 1972; Shirai et al., 1997), but acting under different conditions. Also, the role of particle source location on the model gaps is investigated. It may be concluded that despite the evidence of large amplitude and directional local fluctuations of electric fields in the inner magnetosphere (Quinn et al., 1999), the existence of a stationary average convection pattern is confirmed by this modeling. This fact directly follows from observations of ISGs and from a good agreement of observations with modeled gaps calculated in the frames of adiabatic theory for a stationary (average) convection pattern.

  9. Spectral characteristics of steady quiet-time EMIC waves observed at geosynchronous orbit

    NASA Astrophysics Data System (ADS)

    Kim, Khan-Hyuk; Park, Jong-Sun; Omura, Yoshiharu; Shiokawa, Kazuo; Lee, Dong-Hun; Kim, Gi-Jeong; Jin, Ho; Lee, Ensang; Kwon, Hyuck-Jin

    2016-09-01

    We have studied the spectral properties of quiet-time electromagnetic ion cyclotron (EMIC) waves following a steady quiet condition, which is defined with Kp values ≤1 during 12 h, using GOES 10, 11, and 12 magnetometer data for solar minimum years 2007-2008. We identified 6584 steady quiet-time EMIC wave samples using a semiautomated procedure. Approximately 82% of the samples were observed in the morning-to-early afternoon sector (0700-1500 magnetic local time) with a maximum occurrence near noon, and their peak frequencies were mostly in the He band. We found that the occurrence rate of steady quiet-time EMIC waves is higher than that of EMIC waves for all or quiet geomagnetic conditions (Dst > 0 nT or AE < 100 nT) reported in previous studies by a factor of 2 or more. The frequency ratio fpeak (sample's peak frequency)/fH+ (the local proton gyrofrequency) of the He-band waves (˜0.11-0.16) under steady quiet conditions is lower than that (˜0.14-0.24) in previous studies. These results may be due to the fact that the plasmasphere expanded more frequently to the geosynchronous region under extremely quiet geomagnetic conditions in 2007-2008 than the periods selected in previous studies. The amplitude and frequency of He-band EMIC waves for nonlinear wave growth are examined as changing cold plasma density at geosynchronous orbit. We confirm that the spectral properties of observed EMIC waves are in good agreement with the nonlinear theory.

  10. Swift and Suzaku observations of spectral evolution in the FRED type GRBs

    NASA Astrophysics Data System (ADS)

    Tashiro, Makoto; Ueno, H.; Enomoto, J.

    The energy dependence in light curves of gamma-ray bursts (GRBs) is a probe to study the underlying radiation mechanism. In particular, spectral evolution in the decay phase is expected to reflect the cooling process of accelerated electrons. Norris et al. systematically examined asymmetric pulses in the prompt emissions of GRBs and showed that the pulse widths have the energy dependence that is well approximated with a power-law with the energy index of -0.41 in average. Although they did not particularly mention about the decay phase, their result strongly suggests a universal radiation/cooling mechanism in the emission region of GRBs. In previous study with Suzaku/WAM, we sampled 6 bright GRBs; 7 well isolated pulses that showed no power-law decay but exhibiting exponential-decay (FRED) were detected in total, and found that the time constants evaluated for each energy band exhibited a power-law type energy dependence with the energy index of -0.3 to -0.5. Now our next step would be to investigate the radiation process in the GRB prompt emissions in wider energy bands beyond Suzaku/WAM. Here we report the results of our study of the three bright GRBs (GRB 060117, GRB 070917, GRB 080413B) that showed the FRED and were observed with both Swift/BAT and Suzaku/WAM. All of their exponential decays exhibit similar power-law type energy dependence. The distribution of the energy indices is consistent with the FREDs that were observed with WAM, as reported in Tashiro et al. Our detailed time-resolved spectral study reveals that the spectra of all the three FREDs are well reproduced with the Band GRB functions with decreasing turnover energy. In particular, the time evolution of two of the three FREDs are consistent with those expected in the fast synchrotron-cooling regime.

  11. Optimizing commensality of radio continuum and spectral line observations in the era of the SKA

    NASA Astrophysics Data System (ADS)

    Maddox, Natasha; Jarvis, M. J.; Oosterloo, T. A.

    2016-08-01

    The substantial decrease in star formation density from z = 1 to the present day is curious given the relatively constant neutral gas density over the same epoch. Future radio astronomy facilities, including the Square Kilometre Array (SKA) and pathfinder telescopes, will provide pioneering measures of both the gas content of galaxies and star formation activity over cosmological time-scales. Here we investigate the commensalities between neutral atomic gas (H I) and radio continuum observations, as well as the complementarity of the data products. We start with the proposed H I and continuum surveys to be undertaken with the SKA precursor telescope MeerKAT, and building on this, explore optimal combinations of survey area coverage and depth of proposed H I and continuum surveys to be undertaken with the SKA1-MID instrument. Intelligent adjustment of these observational parameters results in a tiered strategy that minimizes observation time while maximizing the value of the data set, both for H I and continuum science goals. We also find great complementarity between the H I and continuum data sets, with the spectral line H I data providing redshift measurements for gas-rich, star-forming galaxies with stellar masses M* ˜ 109 M⊙ to z ˜ 0.3, a factor of 3 lower in stellar mass than would be feasible to reach with large optical spectroscopic campaigns.

  12. IMAGING AND SPECTRAL OBSERVATIONS OF QUASI-PERIODIC PULSATIONS IN A SOLAR FLARE

    SciTech Connect

    Li, D.; Ning, Z. J.; Zhang, Q. M.

    2015-07-01

    We explore the quasi-periodic pulsations (QPPs) in a solar flare observed by Fermi Gamma-ray Burst Monitor, Solar Dynamics Observatory, Solar Terrestrial Relations Observatory, and Interface Region Imaging Spectrograph (IRIS) on 2014 September 10. QPPs are identified as the regular and periodic peaks on the rapidly varying components, which are the light curves after removing the slowly varying components. The QPPs display only three peaks at the beginning on the hard X-ray emissions, but 10 peaks on the chromospheric and coronal line emissions, and more than seven peaks (each peak corresponds to a type III burst on the dynamic spectra) at the radio emissions. A uniform quasi-period of about 4 minutes is detected among them. AIA imaging observations exhibit that the 4-minute QPPs originate from the flare ribbon and tend to appear on the ribbon front. IRIS spectral observations show that each peak of the QPPs tends to a broad line width and a red Doppler velocity at C i, O iv, Si iv, and Fe xxi lines. Our findings indicate that the QPPs are produced by the non-thermal electrons that are accelerated by the induced quasi-periodic magnetic reconnections in this flare.

  13. Multi-wavelength Spectral Analysis of Ellerman Bombs Observed by FISS and IRIS

    NASA Astrophysics Data System (ADS)

    Hong, Jie; Ding, M. D.; Cao, Wenda

    2017-04-01

    Ellerman bombs (EBs) are a kind of solar activity that is suggested to occur in the lower solar atmosphere. Recent observations using the Interface Region Imaging Spectrograph (IRIS) show connections between EBs and IRIS bombs (IBs), which imply that EBs might be heated to a much higher temperature (8 × 104 K) than previous results. Here we perform a spectral analysis of EBs simultaneously observed by the Fast Imaging Solar Spectrograph and IRIS. The observational results show clear evidence of heating in the lower atmosphere, indicated by the wing enhancement in Hα, Ca ii 8542 Å, and Mg ii triplet lines and also by brightenings in images of the 1700 Å and 2832 Å ultraviolet continuum channels. Additionally, the intensity of the Mg ii triplet line is correlated with that of Hα when an EB occurs, suggesting the possibility of using the triplet as an alternative way to identify EBs. However, we do not find any signal in IRIS hotter lines (C ii and Si iv). For further analysis, we employ a two-cloud model to fit the two chromospheric lines (Hα and Ca ii 8542 Å) simultaneously, and obtain a temperature enhancement of 2300 K for a strong EB. This temperature is among the highest of previous modeling results, albeit still insufficient to produce IB signatures at ultraviolet wavelengths.

  14. A NOVEL TECHNIQUE TO OBSERVE RAPIDLY PULSATING OBJECTS USING SPECTRAL WAVE-INTERACTION EFFECTS

    SciTech Connect

    Borra, Ermanno F.

    2010-05-20

    Conventional techniques that measure rapid time variations are inefficient or inadequate to discover and observe rapidly pulsating astronomical sources. It is therefore conceivable that there exist some classes of objects pulsating with extremely short periods that have not yet been discovered. This paper starts from the fact that rapid flux variations generate a spectral modulation that can be detected in the beat spectrum of the output current fluctuations of a quadratic detector. The telescope could observe at any frequency, although shorter frequencies would have the advantage of lower photon noise. The techniques would allow us to find and observe extremely fast time variations, opening up a new time window in astronomy. The current fluctuation technique, like intensity interferometers, uses second-order correlation effects and fits into the current renewal of interest in intensity interferometry. An interesting aspect it shares with intensity interferometry is that it can use inexpensive large telescopes that have low-quality mirrors, like Cherenkov telescopes. It has other advantages over conventional techniques that measure time variations, foremost of which is its simplicity. Consequently, it could be used for extended monitoring of astronomical sources, something that is difficult to do with conventional telescopes. Arguably, the most interesting scientific justification for the technique comes from Serendipity.

  15. Observational Signatures of Black Holes: Spectral and Temporal Features of XTE J1550-564

    NASA Technical Reports Server (NTRS)

    Titarchuk, Lev; Shrader, C. R.; White, Nicholas E. (Technical Monitor)

    2002-01-01

    The theoretical predictions of the converging inflow, or Bulk-Motion Comptonization model are discussed and some predictions are compared to X- and gamma-ray observations of the high-soft state of Galactic black hole candidate XTE J1550+564. The approx. 10(exp 2)-Hz QPO phenomenon tends to be detected in the high-state at times when the bolometric luminosity surges and the hard-powerlaw spectral component is dominant. Furthermore, the power in these features increases with energy. We offer interpretation of this phenomenon, as oscillations of the innermost part of the accretion disk, which in turn supplies the seed photons for the converging inflow where the hard power-law is formed through Bulk Motion Comptonization (BMC). We further argue that the noted lack of coherence between intensity variations of the high-soft-state low and high energy bands is a natural consequence of our model, and that a natural explanation for the observed hard and soft lag phenomenon is offered. In addition, we address some criticisms of the BMC model supporting our claims with observational results.

  16. SPATIALLY AND SPECTRALLY RESOLVED OBSERVATIONS OF A ZEBRA PATTERN IN A SOLAR DECIMETRIC RADIO BURST

    SciTech Connect

    Chen Bin; Bastian, T. S.; Gary, D. E.; Jing Ju

    2011-07-20

    We present the first interferometric observation of a zebra-pattern radio burst with simultaneous high spectral ({approx}1 MHz) and high time (20 ms) resolution. The Frequency-Agile Solar Radiotelescope Subsystem Testbed (FST) and the Owens Valley Solar Array (OVSA) were used in parallel to observe the X1.5 flare on 2006 December 14. By using OVSA to calibrate the FST, the source position of the zebra pattern can be located on the solar disk. With the help of multi-wavelength observations and a nonlinear force-free field extrapolation, the zebra source is explored in relation to the magnetic field configuration. New constraints are placed on the source size and position as a function of frequency and time. We conclude that the zebra burst is consistent with a double-plasma resonance model in which the radio emission occurs in resonance layers where the upper-hybrid frequency is harmonically related to the electron cyclotron frequency in a coronal magnetic loop.

  17. Spatially and Spectrally Resolved Observations of a Zebra Pattern in a Solar Decimetric Radio Burst

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Bastian, T. S.; Gary, D. E.; Jing, Ju

    2011-07-01

    We present the first interferometric observation of a zebra-pattern radio burst with simultaneous high spectral (≈1 MHz) and high time (20 ms) resolution. The Frequency-Agile Solar Radiotelescope Subsystem Testbed (FST) and the Owens Valley Solar Array (OVSA) were used in parallel to observe the X1.5 flare on 2006 December 14. By using OVSA to calibrate the FST, the source position of the zebra pattern can be located on the solar disk. With the help of multi-wavelength observations and a nonlinear force-free field extrapolation, the zebra source is explored in relation to the magnetic field configuration. New constraints are placed on the source size and position as a function of frequency and time. We conclude that the zebra burst is consistent with a double-plasma resonance model in which the radio emission occurs in resonance layers where the upper-hybrid frequency is harmonically related to the electron cyclotron frequency in a coronal magnetic loop.

  18. Microwave Radiometer for Spectral Observations of Mesospheric Carbon Monoxide at 115 GHz Over Kharkiv, Ukraine

    NASA Astrophysics Data System (ADS)

    Piddyachiy, Valeriy; Shulga, Valerii; Myshenko, Valeriy; Korolev, Alexey; Antyufeyev, Oleksandr; Shulga, Dmytro; Forkman, Peter

    2017-03-01

    We present the results of the development of high sensitivity microwave radiometer designed for observation of the atmospheric carbon monoxide (CO) emission lines at 115 GHz. The receiver of this radiometer has the double-sideband noise temperature of 250 K at a temperature of 10°C. To date, this is the best noise performance for uncooled Schottky diode mixer receiver systems. The designed radiometer was tested during the 2014-2015 period at observations of the carbon monoxide emission lines over Kharkiv, Ukraine (50° N, 36.3° E). These tests have shown the reliability of the receiver system, which allows us in the future to use designed radiometer for continuous monitoring of carbon monoxide. The first observations of the atmospheric carbon monoxide spectral lines over Kharkiv have confirmed seasonal changes in the CO abundance and gave us reasons to assume the spread of the influence of the polar vortex on the state of the atmosphere up to the latitude of 50° N where our measurement system is located.

  19. Observation of the spectral-invariant properties of clouds in transition zones during MAGIC, A case study

    NASA Astrophysics Data System (ADS)

    Yang, W.; Marshak, A.; McBride, P. J.; Chiu, J. Y. C.; Knyazikhin, Y.; Schmidt, S.; Flynn, C. J.; Lewis, E. R.; Eloranta, E. W.

    2015-12-01

    The time-resolved hyper spectral measurements during MAGIC provide a unique opportunity to study both clouds and aerosols in transition zones between cloudy and clear skies. This presentation presents the spectral-invariant properties of cloud transition zones observed on two cases of July, 2013 using the measurements from the Shortwave Array Spectroradiometer-Zenith (SAS-Ze) and the Solar Spectral Flux Radiometer (SSFR). Though radiance measurements from the two instruments can be different possibly due to the calibration drifting, the spectral-invariant properties observed on the two instruments show some common features. These features indicate that the overall cloud effective particle size likely decreases during the transition from cloudy to clear skies in the two cases.

  20. Temporal and spectral characteristics of seismicity observed at Popocatepetl volcano, central Mexico

    USGS Publications Warehouse

    Arciniega-Ceballos, A.; Valdes-Gonzalez, C.; Dawson, P.

    2000-01-01

    Popocatepetl volcano entered an eruptive phase from December 21, 1994 to March 30, 1995, which was characterized by ash and fumarolic emissions. During this eruptive episode, the observed seismicity consisted of volcano-tectonic (VT) events, long-period (LP) events and sustained tremor. Before the initial eruption on December 21, VT seismicity exhibited no increase in number until a swarm of VT earthquakes was observed at 01:31 hours local time. Visual observations of the eruption occurred at dawn the next morning. LP activity increased from an average of 7 events a day in October 1994 to 22 events per day in December 1994. At the onset of the eruption, LP activity peaked at 49 events per day. LP activity declined until mid-January 1995 when no events were observed. Tremor was first observed about one day after the initial eruption and averaged 10 h per episode. By late February 1995, tremor episodes became more intermittent, lasting less than 5 min, and the number of LP events returned to pre-eruption levels (7 events per day). Using a spectral ratio technique, low-frequency oceanic microseismic noise with a predominant peak around 7 s was removed from the broadband seismic signal of tremor and LP events. Stacks of corrected tremor episodes and LP events show that both tremor and LP events contain similar frequency features with major peaks around 1.4 Hz. Frequency analyses of LP events and tremor suggest a shallow extended source with similar radiation pattern characteristics. The distribution of VT events (between 2.5 and 10 km) also points to a shallow source of the tremor and LP events located in the first 2500 m beneath the crater. Under the assumption that the frequency characteristics of the signals are representative of an oscillator we used a fluid-filled-crack model to infer the length of the resonator.

  1. Millimetre spectral line mapping observations towards four massive star-forming H II regions

    NASA Astrophysics Data System (ADS)

    Li, Shanghuo; Wang, Junzhi; Zhang, Zhi-Yu; Fang, Min; Li, Juan; Zhang, Jiangshui; Fan, Junhui; Zhu, Qingfeng; Li, Fei

    2017-04-01

    We present spectral line mapping observations towards four massive star-forming regions - Cepheus A, DR21S, S76E and G34.26+0.15 - with the IRAM 30-m telescope at the 2 and 3 mm bands. In total, 396 spectral lines from 51 molecules, one helium recombination line, 10 hydrogen recombination lines and 16 unidentified lines were detected in these four sources. An emission line of nitrosyl cyanide (ONCN, 140, 14-130, 13) was detected in G34.26+0.15, as the first detection in massive star-forming regions. We found that c-C3H2 and NH2D show enhancement in shocked regions, as suggested by the evidence of SiO and/or SO emission. The column density and rotational temperature of CH3CN were estimated with the rotational diagram method for all four sources. Isotope abundance ratios of 12C/13C were derived using HC3N and its 13C isotopologue, which were around 40 in all four massive star-forming regions and slightly lower than the local interstellar value (∼65). The 14N/15N and 16O/18O abundance ratios in these sources were also derived using the double isotopic method, which were slightly lower than in the local interstellar medium. Except for Cep A, the 33S/34S ratios in the other three targets were derived, which were similar to that in the local interstellar medium. The column density ratios of N(DCN)/N(HCN) and N(DCO+)/N(HCO+) in these sources were more than two orders of magnitude higher than the elemental [D]/[H] ratio, which is 1.5 × 10-5. Our results show that the later stage sources, G34.26+0.15 in particular, present more molecular species than earlier stage sources. Evidence of shock activity is seen in all stages studied.

  2. The continuum spectral characteristics of gamma ray bursts observed by BATSE

    NASA Technical Reports Server (NTRS)

    Pendleton, Geoffrey N.; Paciesas, William S.; Briggs, Michael S.; Mallozzi, Robert S.; Koshut, Tom M.; Fishman, Gerald J.; Meegan, Charles A.; Wilson, Robert B.; Harmon, Alan B.; Kouveliotou, Chryssa

    1994-01-01

    Distributions of the continuum spectral characteristics of 260 bursts in the first Burst and Transient Source Experiment (BATSE) catalog are presented. The data are derived from flux ratios calculated from the BATSE Large Area Detector (LAD) four channel discriminator data. The data are converted from counts to photons using a direct spectral inversion technique to remove the effects of atmospheric scattering and the energy dependence of the detector angular response. Although there are intriguing clusterings of bursts in the spectral hardness ratio distributions, no evidence for the presence of distinct burst classes based on spectral hardness ratios alone is found. All subsets of bursts selected for their spectral characteristics in this analysis exhibit spatial distributions consistent with isotropy. The spectral diversity of the burst population appears to be caused largely by the highly variable nature of the burst production mechanisms themselves.

  3. The continuum spectral characteristics of gamma-ray bursts observed by BATSE

    NASA Technical Reports Server (NTRS)

    Pendleton, Geoffrey N.; Paciesas, William S.; Briggs, Michael S.; Mallozzi, Robert S.; Koshut, Tom M.; Fishman, Gerald J.; Meegan, Charles A.; Wilson, Robert B.; Harmon, Alan B.; Kouveliotou, Chryssa

    1994-01-01

    Distributions of the continuum spectral characteristics of 260 bursts in the first Burst And Transient Source Experiement (BATSE) catalog are presented. The data are derived from flux calculated from BATSE Large Area Detector (LAD) four-channel discriminator data. The data are converted from counts to protons using a direct spectral inversion technique to remove the effects of atmospheric scattering and the energy dependence of the detector angular response. Although there are intriguing clusters of bursts in the spectral hardness ratio distributions, no evidence for the presence of distinct burst classes based in spectral hardness ratios alone is found. All subsets of bursts selected for their spectral characteristics in this analysis exhibit spatial distributions consistent with isotropy. The spectral diversity of the burst population appears to be caused largely by the highly variable nature of the burst production mechanisms themselves.

  4. Herschel Observations and Updated Spectral Energy Distributions of Five Sunlike Stars with Debris Disks

    NASA Astrophysics Data System (ADS)

    Dodson-Robinson, Sarah E.; Su, Kate Y. L.; Bryden, Geoff; Harvey, Paul; Green, Joel D.

    2016-12-01

    Observations from the Herschel Space Observatory have more than doubled the number of wide debris disks orbiting Sunlike stars to include over 30 systems with R > 100 AU. Here, we present new Herschel PACS and reanalyzed Spitzer MIPS photometry of five Sunlike stars with wide debris disks, from Kuiper Belt size to R > 150 AU. The disk surrounding HD 105211 is well resolved, with an angular extent of >14″ along the major axis, and the disks of HD 33636, HD 50554, and HD 52265 are extended beyond the PACS point-spread function size (50% of energy enclosed within radius 4.″23). HD 105211 also has a 24 μm infrared excess, which was previously overlooked, because of a poorly constrained photospheric model. Archival Spitzer IRS observations indicate that the disks have small grains of minimum radius a min ˜ 3 μm, although a min is larger than the radiation-pressure blowout size in all systems. If modeled as single-temperature blackbodies, the disk temperatures would all be <60 K. Our radiative transfer models predict actual disk radii approximately twice the radius of a model blackbody disk. We find that the Herschel photometry traces dust near the source population of planetesimals. The disk luminosities are in the range 2 × 10-5 ⩽ L/L ⊙ ⩽ 2 × 10-4, consistent with collisions in icy planetesimal belts stirred by Pluto-size dwarf planets.

  5. Terrestrial kilometric radiation. III - Average spectral properties. [observations by IMP-6 and RAE-2 satellites

    NASA Technical Reports Server (NTRS)

    Kaiser, M. L.; Alexander, J. K.

    1977-01-01

    The spectral properties of terrestrial kilometric radiation (TKR) derived from observations made during radio-astronomy experiments on board the Imp 6 and Radio Astronomy Explorer 2 spacecraft are studied. As viewed from near the equatorial plane, TKR is most intense and most often observed in the 2100-2400 LT zone and is rarely seen in the 0900-1200 LT zone. The absolute flux levels in the 100- to 600-kHz TKR band increase significantly with increasing substorm activity as inferred from the auroral electrojet index (AE). In the late-evening sector the median power increases by about 3 orders of magnitude between quiet periods (AE less than 75 gammas) and disturbed periods (AE above 200 gammas). The peak flux density usually occurs near 250 kHz, although the frequency of the peak in the flux spectrum appears to vary inversely with AE from a maximum near 300 kHz during very quiet times to a minimum below 200 kHz during very disturbed times. The half-power bandwidth is typically 100% of the peak frequency. The variation of TKR flux density with apparent source altitude indicates that source strength decreases more rapidly than the inverse square of distance.

  6. IV-th Great Visible Brightness Minimum of R CrB. II. Spectral Observations

    NASA Astrophysics Data System (ADS)

    Rosenbush, A. E.

    2016-12-01

    Low and high resolution spectral observations during the main stages of a uniquely long and deep minimum in the visible brightness of R CrB during 2007-2015 are reported. As it developed, the spectrum manifested typical tendencies in the variation of line and molecular emission, with replacement of an absorption spectrum by an emission spectrum. The significant, sustained attenuation of the star's emission aided the detection of rarely observed forbidden emission lines. In particular, the [OII] λλ 3726 - 3729 lines appeared for more than 1500 days during a brightness reduction by 6 ÷9m . The velosity at which the shielding dust was removed to the circumstellar surroundings was reduced by roughly a factor of 1.5 compared to the previously known values. This was interpreted in terms of the formation of a multilayer circumstellar dust shell with an inner radius equal to 1.5 ÷ 3 times the star's radius. Several possible reasons are proposed for unique Great brightness minima of R CrB with duration and attenuation similar to the minimum of 2007-2015.

  7. Aerosol and Cloud Interaction Observed From High Spectral Resolution Lidar Data

    NASA Technical Reports Server (NTRS)

    Su, Wenying; Schuster, Gregory L.; Loeb, Norman G.; Rogers, Raymond R.; Ferrare, Richard A.; Hostetler, Chris A.; Hair, Johnathan W.; Obland, Michael D.

    2008-01-01

    Recent studies utilizing satellite retrievals have shown a strong correlation between aerosol optical depth (AOD) and cloud cover. However, these retrievals from passive sensors are subject to many limitations, including cloud adjacency (or 3D) effects, possible cloud contamination, uncertainty in the AOD retrieval. Some of these limitations do not exist in High Spectral Resolution Lidar (HSRL) observations; for instance, HSRL observations are not a ected by cloud adjacency effects, are less prone to cloud contamination, and offer accurate aerosol property measurements (backscatter coefficient, extinction coefficient, lidar ratio, backscatter Angstrom exponent,and aerosol optical depth) at a neospatial resolution (less than 100 m) in the vicinity of clouds. Hence, the HSRL provides an important dataset for studying aerosol and cloud interaction. In this study, we statistically analyze aircraft-based HSRL profiles according to their distance from the nearest cloud, assuring that all profile comparisons are subject to the same large-scale meteorological conditions. Our results indicate that AODs from HSRL are about 17% higher in the proximity of clouds (approximately 100 m) than far away from clouds (4.5 km), which is much smaller than the reported cloud 3D effect on AOD retrievals. The backscatter and extinction coefficients also systematically increase in the vicinity of clouds, which can be explained by aerosol swelling in the high relative humidity (RH) environment and/or aerosol growth through in cloud processing (albeit not conclusively). On the other hand, we do not observe a systematic trend in lidar ratio; we hypothesize that this is caused by the opposite effects of aerosol swelling and aerosol in-cloud processing on the lidar ratio. Finally, the observed backscatter Angstrom exponent (BAE) does not show a consistent trend because of the complicated relationship between BAE and RH. We demonstrate that BAE should not be used as a surrogate for Angstrom

  8. The unusual phase curve of Titan's surface observed by Huygens’ Descent Imager/Spectral Radiometer

    NASA Astrophysics Data System (ADS)

    Schröder, S. E.; Keller, H. U.

    2009-12-01

    The Descent Imager/Spectral Radiometer onboard Huygens observed Titan's surface through the atmospheric methane windows [Tomasko, M.G., Doose, L., Engel, S., Dafoe, L.E., West, R., Lemmon, M., Karkoschka, E., See, C., 2008. A model of Titan's aerosols based on measurements made inside the atmosphere. Planet. Space Sci. 56, 669-707]. Infrared spectra obtained during the last stage of the descent, for which the atmospheric contribution is negligible, show that the reflectance of the surface around the sit increases with decreasing solar phase angle. Combining these with a spectrum reconstructed from reflected lamp light [Schröder, S.E., Keller, H.U., 2008. The reflectance spectrum of Titan's surface at the Huygens landing site determined by the Descent Imager/Spectral Radiometer. Planet. Space Sci. 56, 753-769] reveals a strong increase in reflectance towards zero phase angle: the opposition surge. Both shadow hiding and coherent backscatter are required to fit the phase curve with the Hapke [2002. Bidirectional Reflectance Spectroscopy 5. The Coherent Backscatter Opposition Effect and Anisotropic Scattering. Icarus 157, 523-534] model. We find the particle phase function below 60∘ phase angle to be close to isotropic, which is highly unusual for the surfaces of planetary bodies. A terrain with similar scattering properties has been identified on Triton [Lee, P., Helfenstein, P., Veverka, J., McCarthy, D., 1992. Anomalous-scattering region on Triton. Icarus 99, 82-97], and a connection with the tholins thought to be present on both worlds seems plausible. Indeed, tholin laboratory analogs are found to scatter in similar fashion [Lüthi, 2008. Remote sensing of the surface of Titan: Photometric properties, comparison with analogues, and future microscopic observations. Ph.D. Thesis, Philosophisch-naturwissenschaftlichen Fakultät, Universität Bern]. We conclude that Titan's unusual phase curve is consistent with the presence of tholins on the surface. Our result

  9. Stratospheric Temperature Trends in the 11 Years of AIRS Spectral Radiance Observations

    NASA Astrophysics Data System (ADS)

    Pan, F.; Huang, X.; Chen, X.; Guo, H.

    2014-12-01

    The AIRS (Atmospheric Infrared Sounder) level-1b radiances have been shown to be well calibrated (~0.3K or higher) and have little secular drift (~4mK/year) since its operation started in 2002. Given the rich information contained in the spectral radiances, such impressive instrument performances make AIRS radiances a valuable data set in the study of stratospheric climate. We compile 11 years (Sep 2002- Aug 2013) of AIRS radiances at channels in the CO2 v2 band with weighting functions peaked in the stratosphere. Using a state-of-the-art fast and accurate radiance simulator based on the PCRTM (Principle Component-based Radiative Transfer Model), we also simulate synthetic AIRS radiances at these channels based on two types of inputs: one is simulations by a free-running GFDL AM3 model and the other is ECMWF ERA-interim reanalysis. AIRS lower-stratospheric channels indicate a cooling trend of no more than 0.23 K/decade while its middle-stratospheric channels show a statistically significant cooling trend as large as 0.58 K/decade. Compared with AIRS observations, GFDL AM3 simulations underestimate the cooling trends in the middle-stratospheric channels while overestimate in the lower-stratospheric channels. Further simulations with separately varying CO2 and SST suggest that the change of CO2 alone is responsible for majority of the cooling trend in the middle-stratospheric channels, but the contributions of time-varying CO2 and SST are comparable in the lower-stratospheric channels. In contrast, the synthetic radiances based on ERA-interim reanalysis show statistically significant positive trends in virtually all stratospheric channels. We also compare the zonal-mean trends estimated from observed and synthetic AIRS spectral radiances and climate data records based on multi-decade SSU (Stratospheric Sounding Unit) measurements. Though discrepancies exist in terms of magnitude and seasonality of the cooling, they all show that most cooling occurs in the tropics

  10. Interferometer for ground-based observations of emitted spectral radiance from the troposphere: evaluation and retrieval performance.

    PubMed

    Serio, Carmine; Esposito, Francesco; Masiello, Guido; Pavese, Giulia; Calvello, Maria R; Grieco, Giuseppe; Cuomo, Vincenzo; Buijs, Henry L; Roy, Claude B

    2008-07-20

    We evaluate the spectral quality, radiometric noise, and retrieval performance of a Fourier transform infrared spectrometer, which has been developed for recording spectrally resolved observations in a region of the spectrum which is important both for the science of Earth's climate and applications, such as the remote sensing of temperature and atmospheric gas species. This spectral region extends from 100 to 1600 cm(-1) and encompasses the two fundamental, rotation and vibration, absorption bands of water vapor. The instrument is a customized version of a Bomem AERI (Atmospheric Emitted Radiance Interferometer) spectrometer, whose spectral coverage has been extended in the far infrared with the use of uncooled pyroelectric detectors. Retrieval examples for water vapor and temperature profiles are shown, which also allow us to intercompare the retrieval performance of both H(2)O vibration and rotation bands.

  11. Optical Spectral Observations of a Flickering White-light Kernel in a C1 Solar Flare

    NASA Astrophysics Data System (ADS)

    Kowalski, Adam F.; Cauzzi, Gianna; Fletcher, Lyndsay

    2015-01-01

    We analyze optical spectra of a two-ribbon, long-duration C1.1 flare that occurred on 2011 August 18 within AR 11271 (SOL2011-08-18T15:15). The impulsive phase of the flare was observed with a comprehensive set of space-borne and ground-based instruments, which provide a range of unique diagnostics of the lower flaring atmosphere. Here we report the detection of enhanced continuum emission, observed in low-resolution spectra from 3600 Å to 4550 Å acquired with the Horizontal Spectrograph at the Dunn Solar Telescope. A small, <=0.''5 (1015 cm2) penumbral/umbral kernel brightens repeatedly in the optical continuum and chromospheric emission lines, similar to the temporal characteristics of the hard X-ray variation as detected by the Gamma-ray Burst Monitor on the Fermi spacecraft. Radiative-hydrodynamic flare models that employ a nonthermal electron beam energy flux high enough to produce the optical contrast in our flare spectra would predict a large Balmer jump in emission, indicative of hydrogen recombination radiation from the upper flare chromosphere. However, we find no evidence of such a Balmer jump in the bluemost spectral region of the continuum excess. Just redward of the expected Balmer jump, we find evidence of a "blue continuum bump" in the excess emission which may be indicative of the merging of the higher order Balmer lines. The large number of observational constraints provides a springboard for modeling the blue/optical emission for this particular flare with radiative-hydrodynamic codes, which are necessary to understand the opacity effects for the continuum and emission line radiation at these wavelengths.

  12. OPTICAL SPECTRAL OBSERVATIONS OF A FLICKERING WHITE-LIGHT KERNEL IN A C1 SOLAR FLARE

    SciTech Connect

    Kowalski, Adam F.; Cauzzi, Gianna; Fletcher, Lyndsay

    2015-01-10

    We analyze optical spectra of a two-ribbon, long-duration C1.1 flare that occurred on 2011 August 18 within AR 11271 (SOL2011-08-18T15:15). The impulsive phase of the flare was observed with a comprehensive set of space-borne and ground-based instruments, which provide a range of unique diagnostics of the lower flaring atmosphere. Here we report the detection of enhanced continuum emission, observed in low-resolution spectra from 3600 Å to 4550 Å acquired with the Horizontal Spectrograph at the Dunn Solar Telescope. A small, ≤0.''5 (10{sup 15} cm{sup 2}) penumbral/umbral kernel brightens repeatedly in the optical continuum and chromospheric emission lines, similar to the temporal characteristics of the hard X-ray variation as detected by the Gamma-ray Burst Monitor on the Fermi spacecraft. Radiative-hydrodynamic flare models that employ a nonthermal electron beam energy flux high enough to produce the optical contrast in our flare spectra would predict a large Balmer jump in emission, indicative of hydrogen recombination radiation from the upper flare chromosphere. However, we find no evidence of such a Balmer jump in the bluemost spectral region of the continuum excess. Just redward of the expected Balmer jump, we find evidence of a ''blue continuum bump'' in the excess emission which may be indicative of the merging of the higher order Balmer lines. The large number of observational constraints provides a springboard for modeling the blue/optical emission for this particular flare with radiative-hydrodynamic codes, which are necessary to understand the opacity effects for the continuum and emission line radiation at these wavelengths.

  13. Validation of CALIPSO Lidar Observations Using Data From the NASA Langley Airborne High Spectral Resolution Lidar

    NASA Technical Reports Server (NTRS)

    Hostetler, Chris; Hair, Johnathan; Liu, Zhaoyan; Ferrare, Rich; Harper, David; Cook, Anthony; Vaughan, Mark; Trepte, Chip; Winker, David

    2006-01-01

    This poster focuses on preliminary comparisons of data from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) instrument on the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) spacecraft with data acquired by the NASA Langley Airborne High Spectral Resolution Lidar (HSRL). A series of 20 aircraft validation flights was conducted from 14 June through 27 September 2006, under both day and night lighting conditions and a variety of aerosol and cloud conditions. This poster presents comparisons of CALIOP measurements of attenuated backscatter at 532 and 1064 nm and depolarization at 532 nm with near coincident measurements from the Airborne HSRL as a preliminary assessment of CALIOP calibration accuracy. Note that the CALIOP data presented here are the pre-release version. These data have known artifacts in calibration which have been corrected in the December 8 CALIPSO data release which was not available at the time the comparisons were conducted for this poster. The HSRL data are also preliminary. No artifacts are known to exist; however, refinements in calibration and algorithms are likely to be implemented before validation comparisons are made final.

  14. Energy calibration issues in nuclear resonant vibrational spectroscopy: observing small spectral shifts and making fast calibrations.

    PubMed

    Wang, Hongxin; Yoda, Yoshitaka; Dong, Weibing; Huang, Songping D

    2013-09-01

    The conventional energy calibration for nuclear resonant vibrational spectroscopy (NRVS) is usually long. Meanwhile, taking NRVS samples out of the cryostat increases the chance of sample damage, which makes it impossible to carry out an energy calibration during one NRVS measurement. In this study, by manipulating the 14.4 keV beam through the main measurement chamber without moving out the NRVS sample, two alternative calibration procedures have been proposed and established: (i) an in situ calibration procedure, which measures the main NRVS sample at stage A and the calibration sample at stage B simultaneously, and calibrates the energies for observing extremely small spectral shifts; for example, the 0.3 meV energy shift between the 100%-(57)Fe-enriched [Fe4S4Cl4](=) and 10%-(57)Fe and 90%-(54)Fe labeled [Fe4S4Cl4](=) has been well resolved; (ii) a quick-switching energy calibration procedure, which reduces each calibration time from 3-4 h to about 30 min. Although the quick-switching calibration is not in situ, it is suitable for normal NRVS measurements.

  15. Development of a high-spectral-resolution lidar for continuous observation of aerosols in South America

    NASA Astrophysics Data System (ADS)

    Jin, Yoshitaka; Sugimoto, Nobuo; Nishizawa, Tomoaki; Ristori, Pablo; Papandrea, Sebastian; Otero, Lidia; Quel, Eduardo; Mizuno, Akira

    2016-05-01

    Continuous monitoring of aerosol profiles using lidar is helpful for a quasi-real-time indication of aerosol concentration. For instance, volcanic ash concentration and its height distribution are essential information for plane flights. Depolarization ratio and multi-wavelength measurements are useful for characterizing aerosol types such as volcanic ash, smoke, dust, sea-salt, and air pollution aerosols. High spectral resolution lidar (HSRL) and Raman scattering lidar can contribute to such aerosol characterization significantly since extinction coefficients can be measured independently from backscattering coefficients. In particular, HSRL can measure aerosol extinction during daytime and nighttime with a high sensitivity. We developed an HSRL with the iodine filter method for continuous observation of aerosols at 532nm in the northern region of Argentina in the framework of the South American Environmental Atmospheric Risk Management Network (SAVER.Net)/SATREPS project. The laser wavelength of the HSRL was controlled by a feedback system to tune the laser wavelength to the center of an iodine absorption line. The stability of the laser wavelength with the system satisfied the requirement showing very small systematic errors in the retrieval of extinction and backscatter.

  16. Experimental observation of infrared spectral enlargement in As2S3 suspended core microstructured fiber

    NASA Astrophysics Data System (ADS)

    El-Amraoui, M.; Fatome, J.; Jules, J. C.; Kibler, B.; Gadret, G.; Skripatchev, I.; Messadeq, Y.; Renversez, G.; Szpulak, M.; Troles, J.; Brilland, L.; Smektala, F.

    2010-04-01

    The development of chalcogenide glasses fibers for application in the infrared wavelength region between 1 and 10 μm is a big opportunity. More particularly, the possibility to generate efficient non linear effects above 2 μm is a real challenge. We present in this work the elaboration and optical characterizations of suspended core microstructured optical fibers elaborated from the As2S3 chalcogenide glass. As an alternative to the stack and draw process a mechanical machining has been used to the elaboration of the preforms. The drawing of these preforms into fibers allows reaching a suspended core geometry, in which a 2.5 μm diameter core is linked to the fiber clad region by three supporting struts. The zero dispersion wavelength is thus shifted towards 2 μm. At 1.55 μm our fibers exhibit a dispersion around -250 ps/nm/km. Their background level of losses is below 0,5 dB/m. By pumping them at 1.55 μm with a ps source, we observe self phase modulation as well as Raman generation. Finally a strong spectral enlargement is obtained with an average output power of - 5 dbm.

  17. Spectral study of GX 339-4 with TCAF using Swift and NuSTAR observation

    NASA Astrophysics Data System (ADS)

    Mondal, Santanu; Chakrabarti, Sandip K.; Debnath, Dipak

    2016-09-01

    We fit spectra of galactic transient source GX 339-4 during its 2013 outburst using Two Component Advective Flow (TCAF) solution. For the first time, we are fitting combined NuSTAR and Swift observation with TCAF. We use TCAF to fit 0.8-9.0 keV Swift and 4-79 keV NuSTAR spectra along with the LAOR model. To fit the data we use disk accretion rate, halo accretion rate, size of the Compton cloud and the density jump of advective flows at this cloud boundary as model parameters. From TCAF fitted flow parameters, and energy spectral index we conclude that the source was in the hard state throughout this particular outburst. The present analysis also gives some idea about the broadening of Fe K_{α } with the accretion rate. Since TCAF does not include Fe line yet, we make use of the `LAOR model' as a phenomenological model and find an estimate of the Kerr parameter to be {˜} 0.99 for this candidate.

  18. Spectral analysis of temperature and Brunt-Vaisala frequency fluctuations observed by radiosondes

    NASA Technical Reports Server (NTRS)

    Tsuda, T.; Vanzandt, T. E.; Kato, S.; Fukao, S.; Sato, T.

    1989-01-01

    Recent studies have revealed that vertical wave number spectra of wind velocity and temperture fluctuations in the troposphere and the lower stratosphere are fairly well explained by a saturated gravity wave spectrum. But N(2) (N:Brunt-Vaisala (BV) frequency) spectra seem to be better for testing the scaling of the vertical wave number spectra in layers with different stratifications, beause its energy density is proportional only to the background value of N(2), while that for temperature depends on both the BV frequency and the potential temperature. From temperature profiles observed in June to August 1987 over the MU Observatory, Japan, by using a radiosonde with 30 m height resolution, N(2) spectra are determined in the 2 to 8.5 km (troposphere) and 18.5 to 25 km (lower stratosphere) ranges. Although individual spectra show fairly large day-by-day variability, the slope of the median of 34 spectra agrees reasonably with the theoretical value of -1 in the wave number range of 6 x 10(-4) similar to 3 x 10(-3) (c/m). The ratio of the spectral energy between these two height regions is about equal to the ratio of N(2), consistent with the prediction of saturated gravity wave theory.

  19. SHIELD: EVLA HI Spectral Line Observations of Low-mass Dwarfs

    NASA Astrophysics Data System (ADS)

    Miazzo, Masao; Ruvolo, Elizabeth; Cannon, John M.; McNichols, Andrew; Teich, Yaron; Adams, Elizabeth A.; Giovanelli, Riccardo; Haynes, Martha P.; McQuinn, Kristen B.; Salzer, John Joseph; Skillman, Evan D.; Dolphin, Andrew E.; Elson, Edward C.; Haurberg, Nathalie C.; Huang, Shan; Janowiecki, Steven; Jozsa, Gyula; Leisman, Luke; Ott, Juergen; Papastergis, Emmanouil; Rhode, Katherine L.; Saintonge, Amelie; Van Sistine, Angela; Warren, Steven R.

    2017-01-01

    The “Survey of HI in Extremely Low-mass Dwarfs” (SHIELD) is a multiwavelength study of local volume low-mass galaxies. Using the now-complete Arecibo Legacy Fast ALFA (ALFALFA) source catalog, 82 systems are identified that meet distance, line width, and HI flux criteria for being gas-rich, low-mass galaxies. These systems harbor neutral gas reservoirs smaller than 3x10^7 M_sun, thus populating the faint end of the HI mass function with statistical confidence for the first time. Here we present new Karl G. Jansky Very Large Array D-configuration HI spectral line observations of 32 previously unobserved galaxies. These low angular resolution (~40" beam) images localize the HI gas; with a few exceptions, the HI gas is co-spatial with the optical centers of the galaxies. These images provide the first glimpse of the neutral interstellar medium in these systems.Support for this work was provided by NSF grant 1211683 to JMC at Macalester College.

  20. Detection of global tropospheric clouds and polar stratospheric clouds over Antarctica using thermal infrared spectral data observed by TANSO-FTS/GOSAT

    NASA Astrophysics Data System (ADS)

    Someya, Yu; Imasu, Ryoichi; Ota, Yoshifumi; Saitoh, Naoko

    2014-05-01

    Global tropospheric cloud distribution was derived from thermal infrared band data observed by Thermal And Near infrared Sensor for carbon Observation - Fourier Transform Spectrometer (TANSO-FTS) onboard Greenhouse gases Observation SATellite (GOSAT). It is expected that this band has ability to detect optically thin clouds compared with Cloud and Aerosol Imager (CAI) which is the other sensor on GOSAT. In addition, polar stratospheric clouds (PSCs) which can be harder to detect than the tropospheric clouds because of high reflectivity or low temperature of the surface and their low optical thickness were also detected. We have modified CO2 slicing method which was developed as one of the cirrus cloud detection techniques using thermal infrared band data to detect thin clouds more stably. The pseudo spectral channels were defined as sets of several actual spectral channels between 700cm-1 and 750cm-1 which have weighting function peak height in a same height range for each 0.5km. These pseudo channels were optimized with simulation studies using a multi-scattering radiative transfer code, Polarized radiance System for Transfer of Atmospheric Radiation (Pstar) 3 for several temperature profile patterns prepared based on latitudes and temperature at 500hPa. GOSAT data was analyzed with the combination of these pseudo channels determined for each of observation points from these simulations and the results were compared with the observational results from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) / Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO). The comparisons about global cloud are based on the coincident observations in 2010. Monthly occurrences of Antarctic PSCs were compared for each grid area from June to September in 2010. As a result, the correlation coefficients in each month are 0.76, 0.71, 0.75, and 0.61 relatively. Though that is low value in September, it can be explained by decrease of occurrences.

  1. Modeling spatially and spectrally resolved observations to diagnose the formation of elliptical galaxies

    NASA Astrophysics Data System (ADS)

    Snyder, Gregory Frantz

    2013-03-01

    morphologies across cosmic time. In the final chapter, I outline an approach to build a "mock observatory" from cosmological hydrodynamical simulations, with which observations of all types, including at high spatial and spectral resolutions, can be brought to bear in directly constraining the physics of galaxy formation and evolution.

  2. Linear spectral modeling of ground-based observations of Europa (ESO/VLT/SINFONI)

    NASA Astrophysics Data System (ADS)

    Ligier, Nicolas; Poulet, François; Carter, John; Langevin, Yves; Dumas, Christophe; Gourgeot, Florian

    2015-11-01

    Jupiter’s moon Europa may harbor a global salty subsurface liquid water ocean (Kivelson et al. 2000), and its surface should contain important clues about its composition. However, debate still persists about the nature of the surface chemistry and the relative roles of exogenous versus endogenous processing. Recently, Roth et al. (2014) reported the presence of activity by the detection of plumes reinforcing Europa as a major target of interests of upcoming space missions such as the ESA L-class mission JUICE.To continue the investigation of the composition of the surface of Europa, a global mapping campaign of the satellite was performed between October 2011 and January 2012 with the integral field spectrograph SINFONI on the Very Large Telescope (VLT) in Chile. The high spectral binning of this instrument (0.5 nm) is suitable to detect any narrow signature in the wavelength range 1.45-2.45 μm. The spatially resolved spectra we obtained over five epochs nearly cover the entire surface of Europa with a pixel scale of 12.5 by 25 m.a.s (~35 by 70 km on Europa’s surface).We perform linear spectral modeling using 4 types of species : water-ice (both crystalline and amorphous), sulfuric acid hydrate, sulfate salts and Cl-rich salts. At first order, spectra on the leading side are, as expected, dominated by water-ice distorted and asymmetric absorption features, whereas sulfuric acid hydrate thought to originate from Iogenic sulfur ion bombardment is clearly predominant on the trailing side (Carlson et al. 2005).Salts are also required to fit any SINFONI spectrum with the following notable result: when Na/K-bearing chlorines instead of Mg-sulfates are used, the fits are improved whatever the region. The feature centered at ~2.07 µm previously associated to the magnesium sulfates (Brown et al. 2013) is also observed in the SINFONI spectra and can be reproduced by some chlorine salts. Global abundance maps will be presented, regional variations of abundances will be

  3. Implication of the Observable Spectral Cutoff Energy Evolution in XTE J1550-564

    NASA Technical Reports Server (NTRS)

    Titarchuk, Lev; Shaposhnikov, Nikolai

    2010-01-01

    The physical mechanisms responsible for production of the non-thermal emission in accreting black holes should be imprinted in the observational appearances of the power law tails in the X-ray spectra from these objects. Variety of spectral states observed from galactic black hole binaries by it Rossi X-ray Timing Explorer (RXTE) allow examination of the photon upscattering under different accretion regimes. We revisit of RXTE data collected from the black hole X-ray binary XTE J1550-564 during two periods of X-ray activity in 1998 and 2000 focusing on the behavior of the high energy cutoff of the power law part of the spectrum. For the 1998 outburst the Iran- sition from the low-hard state to the intermediate state was accompanied by a gradual decrease in the cutoff energy which then showed a sharp reversal to a clear increasing trend during the further evolution towards the very high and high-soft states. However, the 2000 outburst showed only the decreasing part of this pattern. Notably, the photon indexes corresponding to the cutoff increase for the 1998 event are much higher than the index values reached during the 2000 rise transition. We attribute this difference in the cutoff' energy behav- for to the different partial contributions of the thermal and non-thermal (bulk motion) Comptonization in photon upscattering. Namely, during the 1998 event the higher accretion rate presumably provided more cooling to the Comptonizing media and thus reducing the effectiveness of the thermal upscattering process. Under these conditions the bulk motion takes a leading role in boosting the input soft photons. Monte Carlo simulations of the The physical mechanisms responsible for production of the non-thermal emission in accreting black holes should be imprinted in the observational apperances of the power law tails in the X-ray spectra from these objects. Variety of spectral states observed from galactic black hole binaries by it Rossi X-ray Timing Explorer (RXTE) allow

  4. Spectral observations of Ellerman bombs and fitting with a two-cloud model

    SciTech Connect

    Hong, Jie; Ding, M. D.; Li, Ying; Fang, Cheng; Cao, Wenda

    2014-09-01

    We study the Hα and Ca II 8542 Å line spectra of four typical Ellerman bombs (EBs) in the active region NOAA 11765 on 2013 June 6, observed with the Fast Imaging Solar Spectrograph installed at the 1.6 m New Solar Telescope at Big Bear Solar Observatory. Considering that EBs may occur in a restricted region in the lower atmosphere, and that their spectral lines show particular features, we propose a two-cloud model to fit the observed line profiles. The lower cloud can account for the wing emission, and the upper cloud is mainly responsible for the absorption at line center. After choosing carefully the free parameters, we get satisfactory fitting results. As expected, the lower cloud shows an increase of the source function, corresponding to a temperature increase of 400-1000 K in EBs relative to the quiet Sun. This is consistent with previous results deduced from semi-empirical models and confirms that local heating occurs in the lower atmosphere during the appearance of EBs. We also find that the optical depths can increase to some extent in both the lower and upper clouds, which may result from either direct heating in the lower cloud, or illumination by an enhanced radiation on the upper cloud. The velocities derived from this method, however, are different from those obtained using the traditional bisector method, implying that one should be cautious when interpreting this parameter. The two-cloud model can thus be used as an efficient method to deduce the basic physical parameters of EBs.

  5. DUST PROCESSING IN SUPERNOVA REMNANTS: SPITZER MIPS SPECTRAL ENERGY DISTRIBUTION AND INFRARED SPECTROGRAPH OBSERVATIONS

    SciTech Connect

    Andersen, M.; Rho, J.; Reach, W. T.; Bernard, J. P.

    2011-11-20

    We present Spitzer Multiband Imaging Photometer (MIPS) spectral energy distribution (SED) and Infrared Spectrograph (IRS) observations of 14 Galactic supernova remnants (SNRs) previously identified in the GLIMPSE survey. We find evidence for SNR/molecular cloud interaction through detection of [O I] emission, ionic lines, and emission from molecular hydrogen. Through blackbody fitting of the MIPS SEDs we find the large grains to be warm, 29-66 K. The dust emission is modeled using the DUSTEM code and a three-component dust model composed of populations of big grains (BGs), very small grains (VSGs), and polycyclic aromatic hydrocarbons. We find the dust to be moderately heated, typically by 30-100 times the interstellar radiation field. The source of the radiation is likely hydrogen recombination, where the excitation of hydrogen occurred in the shock front. The ratio of VSGs to BGs is found for most of the molecular interacting SNRs to be higher than that found in the plane of the Milky Way, typically by a factor of 2-3. We suggest that dust shattering is responsible for the relative overabundance of small grains, in agreement with the prediction from dust destruction models. However, two of the SNRs are best fitted with a very low abundance of carbon grains to silicate grains and with a very high radiation field. A likely reason for the low abundance of small carbon grains is sputtering. We find evidence for silicate emission at 20 {mu}m in their SEDs, indicating that they are young SNRs based on the strong radiation field necessary to reproduce the observed SEDs.

  6. Quantifying Aerosol Direct Effects from Broadband Irradiance and Spectral Aerosol Optical Depth Observations

    SciTech Connect

    Creekmore, Torreon N.; Joseph, Everette; Long, Charles N.; Li, Siwei

    2014-05-16

    We outline a methodology using broadband and spectral irradiances to quantify aerosol direct effects on the surface diffuse shortwave (SW) irradiance. Best Estimate Flux data span a 13 year timeframe at the Department of Energy Atmospheric Radiation Measurement Program’s Southern Great Plains (SGP) site. Screened clear-sky irradiances and aerosol optical depth (AOD), for solar zenith angles ≤ 65°, are used to estimate clear-sky diffuse irradiances. We validate against detected clear-sky observations from SGP’s Basic Radiation System (BRS). BRS diffuse irradiances were in accordance with estimates, producing a root-mean-square error and mean bias errors of 4.0 W/m2 and -1.4 W/m2, respectively. Absolute differences show 99% of estimates within ±10 W/m2 (10%) of the mean BRS observations. Clear-sky diffuse estimates are used to derive quantitative estimates of aerosol radiative effects, represented as the aerosol diffuse irradiance (ADI). ADI is the contribution of diffuse SW to global SW, attributable to scattering of atmospheric transmission by natural plus anthropogenic aerosols. Estimated slope for the ADI as a function of AOD indicates an increase of ~22 W/m2 in diffuse SW for every 0.1 increase in AOD. Such significant increases in the diffuse fraction could possibly increase photosynthesis. Annual mean ADI is 28.2 W/m2, and heavy aerosol loading at SGP provides up to a maximum increase of 120 W/m2 in diffuse SW over background conditions. With regard to seasonal variation, the mean diffuse forcings are 17.2, 33.3, 39.0, and 23.6 W/m2 for winter, spring, summer, and fall, respectively.

  7. Martian Weathering Environments of the Amazonian Indicated by Correlated Morphologic and Spectral Observation in Acidalia Planitia

    NASA Astrophysics Data System (ADS)

    Kraft, M. D.; Rogers, D.; Fergason, R. L.; Michalski, J. R.; Sharp, T. G.

    2009-12-01

    While much attention has been given to chemical alteration and the state of water on early Mars, it remains important to understand aqueous processes throughout Martian history, including the recent geologic past. It has been suggested that the Amazonian was marked primarily by anhydrous, oxidative weathering because Amazonian surfaces, such as the northern plains, lack hydration features in near-infrared spectra [1]. But high-silica materials (Surface Type 2, ST2) discovered by the Thermal Emission Spectrometer [2] that occur in the northern plains attest to aqueous alteration of silicate minerals. The questions are when did this occur and by what process? ST2 correlates spatially with outflow sediments and high-silica materials may have formed in large amounts of water related to outflow flooding events of the late Hesperian [3,4]. ST2 also may correspond to global ice-rich mantles, indicating formation in icy environments related to geologically recent climate fluctuations [3]. Can these very different mechanisms and environments be discerned? In a global study of TES spectra, Rogers et al. (2007) [5] found significant spectral differences between ST2 surfaces in northern and southern Acidalia Planitia that occur near 40-50° N. Several geomorphic transitions occur across latitudes, and many of these are directly or potentially related to Amazonian periglacial activity and occur in the 40-50° N range. This potential link between composition and periglacial morphology needs further exploration. We examined this relationship from 40-50° N in Acidalia Planitia, using Thermal Emission Imaging System (THEMIS) multispectral data to measure the local spectral properties of the surface. We identified a boundary between two surface spectral types that match closely the spectra of north and south Acidalia derived by Rogers et al. [2007]. This boundary is diffuse, occurring between 47-48° N in our study region in western Acidalia, and correlates with observed

  8. LAMOST OBSERVATIONS IN THE KEPLER FIELD: SPECTRAL CLASSIFICATION WITH THE MKCLASS CODE

    SciTech Connect

    Gray, R. O.; Corbally, C. J.; Cat, P. De; Fu, J. N.; Ren, A. B.; Shi, J. R.; Luo, A. L.; Zhang, H. T.; Wu, Y.; Cao, Z.; Li, G.; Zhang, Y.; Hou, Y.; Wang, Y.

    2016-01-15

    The LAMOST-Kepler project was designed to obtain high-quality, low-resolution spectra of many of the stars in the Kepler field with the Large Sky Area Multi Object Fiber Spectroscopic Telescope (LAMOST) spectroscopic telescope. To date 101,086 spectra of 80,447 objects over the entire Kepler field have been acquired. Physical parameters, radial velocities, and rotational velocities of these stars will be reported in other papers. In this paper we present MK spectral classifications for these spectra determined with the automatic classification code MKCLASS. We discuss the quality and reliability of the spectral types and present histograms showing the frequency of the spectral types in the main table organized according to luminosity class. Finally, as examples of the use of this spectral database, we compute the proportion of A-type stars that are Am stars, and identify 32 new barium dwarf candidates.

  9. Observation-Based Dissipation and Input Terms for Spectral Wave Models, with End-User Testing

    DTIC Science & Technology

    2013-09-30

    Spectral Wave Models, with End-User Testing Alexander V. Babanin Swinburne University of Technology PO Box 218 Hawthorn, Victoria 3140 Australia...the course of the ONR Lake George (Australia) project, estimates of the spectral distribution of the wave- breaking dissipation were obtained, and...testing and hindcasting, a set of field sites and datasets were chosen which include Lake Michigan (deep water, no swell, Rogers et al., 2012), Lake

  10. Large-scale numerical simulations of star formation put to the test. Comparing synthetic images and actual observations for statistical samples of protostars

    NASA Astrophysics Data System (ADS)

    Frimann, S.; Jørgensen, J. K.; Haugbølle, T.

    2016-02-01

    Context. Both observations and simulations of embedded protostars have progressed rapidly in recent years. Bringing them together is an important step in advancing our knowledge about the earliest phases of star formation. Aims: To compare synthetic continuum images and spectral energy distributions (SEDs), calculated from large-scale numerical simulations, to observational studies, thereby aiding in both the interpretation of the observations and in testing the fidelity of the simulations. Methods: The adaptive mesh refinement code, RAMSES, is used to simulate the evolution of a 5 pc × 5 pc × 5 pc molecular cloud. The simulation has a maximum resolution of 8 AU, resolving simultaneously the molecular cloud on parsec scales and individual protostellar systems on AU scales. The simulation is post-processed with the radiative transfer code RADMC-3D, which is used to create synthetic continuum images and SEDs of the protostellar systems. In this way, more than 13 000 unique radiative transfer models, of a variety of different protostellar systems, are produced. Results: Over the course of 0.76 Myr the simulation forms more than 500 protostars, primarily within two sub-clusters. The synthetic SEDs are used to calculate evolutionary tracers Tbol and Lsmm/Lbol. It is shown that, while the observed distributions of the tracers are well matched by the simulation, they generally do a poor job of tracking the protostellar ages. Disks form early in the simulation, with 40% of the Class 0 protostars being encircled by one. The flux emission from the simulated disks is found to be, on average, a factor ~6 too low relative to real observations; an issue that can be traced back to numerical effects on the smallest scales in the simulation. The simulated distribution of protostellar luminosities spans more than three order of magnitudes, similar to the observed distribution. Cores and protostars are found to be closely associated with one another, with the distance distribution

  11. The spectral archive of cosmic X-ray sources observed by the Einstein Observatory Focal Plane Crystal Spectrometer

    NASA Technical Reports Server (NTRS)

    Lum, Kenneth S. K.; Canizares, Claude R.; Clark, George W.; Coyne, Joan M.; Markert, Thomas H.; Saez, Pablo J.; Schattenburg, Mark L.; Winkler, P. F.

    1992-01-01

    The Einstein Observatory Focal Plane Crystal Spectrometer (FPCS) used the technique of Bragg spectroscopy to study cosmic X-ray sources in the 0.2-3 keV energy range. The high spectral resolving power (E/Delta-E is approximately equal to 100-1000) of this instrument allowed it to resolve closely spaced lines and study the structure of individual features in the spectra of 41 cosmic X-ray sources. An archival summary of the results is presented as a concise record the FPCS observations and a source of information for future analysis by the general astrophysics community. For each observation, the instrument configuration, background rate, X-ray flux or upper limit within the energy band observed, and spectral histograms are given. Examples of the contributions the FPCS observations have made to the understanding of the objects observed are discussed.

  12. Assessment of the Spectral Stability of Libya 4, Libya 1, and Mauritania 2 Sites Using Earth Observing One Hyperion

    NASA Technical Reports Server (NTRS)

    Choi, Taeyoung; Xiong, Xiaoxiong; Angal, Amit; Chander, Gyanesh; Qu, John J.

    2014-01-01

    The objective of this paper is to formulate a methodology to assess the spectral stability of the Libya 4, Libya 1, and Mauritania 2 pseudo-invariant calibration sites (PICS) using Earth Observing One (EO-1) Hyperion sensor. All the available Hyperion collections, downloaded from the Earth Explorer website, were utilized for the three PICS. In each site, a reference spectrum is selected at a specific day in the vicinity of the region of interest (ROI) defined by Committee on Earth Observation Satellites (CEOS). A series of ROIs are predefined in the along-track direction with 196 spectral top-of-atmosphere reflectance values in each ROI. Based on the reference ROI spectrum, the spectral stability of these ROIs is evaluated by average deviations (ADs) and spectral angle mapper (SAM) methods in the specific ranges of time and geo-spatial locations. Time and ROI location-dependent SAM and AD results are very stable within +/- 2 deg and +/-1.7% of 1sigma standard deviations. Consequently, the Libya 4, Mauritania 2, and Libya 1 CEOS selected PICS are spectrally stable targets within the time and spatial swath ranges of the Hyperion collections.

  13. BATSE Observations of the Piccinotti Sample of AGN II: Variability and Spectral Analysis

    NASA Technical Reports Server (NTRS)

    Paciesas, William S.

    2001-01-01

    The Piccinotti sample is the hard x-ray-selected sample of active galactic nuclei (AGNs) best studied at energies below approximately 10 keV. It represents the only unbiased and complete high-energy survey of the sky down to a limiting flux of 3.1 x 10(exp -11) per square erg per second. As such, it has been used to study AGN properties such as X-ray spectral characteristics, log N-log S relation, and luminosity function. The BATSE data provide, for the first time, a systematic coverage of the whole sample at high energies. BATSE data from nearly four years of observations (1993 November - 1997 September) were analyzed using standard BATSE occultation analysis software to extract a signal from sources in the Piccinotti sample. Although the BATSE sensitivity for individual source measurements is relatively poor on short time scales, the near all-sky coverage and long CGRO lifetime allows us to improve our sensitivity considerably by sumrrng data over many years. This significantly reduces our statistical errors at the expense of loss of temporal information. However, the systematic errors associated with the summation of data over such a long period are not negligible, and the study of systematic effects was a major part of our effort. We evaluated two types of systematic error: those affecting the overall normalization (which are important for comparison with other instruments) and those affecting the size of the fluctuations (which are relevant for estimating the confidence level of a detection). The former was studied by comparison of BATSE data with other instruments, primarily CGRO/OSSE. The results indicate that our absolute flux values maybe overestimated by as much as 35% for some sources. However, since this does not affect our estimation of the detection confidence, we made no corrections to our flux estimates.

  14. IMPLICATION OF THE OBSERVED SPECTRAL CUTOFF ENERGY EVOLUTION IN XTE J1550-564

    SciTech Connect

    Titarchuk, Lev; Shaposhnikov, Nikolai E-mail: lev.titarchuk@nrl.navy.mi

    2010-12-01

    The physical mechanisms responsible for the production of non-thermal emission in accreting black holes (BHs) should be imprinted in the observational appearances of the power-law tails in the X-ray spectra from these objects. Phenomenology of different spectral states exhibited by galactic BH binaries allows us to establish the physics of the photon upscattering under different accretion regimes. We revisit the data collected by the Rossi X-ray Timing Explorer from the BH X-ray binary XTE J1550-564 during two periods of X-ray activity in 1998 and 2000 focusing on the behavior of the high-energy cutoff of the power-law part of the spectrum. For the 1998 outburst, the transition from the low-hard state to the intermediate state was accompanied by a gradual decrease in the cutoff energy. This was followed by an extended minimum which then showed an abrupt reversal to a clear increasing trend as the source evolved to the very high and high-soft states. The 2000 outburst showed only the decreasing and extended minimum portions of this pattern. We attribute this difference in the cutoff energy behavior to the different partial contributions of the thermal and non-thermal (bulk motion) Comptonization. Namely, during the 1998 event the higher accretion rate presumably provided more cooling to the Comptonizing media and thus reducing the effectiveness of the thermal upscattering process. Under these conditions, the bulk motion takes a leading role in boosting the input soft photons. Recent Monte Carlo simulations by Laurent and Titarchuk strongly support this scenario.

  15. Deriving clear-sky longwave spectral flux from spaceborne hyperspectral radiance measurements: a case study with AIRS observations

    NASA Astrophysics Data System (ADS)

    Chen, Xiuhong; Huang, Xianglei

    2016-12-01

    Previous studies have shown that longwave (LW) spectral fluxes have unique merit in climate studies. Using Atmospheric Infrared Sounder (AIRS) radiances as a case study, this study presents an algorithm to derive the entire LW clear-sky spectral fluxes from spaceborne hyperspectral observations. No other auxiliary observations are needed in the algorithm. A clear-sky scene is identified using a three-step detection method. The identified clear-sky scenes are then categorized into different sub-scene types using information about precipitable water, lapse rate and surface temperature inferred from the AIRS radiances at six selected channels. A previously established algorithm is then used to invert AIRS radiances to spectral fluxes over the entire LW spectrum at 10 cm-1 spectral interval. Accuracy of the algorithms is evaluated against collocated Clouds and the Earth's Radiant Energy System (CERES) observations. For nadir-view observations, the mean difference between outgoing longwave radiation (OLR) derived by this algorithm and the collocated CERES OLR is 1.52 Wm-2 with a standard deviation of 2.46 Wm-2. When the algorithm is extended for viewing zenith angle up to 45°, the performance is comparable to that for nadir-view results.

  16. Temporal Spectral Analysis of Be stars observed with CoRoT satellite

    NASA Astrophysics Data System (ADS)

    Emilio, Marcelo; Janot Pacheco, Eduardo; Andrade, Laerte

    Classical Be stars are rapid rotators of spectral type late O to early A and luminosity class V-III, which exhibit Balmer emission lines and often a near infrared excess originating in an equatorially concentrated circumstellar envelope, both produced by sporadic mass ejection episodes. The causes of the abnormal mass loss (the so-called Be phenomenon) are as yet unknown. In spite of their high V sin i, rapid rotation alone cannot explain the ejection episodes as most Be stars do not rotate at their critical rotation rates. High-resolution, high signal-to-noise spectroscopic observations have been analyzed to demonstrate short-term variations are rather common among early-type Be. The observed line profile variability (LPV) is characterized by moving bumps traveling from blue to red across the line profile on timescales ranging from minutes to a few days. The phenomenon has also been observed in O stars and delta Sct variables, among others. Non-radial pulsations (NRP) have been proposed as an explanation of the LPV observed in hot stars. NRP produce LPV thanks to the combination of the Doppler displacement of stellar surface elements with their associated temperature variations due to the compression/expansion caused by the passage of waves through the photosphere. NRP could be the additional mechanism required for a rapidly rotating B star to become a Be star, that is to trigger the Be phenomenon by means of mass ejection. Indeed in mu Cen a correlation exists between mass ejection episodes and the beating pattern of the multiperiodicity. The finding of new cases of Be stars for which beating periods of multiperiodic NRPs coincide with matter ejections would help us to confirm this model. The periodic variability of the star has been reproduced in detail by NRP modeling. Short-periodic LPV of other Be stars have also been modeled using NRP. Observations with the MOST satellite showed that multiperiodicity due to NRP is a rather common phenomenon among Be stars

  17. Spectral unfiltering of ERBE WFOV nonscanner shortwave observations and revisiting its radiation dataset from 1985 to 1998

    NASA Astrophysics Data System (ADS)

    Shrestha, A. K.; Kato, S.; Wong, T.; Stackhouse, P. W.; Rose, F.; Miller, W. F.; Bush, K.; Rutan, D. A.; Minnis, P.; Doelling, D.

    2017-02-01

    Wide-field-of-view (WFOV) nonscanner instruments were onboard NASA's Earth Radiation Budget Satellite (ERBS) and the NOAA-9 and NOAA-10 satellites, and provided broadband shortwave (SW) and longwave (LW) irradiances from 1984 to 1999. However, Lee et al. (2002) noted degradation in the WFOV SW dome transmissivity. To account for this degradation, these SW instruments were calibrated with the spectrally flat gray assumption. More recently, Loeb et al. (2012) showed higher degradation in the transmissivity of shorter wavelengths suggesting a need for both temporal and spectral dependent corrections for better calibration. Such an approach may also eliminate an additional adjustment that was applied to irradiances in the existing products to remove the observed trend of day-minus-night longwave irradiances (Wong et al. 2006). We plan to reprocess the ERBE WFOV nonscanner record by characterizing the spectral degradation of the SW dome transmissivity over time. Solar data observed by the WFOV SW nonscanner during calibration days are used to estimate a time and spectral dependent spectral response function (SRF). Coefficients derived from this SRF are then used to improve the irradiance estimate. In addition, since the spectrum of reflected irradiance depends on scene type, ISCCP-derived cloud properties and surface type are used. Preliminary results indicate that taking account of spectral degradation reduces the observed day-minus-night longwave irradiance trends in the tropics (20ON and 20OS) by ˜34%, while almost all of the trend is removed in the region between 60ON and 60OS. This presentation explains the reprocessing approach and compares the existing and reprocessed ERBE dataset. Once ERBS measurements are calibrated against CERES instruments, this work allows for the generation of a long-term radiation datasets consistent with those provided by CERES.

  18. LATE-TIME SPECTRAL OBSERVATIONS OF THE STRONGLY INTERACTING TYPE Ia SUPERNOVA PTF11kx

    SciTech Connect

    Silverman, Jeffrey M.; Nugent, Peter E.; Filippenko, Alexei V.; Cenko, S. Bradley; Gal-Yam, Avishay; Sullivan, Mark; Howell, D. Andrew; Pan, Yen-Chen; Hook, Isobel M.

    2013-08-01

    PTF11kx was a Type Ia supernova (SN Ia) that showed time-variable absorption features, including saturated Ca II H and K lines that weakened and eventually went into emission. The strength of the emission component of H{alpha} gradually increased, implying that the SN was undergoing significant interaction with its circumstellar medium (CSM). These features, and many others, were blueshifted slightly and showed a P-Cygni profile, likely indicating that the CSM was directly related to, and probably previously ejected by, the progenitor system itself. These and other observations led Dilday et al. to conclude that PTF11kx came from a symbiotic nova progenitor like RS Oph. In this work we extend the spectral coverage of PTF11kx to 124-680 rest-frame days past maximum brightness. The late-time spectra of PTF11kx are dominated by H{alpha} emission (with widths of full width at half-maximum intensity Almost-Equal-To 2000 km s{sup -1}), strong Ca II emission features ({approx}10,000 km s{sup -1} wide), and a blue 'quasi-continuum' due to many overlapping narrow lines of Fe II. Emission from oxygen, He I, and Balmer lines higher than H{alpha} is weak or completely absent at all epochs, leading to large observed H{alpha}/H{beta} intensity ratios. The H{alpha} emission appears to increase in strength with time for {approx}1 yr, but it subsequently decreases significantly along with the Ca II emission. Our latest spectrum also indicates the possibility of newly formed dust in the system as evidenced by a slight decrease in the red wing of H{alpha}. During the same epochs, multiple narrow emission features from the CSM temporally vary in strength. The weakening of the H{alpha} and Ca II emission at late times is possible evidence that the SN ejecta have overtaken the majority of the CSM and agrees with models of other strongly interacting SNe Ia. The varying narrow emission features, on the other hand, may indicate that the CSM is clumpy or consists of multiple thin shells.

  19. TYPE Ia SUPERNOVA DISTANCE MODULUS BIAS AND DISPERSION FROM K-CORRECTION ERRORS: A DIRECT MEASUREMENT USING LIGHT CURVE FITS TO OBSERVED SPECTRAL TIME SERIES

    SciTech Connect

    Saunders, C.; Aldering, G.; Aragon, C.; Bailey, S.; Childress, M.; Fakhouri, H. K.; Kim, A. G.; Antilogus, P.; Bongard, S.; Canto, A.; Cellier-Holzem, F.; Guy, J.; Baltay, C.; Buton, C.; Chotard, N.; Copin, Y.; Gangler, E.; and others

    2015-02-10

    We estimate systematic errors due to K-corrections in standard photometric analyses of high-redshift Type Ia supernovae. Errors due to K-correction occur when the spectral template model underlying the light curve fitter poorly represents the actual supernova spectral energy distribution, meaning that the distance modulus cannot be recovered accurately. In order to quantify this effect, synthetic photometry is performed on artificially redshifted spectrophotometric data from 119 low-redshift supernovae from the Nearby Supernova Factory, and the resulting light curves are fit with a conventional light curve fitter. We measure the variation in the standardized magnitude that would be fit for a given supernova if located at a range of redshifts and observed with various filter sets corresponding to current and future supernova surveys. We find significant variation in the measurements of the same supernovae placed at different redshifts regardless of filters used, which causes dispersion greater than ∼0.05 mag for measurements of photometry using the Sloan-like filters and a bias that corresponds to a 0.03 shift in w when applied to an outside data set. To test the result of a shift in supernova population or environment at higher redshifts, we repeat our calculations with the addition of a reweighting of the supernovae as a function of redshift and find that this strongly affects the results and would have repercussions for cosmology. We discuss possible methods to reduce the contribution of the K-correction bias and uncertainty.

  20. Power spectral estimation algorithms

    NASA Technical Reports Server (NTRS)

    Bhatia, Manjit S.

    1989-01-01

    Algorithms to estimate the power spectrum using Maximum Entropy Methods were developed. These algorithms were coded in FORTRAN 77 and were implemented on the VAX 780. The important considerations in this analysis are: (1) resolution, i.e., how close in frequency two spectral components can be spaced and still be identified; (2) dynamic range, i.e., how small a spectral peak can be, relative to the largest, and still be observed in the spectra; and (3) variance, i.e., how accurate the estimate of the spectra is to the actual spectra. The application of the algorithms based on Maximum Entropy Methods to a variety of data shows that these criteria are met quite well. Additional work in this direction would help confirm the findings. All of the software developed was turned over to the technical monitor. A copy of a typical program is included. Some of the actual data and graphs used on this data are also included.

  1. Multifrequency radio observations of Cygnus A - Spectral aging in powerful radio galaxies

    NASA Technical Reports Server (NTRS)

    Carilli, C. L.; Perley, R. A.; Dreher, J. W.; Leahy, J. P.

    1991-01-01

    A detailed analysis of the radio spectrum across the lobes of Cygnus A is presented in order to critically test the synchroton spectral aging theory. The results are in good agreement with the jet model for powerful radio galaxies, involving particle acceleration at the hot spots and outflow into the radio lobes, with subsequent energy loss due to synchrotron radiation. The hot spot spectra are well represented by a spectral aging model involving continuous injection of relativistic particles. Both hot spots have spectral break frequencies around 10 GHz. An injection index of 0.5 is found for both hot spots, consistent with diffusive shock acceleration at a strong nonrelativistic shock in a Newtonian fluid. The LF hot spot emission spectrum falls below the injected power law. This effect is isolated to the hot spots, and is best explained by a low-energy cutoff in the particle distribution.

  2. VLA observations of unidentified Leiden-Berkeley Deep-Survey sources - Luminosity and redshift dependence of spectral properties

    NASA Technical Reports Server (NTRS)

    Kapahi, Vijay K.; Kulkarni, Vasant K.

    1990-01-01

    VLA observations of a complete subset of the Leiden-Berkeley Deep Survey sources that have S(1.4 GHz) greater than 10 mJy and are not optically identified down to F=22 mag are reported. By comparing the spectral and structural properties of the sources with samples from the literature, an attempt was made to disentangle the luminosity and redshift dependence of the spectral indices of extended emission in radio galaxies and of the incidence of compact steep-spectrum sources. It is found that the fraction of compact sources among those with a steep spectrum is related primarily to redshift, being much larger at high redshifts for sources of similar radio luminosity. Only a weak and marginally significant dependence of spectral indices of the extended sources on luminosity and redshift is found in samples selected at 1.4 and 2.7 GHz. It is pointed out that the much stronger correlation of spectral indices with luminosity may be arising partly from spectral curvature, and partly due to the preferential inclusion of very steep-spectrum sources from high redshift in low-frequency surveys.

  3. First observation of SASE radiation using the compact wide-spectral-range XUV spectrometer at FLASH2

    NASA Astrophysics Data System (ADS)

    Tanikawa, T.; Hage, A.; Kuhlmann, M.; Gonschior, J.; Grunewald, S.; Plönjes, E.; Düsterer, S.; Brenner, G.; Dziarzhytski, S.; Braune, M.; Brachmanski, M.; Yin, Z.; Siewert, F.; Dzelzainis, T.; Dromey, B.; Prandolini, M. J.; Tavella, F.; Zepf, M.; Faatz, B.

    2016-09-01

    The Free-electron LASer in Hamburg (FLASH) has been extended with a new undulator line FLASH2 in 2014. A compact grazing-incident wide-spectral-range spectrometer based on spherical-variable-line-spacing (SVLS) gratings in the extreme ultraviolet (XUV) region was constructed to optimize and characterize the free-electron laser (FEL) performance at FLASH2. The spectrometer is equipped with three different concave SVLS gratings covering a spectral range from 1 to 62 nm to analyze the spectral characteristics of the XUV radiation. Wavelength calibration and evaluation of the spectral resolution were performed at the plane grating monochromator beamline PG2 at FLASH1 before the installation at FLASH2, and compared with analytical simulations. The first light using self-amplified spontaneous emission from FLASH2 was observed by the spectrometer during a simultaneous operation of both undulator lines-FLASH1 and FLASH2. In addition, the spectral resolution of the spectrometer was evaluated by comparing the measured spectrum from FLASH2 with FEL simulations.

  4. Observational Evidence For The Cause Of The `Parallel Track' Phenomenon And Hysteresis Of Spectral Transitions In X-ray Binaries

    NASA Astrophysics Data System (ADS)

    Yu, Wenfei

    2010-03-01

    RXTE observations of neutron star LMXBs have shown the same kHz QPO frequency or the same X-ray color occurs at different X-ray fluxes in a single source, forming the so-called `parallel track' phenomenon. Hysteresis effect of spectral transitions, which is usually seen in black hole or neutron star soft X-ray transients, corresponds to the special cases of the phenomenon when the X-ray colors transit between two main spectral branches. Our systematic studies of the spectral state transitions seen in bright X-ray binaries with the RXTE/ASM and the Swift/BAT in the past 4-5 years indicates that the rate-of-change of the mass accretion rate dominates over the mass accretion rate itself in causing spectral state transitions, implying the rate-of-change of the mass accretion rate, an indicator of the non-stationary accretion in X-ray binaries, is the cause of both phenomena. Spectral and timing evidence will be provided in the presentation.

  5. High spectral resolution observations of Martian atmosphere in infrared - submillimeter range from ground-based instruments.

    NASA Astrophysics Data System (ADS)

    Nakagawa, Hiromu; Kasaba, Yasumasa; Aoki, Shohei; Murata, Isao; Maezawa, Hiroyuki; Okano, Shoichi; Sagawa, Hideo; Kasai, Yasuko

    2010-05-01

    With increased knowledge on our "neighbor" planets Mars and Venus, based on recent aggressive explorations by the US and Europe, our image on them is changing significantly. In particular, Mars is called ‘a frozen water planet'. It is almost certain that Mars once had duration with warm and wet climate [Head et al., 1999; Donahue, 1995; Parker et al., 1993]. It still conserves a large amount of water ice under the surface [Boynton et al., 2002; Mitrofanov et al., 2002; Feldman et al., 2002]. The question "Why and when did they diverge?" is essential for their environments which potentially could create and keep the life or not. Many molecules in planetary atmospheres show transitions in the mid infrared - submillimeter region. Thus, high-resolution spectroscopy in this region is significantly indispensable to study planetary atmospheres. We searched sulfur oxide (SO2 and SO) in the Martian atmosphere by the Atacama Submillimeter Telescope Experiment (ASTE). Sulfur oxide is one of the most evident species in terrestrial volcanic gases. Although it has not yet been detected at Mars, this detection can constraint the Martian crustal and volcanic activities. We observed northern winter of Mars on 26/Dec./2007 (Ls=8.1) in 346 GHz range with ~ 1h integration, and got the upper limit of the SO2 mixing ratio, 2 ppb. We concluded that the crustal or volcanic gas produced into the atmosphere is tenuous in northern winter [Nakagawa et al., 2009]. Infrared heterodyne spectroscopy has proven to be a powerful tool for astrophysical studies. To achieve highest spectral resolution and sensitivity as well as compact instrumentation heterodyne systems are advantageous over direct-detection methods. Our group in Tohoku University has developed own heterodyne system for infrared spectrometer for Earth's atmosphere over the past 20 years. The failure of earlier attempts to build tunable systems using tunable diode lasers was due mostly to insufficient laser power. Recently, quantum

  6. Martian aerosols: Near-infrared spectral properties and effects on the observation of the surface

    NASA Technical Reports Server (NTRS)

    Erard, Stephane; Mustard, John; Murchie, Scott; Bibring, Jean-Pierre; Cerroni, Priscilla; Caradini, Angioletta

    1994-01-01

    Imaging sprectroscopic measurements (ISM) of Mars acquired by the ISM instrument on Phobos-2 are used to investigate the NIR spectral properties of aerosols and the effects of atmospheric scattering on inferred mineralogy of the surface. Estimates of aerosols spectra between 0.77 and 2.6 micrometers are derived above Tharsis and Ophir Planum. The spectral continua are consistent with the particle size distribution derived using data from the solar occultation experiment on-board the spacecraft (effective radius approximately = 1.2 micrometers, with an effective variance approximately = 0.2). The aerosols spectra contain water-ice absorption features and possibly absorptions due to clay and/or sulfates. The largest effect of the aerosols on surface spectra is in dark regions, where the continuum spectral slope becomes more negative and the 1-micrometers absorption due to Fe in pyroxene is shifted toward longer wavelengths. The effects of aerosols on spectra of bright regions are insufficiently large to change mineralogic interpretations based on ISM data, i.e., that bright regions in Tharsis are dominated spectrally by hematite, but that additional ferric minerals are probably present in other areas including Arabia.

  7. Initial analyses of surface spectral radiance between observations and Line-By-Line calculations

    SciTech Connect

    Brown, P.D.; Clough, S.A.; Miller, N.E.; Shippert, T.R.; Turner, D.D.

    1996-04-01

    The evaluation an improvement of radiative transfer calculations are essential to attain improved performance of general circulation models (GCMs) for climate change applications. A Quality Measurement Experiment (QME) is being conducted to analyze the spectral residuals between the downwelling longwave radiance measured by the University of Wisconsin Atmospheric Emitted Radiance Interferometer (AERI) and spectral radiance calculated by the Line-By-Line Radiative Transfer Model (LBLRTM). The three critical components of this study are (1) the assessment of the quality of the high resolution AERI measurements, (2) the assessment of the ability to define the atmospheric state in the radiating column, and (3) the evaluation of the capability of LBLRTM. Validations have been performed on spectral radiance data, obtained from April 1994 through July 1994, through the analysis of the spectral interval and physical process. The results are archived as a function of time, enabling the retrieval of specific data and facilitating investigations and diurnal effects, seasonal effects, and longer-term trends. While the initial focus is restricted to clear-sky analyses, efforts are under way to include the effects of clouds and aerosols. Plans are well formulated for the extension of the current approach to the shortwave. An overview of the concept of the QME is described by Miller et al. (1994), and a detailed description of this study is provided by Clough et al. (1994).

  8. The Liege-balloon program. [balloon-borne instruments for high-spectral resolution observations of the sun

    NASA Technical Reports Server (NTRS)

    Zander, R.

    1974-01-01

    The Liege-balloon program is intended to make high-spectral resolution observations of the sun in the near- and intermediate infrared regions not accessible from the ground. A description of the equipment, followed by a summary of the data obtained till now is presented. Except for ozone whose maximum of concentration lies near 25 Km altitude, the residual mass distribution of the other mentioned molecules decreases with altitude. This is a self-explanatory argument for carrying out spectroscopic observations from platforms transcending the densest layers of the earth's atmosphere. The Liege balloon equipment is primarily intended for very high-resolution solar observations from about 27-30 Km altitude, in all spectral regions between 1.5 and 15.0 microns, not accessible from the ground.

  9. All-Sky Observational Evidence for An Inverse Correlation Between Dust Temperature and Emissivity Spectral Index

    NASA Technical Reports Server (NTRS)

    Liang, Z.; Fixsen, D. J.; Gold, B.

    2012-01-01

    We show that a one-component variable-emissivity-spectral-index model (the free- model) provides more physically motivated estimates of dust temperature at the Galactic polar caps than one- or two-component fixed-emissivity-spectral-index models (fixed- models) for interstellar dust thermal emission at far-infrared and millimeter wavelengths. For the comparison we have fit all-sky one-component dust models with fixed or variable emissivity spectral index to a new and improved version of the 210-channel dust spectra from the COBE-FIRAS, the 100-240 micrometer maps from the COBE-DIRBE and the 94 GHz dust map from the WMAP. The best model, the free-alpha model, is well constrained by data at 60-3000 GHz over 86 per cent of the total sky area. It predicts dust temperature (T(sub dust)) to be 13.7-22.7 (plus or minus 1.3) K, the emissivity spectral index (alpha) to be 1.2-3.1 (plus or minus 0.3) and the optical depth (tau) to range 0.6-46 x 10(exp -5) with a 23 per cent uncertainty. Using these estimates, we present all-sky evidence for an inverse correlation between the emissivity spectral index and dust temperature, which fits the relation alpha = 1/(delta + omega (raised dot) T(sub dust) with delta = -.0.510 plus or minus 0.011 and omega = 0.059 plus or minus 0.001. This best model will be useful to cosmic microwave background experiments for removing foreground dust contamination and it can serve as an all-sky extended-frequency reference for future higher resolution dust models.

  10. Revisiting the Correlations of Peak Luminosity with Spectral Lag and Peak Energy of the Observed Gamma-ray Bursts

    NASA Astrophysics Data System (ADS)

    Jo, Yun-A.; Chang, Heon-Young

    2016-12-01

    An analysis of light curves and spectra of observed gamma-ray bursts in gamma-ray ranges is frequently demanded because the prompt emission contains immediate details regarding the central engine of gamma-ray bursts (GRBs). We have revisited the relationship between the collimation-corrected peak luminosity and the spectral lag, investigating the lag-luminosity relationships in great detail by focusing on spectral lags resulting from all possible combinations of channels. Firstly, we compiled the opening angle data and demonstrated that the distribution of opening angles of 205 long GRBs is represented by a double Gaussian function having maxima at 0.1 and 0.3 radians. We confirmed that the peak luminosity and the spectral lag are anti-correlated, both in the observer frame and in the source frame. We found that, in agreement with our previous conclusion, the correlation coefficient improves significantly in the source frame. It should be noted that spectral lags involving channel 2 (25-50 keV) yield high correlation coefficients, where Swift/Burst Alert Telescope (BAT) has four energy channels (channel 1: 15-25 keV, channel 2: 25-50 keV, channel 3: 50-100 keV, channel 4: 100-200 keV). We also found that peak luminosity is positively correlated with peak energy.

  11. Spectral Invariant Behavior of Zenith Radiance Around Cloud Edges Observed by ARM SWS

    NASA Technical Reports Server (NTRS)

    Marshak, A.; Knyazikhin, Y.; Chiu, J. C.; Wiscombe, W. J.

    2009-01-01

    The ARM Shortwave Spectrometer (SWS) measures zenith radiance at 418 wavelengths between 350 and 2170 nm. Because of its 1-sec sampling resolution, the SWS provides a unique capability to study the transition zone between cloudy and clear sky areas. A spectral invariant behavior is found between ratios of zenith radiance spectra during the transition from cloudy to cloud-free. This behavior suggests that the spectral signature of the transition zone is a linear mixture between the two extremes (definitely cloudy and definitely clear). The weighting function of the linear mixture is a wavelength-independent characteristic of the transition zone. It is shown that the transition zone spectrum is fully determined by this function and zenith radiance spectra of clear and cloudy regions. An important result of these discoveries is that high temporal resolution radiance measurements in the clear-to-cloud transition zone can be well approximated by lower temporal resolution measurements plus linear interpolation.

  12. Constraints on hidden photons from current and future observations of CMB spectral distortions

    NASA Astrophysics Data System (ADS)

    Kunze, Kerstin E.; Vázquez-Mozo, Miguel Á.

    2015-12-01

    A variety of beyond the standard model scenarios contain very light hidden sector U(1) gauge bosons undergoing kinetic mixing with the photon. The resulting oscillation between ordinary and hidden photons leads to spectral distortions of the cosmic microwave background. We update the bounds on the mixing parameter χ0 and the mass of the hidden photon mγ' for future experiments measuring CMB spectral distortions, such as PIXIE and PRISM/COrE. For 10-14 eVlesssim mγ'lesssim 10-13 eV, we find the kinetic mixing angle χ0 has to be less than 10-8 at 95% CL. These bounds are more than an order of magnitude stronger than those derived from the COBE/FIRAS data.

  13. Constraints on hidden photons from current and future observations of CMB spectral distortions

    SciTech Connect

    Kunze, Kerstin E.; Vázquez-Mozo, Miguel Á. E-mail: Miguel.Vazquez-Mozo@cern.ch

    2015-12-01

    A variety of beyond the standard model scenarios contain very light hidden sector U(1) gauge bosons undergoing kinetic mixing with the photon. The resulting oscillation between ordinary and hidden photons leads to spectral distortions of the cosmic microwave background. We update the bounds on the mixing parameter χ{sub 0} and the mass of the hidden photon m{sub γ'} for future experiments measuring CMB spectral distortions, such as PIXIE and PRISM/COrE. For 10{sup −14} eV∼< m{sub γ'}∼< 10{sup −13} eV, we find the kinetic mixing angle χ{sub 0} has to be less than 10{sup −8} at 95% CL. These bounds are more than an order of magnitude stronger than those derived from the COBE/FIRAS data.

  14. Observation-Based Dissipation and Input Terms for Spectral Wave Models, with End-User Testing

    DTIC Science & Technology

    2011-09-30

    Spectral Wave Models, with End-User Testing Alexander V. Babanin Swinburne University of Technology, PO Box 218 Hawthorn, Victoria 3140 Australia... Victoria 3140 Australia, 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S...Australasian Coastal and Ocean Eng. Conf. and 10th Australasian Port and Harbour Conf., 20-23 September 2005, Adelaide, South Australia, Eds. M.Townsend and

  15. Observations of Solar Cycle Variations in UV Spectral Irradiance Since 1978

    NASA Astrophysics Data System (ADS)

    Cebula, R. P.; Deland, M. T.

    2010-12-01

    The spectrally resolved amplitude of solar UV irradiance variations over a solar cycle is an important parameter for estimating long-term changes in the Earth’s climate system. Satellite measurements of solar UV variability have been made by at least eight different instruments since 1978, covering both rising and declining phases of solar activity. Determining solar cycle variations from these data sets requires careful consideration of both time-dependent and wavelength-dependent uncertainties for each instrument. We have previously presented irradiance variation results for solar cycles 21, 22, and 23 using spectral irradiance data from Nimbus-7 SBUV, SME, NOAA-9 SBUV/2, NOAA-11 SBUV/2, UARS SUSIM, and UARS SOLSTICE. These results have shown consistent solar cycle irradiance changes within instrumental uncertainties, and also show the same relative spectral dependence for both short-term (rotational) and long-term (solar cycle) variations. In this work, we compare these results to recent UV irradiance data from the SORCE SIM and SORCE SOLSTICE instruments covering the declining phase of Cycle 23. Implementation of the SORCE solar data in atmospheric models leads to substantial changes in stratospheric heating and ozone concentrations compared to previous calculations. We will examine the agreement in solar cycle behavior between different irradiance data sets for their respective time periods, as well as the agreement with proxy model predictions of solar activity.

  16. New Instruments for Spectrally-Resolved Solar Soft X-ray Observations from CubeSats, and Larger Missions

    NASA Astrophysics Data System (ADS)

    Caspi, A.; Shih, A.; Warren, H. P.; DeForest, C. E.; Woods, T. N.

    2015-12-01

    Solar soft X-ray (SXR) observations provide important diagnostics of plasma heating, during solar flares and quiescent times. Spectrally- and temporally-resolved measurements are crucial for understanding the dynamics and evolution of these energetic processes; spatially-resolved measurements are critical for understanding energy transport. A better understanding of the thermal plasma informs our interpretation of hard X-ray (HXR) observations of nonthermal particles, improving our understanding of the relationships between particle acceleration, plasma heating, and the underlying release of magnetic energy during reconnection. We introduce a new proposed mission, the CubeSat Imaging X-ray Solar Spectrometer (CubIXSS), to measure spectrally- and spatially-resolved SXRs from the quiescent and flaring Sun from a 6U CubeSat platform in low-Earth orbit during a nominal 1-year mission. CubIXSS includes the Amptek X123-SDD silicon drift detector, a low-noise, commercial off-the-shelf (COTS) instrument enabling solar SXR spectroscopy from ~0.5 to ~30 keV with ~0.15 keV FWHM spectral resolution with low power, mass, and volume requirements. An X123-CdTe cadmium-telluride detector is also included for ~5-100 keV HXR spectroscopy with ~0.5-1 keV FWHM resolution. CubIXSS also includes a novel spectro-spatial imager -- the first ever solar imager on a CubeSat -- utilizing a pinhole aperture and X-ray transmission diffraction grating to provide full-Sun imaging from ~0.1 to ~10 keV, with ~25 arcsec and ~0.1 Å FWHM spatial and spectral resolutions, respectively. We discuss scaled versions of these instruments, with greater sensitivity and dynamic range, and significantly improved spectral and spatial resolutions for the imager, for deployment on larger platforms such as Small Explorer missions.

  17. High-Spatial- and High-Spectral-Resolution Observations of the Inhomogeneous Outer Atmosphere of the M Giant BK Vir

    NASA Astrophysics Data System (ADS)

    Ohnaka, K.

    2011-09-01

    We present high-spatial- and high-spectral-resolution observations of the normal M-type AGB star BK Vir using the AMBER instrument at the Very Large Telescope Interferometer. AMBER's high spatial resolution (9.5 mas) and high spectral resolution (λ/Δλ = 12000) enable us to probe the inhomogeneous structure of the atmosphere using the CO first-overtone lines near 2.3μm. The AMBER data in the CO lines reveal the presence of inhomogeneous CO layers, which are much more extended than predicted by hydrostatic photospheric models. These AMBER observations are the first to spatially resolve the “warm molecular envelope” toward AGB stars in individual CO lines.

  18. Pancam and Microscopic Imager observations of dust on the Spirit Rover: Cleaning events, spectral properties, and aggregates

    USGS Publications Warehouse

    Vaughan, Alicia F.; Johnson, Jeffrey R.; Herkenhoff, Kenneth E.; Sullivan, Robert; Landis, Geoffrey A.; Goetz, Walter; Madsen, Morten B.

    2010-01-01

    This work describes dust deposits on the Spirit Rover over 2000 sols through examination of Pancam and Microscopic Imager observations of specific locations on the rover body, including portions of the solar array, Pancam and Mini-TES calibration targets, and the magnets. This data set reveals the three "cleaning events" experienced by Spirit to date, the spectral properties of dust, and the tendency of dust particles to form aggregates 100 um and larger.

  19. Observation of the spectrally invariant properties of clouds in cloudy-to-clear transition zones during the MAGIC field campaign

    SciTech Connect

    Yang, Weidong; Marshak, Alexander; McBride, Patrick J.; Chiu, J. Christine; Knyazikhin, Yuri; Schmidt, K. Sebastian; Flynn, Connor; Lewis, Ernie R.; Eloranta, Edwin W.

    2016-08-11

    We use the spectrally invariant method to study the variability of cloud optical thickness τ and droplet effective radius reff in transition zones (between the cloudy and clear sky columns) observed from Solar Spectral Flux Radiometer (SSFR) and Shortwave Array Spectroradiometer-Zenith (SASZe) during the Marine ARM GPCI Investigation of Clouds (MAGIC) field campaign. The measurements from the SSFR and the SASZe are different, however inter-instrument differences of self-normalized measurements (divided by their own spectra at a fixed time) are small. The spectrally invariant method approximates the spectra in the cloud transition zone as a linear combination of definitely clear and cloudy spectra, where the coefficients, slope and intercept, characterize the spectrally invariant properties of the transition zone. Simulation results from the SBDART (Santa Barbara DISORT Atmospheric Radiative Transfer) model demonstrate that (1) the slope of the visible band is positively correlated with the cloud optical thickness τ while the intercept of the near-infrared band has high negative correlation with the cloud drop effective radius reff even without the exact knowledge of τ; (2) the above relations hold for all Solar Zenith Angle (SZA) and for cloud-contaminated skies. In observations using redundant measurements from SSFR and SASZe, we find that during cloudy-to-clear transitions, (a) the slopes of the visible band decrease, and (b) the intercepts of the near-infrared band remain almost constant near cloud edges. The findings in simulations and observations suggest that, while the optical thickness decreases during the cloudy-to-clear transition, the cloud drop effective radius does not change when cloud edges are approached. Furthermore, these results support the hypothesis that inhomogeneous mixing dominates near cloud edges in the studied cases.

  20. Observation of the spectrally invariant properties of clouds in cloudy-to-clear transition zones during the MAGIC field campaign

    DOE PAGES

    Yang, Weidong; Marshak, Alexander; McBride, Patrick J.; ...

    2016-08-11

    We use the spectrally invariant method to study the variability of cloud optical thickness τ and droplet effective radius reff in transition zones (between the cloudy and clear sky columns) observed from Solar Spectral Flux Radiometer (SSFR) and Shortwave Array Spectroradiometer-Zenith (SASZe) during the Marine ARM GPCI Investigation of Clouds (MAGIC) field campaign. The measurements from the SSFR and the SASZe are different, however inter-instrument differences of self-normalized measurements (divided by their own spectra at a fixed time) are small. The spectrally invariant method approximates the spectra in the cloud transition zone as a linear combination of definitely clear andmore » cloudy spectra, where the coefficients, slope and intercept, characterize the spectrally invariant properties of the transition zone. Simulation results from the SBDART (Santa Barbara DISORT Atmospheric Radiative Transfer) model demonstrate that (1) the slope of the visible band is positively correlated with the cloud optical thickness τ while the intercept of the near-infrared band has high negative correlation with the cloud drop effective radius reff even without the exact knowledge of τ; (2) the above relations hold for all Solar Zenith Angle (SZA) and for cloud-contaminated skies. In observations using redundant measurements from SSFR and SASZe, we find that during cloudy-to-clear transitions, (a) the slopes of the visible band decrease, and (b) the intercepts of the near-infrared band remain almost constant near cloud edges. The findings in simulations and observations suggest that, while the optical thickness decreases during the cloudy-to-clear transition, the cloud drop effective radius does not change when cloud edges are approached. Furthermore, these results support the hypothesis that inhomogeneous mixing dominates near cloud edges in the studied cases.« less

  1. Observation of the spectrally invariant properties of clouds in cloudy-to-clear transition zones during the MAGIC field campaign

    NASA Astrophysics Data System (ADS)

    Yang, Weidong; Marshak, Alexander; McBride, Patrick J.; Chiu, J. Christine; Knyazikhin, Yuri; Schmidt, K. Sebastian; Flynn, Connor; Lewis, Ernie R.; Eloranta, Edwin W.

    2016-12-01

    We use the spectrally invariant method to study the variability of cloud optical thickness τ and droplet effective radius reff in transition zones (between the cloudy and clear sky columns) observed from Solar Spectral Flux Radiometer (SSFR) and Shortwave Array Spectroradiometer-Zenith (SASZe) during the Marine ARM GPCI Investigation of Clouds (MAGIC) field campaign. The measurements from the SSFR and the SASZe are different, however inter-instrument differences of self-normalized measurements (divided by their own spectra at a fixed time) are small. The spectrally invariant method approximates the spectra in the cloud transition zone as a linear combination of definitely clear and cloudy spectra, where the coefficients, slope and intercept, characterize the spectrally invariant properties of the transition zone. Simulation results from the SBDART (Santa Barbara DISORT Atmospheric Radiative Transfer) model demonstrate that (1) the slope of the visible band is positively correlated with the cloud optical thickness τ while the intercept of the near-infrared band has high negative correlation with the cloud drop effective radius reff even without the exact knowledge of τ; (2) the above relations hold for all Solar Zenith Angle (SZA) and for cloud-contaminated skies. In observations using redundant measurements from SSFR and SASZe, we find that during cloudy-to-clear transitions, (a) the slopes of the visible band decrease, and (b) the intercepts of the near-infrared band remain almost constant near cloud edges. The findings in simulations and observations suggest that, while the optical thickness decreases during the cloudy-to-clear transition, the cloud drop effective radius does not change when cloud edges are approached. These results support the hypothesis that inhomogeneous mixing dominates near cloud edges in the studied cases.

  2. Observation of the Spectrally Invariant Properties of Clouds in Cloudy-to-Clear Transition Zones During the MAGIC Field Campaign

    NASA Technical Reports Server (NTRS)

    Yang, Weidong; Marshak, Alexander; McBride, Patrick; Chiu, J. Christine; Knyazikhin, Yuri; Schmidt, K. Sebastian; Flynn, Connor; Lewis, Ernie R.; Eloranta, Edwin W.

    2016-01-01

    We use the spectrally invariant method to study the variability of cloud optical thickness tau and droplet effective radius r(sub eff) in transition zones (between the cloudy and clear sky columns) observed from Solar Spectral Flux Radiometer (SSFR) and Shortwave Array Spectroradiometer-Zenith (SASZe) during the Marine ARM GPCI Investigation of Clouds (MAGIC) field campaign. The measurements from the SSFR and the SASZe are different, however inter-instrument differences of self-normalized measurements (divided by their own spectra at a fixed time) are small. The spectrally invariant method approximates the spectra in the cloud transition zone as a linear combination of definitely clear and cloudy spectra, where the coefficients, slope and intercept, characterize the spectrally invariant properties of the transition zone. Simulation results from the SBDART (Santa Barbara DISORT Atmospheric Radiative Transfer) model demonstrate that (1) the slope of the visible band is positively correlated with the cloud optical thickness t while the intercept of the near-infrared band has high negative correlation with the cloud drop effective radius r(sub eff)even without the exact knowledge of tau; (2) the above relations hold for all Solar Zenith Angle (SZA) and for cloud-contaminated skies. In observations using redundant measurements from SSFR and SASZe, we find that during cloudy-to-clear transitions, (a) the slopes of the visible band decrease, and (b) the intercepts of the near-infrared band remain almost constant near cloud edges. The findings in simulations and observations suggest that, while the optical thickness decreases during the cloudy-to-clear transition, the cloud drop effective radius does not change when cloud edges are approached. These results support the hypothesis that inhomogeneous mixing dominates near cloud edges in the studied cases.

  3. Observation of the spectrally invariant properties of clouds in cloudy-to-clear transition zones during the MAGIC field campaign

    SciTech Connect

    Yang, Weidong; Marshak, Alexander; McBride, Patrick J.; Chiu, J. Christine; Knyazikhin, Yuri; Schmidt, K. Sebastian; Flynn, Connor; Lewis, Ernie R.; Eloranta, Edwin W.

    2016-12-01

    We use the spectrally invariant method to study the variability of cloud optical thickness τ and droplet effective radius reff in transition zones (between the cloudy and clear sky columns) observed from Solar Spectral Flux Radiometer (SSFR) and Shortwave Array Spectroradiometer-Zenith (SASZe) during the Marine ARM GPCI Investigation of Clouds (MAGIC) field campaign. The measurements from the SSFR and the SASZe are different, however inter-instrument differences of self-normalized measurements (divided by their own spectra at a fixed time) are small. The spectrally invariant method approximates the spectra in the cloud transition zone as a linear combination of definitely clear and cloudy spectra, where the coefficients, slope and intercept, character-ize the spectrally invariant properties of the transition zone. Simulation results from the SBDART (Santa Barbara DISORT Atmospheric Radiative Transfer) model demonstrate that (1) the slope of the visible band is positively correlated with the cloud optical thickness τ while the intercept of the near-infrared band has high negative cor-relation with the cloud drop effective radius reff even without the exact knowledge of τ; (2) the above relations hold for all Solar Zenith Angle (SZA) and for cloud-contaminated skies. In observations using redundant measure-ments from SSFR and SASZe, we find that during cloudy-to-clear transitions, (a) the slopes of the visible band de-crease, and (b) the intercepts of the near-infrared band remain almost constant near cloud edges. The findings in simulations and observations suggest that, while the optical thickness decreases during the cloudy-to-clear transition, the cloud drop effective radius does not change when cloud edges are approached. These results sup-port the hypothesis that inhomogeneous mixing dominates near cloud edges in the studied cases.

  4. VIMS spectral mapping observations of Titan during the Cassini prime mission

    USGS Publications Warehouse

    Barnes, J.W.; Soderblom, J.M.; Brown, R.H.; Buratti, B.J.; Sotin, C.; Baines, K.H.; Clark, R.N.; Jaumann, R.; McCord, T.B.; Nelson, R.; Le, Mouelic S.; Rodriguez, S.; Griffith, C.; Penteado, P.; Tosi, F.; Pitman, K.M.; Soderblom, L.; Stephan, K.; Hayne, P.; Vixie, G.; Bibring, J.-P.; Bellucci, G.; Capaccioni, F.; Cerroni, P.; Coradini, A.; Cruikshank, D.P.; Drossart, P.; Formisano, V.; Langevin, Y.; Matson, D.L.; Nicholson, P.D.; Sicardy, B.

    2009-01-01

    This is a data paper designed to facilitate the use of and comparisons to Cassini/visual and infrared mapping spectrometer (VIMS) spectral mapping data of Saturn's moon Titan. We present thumbnail orthographic projections of flyby mosaics from each Titan encounter during the Cassini prime mission, 2004 July 1 through 2008 June 30. For each flyby we also describe the encounter geometry, and we discuss the studies that have previously been published using the VIMS dataset. The resulting compliation of metadata provides a complementary big-picture overview of the VIMS data in the public archive, and should be a useful reference for future Titan studies. ?? 2009 Elsevier Ltd.

  5. Statistically Optimized Inversion Algorithm for Enhanced Retrieval of Aerosol Properties from Spectral Multi-Angle Polarimetric Satellite Observations

    NASA Technical Reports Server (NTRS)

    Dubovik, O; Herman, M.; Holdak, A.; Lapyonok, T.; Taure, D.; Deuze, J. L.; Ducos, F.; Sinyuk, A.

    2011-01-01

    The proposed development is an attempt to enhance aerosol retrieval by emphasizing statistical optimization in inversion of advanced satellite observations. This optimization concept improves retrieval accuracy relying on the knowledge of measurement error distribution. Efficient application of such optimization requires pronounced data redundancy (excess of the measurements number over number of unknowns) that is not common in satellite observations. The POLDER imager on board the PARASOL microsatellite registers spectral polarimetric characteristics of the reflected atmospheric radiation at up to 16 viewing directions over each observed pixel. The completeness of such observations is notably higher than for most currently operating passive satellite aerosol sensors. This provides an opportunity for profound utilization of statistical optimization principles in satellite data inversion. The proposed retrieval scheme is designed as statistically optimized multi-variable fitting of all available angular observations obtained by the POLDER sensor in the window spectral channels where absorption by gas is minimal. The total number of such observations by PARASOL always exceeds a hundred over each pixel and the statistical optimization concept promises to be efficient even if the algorithm retrieves several tens of aerosol parameters. Based on this idea, the proposed algorithm uses a large number of unknowns and is aimed at retrieval of extended set of parameters affecting measured radiation.

  6. Observations of Solar Spectral Irradiance Change During Cycle 22 from NOAA-9 SBUV/2

    NASA Technical Reports Server (NTRS)

    DeLand, Matthew T.; Cebula, Richard P.; Hilsenrath, Ernest

    2003-01-01

    The NOM-9 Solar Backscatter Ultraviolet, model 2 (SBUV/2) instrument is one of a series of instruments providing daily solar spectral irradiance measurements in the middle and near ultraviolet since 1978. The SBUV/2 instruments are primarily designed to measure stratospheric profile and total column ozone, using the directional albedo as the input to the ozone processing algorithm. As a result, the SBUV/2 instrument does not have onboard monitoring of all time-dependent response changes. We have applied internal comparisons and vicarious (external) comparisons to determine the long-term instrument characterization for NOAA-9 SBUV/2 to derive accurate solar spectral irradiances from March 1985 to May 1997 spanning two solar cycle minima with a single instrument. The NOAA-9 data show an amplitude of 9.3(+/- 2.3)% (81-day averaged) at 200-205 nm for solar cycle 22. This is consistent with the result of (Delta)F(sub 200-205) = 8.3(+/- 2.6)% for cycle 21 from Nimbus-7 SBUV and (Delta)F(sub 200-205) = 10(+/- 2)% (daily values) for cycle 23 from UARS SUSIM. NOAA-9 data at 245-250 nm show a solar cycle amplitude of (Delta)F(sub 245-250) = 5.7(+/- 1.8)%. NOAA-9 SBUV/2 data can be combined with other instruments to create a 25-year record of solar UV irradiance.

  7. BATSE observations of gamma-ray burst spectra. I - Spectral diversity

    NASA Technical Reports Server (NTRS)

    Band, D.; Matteson, J.; Ford, L.; Schaefer, B.; Palmer, D.; Teegarden, B.; Cline, T.; Briggs, M.; Paciesas, W.; Pendleton, G.

    1993-01-01

    We studied the time-averaged gamma-ray burst spectra accumulated by the spectroscopy detectors of the Burst and Transient Source Experiment. The spectra are described well at low energy by a power-law continuum with an exponential cutoff and by a steeper power law at high energy. However, the spectral parameters vary from burst to burst with no universal values. The break in the spectrum ranges from below 100 keV to more than 1 MeV, but peaks below 200 keV with only a small fraction of the spectra breaking above 400 keV; it is therefore unlikely that a majority of the burst spectra are shaped directly by pair processes, unless bursts originate from a broad redshift range. The correlations among burst parameters do not fulfill the predictions of the cosmological models of burst origin. No correlations with burst morphology or the spatial distribution were found. We demonstrate the importance of using a complete spectral description even if a partial description (e.g., a model without a high-energy tail) is statistically satisfactory.

  8. New method for simultaneous gas and aerosol retrievals from space limb-scanning spectral observation of the atmosphere.

    PubMed

    Oshchepkov, Sergey; Sasano, Yasuhiro; Yokota, Tatsuya

    2002-07-20

    This study concerns the development of a new inversion method for simultaneous gas and aerosol retrievals in the upper layers of the atmosphere from limb-viewing multiwavelength-transmission infrared measurements. In this method, concentrations of gas species such as O3, NO2, HNO3, N2O, CH4, and H2O, and spectral dependences of the aerosol extinction coefficient are retrieved simultaneously. When this is done, smoothness constraints on the desired spectral dependencies of the aerosol extinction coefficient are used as an a priori assumption. The method is used in the treating of synthetic transmission spectra of the Improved Limb Atmospheric Spectrometer, which is based on the solar occultation technique and was on board the Advanced Earth Observing Satellite. A set of numerical tests shows the efficiency of the method.

  9. Spectral characteristics and meridional variations of energy transformations during the first and second special observation periods of FGGE

    NASA Technical Reports Server (NTRS)

    Kung, E. C.; Tanaka, H.

    1984-01-01

    The global features and meridional spectral energy transformation variations of the first and second special observation periods of the First Global GARP Experiment (FGGE) are investigated, together with the latitudinal distribution of the kinetic energy balance. Specific seasonal characteristics are shown by the spectral distributions of the global transformations between (1) zonal mean and eddy components of the available potential energy, (2) the zonal mean and eddy components of the kinetic energy, and (3) the available potential energy and the kinetic energy. Maximum kinetic energy production is found to occur at subtropical latitudes, with a secondary maximum at higher middle latitudes. Between these two regions, there is another region characterized by the adiabatic destruction of kinetic energy above the lower troposphere.

  10. SUZAKU OBSERVATION OF THE BLACK HOLE CANDIDATE MAXI J1836-194 IN A HARD/INTERMEDIATE SPECTRAL STATE

    SciTech Connect

    Reis, R. C.; Miller, J. M.; Reynolds, M. T.; Fabian, A. C.; Walton, D. J.

    2012-05-20

    We report on a Suzaku observation of the newly discovered X-ray binary MAXI J1836-194. The source is found to be in the hard/intermediate spectral state and displays a clear and strong relativistically broadened iron emission line. We fit the spectra with a variety of phenomenological, as well as physically motivated disk reflection models, and find that the breadth and strength of the iron line are always characteristic of emission within a few gravitational radii around a black hole. This result is independent of the continuum used and strongly points toward the central object in MAXI J1836-194 being a stellar mass black hole rotating with a spin of a = 0.88 {+-} 0.03 (90% confidence). We discuss this result in the context of spectral state definitions, physical changes (or lack thereof) in the accretion disk, and on the potential importance of the accretion disk corona in state transitions.

  11. Snowfall measurements using a combination of high spectral resolution lidar and radar observations

    NASA Astrophysics Data System (ADS)

    Eloranta, E.

    2009-04-01

    Aerodynamic flow around gauges and the horizontal transport of windblown snow along the surface produce errors in snowfall measurements. Comparisons between various snow gauges with and without wind shields show as much as as a factor of two difference between measurements(Yang et al., 1999). These problems are particularly significant in the high Arctic where snowfall amount are very low and blowing snow is frequent. This paper describes a lidar-radar based technique to measure the downward flux of snow at an altitude of ~100m. When particles are small compared to the wavelength, radar reflectivity is proportional to the number of snowflakes times the square of the mass of the average snowflake. For particles large compared to the wavelength, the lidar extinction cross section is equal to two times the number of snowflakes times the projected average area of the snowflakes. Donovan and Lammeren(2001) show that the ratio of radar to lidar cross sections can be used to define an effective-diameter-prime, which is proportional to the fourth root of the average mass-squared over the average projected area of the snowflakes. If one assumes a crystal shape this can be converted into an effective-diameter which is the average mass over the average area of the flakes. Multiplying the lidar measured projected area times the effective-diameter yields the mass of the particles. The product of this mass and the radar measured vertical velocity then provides the vertical flux of water. In past work we have tested this measurement approach with data acquired in the high Arctic at Eureka, Canada(80 N,90W). Measurements from the University of Wisconsin High Spectral Resolution Lidar and the NOAA 35 GHz cloud radar were used to compute the time-integrated flux of water at 100 m above the surface. This result was compared with Nipper gauge measurements of snowfall acquired as part of the Eureka weather station record. Best agreement was achieved when the crystals where assumed to

  12. Full-disk observations of the saturnian moons in the VIS-NIR spectral range by Cassini- VIMS

    NASA Astrophysics Data System (ADS)

    Filacchione, G.; Capaccioni, F.; Coradini, A.; Cerroni, P.; Tosi, F.; Adriani, A.; McCord, T. B.; Baines, K. H.; Bellucci, G.; Brown, R. H.; Bibring, J.; Buratti, B. J.; Clark, R. N.; Combes, M.; Cruikshank, D. P.; Drossart, P.; Formisano, V.; Jaumann, R.; Langevin, Y.; Matson, D. L.; Mennella, V.; Robert, N. M.; Nicholson, P. D.; Sicardy, B.; Sotin, C.; Moriconi, M.

    2006-12-01

    During the first two years of the Cassini's nominal mission, VIMS (Visual and Infrared Mapping Spectrometer) has explored the whole system of Saturnian icy satellites. Here we report a comparative analysis of more than 600 full-disk observations obtained from July 2004 to nowadays for 15 regular and minor satellites: Atlas, Prometheus, Pandora, Janus, Epimetheus, Mimas, Enceladus, Tethys, Telesto, Calypso, Dione, Rhea, Hyperion, Iapetus and Phoebe. These observations, done from the equatorial plane, are particularly suitable to highlight the spectral differences between the leading and trailing sides of the regular satellites as function of the illumination angle (Filacchione et al., 2006a, 2006b); a byproduct of this activity is the measurement of the phase curves. The combined use of several VIS and IR spectral quantities (e.g. spectral slopes, water ice bands strengths, continuum levels, etc.) allows to find correlations between classes of satellites orbiting at different distances from Saturn: in this way it is possible to discriminate the almost pure ice surfaces of Enceladus and Calypso from the organic rich Hyperion, Iapetus and Phoebe (Tosi et al., 2006). This research was completed thanks to the support of the Italian Space Agency (ASI), Grant ASI/Cassini I/031/05/0. Filacchione et al., 2006a. Saturn's icy satellites investigated by Cassini-VIMS. I. Full-disk properties: 350-5100 nm reflectance spectra and phase curves, Icarus, in press. Filacchione et al., 2006b. VIS-NIR Spectral Properties of Saturn's Minor Icy Moons. 37th LPSC, abstract no.1271 Tosi et al., 2006. Iapetus, Phoebe and Hyperion: Are They Related? 37th LPSC, abstract no.1582

  13. Spectral atmospheric observations at Nantucket Island, May 7-14, 1981

    NASA Technical Reports Server (NTRS)

    Talay, T. A.; Poole, L. R.

    1981-01-01

    An experiment was conducted by the National Langley Research Center to measure atmospheric optical conditions using a 10-channel solar spectral photometer system. This experiment was part of a larger series of multidisciplinary experiments performed in the area of Nantucket Shoals aimed at studying the dynamics of phytoplankton production processes. Analysis of the collected atmospheric data yield total and aerosol optical depths, transmittances, normalized sky radiance distributions, and total and sky irradiances. Results of this analysis may aid in atmospheric corrections of remote sensor data obtained by several sensors overflying the Nantucket Shoals area. Recommendations are presented concerning future experiments using the described solar photometer system and calibration and operational deficiencies uncovered during the experiment.

  14. Some observations about the components of transonic fan noise from narrow-band spectral analysis

    NASA Technical Reports Server (NTRS)

    Saule, A. V.

    1974-01-01

    Qualitative and quantitative spectral analyses are presented that give the broadband-noise, discrete-tone, and multiple-tone properties of the noise generated by a full-scale high-bypass single-stage axial-flow transonic fan (fan B, NASA Quiet Engine Program). The noise components were obtained from narrow-band spectra in conjunction with 1/3-octave-band spectra. Variations in the pressure levels of the noise components with fan speed, forward-quadrant azimuth angle, and frequency are presented and compared. The study shows that much of the apparent broadband noise on 1/3-octave-band plots consists of a complex system of shaft-order tones. The analyses also indicate the difficulties in determining or defining noise components, especially the broadband level under the discrete tones. The sources which may be associated with the noise components are discussed.

  15. Remote optical observations of actively burning biomass fires using potassium line spectral emission

    NASA Astrophysics Data System (ADS)

    Magidimisha, Edwin; Griffith, Derek J.

    2016-02-01

    Wildland fires are a widespread, seasonal and largely man-made hazard which have a broad range of negative effects. These wildfires cause not only the destruction of homes, infrastructure, cultivated forests and natural habitats but also contribute to climate change through greenhouse gas emissions and aerosol particle production. Global satellite-based monitoring of biomass burning using thermal infrared sensors is currently a powerful tool to assist in finding ways to establish suppression strategies and to understand the role that fires play in global climate change. Advances in silicon-based camera technology present opportunities to resolve the challenge of ubiquitous wildfire early detection in a cost-effective manner. This study investigated several feasibility aspects of detecting wildland fires using near-infrared (NIR) spectral line emissions from electronically excited potassium (K) atoms at wavelengths of 766.5 and 769.9 nm, during biomass burning.

  16. Application of model-based spectral analysis to wind-profiler radar observations

    NASA Astrophysics Data System (ADS)

    Boyer, E.; Petitdidier, M.; Corneil, W.; Adnet, C.; Larzabal, P.

    2001-08-01

    A classical way to reduce a radar’s data is to compute the spectrum using FFT and then to identify the different peak contributions. But in case an overlapping between the different echoes (atmospheric echo, clutter, hydrometeor echo. . . ) exists, Fourier-like techniques provide poor frequency resolution and then sophisticated peak-identification may not be able to detect the different echoes. In order to improve the number of reduced data and their quality relative to Fourier spectrum analysis, three different methods are presented in this paper and applied to actual data. Their approach consists of predicting the main frequency-components, which avoids the development of very sophisticated peak-identification algorithms. The first method is based on cepstrum properties generally used to determine the shift between two close identical echoes. We will see in this paper that this method cannot provide a better estimate than Fourier-like techniques in an operational use. The second method consists of an autoregressive estimation of the spectrum. Since the tests were promising, this method was applied to reduce the radar data obtained during two thunder-storms. The autoregressive method, which is very simple to implement, improved the Doppler-frequency data reduction relative to the FFT spectrum analysis. The third method exploits a MUSIC algorithm, one of the numerous subspace-based methods, which is well adapted to estimate spectra composed of pure lines. A statistical study of performances of this method is presented, and points out the very good resolution of this estimator in comparison with Fourier-like techniques. Application to actual data confirms the good qualities of this estimator for reducing radar’s data.

  17. New Results of Spectral Observations of CP Stars in the Li I 6708 Å Spectral Region with the 6-m BTA Telescope

    NASA Astrophysics Data System (ADS)

    Polosukhina, N.; Shavrina, A.; Drake, N.; Kudryavtsev, D.; Smirnova, M.

    The lithium problem in Ap-CP stars has for a long time been a subject of debates. Individual characteristics of CP stars, such as a high abundance of rare-earth elements, the presence of magnetic fields, complex structures of the surface distribution of chemical elements, rapid oscillations of some CP stars, make the detection of lithium lines, and determination of lithium abundance a challenging task. The lithium problem in Ap-CP stars was discussed during the meeting in Slovakia in 1996. The results of the Li study, carried out in CrAO (Polosukhina, 1973 - 1976), the works of Faraggiana & Hack (1963), Wallerstein & Hack (1964), Faraggiana et al. (1992 - 1996) formed the basis of the international project, called Lithium in the Cool CP Stars with Magnetic Fields. The main goal of the project was, using systematical observations of Ap-CP stars with phase rotation in the spectral regions of the resonance doublet Li I 6708 Å and subordinate 6104 Å lithium lines with different telescopes, to create a database, which will permit to explain the physical origin of the anomalous Li abundance in the atmospheres of these stars.

  18. Spectrally Resolved Flux Derived from Collocated AIRS and CERES Observations and its Application in Model Validation. Part I; Clear-Sky Over the Tropic Oceans

    NASA Technical Reports Server (NTRS)

    Huang, Xianglei; Yang, Wenze; Loeb, Norman G.; Ramaswamy, V.

    2008-01-01

    Spectrally resolved outgoing IR flux, the integrand of the outgoing longwave radiation (OLR), has its unique value in evaluating model simulations. Here we describe an algorithm of deriving such clear-sky outgoing spectral flux through the whole IR region from the collocated Atmospheric Infrared Sounder (AIRS) and the Clouds & the Earth's Radiant Energy System (CERES) measurements over the tropical oceans. Based on the scene types and corresponding angular distribution models (ADMs) used in the CERES Single Satellite Footprint (SSF) dataset, spectrally-dependent ADMs are developed and used to estimate the spectral flux at each AIRS channel. A multivariate linear prediction scheme is then used to estimate spectral fluxes at frequencies not covered by the AIRS instrument. The whole algorithm is validated using synthetic spectra as well as the CERES OLR measurements. Using the GFDL AM2 model simulation as a case study, the application of the derived clear-sky outgoing spectral flux in model evaluation is illustrated. By comparing the observed and simulated spectral flux in 2004, compensating errors in the simulated OLR from different absorption bands can be revealed, so does the errors from frequencies within a given absorption band. Discrepancies between the simulated and observed spatial distributions and seasonal evolutions of the spectral fluxes at different spectral ranges are further discussed. The methodology described in this study can be applied to other surface types as well as cloudy-sky observations and corresponding model evaluations.

  19. Mixing state and spectral absorption of atmospheric aerosols observed at a marine background site

    NASA Astrophysics Data System (ADS)

    Cayetano, M. G.; Lee, K. Y.; Kim, Y. J.

    2011-12-01

    Mineral dust and sea salt particles are portions of atmospheric aerosols in Korea due to the periodic transport of loess dust particles from Gobi and Taklimakan deserts in west China, as well as the sea salt enrichment of atmospheric particles from the seas surrounding the Korean peninsula [Kim et al., 2009; Sahu et al., 2009]. Carbonaceous particles and secondary inorganic aerosols (sulphates and nitrates) are ubiquitous due to the proliferating biomass burning [Ryu et al., 2004], as well as the increasing use of fossil fuels locally and by regional transport from neighbouring countries. Collectively, when these aerosols are transported, their compositions are further modified due to the aging process, impacting their physico-chemical properties including spectral absorption. In order to investigate the spectral response of the absorption under different ambient aerosol conditions, measurements have been conducted at a marine background site in Korea (Deokjeok Island. 37° 13' 33" N, 126° 8' 51" E) during the spring (13 days) and fall (8 days) seasons of 2009 using an aethalometer (Magee AE31), a nephelometer (Optec NGN2a) and other supporting instruments (PILS-IC, PM2.5 cyclone samplers for off-line OC/EC measurements). It has been found that spring aerosols were dominated by sulphate-rich and carbonaceous-rich fractions (21.4%±8.0% and 28.8%±7.9%, respectively), with an Angström exponent of absorption, αabs = 1.3±0.1 at 370-950 nm. The fall season aerosols were grouped based on their chemical composition as acidic aerosols, dust-enriched, and seasalt-enriched aerosols. Angström exponent of absorption, αabs for acidic aerosols was obtained to be 1.3±0.2 at 370-950 nm. However, dust enriched aerosols showed increased absorption in the short UV-Vis range (370-590 nm), which can be attributed to their mixing with light absorbing aerosols. Different types of aerosols exhibit different spectral absorption characteristics depending on their composition and

  20. An evaluation of the Barnes objective analysis response - Two-dimensional theoretical response, sensitivity to observing networks, and 'actual' response. [in meteorology

    NASA Technical Reports Server (NTRS)

    Wu, Xiaohua; Pauley, Patricia M.

    1989-01-01

    A principal advantage of the Barnes (1964, 1973) scheme is its theoretical response function through which the response of the analysis at a particular wavelength can be predicted. The objective of this paper is to examine the accuracy and efficiency of the Barnes scheme for different data distributions. Then, the 'actual' response is used to estimate the true attenuation of a wave in the filtered field.

  1. Multiwavelength observations of the energetic GRB 080810: detailed mapping of the broad-band spectral evolution

    NASA Astrophysics Data System (ADS)

    Page, K. L.; Willingale, R.; Bissaldi, E.; Postigo, A. De Ugarte; Holland, S. T.; McBreen, S.; O'Brien, P. T.; Osborne, J. P.; Prochaska, J. X.; Rol, E.; Rykoff, E. S.; Starling, R. L. C.; Tanvir, N. R.; van der Horst, A. J.; Wiersema, K.; Zhang, B.; Aceituno, F. J.; Akerlof, C.; Beardmore, A. P.; Briggs, M. S.; Burrows, D. N.; Castro-Tirado, A. J.; Connaughton, V.; Evans, P. A.; Fynbo, J. P. U.; Gehrels, N.; Guidorzi, C.; Howard, A. W.; Kennea, J. A.; Kouveliotou, C.; Pagani, C.; Preece, R.; Perley, D.; Steele, I. A.; Yuan, F.

    2009-11-01

    GRB 080810 was one of the first bursts to trigger both Swift and the Fermi Gamma-ray Space Telescope. It was subsequently monitored over the X-ray and UV/optical bands by Swift, in the optical by Robotic Optical Transient Search Experiment (ROTSE) and a host of other telescopes, and was detected in the radio by the Very Large Array. The redshift of z = 3.355 +/- 0.005 was determined by Keck/High Resolution Echelle Spectrometer (HIRES) and confirmed by RTT150 and NOT. The prompt gamma/X-ray emission, detected over 0.3-103 keV, systematically softens over time, with Epeak moving from ~600 keV at the start to ~40 keV around 100s after the trigger; alternatively, this spectral evolution could be identified with the blackbody temperature of a quasi-thermal model shifting from ~60 to ~3keV over the same time interval. The first optical detection was made at 38s, but the smooth, featureless profile of the full optical coverage implies that this is originated from the afterglow component, not from the pulsed/flaring prompt emission. Broad-band optical and X-ray coverage of the afterglow at the start of the final X-ray decay (~8ks) reveals a spectral break between the optical and X-ray bands in the range of 1015-2 × 1016Hz. The decay profiles of the X-ray and optical bands show that this break initially migrates blueward to this frequency and then subsequently drifts redward to below the optical band by ~3 × 105s. GRB 080810 was very energetic, with an isotropic energy output for the prompt component of 3 × 1053 and 1.6 × 1052 erg for the afterglow; there is no evidence for a jet break in the afterglow up to 6d following the burst. This paper is dedicated to the memory of Professor Martin Turner, who sadly passed away during its writing. Martin was an influential figure in X-ray Astronomy and an excellent PhD supervisor. He will be greatly missed. E-mail: kpa@star.le.ac.uk ‡ NASA postdoctoral program fellow.

  2. Fermi Large Area Telescope Observations of Markarian 421: The Missing Piece of its Spectral Energy Distribution

    NASA Astrophysics Data System (ADS)

    Abdo, A. A.; Ackermann, M.; Ajello, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; Blandford, R. D.; Bloom, E. D.; Bonamente, E.; Borgland, A. W.; Bouvier, A.; Bregeon, J.; Brez, A.; Brigida, M.; Bruel, P.; Buehler, R.; Buson, S.; Caliandro, G. A.; Cameron, R. A.; Cannon, A.; Caraveo, P. A.; Carrigan, S.; Casandjian, J. M.; Cavazzuti, E.; Cecchi, C.; Çelik, Ö.; Charles, E.; Chekhtman, A.; Chiang, J.; Ciprini, S.; Claus, R.; Cohen-Tanugi, J.; Conrad, J.; Cutini, S.; de Angelis, A.; de Palma, F.; Dermer, C. D.; Silva, E. do Couto e.; Drell, P. S.; Dubois, R.; Dumora, D.; Escande, L.; Favuzzi, C.; Fegan, S. J.; Finke, J.; Focke, W. B.; Fortin, P.; Frailis, M.; Fuhrmann, L.; Fukazawa, Y.; Fukuyama, T.; Funk, S.; Fusco, P.; Gargano, F.; Gasparrini, D.; Gehrels, N.; Georganopoulos, M.; Germani, S.; Giebels, B.; Giglietto, N.; Giommi, P.; Giordano, F.; Giroletti, M.; Glanzman, T.; Godfrey, G.; Grenier, I. A.; Guiriec, S.; Hadasch, D.; Hayashida, M.; Hays, E.; Horan, D.; Hughes, R. E.; Jóhannesson, G.; Johnson, A. S.; Johnson, W. N.; Kadler, M.; Kamae, T.; Katagiri, H.; Kataoka, J.; Knödlseder, J.; Kuss, M.; Lande, J.; Latronico, L.; Lee, S.-H.; Longo, F.; Loparco, F.; Lott, B.; Lovellette, M. N.; Lubrano, P.; Madejski, G. M.; Makeev, A.; Max-Moerbeck, W.; Mazziotta, M. N.; McEnery, J. E.; Mehault, J.; Michelson, P. F.; Mitthumsiri, W.; Mizuno, T.; Monte, C.; Monzani, M. E.; Morselli, A.; Moskalenko, I. V.; Murgia, S.; Nakamori, T.; Naumann-Godo, M.; Nishino, S.; Nolan, P. L.; Norris, J. P.; Nuss, E.; Ohsugi, T.; Okumura, A.; Omodei, N.; Orlando, E.; Ormes, J. F.; Ozaki, M.; Paneque, D.; Panetta, J. H.; Parent, D.; Pavlidou, V.; Pearson, T. J.; Pelassa, V.; Pepe, M.; Pesce-Rollins, M.; Pierbattista, M.; Piron, F.; Porter, T. A.; Rainò, S.; Rando, R.; Razzano, M.; Readhead, A.; Reimer, A.; Reimer, O.; Reyes, L. C.; Richards, J. L.; Ritz, S.; Roth, M.; Sadrozinski, H. F.-W.; Sanchez, D.; Sander, A.; Sgrò, C.; Siskind, E. J.; Smith, P. D.; Spandre, G.; Spinelli, P.; Stawarz, Ł.; Stevenson, M.; Strickman, M. S.; Suson, D. J.; Takahashi, H.; Takahashi, T.; Tanaka, T.; Thayer, J. G.; Thayer, J. B.; Thompson, D. J.; Tibaldo, L.; Torres, D. F.; Tosti, G.; Tramacere, A.; Troja, E.; Usher, T. L.; Vandenbroucke, J.; Vasileiou, V.; Vianello, G.; Vilchez, N.; Vitale, V.; Waite, A. P.; Wang, P.; Wehrle, A. E.; Winer, B. L.; Wood, K. S.; Yang, Z.; Yatsu, Y.; Ylinen, T.; Zensus, J. A.; Ziegler, M.; Fermi LAT Collaboration; Aleksić, J.; Antonelli, L. A.; Antoranz, P.; Backes, M.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Berdyugin, A.; Berger, K.; Bernardini, E.; Biland, A.; Blanch, O.; Bock, R. K.; Boller, A.; Bonnoli, G.; Bordas, P.; Borla Tridon, D.; Bosch-Ramon, V.; Bose, D.; Braun, I.; Bretz, T.; Camara, M.; Carmona, E.; Carosi, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Dazzi, F.; de Angelis, A.; De Cea del Pozo, E.; Delgado Mendez, C.; De Lotto, B.; De Maria, M.; De Sabata, F.; Diago Ortega, A.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Elsaesser, D.; Ferenc, D.; Fonseca, M. V.; Font, L.; García López, R. J.; Garczarczyk, M.; Gaug, M.; Giavitto, G.; Godinovi, N.; Hadasch, D.; Herrero, A.; Hildebrand, D.; Höhne-Mönch, D.; Hose, J.; Hrupec, D.; Jogler, T.; Klepser, S.; Krähenbühl, T.; Kranich, D.; Krause, J.; La Barbera, A.; Leonardo, E.; Lindfors, E.; Lombardi, S.; López, M.; Lorenz, E.; Majumdar, P.; Makariev, E.; Maneva, G.; Mankuzhiyil, N.; Mannheim, K.; Maraschi, L.; Mariotti, M.; Martínez, M.; Mazin, D.; Meucci, M.; Miranda, J. M.; Mirzoyan, R.; Miyamoto, H.; Moldón, J.; Moralejo, A.; Nieto, D.; Nilsson, K.; Orito, R.; Oya, I.; Paoletti, R.; Paredes, J. M.; Partini, S.; Pasanen, M.; Pauss, F.; Pegna, R. G.; Perez-Torres, M. A.; Persic, M.; Peruzzo, J.; Pochon, J.; Prada, F.; Prada Moroni, P. G.; Prandini, E.; Puchades, N.; Puljak, I.; Reichardt, T.; Rhode, W.; Ribó, M.; Rico, J.; Rissi, M.; Rügamer, S.; Saggion, A.; Saito, K.; Saito, T. Y.; Salvati, M.; Sánchez-Conde, M.; Satalecka, K.; Scalzotto, V.; Scapin, V.; Schultz, C.; Schweizer, T.; Shayduk, M.; Shore, S. N.; Sierpowska-Bartosik, A.; Sillanpää, A.; Sitarek, J.; Sobczynska, D.; Spanier, F.; Spiro, S.; Stamerra, A.; Steinke, B.; Storz, J.; Strah, N.; Struebig, J. C.; Suric, T.; Takalo, L. O.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Vankov, H.; Wagner, R. M.; Weitzel, Q.; Zabalza, V.; Zandanel, F.; Zanin, R.; MAGIC Collaboration; Villata, M.; Raiteri, C.; Aller, H. D.; Aller, M. F.; Chen, W. P.; Jordan, B.; Koptelova, E.; Kurtanidze, O. M.; Lähteenmäki, A.; McBreen, B.; Larionov, V. M.; Lin, C. S.; Nikolashvili, M. G.; Reinthal, R.; Angelakis, E.; Capalbi, M.; Carramiñana, A.; Carrasco, L.; Cassaro, P.; Cesarini, A.; Falcone, A.; Gurwell, M. A.; Hovatta, T.; Kovalev, Yu. A.; Kovalev, Y. Y.; Krichbaum, T. P.; Krimm, H. A.; Lister, M. L.; Moody, J. W.; Maccaferri, G.; Mori, Y.; Nestoras, I.; Orlati, A.; Pace, C.; Pagani, C.; Pearson, R.; Perri, M.; Piner, B. G.; Ros, E.; Sadun, A. C.; Sakamoto, T.; Tammi, J.; Zook, A.

    2011-08-01

    We report on the γ-ray activity of the high-synchrotron-peaked BL Lacertae object Markarian 421 (Mrk 421) during the first 1.5 years of Fermi operation, from 2008 August 5 to 2010 March 12. We find that the Large Area Telescope (LAT) γ-ray spectrum above 0.3 GeV can be well described by a power-law function with photon index Γ = 1.78 ± 0.02 and average photon flux F(> 0.3 GeV) = (7.23 ± 0.16) × 10-8 ph cm-2 s-1. Over this time period, the Fermi-LAT spectrum above 0.3 GeV was evaluated on seven-day-long time intervals, showing significant variations in the photon flux (up to a factor ~3 from the minimum to the maximum flux) but mild spectral variations. The variability amplitude at X-ray frequencies measured by RXTE/ASM and Swift/BAT is substantially larger than that in γ-rays measured by Fermi-LAT, and these two energy ranges are not significantly correlated. We also present the first results from the 4.5 month long multifrequency campaign on Mrk 421, which included the VLBA, Swift, RXTE, MAGIC, the F-GAMMA, GASP-WEBT, and other collaborations and instruments that provided excellent temporal and energy coverage of the source throughout the entire campaign (2009 January 19 to 2009 June 1). During this campaign, Mrk 421 showed a low activity at all wavebands. The extensive multi-instrument (radio to TeV) data set provides an unprecedented, complete look at the quiescent spectral energy distribution (SED) for this source. The broadband SED was reproduced with a leptonic (one-zone synchrotron self-Compton) and a hadronic model (synchrotron proton blazar). Both frameworks are able to describe the average SED reasonably well, implying comparable jet powers but very different characteristics for the blazar emission site.

  3. Earth observation and atmospheric sounding based on a high spectral resolution lidar

    NASA Astrophysics Data System (ADS)

    Liu, Yanyang; Luo, Haiying; Liu, Dong; Yang, Yongying

    2015-10-01

    Obtain accurate detection data on the distribution of water vapor and aerosol is the basis for researches on numerical weather prediction and dynamic meteorology. It also has great importance for finding haze formation and digestion mechanism. In this paper, the high spectral resolution lidar (HSRL) is employed to obtain the optical properties of the atmosphere such as optical depth and backscatter coefficient which are very helpful to get the accurate detection data on distribution and Interaction of water vapor and aerosol continuously. A forward simulation model is established to simulate the typical atmospheric conditions and aerosol distribution, and considered the presence of sunlight during the day and the background noise. The simulation result shows that the HSRL proposed here can perform well with satisfactory measurement accuracy for the altitudes below 8km, which is better than 10%, so that HSRL is very helpful to the improvement of the accuracy of weather forecasts and to the study on the prevention and control measures of haze and other weather disasters.

  4. USA Observation of Spectral and Timing Evolution During the 2000 Outburst of XTE J1550--564

    SciTech Connect

    Reilly, Kaice T

    2002-12-06

    We report on timing and spectral observations of the 2000 outburst of XTE J1550--564 made by the Unconventional Stellar Aspect (USA) Experiment on board the Advanced Research and Global Observation Satellite (ARGOS). We observe a low-frequency quasi-periodic oscillation (LFQPO) with a centroid frequency that tends to increase with increasing flux and a fractional rms amplitude which is correlated with the hardness ratio. Several high-frequency quasi-periodic oscillations (HFQPO) were detected by RXTE, during periods where the LFQPO is seen to be weakening or not detectable at all. The evolution of the hardness ratio (4-16 keV/1-4 keV) with time and source flux is examined. The hardness-intensity diagram (HID) shows a cyclical movement in the counterclockwise direction and possibly indicates the presence of two independent accretion flows: a thin disk and a hot sub-Keplerian flow.

  5. Observations of long-period oscillations of the solar active regions in the visible and UV spectral intervals

    NASA Astrophysics Data System (ADS)

    Tlatov, A. G.; Dormidontov, D. V.; Chernov, Ya. O.

    2016-12-01

    The variation of intensity in spectral line wings, which was obtained from observations of the patrol telescope at the Kislovodsk Mountain Astronomical Station of the Pulkovo Observatory, Russian Academy of Science (KMAS) and the Interface Region Imaging Spectrograph (IRIS) space observatory, are considered. A series of observations lasting a few hours near the solar active regions, in which both short- and longperiod oscillations were observed simultaneously during 2014-2015, are analyzed. It is found out that oscillations with a period of 3-5 min can exist at one time and in one place with oscillations with a period of about 100 min. The amplitude of long-period oscillations can be comparable with that for short-period oscillations. The conditions for excitation of the wave processes are considered. Oscillations with a period of 100 min have a weak dependence on the area of the active region.

  6. A Spatial and Spectral Study of Nonthermal Filaments in Historical Supernova Remnants: Observational Results with Chandra

    NASA Astrophysics Data System (ADS)

    Bamba, Aya; Yamazaki, Ryo; Yoshida, Tatsuo; Terasawa, Toshio; Koyama, Katsuji

    2005-03-01

    The outer shells of young supernova remnants (SNRs) are the most plausible acceleration sites of high-energy electrons with the diffusive shock acceleration (DSA) mechanism. We studied spatial and spectral properties close to the shock fronts in four historical SNRs (Cas A, Kepler's remnant, Tycho's remnant, and RCW 86) with excellent spatial resolution of Chandra. In all of the SNRs, hard X-ray emissions were found on the rims of the SNRs, which concentrate in very narrow regions (so-called filaments); apparent scale widths on the upstream side are below or on the order of the point-spread function of Chandra, while they are 0.5"-40" (0.01-0.4 pc) on the downstream side with most reliable distances. The spectra of these filaments can be fitted with both thermal and nonthermal (power law and SRCUT) models. The former requires unrealistic high temperature (>~2 keV) and low abundances (<~1 solar) for emission from young SNRs and may be thus unlikely. The latter reproduces the spectra with best-fit photon indices of 2.1-3.8, or roll-off frequencies of (0.1-28)×1017 Hz, which reminds us of the synchrotron emission from electrons accelerated via DSA. We consider various physical parameters as functions of the SNR age, including the previous results on SN 1006; the filament width on the downstream side increases with the SNR age, and the spectrum becomes softer, keeping a nonthermal feature. It was also found that a function, that is, the roll-off frequency divided by the square of the scale width on the downstream side, shows negative correlation with the age, which might provide us some information on the DSA theory.

  7. Spectral and Imaging Observations of a White-light Solar Flare in the Mid-infrared

    NASA Astrophysics Data System (ADS)

    Penn, Matt; Krucker, Säm; Hudson, Hugh; Jhabvala, Murzy; Jennings, Don; Lunsford, Allen; Kaufmann, Pierre

    2016-03-01

    We report high-resolution observations at mid-infrared wavelengths of a minor solar flare, SOL2014-09-24T17:50 (C7.0), using Quantum Well Infrared Photodetector cameras at an auxiliary of the McMath-Pierce telescope. The flare emissions, the first simultaneous observations in two mid-infrared bands at 5.2 and 8.2 μ {{m}} with white-light and hard X-ray coverage, revealed impulsive time variability with increases on timescales of ˜4 s followed by exponential decay at ˜10 s in two bright regions separated by about 13\\prime\\prime . The brightest source is compact, unresolved spatially at the diffraction limit (1\\_\\_AMP\\_\\_farcs;72 at 5.2 μ {{m}}). We identify the IR sources as flare ribbons also seen in white-light emission at 6173 Å observed by SDO/HMI, with twin hard X-ray sources observed by Reuven Ramaty High Energy Solar Spectroscopic Imager, and with EUV sources (e.g., 94 Å) observed by SDO/AIA. The two infrared points have nearly the same flux density (fν, W m-2 Hz) and extrapolate to a level of about an order of magnitude below that observed in the visible band by HMI, but with a flux of more than two orders of magnitude above the free-free continuum from the hot (˜15 MK) coronal flare loop observed in the X-ray range. The observations suggest that the IR emission is optically thin; this constraint and others suggest major contributions from a density less than about 4× {10}13 cm-3. We tentatively interpret this emission mechanism as predominantly free-free emission in a highly ionized but cool and rather dense chromospheric region.

  8. Comparison of predicted and observed spectral energy distribution of K and M stars. I - Alpha Bootis

    NASA Technical Reports Server (NTRS)

    Augason, G. C.; Taylor, B. J.; Strecker, D. W.; Erickson, E. F.; Witteborn, F. C.

    1980-01-01

    The K2 IIIp star Alpha Bootis has been observed from the ground at 0.536 to 1.070 microns, and from an airplane at 1.21 to 3.90 microns. In the present paper, an absolute flux curve, constructed from these observations with an overall precision greater than + or - 2% in F-lambda, is compared with previous photometry and spectrometry.

  9. Spectral estimates of the first few Rossby wave baroclinic modes in the South Pacific Ocean from satellite altimeters and testing of theories against these observations

    NASA Astrophysics Data System (ADS)

    Maharaj, A. M.; Cipollini, P.; Holbrook, N. J.; Killworth, P. D.; Blundell, J. R.

    2007-12-01

    Previous literature has suggested that multiple peaks in sea level anomalies (SLA) detected by two-dimensional Fourier transform (2D-FT) analysis are spectral components of multiple propagating signals which may correspond to different baroclinic Rossby wave modes. We test this hypothesis in the South Pacific Ocean by applying a 2D-FT analysis to the long Rossby wave signal determined from filtered TOPEX/Poseidon and ERS- 1/2 satellite altimeter derived SLA. The first four baroclinic mode dispersion curves for the classical linear wave theory and the Killworth and Blundell extended theory are used to determine the spectral signature and energy contributions of each mode. South of 17°S, the first two extended theory modes explain up to 60% more of the variance in the observed power spectral energy than their classical linear theory counterparts. The second mode contributes significantly over most of the basin. The third mode is also evident in some localised regions of the South Pacific but may be ignored at the large scale. Examination of a selection of case study sites suggest that bathymetric effects may dominate at longer wavelengths, or permit higher order mode solutions but mean flow tends to be the more influential factor in the extended theory. This study also examines the prevalence and characteristics of multiple propagating signals in the South Pacific SLA using the two-dimensional Radon Transform (2D-RT). Primary Radon Transform (RT) and Fourier Transform (FT) peaks generally compared well to each other and to the extended theory first baroclinic mode for most of the domain. A comparison to the energy ratios for the first four FT baroclinic modes showed that while the number of modes in their FT and peaks in the RT analysis coincided, the actual spatial distribution and relative contribution of these was not as consistent. Strong similarities existed in the spatial location and energy contribution between RT peaks 1 and 2 and FT modes 1 and 2. We

  10. Spectral Observations of Diffuse FUV Emission from the Hot Phase of the Interstellar Medium with DUVE

    NASA Astrophysics Data System (ADS)

    Korpela, Eric John

    One of the keys to understanding the structure and distribution of interstellar matter in the galaxy is understanding the distribution of the low density hot (105 K-106 K) phase of the interstellar medium (ISM). Because of its low density and lack of easily observable tracers, this phase is much more difficult to observe than the cooler high density components of the ISM. Because gas of this temperature emits mainly in the far ultraviolet (912 A-1800 A), extreme ultraviolet (80 A-912 A), and (for gas hotter than 106 K) X-rays, observations in these bands can provide important constraints to the distribution of this gas. Because of interstellar opacity at EUV wavelengths, only FUV and X-ray observations can provide clues to the properties of hot gas outside the immediate solar neighborhood. I present results from a search for FUV emission from the diffuse ISM conducted with an orbital FUV spectrometer, DUVE, which was launched in July, 1992. The DUVE spectrometer, which covers the band from 950 A to 1080 A with 3.2 A resolution, observed a region of low neutral hydrogen column density near the south galactic pole for a total effective integration time of 1583 seconds. The only emission line detected was a geocoronal hydrogen line at 1026 A. I am able to place upper limits to several emission features that provide constraints to interstellar plasma parameters. I am also able to place limits to continuum emission throughout the bandpass. I compare these limits and other diffuse observations with several models of the structure of the interstellar medium and discuss the ramifications of these models.

  11. Spectral observations of diffuse FUV emission from the hot phase of the interstellar medium with DUVE

    NASA Astrophysics Data System (ADS)

    Korpela, Eric John

    One of the keys to understanding the structure and distribution of interstellar matter in the galaxy is understanding the distribution of the low density hot (105 K-106 K) phase of the interstellar medium (ISM). Because of its low density and lack of easily observable tracers, this phase is much more difficult to observe than the cooler high density components of the ISM. Because gas of this temperature emits mainly in the far ultraviolet (912 A-1800 A), extreme ultraviolet (80 A-912 A), and (for gas hotter than 106 K) X-rays, observations in these bands can provide important constraints to the distribution of this gas. Because of interstellar opacity at EUV wavelengths, only FUV and X- ray observations can provide clues to the properties of hot gas outside the immediate solar neighborhood. I present results from a search for FUV emission from the diffuse ISM conducted with an orbital FUV spectrometer, DUVE, which was launched in July, 1992. The DUVE spectrometer, which covers the band from 950 A to 1080 A with 3.2 A resolution, observed a region of low neutral hydrogen column density near the south galactic pole for a total effective integration time of 1583 seconds. The only emission line detected was a geocoronal hydrogen line at 1026 A. I am able to place upper limits to several emission features that provide constraints to interstellar plasma parameters. I am also able to place limits to continuum emission throughout the bandpass. I compare these limits and other diffuse observations with several models of the structure of the interstellar medium and discuss the ramifications of these models.

  12. High Spectral Resolution X-ray Observation of Magnetic CVs: EX Hya

    SciTech Connect

    Luna, G; Brickhouse, N S; Mauche, C W

    2008-04-07

    In magnetic cataclysmic variables (CVs) the primary is a highly magnetized white dwarf (WD) whose field controls the accretion flow close to the WD, leading to a shock and accretion column that radiate chiefly in X-rays. We present preliminary results from a 500 ks Chandra HETG observation of the brightest magnetic CV EX Hya. From the observational dataset we are able to measure the temperature and density at different points of the cooling accretion column using sensitive line ratios. We also construct line-based light curves to search for rotational modulation of the X-ray emission.

  13. The Hubble Space Telescope observations of X-ray nova Muscae 1991 and its spectral evolution

    NASA Technical Reports Server (NTRS)

    Cheng, F. H.; Horne, Keith; Panagia, N.; Shrader, C. R.; Gilmozzi, R.; Paresce, F.; Lund, N.

    1992-01-01

    Hubble Space Telescope Faint Object Spectrograph (FOS) Faint Object Camera (FOC) and observations of Nova Muscae 1991 obtained on May 14-15, 1991 are presented and discussed. A nearly featureless continuum with broad 2200 A absorption feature and no Balmer jump is found. The FOS spectrum is modeled, including previous multiepoch IUE, optical, and X-ray data using a simple blackbody accretion disk model. It is found that the mass transfer rate decays exponentially with a characteristic time of about 43 days. The cooling front predicted by the disk instability model should have been observable, but was not seen.

  14. XMM-Newton and Swift Observations of WZ Sagittae: Spectral and Timing Analysis

    NASA Technical Reports Server (NTRS)

    Nucita, A. A.; Kuulkers, E.; De Paolis, F.; Mukai, K.; Ingrosso, G.; Maiolo, B. M. T.

    2014-01-01

    WZ Sagittae is the prototype object of a subclass of dwarf novae with rare and long (super)outbursts, in which a white dwarf primary accretes matter from a low mass companion. High-energy observations offer the possibility of a better understanding of the disk-accretion mechanism in WZ Sge-like binaries.

  15. Spatially and Spectrally Resolved Observations of a "Zebra” Solar Radio Burst

    NASA Astrophysics Data System (ADS)

    Bastian, Timothy S.; Chen, B.; Gary, D. E.

    2010-01-01

    The FASR Subsystems Testbed (FST) is a frequency-agile three-element interferometer located at the Owens Valley Radio Observatory in California. A frequency band of 500 MHz can be dynamically selected within the 1-9 GHz frequency FST operating range. The signal from each antenna is sampled at 1 Gsps and written to disk. The full-resolution time-domain data are then correlated offline to produce amplitude and phase spectra on three interferometric baselines. The FST was used on 14 December 2006 to observe the GOES X1.5 soft X-ray flare in NOAA/USAF active region 10930 at S06W46. The FST observed the event between 1.0-1.5 GHz with a time resolution of 20 ms and a frequency resolution of approximately 1 MHz, time sharing between observations sensitive to right- and left-circularly polarized radiation. A variety of coherent radio bursts was observed, including a highly circularly polarized "Zebra” burst characterized by 7-10 regularly spaced bands of emission in the dynamic spectrum. With new constraints available on the source size and the relative source position as a function of frequency, the double-plasma resonance model is explored, wherein emission in a given band occurs at the upper hybrid frequency that is, in turn, harmonically related to the local electron cyclotron frequency.

  16. Spectral Analysis of Forecast Error Investigated with an Observing System Simulation Experiment

    NASA Technical Reports Server (NTRS)

    Prive, N. C.; Errico, Ronald M.

    2015-01-01

    The spectra of analysis and forecast error are examined using the observing system simulation experiment (OSSE) framework developed at the National Aeronautics and Space Administration Global Modeling and Assimilation Office (NASAGMAO). A global numerical weather prediction model, the Global Earth Observing System version 5 (GEOS-5) with Gridpoint Statistical Interpolation (GSI) data assimilation, is cycled for two months with once-daily forecasts to 336 hours to generate a control case. Verification of forecast errors using the Nature Run as truth is compared with verification of forecast errors using self-analysis; significant underestimation of forecast errors is seen using self-analysis verification for up to 48 hours. Likewise, self analysis verification significantly overestimates the error growth rates of the early forecast, as well as mischaracterizing the spatial scales at which the strongest growth occurs. The Nature Run-verified error variances exhibit a complicated progression of growth, particularly for low wave number errors. In a second experiment, cycling of the model and data assimilation over the same period is repeated, but using synthetic observations with different explicitly added observation errors having the same error variances as the control experiment, thus creating a different realization of the control. The forecast errors of the two experiments become more correlated during the early forecast period, with correlations increasing for up to 72 hours before beginning to decrease.

  17. Observation-Based Dissipation and Input Terms for Spectral Wave Models, with End-User Testing

    DTIC Science & Technology

    2014-09-30

    scale influence of the Great barrier reef matrix on wave attenuation, Coral Reefs [published, refereed] Ghantous, M., and A.V. Babanin, 2014: One...quantitative calibration was done by means of altimeter observations of swell in the Great Australian Bight (Young et al., 2013) and validated through the

  18. UV-B radiation amplification factor determined based on the simultaneous observation of total ozone and global spectral irradiance

    NASA Technical Reports Server (NTRS)

    Ito, T.; Sakoda, Y.; Matsubara, K.; Kajihara, R.; Uekubo, T.; Kobayashi, M.; Shitamichi, M.; Ueno, T.; Ito, M.

    1994-01-01

    The Japan Meteorological Agency started the spectral observation of solar ultraviolet (UV) irradiance on 1 January 1990 at Tateno, Aerological Observatory in Tsukuba (35 deg N, 140 deg E). The observation has been carried out using the Brewer spectrophotometer for the wavelengths from 290 to 325 nm with a 0.5 nm interval every hour from 30 minutes before sunrise to 30 minutes after sunset throughout a year. Because of remarkable similarity within observed spectra, an observed spectrum can be expressed by a simple combination of a reference spectrum and two parameters expressing the deformation of the observed spectrum from the reference. By use of the relation between one of the deformation parameters and the total ozone simultaneously observed with the Dobson spectrophotometer, the possible increase of UV irradiance due to ozone depletion is estimated. For damaging UV, the irradiance possibly increases about 19 percent with the ozone depletion of 10 percent at noon throughout the year in the northern midlatitudes. DUV at noon on the summer solstice possibly increases about 5.6 percent with the ozone depletion of 10 m atm-cm for all latitudes in the Northern Hemisphere.

  19. Direct observation of phonon emission from hot electrons: spectral features in diamond secondary electron emission.

    PubMed

    O'Donnell, Kane M; Edmonds, Mark T; Ristein, Jürgen; Rietwyk, Kevin J; Tadich, Anton; Thomsen, Lars; Pakes, Christopher I; Ley, Lothar

    2014-10-01

    In this work we use high-resolution synchrotron-based photoelectron spectroscopy to investigate the low kinetic energy electron emission from two negative electron affinity surfaces of diamond, namely hydrogenated and lithiated diamond. For hydrogen-terminated diamond electron emission below the conduction band minimum (CBM) is clearly observed as a result of phonon emission subsequent to carrier thermalization at the CBM. In the case of lithiated diamond, we find the normal conduction band minimum emission peak is asymmetrically broadened to higher kinetic energies and argue the broadening is a result of ballistic emission from carriers thermalized to the CBM in the bulk well before the onset of band-bending. In both cases the spectra display intensity modulations that are the signature of optical phonon emission as the main mechanism for carrier relaxation. To our knowledge, these measurements represent the first direct observation of hot carrier energy loss via photoemission.

  20. Chandra X-ray Observations of Jovian Low-latitude Emissions: Morphological, Temporal, and Spectral Characteristics

    NASA Technical Reports Server (NTRS)

    Bhardwaj, Anil; Elsner, Ronald F.; Gladstone, G. Randall; Cravens, Thomas E.; Waiate J. Hunter, Jr.; Branduardi-Raymont, Graziella; Ford, Peter

    2004-01-01

    Chandra observed X-rays from Jupiter during 24-26 February 2003 for about 40 hours with the ACIS-S and HRC-I instruments. The analysis of Jovian low-latitude "disk" Xray emissions are presented and compared with the high-latitude "auroral" emissions. We report the first Chandra ACIS-S measured X-ray spectrum (0.3-2 keV) of Jupiter's low-latitude disk The disk X-ray emission is harder and extends to higher energies than the auroral spectrum. The temporal variation in the Jovian disk X-rays is on an average consistent with those in the solar X-rays observed by GOES, and TIMED/SSE. Contrary to the auroral X-rays, the disk emissions are uniformly distributed over Jupiter; no indication of longitudinal dependence or correlation with surface magneh field strength is visible. Also, unlike the approx. 40 +/- 20 min periodic oscillations seen in the auroral X-ray emissions, the disk emissions do not show any periodic oscillations. The disk spectrum seems to be consistent with resonant and fluorescent scattering of solar X-rays by the Jovian upper atmosphere. Jupiter's disk is found to be about 50% dimmer in soft X-rays in February 2003 compared that in December 2000, which is consistent with the decrease in solar activity. No evidence of lightning-induced X-rays is seen in the Chandra X-ray data. The Jovian disk spectra observed with Chandra-ACIS is stronger than that observed with XMM-Newton two months later during April 28-29, 2003. The XMM-Newton Xray image of Jupiter shows evidence of limb darkening on the anti-sunward side as seen from Earth, as well as an asymmetry with respect to the subsolar point: suggesting a solar driven process.

  1. Pan-spectral observing system simulation experiments of shortwave reflectance and long-wave radiance for climate model evaluation

    NASA Astrophysics Data System (ADS)

    Feldman, D. R.; Collins, W. D.; Paige, J. L.

    2015-07-01

    Top-of-atmosphere (TOA) spectrally resolved shortwave reflectances and long-wave radiances describe the response of the Earth's surface and atmosphere to feedback processes and human-induced forcings. In order to evaluate proposed long-duration spectral measurements, we have projected 21st Century changes from the Community Climate System Model (CCSM3.0) conducted for the Intergovernmental Panel on Climate Change (IPCC) A2 Emissions Scenario onto shortwave reflectance spectra from 300 to 2500 nm and long-wave radiance spectra from 2000 to 200 cm-1 at 8 nm and 1 cm-1 resolution, respectively. The radiative transfer calculations have been rigorously validated against published standards and produce complementary signals describing the climate system forcings and feedbacks. Additional demonstration experiments were performed with the Model for Interdisciplinary Research on Climate (MIROC5) and Hadley Centre Global Environment Model version 2 Earth System (HadGEM2-ES) models for the Representative Concentration Pathway 8.5 (RCP8.5) scenario. The calculations contain readily distinguishable signatures of low clouds, snow/ice, aerosols, temperature gradients, and water vapour distributions. The goal of this effort is to understand both how climate change alters reflected solar and emitted infrared spectra of the Earth and determine whether spectral measurements enhance our detection and attribution of climate change. This effort also presents a path forward to understand the characteristics of hyperspectral observational records needed to confront models and inline instrument simulation. Such simulation will enable a diverse set of comparisons between model results from coupled model intercomparisons and existing and proposed satellite instrument measurement systems.

  2. Spectral Lags of GRBs observed with INTEGRAL and the inferred large population of low-luminosity GRBs

    NASA Astrophysics Data System (ADS)

    Foley, S.; McGlynn, S.; Hanlon, L.; McBreen, S.; McBreen, B.

    2009-05-01

    The γ-ray instruments on board INTEGRAL detected and localised 47 GRBs from its launch in October 2002 up to July 2007. The peak flux distribution shows that INTEGRAL detects proportionally more weak GRBs than Swift because of its higher sensitivity in a smaller field of view. The all-sky rate of GRBs above ~0.15 ph cm-2 s-1 is ~1400yr-1 in the fully coded field of view of IBIS. Spectral lags i.e. the time delay in the arrival of low-energy γ-rays with respect to high-energy γ-rays, are measured for 31 of the GRBs. Two groups are identified in the spectral lag distribution of INTEGRAL GRBs, one with short lags <0.75 s (between 25-50 keV and 50-300 keV) and one with long lags >0.75 s. Most of the long-lag GRBs are inferred to have low redshifts because of their long spectral lags, their tendency to have low peak energies, and their faint optical and X-ray afterglows. They are mainly observed in the direction of the supergalactic plane with a quadrupole moment of Q = -0.225+/-0.090 and hence reflect the local large-scale structure of the Universe. The rate of long-lag GRBs with inferred low luminosity is ~25% of Type Ib/c SNe. Some of these bursts could be produced by the collapse of a massive star without a SN. Alternatively, they could result from a different progenitor, such as the merger of two white dwarfs or a white dwarf with a neutron star or black hole, possibly in the cluster environment without a host galaxy.

  3. Observing system simulation experiments for the laser atmospheric wind sounder using global spectral model

    NASA Technical Reports Server (NTRS)

    Rohaly, Gregg; Krishnamurti, T. N.

    1991-01-01

    Fundamental to improving the understanding of the total Earth system are increased and improved observations. In the coming decade several spaceborne instrumented platforms will be constructed and implemented. These platforms will, in large, be housing the NASA Earth Observing System (EOS) instrument suite. One of the proposed instruments is a wind profiling system which is currently referred to as the Laser Atmospheric Wind Sounder (LAWS). This instrument will use a CO2 Doppler lidar wind profiler to give wind measurements with a vertical and horizontal resolution which has yet to be seen globally. The LAWS instrument is now a candidate for launch on a NASA EOS-B platform and is fundamental to increasing our understanding of Earth system science. The LAWS data sets will form an integral component of the temporally continuous data base needed for research of the coupled climate systems. This instrument's observations will aid in giving an improved description of the atmospheric circulation, including the transports of energy, momentum, moisture, trace gases, and aerosols. Also, the wind data will be assimilated and used as the initial state for many global forecast models at various operational centers. Results of system simulation experiments are discussed, and future experiments are described.

  4. Visible to Near-IR Spectral Units Along the MSL Gale Crater Traverse: Comparison of In Situ Mastcam and Orbital CRISM Observations

    NASA Astrophysics Data System (ADS)

    Wellington, D. F.; Bell, J. F., III; Godber, A.; Kinch, K. M.; Fraeman, A. A.; Ehlmann, B. L.; Arvidson, R. E.; Rice, M. S.; Johnson, J. R.

    2014-12-01

    The Mastcam instruments, comprised of left (M-34) and right (M-100) 1600 x 1200 Bayer pattern CCD cameras, are each equipped with a rotating filter wheel containing six narrow-band science filters to augment RGB color imaging and allow multispectral imaging with band centers spanning the wavelength range 445 - 1013 nm. Several hundred Mastcam multispectral observations have been acquired to date, documenting a diversity of visible to near-infrared spectral behavior observed along Curiosity's traverse toward the base of Mt. Sharp. These observations include both near-field images of materials in or near the rover workspace and also observations targeted towards the more distant central mound. Near-field observations document both outcrop and float rocks, the latter of which may include both local material as well as material transported from nearer the crater rim. Far-field observations of the central mound include the lower and upper layers of the mound as well as the encircling dune field, both of which have been noted in published studies to exhibit spectral variability in the visible to near-infrared from orbital spectral data. Float rocks with spectra distinct from local outcrops may have spectral matches at locations observed only from orbit, suggesting potential source regions. Furthermore, ground-based Mastcam observations may help "ground-truth" orbital data and in turn benefit from orbital predictions of spectral diversity along the future rover traverse. We present comparisons of CRISM and Mastcam multispectral observations of Gale Crater materials to better interpret observed spectral diversity and anticipate areas of likely opportunities for observations of spectral diversity.

  5. High-spectral-resolution observations of the 7.7-micron feature in HD 44179

    NASA Technical Reports Server (NTRS)

    Russell, R. W.; Gull, G.; Beckwith, S.; Evans, N. J., II

    1982-01-01

    Observations of the moon and HD 44179 were obtained in the wavelength range of 7.5-8.5 microns at a resolving power of approximately 800. The spectrum of the moon shows absorptions caused by telluric methane. Use of the moon as a calibrator is effective in removing these atmospheric lines. The spectrum of HD 44179 shows that the 7.7-micron emission feature does not break up into discrete, resolved emission features. Instead, it must be a broad, apparently continuous, emission feature.

  6. High Spectral Resolution Infrared and Raman Lidar Observations for the ARM Program: Clear and Cloudy Sky Applications

    SciTech Connect

    Revercomb, Henry; Tobin, David; Knuteson, Robert; Borg, Lori; Moy, Leslie

    2009-06-17

    This grant began with the development of the Atmospheric Emitted Radiance Interferometer (AERI) for ARM. The AERI has provided highly accurate and reliable observations of downwelling spectral radiance (Knuteson et al. 2004a, 2004b) for application to radiative transfer, remote sensing of boundary layer temperature and water vapor, and cloud characterization. One of the major contributions of the ARM program has been its success in improving radiation calculation capabilities for models and remote sensing that evolved from the multi-year, clear-sky spectral radiance comparisons between AERI radiances and line-by-line calculations (Turner et al. 2004). This effort also spurred us to play a central role in improving the accuracy of water vapor measurements, again helping ARM lead the way in the community (Turner et al. 2003a, Revercomb et al. 2003). In order to add high-altitude downlooking AERI-like observations over the ARM sites, we began the development of an airborne AERI instrument that has become known as the Scanning High-resolution Interferometer Sounder (Scanning-HIS). This instrument has become an integral part of the ARM Unmanned Aerospace Vehicle (ARM-UAV) program. It provides both a cross-track mapping view of the earth and an uplooking view from the 12-15 km altitude of the Scaled Composites Proteus aircraft when flown over the ARM sites for IOPs. It has successfully participated in the first two legs of the “grand tour” of the ARM sites (SGP and NSA), resulting in a very good comparison with AIRS observations in 2002 and in an especially interesting data set from the arctic during the Mixed-Phase Cloud Experiment (M-PACE) in 2004.

  7. Full Stokes observations in the He i 1083 nm spectral region covering an M3.2 flare

    NASA Astrophysics Data System (ADS)

    Kuckein, Christoph; Collados, Manuel; Sainz, Rafael Manso; Ramos, Andrés Asensio

    2015-10-01

    We present an exceptional data set acquired with the Vacuum Tower Telescope (Tenerife, Spain) covering the pre-flare, flare, and post-flare stages of an M3.2 flare. The full Stokes spectropolarimetric observations were recorded with the Tenerife Infrared Polarimeter in the He i 1083.0 nm spectral region. The object under study was active region NOAA 11748 on 2013 May 17. During the flare the chomospheric He i 1083.0 nm intensity goes strongly into emission. However, the nearby photospheric Si i 1082.7 nm spectral line profile only gets shallower and stays in absorption. Linear polarization (Stokes Q and U) is detected in all lines of the He i triplet during the flare. Moreover, the circular polarization (Stokes V) is dominant during the flare, being the blue component of the He i triplet much stronger than the red component, and both are stronger than the Si i Stokes V profile. The Si i inversions reveal enormous changes of the photospheric magnetic field during the flare. Before the flare magnetic field concentrations of up to ~1500 G are inferred. During the flare the magnetic field strength globally decreases and in some cases it is even absent. After the flare the magnetic field recovers its strength and initial configuration.

  8. Microturbulence in the upper photosphere of Alpha Persei (F5 Ib) derived from ultraviolet spectral observations

    NASA Technical Reports Server (NTRS)

    Spaan, F. H. P.; De Jager, C.; Nieuwenhuijzen, H.; Kondo, Y.

    1987-01-01

    High-resolution ultraviolet spectra of the moderate supergiant Alpha Per (F5 Ib) were studied to determine the dynamic state of its upper photosphere. It was found that the line-of-sight microturbulent velocity component in the region of origin of the UV spectrum is about 5 km/s, and is slightly smaller than the value derived from the visual spectrum. This is ascribed to dissipation of mechanical energy between the higher and lower layers where, respectively, the ultraviolet and visual light lines originate. Between these two levels, which are one scale height apart, the mechanical energy flux decreases to about 0.3 of its photospheric value. The consequent value for the (outward directed) turbulent acceleration is 24 cm/sec-squared, more than one half the observationally determined effective acceleration of gravity.

  9. Spectral Observations of the Diffuse FUV Background with DUVE (the Diffuse UV Experiment)

    NASA Astrophysics Data System (ADS)

    Korpela, E. J.; Bowyer, S.

    We present results from a search for FUV emission from the diffuse ISM conducted with an orbital FUV spectrometer, DUVE, which was launched in July, 1992. The DUVE spectrometer, which covers the band from 950 Angstroms to 1080 Angstroms with 3.2 Angstroms resolution, observed a region of low neutral hydrogen column density near the south galactic pole for a total effective integration time of 1583 seconds. The only emission line detected was a geocoronal hydrogen line at 1025 Angstroms. We were able to place upper limits to several emission features that provide constraints to interstellar plasma parameters. We were also able to place continuum limits in this band. We use these upper limits to place constraints upon the emission measure vs. temperature distribution of this gas using an isothermal Landini and Fossi model.

  10. THE MEGAMASER COSMOLOGY PROJECT. VII. INVESTIGATING DISK PHYSICS USING SPECTRAL MONITORING OBSERVATIONS

    SciTech Connect

    Pesce, D. W.; Braatz, J. A.; Condon, J. J.; Gao, F.; Lo, K. Y.; Henkel, C.; Litzinger, E.; Reid, M. J.

    2015-09-01

    We use single-dish radio spectra of known 22 GHz H{sub 2}O megamasers, primarily gathered from the large data set observed by the Megamaser Cosmology Project, to identify Keplerian accretion disks and to investigate several aspects of the disk physics. We test a mechanism for maser excitation proposed by Maoz and McKee (1998), whereby population inversion arises in gas behind spiral shocks traveling through the disk. Though the flux of redshifted features is larger on average than that of blueshifted features, in support of the model, the high-velocity features show none of the predicted systematic velocity drifts. We find rapid intra-day variability in the maser spectrum of ESO 558−G009 that is likely the result of interstellar scintillation, for which we favor a nearby (D ≈ 70 pc) scattering screen. In a search for reverberation in six well-sampled sources, we find that any radially propagating signal must be contributing ≲10% of the total variability. We also set limits on the magnetic field strengths in seven sources, using strong flaring events to check for the presence of Zeeman splitting. These limits are typically 200–300 mG (1σ), but our most stringent limits reach down to 73 mG for the galaxy NGC 1194.

  11. The Megamaser Cosmology Project. VII. Investigating Disk Physics Using Spectral Monitoring Observations

    NASA Astrophysics Data System (ADS)

    Pesce, D. W.; Braatz, J. A.; Condon, J. J.; Gao, F.; Henkel, C.; Litzinger, E.; Lo, K. Y.; Reid, M. J.

    2015-09-01

    We use single-dish radio spectra of known 22 GHz H2O megamasers, primarily gathered from the large data set observed by the Megamaser Cosmology Project, to identify Keplerian accretion disks and to investigate several aspects of the disk physics. We test a mechanism for maser excitation proposed by Maoz & McKee (1998), whereby population inversion arises in gas behind spiral shocks traveling through the disk. Though the flux of redshifted features is larger on average than that of blueshifted features, in support of the model, the high-velocity features show none of the predicted systematic velocity drifts. We find rapid intra-day variability in the maser spectrum of ESO 558-G009 that is likely the result of interstellar scintillation, for which we favor a nearby (D ≈ 70 pc) scattering screen. In a search for reverberation in six well-sampled sources, we find that any radially propagating signal must be contributing ≲10% of the total variability. We also set limits on the magnetic field strengths in seven sources, using strong flaring events to check for the presence of Zeeman splitting. These limits are typically 200-300 mG (1σ), but our most stringent limits reach down to 73 mG for the galaxy NGC 1194.

  12. New grating concepts in the NIR and SWIR spectral band for high resolution earth-observation spectrometers

    NASA Astrophysics Data System (ADS)

    Flügel-Paul, T.; Kalkowski, G.; Benkenstein, T.; Harzendorf, T.; Matthes, A.; Zeitner, U. D.

    2016-07-01

    We report about our latest achievements to realize the diffraction gratings during the development activities for a future Earth observation high resolution spectrometer studied by ESA. The gratings are manufactured by electron beam lithography on fused silica substrates. The optical performance is considerably increased by applying a dedicated high refractive index coating to the grating structure using atomic layer deposition (ALD). Thus, we were able to achieve diffraction efficiencies larger than 75% averaged over both linear polarizations states, i.e. TE and TM. At the same time, the polarization sensitivity is well below 10% in both cases. Finally, the diffraction gratings for the SWIR-1 spectral channel were bonded on a massive prism substrate in order to realize a GRISM element. This process was achieved by direct fused silica bonding performed under atmospheric pressure within special mechanical equipment designed and constructed particularly for this purpose.

  13. STACEE observations of Markarian 421 above 100 GeV and a new method for high-energy spectral analysis

    NASA Astrophysics Data System (ADS)

    Carson, Jennifer Elaine

    Markarian 421 is a nearby (z =0.03) blazar that is actively studied to constrain both physical blazar models and models of the extragalactic background light. The Solar Tower Atmospheric Cherenkov Effect Experiment (STACEE), a wavefront- sampling detector sensitive to ~ 100 GeV gamma rays, detected Mkn 421 during a multiwavelength campaign in early 2004. This thesis covers the 2004 STACEE observations of Mkn 421 and their analysis. The goal of the project was to measure the gamma-ray spectrum of Mkn 421; such a spectral result would be STACEE's first and one of the first from any detector in STACEE's energy range. Achieving this goal required the development of a new method for reconstructing gamma-ray energies from the STACEE data. The reconstruction method is described in detail, and the resulting spectrum is presented. Finally, the implications of the results for understanding high-energy emission mechanisms in AGN are discussed.

  14. Constraining precipitation initiation in marine stratocumulus using aircraft observations and LES with high spectral resolution bin microphysics

    NASA Astrophysics Data System (ADS)

    Witte, M.; Chuang, P. Y.; Rossiter, D.; Ayala, O.; Wang, L. P.

    2015-12-01

    Turbulence has been suggested as one possible mechanism to accelerate the onset of autoconversion and widen the process "bottleneck" in the formation of warm rain. While direct observation of the collision-coalescence process remains beyond the reach of present-day instrumentation, co-located sampling of atmospheric motion and the drop size spectrum allows for comparison of in situ observations with simulation results to test representations of drop growth processes. This study evaluates whether observations of drops in the autoconversion regime can be replicated using our best theoretical understanding of collision-coalescence. A state-of-the-art turbulent collisional growth model is applied to a bin microphysics scheme within a large-eddy simulation such that the full range of cloud drop growth mechanisms are represented (i.e. CCN activation, condensation, collision-coalescence, mixing, etc.) at realistic atmospheric conditions. The spectral resolution of the microphysics scheme has been quadrupled in order to (a) more closely match the resolution of the observational instrumentation and (b) limit numerical diffusion, which leads to spurious broadening of the drop size spectrum at standard mass-doubling resolution. We compare simulated cloud drop spectra with those obtained from aircraft observations to assess the quality and limits of our theoretical knowledge. The comparison is performed for two observational cases from the Physics of Stratocumulus Top (POST) field campaign: 12 August 2008 (drizzling night flight, Rmax~2 mm/d) and 15 August 2008 (nondrizzling day flight, Rmax<0.5 mm/d). Both flights took place off the coast of Monterey, CA and the two cases differ in their radiative cooling rates, shear, cloud-top temperature and moisture jumps, and entrainment rates. Initial results from a collision box model suggest that enhancements of approximately 2 orders of magnitude over theoretical turbulent collision rates may be necessary to reproduce the

  15. SWIFT OBSERVATIONS OF GAMMA-RAY BURST PULSE SHAPES: GRB PULSE SPECTRAL EVOLUTION CLARIFIED

    SciTech Connect

    Hakkila, Jon; Lien, Amy; Sakamoto, Takanori; Morris, David; Neff, James E.; Giblin, Timothy W.

    2015-12-20

    Isolated Swift gamma-ray burst (GRB) pulses, like their higher-energy BATSE counterparts, emit the bulk of their pulsed emission as a hard-to-soft component that can be fitted by the Norris et al. empirical pulse model. This signal is overlaid by a fainter, three-peaked signal that can be modeled by the residual fit of Hakkila and Preece: the two fits combine to reproduce GRB pulses with distinctive three-peaked shapes. The precursor peak appears on or before the pulse rise and is often the hardest component, the central peak is the brightest, and the decay peak converts exponentially decaying emission into a long, soft, power-law tail. Accounting for systematic instrumental differences, the general characteristics of the fitted pulses are remarkably similar. Isolated GRB pulses are dominated by hard-to-soft evolution; this is more pronounced for asymmetric pulses than for symmetric ones. Isolated GRB pulses can also exhibit intensity tracking behaviors that, when observed, are tied to the timing of the three peaks: pulses with the largest maximum hardnesses are hardest during the precursor, those with smaller maximum hardnesses are hardest during the central peak, and all pulses can re-harden during the central peak and/or during the decay peak. Since these behaviors are essentially seen in all isolated pulses, the distinction between “hard-to-soft and “intensity-tracking” pulses really no longer applies. Additionally, the triple-peaked nature of isolated GRB pulses seems to indicate that energy is injected on three separate occasions during the pulse duration: theoretical pulse models need to account for this.

  16. Jupiter's Deep Cloud Structure Revealed Using Keck Observations of Spectrally Resolved Line Shapes

    NASA Technical Reports Server (NTRS)

    Bjoraker, G. L.; Wong, M.H.; de Pater, I.; Adamkovics, M.

    2015-01-01

    Technique: We present a method to determine the pressure at which significant cloud opacity is present between 2 and 6 bars on Jupiter. We use: a) the strength of a Fraunhofer absorption line in a zone to determine the ratio of reflected sunlight to thermal emission, and b) pressure- broadened line profiles of deuterated methane (CH3D) at 4.66 meters to determine the location of clouds. We use radiative transfer models to constrain the altitude region of both the solar and thermal components of Jupiter's 5-meter spectrum. Results: For nearly all latitudes on Jupiter the thermal component is large enough to constrain the deep cloud structure even when upper clouds are present. We find that Hot Spots, belts, and high latitudes have broader line profiles than do zones. Radiative transfer models show that Hot Spots in the North and South Equatorial Belts (NEB, SEB) typically do not have opaque clouds at pressures greater than 2 bars. The South Tropical Zone (STZ) at 32 degrees South has an opaque cloud top between 4 and 5 bars. From thermochemical models this must be a water cloud. We measured the variation of the equivalent width of CH3D with latitude for comparison with Jupiter's belt-zone structure. We also constrained the vertical profile of H2O in an SEB Hot Spot and in the STZ. The Hot Spot is very dry for a probability less than 4.5 bars and then follows the H2O profile observed by the Galileo Probe. The STZ has a saturated H2O profile above its cloud top between 4 and 5 bars.

  17. Suzaku observations of spectral variations of the ultra-luminous X-ray source Holmberg IX X-1

    NASA Astrophysics Data System (ADS)

    Kobayashi, Shogo B.; Nakazawa, Kazuhiro; Makishima, Kazuo

    2017-02-01

    Observations of the ultra-luminous X-ray source (ULX) Holmberg IX X-1 were carried out with Suzaku twice, once on 2012 April 13 and then on 2012 October 24, with exposures of 180 ks and 217 ks, respectively. The source showed a hard power-law shaped spectrum with a mild cutoff at ˜8 keV, which is typical of ULXs when they are relatively dim. On both occasions, the 0.6-11 keV spectrum was explained successfully in terms of a cool (˜0.2 keV) multi-color disk blackbody emission model and thermal Comptonization emission produced by an electron cloud with a relatively low temperature and high optical depth, assuming that a large fraction of the disk-blackbody photons are Comptonized whereas the rest are observed directly. The 0.5-10 keV luminosity was 1.2 × 1040 erg s-1 in April, and ˜14% higher in October. This brightening was accompanied by spectral softening in ≥2 keV, with little change in the ≤2 keV spectral shape. This behavior can be understood if the accretion disk remains unchanged while the electron cloud covers a variable fraction of the disk. The absorbing column density was consistent with the galactic line-of sight value, and did not vary by more than 1.6 × 1021 cm-2. Together with the featureless spectra, these properties may not be reconciled easily with the super-critical accretion scenario of this source.

  18. Detection of faint broad emission lines in type 2 AGN - I. Near-infrared observations and spectral fitting

    NASA Astrophysics Data System (ADS)

    Onori, F.; La Franca, F.; Ricci, F.; Brusa, M.; Sani, E.; Maiolino, R.; Bianchi, S.; Bongiorno, A.; Fiore, F.; Marconi, A.; Vignali, C.

    2017-01-01

    We present medium resolution near-infrared spectroscopic observations of 41 obscured and intermediate class active galactic nuclei (AGN; type 2, 1.9 and 1.8; AGN2) with redshift z ≲ 0.1, selected from the Swift/Burst Alert Telescope 70-month catalogue. The observations have been carried out in the framework of a systematic study of the AGN2 near-infrared spectral properties and have been executed using Infrared Spectrometer And Array Camera/VLT, X-shooter/VLT and LUCI/LBT, reaching an average S/N ratio of ˜30 per resolution element. For those objects observed with X-shooter, we also obtained simultaneous optical and UV spectroscopy. We have identified a component from the broad line region in 13 out of 41 AGN2, with full width at half-maximum (FWHM) > 800 km s-1. We have verified that the detection of the broad line region components does not significantly depend on selection effects due to the quality of the spectra, the X-ray or near-infrared fluxes, the orientation angle of the host galaxy or the hydrogen column density measured in the X-ray band. The average broad line region components found in AGN2 has a significantly (a factor 2) smaller FWHM if compared with a control sample of type 1 AGN.

  19. The wide band spectral observation of high mass x-ray binary 4u1700-37 with suzaku (II)

    NASA Astrophysics Data System (ADS)

    Koseki, Yuu; Sasaki, Chikako; Kokubun, Motohide

    4U1700-37 is a high mass X-ray binary discovered by Uhuru satellite, whose companion star HD153919 is the brightest one in the visible light. 4U1700-37 was observed with Suzaku from September 13th to 14th, 2006. The observational period corresponded to an orbital phase of 0.30-0.72, and the XIS mode was set to be 1/4 window mode with 1 sec Burst mode. We have divided all observation data into 1000 sec periods and individually fitted the extracted spectra by the cut off power-law model. Several results were obtained from light curves of the best-fit parameters. The normalization of power-law and line flux was fluctuating by a factor of 10, and the absorption was also making a variation such order. On the other hand, the power-law index approximately stayed in a range of 0.7-1.2, except a short period in which the value dropped smaller than 0. The cutoff and folding energy stayed comparatively flat, changing between 4 and 14 keV, 5 and 25 keV, respectively. The line center energy almost remained constant. We will report these results on the wide-band spectral properties and temporal behaviors of 4U1700-37.

  20. HARPS-N high spectral resolution observations of Cepheids I. The Baade-Wesselink projection factor of δ Cep revisited

    NASA Astrophysics Data System (ADS)

    Nardetto, N.; Poretti, E.; Rainer, M.; Fokin, A.; Mathias, P.; Anderson, R. I.; Gallenne, A.; Gieren, W.; Graczyk, D.; Kervella, P.; Mérand, A.; Mourard, D.; Neilson, H.; Pietrzynski, G.; Pilecki, B.; Storm, J.

    2017-01-01

    Context. The projection factor p is the key quantity used in the Baade-Wesselink (BW) method for distance determination; it converts radial velocities into pulsation velocities. Several methods are used to determine p, such as geometrical and hydrodynamical models or the inverse BW approach when the distance is known. Aims: We analyze new HARPS-N spectra of δ Cep to measure its cycle-averaged atmospheric velocity gradient in order to better constrain the projection factor. Methods: We first apply the inverse BW method to derive p directly from observations. The projection factor can be divided into three subconcepts: (1) a geometrical effect (p0); (2) the velocity gradient within the atmosphere (fgrad); and (3) the relative motion of the optical pulsating photosphere with respect to the corresponding mass elements (fo-g). We then measure the fgrad value of δ Cep for the first time. Results: When the HARPS-N mean cross-correlated line-profiles are fitted with a Gaussian profile, the projection factor is pcc-g = 1.239 ± 0.034(stat.) ± 0.023(syst.). When we consider the different amplitudes of the radial velocity curves that are associated with 17 selected spectral lines, we measure projection factors ranging from 1.273 to 1.329. We find a relation between fgrad and the line depth measured when the Cepheid is at minimum radius. This relation is consistent with that obtained from our best hydrodynamical model of δ Cep and with our projection factor decomposition. Using the observational values of p and fgrad found for the 17 spectral lines, we derive a semi-theoretical value of fo-g. We alternatively obtain fo-g = 0.975 ± 0.002 or 1.006 ± 0.002 assuming models using radiative transfer in plane-parallel or spherically symmetric geometries, respectively. Conclusions: The new HARPS-N observations of δ Cep are consistent with our decomposition of the projection factor. The next step will be to measure p0 directly from the next generation of visible interferometers

  1. The observation of spectral variation indicative of porphyrin biomarkers in reflectance spectra of source rock - The application of remote sensing technology to petroleum geochemistry

    NASA Technical Reports Server (NTRS)

    Holden, Peter Newhall; Gaffey, Michael J.

    1990-01-01

    The spectral signature of porphyrin compounds, considered to be biomarkers of depositional environment and thermal maturity, have been identified in reflectance spectra of oil shales. The key bands identified, in order of intensity, are the Soret (0.40 microns), alpha (0.57 microns), and beta (0.53 microns) bands. The observed bands represent the composite spectral signature of all porphyrin compounds present in the sample and, therefore, change position and intensity in accordance with changes in porphyrin chemistry.

  2. VNIR spectral features observed by the Mars Exploration Rover Opportunity in hematite-bearing materials at Meridiani Planum

    NASA Astrophysics Data System (ADS)

    Farrand, W. H.; Bell, J. F.; Morris, R. V.; Joliff, B. L.; Squyres, S. W.; Souza, P. A.

    2004-12-01

    The Mars Exploration Rover Opportunity was sent to Meridiani Planum based largely on MGS TES spectroscopic evidence of a large surface exposure of coarse grained gray hematite. The presence of hematite at Meridiani Planum has been confirmed through thermal infrared spectroscopy by the rover's Mini-TES instrument and by in-situ measurements by its Moessbauer (MB) spectrometer. Several types of hematite, as expressed by differences in MB spectral parameters, have been associated with various rocks and soils examined in Eagle crater and on the surrounding plains. The host materials include the small spherules (informally known as "blueberries") littering the floor of Eagle crater and the plains of Meridiani, the outcrop rock itself, specific types of soils, and two measurements on unique rocks in the Shoemaker's Patio area of Eagle crater. At the visible to near infrared (VNIR) wavelengths covered by the rover's multispectral Panoramic camera (Pancam), gray hematite is spectrally neutral. However, multispectral observations by Pancam of some of these hematite-bearing materials show discernable spectral features. Specifically, portions of the outcrop visible in the walls of Eagle crater display a strong 535 nm absorption feature. This feature resembles a similar feature in laboratory spectra of red hematite, but the characteristic 860 nm absorption of red hematite is either absent or is instead replaced by a longer wavelength absorption centered on Pancam's 900 nm channel. The blueberries display a deep and broad absorption centered on 900 nm and as well as an increase in reflectance in the 1009 nm band. The shape of the absorption feature in the blueberries is consistent with that seen in red hematite, but again the band minimum is displaced to a longer wavelength than would be expected for red hematite. The blueberries also lack the prominent absorption at the shortest wavelengths that would be expected of red hematite. The unique hematite-bearing (or coated) rocks

  3. Observation of Individual Particle Morphology, Mineralogy in tandem with Columnar Spectral Aerosol Optics: A Summertime Study over North western India

    NASA Astrophysics Data System (ADS)

    Mishra, S.; Saha, N.; Singh, S.; Agnihotri, R.; Sharma, C.; Prasad, M. V. S. N.; Arya, B. C.; Naaraayanan, T.; Gautam, S.; Rathore, J. S.; Soni, V. K.; Tawale, J. S.

    2014-12-01

    Limitation over region specific data on dust morphology (particle shape, size) and mineralogy gives rise to uncertainty in estimation of optical and radiative properties of mineral dust (Mishra and Tripathi, 2008; Mishra et al., 2008). To address this issue over Indian arid zone (local source of mineral dust), a short field campaign was organized in Jodhpur, located in Rajasthan, a north western state of India, over seven sites (four in city and three far from city) with varying altitudes in June 2013. Jodhpur lies in vicinity of the Thar Desert of Rajasthan. Particles were collected on pure Tin substrates for individual particle morphological and elemental composition analysis using Scanning Electron Microscope (SEM) equipped with Energy Dispersive Spectrometer (EDS). The morphological parameters (e.g. Aspect ratio; AR, Circulatory parameter; CIR.) were retrieved following Okada et al. (2001) using Image J software. Columnar spectral aerosol optical thickness has been measured by Microtops-II sun photometer for a set of five wavelengths (380 to 1020 nm) over all the sites in tandem with regional aerosol collection. SEM analysis reveals that the particles close to spherical shape (AR range 1.0-1.2) were found to be ~ 18% whereas particles with AR range 1.2-1.4 were found to be abundant (25%) followed with that of AR range 1.4-1.6 and 1.6-1.8 (each ~ 17%) and 1.8-2.0 (~ 14%) while the particles with AR >2 (highly non-spherical) were found to be ~ 8%. Here, it is noteworthy to mention that AR=1 for spherical particle while increasing AR (>1) exhibit increasing non-sphericity of particles. The EDS analysis reveals that 43% particles were observed with low hematite (H ≤ 1%; volume percentage), 24% (H 1-2 %), 14% (H 2-3%), 5% (H 3-4%) and 14% (H >4%). The aforementioned proportions will be extremely useful for simulating the optical and radiative properties of regional aerosols. From the Microtops-II observations, Ångström exponent for spectral interval of 380 to

  4. Terrestrial Gamma-ray Flashes (TGFs) Observed with the Fermi-Gamma-ray Burst Monitor: Temporal and Spectral Properties

    NASA Technical Reports Server (NTRS)

    Fishman, G. J.; Briggs, M. S.; Connaughton, W.; Wilson-Hodge, C.; Bhat, P. N.

    2010-01-01

    The Gamma-ray Burst Monitor (GBM) on the Fermi Gamma-ray Space Telescope Observatory (Fermi) was detecting 2.1 TGFs per week. This rate has increased by a factor of 8 since new flight software was uploaded to the spacecraft in November 2009 in order to increase the sensitivity of GBM to TGFs. Further upgrades to Fermi-GBM to allow observations of weaker TGFs are in progress. The high time resolution (2 s) allows temporal features to be resolved so that some insight may be gained on the origin and transport of the gamma-ray photons through the atmosphere. The absolute time of the TGFs, known to several microseconds, also allows accurate correlations of TGFs with lightning networks and other lightning-related phenomena. The thick bismuth germanate (BGO) scintillation detectors of the GBM system have observed photon energies from TGFs at energies above 40 MeV. New results on the some temporal aspects of TGFs will be presented along with spectral characteristics and properties of several electron-positron TGF events that have been identified.

  5. Multiple-view spectrally resolved x-ray imaging observations of polar-direct-drive implosions on OMEGA

    SciTech Connect

    Mancini, R. C.; Johns, H. M.; Joshi, T.; Mayes, D.; Nagayama, T.; Hsu, S. C.; Baumgaertel, J. A.; Cobble, J.; Krasheninnikova, N. S.; Bradley, P. A.; Hakel, P.; Murphy, T. J.; Schmitt, M. J.; Shah, R. C.; Tregillis, I. L.; Wysocki, F. J.

    2014-12-15

    We present spatially, temporally, and spectrally resolved narrow- and broad-band x-ray images of polar-direct-drive (PDD) implosions on OMEGA. These self-emission images were obtained during the deceleration phase and bang time using several multiple monochromatic x-ray imaging instruments fielded along two or three quasi-orthogonal lines-of-sight, including equatorial and polar views. The instruments recorded images based on K-shell lines from a titanium tracer located in the shell as well as continuum emission. These observations constitute the first such data obtained for PDD implosions. The image data show features attributed to laser imprinting and zero-order hydrodynamics. Equatorial-view images show a “double bun” structure that is consistent with synthetic images obtained from post-processing 2D and 3D radiation-hydrodynamic simulations of the experiment. Polar-view images show a pentagonal, petal pattern that correlates with the PDD laser illumination used on OMEGA, thus revealing a 3D aspect of PDD OMEGA implosions not previously observed. Differences are noted with respect to a PDD experiment performed at National Ignition Facility.

  6. The FEROS-Lick/SDSS observational data base of spectral indices of FGK stars for stellar population studies

    NASA Astrophysics Data System (ADS)

    Franchini, M.; Morossi, C.; Marcantonio, P. Di; Malagnini, M. L.; Chavez, M.

    2014-07-01

    We present FEROS-Lick/SDSS, an empirical data base of Lick/SDSS spectral indices of FGK stars to be used in population synthesis projects for discriminating different stellar populations within the integrated light of galaxies and globular clusters. From about 2500 FEROS stellar spectra obtained from the European Southern Observatory Science Archive Facility, we computed line-strength indices for 1085 non-supergiant stars with atmospheric parameter estimates from the AMBRE project. Two samples of 312 dwarfs and of 83 subgiants with solar chemical composition and no significant α-element abundance enhancement are used to compare their observational indices with the predictions of the Lick/SDSS library of synthetic indices. In general, the synthetic library reproduces very well the behaviour of observational indices as a function of temperature, but in the case of low-temperature (Teff ≲ 5000 K) dwarfs; low-temperature subgiants are not numerous enough to derive any conclusion. Several possible causes of the disagreement are discussed and promising theoretical improvements are presented.

  7. Fine Spectral Properties of Langmuir Waves Observed Upstream of the Saturn's Bowshock by the Cassini Wideband Receiver

    NASA Astrophysics Data System (ADS)

    Hospodarsky, G. B.; Pisa, D.; Santolik, O.; Kurth, W. S.; Soucek, J.; Basovnik, M.; Gurnett, D. A.; Arridge, C. S.

    2015-12-01

    Langmuir waves are commonly observed in the upstream regions of planetary and interplanetary shock. Solar wind electrons accelerated at the shock front are reflected back into the solar wind and can form electron beams. In regions with beams, the electron distribution becomes unstable and electrostatic waves can be generated. The process of generation and the evolution of electrostatic waves strongly depends on the solar wind electron distribution and generally exhibits complex behavior. Langmuir waves can be identified as intense narrowband emission at a frequency very close to the local plasma frequency and weaker broadband waves below and above the plasma frequency deeper in the downstream region. We present a detailed study of Langmuir waves detected upstream of the Saturnian bowshock by the Cassini spacecraft. Using data from the Radio and Plasma Wave Science (RPWS), Magnetometer (MAG) and Cassini Plasma Spectrometer (CAPS) instruments we have analyzed several periods containing the extended waveform captures by the Wideband Receiver. Langmuir waves are a bursty emission highly controlled by variations in solar wind conditions. Unfortunately due to a combination of instrumental field of view and sampling period, it is often difficult to identify the electron distribution function that is unstable and able to generate Langmuir waves. We used an electrostatic version of particle-in-cell simulation of the Langmuir wave generation process to reproduce some of the more subtle observed spectral features and help understand the late stages of the instability and interactions in the solar wind plasma.

  8. Difference of Horizontal-to-Vertical (H/V) Spectral Ratios of Microtremors and Earthquake Motions: Theory and Observation

    NASA Astrophysics Data System (ADS)

    Kawase, H.; Nagashima, F.; Matsushima, S.; Sanchez-Sesma, F. J.

    2013-05-01

    Horizontal-to-vertical spectral ratios (HVRs) of microtremors have been traditionally interpreted theoretically as representing the Rayleigh wave ellipticity or just utilized a convenient tool to extract predominant periods of ground. However, based on the diffuse field theory (Sánchez-Sesma et al., 2011) the microtremor H/V spectral ratios (MHVRs) correspond to the square root of the ratio of the imaginary part of horizontal displacement for a horizontally applied unit harmonic load and the imaginary part of vertical displacement for a vertically applied unit load. The same diffuse field concept leads us to derive a simple formula for earthquake HVRs (EHVRs), that is, the ratio of the horizontal motion on the surface for a vertical incidence of S wave divided by the vertical motion on the surface for a vertical incidence of P wave with a fixed coefficient (Kawase et al., 2011). The difference for EHVRs comes from the fact that primary contribution of earthquake motions would be of plane body waves. Traditionally EHVRs are interpreted as the responses of inclined SV wave incidence only for their S wave portions. Without these compact theoretical solutions, EHVRs and MHVRs are either considered to be very similar/equivalent, or totally different in the previous studies. With these theoretical solutions we need to re-focus our attention on the difference of HVRs. Thus we have compared here HVRs at several dozens of strong motion stations in Japan. When we compared observed HVRs we found that EHVRs tend to be higher in general than the MHVRs, especially around their peaks. As previously reported, their general shapes share the common features. Especially their fundamental peak and trough frequencies show quite a good match to each other. However, peaks in EHVRs in the higher frequency range would not show up in MHVRs. When we calculated theoretical HVRs separately at these target sites, their basic characteristics correspond to these observed differences. At this

  9. Comparison of Gravity Wave Temperature Variances from Ray-Based Spectral Parameterization of Convective Gravity Wave Drag with AIRS Observations

    NASA Technical Reports Server (NTRS)

    Choi, Hyun-Joo; Chun, Hye-Yeong; Gong, Jie; Wu, Dong L.

    2012-01-01

    The realism of ray-based spectral parameterization of convective gravity wave drag, which considers the updated moving speed of the convective source and multiple wave propagation directions, is tested against the Atmospheric Infrared Sounder (AIRS) onboard the Aqua satellite. Offline parameterization calculations are performed using the global reanalysis data for January and July 2005, and gravity wave temperature variances (GWTVs) are calculated at z = 2.5 hPa (unfiltered GWTV). AIRS-filtered GWTV, which is directly compared with AIRS, is calculated by applying the AIRS visibility function to the unfiltered GWTV. A comparison between the parameterization calculations and AIRS observations shows that the spatial distribution of the AIRS-filtered GWTV agrees well with that of the AIRS GWTV. However, the magnitude of the AIRS-filtered GWTV is smaller than that of the AIRS GWTV. When an additional cloud top gravity wave momentum flux spectrum with longer horizontal wavelength components that were obtained from the mesoscale simulations is included in the parameterization, both the magnitude and spatial distribution of the AIRS-filtered GWTVs from the parameterization are in good agreement with those of the AIRS GWTVs. The AIRS GWTV can be reproduced reasonably well by the parameterization not only with multiple wave propagation directions but also with two wave propagation directions of 45 degrees (northeast-southwest) and 135 degrees (northwest-southeast), which are optimally chosen for computational efficiency.

  10. The Broadband Spectral Variability of MCG-6-30-15 Observed by NuSTAR and XMM-Newton

    NASA Astrophysics Data System (ADS)

    Marinucci, A.; Matt, G.; Miniutti, G.; Guainazzi, M.; Parker, M. L.; Brenneman, L.; Fabian, A. C.; Kara, E.; Arevalo, P.; Ballantyne, D. R.; Boggs, S. E.; Cappi, M.; Christensen, F. E.; Craig, W. W.; Elvis, M.; Hailey, C. J.; Harrison, F. A.; Reynolds, C. S.; Risaliti, G.; Stern, D. K.; Walton, D. J.; Zhang, W.

    2014-05-01

    MCG-6-30-15, at a distance of 37 Mpc (z = 0.008), is the archetypical Seyfert 1 galaxy showing very broad Fe Kα emission. We present results from a joint NuSTAR and XMM-Newton observational campaign that, for the first time, allows a sensitive, time-resolved spectral analysis from 0.35 keV up to 80 keV. The strong variability of the source is best explained in terms of intrinsic X-ray flux variations and in the context of the light-bending model: the primary, variable emission is reprocessed by the accretion disk, which produces secondary, less variable, reflected emission. The broad Fe Kα profile is, as usual for this source, well explained by relativistic effects occurring in the innermost regions of the accretion disk around a rapidly rotating black hole. We also discuss the alternative model in which the broadening of the Fe Kα is due to the complex nature of the circumnuclear absorbing structure. Even if this model cannot be ruled out, it is disfavored on statistical grounds. We also detected an occultation event likely caused by broad-line region clouds crossing the line of sight.

  11. Trend analysis of aerosol optical thickness and Ångström exponent derived from the global AERONET spectral observations

    NASA Astrophysics Data System (ADS)

    Yoon, J.; von Hoyningen-Huene, W.; Kokhanovsky, A. A.; Vountas, M.; Burrows, J. P.

    2012-06-01

    Regular aerosol observations based on well-calibrated instruments have led to a better understanding of the aerosol radiative budget on Earth. In recent years, these instruments have played an important role in the determination of the increase of anthropogenic aerosols by means of long-term studies. Only few investigations regarding long-term trends of aerosol optical characteristics (e.g. aerosol optical thickness (AOT) and Ångström exponent (ÅE)) have been derived from ground-based observations. This paper aims to derive and discuss linear trends of AOT (440, 675, 870, and 1020 nm) and ÅE (440-870 nm) using AErosol RObotic NETwork (AERONET) level 2.0 spectral observations. Additionally, temporal trends of coarse- and fine-mode dominant AOTs (CdAOT and FdAOT) have been estimated by applying an aerosol classification based on accurate ÅE and Ångström exponent difference (ÅED). In order to take into account the fact that cloud disturbance is having a significant influence on the trend analysis of aerosols, we introduce a weighted least squares regression depending on two weights: (1) monthly standard deviation (σt) and (2) number of observations per month (nt). Temporal increase of FdAOTs (440 nm) prevails over newly industrializing countries in East Asia (weighted trends; +6.23% yr-1 at Beijing) and active agricultural burning regions in South Africa (+1.89% yr-1 at Mongu). On the other hand, insignificant or negative trends for FdAOTs are detected over Western Europe (+0.25% yr-1 at Avignon and -2.29% yr-1 at Ispra) and North America (-0.52% yr-1 for GSFC and -0.01% yr-1 at MD_Science_Center). Over desert regions, both increase and decrease of CdAOTs (+3.37% yr-1 at Solar_Village and -1.18% yr-1 at Ouagadougou) are observed depending on meteorological conditions.

  12. X-Ray Timing and Spectral Observations of Galactic Black Hole Candidate XTE J1550--564 During Outburst

    SciTech Connect

    Reilly, Kaice T

    2002-12-11

    Soft X-ray transients (SXTs), a sub-class of low-mass X-ray binaries (LMXBs), provide a unique opportunity to test General Relativity and to probe fundamental physics under conditions terrestrially unattainable. SXT outbursts are of great interest because they allow the study of LMXBs under a wide range of accretion rates. The majority of known SXTs contain black holes, therefore SXT outbursts are key to understanding accretion physics around black holes and in active galactic nuclei, which are thought to contain supermassive, M {approx} 10{sup 6} - 10{sup 10} M{circle_dot}, where M{circle_dot} is one solar mass, central compact objects. These compact objects are most likely black holes, which exhibit, on a much larger scale, accretion physics similar to that around black holes in SXTs. In this work, the timing and spectral properties of the SXT and microquasar XTE J1550-564 during outburst are studied. Observations made by the Unconventional Stellar Aspect (USA) Experiment on board the Advanced Research and Global Observation Satellite (ARGOS) are emphasized. USA data show a low-frequency quasi-periodic oscillation (LFQPO) with a centroid frequency that tends to increase with increasing USA flux and a fractional rms amplitude which is correlated with the USA hardness ratio (4-16 keV/1-4 keV). Several high-frequency quasi-periodic oscillations (HFQPOs) were detected by the Rossi X-ray Timing Explorer (RXTE), during periods where the LFQPO is seen to be weakening or not detectable at all. The evolution of the USA hardness ratio with time and source flux is examined. The hardness-intensity diagram shows counterclockwise cyclical evolution and possibly indicates the presence of two independent accretion flows: a geometrically thin, optically thick accretion disk and a hot sub-Keplerian flow.

  13. Observational study of surface spectral radiation and corresponding albedo over Gobi, desert, and bare loess surfaces in northwestern China

    NASA Astrophysics Data System (ADS)

    Zheng, Z.; Dong, W.; Li, Z.; Zhao, W.; Hu, S.; Yan, X.; Zhao, J.; Wei, Z.

    2015-12-01

    In this paper, the field experiments on ground surface spectral broadband solar radiation (SR) and corresponding albedo were introduced at three man-made sites at Gobi, desert, and bare loess zones during three different intensive observational periods (IOP) from 2010 to 2013 in Gansu Province, respectively. The continuous and high temporal resolution records of ground surface solar radiation are presented, including global (GR), ultraviolet (UV), visible (VIS), and near-infrared radiation (NIR). The corresponding albedos are analyzed over three typical non-vegetated underlying surfaces in arid and semiarid and semihumid regions of northwestern China. The preliminary investigations were carried out. The results show that the variation trends of UV, VIS, and NIR are coincident with the GR, and the irradiances are gradually decreasing throughout the IOP at each site; the energy ratios of VIS/GR are all approximately 40.2%, and the ratios of NIR/GR are all approximately 54.4% at the Gobi, desert, and bare loess zones; and the averaged albedos of the soil for VIS are 0.231, 0.211, and 0.142 and for the NIR are 0.266, 0.252, and 0.255 over the Gobi, desert, and bare loess land surfaces, respectively. The energy ratios of VIS/GR and NIR/GR are not 50% as prescribed for all of the soil color classes in most of land surface models (LSMs). The observational soil albedo values for NIR are not twice to that of the VIS as predicted in some LSMs for the underlying surface at the three sites. GR albedo is determined by the energy ratios of SR/GR and SR albedos.

  14. Observational study of surface spectral radiation and corresponding albedo over Gobi, desert, and bare loess surfaces in northwestern China

    NASA Astrophysics Data System (ADS)

    Zheng, Zhiyuan; Dong, Wenjie; Li, Zhenchao; Zhao, Wei; Hu, Shanshan; Yan, Xiaodong; Zhao, Jiaqi; Wei, Zhigang

    2015-02-01

    In this paper, the field experiments on ground surface spectral broadband solar radiation (SR) and corresponding albedo were introduced at three man-made sites at Gobi, desert, and bare loess zones during three different intensive observational periods (IOP) from 2010 to 2013 in Gansu Province, respectively. The continuous and high temporal resolution records of ground surface solar radiation are presented, including global (GR), ultraviolet (UV), visible (VIS), and near-infrared radiation (NIR). The corresponding albedos are analyzed over three typical nonvegetated underlying surfaces in arid and semiarid and semihumid regions of northwestern China. The preliminary investigations were carried out. The results show that the variation trends of UV, VIS, and NIR are coincident with the GR, and the irradiances are gradually decreasing throughout the IOP at each site; the energy ratios of VIS/GR are all approximately 40.2%, and the ratios of NIR/GR are all approximately 54.4% at the Gobi, desert, and bare loess zones; and the averaged albedos of the soil for VIS are 0.231, 0.211, and 0.142 and for the NIR are 0.266, 0.252, and 0.255 over the Gobi, desert, and bare loess land surfaces, respectively. The energy ratios of VIS/GR and NIR/GR are not 50% as prescribed for all of the soil color classes in most of land surface models (LSMs). The observational soil albedo values for NIR are not twice to that of the VIS as predicted in some LSMs for the underlying surface at the three sites. GR albedo is determined by the energy ratios of SR/GR and SR albedos.

  15. The Course of Actualization

    ERIC Educational Resources Information Center

    De Smet, Hendrik

    2012-01-01

    Actualization is traditionally seen as the process following syntactic reanalysis whereby an item's new syntactic status manifests itself in new syntactic behavior. The process is gradual in that some new uses of the reanalyzed item appear earlier or more readily than others. This article accounts for the order in which new uses appear during…

  16. [Nursing observation chart: between the objectives targeted by this model and actual practice, where should we place the reflective process of the nurse? Results of the study. Future prospects of teaching tools].

    PubMed

    Ripoche, Sébastien

    2012-09-01

    The research presented below examines the focus charting model in French nursing practice. Between the objectives targeted by this model and actual practice, where to place the reflective process of the nurse? To answer this question, the methodology used is the comprehensive approach. It is characterized by the production of semi-structured interviews of nurses using the model studied, but also by the in situ observation of practices. The results show that nurses engaged a reflexive process in the use of the focus charting model. This reflexive process is "in" the action rather than "on" or "for" the action. Nurse's position vis a vis at their disposal is investigated.

  17. Long-term Average Spectral and Spatial Distributions of Plasmaspheric Hiss Observed by the Akebono and IMAGE Satellites

    NASA Technical Reports Server (NTRS)

    Fung, Shing

    2007-01-01

    The radiation belt slot region is known to result from losses of energetic electrons by enhanced pitch-angle scattering by whistler mode waves associated with plasmaspheric hiss emission. The distributions of whistler mode waves in the slot L range are therefore important for understanding the electron radiation belt. The sources and distributions of the waves are, however, still controversial. In the present study, using the Akebono/MCA data [1989-20051 and the IMAGE/RPI data [2000-20051, we have constructed the average plasmaspheric hiss spectral distributions over a broad frequency range. In addition, we have investigated the spatial distributions of plasmaspheric hiss with the wave map technique [Green et a1.(2005)]. Our study shows that the broadband plasmaspheric hiss are distributed in the frequency range of 100Hz to several kHz, and exhibit a broad intensive peak. The frequency of the intensity peak tends to increase with magnetic latitude. The frequencies of the most intense waves in the nominal slot L range (2<3) during quiet times (Dst>-50nT) are found to be between 300Hz and 600Hz on average. During high storm activity (Dst <-150nT), however, the peak frequencies become slightly lower. The intensity of plasmaspheric hiss clearly depends on substorm activity as measured by the AE index, consistent with Meredith et a1.(2004). The hiss wave intensity maps also show a strong local time asymmetry. The large amplitude waves are observed at 6:OO-19:OO MLT. From our extensive analysis, we have also found an L dependence of hiss activity, with the larger amplitude waves being observed at lower L during substorm active conditions. The same tendency can be found for solar activity. The average intensities of the waves during 1989-1991 and 2000-2001 are a few dB larger than those during 1992-1997 and 2005. The most intense waves are observed at lower L during high solar activity. The statistical study on spectrum features of the plasmaspheric hiss together with the

  18. Comparisons of spectral thermospheric general circulation model simulations and E and F region chemical release wind observations

    NASA Astrophysics Data System (ADS)

    Mikkelsen, I. S.; Larsen, M. F.

    1993-03-01

    High-latitude chemical release wind measurements were carried out in February and March 1978, in March 1985, and in March 1987. In each of the experiments, wind profiles were obtained covering heights in both the E and the F region. Three of the release experiments were carried out on the evening side of the auroral oval and one on the morning side. Two sets of measurements were carried out in disturbed conditions at solar maximum, while the other two were carried out during quiet periods at solar minimum. The spectral thermospheric general circulation model that has been developed at the Danish Meteorological Institute is used to simulate the conditions appropriate to each of the four experiments and detailed comparisons between the model predictions and the measurements are presented. Considering the uncertainties in the various external sources of forcing, such as the plasma convection patterns, the model adequately reproduces the major features of all the wind profiles. However in the E region the relative wind maxima from the model are, in general, above the heights of the observed wind maxima, possibly due to the oversimplified auroral precipitation used in the model, with the electrons being represented by single Maxwellian energy spectra only. The uncoupled neutral and ionized atmospheric compositions used in the model may also explain part of the unrealistic simulated winds. The upward propagating tides are found to modify the E region winds significantly, even under disturbed conditions when the plasma forcing might be expected to dominate the dynamics. In our results the latter is shown by the sensitivity of the simulated flows to the lower boundary condition which is the imposed tidal oscillation structure.

  19. Determining the nature of active region heating using high spatially and spectrally resolved x-ray observations

    NASA Astrophysics Data System (ADS)

    Sterrett, M. W.; Cirtain, J. W.

    2013-12-01

    Rarely have active regions on the Sun been studied at wavelengths less than 10 nm while simultaneously maintaining both high spatial and high spectral measurements. Marshall's Grazing Incidence X-ray Spectrometer (MaGIXS) will measure the soft X-ray solar spectrum within a wavelength range of 0.6 - 2.4 nm (0.5 - 2.0 keV) while maintaining a 5 arcsec spatial resolution. The wavelength range of 0.6 - 2.4 nm can provide insight into the heating roles of two of the likely coronal heating mechanisms: nanoflare and Alfven wave heating. The key difference in nanoflares and Alfven wave heating is the high temperature components of plasmas inside single magnetic strands. If the observed frequency of the heating event is low, it is determined to be a nanoflare. If the frequency of the heating event is high, it is Alfvenic in nature. To discriminate between these two distinct events requires that the components of the local high-temperature plasma be measured. MaGIXS is a proposed sounding rocket experiment. Currently in its prototype phase, MaGIXS is being aligned and characterized in hopes of a 2015 launch. To measure the attributes of high-temperature plasma, MaGIXS will employ the use of a matched pair of parabolic mirrors in conjunction with a planar varied-line-space silicon wafer grating. The two mirrors act as a collimator and re-focusing system, molding the beam to desired specifications and removing off-axis optical aberrations in the process. The grating has a HeNe alignment feature which allows the grating to be aligned at atmospheric pressure while focusing the HeNe laser beam near the center of MaGIXS wavelength range. This presentation will cover the alignment procedure of the mirrors, and the results of preliminary testing using both white light and X-ray sources.

  20. MAXI GSC Observations of a Spectral State Transition in the Black Hole Candidate XTE J1752-223

    NASA Astrophysics Data System (ADS)

    Nakahira, Satoshi; Yamaoka, Kazutaka; Sugizaki, Mutsumi; Ueda, Yoshihiro; Negoro, Hitoshi; Ebisawa, Ken; Kawai, Nobuyuki; Matsuoka, Masaru; Tsunemi, Hiroshi; Daikyuji, Arata; Eguchi, Satoshi; Hiroi, Kazuo; Ishikawa, Masaki; Ishiwata, Ryoji; Isobe, Naoki; Kawasaki, Kazuyoshi; Kimura, Masashi; Kohama, Mitsuhiro; Mihara, Tatehiro; Miyoshi, Sho; Morii, Mikio; Nakagawa, Yujin E.; Nakajima, Motoki; Ozawa, Hiroshi; Sootome, Tetsuya; Sugimori, Kousuke; Suzuki, Motoko; Tomida, Hiroshi; Ueno, Shiro; Yamamoto, Takayuki; Yoshida, Atsumasa; Maxi Team

    2010-10-01

    We present the first results on the black-hole candidate XTE J1752-223 from the Gas Slit Camera (GSC) aboard the Monitor of All-sky X-ray Image (MAXI) on the International Space Station. Including the onset of an outburst reported by the Proportional Counter Array aboard the Rossi X-ray Timing Explorer on 2009 October 23, MAXI / GSC has been monitoring this source approximately 10 times per day with high sensitivity in the 2-20 keV band. XTE J1752-223 was initially in a low / hard state during the first 3 months. An anti-correlated behavior between the 2-4 keV and 4-20 keV bands was observed around 2010 January 20, indicating that the source exhibited a spectral transition to the high / soft state. A transient radio jet may have been ejected when the source was in the intermediate state where the spectrum was roughly explained by a power-law with a photon index of 2.5-3.0. The unusually long period in the initial low / hard state implies a slow variation in the mass-accretion rate, and a dramatic soft X-ray increase may be explained by a sudden appearance of the accretion disk component with a relatively low innermost temperature (0.4-0.7 keV). Such a low temperature might suggest that the maximum accretion rate was just above the critical gas-evaporation rate required for the state transition.

  1. Super Dual Auroral Radar Network observations of fluctuations in the spectral distribution of near range meteor echoes in the upper mesosphere and lower thermosphere

    NASA Astrophysics Data System (ADS)

    Arnold, N. F.; Robinson, T. R.; Lester, M.; Byrne, P. B.; Chapman, P. J.

    2001-04-01

    The Doppler shifts of meteor echoes measured by the SuperDARN HF radar network have been used in several studies to observe neutral winds in the upper mesosphere and lower thermosphere region. In the absence of accurate height information for individual meteors, it has been necessary to assume a statistical mean meteor layer where the variations in altitude were not correlated to changes in the horizontal winds. Observations of spectral width distribution variations made by the radars allow an independent determination of the systematic error in the height. We have investigated the dependence of this distribution on a number of factors including the radar geometry, diurnal and seasonal cycles, variations in solar UV irradiance and geomagnetic activity. Changes in the altitude of the mean meteor layer observed at different radar ranges provide us with some insight into the structure of the upper mesosphere and the lower thermosphere within which the meteors are being ablated. An examination of the spectral widths, as measured by the CUT-LASS Finland radar, in the days preceding and following a Storm Sudden Commencement in April 1997, illustrates how the spectral properties of the observed region can be affected. The variations in the widths were consistent with model calculations of the changes to the temperature profile over this interval. Further refinements in the determination of the spectral width are outlined for future experiments.Key words. Meterology and atmospheric dynamics (middle atmosphere dynamics; thermospheric dynamics; instruments and techniques)

  2. Label-free observation of tissues by high-speed stimulated Raman spectral microscopy and independent component analysis

    NASA Astrophysics Data System (ADS)

    Ozeki, Yasuyuki; Otsuka, Yoichi; Sato, Shuya; Hashimoto, Hiroyuki; Umemura, Wataru; Sumimura, Kazuhiko; Nishizawa, Norihiko; Fukui, Kiichi; Itoh, Kazuyoshi

    2013-02-01

    We have developed a video-rate stimulated Raman scattering (SRS) microscope with frame-by-frame wavenumber tunability. The system uses a 76-MHz picosecond Ti:sapphire laser and a subharmonically synchronized, 38-MHz Yb fiber laser. The Yb fiber laser pulses are spectrally sliced by a fast wavelength-tunable filter, which consists of a galvanometer scanner, a 4-f optical system and a reflective grating. The spectral resolution of the filter is ~ 3 cm-1. The wavenumber was scanned from 2800 to 3100 cm-1 with an arbitrary waveform synchronized to the frame trigger. For imaging, we introduced a 8-kHz resonant scanner and a galvanometer scanner. We were able to acquire SRS images of 500 x 480 pixels at a frame rate of 30.8 frames/s. Then these images were processed by principal component analysis followed by a modified algorithm of independent component analysis. This algorithm allows blind separation of constituents with overlapping Raman bands from SRS spectral images. The independent component (IC) spectra give spectroscopic information, and IC images can be used to produce pseudo-color images. We demonstrate various label-free imaging modalities such as 2D spectral imaging of the rat liver, two-color 3D imaging of a vessel in the rat liver, and spectral imaging of several sections of intestinal villi in the mouse. Various structures in the tissues such as lipid droplets, cytoplasm, fibrous texture, nucleus, and water-rich region were successfully visualized.

  3. Miocrowave spectral imaging, H-alpha and hard X-ray observations of a solar limb flare

    NASA Technical Reports Server (NTRS)

    Wang, H.; Gary, D. E.; Lim, J.; Schwartz, R. A.

    1994-01-01

    We compare the microwave, H-alpha, and hard X-ray observations for a west limb C7.3 flare that occurred at 17:10 UT, 1992 June 26. H-alpha movies were obtained at Big Bear Solar Observatory. Before the onset of the flare, overexposed H-alpha images show the complicated flux loop structure above the limb. Material was observed to descend along the loops toward the site where the flare occurred hours later. Using the five-antenna solar array at Owens Valley Radio Observatory, we obtain two-dimensional maps of flare emission from 1.4 to 14 GHz. In all three temporal peaks of the microwave bursts, the maps show the same characteristics. The peak low-frequency emission comes from the top of one bundle of the H-alpha loops and gradually shifts to the foot-point of the loops (the location of H-alpha flare) as the frequency increases. The location of the emission peak shifts 88 sec between 1 and 14 GHz. Seventy percent of the shift occurs between 1 and 5 GHz. The locus of the shift of the emission peak follows the shape of an H-alpha surge that occurred after the flare. For each point along the locus, we create the microwave brightness temperature spectrum and compare the radio-derived electron distribution with that derived from the high-resolution hard X-ray spectra measured with Burst and Transient Source Experiment (BATSE) on board the Compton Gamma Ray Observatory (CGRO). We find that the peak frequency changes from approximately 3 GHz at the loop top to approximately 7 GHz at the footprint, presumably due to the increase of the magnetic field from approximately 160 GHz at the loop top to approximately 300 G at the footpoint. The high-frequency slope of the microwave power-law spectrum decreases from approximately 10 at the loop top to approximately 5 at the footprint due to a change in the energy distribution of the dominant electrons. The microwave brightness temperature spectral index predicted by the BATSE power-law hard X-ray spectra agrees with the measured

  4. The Rhythm of Fairall 9. I. Observing the Spectral Variability With XMM-Newton and NuSTAR

    NASA Technical Reports Server (NTRS)

    Lohfink, A. M.; Reynolds, S. C.; Pinto, C.; Alston, W.; Boggs, S. E.; Christensen, F. E.; Craig, W. W.; Fabian, A.C; Hailey, C. J.; Harrison, F. A.; Kara, E.; Matt, G.; Parker, M. L.; Stern, D.; Walton, D.; Zhang, W. W.

    2016-01-01

    We present a multi-epoch X-ray spectral analysis of the Seyfert 1 galaxy Fairall 9. Our analysis shows that Fairall 9 displays unique spectral variability in that its ratio residuals to a simple absorbed power law in the 0.510 keV band remain constant with time in spite of large variations in flux. This behavior implies an unchanging source geometry and the same emission processes continuously at work at the timescale probed. With the constraints from NuSTAR on the broad-band spectral shape, it is clear that the soft excess in this source is a superposition of two different processes, one being blurred ionized reflection in the innermost parts of the accretion disk, and the other a continuum component such as a spatially distinct Comptonizing region. Alternatively, a more complex primary Comptonization component together with blurred ionized reflection could be responsible.

  5. THE RHYTHM OF FAIRALL 9. I. OBSERVING THE SPECTRAL VARIABILITY WITH XMM-NEWTON AND NuSTAR

    SciTech Connect

    Lohfink, A. M.; Pinto, C.; Alston, W.; Fabian, A. C.; Kara, E.; Parker, M. L.; Reynolds, C. S.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Hailey, C. J.; Harrison, F. A.; Matt, G.; Stern, D.; Walton, D.; Zhang, W. W.

    2016-04-10

    We present a multi-epoch X-ray spectral analysis of the Seyfert 1 galaxy Fairall 9. Our analysis shows that Fairall 9 displays unique spectral variability in that its ratio residuals to a simple absorbed power law in the 0.5–10 keV band remain constant with time in spite of large variations in flux. This behavior implies an unchanging source geometry and the same emission processes continuously at work at the timescale probed. With the constraints from NuSTAR on the broad-band spectral shape, it is clear that the soft excess in this source is a superposition of two different processes, one being blurred ionized reflection in the innermost parts of the accretion disk, and the other a continuum component such as a spatially distinct Comptonizing region. Alternatively, a more complex primary Comptonization component together with blurred ionized reflection could be responsible.

  6. A Search for Spectral Hysteresis and Energy-dependent Time Lags from X-Ray and TeV Gamma-Ray Observations of Mrk 421

    NASA Astrophysics Data System (ADS)

    Abeysekara, A. U.; Archambault, S.; Archer, A.; Benbow, W.; Bird, R.; Buchovecky, M.; Buckley, J. H.; Bugaev, V.; Cardenzana, J. V.; Cerruti, M.; Chen, X.; Ciupik, L.; Connolly, M. P.; Cui, W.; Eisch, J. D.; Falcone, A.; Feng, Q.; Finley, J. P.; Fleischhack, H.; Flinders, A.; Fortson, L.; Furniss, A.; Griffin, S.; Håkansson, M. HN.; Hanna, D.; Hervet, O.; Holder, J.; Humensky, T. B.; Kaaret, P.; Kar, P.; Kertzman, M.; Kieda, D.; Krause, M.; Kumar, S.; Lang, M. J.; Maier, G.; McArthur, S.; McCann, A.; Meagher, K.; Moriarty, P.; Mukherjee, R.; Nieto, D.; Ong, S. OR. A.; Otte, A. N.; Park, N.; Pelassa, V.; Pohl, M.; Popkow, A.; Pueschel, E.; Ragan, K.; Reynolds, P. T.; Richards, G. T.; Roache, E.; Sadeh, I.; Santander, M.; Sembroski, G. H.; Shahinyan, K.; Staszak, D.; Telezhinsky, I.; Tucci, J. V.; Tyler, J.; Wakely, S. P.; Weinstein, A.; Wilhelm, A.; Williams, D. A.; the VERITAS Collaboration; Ahnen, M. L.; Ansoldi, S.; Antonelli, L. A.; Antoranz, P.; Arcaro, C.; Babic, A.; Banerjee, B.; Bangale, P.; Barres de Almeida, U.; Barrio, J. A.; Becerra González, J.; Bednarek, W.; Bernardini, E.; Berti, A.; Biasuzzi, B.; Biland, A.; Blanch, O.; Bonnefoy, S.; Bonnoli, G.; Borracci, F.; Bretz, T.; Carosi, R.; Carosi, A.; Chatterjee, A.; Colin, P.; Colombo, E.; Contreras, J. L.; Cortina, J.; Covino, S.; Cumani, P.; Da Vela, P.; Dazzi, F.; De Angelis, A.; De Lotto, B.; de Oña Wilhelmi, E.; Di Pierro, F.; Doert, M.; Domínguez, A.; Dominis Prester, D.; Dorner, D.; Doro, M.; Einecke, S.; Eisenacher Glawion, D.; Elsaesser, D.; Engelkemeier, M.; Fallah Ramazani, V.; Fernández-Barral, A.; Fidalgo, D.; Fonseca, M. V.; Font, L.; Fruck, C.; Galindo, D.; García López, R. J.; Garczarczyk, M.; Gaug, M.; Giammaria, P.; Godinović, N.; Gora, D.; Guberman, D.; Hadasch, D.; Hahn, A.; Hassan, T.; Hayashida, M.; Herrera, J.; Hose, J.; Hrupec, D.; Hughes, G.; Idec, W.; Kodani, K.; Konno, Y.; Kubo, H.; Kushida, J.; Lelas, D.; Lindfors, E.; Lombardi, S.; Longo, F.; López, M.; López-Coto, R.; Majumdar, P.; Makariev, M.; Mallot, K.; Maneva, G.; Manganaro, M.; Mannheim, K.; Maraschi, L.; Marcote, B.; Mariotti, M.; Martínez, M.; Mazin, D.; Menzel, U.; Mirzoyan, R.; Moralejo, A.; Moretti, E.; Nakajima, D.; Neustroev, V.; Niedzwiecki, A.; Nievas Rosillo, M.; Nilsson, K.; Nishijima, K.; Noda, K.; Nogués, L.; Nöthe, M.; Paiano, S.; Palacio, J.; Palatiello, M.; Paneque, D.; Paoletti, R.; Paredes, J. M.; Paredes-Fortuny, X.; Pedaletti, G.; Peresano, M.; Perri, L.; Persic, M.; Poutanen, J.; Prada Moroni, P. G.; Prandini, E.; Puljak, I.; Garcia, J. R.; Reichardt, I.; Rhode, W.; Ribó, M.; Rico, J.; Saito, T.; Satalecka, K.; Schroeder, S.; Schweizer, T.; Shore, S. N.; Sillanpää, A.; Sitarek, J.; Snidaric, I.; Sobczynska, D.; Stamerra, A.; Strzys, M.; Surić, T.; Takalo, L.; Tavecchio, F.; Temnikov, P.; Terzić, T.; Tescaro, D.; Teshima, M.; Torres, D. F.; Torres-Albà, N.; Toyama, T.; Treves, A.; Vanzo, G.; Vazquez Acosta, M.; Vovk, I.; Ward, J. E.; Will, M.; Wu, M. H.; Zanin, R.; the MAGIC Collaboration; Hovatta, T.; de la Calle Perez, I.; Smith, P. S.; Racero, E.; Baloković, M.

    2017-01-01

    Blazars are variable emitters across all wavelengths over a wide range of timescales, from months down to minutes. It is therefore essential to observe blazars simultaneously at different wavelengths, especially in the X-ray and gamma-ray bands, where the broadband spectral energy distributions usually peak. In this work, we report on three “target-of-opportunity” observations of Mrk 421, one of the brightest TeV blazars, triggered by a strong flaring event at TeV energies in 2014. These observations feature long, continuous, and simultaneous exposures with XMM-Newton (covering the X-ray and optical/ultraviolet bands) and VERITAS (covering the TeV gamma-ray band), along with contemporaneous observations from other gamma-ray facilities (MAGIC and Fermi-Large Area Telescope) and a number of radio and optical facilities. Although neither rapid flares nor significant X-ray/TeV correlation are detected, these observations reveal subtle changes in the X-ray spectrum of the source over the course of a few days. We search the simultaneous X-ray and TeV data for spectral hysteresis patterns and time delays, which could provide insight into the emission mechanisms and the source properties (e.g., the radius of the emitting region, the strength of the magnetic field, and related timescales). The observed broadband spectra are consistent with a one-zone synchrotron self-Compton model. We find that the power spectral density distribution at ≳4 × 10‑4 Hz from the X-ray data can be described by a power-law model with an index value between 1.2 and 1.8, and do not find evidence for a steepening of the power spectral index (often associated with a characteristic length scale) compared to the previously reported values at lower frequencies.

  7. Selective excitation of photosystems in chloroplasts inside plant leaves observed by near-infrared laser-based fluorescence spectral microscopy.

    PubMed

    Hasegawa, Makoto; Shiina, Takashi; Terazima, Masahide; Kumazaki, Shigeichi

    2010-02-01

    In this study, we produced selective images of photosystems in plant chloroplasts in situ. We used a spectroimaging microscope, equipped with a near-infrared (NIR) laser that provided light at wavelengths mainly between 800 and 830 nm, to analyze chlorophyll autofluorescence spectra and images from chloroplasts in leaves of Zea mays at room temperature. Femtosecond laser excitation of chloroplasts in mesophyll cells revealed a spectral shape that was attributable to PSII and its antenna in the centers of grana spots. We found that a continuous wave emitted by the NIR laser at a wavelength as long as 820 nm induced chlorophyll autofluorescence with a high contribution from PSI through a one-photon absorption mechanism. A spectral shape attributable to PSI and its antenna was thus obtained using continuous wave laser excitation of chloroplasts in bundle sheath cells. These highly pure spectra of photosystems were utilized for spectral decomposition at every intrachloroplast space to show distributions of PSI and PSII and their associated antenna. A new methodology using an NIR laser to detect the PSI/PSII ratio in single chloroplasts in leaves at room temperature is described.

  8. Spatial Variations of the Synchrotron Spectrum Within Tycho’s Supernova Remnant (3C 10): A Spectral Tomography Analysis of Radio Observations at 20 and 90 Centimeter Wavelengths

    DTIC Science & Technology

    2000-01-20

    individual ( Tycho ) 1. INTRODUCTION A new star observed by Tycho Brahe (1573) is now identi- Ðed as a supernova whose remnant (SNR) is 3C 10 (SN 1572... Tycho SNR, SNR 120.1]1.4 ; Lozinskaya 1992 and references therein). The explosion itself was mostly likely a Type Ia supernova, and the remnant seems...we adopted.3 Again, this procedure tends to reduce any spectral variations. However, as Reynoso et al. (1997) found, Tycho is not expanding

  9. Observation of hohlraum-wall motion with spectrally selective x-ray imaging at the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Izumi, N.; Meezan, N. B.; Divol, L.; Hall, G. N.; Barrios, M. A.; Jones, O.; Landen, O. L.; Kroll, J. J.; Vonhof, S. A.; Nikroo, A.; Jaquez, J.; Bailey, C. G.; Hardy, C. M.; Ehrlich, R. B.; Town, R. P. J.; Bradley, D. K.; Hinkel, D. E.; Moody, J. D.

    2016-11-01

    The high fuel capsule compression required for indirect drive inertial confinement fusion requires careful control of the X-ray drive symmetry throughout the laser pulse. When the outer cone beams strike the hohlraum wall, the plasma ablated off the hohlraum wall expands into the hohlraum and can alter both the outer and inner cone beam propagations and hence the X-ray drive symmetry especially at the final stage of the drive pulse. To quantitatively understand the wall motion, we developed a new experimental technique which visualizes the expansion and stagnation of the hohlraum wall plasma. Details of the experiment and the technique of spectrally selective x-ray imaging are discussed.

  10. Observed Spectral Invariant Behavior of Zenith Radiance in the Transition Zone Between Cloud-Free and Cloudy Regions

    NASA Technical Reports Server (NTRS)

    Marshak, A.; Knyazikhin, Y.; Chiu, C.; Wiscombe, W.

    2010-01-01

    The Atmospheric Radiation Measurement Program's (ARM) new Shortwave Spectrometer (SWS) looks straight up and measures zenith radiance at 418 wavelengths between 350 and 2200 nm. Because of its 1-sec sampling resolution, the SWS provides a unique capability to study the transition zone between cloudy and clear sky areas. A surprising spectral invariant behavior is found between ratios of zenith radiance spectra during the transition from cloudy to cloud-free atmosphere. This behavior suggests that the spectral signature of the transition zone is a linear mixture between the two extremes (definitely cloudy and definitely clear). The weighting function of the linear mixture is found to be a wavelength-independent characteristic of the transition zone. It is shown that the transition zone spectrum is fully determined by this function and zenith radiance spectra of clear and cloudy regions. This new finding may help us to better understand and quantify such physical phenomena as humidification of aerosols in the relatively moist cloud environment and evaporation and activation of cloud droplets.

  11. Spectral and Temporal Analysis of 1H1934-0617: Observing an “Eclipsed” AGN with XMM-Newton and NuSTAR

    NASA Astrophysics Data System (ADS)

    Frederick, Sara; Kara, Erin; Reynolds, Christopher S.

    2017-01-01

    1H1934-0617 is a low-mass (3×106 M⊙) NLS1 which was ranked as 7th in excess variance among AGN comprising the CAIXA catalogue (Ponti 2012). Similar to its high-ranking and oft-studied counterparts, this AGN is extremely time-variable, luminous, and displays strong reflection features. We present spectral and temporal analyses of concurrent XMM-Newton and NuSTAR observations (120 ks), during which we explore a dramatic dip in flux, similar to that of Fairall 9 (Lohfink 2012, 2016). The transit-like dip appears in the NuSTAR band, and the spectral shape of the 0.3-2 keV band remains constant throughout the flux varied observation, ruling out a strong absorber. XMM-Newton’s large effective area and NuSTAR’s constraints on the 10-79 keV band combine to inform us about the source geometry, black hole spin, and emission/absorption processes as we speculate on the nature of the variability of this scarcely-studied AGN. Preliminary spectral modeling indicates that the dip in flux can be understood as a decrease in the height of the corona, and preliminary timing analysis shows hints of an iron K reverberation lag.

  12. Observations of rock spectral classes by the Opportunity rover's Pancam on northern Cape York and on Matijevic Hill, Endeavour Crater, Mars

    NASA Astrophysics Data System (ADS)

    Farrand, W. H.; Bell, J. F.; Johnson, J. R.; Rice, M. S.; Jolliff, B. L.; Arvidson, R. E.

    2014-11-01

    The Opportunity rover's exploration of the portion of the rim of Endeavour crater known as Cape York included examination of the sulfate-bearing Grasberg formation and the Matijevic Hill region. Multispectral visible and near-infrared (VNIR) Pancam observations were used to characterize reflectance properties of rock units. Using spectral end-member detection and classification approaches including a principal components/n-dimensional visualization, automatic sequential maximum angle convex cone method, and classification through hierarchical clustering, six main spectral classes of rock surfaces were identified: light-toned veins, Grasberg fm., the smectite-bearing Matijevic formation, the hematitic "blueberry" spherules, resistant spherules within the Matijevic fm. dubbed "newberries," and the Shoemaker formation impact breccia. Some of these could be divided into spectral subclasses. There were three types of veins: veins in the bench unit of Cape York, thinner veins in the Matijevic fm., and boxwork pattern-forming veins. The bench unit veins had higher 535 nm band depths than the other two vein subclasses and a steeper 934 to 1009 nm slope. The Grasberg fm. has VNIR spectral features that are interpreted to indicate higher fractions of red hematite than in the sulfate-bearing Burns Fm. The Matijevic fm. includes both light-toned, fine-grained matrix, and dark-toned veneers. The latter has a weak near-infrared absorption band centered near 950 nm consistent with nontronite. Observations of Rock Abrasion Tool brushed and ground newberries indicated that cuttings from the RAT grind had a longer wavelength reflectance maximum and deeper 535 nm band depth, consistent with more oxidized materials. Greater oxidation of cementing materials in the newberries is consistent with a diagenetic concretion origin.

  13. Fingerprints of endogenous process on Europa through linear spectral modeling of ground-based observations (ESO/VLT/SINFONI)

    NASA Astrophysics Data System (ADS)

    Ligier, Nicolas; Carter, John; Poulet, François; Langevin, Yves; Dumas, Christophe; Gourgeot, Florian

    2016-04-01

    Jupiter's moon Europa harbors a very young surface dated, based on cratering rates, to 10-50 M.y (Zahnle et al. 1998, Pappalardo et al. 1999). This young age implies rapid surface recycling and reprocessing, partially engendered by a global salty subsurface liquid ocean that could result in tectonic activity (Schmidt et al. 2011, Kattenhorn et al. 2014) and active plumes (Roth et al. 2014). The surface of Europa should contain important clues about the composition of this sub-surface briny ocean and about the potential presence of material of exobiological interest in it, thus reinforcing Europa as a major target of interest for upcoming space missions such as the ESA L-class mission JUICE. To perform the investigation of the composition of the surface of Europa, a global mapping campaign of the satellite was performed between October 2011 and January 2012 with the integral field spectrograph SINFONI on the Very Large Telescope (VLT) in Chile. The high spectral binning of this instrument (0.5 nm) is suitable to detect any narrow mineral signature in the wavelength range 1.45-2.45 μm. The spatially resolved spectra we obtained over five epochs nearly cover the entire surface of Europa with a pixel scale of 12.5 by 25 m.a.s (~35 by 70 km on Europa's surface), thus permitting a global scale study. Until recently, a large majority of studies only proposed sulfate salts along with sulfuric acid hydrate and water-ice to be present on Europa's surface. However, recent works based on Europa's surface coloration in the visible wavelength range and NIR spectral analysis support the hypothesis of the predominance of chlorine salts instead of sulfate salts (Hand & Carlson 2015, Fischer et al. 2015). Our linear spectral modeling supports this new hypothesis insofar as the use of Mg-bearing chlorines improved the fits whatever the region. As expected, the distribution of sulfuric acid hydrate is correlated to the Iogenic sulfur ion implantation flux distribution (Hendrix et al

  14. Evidence of non-LTE Effects in Mesospheric Water Vapor from Spectrally-Resolved Emissions Observed by CIRRIS-1A

    NASA Technical Reports Server (NTRS)

    Zhou, D. K.; Mlynczak, M. G.; Lopez-Puertas, M.; Zaragoza, G.

    1999-01-01

    Evidence of non-LTE effects in mesospheric water vapor as determined by infrared spectral emission measurements taken from the space shuttle is reported. A cryogenic Michelson interferometer in the CIRRIS-1A shuttle payload yielded high quality, atmospheric infrared spectra. These measurements demonstrate the enhanced daytime emissions of H2O (020-010) which are the result of non-LTE processes and in agreement with non-LTE models. The radiance ratios of H2O (010 to 000) and (020 to 010) Q(1) transitions during daytime are compared with non-LTE model calculations to assess the vibration-to-vibration exchange rate between H2O and O2 in the mesosphere. An exchange rate of 1.2 x 10(exp -12)cc/s is derived.

  15. The spectral details of observed and simulated short-term water vapor feedbacks of El Niño-Southern Oscillation

    NASA Astrophysics Data System (ADS)

    Pan, F.; Huang, X.; Chen, X.

    2015-12-01

    Radiative kernel method has been validated and widely used in the study of climate feedbacks. This study uses spectrally resolved longwave radiative kernels to examine the short-term water vapor feedbacks associated with the ENSO cycles. Using a 500-year GFDL CM3 and a 100-year NCAR CCSM4 pre-industry control simulation, we have constructed two sets of longwave spectral radiative kernels. We then composite El Niño, La Niña and ENSO-neutral states and estimate the water vapor feedbacks associated with the El Niño and La Niña phases of ENSO cycles in both simulations. Similar analysis is also applied to 35-year (1979-2014) ECMWF ERA-interim reanalysis data, which is deemed as observational results here. When modeled and observed broadband feedbacks are compared to each other, they show similar geographic patterns but with noticeable discrepancies in the contrast between the tropics and extra-tropics. Especially, in El Niño phase, the feedback estimated from reanalysis is much greater than those from the model simulations. Considering the observational data span, we carry out a sensitivity test to explore the variability of feedback-deriving using 35-year data. To do so, we calculate the water vapor feedback within every 35-year segment of the GFDL CM3 control run by two methods: one is to composite El Nino or La Nina phases as mentioned above and the other is to regressing the TOA flux perturbation caused by water vapor change (δR_H­2O) against the global-mean surface temperature a­­­­nomaly. We find that the short-term feedback strengths derived from composite method can change considerably from one segment to another segment, while the feedbacks by regression method are less sensitive to the choice of segment and their strengths are also much smaller than those from composite analysis. This study suggests that caution is warranted in order to infer long-term feedbacks from a few decades of observations. When spectral details of the global-mean feedbacks

  16. X-ray variability with spectral state transitions in NS-LMXBs observed with MAXI/GSC and Swift/BAT

    NASA Astrophysics Data System (ADS)

    Asai, Kazumi; Mihara, Tatehiro; Matsuoka, Masaru; Sugizaki, Mutsumi

    2015-10-01

    X-ray variabilities with spectral state transitions in bright low-mass X-ray binaries containing a neutron star are investigated by using the one-day bin light curves of MAXI/GSC (Gas Slit Camera) and Swift/BAT (Burst Alert Telescope). Four sources (4U 1636-536, 4U 1705-44, 4U 1608-52, and GS 1826-238) exhibited small-amplitude X-ray variabilities with spectral state transitions. Such "mini-outbursts" were characterized by smaller amplitudes (several times) and shorter duration (less than several tens of days) than those of "normal outbursts." A theoretical model of disk instability by Mineshige and Osaki (PASJ, 37, 1, 1985) predicts both large-amplitude outbursts and small-amplitude variabilities. We interpret the normal outbursts as the former prediction of this model, and the mini-outbursts as the latter. Here, we can also call the mini-outburst a "purr-type outburst" referring to the theoretical work. We suggest that similar variabilities lasting for several tens of days without spectral state transitions, which are often observed in the hard state, may be repeats of mini-outbursts.

  17. Herschel observations of extraordinary sources: Analysis of the HIFI 1.2 THz wide spectral survey toward orion KL. I. method

    SciTech Connect

    Crockett, Nathan R.; Bergin, Edwin A.; Neill, Justin L.; Favre, Cécile; Schilke, Peter; Lis, Dariusz C.; Emprechtinger, Martin; Phillips, Thomas G.; Bell, Tom A.; Cernicharo, José; Esplugues, Gisela B.; Blake, Geoffrey; Kleshcheva, Maria; Gupta, Harshal; Pearson, John; Lord, Steven; Marcelino, Nuria; McGuire, Brett A.; Plume, Rene; Van der Tak, Floris; and others

    2014-06-01

    We present a comprehensive analysis of a broadband spectral line survey of the Orion Kleinmann-Low nebula (Orion KL), one of the most chemically rich regions in the Galaxy, using the HIFI instrument on board the Herschel Space Observatory. This survey spans a frequency range from 480 to 1907 GHz at a resolution of 1.1 MHz. These observations thus encompass the largest spectral coverage ever obtained toward this high-mass star-forming region in the submillimeter with high spectral resolution and include frequencies >1 THz, where the Earth's atmosphere prevents observations from the ground. In all, we detect emission from 39 molecules (79 isotopologues). Combining this data set with ground-based millimeter spectroscopy obtained with the IRAM 30 m telescope, we model the molecular emission from the millimeter to the far-IR using the XCLASS program, which assumes local thermodynamic equilibrium (LTE). Several molecules are also modeled with the MADEX non-LTE code. Because of the wide frequency coverage, our models are constrained by transitions over an unprecedented range in excitation energy. A reduced χ{sup 2} analysis indicates that models for most species reproduce the observed emission well. In particular, most complex organics are well fit by LTE implying gas densities are high (>10{sup 6} cm{sup –3}) and excitation temperatures and column densities are well constrained. Molecular abundances are computed using H{sub 2} column densities also derived from the HIFI survey. The distribution of rotation temperatures, T {sub rot}, for molecules detected toward the hot core is significantly wider than the compact ridge, plateau, and extended ridge T {sub rot} distributions, indicating the hot core has the most complex thermal structure.

  18. Interpretation of astrophysical neutrinos observed by IceCube experiment by setting Galactic and extra-Galactic spectral components

    NASA Astrophysics Data System (ADS)

    Marinelli, Antonio; Gaggero, Daniele; Grasso, Dario; Urbano, Alfredo; Valli, Mauro

    2016-04-01

    The last IceCube catalog of High Energy Starting Events (HESE) obtained with a livetime of 1347 days comprises 54 neutrino events equally-distributed between the three families with energies between 25 TeV and few PeVs. Considering the homogeneous flavors distribution (1:1:1) and the spectral features of these neutrinos the IceCube collaboration claims the astrophysical origin of these events with more than 5σ. The spatial distribution of cited events does not show a clear correlation with known astrophysical accelerators leaving opened both the Galactic and the extra-Galactic origin interpretations. Here, we compute the neutrino diffuse emission of our Galaxy on the basis of a recently proposed phenomenological model characterized by radially-dependent cosmic-ray (CR) transport properties. We show that the astrophysical spectrum measured by IceCube experiment can be well explained adding to the diffuse Galactic neutrino flux (obtained with this new model) a extra-Galactic component derived from the astrophysical muonic neutrinos reconstructed in the Northern hemisphere. A good agreement between the expected astrophysical neutrino flux and the IceCube data is found for the full sky as well as for the Galactic plane region.

  19. Aerosol Properties from Multi-spectral and Multi-angular Aircraft 4STAR Observations: Expected Advantages and Challenges

    SciTech Connect

    Kassianov, Evgueni I.; Flynn, Connor J.; Redemann, Jens; Schmid, Beat; Russell, P. B.; Sinyuk, Alexander

    2012-11-01

    The airborne Spectrometer for Sky-Scanning, Sun-Tracking Atmospheric Research (4STAR) is developed to retrieve aerosol microphysical and optical properties from multi-angular and multi-spectral measurements of sky radiance and direct-beam sun transmittance. The necessarily compact design of the 4STAR may cause noticeable apparent enhancement of sky radiance at small scattering angles. We assess the sensitivity of expected 4STAR-based aerosol retrieval to such enhancement by applying the operational AERONET retrieval code and constructed synthetic 4STARlike data. Also, we assess the sensitivity of the broadband fluxes and the direct aerosol radiative forcing to uncertainties in aerosol retrievals associated with the sky radiance enhancement. Our sensitivity study results suggest that the 4STARbased aerosol retrieval has limitations in obtaining detailed information on particle size distribution and scattering phase function. However, these limitations have small impact on the retrieved bulk optical parameters, such as the asymmetry factor (up to 4%, or ±0.02) and single-scattering albedo (up to 2%, or ±0.02), and the calculated direct aerosol radiative forcing (up to 6%, or 2 Wm-2).

  20. On-board calibration of the spectral response functions of the Advanced Baseline Imager's thermal IR channels by observation of the planet Mercury

    NASA Astrophysics Data System (ADS)

    Bremer, James C.

    2010-09-01

    The Advanced Baseline Imager (ABI) will image Earth in 16 spectral channels, including 10 thermal IR (TIR) channels. The instantaneous field of view (IFOV) of each TIR detector element is (56 μrad)2. The ABI has an onboard fullaperture blackbody, the Internal Calibration Target (ICT), used in conjunction with deep space looks to calibrate the ABI's TIR channels. The ICT is only observed over a small range of temperatures and at one specific pair of reflection angles from the ABI's two scan mirrors. The sunlit area on Mercury's surface underfills the IFOV's of the ABI's TIR channels, but has a much higher range of characteristic temperatures than the ICT, so its radiation is weighted more strongly toward shorter wavelengths. Comparison of a TIR channel's responses to the ICT and to Mercury provides a sensitive means to evaluate variations in spectral response functions among detector elements, across the ABI's field of regard, and among instruments on different satellites. Observations of Mercury can also verify co-registration among the ABI's atmospheric absorption channels that do not observe features on Earth's surface. The optimal conditions for viewing Mercury typically occur during one or two intervals of a few weeks each year when it traverses the ABI's FOR (-10.5o < declination < +10.5o) with an elongation angle from the Sun of at least 20.5o.

  1. SIMULTANEOUS OBSERVATIONS OF PKS 2155-304 WITH HESS, FERMI, RXTE, AND ATOM: SPECTRAL ENERGY DISTRIBUTIONS AND VARIABILITY IN A LOW STATE

    SciTech Connect

    Aharonian, F.; Bernloehr, K.; Bochow, A.; Buehler, R.; Akhperjanian, A. G.; Anton, G.; Brucker, J.; Barres de Almeida, U.; Chadwick, P. M.; Bazer-Bachi, A. R.; Borrel, V.; Behera, B.; Boisson, C.; Brion, E.; Brun, P.; Buesching, I.; Boutelier, T. E-mail: berrie@in2p3.fr E-mail: jchiang@slac.stanford.edu

    2009-05-10

    We report on the first simultaneous observations that cover the optical, X-ray, and high-energy gamma-ray bands of the BL Lac object PKS 2155-304. The gamma-ray bands were observed for 11 days, between 2008 August 25 and 2008 September 6 (MJD 54704-54715), jointly with the Fermi Gamma-ray Space Telescope and the HESS atmospheric Cherenkov array, providing the first simultaneous MeV-TeV spectral energy distribution (SED) with the new generation of {gamma}-ray telescopes. The ATOM telescope and the RXTE and Swift observatories provided optical and X-ray coverage of the low-energy component over the same time period. The object was close to the lowest archival X-ray and very high energy (VHE; >100 GeV) state, whereas the optical flux was much higher. The light curves show relatively little ({approx}30%) variability overall when compared to past flaring episodes, but we find a clear optical/VHE correlation and evidence for a correlation of the X-rays with the high-energy spectral index. Contrary to previous observations in the flaring state, we do not find any correlation between the X-ray and VHE components. Although synchrotron self-Compton models are often invoked to explain the SEDs of BL Lac objects, the most common versions of these models are at odds with the correlated variability we find in the various bands for PKS 2155-304.

  2. Simultaneous Observations of PKS 2155--304 with H.E.S.S., Fermi, RXTE and ATOM: Spectral Energy Distributions and Variability in a Low State

    SciTech Connect

    Aharonian, F.; Akhperjanian, A.G.; Anton, G.; Barres de Almeida, U.; Bazer-Bachi, A.R.; Becherini, Y.; Behera, B.; Bernlohr, K.; Boisson, C.; Bochow, A.; Borrel, V.; Brion, E.; Brucker, J.; Brun, P.; Buhler, R.; Bulik, T.; Busching, I.; Boutelier, T.; Chadwick, P.M.; Charbonnier, A.; Chaves, R.C.G.; /more authors..

    2009-05-07

    We report on the first simultaneous observations that cover the optical, X-ray, and high-energy gamma-ray bands of the BL Lac object PKS 2155-304. The gamma-ray bands were observed for 11 days, between 2008 August 25 and 2008 September 6 (MJD 54704-54715), jointly with the Fermi Gamma-ray Space Telescope and the HESS atmospheric Cherenkov array, providing the first simultaneous MeV-TeV spectral energy distribution (SED) with the new generation of {gamma}-ray telescopes. The ATOM telescope and the RXTE and Swift observatories provided optical and X-ray coverage of the low-energy component over the same time period. The object was close to the lowest archival X-ray and very high energy (VHE; >100 GeV) state, whereas the optical flux was much higher. The light curves show relatively little ({approx}30%) variability overall when compared to past flaring episodes, but we find a clear optical/VHE correlation and evidence for a correlation of the X-rays with the high-energy spectral index. Contrary to previous observations in the flaring state, we do not find any correlation between the X-ray and VHE components. Although synchrotron self-Compton models are often invoked to explain the SEDs of BL Lac objects, the most common versions of these models are at odds with the correlated variability we find in the various bands for PKS 2155-304.

  3. Spatially resolved, high-spectral resolution observation of the K giant Aldebaran in the CO first overtone lines with VLTI/AMBER

    NASA Astrophysics Data System (ADS)

    Ohnaka, K.

    2013-05-01

    Aims: We present a high-spatial and high-spectral resolution observation of the well-studied K giant Aldebaran with AMBER at the Very Large Telescope Interferometer (VLTI). Our aim is to spatially resolve the outer atmosphere (so-called MOLsphere) in individual CO first overtone lines and derive its physical properties, which are important for understanding the mass-loss mechanism in normal (i.e., non-Mira) K-M giants. Methods: Aldebaran was observed between 2.28 and 2.31 μm with a projected baseline length of 10.4 m and a spectral resolution of 12 000. Results: The uniform-disk diameter observed in the CO first overtone lines is 20-35% larger than is measured in the continuum. We have also detected a signature of inhomogeneities in the CO-line-forming region on a spatial scale of ~45 mas, which is more than twice as large as the angular diameter of the star itself. While the MARCS photospheric model reproduces the observed spectrum well, the angular size in the CO lines predicted by the MARCS model is significantly smaller than observed. This is because the MARCS model with the parameters of Aldebaran has a geometrical extension of only ~2% (with respect to the stellar radius). The observed spectrum and interferometric data in the CO lines can be simultaneously reproduced by placing an additional CO layer above the MARCS photosphere. This CO layer is extended to 2.5 ± 0.3 R⋆ with CO column densities of 5 × 1019-2 × 1020 cm-2 and a temperature of 1500 ± 200 K. Conclusions: The high spectral resolution of AMBER has enabled us to spatially resolve the inhomogeneous, extended outer atmosphere (MOLsphere) in the individual CO lines for the first time in a K giant. Our modeling of the MOLsphere of Aldebaran suggests a rather small gradient in the temperature distribution above the photosphere up to 2-3 R⋆. Based on AMBER observations made with the Very Large Telescope Interferometer of the European Southern Observatory. Program ID: 090.D-0459(A).

  4. Diatomic Spectral Database

    National Institute of Standards and Technology Data Gateway

    SRD 114 Diatomic Spectral Database (Web, free access)   All of the rotational spectral lines observed and reported in the open literature for 121 diatomic molecules have been tabulated. The isotopic molecular species, assigned quantum numbers, observed frequency, estimated measurement uncertainty, and reference are given for each transition reported.

  5. Hydrocarbon Spectral Database

    National Institute of Standards and Technology Data Gateway

    SRD 115 Hydrocarbon Spectral Database (Web, free access)   All of the rotational spectral lines observed and reported in the open literature for 91 hydrocarbon molecules have been tabulated. The isotopic molecular species, assigned quantum numbers, observed frequency, estimated measurement uncertainty and reference are given for each transition reported.

  6. Triatomic Spectral Database

    National Institute of Standards and Technology Data Gateway

    SRD 117 Triatomic Spectral Database (Web, free access)   All of the rotational spectral lines observed and reported in the open literature for 55 triatomic molecules have been tabulated. The isotopic molecular species, assigned quantum numbers, observed frequency, estimated measurement uncertainty and reference are given for each transition reported.

  7. Building and Searching Tandem Mass Spectral Libraries for Peptide Identification*

    PubMed Central

    Lam, Henry

    2011-01-01

    Spectral library searching is an emerging approach in peptide identifications from tandem mass spectra, a critical step in proteomic data analysis. Conceptually, the premise of this approach is that the tandem MS fragmentation pattern of a peptide under some fixed conditions is a reproducible fingerprint of that peptide, such that unknown spectra acquired under the same conditions can be identified by spectral matching. In actual practice, a spectral library is first meticulously compiled from a large collection of previously observed and identified tandem MS spectra, usually obtained from shotgun proteomics experiments of complex mixtures. Then, a query spectrum is then identified by spectral matching using recently developed spectral search engines. This review discusses the basic principles of the two pillars of this approach: spectral library construction, and spectral library searching. An overview of the software tools available for these two tasks, as well as a high-level description of the underlying algorithms, will be given. Finally, several new methods that utilize spectral libraries for peptide identification in ways other than straightforward spectral matching will also be described. PMID:21900153

  8. Nebular Emission From AGN In The Ultraviolet/Optical: Linking Observations and Theory With New Generation Spectral Models

    NASA Astrophysics Data System (ADS)

    Feltre, Anna; Charlot, S.; Gutkin, J.; Hirschmann, M.; Mignoli, M.; Calura, F.; Gilli, R.; Bongiorno, A.; NEOGAL Team

    2016-10-01

    Spectroscopic studies of AGN are powerful means of probing the physical properties of the ionized gas within them. In particular, forthcoming facilities such as JWST and the E-ELT, will provide rest-frame ultraviolet and optical spectra of the very distant AGN. To lay the groundwork for the interpretation of the revolutionary datasets, we have recently computed new photoionization models of the narrow-line emitting regions (NLR) of AGN and combined them with similar models of the nebular emission from star-forming galaxies. In this talk, I will first describe how new ultraviolet and standard optical spectral diagnostics allow one to distinguish between nuclear activity and star formation. I will then present how the nebular emission from both young stars and AGN can be coupled with a new set of cosmological hydrodynamical zoom-in simulations of massive galaxies to achieve a better understanding of black hole growth and galaxy evolution with cosmic time. I will also present an innovative Bayesian fitting code that can help us best interpret current, and future, spectro-photometric data on active galaxies. In particular, the implementation of AGN photoionization calculations within this fitting tool allows us to better understand the physical properties of the AGN NLR gas. I will conclude showing some results from a recent analysis on one of the most comprehensive set of optical spectra (from VIMOS/VLT) sampling the rest-frame ultraviolet range of 90 type 2 AGN (1.5 < z < 3), drawn from the z-COSMOS deep survey.

  9. Understanding the Long-Term Spectral Variability of Cygnus X-1 with Burst and Transient Source Experiment and All-Sky Monitor Observations

    NASA Technical Reports Server (NTRS)

    Zdziarski, Andrzej A.; Poutanen, Juri; Paciesas, William S.; Wen, Lin-Qing

    2002-01-01

    We present a comprehensive analysis of all observations of Cyg X-1 by the Compton Gamma Ray Observatory Burst and Transient Source Experiment (BATSE; 20-300 keV) and by the Rossi X-Ray Timing Explorer all-sky monitor (ASM; 1.5-12 keV) until 2002 June, including approximately 1200 days of simultaneous data. We find a number of correlations between fluxes and hardnesses in different energy bands. In the hard (low) spectral state, there is a negative correlation between the ASM 1.5-12 keV flux and the hardness at any energy. In the soft (high) spectral state, the ASM flux is positively correlated with the ASM hardness but uncorrelated with the BATSE hardness. In both spectral states, the BATSE hardness correlates with the flux above 100 keV, while it shows no correlation with the 20-100 keV flux. At the same time, there is clear correlation between the BATSE fluxes below and above 100 keV. In the hard state, most of the variability can be explained by softening the overall spectrum with a pivot at approximately 50 keV. There is also another, independent variability pattern of lower amplitude where the spectral shape does not change when the luminosity changes. In the soft state, the variability is mostly caused by a variable hard (Comptonized) spectral component of a constant shape superposed on a constant soft blackbody component. These variability patterns are in agreement with the dependencies of the rms variability on the photon energy in the two states. We also study in detail recent soft states from late 2000 until 2002. The last of them has lasted thus far for more than 200 days. Their spectra are generally harder in the 1.5-5 keV band and similar or softer in the 3-12 keV band than the spectra of the 1996 soft state, whereas the rms variability is stronger in all the ASM bands. On the other hand, the 1994 soft state transition observed by BATSE appears very similar to the 1996 one. We interpret the variability patterns in terms of theoretical Comptonization

  10. Shallow and Deep Latent Heating Modes Over Tropical Oceans Observed with TRMM PR Spectral Latent Heating Data

    NASA Technical Reports Server (NTRS)

    Takayabu, Yukari N.; Shige, Shoichi; Tao, Wei-Kuo; Hirota, Nagio

    2010-01-01

    The global hydrological cycle is central to the Earth's climate system, with rainfall and the physics of its formation acting as the key links in the cycle. Two-thirds of global rainfall occurs in the Tropics. Associated with this rainfall is a vast amount of heat, which is known as latent heat. It arises mainly due to the phase change of water vapor condensing into liquid droplets; three-fourths of the total heat energy available to the Earth's atmosphere comes from tropical rainfall. In addition, fresh water provided by tropical rainfall and its variability exerts a large impact upon the structure and motions of the upper ocean layer. Three-dimensional distributions of latent heating estimated from Tropical Rainfall Measuring Mission Precipitation Radar (TRMM PR)utilizing the Spectral Latent Heating (SLH) algorithm are analyzed. Mass-weighted and vertically integrated latent heating averaged over the tropical oceans is estimated as approx.72.6 J/s (approx.2.51 mm/day), and that over tropical land is approx.73.7 J/s (approx.2.55 mm/day), for 30degN-30degS. It is shown that non-drizzle precipitation over tropical and subtropical oceans consists of two dominant modes of rainfall systems, deep systems and congestus. A rough estimate of shallow mode contribution against the total heating is about 46.7 % for the average tropical oceans, which is substantially larger than 23.7 % over tropical land. While cumulus congestus heating linearly correlates with the SST, deep mode is dynamically bounded by large-scale subsidence. It is notable that substantial amount of rain, as large as 2.38 mm day-1 in average, is brought from congestus clouds under the large-scale subsiding circulation. It is also notable that even in the region with SST warmer than 28 oC, large-scale subsidence effectively suppresses the deep convection, remaining the heating by congestus clouds. Our results support that the entrainment of mid-to-lower-tropospheric dry air, which accompanies the large

  11. X-ray spectral evolution of TeV BL Lacertae objects: eleven years of observations with BeppoSAX, XMM-Newton and Swift satellites

    NASA Astrophysics Data System (ADS)

    Massaro, F.; Tramacere, A.; Cavaliere, A.; Perri, M.; Giommi, P.

    2008-02-01

    Context: Many of the extragalactic sources detected in γ rays at TeV energies are BL Lac objects. In particular, they belong to the subclass of “high frequency peaked BL Lacs” (HBLs), as their spectral energy distributions exhibit a first peak in the X-ray band. At a closer look, their X-ray spectra appear to be generally curved into a log-parabolic shape. In a previous investigation of Mrk 421, two correlations were found between the spectral parameters. One involves the height Sp increasing with the position Ep of the first peak; this was interpreted as a signature of synchrotron emission from relativistic electrons. The other involves the curvature parameter b decreasing as Ep increases; this points toward statistical/stochastic acceleration processes for the emitting electrons. Aims: We analyse X-ray spectra of several TeV HBLs to pinpoint their behaviours in the E_p-Sp and E_p-b planes and to compare them with Mrk 421. Methods: We perfom X-ray spectral analyses of a sample of 15 BL Lacs. We report the whole set of observations obtained with the BeppoSAX, XMM-Newton and Swift satellites between 29/06/96 and 07/04/07. We focus on five sources (PKS 0548-322, 1H 1426+418, Mrk 501, 1ES 1959+650, PKS 2155-304) whose X-ray observations warrant detailed searching of correlations or trends. Results: Within our database, we find that four out of five sources, namely PKS 0548-322, 1H 1426+418, Mrk 501 and 1ES 1959+650, follow similar trends as Mrk 421 in the E_p-Sp plane, while PKS 2155-304 differs. As for the E_p-b plane, all TeV HBLs follow a similar behaviour. Conclusions: The trends exhibited by Mrk 421 appear to be shared by several TeV HBLs, such as to warrant discussing predictions from the X-ray spectral evolution to that of TeV emissions. Appendix A is only available in electronic form at http://www.aanda.org

  12. NEOCAM: Near Earth Object Chemical Analysis Mission: Bridging the Gulf between Telescopic Observations and the Chemical and Mineralogical Compositions of Asteroids or Diogenes A: Diagnostic Observation of the Geology of Near Earth Spectrally-Classified Asteroids

    NASA Technical Reports Server (NTRS)

    Nuth, Joseph A.

    2009-01-01

    Studies of meteorites have yielded a wealth of scientific information based on highly detailed chemical and isotopic studies possible only in sophisticated terrestrial laboratories. Telescopic studies have revealed an enormous (greater than 10(exp 5)) number of physical objects ranging in size from a few tens of meters to several hundred kilometers, orbiting not only in the traditional asteroid belt between Mars and Jupiter but also throughout the inner solar system. Many of the largest asteroids are classed into taxonomic groups based on their observed spectral properties and are designated as C, D. X, S or V types (as well as a wide range in sub-types). These objects are certainly the sources far the meteorites in our laboratories, but which asteroids are the sources for which meteorites? Spectral classes are nominally correlated to the chemical composition and physical characteristics of the asteroid itself based on studies of the spectral changes induced in meteorites due to exposure to a simulated space environment. While laboratory studies have produced some notable successes (e.g. the identification of the asteroid Vesta as the source of the H, E and D meteorite classes), it is unlikely that we have samples of each asteroidal spectral type in our meteorite collection. The correlation of spectral type and composition for many objects will therefore remain uncertain until we can return samples of specific asteroid types to Earth for analyses. The best candidates for sample return are asteroids that already come close to the Earth. Asteroids in orbit near 1 A.U. have been classified into three groups (Aten, Apollo & Amor) based on their orbital characteristics. These Near Earth Objects (NEOs) contain representatives of virtually all spectral types and sub-types of the asteroid population identified to date. Because of their close proximity to Earth, NEOs are prime targets for asteroid missions such as the NEAR-Shoemaker NASA Discovery Mission to Eros and the

  13. Modeling solar oscillation power spectra. II. Parametric model of spectral lines observed in Doppler-velocity measurements

    SciTech Connect

    Vorontsov, Sergei V.; Jefferies, Stuart M. E-mail: stuartj@ifa.hawaii.edu

    2013-11-20

    We describe a global parametric model for the observed power spectra of solar oscillations of intermediate and low degree. A physically motivated parameterization is used as a substitute for a direct description of mode excitation and damping as these mechanisms remain poorly understood. The model is targeted at the accurate fitting of power spectra coming from Doppler-velocity measurements and uses an adaptive response function that accounts for both the vertical and horizontal components of the velocity field on the solar surface and for possible instrumental and observational distortions. The model is continuous in frequency, can easily be adapted to intensity measurements, and extends naturally to the analysis of high-frequency pseudomodes (interference peaks at frequencies above the atmospheric acoustic cutoff).

  14. HST/FOC observations confirm the presence of a spectral feature in the optical spectrum of Geminga

    NASA Astrophysics Data System (ADS)

    Mignani, R. P.; Caraveo, P. A.; Bignami, G. F.

    1998-04-01

    New optical and near-UV HST observations of Geminga are presented. When compared with previous ground-based and HST imaging, the data confirm and better define the presence of an emission feature centered at ~ 6,000 Angstroms and superimposed on the thermal continuum best fitting the extreme-UV/soft X-ray data. This feature may be interpreted in terms of cyclotron emission originated from a mixture of H/He ions in the neutron star's atmosphere. In the case of pure Hydrogen, the feature wavelength would imply a magnetic field of order 3-5 10(11) G, consistent with the value deduced from the dynamical parameters of the pulsar. If due to cyclotron emission, the observation of this feature would represent the first case of an in situ measurement of the surface magnetic field of an isolated neutron star. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS 5-26555

  15. Global-Scale Maps of Near-Infrared Spectral Variability on Mars: Analysis of 2003 Mars Opposition Observations from HST/NICMOS

    NASA Astrophysics Data System (ADS)

    Noe Dobrea, E. Z.; Bell, J. F., III; Wolff, M. J.; Noll, K.; Lubenow, A.

    2004-11-01

    We have used HST/NICMOS to observe Mars in 7 narrow band filters (0.97, 1.08, 1.13, 1.66, 1.90, 2.12, and 2.15 μ m) during the 2003 opposition. Observations were acquired on August 21, 22, 28, and 29, 2003. The data were calibrated using the standard pipeline calnica and calnicb procedures [1], then were converted to I/F, corrected for limb darkening, co-registered, and projected to Mollweide equal-area projection. Approximately 57% of the surface was imaged during the 2003 campaign, at a spatial resolution of ˜ 20 km/pixel near the sub-Earth point. We have used principal components analysis (PCA) to identify regional variability on scales of 100s of km associated with variations in the near-infrared spectrum of Mars. Visualization of the data cloud in principal component space has allowed us to identify spectral endmembers associated with 1) the South Polar Cap, 2) Acidalia Planitia, 3) Syrtis Major, and 4) the Classical Bright Terrains of Tharsis. Particularly interesting is the strong variability in the 0.97-2.15 μ m spectral slope (up to 36% variation in slope), whose magnitude is most negative for the classical dark terrains and least negative for the bright terrains. However, strong variations in this spectral slope are exhibited among the dark terrains and some classical intermediate terrains. The most negative value is measured in Acidalia Planitia (30° W, 45° N), whereas the least negative value, measured in Tyrrhena Terra (285° W, 15° S), is as low as that of the bright terrains. This variability is most apparent between Syrtis Major (290° W, 13° N) and Tyrrhena Terra. Although some features in the 0.97:2.15-μ m ratio map can be associated with classical albedo patterns, the map generally shows no correlation to albedo, topography, or geology, suggesting that surface physical or compositional/mineralogic effects are responsible for the observed variations. Constrains on the mineralogy responsible for the observed effect will be discussed. [1

  16. Trend analysis of the Aerosol Optical Thickness and Ångström Exponent derived from the global AERONET spectral observations

    NASA Astrophysics Data System (ADS)

    Yoon, J.; von Hoyningen-Huene, W.; Kokhanovsky, A. A.; Vountas, M.; Burrows, J. P.

    2011-08-01

    Regular aerosol observations based on well-calibrated instruments have led to a better understanding of the aerosol radiative budget on Earth. In recent years, these instruments have played an important role in the determination of the increase of anthropogenic aerosols by means of long-term studies. Only few investigations regarding long-term trends of aerosol optical characteristics (e.g. Aerosol Optical Thickness (AOT) and Ångström Exponent (ÅE)) have been derived from ground-based observations. This paper aims to derive and discuss linear trends of AOT (440, 675, 870, and 1020 nm) and ÅE (440-870 nm) using AErosol RObotic NETwork (AERONET) spectral observations. Additionally, temporal trends of Coarse- and Fine-mode dominant AOTs (CAOT and FAOT) have been estimated by applying an aerosol classification based on accurate ÅE and Ångström Exponent Difference (ÅED). In order to take into account the fact that cloud disturbance is having a significant influence on the trend analysis of aerosols, we introduce a weighted least squares regression depending on two weights: (1) monthly standard deviation and (2) Number of Observations (NO) per month. Temporal increase of FAOTs prevails over regions dominated by emerging economy or slash-burn agriculture in East Asia and South Africa. On the other hand, insignificant or negative trends for FAOTs are detected over Western Europe and North America. Over desert regions, both increase and decrease of CAOTs are observed depending on meteorological conditions.

  17. Spectral observations of the soft X-ray background with solid-state detectors - Evidence for line emissions

    NASA Technical Reports Server (NTRS)

    Rocchia, R.; Arnaud, M.; Blondel, C.; Cheron, C.; Christy, J. C.; Rothenflug, R.; Schnopper, H. W.; Delvaille, J. P.

    1984-01-01

    The soft X-ray radiation from several regions of the sky was observed with solid-state detectors Si(Li) between 0.3 and 1.2 keV during two rocket flights. The thermal nature of the diffuse emission coming from the hot bubble surrounding the solar system is confirmed by the observation of C V-C VI and O VII lines which are typical of a temperature of about 10 to the 6th K. Evidence for the existence of a weak component at a higher temperature is given. This component, well visible in the high latitude spectra, could be produced by a hot galactic halo. In the direction of the enhancement region centered on the North Polar Spur, the radiation excess spectra are well represented by a two-temperature plasma model with rather standard abundances. The two components have temperatures of 10 to the 6th and 4.7 x 10 to the 6th K.

  18. High-spectral resolution observations of the 3.29 micron emission feature: Comparison to QCC and PAHs

    NASA Technical Reports Server (NTRS)

    Tokunaga, Alan T.; Sellgren, Kris; Sakata, Akira; Wada, S.; Onaka, Takashi; Nakada, Y.; Nagata, T.

    1989-01-01

    Two of the most promising explanations for the origin of the interstellar emission features observed at 3.29, 3.4, 6.2, 7.7, 8.6, and 11.3 microns are: quenched carbonaceous composite (QCC) and polycyclic aromatic hydrocarbons (PAHs). High resolution spectra are given of the 3.29 micron emission feature which were taken with the Cooled Grating Array Spectrometer at the NASA Infrared Telescope Facility and previously published. These spectra show that the peak wavelength of the 3.29 micron feature is located at 3.295 + or - 0.005 micron and that it is coincident with the peak absorbance of QCC. The peak wavelength of the 3.29 micron feature appears to be the same in all of the sources observed thus far. However, the width of the feature in HD 44179 and Elias 1 is only 0.023 micron, which is smaller than the 0.043 micron width in NGC 7027, IRAS 21282+5050, the Orion nebula, and BD+30 deg 3639. Spectra of NGC 7027, QCC, and PAHs is shown. QCC matches the 3.29 micron interstellar emission feature very closely in the wavelength of the peak, and it produces a single feature. On the other hand, PAHs rarely match the peak of the interstellar emission feature, and characteristically produce multiple features.

  19. Vibrational and structural observations upon 3-((1H-benzo[d]imidazol-1-yl)methyl)naphthalen-2-ol from spectral and DFT computing approaches

    NASA Astrophysics Data System (ADS)

    Jone Pradeepa, S.; Tamilvendan, D.; Susai Boobalan, Maria; Sundaraganesan, N.

    2016-05-01

    An aggregate of experimental and computational study on synthesis, molecular structure, vibrational, electronic, nuclear magnetic resonance spectra, electronic structure, NLO activity and thermochemical characterization has been investigated for 3-((1H-benzo[d]imidazol-1-yl)methyl) naphthalen-2-ol (BDMN). The perspective on structural analysis includes the examination of equilibrium geometry, Natural Bond Orbital analysis (NBO), molecular electrostatic potential (MEP) analysis and frontier molecular orbital calculation. Similarly the following spectral analysis such as vibrational (FT-IR and FT-Raman), electronic (UV-Vis) and NMR (1H and 13C) has been interpreted. The FT-IR, FT-Raman spectrum were recorded in the frequency range of 4000-400 cm-1 and 4000-50 cm-1 respectively. A complete potential energy distribution (PED) was achieved to interpret the normal modes by comparing the experimental and theoretical spectral data. The simulation of NMR spectrum was performed using GIAO strategy. The NLO activity of BDMN has been calibrated using hyperpolarizability. In addition, various thermodynamic entities were predicted against different temperatures. The entire computation was executed using appropriate model chemistries such as B3LYP/Sadlej pVTZ, B3LYP/6-311G(d,p) and PBEPBE (TDDFT)/6-311G(d,p) for the respective properties. The overall hand-in-hand analysis by using both theoretical and experimental calculation on BDMN provides interesting observations and inferences.

  20. Mantle dynamics models for Venus - comparison of spatial and spectral characteristics of inferred gravity anomalies and topography with observations

    NASA Astrophysics Data System (ADS)

    Steinberger, Bernhard; Werner, Stephanie C.

    2013-04-01

    Venus and Earth have similar size and probably also core radius, such that many results that have been obtained for Earth's mantle could apply to Venus as well. Yet a fundamental difference between the two planets is that Earth features plate tectonics, whereas Venus appears to be in the rigid lid regime. From a variety of constraints, a substantial increase of viscosity with depth in the Earth's mantle, reaching around 10**23 Pas in the lower mantle above D'', can be inferred. Mantle convection models with a sufficiently high temperature as boundary condition at the core-mantle-boundary invariably yield thermal plumes. With a rigid lid as upper boundary and the high lower mantle viscosity, mantle dynamics models typically yield around 10 plumes, which are long-lived (hundreds of Myr lifespan) and slowly moving (typically < 1cm/yr). These modelling results appear to match well with the distribution of volcanism in space and time as inferred from observations. Besides volcanism, topography and gravity anomalies can yield further insights towards the internal dynamics of Venus: If we assume the same spectrum (in terms of spherical harmonic expansion) of thermal density anomalies, as inferred from tomography models on Earth, and a similar radial viscosity structure, except without viscosity jump at the spinel-perovskite transition on Venus, we find that we can match most of both the gravity and topography spectrum on Venus up to about degree 40. This probably implies that - in contrast to Earth - topography on Venus is mostly dynamically supported from within. The main exception is degree two gravity on Venus, which is much less than predicted, implying that the mantle on Venus has much less degree-two structure, and therefore probably no features corresponding to the Earth's Large Low Shear wave Velocity Provinces (LLSVPs). Here we focus on predictions from dynamic models: We compare model predictions of mantle density anomaly spectra for both Earth (where we

  1. Cassini-VIMS observations of Saturn's main rings: I. Spectral properties and temperature radial profiles variability with phase angle and elevation

    NASA Astrophysics Data System (ADS)

    Filacchione, G.; Ciarniello, M.; Capaccioni, F.; Clark, R. N.; Nicholson, P. D.; Hedman, M. M.; Cuzzi, J. N.; Cruikshank, D. P.; Dalle Ore, C. M.; Brown, R. H.; Cerroni, P.; Altobelli, N.; Spilker, L. J.

    2014-10-01

    The spectral properties and thermal behavior of Saturn's rings are determined from a dataset of ten radial mosaics acquired by Cassini-VIMS (Visual and Infrared Mapping Spectrometer) between October 29th 2004 and January 27th 2010 with phase angle ranging between 5.7° and 132.4° and elevation angles between -23.5° and 2.6°. These observations, after reduction to spectrograms, e.g. 2D arrays containing the VIS-IR (0.35-5.1 μm) spectral information versus radial distance from Saturn (from 73.500 to 141.375 km, 400 km/bin), allow us to compare the derived spectral and thermal properties of the ring particles on a common reference. Spectral properties: rings spectra are characterized by an intense reddening at visible wavelengths while they maintain a strong similarity with water ice in the infrared domain. Significant changes in VIS reddening, water ice abundance and grain sizes are observed across different radial regions resulting in correlation with optical depth and local structures. The availability of observations taken at very different phase angles allows us to examine spectrophotometric properties of the ring's particles. When observed at high phase angles, a remarkable increase of visible reddening and water ice band depths is found, probably as a consequence of the presence of a red-colored contaminant intimately mixed within water ice grains and of multiple scattering. At low phases the analysis of the 3.2-3.6 μm range shows faint spectral signatures at 3.42-3.52 μm which are compatible with the CH2 aliphatic stretch. The 3.29 μm PAH aromatic stretch absorption is not clearly detectable on this dataset. VIMS results indicate that ring particles contain about 90-95% water ice while the remaining 5-10% is consistent with different contaminants like amorphous carbon or tholins. However, we cannot exclude the presence of nanophase iron or hematite produced by iron oxidation in the rings tenuous oxygen atmosphere, intimately mixed with the ice grains

  2. NuSTAR OBSERVATIONS AND BROADBAND SPECTRAL ENERGY DISTRIBUTION MODELING OF THE MILLISECOND PULSAR BINARY PSR J1023+0038

    SciTech Connect

    Li, K. L.; Kong, A. K. H.; Tam, P. H. T.; Jin, Ruolan; Takata, J.; Cheng, K. S.; Hui, C. Y. E-mail: akong@phys.nthu.edu.tw

    2014-12-20

    We report the first hard X-ray (3-79 keV) observations of the millisecond pulsar (MSP) binary PSR J1023+0038 using NuSTAR. This system has been shown transiting between a low-mass X-ray binary (LMXB) state and a rotation-powered MSP state. The NuSTAR observations were taken in both LMXB state and rotation-powered state. The source is clearly seen in both states up to ∼79 keV. During the LMXB state, the 3-79 keV flux is about a factor of 10 higher than in the rotation-powered state. The hard X-rays show clear orbital modulation during the X-ray faint rotation-powered state but the X-ray orbital period is not detected in the X-ray bright LMXB state. In addition, the X-ray spectrum changes from a flat power-law spectrum during the rotation-powered state to a steeper power-law spectrum in the LMXB state. We suggest that the hard X-rays are due to the intrabinary shock from the interaction between the pulsar wind and the injected material from the low-mass companion star. During the rotation-powered MSP state, the X-ray orbital modulation is due to Doppler boosting of the shocked pulsar wind. At the LMXB state, the evaporating matter of the accretion disk due to the gamma-ray irradiation from the pulsar stops almost all the pulsar wind, resulting in the disappearance of the X-ray orbital modulation.

  3. Benchmark Transiting Brown Dwarf LHS 6343 C: Spitzer Secondary Eclipse Observations Yield Brightness Temperature and Mid-T Spectral Class

    NASA Astrophysics Data System (ADS)

    Montet, Benjamin T.; Johnson, John Asher; Fortney, Jonathan J.; Desert, Jean-Michel

    2016-05-01

    There are no field brown dwarf analogs with measured masses, radii, and luminosities, precluding our ability to connect the population of transiting brown dwarfs with measurable masses and radii and field brown dwarfs with measurable luminosities and atmospheric properties. LHS 6343 C, a weakly irradiated brown dwarf transiting one member of an M+M binary in the Kepler field, provides the first opportunity to probe the atmosphere of a non-inflated brown dwarf with a measured mass and radius. Here, we analyze four Spitzer observations of secondary eclipses of LHS 6343 C behind LHS 6343 A. Jointly fitting the eclipses with a Gaussian process noise model of the instrumental systematics, we measure eclipse depths of 1.06 ± 0.21 ppt at 3.6 μm and 2.09 ± 0.08 ppt at 4.5 μm, corresponding to brightness temperatures of 1026 ± 57 K and 1249 ± 36 K, respectively. We then apply brown dwarf evolutionary models to infer a bolometric luminosity {log}({L}\\star /{L}⊙ )=-5.16+/- 0.04. Given the known physical properties of the brown dwarf and the two M dwarfs in the LHS 6343 system, these depths are consistent with models of a 1100 K T dwarf at an age of 5 Gyr and empirical observations of field T5-6 dwarfs with temperatures of 1070 ± 130 K. We investigate the possibility that the orbit of LHS 6343 C has been altered by the Kozai-Lidov mechanism and propose additional astrometric or Rossiter-McLaughlin measurements of the system to probe the dynamical history of the system.

  4. Space-time and Spectral Structures of Sprite Halos Obtained from High-speed Photometric and Imaging Observations

    NASA Astrophysics Data System (ADS)

    Miyasato, R.; Fukunishi, H.; Taylor, M. J.; Stenbaek-Nielsen, H. C.

    2001-12-01

    We carried out optical observations of lightning-induced luminous events at Yucca Ridge Field Station, Colorado, USA, from 1996 to 2000, using two multi-anode array photometers (MAP), an image intensified CCD cameras and other optical instruments. The MAP has 16 channels aligned vertically and each channel has a field-of-view of 0.67x10.75 degrees. Consequently, the total size of field-of-view is 10.75x10.75 degrees. The time resolution of MAP is 50 microseconds so that we can detect temporal and spatial structures of sprite halo emissions. The two MAPs are equipped with different color filters, red (380-500 nm) for mesurement of N2 1st positive band and N2+ Meinel band, and blue (560-800 nm) for mesurement of N2 2nd positive band and N2+ 1st negative band, respectively. Using data obtained from these instruments, we estimated the altitude range and the horizontal extent of sprite halos. Sprite halos move downward as focusing into the center of diffuse glows. It is found that the starting and ending altitudes are about 83 and 67 km, respectively, on average, and that the mean speed of downward motion is about 1/6 of the light speed. On the other hand, the estimated horizontal extent of sprite halos are about 40 - 110 km with a mean value of 78 km. A mean duration of sprite halos is found to be about 1 ms. Using the ratios of blue to red siganls obtained from two MAPs during the SPRITES'99 campaign, we estimated the energies of electrons inducing sprite halo emissions by assuming a more realistic non-Mawellian energy distribution as well as a standard Maxwell-Boltzmann distribution. Futhermore, we calculated the charge moments of causative CGs using NLDN data and investigated the relationship between the charge moments of causative CGs and the time delays from VLF sferics to the onset of sprite halos. By comparing the observational results with the model calculation presented by Barrington-Leigh et al. [2000], we will discuss the generation mechanism of sprite halos.

  5. A Wolf-Rayet-Like Progenitor of SN 2013cu from Spectral Observations of a Stellar Wind

    NASA Technical Reports Server (NTRS)

    Gal-Yam, Avishay; Arcavi, I.; Ofek, E. O.; Ben-Ami, S.; Cenko, S. B.; Kasliwal, M. M.; Cao, Y.; Yaron, O.; Tal, D.; Silverman, J. M.; Horesh, A.; Cia, A. De; Taddia, F.; Sollerman, J.; Perley, D.; Vreeswijk, P. M.; Kulkarni, S. R.; Nugent, P. E.; Filippenko, A. V.; Wheeler, J. C.

    2014-01-01

    The explosive fate of massive Wolf-Rayet stars (WRSs) is a key open question in stellar physics. An appealing option is that hydrogen- deficient WRSs are the progenitors of some hydrogen-poor supernova explosions of types IIb, Ib and Ic. A blue object, having luminosity and colours consistent with those of some WRSs, has recently been identified in pre-explosion images at the location of a supernova of type Ib, but has not yet been conclusively determined to have been the progenitor. Similar work has so far only resulted in non-detections. Comparison of early photometric observations of type Ic supernovae with theoretical models suggests that the progenitor stars had radii of less than 10(exp 12) centimetres, as expected for some WRSs. The signature of WRSs, their emission line spectra, cannot be probed by such studies. Here we report the detection of strong emission lines in a spectrum of type IIb supernova 2013cu (iPTF13ast) obtained approximately 15.5 hours after explosion (by 'flash spectroscopy', which captures the effects of the supernova explosion shock breakout flash on material surrounding the progenitor star).We identify Wolf-Rayet-like wind signatures, suggesting a progenitor of the WN(h) subclass (those WRSs with winds dominated by helium and nitrogen, with traces of hydrogen). The extent of this dense wind may indicate increased mass loss from the progenitor shortly before its explosion, consistent with recent theoretical predictions.

  6. Construction of a High Temporal-spectral Resolution Spectrometer for Detection of Fast Transients from Observations of the Sun at 1.4 GHz.

    NASA Astrophysics Data System (ADS)

    Casillas-Perez, G. A.; Jeyakumar, S.; Perez-Enriquez, R.

    2014-12-01

    Transients explosive events with time durations from nanoseconds to several hours, are observed in the Sun at high energy bands such as gamma ray and xray. In the radio band, several types of radio bursts are commonly detected from the ground. A few observations of the Sun in the past have also detected a new class of fast transients which are known to have short-live electromagnetic emissions with durations less than 100 ms. The mechanisms that produce such fast transiets remain unclear. Observations of such fast transients over a wide bandwidth is necessary to uderstand the underlying physical process that produce such fast transients. Due to their very large flux densities, fast radio transients can be observed at high time resolution using small antennas in combination with digital signal processing techniques. In this work we report the progress of an spectrometer that is currently in construction at the Observatorio de la Luz of the Universidad de Guanajuato. The instrument which will have the purpose of detecting solar fast radio transients, involves the use of digital devices such as FPGA and ADC cards, in addition with a receiver with high temporal-spectral resolution centered at 1.4 GHz and a pair of 2.3 m satellite dish.

  7. Sardinia Radio Telescope wide-band spectral-polarimetric observations of the galaxy cluster 3C 129

    NASA Astrophysics Data System (ADS)

    Murgia, M.; Govoni, F.; Carretti, E.; Melis, A.; Concu, R.; Trois, A.; Loi, F.; Vacca, V.; Tarchi, A.; Castangia, P.; Possenti, A.; Bocchinu, A.; Burgay, M.; Casu, S.; Pellizzoni, A.; Pisanu, T.; Poddighe, A.; Poppi, S.; D'Amico, N.; Bachetti, M.; Corongiu, A.; Egron, E.; Iacolina, N.; Ladu, A.; Marongiu, P.; Migoni, C.; Perrodin, D.; Pilia, M.; Valente, G.; Vargiu, G.

    2016-10-01

    We present new observations of the galaxy cluster 3C 129 obtained with the Sardinia Radio Telescope in the frequency range 6000-7200 MHz, with the aim to image the large-angular-scale emission at high-frequency of the radio sources located in this cluster of galaxies. The data were acquired using the recently commissioned ROACH2-based backend to produce full-Stokes image cubes of an area of 1°×1° centred on the radio source 3C 129. We modelled and deconvolved the telescope beam pattern from the data. We also measured the instrumental polarization beam patterns to correct the polarization images for off-axis instrumental polarization. Total intensity images at an angular resolution of 2.9 arcmin were obtained for the tailed radio galaxy 3C 129 and for 13 more sources in the field, including 3C 129.1 at the galaxy cluster centre. These data were used, in combination with literature data at lower frequencies, to derive the variation of the synchrotron spectrum of 3C 129 along the tail of the radio source. If the magnetic field is at the equipartition value, we showed that the lifetimes of radiating electrons result in a radiative age for 3C 129 of tsyn ≃ 267 ± 26 Myr. Assuming a linear projected length of 488 kpc for the tail, we deduced that 3C 129 is moving supersonically with a Mach number of M = vgal/cs = 1.47. Linearly polarized emission was clearly detected for both 3C 129 and 3C 129.1. The linear polarization measured for 3C 129 reaches levels as high as 70 per cent in the faintest region of the source where the magnetic field is aligned with the direction of the tail.

  8. A spectral line survey of Orion KL in the bands 486-492 and 541-577 GHz with the Odin satellite. I. The observational data

    NASA Astrophysics Data System (ADS)

    Olofsson, A. O. H.; Persson, C. M.; Koning, N.; Bergman, P.; Bernath, P. F.; Black, J. H.; Frisk, U.; Geppert, W.; Hasegawa, T. I.; Hjalmarson, Å.; Kwok, S.; Larsson, B.; Lecacheux, A.; Nummelin, A.; Olberg, M.; Sandqvist, Aa.; Wirström, E. S.

    2007-12-01

    Aims:Spectral line surveys are useful since they allow identification of new molecules and new lines in uniformly calibrated data sets. The subsequent multi-transition analysis will provide improved knowledge of molecular abundances, cloud temperatures and densities, and may also reveal previously unsuspected blends of molecular lines, which otherwise may lead to erroneous conclusions. Nonetheless, large portions of the sub-millimetre spectral regime remain unexplored due to severe absorptions by H{2}O and O{2} in the terrestrial atmosphere. The purpose of the measurements presented here is to cover wavelength regions at and around 0.55 mm - regions largely unobservable from the ground. Methods: Using the Odin astronomy/aeronomy satellite, we performed the first spectral survey of the Orion KL molecular cloud core in the bands 486-492 and 541-576 GHz with rather uniform sensitivity (22-25 mK baseline noise). Odin's 1.1 m size telescope, equipped with four cryo-cooled tuneable mixers connected to broad band spectrometers, was used in a satellite position-switching mode. Two mixers simultaneously observed different 1.1 GHz bands using frequency steps of 0.5 GHz (25 h each). An on-source integration time of 20 h was achieved for most bands. The entire campaign consumed 1100 orbits, each containing one hour of serviceable astro-observation. Results: We identified 280 spectral lines from 38 known interstellar molecules (including isotopologues) having intensities in the range 80 to 0.05 K. An additional 64 weak lines remain unidentified. Apart from the ground state rotational 1{1,0}-1{0,1} transitions of ortho-H{2}O, H{2}18O and H{2}17O, the high energy 6{2,4}-7{1,7} line of para-H{2}O (Eu=867 K) and the HDO(2{0,2}-1{1,1}) line have been observed, as well as the 1{0}-0{1} lines from NH{3} and its rare isotopologue 15NH{3}. We suggest assignments for some unidentified features, notably the new interstellar molecules ND and SH-. Severe blends have been detected in the

  9. Spectrally selective glazings

    SciTech Connect

    1998-08-01

    Spectrally selective glazing is window glass that permits some portions of the solar spectrum to enter a building while blocking others. This high-performance glazing admits as much daylight as possible while preventing transmission of as much solar heat as possible. By controlling solar heat gains in summer, preventing loss of interior heat in winter, and allowing occupants to reduce electric lighting use by making maximum use of daylight, spectrally selective glazing significantly reduces building energy consumption and peak demand. Because new spectrally selective glazings can have a virtually clear appearance, they admit more daylight and permit much brighter, more open views to the outside while still providing the solar control of the dark, reflective energy-efficient glass of the past. This Federal Technology Alert provides detailed information and procedures for Federal energy managers to consider spectrally selective glazings. The principle of spectrally selective glazings is explained. Benefits related to energy efficiency and other architectural criteria are delineated. Guidelines are provided for appropriate application of spectrally selective glazing, and step-by-step instructions are given for estimating energy savings. Case studies are also presented to illustrate actual costs and energy savings. Current manufacturers, technology users, and references for further reading are included for users who have questions not fully addressed here.

  10. Variability of the Venus condensational clouds from analysis of VIRTIS-M-IR observations of the near-infrared spectral windows

    NASA Astrophysics Data System (ADS)

    McGouldrick, Kevin; Tsang, Constantine C. C.

    2015-11-01

    The Medium Resolution, Infrared wavelength channel of the Visible and Infrared Thermal Imaging Spectrometer (VIRTIS-M-IR) on the Venus Express spacecraft observed the atmosphere and surface of Venus for 921 orbits following orbit insertion in April 2006 until the failure of the cooling unit in October 2008. The clouds of Venus were long thought to be a uniform sort of perpetual stratocumulus, but near infrared observations by fly-by spacecraft such as Galileo (Near Infrared Mapping Spectrometer) and Cassini (Visible and Infrared Mapping Spectrometer), as well as ground-based observations, indicated a great deal of temporal and spatial inhomogeneity. The nearly three-year lifetime of the VIRTIS-M-IR instrument on Venus Express presents an unprecedented opportunity to quantify these spatial and temporal variations of the Venus clouds. Here, we present the results of an initial quantification of the overall tendencies of the Venus clouds, as measured by variations in the near infrared spectral windows located between wavelengths of 1.0 µm and 2.6 µm. In a companion submission, we also investigate the variations of carbon monoxide and other trace species quantifiable in these data (Tsang and McGouldrick 2015). This work is supported by the Planetary Mission Data Analysis Program, Grant Number NNX14AP94G.

  11. Spectral and Spread Spectral Teleportation

    SciTech Connect

    Humble, Travis S

    2010-01-01

    We report how quantum information encoded into the spectral degree of freedom of a single-photon state is teleported using a finite spectrally entangled biphoton state. We further demonstrate how the bandwidth of a teleported waveform can be controllably and coherently dilated using a spread spectral variant of teleportation. We present analytical fidelities for spectral and spread spectral teleportation when complex-valued Gaussian states are prepared using a proposed experimental approach, and we discuss the utility of these techniques for integrating broad-bandwidth photonic qubits with narrow-bandwidth receivers in quantum communication systems.

  12. Evidence of dispersion and refraction of a spectrally broad gravity wave packet in the mesopause region observed by the Na lidar and Mesospheric Temperature Mapper above Logan, Utah

    NASA Astrophysics Data System (ADS)

    Yuan, T.; Heale, C. J.; Snively, J. B.; Cai, X.; Pautet, P.-D.; Fish, C.; Zhao, Y.; Taylor, M. J.; Pendleton, W. R.; Wickwar, V.; Mitchell, N. J.

    2016-01-01

    Gravity wave packets excited by a source of finite duration and size possess a broad frequency and wave number spectrum and thus span a range of temporal and spatial scales. Observing at a single location relatively close to the source, the wave components with higher frequency and larger vertical wavelength dominate at earlier times and at higher altitudes, while the lower frequency components, with shorter vertical wavelength, dominate during the latter part of the propagation. Utilizing observations from the Na lidar at Utah State University and the nearby Mesospheric Temperature Mapper at Bear Lake Observatory (41.9°N, 111.4°W), we investigate a unique case of vertical dispersion for a spectrally broad gravity wave packet in the mesopause region over Logan, Utah (41.7°N, 111.8°W), that occurred on 2 September 2011, to study the waves' evolution as it propagates upward. The lidar-observed temperature perturbation was dominated by close to a 1 h modulation at 100 km during the early hours but gradually evolved into a 1.5 h modulation during the second half of the night. The vertical wavelength also decreased simultaneously, while the vertical group and phase velocities of the packet apparently slowed, as it was approaching a critical level during the second half of the night. A two-dimensional numerical model is used to simulate the observed gravity wave processes, finding that the location of the lidar relative to the source can strongly influence which portion of the spectrum can be observed at a particular location relative to a source.

  13. Radar spectral observations of snow

    NASA Technical Reports Server (NTRS)

    Stiles, W. H.; Ulaby, F. T.; Fung, A. K.; Aslam, A.

    1981-01-01

    Radar remote sensing experiments have been conducted at test sites in Kansas, Colorado, and South Dakota over the last six years to examine backscatter coefficient response to snowcovered terrain. Truck-mounted 1-35 GHz scatterometers were employed in conjunction with detailed ground-truth measurements. From these experiments and associated modeling efforts, most of the fundamental questions concerning backscatter behavior in response to important snow parameters have been, at least qualitatively, answered. The optimum angular range seems to be between 20 and 50 deg and, for these angles, the results indicate that the radar backscatter generally: (1) increases with increasing water equivalent, (2) decreases with increasing liquid water, (3) increases with increasing crystal size, (4) is insensitive to surface roughness for dry snow conditions, and (5) can be sensitive to soil state if the snowcover is dry. This paper gives a summary of these results, along with empirical and theoretical models for describing the backscatter from snow.

  14. Spectral Index and Quasi-Periodic Oscillation Frequency Correlation in Black Hole (BH) Sources: Observational Evidence of Two Phases and Phase Transition in BHs

    NASA Technical Reports Server (NTRS)

    Titarchuk, Lev; Fiorito, Ralph

    2004-01-01

    Recent studies have shown that strong correlations are observed between the low frequencies (1-10 Hz) of quasiperiodic oscillations (QPOs) and the spectral power law index of several Black Hole (BH) candidate sources, in low hard states, steep power-law (soft) states and in transition between these states. The observations indicate that the X-ray spectrum of such state (phases) show the presence of a power-law component and are sometimes related to simultaneous radio emission indicated the probable presence of a jet. Strong QPOs (less than 20% rms) are present in the power density spectrum in the spectral range where the power-law component is dominant ( i.e. 60-90% ). This evidence contradicts the dominant long standing interpretation of QPOs as a signature of the thermal accretion disk. We present the data from the literature and our own data to illustrate the dominance of power-law index-QPO frequency correlations. We provide a model, that identifies and explains the origin of the QPOs and how they are imprinted on the properties of power-law flux component. We argue the existence of a bounded compact coronal region which is a natural consequence of the adjustment of Keplerian disk flow to the innermost sub-Keplerian boundary conditions near the central object and that ultimately leads to the formation of a transition layer (TL) between the adjustment radius and the innermost boundary. The model predicts two phases or states dictated by the photon upscattering produced in the TL: (1) hard state, in which the TL is optically thin and very hot (kT approx. greater than 50 keV) producing photon upscattering via thermal Componization; the photon spectrum index Gamma appprox.1.5 for this state is dictated by gravitational energy release and Compton cooling in an optically thin shock near the adjustment radius; (2) a soft state which is optically thick and relatively cold (approx. less than 5 keV); the index for this state, Gamma approx. 2.8 is determined by soft

  15. FIRST INTEGRAL OBSERVATIONS OF V404 CYGNI DURING THE 2015 OUTBURST: SPECTRAL BEHAVIOR IN THE 20–650 KeV ENERGY RANGE

    SciTech Connect

    Roques, Jean-Pierre; Jourdain, Elisabeth; Bazzano, Angela; Fiocchi, Mariateresa; Natalucci, Lorenzo; Ubertini, Pietro

    2015-11-01

    In 2015 June, the source V404 Cygni (= GS2023+38) underwent an extraordinary outburst. We present the results obtained during the first revolution dedicated to this target by the INTEGRAL mission and focus on the spectral behavior in the hard X-ray domain, using both SPI and IBIS instruments. The source exhibits extreme variability and reaches fluxes of several tens of Crab. However, the emission between 20 and 650 keV can be understood in terms of two main components, varying on all the observable timescales, similar to what is observed in the persistent black hole system Cyg X-1. The low-energy component (up to ∼200 keV) presents a rather unusual shape, probably due to the intrinsic source variability. Nonetheless, a satisfactory description is obtained with a Comptonization model, if an unusually hot population of seed photons (kT{sub 0} ∼ 7 keV) is introduced. Above this first component, a clear excess extending up to 400–600 keV leads us to investigate a scenario where an additional (cutoff) power law could correspond to the contribution of the jet synchrotron emission, as proposed in Cyg X-1. A search for an annihilation feature did not provide any firm detection, with an upper limit of 2 × 10{sup −4} ph cm{sup −2} s{sup −1} (2σ) for a narrow line centered at 511 keV, on the averaged obtained spectrum.

  16. Construction and first atmospheric observations of a high spectral resolution lidar system in Argentina in the frame of a trinational Japanese-Argentinean-Chilean collaboration

    NASA Astrophysics Data System (ADS)

    Papandrea, S.; Jin, Y.; Ristori, P.; Otero, L.; Nishizawa, T.; Mizuno, A.; Sugimoto, N.; Quel, E.

    2016-05-01

    Atmospheric monitoring stations are being developed in Argentina. The most important targets are volcanic ashes, desert aerosols in particular Patagonian dust and biomass burning aerosols. Six stations deployed in the Patagonian Region and Buenos Aires have lidar systems, sun photometers integrated to the AERONET/NASA monitoring network, in situ optical particle analyzers, four solar radiation sensors (pyranometer, UVA, UVB and GUV), and meteorological equipment. The stations are in the main international airports of the Regions (San Carlos de Bariloche, Comodoro Rivadavia, Neuquén, Rio Gallegos) and in Buenos Aires (Aeroparque Jorge Newbery and at CEILAP/CITEDEF). CEILAP and the National Institute of Environmental Studies (NIES) at Tsukuba, Japan developed the first iodine cell-based high spectral resolution lidar (HSRL) in Argentina to add in the lidar network. We upgraded the standard CEILAP multi-wavelength Raman lidar adding the laser frequency tuning system and the 532 iodine-filtered channel at the reception to built the HSRL. HSRL will provide daytime and nighttime direct observation of the aerosol and cloud optical properties (backscatter and extinction) without the pre-assumption of the lidar ratio. This work shows the design and construction of the first Argentinean HSRL. We also show the first lidar observations done in the country with this kind of lidar.

  17. Atmospheric correction for ocean spectra retrievals from high-altitude multi-angle, multi-spectral photo-polarimetric remote sensing observations: Results for coastal ocean waters.

    NASA Astrophysics Data System (ADS)

    Chowdhary, J.; van Diedenhoven, B.; Knobelspiesse, K. D.; Cairns, B.; Wasilewski, A. P.; McCubbin, I.

    2015-12-01

    A major challenge for spaceborne observations of ocean color is to correct for atmospheric scattering, which typically contributes ≥85% to the top-of-atmosphere (TOA) radiance and varies substantially with aerosols. Ocean color missions traditionally analyze TOA radiance in the near-infrared (NIR), where the ocean is black, to constrain the TOA atmospheric scattering in the visible (VIS). However, this procedure is limited by insufficient sensitivity of NIR radiance to absorption and vertical distribution of aerosols, and by uncertainties in the extrapolation of aerosol properties from the NIR to the VIS.To improve atmospheric correction for ocean color observations, one needs to change the traditional procedure for this correction and/or increase the aerosol information. The instruments proposed to increase the aerosol information content for the Pre-Aerosol, Clouds, and ocean Ecosystem (PACE) mission include ultraviolet and Oxygen A-band observations, as well as multispectral and multiangle polarimetry. However few systematic studies have been performed to quantify the improvement such measurements bring to atmospheric correction. To study the polarimetric atmospheric correction capabilities of PACE-like instruments, we conducted field experiments off the Coast of California to obtain high-altitude (65,000 ft) and ship-based observations of water-leaving radiance. The airborne data sets consist of hyperspectral radiance between 380-2500 nm by the Airborne Visible/Infrared Imaging Spectrometer, and multi-spectral multi-angle polarimetric data between 410-2250 nm by the Research Scanning Polarimeter. We discuss examples of retrieved atmosphere and ocean state vectors, and of corresponding ocean color spectra obtained by subtracting the computed atmospheric scattering contribution from the high-altitude radiance measurements. The ocean color spectra thus obtained are compared with those measured from the ship.

  18. Cultural and environmental effects on the spectral development patterns of corn and soybeans: Field data analysis

    NASA Technical Reports Server (NTRS)

    Crist, E. P. (Principal Investigator)

    1982-01-01

    An overall approach to crop spectral understanding is presented which serves to maintain a strong link between actual plant responses and characteristics and spectral observations from ground based and spaceborne sensors. A specific technique for evaluating field reflectance data, as a part of the overall approach, is also described. Results of the application of this technique to corn and soybeans reflectance data collected by and at Purdue/LARS indicate that a number of common cultural and environmental factors can significantly affect the temporal spectral development patterns of these crops in tasseled cap greenness (a transformed variable of LANDSAT MSS signals).

  19. On the Complexity of H2 Excitation Near Hot Stars: High Spectral and Spatial Resolution Observations of Compact Planetary Nebulae with IGRINS

    NASA Astrophysics Data System (ADS)

    Dinerstein, Harriet L.; Kaplan, Kyle F.; Jaffe, Daniel T.

    2015-08-01

    Near-infrared emission lines of vibrationally-excited H2 were first detected in planetary nebulae (PNe) four decades ago. In some environments, e.g. outflows from low-mass young stellar objects, such emission is generally attributed to shock heating. The situation is more complicated for PNe, which host more than one potential agent of excitation. Shocks are indeed present within PNe, due to interactions among expanding layers of different velocities. On the other hand, the UV radiation field of the central star can populate excited vibrational levels of the ground electronic state via an indirect process, initiated by transitions to excited electronic states upon absorption of non-H-ionizing UV photons (the H2 Lyman-Werner bands), followed by radiative decay. When not modified by other processes, this produces a highly distinctive “pure fluorescent” H2 spectrum (Black & van Dishoeck 1987, ApJ, 322, 412). Such emission was first identified in a PN, Hb 12, by Dinerstein et al. 1988 (ApJ, 327, L27). Later surveys (e.g. Hora et al. 1999, ApJS, 124, 195; Likkel & Dinerstein et al. 2006, AJ, 131, 1515) found that some PNe display thermal (collisionally-dominated) spectra, a few are fluorescent, and others show intermediate line ratios. It is not always easy to distinguish whether the latter is due to a superposition of radiative and shock components (Davis et al. 2003, MNRAS, 344, 262), or to thermalization of initially radiatively excited molecules due to high density, a hard radiation field, and/or advective effects (e.g. Henney et al. 2007, ApJ, 671, 137). We present new observations of H2 in PNe obtained with the high-spectral resolution (R = 40,000), broad spectral grasp IGRINS spectrometer (Park & Jaffe et al. 2014, Proc SPIE, 9147). This instrument reveals small-scale structures in position-velocity space that differ in excitation and emergent line ratios. For example, the compact PN M 1-11 contains both a fluorescent shell of H2 and higher-velocity compact

  20. Linguistic Theory and Actual Language.

    ERIC Educational Resources Information Center

    Segerdahl, Par

    1995-01-01

    Examines Noam Chomsky's (1957) discussion of "grammaticalness" and the role of linguistics in the "correct" way of speaking and writing. It is argued that the concern of linguistics with the tools of grammar has resulted in confusion, with the tools becoming mixed up with the actual language, thereby becoming the central…

  1. First INTEGRAL Observations of V404 Cygni during the 2015 Outburst: Spectral Behavior in the 20-650 keV Energy Range

    NASA Astrophysics Data System (ADS)

    Roques, Jean-Pierre; Jourdain, Elisabeth; Bazzano, Angela; Fiocchi, Mariateresa; Natalucci, Lorenzo; Ubertini, Pietro

    2015-11-01

    In 2015 June, the source V404 Cygni (= GS2023+38) underwent an extraordinary outburst. We present the results obtained during the first revolution dedicated to this target by the INTEGRAL mission and focus on the spectral behavior in the hard X-ray domain, using both SPI and IBIS instruments. The source exhibits extreme variability and reaches fluxes of several tens of Crab. However, the emission between 20 and 650 keV can be understood in terms of two main components, varying on all the observable timescales, similar to what is observed in the persistent black hole system Cyg X-1. The low-energy component (up to ˜200 keV) presents a rather unusual shape, probably due to the intrinsic source variability. Nonetheless, a satisfactory description is obtained with a Comptonization model, if an unusually hot population of seed photons (kT0 ˜ 7 keV) is introduced. Above this first component, a clear excess extending up to 400-600 keV leads us to investigate a scenario where an additional (cutoff) power law could correspond to the contribution of the jet synchrotron emission, as proposed in Cyg X-1. A search for an annihilation feature did not provide any firm detection, with an upper limit of 2 × 10-4 ph cm-2 s-1 (2σ) for a narrow line centered at 511 keV, on the averaged obtained spectrum. Based on observations with INTEGRAL, an ESA project with instruments and science data center funded by ESA member states (especially the PI countries: Denmark, France, Germany, Italy, Spain, and Switzerland), Czech Republic, and Poland with the participation of Russia and USA.

  2. Excited state properties of peridinin: Observation of a solvent dependence of the lowest excited singlet state lifetime and spectral behavior unique among carotenoids

    SciTech Connect

    Bautista, J.A.; Connors, R.E.; Raju, B.B.; Hiller, R.G.; Sharples, F.P.; Gosztola, D.; Wasielewski, M.R.; Frank, H.A.

    1999-10-14

    The spectroscopic properties and dynamic behavior of peridinin in several different solvents were studied by steady-state absorption, fluorescence, and transient optical spectroscopy. The lifetime of the lowest excited singlet state of peridinin is found to be strongly dependent on solvent polarity and ranges from 7 ps in the strongly polar solvent trifluoroethanol to 172 ps in the nonpolar solvents cyclohexane and benzene. The lifetimes show no obvious correlation with solvent polarizability, and hydrogen bonding of the solvent molecules to peridinin is not an important factor in determining the dynamic behavior of the lowest excited singlet state. The wavelengths of emission maxima, the quantum yields of fluorescence, and the transient absorption spectra are also affected by the solvent environment. A model consistent with the data and supported by preliminary semiempirical calculations invokes the presence of a charge transfer state in the excited state manifold of peridinin to account for the observations. The charge transfer state most probably results from the presence of the lactone ring in the {pi}-electron conjugation of peridinin analogous to previous findings on aminocoumarins and related compounds. The behavior of peridinin reported here is highly unusual for carotenoids, which generally show little dependence of the spectral properties and lifetimes of the lowest excited singlet state on the solvent environment.

  3. Planetcam UPV/EHU - A lucky imaging camera for multi-spectral observations of the Giant Planets in 0.38-1.7 microns

    NASA Astrophysics Data System (ADS)

    Hueso, R.; Mendikoa, I.; Sánchez-Lavega, A.; Pérez-Hoyos, S.; Rojas, J. F.; García-Melendo, E.

    2015-10-01

    PlanetCam UPV/EHU [1] is an astronomical instrument designed for high-resolution observations of Solar System planets. The main scientific themes are atmospheric dynamics and the vertical cloud structure of Jupiter and Saturn. The instrument uses a dichroic mirror to separate the light in two beams with spectral ranges from 380 nm to1 micron (visible channel) and from 1 to 1.7 microns (Short Wave InfraRed, SWIR channel) and two detectors working simultaneously with fast acquisition modes. High-resolution images are built using lucky imaging techniques [2]. Several hundred short exposed images are obtained and stored in fits files. Images are automatically reduced by a pipeline called PLAYLIST (written in IDL and requiring no interaction by the user)which selects the best frames and co-registers them using image correlation over several tie-points. The result is a high signal to noise ratio image that can be processed to show the faint structures in the data. PlanetCam is a visiting instrument mainly built for the 1.2 3 and 2.2m telescopes at Calar Alto Observatory in Spain but it has also been tested in the 1.5 m Telescope Carlos Sanchez in Tenerife and the 1.05 m Telescope at the Pic du Midi observatory.

  4. Solar radius determination from SODISM/PICARD and HMI/SDO observations of the decrease of the spectral solar radiance during the 2012 June Venus transit

    SciTech Connect

    Hauchecorne, A.; Meftah, M.; Irbah, A.; Hochedez, J.-F.

    2014-03-10

    On 2012 June 5-6, the transit of Venus provided a rare opportunity to determine the radius of the Sun using solar imagers observing a well-defined object, namely, the planet and its atmosphere, partially occulting the Sun. A new method has been developed to estimate the solar radius during a planetary transit. It is based on the estimation of the spectral solar radiance decrease in a region around the contact between the planet and the Sun at the beginning of the ingress and at the end of the egress. The extrapolation to zero of the radiance decrease versus the Sun-to-Venus apparent angular distance allows estimation of the solar radius at the time of first and fourth contacts. This method presents the advantage of being almost independent on the plate scale, the distortion, the refraction by the planetary atmosphere, and on the point-spread function of the imager. It has been applied to two space solar visible imagers, SODISM/PICARD and HMI/SDO. The found results are mutually consistent, despite their different error budgets: 959.''85 ± 0.''19 (1σ) for SODISM at 607.1 nm and 959.''90 ± 0.''06 (1σ) for HMI at 617.3 nm.

  5. Covariance propagation in spectral indices

    SciTech Connect

    Griffin, P. J.

    2015-01-09

    In this study, the dosimetry community has a history of using spectral indices to support neutron spectrum characterization and cross section validation efforts. An important aspect to this type of analysis is the proper consideration of the contribution of the spectrum uncertainty to the total uncertainty in calculated spectral indices (SIs). This study identifies deficiencies in the traditional treatment of the SI uncertainty, provides simple bounds to the spectral component in the SI uncertainty estimates, verifies that these estimates are reflected in actual applications, details a methodology that rigorously captures the spectral contribution to the uncertainty in the SI, and provides quantified examples that demonstrate the importance of the proper treatment the spectral contribution to the uncertainty in the SI.

  6. Covariance propagation in spectral indices

    DOE PAGES

    Griffin, P. J.

    2015-01-09

    In this study, the dosimetry community has a history of using spectral indices to support neutron spectrum characterization and cross section validation efforts. An important aspect to this type of analysis is the proper consideration of the contribution of the spectrum uncertainty to the total uncertainty in calculated spectral indices (SIs). This study identifies deficiencies in the traditional treatment of the SI uncertainty, provides simple bounds to the spectral component in the SI uncertainty estimates, verifies that these estimates are reflected in actual applications, details a methodology that rigorously captures the spectral contribution to the uncertainty in the SI, andmore » provides quantified examples that demonstrate the importance of the proper treatment the spectral contribution to the uncertainty in the SI.« less

  7. Another look at the BL Lacertae flux and spectral variability. Observations by GASP-WEBT, XMM-Newton, and Swift in 2008-2009

    NASA Astrophysics Data System (ADS)

    Raiteri, C. M.; Villata, M.; Bruschini, L.; Capetti, A.; Kurtanidze, O. M.; Larionov, V. M.; Romano, P.; Vercellone, S.; Agudo, I.; Aller, H. D.; Aller, M. F.; Arkharov, A. A.; Bach, U.; Berdyugin, A.; Blinov, D. A.; Böttcher, M.; Buemi, C. S.; Calcidese, P.; Carosati, D.; Casas, R.; Chen, W.-P.; Coloma, J.; Diltz, C.; di Paola, A.; Dolci, M.; Efimova, N. V.; Forné, E.; Gómez, J. L.; Gurwell, M. A.; Hakola, A.; Hovatta, T.; Hsiao, H. Y.; Jordan, B.; Jorstad, S. G.; Koptelova, E.; Kurtanidze, S. O.; Lähteenmäki, A.; Larionova, E. G.; Leto, P.; Lindfors, E.; Ligustri, R.; Marscher, A. P.; Morozova, D. A.; Nikolashvili, M. G.; Nilsson, K.; Ros, J. A.; Roustazadeh, P.; Sadun, A. C.; Sillanpää, A.; Sainio, J.; Takalo, L. O.; Tornikoski, M.; Trigilio, C.; Troitsky, I. S.; Umana, G.

    2010-12-01

    Aims: In a previous study we suggested that the broad-band emission and variability properties of BL Lacertae can be accounted for by a double synchrotron emission component with related inverse-Compton emission from the jet, plus thermal radiation from the accretion disc. Here we investigate the matter with further data extending over a wider energy range. Methods: The GLAST-AGILE Support Program (GASP) of the whole earth blazar telescope (WEBT) monitored BL Lacertae in 2008-2009 at radio, near-IR, and optical frequencies to follow its flux behaviour. During this period, high-energy observations were performed by XMM-Newton, Swift, and Fermi. We analyse these data with particular attention to the calibration of Swift UV data, and apply a helical jet model to interpret the source broad-band variability. Results: The GASP-WEBT observations show an optical flare in 2008 February-March, and oscillations of several tenths of mag on a few-day time scale afterwards. The radio flux is only mildly variable. The UV data from both XMM-Newton and Swift seem to confirm a UV excess that is likely caused by thermal emission from the accretion disc. The X-ray data from XMM-Newton indicate a strongly concave spectrum, as well as moderate (~4-7%) flux variability on an hour time scale. The Swift X-ray data reveal fast (interday) flux changes, not correlated with those observed at lower energies. We compare the spectral energy distribution (SED) corresponding to the 2008 low-brightness state, which was characterised by a synchrotron dominance, to the 1997 outburst state, where the inverse-Compton emission was prevailing. A fit with an inhomogeneous helical jet model suggests that two synchrotron components are at work with their self inverse-Compton emission. Most likely, they represent the radiation from two distinct emitting regions in the jet. We show that the difference between the source SEDs in 2008 and 1997 can be explained in terms of pure geometrical variations. The

  8. Spectral Index and Quasi-Periodic Oscillation Frequency Correlation in Black Hole Sources: Observational Evidence of Two Phases and Phase Transition in Black Holes

    NASA Technical Reports Server (NTRS)

    Titarchuk, Lev; Fiorito, Ralph

    2004-01-01

    Recent studies have shown that strong correlations are observed between the low frequencies (1-10 Hz) of quasi-periodic oscillations (QPOs) and the spectral power law index of several black hole (BH) candidate sources, in low (hard) states, steep power law (soft) states, and transitions between these states. The observations indicate that the X-ray spectra of such state (phases) show the presence of a power-law component and are sometimes related to simultaneous radio emission, indicating the probable presence of a jet. Strong QPOs (>20% rms) are present in the power density spectrum in the spectral range where the power-law component is dominant (i.e., 60%90%). This evidence contradicts the dominant, long-standing interpretation of QPOs as a signature of the thermal accretion disk. We present the data from the literature and our own data to illustrate the dominance of power-law index-QPO frequency correlations. We provide a model that identifies and explains the origin of the QPOs and how they are imprinted on the properties of the power-law flux component. We argue for the existence of a bounded compact coronal region that is a natural consequence of the adjustment of the Keplerian disk flow to the innermost sub-Keplerian boundary conditions near the central object and that ultimately leads to the formation of a transition layer (TL) between the adjustment radius and the innermost boundary. The model predicts two phases or states dictated by the photon upscattering produced in the TL: (1) a hard state, in which the TL is optically thin and very hot (kT approximately greater than 50 keV), producing photon upscattering via thermal Comptonization (the photon spectrum index Gamma approximates 1.7 for this state is dictated by gravitational energy release and Compton cooling in an optically thin shock near the adjustment radius), and (2) a soft state that is optically thick and relatively cold (kT approximately less than 5 keV the index for this state, Gamma

  9. Observation

    ERIC Educational Resources Information Center

    Helfrich, Shannon

    2016-01-01

    Helfrich addresses two perspectives from which to think about observation in the classroom: that of the teacher observing her classroom, her group, and its needs, and that of the outside observer coming into the classroom. Offering advice from her own experience, she encourages and defends both. Do not be afraid of the disruption of outside…

  10. Observations

    ERIC Educational Resources Information Center

    Joosten, Albert Max

    2016-01-01

    Joosten begins his article by telling us that love and knowledge together are the foundation for our work with children. This combination is at the heart of our observation. With this as the foundation, he goes on to offer practical advice to aid our practice of observation. He offers a "List of Objects of Observation" to help guide our…

  11. Adaptive spectral doppler estimation.

    PubMed

    Gran, Fredrik; Jakobsson, Andreas; Jensen, Jørgen Arendt

    2009-04-01

    In this paper, 2 adaptive spectral estimation techniques are analyzed for spectral Doppler ultrasound. The purpose is to minimize the observation window needed to estimate the spectrogram to provide a better temporal resolution and gain more flexibility when designing the data acquisition sequence. The methods can also provide better quality of the estimated power spectral density (PSD) of the blood signal. Adaptive spectral estimation techniques are known to provide good spectral resolution and contrast even when the observation window is very short. The 2 adaptive techniques are tested and compared with the averaged periodogram (Welch's method). The blood power spectral capon (BPC) method is based on a standard minimum variance technique adapted to account for both averaging over slow-time and depth. The blood amplitude and phase estimation technique (BAPES) is based on finding a set of matched filters (one for each velocity component of interest) and filtering the blood process over slow-time and averaging over depth to find the PSD. The methods are tested using various experiments and simulations. First, controlled flow-rig experiments with steady laminar flow are carried out. Simulations in Field II for pulsating flow resembling the femoral artery are also analyzed. The simulations are followed by in vivo measurement on the common carotid artery. In all simulations and experiments it was concluded that the adaptive methods display superior performance for short observation windows compared with the averaged periodogram. Computational costs and implementation details are also discussed.

  12. Scleral buckling versus vitrectomy for macula-off rhegmatogenous retinal detachment as accessed with spectral-domain optical coherence tomography: a retrospective observational case series

    PubMed Central

    2013-01-01

    Background Scleral buckling surgery and pars plana vitrectomy are competing methods in the treatment of retinal detachment. The recent development of spectral-domain optical coherence tomography (SD-OCT) has dramatically improved the visualization of the photoreceptor layer relative to conventional OCT, and offers new opportunities to investigate the discordances between anatomic and functional outcomes after retinal detachment surgery. Hence, the study aim was to use SD-OCT to compare the postoperative macular recovery between scleral buckling and vitrectomy for macular-off rhegmatogenous retinal detachment. Methods In this retrospective observational case series, we observed 32 patients who underwent scleral buckling surgery (group 1) and 26 patients who underwent pars plana vitrectomy (group 2) as the primary surgery for macula-off rhegmatogenous retinal detachment. OCT was used to examine microstructural changes in the macular area. Results The mean visual acuity improvement was 0.4 ± 0.8 logMAR in group 1 and 0.7 ± 0.9 logMAR in group 2. As detected by SD-OCT, subretinal fluid was present in 26 of the group 1 eyes (81.3%) and 5 of the group 2 eyes (19.2%) at 8 weeks postoperatively. This difference was statistically significant (Fisher’s exact test, P < 0.05). Moreover, detection by SD-OCT revealed epiretinal membranes in 5 of the group 1 eyes (15.6%) and 11 of the group 2 eyes (42.3%), a difference that was statistically significant (Fisher’s exact test, P < 0.05). Conclusions Macular recovery and the mean visual acuity differed between the 2 groups of patients. With the help of SD-OCT, we observed that subretinal fluids could persist for a relatively longer period after scleral buckling. Based on our results, we conclude that primary vitrectomy surgery is a better choice for macular recovery of the macula-off rhegmatogenous retinal detachment. PMID:23587195

  13. Intensity Conserving Spectral Fitting

    NASA Astrophysics Data System (ADS)

    Klimchuk, J. A.; Patsourakos, S.; Tripathi, D.

    2016-01-01

    The detailed shapes of spectral-line profiles provide valuable information about the emitting plasma, especially when the plasma contains an unresolved mixture of velocities, temperatures, and densities. As a result of finite spectral resolution, the intensity measured by a spectrometer is the average intensity across a wavelength bin of non-zero size. It is assigned to the wavelength position at the center of the bin. However, the actual intensity at that discrete position will be different if the profile is curved, as it invariably is. Standard fitting routines (spline, Gaussian, etc.) do not account for this difference, and this can result in significant errors when making sensitive measurements. We have developed an iterative procedure that corrects for this effect. It converges rapidly and is very flexible in that it can be used with any fitting function. We present examples of cubic-spline and Gaussian fits and give special attention to measurements of blue-red asymmetries of coronal emission lines.

  14. Robust Satellite Techniques for monitoring earth emitted radiation in the Japanese seismic area by using MTSAT observations in the TIR spectral range

    NASA Astrophysics Data System (ADS)

    Genzano, Nicola; Filizzola, Carolina; Hattori, Katsumi; Lisi, Mariano; Paciello, Rossana; Pergola, Nicola; Tramutoli, Valerio

    2016-04-01

    Since eighties, the fluctuations of Earth's thermally emitted radiation, measured by satellite sensors operating in the thermal infrared (TIR) spectral range, have been associated with the complex process of preparation for major earthquakes. But, like other claimed earthquake precursors (seismological, physical, chemical, biological, etc.) they have been for long-time considered with some caution by scientific community. The lack of a rigorous definition of anomalous TIR signal fluctuations and the scarce attention paid to the possibility that other causes (e.g. meteorological) different from seismic activity could be responsible for the observed TIR variations were the main causes of such skepticism. Compared with previously proposed approaches the general change detection approach, named Robust Satellite Techniques (RST), showed good ability to discriminate anomalous TIR signals possibly associated to seismic activity, from the normal variability of TIR signal due to other causes. Thanks to its full exportability on different satellite packages, since 2001 RST has been implemented on TIR images acquired by polar (e.g. NOAA-AVHRR, EOS -MODIS) and geostationary (e.g. MSG-SEVIRI, NOAA-GOES/W, GMS-5/VISSR) satellite sensors, in order to verify the presence (or absence) of TIR anomalies in presence (absence) of earthquakes (with M>4) in different seismogenic areas around the world (e.g. Italy, Greece, Turkey, India, Taiwan, etc.). In this paper, the RST data analysis approach has been implemented on TIR satellite records collected over Japan by the geostationary satellite sensor MTSAT (Multifunctional Transport SATellites) and RETIRA (Robust Estimator of TIR Anomalies) index was used to identify Significant Sequences of TIR Anomalies (SSTAs) in a possible space-time relations with seismic events. Achieved results will be discussed in the perspective of a multi-parametric approach for a time-Dependent Assessment of Seismic Hazard (t-DASH).

  15. Observation

    ERIC Educational Resources Information Center

    Kripalani, Lakshmi A.

    2016-01-01

    The adult who is inexperienced in the art of observation may, even with the best intentions, react to a child's behavior in a way that hinders instead of helping the child's development. Kripalani outlines the need for training and practice in observation in order to "understand the needs of the children and...to understand how to remove…

  16. How People Actually Use Thermostats

    SciTech Connect

    Meier, Alan; Aragon, Cecilia; Hurwitz, Becky; Mujumdar, Dhawal; Peffer, Therese; Perry, Daniel; Pritoni, Marco

    2010-08-15

    Residential thermostats have been a key element in controlling heating and cooling systems for over sixty years. However, today's modern programmable thermostats (PTs) are complicated and difficult for users to understand, leading to errors in operation and wasted energy. Four separate tests of usability were conducted in preparation for a larger study. These tests included personal interviews, an on-line survey, photographing actual thermostat settings, and measurements of ability to accomplish four tasks related to effective use of a PT. The interviews revealed that many occupants used the PT as an on-off switch and most demonstrated little knowledge of how to operate it. The on-line survey found that 89% of the respondents rarely or never used the PT to set a weekday or weekend program. The photographic survey (in low income homes) found that only 30% of the PTs were actually programmed. In the usability test, we found that we could quantify the difference in usability of two PTs as measured in time to accomplish tasks. Users accomplished the tasks in consistently shorter times with the touchscreen unit than with buttons. None of these studies are representative of the entire population of users but, together, they illustrate the importance of improving user interfaces in PTs.

  17. Diurnal patterns of wheat spectral reflectances and their importance in the assessment of canopy parameters from remotely sensed observations. [Phoenix, Arizona

    NASA Technical Reports Server (NTRS)

    Pinter, P. J.; Jackson, R. D.; Idso, S. B.; Reginato, R. J. (Principal Investigator)

    1982-01-01

    Spectral reflectances of Produra wheat were measured at 13 different times of the day at Phoenix, Arizona, during April 1979 using a nadir-oriented hand-held 4-band radiometer which had bandpass characteristics similar to those on LANDSAT satellites. Different Sun altitude and azimuth angles caused significant diurnal changes in radiant return in both visible and near-IR regions of the spectrum and in several vegetation indices derived from them. The magnitude of these changes were related to different canopy architecture, percent cover and green leaf area conditions. Spectral measurements taken at each time period were well correlated with green leaf area index but the nature of the relationship changed significantly with time of day. Thus, a significant bias in the estimation of the green leaf area index from remotely sensed spectral data could occur if sun angles are not properly accounted for.

  18. Simultaneous XMM-Newton and HST-COS observation of 1H 0419-577. II. Broadband spectral modeling of a variable Seyfert galaxy

    NASA Astrophysics Data System (ADS)

    Di Gesu, L.; Costantini, E.; Piconcelli, E.; Ebrero, J.; Mehdipour, M.; Kaastra, J. S.

    2014-03-01

    In this paper, we present the longest exposed (97 ks) XMM-Newton EPIC-pn spectrum ever obtained for the Seyfert 1.5 galaxy1H 0419-577. With the aim of explaining the broadband emission of this source, we took advantage of the simultaneous coverage in the optical/UV that was provided in the present case by the XMM-Newton Optical Monitor and by a HST-COS observation. Archival FUSE flux measurements in the far-ultraviolet were also used for the present analysis. We successfully modeled the X-ray spectrum and the optical/UV fluxes data points using a Comptonization model. We found that a blackbody temperature of T ~ 56 eV accounts for the optical/UV emission originating in the accretion disk. This temperature serves as an input for the Comptonized components that model the X-ray continuum. Both a warm (Twc ~ 0.7 keV, τwc ~ 7) and a hot corona (Thc ~ 160 keV, τhc ~ 0.5) intervene to upscatter the disk photons to X-ray wavelengths. With the addition of a partially covering (Cv ~ 50%) cold absorber with a variable opacity ( NH~ [1019-1022] cm-2), this model can also explain the historical spectral variability of this source, with the present dataset presenting the lowest one ( NH~1019 cm-2). We discuss a scenario where the variable absorber becomes less opaque in the highest flux states because it gets ionized in response to the variations of the X-ray continuum. The lower limit for the absorber density derived in this scenario is typical for the broad line region clouds. We infer that1H 0419-577may be viewed from an intermediate inclination angle i ≥ 54°, and, on this basis, we speculate that the X-ray obscuration may be associated with the innermost dust-free region of the obscuring torus. Finally, we critically compare this scenario with all the different models (e.g., disk reflection) that have been used in the past to explain the variability of this source.

  19. Dynamics of spectral bio-indicators and their correlations with light use efficiency using directional observations at a Douglas-fir forest

    NASA Astrophysics Data System (ADS)

    Cheng, Yen-Ben; Middleton, Elizabeth M.; Hilker, Thomas; Coops, Nicholas C.; Black, T. Andrew; Krishnan, Praveena

    2009-09-01

    The carbon science community must rely on satellite remote sensing to obtain global estimates of photosynthetic activity, typically expressed as net primary production (NPP), gross primary production (GPP) or light use efficiency (LUE). The photochemical reflectance index (PRI), calculated as a normalized difference reflectance index using a physiologically active green band (~531 nm) and another physiologically insensitive green reference band (~570 nm), denoted as PRI(570), has been confirmed in many studies as being strongly related to LUE. Here, we examined the potential of utilizing PRI(570) observations under different illumination conditions for canopy LUE estimation of a forest. In order to evaluate this, directional hyperspectral reflectance measurements were collected continuously throughout the daytime periods using an automated spectroradiometer in conjunction with tower-based eddy covariance fluxes and environmental measurements at a coastal conifer forest in British Columbia, Canada throughout the 2006 growing season. A parameter calculated as the PRI(570) difference (dPRI(570)) between shaded versus sunlit canopy foliage sectors showed a strong correlation to tower-based LUE. The seasonal pattern for this correlation produced a dramatic change from high negative (r ~ -0.80) values in the springtime and early fall to high positive values (r ~ 0.80) during the summer months, which could represent the seasonality of physiological characteristics and environmental factors. Although the PRI(570) successfully tracked canopy LUE, one or both of its green bands (~531 and 570 nm) used to calculate the PRI are unavailable on most existing and planned near-term satellites. Therefore, we examined the potential to use 24 other spectral indexes for LUE monitoring that might be correlated to PRI, and thereby a substitute for it. We also continued our previous investigations into the influence of illumination conditions on the observed PRI(570) and other indexes

  20. Application of modeling and simulation to a long-term clinical trial: a direct comparison of simulated data and data actually observed in Japanese osteoporosis patients following 3-year ibandronate treatment.

    PubMed

    Nakai, Kiyohiko; Iida, Satofumi; Tobinai, Masato; Hashimoto, Junko; Kawanishi, Takehiko

    2015-03-01

    Ibandronate, a nitrogen-containing bisphosphonate, is a bone resorption inhibitor widely used to prevent and treat osteoporosis. To optimize the design for a long-term clinical study of ibandronate, modeling and simulation (M&S) was performed based on the result of population pharmacodynamic analysis using the data of a short-term clinical study. A population pharmacodynamic model was constructed by the urinary C-terminal telopeptide of type I collagen (uCTx) and the lumbar spine bone mineral density (BMD) data obtained in clinical studies, including a phase II study of Japanese osteoporosis patients treated with ibandronate for 6 months. Changes in BMD over a period of 3 years were simulated from the population pharmacodynamic parameters of the patients in this phase II study. The relationship between uCTx and BMD was well described by this modeling. The functions of disease progression and supplemental treatment were incorporated into the model to simulate a long-term clinical study with high accuracy. A long-term clinical study with a 3-year treatment was conducted after this M&S. The percentage change from baseline in observed BMD values were found to be similar to the prospectively simulated values. This study showed that M&S could be a useful and powerful tool for designing and conducting long-term clinical studies when carried out in the following sequence: (1) conduct a short-term clinical study; (2) perform M&S; and (3) conduct the long-term clinical study. Application of this procedure to various other treatment agents will establish the usefulness of M&S for long-term clinical studies and bring further efficiencies to drug development.

  1. RXTE/ASM and Swift/BAT observations of spectral transitions in bright X-ray binaries in 2005-2010

    NASA Astrophysics Data System (ADS)

    Tang, Jing; Yu, Wen-Fei; Yan, Zhen

    2011-04-01

    We have studied X-ray spectral state transitions that can be seen in the long-term monitoring light curves of bright X-ray binaries from the All-Sky Monitor (ASM) onboard the Rossi X-ray Timing Explorer (RXTE) and the Burst Alert Telescope (BAT) onboard Swift during a period of five years from 2005 to 2010. We have applied a program to automatically identify the hard-to-soft (H-S) spectral state transitions in the bright X-ray binaries monitored by the ASM and the BAT. In total, we identified 128 hard-to-soft transitions, of which 59 occurred after 2008. We also determined the transition fluxes and the peak fluxes of the following soft states, updated the measurements of the luminosity corresponding to the H-S transition and the peak luminosity of the following soft state in about 30 bright persistent and transient black hole and neutron star binaries following Yu & Yan, and found the luminosity correlation and the luminosity range of spectral transitions in data between 2008-2010 are about the same as those derived from data before 2008. This further strengthens the idea that the luminosity at which the H-S spectral transition occurs in the Galactic X-ray binaries is determined by non-stationary accretion parameters such as the rate-of-change of the mass accretion rate rather than the mass accretion rate itself. The correlation is also found to hold in data of individual sources 4U 1608-52 and 4U 1636-53.

  2. INFRARED SPECTRAL ENERGY DISTRIBUTIONS OF SEYFERT GALAXIES: SPITZER SPACE TELESCOPE OBSERVATIONS OF THE 12 {mu}m SAMPLE OF ACTIVE GALAXIES

    SciTech Connect

    Gallimore, J. F.; Yzaguirre, A.; Jakoboski, J.; Stevenosky, M. J.; Axon, D. J.; O'Dea, C. P.; Robinson, A.; Baum, S. A.; Buchanan, C. L.; Elitzur, M.; Elvis, M.

    2010-03-01

    The mid-infrared spectral energy distributions (SEDs) of 83 active galaxies, mostly Seyfert galaxies, selected from the extended 12 {mu}m sample are presented. The data were collected using all three instruments, Infrared Array Camera (IRAC), Infrared Spectrograph (IRS), and Multiband Imaging Photometer for Spitzer (MIPS), aboard the Spitzer Space Telescope. The IRS data were obtained in spectral mapping mode, and the photometric data from IRAC and IRS were extracted from matched, 20'' diameter circular apertures. The MIPS data were obtained in SED mode, providing very low-resolution spectroscopy (R {approx} 20) between {approx}55 and 90 {mu}m in a larger, 20'' x 30'' synthetic aperture. We further present the data from a spectral decomposition of the SEDs, including equivalent widths and fluxes of key emission lines; silicate 10 {mu}m and 18 {mu}m emission and absorption strengths; IRAC magnitudes; and mid-far-infrared spectral indices. Finally, we examine the SEDs averaged within optical classifications of activity. We find that the infrared SEDs of Seyfert 1s and Seyfert 2s with hidden broad line regions (HBLRs, as revealed by spectropolarimetry or other technique) are qualitatively similar, except that Seyfert 1s show silicate emission and HBLR Seyfert 2s show silicate absorption. The infrared SEDs of other classes within the 12 {mu}m sample, including Seyfert 1.8-1.9, non-HBLR Seyfert 2 (not yet shown to hide a type 1 nucleus), LINER, and H II galaxies, appear to be dominated by star formation, as evidenced by blue IRAC colors, strong polycyclic aromatic hydrocarbon emission, and strong far-infrared continuum emission, measured relative to mid-infrared continuum emission.

  3. Spectral Predictors

    SciTech Connect

    Ibarria, L; Lindstrom, P; Rossignac, J

    2006-11-17

    Many scientific, imaging, and geospatial applications produce large high-precision scalar fields sampled on a regular grid. Lossless compression of such data is commonly done using predictive coding, in which weighted combinations of previously coded samples known to both encoder and decoder are used to predict subsequent nearby samples. In hierarchical, incremental, or selective transmission, the spatial pattern of the known neighbors is often irregular and varies from one sample to the next, which precludes prediction based on a single stencil and fixed set of weights. To handle such situations and make the best use of available neighboring samples, we propose a local spectral predictor that offers optimal prediction by tailoring the weights to each configuration of known nearby samples. These weights may be precomputed and stored in a small lookup table. We show that predictive coding using our spectral predictor improves compression for various sources of high-precision data.

  4. The actual goals of geoethics

    NASA Astrophysics Data System (ADS)

    Nemec, Vaclav

    2014-05-01

    The most actual goals of geoethics have been formulated as results of the International Conference on Geoethics (October 2013) held at the geoethics birth-place Pribram (Czech Republic): In the sphere of education and public enlightenment an appropriate needed minimum know how of Earth sciences should be intensively promoted together with cultivating ethical way of thinking and acting for the sustainable well-being of the society. The actual activities of the Intergovernmental Panel of Climate Changes are not sustainable with the existing knowledge of the Earth sciences (as presented in the results of the 33rd and 34th International Geological Congresses). This knowledge should be incorporated into any further work of the IPCC. In the sphere of legislation in a large international co-operation following steps are needed: - to re-formulate the term of a "false alarm" and its legal consequences, - to demand very consequently the needed evaluation of existing risks, - to solve problems of rights of individuals and minorities in cases of the optimum use of mineral resources and of the optimum protection of the local population against emergency dangers and disasters; common good (well-being) must be considered as the priority when solving ethical dilemmas. The precaution principle should be applied in any decision making process. Earth scientists presenting their expert opinions are not exempted from civil, administrative or even criminal liabilities. Details must be established by national law and jurisprudence. The well known case of the L'Aquila earthquake (2009) should serve as a serious warning because of the proven misuse of geoethics for protecting top Italian seismologists responsible and sentenced for their inadequate superficial behaviour causing lot of human victims. Another recent scandal with the Himalayan fossil fraud will be also documented. A support is needed for any effort to analyze and to disclose the problems of the deformation of the contemporary

  5. The actual status of Astronomy in Moldova

    NASA Astrophysics Data System (ADS)

    Gaina, A.

    The astronomical research in the Republic of Moldova after Nicolae Donitch (Donici)(1874-1956(?)) were renewed in 1957, when a satellites observations station was open in Chisinau. Fotometric observations and rotations of first Soviet artificial satellites were investigated under a program SPIN put in action by the Academy of Sciences of former Socialist Countries. The works were conducted by Assoc. prof. Dr. V. Grigorevskij, which conducted also research in variable stars. Later, at the beginning of 60-th, an astronomical Observatory at the Chisinau State University named after Lenin (actually: the State University of Moldova), placed in Lozovo-Ciuciuleni villages was open, which were coordinated by Odessa State University (Prof. V.P. Tsesevich) and the Astrosovet of the USSR. Two main groups worked in this area: first conducted by V. Grigorevskij (till 1971) and second conducted by L.I. Shakun (till 1988), both graduated from Odessa State University. Besides this research areas another astronomical observations were made: Comets observations, astroclimate and atmospheric optics in collaboration with the Institute of the Atmospheric optics of the Siberian branch of the USSR (V. Chernobai, I. Nacu, C. Usov and A.F. Poiata). Comets observations were also made since 1988 by D. I. Gorodetskij which came to Chisinau from Alma-Ata and collaborated with Ukrainean astronomers conducted by K.I. Churyumov. Another part of space research was made at the State University of Tiraspol since the beggining of 70-th by a group of teaching staff of the Tiraspol State Pedagogical University: M.D. Polanuer, V.S. Sholokhov. No a collaboration between Moldovan astronomers and Transdniestrian ones actually exist due to War in Transdniestria in 1992. An important area of research concerned the Radiophysics of the Ionosphere, which was conducted in Beltsy at the Beltsy State Pedagogical Institute by a group of teaching staff of the University since the beginning of 70-th: N. D. Filip, E

  6. Lunar spectral types.

    NASA Technical Reports Server (NTRS)

    Mccord, T. B.; Charette, M. P.; Johnson, T. V.; Lebofsky, L. A.; Pieters, C.; Adams, J. B.

    1972-01-01

    Results of observations of the spectral reflectance properties (0.3 to 1.1 micron) of a number of lunar mare, upland, and bright crater areas with the use of ground-based telescopes. These new data are discussed in view of earlier studies in an attempt to provide a basis for more detailed interpretation. The spectral reflectivity curves (0.3 to 1.1 micron) for all lunar areas studied consist of a positive sloping continuum with a superimposed symmetric absorption band centered at 0.95 micron. Upland, mare, and bright crater materials can be identified by their spectral curves. The curves for upland and mare regions show a range of shapes from fresh, bright craters to progressively darker background material that correlates with the apparent age of the surface features. The observed upland material has uniform spectral properties, but the mare material shows some variety, probably due to Ti(3+) dispersed in lunar-soil glass. Copernicus and Aristarchus appear to have exposed upland material from beneath the mare but Kepler has not. This observation suggests that the mare is no deeper than about 15 km in the Copernicus area and about 6 km deep in the Aristarchus area, but in the Kepler area the mare must be at least about 5 km deep.

  7. Parametric Explosion Spectral Model

    SciTech Connect

    Ford, S R; Walter, W R

    2012-01-19

    Small underground nuclear explosions need to be confidently detected, identified, and characterized in regions of the world where they have never before occurred. We develop a parametric model of the nuclear explosion seismic source spectrum derived from regional phases that is compatible with earthquake-based geometrical spreading and attenuation. Earthquake spectra are fit with a generalized version of the Brune spectrum, which is a three-parameter model that describes the long-period level, corner-frequency, and spectral slope at high-frequencies. Explosion spectra can be fit with similar spectral models whose parameters are then correlated with near-source geology and containment conditions. We observe a correlation of high gas-porosity (low-strength) with increased spectral slope. The relationship between the parametric equations and the geologic and containment conditions will assist in our physical understanding of the nuclear explosion source.

  8. Multipurpose Spectral Imager

    NASA Astrophysics Data System (ADS)

    Sigernes, Fred; Lorentzen, Dag Arne; Heia, Karsten; Svenøe, Trond

    2000-06-01

    A small spectral imaging system is presented that images static or moving objects simultaneously as a function of wavelength. The main physical principle is outlined and demonstrated. The instrument is capable of resolving both spectral and spatial information from targets throughout the entire visible region. The spectral domain has a bandpass of 12 . One can achieve the spatial domain by rotating the system s front mirror with a high-resolution stepper motor. The spatial resolution range from millimeters to several meters depends mainly on the front optics used and whether the target is fixed (static) or movable relative to the instrument. Different applications and examples are explored, including outdoor landscapes, industrial fish-related targets, and ground-level objects observed in the more traditional way from an airborne carrier (remote sensing). Through the examples, we found that the instrument correctly classifies whether a shrimp is peeled and whether it can disclose the spectral and spatial microcharacteristics of targets such as a fish nematode (parasite). In the macroregime, we were able to distinguish a marine vessel from the surrounding sea and sky. A study of the directional spectral albedo from clouds, mountains, snow cover, and vegetation has also been included. With the airborne experiment, the imager successfully classified snow cover, leads, and new and rafted ice, as seen from 10.000 ft (3.048 m).

  9. Spectral and Temporal Properties of the Ultraluminous X-Ray Pulsar in M82 from 15 years of Chandra Observations and Analysis of the Pulsed Emission Using NuSTAR

    NASA Astrophysics Data System (ADS)

    Brightman, Murray; Harrison, Fiona; Walton, Dominic J.; Fuerst, Felix; Hornschemeier, Ann; Zezas, Andreas; Bachetti, Matteo; Grefenstette, Brian; Ptak, Andrew; Tendulkar, Shriharsh; Yukita, Mihoko

    2016-01-01

    The recent discovery by Bachetti et al. of a pulsar in M82 that can reach luminosities of up to 1040 erg s-1, a factor of ˜100 times the Eddington luminosity for a 1.4 M⊙ compact object, poses a challenge for accretion physics. In order to better understand the nature of this source and its duty cycle, and in light of several physical models that have been subsequently published, we conduct a spectral and temporal analysis of the 0.5-8 keV X-ray emission from this source from 15 years of Chandra observations. We analyze 19 ACIS observations where the point-spread function (PSF) of the pulsar is not contaminated by nearby sources. We fit the Chandra spectra of the pulsar with a power-law model and a disk blackbody model, subjected to interstellar absorption in M82. We carefully assess for the effect of pile-up in our observations, where four observations have a pile-up fraction of >10%, which we account for during spectral modeling with a convolution model. When fitted with a power-law model, the average photon index when the source is at high luminosity (LX > 1039 erg s-1) is Γ = 1.33 ± 0.15. For the disk blackbody model, the average temperature is Tin = 3.24 ± 0.65 keV, the spectral shape being consistent with other luminous X-ray pulsars. We also investigated the inclusion of a soft excess component and spectral break, finding that the spectra are also consistent with these features common to luminous X-ray pulsars. In addition, we present spectral analysis from NuSTAR over the 3-50 keV range where we have isolated the pulsed component. We find that the pulsed emission in this band is best fit by a power-law with a high-energy cutoff, where Γ = 0.6 ± 0.3 and {E}{{C}}={14}-3+5 keV. While the pulsar has previously been identified as a transient, we find from our longer-baseline study that it has been remarkably active over the 15-year period, where for 9/19 (47%) observations that we analyzed, the pulsar appears to be emitting at a luminosity in excess of

  10. Spectral and Temporal Properties of the Ultra-Luminous X-Ray Pulsar in M82 from 15 Years of Chandra Observations and Analysis of the Pulsed Emission Using NuSTAR

    NASA Technical Reports Server (NTRS)

    Brightman, Murray; Harrison, Fiona; Walton, Dominic J.; Fuerst, Felis; Zezas, Andreas; Bachetti, Matteo; Grefenstette, Brian; Ptak, Andrew; Tendulkar, Shriharsh; Yukita, Mihoko

    2016-01-01

    The recent discovery by Bachetti et al. of a pulsar in M82 that can reach luminosities of up to 10(exp 40) erg s(exp -1), a factor of approximately 100 times the Eddington luminosity for a 1.4 solar mass compact object, poses a challenge for accretion physics. In order to better understand the nature of this source and its duty cycle, and in light of several physical models that have been subsequently published, we conduct a spectral and temporal analysis of the 0.58 keV X-ray emission from this source from 15 years of Chandra observations. We analyze 19 ACIS observations where the point-spread function (PSF) of the pulsar is not contaminated by nearby sources. We fit the Chandra spectra of the pulsar with a power-law model and a disk blackbody model, subjected to interstellar absorption in M82. We carefully assess for the effect of pile-up in our observations, where four observations have a pile-up fraction of 10, which we account for during spectral modeling with a convolution model. When fitted with a power-law model, the average photon index when the source is at high luminosity (LX greater than 10(exp 39) erg s(exp -1) is equal to gamma 1.33 +/-.0.15. For the disk blackbody model, the average temperature is T(sub in) 3.24 +/- 0.65 keV, the spectral shape being consistent with other luminous X-ray pulsars. We also investigated the inclusion of a soft excess component and spectral break, finding that the spectra are also consistent with these features common to luminous X-ray pulsars. In addition, we present spectral analysis from NuSTAR over the 3-50 keV range where we have isolated the pulsed component. We find that the pulsed emission in this band is best fit by a power-law with a high-energy cutoff, where gamma is equal to 0.6 +/- 0.3 and E(sub C) is equal to 14(exp +5) (sub -3)) keV. While the pulsar has previously been identified as a transient, we find from our longer-baseline study that it has been remarkably active over the 15-year period, where for 9

  11. Coloration Determination of Spectral Darkening Occurring on a Broadband Earth Observing Radiometer: Application to Clouds and the Earth's Radiant Energy System (CERES)

    NASA Technical Reports Server (NTRS)

    Matthews, Grant; Priestley, Kory; Loeb, Norman G.; Loukachine, Konstantin; Thomas, Susan; Walikainen, Dale; Wielicki, Bruce A.

    2006-01-01

    It is estimated that in order to best detect real changes in the Earth s climate system, space based instrumentation measuring the Earth Radiation Budget (ERB) must remain calibrated with a stability of 0.3% per decade. Such stability is beyond the specified accuracy of existing ERB programs such as the Clouds and the Earth s Radiant Energy System (CERES, using three broadband radiometric scanning channels: the shortwave 0.3 - 5microns, total 0.3. > 100microns, and window 8 - 12microns). It has been shown that when in low earth orbit, optical response to blue/UV radiance can be reduced significantly due to UV hardened contaminants deposited on the surface of the optics. Since typical onboard calibration lamps do not emit sufficient energy in the blue/UV region, this darkening is not directly measurable using standard internal calibration techniques. This paper describes a study using a model of contaminant deposition and darkening, in conjunction with in-flight vicarious calibration techniques, to derive the spectral shape of darkening to which a broadband instrument is subjected. Ultimately the model uses the reflectivity of Deep Convective Clouds as a stability metric. The results of the model when applied to the CERES instruments on board the EOS Terra satellite are shown. Given comprehensive validation of the model, these results will allow the CERES spectral responses to be updated accordingly prior to any forthcoming data release in an attempt to reach the optimum stability target that the climate community requires.

  12. HST-COS OBSERVATIONS OF AGNs. III. SPECTRAL CONSTRAINTS IN THE LYMAN CONTINUUM FROM COMPOSITE COS/G140L DATA

    SciTech Connect

    Tilton, Evan M.; Shull, J. Michael; Danforth, Charles W.; Stevans, Matthew L. E-mail: michael.shull@colorado.edu E-mail: stevans@astro.as.utexas.edu

    2016-01-20

    The rest-frame ultraviolet (UV) spectra of active galactic nuclei (AGNs) are important diagnostics of both accretion disk physics and their contribution to the metagalactic ionizing UV background. Though the mean AGN spectrum is well characterized with composite spectra at wavelengths greater than 912 Å, the shorter-wavelength extreme-UV (EUV) remains poorly studied. In this third paper in a series on the spectra of AGNs, we combine 11 new spectra taken with the Cosmic Origins Spectrograph on the Hubble Space Telescope with archival spectra to characterize the typical EUV spectral slope of AGNs from λ{sub rest} ∼ 850 Å down to λ{sub rest} ∼ 425 Å. Parameterizing this slope as a power law, we obtain F{sub ν} ∝ ν{sup −0.72±0.26}, but we also discuss the limitations and systematic uncertainties of this model. We identify broad emission features in this spectral region, including emission due to ions of O, Ne, Mg, and other species, and we limit the intrinsic He i 504 Å photoelectric absorption edge opacity to τ{sub He} {sub i} < 0.047.

  13. Observations of plan-view sand ripple behavior and spectral wave climate on the inner shelf of San Pedro Bay, California

    USGS Publications Warehouse

    Xu, J. P.

    2005-01-01

    Concurrent video images of sand ripples and current meter measurements of directional wave spectra are analyzed to study the relations between waves and wave-generated sand ripples. The data were collected on the inner shelf off Huntington Beach, California, at 15 m water depth, where the sea floor is comprised of well-sorted very fine sands (D50=92 ??m), during the winter of 2002. The wave climate, which was controlled by southerly swells (12-18 s period) and westerly wind waves (5-10 s period), included three wave types: (A) uni-modal, swells only; (B) bi-modal, swells dominant; and (C) bi-modal, wind-wave dominant. Each wave type has distinct relations with the plan-view shapes of ripples that are classified into five types: (1) sharp-crested, two-dimensional (2-D) ripples; (2) sharp-crested, brick-pattern, 3-D ripples; (3) bifurcated, 3-D ripples; (4) round-crested, shallow, 3-D ripples; and (5) flat bed. The ripple spacing is very small and varies between 4.5 and 7.5 cm. These ripples are anorbital as ripples in many field studies. Ripple orientation is only correlated with wave directions during strong storms (wave type C). In a poly-modal, multi-directional spectral wave environment, the use of the peak parameters (frequency, direction), a common practice when spectral wave measurements are unavailable, may lead to significant errors in boundary layer and sediment transport calculations. ?? 2004 Elsevier Ltd. All rights reserved.

  14. Herschel Observations of Extraordinary Sources: Analysi sof the HIFI 1.2 THz Wide Spectral Survey toward Orion KL II. Chemical Implications

    NASA Astrophysics Data System (ADS)

    Crockett, N. R.; Bergin, E. A.; Neill, J. L.; Favre, C.; Blake, G. A.; Herbst, E.; Anderson, D. E.; Hassel, G. E.

    2015-06-01

    We present chemical implications arising from spectral models fit to the Herschel/HIFI spectral survey toward the Orion Kleinmann-Low nebula (Orion KL). We focus our discussion on the eight complex organics detected within the HIFI survey utilizing a novel technique to identify those molecules emitting in the hottest gas. In particular, we find the complex nitrogen bearing species CH3CN, C2H3CN, C2H5CN, and NH2CHO systematically trace hotter gas than the oxygen bearing organics CH3OH, C2H5OH, CH3OCH3, and CH3OCHO, which do not contain nitrogen. If these complex species form predominantly on grain surfaces, this may indicate N-bearing organics are more difficult to remove from grain surfaces than O-bearing species. Another possibility is that hot (Tkin ∼ 300 K) gas phase chemistry naturally produces higher complex cyanide abundances while suppressing the formation of O-bearing complex organics. We compare our derived rotation temperatures and molecular abundances to chemical models, which include gas-phase and grain surface pathways. Abundances for a majority of the detected complex organics can be reproduced over timescales ≳105 years, with several species being underpredicted by less than 3σ. Derived rotation temperatures for most organics, furthermore, agree reasonably well with the predicted temperatures at peak abundance. We also find that sulfur bearing molecules that also contain oxygen (i.e., SO, SO2, and OCS) tend to probe the hottest gas toward Orion KL, indicating the formation pathways for these species are most efficient at high temperatures. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA.

  15. Stochastic analysis of spectral broadening by a free turbulent shear layer

    NASA Technical Reports Server (NTRS)

    Hardin, J. C.; Preisser, J. S.

    1981-01-01

    The effect of the time-varying shear layer between a harmonic acoustic source and an observer on the frequency content of the observed sound is considered. Experimental data show that the spectral content of the acoustic signal is considerably broadened upon passing through such a shear layer. Theoretical analysis is presented which shows that such spectral broadening is entirely consistent with amplitude modulation of the acoustic signal by the time-varying shear layer. Thus, no actual frequency shift need be hypothesized to explain the spectral phenomenon. Experimental tests were conducted at 2, 4, and 6 kHz and at free jet flow velocities of 10, 20, and 30 m/s. Analysis of acoustic pressure time histories obtained from these tests confirms the above conclusion, at least for the low Mach numbers considered.

  16. Sensitivity study on the spectral calibration of a hyper-spectral imaging spectrometer for the GEO-KOMPSAT2

    NASA Astrophysics Data System (ADS)

    Kang, M.; Ahn, M.

    2013-12-01

    The next generation of geostationary earth observing satellite program of Korea (GEO-KOMPSAT-2A&B) is under development. While the GEO-KOMPSAT-2A is dedicated for the operational weather mission and planed to be launched in 2017, the second one will have ocean and environmental mission with planed launch of 2018. For the environmental mission, a hyperspectral spectrometer named the Global Environment Measuring Spectrometer (GEMS) designed to monitor the important trace gases such as O3, SO2, NO2, HCHO and aerosols which affect directly and indirectly the air quality will be onboard the second satellite with a ocean color imager. Based on the preliminary design concept, the GEMS instrument utilizes a reflecting telescope with the Offner spectrometer which uses the grating and 2D CCD (1 for spatial and another for spectral). Due to the nature of instrumentations, there is always possibility of wavelength shift and squeeze at the measured raw radiance from the CCD. Thus, it is important to have a proper algorithm for the accurate spectral calibration. Currently, we plan to have a two-step process for an accurate spectral calibration. First step is done by the application of spectral calibration process provided by instrument manufacturer which will be applied to whole observation wavelength band. The second step which will be applied for each wavelength bands used for the retrieval will be using the high resolution solar spectrum for the reference spectrum used for fitting the measured radiances and irradiances. For the application of second step, there are several important pre-requisite information which could be obtained through the ground test of the instrument or through the actual measurement data or through assumptions. Here we investigate the sensitivity of the spectral calibration accuracy to the important parameters such as the spectral response function of each band, band width, undersampling correction, and so on, The simulated sensitivity tests will be

  17. Multivendor Spectral-Domain Optical Coherence Tomography Dataset, Observer Annotation Performance Evaluation, and Standardized Evaluation Framework for Intraretinal Cystoid Fluid Segmentation.

    PubMed

    Wu, Jing; Philip, Ana-Maria; Podkowinski, Dominika; Gerendas, Bianca S; Langs, Georg; Simader, Christian; Waldstein, Sebastian M; Schmidt-Erfurth, Ursula M

    2016-01-01

    Development of image analysis and machine learning methods for segmentation of clinically significant pathology in retinal spectral-domain optical coherence tomography (SD-OCT), used in disease detection and prediction, is limited due to the availability of expertly annotated reference data. Retinal segmentation methods use datasets that either are not publicly available, come from only one device, or use different evaluation methodologies making them difficult to compare. Thus we present and evaluate a multiple expert annotated reference dataset for the problem of intraretinal cystoid fluid (IRF) segmentation, a key indicator in exudative macular disease. In addition, a standardized framework for segmentation accuracy evaluation, applicable to other pathological structures, is presented. Integral to this work is the dataset used which must be fit for purpose for IRF segmentation algorithm training and testing. We describe here a multivendor dataset comprised of 30 scans. Each OCT scan for system training has been annotated by multiple graders using a proprietary system. Evaluation of the intergrader annotations shows a good correlation, thus making the reproducibly annotated scans suitable for the training and validation of image processing and machine learning based segmentation methods. The dataset will be made publicly available in the form of a segmentation Grand Challenge.

  18. High spectral resolution observations and kinematic modeling of the 1667 MHz hyperfine transition of OH in Comets Halley (1982i), Giacobini-Zinner (1984e), Hartley-Good (1985l), Thiele (1985m), and Wilson (1986l)

    NASA Technical Reports Server (NTRS)

    Tacconi-Garman, L. E.; Schloerb, F. Peter; Claussen, M. J.

    1990-01-01

    High-sensitivity, high spectral resolution 18 cm observations of Comets Giacobini-Zinner, Halley, Hartley-Good, Thiele, and Wilson are used here to probe the kinematics of the coma gas of these comets. The day/night outgassing ratio for all these comets is 1.39 (0.13 or - 0.12), independent of gas productivity and heliocentric distance. It is found that the gas productivity of a comet plays a critical role in determining the coma kinematics for bright comets near the sun.

  19. [Modern spectral estimation of ICP-AES].

    PubMed

    Zhang, Z; Jia, Q; Liu, S; Guo, L; Chen, H; Zeng, X

    2000-06-01

    The inductively coupled plasma atomic emission spectrometry (ICP-AES) and its signal characteristics were discussed using modern spectral estimation technique. The power spectra density (PSD) was calculated using the auto-regression (AR) model of modern spectra estimation. The Levinson-Durbin recursion method was used to estimate the model parameters which were used for the PSD computation. The results obtained with actual ICP-AES spectra and measurements showed that the spectral estimation technique was helpful for the better understanding about spectral composition and signal characteristics.

  20. Quantitative study on appearance of microvessels in spectral endoscopic imaging

    NASA Astrophysics Data System (ADS)

    Yamaguchi, Hiroshi; Saito, Takaaki; Shiraishi, Yasushi; Arai, Fumihito; Morimoto, Yoshinori; Yuasa, Atsuko

    2015-03-01

    Increase in abnormal microvessels in the superficial mucosa is often relevant to diagnostic findings of neoplasia in digestive endoscopy; hence, observation of superficial vasculature is crucial for cancer diagnosis. To enhance the appearance of such vessels, several spectral endoscopic imaging techniques have been developed, such as narrow-band imaging and blue laser imaging. Both techniques exploit narrow-band blue light for the enhancement. The emergence of such spectral imaging techniques has increased the importance of understanding the relation of the light wavelength to the appearance of superficial vasculature, and thus a new method is desired for quantitative analysis of vessel visibility in relation to the actual structure in the tissue. Here, we developed microvessel-simulating phantoms that allowed quantitative evaluation of the appearance of 15-μm-thick vessels. We investigated the relation between the vascular contrast and light wavelength by the phantom measurements and also verified it in experiments with swine, where the endoscopically observed vascular contrast was investigated together with its real vascular depth and diameter obtained by microscopic observation of fluorescence-labeled vessels. Our study indicates that changing the spectral property even in the wavelength range of blue light may allow selective enhancement of the vascular depth for clinical use.

  1. Spectral Observations of Diffuse Far-Ultraviolet Emission from the Hot Phase of the Interstellar Medium with the Diffuse Ultraviolet Experiment

    NASA Astrophysics Data System (ADS)

    Korpela, Eric J.; Bowyer, Stuart; Edelstein, Jerry

    1998-03-01

    One of the keys to interpreting the character and evolution of interstellar matter in the Galaxy is understanding the distribution of the low-density hot (105-106 K) phase of the interstellar medium (ISM). This phase is much more difficult to observe than the cooler high-density components of the ISM because of its low density and lack of easily observable tracers. Because gas of this temperature emits mainly in the far-ultraviolet (FUV) (912-1800 Å) and extreme-ultraviolet (EUV) (80-912 Å), and (for gas hotter than 106 K) X-rays, observations in these bands can provide important constraints to the distribution of this gas. Because of interstellar opacity at EUV wavelengths, only FUV and X-ray observations can provide clues to the properties of hot gas from distant regions. We present results from a search for FUV emission from the diffuse ISM conducted with an orbital FUV spectrometer, DUVE, which was launched in 1992 July. The DUVE spectrometer, which covers the band from 950 to 1080 Å with 3.2 Å resolution, observed a region of low neutral hydrogen column density near the south Galactic pole for a total effective integration time of 1583 s. The only emission line detected was a geocoronal hydrogen line at 1025 Å. We are able to place upper limits to several expected emission features that provide constraints on interstellar plasma parameters. We are also able to place limits on the continuum emission throughout the bandpass. We compare these limits and other diffuse observations with several models of the structure of the ISM and discuss the ramifications.

  2. VEGA/CHARA interferometric observations of Cepheids. I. A resolved structure around the prototype classical Cepheid δ Cep in the visible spectral range

    NASA Astrophysics Data System (ADS)

    Nardetto, N.; Mérand, A.; Mourard, D.; Storm, J.; Gieren, W.; Fouqué, P.; Gallenne, A.; Graczyk, D.; Kervella, P.; Neilson, H.; Pietrzynski, G.; Pilecki, B.; Breitfelder, J.; Berio, P.; Challouf, M.; Clausse, J.-M.; Ligi, R.; Mathias, P.; Meilland, A.; Perraut, K.; Poretti, E.; Rainer, M.; Spang, A.; Stee, P.; Tallon-Bosc, I.; ten Brummelaar, T.

    2016-09-01

    Context. The B-W method is used to determine the distance of Cepheids and consists in combining the angular size variations of the star, as derived from infrared surface-brightness relations or interferometry, with its linear size variation, as deduced from visible spectroscopy using the projection factor. The underlying assumption is that the photospheres probed in the infrared and in the visible are located at the same layer in the star whatever the pulsation phase. While many Cepheids have been intensively observed by infrared beam combiners, only a few have been observed in the visible. Aims: This paper is part of a project to observe Cepheids in the visible with interferometry as a counterpart to infrared observations already in hand. Methods: Observations of δ Cep itself were secured with the VEGA/CHARA instrument over the full pulsation cycle of the star. Results: These visible interferometric data are consistent in first approximation with a quasi-hydrostatic model of pulsation surrounded by a static circumstellar environment (CSE) with a size of θCSE = 8.9 ± 3.0 mas and a relative flux contribution of fCSE = 0.07 ± 0.01. A model of visible nebula (a background source filling the field of view of the interferometer) with the same relative flux contribution is also consistent with our data at small spatial frequencies. However, in both cases, we find discrepancies in the squared visibilities at high spatial frequencies (maximum 2σ) with two different regimes over the pulsation cycle of the star, φ = 0.0 - 0.8 and φ = 0.8-1.0. We provide several hypotheses to explain these discrepancies, but more observations and theoretical investigations are necessary before a firm conclusion can be drawn. Conclusions: For the first time we have been able to detect in the visible domain a resolved structure around δ Cep. We have also shown that a simple model cannot explain the observations, and more work will be necessary in the future, both on observations and

  3. Horizontal structure and propagation characteristics of mesospheric gravity waves observed by Antarctic Gravity Wave Imaging/Instrument Network (ANGWIN), using a 3-D spectral analysis technique

    NASA Astrophysics Data System (ADS)

    Matsuda, Takashi S.; Nakamura, Takuji; Murphy, Damian; Tsutsumi, Masaki; Moffat-Griffin, Tracy; Zhao, Yucheng; Pautet, Pierre-Dominique; Ejiri, Mitsumu K.; Taylor, Michael

    2016-07-01

    ANGWIN (Antarctic Gravity Wave Imaging/Instrument Network) is an international airglow imager/instrument network in the Antarctic, which commenced observations in 2011. It seeks to reveal characteristics of mesospheric gravity waves, and to study sources, propagation, breaking of the gravity waves over the Antarctic and the effects on general circulation and upper atmosphere. In this study, we compared distributions of horizontal phase velocity of the gravity waves at around 90 km altitude observed in the mesospheric airglow imaging over different locations using our new statistical analysis method of 3-D Fourier transform, developed by Matsuda et al. (2014). Results from the airglow imagers at four stations at Syowa (69S, 40E), Halley (76S, 27W), Davis (69S, 78E) and McMurdo (78S, 156E) out of the ANGWIN imagers have been compared, for the observation period between April 6 and May 21 in 2013. In addition to the horizontal distribution of propagation and phase speed, gravity wave energies have been quantitatively compared, indicating a smaller GW activity in higher latitude stations. We further investigated frequency dependence of gravity wave propagation direction, as well as nightly variation of the gravity wave direction and correlation with the background wind variations. We found that variation of propagation direction is partly due to the effect of background wind in the middle atmosphere, but variation of wave sources could play important role as well. Secondary wave generation is also needed to explain the observed results.

  4. A Comprehensive Spectral Analysis of the X-Ray Pulsar 4U 1907+09 from Two Observations with the Suzaku X-Ray Observatory

    NASA Technical Reports Server (NTRS)

    Rivers, Elizabeth; Markowitz, Alex; Pottschmidt, Katja; Roth, Stefanie; Barragan, Laura; Furst, Felix; Suchy, Slawomir; Kreykenbohm, Ingo; Wilms, Jorn; Rothschild, Richard

    2009-01-01

    We present results from two observations of the wind-accreting X-ray pulsar 4U 1907+09 using the Suzaku observatory, The broadband time-averaged spectrum allows us to examine the continuum emission of the source and the cyclotron resonance scattering feature at approx. 19 keV. Additionally, using the narrow CCD response of Suzaku near 6 ke V allows us to study in detail the Fe K bandpass and to quantify the Fe Kp line for this source for the first time. The source is absorbed by fully-covering material along the line of sight with a column density of N(sub H) approx. 2 x 10(exp 22)/sq cm, consistent with a wind accreting geometry, and a high Fe abundance (approx. 3 - 4 x solar). Time and phase-resolved analyses allow us to study variations in the source spectrum. In particular, dips found in the 2006 observation which are consistent with earlier observations occur in the hard X-ray bandpass, implying a variation of the whole continuum rather than occultation by intervening material, while a dip near the end of the 2007 observation occurs mainly in the lower energies implying an increase in NH along the line of sight, perhaps indicating clumpiness in the stellar wind

  5. Airborne Multiwavelength High-Spectral-Resolution Lidar (HSRL-2) Observations During TCAP 2012: Vertical Proles of Optical and Microphysical Properties of a Smoke/Urban Haze Plume Over the Northeastern Coast of the US

    SciTech Connect

    Muller, Detlef; Hostetler, Chris A.; Ferrare, R. A.; Burton, S. P.; Chemyakin, Eduard; Kolgotin, A.; Hair, John; Cook, A. L.; Harper, David; Rogers, R. R.; Hare, Rich; Cleckner, Craig; Obland, Michael; Tomlinson, Jason M.; Berg, Larry K.; Schmid, Beat

    2014-10-10

    We present rst measurements with the rst airborne multiwavelength High-Spectral Resolution Lidar (HSRL-2), developed by NASA Langley Research Center. The instrument was operated during the Department of Energy (DOE) Two-Column Aerosol Project (TCAP) in July 2012. We observed out ow of urban haze and fresh biomass burning smoke from the East Coast of the US out over the West Atlantic Ocean. Lidar ratios at 355 and 532 nm were ... sr indicating moderately absorbing aerosols. Extinctionrelated Angstrom exponents were 1.5{2 pointing at comparably small particles. Our novel automated, unsupervised data inversion algorithm retrieves particle e*ective radii of approximately 0.2 *m, which is in agreement with the large Angstrom exponents. We nd reasonable agreement to particle size parameters obtained from situ measurements carried out with the DOE G-1 aircraft that ew during the lidar observations.

  6. Performance and Prospects of Khayyam, A Tunable Spatial Heterodyne Spectrometer (SHS) for High Spectral Resolving Power Observation of Extended Planetary Targets in Optical Wavelengths

    NASA Astrophysics Data System (ADS)

    Hosseini, S.; Harris, W.

    2014-12-01

    We present initial results, calibration and data reduction process from observations of wide-field targets using Khayyam at Mt. Hamilton, a new instrument based on a reflective spatial heterodyne spectrometer (SHS) at the focus of the Coudé Auxiliary Telescope (CAT). SHS instruments are common path two-beam Fourier transform spectrometers that produce 2-D spatial interference patterns without the requirement for moving parts. The utility of SHS comes from its combination of a wide input acceptance angle (0.5-1°), high resolving power (of order ~105), compact format, high dynamic range, and relaxed optical tolerances compared with other interferometer designs. This combination makes them extremely useful for velocity resolved for observations of wide field targets from both small and large telescopes. This report focuses on the tunable instrument at Mt Hamilton, The CAT provides a test case for on-axis use of SHS, and the impact of the resulting field non-uniformity caused by the spider pattern will be discussed. Observations of several targets will be presented that demonstrate the capabilities of SHS, including comet C/2014 E2 (Jacques), Jupiter, and both the day sky and night glow. Raw interferometric data and transformed power spectra will be shown and evaluated in terms of instrumental stability.

  7. Spectral and spread-spectral teleportation

    SciTech Connect

    Humble, Travis S.

    2010-06-15

    We report how quantum information encoded into the spectral degree of freedom of a single-photon state may be teleported using a finite spectrally entangled biphoton state. We further demonstrate how the bandwidth of the teleported wave form can be controllably and coherently dilated using a spread-spectral variant of teleportation. We calculate analytical expressions for the fidelities of spectral and spread-spectral teleportation when complex-valued Gaussian states are transferred using a proposed experimental approach. Finally, we discuss the utility of these techniques for integrating broad-bandwidth photonic qubits with narrow-bandwidth receivers in quantum communication systems.

  8. Reconstructing spectral reflectance from digital camera through samples selection

    NASA Astrophysics Data System (ADS)

    Cao, Bin; Liao, Ningfang; Yang, Wenming; Chen, Haobo

    2016-10-01

    Spectral reflectance provides the most fundamental information of objects and is recognized as the "fingerprint" of them, since reflectance is independent of illumination and viewing conditions. However, reconstructing high-dimensional spectral reflectance from relatively low-dimensional camera outputs is an illposed problem and most of methods requaired camera's spectral responsivity. We propose a method to reconstruct spectral reflectance from digital camera outputs without prior knowledge of camera's spectral responsivity. This method respectively averages reflectances of selected subset from main training samples by prescribing a limit to tolerable color difference between the training samples and the camera outputs. Different tolerable color differences of training samples were investigated with Munsell chips under D65 light source. Experimental results show that the proposed method outperforms classic PI method in terms of multiple evaluation criteria between the actual and the reconstructed reflectances. Besides, the reconstructed spectral reflectances are between 0-1, which make them have actual physical meanings and better than traditional methods.

  9. Slow Narrow Spectral Width E Region Echoes Observed During the March 17-2015 Storm and What They Reveal About the Disturbed Ionosphere.

    NASA Astrophysics Data System (ADS)

    St-Maurice, J. P.; Chau, J. L.

    2015-12-01

    As auroral-type disturbances moved equatorward during the March 17-2015 storm, coherent E region echoes were observed simultaneously with three radar links separated by 40 km each in the east-west direction in northern Germany. One radar operated at 36.2, and the other two at 32.55 MHz. One of the latter operated in a bistatic configuration. On each radar site five separate antennas were used to locate the echoes using interferometry. The unique configuration provided an unsurpassed opportunity to study the origin and evolution of ionospheric structures in a wide field of view during a strong storm. A most noticeable feature was that over a few time intervals, several minutes in duration each, very narrow spectra were observed, with Doppler shifts roughly 1/2 the ion-acoustic speed (often called "type III" echoes in the past). The inferred location indicated that the echoes came from below 100 km altitude. Echoes moving at the nominal ion-acoustic speed came from higher up and/or different flow angles. In one particularly clear instance the "Type III" echo region came from a region 50 to 75 km in extent drifting at roughly 1.5 km/s, while moving at some small (but non-zero) flow angle with respect to the line-of-sight. In view of the observations, a reevaluation of existing theories indicates that the echoes cannot be related to ion cyclotron waves. Instead, their low altitude and flow angle dependence reveal that they are the by-product of the ion Pedersen instability, which has been investigated by a few groups in relation to a non-isothermal treatment of the Farley-Buneman instability. In our present treatment of the problem, nonlinear effects are invoked to compute the final Doppler shift of the resulting structures. We find that the stronger the electric field is, the closer the region of slow echoes has to be to the ExB direction. In our most dramatic example of Type III structures, the size of the echo region pointed to a region of high energy precipitation

  10. Simultaneous imaging and spectral observations in microwaves and hard X-rays of the impulsive phase of a solar limb flare

    NASA Technical Reports Server (NTRS)

    Schmahl, E. J.; Kundu, M. R.; Dennis, B. R.

    1986-01-01

    Observations of the impulsive phase of a solar flare at microwave wavelengths and in hard X-rays are used to deduce the strength of the magnetic field and the number of energetic electrons producing the burst. The microwave observations, using the VLA at 6 cm, had spatial resolution of 8 x 8 arcsec, close to the resolution of the Hard X-ray Imaging Spectrometer on SMM which also imaged this flare. The Hard X-ray Burst Spectrometer determined the spectrum of the burst in the range 25-512 keV, and several patrol telescopes recorded the microwave time profile at frequencies from 2.8 to 19.6 GHz. The combined data show that the derived number of microwave-emitting electrons is at least three orders of magnitude fewer than the number of thick target electrons producing the hard X-rays. It is proposed that the fast electrons are highly beamed and radiate gyrosynchrotron emission less efficiently than isotropically distributed electrons.

  11. Altered resting state brain dynamics in temporal lobe epilepsy can be observed in spectral power, functional connectivity and graph theory metrics.

    PubMed

    Quraan, Maher A; McCormick, Cornelia; Cohn, Melanie; Valiante, Taufik A; McAndrews, Mary Pat

    2013-01-01

    Despite a wealth of EEG epilepsy data that accumulated for over half a century, our ability to understand brain dynamics associated with epilepsy remains limited. Using EEG data from 15 controls and 9 left temporal lobe epilepsy (LTLE) patients, in this study we characterize how the dynamics of the healthy brain differ from the "dynamically balanced" state of the brain of epilepsy patients treated with anti-epileptic drugs in the context of resting state. We show that such differences can be observed in band power, synchronization and network measures, as well as deviations from the small world network (SWN) architecture of the healthy brain. The θ (4-7 Hz) and high α (10-13 Hz) bands showed the biggest deviations from healthy controls across various measures. In particular, patients demonstrated significantly higher power and synchronization than controls in the θ band, but lower synchronization and power in the high α band. Furthermore, differences between controls and patients in graph theory metrics revealed deviations from a SWN architecture. In the θ band epilepsy patients showed deviations toward an orderly network, while in the high α band they deviated toward a random network. These findings show that, despite the focal nature of LTLE, the epileptic brain differs in its global network characteristics from the healthy brain. To our knowledge, this is the only study to encompass power, connectivity and graph theory metrics to investigate the reorganization of resting state functional networks in LTLE patients.

  12. Altered Resting State Brain Dynamics in Temporal Lobe Epilepsy Can Be Observed in Spectral Power, Functional Connectivity and Graph Theory Metrics

    PubMed Central

    Quraan, Maher A.; McCormick, Cornelia; Cohn, Melanie; Valiante, Taufik A.; McAndrews, Mary Pat

    2013-01-01

    Despite a wealth of EEG epilepsy data that accumulated for over half a century, our ability to understand brain dynamics associated with epilepsy remains limited. Using EEG data from 15 controls and 9 left temporal lobe epilepsy (LTLE) patients, in this study we characterize how the dynamics of the healthy brain differ from the “dynamically balanced” state of the brain of epilepsy patients treated with anti-epileptic drugs in the context of resting state. We show that such differences can be observed in band power, synchronization and network measures, as well as deviations from the small world network (SWN) architecture of the healthy brain. The θ (4–7 Hz) and high α (10–13 Hz) bands showed the biggest deviations from healthy controls across various measures. In particular, patients demonstrated significantly higher power and synchronization than controls in the θ band, but lower synchronization and power in the high α band. Furthermore, differences between controls and patients in graph theory metrics revealed deviations from a SWN architecture. In the θ band epilepsy patients showed deviations toward an orderly network, while in the high α band they deviated toward a random network. These findings show that, despite the focal nature of LTLE, the epileptic brain differs in its global network characteristics from the healthy brain. To our knowledge, this is the only study to encompass power, connectivity and graph theory metrics to investigate the reorganization of resting state functional networks in LTLE patients. PMID:23922658

  13. NIMBUS-7 SBUV (Solar Backscatter Ultraviolet) observations of solar UV spectral irradiance variations caused by solar rotation and active-region evolution for the period November 7, 1978 - November 1, 1980

    NASA Technical Reports Server (NTRS)

    Heath, D. F.; Repoff, T. P.; Donnelly, R. F.

    1984-01-01

    Observations of temporal variations of the solar UV spectral irradiance over several days to a few weeks in the 160-400 nm wavelength range are presented. Larger 28-day variations and a second episode of 13-day variations occurred during the second year of measurements. The thirteen day periodicity is not a harmonic of the 28-day periodicity. The 13-day periodicity dominates certain episodes of solar activity while others are dominated by 28-day periods accompanied by a week 14-day harmonic. Techniques for removing noise and long-term trends are described. Time series analysis results are presented for the Si II lines near 182 nm, the Al I continuum in the 190 nm to 205 nm range, the Mg I continuum in the 210 nm to 250 nm range, the MgII H & K lines at 280 nm, the Mg I line at 285 nm, and the Ca II K & H lines at 393 and 397 nm.

  14. Spectrally-Based Assessment of Crop Seasonal Performance and Yield

    NASA Astrophysics Data System (ADS)

    Kancheva, Rumiana; Borisova, Denitsa; Georgiev, Georgy

    The rapid advances of space technologies concern almost all scientific areas from aeronautics to medicine, and a wide range of application fields from communications to crop yield predictions. Agricultural monitoring is among the priorities of remote sensing observations for getting timely information on crop development. Monitoring agricultural fields during the growing season plays an important role in crop health assessment and stress detection provided that reliable data is obtained. Successfully spreading is the implementation of hyperspectral data to precision farming associated with plant growth and phenology monitoring, physiological state assessment, and yield prediction. In this paper, we investigated various spectral-biophysical relationships derived from in-situ reflectance measurements. The performance of spectral data for the assessment of agricultural crops condition and yield prediction was examined. The approach comprisesd development of regression models between plant spectral and state-indicative variables such as biomass, vegetation cover fraction, leaf area index, etc., and development of yield forecasting models from single-date (growth stage) and multitemporal (seasonal) reflectance data. Verification of spectral predictions was performed through comparison with estimations from biophysical relationships between crop growth variables. The study was carried out for spring barley and winter wheat. Visible and near-infrared reflectance data was acquired through the whole growing season accompanied by detailed datasets on plant phenology and canopy structural and biochemical attributes. Empirical relationships were derived relating crop agronomic variables and yield to various spectral predictors. The study findings were tested using airborne remote sensing inputs. A good correspondence was found between predicted and actual (ground-truth) estimates

  15. Quantum Spectral Symmetries

    NASA Astrophysics Data System (ADS)

    Hamhalter, Jan; Turilova, Ekaterina

    2017-02-01

    Quantum symmetries of spectral lattices are studied. Basic properties of spectral order on A W ∗-algebras are summarized. Connection between projection and spectral automorphisms is clarified by showing that, under mild conditions, any spectral automorphism is a composition of function calculus and Jordan ∗-automorphism. Complete description of quantum spectral symmetries on Type I and Type II A W ∗-factors are completely described.

  16. Realizing actual feedback control of complex network

    NASA Astrophysics Data System (ADS)

    Tu, Chengyi; Cheng, Yuhua

    2014-06-01

    In this paper, we present the concept of feedbackability and how to identify the Minimum Feedbackability Set of an arbitrary complex directed network. Furthermore, we design an estimator and a feedback controller accessing one MFS to realize actual feedback control, i.e. control the system to our desired state according to the estimated system internal state from the output of estimator. Last but not least, we perform numerical simulations of a small linear time-invariant dynamics network and a real simple food network to verify the theoretical results. The framework presented here could make an arbitrary complex directed network realize actual feedback control and deepen our understanding of complex systems.

  17. Spectral Information System for Australian Spectroscopy Data

    NASA Astrophysics Data System (ADS)

    Chisholm, L. A.; Ong, C.; Hueni, A.; Suarez, L.; Restrepo-Coupe, N.

    2013-12-01

    Inherently field spectroscopy involves the study of the interrelationships between the spectral characteristics of objects and their biophysical attributes in the field environment (Bauer et al., 1986; Milton, 1987). Spectroscopy measurements taken of vegetated surfaces provide spectral characteristics indicative of the status, composition and structure of the components measured. However, additional elements are present that add undesired effects to the overall signal such as the soil background or the viewing and illumination geometry (Suarez etal 2013). Further, the leaf spectrum is affected by several factors including leaf age, phenology, a highly variable range of stressors, any of which may be the actual focus of study, and additionally influenced by a range of environmental conditions. There is a critical need to use acquired spectra to infer vegetation function, understand phenological cycles, characterise biodiversity or as part of the process to assess biogeochemical processes. However the collection of leaf spectra during field campaigns is undertaken on a project basis, where a large number of spectra tend to be collected, yet the value and ability to share and confidently re-use such collections is often restricted. Often this is because the data are stored in disparate silos with little, if any, consistency in formatting and content, and most importantly, lack metadata to aid their discovery and re-use. These datasets have significant potential for vegetation scientists but also benefit the wider earth observation remote sensing and other earth science communities. In Australia this problem has been addressed by the adoption and enhancement of the existing SPECCHIO system (Hueni et al. 2009) as a suitable standard for spectral data exchange. As a spectral database, the system provides storage of spectra and associated metadata, retrieval of spectral data using metadata space queries, information on provenance, all of which facilitate repeatability of

  18. Spectral resolution measurement technique for Czerny-Turner spectrometers based on spectral interferometry

    NASA Astrophysics Data System (ADS)

    Contreras Martínez, Ramiro; Garduño Mejía, Jesús; Rosete Aguilar, Martha; Román Moreno, Carlos J.

    2016-08-01

    We propose the design of a new technique for measuring the spectral resolution of a Czerny-Turner Spectrometer based on spectral interferometry of ultrashort laser pulses. It is well known that ultrashort pulse measurement like SPIDER and TADPOLE techniques requires a precise and well characterized spectrum, especially in fringe resolution. We developed a new technique, to our knowledge, in which by measuring the nominal fringe spacing of a spectral interferogram one can characterize the spectral resolution in a Czerny-Turner spectrometer using Ryleigh's criteria. This technique was tested in a commercial Czerny-Turner spectrometer. The results demonstrate a consistent spectral resolution between what was reported by the manufacturer. The actual calibration technique was applied in a homemade broadband astigmatism-free Czerny-Turner spectrometer. Theory and experimental results are presented.

  19. An upper-bound metric for characterizing spectral and spatial coregistration errors in spectral imaging.

    PubMed

    Skauli, Torbjørn

    2012-01-16

    Coregistration errors in multi- and hyperspectral imaging sensors arise when the spatial sensitivity pattern differs between bands or when the spectral response varies across the field of view, potentially leading to large errors in the recorded image data. In imaging spectrometers, spectral and spatial offset errors are customarily specified as "smile" and "keystone" distortions. However these characteristics do not account for errors resulting from variations in point spread function shape or spectral bandwidth. This paper proposes improved metrics for coregistration error both in the spatial and spectral dimensions. The metrics are essentially the integrated difference between point spread functions. It is shown that these metrics correspond to an upper bound on the error in image data. The metrics enable estimation of actual data errors for a given image, and can be used as part of the merit function in optical design optimization, as well as for benchmarking of spectral image sensors.

  20. OSSE spectral analysis techniques

    NASA Technical Reports Server (NTRS)

    Purcell, W. R.; Brown, K. M.; Grabelsky, D. A.; Johnson, W. N.; Jung, G. V.; Kinzer, R. L.; Kroeger, R. A.; Kurfess, J. D.; Matz, S. M.; Strickman, M. S.

    1992-01-01

    Analysis of the spectra from the Oriented Scintillation Spectrometer Experiment (OSSE) is complicated because of the typically low signal to noise (approx. 0.1 percent) and the large background variability. The OSSE instrument was designed to address these difficulties by periodically offset-pointing the detectors from the source to perform background measurements. These background measurements are used to estimate the background during each of the source observations. The resulting background-subtracted spectra can then be accumulated and fitted for spectral lines and/or continua. Data selection based on various environmental parameters can be performed at various stages during the analysis procedure. In order to achieve the instrument's statistical sensitivity, however, it will be necessary for investigators to develop a detailed understanding of the instrument operation, data collection, and the background spectrum and its variability. A brief description of the major steps in the OSSE spectral analysis process is described, including a discussion of the OSSE background spectrum and examples of several observational strategies.

  1. Children's Rights and Self-Actualization Theory.

    ERIC Educational Resources Information Center

    Farmer, Rod

    1982-01-01

    Educators need to seriously reflect upon the concept of children's rights. Though the idea of children's rights has been debated numerous times, the idea remains vague and shapeless; however, Maslow's theory of self-actualization can provide the children's rights idea with a needed theoretical framework. (Author)

  2. Group Counseling for Self-Actualization.

    ERIC Educational Resources Information Center

    Streich, William H.; Keeler, Douglas J.

    Self-concept, creativity, growth orientation, an integrated value system, and receptiveness to new experiences are considered to be crucial variables to the self-actualization process. A regular, year-long group counseling program was conducted with 85 randomly selected gifted secondary students in the Farmington, Connecticut Public Schools. A…

  3. Culture Studies and Self-Actualization Theory.

    ERIC Educational Resources Information Center

    Farmer, Rod

    1983-01-01

    True citizenship education is impossible unless students develop the habit of intelligently evaluating cultures. Abraham Maslow's theory of self-actualization, a theory of innate human needs and of human motivation, is a nonethnocentric tool which can be used by teachers and students to help them understand other cultures. (SR)

  4. Humanistic Education and Self-Actualization Theory.

    ERIC Educational Resources Information Center

    Farmer, Rod

    1984-01-01

    Stresses the need for theoretical justification for the development of humanistic education programs in today's schools. Explores Abraham Maslow's hierarchy of needs and theory of self-actualization. Argues that Maslow's theory may be the best available for educators concerned with educating the whole child. (JHZ)

  5. Developing Human Resources through Actualizing Human Potential

    ERIC Educational Resources Information Center

    Clarken, Rodney H.

    2012-01-01

    The key to human resource development is in actualizing individual and collective thinking, feeling and choosing potentials related to our minds, hearts and wills respectively. These capacities and faculties must be balanced and regulated according to the standards of truth, love and justice for individual, community and institutional development,…

  6. 50 CFR 253.16 - Actual cost.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Actual cost. 253.16 Section 253.16 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE AID TO FISHERIES FISHERIES ASSISTANCE PROGRAMS Fisheries Finance Program §...

  7. Whiteheadian Actual Entitities and String Theory

    NASA Astrophysics Data System (ADS)

    Bracken, Joseph A.

    2012-06-01

    In the philosophy of Alfred North Whitehead, the ultimate units of reality are actual entities, momentary self-constituting subjects of experience which are too small to be sensibly perceived. Their combination into "societies" with a "common element of form" produces the organisms and inanimate things of ordinary sense experience. According to the proponents of string theory, tiny vibrating strings are the ultimate constituents of physical reality which in harmonious combination yield perceptible entities at the macroscopic level of physical reality. Given that the number of Whiteheadian actual entities and of individual strings within string theory are beyond reckoning at any given moment, could they be two ways to describe the same non-verifiable foundational reality? For example, if one could establish that the "superject" or objective pattern of self- constitution of an actual entity vibrates at a specific frequency, its affinity with the individual strings of string theory would be striking. Likewise, if one were to claim that the size and complexity of Whiteheadian 'societies" require different space-time parameters for the dynamic interrelationship of constituent actual entities, would that at least partially account for the assumption of 10 or even 26 instead of just 3 dimensions within string theory? The overall conclusion of this article is that, if a suitably revised understanding of Whiteheadian metaphysics were seen as compatible with the philosophical implications of string theory, their combination into a single world view would strengthen the plausibility of both schemes taken separately. Key words: actual entities, subject/superjects, vibrating strings, structured fields of activity, multi-dimensional physical reality.

  8. Easy Observation of Infrared Spectral Lines

    ERIC Educational Resources Information Center

    Cortel, Adolf

    2012-01-01

    The spectra of some chemical elements display intense infrared (IR) lines that can be used more effectively than the ones in the visible region for identification purposes. A simple setup, based on the IR sensitivity of a handycam in nightshot mode, is described to record the visible as well as the IR spectra from decorative bulbs or salts on the…

  9. Spectral Dimensionality and Scale of Urban Radiance

    NASA Technical Reports Server (NTRS)

    Small, Christopher

    2001-01-01

    Characterization of urban radiance and reflectance is important for understanding the effects of solar energy flux on the urban environment as well as for satellite mapping of urban settlement patterns. Spectral mixture analyses of Landsat and Ikonos imagery suggest that the urban radiance field can very often be described with combinations of three or four spectral endmembers. Dimensionality estimates of Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) radiance measurements of urban areas reveal the existence of 30 to 60 spectral dimensions. The extent to which broadband imagery collected by operational satellites can represent the higher dimensional mixing space is a function of both the spatial and spectral resolution of the sensor. AVIRIS imagery offers the spatial and spectral resolution necessary to investigate the scale dependence of the spectral dimensionality. Dimensionality estimates derived from Minimum Noise Fraction (MNF) eigenvalue distributions show a distinct scale dependence for AVIRIS radiance measurements of Milpitas, California. Apparent dimensionality diminishes from almost 40 to less than 10 spectral dimensions between scales of 8000 m and 300 m. The 10 to 30 m scale of most features in urban mosaics results in substantial spectral mixing at the 20 m scale of high altitude AVIRIS pixels. Much of the variance at pixel scales is therefore likely to result from actual differences in surface reflectance at pixel scales. Spatial smoothing and spectral subsampling of AVIRIS spectra both result in substantial loss of information and reduction of apparent dimensionality, but the primary spectral endmembers in all cases are analogous to those found in global analyses of Landsat and Ikonos imagery of other urban areas.

  10. The Actual Apollo 13 Prime Crew

    NASA Technical Reports Server (NTRS)

    1970-01-01

    The actual Apollo 13 lunar landing mission prime crew from left to right are: Commander, James A. Lovell Jr., Command Module pilot, John L. Swigert Jr.and Lunar Module pilot, Fred W. Haise Jr. The original Command Module pilot for this mission was Thomas 'Ken' Mattingly Jr. but due to exposure to German measles he was replaced by his backup, Command Module pilot, John L. 'Jack' Swigert Jr.

  11. Development of a tunable Fabry-Perot etalon-based near-infrared interference spectrometer for measurement of the HeI 2{sup 3}S-2{sup 3}P spectral line shape in magnetically confined torus plasmas

    SciTech Connect

    Ogane, S.; Shikama, T. Hasuo, M.; Zushi, H.

    2015-10-15

    In magnetically confined torus plasmas, the local emission intensity, temperature, and flow velocity of atoms in the inboard and outboard scrape-off layers can be separately measured by a passive emission spectroscopy assisted by observation of the Zeeman splitting in their spectral line shape. To utilize this technique, a near-infrared interference spectrometer optimized for the observation of the helium 2{sup 3}S–2{sup 3}P transition spectral line (wavelength 1083 nm) has been developed. The applicability of the technique to actual torus devices is elucidated by calculating the spectral line shapes expected to be observed in LHD and QUEST (Q-shu University Experiment with Steady State Spherical Tokamak). In addition, the Zeeman effect on the spectral line shape is measured using a glow-discharge tube installed in a superconducting magnet.

  12. Development of a tunable Fabry-Perot etalon-based near-infrared interference spectrometer for measurement of the HeI 23S-23P spectral line shape in magnetically confined torus plasmas

    NASA Astrophysics Data System (ADS)

    Ogane, S.; Shikama, T.; Zushi, H.; Hasuo, M.

    2015-10-01

    In magnetically confined torus plasmas, the local emission intensity, temperature, and flow velocity of atoms in the inboard and outboard scrape-off layers can be separately measured by a passive emission spectroscopy assisted by observation of the Zeeman splitting in their spectral line shape. To utilize this technique, a near-infrared interference spectrometer optimized for the observation of the helium 23S-23P transition spectral line (wavelength 1083 nm) has been developed. The applicability of the technique to actual torus devices is elucidated by calculating the spectral line shapes expected to be observed in LHD and QUEST (Q-shu University Experiment with Steady State Spherical Tokamak). In addition, the Zeeman effect on the spectral line shape is measured using a glow-discharge tube installed in a superconducting magnet.

  13. Evaluation of Cloud Microphysics Simulated using a Meso-Scale Model Coupled with a Spectral Bin Microphysical Scheme through Comparison with Observation Data by Ship-Borne Doppler and Space-Borne W-Band Radars

    NASA Technical Reports Server (NTRS)

    Iguchi, T.; Nakajima, T.; Khain, A. P.; Saito, K.; Takemura, T.; Okamoto, H.; Nishizawa, T.; Tao, W.-K.

    2012-01-01

    Equivalent radar reflectivity factors (Ze) measured by W-band radars are directly compared with the corresponding values calculated from a three-dimensional non-hydrostatic meso-scale model coupled with a spectral-bin-microphysical (SBM) scheme for cloud. Three case studies are the objects of this research: one targets a part of ship-borne observation using 95 GHz Doppler radar over the Pacific Ocean near Japan in May 2001; other two are aimed at two short segments of space-borne observation by the cloud profiling radar on CloudSat in November 2006. The numerical weather prediction (NWP) simulations reproduce general features of vertical structures of Ze and Doppler velocity. A main problem in the reproducibility is an overestimation of Ze in ice cloud layers. A frequency analysis shows a strong correlation between ice water contents (IWC) and Ze in the simulation; this characteristic is similar to those shown in prior on-site studies. From comparing with the empirical correlations by the prior studies, the simulated Ze is overestimated than the corresponding values in the studies at the same IWC. Whereas the comparison of Doppler velocities suggests that large-size snowflakes are necessary for producing large velocities under the freezing level and hence rules out the possibility that an overestimation of snow size causes the overestimation of Ze. Based on the results of several sensitivity tests, we conclude that the source of the overestimation is a bias in the microphysical calculation of Ze or an overestimation of IWC. To identify the source of the problems needs further validation research with other follow-up observations.

  14. Spectral procedures for estimating crop biomass

    SciTech Connect

    Wanjura, D.F.; Hatfield, J.L.

    1985-05-01

    Spectral reflectance was measured semi-weekly and used to estimate leaf area and plant dry weight accumulation in cotton, soybeans, and sunflower. Integration of spectral crop growth cycle curves explained up to 95 and 91%, respectively, of the variation in cotton lint yield and dry weight. A theoretical relationship for dry weight accumulation, in which only intercepted radiation or intercepted radiation and solar energy to biomass conversion efficiency were spectrally estimated, explained 99 and 96%, respectively, of the observed plant dry weight variation of the three crops. These results demonstrate the feasibility of predicting crop biomass from spectral measurements collected frequently during the growing season. 15 references.

  15. Submillimeter, millimeter, and microwave spectral line catalogue

    NASA Technical Reports Server (NTRS)

    Poynter, R. L.; Pickett, H. M.

    1980-01-01

    A computer accessible catalogue of submillimeter, millimeter, and microwave spectral lines in the frequency range between O and 3000 GHz (such as; wavelengths longer than 100 m) is discussed. The catalogue was used as a planning guide and as an aid in the identification and analysis of observed spectral lines. The information listed for each spectral line includes the frequency and its estimated error, the intensity, lower state energy, and quantum number assignment. The catalogue was constructed by using theoretical least squares fits of published spectral lines to accepted molecular models. The associated predictions and their estimated errors are based upon the resultant fitted parameters and their covariances.

  16. Spectral characteristics of Shuttle glow

    NASA Technical Reports Server (NTRS)

    Viereck, R. A.; Mende, S. B.; Murad, E.; Swenson, G. R.; Pike, C. P.; Culbertson, F. L.; Springer, R. C.

    1992-01-01

    The glowing cloud near the ram surfaces of the Space Shuttle was observed with a hand-held, intensified spectrograph operated by the astronauts from the aft-flight-deck of the Space Shuttle. The spectral measurements were made between 400 and 800 nm with a resolution of 3 nm. Analysis of the spectral response of the instrument and the transmission of the Shuttle window was performed on orbit using earth-airglow OH Meinel bands. This analysis resulted in a correction of the Shuttle glow intensity in the spectral region between 700 and 800 nm. The data presented in this report is in better agreement with laboratory measurements of the NO2 continuum.

  17. Spectral disentangling with Spectangular

    NASA Astrophysics Data System (ADS)

    Sablowski, Daniel P.; Weber, Michael

    2017-01-01

    The paper introduces the software Spectangular for spectral disentangling via singular value decomposition with global optimisation of the orbital parameters of the stellar system or radial velocities of the individual observations. We will describe the procedure and the different options implemented in our program. Furthermore, we will demonstrate the performance and the applicability using tests on artificial data. Additionally, we use high-resolution spectra of Capella to demonstrate the performance of our code on real-world data. The novelty of this package is the implemented global optimisation algorithm and the graphical user interface (GUI) for ease of use. We have implemented the code to tackle SB1 and SB2 systems with the option of also dealing with telluric (static) lines. Based in part on data obtained with the STELLA robotic telescope in Tenerife, an AIP facility jointly operated by AIP and IAC.

  18. Multidimensional spectral load balancing

    SciTech Connect

    Hendrickson, B.; Leland, R.

    1993-01-01

    We describe an algorithm for the static load balancing of scientific computations that generalizes and improves upon spectral bisection. Through a novel use of multiple eigenvectors, our new spectral algorithm can divide a computation into 4 or 8 pieces at once. These multidimensional spectral partitioning algorithms generate balanced partitions that have lower communication overhead and are less expensive to compute than those produced by spectral bisection. In addition, they automatically work to minimize message contention on a hypercube or mesh architecture. These spectral partitions are further improved by a multidimensional generalization of the Kernighan-Lin graph partitioning algorithm. Results on several computational grids are given and compared with other popular methods.

  19. Explosive Percolation Transition is Actually Continuous

    NASA Astrophysics Data System (ADS)

    da Costa, R. A.; Dorogovtsev, S. N.; Goltsev, A. V.; Mendes, J. F. F.

    2010-12-01

    Recently a discontinuous percolation transition was reported in a new “explosive percolation” problem for irreversible systems [D. Achlioptas, R. M. D’Souza, and J. Spencer, Science 323, 1453 (2009)SCIEAS0036-807510.1126/science.1167782] in striking contrast to ordinary percolation. We consider a representative model which shows that the explosive percolation transition is actually a continuous, second order phase transition though with a uniquely small critical exponent of the percolation cluster size. We describe the unusual scaling properties of this transition and find its critical exponents and dimensions.

  20. Neoadjuvant Treatment in Rectal Cancer: Actual Status

    PubMed Central

    Garajová, Ingrid; Di Girolamo, Stefania; de Rosa, Francesco; Corbelli, Jody; Agostini, Valentina; Biasco, Guido; Brandi, Giovanni

    2011-01-01

    Neoadjuvant (preoperative) concomitant chemoradiotherapy (CRT) has become a standard treatment of locally advanced rectal adenocarcinomas. The clinical stages II (cT3-4, N0, M0) and III (cT1-4, N+, M0) according to International Union Against Cancer (IUCC) are concerned. It can reduce tumor volume and subsequently lead to an increase in complete resections (R0 resections), shows less toxicity, and improves local control rate. The aim of this review is to summarize actual approaches, main problems, and discrepancies in the treatment of locally advanced rectal adenocarcinomas. PMID:22295206

  1. Air resistance measurements on actual airplane parts

    NASA Technical Reports Server (NTRS)

    Weiselsberger, C

    1923-01-01

    For the calculation of the parasite resistance of an airplane, a knowledge of the resistance of the individual structural and accessory parts is necessary. The most reliable basis for this is given by tests with actual airplane parts at airspeeds which occur in practice. The data given here relate to the landing gear of a Siemanms-Schuckert DI airplane; the landing gear of a 'Luftfahrzeug-Gesellschaft' airplane (type Roland Dlla); landing gear of a 'Flugzeugbau Friedrichshafen' G airplane; a machine gun, and the exhaust manifold of a 269 HP engine.

  2. Spectral imaging of the human ocular fundus

    NASA Astrophysics Data System (ADS)

    Truitt, Paul Wiley

    Introduction. The objective of this work was to demonstrate a high spectral and spatial resolution fundus imager and to assess its utility in visualizing and characterizing normal anatomical and pathological tissue classes in the human ocular fundus. The ocular fundus (posterior portion of the eye) affords a unique opportunity to directly observe neural and vascular tissue in vivo. Many ocular and systemic diseases manifest changes in the normal fundus anatomy. Current examination techniques are not optimized to detect changes prior to the formation of damaging lesions. Spectral imaging may allow visualization of disease states before the onset of traditional clinical signs. Normal tissue in the eye has distinct spectral characteristics determined by specific structural organization and the presence of specific chemical substances and ocular pigments. Pathological states result in physical and chemical changes to the tissue. Spectral imaging exploits the differences in the spectral characteristics to separate different classes of material. When these spectral properties are combined with the spatial context of the image, improved visualization and detection is possible. Methods. Two independent spectral imaging devices were developed and integrated to a commercially available Zeiss fundus camera. Spectral data were collected in order to characterize the normal anatomical tissue classes and to assess the usefulness of spectral features for improved class discernment. Spectral images were collected for 14 subjects Diabetic Retinopathy were imaged. Mean spectral curves were produced for each class and for each subject. These spectral curves were normalized to remove the contribution from the pigment melanin (the major pigment associated with variation in fundus pigmentation) and modeled with a piece-wise linear function consisting of a DC offset and four slopes. Results. Differences in the shape of the spectral curve exist between macular edema and normal macular and

  3. Evaluating Spectral Signals to Identify Spectral Error

    PubMed Central

    Bazar, George; Kovacs, Zoltan; Tsenkova, Roumiana

    2016-01-01

    Since the precision and accuracy level of a chemometric model is highly influenced by the quality of the raw spectral data, it is very important to evaluate the recorded spectra and describe the erroneous regions before qualitative and quantitative analyses or detailed band assignment. This paper provides a collection of basic spectral analytical procedures and demonstrates their applicability in detecting errors of near infrared data. Evaluation methods based on standard deviation, coefficient of variation, mean centering and smoothing techniques are presented. Applications of derivatives with various gap sizes, even below the bandpass of the spectrometer, are shown to evaluate the level of spectral errors and find their origin. The possibility for prudent measurement of the third overtone region of water is also highlighted by evaluation of a complex data recorded with various spectrometers. PMID:26731541

  4. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The...

  5. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The...

  6. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The...

  7. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The...

  8. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The...

  9. Different optical spectral characteristics in a necrotic transmissible venereal tumor and a cystic lesion in the same canine prostate observed by triple-band trans-rectal optical tomography under trans-rectal ultrasound guidance

    NASA Astrophysics Data System (ADS)

    Jiang, Zhen; Holyoak, G. Reed; Ritchey, Jerry W.; Bartels, Kenneth E.; Rock, Kendra; Ownby, Charlotte L.; Slobodov, Gennady; Bunting, Charles F.; Piao, Daqing

    2011-03-01

    Different optical spectral characteristics were observed in a necrotic transmissible venereal tumor (TVT) and a cystic lesion in the same canine prostate by triple-wavelength trans-rectal optical tomography under trans-rectal ultrasound (TRUS) guidance. The NIR imager acquiring at 705nm, 785nm and 808nm was used to quantify both the total hemoglobin concentration (HbT) and oxygen saturation (StO2) in the prostate. The TVT tumor in the canine prostate as a model of prostate cancer was induced in a 7-year old, 27 kg dog. A 2 mL suspension of 2.5x106 cells/mL of homogenized TVT cells recovered from an in vivo subcutaneously propagated TVT tumor in an NOD/SCID mouse were injected in the cranial aspect of the right lobe of the canine prostate. The left lobe of the prostate had a cystic lesion present before TVT inoculation. After the TVT homogenate injection, the prostate was monitored weekly over a 9-week period, using trans-rectal NIR and TRUS in grey-scale and Doppler. A TVT mass within the right lobe developed a necrotic center during the later stages of this study, as the mass presented with substantially increased [HbT] in the periphery, with an area of reduced StO2 less than the area of the mass itself shown on ultrasonography. Conversely, the cystic lesion presented with slightly increased [HbT] in the periphery of the lesion shown on ultrasound with oxygen-reduction inside and in the periphery of the lesion. There was no detectable change of blood flow on Doppler US in the periphery of the cystic lesion. The slightly increased [HbT] in the periphery of the cystic lesion was correlated with intra-lesional hemorrhage upon histopathologic examination.

  10. Planck 2013 results. IX. HFI spectral response

    NASA Astrophysics Data System (ADS)

    Planck Collaboration; Ade, P. A. R.; Aghanim, N.; Armitage-Caplan, C.; Arnaud, M.; Ashdown, M.; Atrio-Barandela, F.; Aumont, J.; Baccigalupi, C.; Banday, A. J.; Barreiro, R. B.; Battaner, E.; Benabed, K.; Benoît, A.; Benoit-Lévy, A.; Bernard, J.-P.; Bersanelli, M.; Bielewicz, P.; Bobin, J.; Bock, J. J.; Bond, J. R.; Borrill, J.; Bouchet, F. R.; Boulanger, F.; Bridges, M.; Bucher, M.; Burigana, C.; Cardoso, J.-F.; Catalano, A.; Challinor, A.; Chamballu, A.; Chary, R.-R.; Chen, X.; Chiang, H. C.; Chiang, L.-Y.; Christensen, P. R.; Church, S.; Clements, D. L.; Colombi, S.; Colombo, L. P. L.; Combet, C.; Comis, B.; Couchot, F.; Coulais, A.; Crill, B. P.; Curto, A.; Cuttaia, F.; Danese, L.; Davies, R. D.; de Bernardis, P.; de Rosa, A.; de Zotti, G.; Delabrouille, J.; Delouis, J.-M.; Désert, F.-X.; Dickinson, C.; Diego, J. M.; Dole, H.; Donzelli, S.; Doré, O.; Douspis, M.; Dupac, X.; Efstathiou, G.; Enßlin, T. A.; Eriksen, H. K.; Falgarone, E.; Finelli, F.; Forni, O.; Frailis, M.; Franceschi, E.; Galeotta, S.; Ganga, K.; Giard, M.; Giraud-Héraud, Y.; González-Nuevo, J.; Górski, K. M.; Gratton, S.; Gregorio, A.; Gruppuso, A.; Hansen, F. K.; Hanson, D.; Harrison, D.; Henrot-Versillé, S.; Hernández-Monteagudo, C.; Herranz, D.; Hildebrandt, S. R.; Hivon, E.; Hobson, M.; Holmes, W. A.; Hornstrup, A.; Hovest, W.; Huffenberger, K. M.; Hurier, G.; Jaffe, A. H.; Jaffe, T. R.; Jones, W. C.; Juvela, M.; Keihänen, E.; Keskitalo, R.; Kisner, T. S.; Kneissl, R.; Knoche, J.; Knox, L.; Kunz, M.; Kurki-Suonio, H.; Lagache, G.; Lamarre, J.-M.; Lasenby, A.; Laureijs, R. J.; Lawrence, C. R.; Leahy, J. P.; Leonardi, R.; Leroy, C.; Lesgourgues, J.; Liguori, M.; Lilje, P. B.; Linden-Vørnle, M.; López-Caniego, M.; Lubin, P. M.; Macías-Pérez, J. F.; Maffei, B.; Mandolesi, N.; Maris, M.; Marshall, D. J.; Martin, P. G.; Martínez-González, E.; Masi, S.; Massardi, M.; Matarrese, S.; Matthai, F.; Mazzotta, P.; McGehee, P.; Melchiorri, A.; Mendes, L.; Mennella, A.; Migliaccio, M.; Mitra, S.; Miville-Deschênes, M.-A.; Moneti, A.; Montier, L.; Morgante, G.; Mortlock, D.; Munshi, D.; Murphy, J. A.; Naselsky, P.; Nati, F.; Natoli, P.; Netterfield, C. B.; Nørgaard-Nielsen, H. U.; North, C.; Noviello, F.; Novikov, D.; Novikov, I.; Osborne, S.; Oxborrow, C. A.; Paci, F.; Pagano, L.; Pajot, F.; Paoletti, D.; Pasian, F.; Patanchon, G.; Perdereau, O.; Perotto, L.; Perrotta, F.; Piacentini, F.; Piat, M.; Pierpaoli, E.; Pietrobon, D.; Plaszczynski, S.; Pointecouteau, E.; Polenta, G.; Ponthieu, N.; Popa, L.; Poutanen, T.; Pratt, G. W.; Prézeau, G.; Prunet, S.; Puget, J.-L.; Rachen, J. P.; Reinecke, M.; Remazeilles, M.; Renault, C.; Ricciardi, S.; Riller, T.; Ristorcelli, I.; Rocha, G.; Rosset, C.; Roudier, G.; Rusholme, B.; Santos, D.; Savini, G.; Scott, D.; Shellard, E. P. S.; Spencer, L. D.; Starck, J.-L.; Stolyarov, V.; Stompor, R.; Sudiwala, R.; Sureau, F.; Sutton, D.; Suur-Uski, A.-S.; Sygnet, J.-F.; Tauber, J. A.; Tavagnacco, D.; Terenzi, L.; Tomasi, M.; Tristram, M.; Tucci, M.; Umana, G.; Valenziano, L.; Valiviita, J.; Van Tent, B.; Vielva, P.; Villa, F.; Vittorio, N.; Wade, L. A.; Wandelt, B. D.; Yvon, D.; Zacchei, A.; Zonca, A.

    2014-11-01

    The Planck High Frequency Instrument (HFI) spectral response was determined through a series of ground based tests conducted with the HFI focal plane in a cryogenic environment prior to launch. The main goal of the spectral transmission tests was to measure the relative spectral response (includingthe level of out-of-band signal rejection) of all HFI detectors to a known source of electromagnetic radiation individually. This was determined by measuring the interferometric output of a continuously scanned Fourier transform spectrometer with all HFI detectors. As there is no on-board spectrometer within HFI, the ground-based spectral response experiments provide the definitive data set for the relative spectral calibration of the HFI. Knowledge of the relative variations in the spectral response between HFI detectors allows for a more thorough analysis of the HFI data. The spectral response of the HFI is used in Planck data analysis and component separation, this includes extraction of CO emission observed within Planck bands, dust emission, Sunyaev-Zeldovich sources, and intensity to polarization leakage. The HFI spectral response data have also been used to provide unit conversion and colour correction analysis tools. While previous papers describe the pre-flight experiments conducted on the Planck HFI, this paper focusses on the analysis of the pre-flight spectral response measurements and the derivation of data products, e.g. band-average spectra, unit conversion coefficients, and colour correction coefficients, all with related uncertainties. Verifications of the HFI spectral response data are provided through comparisons with photometric HFI flight data. This validation includes use of HFI zodiacal emission observations to demonstrate out-of-band spectral signal rejection better than 108. The accuracy of the HFI relative spectral response data is verified through comparison with complementary flight-data based unit conversion coefficients and colour correction

  11. Spectral collocation methods

    NASA Technical Reports Server (NTRS)

    Hussaini, M. Y.; Kopriva, D. A.; Patera, A. T.

    1987-01-01

    This review covers the theory and application of spectral collocation methods. Section 1 describes the fundamentals, and summarizes results pertaining to spectral approximations of functions. Some stability and convergence results are presented for simple elliptic, parabolic, and hyperbolic equations. Applications of these methods to fluid dynamics problems are discussed in Section 2.

  12. Caustic-Side Solvent Extraction: Prediction of Cesium Extraction for Actual Wastes and Actual Waste Simulants

    SciTech Connect

    Delmau, L.H.; Haverlock, T.J.; Sloop, F.V., Jr.; Moyer, B.A.

    2003-02-01

    This report presents the work that followed the CSSX model development completed in FY2002. The developed cesium and potassium extraction model was based on extraction data obtained from simple aqueous media. It was tested to ensure the validity of the prediction for the cesium extraction from actual waste. Compositions of the actual tank waste were obtained from the Savannah River Site personnel and were used to prepare defined simulants and to predict cesium distribution ratios using the model. It was therefore possible to compare the cesium distribution ratios obtained from the actual waste, the simulant, and the predicted values. It was determined that the predicted values agree with the measured values for the simulants. Predicted values also agreed, with three exceptions, with measured values for the tank wastes. Discrepancies were attributed in part to the uncertainty in the cation/anion balance in the actual waste composition, but likely more so to the uncertainty in the potassium concentration in the waste, given the demonstrated large competing effect of this metal on cesium extraction. It was demonstrated that the upper limit for the potassium concentration in the feed ought to not exceed 0.05 M in order to maintain suitable cesium distribution ratios.

  13. Spectral Properties and Dynamics of Gold Nanorods Revealed by EMCCD Based Spectral-Phasor Method

    PubMed Central

    Chen, Hongtao; Digman, Michelle A.

    2015-01-01

    Gold nanorods (NRs) with tunable plasmon-resonant absorption in the near-infrared region have considerable advantages over organic fluorophores as imaging agents. However, the luminescence spectral properties of NRs have not been fully explored at the single particle level in bulk due to lack of proper analytic tools. Here we present a global spectral phasor analysis method which allows investigations of NRs' spectra at single particle level with their statistic behavior and spatial information during imaging. The wide phasor distribution obtained by the spectral phasor analysis indicates spectra of NRs are different from particle to particle. NRs with different spectra can be identified graphically in corresponding spatial images with high spectral resolution. Furthermore, spectral behaviors of NRs under different imaging conditions, e.g. different excitation powers and wavelengths, were carefully examined by our laser-scanning multiphoton microscope with spectral imaging capability. Our results prove that the spectral phasor method is an easy and efficient tool in hyper-spectral imaging analysis to unravel subtle changes of the emission spectrum. Moreover, we applied this method to study the spectral dynamics of NRs during direct optical trapping and by optothermal trapping. Interestingly, spectral shifts were observed in both trapping phenomena. PMID:25684346

  14. Spectral properties and dynamics of gold nanorods revealed by EMCCD-based spectral phasor method.

    PubMed

    Chen, Hongtao; Gratton, Enrico; Digman, Michelle A

    2015-04-01

    Gold nanorods (NRs) with tunable plasmon-resonant absorption in the near-infrared region have considerable advantages over organic fluorophores as imaging agents due to their brightness and lack of photobleaching. However, the luminescence spectral properties of NRs have not been fully characterized at the single particle level due to lack of proper analytic tools. Here, we present a spectral phasor analysis method that allows investigations of NRs' spectra at single particle level showing the spectral variance and providing spatial information during imaging. The broad phasor distribution obtained by the spectral phasor analysis indicates that spectra of NRs are different from particle to particle. NRs with different spectra can be identified in images with high spectral resolution. The spectral behaviors of NRs under different imaging conditions, for example, different excitation powers and wavelengths, were revealed by our laser-scanning multiphoton microscope using a high-resolution spectrograph with imaging capability. Our results prove that the spectral phasor method is an easy and efficient tool in hyper-spectral imaging analysis to unravel subtle changes of the emission spectrum. We applied this method to study the spectral dynamics of NRs during direct optical trapping and by optothermal trapping. Interestingly, different spectral shifts were observed in both trapping phenomena.

  15. A method of determining spectral dye densities in color films

    NASA Technical Reports Server (NTRS)

    Friederichs, G. A.; Scarpace, F. L.

    1977-01-01

    A mathematical analysis technique called characteristic vector analysis, reported by Simonds (1963), is used to determine spectral dye densities in multiemulsion film such as color or color-IR imagery. The technique involves examining a number of sets of multivariate data and determining linear transformations of these data to a smaller number of parameters which contain essentially all of the information contained in the original set of data. The steps involved in the actual procedure are outlined. It is shown that integral spectral density measurements of a large number of different color samples can be accurately reconstructed from the calculated spectral dye densities.

  16. SPECTRAL RELATIVE ABSORPTION DIFFERENCE METHOD

    SciTech Connect

    Salaymeh, S.

    2010-06-17

    When analyzing field data, the uncertainty in the background continuum emission produces the majority of error in the final gamma-source analysis. The background emission typically dominates an observed spectrum in terms of counts and is highly variable spatially and temporally. The majority of the spectral shape of the background continuum is produced by combinations of cosmic rays, {sup 40}K, {sup 235}U, and {sup 220}Rn, and the continuum is similar in shape to the 15%-20% level for most field observations. However, the goal of spectroscopy analysis is to pick up subtle peaks (<%5) upon this large background. Because the continuum is falling off as energy increases, peak detection algorithms must first define the background surrounding the peak. This definition is difficult when the range of background shapes is considered. The full spectral template matching algorithms are heavily weighted to solving for the background continuum as it produces significant counts over much of the energy range. The most appropriate background mitigation technique is to take a separate background observation without the source of interest. But, it is frequently not possible to record a background observation in the exact location before (or after) a source has been detected. Thus, one uses approximate backgrounds that rely on spatially nearby locations or similar environments. Since the error in many field observations is dominated by the background, a technique that is less sensitive to the background would be quite beneficial. We report the result of an initial investigation into a novel observation scheme for gamma-emission detection in high background environments. Employing low resolution, NaI, detectors, we examine the different between the direct emission and the 'spectral-shadow' that the gamma emission produces when passed through a thin absorber. For this detection scheme to be competitive, it is required to count and analyze individual gamma-events. We describe the

  17. Vesta, Vestoids, and the howardite, eucrite, diogenite group: Relationships and the origin of spectral differences

    NASA Astrophysics Data System (ADS)

    Burbine, T. H.; Buchanan, P. C.; Binzel, R. P.; Bus, S. J.; Hiroi, T.; Hinrichs, J. L.; Meibom, A.; McCoy, T. J.

    2001-06-01

    Spectra of asteroid 4 Vesta and 21 small (estimated diameters less than 10 km) asteroids with Vesta-like spectral properties (Vestoids) were measured at visible and near-infrared wavelengths (?0.44 to ?1.65 μm). All of the measured small asteroids (except for 2579 Spartacus) have reflectance spectra consistent with surface compositions similar to eucrites and howardites and consistent with all being derived from Vesta. None of the observed asteroids have spectra similar to diogenites. We find no spectral distinction between the 15 objects tabulated as members of the Vesta dynamical family and 6 of the 7 sampled "non-family" members that reside just outside the semi-major axis (a), eccentricity (e), and inclination (i) region of the family. The spectral consistency and close orbital (a-e-i) match of these "non-family" objects to Vesta and the Vesta family imply that the true bounds of the family extend beyond the subjective cut-off for membership. Asteroid 2579 Spartacus has a spectrum consistent with a mixture of eucritic material and olivine. Spartacus could contain olivine-rich material from Vesta's mantle or may be unrelated to Vesta altogether. Laboratory measurements of the spectra of eucrites show that samples having nearly identical compositions can display a wide range of spectral slopes. Finer particle sizes lead to an increase in the slope, which is usually referred to as reddening. This range of spectral variation for the best-known meteoritic analogs to the Vestoids, regardless of whether they are actually related to each other, suggests that the extremely red spectral slopes for some Vestoids can be explained by very fine-grained eucritic material on their surfaces.

  18. Consequences of Predicted or Actual Asteroid Impacts

    NASA Astrophysics Data System (ADS)

    Chapman, C. R.

    2003-12-01

    Earth impact by an asteroid could have enormous physical and environmental consequences. Impactors larger than 2 km diameter could be so destructive as to threaten civilization. Since such events greatly exceed any other natural or man-made catastrophe, much extrapolation is necessary just to understand environmental implications (e.g. sudden global cooling, tsunami magnitude, toxic effects). Responses of vital elements of the ecosystem (e.g. agriculture) and of human society to such an impact are conjectural. For instance, response to the Blackout of 2003 was restrained, but response to 9/11 terrorism was arguably exaggerated and dysfunctional; would society be fragile or robust in the face of global catastrophe? Even small impacts, or predictions of impacts (accurate or faulty), could generate disproportionate responses, especially if news media reports are hyped or inaccurate or if responsible entities (e.g. military organizations in regions of conflict) are inadequately aware of the phenomenology of small impacts. Asteroid impact is the one geophysical hazard of high potential consequence with which we, fortunately, have essentially no historical experience. It is thus important that decision makers familiarize themselves with the hazard and that society (perhaps using a formal procedure, like a National Academy of Sciences study) evaluate the priority of addressing the hazard by (a) further telescopic searches for dangerous but still-undiscovered asteroids and (b) development of mitigation strategies (including deflection of an oncoming asteroid and on- Earth civil defense). I exemplify these issues by discussing several representative cases that span the range of parameters. Many of the specific physical consequences of impact involve effects like those of other geophysical disasters (flood, fire, earthquake, etc.), but the psychological and sociological aspects of predicted and actual impacts are distinctive. Standard economic cost/benefit analyses may not

  19. Spectral signatures of penumbral transients

    SciTech Connect

    Reardon, K.; Tritschler, A.

    2013-12-20

    In this work we investigate the properties of penumbral transients observed in the upper photospheric and chromospheric region above a sunspot penumbra using two-dimensional spectroscopic observations of the Ca II 854.21 nm line with a 5 s cadence. In our 30 minutes of observations, we identify several penumbral-micro jets (PMJs) with cotemporal observations from Dunn Solar Telescope/IBIS and Hinode/SOT. We find that the line profiles of these PMJ events show emission in the two wings of the line (±0.05 nm), but little modification of the line core. These are reminiscent of the line profiles of Ellerman bombs observed in plage and network regions. Furthermore, we find evidence that some PMJ events have a precursor phase starting 1 minute prior to the main brightening that might indicate initial heating of the plasma prior to an acoustic or bow shock event. With the IBIS data, we also find several other types of transient brightenings with timescales of less than 1 minute that are not clearly seen in the Hinode/SOT data. The spectral profiles and other characteristics of these events are significantly different from those of PMJs. The different appearances of all these transients are an indicator of the general complexity of the chromospheric magnetic field and underscore the highly dynamic behavior above sunspots. It also highlights the care that is needed in interpreting broadband filter images of chromospheric lines, which may conceal very different spectral profiles, and the underlying physical mechanisms at work.

  20. Commission 45: Spectral Classification

    NASA Astrophysics Data System (ADS)

    Giridhar, Sunetra; Gray, Richard O.; Corbally, Christopher J.; Bailer-Jones, Coryn A. L.; Eyer, Laurent; Irwin, Michael J.; Kirkpatrick, J. Davy; Majewski, Steven; Minniti, Dante; Nordström, Birgitta

    This report gives an update of developments (since the last General Assembly at Prague) in the areas that are of relevance to the commission. In addition to numerous papers, a new monograph entitled Stellar Spectral Classification with Richard Gray and Chris Corbally as leading authors will be published by Princeton University Press as part of their Princeton Series in Astrophysics in April 2009. This book is an up-to-date and encyclopedic review of stellar spectral classification across the H-R diagram, including the traditional MK system in the blue-violet, recent extensions into the ultraviolet and infrared, the newly defined L-type and T-type spectral classes, as well as spectral classification of carbon stars, S-type stars, white dwarfs, novae, supernovae and Wolf-Rayet stars.

  1. Temporal Lorentzian spectral triples

    NASA Astrophysics Data System (ADS)

    Franco, Nicolas

    2014-09-01

    We present the notion of temporal Lorentzian spectral triple which is an extension of the notion of pseudo-Riemannian spectral triple with a way to ensure that the signature of the metric is Lorentzian. A temporal Lorentzian spectral triple corresponds to a specific 3 + 1 decomposition of a possibly noncommutative Lorentzian space. This structure introduces a notion of global time in noncommutative geometry. As an example, we construct a temporal Lorentzian spectral triple over a Moyal-Minkowski spacetime. We show that, when time is commutative, the algebra can be extended to unbounded elements. Using such an extension, it is possible to define a Lorentzian distance formula between pure states with a well-defined noncommutative formulation.

  2. SPECTRAL SMILE CORRECTION IN CRISM HYPERSPECTRAL IMAGES

    NASA Astrophysics Data System (ADS)

    Ceamanos, X.; Doute, S.

    2009-12-01

    The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) is affected by a common artifact in "push-broom" sensors, the so-called "spectral smile". As a consequence, both central wavelength and spectral width of the spectral response vary along the across-track dimension, thus giving rise to a shifting and smoothing of spectra (see Fig. 1 (left)). In fact, both effects are greater for spectra on the edges, while they are minimum for data acquired by central detectors, the so-called "sweet spot". The prior artifacts become particularly critical for Martian observations which contain steep spectra such as CO2 ice-rich polar images. Fig. 1 (right) shows the horizontal brightness gradient which appears in every band corresponding to a steep portion of spectra. The correction of CRISM spectral smile is addressed using a two-step method which aims at modifying data sensibly in order to mimic the optimal CRISM response. First, all spectra, which are previously interpolated by cubic splines, are resampled to the "sweet spot" wavelengths in order to overcome the spectra shift. Secondly, the non-uniform spectral width is overcome by mimicking an increase of spectral resolution thanks to a spectral sharpening. In order to minimize noise, only bands particularly suffering from smile are selected. First, bands corresponding to the outliers of the Minimum Noise Transformation (MNF) eigenvector, which corresponds to the MNF band related to smile (MNF-smile), are selected. Then, a spectral neighborhood Θi, which takes into account the local spectral convexity or concavity, is defined for every selected band in order to maximize spectral shape preservation. The proposed sharpening technique takes into account both the instrument parameters and the observed spectra. First, every reflectance value belonging to a Θi is reevaluated by a sharpening which depends on a ratio of the spectral width of the current detector and the "sweet spot" one. Then, the optimal degree of

  3. Thermophotovoltaic Spectral Control

    SciTech Connect

    DM DePoy; PM Fourspring; PF Baldasaro; JF Beausang; EJ Brown; MW Dashiel; KD Rahner; TD Rahmlow; JE Lazo-Wasem; EJ Gratrix; B Wemsman

    2004-06-09

    Spectral control is a key technology for thermophotovoltaic (TPV) direct energy conversion systems because only a fraction (typically less than 25%) of the incident thermal radiation has energy exceeding the diode bandgap energy, E{sub g}, and can thus be converted to electricity. The goal for TPV spectral control in most applications is twofold: (1) Maximize TPV efficiency by minimizing transfer of low energy, below bandgap photons from the radiator to the TPV diode. (2) Maximize TPV surface power density by maximizing transfer of high energy, above bandgap photons from the radiator to the TPV diode. TPV spectral control options include: front surface filters (e.g. interference filters, plasma filters, interference/plasma tandem filters, and frequency selective surfaces), back surface reflectors, and wavelength selective radiators. System analysis shows that spectral performance dominates diode performance in any practical TPV system, and that low bandgap diodes enable both higher efficiency and power density when spectral control limitations are considered. Lockheed Martin has focused its efforts on front surface tandem filters which have achieved spectral efficiencies of {approx}83% for E{sub g} = 0.52 eV and {approx}76% for E{sub g} = 0.60 eV for a 950 C radiator temperature.

  4. Tethys - Geological and Spectral Properties

    NASA Astrophysics Data System (ADS)

    Stephan, Katrin; Jaumann, Ralf; Wagner, Roland; Clark, Roger N.; Cruikshank, Dale P.; Dalle Ore, Cristina; Brown, Robert H.; Giese, Bernd; Roatsch, Thomas; Matson, Dennis; Baines, Kevin H.; Filacchione, Gianrico; Capaccione, Fabrizio; Burratti, Bonnie J.; Nicholson, Phil D.; Rodriguez, Sebastian

    2015-04-01

    Despite the spectral dominance of H2O ice on Tethys' surface, distinct spectral variations derived by the Cassini VIMS instrument could be detected. The ice infrared absorption strengths are very different from what was expected from the visible albedo derived from Voyager and Cassini camera data. Although on Tethys, the major ice absorptions at 1.5 and 2µm are general stronger on the leading hemisphere of the satellite similar to that seen on the neighboring satellites Dione and Rhea, the detailed mapping shows a more complex pattern. Two relatively narrow N/S trending bands enriched in H2O ice of relatively large particle size separate the Saturn-facing and the anti-Saturnian hemisphere. The largest impact crater Odysseus (33°N/129°W) is included in the N/S trending band of deeper H2O absorptions on the leading hemisphere, whereas the geologically older and fourth largest impact crater Penelope (11°S/249°W) is excluded from the 'icy' band on the trailing hemisphere - supporting an exogenic origin of these bands. The oval shaped dark albedo unit observed by Voyager in the equatorial region of Tethys' leading hemisphere, which could be related to magnetospheric 'dust' impacting the surface, exhibits slightly surpressed H2O ice absorptions compared to their surrounding regions. Variations in the spectral slope from the visible to the ultra-violet wavelength range are similar to the variations observed by Cassini ISS. The spectral slope is steepest (i.e. the effect of an ultra-violet absorber other than H2O ice is strongest) on the leading as well on the trailing hemisphere. No spectral properties could be exclusively associated with Tethys' extended graben system Ithaca Chasma. Local variations, i.e. local deepening of H2O ice absorptions, are mostly related to several probably fresh impact craters and to locations where topographic slope is high like crater walls. However, only a few such fresh impact craters could be observed.

  5. An evaluation of contractor projected and actual costs

    NASA Technical Reports Server (NTRS)

    Kwiatkowski, K. A.; Buffalano, C.

    1974-01-01

    GSFC contractors with cost-plus contracts provide cost estimates for each of the next four quarters on a quarterly basis. Actual expenditures over a two-year period were compared to the estimates, and the data were sorted in different ways to answer several questions and give quantification to observations, such as how much does the accuracy of estimates degrade as they are made further into the future? Are estimates made for small dollar amounts more accurate than for large dollar estimates? Other government agencies and private companies with cost-plus contracts may be interested in this analysis as potential methods of contract management for their organizations. It provides them with the different methods one organization is beginning to use to control costs.

  6. External Validity of Contingent Valuation: Comparing Hypothetical and Actual Payments.

    PubMed

    Ryan, Mandy; Mentzakis, Emmanouil; Jareinpituk, Suthi; Cairns, John

    2016-10-09

    Whilst contingent valuation is increasingly used in economics to value benefits, questions remain concerning its external validity that is do hypothetical responses match actual responses? We present results from the first within sample field test. Whilst Hypothetical No is always an Actual No, Hypothetical Yes exceed Actual Yes responses. A constant rate of response reversals across bids/prices could suggest theoretically consistent option value responses. Certainty calibrations (verbal and numerical response scales) minimise hypothetical-actual discrepancies offering a useful solution. Helping respondents resolve uncertainty may reduce the discrepancy between hypothetical and actual payments and thus lead to more accurate policy recommendations. Copyright © 2016 John Wiley & Sons, Ltd.

  7. Spectral Irradiance Calibration in the Infrared. Part 4; 1.2 - 35 microns Spectra of Six Standard Stars

    NASA Technical Reports Server (NTRS)

    Cohen, Martin; Witteborn, Fred C.; Walker, Russell G.; Bregman, Jesse D.; Wooden, Diane H.

    1995-01-01

    We present five new absolutely calibrated continuous stellar spectra from 1.2 to 35 microns, constructed as far as possible from actual observed spectral fragments taken from the ground, the Kuiper Airborne Observatory (KAO), and the IRAS Low Resolution Spectrometer (LRS). These stars- beta Peg, alpha Boo, beta And, beta Gem, and alpha Hya-augment our already created complete absolutely calibrated spectrum for alpha Tau. All these spectra have a common calibration pedigree. The wavelength coverage is ideal for calibration of many existing and proposed ground-based, airborne, and satellite sensors.

  8. Spectral Irradiance Calibration in the Infrared. 4; 1.2-35um Spectra of Six Standard Stars

    NASA Technical Reports Server (NTRS)

    Cohen, Martin; Witteborn, Fred C.; Walker, Russell G.; Bregman, Jesse D.; Wooden, Diane H.

    1995-01-01

    We present five new absolutely calibrated continuous stellar spectra from 1.2 to 35 microns, constructed as far as possible from actual observed spectral fragments taken from the ground, the Kuiper Airborne Observatory (KAO), and the IRAS Low Resolution Spectrometer (LRS). These stars, Beta Peg, Delta Boo, Beta And, Beta Gem, and Delta Hya, augment our already created complete absolutely calibrated spectrum for a Tau. All these spectra have a common calibration pedigree. The wavelength coverage is ideal for calibration of many existing and proposed ground-based, airborne, and satellite sensors.

  9. Spectral Irradiance Calibration in the Infrared. Part 4; 1.2-35 micrometer Spectra of Six Standard Stars

    NASA Technical Reports Server (NTRS)

    Cohen, Martin; Witteborn, Fred C.; Walker, Russell, G.; Bregman, Jesse D.; Wooden, Diane H.

    1995-01-01

    Five new absolutely calibrated continuous stellar spectra from 1.2 to 35 microns are presented. The spectra were constructed as far as possible from actual observed spectral fragments taken from the ground, the Kuiper Airborne Observatory (KAO), and the IRAS Low Resolution Spectrometer (LRS). These stars (beta Peg, alpha Boo, beta And, beta Gem, and alpha Hya) augment the author's already created complete absolutely calibrated spectrum for alpha Tau. All these spectra have a common calibration pedigree. The wavelength coverage is ideal for calibration of many existing and proposed ground-based, airborne, and satellite sensors.

  10. Spectral Data Reduction via Wavelet Decomposition

    NASA Technical Reports Server (NTRS)

    Kaewpijit, S.; LeMoigne, J.; El-Ghazawi, T.; Rood, Richard (Technical Monitor)

    2002-01-01

    The greatest advantage gained from hyperspectral imagery is that narrow spectral features can be used to give more information about materials than was previously possible with broad-band multispectral imagery. For many applications, the new larger data volumes from such hyperspectral sensors, however, present a challenge for traditional processing techniques. For example, the actual identification of each ground surface pixel by its corresponding reflecting spectral signature is still one of the most difficult challenges in the exploitation of this advanced technology, because of the immense volume of data collected. Therefore, conventional classification methods require a preprocessing step of dimension reduction to conquer the so-called "curse of dimensionality." Spectral data reduction using wavelet decomposition could be useful, as it does not only reduce the data volume, but also preserves the distinctions between spectral signatures. This characteristic is related to the intrinsic property of wavelet transforms that preserves high- and low-frequency features during the signal decomposition, therefore preserving peaks and valleys found in typical spectra. When comparing to the most widespread dimension reduction technique, the Principal Component Analysis (PCA), and looking at the same level of compression rate, we show that Wavelet Reduction yields better classification accuracy, for hyperspectral data processed with a conventional supervised classification such as a maximum likelihood method.

  11. Iterative image reconstruction in spectral CT

    NASA Astrophysics Data System (ADS)

    Hernandez, Daniel; Michel, Eric; Kim, Hye S.; Kim, Jae G.; Han, Byung H.; Cho, Min H.; Lee, Soo Y.

    2012-03-01

    Scan time of spectral-CTs is much longer than conventional CTs due to limited number of x-ray photons detectable by photon-counting detectors. However, the spectral pixel information in spectral-CT has much richer information on physiological and pathological status of the tissues than the CT-number in conventional CT, which makes the spectral- CT one of the promising future imaging modalities. One simple way to reduce the scan time in spectral-CT imaging is to reduce the number of views in the acquisition of projection data. But, this may result in poorer SNR and strong streak artifacts which can severely compromise the image quality. In this work, spectral-CT projection data were obtained from a lab-built spectral-CT consisting of a single CdTe photon counting detector, a micro-focus x-ray tube and scan mechanics. For the image reconstruction, we used two iterative image reconstruction methods, the simultaneous iterative reconstruction technique (SIRT) and the total variation minimization based on conjugate gradient method (CG-TV), along with the filtered back-projection (FBP) to compare the image quality. From the imaging of the iodine containing phantoms, we have observed that SIRT and CG-TV are superior to the FBP method in terms of SNR and streak artifacts.

  12. Co-analysis of Solar Microwave and Hard X-Ray Spectral Evolutions. I. In Two Frequency or Energy Ranges

    NASA Astrophysics Data System (ADS)

    Song, Qiwu; Huang, Guangli; Nakajima, Hiroshi

    2011-06-01

    Solar microwave and hard X-ray spectral evolutions are co-analyzed in the 2000 June 10 and 2002 April 10 flares, and are simultaneously observed by the Owens-Valley Solar Array in the microwave band and by Yohkoh/Hard X-ray Telescope or RHESSI in the hard X-ray band, with multiple subpeaks in their light curves. The microwave and hard X-ray spectra are fitted by a power law in two frequency ranges of the optical thin part and two photon energy ranges, respectively. Similar to an earlier event in Shao & Huang, the well-known soft-hard-soft pattern of the lower energy range changed to the hard-soft-hard (HSH) pattern of the higher energy range during the spectral evolution of each subpeak in both hard X-ray flares. This energy dependence is actually supported by a positive correlation between the overall light curves and spectral evolution in the lower energy range, while it becomes an anti-correlation in the higher energy range. Regarding microwave data, the HSH pattern appears in the spectral evolution of each subpeak in the lower frequency range, which is somewhat similar to Huang & Nakajima. However, it returns back to the well-known pattern of soft-hard-harder for the overall spectral evolution in the higher frequency range of both events. This frequency dependence is confirmed by an anti-correlation between the overall light curves and spectral evolution in the lower frequency range, but it becomes a positive correlation in the higher frequency range. The possible mechanisms are discussed, respectively, for reasons why hard X-ray and microwave spectral evolutions have different patterns in different energy and frequency intervals.

  13. Solar Energetic Particle Spectral Breaks

    NASA Astrophysics Data System (ADS)

    Mewaldt, R.; Cohen, C.; Mason, G.; Desai, M.; Labrador, A.; Lee, M.; Li, G.

    2008-05-01

    A new generation of instruments during solar cycle 23 made it possible to measure solar energetic particle (SEP) energy spectra for many species over a broad energy interval (~0.1 to ~100 MeV/nucleon). These observations revealed that most large SEP events have power-law spectra below a few MeV/nucleon with rather hard spectral indices, followed by spectral steepening at higher energies. These spectral breaks are ordered by species - the spectra of lighter elements break at higher energy/nucleon than those for heavier species. To understand the charge-to-mass (Q/M) dependence of these spectral breaks, we have located the breaks for a range of species (e.g., H, He, C, N, O, Ne, Mg, Si, and Fe) and correlated the break locations with either measured or average Q/M ratios. As of this writing there are results for 13 large SEP events, based on data from ACE, GOES, SAMPEX, and STEREO, and charge state data from SAMPEX and ACE. We find that the location of the breaks is generally well-represented by a power-law in Q/M. This power-law fit can be related to the Q/M- dependence of the interplanetary diffusion coefficient and to the turbulence spectrum of the interplanetary magnetic field. We find that the slope of the deduced turbulence spectra are correlated with Fe/O and the proton fluence. These results support the idea that proton-amplified Alfven waves are generated in large SEP events, as expected for acceleration at parallel shocks.

  14. Noncomputable Spectral Sets

    NASA Astrophysics Data System (ADS)

    Teutsch, Jason

    2007-01-01

    It is possible to enumerate all computer programs. In particular, for every partial computable function, there is a shortest program which computes that function. f-MIN is the set of indices for shortest programs. In 1972, Meyer showed that f-MIN is Turing equivalent to 0'', the halting set with halting set oracle. This paper generalizes the notion of shortest programs, and we use various measures from computability theory to describe the complexity of the resulting "spectral sets." We show that under certain Godel numberings, the spectral sets are exactly the canonical sets 0', 0'', 0''', ... up to Turing equivalence. This is probably not true in general, however we show that spectral sets always contain some useful information. We show that immunity, or "thinness" is a useful characteristic for distinguishing between spectral sets. In the final chapter, we construct a set which neither contains nor is disjoint from any infinite arithmetic set, yet it is 0-majorized and contains a natural spectral set. Thus a pathological set becomes a bit more friendly. Finally, a number of interesting open problems are left for the inspired reader.

  15. Submillimeter, millimeter, and microwave spectral line catalogue

    NASA Technical Reports Server (NTRS)

    Poynter, R. L.; Pickett, H. M.

    1984-01-01

    This report describes a computer accessible catalogue of submillimeter, millimeter, and microwave spectral lines in the frequency range between 0 and 10000 GHz (i.e., wavelengths longer than 30 micrometers). The catalogue can be used as a planning guide or as an aid in the identification and analysis of observed spectral lines. The information listed for each spectral line includes the frequency and its estimated error, the intensity, lower state energy, and quantum number assignment. The catalogue has been constructed using theoretical least squares fits of published spectral lines to accepted molecular models. The associated predictions and their estimated errors are based upon the resultant fitted parameters and their covariances. Future versions of this catalogue will add more atoms and molecules and update the present listings (151 species) as new data appear. The catalogue is available from the authors as a magnetic tape recorded in card images and as a set of microfiche records.

  16. Submillimeter, millimeter, and microwave spectral line catalogue

    NASA Technical Reports Server (NTRS)

    Poynter, R. L.; Pickett, H. M.

    1981-01-01

    A computer accessible catalogue of submillimeter, millimeter and microwave spectral lines in the frequency range between 0 and 3000 GHZ (i.e., wavelengths longer than 100 mu m) is presented which can be used a planning guide or as an aid in the identification and analysis of observed spectral lines. The information listed for each spectral line includes the frequency and its estimated error, the intensity, lower state energy, and quantum number assignment. The catalogue was constructed by using theoretical least squares fits of published spectral lines to accepted molecular models. The associated predictions and their estimated errors are based upon the resultant fitted parameters and their covariances. Future versions of this catalogue will add more atoms and molecules and update the present listings (133 species) as new data appear. The catalogue is available as a magnetic tape recorded in card images and as a set of microfiche records.

  17. Solar Energetic Particle Spectral Breaks

    SciTech Connect

    Mewaldt, R.A.; Cohen, C.M.S.; Labrador, A.W.; Cummings, A.C.; Leske, R.A.; Stone, E.C.; Mason, G.M.; Desai, M.I.; Looper, M.L.; Mazur, J.E.; Haggerty, D.E.; Maclennan, C.G.; Li, G.; Wiedenbeck, M.E.

    2005-08-01

    The five large solar particle events during October-November 2003 presented an opportunity to test shock acceleration models with in-situ observations. We use solar particle spectra of H to Fe ions, measured by instruments on ACE, SAMPEX, and GOES-11, to investigate the Q/M-dependence of spectral breaks in the 28 October 2003 event. We find that the break energies scale as (Q/M)b with b {<=} 1.56 to 1.75, somewhat less than predicted. We also conclude that SEP spectra >100 MeV/nucleon are best fit by a double power-law shape.

  18. Scene analysis without spectral analysis?

    NASA Astrophysics Data System (ADS)

    de Cheveigne, Alain

    2003-04-01

    Auditory scene analysis is often described in terms of grouping stimulus components. Components, once grouped, are assigned to one source or another [A. S. Bregman, Auditory Scene Analysis (MIT, Cambridge, MA, 2002)]. The actual grouping must operate on whatever representation is available within the auditory nervous system. An obvious hypothesis is that correlates of individual stimulus components are created by peripheral spectral analysis. However, peripheral frequency resolution is limited. The number of resolved partials is between 5 and 8 for a harmonic complex in isolation, but resolution must necessarily be less good for the interleaved components of concurrent sources. Source amplitudes are rarely equal, and partials of a weaker source must be particularly hard to resolve. The question is thus: given the paucity of resolved elements to group, how does the auditory system perform the grouping? A number of possibilities will be reviewed. One is that partials not resolved peripherally are somehow resolved centrally (a modern version of the ``second filter'' hypothesis). Another is that scene analysis does not operate by grouping resolved elements, but instead by modifying directly unresolved entities, for example by time-domain processing.

  19. Automated spectral classification and the GAIA project

    NASA Technical Reports Server (NTRS)

    Lasala, Jerry; Kurtz, Michael J.

    1995-01-01

    Two dimensional spectral types for each of the stars observed in the global astrometric interferometer for astrophysics (GAIA) mission would provide additional information for the galactic structure and stellar evolution studies, as well as helping in the identification of unusual objects and populations. The classification of the large quantity generated spectra requires that automated techniques are implemented. Approaches for the automatic classification are reviewed, and a metric-distance method is discussed. In tests, the metric-distance method produced spectral types with mean errors comparable to those of human classifiers working at similar resolution. Data and equipment requirements for an automated classification survey, are discussed. A program of auxiliary observations is proposed to yield spectral types and radial velocities for the GAIA-observed stars.

  20. Photovoltaic spectral responsivity measurements

    SciTech Connect

    Emery, K.; Dunlavy, D.; Field, H.; Moriarty, T.

    1998-09-01

    This paper discusses the various elemental random and nonrandom error sources in typical spectral responsivity measurement systems. The authors focus specifically on the filter and grating monochrometer-based spectral responsivity measurement systems used by the Photovoltaic (PV) performance characterization team at NREL. A variety of subtle measurement errors can occur that arise from a finite photo-current response time, bandwidth of the monochromatic light, waveform of the monochromatic light, and spatial uniformity of the monochromatic and bias lights; the errors depend on the light source, PV technology, and measurement system. The quantum efficiency can be a function of he voltage bias, light bias level, and, for some structures, the spectral content of the bias light or location on the PV device. This paper compares the advantages and problems associated with semiconductor-detector-based calibrations and pyroelectric-detector-based calibrations. Different current-to-voltage conversion and ac photo-current detection strategies employed at NREL are compared and contrasted.

  1. Infrared transform spectral imager

    NASA Astrophysics Data System (ADS)

    Vujkovic-Cvijin, Pajo; Lee, Jamine; Gregor, Brian; Goldstein, Neil; Panfili, Raphael; Fox, Marsha

    2012-10-01

    A dispersive transform spectral imager named FAROS (FAst Reconfigurable Optical Sensor) has been developed for high frame rate, moderate-to-high resolution hyperspectral imaging. A programmable digital micromirror array (DMA) modulator makes it possible to adjust spectral, temporal and spatial resolution in real time to achieve optimum tradeoff for dynamic monitoring requirements. The system's F/2.8 collection optics produces diffraction-limited images in the mid-wave infrared (MWIR) spectral region. The optical system is based on a proprietary dual-pass Offner configuration with a single spherical mirror and a confocal spherical diffraction grating. FAROS fulfills two functions simultaneously: one output produces two-dimensional polychromatic imagery at the full focal plane array (FPA) frame rate for fast object acquisition and tracking, while the other output operates in parallel and produces variable-resolution spectral images via Hadamard transform encoding to assist in object discrimination and classification. The current version of the FAROS spectral imager is a multispectral technology demonstrator that operates in the MWIR with a 320 x 256 pixel InSb FPA running at 478 frames per second resulting in time resolution of several tens of milliseconds per hypercube. The instrument has been tested by monitoring small-scale rocket engine firings in outdoor environments. The instrument has no macro-scale moving parts, and conforms to a robust, small-volume and lightweight package, suitable for integration with small surveillance vehicles. The technology is also applicable to multispectral/hyperspectral imaging applications in diverse areas such as atmospheric contamination monitoring, agriculture, process control, and biomedical imaging, and can be adapted for use in any spectral domain from the ultraviolet (UV) to the LWIR region.

  2. Actual questions raised by nanoparticle radiosensitization

    NASA Astrophysics Data System (ADS)

    Brun, Emilie; Sicard-Roselli, Cécile

    2016-11-01

    Radiosensitization by metallic nanoparticles (NP) has been explored for more than a decade with promising results in vitro and in cellulo reported in a vast number of publications. Yet, few clinical trials are on-going. This could be related to the lack of selectivity of NP leading to massive quantities to be injected to observe an effect but also to the higher degree of complexity than first thought leading to an absence of consensus probably caused by the lack of standardization in pre-clinical studies. Given the wide panel of NP used, in terms of core nature, size, coating, not to mention of cell lines and irradiation modalities, cross-comparison of data is not a walk in the park. But only a thorough examination could help identifying the key parameters and the possible mechanisms involved. This step is crucial as it should provide guidance for designing the most efficient combination NP/radiation and rationally establishing clinical protocols. In this review, we will combine and confront cellular radiosensitization results with in vitro and numerical experiments in order to give the more recent vision of this complex phenomenon. We decided to address a few hot topics such as the influence of the incident radiation energy, the localization of NP or the so-called ;biological; effect. We will highlight that among the barriers to break down, some are not restricted to the ;nano; community: an incontestable support could be offered by the ;radiation; community in the broadest sense.

  3. From deep sequencing to actual clones.

    PubMed

    D'Angelo, Sara; Kumar, Sandeep; Naranjo, Leslie; Ferrara, Fortunato; Kiss, Csaba; Bradbury, Andrew R M

    2014-10-01

    The application of deep sequencing to in vitro display technologies has been invaluable for the straightforward analysis of enriched clones. After sequencing in vitro selected populations, clones are binned into identical or similar groups and ordered by abundance, allowing identification of those that are most enriched. However, the greatest strength of deep sequencing is also its greatest weakness: clones are easily identified by their DNA sequences, but are not physically available for testing without a laborious multistep process involving several rounds of polymerization chain reaction (PCR), assembly and cloning. Here, using the isolation of antibody genes from a phage and yeast display selection as an example, we show the power of a rapid and simple inverse PCR-based method to easily isolate clones identified by deep sequencing. Once primers have been received, clone isolation can be carried out in a single day, rather than two days. Furthermore the reduced number of PCRs required will reduce PCR mutations correspondingly. We have observed a 100% success rate in amplifying clones with an abundance as low as 0.5% in a polyclonal population. This approach allows us to obtain full-length clones even when an incomplete sequence is available, and greatly simplifies the subcloning process. Moreover, rarer, but functional clones missed by traditional screening can be easily isolated using this method, and the approach can be extended to any selected library (scFv, cDNA, libraries based on scaffold proteins) where a unique sequence signature for the desired clones of interest is available.

  4. Observation of the ammonium salt of 12-molybdophosphoric acid by in situ Raman spectroscopy during solid-state synthesis: spectral analysis and reconstruction using the band-target entropy minimization (BTEM) algorithm.

    PubMed

    Srilakshmi, Chilukoti; Chew, Wee; Ramesh, Kanaparthi; Garland, Marc

    2009-03-02

    The solid-state reaction between ammonium heptamolybdate (AHM) and zirconium phosphate (ZrP) to give the ammonium salt of 12-molybdophosphoric acid (AMPA) was performed at 25-400 degrees C and monitored using in situ Raman spectroscopy. Spectral analysis of the Raman data using the band-target entropy minimization (BTEM) algorithm resulted in spectral estimates for the starting materials and product, AHM, ZrP, and AMPA, as well as the byproduct MoO3 and an intermediate 11(NH4)2O.4(MoO3)7. The time-dependent relative concentration profiles were obtained, and the contributions of the individual signal intensities of each constituent to the total measured signal intensity were determined (range: 8.4-27.2%). The present results are important since the synthesis of AMPA is normally performed in buffered aqueous solution and not in the solid state. The present study also indicates that a maximum yield of the desired ammonium salt of 12-molybdophosphoric acid is achieved by stopping the solid-state reaction at ca. 350 degrees C. The combined spectroscopic and chemometric approach used in this contribution appears applicable to other solid-state synthetic studies in order to reveal more detailed time-dependent information on the species present.

  5. Large Spectral Library Problem

    SciTech Connect

    Chilton, Lawrence K.; Walsh, Stephen J.

    2008-10-03

    Hyperspectral imaging produces a spectrum or vector at each image pixel. These spectra can be used to identify materials present in the image. In some cases, spectral libraries representing atmospheric chemicals or ground materials are available. The challenge is to determine if any of the library chemicals or materials exist in the hyperspectral image. The number of spectra in these libraries can be very large, far exceeding the number of spectral channels collected in the ¯eld. Suppose an image pixel contains a mixture of p spectra from the library. Is it possible to uniquely identify these p spectra? We address this question in this paper and refer to it as the Large Spectral Library (LSL) problem. We show how to determine if unique identi¯cation is possible for any given library. We also show that if p is small compared to the number of spectral channels, it is very likely that unique identi¯cation is possible. We show that unique identi¯cation becomes less likely as p increases.

  6. Microwave spectral line listing

    NASA Technical Reports Server (NTRS)

    White, W. F., Jr.

    1975-01-01

    The frequency, intensity, and identification of 9615 spectral lines belonging to 75 molecules are tabulated in order of increasing frequency. Measurements for all 75 molecules were made in the frequency range from 26500 to 40000 MHz by a computer controlled spectrometer. Measurements were also made in the 18000 to 26500 MHz range for some of the molecules.

  7. Spectral Redundancy in Tissue Characterization

    NASA Astrophysics Data System (ADS)

    Varghese, Tomy

    1995-01-01

    response and the presence of diffuse scattering (speckle). The SAC function is also shown to be relatively insensitive to the presence of the diffuse component which adds directly to the power spectrum. Mean scatterer spacing estimates are compared for techniques that use the cepstrum and the SAC function. Simulations are used to demonstrate a relationship between the average number of scatterers per resolution cell and the average spectral correlation value. The spectral correlation measure can be used to determine the effect of diffuse scattering on the SAC function. Resolution cells with 1 and 2 scatterers can be consistently discriminated from cells with 3 or more scatterers for gamma distributed scatterer positions. The simulation results are validated using in vivo scans of the breast and liver tissue. Significant spectral correlation peaks due to the underlying periodicity is observed in liver tissue. Parametric images obtained using the mean scatterer spacing and the average correlation parameter are used to observe the disruptions caused by metastases and other diffuse diseases in the liver and breast tissue. The cepstral technique is unable to differentiate between normal and metastatic regions of the liver tissue. The average correlation feature inversely related to the scatterer density is used to characterize breast tissue. Significant variations are observed in the average correlation estimates between benign and malignant breast tumors.

  8. Spectral-collocation variational integrators

    NASA Astrophysics Data System (ADS)

    Li, Yiqun; Wu, Boying; Leok, Melvin

    2017-03-01

    Spectral methods are a popular choice for constructing numerical approximations for smooth problems, as they can achieve geometric rates of convergence and have a relatively small memory footprint. In this paper, we introduce a general framework to convert a spectral-collocation method into a shooting-based variational integrator for Hamiltonian systems. We also compare the proposed spectral-collocation variational integrators to spectral-collocation methods and Galerkin spectral variational integrators in terms of their ability to reproduce accurate trajectories in configuration and phase space, their ability to conserve momentum and energy, as well as the relative computational efficiency of these methods when applied to some classical Hamiltonian systems. In particular, we note that spectrally-accurate variational integrators, such as the Galerkin spectral variational integrators and the spectral-collocation variational integrators, combine the computational efficiency of spectral methods together with the geometric structure-preserving and long-time structural stability properties of symplectic integrators.

  9. Cloud altitude determination from infrared spectral radiances

    NASA Technical Reports Server (NTRS)

    Smith, William L.; Frey, Richard

    1990-01-01

    The CO2 slicing method is generally recognized as the most accurate means of inferring cloud altitude from passive infrared radiance observations. The method is applicable to semi-transparent and broken clouds. During the cirrus FIRE and COHMEX field experiments, CO2 channel radiance data suitable for cloud altitude specification were achieved from moderate spectral resolution satellite sounders (NOAA-TOVS and GOES-VAS) and from a High spectral resolution Interferometer Spectrometer (HIS) flown on the NASA U2/ER2 aircraft. Also aboard the ER2 was a down-looking active lidar unit capable of providing cloud top pressure verifications with high accuracy. A third instrument, the Multispectral Atmospheric Mapping Sensor (MAMS) provided 50 meter resolution infrared window data which is used wtih radiosonde data to verify the heights of middle and low level clouds. Comparisons of lidar and MAMS/radiosonde ground truth cloud heights are made with those determined from: high resolution (0.5/cm) HIS spectra, HIS spectra degraded to the moderate resolution (15/cm) of the VAS/TOVS instruments, and spectrally averaged HIS radiances for individual pairs of VAS spectral channels. The results show that the best results are achieved from high resolution spectra; the RMS difference with the ground truth is 23 mb. The RMS differences between the infrared radiance determination and ground truth increase by 35 percent when the spectral resolution is degraded to the moderate spectral resolution of the VAS/TOVS instruments and by 52 to 183 percent, depending upon channel combinations, when only two spectral channels at VAS/TOVS spectral resolution are used.

  10. Classification of Hyperspectral or Trichromatic Measurements of Ocean Color Data into Spectral Classes

    PubMed Central

    Prasad, Dilip K.; Agarwal, Krishna

    2016-01-01

    We propose a method for classifying radiometric oceanic color data measured by hyperspectral satellite sensors into known spectral classes, irrespective of the downwelling irradiance of the particular day, i.e., the illumination conditions. The focus is not on retrieving the inherent optical properties but to classify the pixels according to the known spectral classes of the reflectances from the ocean. The method compensates for the unknown downwelling irradiance by white balancing the radiometric data at the ocean pixels using the radiometric data of bright pixels (typically from clouds). The white-balanced data is compared with the entries in a pre-calibrated lookup table in which each entry represents the spectral properties of one class. The proposed approach is tested on two datasets of in situ measurements and 26 different daylight illumination spectra for medium resolution imaging spectrometer (MERIS), moderate-resolution imaging spectroradiometer (MODIS), sea-viewing wide field-of-view sensor (SeaWiFS), coastal zone color scanner (CZCS), ocean and land colour instrument (OLCI), and visible infrared imaging radiometer suite (VIIRS) sensors. Results are also shown for CIMEL’s SeaPRISM sun photometer sensor used on-board field trips. Accuracy of more than 92% is observed on the validation dataset and more than 86% is observed on the other dataset for all satellite sensors. The potential of applying the algorithms to non-satellite and non-multi-spectral sensors mountable on airborne systems is demonstrated by showing classification results for two consumer cameras. Classification on actual MERIS data is also shown. Additional results comparing the spectra of remote sensing reflectance with level 2 MERIS data and chlorophyll concentration estimates of the data are included. PMID:27011185

  11. Self-Actualization and the Effective Social Studies Teacher.

    ERIC Educational Resources Information Center

    Farmer, Rodney B.

    1980-01-01

    Discusses a study undertaken to investigate the relationship between social studies teachers' degrees of self-actualization and their teacher effectiveness. Investigates validity of using Maslow's theory of self-actualization as a way of identifying the effective social studies teacher personality. (Author/DB)

  12. Self-Actualization Effects Of A Marathon Growth Group

    ERIC Educational Resources Information Center

    Jones, Dorothy S.; Medvene, Arnold M.

    1975-01-01

    This study examined the effects of a marathon group experience on university student's level of self-actualization two days and six weeks after the experience. Gains in self-actualization as a result of marathon group participation depended upon an individual's level of ego strength upon entering the group. (Author)

  13. Self-actualization: Its Use and Misuse in Teacher Education.

    ERIC Educational Resources Information Center

    Ivie, Stanley D.

    1982-01-01

    The writings of Abraham Maslow are analyzed to determine the meaning of the psychological term "self-actualization." After pointing out that self-actualization is a rare quality and that it has little to do with formal education, the author concludes that the concept has little practical relevance for teacher education. (PP)

  14. The Self-Actualization of Polk Community College Students.

    ERIC Educational Resources Information Center

    Pearsall, Howard E.; Thompson, Paul V., Jr.

    This article investigates the concept of self-actualization introduced by Abraham Maslow (1954). A summary of Maslow's Needs Hierarchy, along with a description of the characteristics of the self-actualized person, is presented. An analysis of humanistic education reveals it has much to offer as a means of promoting the principles of…

  15. 26 CFR 1.953-2 - Actual United States risks.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 26 Internal Revenue 10 2010-04-01 2010-04-01 false Actual United States risks. 1.953-2 Section 1... (CONTINUED) INCOME TAXES Controlled Foreign Corporations § 1.953-2 Actual United States risks. (a) In general. For purposes of paragraph (a) of § 1.953-1, the term “United States risks” means risks described...

  16. 26 CFR 1.953-2 - Actual United States risks.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 26 Internal Revenue 10 2011-04-01 2011-04-01 false Actual United States risks. 1.953-2 Section 1... (CONTINUED) INCOME TAXES (CONTINUED) Controlled Foreign Corporations § 1.953-2 Actual United States risks. (a) In general. For purposes of paragraph (a) of § 1.953-1, the term “United States risks” means...

  17. 26 CFR 1.953-2 - Actual United States risks.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 26 Internal Revenue 10 2014-04-01 2013-04-01 true Actual United States risks. 1.953-2 Section 1... (CONTINUED) INCOME TAXES (CONTINUED) Controlled Foreign Corporations § 1.953-2 Actual United States risks. (a) In general. For purposes of paragraph (a) of § 1.953-1, the term “United States risks” means...

  18. 26 CFR 1.953-2 - Actual United States risks.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 10 2013-04-01 2013-04-01 false Actual United States risks. 1.953-2 Section 1... (CONTINUED) INCOME TAXES (CONTINUED) Controlled Foreign Corporations § 1.953-2 Actual United States risks. (a) In general. For purposes of paragraph (a) of § 1.953-1, the term “United States risks” means...

  19. 26 CFR 1.953-2 - Actual United States risks.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 26 Internal Revenue 10 2012-04-01 2012-04-01 false Actual United States risks. 1.953-2 Section 1... (CONTINUED) INCOME TAXES (CONTINUED) Controlled Foreign Corporations § 1.953-2 Actual United States risks. (a) In general. For purposes of paragraph (a) of § 1.953-1, the term “United States risks” means...

  20. Facebook as a Library Tool: Perceived vs. Actual Use

    ERIC Educational Resources Information Center

    Jacobson, Terra B.

    2011-01-01

    As Facebook has come to dominate the social networking site arena, more libraries have created their own library pages on Facebook to create library awareness and to function as a marketing tool. This paper examines reported versus actual use of Facebook in libraries to identify discrepancies between intended goals and actual use. The results of a…

  1. School Guidance Counselors' Perceptions of Actual and Preferred Job Duties

    ERIC Educational Resources Information Center

    Edwards, John Dexter

    2010-01-01

    The purpose of this study was to provide process data for school counselors, administrators, and the public, regarding school counselors' actual roles within the guidance counselor preferred job duties and actual job duties. In addition, factors including National Certification or no National Certification, years of counseling experience, and…

  2. [Plant Spectral Discrimination Based on Phenological Features].

    PubMed

    Zhang, Lei; Zhao, Jian-long; Jia, Kun; Li, Xiao-song

    2015-10-01

    Spectral analysis plays a significant role onplant characteristic identification and mechanism recognition, there were many papers published on the aspects of absorption features in the spectra of chlorophyll and moisture, spectral analysis onvegetation red edge effect, spectra profile feature extraction, spectra profile conversion, vegetation leaf structure and chemical composition impacts on the spectra in past years. However, fewer researches issued on spectral changes caused by plant seasonal changes of life form, chlorophyll, leaf area index. This paper studied on spectral observation of 11 plants of various life form, plant leaf structure and its size, phenological characteristics, they include deciduous forest with broad vertical leaf, needle leaf evergreen forest, needle leaf deciduous forest, deciduous forest with broadflat leaf, high shrub with big leaf, high shrub with little leaf, deciduous forest with broad little leaf, short shrub, meadow, steppe and grass. Field spectral data were observed with SVC-HR768 (Spectra Vista company, USA), the band width covers 350-2 500 nm, spectral resolution reaches 1-4 nm. The features of NDVI, spectral maximum absorption depth in green band, and spectral maximum absorption depth in red band were measured after continuum removal processing, the mean, amplitude and gradient of these features on seasonal change profile were analyzed, meanwhile, separability research on plant spectral feature of growth period and maturation period were compared. The paper presents a calculation method of separability of vegetation spectra which consider feature spatial distances. This index is carried on analysis of the vegetation discrimination. The results show that: the spectral features during plant growth period are easier to distinguish than them during maturation period. With the same features comparison, plant separability of growth period is 3 points higher than it during maturation period. The overall separabilityof vegetation

  3. Universality in spectral statistics of open quantum graphs

    NASA Astrophysics Data System (ADS)

    Gutkin, B.; Osipov, V. Al.

    2015-06-01

    The quantum evolution maps of closed chaotic quantum graphs are unitary and known to have universal spectral correlations matching predictions of random matrix theory. In chaotic graphs with absorption the quantum maps become nonunitary. We show that their spectral statistics exhibit universality at the soft edges of the spectrum. The same spectral behavior is observed in many classical nonunitary ensembles of random matrices with rotationally invariant measures.

  4. Ultraviolet Spectral Diagnostics

    NASA Technical Reports Server (NTRS)

    Heap, Sally; Lindler, Don

    2009-01-01

    At redshifts, z>l, the rest-frame mid-UV is brought into view of large, ground-based telescopes. Here, we report on a study of the potential of the rest-frame UV spectrum for deriving the age since the last major episode of star formation in a galaxy. We base this investigation on wide-band (0.2-1.0 microns), low-resolution (R-1000) spectra of single stars in Hubble's Next Generation Spectral Library (NGSL). We find that a combination of mid-UV spectral indices and colors can indeed yield the age of a stellar population, but only if light from the stellar population is unreddened.

  5. Light-curve and spectral properties of ultrastripped core-collapse supernovae leading to binary neutron stars

    NASA Astrophysics Data System (ADS)

    Moriya, Takashi J.; Mazzali, Paolo A.; Tominaga, Nozomu; Hachinger, Stephan; Blinnikov, Sergei I.; Tauris, Thomas M.; Takahashi, Koh; Tanaka, Masaomi; Langer, Norbert; Podsiadlowski, Philipp

    2017-04-01

    We investigate light-curve and spectral properties of ultrastripped core-collapse supernovae. Ultrastripped supernovae are the explosions of heavily stripped massive stars that lost their envelopes via binary interactions with a compact companion star. They eject only ∼0.1 M⊙ and may be the main way to form double neutron-star systems that eventually merge emitting strong gravitational waves. We follow the evolution of an ultrastripped supernova progenitor until iron core collapse and perform explosive nucleosynthesis calculations. We then synthesize light curves and spectra of ultrastripped supernovae using the nucleosynthesis results and present their expected properties. Ultrastripped supernovae synthesize ∼0.01 M⊙ of radioactive 56Ni, and their typical peak luminosity is around 1042 erg s-1 or -16 mag. Their typical rise time is 5-10 d. Comparing synthesized and observed spectra, we find that SN 2005ek, some of the so-called calcium-rich gap transients, and SN 2010X may be related to ultrastripped supernovae. If these supernovae are actually ultrastripped supernovae, their event rate is expected to be about 1 per cent of core-collapse supernovae. Comparing the double neutron-star merger rate obtained by future gravitational-wave observations and the ultrastripped supernova rate obtained by optical transient surveys identified with our synthesized light-curve and spectral models, we will be able to judge whether ultrastripped supernovae are actually a major contributor to the binary neutron-star population and provide constraints on binary stellar evolution.

  6. Spectral Analysis of Radioxenon

    DTIC Science & Technology

    2008-09-01

    reasons for spectral fitting being a supplement to the standard energy spectrum ROI method. Fermi- Kurie plot Given the difficulty in fitting a beta...continuum, it is important to find an alternative method. A Fermi- Kurie plot (Krane 1988) is one method, which allows a beta spectrum to be plotted ...corrective function takes into account the initial and final spin and polarity states. A rb itr ar y un its Figure 6. Fermi- Kurie plot . T (MeV

  7. Spectral effects of dehydration on phyllosilicates

    NASA Technical Reports Server (NTRS)

    Bruckenthal, E. A.; Singer, R. B.

    1987-01-01

    Six phyllosilicates were progressively dehydrated under controlled conditions in an effort to study the spectral effects of their dehydration. The spectra obtained at each level of hydration provide information that may be used in future spectroscopic observations of the planets, as well as a data set which compliments the existing body of terrestrial soil knowledge.

  8. Spectral tailoring device

    DOEpatents

    Brager, H.R.; Schenter, R.E.; Carter, L.L.; Karnesky, R.A.

    1987-08-05

    A spectral tailoring device for altering the neutron energy spectra and flux of neutrons in a fast reactor thereby selectively to enhance or inhibit the transmutation rate of a target metrical to form a product isotope. Neutron moderators, neutron filters, neutron absorbers and neutron reflectors may be used as spectral tailoring devices. Depending on the intended use for the device, a member from each of these four classes of materials could be used singularly, or in combination, to provide a preferred neutron energy spectra and flux of the neutrons in the region of the target material. In one embodiment of the invention, an assembly is provided for enhancing the production of isotopes, such as cobalt 60 and gadolinium 153. In another embodiment of the invention, a spectral tailoring device is disposed adjacent a target material which comprises long lived or volatile fission products and the device is used to shift the neutron energy spectra and flux of neutrons in the region of the fission products to preferentially transmute them to produce a less volatile fission product inventory. 6 figs.

  9. Reconciling actual and perceived rates of predation by domestic cats.

    PubMed

    McDonald, Jennifer L; Maclean, Mairead; Evans, Matthew R; Hodgson, Dave J

    2015-07-01

    The predation of wildlife by domestic cats (Felis catus) is a complex problem: Cats are popular companion animals in modern society but are also acknowledged predators of birds, herpetofauna, invertebrates, and small mammals. A comprehensive understanding of this conservation issue demands an understanding of both the ecological consequence of owning a domestic cat and the attitudes of cat owners. Here, we determine whether cat owners are aware of the predatory behavior of their cats, using data collected from 86 cats in two UK villages. We examine whether the amount of prey their cat returns influences the attitudes of 45 cat owners toward the broader issue of domestic cat predation. We also contribute to the wider understanding of physiological, spatial, and behavioral drivers of prey returns among cats. We find an association between actual prey returns and owner predictions at the coarse scale of predatory/nonpredatory behavior, but no correlation between the observed and predicted prey-return rates among predatory cats. Cat owners generally disagreed with the statement that cats are harmful to wildlife, and disfavored all mitigation options apart from neutering. These attitudes were uncorrelated with the predatory behavior of their cats. Cat owners failed to perceive the magnitude of their cats' impacts on wildlife and were not influenced by ecological information. Management options for the mitigation of cat predation appear unlikely to work if they focus on "predation awareness" campaigns or restrictions of cat freedom.

  10. Reconciling actual and perceived rates of predation by domestic cats

    PubMed Central

    McDonald, Jennifer L; Maclean, Mairead; Evans, Matthew R; Hodgson, Dave J

    2015-01-01

    The predation of wildlife by domestic cats (Felis catus) is a complex problem: Cats are popular companion animals in modern society but are also acknowledged predators of birds, herpetofauna, invertebrates, and small mammals. A comprehensive understanding of this conservation issue demands an understanding of both the ecological consequence of owning a domestic cat and the attitudes of cat owners. Here, we determine whether cat owners are aware of the predatory behavior of their cats, using data collected from 86 cats in two UK villages. We examine whether the amount of prey their cat returns influences the attitudes of 45 cat owners toward the broader issue of domestic cat predation. We also contribute to the wider understanding of physiological, spatial, and behavioral drivers of prey returns among cats. We find an association between actual prey returns and owner predictions at the coarse scale of predatory/nonpredatory behavior, but no correlation between the observed and predicted prey-return rates among predatory cats. Cat owners generally disagreed with the statement that cats are harmful to wildlife, and disfavored all mitigation options apart from neutering. These attitudes were uncorrelated with the predatory behavior of their cats. Cat owners failed to perceive the magnitude of their cats’ impacts on wildlife and were not influenced by ecological information. Management options for the mitigation of cat predation appear unlikely to work if they focus on “predation awareness” campaigns or restrictions of cat freedom. PMID:26306163

  11. Remotely sensed actual evapotranspiration: implications for groundwater management in Botswana.

    NASA Astrophysics Data System (ADS)

    Timmermans, W. J.; Meijerink, A. M. J.

    In order to determine evapotranspiration losses from the groundwater of an aquifer in Botswana during the dry season, the multi-step Surface Energy Balance Algorithm for Land (SEBAL) was applied using sequential Landsat TM and NOAA-AVHRR data. During satellite overpasses, continuous data on surface temperatures and soil moisture were available from a meteorological tower and field observations for calibration and partial validation of the results. The SEBAL method yielded high actual evapotranspiration (E a) rates (1.5 - 3 mm/d), if relatively dense savannah vegetation was present, even when the water-table was over 30 m deep, as is the case in the upper part of the aquifer. No relationship between Ea and depth to water-table was found, except in the valleys, where riverine forests are fed by a system of discharging groundwater flow. The patterns on a vegetation map, based on a supervised classification using TM data, including thermal bands, showed similarity with the E a patterns. The spatial distributions of vegetation types and of E a have been interpreted as important uptake of water by deep roots; this is supported by increasing evidence from other parts of the world. Sap flo