Science.gov

Sample records for actual production conditions

  1. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The...

  2. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The...

  3. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The...

  4. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The...

  5. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The...

  6. Experimental study on the regenerator under actual operating conditions

    NASA Astrophysics Data System (ADS)

    Nam, Kwanwoo; Jeong, Sangkwon

    2002-05-01

    An experimental apparatus was prepared to investigate thermal and hydrodynamic characteristics of the regenerator under its actual operating conditions. The apparatus included a compressor to pressurize and depressurize regenerator with various operating frequencies. Cold end of the regenerator was maintained around 100 K by means of liquid nitrogen container and heat exchanger. Instantaneous gas temperature and mass flow rate were measured at both ends of the regenerator during the whole pressure cycle. Pulsating pressure and pressure drop across the regenerator were also measured. The operating frequency of the pressure cycle was varied between 3 and 60 Hz, which are typical operating frequencies of Gifford-McMahon, pulse tube, and Stirling cryocoolers. First, friction factor for the wire screen mesh was directly determined from room temperature experiments. When the operating frequency was less than 9 Hz, the oscillating flow friction factor was nearly same as the steady flow friction factor for Reynolds number up to 100. For 60 Hz operations, the ratio of oscillating flow friction factor to steady flow one was increased as hydraulic Reynolds number became high. When the Reynolds number was 100, this ratio was about 1.6. Second, ineffectiveness of the regenerator was obtained when the cold-end was maintained around 100 K and the warm-end at 300 K to simulate the actual operating condition of the regenerator in cryocooler. Effect of the operating frequency on ineffectiveness of regenerator was discussed at low frequency range.

  7. Establishing seasonal chronicles of actual evapotranspiration under sloping conditions

    NASA Astrophysics Data System (ADS)

    Zitouna Chebbi, R.; Prévot, L.; Jacob, F.; Voltz, M.

    2012-04-01

    Estimation of daily and seasonal actual evapotranspiration (ETa) is strongly needed for hydrological and agricultural purposes. Although the eddy covariance method is well suited for such estimation of land surface fluxes, this method suffers from limitations when establishing long time series. Missing data are often encountered, resulting from bad meteorological conditions, rejection by quality control tests, power failures… Numerous gap fill techniques have been proposed in the literature but there applicability in sloping conditions is not well known. In order to estimate ETa over long periods (agricultural cycle) on crops cultivated in sloping areas, a pluri-annual experiment was conducted in the Kamech catchment, located in North-eastern Tunisia. This Mediterranean site is characterized by a large heterogeneity in topography, soils and crops. Land surface fluxes were measured using eddy covariance systems. Measurements were collected on the two opposite sides of the Kamech V-shaped catchment, within small fields having slopes steeper than 5%. During three different years, four crops were studied: durum wheat, oat, fava bean and pasture. The topography of the catchment and the wind regime induced upslope and downslope flows over the study fields. In this study, we showed that gap filling of the turbulent fluxes (sensible and latent heat) can be obtained through linear regressions against net radiation. To account for the effect of the topography, linear regressions were calibrated by distinguishing upslope and downslope flows. This significantly improved the quality of the reconstructed data over 30 minute intervals. This gap filling technique also improved the energy balance closure at the daily time scale. As a result, seasonal chronicles of daily ETa throughout the growth cycle of the study crops in the Kamech watershed were established, thus providing useful information about the water use of annual crops in a semi-arid rainfed and hilly area.

  8. 7 CFR 400.51 - Availability of actual production history program.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 6 2010-01-01 2010-01-01 false Availability of actual production history program. 400.51 Section 400.51 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP... History § 400.51 Availability of actual production history program. An Actual Production History...

  9. 7 CFR 400.51 - Availability of actual production history program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Availability of actual production history program. 400.51 Section 400.51 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP... History § 400.51 Availability of actual production history program. An Actual Production History...

  10. 7 CFR 400.51 - Availability of actual production history program.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Availability of actual production history program. 400.51 Section 400.51 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP... History § 400.51 Availability of actual production history program. An Actual Production History...

  11. Teachers' Perceptions of Their Working Conditions: How Predictive of Planned and Actual Teacher Movement?

    ERIC Educational Resources Information Center

    Ladd, Helen F.

    2011-01-01

    This quantitative study examines the relationship between teachers' perceptions of their working conditions and their intended and actual departures from schools. Based on rich administrative data for North Carolina combined with a 2006 statewide survey administered to all teachers in the state, the study documents that working conditions are…

  12. Wind farm production cost: Optimum turbine size and farm capacity in the actual market

    SciTech Connect

    Laali, A.R.; Meyer, J.L.; Bellot, C.; Louche, A.

    1996-12-31

    Several studies are undertaken in R&D Division of EDF in collaboration with ERASME association in order to have a good knowledge of the wind energy production costs. These studies are performed in the framework of a wind energy monitoring project and concern the influence of a few parameters like wind farm capacity, turbine size and wind speed on production costs, through an analysis of the actual market trend. Some 50 manufacturers and 140 different kind of wind turbines are considered for this study. The minimum production cost is situated at 800/900 kW wind turbine rated power. This point will probably move to more important powers in the future. This study is valid only for average conditions and some special parameters like particular climate conditions or lack of infrastructure for a special site the could modify the results shown on the curves. The variety of wind turbines (rated power as a function of rotor diameter, height and specific rated power) in the actual market is analyzed. A brief analysis of the market trend is also performed. 7 refs., 7 figs.

  13. 7 CFR 400.51 - Availability of actual production history program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ....51 Section 400.51 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP... History § 400.51 Availability of actual production history program. An Actual Production History (APH... identified in this section in those areas where the Actuarial Table provides coverage. Except when...

  14. 7 CFR 400.51 - Availability of actual production history program.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ....51 Section 400.51 Agriculture Regulations of the Department of Agriculture (Continued) FEDERAL CROP... History § 400.51 Availability of actual production history program. An Actual Production History (APH... identified in this section in those areas where the Actuarial Table provides coverage. Except when...

  15. Rheological investigation of body cream and body lotion in actual application conditions

    NASA Astrophysics Data System (ADS)

    Kwak, Min-Sun; Ahn, Hye-Jin; Song, Ki-Won

    2015-08-01

    The objective of the present study is to systematically evaluate and compare the rheological behaviors of body cream and body lotion in actual usage situations. Using a strain-controlled rheometer, the steady shear flow properties of commercially available body cream and body lotion were measured over a wide range of shear rates, and the linear viscoelastic properties of these two materials in small amplitude oscillatory shear flow fields were measured over a broad range of angular frequencies. The temperature dependency of the linear viscoelastic behaviors was additionally investigated over a temperature range most relevant to usual human life. The main findings obtained from this study are summarized as follows: (1) Body cream and body lotion exhibit a finite magnitude of yield stress. This feature is directly related to the primary (initial) skin feel that consumers usually experience during actual usage. (2) Body cream and body lotion exhibit a pronounced shear-thinning behavior. This feature is closely connected with the spreadability when cosmetics are applied onto the human skin. (3) The linear viscoelastic behaviors of body cream and body lotion are dominated by an elastic nature. These solid-like properties become a criterion to assess the selfstorage stability of cosmetic products. (4) A modified form of the Cox-Merz rule provides a good ability to predict the relationship between steady shear flow and dynamic viscoelastic properties for body cream and body lotion. (5) The storage modulus and loss modulus of body cream show a qualitatively similar tendency to gradually decrease with an increase in temperature. In the case of body lotion, with an increase in temperature, the storage modulus is progressively decreased while the loss modulus is slightly increased and then decreased. This information gives us a criterion to judge how the characteristics of cosmetic products are changed by the usual human environments.

  16. Flow modeling of actual human nasal cavity for various breathing conditions

    NASA Astrophysics Data System (ADS)

    Mokhtar, Nur Hazwani; Yaakob, Muhammad Syauki; Osman, Kahar; Kadir, Mohammed Rafiq Abdul; Abdullah, Wan Kamil Wan; Haron, Juhara

    2012-06-01

    Flow in the human nasal cavity varies when the body is under various physical activities. However, in order to visualize the flow pattern, traditional in-vivo technique may disturb the flow patterns. In this study, computational method was used to model the flow in the nasal cavity under various breathing conditions. Image from CT-Scan was used to mimic the actual cavity geometry. The image was computationally constructed and EFD. Lab was used to predict the flow behavior. Steady incompressible flow was considered for all case studies. The result shows that, for all breathing conditions, vortices were observed in the turbinate region which confirms the turbinate functions as a filter before the flow reaches the olfactory area. Larger vortices were detected when the flow rates were higher. In the olfactory region, the flow velocities were shown to be dramatically dropped to the ideal odorant uptake velocity range for all cases studied. This study had successfully produced visual description of air flow pattern in the nasal cavity.

  17. Cesium adsorption/desorption behavior of clay minerals considering actual contamination conditions in Fukushima

    PubMed Central

    Mukai, Hiroki; Hirose, Atsushi; Motai, Satoko; Kikuchi, Ryosuke; Tanoi, Keitaro; Nakanishi, Tomoko M.; Yaita, Tsuyoshi; Kogure, Toshihiro

    2016-01-01

    Cesium adsorption/desorption experiments for various clay minerals, considering actual contamination conditions in Fukushima, were conducted using the 137Cs radioisotope and an autoradiography using imaging plates (IPs). A 50 μl solution containing 0.185 ~ 1.85 Bq of 137Cs (10−11 ~ 10−9 molL−1 of 137Cs) was dropped onto a substrate where various mineral particles were arranged. It was found that partially-vermiculitized biotite, which is termed “weathered biotite” (WB) in this study, from Fukushima sorbed 137Cs far more than the other clay minerals (fresh biotite, illite, smectite, kaolinite, halloysite, allophane, imogolite) on the same substrate. When WB was absent on the substrate, the amount of 137Cs sorbed to the other clay minerals was considerably increased, implying that selective sorption to WB caused depletion of radiocesium in the solution and less sorption to the coexisting minerals. Cs-sorption to WB continued for about one day, whereas that to ferruginous smectite was completed within one hour. The sorbed 137Cs in WB was hardly leached with hydrochloric acid at pH 1, particularly in samples with a longer sorption time. The presence/absence of WB sorbing radiocesium is a key factor affecting the dynamics and fate of radiocesium in Fukushima. PMID:26868138

  18. Cesium adsorption/desorption behavior of clay minerals considering actual contamination conditions in Fukushima

    NASA Astrophysics Data System (ADS)

    Mukai, Hiroki; Hirose, Atsushi; Motai, Satoko; Kikuchi, Ryosuke; Tanoi, Keitaro; Nakanishi, Tomoko M.; Yaita, Tsuyoshi; Kogure, Toshihiro

    2016-02-01

    Cesium adsorption/desorption experiments for various clay minerals, considering actual contamination conditions in Fukushima, were conducted using the 137Cs radioisotope and an autoradiography using imaging plates (IPs). A 50 μl solution containing 0.185 ~ 1.85 Bq of 137Cs (10-11 ~ 10-9 molL-1 of 137Cs) was dropped onto a substrate where various mineral particles were arranged. It was found that partially-vermiculitized biotite, which is termed “weathered biotite” (WB) in this study, from Fukushima sorbed 137Cs far more than the other clay minerals (fresh biotite, illite, smectite, kaolinite, halloysite, allophane, imogolite) on the same substrate. When WB was absent on the substrate, the amount of 137Cs sorbed to the other clay minerals was considerably increased, implying that selective sorption to WB caused depletion of radiocesium in the solution and less sorption to the coexisting minerals. Cs-sorption to WB continued for about one day, whereas that to ferruginous smectite was completed within one hour. The sorbed 137Cs in WB was hardly leached with hydrochloric acid at pH 1, particularly in samples with a longer sorption time. The presence/absence of WB sorbing radiocesium is a key factor affecting the dynamics and fate of radiocesium in Fukushima.

  19. Do we know the actual magnetopause position for typical solar wind conditions?

    NASA Astrophysics Data System (ADS)

    Samsonov, A. A.; Gordeev, E.; Tsyganenko, N. A.; Å afránková, J.; Němeček, Z.; Å imůnek, J.; Sibeck, D. G.; Tóth, G.; Merkin, V. G.; Raeder, J.

    2016-07-01

    We compare predicted magnetopause positions at the subsolar point and four reference points in the terminator plane obtained from several empirical and numerical MHD models. Empirical models using various sets of magnetopause crossings and making different assumptions about the magnetopause shape predict significantly different magnetopause positions (with a scatter >1 RE) even at the subsolar point. Axisymmetric magnetopause models cannot reproduce the cusp indentations or the changes related to the dipole tilt effect, and most of them predict the magnetopause closer to the Earth than nonaxisymmetric models for typical solar wind conditions and zero tilt angle. Predictions of two global nonaxisymmetric models do not match each other, and the models need additional verification. MHD models often predict the magnetopause closer to the Earth than the nonaxisymmetric empirical models, but the predictions of MHD simulations may need corrections for the ring current effect and decreases of the solar wind pressure that occur in the foreshock. Comparing MHD models in which the ring current magnetic field is taken into account with the empirical Lin et al. model, we find that the differences in the reference point positions predicted by these models are relatively small for Bz=0. Therefore, we assume that these predictions indicate the actual magnetopause position, but future investigations are still needed.

  20. Consumer choice: Linking consumer intentions to actual purchase of GM labeled food products.

    PubMed

    Sleenhoff, Susanne; Osseweijer, Patricia

    2013-01-01

    With a mandatory labeling scheme for GM food in Europe since 2004 measuring actual consumer choice in practice has become possible. Anticipating Europeans negative attitude toward GM food, the labeling was enforced to allow consumers to make an informed choice. We studied consumers actual purchase behavior of GM food products and compared this with their attitude and behavioral intention for buying GM food. We found that despite a majority of consumers voicing a negative attitude toward GM food over 50% of our European respondents stated that they did not actively avoid the purchase of GM food and 6% actually purchased one of the few available GM labeled food products in the period between September 2006 and October 2007. Our results imply that a voiced negative attitude of consumers in responses to questionnaires about their intentions is not a reliable guide for what they actually do in supermarkets. We conclude that the assumption of a negative attitude with regard to GM food is at least in part construed.

  1. Divergence of actual and reference evapotranspiration observations for irrigated sugarcane with windy tropical conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Standardized reference evapotranspiration (ET) and ecosystem-specific vegetation coefficients are frequently used to estimate actual ET. However, equations for calculating reference ET have not been well validated in more humid environments. We measured ET (ETEC) using Eddy Covariance (EC) towers a...

  2. Comparative analysis of operational forecasts versus actual weather conditions in airline flight planning, volume 2

    NASA Technical Reports Server (NTRS)

    Keitz, J. F.

    1982-01-01

    The impact of more timely and accurate weather data on airline flight planning with the emphasis on fuel savings is studied. This volume of the report discusses the results of Task 2 of the four major tasks included in the study. Task 2 compares various catagories of flight plans and flight tracking data produced by a simulation system developed for the Federal Aviation Administrations by SRI International. (Flight tracking data simulate actual flight tracks of all aircraft operating at a given time and provide for rerouting of flights as necessary to resolve traffic conflicts.) The comparisons of flight plans on the forecast to flight plans on the verifying analysis confirm Task 1 findings that wind speeds are generally underestimated. Comparisons involving flight tracking data indicate that actual fuel burn is always higher than planned, in either direction, and even when the same weather data set is used. Since the flight tracking model output results in more diversions than is known to be the case, it was concluded that there is an error in the flight tracking algorithm.

  3. Comparative analysis of operational forecasts versus actual weather conditions in airline flight planning: Summary report

    NASA Technical Reports Server (NTRS)

    Keitz, J. F.

    1982-01-01

    The impact of more timely and accurate weather data on airline flight planning with the emphasis on fuel savings is studied. This summary report discusses the results of each of the four major tasks of the study. Task 1 compared airline flight plans based on operational forecasts to plans based on the verifying analyses and found that average fuel savings of 1.2 to 2.5 percent are possible with improved forecasts. Task 2 consisted of similar comparisons but used a model developed for the FAA by SRI International that simulated the impact of ATc diversions on the flight plans. While parts of Task 2 confirm the Task I findings, inconsistency with other data and the known impact of ATC suggests that other Task 2 findings are the result of errors in the model. Task 3 compares segment weather data from operational flight plans with the weather actually observed by the aircraft and finds the average error could result in fuel burn penalties (or savings) of up to 3.6 percent for the average 8747 flight. In Task 4 an in-depth analysis of the weather forecast for the 33 days included in the study finds that significant errors exist on 15 days. Wind speeds in the area of maximum winds are underestimated by 20 to 50 kts., a finding confirmed in the other three tasks.

  4. Comparative analysis of operational forecasts versus actual weather conditions in airline flight planning, volume 3

    NASA Technical Reports Server (NTRS)

    Keitz, J. F.

    1982-01-01

    The impact of more timely and accurate weather data on airline flight planning with the emphasis on fuel savings is studied. This volume of the report discusses the results of Task 3 of the four major tasks included in the study. Task 3 compares flight plans developed on the Suitland forecast with actual data observed by the aircraft (and averaged over 10 degree segments). The results show that the average difference between the forecast and observed wind speed is 9 kts. without considering direction, and the average difference in the component of the forecast wind parallel to the direction of the observed wind is 13 kts. - both indicating that the Suitland forecast underestimates the wind speeds. The Root Mean Square (RMS) vector error is 30.1 kts. The average absolute difference in direction between the forecast and observed wind is 26 degrees and the temperature difference is 3 degree Centigrade. These results indicate that the forecast model as well as the verifying analysis used to develop comparison flight plans in Tasks 1 and 2 is a limiting factor and that the average potential fuel savings or penalty are up to 3.6 percent depending on the direction of flight.

  5. Impact of age and cognitive demand on lane choice and changing under actual highway conditions.

    PubMed

    Reimer, Bryan; Donmez, Birsen; Lavallière, Martin; Mehler, Bruce; Coughlin, Joseph F; Teasdale, Normand

    2013-03-01

    Previous research suggests that drivers change lanes less frequently during periods of heightened cognitive load. However, lane changing behavior of different age groups under varying levels of cognitive demand is not well understood. The majority of studies which have evaluated lane changing behavior under cognitive workload have been conducted in driving simulators. Consequently, it is unclear if the patterns observed in these simulation studies carry over to actual driving. This paper evaluates data from an on-road study to determine the effects of age and cognitive demand on lane choice and lane changing behavior. Three age groups (20-29, 40-49, and 60-69) were monitored in an instrumented vehicle. The 40's age group had 147% higher odds of exhibiting a lane change than the 60's group. In addition, drivers in their 60's were less likely to drive on the leftmost lane compared to drivers in their 20's and 40's. These results could be interpreted as evidence that older adults adopt a more conservative driving style as reflected in being less likely to choose the leftmost lane than the younger groups and less likely to change lanes than drivers in their 40's. Regardless of demand level, cognitive workload reduced the frequency of lane changes for all age groups. This suggests that in general drivers of all ages attempt to regulate their behavior in a risk reducing direction when under added cognitive demand. The extent to which such self-regulation fully compensates for the impact of added cognitive demand remains an open question.

  6. Experimental investigation of panel radiator heat output enhancement for efficient thermal use under actual operating conditions

    NASA Astrophysics Data System (ADS)

    Calisir, Tamer; Baskaya, Senol; Onur Yazar, Hakan; Yucedag, Sinan

    2015-05-01

    In this study the heat output of a panel-convector-convector-panel radiator (PCCP) under controlled laboratory conditions under Turkish household and especially Ankara conditions was investigated experimentally. In this sense, investigations were performed for different heating water mass flow rates, water inlet temperatures and radiator inlet and outlet connection positions, which are most commonly used in Turkey. An experimental setup was built for this purpose in a test room where temperature was controlled and held constant during the experiments. Inlet and outlet water temperatures and mass flow rates were measured and heat output of the radiator was calculated. Infrared thermal camera visualizations of the steel panel radiator front surface were also performed.

  7. Actual measurement, hygrothermal response experiment and growth prediction analysis of microbial contamination of central air conditioning system in Dalian, China

    PubMed Central

    Lv, Yang; Hu, Guangyao; Wang, Chunyang; Yuan, Wenjie; Wei, Shanshan; Gao, Jiaoqi; Wang, Boyuan; Song, Fangchao

    2017-01-01

    The microbial contamination of central air conditioning system is one of the important factors that affect the indoor air quality. Actual measurement and analysis were carried out on microbial contamination in central air conditioning system at a venue in Dalian, China. Illumina miseq method was used and three fungal samples of two units were analysed by high throughput sequencing. Results showed that the predominant fungus in air conditioning unit A and B were Candida spp. and Cladosporium spp., and two fungus were further used in the hygrothermal response experiment. Based on the data of Cladosporium in hygrothermal response experiment, this paper used the logistic equation and the Gompertz equation to fit the growth predictive model of Cladosporium genera in different temperature and relative humidity conditions, and the square root model was fitted based on the two environmental factors. In addition, the models were carried on the analysis to verify the accuracy and feasibility of the established model equation. PMID:28367963

  8. The effect of actual and imaginary handgrip on postural stability during different balance conditions.

    PubMed

    VanderHill, M S; Wolf, E E; Langenderfer, J E; Ustinova, K I

    2014-09-01

    The stabilizing effect of holding an object on upright posture has been demonstrated in a variety of settings. The mechanism of this effect is unknown but could be attributed to either additional sensorimotor activity triggered by a hand contact or cognitive efforts related to performance of a supra-postural task. A potential mechanism was investigated by comparing postural stability in young healthy individuals while gripping a custom instrumented wooden stick with a 5N force and while imagining holding the same stick in the hand. Twenty subjects were tested during three standing balance conditions: on a stationary surface, on a freely moving rockerboard, and with an unexpected perturbation of 10° forward rockerboard tipping. Postural stability was evaluated as velocity of the center of mass (COM) and center of pressure (COP) compared across all experimental conditions. COM and COP velocities were equally reduced when subjects gripped the stick and imagined gripping while standing stationary and on the rockerboard. When perturbed, subjects failed to show any postural stability improvements regardless of handgrip task. Results indicate a stabilizing effect of focusing attention on motor task performance. This cognitive strategy does not appear to contribute any additional stabilization when subjects are perturbed. This study adds to the current understanding of postural stabilization strategies.

  9. 7 CFR 400.55 - Qualification for actual production history coverage program.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... whenever crop rotation requirements and land leasing practices limit the yield history available. FCIC will...) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE GENERAL ADMINISTRATIVE REGULATIONS Actual... subsequent crop year. The database may contain a maximum of the 10 most recent crop years and may...

  10. 7 CFR 400.55 - Qualification for actual production history coverage program.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... whenever crop rotation requirements and land leasing practices limit the yield history available. FCIC will...) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE GENERAL ADMINISTRATIVE REGULATIONS Actual... subsequent crop year. The database may contain a maximum of the 10 most recent crop years and may...

  11. 7 CFR 400.55 - Qualification for actual production history coverage program.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... whenever crop rotation requirements and land leasing practices limit the yield history available. FCIC will...) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE GENERAL ADMINISTRATIVE REGULATIONS Actual... subsequent crop year. The database may contain a maximum of the 10 most recent crop years and may...

  12. 7 CFR 400.55 - Qualification for actual production history coverage program.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... whenever crop rotation requirements and land leasing practices limit the yield history available. FCIC will...) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE GENERAL ADMINISTRATIVE REGULATIONS Actual... subsequent crop year. The database may contain a maximum of the 10 most recent crop years and may...

  13. 7 CFR 400.55 - Qualification for actual production history coverage program.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... whenever crop rotation requirements and land leasing practices limit the yield history available. FCIC will...) FEDERAL CROP INSURANCE CORPORATION, DEPARTMENT OF AGRICULTURE GENERAL ADMINISTRATIVE REGULATIONS Actual... subsequent crop year. The database may contain a maximum of the 10 most recent crop years and may...

  14. A matter of time: actual time and the production of the past.

    PubMed

    Scarfone, Dominique

    2006-07-01

    In psychoanalytic theory, space metaphors are frequently used to describe the psychic apparatus. As for time, it is traditionally invoked under the heading of timelessness of the unconscious, more aptly described as the resistance of the repressed to wearing away with time. This paper examines how the insertion of time into psychic events and structural differentiation form a single process. After looking into the parallelism between phenomenological and psychoanalytic views of time and differentiation, the author draws a distinction between two time categories: chronological versus actual. A clinical example is presented.

  15. Actual identity of six micrococcal strains selected as potential starter for dry fermented sausages production.

    PubMed

    Selgas, M D; Sanz, B; Ordóñez, J A

    1989-06-01

    The DNA guanine + cytosine contents of six strains previously selected as potential starters for their use for the dry fermented sausages production have been determined. Five strains were characterized as Micrococcus spp. and the remainder as incertae sedis.

  16. Actual Condition of Paddy Field Levee Maintenance by Various Farm Households including Large-scale Farming in the Developed Land Renting Area

    NASA Astrophysics Data System (ADS)

    Sakata, Yasuyo

    The survey of interview, resource acquisition, photographic operation, and questionnaire were carried out in the “n” Community in the “y” District in Hakusan City in Ishikawa Prefecture to investigate the actual condition of paddy field levee maintenance in the area where land-renting market was proceeding, large-scale farming was dominant, and the problems of geographically scattered farm-land existed. In the study zone, 1) an agricultural production legal person rent-cultivated some of the paddy fields and maintained the levees, 2) another agricultural production legal person rent-cultivated some of the soy bean fields for crop changeover and land owners maintained the levees. The results indicated that sufficient maintenance was executed on the levees of the paddy fields cultivated by the agricultural production legal person, the soy bean fields for crop changeover, and the paddy fields cultivated by the land owners. Each reason is considered to be the managerial strategy, the economic incentive, the mutual monitoring and cross-regulatory mechanism, etc.

  17. [THE ACTUAL APPROACHES TO PROBLEM OF IMPORT SUBSTITUTION IN TH FIELD OF PRODUCTION GROWTH MEDIUM].

    PubMed

    Shepelin, A P; Domotenko, L V; Diatlov, I A; Mironov, A Yu; Aleshkin, V A

    2015-06-01

    The import substitution becomes one of strategic tasks of Russian economy as a result of imposition of economic sanctions on part of the USA, EU countries, Japan and number of other states. The development of structure and technology of production of national import substituted growth mediums permits satisfying needs of laboratory service of Russia inactive storage and to secure appropriate response to occurring challenges and new biological menaces and support bio-security of state at proper level. The presented data concerning substantiation of nomenclature of growth mediums and transport system permit satisfying in fullness the needs of clinical and sanitary microbiology in growth mediums of national production and to give up of import deliveries without decreasing of quality of microbiological studies.

  18. Added value products for imaging remote sensing by processing actual GNSS reflectometry delay doppler maps

    NASA Astrophysics Data System (ADS)

    Schiavulli, Domenico; Frappart, Frédéric; Ramilien, Guillaume; Darrozes, José; Nunziata, Ferdinando; Migliaccio, Maurizio

    2016-04-01

    Global Navigation Satellite System Reflectometry (GNSS-R) is an innovative and promising tool for remote sensing. It is based on the exploitation of GNSS signals reflected off Earth's surface as signals of opportunity to infer geophysical information of the reflecting surface. The main advantages of GNSS-R with respect dedicated sensors are: the unprecedented spatial-temporal coverage due to the availability of a great amount of transmitting satellite, e.g. GPS, Galileo, Glonass, etc…, long term GNSS mission life and cost effectiveness. In fact only a simple receiver is needed. In the last years several works demonstrated the meaningful of this technique in several Earth Observation applications. All these applications presented results obtained by using a receiver mounted on an aircraft or on a fixed platform. Moreover, space borne missions have been launched or are planned: UK-DMC, TechDemoSat-1 (TDS-1), NASA CYGNSS, Geros ISS. Practically, GNSS-R can be seen as a bistatic radar system where the GNSS satellites continuously transmit the L-band all-weather night-and-day signals that are reflected off a surface, called Glistening Zone (GZ), and a receiver measures the scattered microwave signals in terms of Delay-Doppler maps (DDMs) or delay waveforms. These two products have been widely studied in the literature to extract compact parameters for different remote sensing applications. However, products measured in the Delay Doppler (DD) domain are not able to provide any spatial information of the scattering scene. This could represent a drawback for applications related to imaging remote sensing, e.g. target detection, sea/land and sea/ice transition, oil spill detection, etc…. To overcome these limitations some deconvolution techniques have been proposed in the state of the art aiming at the reconstruction of a radar image of the observed scene by processing the measured DDMs. These techniques have been tested on DDMs related to simulated marine scenario

  19. [The Red Cross System for War Relief during the Second World War and Actual Conditions of Its Efforts in Burma].

    PubMed

    Kawahara, Yukari

    2015-12-01

    This paper aims to show the system for relief provided by the Japanese Red Cross relief units during the Second World War, as well as the actual activities of sixteen of its relief units dispatched to Burma. The Red Cross wartime relief efforts involved using personnel and funding prepared beforehand to provide aid to those injured in war, regardless of their status as ally or enemy. Thus they were able to receive support from the army in order to ensure safety and provide supplies. Nurses dispatched to Burma took care of many patients who suffered from malnutrition and physical injuries amidst the outbreak of infectious diseases typical of tropical areas, without sufficient replacement members. Base hospitals not meant for the front lines also came under attack, and the nurses' lives were thus in mortal danger. Of the 374 original members, 29 died or went missing in action.

  20. The framing effect with rectangular and trapezoidal surfaces: actual and pictorial surface slant, frame orientation, and viewing condition.

    PubMed

    Reinhardt-Rutland, A H

    1999-01-01

    The perceived slant of a surface relative to the frontal plane can be reduced when the surface is viewed through a frame between the observer and the surface. Aspects of this framing effect were investigated in three experiments in which observers judged the orientations-in-depth of rectangular and trapezoidal surfaces which were matched for pictorial depth. In experiments 1 and 2, viewing was stationary-monocular. In experiment 1, a frontal rectangular frame was present or absent during viewing. The perceived slants of the surfaces were reduced in the presence of the frame; the reduction for the trapezoidal surface was greater, suggesting that conflict in stimulus information contributes to the phenomenon. In experiment 2, the rectangular frame was either frontal or slanted; in a third condition, a frame was trapezoidal and frontal. The conditions all elicited similar results, suggesting that the framing effect is not explained by pictorial perception of the display, or by assimilation of the surface orientation to the frame orientation. In experiment 3, viewing was moving-monocular to introduce motion parallax; the framing effect was reduced, being appreciable only for a trapezoidal surface. The results are related to other phenomena in which depth perception of points in space tends towards a frontal plane; this frontal-plane tendency is attributed to heavy experimental demands, mainly concerning impoverished, conflicting, and distracting information.

  1. Preferred 11 different job rotation types in automotive company and their effects on productivity, quality and musculoskeletal disorders: comparison between subjective and actual scores by workers' age.

    PubMed

    Jeon, In Sik; Jeong, Byung Yong; Jeong, Ji Hyun

    2016-10-01

    This study investigates workers' favoured rotation types by their age and compares means between subjective and actual scores on productivity, quality and musculoskeletal disorders (MSDs). The subjects of research were 422 assembly line units in Hyundai Motor Company. The survey of 422 units focused on the workers' preference for 11 different rotation types and subjective scores for each type's perceived benefits, both by the workers' age. Then, actual scores on production-related indices were traced over a five-year period. The results suggest that different rotation types lead to different results in productivity, product quality and MSDs. Workers tend to perceive job rotation as a helpful method to enhance satisfaction, productivity and product quality more so than the actual production data suggests. Job rotation was especially effective in preventing MSDs for workers aged under 45, while its effects were not clear for the workers aged 45 years or older. Practitioner's Summary: This research presents appropriate rotation type for different age groups. Taking workers' age into account, administrators can use the paper's outcomes to select and implement the suitable rotation type to attain specific goals such as enhancing productivity, improving product quality or reducing MSDs.

  2. Optimization of fermentation conditions for alcohol production

    SciTech Connect

    Bowman, L.; Geiger, E.

    1984-12-01

    The quantitative effects of carbohydrate levels, degree of initial saccharification, glucoamylase dosage, temperature, and fermentation time were investigated using a Box-Wilson central composite design protocol. With Saccharomyces cerevisiae ATCC 4126, it was found that the use of a partially saccharified starch substrate markedly increased yields and attainable alcohol levels. Balancing the degree of initial saccharification with the level of glucoamylase used to complete hydrolysis was found necessary to obtain optimum yields. The temperature optimum was found to be 36 degrees C. The regression equations obtained were used to model the fermentation in order to determine optimum fermentation conditions. 11 references.

  3. Sustainable power generation in continuous flow microbial fuel cell treating actual wastewater: influence of biocatalyst type on electricity production.

    PubMed

    Ismail, Zainab Z; Jaeel, Ali Jwied

    2013-01-01

    Microbial fuel cells (MFCs) have the potential to simultaneously treat wastewater for reuse and to generate electricity. This study mainly considers the performance of an upflow dual-chambered MFC continuously fueled with actual domestic wastewater and alternatively biocatalyzed with aerobic activated sludge and strain of Bacillus Subtilis. The behavior of MFCs during initial biofilm growth and characterization of anodic biofilm were studied. After 45 days of continuous operation, the biofilms on the anodic electrode were well developed. The performance of MFCs was mainly evaluated in terms of COD reductions and electrical power output. Results revealed that the COD removal efficiency was 84% and 90% and the stabilized power outputs were clearly observed achieving a maximum value of 120 and 270 mW/m(2) obtained for MFCs inoculated with mixed cultures and Bacillus Subtilis strain, respectively.

  4. Sustainable Power Generation in Continuous Flow Microbial Fuel Cell Treating Actual Wastewater: Influence of Biocatalyst Type on Electricity Production

    PubMed Central

    Ismail, Zainab Z.; Jaeel, Ali Jwied

    2013-01-01

    Microbial fuel cells (MFCs) have the potential to simultaneously treat wastewater for reuse and to generate electricity. This study mainly considers the performance of an upflow dual-chambered MFC continuously fueled with actual domestic wastewater and alternatively biocatalyzed with aerobic activated sludge and strain of Bacillus Subtilis. The behavior of MFCs during initial biofilm growth and characterization of anodic biofilm were studied. After 45 days of continuous operation, the biofilms on the anodic electrode were well developed. The performance of MFCs was mainly evaluated in terms of COD reductions and electrical power output. Results revealed that the COD removal efficiency was 84% and 90% and the stabilized power outputs were clearly observed achieving a maximum value of 120 and 270 mW/m2 obtained for MFCs inoculated with mixed cultures and Bacillus Subtilis strain, respectively. PMID:24453893

  5. Effects of cultural conditions on protease production by Aeromonas hydrophila.

    PubMed Central

    O'Reilly, T; Day, D F

    1983-01-01

    Production of extracellular proteolytic activity by Aeromonas hydrophila was influenced by temperature, pH, and aeration. Conditions which produced maximal growth also resulted in maximal protease production. Enzyme production appeared to be modulated by an inducer catabolite repression system whereby NH4+ and glucose repressed enzyme production and complex nitrogen and nonglucose, carbon energy sources promoted it. Under nutritional stress, protease production was high, despite poor growth. PMID:6342534

  6. Market Conditions, Productivity, and Promotion among University Faculty.

    ERIC Educational Resources Information Center

    Perrucci, Robert; And Others

    1983-01-01

    A study of buyer's, seller's, and stable markets' effects on 371 faculty showed those promoted in a buyer's market have slower promotions and are more productive than those promoted in other market conditions. The impact of tight market conditions on productivity was also found greatest for ranks under full professor. (MSE)

  7. Human Impacts to Coastal Ecosystems in Puerto Rico (HICE-PR): Actual Condition of Coral Reefs Associated with the Guanica and Manati Watersheds in Puerto Rico

    NASA Astrophysics Data System (ADS)

    Torres-Perez, J. L.; Barreto, M.; Guild, L. S.; Ortiz, J.; Setegn, S. G.; Ramos-Scharron, C. E.; Armstrong, R.; Santiago, L.

    2015-12-01

    For several decades Puerto Rico's coastal and marine ecosystems (CMEs), particularly coral reefs, have suffered the effects of anthropogenic stresses associated to population growth and varying land use. Here we present an overview of the first year of findings of a NASA-funded project that studies human impacts in two priority watersheds (Manatí and Guánica). The project includes remote sensing analysis and hydrological, ecological and socio-economic modeling to provide a multi-decadal assessment of change of CMEs. The project's main goal is to evaluate the impacts of land use/land cover changes on the quality and extent of CMEs in priority watersheds in the north and south coasts of Puerto Rico. This project will include imagery from Landsat 8 to assess coastal ecosystems extent. Habitat and species distribution maps will be created by incorporating field and remotely-sensed data into an Ecological Niche Factor Analysis. The social component will allow us to study the valuation of specific CMEs attributes from the stakeholder's point of view. Field data was collected through a series of phototransects at the main reefs associated with these two priority watersheds. A preliminary assessment shows a range in coral cover from 0.2-30% depending on the site (Guánica) whereas apparently healthy corals dominate the reef in the north coast (Manatí). Reefs on the southwest coast of PR (Guánica) show an apparent shift from hard corals to a more algae and soft corals dominance after decades of anthropogenic impacts (sedimentation, eutrophication, mechanical damage through poorly supervised recreational activities, etc.). Additionally preliminary results from land cover/land use changes analyses show dynamic historical shoreline changes in beaches located west of the Manatí river mouth and a degradation of water quality in Guánica possibly being one of the main factors affecting the actual condition of its CMEs.

  8. The first actual record of deep open-ocean conditions in the Ediacaran: Fe speciation in pelagic deep-sea sediments in accretionary complexes in Wales, UK

    NASA Astrophysics Data System (ADS)

    Sato, T.; Asanuma, H.; Okada, Y.; Maruyama, S.; Shozugawa, K.; Matsuo, M.; Windley, B. F.

    2014-12-01

    The first oxidation of a deep ocean in Earth history is considered to have occurred in the Neoproterozoic, coincident with the metazoan diversification; however, the Neoproterozoic geological record has so far been limited to only continental shelves, slopes, or basins at the deepest. Here, we document Neoproterozoic pelagic deep-sea sediments in reconstructed oceanic plate stratigraphy (OPS) in accretionary complexes (ACs) in Anglesey and Lleyn, Wales, UK. The OPS mostly consists of mid-ocean ridge basalts, pelagic red-bedded cherts, hemipelagic siliceous mudstones and turbidite sandstones, in ascending order. Only at Porth Felen in Lleyn Peninsula does the OPS contain black mudstones (ca. 10 m-thick) instead of pelagic red-bedded cherts. Based on the tectonic reconstruction of these ACs, the OPS at Porth Felen has the oldest depositional age. Our new U-Pb date of detrital zircons separated from the turbidite sandstones at Porth Felen has the youngest age of 580±13 Ma. These results suggest that the black mudstones at Porth Felen were deposited no later than the early Ediacaran. We have analyzed these black mudstones by 57Fe Mössbauer spectroscopy, and found that about a quarter of their iron content is contained in pyrite, while the other components are paramagnetic Fe2+ or occasionally paramagnetic Fe3+ in clay minerals. The red cherts in the younger OPS contain hematite as the main iron mineral, paramagnetic Fe3+, and paramagnetic Fe2+. The occurrence of hematite in a deep-sea chert essentially indicates a primary oxidizing depositional condition, whereas pyrite is indicative of a reducing environment. The present data confirm that a reducing deep-sea existed in the early Ediacaran during the black mudstone deposition, and that an oxidizing deep-sea had been established by the late Ediacaran. In conclusion, our results provide the first direct evidence of an actual deep open-ocean in the Ediacaran to clarify the timing and extent of the Neoproterozoic

  9. Heating, Ventilation, and Air Conditioning Design Strategy for a Hot-Humid Production Builder

    SciTech Connect

    Kerrigan, P.

    2014-03-01

    Building Science Corporation (BSC) worked directly with the David Weekley Homes - Houston division to develop a cost-effective design for moving the HVAC system into conditioned space. In addition, BSC conducted energy analysis to calculate the most economical strategy for increasing the energy performance of future production houses in preparation for the upcoming code changes in 2015. This research project addressed the following questions: 1. What is the most cost effective, best performing and most easily replicable method of locating ducts inside conditioned space for a hot-humid production home builder that constructs one and two story single family detached residences? 2. What is a cost effective and practical method of achieving 50% source energy savings vs. the 2006 International Energy Conservation Code for a hot-humid production builder? 3. How accurate are the pre-construction whole house cost estimates compared to confirmed post construction actual cost?

  10. Modifying Yeast Tolerance to Inhibitory Conditions of Ethanol Production Processes

    PubMed Central

    Caspeta, Luis; Castillo, Tania; Nielsen, Jens

    2015-01-01

    Saccharomyces cerevisiae strains having a broad range of substrate utilization, rapid substrate consumption, and conversion to ethanol, as well as good tolerance to inhibitory conditions are ideal for cost-competitive ethanol production from lignocellulose. A major drawback to directly design S. cerevisiae tolerance to inhibitory conditions of lignocellulosic ethanol production processes is the lack of knowledge about basic aspects of its cellular signaling network in response to stress. Here, we highlight the inhibitory conditions found in ethanol production processes, the targeted cellular functions, the key contributions of integrated -omics analysis to reveal cellular stress responses according to these inhibitors, and current status on design-based engineering of tolerant and efficient S. cerevisiae strains for ethanol production from lignocellulose. PMID:26618154

  11. Heating, Ventilation, and Air Conditioning Design Strategy for a Hot-Humid Production Builder

    SciTech Connect

    Kerrigan, P.

    2014-03-01

    BSC worked directly with the David Weekley Homes - Houston division to redesign three floor plans in order to locate the HVAC system in conditioned space. The purpose of this project is to develop a cost effective design for moving the HVAC system into conditioned space. In addition, BSC conducted energy analysis to calculate the most economical strategy for increasing the energy performance of future production houses. This is in preparation for the upcoming code changes in 2015. The builder wishes to develop an upgrade package that will allow for a seamless transition to the new code mandate. The following research questions were addressed by this research project: 1. What is the most cost effective, best performing and most easily replicable method of locating ducts inside conditioned space for a hot-humid production home builder that constructs one and two story single family detached residences? 2. What is a cost effective and practical method of achieving 50% source energy savings vs. the 2006 International Energy Conservation Code for a hot-humid production builder? 3. How accurate are the pre-construction whole house cost estimates compared to confirmed post construction actual cost? BSC and the builder developed a duct design strategy that employs a system of dropped ceilings and attic coffers for moving the ductwork from the vented attic to conditioned space. The furnace has been moved to either a mechanical closet in the conditioned living space or a coffered space in the attic.

  12. Electroweak matching conditions for top pair production at threshold

    SciTech Connect

    Hoang, Andre H.; Reisser, Christoph J.

    2006-08-01

    We determine the real parts of electroweak matching conditions relevant for top quark pair production close to threshold in e{sup +}e{sup -} annihilation at next-to-next-to-leading logarithmic (NNLL) order. Numerically the corrections are comparable to the NNLL QCD corrections.

  13. Rubisco activase and wheat productivity under heat stress conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Rubisco activase (RCA) constrains the photosynthetic potential of plants at high temperature (heat stress). We hypothesized that endogenous levels of RCA could serve as an important determinant of plant productivity under heat stress conditions. In this study, we investigated the possible relation...

  14. Butyrate production under aerobic growth conditions by engineered Escherichia coli.

    PubMed

    Kataoka, Naoya; Vangnai, Alisa S; Pongtharangkul, Thunyarat; Yakushi, Toshiharu; Matsushita, Kazunobu

    2017-01-11

    Butyrate is an important industrial platform chemical. Although several groups have reported butyrate production under oxygen-limited conditions by a native producer, Clostridium tyrobutylicum, and by a metabolically engineered Escherichia coli, efforts to produce butyrate under aerobic growth conditions have met limited success. Here, we constructed a novel butyrate synthetic pathway that functions under aerobic growth conditions in E. coli, by modifying the 1-butanol synthetic pathway reported previously. The pathway consists of phaA (acetyltransferase) and phaB (NADPH-dependent acetoacetyl-CoA reductase) from Ralstonia eutropha, phaJ ((R)-specific enoyl-CoA hydratase) from Aeromonas caviae, ter (trans-enoyl-CoA reductase) from Treponema denticola, and endogenous thioesterase(s) of E. coli. To evaluate the potential of this pathway for butyrate production, culture conditions, including pH, oxygen supply, and concentration of inorganic nitrogen sources, were optimized in a mini-jar fermentor. Under the optimal conditions, butyrate was produced at a concentration of up to 140 mM (12.3 g/L in terms of butyric acid) after 54 h of fed-batch culture.

  15. Comparison of simulants to actual neutralized current acid waste: process and product testing of three NCAW core samples from Tanks 101-AZ and 102-AZ

    SciTech Connect

    Morrey, E.V.; Tingey, J.M.; Elliott, M.L.

    1996-10-01

    A vitrification plant is planned to process the high-level waste (HLW) solids from Hanford Site tanks into canistered glass logs for disposal in a national repository. Programs were established within the Pacific Northwest Laboratory Vitrification Technology Development (PVTD) Project to test and model simulated waste to support design, feed processability, operations, permitting, safety, and waste-form qualification. Parallel testing with actual radioactive waste was performed on a laboratory-scale to confirm the validity of using simulants and glass property models developed from simulants. Laboratory-scale testing has been completed on three radioactive core samples from tanks 101-AZ and 102-AZ containing neutralized current acid waste (NCAW), which is one of the first waste types to be processed in the high-level waste vitrification plant under a privatization scenario. Properties of the radioactive waste measured during process and product testing were compared to simulant properties and model predictions to confirm the validity of simulant and glass property ,models work. This report includes results from the three NCAW core samples, comparable results from slurry and glass simulants, and comparisons to glass property model predictions.

  16. Comparison of simulants to actual neutralized current acid waste: Process and product testing of three NCAW core samples from Tanks 101-AZ and 102-AZ

    SciTech Connect

    Morrey, E.V.; Tingey, J.M.

    1996-04-01

    A vitrification plant is planned to process the high-level waste (HLW) solids from Hanford Site tanks into canistered glass logs for disposal in a national repository. Programs have been established within the Pacific Northwest Laboratory Vitrification Technology Development (PVTD) Project to test and model simulated waste to support design, feed processability, operations, permitting, safety, and waste-form qualification. Parallel testing with actual radioactive waste is being performed on a laboratory-scale to confirm the validity of using simulants and glass property models developed from simulants. Laboratory-scale testing has been completed on three radioactive core samples from tanks 101-AZ and 102-AZ containing neutralized current acid waste (NCAW), which is one of the first waste types to be processed in the high-level waste vitrification plant under a privatization scenario. Properties of the radioactive waste measured during process and product testing were compared to simulant properties and model predictions to confirm the validity of simulant and glass property models work. This report includes results from the three NCAW core samples, comparable results from slurry and glass simulants, and comparisons to glass property model predictions.

  17. Carotenoid Production by Halophilic Archaea Under Different Culture Conditions.

    PubMed

    Calegari-Santos, Rossana; Diogo, Ricardo Alexandre; Fontana, José Domingos; Bonfim, Tania Maria Bordin

    2016-05-01

    Carotenoids are pigments that may be used as colorants and antioxidants in food, pharmaceutical, and cosmetic industries. Since they also benefit human health, great efforts have been undertaken to search for natural sources of carotenoids, including microbial ones. The optimization of culture conditions to increase carotenoid yield is one of the strategies used to minimize the high cost of carotenoid production by microorganisms. Halophilic archaea are capable of producing carotenoids according to culture conditions. Their main carotenoid is bacterioruberin with 50 carbon atoms. In fact, the carotenoid has important biological functions since it acts as cell membrane reinforcement and it protects the microorganism against DNA damaging agents. Moreover, carotenoid extracts from halophilic archaea have shown high antioxidant capacity. Therefore, current review summarizes the effect of different culture conditions such as salt and carbon source concentrations in the medium, light incidence, and oxygen tension on carotenoid production by halophilic archaea and the strategies such as optimization methodology and two-stage cultivation already used to increase the carotenoid yield of these microorganisms.

  18. [A discussion of production conditions among the peasantry].

    PubMed

    Salles, V A

    1984-01-01

    The immediate goal of rural production is to satisfy the consumption needs of the peasantry. The peasant enters the market either to acquire goods which he does not produce or to sell his goods or labor. In either case the peasant is forced to sell part of his product, thereby converting it into merchanise; this exchange represents an interaction between the peasant econmy and the capitalist system. In order to overcome the unfavorable conditions of this exchange, the peasantry has had to adopt a variety of strategies, such as intensifying family labor, diversifying the work, working outside its own land, or specializing in certain activites. It is by carrying out a wide range of activities that peasant families survive within a broader socioeconomic context. A number of macrosocial factors serve to control access to the land and other means of production; these in turn influence agricultural output and the peasants' economic behavior. These factors are: the delimitation of the rural area, the indispensable nature of land and its products, the inability to produce land, and the monopoly exercised by landowners. The peasantry is therefore forced to organize its agricultural production within the constraints imposed by the amount and quality of the available land. In addition, peasant agriculture is conditioned by the available labor (e.g.., the family) and by crop cycles and seasonal changes. Productivity will therefore vary widely vary widely from 1 farmer to the next. Prices, however, are established by the capitalist sector; this results in the pauperization of the peasantry who cannot compete in their market. Empirical data from Mexico show a 4-fold variation in agricultural output per unit of land. Peasants, who have the worst land and lack the technology to improve productivity, are at a disadvantage. Because the agricultural yield is often not enough to insure the survival of the domestic unit, peasant familirs diversify their work and either perform a

  19. [Sanitary conditions for the production of beef cattle in Argentina].

    PubMed

    Lasta, J A; Rearte, D

    1997-08-01

    Meat production is extremely important for the economy of Argentina, and represents 35%-40% of all national agricultural production. Cattle are distributed throughout the country, with the highest density in the Pampa region, which hosts 66% of the national herd and produces 80% of the total meat production in Argentina. This region has a long tradition of livestock rearing, and the practice of rotation between agriculture and animal husbandry ensures an ecological equilibrium. Meat production in Argentina is based on the exploitation of natural resources, with traditional extensive grazing, which offers advantages when compared with other countries. The composition of meat depends on factors such as breed and age, and on the diet of the animals. The authors demonstrate that meat produced under extensive grazing conditions in Argentina has less intramuscular fat and cholesterol than that produced in intensive systems which have a grain-rich diet. The authors analyse the situation of the country with regard to diseases which can be transmitted by meat and which might affect public health, particularly bovine spongiform encephalopathy (BSE), brucellosis, tuberculosis, salmonellosis, campylobacteriosis, colibacillosis and taeniosis. The fact that Argentina is free from BSE is emphasised, and the prevention programmes which have been implemented to control other diseases are described. In addition, the authors discuss tests which are conducted to detect the presence of residues of chemical contaminants in meat. Emphasis is given to the quality of infrastructure, equipment and operation of the mechanised meat-processing plants, which guarantee the hygienic safety of the products. The authors conclude that meat and meat products from Argentina offer a high level of safety for consumers.

  20. Ceramic production during changing environmental/climatic conditions

    NASA Astrophysics Data System (ADS)

    Oestreich, Daniela B.; Glasmacher, Ulrich A.

    2015-04-01

    Ceramics, with regard to their status as largely everlasting everyday object as well as on the basis of their chronological sensitivity, reflect despite their simplicity the technological level of a culture and therefore also, directly or indirectly, the adaptability of a culture with respect to environmental and/or climatic changes. For that reason the question arises, if it is possible to identify changes in production techniques and raw material sources for ceramic production, as a response to environmental change, e.g. climate change. This paper will present results of a research about Paracas Culture (800 - 200 BC), southern Peru. Through several investigations (e.g. Schittek et al., 2014; Eitel and Mächtle, 2009) it is well known that during Paracas period changes in climate and environmental conditions take place. As a consequence, settlement patterns shifted several times through the various stages of Paracas time. Ceramics from three different sites (Jauranga, Cutamalla, Collanco) and temporal phases of the Paracas period are detailed archaeometric, geochemical and mineralogical characterized, e.g. Raman spectroscopy, XRD, and ICP-MS analyses. The aim of this research is to resolve potential differences in the chemical composition of the Paracas ceramics in space and time and to compare the data with the data sets of pre-Columbian environmental conditions. Thus influences of changing environmental conditions on human societies and their cultural conditions will be discussed. References Eitel, B. and Mächtle, B. 2009. Man and Environment in the eastern Atacama Desert (Southern Peru): Holocene climate changes and their impact on pre-Columbian cultures. In: Reindel, M. & Wagner, G. A. (eds.) New Technologies for Archaeology. Berlin Heidelberg: Springer-Verlag. Schittek, K., Mächtle, B., Schäbitz, F., Forbriger, M., Wennrich, V., Reindel, M., and Eitel, B.. Holocene environmental changes in the highlands of the southern Peruvian Andes (14° S) and their

  1. Influence of culture conditions on glutathione production by Saccharomyces cerevisiae.

    PubMed

    Santos, Lucielen Oliveira; Gonzales, Tatiane Araujo; Ubeda, Beatriz Torsani; Monte Alegre, Ranulfo

    2007-12-01

    A strategy of experimental design using a fractional factorial design (FFD) and a central composite rotatable design (CCRD) were carried out with the aim to obtain the best conditions of temperature (20-30 degrees C), agitation rate (100-300 rpm), initial pH (5.0-7.0), inoculum concentration (5-15%), and glucose concentration (30-70 g/l) for glutathione (GSH) production in shake-flask culture by Saccharomyces cerevisiae ATCC 7754. By a FFD (2(5-2)), the agitation rate, temperature, and pH were found to be significant factors for GSH production. In CCRD (2(2)) was obtained a second-order model equation, and the percent of variation explained by the model was 95%. The results showed that the optimal culture conditions were agitation rate, 300 rpm; temperature, 20 degrees C; initial pH, 5; glucose, 54 g/l; and inoculum concentration, 5%. The highest GSH concentration (154.5 mg/l) was obtained after 72 h of fermentation.

  2. Methane as a product of chloroethene biodegradation under methanogenic conditions

    USGS Publications Warehouse

    Bradley, P.M.; Chapelle, F.H.

    1999-01-01

    Radiometric detection headspace analyses of microcosms containing bed sediments from two geographically distinct sites indicated that 10-39% of the radiolabeled carbon transformed during anaerobic biodegradation of [1,2- 14C]trichloroethene (TCE) or [1,2-14C]vinyl chloride (VC) under methanogenic conditions was ultimately incorporated into 14CH4. The results demonstrate that, in addition to ethene, ethane, and CO2, CH4 can be a significant product of chloroethene biodegradation in some methanogenic sediments.Radiometric detection headspace analyses of microcosms containing bed sediments from two geographically distinct sites indicated that 10-39% of the radiolabeled carbon transformed during anaerobic biodegradation of [1,2-14C]trichloroethene (TCE) or [1,2-14C]vinyl chloride (VC) under methanogenic conditions was ultimately incorporated into 14CH4. The results demonstrate that, in addition to ethene, ethane, and CO2, CH4 can be a significant product of chloroethene biodegradation in some methanogenic sediments.

  3. Production of chitin deacetylase by Aspergillus flavus in submerged conditions.

    PubMed

    Narayanan, Karthik; Parameswaran, Binod; Pandey, Ashok

    2016-07-03

    Chitosan is a biopolymer obtained by deacetylation of chitin and has been proven to have various applications in industry and biomedicine. Deacetylation of chitin using the enzyme chitin deacetylase (CDA) is favorable in comparison to the hazardous chemical method involving strong alkali and high temperature. A fungal strain producing CDA was isolated from environmental samples collected from coastal regions of South Kerala, India. It was identified as Aspergillus flavus by morphological characteristics and ITS DNA analysis. Nutritional requirement for maximum production of CDA under submerged condition was optimized using statistical methods including Plackett-Burman and response surface methodology central composite design. A 5.98-fold enhancement in CDA production was attained in shake flasks when the fermentation process parameters were used at their optimum levels. The highest CDA activity was 57.69 ± 1.68 U under optimized bioprocess conditions that included 30 g L(-1) glucose, 40 g L(-1) yeast extract, 15 g L(-1) peptone, and 7 g L(-1) MgCl2 at initial media pH of 7 and incubation temperature of 32°C after 48 hr of incubation, while the unoptimized basal medium yielded 9.64 ± 2.04 U.

  4. Enhanced production of chitin deacetylase by Penicillium oxalicum SAEM-51 through response surface optimization of fermentation conditions.

    PubMed

    Pareek, Nidhi; Ghosh, Sanjoy; Singh, R P; Vivekanand, V

    2014-02-01

    Optimization of the fermentation conditions for chitin deacetylase (CDA) production by Penicillium oxalicum SAEM-51 was undertaken in the present study using central composite design (CCD) under submerged condition. CDA is widely employed for bio-catalytic conversion of chitin to chitosan. Chitosan is a biopolymer with immense commercial potential in diverse industrial sectors, viz. pharmaceutics, food, agriculture, water treatment, etc. CDA production was significantly affected by all the variables studied, viz. pH, temperature, inoculum age and size. The optimal conditions that stimulating maximal CDA production were found to be: pH, 7.9; temperature, 28 °C; inoculum age, 90 h, and 11 % inoculum size. Under these optimized conditions, the actual maximal CDA production was 623.57 ± 8.2 Ul(-1), which was in good agreement with the values predicted by the quadratic model (648.24 Ul(-1)), confirming the validity of the model. Optimization of fermentation conditions through CCD had resulted into 1.4-fold enhancement in CDA productivity (Qp = 4.3264 Ul(-1) h(-1)). Results of these experiments indicated that response surface methodology was proved to be a promising method for optimization of CDA production.

  5. Crop growth and production responses to commercial humic products in U.S. Midwestern rainfed conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Humic products (humic and/or fulvic acids) have been in use for over 100 years, yet published research is scant on crop responses to humics under differing soil and weather conditions. We initiated field research experiments on corn (Zea mays L.) in Iowa in 2009 and have since expanded to multiple U...

  6. The Course of Actualization

    ERIC Educational Resources Information Center

    De Smet, Hendrik

    2012-01-01

    Actualization is traditionally seen as the process following syntactic reanalysis whereby an item's new syntactic status manifests itself in new syntactic behavior. The process is gradual in that some new uses of the reanalyzed item appear earlier or more readily than others. This article accounts for the order in which new uses appear during…

  7. [Relation of actual nutritional characteristics to the health status of retirees and persons of preretirement age employed in mechanical engineering production].

    PubMed

    Grigorov, Iu G; Kozlovskaia, S G; Semes'ko, T M; Medovar, B Ia

    1988-01-01

    Actual nutrition and health state were investigated in 406 males of pre-pension and pension age (40-70 years) engaged in physical work (III category of difficulty) at an engineering plant. The chemical composition of their food was evaluated with respect to 74 chemical elements. The state of the workers' health was evaluated by the data obtained from the registers kept at the Plant medical unit. A relationship has been established between the character of the actual nutrition and the presence of an age-dependent disease, as well as the role of certain nutrients in the development of this or that disease in different age periods. A conclusion has been made on the necessity of the development of differential physiological requirements in the nutrients and energy for elder subjects engaged in the social industry, and inclusion of the rational nutrition into the complex of measures for prevention of age-dependent diseases.

  8. 19 CFR 113.68 - Wool and fur products labeling acts and fiber products identification act bond conditions.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 19 Customs Duties 1 2012-04-01 2012-04-01 false Wool and fur products labeling acts and fiber... § 113.68 Wool and fur products labeling acts and fiber products identification act bond conditions. A bond to comply with wool and fur products labeling acts and fiber products identification act...

  9. 19 CFR 113.68 - Wool and fur products labeling acts and fiber products identification act bond conditions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 19 Customs Duties 1 2013-04-01 2013-04-01 false Wool and fur products labeling acts and fiber... § 113.68 Wool and fur products labeling acts and fiber products identification act bond conditions. A bond to comply with wool and fur products labeling acts and fiber products identification act...

  10. 19 CFR 113.68 - Wool and fur products labeling acts and fiber products identification act bond conditions.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 19 Customs Duties 1 2014-04-01 2014-04-01 false Wool and fur products labeling acts and fiber... § 113.68 Wool and fur products labeling acts and fiber products identification act bond conditions. A bond to comply with wool and fur products labeling acts and fiber products identification act...

  11. 19 CFR 113.68 - Wool and fur products labeling acts and fiber products identification act bond conditions.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 19 Customs Duties 1 2011-04-01 2011-04-01 false Wool and fur products labeling acts and fiber... § 113.68 Wool and fur products labeling acts and fiber products identification act bond conditions. A bond to comply with wool and fur products labeling acts and fiber products identification act...

  12. 19 CFR 113.68 - Wool and fur products labeling acts and fiber products identification act bond conditions.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 19 Customs Duties 1 2010-04-01 2010-04-01 false Wool and fur products labeling acts and fiber... § 113.68 Wool and fur products labeling acts and fiber products identification act bond conditions. A bond to comply with wool and fur products labeling acts and fiber products identification act...

  13. 75 FR 52737 - Pesticide Product Registrations; Unconditional and Conditional Approvals

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-27

    ...This notice announces the Agency's issuance, pursuant to the provisions of section 3(c)(5) and 3(c)(7) of the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA), of registrations for pesticide products containing active ingredients that were not in any registered pesticide products at the time of their respective...

  14. [Occupational aspects of modern work conditions in lead production].

    PubMed

    Trakhtenberg, I M; Korolenko, T K

    1999-01-01

    Production of lead crystal, ceramic paints and roentgenologic grids is associated with air lead levels exceeding the MAC and occurrence of other toxic chemicals in air. Ambient air in populated area near crystal production appeared to contain high lead levels. The authors specified measures aimed to prevent lead influence on the exposed workers and population.

  15. Influence of growth conditions on bacteriocin production by Brevibacterium linens.

    PubMed

    Motta, A S; Brandelli, A

    2003-08-01

    The influence of temperature, NaCl concentration and cheese whey media on growth of Brevibacterium linens ATCC 9175 and production of bacteriocin-like antimicrobial activity was studied. Bacteriocin production and activity were higher at 25 degrees C than at 30 degrees C. No significant growth or production of bacteriocins was observed at 37 degrees C. When bacteriocin production was investigated in media containing different concentrations of NaCl, increased activity was observed in media containing 40 or 80 g l(-1), but not 120 g l(-1) NaCl. The addition of NaCl resulted in a significant increase in specific production rates of bacteriocin-like activity. Antimicrobial activity was also observed by cultivation of B. linens at 25 degrees C in cheese whey media.

  16. Nitrate photochemistry in NaY zeolite: product formation and product stability under different environmental conditions.

    PubMed

    Gankanda, Aruni; Grassian, Vicki H

    2013-03-14

    In the atmosphere, mineral dust particles are often associated with adsorbed nitrate from heterogeneous reactions with nitrogen oxides (N2O5, HNO3, NO3, and NO2). Nitrate ions associated with mineral dust particles can undergo further reactions including those initiated by solar radiation. Although nitrate photochemistry in aqueous media is fairly well studied, much less is known about the photochemistry of nitrate adsorbed on mineral dust particles. In this study, the photochemistry of nitrate from HNO3 adsorption in NaY zeolite under different environmental conditions has been investigated using transmission FTIR spectroscopy. NaY zeolite is used as a model zeolite for studying reactions that can occur in confined space such as those found in porous materials including naturally occurring zeolites and clays. Upon nitrate photolysis under dry conditions (relative humidity, RH, < 1%), surface nitrite is formed as the major adsorbed product. Although nitrite has been proposed as a product in the photochemistry of nitrate adsorbed on metal oxide particle surfaces, such as on alumina, it has not been previously detected. The stability of adsorbed nitrite in NaY is attributed to the confined three-dimensional structure of the porous zeolite, which contains a charge compensating cation that can stabilize the nitrite ion product. Besides adsorbed nitrite, small amounts of gas phase nitrogen-containing products are observed as well including NO2, NO, and N2O at long irradiation times. The amount of nitrite formed via nitrate photochemistry decreases with increasing relative humidity, whereas gas phase NO and N2O become the only detectable products. Gas-phase NO2 does not observe at RH > 1%. In the presence of gas phase ammonia, ammonium nitrate is formed in NaY zeolite. Photochemistry of ammonium nitrate yields gas phase N2O as the sole gas phase product. Evidence for an NH2 intermediate in the formation of N2O is identified with FTIR spectroscopy for HNO3 adsorption and

  17. Sites of Superoxide and Hydrogen Peroxide Production by Muscle Mitochondria Assessed ex Vivo under Conditions Mimicking Rest and Exercise*

    PubMed Central

    Goncalves, Renata L. S.; Quinlan, Casey L.; Perevoshchikova, Irina V.; Hey-Mogensen, Martin; Brand, Martin D.

    2015-01-01

    The sites and rates of mitochondrial production of superoxide and H2O2 in vivo are not yet defined. At least 10 different mitochondrial sites can generate these species. Each site has a different maximum capacity (e.g. the outer quinol site in complex III (site IIIQo) has a very high capacity in rat skeletal muscle mitochondria, whereas the flavin site in complex I (site IF) has a very low capacity). The maximum capacities can greatly exceed the actual rates observed in the absence of electron transport chain inhibitors, so maximum capacities are a poor guide to actual rates. Here, we use new approaches to measure the rates at which different mitochondrial sites produce superoxide/H2O2 using isolated muscle mitochondria incubated in media mimicking the cytoplasmic substrate and effector mix of skeletal muscle during rest and exercise. We find that four or five sites dominate during rest in this ex vivo system. Remarkably, the quinol site in complex I (site IQ) and the flavin site in complex II (site IIF) each account for about a quarter of the total measured rate of H2O2 production. Site IF, site IIIQo, and perhaps site EF in the β-oxidation pathway account for most of the remainder. Under conditions mimicking mild and intense aerobic exercise, total production is much less, and the low capacity site IF dominates. These results give novel insights into which mitochondrial sites may produce superoxide/H2O2 in vivo. PMID:25389297

  18. Chemistry of fission product iodine under nuclear reactor accident conditions

    SciTech Connect

    Malinauskas, A.P.; Bell, J.T.

    1986-01-01

    The radioisotopes of iodine are generally acknowledged to be the species whose release into the biosphere as a result of a nuclear reactor accident is of the greatest concern. In the course of its release, the fission product is subjected to differing chemical environments; these can alter the physicochemical form of the fission product and thus modify the manner and extent to which release occurs. Both the chemical environments which are characteristic of reactor accidents and their effect in determining physical and chemical form of fission product iodine have been studied extensively, and are reviewed in this report. 76 refs.

  19. Biomass and energy productivity of Leucaena under humid subtropical conditions

    SciTech Connect

    Othman, A.B.; Prine, G.M.

    1984-01-01

    A table shows the amount and energy content of above-ground biomass produced in 1982 and 1983 by the 12 most productive of 62 accessions of Leucanena spp. established in 1979 at the University of Florida. Mean annual biomass production of the 12 accessions was 29.3 and 24.7 Mg/ha, with energy contents of 19,690 and 19,820 J/g, in 1982 and 1983 respectively.

  20. Optimization of process condition of nanosilica production by hydrothermal method

    NASA Astrophysics Data System (ADS)

    Qisti, N.; Indrasti, N. S.; Suprihatin

    2016-11-01

    Bagasse ashes have high silica content thus it can be used in nanosilicaproduction to increase its benefit value. This study aimed to get the best time for synthesis and to determine the optimum synthesis time and temperature. This study used the hydrothermal method, a simple method with relatively low reaction temperature and provide a good chemical homogeneity. Time varieties in synthesizing silica were 8,10 and 12 hours, at the temperature of 150 °C. But the results were not as expected. Moreover, optimization of synthesis temperature and time used 4 hours at the temperature of 150 °C based on previous studies. Optimization was conducted using the Response Surface Methodology (RSM). Later, a testusing PSA (Particle Size Analyzer) was performed to obtain particle sizes and PDI values (Polydispersity Index). The results showed that the prediction model of temperature synthesis was 152.67 °C synthesis time of 6 hours, particle size of 276.288 nm and PDI value of 0.189642. The tests showed that the size of particle obtained was 330.39 nm and PDI value at 0.3580. Actual results and predicted results were not significant different.

  1. Conditions that induce biofilm production by Ornithobacterium rhinotracheale.

    PubMed

    De la Rosa-Ramos, Miguel A; Rodríguez-Cruz, Maricruz; López-Villegas, Edgar O; Castro-Escarpulli, Graciela; Guerra-Infante, Fernando M

    2015-10-01

    Ornithobacterium rhinotracheale (ORT) is a Gram-negative bacillus that causes respiratory disease in birds, and directly affects the poultry industry. The mechanisms behind these infections are not completely known. Currently, its capacity to form biofilms on inert surfaces has been reported; however, the conditions for biofilm development have not been described yet. The present work was aimed at identifying the conditions that enhance in vitro biofilm formation and development by ORT. For this, serovars A-E were analysed to assess their ability to induce biofilm development on 96-well flat-bottom polystyrene microtitre plates under diverse conditions: temperature, incubation time, and CO2 concentration. The results obtained showed not only that all serovars have the ability to produce in vitro biofilms, but also that the optimal conditions for biofilm density were 40°C after 72 h at an elevated CO2 concentration. In conclusion, ORT biofilm formation depends on the environmental conditions and may contribute to the persistence of this microorganism.

  2. 30 CFR 206.362 - What are my responsibilities to place production into marketable condition and to market production?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Geothermal Resources § 206.362 What are my responsibilities to place production into marketable condition and to market production? You must place geothermal resources and byproducts in marketable condition and market the geothermal resources or byproducts for the mutual benefit of the lessee and the lessor at...

  3. 75 FR 35805 - Pesticide Product Registrations; Conditional Approvals

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-23

    ... products (EPA File Symbols 524-LTL and 524-LTA) containing the active ingredients, Bacillus thuringiensis... with the proposed use of the Bacillus thuringiensis Cry1A.105 and Cry2Ab2 proteins and the genetic... use of the Bacillus thuringiensis Cry1A.105 and Cry2Ab2 proteins and the genetic material...

  4. Prosodically-Conditioned Variability in Children's Production of French Determiners

    ERIC Educational Resources Information Center

    Demuth, Katherine; Tremblay, Annie

    2008-01-01

    Researchers have long noted that children's grammatical morphemes are variably produced, raising questions about when and how grammatical competence is acquired. This study examined the spontaneous production of determiners by two French-speaking children aged 1 ; 5-2 ; 5. It found that determiners were produced earlier with monosyllabic words,…

  5. 75 FR 57019 - Pesticide Product Registrations; Conditional Approval

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-09-17

    ... products for use on apples and soybeans. 2. TOPGUARD Fungicide (EPA registration number 4787-55) was approved on April 29, 2010, for foliar use on soybeans to control brown spot, cercospora blight, frogeye leaf spot, leaf spot, powdery mildew, and soybean rust, and on apples to control cedar apple...

  6. Bioethanol production from Scenedesmus obliquus sugars: the influence of photobioreactors and culture conditions on biomass production.

    PubMed

    Miranda, J R; Passarinho, P C; Gouveia, L

    2012-10-01

    A closed-loop vertical tubular photobioreactor (PBR), specially designed to operate under conditions of scarce flat land availability and irregular solar irradiance conditions, was used to study the potential of Scenedesmus obliquus biomass/sugar production. The results obtained were compared to those from an open-raceway pond and a closed-bubble column. The influence of the type of light source and the regime (natural vs artificial and continuous vs light/dark cycles) on the growth of the microalga and the extent of the sugar accumulation was studied in both PBRs. The best type of reactor studied was a closed-loop PBR illuminated with natural light/dark cycles. In all the cases, the relationship between the nitrate depletion and the sugar accumulation was observed. The microalga Scenedesmus was cultivated for 53 days in a raceway pond (4,500 L) and accumulated a maximum sugar content of 29 % g/g. It was pre-treated for carrying out ethanol fermentation assays, and the highest ethanol concentration obtained in the hydrolysate fermented by Kluyveromyces marxianus was 11.7 g/L.

  7. 30 CFR 206.106 - What are my responsibilities to place production into marketable condition and to market production?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What are my responsibilities to place production into marketable condition and to market production? 206.106 Section 206.106 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR MINERALS REVENUE MANAGEMENT PRODUCT...

  8. Enhanced root production in Haplopappus gracilis grown under spaceflight conditions

    NASA Technical Reports Server (NTRS)

    Levine, H. G.; Krikorian, A. D.

    1996-01-01

    The production and growth of roots in two aseptically maintained clonal populations of Haplopappus gracilis (family Compositae), each with a distinctive pattern of root production, were studied after they had been exposed to space for 5 days aboard a NASA Space Shuttle. Total root production of both populations was 67-95% greater when compared with their Earth-grown controls. Roots were generated: (1) laterally from pre-formed roots, the tips of which had been severed at the time of plantlet insertion into a "horticultural foam" substrate supplied with a nutrient solution; (2) adventitiously from the basal or cut-end portion of shoots; (3) de novo, i.e. from primordial which were non-existent at the outset of the experiment. Roots grew in all directions in space but were uniformly positively gravitropic in ground controls. In space and on Earth, both clonal populations maintained their clone-specific root formation and growth characteristics and produced an equivalent amount of tissue when compared to each other. As on Earth, and as expected, there were fewer and shorter roots on plantlets that formed floral buds. The significance of altered moisture distribution in the "horticultural foam" substrate in space for root growth and the significance of our findings for growing plants in altered gravity environments are discussed.

  9. Examination of Incubation Conditions for Production of HERICIUM ERINACEUM

    NASA Astrophysics Data System (ADS)

    Okumura, Ryosuke; Sasaki, Chizuru; Asada, Chikako; Nakamura, Yoshitoshi

    Basidiomycetes has recently attracted considerable attention for its various physiological activities, such as antitumor, antioxidant and immunostimulating activities. Compounds isolated from fruit body of Hericium erinaceum, commonly called Yamabushitake in Japan, have interesting biological activities such as cytotoxic effectors on cancer cell (HeLa cells) and stimulators of synthesis of nerve growth factor. It is necessary for the cultivation of the fruit body of mushroom to control light, temperature, humidity. Otherwise, mycelia cultivation needs only temperature control. H. erinaceum cultivated by submerged culture have similar physiological activities to the fruit body of H. erinaceum, which suggests cultured mycelia can potentially become a promoter of synthesis of nerve growth factor. In this study, we used whey which is by-products of cheese-making process as an alternative nitrogen source in submerged cultivation of H. erinaceum mycelia, and then dry cell weight (DCW) and DCW productivity of whey medium were compared with those of chemical nutrient medium. When whey was used as a nitrogen source, DCW and DCW productivity are 1.5 times higher than those of chemical nutrient medium, 5.99 g/L and 0.60 g/L/day, respectively. It was suggested that whey could be used as an alternative nitrogen source and a growth promoting factor in H. erinaceum mycelia cultivation.

  10. Enhanced root production in Haplopappus gracilis grown under spaceflight conditions.

    PubMed

    Levine, H G; Krikorian, A D

    1996-04-01

    The production and growth of roots in two aseptically maintained clonal populations of Haplopappus gracilis (family Compositae), each with a distinctive pattern of root production, were studied after they had been exposed to space for 5 days aboard a NASA Space Shuttle. Total root production of both populations was 67-95% greater when compared with their Earth-grown controls. Roots were generated: (1) laterally from pre-formed roots, the tips of which had been severed at the time of plantlet insertion into a "horticultural foam" substrate supplied with a nutrient solution; (2) adventitiously from the basal or cut-end portion of shoots; (3) de novo, i.e. from primordial which were non-existent at the outset of the experiment. Roots grew in all directions in space but were uniformly positively gravitropic in ground controls. In space and on Earth, both clonal populations maintained their clone-specific root formation and growth characteristics and produced an equivalent amount of tissue when compared to each other. As on Earth, and as expected, there were fewer and shorter roots on plantlets that formed floral buds. The significance of altered moisture distribution in the "horticultural foam" substrate in space for root growth and the significance of our findings for growing plants in altered gravity environments are discussed.

  11. Decomposition of organic waste products under aerobic and anaerobic conditions

    SciTech Connect

    Gale, P.M.

    1988-01-01

    The objectives of this research were to determine the kinetics of C and N mineralization under aerobic and anaerobic conditions. These parameters were then used to verify the simulation model, DECOMPOSITION, for the anaerobic system. Incubation experiments were conducted to compare the aerobic and anaerobic decomposition of alfalfa (Medicago sativa L.), a substrate with a low C:N ratio. Under anaerobic conditions the net mineralization of N occurred more rapidly than that under aerobic conditions. However, the rate of C mineralization as measured by CO{sub 2} evolution was much lower. For the anaerobic decomposition of alfalfa, C mineralization was best described as the sum of the CO{sub 2} and CH{sub 4} evolved plus the water soluble organic C formed. The kinetics of C mineralization, as determined by this approach, were used to successfully predict the rate and amount of N mineralization from alfalfa undergoing anaerobic decomposition. The decomposition of paper mill sludge, a high C:N ratio substrate, was also evaluated.

  12. [Actual problems of the impact of production and management of industrial waste on the environment and public health (review of literature)].

    PubMed

    Cherniaeva, T K

    2013-01-01

    In the modern society the importance and applicability of the problem concerning the negative effect of production and consumption waste on the objects of the environment and the state sa people's health is related to their daily emergency, large tonnage, storage, and utilization. Wastes and places of their storage and waste burial constitute an toxicological and epidemiological risk. Chemical and biological contamination of solid waste is a threat to its penetration into the soil, air, groundwater and surface water bodies, vegetation, directly or indirectly, cause variations in health status of the population.

  13. 27 CFR 11.23 - Sales conditioned on the acquisition of other products.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... buyer, or the agreement, as a condition to present or future sales, to accept other products from the trade buyer is prohibited. (b) Exchange. The exchange of one product for another is prohibited as...

  14. Assessing potential changes of chestnut productivity in Europe under future climate conditions

    NASA Astrophysics Data System (ADS)

    Calheiros, T.; Pereira, M. G.; Pinto, J. G.; Caramelo, L.; Gomes-Laranjo, J.; Dacamara, C. C.

    2012-04-01

    The European chestnut is cultivated for its nuts and wood. Several studies point to the dependency of chestnut productivity on specific soil and climate characteristics. For instance, this species dislikes chalky and poorly drained soils, appreciates sedimentary, siliceous and acidic to neutral soils. Chestnut trees also seems to appreciate annual mean values of sunlight spanning between 2400 and 2600 h, rainfall ranging between 600 and 1500 mm, mean annual temperature between 9 and 13°C, 27°C being the mean of the maximum temperature (Heiniger and Conedera, 1992; Gomes-Laranjo et al.,2008). The amount of heat between May and October must range between 1800°D and 2400°D (Dinis et al., 2011) . In Poland, the growing season is defined as the period of time when the mean 24-h temperature is greater than 5°C (Wilczynski and Podalski, 2007). In Portugal, maximum photosynthetic activity occurs at 24-28°C for adult trees, but exhibits more than 50% of termoinhibition when the air temperature is above 32°C, which is frequent during summer (Gomes- Laranjo et al., 2006, 2008). Recently Pereira et al (2011) identified a set of meteorological variables/parameters with high impact on chestnut productivity. The main purpose of this work is to assess the potential impacts of future climate change on chestnut productivity in Portugal as well as on European chestnut orchards. First, observed data from the European Climate assessment (ECA) and simulations with the Regional Circulation Model (RCM) COSMO-CLM for recent climate conditions are used to assess the ability of the RCM to model the actual meteorological conditions. Then, ensemble projections from the ECHAM5/COSMO-CLM model chain for two climate scenarios (A1B and B1) are used to estimate the values of relevant meteorological variables and parameters und future climate conditions. Simulated values are then compared with those obtained for present climate. Results point to changes in the spatial and temporal

  15. Impact of environmental production conditions on productivity and efficiency: a case study of wheat farmers in Bangladesh.

    PubMed

    Rahman, Sanzidur; Hasan, M Kamrul

    2008-09-01

    Environmental conditions significantly affect production, but are often ignored in studies analysing productivity and efficiency leading to biased results. In this study, we examine the influence of selected environmental factors on productivity and efficiency in wheat farming in Bangladesh. Results reveal that environmental production conditions significantly affect the parameters of the production function and technical efficiency, as well as correlates of inefficiency. Controlling for environmental production conditions improves technical efficiency by 4 points (p<0.01) from 86% to 90%. Large farms are more efficient relative to small and medium sized farms (p<0.01 and 0.05), with no variation among regions. Policy implications include soil fertility improvement through soil conservation and crop rotation, improvement in managerial practices through extension services and adoption of modern technologies, promotion of education, strengthening the research-extension link, and development of new varieties that have higher yield potential and are also suitable for marginal areas.

  16. Conditions for production of interdisciplinary teamwork outcomes in oncology teams: protocol for a realist evaluation

    PubMed Central

    2014-01-01

    Background Interdisciplinary teamwork (ITW) is designed to promote the active participation of several disciplines in delivering comprehensive cancer care to patients. ITW provides mechanisms to support continuous communication among care providers, optimize professionals’ participation in clinical decision-making within and across disciplines, and foster care coordination along the cancer trajectory. However, ITW mechanisms are not activated optimally by all teams, resulting in a gap between desired outcomes of ITW and actual outcomes observed. The aim of the present study is to identify the conditions underlying outcome production by ITW in local oncology teams. Methods This retrospective multiple case study will draw upon realist evaluation principles to explore associations among context, mechanisms and outcomes (CMO). The cases are nine interdisciplinary cancer teams that participated in a previous study evaluating ITW outcomes. Qualitative data sources will be used to construct a picture of CMO associations in each case. For data collection, reflexive focus groups will be held to capture patients’ and professionals’ perspectives on ITW, using the guiding question, ‘What works, for whom, and under what circumstances?’ Intra-case analysis will be used to trace associations between context, ITW mechanisms, and patient outcomes. Inter-case analysis will be used to compare the different cases’ CMO associations for a better understanding of the phenomenon under study. Discussion This multiple case study will use realist evaluation principles to draw lessons about how certain contexts are more or less likely to produce particular outcomes. The results will make it possible to target more specifically the actions required to optimize structures and to activate the best mechanisms to meet the needs of cancer patients. This project could also contribute significantly to the development of improved research methods for conducting realist evaluations of

  17. Investigation of production conditions and powder properties of AUC

    NASA Astrophysics Data System (ADS)

    Tel, H.; Eral, M.

    1996-07-01

    Ammonium uranyl carbonate (AUC) powders are prepared by adding 25% ammonium carbonate solution into the uranyl nitrate (UNH) solutions purified with TBP extraction from dissolution of the Canada originated U 3O 8 commercial concentrate. AUC powders are identified by chemical analysis, TGA/DTG analysis, IR analysis and by single crystal X-ray diffraction. The effects of the precipitation conditions on the powder properties are determined. The particle size of AUC increases with the C/U ratio and temperature while it decreases with the increasing uranium concentration. The mixing rate and the addition rate of ammonium carbonate does not have a considerable effect on the particle size. The reactor and the mixing type have great effects on the flowability of the AUC powders. The most flowable powders are obtained in a conical and air agitated reactor. The flowability of these powders is 2.5 g/s with a specific surface area of 5.59 m 2/g and particle size of 4 μm. UO 2 converted via AUC is also very flowable (3 g/s) with a specific surface area of 5.1 m 2/g.

  18. A strategy for clone selection under different production conditions.

    PubMed

    Legmann, Rachel; Benoit, Brian; Fedechko, Ronald W; Deppeler, Cynthia L; Srinivasan, Sriram; Robins, Russell H; McCormick, Ellen L; Ferrick, David A; Rodgers, Seth T; Russo, A Peter

    2011-01-01

    Top performing clones have failed at the manufacturing scale while the true best performer may have been rejected early in the screening process. Therefore, the ability to screen multiple clones in complex fed-batch processes using multiple process variations can be used to assess robustness and to identify critical factors. This dynamic ranking of clones' strategy requires the execution of many parallel experiments than traditional approaches. Therefore, this approach is best suited for micro-bioreactor models which can perform hundreds of experiments quickly and efficiently. In this study, a fully monitored and controlled small scale platform was used to screen eight CHO clones producing a recombinant monoclonal antibody across several process variations, including different feeding strategies, temperature shifts and pH control profiles. The first screen utilized 240 micro-bioreactors were run for two weeks for this assessment of the scale-down model as a high-throughput tool for clone evaluation. The richness of the outcome data enable to clearly identify the best and worst clone as well as process in term of maximum monoclonal antibody titer. The follow-up comparison study utilized 180 micro-bioreactors in a full factorial design and a subset of 12 clone/process combinations was selected to be run parallel in duplicate shake flasks. Good correlation between the micro-bioreactor predictions and those made in shake flasks with a Pearson correlation value of 0.94. The results also demonstrate that this micro-scale system can perform clone screening and process optimization for gaining significant titer improvements simultaneously. This dynamic ranking strategy can support better choices of production clones.

  19. 50 CFR Table 1a to Part 679 - Delivery Condition* and Product Codes

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 50 Wildlife and Fisheries 13 2014-10-01 2014-10-01 false Delivery Condition* and Product Codes 1a... ALASKA Pt. 679, Table 1a Table 1a to Part 679—Delivery Condition* and Product Codes Description Code... Stomachs. Includes all internal organs (ancillary only) 35 Surimi. Paste from fish flesh and additives...

  20. 30 CFR 1206.106 - What are my responsibilities to place production into marketable condition and to market production?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false What are my responsibilities to place production into marketable condition and to market production? 1206.106 Section 1206.106 Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE...

  1. 30 CFR 1206.106 - What are my responsibilities to place production into marketable condition and to market production?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false What are my responsibilities to place production into marketable condition and to market production? 1206.106 Section 1206.106 Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE...

  2. 30 CFR 1206.106 - What are my responsibilities to place production into marketable condition and to market production?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false What are my responsibilities to place production into marketable condition and to market production? 1206.106 Section 1206.106 Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE...

  3. 30 CFR 1206.362 - What are my responsibilities to place production into marketable condition and to market production?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false What are my responsibilities to place production into marketable condition and to market production? 1206.362 Section 1206.362 Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE...

  4. 30 CFR 1206.362 - What are my responsibilities to place production into marketable condition and to market production?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false What are my responsibilities to place production into marketable condition and to market production? 1206.362 Section 1206.362 Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE...

  5. 30 CFR 1206.362 - What are my responsibilities to place production into marketable condition and to market production?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false What are my responsibilities to place production into marketable condition and to market production? 1206.362 Section 1206.362 Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE...

  6. Stability studies needed to define the handling and transport conditions of sensitive pharmaceutical or biotechnological products.

    PubMed

    Ammann, Claude

    2011-12-01

    Many pharmaceutical or biotechnological products require transport using temperature-controlled systems to keep their therapeutic properties. There are presently no official guidelines for testing pharmaceutical products in order to define suitable transport specifications. After reviewing the current guidance documents, this paper proposes a methodology for testing pharmaceutical products and defining appropriate transport conditions.

  7. PBL and the Postmodern Condition--Knowledge Production in University Education

    ERIC Educational Resources Information Center

    Ravn, Ole; Jensen, Annie Aarup

    2016-01-01

    In this article we discuss the contemporary conditions for running the Aalborg Problem Based Learning-model (PBL). We try to pinpoint key characteristics of these conditions emphasising Lyotard's conception of knowledge production referred to as the move towards a postmodern condition for knowledge. Through discussions of this alleged condition…

  8. [Hygienic characteristics of work conditions for main occupations in asbestos cement production of Ukraine].

    PubMed

    Kundiev, Iu I; Cherniuk, V I; Karakashian, A N; Kucheruk, T K; Martynovskaia, T Iu; Demetskaia, A V; Sal'nikova, N A; Chuĭ, T S; Piatnitsa-Gorpinchenko, N K

    2008-01-01

    Studies covered of work conditions for main occupations in asbestos cement production of Ukraine. Studies covered work conditions and occupational features of workers engaged into main occupations in asbestos cement enterprises of Ukraine. Parameters presented characterize ambient air state, microclimate conditions, levels of noise and vibration, work intensity and hardness.

  9. Characterizing the environmental conditions and estimating aboveground biomass productivity for switchgrass in the Great Plains, USA

    NASA Astrophysics Data System (ADS)

    Gu, Y.; Wylie, B. K.; Howard, D. M.

    2013-12-01

    Switchgrass is being evaluated as a potential feedstock source for cellulosic biofuels and is being cultivated in several regions of the United States. The recent availability of switchgrass land cover maps derived from the National Agricultural Statistics Service cropland data layer for the conterminous United States provides an opportunity to assess the environmental conditions of switchgrass over large areas and across different geographic locations. The main goal of this study is to investigate the relationship between site environmental conditions and switchgrass productivity and identify the optimal conditions for productive switchgrass in the Great Plains (GP). Environmental and climate variables such as elevation, soil organic carbon, available water capacity, climate, and seasonal weather were used in this study. Satellite-derived growing season averaged Normalized Difference Vegetation Index was used as a proxy for switchgrass productivity. The environmental conditions for switchgrass sites of variable productivity were summarized and a data-driven multiple regression switchgrass productivity model was developed. Results show that spring precipitation has the strongest correlation with switchgrass productivity (r = 0.92, 176 samples) and spring minimum temperature has the weakest correlation with switchgrass productivity (r = 0.16). An estimated switchgrass productivity map for the entire GP based on site environmental and climate conditions was generated. The estimated switchgrass biomass productivity map indicates that highly productive switchgrass areas are mainly located in the eastern part of the GP. Results from this study provide useful information for assessing economic feasibility or optimal land use decisions regarding switchgrass development in the GP.

  10. Aerobic condition increases carotenoid production associated with oxidative stress tolerance in Enterococcus gilvus.

    PubMed

    Hagi, Tatsuro; Kobayashi, Miho; Nomura, Masaru

    2014-01-01

    Although it is known that a part of lactic acid bacteria can produce carotenoid, little is known about the regulation of carotenoid production. The objective of this study was to determine whether aerobic growth condition influences carotenoid production in carotenoid-producing Enterococcus gilvus. Enterococcus gilvus was grown under aerobic and anaerobic conditions. Its growth was slower under aerobic than under anaerobic conditions. The decrease in pH levels and production of lactic acid were also lower under aerobic than under anaerobic conditions. In contrast, the amount of carotenoid pigments produced by E. gilvus was significantly higher under aerobic than under anaerobic conditions. Further, real-time quantitative reverse transcription PCR revealed that the expression level of carotenoid biosynthesis genes crtN and crtM when E. gilvus was grown under aerobic conditions was 2.55-5.86-fold higher than when it was grown under anaerobic conditions. Moreover, after exposure to 16- and 32-mM H2O2, the survival rate of E. gilvus grown under aerobic conditions was 61.5- and 72.5-fold higher, respectively, than when it was grown under anaerobic conditions. Aerobic growth conditions significantly induced carotenoid production and the expression of carotenoid biosynthesis genes in E. gilvus, resulting in increased oxidative stress tolerance.

  11. Ethanol production from glycerol-containing biodiesel waste by Klebsiella variicola shows maximum productivity under alkaline conditions.

    PubMed

    Suzuki, Toshihiro; Nishikawa, Chiaki; Seta, Kohei; Shigeno, Toshiya; Nakajima-Kambe, Toshiaki

    2014-05-25

    Biodiesel fuel (BDF) waste contains large amounts of crude glycerol as a by-product, and has a high alkaline pH. With regard to microbial conversion of ethanol from BDF-derived glycerol, bacteria that can produce ethanol at alkaline pH have not been reported to date. Isolation of bacteria that shows maximum productivity under alkaline conditions is essential to effective production of ethanol from BDF-derived glycerol. In this study, we isolated the Klebsiella variicola TB-83 strain, which demonstrated maximum ethanol productivity at alkaline pH. Strain TB-83 showed effective usage of crude glycerol with maximum ethanol production at pH 8.0-9.0, and the culture pH was finally neutralized by formate, a by-product. In addition, the ethanol productivity of strain TB-83 under various culture conditions was investigated. Ethanol production was more efficient with the addition of yeast extract. Strain TB-83 produced 9.8 g/L ethanol (0.86 mol/mol glycerol) from cooking oil-derived BDF waste. Ethanol production from cooking oil-derived BDF waste was higher than that of new frying oil-derived BDF and pure-glycerol. This is the first report to demonstrate that the K. variicola strain TB-83 has the ability to produce ethanol from glycerol at alkaline pH.

  12. Optimization of culture conditions of Fusarium solani for the production of neoN-methylsansalvamide.

    PubMed

    Lee, Hee-Seok; Phat, Chanvorleak; Nam, Woo-Seon; Lee, Chan

    2014-01-01

    The aim of this study was to optimize the culture conditions of Fusarium solani KCCM90040 on cereal grain for the production of neoN-methylsansalvamide, a novel low-molecular-weight cyclic pentadepsipeptide exhibiting cytotoxic and multidrug resistance reversal effects. From the analysis of variance results using response surface methodology, temperature, initial moisture content, and growth time were shown to be important parameters for the production of neoN-methylsansalvamide on cereal grain. A model was established in the present study to describe the relationship between environmental conditions and the production of neoN-methylsansalvamide on rice, the selected cereal grain. The optimal culture conditions were determined at 25.79 °C with the initial moisture content of 40.79%, and 16.19 days of growth time. This report will give important information concerning the optimization of environmental conditions using statistic methodology for the production of a new cyclic pentadepsipeptide from fungi.

  13. Digoxin products for oral use; revocation of conditions for marketing. Final rule.

    PubMed

    2002-06-26

    The Food and Drug Administration (FDA) is revoking the regulation establishing conditions for marketing digoxin products for oral use. This regulation is no longer necessary because the products, which are new drugs, can be regulated under the approval process for new drug applications (NDAs) and abbreviated new drug applications (ANDAs) as set forth in the Federal Food, Drug, and Cosmetic Act (the act).

  14. Enhanced production of histamine dehydrogenase by Natrinema gari BCC 24369 in a non-sterile condition.

    PubMed

    Chaikaew, Siriporn; Powtongsook, Sorawit; Boonpayung, Somphop; Benjakul, Soottawat; Visessanguan, Wonnop

    2015-01-01

    The production of histamine dehydrogenase (HADH) by Natrinema gari BCC 24369, a halophilic archeaon isolated from fish sauce, was optimized and scaled up under a non-sterile condition. Through statistical design by Plackett-Burman design (PBD), casamino acid, NaCl, MgSO4·7H2O and FeCl2·4H2O were identified as the significant medium compositions influencing HADH production. Central composite design (CCD) was employed to identify the optimal values of individual composition yielding the maximum HADH production. The analysis indicated that the optimal medium was composed of 15 g/l casamino acid, 75 g/l MgSO4·7H2O, 273 g/l NaCl, 2.5 mg/l FeCl2·4H2O, 10 g/l yeast extract, 5 g/l sodium glutamate and 5 g/l KCl. Based on the one-factor-at-a-time (OFAT) method, the optimum initial pH of the culture medium and the incubation temperature for HADH production were 7.5 and 37 °C, respectively. The production of HADH under optimal conditions was 2.2-fold higher than that under un-optimized conditions. Owing to the halophilic nature of Nnm. gari BCC 24369, a more economical and eco-friendlier HADH production was developed under a completely non-sterile condition. In a 16-l batch cultivation of Nnm. gari BCC 24369, HADH productivity under a non-sterile condition (858 ± 12 U/g cell biomass) was comparable to that under a sterile condition (878 ± 15 U/g cell biomass). These results demonstrate the feasibility and simplicity of HADH production using Nnm. gari BCC 24369 under a non-sterile condition without compromising enzyme yield and any changes in Km value.

  15. Optimization of culture conditions for flexirubin production by Chryseobacterium artocarpi CECT 8497 using response surface methodology.

    PubMed

    Venil, Chidambaram Kulandaisamy; Zakaria, Zainul Akmar; Ahmad, Wan Azlina

    2015-01-01

    Flexirubins are the unique type of bacterial pigments produced by the bacteria from the genus Chryseobacterium, which are used in the treatment of chronic skin disease, eczema etc. and may serve as a chemotaxonomic marker. Chryseobacterium artocarpi CECT 8497, an yellowish-orange pigment producing strain was investigated for maximum production of pigment by optimizing medium composition employing response surface methodology (RSM). Culture conditions affecting pigment production were optimized statistically in shake flask experiments. Lactose, l-tryptophan and KH2PO4 were the most significant variables affecting pigment production. Box Behnken design (BBD) and RSM analysis were adopted to investigate the interactions between variables and determine the optimal values for maximum pigment production. Evaluation of the experimental results signified that the optimum conditions for maximum production of pigment (521.64 mg/L) in 50 L bioreactor were lactose 11.25 g/L, l-tryptophan 6 g/L and KH2PO4 650 ppm. Production under optimized conditions increased to 7.23 fold comparing to its production prior to optimization. Results of this study showed that statistical optimization of medium composition and their interaction effects enable short listing of the significant factors influencing maximum pigment production from Chryseobacterium artocarpi CECT 8497. In addition, this is the first report optimizing the process parameters for flexirubin type pigment production from Chryseobacterium artocarpi CECT 8497.

  16. Cultural and environmental factors governing tomato production: Local food production under elevated temperature conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Long-term fresh tomato (Solanum lycopersicum L.) production data was used to estimate cultural and environmental impacts on marketable tomato yields in eastern Oklahoma. Quantifying the interactive effects of planting date and growing season duration and the effects of cumulative heat units and heat...

  17. The Influence of Atmospheric Conditions on the Production of Ozone during VOC Oxidation

    NASA Astrophysics Data System (ADS)

    Coates, J.; Butler, T. M.

    2015-12-01

    Tropospheric ozone is a short-lived climate forcing pollutant that is detrimental to human health and crop growth. Reactions involving volatile organic compounds (VOC) and nitrogen oxides (NOx) in the presence of sunlight produce ozone. Ozone production is a non-linear function of the concentrations of both NOx and VOC, with VOC acting as the "fuel" for ozone production and NOx as the "catalyst". Different VOC, due to their differing structure and carbon content, have different maximum potential to produce ozone. Due to different degrees of reactivity, VOC also differ in the time taken to reach this maximum ozone production potential under ideal conditions. Ozone production is also influenced by meteorological factors such as radiation, temperature, advection and mixing, which may alter the rate of ozone production, and the degree to which VOC are able to reach their maximum ozone production potential. Identifying the chemical and meteorological processes responsible for controlling the degree to which VOC are able to reach their maximum ozone production potential could inform decisions on emission control to efficiently tackle high levels of tropospheric ozone. In this study we use a boxmodel to determine the chemical processes affecting ozone production under different meteorological and chemical conditions. The chemistry scheme used by the boxmodel is "tagged" for each initial VOC enabling attribution of ozone production to its VOC source. We systematically vary a number of meteorological parameters along with the source of NOx within the box model to simulate a range of atmospheric conditions. These simulations are compared with a control simulation done under conditions of maximum ozone formation to determine which parameters affect the rate at which VOC produce ozone and the extent to which they reach their maximum potential to produce ozone. We perform multi-day simulations in order to examine whether these processes can influence ozone production over

  18. Cultivation Conditions for Phytase Production from Recombinant Escherichia coli DH5α

    PubMed Central

    Ariff, Rafidah Mohd; Fitrianto, Anwar; Abd. Manap, Mohd Yazid; Ideris, Aini; Kassim, Azhar; Suhairin, Afinah; Hussin, Anis Shobirin Meor

    2013-01-01

    Response surface methodology (RSM) was used to optimize the cultivation conditions for the production of phytase by recombinant Escherichia coli DH5α. The optimum predicted cultivation conditions for phytase production were at 3 hours seed age, a 2.5% inoculum level, an L-arabinose concentration of 0.20%, a cell concentration of 0.3 (as measured at 600 nm) and 17 hours post-induction time with a predicted phytase activity of 4194.45 U/mL. The model was validated and the results showed no significant difference between the experimental and the predicted phytase activity (P = 0.305). Under optimum cultivation conditions, the phytase activity of the recombinant E. coli DH5α was 364 times higher compared to the phytase activity of the wild-type producer, Enterobacter sakazakii ASUIA279. Hence, optimization of the cultivation conditions using RSM positively increased phytase production from recombinant E. coli DH5α. PMID:24826071

  19. Effects of recombinant bovine somatotropin under conditions of high production and heat stress.

    PubMed

    Lotan, E; Sturman, H; Weller, J I; Ezra, E

    1993-05-01

    The effect of bST injection on milk production of Israeli Holsteins was tested under conditions of mean production > 9000 kg/yr and climatic stress; mean maximum and minimum summer temperatures are 38 and 25 degrees C, respectively, in the Jordan Valley, located 200 m below sea level. In 1989, 111 cows were injected, and 115 cows were recorded as controls. In 1990, 108 cows were injected, and 93 cows were included as controls. Fifty-nine of the cows injected in 1990 were also injected in 1989. Production records were corrected for parity, calving month, days to first injection, and days in milk. Injection with bST increased total lactation milk production by 12%, fat production by 15%, and protein production by 13%. Injection also resulted in slight increases in fat and protein percentages. Daily milk production during the injection period was increased by 4.4 kg. Injection during the previous lactation slightly decreased production of cows injected during the following lactation. Advancing the commencement of injection from the 4th to the 2nd mo in milk did not affect total lactation production. Weight gains and dry matter intake were higher for injected cows, but body condition score was higher for the control group. Injection had no discernible effect on fertility variables.

  20. Optimization of cultural conditions for biosurfactant production by Pleurotus djamor in solid state fermentation.

    PubMed

    Velioglu, Zulfiye; Ozturk Urek, Raziye

    2015-11-01

    Being eco-friendly, less toxic, more biodegradable and biocompatible, biological surfactants have higher activity and stability compared to synthetic ones. In spite of the fact that there are abundant benefits of biosurfactants over the synthetic congeners, the problem related with the economical and large scale production proceeds. The utilization of several industrial wastes in the production media as substrates reduces the production cost. This current study aims optimization of biosurfactant production conditions by Pleurotus djamor, grown on sunflower seed shell, grape wastes or potato peels as renewable cheap substrates in solid state fermentation. After determination of the best substrate for biosurfactant production, we indicate optimum size and amount of solid substrate, volume of medium, temperature, pH and Fe(2+) concentrations on biosurfactant production. In optimum conditions, by reducing water surface tension to 28.82 ± 0.3 mN/m and having oil displacement diameter of 3.9 ± 0.3 cm, 10.205 ± 0.5 g/l biosurfactant was produced. Moreover, chemical composition of biosurfactant produced in optimum condition was determined by FTIR. Lastly, laboratory's large-scale production was carried out in optimum conditions in a tray bioreactor designed by us and 8.9 ± 0.5 g/l biosurfactant was produced with a significant surface activity (37.74 ± 0.3 mN/m). With its economical suggestions and applicability of laboratory's large-scale production, this work indicates the possibility of using low cost agro-industrial wastes as renewable substrates for biosurfactant production. Therefore, using economically produced biosurfactant will reduce cost in several applications such as bioremediation, oil recovery and biodegradation of toxic chemicals.

  1. Life cycle assessment of biofuel production from brown seaweed in Nordic conditions.

    PubMed

    Alvarado-Morales, Merlin; Boldrin, Alessio; Karakashev, Dimitar B; Holdt, Susan L; Angelidaki, Irini; Astrup, Thomas

    2013-02-01

    The use of algae for biofuel production is expected to play an important role in securing energy supply in the next decades. A consequential life cycle assessment (LCA) and an energy analysis of seaweed-based biofuel production were carried out in Nordic conditions to document and improve the sustainability of the process. Two scenarios were analyzed for the brown seaweed (Laminaria digitata), namely, biogas production (scenario 1) and bioethanol+biogas production (scenario 2). Potential environmental impact categories under investigation were Global Warming, Acidification and Terrestrial Eutrophication. The production of seaweed was identified to be the most energy intensive step. Scenario 1 showed better performance compared to scenario 2 for all impact categories, partly because of the energy intensive bioethanol separation process and the consequently lower overall efficiency of the system. For improved environmental performance, focus should be on optimization of seaweed production, bioethanol distillation, and management of digestate on land.

  2. Lactate production under fully aerobic conditions: the lactate shuttle during rest and exercise.

    PubMed

    Brooks, G A

    1986-12-01

    O2 insufficiency and other factors increase the rate of lactate production. Significant quantities of lactate are produced under postabsorptive as well as postprandial conditions in resting individuals. In humans during postabsorptive rest, 25-50% of the total carbohydrate combusted appears to pass through the lactate pool. During sustained submaximal (in terms of VO2max) exercise, the rates of lactate production (Ri) and oxidation (Rox) are greatly elevated as compared to rest. However, lactate production and oxidation increase relatively less than O2 consumption during moderate-intensity exercise. Because the lactate production index (RiI = Ri/VO2) decreases during submaximal, moderate-intensity exercise compared to rest, it is concluded that skeletal muscle and other sites of lactate production are effectively oxygenated. Alterations in the levels of circulating catecholamines can affect levels and turnover rates of glucose and lactate. In pure red dog gracilis muscle in situ and in the healthy and myocardium in vivo, contraction results in glycolysis and lactate production. This production of lactate occurs despite an apparent abundance of O2. Similarly, glucose catabolism in the human brain results in lactate production. The formation of lactate under fully aerobic conditions of rest and exercise represents an important mechanism by which different tissues share a carbon source (lactate) for oxidation and other processes such as gluconeogenesis. This mechanism has been termed the lactate shuttle.

  3. Nitrous oxide production by Alcaligenes faecalis under transient and dynamic aerobic and anaerobic conditions

    SciTech Connect

    Otte, S.; Grobben, N.G.; Robertson, L.A.; Jetten, M.S.M.; Kuenen, J.G.

    1996-07-01

    Nitrous oxide production contributes to both greenhouse effect and ozone depletion in the stratosphere. A significant part of the global N2O emission can be attributed to microbial processes, especially nitrification and denitrification, used in biological wastewater treatment systems. This study looks at the efficiency of denitrification and the enzymes involved, with the emphasis on N2O production during the transient phase from aerobic to anaerobic conditions and vice versa. The effect of repetitive changing aerobic-anaerobic conditions on N2O was also studied. Alcaligenes faecalis was used as the model denitrofing organism. 35 refs., 3 figs., 1 tab.

  4. Improved hydrogen production under microaerophilic conditions by overexpression of polyphosphate kinase in Enterobacter aerogenes.

    PubMed

    Lu, Yuan; Zhang, Chong; Lai, Qiheng; Zhao, Hongxin; Xing, Xin-Hui

    2011-02-08

    Effects of different microaerophilic conditions on cell growth, glucose consumption, hydrogen production and cellular metabolism of wild Enterobacter aerogenes strain and polyphosphate kinase (PPK) overexpressing strain were systematically studied in this paper, using NaH(2)PO(4) as the phosphate sources. Under different microaerophilic conditions, PPK-overexpressing strain showed better cell growth, glucose consumption and hydrogen production than the wild strain. In the presence of limited oxygen (2.1%) and by PPK overexpression, the hydrogen production per liter of culture, the hydrogen production per cell and the hydrogen yield per mol of glucose increased by 20.1%, 12.3% and 10.8%, respectively, compared with the wild strain under strict anaerobic conditions. Metabolic analysis showed that the increase of the total hydrogen yield was attributed to the improvement of NADH pathway. The result of more reductive cellular oxidation state balance also further demonstrated that, under proper initial microaerophilic conditions and by PPK overexpression, the cell could adjust the cellular redox states and make more energy flow into hydrogen production pathways.

  5. Heat and moisture diffusion in slab products due to convective boundary condition

    NASA Astrophysics Data System (ADS)

    Yilbas, B. S.; Hussain, M. M.; Dincer, I.

    2002-08-01

    In the present study, a closed form solution for the temperature distributions inside the solid substrate due to convective boundary condition at the surface is presented, particularly for drying applications. The analytical solution for the diffusion equation is introduced with constant concentration at the surface case. Temperature and moisture distributions inside apple slab are computed in this regard. It is found that temperature rises rapidly in the surface region of the substrate material during the early heating period and as the heating period progresses, temperature gradient attains almost steady value with advancing time. Moisture content variation in the surface region is considerably high in the early period and as time progresses, the rate of change of concentration in the substrate reduces. The present model is verified with actual data for heat conduction and moisture diffusion and a considerably high agreement is found.

  6. Linguistic Theory and Actual Language.

    ERIC Educational Resources Information Center

    Segerdahl, Par

    1995-01-01

    Examines Noam Chomsky's (1957) discussion of "grammaticalness" and the role of linguistics in the "correct" way of speaking and writing. It is argued that the concern of linguistics with the tools of grammar has resulted in confusion, with the tools becoming mixed up with the actual language, thereby becoming the central…

  7. Enhanced production of bacterial cellulose by using Gluconacetobacter hansenii NCIM 2529 strain under shaking conditions.

    PubMed

    Mohite, Bhavna V; Salunke, Bipinchandra K; Patil, Satish V

    2013-03-01

    Bacterial cellulose (BC), a biopolymer, due to its unique properties is valuable for production of vital products in food, textile, medicine, and agriculture. In the present study, the optimal fermentation conditions for enhanced BC production by Gluconacetobacter hansenii NCIM 2529 were investigated under shaking conditions. The investigation on media components and culture parameters revealed that 2 % (w/v) sucrose as carbon source, 0.5 % (w/v) potassium nitrate as nitrogen source, 0.4 % (w/v) disodium phosphate as phosphate source, 0.04 % (w/v) magnesium sulfate, and 0.8 % (w/v) calcium chloride as trace elements, pH5.0, temperature 25 °C, and agitation speed 170 rpm with 6 days of fermentation period are optimal for maximum BC production. Production of BC using optimized media components and culture parameters was 1.66 times higher (5.0 g/l) than initial non optimized media (3.0 g/l). Fourier transform infrared spectroscopy spectrum and comparison with the available literature suggests that the produced component by G. hansenii in the present study is pure bacterial cellulose. The specific action of cellulase out of the investigated hydrolytic enzymes (cellulase, amylase, and protease) further confirmed purity of the produced BC. These findings give insight into conditions necessary for enhanced production of bacterial cellulose, which can be used for a variety of applications.

  8. Estuarine production of resident and nursery fish species: Conditioning by drought events?

    NASA Astrophysics Data System (ADS)

    Dolbeth, M.; Martinho, F.; Viegas, I.; Cabral, H.; Pardal, M. A.

    2008-06-01

    The production of resident ( Pomatoschistus minutus and Pomatoschistus microps) and marine juvenile fish species using the Mondego estuary (central Portugal) as nursery grounds ( Dicentrarchus labrax, Platichthys flesus, Solea solea), was assessed in order to: (1) understand the potential of the estuary for fish production; (2) know the production of nursery fish species likely to be exported to the coastal stocks; and (3) how anthropogenic and natural stress could influence the estimated production. Sampling occurred from June 2003 to May 2006 and together the 5 species in study comprised around 70% of the whole fish community numbers and biomass. Increasing drought conditions were observed, starting with a normal hydrological year in 2003 until attaining a severe drought in 2005, which resulted in low river discharges (1/3 of the mean river discharges in 2003). Additionally, high water temperatures were observed in 2003 and 2005 (24 and 26 °C, night temperatures). The secondary production was estimated using the increment summation method, after recognition of the cohorts. Production was in general lower in the Mondego estuary when compared to other systems, which was associated to the estuary's small area (only 3.4 km 2, less than 1/4 of area compared to other studied systems). Dicentrarchus labrax was among the most productive species. Production decreased in the drought year for all species, especially evident for D. labrax, P. minutus and P. flesus. No direct effects could be attributable to the salinity and temperature variations and to the low freshwater discharges (resulting from the drought and high temperatures), yet these were pointed as probable major reasons for the decreased production. A significant reduction (15-45% reduction in the estuarine production) was also concluded for the potential production to be exported for coastal areas by the nursery species in the drought conditions.

  9. The characterization of coal liquefaction products obtained under an inert atmosphere and catalytic conditions. Part II: Soluble products

    SciTech Connect

    Karaca, H.

    2006-03-15

    Beypazari and Tuncbilek lignite were liquefied using two different catalyst methods physically mixing and impregnation. The liquefaction occurred under conditions of inert atmosphere and various process parameters. Solvent to coal ratio, pressure, catalyst type, catalyst concentration, temperature, and time were examined as process parameters. The most appropriate parameters for the total soluble products obtained by liquefaction of both lignites and for elemental analysis of preasphaltenes were determined as follows: 2/1 solvent to coal ratio; from 1.25 MPa to 2.50 MPa initial nitrogen pressure; Fe{sub 2}O{sub 3} and Mo(CO){sub 6} as catalyst types; 3% as catalyst concentration; 400{sup o}C as reaction temperature; and 60 min as reaction time. In general, fuel quality of both preasphaltene and total soluble products decreased as temperature increased above 400{sup o}C and reaction time exceeded 60 min. The fuel quality of the preasphaltenes and the total soluble products obtained under the catalytic conditions and in the state of impregnation of catalyst onto coal is higher than under the noncatalytic conditions and in the state of physically mixing of catalyst.

  10. Estimation of shortwave radiation using MODIS products under all sky conditions

    NASA Astrophysics Data System (ADS)

    Jang, K.; Kang, S.

    2010-12-01

    Shortwave radiation (Rs) is one of key components in the surface energy budget and is vitally important for climate study and many other applications such as hydrological modeling, climate monitoring, weather prediction, agricultural meteorology and air-sea-ice interaction study. The accurate monitoring of Rs is a fundamental process in various meteorological and ecological studies including estimations of net radiation, evapotranspiration, and vegetation productivity. Among numerous methods for estimating Rs, satellite remote sensing data such as Moderate Resolution Imaging Spectroradometer (MODIS) offers a promising technique for estimating Rs with 1-km pixel resolution and is useful to monitor regional or global energy balance and land surface biophysical processes. But it is hampered by frequent cloud contamination. The missing data due to cloud contamination in some pixels identified as a major factor contributing to the low retrieval rate of Rs. The objective of this study, therefore, is estimation of Rs using MODIS atmosphere and land products under clear and cloudy sky conditions. Under clear sky condition, Rs is estimated using a combination of MODIS04, MODIS06, MODIS07, and MODIS43 products. To estimate Rs under cloudy sky condition, MODIS06 cloud product and MODIS04 aerosol product are utilized. Incoming shortwave radiation (Rsd) is estimated by using cloud fraction and cloud optical thickness with potential clear sky shortwave radiation, which can be calculated by using atmospheric transmittance and extraterrestrial shortwave radiation. Outgoing shortwave radiation (Rsup) is calculated by applying MODIS43 albedo data to the Rsd. Incoming shortwave radiation derived from MODIS products for cloudy condition is validated by both 22 National Weather Stations (NWS), which showed good agreements. Also we compared MODIS-based Rsd and Rsup with two flux tower observations for 2006 in Korea. The results showed good accuracy with +12.60 (112.81) W m-2 of bias

  11. Effects of two different broiler flooring systems on production performances, welfare, and environment under commercial production conditions.

    PubMed

    Li, H; Wen, X; Alphin, R; Zhu, Z; Zhou, Z

    2017-03-03

    Research comparing conventional litter and alternative perforated flooring (netting) systems is relatively limited under commercial production conditions. A comprehensive comparison of broiler production performances, welfare quality, and housing environment of two broiler houses with conventional litter and new perforated plastic floors was conducted over four flocks for eight months in eastern China. The two broiler houses each had 31,700 broilers per flock on average and were ventilated using a negative-pressure system. Prior to the onset of the monitoring, litter/manure in all houses was removed. The environmental conditions, gaseous concentrations, and ventilation rate were recorded continuously. Production performance and welfare quality data were collected weekly. Results showed that indoor temperature and relative humidity were not affected by the different floors when the two houses had the same ventilation configuration and management. The average ammonia concentration was lower at 10.44 ppm in the litter house compared to 15.02 ppm in the netting flooring house due to the manure accumulation under the floor. Broiler production performance including live weight, feed conversion, and mortality, was not affected by the netting floor compared to the litter system. In addition, the results suggested that birds raised in the netting floor house may increase breast blister incidence. In this study, the welfare quality parameters including hock and foot pad lesions, lameness, and fearfulness levels were similar in both for both flooring systems.

  12. 7 CFR 735.110 - Conditions for delivery of agricultural products.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 7 2014-01-01 2014-01-01 false Conditions for delivery of agricultural products. 735.110 Section 735.110 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY, DEPARTMENT OF AGRICULTURE REGULATIONS FOR WAREHOUSES REGULATIONS FOR THE UNITED STATES...

  13. 7 CFR 735.110 - Conditions for delivery of agricultural products.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 7 2012-01-01 2012-01-01 false Conditions for delivery of agricultural products. 735.110 Section 735.110 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY, DEPARTMENT OF AGRICULTURE REGULATIONS FOR WAREHOUSES REGULATIONS FOR THE UNITED STATES...

  14. Antibiotics from Pseudomonas reptilivora I. Taxonomic Classification and Optimal Conditions of Fermentation for Antibiotic Production

    PubMed Central

    Rio, Luis A. Del; Olivares, J.; Blesa, M. C.; Mayor, F.

    1972-01-01

    A bacterium able to produce wide-spectrum antibiotic substances was isolated from a plant extract. The antibiotic-producing bacterium was identified as Pseudomonas reptilivora after suitable morphological and biochemical assays. Optimal yield conditions for antibiotic production in liquid medium have been established. PMID:4790557

  15. 7 CFR 735.110 - Conditions for delivery of agricultural products.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 7 2011-01-01 2011-01-01 false Conditions for delivery of agricultural products. 735.110 Section 735.110 Agriculture Regulations of the Department of Agriculture (Continued) FARM SERVICE AGENCY, DEPARTMENT OF AGRICULTURE REGULATIONS FOR WAREHOUSES REGULATIONS FOR THE UNITED STATES WAREHOUSE ACT Warehouse Licensing §...

  16. 7 CFR 735.110 - Conditions for delivery of agricultural products.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... AGENCY, DEPARTMENT OF AGRICULTURE REGULATIONS FOR WAREHOUSES REGULATIONS FOR THE UNITED STATES WAREHOUSE ACT Warehouse Licensing § 735.110 Conditions for delivery of agricultural products. (a) In the absence of a lawful excuse, a warehouse operator will, without unnecessary delay, deliver the...

  17. Aflatoxin and Ochratoxin Production by Aspergillus Species Under Ex Vivo Conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Aspergillus species are increasingly important human pathogens. It is not known whether toxic metabolites of many of these pathogenic species can act as virulence factors in aspergillosis. We examined isolates of aflatoxin and ochratoxin-producing species for toxin production in ‘near human’ condit...

  18. The Comparative Effect of Single and Multiple Gloss Conditions on EFL Learners' Vocabulary Retention and Production

    ERIC Educational Resources Information Center

    Khabiri, Mona; Akbarpour, Raheleh

    2011-01-01

    Vocabulary glosses are considered effective learning tools since they decrease incorrect meaning inferences from context while keeping reading uninterrupted. The purpose of the present study was to examine the impact of different gloss conditions on intermediate EFL learners' vocabulary retention and production. The participants were 101 EFL…

  19. Effects of packaging and heat transfer kinetics on drug-product stability during storage under uncontrolled temperature conditions.

    PubMed

    Nakamura, Toru; Yamaji, Takayuki; Takayama, Kozo

    2013-05-01

    To predict the stability of pharmaceutical preparations under uncontrolled temperature conditions accurately, a method to compute the average reaction rate constant taking into account the heat transfer from the atmosphere to the product was developed. The average reaction rate constants computed with taken into consideration heat transfer (κ(re) ) were then compared with those computed without taking heat transfer into consideration (κ(in) ). The apparent thermal diffusivity (κ(a) ) exerted some influence on the average reaction rate constant ratio (R, R = κ(re) /κ(in) ). In the regions where the κ(a) was large (above 1 h(-1) ) or very small, the value of R was close to 1. On the contrary, in the middle region (0.001-1 h(-1) ), the value of R was less than 1.The κ(a) of the central part of a large-size container and that of the central part of a paper case of 10 bottles of liquid medicine (100 mL) fell within this middle region. On the basis of the above-mentioned considerations, heat transfer may need to be taken into consideration to enable a more accurate prediction of the stability of actual pharmaceutical preparations under nonisothermal atmospheres.

  20. Comment on 'Shang S. 2012. Calculating actual crop evapotranspiration under soil water stress conditions with appropriate numerical methods and time step. Hydrological Processes 26: 3338-3343. DOI: 10.1002/hyp.8405'

    NASA Technical Reports Server (NTRS)

    Yatheendradas, Soni; Narapusetty, Balachandrudu; Peters-Lidard, Christa; Funk, Christopher; Verdin, James

    2014-01-01

    A previous study analyzed errors in the numerical calculation of actual crop evapotranspiration (ET(sub a)) under soil water stress. Assuming no irrigation or precipitation, it constructed equations for ET(sub a) over limited soil-water ranges in a root zone drying out due to evapotranspiration. It then used a single crop-soil composite to provide recommendations about the appropriate usage of numerical methods under different values of the time step and the maximum crop evapotranspiration (ET(sub c)). This comment reformulates those ET(sub a) equations for applicability over the full range of soil water values, revealing a dependence of the relative error in numerical ET(sub a) on the initial soil water that was not seen in the previous study. It is shown that the recommendations based on a single crop-soil composite can be invalid for other crop-soil composites. Finally, a consideration of the numerical error in the time-cumulative value of ET(sub a) is discussed besides the existing consideration of that error over individual time steps as done in the previous study. This cumulative ET(sub a) is more relevant to the final crop yield.

  1. Productivity and indoor environmental conditions research: An annotated bibliography for facility engineers. Final report

    SciTech Connect

    Lister, D.B.; Jenicek, E.M.; Preissner, P.F.

    1998-07-01

    Since the energy crisis in the mid-1970s to the renewed interest in reducing the nation`s energy consumption, conservation strategies often have been employed with little regard to their impact on the occupants of the affected buildings. Austere conditions created by the overly zealous mentality that pervaded the facility engineering community in the seventies made building occupants quite uncomfortable and affected their productivity. Today, energy conservation and efficiency-improving measures are again being implemented, but with more emphasis on finding ways to conserve energy while creating comfortable and productive work environments. This annotated bibliography summarizes past and current research that addresses how environmental conditions impact the comfort, workplace satisfaction, and productivity of building occupants. It is intended as a resource to help inform the decisions of facility engineers and managers in the development and implementation of energy conservation strategies.

  2. Optimization of fermentation condition favoring butanol production from glycerol by Clostridium pasteurianum DSM 525.

    PubMed

    Sarchami, Tahereh; Johnson, Erin; Rehmann, Lars

    2016-05-01

    Butanol is a promising biofuel and valuable platform chemical that can be produced through fermentative conversion of glycerol. The initial fermentation conditions for butanol production from pure glycerol by Clostridium pasteurianum DSM 525 were optimized via a central composite design. The effect of inoculum age, initial cell density, initial pH of medium and temperature were quantified and a quadratic model was able to predict butanol yield as a function of all four investigated factors. The model was confirmed through additional experiments and via analysis of variance (ANOVA). Subsequently, numerical optimization was used to maximize the butanol yield within the experimental range. Based on these results, batch fermentations in a 7 L bioreactor were performed using pure and crude (residue from biodiesel production) glycerol as substrates at optimized conditions. A butanol yield of 0.34 mole(butanol) mole(-1)(glycerol) was obtained indicating the suitability of this feedstock for fermentative butanol production.

  3. Enhancement of Exopolysaccharide Production of Lactobacillus fermentum TDS030603 by Modifying Culture Conditions.

    PubMed

    Shi, Tala; Aryantini, Ni Putu Desy; Uchida, Kenji; Urashima, Tadasu; Fukuda, Kenji

    2014-01-01

    To optimize culture conditions that enhance production of a highly viscous exopolysaccharide of Lactobacillus fermentum TDS030603, a chemically defined medium was examined. The best yield was found to be 199 ± 23 mg/l when 48-hr cultivation was microaerobically performed at 30°C in the chemically defined medium supplemented with 5% glucose and 1% ammonium citrate without pH control. In response to the optimized exopolysaccharide production, the mRNA expression levels of epsB, epsE, and epsG elevated significantly. Our results indicated that the optimal C/N ratio and/or microaerobic condition can alter the expression levels of several exopolysaccharide biosynthesis-related genes promoting the exopolysaccharide production yield.

  4. Accessibility condition of wave propagation and multicharged ion production in electron cyclotron resonance ion source plasma

    SciTech Connect

    Kato, Yushi Yano, Keisuke; Nishiokada, Takuya; Nagaya, Tomoki; Kimura, Daiju; Kumakura, Sho; Imai, Youta; Hagino, Shogo; Otsuka, Takuro; Sato, Fuminobu

    2016-02-15

    A new tandem type source of electron cyclotron resonance (ECR) plasmas has been constructing for producing synthesized ion beams in Osaka University. Magnetic mirror field configuration with octupole magnets can be controlled to various shape of ECR zones, namely, in the 2nd stage plasma to be available by a pair mirror and a supplemental coil. Noteworthy correlations between these magnetic configurations and production of multicharged ions are investigated in detail, as well as their optimum conditions. We have been considering accessibility condition of electromagnetic and electrostatic waves propagating in ECR ion source plasma, and then investigated their correspondence relationships with production of multicharged ions. It has been clarified that there exits efficient configuration of ECR zones for producing multicharged ion beams experimentally, and then has been suggested from detail accessibility conditions on the ECR plasma that new resonance, i.e., upper hybrid resonance, must have occurred.

  5. Accessibility condition of wave propagation and multicharged ion production in electron cyclotron resonance ion source plasma.

    PubMed

    Kato, Yushi; Yano, Keisuke; Nishiokada, Takuya; Nagaya, Tomoki; Kimura, Daiju; Kumakura, Sho; Imai, Youta; Hagino, Shogo; Otsuka, Takuro; Sato, Fuminobu

    2016-02-01

    A new tandem type source of electron cyclotron resonance (ECR) plasmas has been constructing for producing synthesized ion beams in Osaka University. Magnetic mirror field configuration with octupole magnets can be controlled to various shape of ECR zones, namely, in the 2nd stage plasma to be available by a pair mirror and a supplemental coil. Noteworthy correlations between these magnetic configurations and production of multicharged ions are investigated in detail, as well as their optimum conditions. We have been considering accessibility condition of electromagnetic and electrostatic waves propagating in ECR ion source plasma, and then investigated their correspondence relationships with production of multicharged ions. It has been clarified that there exits efficient configuration of ECR zones for producing multicharged ion beams experimentally, and then has been suggested from detail accessibility conditions on the ECR plasma that new resonance, i.e., upper hybrid resonance, must have occurred.

  6. Assessment of production risks for winter wheat in different German regions under climate change conditions

    NASA Astrophysics Data System (ADS)

    Kersebaum, K. C.; Gandorfer, M.; Wegehenkel, M.

    2012-04-01

    The study shows climate change impacts on wheat production in selected regions across Germany. To estimate yield and economic effects the agro-ecosystem model HERMES was used. The model performed runs using 2 different releases of the model WETTREG providing statistically downscaled climate change scenarios for the weather station network of the German Weather Service. Simulations were done using intersected GIS information on soil types and land use identifying the most relevant sites for wheat production. The production risks for wheat yields at the middle of this century were compared to a reference of the present climate. The irrigation demand was determined by the model using an automatic irrigation mode. Production risks with and without irrigation were assessed and the economic feasibility to reduce production risks by irrigation was evaluated. Costs and benefits were compared. Additionally, environmental effects, e.g. groundwater recharge and nitrogen emissions were assessed for irrigated and rain fed systems. Results show that positive and negative effects of climate change occur within most regions depending on the site conditions. Water holding capacity and groundwater distance were the most important factors which determined the vulnerability of sites. Under climate change condition in the middle of the next century we can expect especially at sites with low water holding capacity decreasing average gross margins, higher production risks and a reduced nitrogen use efficiency under rainfed conditions. Irrigation seems to be profitable and risk reducing at those sites, provided that water for irrigation is available. Additionally, the use of irrigation can also increase nitrogen use efficiency which reduced emissions by leaching. Despite the site conditions results depend strongly on the used regional climate scenario and the model approach to consider the effect of elevated CO2 in the atmosphere.

  7. Effects of climate on the productivity of desert truffles beneath hyper-arid conditions

    NASA Astrophysics Data System (ADS)

    Bradai, Lyès; Bissati, Samia; Chenchouni, Haroun; Amrani, Khaled

    2015-07-01

    Desert truffles are edible hypogenous fungi that are very well adapted to conditions of aridity in arid and semi-arid regions. This study aims to highlight the influence of climatic factors on the productivity of desert truffles under hyper-arid climatic conditions of the Sahara Desert in Algeria, with assumptions that the more varying climatic factors, mainly rainfall, are more crucial for the development and production of desert truffles. At seven separate sites, desert truffles were collected by systematic sampling between 2006 and 2012. The effects of climate parameters of each site on the productivities (g/ha/year) of desert truffle species were tested using generalized linear models (GLMs). The annual mean of the total production recorded for all three harvested species ( Terfezia arenaria, Terfezia claveryi, and Tirmania nivea) was 785.43 ± 743.39 g/ha. Tirmania nivea was commonly present over the sampled sites with an occurrence of 70 ± 10.1 %. GLMs revealed that total and specific productivities were closely positively related to autumnal precipitations occurring during October-December, which is the critical pre-breeding period for both desert truffles and host plant species. The other climatic parameters have statistically no effect on the annual variation of desert truffle productivity.

  8. Siderophore production by Bacillus megaterium: effect of growth phase and cultural conditions.

    PubMed

    Santos, Sofia; Neto, Isabel F F; Machado, Manuela D; Soares, Helena M V M; Soares, Eduardo V

    2014-01-01

    Siderophore production by Bacillus megaterium was detected, in an iron-deficient culture medium, during the exponential growth phase, prior to the sporulation, in the presence of glucose; these results suggested that the onset of siderophore production did not require glucose depletion and was not related with the sporulation. The siderophore production by B. megaterium was affected by the carbon source used. The growth on glycerol promoted the very high siderophore production (1,182 μmol g(-1) dry weight biomass); the opposite effect was observed in the presence of mannose (251 μmol g(-1) dry weight biomass). The growth in the presence of fructose, galactose, glucose, lactose, maltose or sucrose, originated similar concentrations of siderophore (546-842 μmol g(-1) dry weight biomass). Aeration had a positive effect on the production of siderophore. Incubation of B. megaterium under static conditions delayed and reduced the growth and the production of siderophore, compared with the incubation in stirred conditions.

  9. Effects of climate on the productivity of desert truffles beneath hyper-arid conditions.

    PubMed

    Bradai, Lyès; Bissati, Samia; Chenchouni, Haroun; Amrani, Khaled

    2015-07-01

    Desert truffles are edible hypogenous fungi that are very well adapted to conditions of aridity in arid and semi-arid regions. This study aims to highlight the influence of climatic factors on the productivity of desert truffles under hyper-arid climatic conditions of the Sahara Desert in Algeria, with assumptions that the more varying climatic factors, mainly rainfall, are more crucial for the development and production of desert truffles. At seven separate sites, desert truffles were collected by systematic sampling between 2006 and 2012. The effects of climate parameters of each site on the productivities (g/ha/year) of desert truffle species were tested using generalized linear models (GLMs). The annual mean of the total production recorded for all three harvested species (Terfezia arenaria, Terfezia claveryi, and Tirmania nivea) was 785.43 ± 743.39 g/ha. Tirmania nivea was commonly present over the sampled sites with an occurrence of 70 ± 10.1%. GLMs revealed that total and specific productivities were closely positively related to autumnal precipitations occurring during October-December, which is the critical pre-breeding period for both desert truffles and host plant species. The other climatic parameters have statistically no effect on the annual variation of desert truffle productivity.

  10. Non-limiting food conditions for growth and production of the copepod community in a highly productive upwelling zone

    NASA Astrophysics Data System (ADS)

    Escribano, Rubén; Bustos-Ríos, Evelyn; Hidalgo, Pamela; Morales, Carmen E.

    2016-09-01

    Zooplankton production is critical for understanding marine ecosystem dynamics. This work estimates copepod growth and production in the coastal upwelling and coastal transition zones off central-southern Chile (~35 to 37°S) during a 3-year time series (2004, 2005, and 2006) at a fixed shelf station, and from spring-summer spatial surveys during the same period. To estimate copepod production (CP), we used species-biomasses and associated C-specific growth rates from temperature dependent equations (food-saturated) for the dominant species, which we assumed were maximal growth rates (gmax). Using chlorophyll-a concentrations as a proxy for food conditions, we determined a size-dependent half-saturation constant with the Michaelis-Menten equation to derive growth rates (g) under the effect of food limitation. These food-dependent C-specific growth rates were much lower (<0.1 d-1) than those observed in the field for the dominant species, while gmax for same species, in the range of 0.19-0.23 d-1 better represented the necessary growth to attain observed adult sizes of at least two copepods, Paracalanus cf. indicus and Calanus chilensis. Copepod biomass (CB) and rates of maximal copepod production (CPmax) obtained with gmax were higher in the coastal upwelling zone (<50 km from shore), and correlated significantly to oceanographic variables associated with upwelling conditions. Both CPmax and gmax exhibited negative trends at the fixed station from 2004 to 2006 in association with increased duration of upwelling in the latter year. Annual CPmax ranged between 24 and 52 g C m-2 y-1 with a mean annual P/B ratio of 7.3. We concluded that interannual variation in copepod production resulted from factors and processes regulating copepod abundance and biomass in the absence of bottom-up control, allowing copepods to grow without limitation due to food resources.

  11. Mechanisms of hydroxyl radical production from abiotic oxidation of pyrite under acidic conditions

    NASA Astrophysics Data System (ADS)

    Zhang, Peng; Yuan, Songhu; Liao, Peng

    2016-01-01

    Hydroxyl radicals (radOH) produced from pyrite oxidation by O2 have been recognized, but mechanisms regarding the production under anoxic and oxic conditions are not well understood. In this study, the mechanisms of radOH production from pyrite oxidation under anoxic and oxic conditions were explored using benzoic acid (BA) as an radOH probe. Batch experiments were conducted at pH 2.6 to explore radOH production under anoxic and oxic conditions. The cumulative radOH concentrations produced under anoxic and oxic conditions increased linearly to 7.5 and 52.2 μM, respectively within 10 h at 10 g/L pyrite. Under anoxic conditions, radOH was produced from the oxidation of H2O on the sulfur-deficient sites on pyrite surface, showing an increased production with the increase of pyrite surface exposure due to oxidation. Under oxic conditions, the formation of radOH proceeds predominantly via the two-electron reduction of O2 on pyrite surface along with a minor contribution from the oxidation of H2O on surface sulfur-defects and the reactions of Fe2+/sulfur intermediates with O2. For both O2 reduction and H2O oxidation on the surface sulfur-defects, H2O2 was the predominant intermediate, which subsequently transformed to radOH through Fenton mechanism. The radOH produced had a significant impact on the transformation of contaminants in the environment. Anoxic pyrite suspensions oxidized 13.9% As(III) (C0 = 6.67 μM) and 17.6% sulfanilamide (C0 = 2.91 μM) within 10 h at pH 2.6 and 10 g/L pyrite, while oxic pyrite suspensions improved the oxidation percentages to 55.4% for As(III) and 51.9% for sulfanilamide. The ratios of anoxic to oxic oxidation are consistent with the relative contribution of surface sulfur-defects to radOH production. However, Fe2+ produced from pyrite oxidation competed with the contaminants for radOH, which is of particular significance with the increase of time in a static environment. We conclude that radOH can be produced from abiotic oxidation of

  12. Influence of sound-conditioning on noise-induced susceptibility of distortion-product otoacoustic emissions.

    PubMed

    Luebke, Anne E; Stagner, Barden B; Martin, Glen K; Lonsbury-Martin, Brenda L

    2015-07-01

    Cochlear damage caused by loud sounds can be attenuated by "sound-conditioning" methods. The amount of adaptation for distortion product otoacoustic emissions (DPOAEs) measured in alert rabbits previously predicted an ear's susceptibility to a subsequent noise exposure. The present study investigated if sound-conditioning influenced the robustness of such DPOAE adaptation, and if such conditioning elicited more protection by increasing the amount of DPOAE adaptation. Toward this end, rabbits were divided into two study groups: (1) experimental animals exposed to a sound-conditioning protocol, and (2) unconditioned control animals. After base-line measures, all rabbits were exposed to an overstimulation paradigm consisting of an octave band noise, and then re-assessed 3 weeks post-exposure to determine permanent changes in DPOAEs. A major result was that prior sound-conditioning protected reductions in DPOAE levels by an average of 10-15 dB. However, DPOAE adaptation decreased with sound-conditioning, so that such conditioning was no longer related to noise-induced reductions in DPOAEs. Together, these findings suggest that sound-conditioning affected neural pathways other than those that likely mediate DPOAE adaptation (e.g., medial olivocochlear efferent and/or middle-ear muscle reflexes).

  13. Statistical optimization of pigment production by Monascus sanguineus under stress condition.

    PubMed

    Dikshit, Rashmi; Tallapragada, Padmavathi

    2014-01-01

    Natural pigments are produced by the Monascus sp., which are used for coloring food substances. The intent of this study was to optimize the pigment yield and biomass produced from the unexplored Monascus sanguineus in submerged culture under stress conditions. For inducing thermal stress, the spores were incubated at various temperatures at higher ranges. For inducing osmotic stress, varied concentrations of NaCl, glycerol, and peptone were used. The medium components were optimized by response surface methodology (RSM). The combined effects of the four medium constituents mentioned were studied using a 2⁴ full factorial central composite design (CCD). The relationships between the predicted values and actual values, independent variable, and the response were calculated according to a second-order quadratic model. It was deduced that the variable with the leading effect was the linear effect of glycerol concentration. Furthermore, the quadratic effects of peptone and the interactive effects of temperature and glycerol were more noteworthy than other factors. The optimum values for the test variables in coded factors were found to be spores treated with 70°C for temperature, 0.25 M for glycerol, 0.51% (w/v) for peptone, and 1.25% (w/v) for NaCl, corresponding to a maximum red pigment yield of 55.67 color value units (CVU)/mL. With optimized conditions, the pigment yield was almost three times the yield observed with the control.

  14. Heat-and-mass transfer analysis from vegetable and fruit products stored in cold conditions

    NASA Astrophysics Data System (ADS)

    Tashtoush, B.

    Heat and mass transfer process taking place during fruit and vegetable products in cold storage are studied. A mathematical model describing these processes is presented and the resulting governing equations are solved for different storing conditions. The relative humidity of the ventilating air and the temperature of the stored product bulk are found for different initial air relative humidity and airflow rates. As the product bulk depth increased up to 4.2m, the relative humidity of the ventilating air approaches the steady state value. When the relative humidity is larger than the equilibrium relative humidity value, an increase in the ventilating air rate reduces the losses of the product during the period of its storage, while larger losses occur when the relative humidity values are lower than the equilibrium ones.

  15. Influence of high gravity process conditions on the environmental impact of ethanol production from wheat straw.

    PubMed

    Janssen, Matty; Tillman, Anne-Marie; Cannella, David; Jørgensen, Henning

    2014-12-01

    Biofuel production processes at high gravity are currently under development. Most of these processes however use sugars or first generation feedstocks as substrate. This paper presents the results of a life cycle assessment (LCA) of the production of bio-ethanol at high gravity conditions from a second generation feedstock, namely, wheat straw. The LCA used lab results of a set of 36 process configurations in which dry matter content, enzyme preparation and loading, and process strategy were varied. The LCA results show that higher dry matter content leads to a higher environmental impact of the ethanol production, but this can be compensated by reducing the impact of enzyme production and use, and by polyethylene glycol addition at high dry matter content. The results also show that the renewable and non-renewable energy use resulting from the different process configurations ultimately determine their environmental impact.

  16. A model for nonvolatile fission product release during reactor accident conditions

    SciTech Connect

    Lewis, B.J.; Andre, B.; Ducros, G.; Maro, D.

    1996-10-01

    An analytical model has been developed to describe the release kinetics of nonvolatile fission products (e.g., molybdenum, cerium, ruthenium, and barium) from uranium dioxide fuel under severe reactor accident conditions. This treatment considers the rate-controlling process of release in accordance with diffusional transport in the fuel matrix and fission product vaporization from the fuel surface into the surrounding gas atmosphere. The effect of the oxygen potential in the gas atmosphere on the chemical form and volatility of the fission product is considered. A correlation is also developed to account for the trapping effects of antimony and tellurium in the Zircaloy cladding. This model interprets the release behavior of fission products observed in Commissariat a l`Energie Atomique experiments conducted in the HEVA/VERCORS facility at high temperature in a hydrogen and steam atmosphere.

  17. Design of experiment analysis of CO2 dielectric barrier discharge conditions on CO production

    NASA Astrophysics Data System (ADS)

    Becker, Markus; Ponduri, Srinath; Engeln, Richard; van de Sanden, Richard; Loffhagen, Detlef

    2016-09-01

    Dielectric barrier discharges (DBD) are frequently used for the generation of CO from CO2 which is of particular interest for syngas production. It has been found by means of fluid modelling in that the CO2 conversion frequency in a CO2 DBD depends linearly on the specific energy input (SEI) while the energy efficiency of CO production is only weakly dependent on the SEI. Here, the same numerical model as in is applied to study systematically the influence of gas pressure, applied voltage amplitude and frequency on the CO2 conversion frequency and the energy efficiency of CO production based on a 2-level 3-factor full factorial experimental design. It is found that the operating conditions of the CO2 DBD for CO production can be chosen to either have an optimal throughput or a better energy efficiency. This work was partly supported by the German Research Foundation within the Collaborative Research Centre Transregio 24.

  18. Pavlovian conditioning of LPS-induced responses: effects on corticosterone, splenic NE, and IL-2 production.

    PubMed

    Janz, L J; Green-Johnson, J; Murray, L; Vriend, C Y; Nance, D M; Greenberg, A H; Dyck, D G

    1996-06-01

    The present study used a taste aversion paradigm to condition lipopolysaccharide (LPS)-induced suppression of splenic lymphocyte interleukin-2 (IL-2) production, with concurrent measurement of corticosterone production and splenic norepinephrine (NE) content). In training, two groups of rats received saccharin and IP LPS in a paired (P) manner and a third group in a specifically unpaired (U) manner. In the test, the unpaired group (group U) and one of the paired (group P) groups were re-exposed (R) to the cue and the other not (NR). An additional group controlled for the effects of cues (conditional stimulus) and fluid deprivation (negative control; NC). A robust taste aversion in the P-R group was accompanied by suppression of IL-2 production, reduced splenic NE content, and elevated corticosterone production, relative to combined controls (i.e., groups U-R, P-NR, and NC). The conditioned modulation of IL-2 secretion, along with the concomitant alteration of adrenocortical and sympathetic mediators, supports the involvement of bidirectional central nervous-immune system pathways in this paradigm.

  19. Nitrous oxide production during nitrification from organic solid waste under temperature and oxygen conditions.

    PubMed

    Nag, Mitali; Shimaoka, Takayuki; Komiya, Teppei

    2016-11-01

    Landfill aeration can accelerate the biological degradation of organic waste and reduce methane production; however, it induces nitrous oxide (N2O), a potent greenhouse gas. Nitrification is one of the pathways of N2O generation as a by-product during aerobic condition. This study was initiated to demonstrate the features of N2O production rate from organic solid waste during nitrification under three different temperatures (20°C, 30°C, and 40°C) and three oxygen concentrations (5%, 10%, and 20%) with high moisture content and high substrates' concentration. The experiment was carried out by batch experiment using Erlenmeyer flasks incubated in a shaking water bath for 72 h. A duplicate experiment was carried out in parallel, with addition of 100 Pa of acetylene as a nitrification inhibitor, to investigate nitrifiers' contribution to N2O production. The production rate of N2O ranged between 0.40 × 10(-3) and 1.14 × 10(-3) mg N/g-DM/h under the experimental conditions of this study. The rate of N2O production at 40°C was higher than at 20°C and 30°C. Nitrification was found to be the dominant pathway of N2O production. It was evaluated that optimization of O2 content is one of the crucial parameters in N2O production that may help to minimize greenhouse gas emissions and N turnover during aeration.

  20. Directed evolution of a cellodextrin transporter for improved biofuel production under anaerobic conditions in Saccharomyces cerevisiae.

    PubMed

    Lian, Jiazhang; Li, Yanglin; HamediRad, Mohammad; Zhao, Huimin

    2014-08-01

    Introduction of a cellobiose utilization pathway consisting of a cellodextrin transporter and a β-glucosidase into Saccharomyces cerevisiae enables co-fermentation of cellobiose and xylose. Cellodextrin transporter 1 (CDT1) from Neurospora crassa has been established as an effective transporter for the engineered cellobiose utilization pathways. However, cellodextrin transporter 2 (CDT2) from the same species is a facilitator and has the potential to be more efficient than CDT1 under anaerobic conditions due to its energetic benefits. Currently, CDT2 has a very low activity and is considered rate-limiting in cellobiose fermentation. Here, we report the directed evolution of CDT2 with an increased cellobiose uptake activity, which results in improved cellobiose fermentation under anaerobic conditions. After three rounds of directed evolution, the cellobiose uptake activity of CDT2 was increased by 2.2-fold, which resulted from both increased specific activity and transporter expression level. Using high cell density fermentation under anaerobic conditions, the evolved mutant conferred 4.0- and 4.4-fold increase in the cellobiose consumption rate and ethanol productivity, respectively. In addition, although the cellobiose uptake activity was still lower than that of CDT1, the engineered CDT2 showed significantly improved cellobiose consumption and ethanol production under anaerobic conditions, representing the energetic benefits of a sugar facilitator for anaerobic cellobiose fermentation. This study demonstrated that anaerobic biofuel production could be significantly improved via directed evolution of a sugar transporter protein in yeast.

  1. Formation Sequences of Iron Minerals in the Acidic Alteration Products and Variation of Hydrothermal Fluid Conditions

    NASA Astrophysics Data System (ADS)

    Isobe, H.; Yoshizawa, M.

    2008-12-01

    Iron minerals have important role in environmental issues not only on the Earth but also other terrestrial planets. Iron mineral species related to alteration products of primary minerals with surface or subsurface fluids are characterized by temperature, acidity and redox conditions of the fluids. We can see various iron- bearing alteration products in alteration products around fumaroles in geothermal/volcanic areas. In this study, zonal structures of iron minerals in alteration products of the geothermal area are observed to elucidate temporal and spatial variation of hydrothermal fluids. Alteration of the pyroxene-amphibole andesite of Garan-dake volcano, Oita, Japan occurs by the acidic hydrothermal fluid to form cristobalite leaching out elements other than Si. Hand specimens with unaltered or weakly altered core and cristobalite crust show various sequences of layers. XRD analysis revealed that the alteration degree is represented by abundance of cristobalite. Intermediately altered layers are characterized by occurrence including alunite, pyrite, kaolinite, goethite and hematite. A specimen with reddish brown core surrounded by cristobalite-rich white crust has brown colored layers at the boundary of core and the crust. Reddish core is characterized by occurrence of crystalline hematite by XRD. Another hand specimen has light gray core, which represents reduced conditions, and white cristobalite crust with light brown and reddish brown layers of ferric iron minerals between the core and the crust. On the other hand, hornblende crystals, typical ferrous iron-bearing mineral of the host rock, are well preserved in some samples with strongly decolorized cristobalite-rich groundmass. Hydrothermal alteration experiments of iron-rich basaltic material shows iron mineral species depend on acidity and temperature of the fluid. Oxidation states of the iron-bearing mineral species are strongly influenced by the acidity and redox conditions. Variations of alteration

  2. Production of antibacterial compounds and biofilm formation by Roseobacter species are influenced by culture conditions.

    PubMed

    Bruhn, Jesper Bartholin; Gram, Lone; Belas, Robert

    2007-01-01

    Bacterial communities associated with marine algae are often dominated by members of the Roseobacter clade, and in the present study, we describe Roseobacter phenotypes that may provide this group of bacteria with selective advantages when colonizing this niche. Nine of 14 members of the Roseobacter clade, of which half were isolated from cultures of the dinoflagellate Pfiesteria piscicida, produced antibacterial compounds. Many non-Roseobacter marine bacteria were inhibited by sterile filtered supernatants of Silicibacter sp. TM1040 and Phaeobacter (formerly Roseobacter) strain 27-4, which had the highest production of antibacterial compound. In contrast, Roseobacter strains were susceptible only when exposed to concentrated compound. The production of antibacterial compound was influenced by the growth conditions, as production was most pronounced when bacteria were grown in liquid medium under static conditions. Under these conditions, Silicibacter sp. TM1040 cells attached to one another, forming rosettes, as has previously been reported for Phaeobacter 27-4. A spontaneous Phaeobacter 27-4 mutant unable to form rosettes was also defective in biofilm formation and the production of antibacterial compound, indicating a possible link between these phenotypes. Rosette formation was observed in 8 of 14 Roseobacter clade strains examined and was very pronounced under static growth in 5 of these strains. Attachment to surfaces and biofilm formation at the air-liquid interface by these five strains was greatly facilitated by growth conditions that favored rosette formation, and rosette-forming strains were 13 to 30 times more efficient in attaching to glass compared to strains under conditions where rosette formation was not pronounced. We hypothesize that the ability to produce antibacterial compounds that principally inhibit non-Roseobacter species, combined with an enhancement in biofilm formation, may give members of the Roseobacter clade a selective advantage and

  3. Hierarchical Satellite-based Approach to Global Monitoring of Crop Condition and Food Production

    NASA Astrophysics Data System (ADS)

    Zheng, Y.; Wu, B.; Gommes, R.; Zhang, M.; Zhang, N.; Zeng, H.; Zou, W.; Yan, N.

    2014-12-01

    The assessment of global food security goes beyond the mere estimate of crop production: It needs to take into account the spatial and temporal patterns of food availability, as well as physical and economic access. Accurate and timely information is essential to both food producers and consumers. Taking advantage of multiple new remote sensing data sources, especially from Chinese satellites, such as FY-2/3A, HJ-1 CCD, CropWatch has expanded the scope of its international analyses through the development of new indicators and an upgraded operational methodology. The new monitoring approach adopts a hierarchical system covering four spatial levels of detail: global (sixty-five Monitoring and Reporting Units, MRU), seven major production zones (MPZ), thirty-one key countries (including China) and "sub- countries." The thirty-one countries encompass more that 80% of both global exports and production of four major crops (maize, rice, soybean and wheat). The methodology resorts to climatic and remote sensing indicators at different scales, using the integrated information to assess global, regional, and national (as well as sub-national) crop environmental condition, crop condition, drought, production, and agricultural trends. The climatic indicators for rainfall, temperature, photosynthetically active radiation (PAR) as well as potential biomass are first analysed at global scale to describe overall crop growing conditions. At MPZ scale, the key indicators pay more attention to crops and include Vegetation health index (VHI), Vegetation condition index (VCI), Cropped arable land fraction (CALF) as well as Cropping intensity (CI). Together, they characterise agricultural patterns, farming intensity and stress. CropWatch carries out detailed crop condition analyses for thirty one individual countries at the national scale with a comprehensive array of variables and indicators. The Normalized difference vegetation index (NDVI), cropped areas and crop condition are

  4. Biofilm formation, phenotypic production of cellulose and gene expression in Salmonella enterica decrease under anaerobic conditions.

    PubMed

    Lamas, A; Miranda, J M; Vázquez, B; Cepeda, A; Franco, C M

    2016-12-05

    Salmonella enterica subsp. enterica is one of the main food-borne pathogens. This microorganism combines an aerobic life outside the host with an anaerobic life within the host. One of the main concerns related to S. enterica is biofilm formation and cellulose production. In this study, biofilm formation, morphotype, cellulose production and transcription of biofilm and quorum sensing-related genes of 11 S. enterica strains were tested under three different conditions: aerobiosis, microaerobiosis, and anaerobiosis. The results showed an influence of oxygen levels on biofilm production. Biofilm formation was significantly higher (P<0.05) in aerobiosis than in microaerobiosis and anaerobiosis. Cellulose production and RDAR (red, dry, and rough) were expressed only in aerobiosis. In microaerobiosis, the strains expressed the SAW (smooth and white) morphotype, while in anaerobiosis the colonies appeared small and red. The expression of genes involved in cellulose synthesis (csgD and adrA) and quorum sensing (sdiA and luxS) was reduced in microaerobiosis and anaerobiosis in all S. enterica strains tested. This gene expression levels were less reduced in S. Typhimurium and S. Enteritidis compared to the tested serotypes. There was a relationship between the expression of biofilm and quorum sensing-related genes. Thus, the results from this study indicate that biofilm formation and cellulose production are highly influenced by atmospheric conditions. This must be taken into account as contamination with these bacteria can occur during food processing under vacuum or modified atmospheres.

  5. Enhanced Bioactive Exopolysaccharide Production by Mossy Maze Polypore, Cerrena unicolor (Higher Basidiomycetes) in Submerged Culture Conditions.

    PubMed

    Altinay, Burcu; Karaduman, Ayse Betul; Gursu, Bukay Yenice; Yamac, Mustafa

    2015-01-01

    In this study, the culture requirements of the Cerrena unicolor OBCC 5005 strain were determined to optimize bioactive exopolysaccharide production in submerged culture. The effects of initial medium pH, carbon and nitrogen sources, inoculum age and amount, and mineral source on exopolysaccharide and mycelial biomass production by the C. unicolor OBCC 5005 strain were studied using a one-factor-at-a-time method. The highest exopolysaccharide production was obtained when culture parameters were used as initial medium pH: 5.5, 5% sucrose, 5% mycological peptone, and 5% of 4-day inoculants in the presence of 5 mM Fe2+. Optimized culture conditions at a flask scale were applied to a 3-L stirred tank reactor. As a result, 7.92 g/L and 7.34 g/L maximum exopolysaccharide production in optimized conditions at flask and stirred-tank reactor scales were achieved, respectively. The present study is the first to prove that C. unicolor can yield high bioactive exopolysaccharide production at flask and stirred-tank reactor scales.

  6. Derivation of matrix product states for the Heisenberg spin chain with open boundary conditions

    NASA Astrophysics Data System (ADS)

    Mei, Zhongtao; Bolech, C. J.

    2017-03-01

    Using the algebraic Bethe Ansatz, we derive a matrix product representation of the exact Bethe-Ansatz states of the six-vertex Heisenberg chain (either X X X or X X Z and spin-1/2 ) with open boundary conditions. In this representation, the components of the Bethe eigenstates are expressed as traces of products of matrices that act on a tensor product of auxiliary spaces. As compared to the matrix product states of the same Heisenberg chain but with periodic boundary conditions, the dimension of the exact auxiliary matrices is enlarged as if the conserved number of spin-flips considered would have been doubled. This result is generic for any non-nested integrable model, as is clear from our derivation, and we further show this by providing an additional example of the same matrix product state construction for a well-known model of a gas of interacting bosons. Counterintuitively, the matrices do not depend on the spatial coordinate despite the open boundaries, and thus they suggest generic ways of exploiting (emergent) translational invariance both for finite size and in the thermodynamic limit.

  7. Continuous matrix product states with periodic boundary conditions and an application to atomtronics

    NASA Astrophysics Data System (ADS)

    Draxler, Damian; Haegeman, Jutho; Verstraete, Frank; Rizzi, Matteo

    2017-01-01

    We introduce a time evolution algorithm for one-dimensional quantum field theories with periodic boundary conditions. This is done by applying the Dirac-Frenkel time-dependent variational principle to the set of translational invariant continuous matrix product states with periodic boundary conditions. Moreover, the ansatz is accompanied with additional boundary degrees of freedom to study quantum impurity problems. The algorithm allows for a cutoff in the spectrum of the transfer matrix and thus has an efficient computational scaling. In particular we study the prototypical example of an atomtronic system—an interacting Bose gas rotating in a ring shaped trap in the presence of a localized barrier potential.

  8. Biogas production and saccharification of Salix pretreated at different steam explosion conditions.

    PubMed

    Horn, Svein J; Estevez, Maria M; Nielsen, Henrik K; Linjordet, Roar; Eijsink, Vincent G H

    2011-09-01

    Different steam explosion conditions were applied to Salix chips and the effect of this pretreatment was evaluated by running both enzymatic hydrolysis and biogas tests. Total enzymatic release of glucose and xylose increased with pretreatment harshness, with maximum values being obtained after pretreatment for 10 min at 210°C. Harsher pretreatment conditions did not increase glucose release, led to degradation of xylose and to formation of furfurals. Samples pretreated at 220 and 230°C initially showed low production of biogas, probably because of inhibitors produced during the pretreatment, but the microbial community was able to adapt and showed high final biogas production. Interestingly, final biogas yields correlated well with sugar yields after enzymatic hydrolysis, suggesting that at least in some cases a 24h enzymatic assay may be developed as a quick method to predict the effects of pretreatment of lignocellulosic biomass on biogas yields.

  9. On the conditions of magma mixing and its bearing on andesite production in the crust.

    PubMed

    Laumonier, Mickael; Scaillet, Bruno; Pichavant, Michel; Champallier, Rémi; Andujar, Joan; Arbaret, Laurent

    2014-12-15

    Mixing between magmas is thought to affect a variety of processes, from the growth of continental crust to the triggering of volcanic eruptions, but its thermophysical viability remains unclear. Here, by using high-pressure mixing experiments and thermal calculations, we show that hybridization during single-intrusive events requires injection of high proportions of the replenishing magma during short periods, producing magmas with 55-58 wt% SiO2 when the mafic end-member is basaltic. High strain rates and gas-rich conditions may produce more felsic hybrids. The incremental growth of crustal reservoirs limits the production of hybrids to the waning stage of pluton assembly and to small portions of it. Large-scale mixing appears to be more efficient at lower crustal conditions, but requires higher proportions of mafic melt, producing more mafic hybrids than in shallow reservoirs. Altogether, our results show that hybrid arc magmas correspond to periods of enhanced magma production at depth.

  10. Trophic conditions govern summer zooplankton production variability along the SE Spanish coast (SW Mediterranean)

    NASA Astrophysics Data System (ADS)

    Yebra, Lidia; Putzeys, Sébastien; Cortés, Dolores; Mercado, Jesús M.; Gómez-Jakobsen, Francisco; León, Pablo; Salles, Soluna; Herrera, Inma

    2017-03-01

    The influence of hydrochemistry and trophic conditions on the coastal zooplankton community metabolic rates was investigated along the southeastern Spanish coast, from Algeciras to Cartagena. Zooplankton metabolism was assessed from measurements of gut fluorescence (GF), electron transport system (ETS) and aminoacyl-tRNA synthetases (AARS) activities. Zooplankton had higher biomass-specific respiration and growth rates in the Mediterranean stations to the East, driven by warmer seawater temperatures. However, zooplankton biomass and abundance were significantly higher in the Alboran Sea and, consequently, the zooplankton community in these coastal waters presented the highest production rates of the study area and among the highest of the Mediterranean Sea. We observed that summer zooplankton production variability was driven by the trophic conditions rather than by the hydrological variability.

  11. Research of products of high temperature synthesis flowing in the rotation conditions

    NASA Astrophysics Data System (ADS)

    Ksandopulo, G.; Baideldinova, A.; Riabikin, Y.; Mukhina, L.; Ponomareva, E.; Vasilieva, N.

    2017-02-01

    The method of production of materials by out-furnace process of self-propagating high temperature synthesis (SHS), flowing in the conditions of action of centrifugal force, is developed presently. The primary purpose of working is achievement high level of generating of energy and use of it for forming of steady meta-stable crystalline phases with an uncommon set of physical and chemical properties.

  12. How People Actually Use Thermostats

    SciTech Connect

    Meier, Alan; Aragon, Cecilia; Hurwitz, Becky; Mujumdar, Dhawal; Peffer, Therese; Perry, Daniel; Pritoni, Marco

    2010-08-15

    Residential thermostats have been a key element in controlling heating and cooling systems for over sixty years. However, today's modern programmable thermostats (PTs) are complicated and difficult for users to understand, leading to errors in operation and wasted energy. Four separate tests of usability were conducted in preparation for a larger study. These tests included personal interviews, an on-line survey, photographing actual thermostat settings, and measurements of ability to accomplish four tasks related to effective use of a PT. The interviews revealed that many occupants used the PT as an on-off switch and most demonstrated little knowledge of how to operate it. The on-line survey found that 89% of the respondents rarely or never used the PT to set a weekday or weekend program. The photographic survey (in low income homes) found that only 30% of the PTs were actually programmed. In the usability test, we found that we could quantify the difference in usability of two PTs as measured in time to accomplish tasks. Users accomplished the tasks in consistently shorter times with the touchscreen unit than with buttons. None of these studies are representative of the entire population of users but, together, they illustrate the importance of improving user interfaces in PTs.

  13. Growth and Modeling of Staphylococcus aureus in Flour Products under Isothermal and Nonisothermal Conditions.

    PubMed

    Cao, Hui; Wang, Tingting; Yuan, Min; Yu, Jingsong; Xu, Fei

    2017-03-01

    This study was conducted to investigate the growth of Staphylococcus aureus in traditional Chinese flour products under isothermal (10, 15, 20, 25, 30, and 37°C) and nonisothermal (10 to 20, 20 to 30, and 25 to 37°C) conditions. Then, models for the growth of S. aureus in flour products as a function of storage temperature, pH, and water activity (aw) were developed, and the goodness of fit of models was evaluated using the determination coefficient (R(2)), root mean square error (RMSE), bias factor (Bf), and accuracy factor (Af). Based on the above information, S. aureus growth in steamed bread under nonisothermal conditions was predicted from experiments performed under isothermal conditions. It was shown that different combinations of temperature and aw in flour products have a strong influence on the growth of S. aureus . The modified Gompertz model was found to be more suitable for describing the growth data of S. aureus in flour products, with an R(2) of >0.99 and an RMSE of <0.37. The newly developed secondary models were validated, and for the specific growth rate and the lag time, the R(2) values were 0.96 and 0.97, Af was 1.12 and 1.06, and Bf was 1.13 and 1.05, respectively. The predicted nonisothermal growth curves of S. aureus were in agreement with the reported experimental ones, with RMSE <0.29, Af value 1.02 to 1.09, and Bf value 0.92 to 0.99. These results indicated that the predictive models provided useful information for the establishment of safety standards and a risk assessment for S. aureus in flour products.

  14. Mycelial mass production of fungi Duddingtonia flagrans and Monacrosporium thaumasium under different culture conditions

    PubMed Central

    2013-01-01

    Background Duddingtonia flagrans and Monacrosporium thaumasium are promising fungus species in veterinary biological control of gastrointestinal nematodes because of their production capacity of fungal structures (conidia and/or chlamydospores), growth efficiency in laboratory solid media and especially their predatory capacity. However, their large-scale production remains a challenge. This work aimed at evaluating the mycelial mass production of D. flagrans (AC001 and CG722) and M. thaumasium (NF34A) nematophagous fungi under different culture conditions. Results The results did not present significant differences (p > 0.05) in mycelia mass production between the isolates cultured under pH 4.0. Furthermore, after 168 hrs., the isolate CG722 presented a lower production of mycelial mass in medium CM (corn meal) (p < 0.05). Conclusion We therefore concluded the use of culture media SD (soy dextrose) and CG (corn grits) at pH values between 6.0 and 7.0 is suitable for high mycelial mass production of D. flagrans and M. thaumasium. PMID:23985336

  15. Mathematical model of Chlorella minutissima UTEX2341 growth and lipid production under photoheterotrophic fermentation conditions

    PubMed Central

    Yang, JinShui; Rasa, Ehsan; Tantayotai, Prapakorn; Scow, Kate M.; Yuan, HongLi; Hristova, Krassimira R.

    2012-01-01

    To reduce the cost of algal biomass production, mathematical model was developed for the first time to describe microalgae growth, lipid production and glycerin consumption under photoheterotrophic conditions based on logistic, Luedeking–Piret and Luedeking–Piret-like equations. All experiments were conducted in a 2 L batch reactor without considering CO2 effect on algae’s growth and lipid production. Biomass and lipid production increased with glycerin as carbon source and were well described by the logistic and Luedeking–Piret equations respectively. Model predictions were in satisfactory agreement with measured data and the mode of lipid production was growth-associated. Sensitivity analysis was applied to examine the effects of certain important parameters on model performance. Results showed that S0, the initial concentration of glycerin, was the most significant factor for algae growth and lipid production. This model is applicable for prediction of other single cell algal species but model testing is recommended before scaling up the fermentation of process. PMID:21115343

  16. Investigation of the role of flocculation conditions in recuperative thickening on dewatering performance and biogas production.

    PubMed

    Cobbledick, Jeffrey; Zhang, Victor; Rollings-Scattergood, Sasha; Latulippe, David R

    2017-01-04

    There is considerable interest in recuperative thickening (RT), the recycling of partially digested solids in an anaerobic digester outlet stream back into the incoming feed, as a 'high-performance' process to increase biogas production, increase system capacity, and improve biosolids stabilization. While polymer flocculation is commonly used in full-scale RT operations, no studies have investigated the effect of flocculation conditions on RT process performance. Our goal was to investigate the effect of polymer type and dosage conditions on dewatering performance and biogas production in a lab-scale RT system. The type of polymer flocculant significantly affected dewatering performance. For example, the 440 LH polymer (low molecular weight (MW) polyacrylamide) demonstrated lower capillary suction time (CST) and filtrate total suspended solids (TSS) values than the C-6267 polymer (high MW polyacrylamide). An examination of the dewatering performance of RT digesters with different polymers found a strong correlation between CST and filtrate TSS. The type of polymer flocculant had no significant effect on biogas productivity or composition; the methane content was greater than 60% in good agreement with typical results. The optimization of the polymer flocculation conditions is a critical task for which the lab-scale RT system used in this work is ideally suited.

  17. Succinate and Lactate Production from Euglena gracilis during Dark, Anaerobic Conditions

    PubMed Central

    Tomita, Yuko; Yoshioka, Kazumasa; Iijima, Hiroko; Nakashima, Ayaka; Iwata, Osamu; Suzuki, Kengo; Hasunuma, Tomohisa; Kondo, Akihiko; Hirai, Masami Yokota; Osanai, Takashi

    2016-01-01

    Euglena gracilis is a eukaryotic, unicellular phytoflagellate that has been widely studied in basic science and applied science. Under dark, anaerobic conditions, the cells of E. gracilis produce a wax ester that can be converted into biofuel. Here, we demonstrate that under dark, anaerobic conditions, E. gracilis excretes organic acids, such as succinate and lactate, which are bulk chemicals used in the production of bioplastics. The levels of succinate were altered by changes in the medium and temperature during dark, anaerobic incubation. Succinate production was enhanced when cells were incubated in CM medium in the presence of NaHCO3. Excretion of lactate was minimal in the absence of external carbon sources, but lactate was produced in the presence of glucose during dark, anaerobic incubation. E. gracilis predominantly produced L-lactate; however, the percentage of D-lactate increased to 28.4% in CM medium at 30°C. Finally, we used a commercial strain of E. gracilis for succinate production and found that nitrogen-starved cells, incubated under dark, anaerobic conditions, produced 869.6 mg/L succinate over a 3-day incubation period, which was 70-fold higher than the amount produced by nitrogen-replete cells. This is the first study to demonstrate organic acid excretion by E. gracilis cells and to reveal novel aspects of primary carbon metabolism in this organism. PMID:28066371

  18. Production of native arbuscular mycorrhizal fungi inoculum under different environmental conditions.

    PubMed

    Torres-Arias, Yamir; Fors, Rosalba Ortega; Nobre, Camila; Gómez, Eduardo Furrazola; Berbara, Ricardo Luis Louro

    In order to obtain an arbuscular mycorrhizal fungi (AMF) native inoculum from Sierra de Moa and determine the most appropriate conditions for its big scale production, four light and temperature combinations were tested in three plant species (Calophyllum antillanum, Talipariti elatum and Paspalum notatum). Growth and development parameters, as well as the mycorrhizal functioning of the seedlings were evaluated. The natural light treatment under high temperatures (L-H) was the most suitable for the growth and development of the three plant species, showing the highest total biomass values, mainly of root, and a positive root-shoot ratio balance. This treatment also promoted higher values of root mycorrhizal colonization, external mycelium and AMF spore density. A total of 38 AMF species were identified among the plants and environmental conditions tested. Archaeospora sp.1, Glomus sp.5, Glomus brohultii and G. glomerulatum were observed in all the treatments. The L-H condition can be recommended for native inoculum production, as it promotes a better expression of the AM symbiosis and an elevated production of mycorrhizal propagules.

  19. Monitoring of transcriptional regulation in Pichia pastoris under protein production conditions

    PubMed Central

    Gasser, Brigitte; Maurer, Michael; Rautio, Jari; Sauer, Michael; Bhattacharyya, Anamitra; Saloheimo, Markku; Penttilä, Merja; Mattanovich, Diethard

    2007-01-01

    Background It has become evident that host cells react to recombinant protein production with a variety of metabolic and intrinsic stresses such as the unfolded protein response (UPR) pathway. Additionally, environmental conditions such as growth temperature may have a strong impact on cell physiology and specific productivity. However, there is little information about the molecular reactions of the host cells on a genomic level, especially in context to recombinant protein secretion. For the first time, we monitored transcriptional regulation of a subset of marker genes in the common production host Pichia pastoris to gain insights into the general physiological status of the cells under protein production conditions, with the main focus on secretion stress related genes. Results Overexpression of the UPR activating transcription factor Hac1p was employed to identify UPR target genes in P. pastoris and the responses were compared to those known for Saccharomyces cerevisiae. Most of the folding/secretion related genes showed similar regulation patterns in both yeasts, whereas genes associated with the general stress response were differentially regulated. Secretion of an antibody Fab fragment led to induction of UPR target genes in P. pastoris, however not to the same magnitude as Hac1p overproduction. Overexpression of S. cerevisiae protein disulfide isomerase (PDI1) enhances Fab secretion rates 1.9 fold, but did not relief UPR stress. Reduction of cultivation temperature from 25°C to 20°C led to a 1.4-fold increase of specific product secretion rate in chemostat cultivations, although the transcriptional levels of the product genes (Fab light and heavy chain) were significantly reduced at the lower temperature. A subset of folding related genes appeared to be down-regulated at the reduced temperature, whereas transcription of components of the ER associated degradation and the secretory transport was enhanced. Conclusion Monitoring of genomic regulation of

  20. Biomass and lipid production of a local isolate Chlorella sorokiniana under mixotrophic growth conditions.

    PubMed

    Juntila, D J; Bautista, M A; Monotilla, W

    2015-09-01

    A local Chlorella sp. isolate with 97% rbcL sequence identity to Chlorella sorokiniana was evaluated in terms of its biomass and lipid production under mixotrophic growth conditions. Glucose-supplemented cultures exhibited increasing growth rate and biomass yield with increasing glucose concentration. Highest growth rate and biomass yield of 1.602 day(-1) and 687.5 mg L(-1), respectively, were achieved under 2 g L(-1) glucose. Nitrogen starvation up to 75% in the 1.0 g L(-1) glucose-supplemented culture was done to induce lipid accumulation and did not significantly affect the growth. Lipid content ranges from 20% to 27% dry weight. Nile Red staining showed more prominent neutral lipid bodies in starved mixotrophic cultures. C. sorokiniana exhibited enhanced biomass production under mixotrophy and more prominent neutral lipid accumulation under nitrogen starvation with no significant decrease in growth; hence, this isolate could be further studied to establish its potential for biodiesel production.

  1. Diketone cleaving enzyme Dke1 production by Acinetobacter johnsonii--optimization of fermentation conditions.

    PubMed

    Hofer, Hannes; Mandl, Thomas; Steiner, Walter

    2004-01-08

    The main objective of this work was the optimization of the production of the novel dioxygenase diketone cleaving enzyme (Dke1) from Acinetobacter johnsonii. Acetylacetone was used as an inducer for enzyme production. In the first step, the growth medium was optimized by using screening designs for finding the optimal carbon and nitrogen source. In the second step, a genetic algorithm was used to optimize the concentrations of all medium components. After six generations the stopping criterion was reached and a growth medium was obtained which produced sixteen times more enzyme than the starting medium. In the next step, an addition profile for the inducer acetylacetone was developed to further increase enzyme production by using a genetic algorithm. In this case, after four generations the stopping criterion was fulfilled. By using the obtained optimal addition profile Dke1 activity was enhanced from 826 to 2584Ul(-1). In comparison to the starting conditions activity could even be increased by a factor of 50.

  2. Probiotics production and alternative encapsulation methodologies to improve their viabilities under adverse environmental conditions.

    PubMed

    Coghetto, Chaline Caren; Brinques, Graziela Brusch; Ayub, Marco Antônio Záchia

    2016-12-01

    Probiotic products are dietary supplements containing live microorganisms producing beneficial health effects on the host by improving intestinal balance and nutrient absorption. Among probiotic microorganisms, those classified as lactic acid bacteria are of major importance to the food and feed industries. Probiotic cells can be produced using alternative carbon and nitrogen sources, such as agroindustrial residues, at the same time contributing to reduce process costs. On the other hand, the survival of probiotic cells in formulated food products, as well as in the host gut, is an essential nutritional aspect concerning health benefits. Therefore, several cell microencapsulation techniques have been investigated as a way to improve cell viability and survival under adverse environmental conditions, such as the gastrointestinal milieu of hosts. In this review, different aspects of probiotic cells and technologies of their related products are discussed, including formulation of culture media, and aspects of cell microencapsulation techniques required to improve their survival in the host.

  3. Effect of fermentation conditions on biohydrogen production from cassava starch by anaerobic mixed cultures

    NASA Astrophysics Data System (ADS)

    Tien, Hai M.; Le, Kien A.; Tran, An T.; Le, Phung K.

    2016-06-01

    In this work, a series of batch tests were conducted to investigate the effect of pH, temperature, fermentation time, and inoculums ratio to hydrogen production using cassava starch as a substrate. The statistical analysis of the experiment indicated that the significant effects for the fermentation yield were the main effect of temperature, pH and inoculums ratio. It was fouund that the suitable fermentation conditions of biohydrogen production should be at temperature 40 ° C; pH 6.5, inoculums to medium ratio 10 % and COD operation at 4800 g/mL. The maximum value of hydrogen volume produced was 76.22 mL. These affected has been evaluated and the result can be used as an reference for the pilot or industrial biohydrogen production.

  4. Lean production tools and decision latitude enable conditions for innovative learning in organizations: a multilevel analysis.

    PubMed

    Fagerlind Ståhl, Anna-Carin; Gustavsson, Maria; Karlsson, Nadine; Johansson, Gun; Ekberg, Kerstin

    2015-03-01

    The effect of lean production on conditions for learning is debated. This study aimed to investigate how tools inspired by lean production (standardization, resource reduction, visual monitoring, housekeeping, value flow analysis) were associated with an innovative learning climate and with collective dispersion of ideas in organizations, and whether decision latitude contributed to these associations. A questionnaire was sent out to employees in public, private, production and service organizations (n = 4442). Multilevel linear regression analyses were used. Use of lean tools and decision latitude were positively associated with an innovative learning climate and collective dispersion of ideas. A low degree of decision latitude was a modifier in the association to collective dispersion of ideas. Lean tools can enable shared understanding and collective spreading of ideas, needed for the development of work processes, especially when decision latitude is low. Value flow analysis played a pivotal role in the associations.

  5. Force production during squats performed with a rotational resistance device under stable versus unstable conditions

    PubMed Central

    Moras, Gerard; Vázquez-Guerrero, Jairo

    2015-01-01

    [Purpose] Force production during a squat action on a rotational resistance device (RRD) under stable and unstable conditions. [Subjects and Methods] Twenty-one healthy males were asked to perform six sets of six repetitions of squats on an RRD on either stable or unstable surfaces. The stable and unstable sets were performed on different days. Muscular outputs were obtained from a linear encoder and a strain gauge fixed to a vest. [Results] Overall, the results showed no significant differences for any of the dependent variables across exercise modes. Forcemean outputs were higher in the concentric phase than in the eccentric phase for each condition, but there were no differences in velocity, time or displacement. The forcepeak was similar in the eccentric and concentric phases of movement under both stable and unstable conditions. There were no significant differences in forcemean between sets per condition or between conditions. [Conclusion] These results suggest that performing squats with a RRD achieves similar forcemean and forcepeak under stable and unstable conditions. The forcepeak produced is also similar in concentric and eccentric phases. PMID:26696707

  6. Effect of medium components and culture conditions in Bacillus subtilis EA-CB0575 spore production.

    PubMed

    Posada-Uribe, Luisa F; Romero-Tabarez, Magally; Villegas-Escobar, Valeska

    2015-10-01

    Bacillus subtilis spores have important biotechnological applications; however, achieving both, high spore cell densities and sporulation efficiencies in fermentation, is poorly reported. In this study, medium components and culture conditions were optimized with different statistical methods to increase spore production of the plant growth promoting rhizobacteria B. subtilis EA-CB0575. Key medium components were determined with Plackett-Burman (PB) design, and the optimum concentration levels of two components (glucose, MgSO4·7H2O) were optimized with a full factorial and central composite design, achieving 1.37 × 10(9) CFU/mL of spore cell density and 93.5 % of sporulation efficiency in shake flask. The optimized medium was used to determine the effect of culture conditions on spore production at bioreactor level, finding that maintaining pH control did not affect significantly spore production, while the interaction of agitation and aeration rates had a significant effect on spore cell density. The overall optimization generated a 17.2-fold increase in spore cell density (8.78 × 10(9) CFU/mL) and 1.9-fold increase in sporulation efficiency (94.2 %) compared to that of PB design. These results indicate the potential of B. subtilis EA-CB0575 to produce both, high spore cell densities and sporulation efficiencies, with very low nutrient requirements and short incubation period which can represent savings of process production.

  7. Comparison of red microalgae (Porphyridium cruentum) culture conditions for bioethanol production.

    PubMed

    Kim, Ho Myeong; Oh, Chi Hoon; Bae, Hyeun-Jong

    2017-02-12

    Microalgae biomass are useful resources in biofuel production. The objective of this study was to evaluate bioethanol production in response to Porphyridium cruemtum culture conditions. Enzymatic hydrolysis of seawater P. cruemtum (SPC) and freshwater P. cruemtum (FPC, 1% substrate loading, w/v) resulted in glucose conversion yields of 89.8 and 85.3%, respectively, without any pretreatment. However, FPC hydrolysate was more efficiently converted to ethanol about 7.1% than SPC hydrolysate. The comparison of separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) showed that SSF processing is a superior method for bioethanol production from both SPC and FPC. Though SSF processing (5% substrate loading, w/v) in a 500-mL twin-neck round bottom flask, we achieved ethanol conversion yields of 65.4 and 70.3% from SPC and FPC, respectively, after 9h. These findings indicate that P. cruemtum can grow in freshwater conditions and is an efficient candidate for bioethanol production.

  8. Fermentation conditions for efficient production of thermophilic protease in Escherichia coli harboring a plasmid.

    PubMed

    Sakamoto, S; Terada, I; Iijima, M; Matsuzawa, H; Ohta, T

    1994-12-01

    Escherichia coli TG1, transformed with an expression plasmid pAQN carrying the aqualysin I (AQI) gene derived from Thermus aquaticus YT-1 under the control of the tac promoter, was cultivated under various conditions in order to find fermentation conditions for the efficient production of the thermophilic protease, AQI. The amount of AQI produced was closely related to the growth phase at the time of isopropyl-beta-D-thiogalactopyranoside (IPTG) induction, and the highest production was obtained when it was added during the exponential growth phase. The addition of yeast extract had a greater effect on AQI production than did Polypeptone or casamino acids, and AQI productivity increased from 1.1 x 10(3) kU/g to 2.7 x 10(3) kU/g cells when 2 g/l yeast extract was supplied. Furthermore, the specific growth rate improved from 0.35 h-1 to 0.89 h-1 when 5 g/l yeast extract was supplied. The culture temperature also affected AQI gene expression. When the temperature was shifted from 37 degrees C to 34 degrees C at the time of IPTG induction, 19 kU/ml enzymatically active AQI was obtained, corresponding to a 28% increase over the amount produced in a batch culture without a shift. This is about a 44-fold higher yield than was obtained from the original strain, T. aquaticus YT-1.

  9. Optimization of fermentation conditions of pectin production from Aspergillus terreus and its partial characterization.

    PubMed

    Liu, Zhanmin; Yao, Lifeng; Fan, Chuanhui

    2015-12-10

    Figures of persimmons for the world's top ten persimmon producing countries are about 4000,000 tons in 2011 and are increasing every year according to FAO statistics. However, there is not any report on pectin production by microbial with persimmon peel as the source. Optimization of fermentation conditions of pectin production from Aspergillus terreus in submerged culture and partial characterization of pectin were carried out in the work. An optimum fermentation condition for pectin production was obtained through a central composite rotatable design in response surface methodology as follows: fermentation time, 30.09 h, temperature, 25.00 °C and the initial pH in the fermentation medium, 6.90, respectively and the pectin yield reached the maximal value 0.449 g/g. Persimmon peel pectin had highly methoxylated (62.51%), high galacturonic acid content (82.28%) than citrus pectin, and was classified as the highly methoxylated pectin, the results indicated that persimmon peel had potential good resources for pectin production. The investigation can make it available to utilize persimmon peel to produce high methoxyl pectin for food industry, pharmacy and cosmetic manufacture.

  10. Supplementary artificial light to increase egg production of geese under natural lighting conditions.

    PubMed

    Wang, Chin-Meng; Chen, Lih-Ren; Lee, Shuen-Rong; Jea, Yu-Shine; Kao, Jung-Yie

    2009-07-01

    A new supplementary lighting program was designed to increase the egg production of geese under natural light conditions. The objective of this study was to evaluate the effects of the supplementary lighting program on egg production of White Roman geese in an open housing system at the Tropic of Cancer. Forty mature White Roman geese were randomly allocated into two groups (male:female=1:4). The supplementary lighting program with a total daily photoperiod of between 12.0 h and 13.5 h was initiated on 1 November and withdrawn from the experimental group on 30 January. In contrast, the geese in the control group were kept under natural lighting conditions throughout this study. The results showed that the laying peak of the experimental group occurred earlier than normal in the reproductive season and the geese continued laying throughout the breeding season. The geese in the experimental group had 47.6 eggs/goose which was significantly (P<0.05) more than that of the control group having 26.4 eggs/goose. We can conclude that the supplemental lighting method will result in an earlier laying peak of the geese in the breeding season and higher egg production. The supplementary lighting program was able to maximize egg production in geese at the Tropic of Cancer.

  11. A statistical method for enhancing the production of succinic acid from Escherichia coli under anaerobic conditions.

    PubMed

    Isar, Jasmine; Agarwal, Lata; Saran, Saurabh; Saxena, Rajendra Kumar

    2006-09-01

    The most influential parameters for succinic acid production obtained through one at a time method were sucrose, tryptone, magnesium carbonate, inoculum size and incubation period. These resulted in the production of 7.0 g L(-1) of succinic acid in 60 h from Escherichia coli W3110 under anaerobic conditions. Based on these results, a statistical method, face centered central composite design (FCCCD) falling under response surface method (RSM) was employed for further enhancing the succinic acid production and to monitor the interactive effect of these parameters, which resulted in a twofold increase in yield (14.3 g L(-1) in 48 h). The analysis of variance (ANOVA) showed the adequacy of the model and the verification experiments confirmed its validity. On subsequent scale-up in a 10-L bioreactor using conditions optimized through RSM, 24.2 g L(-1) of succinic acid was obtained in 30 h. This clearly indicated that the model stood valid even on large-scale. Thus, the statistical optimization strategy led to a 3.5-fold increase in the yield of succinic acid. This is the first report on the use of FCCCD to improve succinic acid production from E. coli.

  12. Diffusion modeling of fission product release during depressurized core conduction cooldown conditions

    SciTech Connect

    Martin, R.C.

    1990-01-01

    A simple model for diffusion through the silicon carbide layer of TRISO particles is applied to the data for accident condition testing of fuel spheres for the High-Temperature Reactor program of the Federal Republic of Germany (FRG). Categorization of sphere release of {sup 137}Cs based on fast neutron fluence permits predictions of release with an accuracy comparable to that of the US/FRG accident condition fuel performance model. Calculations are also performed for {sup 85}Kr, {sup 90}Sr, and {sup 110m}Ag. Diffusion of cesium through SiC suggests that models of fuel failure should consider fuel performance during repeated accident condition thermal cycling. Microstructural considerations in models in fission product release are discussed. The neutron-induced segregation of silicon within the SiC structure is postulated as a mechanism for enhanced fission product release during accident conditions. An oxygen-enhanced SiC decomposition mechanism is also discussed. 12 refs., 11 figs., 2 tabs.

  13. An Expert Fault Diagnosis System for Vehicle Air Conditioning Product Development

    NASA Astrophysics Data System (ADS)

    Tan, C. F.; Tee, B. T.; Khalil, S. N.; Chen, W.; Rauterberg, G. W. M.

    2015-09-01

    The paper describes the development of the vehicle air-conditioning fault diagnosis system in automotive industries with expert system shell. The main aim of the research is to diagnose the problem of new vehicle air-conditioning system development process and select the most suitable solution to the problems. In the vehicle air-conditioning manufacturing industry, process can be very costly where an expert and experience personnel needed in certain circumstances. The expert of in the industry will retire or resign from time to time. When the expert is absent, their experience and knowledge is difficult to retrieve or lost forever. Expert system is a convenient method to replace expert. By replacing the expert with expert system, the accuracy of the processes will be increased compared to the conventional way. Therefore, the quality of product services that are produced will be finer and better. The inputs for the fault diagnosis are based on design data and experience of the engineer.

  14. Increased performance of hydrogen production in microbial electrolysis cells under alkaline conditions.

    PubMed

    Rago, Laura; Baeza, Juan A; Guisasola, Albert

    2016-06-01

    This work reports the first successful enrichment and operation of alkaline bioelectrochemical systems (microbial fuel cells, MFC, and microbial electrolysis cells, MEC). Alkaline (pH=9.3) bioelectrochemical hydrogen production presented better performance (+117%) compared to conventional neutral conditions (2.6 vs 1.2 litres of hydrogen gas per litre of reactor per day, LH2·L(-1)REACTOR·d(-1)). Pyrosequencing results of the anodic biofilm showed that while Geobacter was mainly detected under conventional neutral conditions, Geoalkalibacter sp. was highly detected in the alkaline MFC (21%) and MEC (48%). This is the first report of a high enrichment of Geoalkalibacter from an anaerobic mixed culture using alkaline conditions in an MEC. Moreover, Alkalibacter sp. was highly present in the anodic biofilm of the alkaline MFC (37%), which would indicate its potentiality as a new exoelectrogen.

  15. Influence of food system conditions on N-acyl-L-homoserine lactones production by Aeromonas spp.

    PubMed

    Medina-Martínez, M S; Uyttendaele, M; Demolder, V; Debevere, J

    2006-12-01

    Eleven of 13 Aeromonas strains were shown to produce AHLs. Results of TLC showed that N-butanoyl-L-homoserine lactone (C4-HSL) was the main AHL produced in LB medium at 30 degrees C. The influence of different carbon sources, temperature, pH values and salt concentrations on AHL production was determined in eight A. hydrophila and one A. caviae strain. Additionally a quantitative study of C4-HSL production by A. hydrophila strain 519 under different conditions was performed. Positive results were found in the AHL induction assay for some Aeromonas strains in cultures in LB agar incubated at 12 degrees C after 72-96 h. The induction of the sensor strains by Aeromonas spp. occurred in LB medium supplemented with all carbon sources in a concentration of 0.5%. The production of C4-HSL by A. hydrophila 519 was found until 3.5% (w/v) of NaCl. For pHs close to the neutrality the C4-HSL production by A. hydrophila was evident after 24-48 h of incubation. A. hydrophila 519 produced C4-HSL under anaerobic conditions. Also, the AHL production by Aeromonas strains was studied in simulate agar of shrimp, fish and some vegetables. The production of AHLs was evident by almost all the test strains in shrimp simulated agar. In fish agar only for one of three fish species tested, positive results were found. Induction assay in vegetables simulated agar showed principally negative results, probably because of the presence of inhibitory compounds in these vegetables.

  16. Biohydrogen production from used diapers: Evaluation of effect of temperature and substrate conditioning.

    PubMed

    Sotelo-Navarro, P X; Poggi-Varaldo, H M; Turpin-Marion, S J; Vázquez-Morillas, A; Beltrán-Villavicencio, M; Espinosa-Valdemar, R M

    2017-03-01

    This research assessed the viability to use disposable diapers as a substrate for the production of biohydrogen, a valuable clean-energy source. The important content of cellulose of disposable diapers indicates that this waste could be an attractive substrate for biofuel production. Two incubation temperatures (35 °C and 55 °C) and three diaper conditioning methods (whole diapers with faeces, urine, and plastics, WD; diapers without plastic components, with urine and faeces, DWP; diapers with urine but without faeces and plastic, MSD) were tested in batch bioreactors. The bioreactors were operated in the solid substrate anaerobic hydrogenogenic fermentation with intermittent venting mode (SSAHF-IV). The batch reactors were loaded with the substrate at ca. 25% of total solids and 10% w/w inoculum. The average cumulative bioH2 production followed the order WD > MSD > DWP. The bio-H2 production using MSD was unexpectedly higher than DWP; the presence of plastics in the first was expected to be associated to lower degradability and H2 yield. BioH2 production at 55 °C was superior to that of 35 °C, probably owing to a more rapid microbial metabolism in the thermophilic regime. The results of this work showed low yields in the production of H2 at both temperatures compared with those reported in the literature for municipal and agricultural organic waste. The studied process could improve the ability to dispose of this residue with H2 generation as the value-added product. Research is ongoing to increase the yield of biohydrogen production from waste disposable diapers.

  17. Assessment of possibilities and conditions of irrigation in Hungary by digital soil map products

    NASA Astrophysics Data System (ADS)

    Laborczi, Annamária; Bakacsi, Zsófia; Takács, Katalin; Szatmári, Gábor; Szabó, József; Pásztor, László

    2016-04-01

    Sustaining proper soil moisture is essentially important in agricultural management. However, irrigation can be really worth only, if we lay sufficient emphasis on soil conservation. Nationwide planning of irrigation can be taken place, if we have spatially exhaustive maps and recommendations for the different areas. Soil moisture in the pores originate from 'above' (precipitation), or from 'beneath' (from groundwater by capillary lift). The level of groundwater depends on topography, climatic conditions and water regime of the nearby river. The thickness of capillary zone is basicly related to the physical and water management properties of the soil. Accordingly the capillary rise of sandy soils - with very high infiltration rate and very poor water retaining capacity - are far smaller than in the case of clay soils - with very poor infiltration rate and high water retaining capacity. Applying irrigation water can be considered as a reinforcement from 'above', and it affects the salinity and sodicity as well as the soil structure, nutrient supply and soil formation. We defined the possibilities of irrigation according to the average salt content of the soil profile. The nationwide mapping of soil salinity was based on legacy soil profile data, and it was carried out by regression kriging. This method allows that environmental factors with exhaustive spatial extension, such as climatic-, vegetation-, topographic-, soil- and geologic layers can be taken into consideration to the spatial extension of the reference data. According to soil salinity content categories, the areas were delineated as 1. to be irrigated, 2. to be irrigated conditionally, 3. not to be irrigated. The conditions of irrigation was determined by the comparison of the 'actual' and the 'critical' depth of the water table. Since, if the water rises above the critical level, undesirable processes, such as salinization and alkalinization can be developed. The critical depth of the water table was

  18. The influence of temperature on ozone production under varying NOx conditions - a modelling study

    NASA Astrophysics Data System (ADS)

    Coates, Jane; Mar, Kathleen A.; Ojha, Narendra; Butler, Tim M.

    2016-09-01

    Surface ozone is a secondary air pollutant produced during the atmospheric photochemical degradation of emitted volatile organic compounds (VOCs) in the presence of sunlight and nitrogen oxides (NOx). Temperature directly influences ozone production through speeding up the rates of chemical reactions and increasing the emissions of VOCs, such as isoprene, from vegetation. In this study, we used an idealised box model with different chemical mechanisms (Master Chemical Mechanism, MCMv3.2; Common Representative Intermediates, CRIv2; Model for OZone and Related Chemical Tracers, MOZART-4; Regional Acid Deposition Model, RADM2; Carbon Bond Mechanism, CB05) to examine the non-linear relationship between ozone, NOx and temperature, and we compared this to previous observational studies. Under high-NOx conditions, an increase in ozone from 20 to 40 °C of up to 20 ppbv was due to faster reaction rates, while increased isoprene emissions added up to a further 11 ppbv of ozone. The largest inter-mechanism differences were obtained at high temperatures and high-NOx emissions. CB05 and RADM2 simulated more NOx-sensitive chemistry than MCMv3.2, CRIv2 and MOZART-4, which could lead to different mitigation strategies being proposed depending on the chemical mechanism. The increased oxidation rate of emitted VOC with temperature controlled the rate of Ox production; the net influence of peroxy nitrates increased net Ox production per molecule of emitted VOC oxidised. The rate of increase in ozone mixing ratios with temperature from our box model simulations was about half the rate of increase in ozone with temperature observed over central Europe or simulated by a regional chemistry transport model. Modifying the box model set-up to approximate stagnant meteorological conditions increased the rate of increase of ozone with temperature as the accumulation of oxidants enhanced ozone production through the increased production of peroxy radicals from the secondary degradation of

  19. Crossing Methods and Cultivation Conditions for Rapid Production of Segregating Populations in Three Grain Amaranth Species

    PubMed Central

    Stetter, Markus G.; Zeitler, Leo; Steinhaus, Adrian; Kroener, Karoline; Biljecki, Michelle; Schmid, Karl J.

    2016-01-01

    Grain amaranths (Amaranthus spp.) have been cultivated for thousands of years in Central and South America. Their grains are of high nutritional value, but the low yield needs to be increased by selection of superior genotypes from genetically diverse breeding populations. Amaranths are adapted to harsh conditions and can be cultivated on marginal lands although little is known about their physiology. The development of controlled growing conditions and efficient crossing methods is important for research on and improvement of this ancient crop. Grain amaranth was domesticated in the Americas and is highly self-fertilizing with a large inflorescence consisting of thousands of very small flowers. We evaluated three different crossing methods (open pollination, hot water emasculation and hand emasculation) for their efficiency in amaranth and validated them with genetic markers. We identified cultivation conditions that allow an easy control of flowering time by day length manipulation and achieved flowering times of 4 weeks and generation times of 2 months. All three different crossing methods successfully produced hybrid F1 offspring, but with different success rates. Open pollination had the lowest (10%) and hand emasculation the highest success rate (74%). Hot water emasculation showed an intermediate success rate (26%) with a maximum of 94% success. It is simple to perform and suitable for a more large-scale production of hybrids. We further evaluated 11 single nucleotide polymorphism (SNP) markers and found that they were sufficient to validate all crosses of the genotypes used in this study for intra- and interspecific hybridizations. Despite its very small flowers, crosses in amaranth can be carried out efficiently and evaluated with inexpensive SNP markers. Suitable growth conditions strongly reduce the generation time and allow the control of plant height, flowering time, and seed production. In combination, this enables the rapid production of segregating

  20. Optimization of the preparation conditions of ceramic products using drinking water treatment sludges.

    PubMed

    Zamora, R M Ramirez; Ayala, F Espesel; Garcia, L Chavez; Moreno, A Duran; Schouwenaars, R

    2008-11-01

    The aim of this work is to optimize, via Response Surface Methodology, the values of the main process parameters for the production of ceramic products using sludges obtained from drinking water treatment in order to valorise them. In the first experimental stage, sludges were collected from a drinking water treatment plant for characterization. In the second stage, trials were carried out to elaborate thin cross-section specimens and fired bricks following an orthogonal central composite design of experiments with three factors (sludge composition, grain size and firing temperature) and five levels. The optimization parameters (Y(1)=shrinking by firing (%), Y(2)=water absorption (%), Y(3)=density (g/cm(3)) and Y(4)=compressive strength (kg/cm(2))) were determined according to standardized analytical methods. Two distinct physicochemical processes were active during firing at different conditions in the experimental design, preventing the determination of a full response surface, which would allow direct optimization of production parameters. Nevertheless, the temperature range for the production of classical red brick was closely delimitated by the results; above this temperature, a lightweight ceramic with surprisingly high strength was produced, opening possibilities for the valorisation of a product with considerably higher added value than what was originally envisioned.

  1. Herbicides and herbicide degradation products in upper midwest agricultural streams during august base-flow conditions

    USGS Publications Warehouse

    Kalkhoff, S.J.; Lee, K.E.; Porter, S.D.; Terrio, P.J.; Thurman, E.M.

    2003-01-01

    Herbicide concentrations in streams of the U.S. Midwest have been shown to decrease through the growing season due to a variety of chemical and physical factors. The occurrence of herbicide degradation products at the end of the growing season is not well known. This study was conducted to document the occurrence of commonly used herbicides and their degradation products in Illinois, Iowa, and Minnesota streams during base-flow conditions in August 1997. Atrazine, the most frequently detected herbicide (94%), was present at relatively low concentrations (median 0.17 μg L−1). Metolachlor was detected in 59% and cyanazine in 37% of the samples. Seven of nine compounds detected in more than 50% of the samples were degradation products. The total concentration of the degradation products (median of 4.4 μg L−1) was significantly greater than the total concentration of parent compounds (median of 0.26 μg L−1). Atrazine compounds were present less frequently and in significantly smaller concentrations in streams draining watersheds with soils developed on less permeable tills than in watersheds with soils developed on more permeable loess. The detection and concentration of triazine compounds was negatively correlated with antecedent rainfall (April–July). In contrast, acetanalide compounds were positively correlated with antecedant rainfall in late spring and early summer that may transport the acetanalide degradates into ground water and subsequently into nearby streams. The distribution of atrazine degradation products suggests regional differences in atrazine degradation processes.

  2. Influence of culture conditions on production of phytase by Zygosaccharomyces baili var. balil.

    PubMed

    Lata, Suman; Rastogi, Smita; Kapoor, Ashima; Imran, Mohd

    2015-07-01

    Microbial phytases are phosphohydrolytic enzymes which are gaining attention for their commercial exploitation in feed and food industry. In the present study, ten yeasts were isolated from different soil samples and screened for their phytase producing capability. Among these isolates, the most promising yeast strain was Zygosaccharomyces bailii var. bailii which produced highest phytase yield (6.36 U ml(-1)) in malt yeast extract glucose peptone (MYGP) medium. In order to improve phytase production by Zygosaccharomyces bailii, different physio-chemical parameters were optimized. The optimal conditions for phytase production was found to be: incubation time-42 hr, temperature-30 degrees C, medium pH-6.0 and substrate (calcium phytate) concentration-0.1%. Glucose at 0.5% concentration supported higher phytase production (13.75 U ml(-1)) than other carbon sources tested. Metal ions (Ca+/+, Na+, K+, Mg++) and additives; ethylene diamine tetraacetate (EDTA), sodium dodecyl sulphate (SDS) and toluene did not affect enzyme production. However, Zn++, Ni++, Ba++, Pb++ and detergents like Triton X-100 and Tweens strongly inhibited (>90%) phytase production. An overall 2.21-fold enhancement in phytase activity (6.36-->14.03 U ml(-1)) was attained after optimization studies.

  3. Optimization of pretreatment and fermentation conditions for production of extracellular cellulase complex using sugarcane bagasse

    PubMed Central

    Ashfaque, Mohammad; Solomon, Sushil; Pathak, Neelam

    2014-01-01

    Sugarcane bagasse (SCB), a lignocellulosic byproduct of juice extraction from sugarcane, is rich in cellulose (40-42%). This could be used as a substrate for the production of cellulase complex. Fermentation conditions were optimized for production of cellulase complex (CMCase, Cellulobiase and FPase) by wild type Trichoderma sp. using sugarcane bagasse as sole carbon source. Alkaline treatment (2% NaOH) of bagasse (AlSCB) was found suitable for the production of reducing sugar over the acidic pretreatment method. After 5 days of incubation period, 5% substrate concentration at pH 5.0 and 400C resulted in maximum production of CMCase (0.622 U), while maximum (3.388 U) production of cellulobiase was obtained at 300C. The CMCase was precipitated and purified to the extent of 59.06 fold by affinity chromatography with 49.09% recovery. On 12% SDS-PAGE, a single band corresponding to 33 kDa was observed. The Km and Vmax for CMCase from Trichoderma was found 507.04 mg/ml and 65.32 mM/min, respectively. The enzyme exhibited maximum activity at 300C at pH-5.0 (0.363 U) and was stable over range of 20-60°C and pH 5.0-7.5. PMID:25489168

  4. Rapid quantitative and qualitative analysis of biofilm production by Staphylococcus epidermidis under static growth conditions.

    PubMed

    Waters, Elaine M; McCarthy, Hannah; Hogan, Siobhan; Zapotoczna, Marta; O'Neill, Eoghan; O'Gara, James P

    2014-01-01

    Rapid screening of biofilm forming capacity by Staphylococcus epidermidis is possible using in vitro assays with 96-well plates. This method first developed by Christensen et al. in 1985 is fast and does not require specialized instruments. Thus, laboratories with standard microbiology infrastructure and a 96-well plate reader can easily use this technique to generate data on the biofilm phenotypes of multiple S. epidermidis strains and clinical isolates. Furthermore, this method can be adapted to gain insights into biofilm regulation and the characteristics of biofilms produced by different S. epidermidis isolates. Although this assay is extremely useful for showing whether individual strains are biofilm-positive or biofilm-negative and distinguishing between form weak, moderate or strong biofilm, it is important to acknowledge that the absolute levels of biofilm produced by an individual strain can vary significantly between experiments meaning that strict adherence to the protocol used is of paramount importance. Furthermore, measuring biofilm under static conditions does not generally reflect in vivo conditions in which bacteria are often subjected to shear stresses under flow conditions. Hence, the biofilm characteristics of some strains are dramatically different under flow and static conditions. Nevertheless, rapid measurement of biofilm production under static conditions is a useful tool in the analysis of the S. epidermidis biofilm phenotype.

  5. The influence of local effects on thermal sensation under non-uniform environmental conditions--gender differences in thermophysiology, thermal comfort and productivity during convective and radiant cooling.

    PubMed

    Schellen, L; Loomans, M G L C; de Wit, M H; Olesen, B W; van Marken Lichtenbelt, W D

    2012-09-10

    Applying high temperature cooling concepts, i.e. high temperature cooling (T(supply) is 16-20°C) HVAC systems, in the built environment allows the reduction in the use of (high quality) energy. However, application of high temperature cooling systems can result in whole body and local discomfort of the occupants. Non-uniform thermal conditions, which may occur due to application of high temperature cooling systems, can be responsible for discomfort. Contradictions in literature exist regarding the validity of the often used predicted mean vote (PMV) index for both genders, and the index is not intended for evaluating the discomfort due to non-uniform environmental conditions. In some cases, however, combinations of local and general discomfort factors, for example draught under warm conditions, may not be uncomfortable. The objective of this study was to investigate gender differences in thermophysiology, thermal comfort and productivity in response to thermal non-uniform environmental conditions. Twenty healthy subjects (10 males and 10 females, age 20-29 years) were exposed to two different experimental conditions: a convective cooling situation (CC) and a radiant cooling situation (RC). During the experiments physiological responses, thermal comfort and productivity were measured. The results show that under both experimental conditions the actual mean thermal sensation votes significantly differ from the PMV-index; the subjects are feeling colder than predicted. Furthermore, the females are more uncomfortable and dissatisfied compared to the males. For females, the local sensations and skin temperatures of the extremities have a significant influence on whole body thermal sensation and are therefore important to consider under non-uniform environmental conditions.

  6. Revegetation processes and environmental conditions in abandoned peat production fields in Estonia

    NASA Astrophysics Data System (ADS)

    Orru, M.; Orru, H.

    2009-04-01

    As a result of peat extraction, peat production has been finished in Estonia at different times in 154 peat production areas and 9,500 ha (~1% of peatlands) are abandoned, although the peat reserves are not exhausted yet; besides, several areas are not properly recultivated. In addition 12,000 ha of fens (oligotrophic peat layers) are drained and used as grasslands. If the abandoned and non-recultivated peat production areas are not vegetated, their CO2 emission is considerable and peat mineralises in such areas. The aim of the study was to find out specific ecological and geological factors, which affect recovering of peatlands and influence the recultivation. During the revision the amount and quality of the remained reserves, as well as the state of water regime, drainage network and revegetation was assessed in all 154 abandoned peat production areas. The study showed that the state of them is very variable. Some of them are covered with forest, prevailingly with birches at former drainage ditches, later supplemented by pine trees. In the others predominate grasses among plants, and various species of moss (Cladonia rei, Bryum caespiticum, Sphagnum ripariuma, Sphagnum squarrosum) occur as well. Besides, some abandoned areas are completely overgrown with cotton grass. Open abandoned peat areas, which are not covered by vegetation, are much rarer. We found out, that water regime among the factors plays most important role. Moreover abandoned peat production fields, where the environmental conditions have changed - are appropriate for growth of several moss species, which cannot inhabit the areas already occupied by other species. The most interesting discovers were: second growing site of Polia elongata in West-Estonia and Ephemerum serratum, last found in Estonia in the middle of the 19th century, was identified in central Estonia. Also Campylopus introflexus, what was unknown in Estonia. However, the changes in environmental conditions influence the peat layers

  7. DFT-based prediction of fission product sorption on carbon structures under O2 ingress conditions

    NASA Astrophysics Data System (ADS)

    Londono-Hurtado, Alejandro; Szlufarska, Izabela; Morgan, Dane

    2013-06-01

    An isotherm based model for the prediction of Cs sorption on the carbon components of a High Temperature Reactor (HTR) under O2 ingress conditions is presented. Isotherms are derived from a thermodynamic model based on binding energies calculated using Density Functional Theory (DFT). The DFT derived isotherms are compared with isotherms obtained from experimental calculations and sources of discrepancies are discussed. A DFT only model and a second model combining DFT and experimental calculations are used to predict fission product inventories in a HTR vessel during O2 ingress conditions. Results suggest that the carbon type (i.e. graphitic vs. amorphous) plays a central role on fission product sorption and release. During normal reactor conditions (T around 1400 K, low P) graphitic carbon will absorb a small percentage of a monolayer of Cs, while amorphous carbon will be approximately saturated at an entire monolayer of Cs. Results also indicate that, for the case of O2 ingress to the reactor's vessel, the Cs will form Cs2O. In the case of graphitic carbon, the Cs2O will bind more weakly than Cs, leading to Cs release in the form of Cs2O during O ingress. However, the weak binding of Cs to graphite means that only small release is expected. In the case of amorphous carbon, Cs2O binds almost as strongly Cs, and so no significant change in Cs absorbed to the amorphous carbon is predicted, although the form of the absorbed Cs is predicted to be Cs2O. For the case of low release conditions, consistent with modern TRISO fuels, the core will adsorb the entire Cs inventory at normal operating temperatures. However, for high Cs release conditions, consistent with older TRISO fuels, the surface sites on the core will be saturated and most of the Cs will remain in gas form or plate out on other surfaces.

  8. Optimization of simultaneous saccharification and fermentation conditions with amphipathic lignin derivatives for concentrated bioethanol production.

    PubMed

    Cheng, Ningning; Koda, Keiichi; Tamai, Yutaka; Yamamoto, Yoko; Takasuka, Taichi E; Uraki, Yasumitsu

    2017-05-01

    Amphipathic lignin derivatives (A-LDs) prepared from the black liquor of soda pulping of Japanese cedar are strong accelerators for bioethanol production under a fed-batch simultaneous enzymatic saccharification and fermentation (SSF) process. To improve the bioethanol production concentration, conditions such as reaction temperature, stirring program, and A-LDs loadings were optimized in both small scale and large scale fed-batch SSF. The fed-batch SSF in the presence of 3.0g/L A-LDs at 38°C gave the maximum ethanol production and a high enzyme recovery rate. Furthermore, a jar-fermenter equipped with a powerful mechanical stirrer was designed for 1.5L-scale fed-batch SSF to achieve rigorous mixing during high substrate loading. Finally, the 1.5L fed-batch SSF with a substrate loading of 30% (w/v) produced a high ethanol concentration of 87.9g/L in the presence of A-LDs under optimized conditions.

  9. Enterotoxin production by Bacillus cereus under gastrointestinal conditions and their immunological detection by commercially available kits.

    PubMed

    Ceuppens, Siele; Rajkovic, Andreja; Hamelink, Stefanie; Van de Wiele, Tom; Boon, Nico; Uyttendaele, Mieke

    2012-12-01

    Currently, three commercial kits for Bacillus cereus enterotoxins Nhe and/or Hbl detection are available, namely, the Bacillus diarrheal enterotoxin visual immunoassay (BDE VIA™) kit (3M Tecra), B. cereus enterotoxin reversed passive latex agglutination (BCET-RPLA) kit (Oxoid), and the Duopath(®) Cereus Enterotoxins (Merck). The performance of the kits and their applicability to gastrointestinal simulation samples were evaluated. Then, the stability and production of enterotoxins Hbl and Nhe under gastrointestinal conditions were investigated. Enterotoxin production was absent or impaired at acidic pH, i.e., in gastric medium with pH 5.0 and lasagne verde with pH 5.5. B. cereus did produce enterotoxins Nhe and Hbl during anaerobic growth in intestinal medium at pH 7.0, but the toxins were instantly degraded by the enzymes in the host's digestive secretions. Preformed enterotoxins did not withstand gastrointestinal passage under the simulated conditions, which suggests that preformed enterotoxins in food do not contribute to the diarrheal food poisoning syndrome. In conclusion, diarrhea is probably caused by de novo enterotoxin production by B. cereus cells located closely to the host's intestinal epithelium.

  10. High methylmercury production under ferruginous conditions in sediments impacted by sewage treatment plant discharges.

    PubMed

    Bravo, Andrea G; Bouchet, Sylvain; Guédron, Stéphane; Amouroux, David; Dominik, Janusz; Zopfi, Jakob

    2015-09-01

    Sewage treatment plants (STPs) are important point sources of mercury (Hg) to the environment. STPs are also significant sources of iron when hydrated ferric oxide (HFO) is used as a dephosphatation agent during water purification. In this study, we combined geochemical and microbiological characterization with Hg speciation and sediment amendments to evaluate the impact of STP's effluents on monomethylmercury (MMHg) production. The highest in-situ Hg methylation was found close to the discharge pipe in subsurface sediments enriched with Hg, organic matter, and iron. There, ferruginous conditions were prevailing with high concentrations of dissolved Fe(2+) and virtually no free sulfide in the porewater. Sediment incubations demonstrated that the high MMHg production close to the discharge was controlled by low demethylation yields. Inhibition of dissimilatory sulfate reduction with molybdate led to increased iron reduction rates and Hg-methylation, suggesting that sulfate-reducing bacteria (SRB) may not have been the main Hg methylators under these conditions. However, Hg methylation in sediments amended with amorphous Fe(III)-oxides was only slightly higher than control conditions. Thus, in addition to iron-reducing bacteria, other non-SRB most likely contributed to Hg methylation. Overall, this study highlights that sediments impacted by STP discharges can become local hot-spots for Hg methylation due to the combined inputs of i) Hg, ii) organic matter, which fuels bacterial activities and iii) iron, which keeps porewater sulfide concentration low and hence Hg bioavailable.

  11. Kinetics and corrosion products of aqueous nitrate reduction by iron powder without reaction conditions control.

    PubMed

    Fan, Xiaomeng; Guan, Xiaohong; Ma, Jun; Ai, Hengyu

    2009-01-01

    Although considerable research has been conducted on nitrate reduction by zero-valent iron powder (Fe0), these studies were mostly operated under anaerobic conditions with invariable pH that was unsuitable for practical application. Without reaction conditions (dissolved oxygen or reaction pH) control, this work aimed at subjecting the kinetics of denitrification by microscale Fe0 (160-200 mesh) to analysis the factors affecting the denitrification of nitrate and the composition of iron reductive products coating upon the iron surface. Results of the kinetics study have indicated that a higher initial concentration of nitrate would yield a greater reaction rate constant. The reduction rate of nitrate increased with increasing Fe0 dosage. The reaction can be described as a pseudo-first order reaction with respect to nitrate concentration or Fe0 dosage. Experimental results also suggested that nitrate reduction by microscale Fe0 without reaction condition control primarily was an acid-driven surface-mediated process, and the reaction order was 0.65 with respect to hydrogen ion concentration. The analyses of X-ray diffractometry and X-ray photoelectron spectroscopy indicated that a black coating, consisted of Fe2O3, Fe3O4 and FeO(OH), was formed on the surface of iron grains as an iron corrosion product when the system initial pH was lower than 5. The proportion of FeO(OH) increased as reaction time went on, whereas the proportion of Fe3O4 decreased.

  12. Investigating the influence of production conditions on the energy distribution between the solid, liquid and gaseous products of slow pyrolysis

    NASA Astrophysics Data System (ADS)

    Crombie, Kyle; Masek, Ondrej

    2013-04-01

    Slow pyrolysis is a well established technology for converting biomass into a more stable form of carbon (biochar) while also producing energy rich by-products of bio-oil and syngas. Biochar is the porous, carbonaceous material produced by thermo-chemical treatment of organic materials in an oxygen-limited environment. Biochar can be incorporated into soils to improve soil fertility, reduce greenhouse gas emissions as well as provide long term storage of carbon or alternatively it can also provide additional energy to a pyrolysis system through combustion. Biochar production conditions have a significant influence on the yield as well as physiochemical and functional properties of the final pyrolysis products, resulting in a selection process aimed towards either agricultural benefits and carbon mitigation or heat/energy generation. This work aimed to investigate the effect of temperature, residence time and gas flow rate on the product energy distribution as well as the physical, chemical and soil functional properties of biochar, in order to optimise conditions best suited to maximise both energy value and agronomic benefit. Biochar samples were produced from wood pellets (WP) and straw pellets (SP) at two temperatures (350 and 650oC), with three residence times (10, 20 and 40 minutes) and three carrier gas flow rates (0, 0.3 and 0.6 L min-1). The energy balance of the system was determined through the calorimetric analysis of biochar and bio-oil, while the higher heating value for the syngas was calculated from the gas composition measured via mass spectroscopy. Biochar was also analysed for the physiochemical properties of proximate analysis and ultimate analysis as well as the functional property of environmentally stable carbon (C) content. As expected the yield of biochar decreased with increasing temperature resulting in elevated yields of liquid and gas fractions. Increased temperature also resulted in higher values of fixed C, total C, stable C and

  13. Effects of microbial inoculants on corn silage fermentation, microbial contents, aerobic stability, and milk production under field conditions.

    PubMed

    Kristensen, N B; Sloth, K H; Højberg, O; Spliid, N H; Jensen, C; Thøgersen, R

    2010-08-01

    The present study aimed to investigate the effects of 2 corn silage inoculation strategies (homofermentative vs. heterofermentative inoculation) under field conditions and to monitor responses in silage variables over the feeding season from January to August. Thirty-nine commercial dairy farms participated in the study. Farms were randomly assigned to 1 of 3 treatments: control (nonactive carrier; Chr. Hansen A/S, Hørsholm, Denmark), Lactisil (inoculation with 1 x 10(5)Lactobacillus pentosus and 2.5 x 10(4)Pediococcus pentosaceus per gram of fresh matter; Chr. Hansen A/S), and Lalsil Fresh (inoculation with 3 x 10(5)Lactobacillus buchneri NCIMB 40788 per gram of fresh matter; Lallemand Animal Nutrition, Blagnac, France). Inoculation with Lactisil had no effects on fermentation variables and aerobic stability. On the contrary, inoculation with Lalsil Fresh doubled the aerobic stability: 37, 38, and 80+/-8h for control, Lactisil, and Lalsil Fresh, respectively. The effect of Lalsil Fresh on aerobic stability tended to differ between sampling times, indicating a reduced difference between treatments in samples collected in April. Lalsil Fresh inoculation increased silage pH and contents of acetic acid, propionic acid, propanol, propyl acetate, 2-butanol, propylene glycol, ammonia, and free AA. The contents and ratios of DL-lactic acid, L-lactic acid relative to DL-lactic acid, free glucose, and DL-lactic acid relative to acetic acid decreased with Lalsil Fresh inoculation. Lalsil Fresh inoculation increased the silage counts of total lactic acid bacteria and reduced yeast counts. The Fusarium toxins deoxynivalenol, nivalenol, and zearalenone were detected in all silages at all collections, but the contents were not affected by ensiling time or by inoculation treatment. The effect of inoculation treatments on milk production was assessed by collecting test-day results from the involved farms and comparing the actual milk production with predicted milk production

  14. 7 CFR 319.73-3 - Conditions for transit movement of certain products through Puerto Rico or Hawaii.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 5 2012-01-01 2012-01-01 false Conditions for transit movement of certain products through Puerto Rico or Hawaii. 319.73-3 Section 319.73-3 Agriculture Regulations of the Department of... QUARANTINE NOTICES Coffee § 319.73-3 Conditions for transit movement of certain products through Puerto...

  15. 7 CFR 319.73-3 - Conditions for transit movement of certain products through Puerto Rico or Hawaii.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 5 2014-01-01 2014-01-01 false Conditions for transit movement of certain products through Puerto Rico or Hawaii. 319.73-3 Section 319.73-3 Agriculture Regulations of the Department of... QUARANTINE NOTICES Coffee § 319.73-3 Conditions for transit movement of certain products through Puerto...

  16. 7 CFR 319.73-3 - Conditions for transit movement of certain products through Puerto Rico or Hawaii.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 5 2010-01-01 2010-01-01 false Conditions for transit movement of certain products through Puerto Rico or Hawaii. 319.73-3 Section 319.73-3 Agriculture Regulations of the Department of... QUARANTINE NOTICES Coffee § 319.73-3 Conditions for transit movement of certain products through Puerto...

  17. 7 CFR 319.73-3 - Conditions for transit movement of certain products through Puerto Rico or Hawaii.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 5 2011-01-01 2011-01-01 false Conditions for transit movement of certain products through Puerto Rico or Hawaii. 319.73-3 Section 319.73-3 Agriculture Regulations of the Department of... QUARANTINE NOTICES Coffee § 319.73-3 Conditions for transit movement of certain products through Puerto...

  18. 7 CFR 319.73-3 - Conditions for transit movement of certain products through Puerto Rico or Hawaii.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 5 2013-01-01 2013-01-01 false Conditions for transit movement of certain products through Puerto Rico or Hawaii. 319.73-3 Section 319.73-3 Agriculture Regulations of the Department of... QUARANTINE NOTICES Coffee § 319.73-3 Conditions for transit movement of certain products through Puerto...

  19. Reducing conditions are the key for efficient production of active ribonuclease inhibitor in Escherichia coli

    PubMed Central

    2011-01-01

    Background The eukaryotic RNase ribonuclease/angiogenin inhibitors (RI) are a protein group distinguished by a unique structure - they are composed of hydrophobic leucine-rich repeat motifs (LRR) and contain a high amount of reduced cysteine residues. The members of this group are difficult to produce in E. coli and other recombinant hosts due to their high aggregation tendency. Results In this work dithiothreitol (DTT) was successfully applied for improving the yield of correctly folded ribonuclease/angiogenin inhibitor in E. coli K12 periplasmic and cytoplasmic compartments. The feasibility of the in vivo folding concepts for cytoplasmic and periplasmic production were demonstrated at batch and fed-batch cultivation modes in shake flasks and at the bioreactor scale. Firstly, the best secretion conditions of RI in the periplasmic space were evaluated by using a high throughput multifactorial screening approach of a vector library, directly with the Enbase fed-batch production mode in 96-well plates. Secondly, the effect of the redox environment was evaluated in isogenic dsbA+ and dsbA- strains at the various cultivation conditions with reducing agents in the cultivation medium. Despite the fusion to the signal peptide, highest activities were found in the cytoplasmic fraction. Thus by removing the signal peptide the positive effect of the reducing agent DTT was clearly proven also for the cytoplasmic compartment. Finally, optimal periplasmic and cytoplasmic RI fed-batch production processes involving externally added DTT were developed in shake flasks and scaled up to the bioreactor scale. Conclusions DTT highly improved both, periplasmic and cytoplasmic accumulation and activity of RI at low synthesis rate, i.e. in constructs harbouring weak recombinant synthesis rate stipulating genetic elements together with cultivation at low temperature. In a stirred bioreactor environment RI folding was strongly improved by repeated pulse addition of DTT at low aeration

  20. Condition-dependent ejaculate production affects male mating behavior in the common bedbug Cimex lectularius.

    PubMed

    Kaldun, Bettina; Otti, Oliver

    2016-04-01

    Food availability in the environment is often low and variable, constraining organisms in their resource allocation to different life-history traits. For example, variation in food availability is likely to induce condition-dependent investment in reproduction. Further, diet has been shown to affect ejaculate size, composition and quality. How these effects translate into male reproductive success or change male mating behavior is still largely unknown. Here, we concentrated on the effect of meal size on ejaculate production, male reproductive success and mating behavior in the common bedbug Cimex lectularius. We analyzed the production of sperm and seminal fluid within three different feeding regimes in six different populations. Males receiving large meals produced significantly more sperm and seminal fluid than males receiving small meals or no meals at all. While such condition-dependent ejaculate production did not affect the number of offspring produced after a single mating, food-restricted males could perform significantly fewer matings than fully fed males. Therefore, in a multiple mating context food-restricted males paid a fitness cost and might have to adjust their mating strategy according to the ejaculate available to them. Our results indicate that meal size has no direct effect on ejaculate quality, but food availability forces a condition-dependent mating rate on males. Environmental variation translating into variation in male reproductive traits reveals that natural selection can interact with sexual selection and shape reproductive traits. As males can modulate their ejaculate size depending on the mating situation, future studies are needed to elucidate whether environmental variation affecting the amount of ejaculate available might induce different mating strategies.

  1. Reconstruction of Redox Conditions and Productivity in Coastal Waters of the Bothnian Sea during the Holocene

    NASA Astrophysics Data System (ADS)

    Dijkstra, N.; Quintana Krupinski, N. B.; Slomp, C. P.

    2014-12-01

    Hypoxia is a growing problem in coastal waters worldwide, and is a well-known cause of benthic mortality. The semi-enclosed Baltic Sea is currently the world's largest human-induced dead zone. During the early Holocene, it experienced several periods of natural hypoxia following the intrusion of seawater into the previous freshwater lake. Recent studies suggest that at that time, the hypoxia expanded north to include the deep basin of the Bothnian Sea. In this study, we assess whether the coastal zone of the Bothnian Sea was also hypoxic during the early Holocene. We analysed a unique sediment record (0 - 30 mbsf) from the Ångermanälven estuary, which was retrieved during the International Ocean Discovery Programme (IODP) Baltic Sea Paleoenvironment Expedition 347 in 2013. Using geochemical proxies and foraminifera abundances, we reconstruct the changes in redox conditions, salinity and productivity in the estuary. Our preliminary results suggest that bottom waters in this coastal basin became anoxic upon the intrusion of brackish seawater in the early Holocene and that the productivity was elevated. The presence of benthic foraminifera in this estuary during the mid-Holocene suggests more saline conditions in the Bothnian Sea than today. Due to isostatic uplift, the estuary likely gradually became more isolated from the Bothnian Sea, which itself became more isolated from the Baltic Sea. Both factors likely explain the subsequent re-oxygenation of bottom waters and gradual refreshening of the estuary as recorded in the sediments. Interestingly, the upper meters of sediment are enriched in minerals that contain iron, phosphorus and manganese. We postulate that the refreshening of the estuary triggered the formation of these minerals, thereby increasing the phosphorus retention in these sediments and further reducing primary productivity. This enhanced retention linked to refreshening may contribute to the current oligotrophic conditions in the Bothnian Sea.

  2. Functional genomics analysis of free fatty acid production under continuous phosphate limiting conditions.

    PubMed

    Youngquist, J Tyler; Korosh, Travis C; Pfleger, Brian F

    2016-10-13

    Free fatty acids (FFA) are an attractive platform chemical that serves as a functional intermediate in metabolic pathways for producing oleochemicals. Many groups have established strains of Escherichia coli capable of producing various chain-length mixtures of FFA by heterologous expression of acyl-ACP thioesterases. For example, high levels of dodecanoic acid are produced by an E. coli strain expressing the Umbellularia californica FatB2 thioesterase, BTE. Prior studies achieved high dodecanoic acid yields and productivities under phosphate-limiting media conditions. In an effort to understand the metabolic and physiological changes that led to increased FFA production, the transcriptome of this strain was assessed as a function of nutrient limitation and growth rate. FFA generation under phosphate limitation led to consistent changes in transporter expression, osmoregulation, and central metabolism. Guided by these results, targeted knockouts led to a further ~11 % in yield in FFA.

  3. Consequences of different suckling systems for reproductive activity and productivity of cattle in tropical conditions.

    PubMed

    Galina, C S.; Rubio, I; Basurto, H; Orihuela, A

    2001-05-02

    The late onset of ovarian activity in mature cattle raised under tropical conditions is the major setback impeding a sound reproductive performance needed for the increasing demand of livestock products in the area. The effect of suckling has been circled as one of the most important factors impeding ovarian activity. Farmers in this region have used the most diverse set of management tools to overcome the suckling effect without compromising reproduction, the health of the calf, growth until weaning, milk production and a correct function of the mammary gland.Farmer interventions can be divided in: (1) early weaning (about 1 week of age); (2) weaning at 1, 3 or 5 months; (3) restricted suckling; (4) partial weaning. These systems can be affected by the breed of the animal, the location of the enterprise, infrastructure in the farm, time of the year and system of separation. The advantages and disadvantages of these systems are discussed in this review.

  4. Biochemical basis of drought tolerance in hybrid Populus grown under field production conditions. CRADA final report

    SciTech Connect

    Tschaplinski, T.J.; Tuskan, G.A.; Wierman, C.

    1997-04-01

    The purpose of this cooperative effort was to assess the use of osmotically active compounds as molecular selection criteria for drought tolerance in Populus in a large-scale field trial. It is known that some plant species, and individuals within a plant species, can tolerate increasing stress associated with reduced moisture availability by accumulating solutes. The biochemical matrix of such metabolites varies among species and among individuals. The ability of Populus clones to tolerate drought has equal value to other fiber producers, i.e., the wood products industry, where irrigation is used in combination with other cultural treatments to obtain high dry weight yields. The research initially involved an assessment of drought stress under field conditions and characterization of changes in osmotic constitution among the seven clones across the six moisture levels. The near-term goal was to provide a mechanistic basis for clonal differences in productivity under various irrigation treatments over time.

  5. Dissolution Coupled Biodegradation of Pce by Inducing In-Situ Biosurfactant Production Under Anaerobic Conditions

    NASA Astrophysics Data System (ADS)

    Dominic, J.; Nambi, I. M.

    2013-12-01

    Biosurfactants have proven to enhance the bioavailability and thereby elevate the rate of degradation of Light Non Aqueous Phase Liquids (LNAPLs) such as crude oil and petroleum derivatives. In spite of their superior characteristics, use of these biomolecules for remediation of Dense Non Aqueous Phase Liquids (DNAPLs) such as chlorinated solvents is still not clearly understood. In this present study, we have investigated the fate of tetrachloroethylene (PCE) by inducing in-situ biosurfactants production, a sustainable option which hypothesizes increase in bioavailability of LNAPLs. In order to understand the effect of biosurfactants on dissolution and biodegradation under the inducement of in-situ biosurfactant production, batch experiments were conducted in pure liquid media. The individual influence of each process such as biosurfactant production, dissolution of PCE and biodegradation of PCE were studied separately for getting insights on the synergistic effect of each process on the fate of PCE. Finally the dissolution coupled biodegradation of non aqueous phase PCE was studied in conditions where biosurfactant production was induced by nitrate limitation. The effect of biosurfactants was differentiated by repeating the same experiments were the biosurfactant production was retarded. The overall effect of in-situ biosurfactant production process was evaluated by use of a mathematical model. The process of microbial growth, biosurfactant production, dissolution and biodegradation of PCE were translated as ordinary differential equations. The modelling exercise was mainly performed to get insight on the combined effects of various processes that determine the concentration of PCE in its aqueous and non-aqueous phases. Model simulated profiles of PCE with the kinetic coefficients evaluated earlier from individual experiments were compared with parameters fitted for observations in experiments with dissolution coupled biodegradation process using optimization

  6. Performance of the Fluidized Bed Steam Reforming Product Under Hydraulically Unsaturated Conditions

    SciTech Connect

    Neeway, James J.; Qafoku, Nikolla; Williams, Benjamin D.; Rod, Kenton A.; Bowden, Mark E.; Brown, Christopher F.; Pierce, Eric M.

    2014-05-01

    Currently, several candidates for secondary waste immobilization at the Hanford site in the State of Washington, USA are being considered. To demonstrate the durability of the product in the unsaturated Integrated Disposal Facility (IDF) at the site, a series of tests have been performed one of the candidate materials using the Pressurized Unsaturated Flow (PUF) system. The material that was tested was the Fluidized Bed Steam Reformer (FBSR) granular product and the granular product encapsulated in a geopolymer matrix. The FBSR product is composed primarily of an insoluble sodium aluminosilicate matrix with the dominant phases being feldspathoid minerals mostly nepheline, sodalite, and nosean. The PUF test method allows for the accelerated weathering of materials, including radioactive waste forms, under hydraulically unsaturated conditions, thus mimicking the open-flow and transport properties that most likely will be present at the IDF. The experiments show a trend of decreasing tracer release as a function of time for several of the elements released from the material including Na, Si, Al, and Cs. However, some of the elements, notably I and Re, show a steady release throughout the yearlong test. This result suggests that the release of these minerals from the sodalite cage occurs at a different rate compared with the dissolution of the predominant nepheline phase.

  7. Functional significance of dinitrogen fixation in sustaining coral productivity under oligotrophic conditions

    PubMed Central

    Cardini, Ulisse; Bednarz, Vanessa N.; Naumann, Malik S.; van Hoytema, Nanne; Rix, Laura; Foster, Rachel A.; Al-Rshaidat, Mamoon M. D.; Wild, Christian

    2015-01-01

    Functional traits define species by their ecological role in the ecosystem. Animals themselves are host–microbe ecosystems (holobionts), and the application of ecophysiological approaches can help to understand their functioning. In hard coral holobionts, communities of dinitrogen (N2)-fixing prokaryotes (diazotrophs) may contribute a functional trait by providing bioavailable nitrogen (N) that could sustain coral productivity under oligotrophic conditions. This study quantified N2 fixation by diazotrophs associated with four genera of hermatypic corals on a northern Red Sea fringing reef exposed to high seasonality. We found N2 fixation activity to be 5- to 10-fold higher in summer, when inorganic nutrient concentrations were lowest and water temperature and light availability highest. Concurrently, coral gross primary productivity remained stable despite lower Symbiodinium densities and tissue chlorophyll a contents. In contrast, chlorophyll a content per Symbiodinium cell increased from spring to summer, suggesting that algal cells overcame limitation of N, an essential element for chlorophyll synthesis. In fact, N2 fixation was positively correlated with coral productivity in summer, when its contribution was estimated to meet 11% of the Symbiodinium N requirements. These results provide evidence of an important functional role of diazotrophs in sustaining coral productivity when alternative external N sources are scarce. PMID:26511052

  8. Effect of cultural conditions on production of eicosapentaenoic acid by Pythium irregulare.

    PubMed

    Stinson, E E; Kwoczak, R; Kurantz, M J

    1991-10-01

    The effect of culture conditions upon lipid content and fatty acid composition of mycelia of Pythium irregulare was investigated with particular attention to increasing the yield of 5,8,11,14,17-eicosapentaenoic acid (20:5; omega-3)(EPA). All experiments were done by shake flask culture using a yeast extract + malt extract medium. The maximum growth rate was obtained at 25 degrees C, but maximum EPA production was obtained at 12 degrees C. The highest EPA production was 76.5 micrograms EPA/ml 13 days fermentation at 12 degrees C. Addition of glucose during fermentation increased the yield considerably. The highest yield was 112 micrograms/ml, obtained at 13 days fermentation with spiking on day 11. Fermentation time could be shortened by initial incubation at 25 degrees C for 2 days, followed by incubation at 12 degrees C for 6 days. The culture also produced arachidonic acid and other omega-6 polyunsaturated fatty acids. EPA production was also obtained with lactose or sweet whey permeate, a by-product of cheese manufacture that contains lactose as the main carbohydrate.

  9. A Review on the Assessment of Stress Conditions for Simultaneous Production of Microalgal Lipids and Carotenoids

    PubMed Central

    Minhas, Amritpreet K.; Hodgson, Peter; Barrow, Colin J.; Adholeya, Alok

    2016-01-01

    Microalgal species are potential resource of both biofuels and high-value metabolites, and their production is growth dependent. Growth parameters can be screened for the selection of novel microalgal species that produce molecules of interest. In this context our review confirms that, autotrophic and heterotrophic organisms have demonstrated a dual potential, namely the ability to produce lipids as well as value-added products (particularly carotenoids) under influence of various physico-chemical stresses on microalgae. Some species of microalgae can synthesize, besides some pigments, very-long-chain polyunsaturated fatty acids (VL-PUFA,>20C) such as docosahexaenoic acid and eicosapentaenoic acid, those have significant applications in food and health. Producing value-added by-products in addition to biofuels, fatty acid methyl esters (FAME), and lipids has the potential to improve microalgae-based biorefineries by employing either the autotrophic or the heterotrophic mode, which could be an offshoot of biotechnology. The review considers the potential of microalgae to produce a range of products and indicates future directions for developing suitable criteria for choosing novel isolates through bioprospecting large gene pool of microalga obtained from various habitats and climatic conditions. PMID:27199903

  10. Growth conditions of clostridium perfringens type B for production of toxins used to obtain veterinary vaccines.

    PubMed

    Viana Brandi, Igor; Domenici Mozzer, Otto; Jorge, Edson Vander; Vieira Passos, Frederico Jose; Lopes Passos, Flavia Maria; Cangussu, Alex Sander Rodrigues; Macedo Sobrinho, Eliane

    2014-09-01

    The diseases caused for Clostridium perfringens are generically called enterotoxemias because toxins produced in the intestine may be absorbed into the general circulation. C. perfringens type B, grown in batch fermentation, produced toxins used to obtain veterinary vaccines. Glucose in concentrations of 1.4-111.1 mM was used to define the culture medium. The minimum concentration for a satisfactory production of vaccines against clostridial diseases was 55.6 mM. Best results were brought forth by meat and casein peptones, both in the concentration 5.0 g l(-1) in combination with glucose and a culture pH maintained at 6.5 throughout the fermentation process. The production of lactic, acetic and propionic organic acids was observed. Ethanol was the metabolite produced in the highest concentration when cultures maintained steady pH of 6.5 with exception of cultures with initial glucose concentration of 1.4 mM, where the highest production was of propionic acid. Maximal cell concentration and the highest toxin title concomitantly low yield coefficient to organic acids and ethanol were obtained using basal medium containing 111.1 mM glucose under a controlled pH culture (pH) 6.5 in batch fermentations of C. perfringens type B. These data contribute to improve process for industrial toxin production allowing better condition to produce a toxoid vaccine.

  11. Stressing conditions as tools to boost the biosynthesis of valuable plant natural products.

    PubMed

    da Silva, Fernanda Gomes; Horta, Lívia Pereira; de Oliveira Faria, Raquel; Stehmann, Joao Renato; Modolo, Luzia Valentina

    2014-01-01

    There is a consensus that plants are great sources of metabolites with a broad variety of functions. This is particularly important because plants cannot run away from environmental conditions that can threat their existence. The numerous biological activities exhibited by plant natural products prompted humanity to use such substances or their derivatives for the treatment and/or prevention of diseases. The more we know the flora around the world the higher is the chance to find new lead compounds for the design of more potent drugs or nutraceuticals. This review first deals with Brazilian flora, contextualizing the most studied medicinal species and related patents. It also describes a compilation of relevant works based on the use of stress conditions to enhance the biosynthesis of valuable metabolites in cell cultures, tissue cultures (hairy roots) and whole plants by using native or crop plants around the world.

  12. Immunocytokines: a novel class of products for the treatment of chronic inflammation and autoimmune conditions

    PubMed Central

    Bootz, Franziska; Neri, Dario

    2016-01-01

    Antibody–cytokine fusion proteins, often referred to as immunocytokines, represent a novel class of biopharmaceutical agents that combine the disease-homing activity of certain antibodies with the immunomodulatory properties of cytokine payloads. Originally, immunocytokines were mainly developed for cancer therapy applications. More recently, however, the use of anti-inflammatory cytokines for the treatment of chronic inflammatory conditions and to treat autoimmune diseases has been considered. This review analyzes basic principles in the design of immunocytokines and describes the most advanced products in preclinical and clinical development. PMID:26526566

  13. Genetic and environmental relationships between body condition score and milk production traits in Canadian Holsteins.

    PubMed

    Loker, S; Bastin, C; Miglior, F; Sewalem, A; Schaeffer, L R; Jamrozik, J; Ali, A; Osborne, V

    2012-01-01

    The objective of this research was to estimate genetic parameters of first-lactation body condition score (BCS), milk yield, fat percentage (Fat%), protein percentage (Prot%), somatic cell score (SCS), milk urea nitrogen (MUN), lactose percentage (Lact%), and fat to protein ratio (F:P) using multiple-trait random regression animal models. Changes in covariances between BCS and milk production traits on a daily basis have not been investigated before and could be useful for determining which BCS estimated breeding values (EBV) might be practical for selection in the future. Field staff from Valacta milk recording agency (Sainte-Anne-de-Bellevue, QC, Canada) collected BCS from Québec herds several times per cow throughout the lactation. Average daily heritabilities and genetic correlations among the various traits were similar to literature values. On an average daily basis, BCS was genetically unfavorably correlated with milk yield (i.e., increased milk yield was associated with lower body condition). The unfavorable genetic correlation between BCS and milk yield became stronger as lactation progressed, but was equivalent to zero for the first month of lactation. Favorable genetic correlations were found between BCS with Prot%, SCS, and Lact% (i.e., greater BCS was associated with greater Prot%, lower SCS, and greater Lact%). These correlations were strongest in early lactation. On an average daily basis, BCS was not genetically correlated with Fat% or MUN, but was negatively correlated with F:P. Furthermore, BCS at 5 and 50 d in milk (DIM) had the most favorable genetic correlations with milk production traits over the lactation (at 5, 50, 150, and 250 DIM). Thus, early lactation BCS EBV shows potential for selection. Regardless, this study showed that the level of association BCS has with milk production traits is not constant over the lactation. Simultaneous selection for both BCS and milk production traits should be considered, mainly due to the unfavorable

  14. Techno-economic evaluation of conditioning with sodium sulfite for bioethanol production from softwood.

    PubMed

    Cavka, Adnan; Martín, Carlos; Alriksson, Björn; Mörtsell, Marlene; Jönsson, Leif J

    2015-11-01

    Conditioning with reducing agents allows alleviation of inhibition of biocatalytic processes by toxic by-products generated during biomass pretreatment, without necessitating the introduction of a separate process step. In this work, conditioning of steam-pretreated spruce with sodium sulfite made it possible to lower the yeast and enzyme dosages in simultaneous saccharification and fermentation (SSF) to 1g/L and 5FPU/g WIS, respectively. Techno-economic evaluation indicates that the cost of sodium sulfite can be offset by benefits resulting from a reduction of either the yeast load by 0.68g/L or the enzyme load by 1FPU/g WIS. As those thresholds were surpassed, inclusion of conditioning can be justified. Another potential benefit results from shortening the SSF time, which would allow reducing the bioreactor volume and result in capital savings. Sodium sulfite conditioning emerges as an opportunity to lower the financial uncertainty and compensate the overall investment risk for commercializing a softwood-to-ethanol process.

  15. Chitosan production by psychrotolerant Rhizopus oryzae in non-sterile open fermentation conditions.

    PubMed

    Tasar, Ozden Canli; Erdal, Serkan; Taskin, Mesut

    2016-08-01

    A new chitosan producing fungus was locally isolated from soil samples collected around Erzurum, Turkey and identified as Rhizopus oryzae PAS 17 (GenBank accession number KU318422.1). Cultivation in low cost non-sterile conditions was achieved by exploiting its ability to grow at low temperature and pH, thus, undesired microbial contamination could be eliminated when appropriate culture conditions (incubation temperature as 15°C and initial pH of the medium as 4.5) were selected. Medium composition and culture conditions were optimized using Taguchi orthogonal array (OA) design of experiment (DOE). An OA layout of L16 (4(5)) was constructed with five most influensive factors at four levels on chitosan production like, carbon source (molasses), metal ion (Mg(2+)), inoculum amount, agitation speed and incubation time. The optimal combinations of factors (molasses, 70ml/l; MgSO4·7H2O, 0.5g/l; inoculum, 6.7×10(6) spores/disc; agitation speed, 150rpm and incubation time, 8days) obtained from the proposed DOE methodology was further validated by analysis of variance (ANOVA) test and the results revealed the increment of chitosan and biomass yields of 14.45 and 8.58 folds from its unoptimized condition, respectively.

  16. Impacts of extreme hydro-meteorological conditions on ecosystem functioning and productivity patterns across Australia

    NASA Astrophysics Data System (ADS)

    Huete, Alfredo; Ma, Xuanlong; Xie, Zunyi; Restrepo-Coupe, Natalia; Ponce-Campos, Guillermo

    2016-04-01

    As Earth's climate continues to change, the frequency and intensity of warm droughts, extreme precipitation patterns, and heat waves will alter in potentially different ways, ecosystem structure and functioning with major impacts on carbon and water balance, and food security. The extreme hydro-meteorological conditions that are presently impacting Australia approach those anticipated with future climate change and thus provide unique opportunities to study ecological sensitivity and functional responses and cross-biome productivity changes using contemporary, in-situ and satellite observational datasets. Here, we combined satellite vegetation index products from MODIS and AVHRR, total water storage (TWS) from the GRACE twin satellites, precipitation data and in-situ tower flux measurements to characterise ecosystem sensitivity, and analyse climate change impacts on ecosystem productivity and resilience. Recent advances in eddy covariance tower flux measurements and spatially contiguous remote sensing data provide innovative and promising capabilities to extend ecosystem functioning and productivity studies from local to regional and continental scales. In general, Australia exhibited ecosystem-level shifts in water demands with water availability across wet and dry years, and over all biomes analysed (arid grasslands to humid forests). In the drier years, higher ecosystem water use efficiencies (WUEe) enabled plants to maintain higher levels of productivity than would otherwise be expected for the lower amounts of rainfall and available water. Further, there were unique, functional class-specific coping strategies to drought and water availability. With prolonged warm drought conditions, biomes became increasingly water-limited and WUEe continued to increase until reaching a 'dry edge' threshold, a cross biome maximum WUEe, that cannot be sustained with further reductions in water availability and could potentially break down ecosystem resilience and induce

  17. Simulated conditions of microgravity suppress progesterone production by luteal cells of the pregnant rat

    NASA Technical Reports Server (NTRS)

    Bhat, G. K.; Yang, H.; Sridaran, R.

    2001-01-01

    The purpose of this study was to assess whether simulated conditions of microgravity induce changes in the production of progesterone by luteal cells of the pregnant rat ovary using an in vitro model system. The microgravity environment was simulated using either a high aspect ratio vessel (HARV) bioreactor with free fall or a clinostat without free fall of cells. A mixed population of luteal cells isolated from the corpora lutea of day 8 pregnant rats was attached to cytodex microcarrier beads (cytodex 3). These anchorage dependent cells were placed in equal numbers in the HARV or a spinner flask control vessel in culture conditions. It was found that HARV significantly reduced the daily production of progesterone from day 1 through day 8 compared to controls. Scanning electron microscopy showed that cells attached to the microcarrier beads throughout the duration of the experiment in both types of culture vessels. Cells cultured in chamber slide flasks and placed in a clinostat yielded similar results when compared to those in the HARV. Also, when they were stained by Oil Red-O for lipid droplets, the clinostat flasks showed a larger number of stained cells compared to control flasks at 48 h. Further, the relative amount of Oil Red-O staining per milligram of protein was found to be higher in the clinostat than in the control cells at 48 h. It is speculated that the increase in the level of lipid content in cells subjected to simulated conditions of microgravity may be due to a disruption in cholesterol transport and/or lesions in the steroidogenic pathway leading to a fall in the synthesis of progesterone. Additionally, the fall in progesterone in simulated conditions of microgravity could be due to apoptosis of luteal cells.

  18. Diversity and variability of methanogens during the shift from mesophilic to thermohilic conditions while biogas production.

    PubMed

    Ziembińska-Buczyńska, A; Banach, A; Bacza, T; Pieczykolan, M

    2014-12-01

    Anaerobic digestion (AD) is the most popular path of organic waste disposal. It is often used in wastewater treatment plants for excessive sludge removal. Methanogenic fermentation had usually been performed under mesophilic conditions, but in the past few years the thermophilic processes have become more popular due to economics and sludge sanitation. Methanogens, the group of microorganisms responsible for methane production, are thought to be sensitive to temperature change and it has already been proven that the communities performing methanogenesis under mesophilic and thermophilic conditions differ. But in most cases the research performed on methanogen diversity and changeability was undertaken in two separate anaerobic chambers for meso- and thermophilic conditions. It is also known that there is a group of microorganisms performing AD which are insensitive to temperature. Also the linkage between digester performance and its microbial content and community changeability is still not fully understood. That is why in this experiment we analyzed the bacterial community performing methanogenesis in a pilot scale anaerobic chamber during the shift from mesophilic to thermophilic conditions to point at the group of temperature tolerant microorganisms and their performance. The research was performed with PCR-DGGE (polymerase chain reaction-denaturing gradient gel electrophoresis). It occurred that the community biodiversity decreased together with a temperature increase. The changes were coherent for both the total bacteria community and methanogens. These bacterial shifts were also convergent with biogas production-it decreased in the beginning of the thermophilic phase with the bacterial biodiversity decrease and increased when the community seemed to be restored. DGGE results suggest that among a wide variety of microorganisms involved in AD there is a GC-rich group relatively insensitive towards temperature change, able to adapt quickly to shifts in

  19. Are boundary conditions in surface productivity at the Southern Polar Front reflected in benthic activity?

    NASA Astrophysics Data System (ADS)

    Brandt, Angelika; Vanreusel, Ann; Bracher, Astrid; Jule Marie Hoppe, Clara; Lins, Lidia; Meyer-Löbbecke, Anna; Altenburg Soppa, Mariana; Würzberg, Laura

    2014-10-01

    In austral summer 2012, during the expedition ANT-XXVIII/3 on board RV Polarstern, two sites were sampled 1600 km apart in the South Polar Front area (52°S) at the boundary of different productivity regimes for meio- and macrobenthos using a multiple-corer and an epibenthic sledge, respectively. Patterns in density and abundance data were compared between different size classes of the benthos and interpreted in relation to surface primary productivity data and sediment oxygen consumption. We tested the hypothesis that long-term satellite-derived surface phytoplankton biomass, in situ real time biomass, and productivity measurements at the surface and throughout the euphotic zone are reflected in abyssal benthos densities, abundances and activity. Specifically, we investigated the effect of boundary conditions for lower and higher surface productivity. Surface and integrated to 100 m depth biomass and primary productivity measurements vary stations, with the lowest values at station 85 (0.083 mg Chl-a m-3 at surface, 9 mg Chl-a m-2 and 161 mg C m-2 d-1- integrated over the first 100 m depth), and the highest values at station 86 (2.231 mg Chl-a m-3 at surface, 180 mg Chl-a m-2 and 2587 mg C m-2 d-1 integrated over first 100 m depth). Total meiofaunal densities varied between 102 and 335 individuals/10 cm². Densities were the highest at station 86-30 (335 individuals) and lowest at station 81-13 (102 individuals). Total macrofaunal densities (individuals/1000 m²) varied between 26 individuals at station 81-17 and 194 individuals at station 86-24. However, three EBS hauls were taken at station 86 with a minimum of 80 and a maximum of 194 individuals. Sediment oxygen consumption did not vary significantly between stations from east to west. Bentho-pelagic coupling of meio- and macrobenthic communities could not be observed in the South Polar Front at the boundary conditions from low to high surface productivity between stations 81 and 86.

  20. 30 CFR 206.55 - What are my responsibilities to place production into marketable condition and to market the...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 2 2010-07-01 2010-07-01 false What are my responsibilities to place production into marketable condition and to market the production? 206.55 Section 206.55 Mineral Resources MINERALS MANAGEMENT SERVICE, DEPARTMENT OF THE INTERIOR MINERALS REVENUE MANAGEMENT PRODUCT...

  1. Effects of air velocity on laying hen production from 24 to 27 weeks under simulated evaporatively cooled conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Thermal conditions play a major role in production efficiency in commercial poultry production. Mitigation of thermal stress can improve productivity, but must be achieved economically. Weather and system design can limit effectiveness of evaporative cooling and increased air movement has been sho...

  2. The actual goals of geoethics

    NASA Astrophysics Data System (ADS)

    Nemec, Vaclav

    2014-05-01

    The most actual goals of geoethics have been formulated as results of the International Conference on Geoethics (October 2013) held at the geoethics birth-place Pribram (Czech Republic): In the sphere of education and public enlightenment an appropriate needed minimum know how of Earth sciences should be intensively promoted together with cultivating ethical way of thinking and acting for the sustainable well-being of the society. The actual activities of the Intergovernmental Panel of Climate Changes are not sustainable with the existing knowledge of the Earth sciences (as presented in the results of the 33rd and 34th International Geological Congresses). This knowledge should be incorporated into any further work of the IPCC. In the sphere of legislation in a large international co-operation following steps are needed: - to re-formulate the term of a "false alarm" and its legal consequences, - to demand very consequently the needed evaluation of existing risks, - to solve problems of rights of individuals and minorities in cases of the optimum use of mineral resources and of the optimum protection of the local population against emergency dangers and disasters; common good (well-being) must be considered as the priority when solving ethical dilemmas. The precaution principle should be applied in any decision making process. Earth scientists presenting their expert opinions are not exempted from civil, administrative or even criminal liabilities. Details must be established by national law and jurisprudence. The well known case of the L'Aquila earthquake (2009) should serve as a serious warning because of the proven misuse of geoethics for protecting top Italian seismologists responsible and sentenced for their inadequate superficial behaviour causing lot of human victims. Another recent scandal with the Himalayan fossil fraud will be also documented. A support is needed for any effort to analyze and to disclose the problems of the deformation of the contemporary

  3. Talc based exopolysaccharides formulation enhancing growth and production of Hellianthus annuus under saline conditions.

    PubMed

    Tewari, S; Arora, K

    2014-12-24

    Stress tolerating strain of Pseudomonas aeruginosa PF07 possessing plant growth promoting activity was screened for the production of exopolysaccharides (EPS). EPS production was monitored in the cell free culture supernatant (CFCS) and extracted EPS was further purified by thin layer chromatography. EPS producing cells were taken to design talc based formulation and its efficacy was checked on oilseed crop sunflower (Hellianthus annuus), under in vivo saline conditions (soil irrigated with 125 mM of saline water). Application of bioformulation significantly enhanced the yield and growth attributes of the plant in comparison to control (untreated seeds) under stress and non—stress conditions. Germination rate, plant length, dry weight and seed weight increased remarkably. The above findings suggest the application and benefits of utilizing EPS formulation in boosting early seedling emergence, enhancing plant growth parameters, increasing seed weight and mitigating stress in saline affected regions. Such bioformulation may enhance RAS/RT (Root Adhering Soil to Root Tissue ratio), texture of the soil, increase porosity, improve uptake of nutrients, and hence may be considered as commercially important formulation for renovation of stressed sites and enhancing plant growth.

  4. Review of Thawing Time Prediction Models Depending
on Process Conditions and Product Characteristics

    PubMed Central

    Kluza, Franciszek; Spiess, Walter E. L.; Kozłowicz, Katarzyna

    2016-01-01

    Summary Determining thawing times of frozen foods is a challenging problem as the thermophysical properties of the product change during thawing. A number of calculation models and solutions have been developed. The proposed solutions range from relatively simple analytical equations based on a number of assumptions to a group of empirical approaches that sometimes require complex calculations. In this paper analytical, empirical and graphical models are presented and critically reviewed. The conditions of solution, limitations and possible applications of the models are discussed. The graphical and semi--graphical models are derived from numerical methods. Using the numerical methods is not always possible as running calculations takes time, whereas the specialized software and equipment are not always cheap. For these reasons, the application of analytical-empirical models is more useful for engineering. It is demonstrated that there is no simple, accurate and feasible analytical method for thawing time prediction. Consequently, simplified methods are needed for thawing time estimation of agricultural and food products. The review reveals the need for further improvement of the existing solutions or development of new ones that will enable accurate determination of thawing time within a wide range of practical conditions of heat transfer during processing. PMID:27904387

  5. Improvements of tolerance to stress conditions by genetic engineering in Saccharomyces cerevisiae during ethanol production.

    PubMed

    Doğan, Ayşegül; Demirci, Selami; Aytekin, Ali Özhan; Şahin, Fikrettin

    2014-09-01

    Saccharomyces cerevisiae, industrial yeast isolate, has been of great interest in recent years for fuel ethanol production. The ethanol yield and productivity depend on many inhibitory factors during the fermentation process such as temperature, ethanol, compounds released as the result of pretreatment procedures, and osmotic stress. An ideal strain should be able to grow under different stress conditions occurred at different fermentation steps. Development of tolerant yeast strains can be achieved by reprogramming pathways supporting the ethanol metabolism by regulating the energy balance and detoxicification processes. Complex gene interactions should be solved for an in-depth comprehension of the yeast stress tolerance mechanism. Genetic engineering as a powerful biotechnological tool is required to design new strategies for increasing the ethanol fermentation performance. Upregulation of stress tolerance genes by recombinant DNA technology can be a useful approach to overcome inhibitory situations. This review presents the application of several genetic engineering strategies to increase ethanol yield under different stress conditions including inhibitor tolerance, ethanol tolerance, thermotolerance, and osmotolerance.

  6. Review of Thawing Time Prediction Models Depending
on Process Conditions and Product Characteristics.

    PubMed

    Góral, Dariusz; Kluza, Franciszek; Spiess, Walter E L; Kozłowicz, Katarzyna

    2016-03-01

    Determining thawing times of frozen foods is a challenging problem as the thermophysical properties of the product change during thawing. A number of calculation models and solutions have been developed. The proposed solutions range from relatively simple analytical equations based on a number of assumptions to a group of empirical approaches that sometimes require complex calculations. In this paper analytical, empirical and graphical models are presented and critically reviewed. The conditions of solution, limitations and possible applications of the models are discussed. The graphical and semi--graphical models are derived from numerical methods. Using the numerical methods is not always possible as running calculations takes time, whereas the specialized software and equipment are not always cheap. For these reasons, the application of analytical-empirical models is more useful for engineering. It is demonstrated that there is no simple, accurate and feasible analytical method for thawing time prediction. Consequently, simplified methods are needed for thawing time estimation of agricultural and food products. The review reveals the need for further improvement of the existing solutions or development of new ones that will enable accurate determination of thawing time within a wide range of practical conditions of heat transfer during processing.

  7. Root-endophytes improve the ecophysiological performance and production of an agricultural species under drought condition.

    PubMed

    Molina-Montenegro, Marco A; Oses, Rómulo; Torres-Díaz, Cristian; Atala, Cristian; Zurita-Silva, Andrés; Ruiz-Lara, Simón

    2016-01-01

    Throughout many regions of the world, climate change has limited the availability of water for irrigating crops. Indeed, current models of climate change predict that arid and semi-arid zones will be places where precipitation will drastically decrease. In this context, plant root-associated fungi appear as a new strategy to improve ecophysiological performance and yield of crops under abiotic stress. Thus, use of fungal endophytes from ecosystems currently subjected to severe drought conditions could improve the ecophysiological performance and quantum yield of crops exposed to drought. In this study, we evaluated how the inoculation of fungal endophytes isolated from Antarctic plants can improve the net photosynthesis, water use efficiency and production of fresh biomass in a lettuce cultivar, grown under different water availability regimes. In addition, we assessed if the presence of biochemical mechanisms and gene expression related with environmental tolerance are improved in presence of fungal endophytes. Overall, those individuals with presence of endophytes showed higher net photosynthesis and maintained higher water use efficiency in drought conditions, which was correlated with greater fresh and dry biomass production as well as greater root system development. In addition, presence of fungal endophytes was correlated with a higher proline concentration, lower peroxidation of lipids and up-/down-regulation of ion homeostasis. Our results suggest that presence of fungal endophytes could minimize the negative effect of drought by improving drought tolerance through biochemical mechanisms and improving nutritional status. Thus, root-endophytes might be a successful biotechnological tool to maintain high levels of ecophysiological performance and productivity in zones under drought.

  8. Radical product yields from the ozonolysis of short chain alkenes under atmospheric boundary layer conditions.

    PubMed

    Alam, Mohammed S; Rickard, Andrew R; Camredon, Marie; Wyche, Kevin P; Carr, Timo; Hornsby, Karen E; Monks, Paul S; Bloss, William J

    2013-11-27

    The gas-phase reaction of ozone with unsaturated volatile organic compounds (VOCs), alkenes, is an important source of the critical atmospheric oxidant OH, especially at night when other photolytic radical initiation routes cannot occur. Alkene ozonolysis is also known to directly form HO2 radicals, which may be readily converted to OH through reaction with NO, but whose formation is poorly understood. We report a study of the radical (OH, HO2, and RO2) production from a series of small alkenes (propene, 1-butene, cis-2-butene, trans-2-butene, 2-methylpropene, 2,3-dimethyl-2-butene (tetramethyl ethene, TME), and isoprene). Experiments were performed in the European Photoreactor (EUPHORE) atmospheric simulation chamber, with OH and HO2 levels directly measured by laser-induced fluorescence (LIF) and HO2 + ΣRO2 levels measured by peroxy-radical chemical amplification (PERCA). OH yields were found to be in good agreement with the majority of previous studies performed under comparable conditions (atmospheric pressure, long time scales) using tracer and scavenger approaches. HO2 yields ranged from 4% (trans-2-butene) to 34% (2-methylpropene), lower than previous experimental determinations. Increasing humidity further reduced the HO2 yields obtained, by typically 50% for an RH increase from 0.5 to 30%, suggesting that HOx production from alkene ozonolysis may be lower than current models suggest under (humid) ambient atmospheric boundary layer conditions. The mechanistic origin of the OH and HO2 production observed is discussed in the context of previous experimental and theoretical studies.

  9. Cultural conditions on the production of extracellular enzymes by Trichoderma isolates from tobacco rhizosphere.

    PubMed

    Mallikharjuna Rao, K L N; Siva Raju, K; Ravisankar, H

    2016-01-01

    Twelve isolates of Trichoderma spp. isolated from tobacco rhizosphere were evaluated for their ability to produce chitinase and β-1,3-glucanase extracellular hydrolytic enzymes. Isolates ThJt1 and TvHt2, out of 12 isolates, produced maximum activities of chitinase and β-1,3-glucanase, respectively. In vitro production of chitinase and β-1,3-glucanase by isolates ThJt1 and TvHt2 was tested under different cultural conditions. The enzyme activities were significantly influenced by acidic pH and the optimum temperature was 30°C. The chitin and cell walls of Sclerotium rolfsii, as carbon sources, supported the maximum and significantly higher chitinase activity by both isolates. The chitinase activity of isolate ThJt1 was suppressed significantly by fructose (80.28%), followed by glucose (77.42%), whereas the β-1,3-glucanase activity of ThJt1 and both enzymes of isolate TvHt2 were significantly suppressed by fructose, followed by sucrose. Ammonium nitrate as nitrogen source supported the maximum activity of chitinase in both isolates, whereas urea was a poor nitrogen source. Production of both enzymes by the isolates was significantly influenced by the cultural conditions. Thus, the isolates ThJt1 and TvHt2 showed higher levels of chitinase and β-1,3-glucanase activities and were capable of hydrolyzing the mycelium of S. rolfsii infecting tobacco. These organisms can be used therefore for assessment of their synergism in biomass production and biocontrol efficacy and for their field biocontrol ability against S. rolfsii and Pythium aphanidermatum infecting tobacco.

  10. Cultural conditions on the production of extracellular enzymes by Trichoderma isolates from tobacco rhizosphere

    PubMed Central

    Mallikharjuna Rao, K.L.N.; Siva Raju, K.; Ravisankar, H.

    2016-01-01

    Twelve isolates of Trichoderma spp. isolated from tobacco rhizosphere were evaluated for their ability to produce chitinase and β-1,3-glucanase extracellular hydrolytic enzymes. Isolates ThJt1 and TvHt2, out of 12 isolates, produced maximum activities of chitinase and β-1,3-glucanase, respectively. In vitro production of chitinase and β-1,3-glucanase by isolates ThJt1 and TvHt2 was tested under different cultural conditions. The enzyme activities were significantly influenced by acidic pH and the optimum temperature was 30 °C. The chitin and cell walls of Sclerotium rolfsii, as carbon sources, supported the maximum and significantly higher chitinase activity by both isolates. The chitinase activity of isolate ThJt1 was suppressed significantly by fructose (80.28%), followed by glucose (77.42%), whereas the β-1,3-glucanase activity of ThJt1 and both enzymes of isolate TvHt2 were significantly suppressed by fructose, followed by sucrose. Ammonium nitrate as nitrogen source supported the maximum activity of chitinase in both isolates, whereas urea was a poor nitrogen source. Production of both enzymes by the isolates was significantly influenced by the cultural conditions. Thus, the isolates ThJt1 and TvHt2 showed higher levels of chitinase and β-1,3-glucanase activities and were capable of hydrolyzing the mycelium of S. rolfsii infecting tobacco. These organisms can be used therefore for assessment of their synergism in biomass production and biocontrol efficacy and for their field biocontrol ability against S. rolfsii and Pythium aphanidermatum infecting tobacco. PMID:26887223

  11. In situ gas fuel production during the treatment of textile wastewater at supercritical conditions.

    PubMed

    Kıpçak, Ekin; Akgün, Mesut

    2013-01-01

    Supercritical water gasification has recently received much attention as a potential alternative to energy conversion methods applied to aqueous/non-aqueous biomass sources, industrial wastes or fossil fuels such as coal because of the unique physical properties of water above its critical conditions (i.e. 374.8 °C and 22.1 MPa). This paper presents the results obtained for the hydrothermal gasification of textile wastewater at supercritical conditions. The experiments were carried out at five reaction temperatures (between 450 and 650 °C) and five reaction times (between 30 and 150 s), under a constant pressure of 25 MPa. It was found that the gaseous products contained considerable amounts of hydrogen, carbon monoxide, carbon dioxide, and C(1)-C(4) hydrocarbons, such as methane, ethane, propane and propylene. The maximum amount of the obtained gaseous product was 1.23 mL per mL textile wastewater, at a reaction temperature of 600 °C, with a reaction time of 150 s. At this state, the product comprised 13.02% hydrogen, 38.93% methane, 4.33% ethane, 0.10% propane, 0.01% propylene, 7.97% carbon monoxide, 27.22% carbon dioxide and 8.00% nitrogen. In addition, a 62.88% decrease in the total organic carbon (TOC) content was observed and the color of the wastewater was removed. Moreover, for the hydrothermal decomposition of the textile wastewater, a first-order reaction rate was designated with an activation energy of 50.42 (±2.33) kJ/mol and a pre-exponential factor of 13.29 (±0.41) s(-1).

  12. Root-endophytes improve the ecophysiological performance and production of an agricultural species under drought condition

    PubMed Central

    Molina-Montenegro, Marco A.; Oses, Rómulo; Torres-Díaz, Cristian; Atala, Cristian; Zurita-Silva, Andrés; Ruiz-Lara, Simón

    2016-01-01

    Throughout many regions of the world, climate change has limited the availability of water for irrigating crops. Indeed, current models of climate change predict that arid and semi-arid zones will be places where precipitation will drastically decrease. In this context, plant root-associated fungi appear as a new strategy to improve ecophysiological performance and yield of crops under abiotic stress. Thus, use of fungal endophytes from ecosystems currently subjected to severe drought conditions could improve the ecophysiological performance and quantum yield of crops exposed to drought. In this study, we evaluated how the inoculation of fungal endophytes isolated from Antarctic plants can improve the net photosynthesis, water use efficiency and production of fresh biomass in a lettuce cultivar, grown under different water availability regimes. In addition, we assessed if the presence of biochemical mechanisms and gene expression related with environmental tolerance are improved in presence of fungal endophytes. Overall, those individuals with presence of endophytes showed higher net photosynthesis and maintained higher water use efficiency in drought conditions, which was correlated with greater fresh and dry biomass production as well as greater root system development. In addition, presence of fungal endophytes was correlated with a higher proline concentration, lower peroxidation of lipids and up-/down-regulation of ion homeostasis. Our results suggest that presence of fungal endophytes could minimize the negative effect of drought by improving drought tolerance through biochemical mechanisms and improving nutritional status. Thus, root-endophytes might be a successful biotechnological tool to maintain high levels of ecophysiological performance and productivity in zones under drought. PMID:27613875

  13. Effect of substrate availability on nitrous oxide production by deammonification processes under anoxic conditions.

    PubMed

    Schneider, Yvonne; Beier, Maike; Rosenwinkel, Karl-Heinz

    2012-05-01

    Due to its high global warming potential, nitrous oxide (N(2)O) emissions from wastewater treatment processes have recently received a high degree of attention. Nevertheless, there is still a lack of information regarding the microbiological processes leading to N(2)O production. In this study, two lab-scale sequencing batch reactors were operated with deammonification biomass to investigate the role of denitrification and the influence of substrate availability regarding N(2)O formation during the anoxic phase of deammonification. Three different operational phases were established: within the first phase conversion by anammox was favoured and after a transition phase, denitrification activity was promoted. Low nitrous oxide production was observed during stable operation aiming for anammox conversion. Pulsed inflow of the wastewater containing ammonium (NH(4)(+)) and nitrite (NO(2)(-)) led to increased N(2)O production rates. Within the period of denitrification as dominating nitrogen conversion process, the nitrous oxide concentration level was higher during continuous inflow conditions, but the reaction to pulsed inflow was less pronounced. The results indicated that denitrification was responsible for N(2)O formation from the deammonification biomass. Operational settings to achieve suppression of denitrification processes to a large extend were deducted from the results of the experiments.

  14. Effect of substrate availability on nitrous oxide production by deammonification processes under anoxic conditions

    PubMed Central

    Schneider, Yvonne; Beier, Maike; Rosenwinkel, Karl‐Heinz

    2012-01-01

    Summary Due to its high global warming potential, nitrous oxide (N2O) emissions from wastewater treatment processes have recently received a high degree of attention. Nevertheless, there is still a lack of information regarding the microbiological processes leading to N2O production. In this study, two lab‐scale sequencing batch reactors were operated with deammonification biomass to investigate the role of denitrification and the influence of substrate availability regarding N2O formation during the anoxic phase of deammonification. Three different operational phases were established: within the first phase conversion by anammox was favoured and after a transition phase, denitrification activity was promoted. Low nitrous oxide production was observed during stable operation aiming for anammox conversion. Pulsed inflow of the wastewater containing ammonium (NH4+) and nitrite (NO2‐) led to increased N2O production rates. Within the period of denitrification as dominating nitrogen conversion process, the nitrous oxide concentration level was higher during continuous inflow conditions, but the reaction to pulsed inflow was less pronounced. The results indicated that denitrification was responsible for N2O formation from the deammonification biomass. Operational settings to achieve suppression of denitrification processes to a large extend were deducted from the results of the experiments. PMID:22296600

  15. Optimization of fermentation conditions for P450 BM-3 monooxygenase production by hybrid design methodology*

    PubMed Central

    Lu, Yan; Mei, Le-he

    2007-01-01

    Factorial design and response surface techniques were used to design and optimize increasing P450 BM-3 expression in E. coli. Operational conditions for maximum production were determined with twelve parameters under consideration: the concentration of FeCl3, induction at OD578 (optical density measured at 578 nm), induction time and inoculum concentration. Initially, Plackett-Burman (PB) design was used to evaluate the process variables relevant in relation to P450 BM-3 production. Four statistically significant parameters for response were selected and utilized in order to optimize the process. With the 416C model of hybrid design, response surfaces were generated, and P450 BM-3 production was improved to 57.90×10−3 U/ml by the best combinations of the physicochemical parameters at optimum levels of 0.12 mg/L FeCl3, inoculum concentration of 2.10%, induction at OD578 equal to 1.07, and with 6.05 h of induction. PMID:17173359

  16. Optimization of enzymatic hydrolysis and fermentation conditions for improved bioethanol production from potato peel residues.

    PubMed

    Ben Taher, Imen; Fickers, Patrick; Chniti, Sofien; Hassouna, Mnasser

    2016-12-20

    The aim of this work was the optimization of the enzyme hydrolysis of potato peel residues (PPR) for bioethanol production. The process included a pretreatment step followed by an enzyme hydrolysis using crude enzyme system composed of cellulase, amylase and hemicellulase, produced by a mixed culture of Aspergillus niger and Trichoderma reesei. Hydrothermal, alkali and acid pretreatments were considered with regards to the enhancement of enzyme hydrolysis of potato peel residues. The obtained results showed that hydrothermal pretreatment lead to a higher enzyme hydrolysis yield compared to both acid and alkali pretreatments. Enzyme hydrolysis was also optimized for parameters such as temperature, pH, substrate loading and surfactant loading using a response surface methodology. Under optimized conditions, 77 g L(-1) of reducing sugars were obtained. Yeast fermentation of the released reducing sugars led to an ethanol titer of 30 g L(-1) after supplementation of the culture medium with ammonium sulfate. Moreover, a comparative study between acid and enzyme hydrolysis of potato peel residues was investigated. Results showed that enzyme hydrolysis offers higher yield of bioethanol production than acid hydrolysis. These results highlight the potential of second generation bioethanol production from potato peel residues treated with onsite produced hydrolytic enzymes. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 2016.

  17. Efficient production and secretion of pyruvate from Halomonas sp. KM-1 under aerobic conditions.

    PubMed

    Kawata, Yoshikazu; Nishimura, Taku; Matsushita, Isao; Tsubota, Jun

    2016-03-01

    The alkaliphilic, halophilic bacterium Halomonas sp. KM-1 can utilize both hexose and pentose sugars for the intracellular storage of bioplastic poly-(R)-3-hydroxybutyric acid (PHB) under aerobic conditions. In this study, we investigated the effects of the sodium nitrate concentration on PHB accumulation in the KM-1 strain. Unexpectedly, we observed the secretion of pyruvate, a central intermediate in carbon- and energy-metabolism processes in all organisms; therefore, pyruvate is widely used as a starting material in the industrial biosynthesis of pharmaceuticals and is employed for the production of crop-protection agents, polymers, cosmetics, and food additives. We then further analyzed pyruvate productivity following changes in culture temperature and the buffer concentration. In 48-h batch-cultivation experiments, we found that wild-type Halomonas sp. KM-1 secreted 63.3 g/L pyruvate at a rate of 1.32 g/(L·h), comparable to the results of former studies using mutant and recombinant microorganisms. Thus, these data provided important insights into the production of pyruvate using this novel strain.

  18. Human-animal interaction, stress, and embryo production in Bos indicus embryo donors under tropical conditions.

    PubMed

    Macedo, Gustavo Guerino; Zúccari, Carmem Estefânia Serra Neto; de Abreu, Urbano Gomes Pinto; Negrão, João Alberto; da Costa e Silva, Eliane Vianna

    2011-08-01

    This study investigated the effect of human-animal interaction (HAI) and the stress response on the quality of embryo production in superovulated Nelore (Bos indicus) cattle, under tropical conditions. Thirty-two females underwent a superovulation protocol for 5 days. Cortisol concentrations were determined in blood plasma collected on days 0, 4, and 5. Artificial insemination was performed on days 4 and 5, and nonsurgical embryo flushing on day 11. Embryo production and viability were determined. Human stimulation, animal behaviors, accidents, and handling time were recorded to assess HAI. Cattle age was negatively correlated with accidents, frequency of aversive behaviors, and negative stimuli by stockperson during transit through corral compartments to receive superovulation treatments. The factor analysis revealed two distinct groups. The first group was called stressed and had higher cortisol concentration than the nonstressed group, 16.0 ± 2.1 and 12.5 ± 1.0 ng/mL, respectively. Comparisons between these groups showed that the frequency of voice emissions by the stockperson and the number of accidents were higher in the stressed group, and also, the mean handling time was longer in the stressed group than for the nonstressed. As a result, viability rate of the embryos was 19% lower in the stressed group (P < 0.05). This indicates that intensive negative HAI is likely related to stress, which affects embryo production in a superovulation program.

  19. Pressure retarded osmosis for energy production: membrane materials and operating conditions.

    PubMed

    Kim, H; Choi, J-S; Lee, S

    2012-01-01

    Pressure retarded osmosis (PRO) is a novel membrane process to produce energy. PRO has the potential to convert the osmotic pressure difference between fresh water (i.e. river water) and seawater to electricity. Moreover, it can recover energy from highly concentrated brine in seawater desalination. Nevertheless, relatively little research has been undertaken for fundamental understanding of the PRO process. In this study, the characteristics of the PRO process were examined using a proof-of-concept device. Forward osmosis (FO), reverse osmosis (RO), and nanofiltration (NF) membranes were compared in terms of flux rate and concentration polarization ratio. The results indicated that the theoretical energy production by PRO depends on the membrane type as well as operating conditions (i.e. back pressure). The FO membrane had the highest energy efficiency while the NF membrane had the lowest efficiency. However, the energy production rate was low due to high internal concentration polarization (ICP) in the PRO membrane. This finding suggests that the control of the ICP is essential for practical application of PRO for energy production.

  20. Increased greenhouse-gas intensity of rice production under future atmospheric conditions

    NASA Astrophysics Data System (ADS)

    van Groenigen, Kees Jan; van Kessel, Chris; Hungate, Bruce A.

    2013-03-01

    Increased atmospheric CO2 and rising temperatures are expected to affect rice yields and greenhouse-gas (GHG) emissions from rice paddies. This is important, because rice cultivation is one of the largest human-induced sources of the potent GHG methane (CH4) and rice is the world's second-most produced staple crop. The need for meeting a growing global food demand argues for assessing GHG emissions from croplands on the basis of yield rather than land area, such that efforts to reduce GHG emissions take into consideration the consequences for food production. However, it is unclear whether or how the GHG intensity (that is, yield-scaled GHG emissions) of cropping systems will be affected by future atmospheric conditions. Here we show, using meta-analysis, that increased atmospheric CO2 (ranging from 550 to 743ppmV) and warming (ranging from +0.8°C to +6°C) both increase the GHG intensity of rice cultivation. Increased atmospheric CO2 increased GHG intensity by 31.4%, because CH4 emissions are stimulated more than rice yields. Warming increased GHG intensity by 11.8% per 1°C, largely owing to a decrease in yield. This analysis suggests that rising CO2 and warming will approximately double the GHG intensity of rice production by the end of the twenty-first century, stressing the need for management practices that optimize rice production while reducing its GHG intensity as the climate continues to change.

  1. Methane production from acid hydrolysates of Agave tequilana bagasse: evaluation of hydrolysis conditions and methane yield.

    PubMed

    Arreola-Vargas, Jorge; Ojeda-Castillo, Valeria; Snell-Castro, Raúl; Corona-González, Rosa Isela; Alatriste-Mondragón, Felipe; Méndez-Acosta, Hugo O

    2015-04-01

    Evaluation of diluted acid hydrolysis for sugar extraction from cooked and uncooked Agave tequilana bagasse and feasibility of using the hydrolysates as substrate for methane production, with and without nutrient addition, in anaerobic sequencing batch reactors (AnSBR) were studied. Results showed that the hydrolysis over the cooked bagasse was more effective for sugar extraction at the studied conditions. Total sugars concentration in the cooked and uncooked bagasse hydrolysates were 27.9 g/L and 18.7 g/L, respectively. However, 5-hydroxymethylfurfural was detected in the cooked bagasse hydrolysate, and therefore, the uncooked bagasse hydrolysate was selected as substrate for methane production. Interestingly, results showed that the AnSBR operated without nutrient addition obtained a constant methane production (0.26 L CH4/g COD), whereas the AnSBR operated with nutrient addition presented a gradual methane suppression. Molecular analyses suggested that methane suppression in the experiment with nutrient addition was due to a negative effect over the archaeal/bacterial ratio.

  2. Submerged culture conditions for the production of mycelial biomass and antimicrobial metabolites by Polyporus tricholoma Mont.

    PubMed Central

    Vieira, Gladys Rosane Thomé; Liebl, Mariane; Tavares, Lorena Benathar Ballod; Paulert, Roberta; Smânia Júnior, Artur

    2008-01-01

    Basidiomycete fungi of the Polyporus genus are a source of secondary metabolites which are of medicinal interest as antibacterial compounds. As these substances are produced in a small amount by the fungi, the study of the cultivation conditions in vitro that could possibly optimize their production seems of major importance. The effects of glucose and lactose, pH and agitation on biomass concentration and on the specific growth rate caused by the basidiomycete Polyporus tricholoma were investigated. The initial pH (4.5, 6.5 and 8.5) was autoregulated at pH 5.5, and the agitation increased the mycelial growth and the specific growth rate. The high concentration of carbon sources (4%) increased biomass production. The lactose concentration and the absence of agitation were determinant in the production of antibacterial metabolites. The characterization of the antibacterial substance by GC-MS indicated a major compound, isodrimenediol, produced by the fungus Polyporus tricholoma with activity against Staphylococcus aureus. PMID:24031266

  3. Assessment of biogas production from MBT waste under different operating conditions

    SciTech Connect

    Pantini, Sara; Verginelli, Iason; Lombardi, Francesco; Scheutz, Charlotte; Kjeldsen, Peter

    2015-09-15

    Highlights: • BMP test displayed high gas potential generation capacity of MBT waste. • Strong inhibition effects were observed due to ammonia and VFA accumulation. • Waste water content was found as the key parameter limiting gas generation. • First order k-values were determined for different operating conditions. - Abstract: In this work, the influence of different operating conditions on the biogas production from mechanically–biologically treated (MBT) wastes is investigated. Specifically, different lab-scale anaerobic tests varying the water content (26–43% w/w up to 75% w/w), the temperature (from 20 to 25 °C up to 55 °C) and the amount of inoculum have been performed on waste samples collected from a full-scale Italian MBT plant. For each test, the gas generation yield and, where applicable, the first-order gas generation rates were determined. Nearly all tests were characterised by a quite long lag-phase. This result was mainly ascribed to the inhibition effects resulting from the high concentrations of volatile fatty acids (VFAs) and ammonia detected in the different stages of the experiments. Furthermore, water content was found as one of the key factor limiting the anaerobic biological process. Indeed, the experimental results showed that when the moisture was lower than 32% w/w, the methanogenic microbial activity was completely inhibited. For the higher water content tested (75% w/w), high values of accumulated gas volume (up to 150 Nl/kgTS) and a relatively short time period to deplete the MBT waste gas generation capacity were observed. At these test conditions, the effect of temperature became evident, leading to gas generation rates of 0.007 d{sup −1} at room temperature that increased to 0.03–0.05 d{sup −1} at 37 °C and to 0.04–0.11 d{sup −1} at 55 °C. Overall, the obtained results highlighted that the operative conditions can drastically affect the gas production from MBT wastes. This suggests that particular caution

  4. Evaluation of biotransformation products from 2,4-dinitrotoluene under nitrate-reducing conditions. Final report

    SciTech Connect

    Freedman, D.L.; Noguera, D.R.

    1995-04-10

    Wastewater generated during the manufacture of munitions often contains significant levels of nitrates and 2,4-dinitrotoluene (DNT). The objective of this project was to characterize the major biotransformation products formed from DNT under denitrifying conditions, and to identify the organisms responsible. In a denitrifying enrichment culture that used ethanol as the primary substrate, DNT was transformed primarily to 2-amino-4-nitrotoluene, 4-arnino-2-nitrotoluene, and 2,4-diaminotoluene. With extended incubation (>% 80 days), all of the 2,4-diaminotoluene subsequently disappeared. In cultures that received 14Cdnt, nearly all of the labeled metabolites remained in the aqueous phase. Approximately 35% consisted of insoluble material, while 29% was soluble hydrophobic and 32% was soluble hydrophilic. Two organisms were isolated from the enrichment: Pseudomonas aeruginosa and a much slower-growing rod. Pure cultures of P. aeruginosa only partially reduced DNT to 2,4-diaminotoluene under both aerobic and denitrifying conditions. Accumulation of 2-amino-4-nitrotoluene accounted for 25-45% of the DNT consumed, while 4-acetylamino-2-nitrotoluene accounted for 32-35%. Reduction and acetylation therefore appear to be major biotransformation pathways for DNT under both aerobic and denitrifying conditions.

  5. Impact of cooking and handling conditions on furanic compounds in breaded fish products.

    PubMed

    Pérez-Palacios, T; Petisca, C; Henriques, R; Ferreira, I M P L V O

    2013-05-01

    This study evaluates the influence of cooking and handling conditions on the quantity of furanic compounds (furan, 2-furfural, furfuryl alcohol, 2-pentylfuran, 5-hydroxymethylfurfural) in breaded fish products. Oven-baking and reheating in the microwave lead to low furanic compounds formation in comparison with deep-frying. The use of olive oil for deep-frying promoted higher levels of furanic compounds than sunflower oil. The amounts of these compounds diminished as the temperature and time of deep-frying decreased as well as after a delay after deep-frying. Thus, the generation of furanic compounds can be minimized by adjusting the cooking method and conditions, such as using an electric oven, deep-frying in sunflower oil at 160°C during 4min, or waiting 10min after cooking. However, these conditions that reduce furanic compounds levels also reduce the content of volatile compounds related to the aroma and flavour of fried foods. In this sense, new efforts should be done to reduce the formation of furanic compounds without being detrimental to the volatile profile.

  6. Effective donor cell fusion conditions for production of cloned dogs by somatic cell nuclear transfer.

    PubMed

    Park, JungEun; Oh, HyunJu; Hong, SoGun; Kim, MinJung; Kim, GeonA; Koo, OkJae; Kang, SungKeun; Jang, Goo; Lee, ByeongChun

    2011-03-01

    As shown by the birth of the first cloned dog 'Snuppy', a protocol to produce viable cloned dogs has been reported. In order to evaluate optimum fusion conditions for improving dog cloning efficiency, in vivo matured oocytes were reconstructed with adult somatic cells from a female Pekingese using different fusion conditions. Fusion with needle vs chamber methods, and with low vs high pulse strength was compared by evaluating fusion rate and in vivo development of canine cloned embryos. The fusion rates in the high voltage groups were significantly higher than in the low voltage groups regardless of fusion method (83.5 vs 66.1% for the needle fusion method, 67.4 vs 37.9% for the fusion chamber method). After embryo transfer, one each pregnancy was detected after using the needle fusion method with high and low voltage and in the chamber fusion method with high voltage, whereas no pregnancy was detected using the chamber method with low voltage. However, only the pregnancy from the needle fusion method with high voltage was maintained to term and one healthy puppy was delivered. The results of the present study demonstrated that two DC pulses of 3.8 to 4.0 kV/cm for 15 μsec using the needle fusion method were the most effective method for the production of cloned dogs under the conditions of this experiment.

  7. Sewage sludge hydrochars: properties and agronomic impact as related to different production conditions

    NASA Astrophysics Data System (ADS)

    Paneque, Marina; María De la Rosa, José; Aragón, Carlos; Kern, Jürgen; Conte, Pellegrino; Knicker, Heike

    2015-04-01

    The huge amount of sewage sludge (SS) generated in wastewater treatment plants all over the world represents an environmental problem. Due to the high concentration of phosphorus and nitrogen in SS as well as other macro and micro nutrients it has been considered a suitable soil amendment. However, before being applied to soil a complete sterilization and elimination of pollutants should be carried out [1]. In this context, thermal treatments appear as a convenient methodology for producing SS byproducts useful for agronomic purposes. Hydrothermal carbonization (HTC) is a kind of pyrolysis characterized by the heating of the biomass in presence of water. This process shows an advantage compared to other thermal treatments for wet residues since dryness of the biomass prior to the thermal transformation is not necessary. The solid product which results from HTC is called hydrochar and it has been suggested to increase soil productivity [2]. However, the agronomic potential of hydrochars depends on the feedstock and production conditions. Additionally, possible toxic and risks have to be carefully evaluated. Thus, SS hydrochars appear as a potential soil amendment but further scientific research is needed to find its real capacity, optimal production conditions as well as possible environmental harmful effects. The aim of this study was to evaluate which are the most suitable production conditions, to transform SS into hydrochar. An additional goal of this work was to relate the hydrochars properties to its agronomic response. Therefore, hydrochars were produced from SS collected from the Experimental Wastewater Treatment plant of CENTA (http://www.centa.es/), located in Carrion de los Cespedes (Seville), under two different temperatures (200 and 260˚C) and residence times (30 min and 1h). With the hydrochars obtained, a greenhouse pot incubation study was carried out for 80 days. The pots contained 250 g of a Calcic Cambisol (IUSS Working Group WRB, 2007) and an

  8. Pyrolysis of grape bagasse: effect of pyrolysis conditions on the product yields and characterization of the liquid product.

    PubMed

    Demiral, Ilknur; Ayan, Emine Asli

    2011-02-01

    In this study, pyrolysis of grape bagasse was investigated with the aim to study the product distribution and their chemical compositions and to identify optimum process conditions for maximizing the bio-oil yield. Particular investigated process variables were temperature (350-600°C), heating rate (10-50°C/min) and nitrogen gas flow rate (50-200 cm(3)/min). The maximum oil yield of 27.60% was obtained at the final pyrolysis temperature of 550°C, sweeping gas flow rate of 100 cm(3)/min and heating rate of 50°C/min in a fixed-bed reactor. The elemental analysis and heating value of the bio-oils were determined, and then the chemical composition of the bio-oil was investigated using chromatographic and spectroscopic techniques such as column chromatography, (1)H NMR and FTIR. The fuel properties of the bio-oil such as flash point, viscosity and density were also determined. The bio-oils obtained from grape bagasse were presented as an environmentally friendly feedstock candidate for bio-fuels.

  9. Fermentation Conditions that Affect Clavulanic Acid Production in Streptomyces clavuligerus: A Systematic Review

    PubMed Central

    Ser, Hooi-Leng; Law, Jodi Woan-Fei; Chaiyakunapruk, Nathorn; Jacob, Sabrina Anne; Palanisamy, Uma Devi; Chan, Kok-Gan; Goh, Bey-Hing; Lee, Learn-Han

    2016-01-01

    The β-lactamase inhibitor, clavulanic acid is frequently used in combination with β-lactam antibiotics to treat a wide spectrum of infectious diseases. Clavulanic acid prevents drug resistance by pathogens against these β-lactam antibiotics by preventing the degradation of the β-lactam ring, thus ensuring eradication of these harmful microorganisms from the host. This systematic review provides an overview on the fermentation conditions that affect the production of clavulanic acid in the firstly described producer, Streptomyces clavuligerus. A thorough search was conducted using predefined terms in several electronic databases (PubMed, Medline, ScienceDirect, EBSCO), from database inception to June 30th 2015. Studies must involve wild-type Streptomyces clavuligerus, and full texts needed to be available. A total of 29 eligible articles were identified. Based on the literature, several factors were identified that could affect the production of clavulanic acid in S. clavuligerus. The addition of glycerol or other vegetable oils (e.g., olive oil, corn oil) could potentially affect clavulanic acid production. Furthermore, some amino acids such as arginine and ornithine, could serve as potential precursors to increase clavulanic acid yield. The comparison of different fermentation systems revealed that fed-batch fermentation yields higher amounts of clavulanic acid as compared to batch fermentation, probably due to the maintenance of substrates and constant monitoring of certain entities (such as pH, oxygen availability, etc.). Overall, these findings provide vital knowledge and insight that could assist media optimization and fermentation design for clavulanic acid production in S. clavuligerus. PMID:27148211

  10. Response surface methodology for optimising the culture conditions for eicosapentaenoic acid production by marine bacteria.

    PubMed

    Abd Elrazak, Ahmed; Ward, Alan C; Glassey, Jarka

    2013-05-01

    Polyunsaturated fatty acids (PUFAs), especially eicosapentaenoic acid (EPA), are increasingly attracting scientific attention owing to their significant health-promoting role in the human body. However, the human body lacks the ability to produce them in vivo. The limitations associated with the current sources of ω-3 fatty acids from animal and plant sources have led to increased interest in microbial production. Bacterial isolate 717 was identified as a potential high EPA producer. As an important step in the process development of the microbial PUFA production, the culture conditions at the bioreactor scale were optimised for the isolate 717 using a response surface methodology exploring the significant effect of temperature, pH and dissolved oxygen and the interaction between them on the EPA production. This optimisation strategy led to a significant increase in the amount of EPA produced by the isolate under investigation, where the amount of EPA increased from 9 mg/g biomass (33 mg/l representing 7.6 % of the total fatty acids) to 45 mg/g (350 mg/l representing 25 % of the total fatty acids). To avoid additional costs associated with extreme cooling at large scale, a temperature shock experiment was carried out reducing the overall cooling time from the whole cultivation process to 4 h only prior to harvest. The ability of the organism to produce EPA under the complete absence of oxygen was tested revealing that oxygen is not critically required for the biosynthesis of EPA but the production improved in the presence of oxygen. The stability of the produced oil and the complete absence of heavy metals in the bacterial biomass are considered as an additional benefit of bacterial EPA compared to other sources of PUFA. To our knowledge this is the first report of a bacterial isolate producing EPA with such high yields making the large-scale manufacture much more economically viable.

  11. Assessment of biogas production from MBT waste under different operating conditions.

    PubMed

    Pantini, Sara; Verginelli, Iason; Lombardi, Francesco; Scheutz, Charlotte; Kjeldsen, Peter

    2015-09-01

    In this work, the influence of different operating conditions on the biogas production from mechanically-biologically treated (MBT) wastes is investigated. Specifically, different lab-scale anaerobic tests varying the water content (26-43% w/w up to 75% w/w), the temperature (from 20 to 25°C up to 55°C) and the amount of inoculum have been performed on waste samples collected from a full-scale Italian MBT plant. For each test, the gas generation yield and, where applicable, the first-order gas generation rates were determined. Nearly all tests were characterised by a quite long lag-phase. This result was mainly ascribed to the inhibition effects resulting from the high concentrations of volatile fatty acids (VFAs) and ammonia detected in the different stages of the experiments. Furthermore, water content was found as one of the key factor limiting the anaerobic biological process. Indeed, the experimental results showed that when the moisture was lower than 32% w/w, the methanogenic microbial activity was completely inhibited. For the higher water content tested (75% w/w), high values of accumulated gas volume (up to 150Nl/kgTS) and a relatively short time period to deplete the MBT waste gas generation capacity were observed. At these test conditions, the effect of temperature became evident, leading to gas generation rates of 0.007d(-1) at room temperature that increased to 0.03-0.05d(-1) at 37°C and to 0.04-0.11d(-1) at 55°C. Overall, the obtained results highlighted that the operative conditions can drastically affect the gas production from MBT wastes. This suggests that particular caution should be paid when using the results of lab-scale tests for the evaluation of long-term behaviour expected in the field where the boundary conditions change continuously and vary significantly depending on the climate, the landfill operative management strategies in place (e.g. leachate recirculation, waste disposal methods), the hydraulic characteristics of disposed

  12. Physiological response of Clostridium ljungdahlii DSM 13528 of ethanol production under different fermentation conditions.

    PubMed

    Xie, Bin-Tao; Liu, Zi-Yong; Tian, Lei; Li, Fu-Li; Chen, Xiao-Hua

    2015-02-01

    In this study, cell growth, gene expression and ethanol production were monitored under different fermentation conditions. Like its heterotrophical ABE-producing relatives, a switch from acidogenesis to solventogenesis of Clostridium ljungdahlii during the autotrophic fermentation with CO/CO2 could be observed, which occurred surprisingly in the late-log phase rather than in the transition phase. The gene expression profiles indicated that aor1, one of the putative aldehyde oxidoreductases in its genome played a critical role in the formation of ethanol, and its transcription could be induced by external acids. Moreover, a low amount of CaCO3 was proved to have positive influences on the cell density and substrate utilization, followed by an increase of over 40% ethanol and 30% acetate formation.

  13. In situ ethyl ester production from wet algal biomass under microwave-mediated supercritical ethanol conditions.

    PubMed

    Patil, Prafulla D; Reddy, Harvind; Muppaneni, Tapaswy; Schaub, Tanner; Holguin, F Omar; Cooke, Peter; Lammers, Peter; Nirmalakhandan, Nagamany; Li, Yin; Lu, Xiuyang; Deng, Shuguang

    2013-07-01

    An in situ transesterification approach was demonstrated for converting lipid-rich wet algae (Nannochloropsis salina) into fatty acid ethyl esters (FAEE) under microwave-mediated supercritical ethanol conditions, while preserving the nutrients and other valuable components in the algae. This single-step process can simultaneously and effectively extract the lipids from wet algae and transesterify them into crude biodiesel. Experimental runs were designed to optimize the process parameters and to evaluate their effects on algal biodiesel yield. The algal biomass characterization and algal biodiesel analysis were carried out by using various analytical instruments such as FTIR, SEM-EDS, TLC, GC-MS and transmission electron microscopy (TEM). The thermogravimetric analysis (TGA) under nitrogen and oxygen environments was also performed to examine the thermal and oxidative stability of ethyl esters produced from wet algae. This simple in situ transesterification process using a green solvent and catalyst-free approach can be a potentially efficient route for algal biodiesel production.

  14. Influence of home cooking conditions on Maillard reaction products in beef.

    PubMed

    Trevisan, Aurea Juliana Bombo; de Almeida Lima, Daniele; Sampaio, Geni Rodrigues; Soares, Rosana Aparecida Manólio; Markowicz Bastos, Deborah Helena

    2016-04-01

    The influence of home cooking methods on the generation of Maillard reaction products (MRP) in beef was investigated. Grilling and frying hamburgers to an internal temperature below 90 °C mainly generated furosine. When the temperature reached 90 °C and 100 °C, furosine content decreased by 36% and fluorescent compounds increased by up to 98%. Baking meat at 300 °C, the most severe heat treatment studied, resulted in the formation of carboxymethyllysine. Boiling in water caused very low MRP formation. Acrylamide concentrations in grilled, fried or baked meat were extremely low. Home cooking conditions leading to low MRP generation and pleasant colours were obtained and could be used to guide diabetic and chronic renal patients on how to reduce their carboxymethyllysine intake.

  15. Estimation and Analysis of Gross Primary Production of Soybean Under Various Management Practices and Drought Conditions

    NASA Astrophysics Data System (ADS)

    Wagle, P.; Xiao, X.; Suyker, A.

    2014-12-01

    Gross primary production (GPP) of croplands may be used to quantify crop productivity and evaluate a range of management practices. Eddy flux data from three soybean (Glycine max L.) fields under different management practices (no-till vs till; rainfed vs irrigated) and Moderate Resolution Imaging Spectroradiometer (MODIS) derived vegetation indices (VIs) were used to evaluate the biophysical performance of VIs and crop phenology, and to model GPP using a satellite-based vegetation photosynthesis model (VPM). The VIs tracked soybean phenology well and delineated the growing season length. The results show that the carbon uptake period and seasonal sums of net ecosystem CO2 exchange (NEE) and GPP can be inferred from the length of the vegetation activity period from satellite remote sensing data. Land surface water index (LSWI) tracked drought-impacted vegetation well. On a seasonal scale, NEE of the soybean sites ranged from -37 to -264 g C m-2. The result suggests that rainfed soybean fields needed about 450-500 mm of well-distributed seasonal rainfall to maximize the net carbon sink. During non-drought conditions, VPM accurately estimated seasonal dynamics and interannual variation of GPP of soybean under different management practices. However, some large discrepancies between GPPVPM and GPPEC were observed under drought conditions as the VI did not reflect the corresponding decrease in GPP. Diurnal GPP dynamics showed a bimodal distribution with a pronounced midday depression at the period of higher water vapor pressure deficit (> 1.2 kPa). A modified Wscalar based on LSWI, to account for the water stress, in VPM helped quantify the reduction in GPP during severe drought and the model's performance improved substantially. The results of this study demonstrate the potential use of remotely sensed VIs for better understanding of carbon dynamics and extrapolation of GPP of soybean croplands.

  16. Repellency of aerosol and cream products containing fennel oil to mosquitoes under laboratory and field conditions.

    PubMed

    Kim, Soon-Il; Chang, Kyu-Sik; Yang, Young-Cheol; Kim, Byung-Seok; Ahn, Young-Joon

    2004-11-01

    The repellency of fennel (Foeniculum vulgare Miller)-containing products (5% aerosol and 8% cream) against mosquitoes was compared with those of citronella oil, geranium oil and deet, as well as three commercial repellents, Baby Keeper cream containing IR3535, MeiMei cream containing citronella and geranium oils, and Repellan S aerosol containing 19% N,N-diethyl-m-toluamide (deet) under laboratory and field conditions. In a laboratory study with female Aedes aegypti (L), fennel oil exhibited good repellency in a release-in-cage test and repellency in skin and patch tests of the oil was comparable with those of citronella and geranium oils. In paddy field tests with five human volunteers, 5% and 8% fennel oil-containing aerosol and cream produced 84% and 70% repellency, respectively, at 90 min after exposure, whereas Baby Keeper cream and MeiMei cream gave 71% and 57% repellency at 90 min after exposure, respectively, and Repellan S aerosol gave 89% repellency at 210 min. The species and ratio of mosquitoes collected were the genera Culex (44.1%), Anopheles (42.2%), Aedes (7.8%) and Armigeres (5.9%). Fennel oil-containing products could be useful for protection from humans and domestic animals from vector-borne diseases and nuisance caused by mosquitoes.

  17. Statistical optimization of process conditions for cellulase production by liquid state bioconversion of domestic wastewater sludge.

    PubMed

    Alam, Md Zahangir; Muyibi, Suleyman A; Wahid, Rosmaziah

    2008-07-01

    A two-level fractional factorial design (FFD) was used to determine the effects of six factors, i.e. substrate (domestic wastewater sludge - DWS) and co-substrate concentration (wheat flour - WF), temperature, initial pH, inoculum size and agitation rate on the production of cellulase enzyme by Trichoderma harzianum in liquid state bioconversion. On statistical analysis of the results from the experimental studies, optimum process conditions were found to be temperature 32.5 degrees C, substrate concentration (DWS) 0.75% (w/w), co-substrate (WF) concentration 2% (w/w), initial pH 5, inoculum size 2% (v/w) and agitation 175 rpm. Analysis of variance (ANOVA) showed a high coefficient of determination (R2) of 0.975. Cellulase activity reached 10.2 FPU/ml at day 3 during the fermentation process which indicated about 1.5-fold increase in production compared to the cellulase activity obtained from the results of design of experiment (6.9 FPU/ml). Biodegradation of DWS was also evaluated to verify the efficiency of the bioconversion process as a waste management method.

  18. Kinetic modeling of riboflavin biosynthesis in Bacillus subtilis under production conditions.

    PubMed

    Birkenmeier, Markus; Neumann, Susanne; Röder, Thorsten

    2014-05-01

    To study the network dynamics of the riboflavin biosynthesis pathway and to identify potential bottlenecks in the system, an ordinary differential equation-based model was constructed using available literature data for production strains. The results confirmed that the RibA protein is rate limiting in the pathway. Under the conditions investigated, we determined a potential limiting order of the remaining enzymes under increased RibA concentration (>0.102 mM) and therefore higher riboflavin production (>0.045 mmol g(CDW)(-1) h(-1) and 0.0035 mM s(-1), respectively). The reductase activity of RibG and lumazine synthase (RibH) might be the next most limiting steps. The computational minimization of the enzyme concentrations of the pathway suggested the need for a greater RibH concentration (0.251 mM) compared with the other enzymes (RibG: 0.188 mM, RibB: 0.023 mM).

  19. Metabolic Engineering of Escherichia coli for Poly(3-hydroxybutyrate) Production under Microaerobic Condition.

    PubMed

    Wei, Xiao-Xing; Zheng, Wei-Tao; Hou, Xue; Liang, Jian; Li, Zheng-Jun

    2015-01-01

    The alcohol dehydrogenase promoter PadhE and mixed acid fermentation pathway deficient mutants of Escherichia coli were employed to produce poly(3-hydroxybutyrate) (P3HB) under microaerobic condition. The E. coli mutant with ackA-pta, poxB, ldhA, and adhE deletions accumulated 0.67 g/L P3HB, up to 78.84% of cell dry weight in tube cultivation. The deletion of pyruvate formate-lyase gene pflB drastically decreased P3HB production and P3HB content to 0.09 g/L and 24.44%, respectively. Overexpressing pflB via the plasmid in its knocked out mutant restored cell growth and P3HB accumulation, indicating the importance of the pyruvate formate-lyase in microaerobic carbon metabolism. The engineered E. coli BWapld (pWYC09) produced 5.00 g/L P3HB from 16.50 g/L glucose in 24 h batch fermentation, and P3HB production yield from glucose was 0.30 g/g, which reached up to 63% of maximal theoretical yield.

  20. Anaerobic digestion of the microalga Spirulina at extreme alkaline conditions: biogas production, metagenome, and metatranscriptome

    PubMed Central

    Nolla-Ardèvol, Vímac; Strous, Marc; Tegetmeyer, Halina E.

    2015-01-01

    A haloalkaline anaerobic microbial community obtained from soda lake sediments was used to inoculate anaerobic reactors for the production of methane rich biogas. The microalga Spirulina was successfully digested by the haloalkaline microbial consortium at alkaline conditions (pH 10, 2.0 M Na+). Continuous biogas production was observed and the obtained biogas was rich in methane, up to 96%. Alkaline medium acted as a CO2 scrubber which resulted in low amounts of CO2 and no traces of H2S in the produced biogas. A hydraulic retention time (HRT) of 15 days and 0.25 g Spirulina L−1 day−1 organic loading rate (OLR) were identified as the optimal operational parameters. Metagenomic and metatranscriptomic analysis showed that the hydrolysis of the supplied substrate was mainly carried out by Bacteroidetes of the “ML635J-40 aquatic group” while the hydrogenotrophic pathway was the main producer of methane in a methanogenic community dominated by Methanocalculus. PMID:26157422

  1. Effect of Culture Conditions on the Production of d-Galactose Oxidase by Dactylium dendroides1

    PubMed Central

    Markus, Z.; Miller, G.; Avigad, G.

    1965-01-01

    The effects on enzyme production of inoculum size and age, medium composition, and culture conditions were studied in shake flasks and in a pilot-plant fermentor. Using a medium consisting of glucose, yeast extract, and inorganic salts in deionized water, we found that the addition of Cu++ was essential for the formation of active enzyme. Cultures grown in the absence of added copper produced an inactive enzyme protein which could be activated by 10-3 M Cu++. Thiamine fulfilled all requirements for exogenous vitamins for growth and enzyme production. Glucose concentrations higher than 1% markedly suppressed enzyme formation. The mycelium inactivated the enzyme on prolonged incubation of the culture. Mycelial autolysates and sonic extracts were found to contain a thermostable and slowly dialyzable galactose oxidase-inactivating factor. The experiments suggest that this factor operates as a chelating agent which forms complexes with the copper of the enzyme. Copper ions (10-3 M) prevented enzyme inactivation and restored activity to samples previously inactivated by this factor. PMID:5867649

  2. Treated wastewater irrigation: uptake of pharmaceutical and personal care products by common vegetables under field conditions.

    PubMed

    Wu, Xiaoqin; Conkle, Jeremy L; Ernst, Frederick; Gan, Jay

    2014-10-07

    Global water shortage is placing an unprecedented pressure on water supplies. Treated wastewater is a valuable water resource, but its reuse for agricultural irrigation faces a roadblock: the public concern over the potential accumulation of contaminants of emerging concern (CECs) into human diet. In the present study, we measured the levels of 19 commonly occurring pharmaceutical and personal care products (PPCPs) in 8 vegetables irrigated with treated wastewater under field conditions. Tertiary treated wastewater without or with a fortification of each PPCP at 250 ng/L, was used to irrigate crops until harvest. Plant samples at premature and mature stages were collected. Analysis of edible tissues showed a detection frequency of 64% and 91% in all vegetables from the treated wastewater and fortified water treatments, respectively. The edible samples from the two treatments contained the same PPCPs, including caffeine, meprobamate, primidone, DEET, carbamazepine, dilantin, naproxen, and triclosan. The total concentrations of PPCPs detected in edible tissues from the treated wastewater and fortified irrigation treatments were in the range of 0.01-3.87 and 0.15-7.3 ng/g (dry weight), respectively. Annual exposure of PPCPs from the consumption of mature vegetables irrigated with the fortified water was estimated to be only 3.69 μg per capita. Results from the present study showed that the accumulation of PPCPs in vegetables irrigated with treated wastewater was likely limited under field conditions.

  3. Acetate production from oil under sulfate-reducing conditions in bioreactors injected with sulfate and nitrate.

    PubMed

    Callbeck, Cameron M; Agrawal, Akhil; Voordouw, Gerrit

    2013-08-01

    Oil production by water injection can cause souring in which sulfate in the injection water is reduced to sulfide by resident sulfate-reducing bacteria (SRB). Sulfate (2 mM) in medium injected at a rate of 1 pore volume per day into upflow bioreactors containing residual heavy oil from the Medicine Hat Glauconitic C field was nearly completely reduced to sulfide, and this was associated with the generation of 3 to 4 mM acetate. Inclusion of 4 mM nitrate inhibited souring for 60 days, after which complete sulfate reduction and associated acetate production were once again observed. Sulfate reduction was permanently inhibited when 100 mM nitrate was injected by the nitrite formed under these conditions. Pulsed injection of 4 or 100 mM nitrate inhibited sulfate reduction temporarily. Sulfate reduction resumed once nitrate injection was stopped and was associated with the production of acetate in all cases. The stoichiometry of acetate formation (3 to 4 mM formed per 2 mM sulfate reduced) is consistent with a mechanism in which oil alkanes and water are metabolized to acetate and hydrogen by fermentative and syntrophic bacteria (K. Zengler et al., Nature 401:266-269, 1999), with the hydrogen being used by SRB to reduce sulfate to sulfide. In support of this model, microbial community analyses by pyrosequencing indicated SRB of the genus Desulfovibrio, which use hydrogen but not acetate as an electron donor for sulfate reduction, to be a major community component. The model explains the high concentrations of acetate that are sometimes found in waters produced from water-injected oil fields.

  4. Acetate Production from Oil under Sulfate-Reducing Conditions in Bioreactors Injected with Sulfate and Nitrate

    PubMed Central

    Callbeck, Cameron M.; Agrawal, Akhil

    2013-01-01

    Oil production by water injection can cause souring in which sulfate in the injection water is reduced to sulfide by resident sulfate-reducing bacteria (SRB). Sulfate (2 mM) in medium injected at a rate of 1 pore volume per day into upflow bioreactors containing residual heavy oil from the Medicine Hat Glauconitic C field was nearly completely reduced to sulfide, and this was associated with the generation of 3 to 4 mM acetate. Inclusion of 4 mM nitrate inhibited souring for 60 days, after which complete sulfate reduction and associated acetate production were once again observed. Sulfate reduction was permanently inhibited when 100 mM nitrate was injected by the nitrite formed under these conditions. Pulsed injection of 4 or 100 mM nitrate inhibited sulfate reduction temporarily. Sulfate reduction resumed once nitrate injection was stopped and was associated with the production of acetate in all cases. The stoichiometry of acetate formation (3 to 4 mM formed per 2 mM sulfate reduced) is consistent with a mechanism in which oil alkanes and water are metabolized to acetate and hydrogen by fermentative and syntrophic bacteria (K. Zengler et al., Nature 401:266–269, 1999), with the hydrogen being used by SRB to reduce sulfate to sulfide. In support of this model, microbial community analyses by pyrosequencing indicated SRB of the genus Desulfovibrio, which use hydrogen but not acetate as an electron donor for sulfate reduction, to be a major community component. The model explains the high concentrations of acetate that are sometimes found in waters produced from water-injected oil fields. PMID:23770914

  5. Parametric Optimization of Cultural Conditions for Carboxymethyl Cellulase Production Using Pretreated Rice Straw by Bacillus sp. 313SI under Stationary and Shaking Conditions

    PubMed Central

    Mittal, Arpana; Bhuwal, Anish Kumari; Singh, Gulab; Yadav, Anita; Aggarwal, Neeraj Kumar

    2014-01-01

    Carboxymethyl cellulase (CMCase) provides a key opportunity for achieving tremendous benefits of utilizing rice straw as cellulosic biomass. Out of total 80 microbial isolates from different ecological niches one bacterial strain, identified as Bacillus sp. 313SI, was selected for CMCase production under stationary as well as shaking conditions of growth. During two-stage pretreatment, rice straw was first treated with 0.5 M KOH to remove lignin followed by treatment with 0.1 N H2SO4 for removal of hemicellulose. The maximum carboxymethyl cellulase activity of 3.08 U/mL was obtained using 1% (w/v) pretreated rice straw with 1% (v/v) inoculum, pH 8.0 at 35°C after 60 h of growth under stationary conditions, while the same was obtained as 4.15 U/mL using 0.75% (w/v) pretreated substrate with 0.4% (v/v) inoculum, pH 8.0 at 30°C, under shaking conditions of growth for 48 h. For maximum titre of CMCase carboxymethyl cellulose was optimized as the best carbon source under both cultural conditions while ammonium sulphate and ammonium nitrate were optimized as the best nitrogen sources under stationary and shaking conditions, respectively. The present study provides the useful data about the optimized conditions for CMCase production by Bacillus sp. 313SI from pretreated rice straw. PMID:24868469

  6. Adaptation of CHO cells in serum-free conditions for erythropoietin production: Application of EVOP technique for process optimization.

    PubMed

    Jukić, Suzana; Bubenik, Dijana; Pavlović, Nediljko; Tušek, Ana Jurinjak; Srček, Višnja Gaurina

    2016-09-01

    Mammalian cell cultures are the preferred expression systems for the production of biopharmaceuticals requiring posttranslational processing. Usually, cell cultures are cultivated in medium supplemented with serum, which supports cell proliferation, viability, and productivity. However, due to scientific and regulatory concerns, serum-free conditions are required in recombinant protein production. Cell lines that are intended for commercial recombinant protein production have to adapt to serum- or protein-free conditions early in their development. This is a labor- and time-consuming process because of the specific cell requirements related to their adaptation in new microenvironment. In the present study, a Chinese hamster ovary (CHO) cell line producing glycosylated recombinant human erythropoietin (rhEPO) was adapted for growth and rhEPO production in serum- and protein-free conditions. The physiology, growth parameters, and morphology of the CHO cells and rhEPO biosynthesis and structure were closely monitored during the adaptation process to avoid unwanted selection of cell subpopulations. The results showed that the CHO cells were successfully adapted to suspension growth and rhEPO production in the protein-free conditions and that the structure of rhEPO remained nearly unchanged. In addition, during rhEPO production in the protein-free suspension conditions, the agitation rate seem to be significant for optimal process performance in contrast to the initial cell concentration, evaluated through evolutionary operation method.

  7. Performance of the Fluidized Bed Steam Reforming product under hydraulically unsaturated conditions

    SciTech Connect

    Neeway, James J; Rod, Kenton A.; Bowden, Mark E; Pierce, Eric M; Qafoku, Nikolla; Williams, Benjamin D; Brown, Christopher F

    2014-01-01

    Several candidates for supplemental low-activity waste (LAW) immobilization at the Hanford site in Washington State, USA are being considered. One waste sequestering technology considered is Fluidized Bed Steam Reforming (FBSR). The granular product resulting from the FBSR process is composed primarily of an insoluble sodium aluminosilicate matrix with the dominant phases being feldspathoid minerals with a 1:1:1 molar ratio of Na, Al and Si. To demonstrate the durability of the product, which can be disposed of at the unsaturated Integrated Disposal Facility (IDF) at Hanford, a series of tests has been performed using the Pressurized Unsaturated Flow (PUF) system, which allows for the accelerated weathering of the solid materials. The system maintains hydraulically unsaturated conditions, thus mimicking the open-flow and transport properties that will be present at the IDF. Two materials were tested using the system: 1) the FBSR granular product and 2) the FBSR granular product encapsulated in a geopolymer to form a monolith. Results of the experiments show a trend of relatively constant effluent concentration of Na, Si, Al, and Cs as a function of time from both materials. The elements I and Re show a steady release throughout the yearlong test from the granular material but their concentrations seem to be increasing at one year from the monolith material. This result suggests that these two elements may be present in the sodalite cage structure rather than in the predominant nepheline phase because their release occurs at a different rate compared to nepheline phase. Also, these elements to not seem to reprecipitate when released from the starting material. Calculated one-year release rates for Si are on the order of 10 6 g/(m2 d) for the granular material and 10 5 g/(m2 d) for the monolith material while Re release is seen to be two orders of magnitude higher than Si release rates. SEM imaging and XRD analysis show how the alteration of the two materials is

  8. Performance of the Fluidized Bed Steam Reforming product under hydraulically unsaturated conditions.

    PubMed

    Neeway, James J; Qafoku, Nikolla P; Williams, Benjamin D; Rod, Kenton; Bowden, Mark E; Brown, Christopher F; Pierce, Eric M

    2014-05-01

    Several candidates for supplemental low-activity waste (LAW) immobilization at the Hanford site in Washington State, USA are being considered. One waste sequestering technology considered is Fluidized Bed Steam Reforming (FBSR). The granular product resulting from the FBSR process is composed primarily of an insoluble sodium aluminosilicate matrix with the dominant phases being feldspathoid minerals with a 1:1:1 molar ratio of Na, Al and Si. To demonstrate the durability of the product, which can be disposed of at the unsaturated Integrated Disposal Facility (IDF) at Hanford, a series of tests has been performed using the Pressurized Unsaturated Flow (PUF) system, which allows for the accelerated weathering of the solid materials. The system maintains hydraulically unsaturated conditions, thus mimicking the open-flow and transport properties that will be present at the IDF. Two materials were tested using the system: 1) the FBSR granular product and 2) the FBSR granular product encapsulated in a geopolymer to form a monolith. Results of the experiments show a trend of relatively constant effluent concentration of Na, Si, Al, and Cs as a function of time from both materials. The elements I and Re show a steady release throughout the yearlong test from the granular material but their concentrations seem to be increasing at one year from the monolith material. This result suggests that these two elements may be present in the sodalite cage structure rather than in the predominant nepheline phase because their release occurs at a different rate compared to nepheline phase. Also, these elements to not seem to reprecipitate when released from the starting material. Calculated one-year release rates for Si are on the order of 10(-6) g/(m(2) d) for the granular material and 10(-5) g/(m(2) d) for the monolith material while Re release is seen to be two orders of magnitude higher than Si release rates. SEM imaging and XRD analysis show how the alteration of the two

  9. Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions.

    PubMed

    Markou, Giorgos; Nerantzis, Elias

    2013-12-01

    Microalgal biomass as feedstock for biofuel production is an attracting alternative to terrestrial plant utilization for biofuels production. However, today the microalgal cultivation systems for energy production purposes seem not yet to be economically feasible. Microalgae, though cultivated under stress conditions, such as nutrient starvation, high salinity, high temperature etc. accumulate considerable amounts (up to 60-65% of dry weight) of lipids or carbohydrates along with several secondary metabolites. Especially some of the latter are valuable compounds with an enormous range of industrial applications. The simultaneous production of lipids or carbohydrates for biofuel production and of secondary metabolites in a biorefinery concept might allow the microalgal production to be economically feasible. This paper aims to provide a review on the available literature about the cultivation of microalgae for the accumulation of high-value compounds along with lipids or carbohydrates focusing on stress cultivation conditions.

  10. "It's Not Like a Normal 9 to 5!": The Learning Journeys of Media Production Apprentices in Distributed Working Conditions

    ERIC Educational Resources Information Center

    Lahiff, Ann; Guile, David

    2016-01-01

    An apprenticeship in media production in England is at the centre of this case study exploration. The context is exemplified by the organisation of the process of production around project teams and the development of project-based working cultures. Given these developments, the working conditions and learning opportunities presented to…

  11. 30 CFR 1206.55 - What are my responsibilities to place production into marketable condition and to market the...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 3 2012-07-01 2012-07-01 false What are my responsibilities to place production into marketable condition and to market the production? 1206.55 Section 1206.55 Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE...

  12. 30 CFR 1206.55 - What are my responsibilities to place production into marketable condition and to market the...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 3 2013-07-01 2013-07-01 false What are my responsibilities to place production into marketable condition and to market the production? 1206.55 Section 1206.55 Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE...

  13. 30 CFR 1206.55 - What are my responsibilities to place production into marketable condition and to market the...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false What are my responsibilities to place production into marketable condition and to market the production? 1206.55 Section 1206.55 Mineral Resources OFFICE OF NATURAL RESOURCES REVENUE, DEPARTMENT OF THE INTERIOR NATURAL RESOURCES REVENUE...

  14. Relationship between biomass production and nitrogen fixation under drought stress conditions in peanut genoytpes with different levels of drought resistance

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The relationship between biomass production and N2 fixation under drought stress conditions in peanut genotypes with different levels of drought resistance is not well understood. The objective of this study was to determine the effect of drought on biomass production and N2 fixation by evaluating t...

  15. Estimation and analysis of gross primary production of soybean under various management practices and drought conditions

    NASA Astrophysics Data System (ADS)

    Wagle, Pradeep; Xiao, Xiangming; Suyker, Andrew E.

    2015-01-01

    Gross primary production (GPP) of croplands may be used to quantify crop productivity and evaluate a range of management practices. Eddy flux data from three soybean (Glycine max L.) fields under different management practices (no-till vs. till; rainfed vs. irrigated) and Moderate Resolution Imaging Spectroradiometer (MODIS) derived vegetation indices (VIs) were used to test the capabilities of remotely sensed VIs and soybean phenology to estimate the seasonal dynamics of carbon fluxes. The modeled GPP (GPPVPM) using vegetation photosynthesis model (VPM) was compared with the GPP (GPPEC) estimated from eddy covariance measurements. The VIs tracked soybean phenology well and delineated the growing season length (GSL), which was closely related to carbon uptake period (CUP, R2 = 0.84), seasonal sums of net ecosystem CO2 exchange (NEE, R2 = 0.78), and GPPEC (R2 = 0.54). Land surface water index (LSWI) tracked drought-impacted vegetation well, as the LSWI values were positive during non-drought periods and negative during severe droughts within the soybean growing season. On a seasonal scale, NEE of the soybean sites ranged from -37 to -264 g C m-2. The result suggests that rainfed soybean fields needed about 450-500 mm of well-distributed seasonal rainfall to maximize the net carbon sink. During non-drought conditions, VPM accurately estimated seasonal dynamics and interannual variation of GPP of soybean under different management practices. However, some large discrepancies between GPPVPM and GPPEC were observed under drought conditions as the VI did not reflect the corresponding decrease in GPPEC. Diurnal GPPEC dynamics showed a bimodal distribution with a pronounced midday depression at the period of higher water vapor pressure deficit (>1.2 kPa). A modified Wscalar based on LSWI to account for the water stress in VPM helped quantify the reduction in GPP during severe drought and the model's performance improved substantially. In conclusion, this study demonstrates

  16. Production of carbon dioxide in a fattening pig house under field conditions. I. Exhalation by pigs

    NASA Astrophysics Data System (ADS)

    Ni, Ji-Qin; Hendriks, Jos; Coenegrachts, Jan; Vinckier, Christiaan

    Exhalation of carbon dioxide (CO 2) by pigs was investigated under field conditions in a mechanically ventilated commercial fattening house. The tranquil CO 2 exhalation rate (TCER) by pigs was defined and methodology was developed to study it. The experiments were conducted by moving groups of pigs in and out of one of the compartments in the house and comparing differences of measured CO 2 production rates. The measured TCERs ranged from 41.5 to 73.9 g CO 2 h -1 per pig for pigs from 32 to 105 kg. When pigs were very active, the CO 2 exhalation rate could be about 200% of the TCER but did not last for long time. A TCER mathematical model was developed based on 4 sets of experiments. It calculated the CO 2 exhalation by a pig at tranquil time as a function of its weight. Daily mean CO 2 exhalation rate (CER) by a pig was about 110% of the TCER. The TCER/CER model related the CO 2 exhalation to some aspects of pigs' behaviours and was the first reported model developed with direct measurement of CO 2 production rates. Five models of CO 2 exhalation in available literature were reviewed and the CER model was compared with them. There was a clear disparity among these models. The average CO 2 exhalation rate calculated with the "Ouwerkerk Model" was about three times as that obtained by the "Anderson Model" for pigs from 35 to 120 kg. The CER model produced the same CO 2 exhalation rate as the "Ouwerkerk Model" for a pig of 35 kg and a close rate to the "Klooster Model" for a pig of 85 kg.

  17. In-situ biodiesel and sugar production from rice bran under subcritical condition

    NASA Astrophysics Data System (ADS)

    Zullaikah, Siti; Rahkadima, Yulia Tri

    2015-12-01

    An integrated method of producing biodiesel and sugar using subcritical water and methanol has been employed as a potential way to reduce the high cost of single biofuel production from rice bran. The effects of temperature, methanol to water ratio and reaction time on the biodiesel yield and purity, and the concentration of sugar in hydrolysate were investigated systematically. Biodiesel with yield and purity of 65.21%and 73.53%, respectively, was obtained from rice bran with initial free fatty acid (FFA) content of 37.64% under the following conditions: T= 200 oC, P= 4.0 MPa (using CO2 as pressurizing gas), ratio of rice bran/water/methanol of 1/2/6 (g/mL/mL), and 3 h of reaction time. FFAs level was reduced to 10.00% with crude biodiesel recovery of 88.69%. However, the highest biodiesel yield (67.39%) and crude biodiesel recovery (100.00%) were obtained by decreasing the amount of methanol so that the ratio of rice bran/water/methanol became 1/4/4, g/mL/mL. In addition, the highest sugar concentration of 0.98 g/L was obtained at 180 oC and 4.0 MPa with ratio of rice bran/water/methanol of 1/4/4 (g/mL/mL) and reaction time of 3 h. Since no catalyst was employed and the biodiesel and reducing sugar were produced directly from rice bran with high water and FFA contents, the process was simple and environmentally friendly, which would make the production of biofuel more economical and sustainable.

  18. Xylanase production by Aspergillus awamori under solid state fermentation conditions on tomato pomace

    PubMed Central

    Umsza-Guez, Marcelo A.; Díaz, Ana B.; de Ory, Ignacio; Blandino, Ana; Gomes, Eleni; Caro, Ildefonso

    2011-01-01

    In this work, tomato pomace, a waste abundantly available in the Mediterranean and other temperate climates agro-food industries, has been used as raw material for the production of some hydrolytic enzymes, including xylanase, exo-polygalacturonase (exo-PG), cellulase (CMCase) and α-amylase. The principal step of the process is the solid state fermentation (SSF) of this residue by Aspergillus awamori. In several laboratory experiments, maximum xylanase and exo-PG activities were measured during the first days of culture, reaching values around 100 and 80 IU/gds (international units of enzyme activity per gram of dried solid), respectively. For CMCase and α-amylase production remained almost constant along fermentation, with average values of 19 and 21.5 IU/gds, respectively. Experiments carried out in a plate-type bioreactor at lab scale showed a clear positive effect of aeration on xylanase and CMCase, while the opposite was observed for exo-PG and α-amylase. In general, xylanase was the enzyme produced in higher levels, thus the optimum conditions for the determination of the enzyme activity was characterized. The xylanase activity shows an optimum pH of 5 and an optimum temperature of 50 ºC. The enzyme is activated by Mg2+, but strongly inhibited by Hg2+ and Cu2+. The enzymatic activity remains quite high if the extract is preserved in a range of pH from 3 to 10 and a temperature between 30 ºC to 40 ºC. PMID:24031793

  19. Effect of basic alkali-pickling conditions on the production of lysinoalanine in preserved eggs.

    PubMed

    Zhao, Yan; Luo, Xuying; Li, Jianke; Xu, Mingsheng; Tu, Yonggang

    2015-09-01

    During the pickling process, strong alkali causes significant lysinoalanine (LAL) formation in preserved eggs, which may reduce the nutritional value of the proteins and result in a potential hazard to human health. In this study, the impacts of the alkali treatment conditions on the production of LAL in preserved eggs were investigated. Preserved eggs were prepared using different times and temperatures, and alkali-pickling solutions with different types and concentrations of alkali and metal salts, and the corresponding LAL contents were measured. The results showed the following: during the pickling period of the preserved egg, the content of LAL in the egg white first rapidly increased and then slowly increased; the content of LAL in the egg yolk continued to increase significantly. During the aging period, the levels of LAL in both egg white and egg yolk slowly increased. The amounts of LAL in the preserved eggs were not significantly different at temperatures between 20 and 25ºC. At higher pickling temperatures, the LAL content in the preserved eggs increased. With the increase of alkali concentration in the alkali-pickling solution, the LAL content in the egg white and egg yolk showed an overall trend of an initial increase followed by a slight decrease. The content of LAL produced in preserved eggs treated with KOH was lower than in those treated with NaOH. NaCl and KCl produced no significant effects on the production of LAL in the preserved eggs. With increasing amounts of heavy metal salts, the LAL content in the preserved eggs first decreased and then increased. The LAL content generated in the CuSO4 group was lower than that in either the ZnSO4 or PbO groups.

  20. The Eocene Arctic Azolla bloom: environmental conditions, productivity and carbon drawdown.

    PubMed

    Speelman, E N; Van Kempen, M M L; Barke, J; Brinkhuis, H; Reichart, G J; Smolders, A J P; Roelofs, J G M; Sangiorgi, F; de Leeuw, J W; Lotter, A F; Sinninghe Damsté, J S

    2009-03-01

    Enormous quantities of the free-floating freshwater fern Azolla grew and reproduced in situ in the Arctic Ocean during the middle Eocene, as was demonstrated by microscopic analysis of microlaminated sediments recovered from the Lomonosov Ridge during Integrated Ocean Drilling Program (IODP) Expedition 302. The timing of the Azolla phase (approximately 48.5 Ma) coincides with the earliest signs of onset of the transition from a greenhouse towards the modern icehouse Earth. The sustained growth of Azolla, currently ranking among the fastest growing plants on Earth, in a major anoxic oceanic basin may have contributed to decreasing atmospheric pCO2 levels via burial of Azolla-derived organic matter. The consequences of these enormous Azolla blooms for regional and global nutrient and carbon cycles are still largely unknown. Cultivation experiments have been set up to investigate the influence of elevated pCO2 on Azolla growth, showing a marked increase in Azolla productivity under elevated (760 and 1910 ppm) pCO2 conditions. The combined results of organic carbon, sulphur, nitrogen content and 15N and 13C measurements of sediments from the Azolla interval illustrate the potential contribution of nitrogen fixation in a euxinic stratified Eocene Arctic. Flux calculations were used to quantitatively reconstruct the potential storage of carbon (0.9-3.5 10(18) gC) in the Arctic during the Azolla interval. It is estimated that storing 0.9 10(18) to 3.5 10(18) g carbon would result in a 55 to 470 ppm drawdown of pCO2 under Eocene conditions, indicating that the Arctic Azolla blooms may have had a significant effect on global atmospheric pCO2 levels through enhanced burial of organic matter.

  1. Optimization of fermentation conditions for 1,3-propanediol production by marine Klebsiella pneumonia HSL4 using response surface methodology

    NASA Astrophysics Data System (ADS)

    Li, Lili; Zhou, Sheng; Ji, Huasong; Gao, Ren; Qin, Qiwei

    2014-09-01

    The industrially important organic compound 1,3-propanediol (1,3-PDO) is mainly used as a building block for the production of various polymers. In the present study, response surface methodology protocol was followed to determine and optimize fermentation conditions for the maximum production of 1,3-PDO using marine-derived Klebsiella pneumoniae HSL4. Four nutritional supplements together with three independent culture conditions were optimized as follows: 29.3 g/L glycerol, 8.0 g/L K2 HPO4, 7.6 g/L (NH4)2 SO4, 3.0 g/L KH2 PO4, pH 7.1, cultivation at 35°C for 12 h. Under the optimal conditions, a maximum 1,3-PDO concentration of 14.5 g/L, a productivity of 1.21 g/(L·h) and a conversion of glycerol of 0.49 g/g were obtained. In comparison with the control conditions, fermentation under the optimized conditions achieved an increase of 38.8% in 1,3-PDO concentration, 39.0% in productivity and 25.7% in glycerol conversion in flask. This enhancement trend was further confirmed when the fermentation was conducted in a 5-L fermentor. The optimized fermentation conditions could be an important basis for developing lowcost, large-scale methods for industrial production of 1,3-PDO in the future.

  2. Cellulose acetates from linters and sisal: correlation between synthesis conditions in DMAc/LiCl and product properties.

    PubMed

    Ass, Beatriz A P; Ciacco, Gabriela T; Frollini, Elisabete

    2006-09-01

    We report the acetylation of celluloses from sisal (untreated and alkali treated) and cotton linters (alkali treated), under homogeneous solution conditions, using DMAc/LiCl as solvent system. Our target was to evaluate the effects of cellulose dissolution and reactions conditions on the product properties. The products were characterized in terms of degree of substitution (DS) by 1H NMR, and molar weight distribution (MWD) by size exclusion chromatography. Changes in the DS of the products were correlated with reaction conditions and solution properties. It was found that the dissolution of celluloses and degree of substitution of cellulose derivatives depends on a fine adjustment of the dissolution/derivatization conditions, as well as on the origin (sisal or linters) of celluloses.

  3. 50 CFR 260.97 - Conditions for providing fishery products inspection service at official establishments.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... providing fishery products inspection service at official establishments. (a) The determination as to the... products; or (3) For failure to supply enough inspection effort during any period of service. (c) The..., to be used on any product which is not packed under fishery products inspection service nor...

  4. Microcystin production and regulation under nutrient stress conditions in toxic microcystis strains.

    PubMed

    Pimentel, Juliana S M; Giani, Alessandra

    2014-09-01

    Microcystin is a common and well-known cyanobacterial toxin whose intracellular role is still under investigation. Increasing knowledge on microcystin gene expression and regulation can contribute to the understanding of its putative cellular function. In this work, reverse transcription-quantitative PCR (RT-qPCR) was used to investigate the transcriptional response of the mcyD gene to nitrogen (nitrate and ammonium) and phosphorus limitation in two toxic Microcystis strains. The existence of a direct correlation between transcripts of mcyD and ntcA genes was also identified. In previous studies, NtcA (global nitrogen regulator) has been described as a potential component in the control of microcystin biosynthesis. This research showed that stress agents linked to nutrient deprivation could lead to a significant increase of microcystin production in both strains studied. The more toxic strain proved to be more resistant to nutrient limitation. The similar outcomes of mcyD regulation observed for all nutrients suggest that this response can be linked to oxidative stress of cells undergoing adverse growth conditions.

  5. Optimization of irradiation conditions for {sup 177}Lu production at the LVR-15 research reactor

    SciTech Connect

    Lahodova, Z.; Viererbl, L.; Klupak, V.; Srank, J.

    2012-07-01

    The use of lutetium in medicine has been increasing over the last few years. The {sup 177}Lu radionuclide is commercially available for research and test purposes as a diagnostic and radiotherapy agent in the treatment of several malignant tumours. The yield of {sup 177}Lu from the {sup 176}Lu(n,{gamma}){sup 177}Lu nuclear reaction depends significantly on the thermal neutron fluence rate. The capture cross-sections of both reaction {sup 176}Lu(n,{gamma}){sup 177}Lu and reaction {sup 177}Lu(n,{gamma}){sup 178}Lu are very high. Therefore a burn-up of target and product nuclides should be taken into account when calculating {sup 177}Lu activity. The maximum irradiation time, when the activity of the {sup 177}Lu radionuclide begins to decline, was found for different fluence rates. Two vertical irradiation channels at the LVR-15 nuclear research reactor were compared in order to choose the channel with better irradiation conditions, such as a higher thermal neutron fluence rate in the irradiation volume. In this experiment, lutetium was irradiated in a titanium capsule. The influence of the Ti capsule on the neutron spectrum was monitored using activation detectors. The choice of detectors was based on requirements for irradiation time and accurate determination of thermal neutrons. The following activation detectors were selected for measurement of the neutron spectrum: Ti, Fe, Ni, Co, Ag and W. (authors)

  6. Optimization of culture conditions for hydrogen production by Ethanoligenens harbinense B49 using response surface methodology.

    PubMed

    Guo, Wan-Qian; Ren, Nan-Qi; Wang, Xiang-Jing; Xiang, Wen-Sheng; Ding, Jie; You, Yang; Liu, Bing-Feng

    2009-02-01

    The design of an optimum and cost-efficient medium for high-level production of hydrogen by Ethanoligenens harbinense B49 was attempted by using response surface methodology (RSM). Based on the Plackett-Burman design, Fe(2+) and Mg(2+) were selected as the most critical nutrient salts. Subsequently, the optimum combination of the selected factors and the sole carbon source glucose were investigated by the Box-Behnken design. Results showed that the maximum hydrogen yield of 2.21 mol/mol glucose was predicted when the concentrations of glucose, Fe(2+) and Mg(2+) were 14.57 g/L, 177.28 mg/L and 691.98 mg/L, respectively. The results were further verified by triplicate experiments. The batch reactors were operated under an optimized condition of the respective glucose, Fe(2+) and Mg(2+) concentration of 14.5 g/L, 180 mg/L and 690 mg/L, the initial pH of 6.0 and experimental temperature of 35+/-1(o)C. Without further pH adjustment, the maximum hydrogen yield of 2.20 mol/mol glucose was obtained based on the optimized medium with further verified the practicability of this optimum strategy.

  7. Effect of the incubation conditions on the production of patulin by Penicillium griseofulvum isolated from wheat.

    PubMed

    Jiménez, M; Mateo, R; Mateo, J J; Huerta, T; Hernández, E

    1991-09-01

    Sixty-four wheat samples from Spanish flour factories were screened for patulin and patulin-producing moulds. None of them was found to contain any patulin, whereas samples experimentally contaminated with this toxin proved it to be highly unstable. On the other hand, Penicillium griseofulvum was the only in vitro patulin-producing species found (19 samples). Mould growth in the samples was investigated by using yeast-sucrose medium (YES) and high-performance liquid chromatography (HPLC) to measure the amounts of toxin produced during 40 day's incubation at 20 and 28 degrees C. The highest yield rate of patulin was obtained between the 20th and 30th day of incubation; such a rate, however, was very low throughout the vigorous growth phase, during the first 20 days of incubation. The more appropriate temperature for incubation and patulin production was 28 degrees C. We also investigated the influence of other incubation conditions in the yield and found stationary dark cultures to be more efficient that shaken or fermentation cultures in YES medium. The best patulin yield achieved was 11.9 mg in the culture broth and 6.3 mg in the mycelium from 100 ml of medium.

  8. Microbial lipid production by Rhodosporidium toruloides under sulfate-limited conditions.

    PubMed

    Wu, Siguo; Zhao, Xin; Shen, Hongwei; Wang, Qian; Zhao, Zongbao K

    2011-01-01

    Novel biochemical approaches remain to be developed to improve microbial lipid technology. This study demonstrated that sulfate limitation was effective to promote accumulating substantial amounts of intracellular lipid by the oleaginous yeast Rhodosporidium toruloides Y4. When it was cultivated using a medium with an initial carbon-to-sulfur (C/S) molar ratio of 46,750, cellular lipid content reached up to 58.3%. The time courses of cell growth, lipid accumulation and nutrient depletion were analyzed and discussed in terms of lipid biosynthesis. Moreover, lipid accumulation under sulfate-limited conditions was effective regardless of the presence of a high concentration of nitrogen sources. Thus, lipid contents almost held constant at near 57% in the media with an initial C/S molar ratio of 11,380 although the carbon-to-nitrogen molar ratio ranged from 28.3 to 5.7. Taken together, our results established the sulfate-limitation approach to control lipid biosynthesis, which should be valuable to explore nitrogen-rich raw materials as the feedstock for lipid production.

  9. Production of Novel Antibiotics Zeamines through Optimizing Dickeya zeae Fermentation Conditions

    PubMed Central

    Liao, Lisheng; Cheng, Yingying; Liu, Shiyin; Zhou, Jianuan; An, Shuwen; Lv, Mingfa; Chen, Yufan; Gu, Yanfang; Chen, Shaohua; Zhang, Lian-Hui

    2014-01-01

    Dickeya zeae strain EC1 was recently shown to produce a new type of phytotoxins designated as zeamine and zeamine II, which are potent wide-spectrum antibiotics against Gram-positive and Gram-negative bacterial pathogens, suggesting their promising potential as clinical medicines. In this study, the optimized medium composition and culture conditions for biosynthesis of novel antibiotics zeamines have been established by using response surface methodology, largely increasing the yield of zeamines from original about 7.35 µg·mL−1 in minimal medium to about 150 µg·mL−1 in LS5 medium. The study identified the major factors contributing to zeamines production, which include nitrate, sucrose, asparaginate, mineral elements Mg2+ and K+, and optimized amount of phosphate. In addition, the results showed that overexpression of zmsK in D. zeae strain EC1 could further increase zeamines yield to about 180 µg·mL−1 in LS5 medium. The findings from this study could facilitate further characterization and utilization of these two novel antibiotics, and also provide useful clues for understanding the regulatory mechanisms that govern D. zeae virulence. PMID:25541733

  10. Hygienic effects and gas production of plastic bio-digesters under tropical conditions.

    PubMed

    Yen-Phi, Vo Thi; Clemens, Joachim; Rechenburg, Andrea; Vinneras, Björn; Lenssen, Christina; Kistemann, Thomas

    2009-12-01

    Plastic plug-flow bio-digesters have been promoted as a good option for improved treatment of manure and wastewater in developing countries although minimal information has been published on their hygienic status. This bench-scale study replicates bio-digester conditions to evaluate the reduction of pathogen and indicator microorganisms at three different hydraulic retention times (HRT) in the anaerobic treatment of pig manures at 30 degrees C for 50 days. Results showed that physicochemical values differed between HRTs. Gas production efficiency was better for longer HRTS. The accumulated sludge at the reactor's base increased with longer HRT. Phages and bacteria examined were reduced, but none was completely eliminated. Log10 reduction of bacteria ranged from 0.54 to 2.47. Phages ranged from 1.60 to 3.42. The reduction of organisms at HRT = 30 days was about one log10 unit higher than HRT = 15 days and about two log10 units higher than HRT = 3 days. The results indicate that the reduction of tested organisms increases with HRT. However the hygienic quality of the liquid effluent does not meet required quality values for surface and irrigation water. Longer HRTs are recommended to increase gas yield and achieve higher pathogen reduction. More barriers should be applied while handling bio-digester outputs to minimise risks to environmental and human health.

  11. Production of novel antibiotics zeamines through optimizing Dickeya zeae fermentation conditions.

    PubMed

    Liao, Lisheng; Cheng, Yingying; Liu, Shiyin; Zhou, Jianuan; An, Shuwen; Lv, Mingfa; Chen, Yufan; Gu, Yanfang; Chen, Shaohua; Zhang, Lian-Hui

    2014-01-01

    Dickeya zeae strain EC1 was recently shown to produce a new type of phytotoxins designated as zeamine and zeamine II, which are potent wide-spectrum antibiotics against Gram-positive and Gram-negative bacterial pathogens, suggesting their promising potential as clinical medicines. In this study, the optimized medium composition and culture conditions for biosynthesis of novel antibiotics zeamines have been established by using response surface methodology, largely increasing the yield of zeamines from original about 7.35 µg · mL(-1) in minimal medium to about 150 µg · mL(-1) in LS5 medium. The study identified the major factors contributing to zeamines production, which include nitrate, sucrose, asparaginate, mineral elements Mg2+ and K+, and optimized amount of phosphate. In addition, the results showed that overexpression of zmsK in D. zeae strain EC1 could further increase zeamines yield to about 180 µg · mL(-1) in LS5 medium. The findings from this study could facilitate further characterization and utilization of these two novel antibiotics, and also provide useful clues for understanding the regulatory mechanisms that govern D. zeae virulence.

  12. RF Conditioning and Testing of Fundamental Power Couplers for SNS Superconducting Cavity Production

    SciTech Connect

    M. Stirbet; G.K. Davis; M. A. Drury; C. Grenoble; J. Henry; G. Myneni; T. Powers; K. Wilson; M. Wiseman; I.E. Campisi; Y.W. Kang; D. Stout

    2005-05-16

    The Spallation Neutron Source (SNS) makes use of 33 medium beta (0.61) and 48 high beta (0.81) superconducting cavities. Each cavity is equipped with a fundamental power coupler, which should withstand the full klystron power of 550 kW in full reflection for the duration of an RF pulse of 1.3 msec at 60 Hz repetition rate. Before assembly to a superconducting cavity, the vacuum components of the coupler are submitted to acceptance procedures consisting of preliminary quality assessments, cleaning and clean room assembly, vacuum leak checks and baking under vacuum, followed by conditioning and RF high power testing. Similar acceptance procedures (except clean room assembly and baking) were applied for the airside components of the coupler. All 81 fundamental power couplers for SNS superconducting cavity production have been RF power tested at JLAB Newport News and, beginning in April 2004 at SNS Oak Ridge. This paper gives details of coupler processing and RF high power-assessed performances.

  13. Future atmospheric conditions increase the greenhouse gas intensity of rice production

    NASA Astrophysics Data System (ADS)

    Van Groenigen, K.; Van Kessel, C.; Hungate, B. A.

    2012-12-01

    Elevated levels of atmospheric CO2 and rising temperatures are both expected to alter rice yields and greenhouse gas (GHG) emissions from rice paddies. This is important, because rice cultivation is one of the largest anthropogenic sources of the potent GHG methane (CH4) and rice is the world's second-most produced staple crop. Because global food demand is growing, it makes sense to assess GHG emissions from croplands on the basis of yield rather than land area, so that efforts to reduce GHG emissions occur with taking into consideration the effects on food production. However, it is unclear whether or how the GHG intensity (that is, yield-scaled GHG emissions) of cropping systems will be affected by future atmospheric conditions. Using meta-analysis, we show that elevated atmospheric CO2 (ranging from 550 to 743 ppmV) and warming (ranging from +0.8°C to +6°C) both increase the GHG intensity of rice cultivation. Elevated atmospheric CO2 increased GHG intensity by 31.4%, because CH4 emissions are stimulated more than rice yields. Warming increased GHG intensity by 11.8% per 1°C, largely due to a decrease in yield. Our findings underscore the need for mitigation and adaptation efforts to secure global food supply while at the same time keeping GHG emissions in check.

  14. Hydrogen production by the unicellular, diazotrophic cyanobacterium Cyanothece sp. strain ATCC 51142 under conditions of continuous light.

    PubMed

    Min, Hongtao; Sherman, Louis A

    2010-07-01

    We report on the hydrogen production properties of the unicellular, diazotrophic cyanobacterium Cyanothece sp. strain ATCC 51142. This organism has a versatile metabolism and can grow in the presence or absence of combined nitrogen and can grow photosynthetically or mixotrophically and heterotrophically in the presence of glycerol. The strain produces a bidirectional hydrogenase (encoded by the hox genes), an uptake hydrogenase (hupLS), and nitrogenase (nifHDK). We demonstrated hydrogen production by both the hydrogenase and the nitrogenase under appropriate metabolic conditions. The highest rates of hydrogen production were produced under nitrogen-fixing conditions when cells were grown and incubated under continuous light conditions, in either the presence or absence of glycerol. Under such nitrogen-fixing conditions, we have achieved rates of 300 micromol H(2)/mg chloramphenicol (Chl)/hr during the first 24 h of incubation. The levels of H(2) measured were dependent upon the incubation conditions, such as sparging with argon, which generated anaerobic conditions. We demonstrated that the same conditions led to high levels of H(2) production and N(2) fixation, indicating that low-oxygen conditions favor nitrogenase activity for both processes. The levels of hydrogen produced by the hydrogenase are much lower, typically 5 to 10 micromol H(2)/mg Chl/hr. Hydrogenase activity was dependent upon electron transport through photosystem II (PS II), whereas nitrogenase activity was more dependent on PS I, as well as on respiration. Although cells do not double under the incubation conditions when sparged with argon to provide a low-oxygen environment, the cells are metabolically active, and hydrogen production can be inhibited by the addition of chloramphenicol to inhibit protein synthesis.

  15. Effect of submerged culture conditions on exopolysaccharides production by Armillaria luteo-virens Sacc QH and kinetic modeling.

    PubMed

    Xu, De Qin; Fu, Ming Liang; Chen, Qi He; Liu, Jing

    2011-01-01

    This work aimed to develop the submerged cultivation conditions for improved exopolysaccharides (EPS) production by Armillaria luteo-virens Sacc. The effects of culture temperature, aeration rate, inoculum level, initial pH, and additives on EPS formation and mycelial growth are investigated. The aeration rate, initial pH, and inoculum level significantly affected EPS production under the submerged cultivation. The developed conditions were as follows: cultivation temperature 23 °C, initial pH 5.0, aeration rate 0.5 vvm, 0.5% Tween 80, inoculum level 5% (v/v), and shaking speed 120 r/min. Under the developed conditions, the highest EPS production was 13.01 g/L at 5 days culture time. EPS production was examined in a 5 L bioreactor, and an unstructured kinetic model for EPS formation was well developed. The verified investigations in the large-scale cultivation system showed that the developed models are able to predict the submerged cultivation process of EPS formation. Current results revealed that the submerged cultivation conditions can be utilized to control EPS production, and the unstructured models developed are suitable for explaining EPS production by A. luteo-virens Sacc QH in a large-scale cultivation bioreactor.

  16. Biological control of soilborne diseases in organic potato production as affected by varying environmental conditions

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Soilborne diseases are persistent problems in potato production and alternative management practices are needed, particularly in organic production, where control options are limited. Selected biocontrol organisms, including two naturally-occurring hypovirulent strains of Rhizoctonia solani (Rhs1a1 ...

  17. Cultivating conditions effects on kefiran production by the mixed culture of lactic acid bacteria imbedded within kefir grains.

    PubMed

    Zajšek, Katja; Goršek, Andreja; Kolar, Mitja

    2013-08-15

    The influence of fermentation temperature, agitation rate, and additions of carbon sources, nitrogen sources, vitamins and minerals on production of kefiran by kefir grains lactic acid bacteria was studied in a series of experiments. The main aim of the work was to increase the exopolysaccharide (EPS) production where customised milk was used as fermentation medium. It was proved that the controlling of culturing conditions and the modifying of fermentation medium conditions (i.e., carbon, nitrogen, mineral sources and vitamins) can dramatically enhance the production of the EPS. The temperature and agitation rate were critical for kefiran production during the 24 h cultivation of grains; our optimised conditions being 25°C and 80 rpm, respectively. In addition, when optimising the effects of additional nutrition, it was found that 5% (w/v) lactose, 0.1% (w/v) thiamine, and 0.1% (w/v) FeCl3 led to the maximal production of EPS. The results indicate that nutrients can be utilised to improve the production of EPS and that good kefir grains growth does not appear to be a determining factor for a high production yield of EPS.

  18. Catalyst-free ethyl biodiesel production from rice bran under subcritical condition

    NASA Astrophysics Data System (ADS)

    Zullaikah, Siti; Afifudin, Riza; Amalia, Rizky

    2015-12-01

    In-situ ethyl biodiesel production from rice bran under subcritical water and ethanol with no catalyst was employed. This process is environmentally friendly and is very flexible in term of feedstock utilization since it can handle relatively high moisture and free fatty acids (FFAs) contents. In addition, the alcohol, i.e. bioethanol, is a non-toxic, biodegradable, and green raw material when produced from non-edible biomass residues, leading to a 100% renewable biodiesel. The fatty acid ethyl esters (FAEEs, ethyl biodiesel) are better than fatty acid methyl esters (FAMEs, methyl biodiesel) in terms of fuel properties, including cetane number, oxidation stability and cold flow properties. The influences of the operating variables such as reaction time (1 - 10 h), ethanol concentration (12.5 - 87.5%), and pressurizing gas (N2 and CO2) on the ethyl biodiesel yield and purity have been investigated systematically while the temperature and pressure were kept constant at 200 °C and 40 bar. The optimum results were obtained at 5 h reaction time and 75% ethanol concentration using CO2 as compressing gas. Ethyl biodiesel yield and purity of 58.78% and 61.35%, respectively, were obtained using rice bran with initial FFAs content of 37.64%. FFAs level was reduced to 14.22% with crude ethyl biodiesel recovery of 95.98%. Increasing the reaction time up to 10 h only increased the yield and purity by only about 3%. Under N2 atmosphere and at the same operating conditions (5h and 75% ethanol), ethyl biodiesel yield and purity decreased to 54.63% and 58.07%, respectively, while FFAs level was increased to 17.93% and crude ethyl biodiesel recovery decreased to 87.32%.

  19. Light Conditions Affect the Measurement of Oceanic Bacterial Production via Leucine Uptake

    PubMed Central

    Morán, Xosé Anxelu G.; Massana, Ramon; Gasol, Josep M.

    2001-01-01

    The effect of irradiance in the range of 400 to 700 nm or photosynthetically active radiation (PAR) on bacterial heterotrophic production estimated by the incorporation of 3H-leucine (referred to herein as Leu) was investigated in the northwestern Mediterranean Sea and in a coastal North Atlantic site, with Leu uptake rates ranging over 3 orders of magnitude. We performed in situ incubations under natural irradiance levels of Mediterranean samples taken from five depths around solar noon and compared them to incubations in the dark. In two of the three stations large differences were found between light and dark uptake rates for the surfacemost samples, with dark values being on average 133 and 109% higher than in situ ones. Data obtained in coastal North Atlantic waters confirmed that dark enclosure may increase Leu uptake rates more than threefold. To explain these differences, on-board experiments of Leu uptake versus irradiance were performed with Mediterranean samples from depths of 5 and 40 m. Incubations under a gradient of 12 to 1,731 μmol of photons m−2 s−1 evidenced a significant increase in incorporation rates with increasing PAR in most of the experiments, with dark-incubated samples departing from this pattern. These results were not attributed to inhibition of Leu uptake in the light but to enhanced bacterial response when transferred to dark conditions. The ratio of dark to light uptake rates increased as dissolved inorganic nitrogen concentrations decreased, suggesting that bacterial nutrient deficiency was overcome by some process occurring only in the dark bottles. PMID:11525969

  20. Biomass and nutrient productivities of Tetraselmis chuii under mixotrophic culture conditions with various C:N ratios

    NASA Astrophysics Data System (ADS)

    Lu, Lin; Wang, Jun; Yang, Guanpin; Zhu, Baohua; Pan, Kehou

    2017-03-01

    Mass microalgal culture plays an irreplaceable role in aquaculture, but microalgal productivity is restricted by traditional autotrophic culture conditions. In the present study, a Tetraselmis chuii strain belonging to the phylum Chlorophyta was isolated from south Yellow Sea. The growth rate and biomass productivity of this strain was higher under mixotrophic conditions with different carbon:nitrogen (C:N) ratios than those under autotrophic conditions. When the C:N ratio was 16, the optical density and biomass productivity were 3.7- and 5-fold higher than their corresponding values under autotrophic culture conditions, respectively. Moreover, T. chuii synthesized more polysaccharides and total lipids under mixotrophic conditions. In addition, T. chuii cultured under mixotrophic conditions synthesized more types of fatty acids than autotrophic culture conditions. At a C:N ratio of 16, the percentage of C16:0 and C18:1 reached 30.08% and 24.65% of the total fatty acid (TFA) content, respectively. These findings may provide a basis for large-scale mixotrophic culture of T. chuii, as a potential bait-microalga.

  1. Biomass and nutrient productivities of Tetraselmis chuii under mixotrophic culture conditions with various C:N ratios

    NASA Astrophysics Data System (ADS)

    Lu, Lin; Wang, Jun; Yang, Guanpin; Zhu, Baohua; Pan, Kehou

    2016-05-01

    Mass microalgal culture plays an irreplaceable role in aquaculture, but microalgal productivity is restricted by traditional autotrophic culture conditions. In the present study, a Tetraselmis chuii strain belonging to the phylum Chlorophyta was isolated from south Yellow Sea. The growth rate and biomass productivity of this strain was higher under mixotrophic conditions with different carbon:nitrogen (C:N) ratios than those under autotrophic conditions. When the C:N ratio was 16, the optical density and biomass productivity were 3.7- and 5-fold higher than their corresponding values under autotrophic culture conditions, respectively. Moreover, T. chuii synthesized more polysaccharides and total lipids under mixotrophic conditions. In addition, T. chuii cultured under mixotrophic conditions synthesized more types of fatty acids than autotrophic culture conditions. At a C:N ratio of 16, the percentage of C16:0 and C18:1 reached 30.08% and 24.65% of the total fatty acid (TFA) content, respectively. These findings may provide a basis for largescale mixotrophic culture of T. chuii, as a potential bait-microalga.

  2. Effects of preservation conditions of canine feces on in vitro gas production kinetics and fermentation end products.

    PubMed

    Bosch, G; Wrigglesworth, D J; Cone, J W; Pellikaan, W F; Hendriks, W H

    2013-01-01

    This study investigated the effect of chilling and freezing (for 24 h) canine feces on in vitro gas production kinetics and fermentation end product profiles from carbohydrate-rich (in vitro run 1) and protein-rich (in vitro run 2) substrates. Feces were collected from 3 adult retriever-type dogs fed a canned diet for at least 2 wk. Each fecal sample was divided into 3 portions: 1 portion was used immediately as an inoculum (fresh) and the other 2 portions were used after either chilling to 5°C for 30 min and storage in crushed ice for 23.5 h (chilling) or freezing to -20°C for 30 min and storage in a prefrozen (-20°C) container for 23.5 h (freezing). The medium solution for run 1 contained N whereas that for run 2 was N free. Substrates included fructooligosaccharide (FOS), sugar beet pulp, and wheat middlings in run 1 and soybean meal, poultry meat meal, and feather meal in run 2. Gas production kinetics were calculated from cumulative gas production data measured for 72 h. After incubation, fermentation liquids were analyzed for short-chain fatty acids, NH3, and aromatic compounds. For both in vitro runs, chilling feces did not affect gas production kinetics and end product profiles of substrates compared with inocula from fresh feces. Freezing feces decreased the maximum rate of gas production in phase 2 for FOS (P<0.001) and across substrates increased gas produced (P≤0.005) and time of maximum gas production in phase 2 (P<0.001). Furthermore, compared with fresh fecal inocula, inocula from frozen feces resulted in increased overall indole concentrations in run 1 (P=0.006) and indole concentrations from soybean meal and poultry meat meal in run 2 (P<0.001). In run 2, phenol concentrations were greater (P=0.015) for frozen feces than for fresh feces (P=0.015). In conclusion, freezing canine feces for 24 h slightly altered fermentative characteristics of fecal inoculum whereas chilling feces in crushed ice for 24 h maintained fermentative characteristics

  3. Effects of anti-odor automobile air-conditioning system products on adherence of Serratia marcescens to aluminum.

    PubMed

    Drago, G K; Simmons, R B; Price, D L; Crow, S A; Ahearn, D G

    2002-12-01

    Sixteen commercial products for use in automobile air-conditioning systems (ACS), most designated for abatement of malodors presumably of microbial origin, were examined for their potential to inhibit attachment and to detach cells of the Gram-negative bacterium Serratia marcescens on aluminum sections. Numbers of attached cells were appreciably reduced (>60%) following immersion in three alcohol-type and two acrylic-coating-type products. Several products had essentially no effect on the attached cells. Most of the products indicated for alleviation of associated microbial odors from ACS provided only short-term effects. When products were coated onto aluminum prior to exposure to the cells, water-insoluble coatings appeared to provide more consistent inhibition of primary adherence of S. marcescens. The differences in degrees of primary adherence of a selected strain of S. marcescens to variously treated aluminum provided a rapid and reproducible assessment of potential antimicrobial efficacy of ACS products.

  4. Optimization of microwave pretreatment conditions to maximize methane production and methane yield in mesophilic anaerobic sludge digestion.

    PubMed

    Park, W J; Ahn, J H

    2011-10-01

    The objective of this study was to find optimum microwave pretreatment conditions for methane production and methane yield in anaerobic sludge digestion. The sludge was pretreated using a laboratory-scale industrial microwave unit (2450 MHz frequency). Microwave temperature increase rate (TIR) (2.9-17.1 degrees C/min) and final temperature (FT) (52-108 degrees C) significantly affected solubilization, methane production, and methane yield. Solubilization degree (soluble chemical oxygen demand (COD)/total COD) in the pretreated sludge (3.3-14.7%) was clearly higher than that in the raw sludge (2.6%). Within the design boundaries, the optimum conditions for maximum methane production (2.02 L/L) were TIR = 9.1 degrees C/min and FT = 90 degrees C, and the optimum conditions for maximum methane yield (809 mL/g VS(removed)) were TIR 7.1 degrees C/min and FT = 92 degrees C.

  5. Trends, productivity losses, and associated medical conditions among toxoplasmosis deaths in the United States, 2000-2010.

    PubMed

    Cummings, Patricia L; Kuo, Tony; Javanbakht, Marjan; Sorvillo, Frank

    2014-11-01

    Few studies have quantified toxoplasmosis mortality, associated medical conditions, and productivity losses in the United States. We examined national multiple cause of death data and estimated productivity losses caused by toxoplasmosis during 2000-2010. A matched case-control analysis examined associations between comorbid medical conditions and toxoplasmosis deaths. In total, 789 toxoplasmosis deaths were identified during the 11-year study period. Blacks and Hispanics had the highest toxoplasmosis mortality compared with whites. Several medical conditions were associated with toxoplasmosis deaths, including human immunodeficiency virus (HIV), lymphoma, leukemia, and connective tissue disorders. The number of toxoplasmosis deaths with an HIV codiagnosis declined from 2000 to 2010; the numbers without such a codiagnosis remained static. Cumulative disease-related productivity losses for the 11-year period were nearly $815 million. Although toxoplasmosis mortality has declined in the last decade, the infection remains costly and is an important cause of preventable death among non-HIV subgroups.

  6. Experiments on Nitrogen Oxide Production of Droplet Arrays Burning under Microgravity Conditions

    NASA Astrophysics Data System (ADS)

    Moesl, Klaus; Sattelmayer, Thomas; Kikuchi, Masao; Yamamoto, Shin; Yoda, Shinichi

    The optimization of the combustion process is top priority in current aero-engine and aircraft development, particularly from the perspectives of high efficiency, minimized fuel consumption, and a sustainable exhaust gas production. Aero-engines are exclusively liquid-fueled with a strong correlation between the combustion temperature and the emissions of nitric oxide (NOX ). Due to safety concerns, the progress in NOX reduction has been much slower than in stationary gas turbines. In the past, the mixing intensity in the primary zone of aero-engine combustors was improved and air staging implemented. An important question for future aero-engine combustors, consequently, is how partial vaporization influences the NOX emissions of spray flames? In order to address this question, the combustion of partially vaporized, linear droplet arrays was studied experimentally under microgravity conditions. The influence of fuel pre-vaporization on the NOX emissions was assessed in a wide range. The experiments were performed in a drop tower and a sounding rocket campaign. The microgravity environment provided ideal experiment conditions without the disturbing ef-fect of natural convection. This allowed the study of the interacting phenomena of multi-phase flow, thermodynamics, and chemical kinetics. This way the understanding of the physical and chemical processes related to droplet and spray combustion could be improved. The Bremen drop tower (ZARM) was utilized for the precursor campaign in July 2008, which was com-prised of 30 drops. The sounding rocket experiments, which totaled a microgravity duration of 6 minutes, were finally performed on the flight of TEXUS-46 in November 2009. On both campaigns the "Japanese Combustion Module" (JCM) was used. It is a cooperative experi-ment on droplet array combustion between the Japan Aerospace Exploration Agency (JAXA) and ESA's (European Space Agency) research team, working on the combustion properties of partially premixed sprays

  7. NECESSARY CONDITIONS FOR SHORT GAMMA-RAY BURST PRODUCTION IN BINARY NEUTRON STAR MERGERS

    SciTech Connect

    Murguia-Berthier, Ariadna; Montes, Gabriela; Ramirez-Ruiz, Enrico; De Colle, Fabio; Lee, William H.

    2014-06-10

    The central engine of short gamma-ray bursts (sGRBs) is hidden from direct view, operating at a scale much smaller than that probed by the emitted radiation. Thus we must infer its origin not only with respect to the formation of the trigger—the actual astrophysical configuration that is capable of powering an sGRB—but also from the consequences that follow from the various evolutionary pathways that may be involved in producing it. Considering binary neutron star mergers we critically evaluate, analytically and through numerical simulations, whether the neutrino-driven wind produced by the newly formed hyper-massive neutron star can allow the collimated relativistic outflow that follows its collapse to actually produce an sGRB or not. Upon comparison with the observed sGRB duration distribution, we find that collapse cannot be significantly delayed (≤100 ms) before the outflow is choked, thus limiting the possibility that long-lived hyper-massive remnants can account for these events. In the case of successful breakthrough of the jet through the neutrino-driven wind, the energy stored in the cocoon could contribute to the precursor and extended emission observed in sGRBs.

  8. Necessary Conditions for Short Gamma-Ray Burst Production in Binary Neutron Star Mergers

    NASA Astrophysics Data System (ADS)

    Murguia-Berthier, Ariadna; Montes, Gabriela; Ramirez-Ruiz, Enrico; De Colle, Fabio; Lee, William H.

    2014-06-01

    The central engine of short gamma-ray bursts (sGRBs) is hidden from direct view, operating at a scale much smaller than that probed by the emitted radiation. Thus we must infer its origin not only with respect to the formation of the trigger—the actual astrophysical configuration that is capable of powering an sGRB—but also from the consequences that follow from the various evolutionary pathways that may be involved in producing it. Considering binary neutron star mergers we critically evaluate, analytically and through numerical simulations, whether the neutrino-driven wind produced by the newly formed hyper-massive neutron star can allow the collimated relativistic outflow that follows its collapse to actually produce an sGRB or not. Upon comparison with the observed sGRB duration distribution, we find that collapse cannot be significantly delayed (<=100 ms) before the outflow is choked, thus limiting the possibility that long-lived hyper-massive remnants can account for these events. In the case of successful breakthrough of the jet through the neutrino-driven wind, the energy stored in the cocoon could contribute to the precursor and extended emission observed in sGRBs.

  9. Optimization of Large-Scale Culture Conditions for the Production of Cordycepin with Cordyceps militaris by Liquid Static Culture

    PubMed Central

    Kang, Chao; Wen, Ting-Chi; Kang, Ji-Chuan; Meng, Ze-Bing; Li, Guang-Rong; Hyde, Kevin D.

    2014-01-01

    Cordycepin is one of the most important bioactive compounds produced by species of Cordyceps sensu lato, but it is hard to produce large amounts of this substance in industrial production. In this work, single factor design, Plackett-Burman design, and central composite design were employed to establish the key factors and identify optimal culture conditions which improved cordycepin production. Using these culture conditions, a maximum production of cordycepin was 2008.48 mg/L for 700 mL working volume in the 1000 mL glass jars and total content of cordycepin reached 1405.94 mg/bottle. This method provides an effective way for increasing the cordycepin production at a large scale. The strategies used in this study could have a wide application in other fermentation processes. PMID:25054182

  10. A trial product of a new safety belt for a wheelchair user and its evaluation based on the actual investigation of fall accidents related to wheelchairs in a hospital.

    PubMed

    Konishi, Teuko; Matsuoka, Megumi; Toyoda, Mitsuko; Maie, Kazuo

    2009-12-01

    Old-aged patients, especially when they cannot keep stable sitting postures on wheelchairs, may get hurts seriously by falls. Preventing fall accidents is one of the most important subjects for keeping ADL of old-aged persons. We investigated the fall accidents related to from wheelchairs that occurred in a hospital (Asao General Hospital of Rehabilitation), and tried to make a new type of safety belts for old-aged wheelchair users based on the investigation. The results of trials using the product was evaluated by the care givers. The number of fall accidents in the hospital amounted to 226 cases within a year. It is noticed that the patients removed their belts by themselves intentionally or unintentionally, which is the most important point of the accidents. The evaluators of new belts were 91 care givers. The evaluation items were (1) the convenience for caregivers to fasten and remove the belts, (2) the ability of holding the patient on the wheelchair, (3) the safeness to prevent the fall from wheelchair (including the disability of removing a belt by the user), (4) the appearance when the usually used belts and the new belts were used, and only for the new belts, (5) the hygienic aspect and (6) the utility of the pocket. The new belts got better marks than the usually used belts. We intend to further improve the trial product (new belt) to be safer, more effective and more comfortable, based on the evaluation.

  11. Systemic treatment with the enteric bacterial fermentation product, propionic acid, produces both conditioned taste avoidance and conditioned place avoidance in rats.

    PubMed

    Ossenkopp, Klaus-Peter; Foley, Kelly A; Gibson, James; Fudge, Melissa A; Kavaliers, Martin; Cain, Donald P; Macfabe, Derrick F

    2012-02-01

    Propionic acid, an enteric bacterial fermentation product, has received recent attention in regards to satiety and obesity in humans. The possibility that propionic acid might produce internal aversive cues was investigated in two experiments using conditioned taste avoidance and place avoidance procedures to index the potential aversive nature of systemic treatment with propionic acid in male rats. Experiment 1 examined the effect of systemic treatment with propionic acid (500 mg/kg), LiCl (95 mg/kg) or vehicle (all corrected to pH 7.5) on the formation of conditioned taste avoidance using a lickometer procedure. On 3 acquisition days three groups of rats were injected with propionic acid, LiCl or vehicle, following 30 min access to 0.3M sucrose solution. Both the Propionic acid group and the LiCl group evidenced a conditioned taste avoidance by the end of the acquisition period. During a drug free extinction phase the Propionic acid group showed extinction of the taste avoidance whereas the LiCl group did not. Experiment 2 involved place preference conditioning with propionic acid treatment associated with one novel context and vehicle with a different novel context on 6 conditioning trials for each type of injection. Place avoidance was assessed on two drug free extinction trials. Multi-variable assessment of the unconditioned (Acquisition Trials) and conditioned effects (Extinction Trials) of propionic acid on locomotor activity was quantified as was chamber choice time on the extinction trials. Propionic acid induced a significant place avoidance and significantly reduced locomotor activity on some acquisition trials. During the extinction trials rats exhibited enhanced locomotor activity levels in the propionic acid associated chamber, likely due to the conditioned aversive nature of this chamber.

  12. Achieving high lipid productivity of a thermotolerant microalga Desmodesmus sp. F2 by optimizing environmental factors and nutrient conditions.

    PubMed

    Ho, Shih-Hsin; Chang, Jo-Shu; Lai, Yen-Ying; Chen, Ching-Nen Nathan

    2014-03-01

    The optimal conditions for cultivating the thermotolerant lipid-rich microalga Desmodesmus sp. F2 to achieve maximal lipid productivity were determined in this study. The conditions were light intensity, 700μmol/m(2)s; temperature, 35°C; cultivation nitrogen source, nitrate; initial nitrogen level, 6.6mM nitrogen. Carbon dioxide (2.5%, 0.2 vvm) was pumped into the cultures continuously. In the pre-optimized conditions, the maximal lipid productivity of this microalga was 113mg/L/d, which was raised to 263mg/L/d in the optimized conditions. This level of lipid productivity of microalgae is the highest ever reported in the literature. Fatty acid composition of the lipid produced by Desmodesmus sp. F2 in the optimal conditions was determined, in which C16 and C18 species accounted for 95% of the fatty acids. Saturated, monounsaturated and polyunsaturated fatty acids accounted for 38.9%, 33.1% and 22.6%, respectively. Based on the analysis, this lipid quality makes it a good feedstock for biodiesel production.

  13. Effect of redox conditions on bacterial and fungal biomass and carbon dioxide production in Louisiana coastal swamp forest sediment.

    PubMed

    Seo, Dong Cheol; DeLaune, Ronald D

    2010-08-01

    Fungal and bacterial carbon dioxide (CO2) production/emission was determined under a range of redox conditions in sediment from a Louisiana swamp forest used for wastewater treatment. Sediment was incubated in microcosms at 6 Eh levels (-200, -100, 0, +100, +250 and +400 mV) covering the anaerobic range found in wetland soil and sediment. Carbon dioxide production was determined by the substrate-induced respiration (SIR) inhibition method. Cycloheximide (C15H23NO4) was used as the fungal inhibitor and streptomycin (C21H39N7O12) as the bacterial inhibitor. Under moderately reducing conditions (Eh > +250 mV), fungi contributed more than bacteria to the CO2 production. Under highly reducing conditions (Eh < or = 0 mV), bacteria contributed more than fungi to the total CO2 production. The fungi/bacteria (F/B) ratios varied between 0.71-1.16 for microbial biomass C, and 0.54-0.94 for microbial biomass N. Under moderately reducing conditions (Eh > or = +100 mV), the F/B ratios for microbial biomass C and N were higher than that for highly reducing conditions (Eh < or = 0 mV). In moderately reducing conditions (Eh > or = +100 mV), the C/N microbial biomass ratio for fungi (C/N: 13.54-14.26) was slightly higher than for bacteria (C/N: 9.61-12.07). Under highly reducing redox conditions (Eh < or = 0 mV), the C/N microbial biomass ratio for fungi (C/N: 10.79-12.41) was higher than for bacteria (C/N: 8.21-9.14). For bacteria and fungi, the C/N microbial biomass ratios under moderately reducing conditions were higher than that in highly reducing conditions. Fungal CO2 production from swamp forest could be of greater ecological significance under moderately reducing sediment conditions contributing to the greenhouse effect (GHE) and the global warming potential (GWP). However, increases in coastal submergence associated with global sea level rise and resultant decrease in sediment redox potential from increased flooding would likely shift CO2 production to bacteria rather than

  14. Bio-oil production via catalytic pyrolysis of Anchusa azurea: Effects of operating conditions on product yields and chromatographic characterization.

    PubMed

    Aysu, Tevfik; Durak, Halil; Güner, Serkan; Bengü, Aydın Şükrü; Esim, Nevzat

    2016-04-01

    Pyrolysis of Anchusa azurea, a lignocellulosic gramineous plant, was carried out in a tubular, fixed-bed reactor in the presence of four catalysts (Ca(OH)2, Na2CO3, ZnCl2, Al2O3). The influences of pyrolysis parameters such as catalyst and temperature on the yields of products were studied. It was found that higher temperature resulted in lower liquid (bio-oil) and solid (bio-char) yields and higher gas yields. Catalysts effected the yields of products differently and the composition of bio-oils. Liquid yields were increased in the presence of Na2CO3, ZnCl2 and Al2O3 and decreased with Ca(OH)2. The highest bio-oil yield (34.05%) by weight including aqueous phase was produced with Na2CO3 catalyst at 450°C. The yields of products (bio-char, bio-oil and gas) and the compositions of the resulting bio-oils were determined by GC-MS, FT-IR and elemental analysis. GC-MS identified 124 and 164 different compounds in the bio-oils obtained at 350 and 550°C respectively.

  15. Effect of bioconversion conditions on vanillin production by Amycolatopsis sp. ATCC 39116 through an analysis of competing by-product formation.

    PubMed

    Ma, Xiao-kui; Daugulis, Andrew J

    2014-05-01

    This study investigated the effects of transformation conditions such as initial pH, the initial concentration of glucose and yeast extract in the medium, and the separate addition of ferulic acid and vanillic acid, on the production of vanillin through an analysis of competing by-product formation by Amycolatopsis sp. ATCC 39116. The extent and nature of by-product formation and vanillin yield were affected by initial pH and different initial concentrations of glucose and yeast extract in the medium, with a high yield of vanillin and high cell density obtained at pH 8.0, 10 g/l glucose, and 8 g/l yeast extract. High concentrations of ferulic acid were found to negatively affect cell density. Additional supplementation of 100 mg/l vanillic acid, a metabolically linked by-product, was found to result in a high concentration of vanillin and guaiacol, an intermediate of vanillin. Via an analysis of the effect of these transformation conditions on competing by-product formation, high concentrations of ferulic acid were transformed with a molar yield to vanillin of 96.1 and 95.2 %, by Amycolatopsis sp. ATCC 39116 and Streptomyces V1, respectively, together with a minor accumulation of by-products. These are among the highest performance values reported in the literature to date for Streptomyces in batch cultures.

  16. Torrefaction of almond shells: effects of torrefaction conditions on properties of solid and condensate products

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Almond shells were torrefied in a fixed bed reactor and their solid and condensate products were collected for analysis. A central composite design and response surface methodology were used to examine effects of torrefaction temperature and time on mass and energy yields of solid products as well a...

  17. Nitrite-Driven Nitrous Oxide Production Under Aerobic Soil Conditions: Kinetics and Biochemical Controls

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Nitrite (NO2-) can accumulate during nitrification in soil following fertilizer application. While the role of NO2- as a substrate regulating nitrous oxide (N2O) production is recognized, kinetic data are not available that allow for estimating N2O production or soil-to-atmosphere fluxes as a functi...

  18. The Mechanisms of Inhibition of Advanced Glycation End Products Formation through Polyphenols in Hyperglycemic Condition.

    PubMed

    Khangholi, Shahpour; Majid, Fadzilah Adibah Abdul; Berwary, Najat Jabbar Ahmed; Ahmad, Farediah; Aziz, Ramlan Bin Abd

    2016-01-01

    Glycation, the non-enzymatic binding of glucose to free amino groups of an amino acid, yields irreversible heterogeneous compounds known as advanced glycation end products. Those products play a significant role in diabetic complications. In the present article we briefly discuss the contribution of advanced glycation end products to the pathogenesis of diabetic complications, such as atherosclerosis, diabetic retinopathy, nephropathy, neuropathy, and wound healing. Then we mention the various mechanisms by which polyphenols inhibit the formation of advanced glycation end products. Finally, recent supporting documents are presented to clarify the inhibitory effects of polyphenols on the formation of advanced glycation end products. Phytochemicals apply several antiglycation mechanisms, including glucose metabolism, amelioration of oxidative stress, scavenging of dicarbonyl species, and up/down-regulation of gene expression. To utilize polyphenols in order to remedy diabetic complications, we must explore, examine and clarify the action mechanisms of the components of polyphenols.

  19. Efficient lactobionic acid production from whey by Pseudomonas taetrolens under pH-shift conditions.

    PubMed

    Alonso, Saúl; Rendueles, Manuel; Díaz, Mario

    2011-10-01

    Lactobionic acid finds applications in the fields of pharmaceuticals, cosmetics and medicine. The production of lactobionic acid from whey by Pseudomonas taetrolens was studied in shake-flasks and in a bioreactor. Shake-flask experiments showed that lactobionic acid was a non-growth associated product. A two-stage pH-shift bioconversion strategy with a pH-uncontrolled above 6.5 during the growth phase and maintained at 6.5 during cumulative production was adopted in bioreactor batch cultures. An inoculation level of 30% promoted high cell culture densities that triggered lactobionic acid production at a rate of 1.12 g/Lh. This methodology displayed efficient bioconversion with cheese whey as an inexpensive substrate for lactobionic acid production.

  20. Debottlenecking recombinant protein production in Bacillus megaterium under large-scale conditions--targeted precursor feeding designed from metabolomics.

    PubMed

    Korneli, Claudia; Bolten, Christoph Josef; Godard, Thibault; Franco-Lara, Ezequiel; Wittmann, Christoph

    2012-06-01

    In the present work the impact of large production scale was investigated for Bacillus megaterium expressing green fluorescent protein (GFP). Specifically designed scale-down studies, mimicking the intermittent and continuous nutrient supply of large- and small-scale processes, were carried out for this purpose. The recombinant strain revealed a 40% reduced GFP yield for the large-scale conditions. In line with extended carbon loss via formation of acetate and carbon dioxide, this indicated obvious limitations in the underlying metabolism of B. megaterium under the large-scale conditions. Quantitative analysis of intracellular amino acids via validated fast filtration protocols revealed that their level strongly differed between the two scenarios. During cultivation in large-scale set-up, the availability of most amino acids, serving as key building blocks of the recombinant protein, was substantially reduced. This was most pronounced for tryptophan, aspartate, histidine, glutamine, and lysine. In contrast alanine was increased, probably related to a bottleneck at the level of pyruvate which also triggered acetate overflow metabolism. The pre-cursor quantifications could then be exploited to verify the presumed bottlenecks and improve recombinant protein production under large-scale conditions. Addition of only 5 mM tryptophan, aspartate, histidine, glutamine, and lysine to the feed solution increased the GFP yield by 100%. This rational concept of driving the lab scale productivity of recombinant microorganisms under suboptimal feeding conditions emulating large scale can easily be extended to other processes and production hosts.

  1. Simulating soybean productivity under rainfed conditions for major soil types using APEX model in East Central Mississippi

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Because soybean is commonly grown under rainfed conditions in Mississippi, and farmers recognize benefits of installing irrigation, knowledge of rainfed soybean productivity and yield difference of different soil types is needed for deciding where irrigation may be most effective. This research empl...

  2. Optimization of the fermentation conditions of Rhizopus japonicus M193 for the production of chitin deacetylase and chitosan.

    PubMed

    Zhang, Hongcai; Yang, Shoufeng; Fang, Jiyang; Deng, Yun; Wang, Danfeng; Zhao, Yanyun

    2014-01-30

    To improve the production of chitin deacetylase (CDA) for the bioconversion of chitin to chitosan with desirable functionality, the effect of the nutritional requirement on the CDA production from Rhizopus japonicus M193 fermentation was investigated under submerged conditions. Nutritional elements including glucose (g/L), inoculum level (%), and MgSO4·7H2O (g/L), as well as culture time (d) were identified as the most critical factors for the CDA production based on the results from Plackett-Burman design (PBD). Taguchi design with orthogonal array was further employed to optimize R. japonicus M193 fermentation conditions based on the results from PBD, in which 2.5% chitin, 5 g/L glucose, 5% inoculum level, 0.6g/L MgSO4·7H2O, and 5d culture time were identified as the optimal fermentation conditions. Under this condition, the maximum CDA production, DDA and MM of produced chitosan were 547.38 ± 12.06 U/L, 78.85 ± 1.68%, and 125.63 ± 3.74 kDa, respectively. Obtained chitosan displayed similar physicochemical and structural properties to those of commercial chitosan extracted using chemical method based on the results from Fourier transform infrared spectrometer (FT-IR), thermogravimetric analysis (TGA)-differential scanning calorimetry (DSC), and nuclear magnetic resonance (NMR) assays, while the use of chemical reagents was significantly reduced.

  3. Effect of operating conditions in soil aquifer treatment on the removals of pharmaceuticals and personal care products.

    PubMed

    He, Kai; Echigo, Shinya; Itoh, Sadahiko

    2016-09-15

    Soil aquifer treatment (SAT) is an alternative advanced treatment for wastewater reclamation, and it has the potential to control micropollutants including pharmaceuticals and personal care products (PPCPs). However, the relationship of operating conditions in SAT and removals of micropollutants was not clear. In this study, the effects of operating conditions on the removals of PPCPs were evaluated by using lab-scale columns and plant pilot-scale reactors under different operating conditions. Firstly, weathered granite soil (WGS), standard sand (SAND) and Toyoura standard sand (TS) have different soil characteristics such as total organic carbon (TOC) and cation exchange capacity (CEC). In the columns with these packing materials, the removals of carboxylic analgesics and antilipidemics were effective regardless packing materials. The removals of antibiotics were more effective in WGS than in TS and SAND, indicating high TOC and CEC enhance the sorption in SAT. Secondly, with the extension of hydraulic retention time (HRT), the removals of sulfamethoxazole, acetaminophen, crotamiton, and antipyrine were improved in WGS columns, and adaptable biodegradation for moderately removable PPCPs was formed. Thirdly, the removal efficiencies of sulfamethoxazole and crotamiton were higher in the WGS column under vadose condition than in the WGS column under saturated condition, because of aerobic condition in WGS column under vadose condition. Though long HRT and vadose condition had positive influence on the removals of several PPCPs such as sulfamethoxazole, WGS column with an HRT of 7days under saturated condition removed most PPCPs.

  4. Carbon dioxide production from peatland soil profiles: The influence of temperature, oxic/anoxic conditions and substrate

    SciTech Connect

    Scanlon, D.; Moore, T.

    2000-02-01

    The authors incubated intact peat cores from depth intervals of 5--15, 15--25, 25--35, and 35--45 cm from ombrotrophic bog, poor fen, and beaver pond margin sections of a cool-temperate peatland. CO{sub 2} production was measured over 12-day incubation periods at 4 and 14 C and under oxic and anoxic conditions. Rates ranged from 0.06 to 0.66 mg CO{sub 2} g{sup {minus}1} dry peat d{sup {minus}1} under oxic conditions and from 0.002 to 0.098 mg CO{sub 2} g{sup {minus}1} d{sup {minus}1} under anoxic conditions, and rates generally decreased with depth in the profiles. When expressed on a volumetric basis, production rates ranged from 0.3 to 23.4 g CO{sub 2} m{sup {minus}3} d{sup {minus}1}, and there was much less variation in CO{sub 2} production rates within profiles because the bulk density of peat increased with depth. The Q{sub 10} quotient, between 4 and 14 C, ranged from 1.0 to 7.7, depending on sample and incubation conditions, with an average of 2.0 for oxic and 2.7 for anoxic conditions. Oxic:anoxic ratios averaged 7:1, 16:1, and 12:1 for the bog, poor fen, and beaver pond margin samples, respectively. Degree of decomposition (von Post index) was the substrate property most strongly correlated with CO{sub 2} production. Based on temperature and incubation data for the peat profiles to a depth of 45 cm, annual decomposition values (k) ranged from 0.016 to 0.060 yr{sup {minus}1} under oxic conditions and from 0.001 to 0.007 yr{sup {minus}1} under anoxic conditions. A model of CO{sub 2} emission from the three sites, based on the incubation data and thermal and water table regime, gave good agreement with measured in situ CO{sub 2} emission rates, although summer emission rates were underpredicted, possibly because of the absence of a root production component in the incubations or because of underestimation of CO{sub 2} production rates in field conditions above the water table.

  5. Characterization of degradation products of amorphous and polymorphic forms of clopidogrel bisulphate under solid state stress conditions.

    PubMed

    Raijada, Dhara K; Prasad, Bhagwat; Paudel, Amrit; Shah, Ravi P; Singh, Saranjit

    2010-07-08

    The present study deals with the stress degradation studies on amorphous and polymorphic forms of clopidogrel bisulphate. The objective was to characterize the degradation products and postulate mechanism of decomposition of the drug under solid state stress conditions. For that, amorphous form, polymorph I and polymorph II of the drug were exposed to 40 degrees C/75% relative humidity (RH), with and without stressors for 3 months. The samples were analyzed by HPLC, and the relative extent of degradation as well as nature of decomposition was compared among three solid forms. In total, eight degradation products were observed under various stress conditions. The structures of all of them were elucidated using LC-MS/TOF and LC-MS(n) studies. While one matched the known hydrolytic decomposition product of the drug in solution, seven others were new. The postulated degradation pathway and mechanism of decomposition are discussed.

  6. Influence of pretreatment condition on the fermentable sugar production and enzymatic hydrolysis of dilute acid-pretreated mixed softwood.

    PubMed

    Lim, Woo-Seok; Lee, Jae-Won

    2013-07-01

    In this study, the effects of different acid catalysts and pretreatment factors on the hydrolysis of mixed softwood were investigated over a range of thermochemical pretreatments. Maleic, oxalic, and sulfuric acids were each used, under different pretreatment conditions. The most influential factor for fermentable sugar production in the dicarboxylic acid pretreatment of softwood was the pH. Reaction temperature was the next significant factor. However, during sulfuric acid pretreatment, fermentable sugar production was more dependent on reaction temperature, than time or pH. Enzymatic hydrolysis yields differed, depending on acid catalyst and pretreatment factor, regardless of lignin content in pretreated biomass. The highest enzymatic hydrolysis yield was found following maleic acid pretreatment, which reached 61.23%. The trend in enzymatic hydrolysis yields that were detected concomitantly with pretreatment condition or type of acid catalyst was closely related to the fermentable sugar production in the hydrolysate.

  7. Process Conditions of Forming the Surface Layer of Aluminum Powder Product by Layer-by-layer Laser Sintering

    NASA Astrophysics Data System (ADS)

    Saprykina, N. A.; Saprykin, A. A.; Ibragimov, E. A.; Arkhipova, D. A.

    2016-07-01

    The paper presents data on state of the art in selective laser sintering of products. Layer-by-layer sintering is shown to be a future-oriented technology, making it possible to synthesize products of metal powder materials. Factors, influencing the quality of a sintered product, are revealed in the paper. It presents outcomes of experiments, focused on the dependence of surface layer thickness of sintered aluminum powder PA-4 on laser processing conditions. Basic factors, influencing the quality of a sintered surface layer include laser power, speeds of scanning and moving the laser beam on the layer of powder. Thickness of the sintered layer varies from 0.74 to 1.55 mm, as the result of changing the laser processing conditions.

  8. Submerged culture conditions for the production of alternative natural colorants by a new isolated Penicillium purpurogenum DPUA 1275.

    PubMed

    Santos-Ebinuma, Valéria Carvalho; Teixeira, Maria Francisca Simas; Pessoa, Adalberto

    2013-06-28

    This work aims at investigating the production of yellow, orange, and red natural colorants in a submerged culture of Penicillium purpurogenum DPUA 1275. For this purpose, different experimental conditions evaluating the effect of incubation time, type and size of inoculum, and different carbon and nitrogen sources were performed. Furthermore, the growth kinetics were obtained in the conditions of 10(8) spores/ml and 5 mycelia agar discs during 360 h. These experiments showed that 5 mycelia agar discs and 336 h promoted the highest yellow (3.08 UA400nm), orange (1.44 UA470nm), and red (2.27 UA490nm) colorants production. Moreover, sucrose and yeast extract were the most suitable carbon and nitrogen sources for natural colorants production. Thus, the present study shows a new source of natural colorants, which can be used as an alternative to others available in the market after toxicological studies.

  9. Optimization of submerged fermentation conditions for lovastatin production by the culinary-medicinal oyster mushroom, Pleurotus ostreatus (Higher Basidiomycetes).

    PubMed

    Atli, Burcu; Yamac, Mustafa; Yildiz, Zeki

    2013-01-01

    Statistical experimental designs were used to optimize lovastatin production by culinary-medicinal oyster mushroom Pleurotus ostreatus OBCC 1031 under submerged fermentation. The Plackett-Burman design was used to determine effective culture parameters, glucose, lactose, maltose, glycerol, peptone, yeast extract, NH4SO2, NaCl, thiamine, and agitation speed. Statistical analyses of data from the Plackett-Burman design show that glucose, yeast extract, and agitation speed are significant parameters. The interactive effects of these culture parameters on lovastatin production by P. ostreatus OBCC 1031 were further studied by a Box-Behnken design. Maximum lovastatin production (114.82 mg/L) was reached after 6 days of fermentation in optimized culture conditions (30 g/L glucose, 10 g/L yeast extract, 200 rpm, 28°C, and pH 6). This amount was found to be 50 times higher than that produced under unoptimized conditions in submerged fermentation by P. ostreatus.

  10. Optimization to the Culture Conditions for Phellinus Production with Regression Analysis and Gene-Set Based Genetic Algorithm

    PubMed Central

    Li, Zhongwei; Xin, Yuezhen; Wang, Xun; Sun, Beibei; Xia, Shengyu; Li, Hui

    2016-01-01

    Phellinus is a kind of fungus and is known as one of the elemental components in drugs to avoid cancers. With the purpose of finding optimized culture conditions for Phellinus production in the laboratory, plenty of experiments focusing on single factor were operated and large scale of experimental data were generated. In this work, we use the data collected from experiments for regression analysis, and then a mathematical model of predicting Phellinus production is achieved. Subsequently, a gene-set based genetic algorithm is developed to optimize the values of parameters involved in culture conditions, including inoculum size, PH value, initial liquid volume, temperature, seed age, fermentation time, and rotation speed. These optimized values of the parameters have accordance with biological experimental results, which indicate that our method has a good predictability for culture conditions optimization. PMID:27610365

  11. Culture Conditions for Production of Biomass, Adenosine, and Cordycepin from Cordyceps sinensis CS1197: Optimization by Desirability Function Method

    PubMed Central

    Ghatnur, Shashidhar M.; Parvatam, Giridhar; Balaraman, Manohar

    2015-01-01

    Background: Cordyceps sinensis (CS) is a traditional Chinese medicine contains potent active metabolites such as nucleosides and polysaccharides. The submerged cultivation technique is studied for the large scale production of CS for biomass and metabolites production. Objective: To optimize culture conditions for large-scale production of CS1197 biomass and metabolites production. Materials and Methods: The CS1197 strain of CS was isolated from dead larvae of natural CS and the authenticity was assured by the presence of two major markers adenosine and cordycepin by high performance liquid chromatography and mass spectrometry. A three-level Box-Behnken design was employed to optimize process parameters culturing temperature, pH, and inoculum volume for the biomass yield, adenosine and cordycepin. The experimental results were regressed to a second-order polynomial equation by a multiple regression analysis for the prediction of biomass yield, adenosine and cordycepin production. Multiple responses were optimized based on desirability function method. Results: The desirability function suggested the process conditions temperature 28°C, pH 7 and inoculum volume 10% for optimal production of nutraceuticals in the biomass. The water extracts from dried CS1197 mycelia showed good inhibition for 2 diphenyl-1-picrylhydrazyl and 2,2-azinobis-(3-ethyl-benzo-thiazoline-6-sulfonic acid-free radicals. Conclusion: The result suggests that response surface methodology-desirability function coupled approach can successfully optimize the culture conditions for CS1197. SUMMARY Authentication of CS1197 strain by the presence of adenosine and cordycepin and culturing period was determined to be for 14 daysContent of nucleosides in natural CS was found higher than in cultured CS1197 myceliumBox-Behnken design to optimize critical cultural conditions: temperature, pH and inoculum volumeWater extract showed better antioxidant activity proving credible source of natural antioxidants

  12. PROTOCOL FOR LABORATORY TESTING OF CRUDE-OIL BIOREMEDIATION PRODUCTS IN FRESHWATER CONDITIONS

    EPA Science Inventory

    In 1993, the Environmental Protection Agency, National Risk Management Research Laboratory (EPA, NRMRL), with the National Environmental Technology Application Center (NETAC), developed a protocol for evaluation of bioremediation products in marine environments. The marine proto...

  13. [Risk for health in population of Krasnoyarsk territory conditioned by food products contaminated by heavy metals].

    PubMed

    Vasilovskiĭ, A M

    2009-01-01

    Monitoring of nutrition structure in Krasnoyarsk territory population showed that the consumption rate of major food products is not stable and changes from year. The current situation provokes worsening of population health and growth diseases.

  14. Optimization of culturing condition and medium composition for the production of alginate lyase by a marine Vibrio sp. YKW-34

    NASA Astrophysics Data System (ADS)

    Fu, Xiaoting; Lin, Hong; Kim, Sang Moo

    2008-02-01

    Carbohydrases secreted by marine Vibrio sp. YKW-34 with strong Laminaria cell wall degrading ability were screened, and among them alginate lyase was found to be dominant. The effects of medium composition and culturing condition on the production of alginate lyase by marine Vibrio sp. YKW-34 in flask were investigated in this study. In the culture medium of marine broth, no alginate lyase was produced. The activity of the alginate lyase, after being induced, reached 5 UmL-1. The best inoculum volume and inoculum age were 10% and 12 h, respectively. The optimal temperature for alginate lyase production was 25°C. The fermentation medium was composed of 0.5% of Laminaria powder and 0.2% of KNO3 with an initial acidity of pH 8.0. Alginate could induce alginate lyase production but not as efficiently as Laminaria powder did. The addition of fucoidan, cellulose and glucose had negative effect on the alginate lyase production. Other kinds of nitrogen sources, such as yeast extract, beef extract and peptone, had positive effect on the growth of the microorganism and negative effect on alginate lyase production. In addition, the time course of alginate lyase production under the optimized condition was described. The optimal harvest time was 48 h.

  15. Effect of operating conditions in production of diagnostic Salmonella Enteritidis O-antigen-specific monoclonal antibody in different bioreactor systems.

    PubMed

    Ayyildiz-Tamis, Duygu; Nalbantsoy, Ayse; Elibol, Murat; Deliloglu-Gurhan, Saime Ismet

    2014-01-01

    In this study, different cultivation systems such as roller bottles (RB), 5-L stirred-tank bioreactor (STR), and disposable bioreactors were used to cultivate hybridoma for lab-scale production of Salmonella Enteritidis O-antigen-specific monoclonal antibody (MAb). Hybridoma cell line was cultivated in either serum-containing or serum-free medium (SFM) culture conditions. In STR, MAb production scaled up to 4 L, and production capabilities of the cells were also evaluated in different featured production systems. Moreover, the growth parameters of the cells in all production systems such as glucose consumption, lactate and ammonia production, and also MAb productivities were determined. Collected supernatants from the reactors were concentrated by a cross-flow filtration system. In conclusion, cells were not adapted to SFM in RB and STR. Therefore, less MAb titer in both STR and RB systems with SFM was observed compared to the cultures containing fetal bovine serum-supplemented medium. A higher MAb titer was gained in the membrane-aerated system compared to those in STR and RB. Although the highest MAb titer was obtained in the static membrane bioreactor system, the highest productivity was obtained in STR operated in semicontinuous mode with overlay aeration.

  16. Production of cryoprotectant extracellular polysaccharide substances (EPS) by the marine psychrophilic bacterium Colwellia psychrerythraea strain 34H under extreme conditions.

    PubMed

    Marx, Joseph G; Carpenter, Shelly D; Deming, Jody W

    2009-01-01

    Extracellular polysaccharide substances (EPS) play critical roles in microbial ecology, including the colonization of extreme environments in the ocean, from sea ice to the deep sea. After first developing a sugar-free growth medium, we examined the relative effects of temperature, pressure, and salinity on EPS production (on a per cell basis) by the obligately marine and psychrophilic gamma-proteobacterium, Colwellia psychrerythraea strain 34H. Over growth-permissive temperatures of approximately 10 to -4 degrees C, EPS production did not change, but from -8 to -14 degrees C when samples froze, EPS production rose dramatically. Similarly, at growth-permissive hydrostatic pressures of 1-200 atm (1 atm = 101.325 kPa) (at -1 and 8 degrees C), EPS production was unchanged, but at higher pressures of 400 and 600 atm EPS production rose markedly. In salinity tests at 10-100 parts per million (and -1 and 5 degrees C), EPS production increased at the freshest salinity tested. Extreme environmental conditions thus appear to stimulate EPS production by this strain. Furthermore, strain 34H recovered best from deep-freezing to -80 degrees C (not found for Earthly environments) if first supplemented with a preparation of its own EPS, rather than other cryoprotectants like glycerol, suggesting EPS production as both a survival strategy and source of compounds with potentially novel properties for biotechnological and other applications.

  17. Oxidizing Impact Induced by Mackinawite (FeS) Nanoparticles at Oxic Conditions due to Production of Hydroxyl Radicals.

    PubMed

    Cheng, Dong; Yuan, Songhu; Liao, Peng; Zhang, Peng

    2016-11-01

    Mackinawite (FeS) nanoparticles have been extensively tested for reducing contaminants under anoxic conditions, while the oxidizing impact induced by FeS under oxic conditions has been largely underestimated. In light of previous findings that hydroxyl radicals (·OH) can be produced from oxygenation of sediment Fe(II), herein we revealed that ·OH can be produced efficiently from FeS oxygenation at circumneutral conditions, yielding 84.7 μmol ·OH per g FeS. Much more ·OH was produced from the oxygenation of FeS compared with siderite, pyrite, and zerovalent iron nanoparticles under the same conditions. The oxidation of FeS was a surface-mediated process, in which O2 was transformed by the structural Fe(II) on FeS surface to ·OH with the generation of H2O2 intermediate. A small proportion of Fe(II) was regenerated from the reduction of Fe(III) by FeS and S(-II), but this proportion did not significantly contribute to ·OH production. We further validated that the ·OH produced from FeS oxygenation considerably contributed to the oxidation of arsenic. As the change of redox conditions from anoxic to oxic is common in both natural and artificial processes, our findings suggest that the oxidizing impact induced by FeS at oxic conditions should be concerned due to ·OH production.

  18. Fate of Pharmaceuticals and Personal Care Products (PPCPs) in Saturated Soil Under Various Redox Conditions

    NASA Astrophysics Data System (ADS)

    Dror, I.; Menahem, A.; Berkowitz, B.

    2014-12-01

    The growing use of PPCPs results in their increasing release to the aquatic environment. Consequently, understanding the fate of PPCPs under environmentally relevant conditions that account for dynamic flow and varying redox states is critical. In this study, the transport of two organometallic PPCPs, Gd-DTPA and Roxarsone (As complex) and their metal salts (Gd(NO3)3, AsNaO2), is investigated. The former is used widely as a contrasting agent for MRI, while the latter is applied extensively as a food additive in the broiler poultry industry. Both of these compounds are excreted from the body, almost unchanged chemically. Gadolinium complexes are not fully eliminated in wastewater treatment and can reach groundwater via irrigation with treated wastewater; Roxarsone can enter groundwater via leaching from manure used as fertilizer. Studies have shown that the transport of PPCPs in groundwater is affected by environmental conditions such as redox states, pH, and soil type. For this study, column experiments using sand or Mediterranean red sandy clay soil were performed under several redox conditions: aerobic, nitrate-reducing, iron-reducing, sulfate-reducing, methanogenic, and very strongly chemical reducing. Batch experiments to determine adsorption isotherms were also performed for the complexes and metal salts. We found that Gd-DTPA transport was affected by the soil type and was not affected by the redox conditions. In contrast, Roxarsone transport was affected mainly by the different redox conditions, showing delayed breakthrough curves as the conditions became more biologically reduced (strong chemical reducing conditions did not affect the transport). We also observed that the metal salts show essentially no transport while the organic complexes display much faster breakthrough. The results suggest that transport of these PPCPs through soil and groundwater is determined by the redox conditions, as well as by soil type and the form of the applied metal (as salt

  19. Investigation of malic acid production in Aspergillus oryzae under nitrogen starvation conditions.

    PubMed

    Knuf, Christoph; Nookaew, Intawat; Brown, Stephen H; McCulloch, Michael; Berry, Alan; Nielsen, Jens

    2013-10-01

    Malic acid has great potential for replacing petrochemical building blocks in the future. For this application, high yields, rates, and titers are essential in order to sustain a viable biotechnological production process. Natural high-capacity malic acid producers like the malic acid producer Aspergillus flavus have so far been disqualified because of special growth requirements or the production of mycotoxins. As A. oryzae is a very close relative or even an ecotype of A. flavus, it is likely that its high malic acid production capabilities with a generally regarded as safe (GRAS) status may be combined with already existing large-scale fermentation experience. In order to verify the malic acid production potential, two wild-type strains, NRRL3485 and NRRL3488, were compared in shake flasks. As NRRL3488 showed a volumetric production rate twice as high as that of NRRL3485, this strain was selected for further investigation of the influence of two different nitrogen sources on malic acid secretion. The cultivation in lab-scale fermentors resulted in a higher final titer, 30.27 ± 1.05 g liter(-1), using peptone than the one of 22.27 ± 0.46 g liter(-1) obtained when ammonium was used. Through transcriptome analysis, a binding site similar to the one of the Saccharomyces cerevisiae yeast transcription factor Msn2/4 was identified in the upstream regions of glycolytic genes and the cytosolic malic acid production pathway from pyruvate via oxaloacetate to malate, which suggests that malic acid production is a stress response. Furthermore, the pyruvate carboxylase reaction was identified as a target for metabolic engineering, after it was confirmed to be transcriptionally regulated through the correlation of intracellular fluxes and transcriptional changes.

  20. Soils and waste water purification from oil products using combined methods under the North conditions.

    PubMed

    Evdokimova, Galina A; Gershenkop, Alexander Sh; Mozgova, Natalia P; Myazin, Vladimir A; Fokina, Nadejda V

    2012-01-01

    Oil and gas production and transportation in Russia is increasingly moving to the north regions. Such regions are characterized by relatively low self-purification capacity of the natural environments from the contaminants due to slow character of the energy exchange and mass transfer processes. Off-shore field development in the Barents Sea and oil product transportation can result in contamination, as confirmed by the national and international practice of the developed oil and gas regions. The research aims at development of the soil bioremediation methods and industrial waste water purification contaminated by oil products in the north-western region of Russia. The dynamics of oil products carry-over have been investigated under the field model experiments in podzolic soils: gas condensate, diesel fuel and mazut from oil and the plants were selected for phyto-remediation of contaminated soils under high north latitudes. It is shown that soil purification from light hydrocarbons takes place during one vegetation period. In three months of the vegetation period the gas condensate was completely removed from the soil, diesel fuel - almost completely (more than 90%). Residual amounts of heavy hydrocarbons were traced, even 1.5 later. The following plants that were highly resistant to the oil product contamination were recommended for bioremediation: Phalaroides arundinacea, Festuca pratensis, Phleum pratense, Leymus arenarius. There has been developed and patented the combined method of treatment of waste water contaminated with hydrocarbons based on inorganic coagulants and local oil-oxidizing bacteria.

  1. Selection of elite microalgae for biodiesel production in tropical conditions using a standardized platform.

    PubMed

    Ho, Shih-hsin; Lai, Yen-Ying; Chiang, Chun-Yu; Chen, Ching-Nen Nathan; Chang, Jo-Shu

    2013-11-01

    Four thermotolerant microalgae were isolated from tropical Taiwan and classified as members of Desmodesmus based on morphological and molecular studies. A platform was established to evaluate their biodiesel production-related traits, including thermotolerance, lipid productivity, lipid oxidative stability and auto-sedimentation. The findings demonstrated thermotolerance of all four species was at the same level, as all could live at 45 °C for 24 h and 50 °C for 8 h with mortality rates below 5% of cells. The lipid productivity of Desmodesmus sp. F2 reached 113 mg/L/d. Its saturated and monounsaturated fatty acids accounted for 75% of the FAMEs, and it required only 3.1 h to achieve 85% sedimentation. Comparing these traits to those of the other three Desmodesmus and microalgae in the literature, Desmodesmus sp. F2 is one of the best candidates for biodiesel production in tropical and subtropical areas. This platform effectively assessed traits of microalgae related to biodiesel production.

  2. Optimization of bioprocess conditions improves production of a CHO cell-derived, bioengineered heparin

    PubMed Central

    Baik, Jong Youn; Dahodwala, Hussain; Oduah, Eziafa; Talman, Lee; Gemmill, Trent R.; Gasimli, Leyla; Datta, Payel; Yang, Bo; Li, Guoyun; Zhang, Fuming; Li, Lingyun; Linhardt, Robert J.; Campbell, Andrew M.; Gorfien, Stephen F.; Susan, T. Sharfstein

    2015-01-01

    Heparin is the most widely used anticoagulant drug in the world today. Heparin is currently produced from animal tissues, primarily porcine intestines. A recent contamination crisis motivated development of a non-animal-derived source of this critical drug. We hypothesized that Chinese hamster ovary (CHO) cells could be metabolically engineered to produce a bioengineered heparin, equivalent to current pharmaceutical heparin. We previously engineered CHO-S® cells to overexpress two exogenous enzymes from the heparin/heparan sulfate biosynthetic pathway, increasing the anticoagulant activity ~100-fold and the heparin/heparan sulfate yield ~10-fold. Here, we explored the effects of bioprocess parameters on the yield and anticoagulant activity of the bioengineered GAGs. Fed-batch shaker-flask studies using a proprietary, chemically-defined feed, resulted in ~two-fold increase in integrated viable cell density and 70% increase in specific productivity, resulting in nearly three-fold increase in product titer. Transferring the process to a stirred-tank bioreactor increased the productivity further, yielding a final product concentration of ~90 µg/mL. Unfortunately, the product composition still differs from pharmaceutical heparin, suggesting that additional metabolic engineering will be required. However, these studies clearly demonstrate bioprocess optimization, in parallel with metabolic engineering refinements, will play a substantial role in developing a bioengineered heparin to replace the current animal-derived drug. PMID:26037948

  3. Production of polyhydroxybutyrate and alginate from glycerol by Azotobacter vinelandii under nitrogen-free conditions.

    PubMed

    Yoneyama, Fuminori; Yamamoto, Mayumi; Hashimoto, Wataru; Murata, Kousaku

    2015-01-01

    Glycerol is an interesting feedstock for biomaterials such as biofuels and bioplastics because of its abundance as a by-product during biodiesel production. Here we demonstrate glycerol metabolism in the nitrogen-fixing species Azotobacter vinelandii through metabolomics and nitrogen-free bacterial production of biopolymers, such as poly-d-3-hydroxybutyrate (PHB) and alginate, from glycerol. Glycerol-3-phosphate was accumulated in A. vinelandii cells grown on glycerol to the exponential phase, and its level drastically decreased in the cells grown to the stationary growth phase. A. vinelandii also overexpressed the glycerol-3-phosphate dehydrogenase gene when it was grown on glycerol. These results indicate that glycerol was first converted to glycerol-3-phosphate by glycerol kinase. Other molecules with industrial interests, such as lactic acid and amino acids including γ-aminobutyric acid, have also been accumulated in the bacterial cells grown on glycerol. Transmission electron microscopy revealed that glycerol-grown A. vinelandii stored PHB within the cells. The PHB production level reached 33% per dry cell weight in nitrogen-free glycerol medium. When grown on glycerol, alginate-overproducing mutants generated through chemical mutagenesis produced 2-fold the amount of alginate from glycerol than the parental wild-type strain. To the best of our knowledge, this is the first report on bacterial production of biopolymers from glycerol without addition of any nitrogen source.

  4. Production of polyhydroxybutyrate and alginate from glycerol by Azotobacter vinelandii under nitrogen-free conditions

    PubMed Central

    Yoneyama, Fuminori; Yamamoto, Mayumi; Hashimoto, Wataru; Murata, Kousaku

    2015-01-01

    Glycerol is an interesting feedstock for biomaterials such as biofuels and bioplastics because of its abundance as a by-product during biodiesel production. Here we demonstrate glycerol metabolism in the nitrogen-fixing species Azotobacter vinelandii through metabolomics and nitrogen-free bacterial production of biopolymers, such as poly-d-3-hydroxybutyrate (PHB) and alginate, from glycerol. Glycerol-3-phosphate was accumulated in A. vinelandii cells grown on glycerol to the exponential phase, and its level drastically decreased in the cells grown to the stationary growth phase. A. vinelandii also overexpressed the glycerol-3-phosphate dehydrogenase gene when it was grown on glycerol. These results indicate that glycerol was first converted to glycerol-3-phosphate by glycerol kinase. Other molecules with industrial interests, such as lactic acid and amino acids including γ-aminobutyric acid, have also been accumulated in the bacterial cells grown on glycerol. Transmission electron microscopy revealed that glycerol-grown A. vinelandii stored PHB within the cells. The PHB production level reached 33% per dry cell weight in nitrogen-free glycerol medium. When grown on glycerol, alginate-overproducing mutants generated through chemical mutagenesis produced 2-fold the amount of alginate from glycerol than the parental wild-type strain. To the best of our knowledge, this is the first report on bacterial production of biopolymers from glycerol without addition of any nitrogen source. PMID:25880041

  5. Effect of media composition and growth conditions on production of beta-glucosidase by Aspergillus niger C-6.

    PubMed

    García-Kirchner, O; Segura-Granados, M; Rodríguez-Pascual, P

    2005-01-01

    The hydrolytic activity of fungal originated beta-glucosidase is exploited in several biotechnological processes to increase the rate and extent of saccharification of several cellulosic materials by hydrolyzing the cellobiose which inhibits cellulases. In a previous presentation, we reported the screening and liquid fermentation with Aspergillus niger, strain C-6 for beta-glucosidase production at shake flask cultures in a basal culture medium with mineral salts, corn syrup liquor, and different waste lignocellulosic materials as the sole carbon source obtaining the maximum enzymatic activity after 5-6 d of 8.5 IU/mL using native sugar cane bagasse. In this work we describe the evaluation of fermentation conditions: growth temperature, medium composition, and pH, also the agitation and aeration effects for beta-glucosidase production under submerged culture using a culture media with corn syrup liquor (CSL) and native sugar cane bagasse pith as the sole carbon source in a laboratory fermenter. The maximum enzyme titer of 7.2 IU/mL was obtained within 3 d of fermentation. This indicates that beta-glucosidase productivity by Aspergillus niger C-6 is function of culture conditions, principally temperature, pH, culture medium conditions, and the oxygen supply given in the bioreactor. Results obtained suggest that this strain is a potential microorganism that can reach a major level of enzyme production and also for enzyme characterization.

  6. Response of Xylella fastidiosa to zinc: decreased culturability, increased exopolysaccharide production, and formation of resilient biofilms under flow conditions.

    PubMed

    Navarrete, Fernando; De La Fuente, Leonardo

    2014-02-01

    The bacterial plant pathogen Xylella fastidiosa produces biofilm that accumulates in the host xylem vessels, affecting disease development in various crops and bacterial acquisition by insect vectors. Biofilms are sensitive to the chemical composition of the environment, and mineral elements being transported in the xylem are of special interest for this pathosystem. Here, X. fastidiosa liquid cultures were supplemented with zinc and compared with nonamended cultures to determine the effects of Zn on growth, biofilm, and exopolysaccharide (EPS) production under batch and flow culture conditions. The results show that Zn reduces growth and biofilm production under both conditions. However, in microfluidic chambers under liquid flow and with constant bacterial supplementation (closer to conditions inside the host), a dramatic increase in biofilm aggregates was seen in the Zn-amended medium. Biofilms formed under these conditions were strongly attached to surfaces and were not removed by medium flow. This phenomenon was correlated with increased EPS production in stationary-phase cells grown under high Zn concentrations. Zn did not cause greater adhesion to surfaces by individual cells. Additionally, viability analyses suggest that X. fastidiosa may be able to enter the viable but nonculturable state in vitro, and Zn can hasten the onset of this state. Together, these findings suggest that Zn can act as a stress factor with pleiotropic effects on X. fastidiosa and indicate that, although Zn could be used as a bactericide treatment, it could trigger the undesired effect of stronger biofilm formation upon reinoculation events.

  7. [Effects of culture conditions on coenzyme Q10 production by Rhizobium radiobacter by metabolic flux analysis].

    PubMed

    Wu, Zu-fang; Du, Guo-cheng; Chen, Jian

    2005-04-01

    Metabolic pathway network of CoQ10 synthesis by R. radiobacter WSH2601 were instructed. The metabolic flux and its changes were determined under the conditions of changing DO concentration and addition of 1% CSL in the medium. The results illustrated that the Ru5P flux (r7) increased by 26.6 when increasing the DO concentration, r7 increased by 17.2 when addition of 1% CSL. The ratio of EMP and HMP flux as well as TCA flux decreased at these two conditions. DPP flux had a little change at these two conditions. Therefore, the CoQ10 accumulation is greatly determined by two key enzymes activities of condensation reaction between p-hydroxybenzoate acid (PHB) and decaprenyl diphosphate (DPP). The nodes of G6P, pyruvate and PEP are principal nodes in primary metabolism of CoQ10 fermentation. The flexibility of principal nodes was evaluated that the G6P node is elastic, while pyruvate node is weakly flexibility, at the condition of changing culture conditions. The increase of DCW is associated with the improvement of HMP pathway flux.

  8. Medical costs and lost productivity from health conditions at volatile organic compound-contaminated Superfund sites

    SciTech Connect

    Lybarger, J.A.; Spengler, R.F.; Brown, D.R.; Lee, R.; Vogt, D.P. |; Perhac, R.M. Jr. |

    1998-10-01

    This paper estimates the health costs at Superfund sites for conditions associated with volatile organic compounds (VOCs) in drinking water. Health conditions were identified from published literature and registry information as occurring at excess rates in VOC-exposed populations. These health conditions were: (1) some categories of birth defects, (2) urinary tract disorders, (3) diabetes, (4) eczema and skin conditions, (5) anemia, (6) speech and hearing impairments in children under 10 years of age, and (7) stroke. Excess rates were used to estimate the excess number of cases occurring among the total population living within one-half mile of 258 Superfund sites. These sites had evidence of completed human exposure pathways for VOCs in drinking water. For each type of medical condition, an individual`s expected medical costs, long-term care costs, and lost work time due to illness or premature mortality were estimated. Costs were calculated to be approximately $330 million per year, in the absence of any remediation or public health intervention programs. The results indicate the general magnitude of the economic burden associated with a limited number of contaminants at a portion of all Superfund sites, thus suggesting that the burden would be greater than that estimated in this study if all contaminants at all Superfund sites could be taken into account.

  9. Dekkera/Brettanomyces yeasts for ethanol production from renewable sources under oxygen-limited and low-pH conditions.

    PubMed

    Galafassi, Silvia; Merico, Annamaria; Pizza, Francesca; Hellborg, Linda; Molinari, Francesco; Piškur, Jure; Compagno, Concetta

    2011-08-01

    Industrial fermentation of lignocellulosic hydrolysates to ethanol requires microorganisms able to utilise a broad range of carbon sources and generate ethanol at high yield and productivity. D. bruxellensis has recently been reported to contaminate commercial ethanol processes, where it competes with Saccharomyces cerevisiae [4, 26]. In this work Brettanomyces/Dekkera yeasts were studied to explore their potential to produce ethanol from renewable sources under conditions suitable for industrial processes, such as oxygen-limited and low-pH conditions. Over 50 strains were analysed for their ability to utilise a variety of carbon sources, and some strains grew on cellobiose and pentoses. Two strains of D. bruxellensis were able to produce ethanol at high yield (0.44 g g(-1) glucose), comparable to those reported for S. cerevisiae. B. naardenensis was shown to be able to produce ethanol from xylose. To obtain ethanol from synthetic lignocellulosic hydrolysates we developed a two-step fermentation strategy: the first step under aerobic conditions for fast production of biomass from mixtures of hexoses and pentoses, followed by a second step under oxygen limitation to promote ethanol production. Under these conditions we obtained biomass and ethanol production on synthetic lignocellulosic hydrolysates, with ethanol yields ranging from 0.2 to 0.3 g g(-1) sugar. Hexoses, xylose and arabinose were consumed at the end of the process, resulting in 13 g l(-1) of ethanol, even in the presence of furfural. Our studies showed that Brettanomyces/Dekkera yeasts have clear potential for further development for industrial processes aimed at production of ethanol from renewable sources.

  10. Realizing actual feedback control of complex network

    NASA Astrophysics Data System (ADS)

    Tu, Chengyi; Cheng, Yuhua

    2014-06-01

    In this paper, we present the concept of feedbackability and how to identify the Minimum Feedbackability Set of an arbitrary complex directed network. Furthermore, we design an estimator and a feedback controller accessing one MFS to realize actual feedback control, i.e. control the system to our desired state according to the estimated system internal state from the output of estimator. Last but not least, we perform numerical simulations of a small linear time-invariant dynamics network and a real simple food network to verify the theoretical results. The framework presented here could make an arbitrary complex directed network realize actual feedback control and deepen our understanding of complex systems.

  11. Hydrogen production under salt stress conditions by a freshwater Rhodopseudomonas palustris strain.

    PubMed

    Adessi, Alessandra; Concato, Margherita; Sanchini, Andrea; Rossi, Federico; De Philippis, Roberto

    2016-03-01

    Hydrogen represents a possible alternative energy carrier to face the growing request for energy and the shortage of fossil fuels. Photofermentation for the production of H2 constitutes a promising way for integrating the production of energy with waste treatments. Many wastes are characterized by high salinity, and polluted seawater can as well be considered as a substrate. Moreover, the application of seawater for bacterial culturing is considered cost-effective. The aims of this study were to assess the capability of the metabolically versatile freshwater Rhodopseudomonas palustris 42OL of producing hydrogen on salt-containing substrates and to investigate its salt stress response strategy, never described before. R. palustris 42OL was able to produce hydrogen in media containing up to 3 % added salt concentration and to grow in media containing up to 4.5 % salinity without the addition of exogenous osmoprotectants. While the hydrogen production performances in absence of sea salts were higher than in their presence, there was no significant difference in performances between 1 and 2 % of added sea salts. Nitrogenase expression levels indicated that the enzyme was not directly inhibited during salt stress, but a regulation of its expression may have occurred in response to salt concentration increase. During cell growth and hydrogen production in the presence of salts, trehalose was accumulated as a compatible solute; it protected the enzymatic functionality against salt stress, thus allowing hydrogen production. The possibility of producing hydrogen on salt-containing substrates widens the range of wastes that can be efficiently used in production processes.

  12. Effects of different culture conditions on biological potential and metabolites production in three Penicillium isolates.

    PubMed

    Reis, Filipa S; Ćirić, Ana; Stojković, Dejan; Barros, Lillian; Ljaljević-Grbić, Milica; Soković, Marina; Ferreira, Isabel C F R

    2015-02-01

    The genus Penicillium is well known for its importance in drug and food production. Certain species are produced on an industrial scale for the production of antibiotics (e.g. penicillin) or for insertion in food (e.g. cheese). In the present work, three Penicillium species, part of the natural mycobiota growing on various food products were selected - P. ochrochloron, P. funiculosum and P. verrucosum var. cyclopium. The objective of our study was to value these species from the point of view of production of bioactive metabolites. The species were obtained after inoculation and growth in Czapek and Malt media. Both mycelia and culture media were analyzed to monitor the production of different metabolites by each fungus and their release to the culture medium. The concentrations of sugars, organic acids, phenolic acids and tocopherols were determined. Antioxidant activity of the phenolic extracts was evaluated, as also the antimicrobial activity of phenolic acids, organic acids and tocopherols extracts. Rhamnose, xylose, fructose and trehalose were found in all the mycelia and culture media; the prevailing organic acids were oxalic and fumaric acids, and protocatechuic and p-hydroxybenzoic acids were the most common phenolic acids; γ-tocopherol was the most abundant vitamin E isoform. Generally, the phenolic extracts corresponding to the mycelia samples revealed higher antioxidant activity. Concerning the antimicrobial activity there were some fluctuations, however all the studied species revealed activity against the tested strains. Therefore, the in-vitro bioprocesses can be an alternative for the production of bioactive metabolites that can be used by pharmaceutical industry.

  13. Change in the Beaufort Sea ecosystem: Diverging trends in body condition and/or production in five marine vertebrate species

    NASA Astrophysics Data System (ADS)

    Harwood, L. A.; Smith, T. G.; George, J. C.; Sandstrom, S. J.; Walkusz, W.; Divoky, G. J.

    2015-08-01

    Studies of the body condition of five marine vertebrate predators in the Beaufort Sea, conducted independently during the past 2-4 decades, suggest each has been affected by biophysical changes in the marine ecosystem. We summarize a temporal trend of increasing body condition in two species (bowhead whale subadults, Arctic char), in both cases influenced by the extent and persistence of annual sea ice. Three other species (ringed seal, beluga, black guillemot chicks), consumers with a dietary preference for Arctic cod, experienced declines in condition, growth and/or production during the same time period. The proximate causes of these observed changes remain unknown, but may reflect an upward trend in secondary productivity, and a concurrent downward trend in the availability of forage fishes, such as the preferred Arctic cod. To further our understanding of these apparent ecosystem shifts, we urge the use of multiple marine vertebrate species in the design of biophysical sampling studies to identify causes of these changes. Continued long-term, standardized monitoring of vertebrate body condition should be paired with concurrent direct (stomach contents) or indirect (isotopes, fatty acids) monitoring of diet, detailed study of movements and seasonal ranges to establish and refine baselines, and identification of critical habitats of the marine vertebrates being monitored. This would be coordinated with biophysical and oceanographic sampling, at spatial and temporal scales, and geographic locations, that are relevant to the home range, critical habitats and prey of the vertebrate indicator species showing changes in condition and related parameters.

  14. 50 CFR Table 1a to Part 679 - Delivery Condition* and Product Codes

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... production) DO NOT RECORD ON PTR 42 Bones (if meal, report as 32) (ancillary only) 39 Butterfly, no backbone... in front of tail 21 Fish meal. Meal from whole fish or fish parts; includes bone meal 32 Fish oil... gutted, Western cut. Head removed just in front of the collar bone, and viscera removed 07 Headed...

  15. 50 CFR Table 1a to Part 679 - Delivery Condition* and Product Codes

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... production) DO NOT RECORD ON PTR 42 Bones (if meal, report as 32) (ancillary only) 39 Butterfly, no backbone... in front of tail 21 Fish meal. Meal from whole fish or fish parts; includes bone meal 32 Fish oil... gutted, Western cut. Head removed just in front of the collar bone, and viscera removed 07 Headed...

  16. 50 CFR Table 1a to Part 679 - Delivery Condition and Product Codes

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... (includes offsite production).DO NOT RECORD ON PTR. 42 Bones (if meal, report as 32) (ancillary only). 39... body behind head and in front of tail. 21 Fish meal. Meal from whole fish or fish parts; includes bone..., Western cut.Head removed just in front of the collar bone, and viscera removed. 07 Headed and...

  17. 50 CFR Table 1a to Part 679 - Delivery Condition* and Product Codes

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... production) DO NOT RECORD ON PTR 42 Bones (if meal, report as 32) (ancillary only) 39 Butterfly, no backbone... in front of tail 21 Fish meal. Meal from whole fish or fish parts; includes bone meal 32 Fish oil... gutted, Western cut. Head removed just in front of the collar bone, and viscera removed 07 Headed...

  18. Leaching of Terbutryn and Its Photodegradation Products from Artificial Walls under Natural Weather Conditions.

    PubMed

    Bollmann, Ulla E; Minelgaite, Greta; Schlüsener, Michael; Ternes, Thomas; Vollertsen, Jes; Bester, Kai

    2016-04-19

    Terbutryn is a commonly used biocide in construction materials. Especially polymer-resin-based renders and paints, used in external thermal insulation composite systems, are very susceptible to microbial deterioration. Previous studies have shown that biocides leach out of the material when contacted with rainwater; thus, they reach surface waters where they might have adverse effects on aquatic organisms. The knowledge on the long-term leaching performance and especially the formation and fate of degradation products is rare. In the present study, the leaching of terbutryn from artificial walls equipped with two types of render was observed for 19 months. In addition to concentration and mass load determinations for terbutryn, photodegradation products were identified and studied in the leachate and render. The results show that terbutryn leached mainly within the first 6-12 months. During the exposure, only 3% of the initial terbutryn was emitted to the runoff, while 64-80% remained in the coating. The overall mass balance could be closed by including several degradation products. Contrary to expectations, the major fraction of transformation products remained in the material and was not washed off immediately, which is of high importance for the long-term assessment of biocides in coating materials.

  19. Continuous biohydrogen production from fruit wastewater at low pH conditions.

    PubMed

    Diamantis, Vasileios; Khan, Abid; Ntougias, Spyridon; Stamatelatou, Katerina; Kapagiannidis, Anastasios G; Aivasidis, Alexander

    2013-07-01

    Biohydrogen production from a simulated fruit wastewater (soluble COD = 3.17 ± 0.10 g L⁻¹) was carried out in a continuous stirred tank reactor (CSTR) of 2 L operational volume without biomass inoculation, heat pre-treatment or pH adjustment, resulting in a low operational pH (3.75 ± 0.09). The hydraulic retention time (HRT) varied from 15 to 5 h. A strong negative correlation (p < 0.01) between the biogas production rate and the HRT was observed. Biogas production rates were higher at 30 °C than at 25 °C (p < 0.01), when the CSTR was operated under the same HRT. The biogas hydrogen content was estimated as high as 55.8 ± 2.3 % and 55.4 ± 2.5 % at 25 and 30 °C, respectively. The main fermentation end products were acetic and butyric acids, followed by ethanol. Significant differences (p < 0.01) during the operation of the CSTR at 25 or 30 °C were identified for butyric acid at almost all HRTs examined. Simulation of the acidogenesis process in the CSTR (based on COD and carbon balances) indicated the possible metabolic compounds produced at 25 and 30 °C reactions and provided an adequate fit of the experimental data.

  20. 50 CFR 260.97 - Conditions for providing fishery products inspection service at official establishments.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... any labels on which reference is made to any U.S. Grade to be used on any product which has not been officially certified as meeting the requirements of such grade; nor supply labels bearing reference to... have been packed under Federal inspection at an official establishment; (4) Not affix any label...

  1. 50 CFR 260.97 - Conditions for providing fishery products inspection service at official establishments.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... inspection service at official establishments. 260.97 Section 260.97 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE PROCESSED FISHERY... providing fishery products inspection service at official establishments. (a) The determination as to...

  2. Effect of fermentation conditions on L-lactic acid production from soybean straw hydrolysate.

    PubMed

    Wang, Juan; Wang, Qunhui; Xu, Zhong; Zhang, Wenyu; Xiang, Juan

    2015-01-01

    Four types of straw, namely, soybean, wheat, corn, and rice, were investigated for use in lactic acid production. These straws were mainly composed of cellulose, hemicellulose, and lignin. After pretreatment with ammonia, the cellulose content increased, whereas the hemicellulose and lignin contents decreased. Analytical results also showed that the liquid enzymatic hydrolysates were primarily composed of glucose, xylose, and cellobiose. Preliminary experiments showed that a higher lactic acid concentration could be obtained from the wheat and soybean straw. However, soybean straw was chosen as the substrate for lactic acid production owing to its high protein content. The maximum lactic acid yield (0.8 g/g) and lactic acid productivity (0.61 g/(l/h)) were obtained with an initial reducing sugar concentration of 35 g/l at 30°C when using Lactobacillus casei (10% inoculum) for a 42 h fermentation period. Thus, the experimental results demonstrated the feasibility of using a soybean straw enzymatic hydrolysate as a substrate for lactic acid production.

  3. 75 FR 28208 - Conditions and Requirements for Testing Component Parts of Consumer Products

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-05-20

    ... viewed on the Commission's Web site at http://www.cpsc.gov/pr/statements.html or obtained from the..., available on the Commission's Web site at http://www.cpsc.gov/about/componenttestingpolicy.pdf , which... Children's Products, available on the Commission's Web site at...

  4. Ethanol Production by Selected Intestinal Microorganisms and Lactic Acid Bacteria Growing under Different Nutritional Conditions

    PubMed Central

    Elshaghabee, Fouad M. F.; Bockelmann, Wilhelm; Meske, Diana; de Vrese, Michael; Walte, Hans-Georg; Schrezenmeir, Juergen; Heller, Knut J.

    2016-01-01

    To gain some specific insight into the roles microorganisms might play in non-alcoholic fatty liver disease (NAFLD), some intestinal and lactic acid bacteria and one yeast (Anaerostipes caccae, Bacteroides thetaiotaomicron, Bifidobacterium longum, Enterococcus fecalis, Escherichia coli, Lactobacillus acidophilus, Lactobacillus fermentum, Lactobacillus plantarum, Weissella confusa, Saccharomyces cerevisiae) were characterized by high performance liquid chromatography for production of ethanol when grown on different carbohydrates: hexoses (glucose and fructose), pentoses (arabinose and ribose), disaccharides (lactose and lactulose), and inulin. Highest amounts of ethanol were produced by S. cerevisiae, L. fermentum, and W. confusa on glucose and by S. cerevisiae and W. confusa on fructose. Due to mannitol-dehydrogenase expressed in L. fermentum, ethanol production on fructose was significantly (P < 0.05) reduced. Pyruvate and citrate, two potential electron acceptors for regeneration of NAD+/NADP+, drastically reduced ethanol production with acetate produced instead in L. fermentum grown on glucose and W. confusa grown on glucose and fructose, respectively. In fecal slurries prepared from feces of four overweight volunteers, ethanol was found to be produced upon addition of fructose. Addition of A. caccae, L. acidophilus, L. fermentum, as well as citrate and pyruvate, respectively, abolished ethanol production. However, addition of W. confusa resulted in significantly (P < 0.05) increased production of ethanol. These results indicate that microorganisms like W. confusa, a hetero-fermentative, mannitol-dehydrogenase negative lactic acid bacterium, may promote NAFLD through ethanol produced from sugar fermentation, while other intestinal bacteria and homo- and hetero-fermentative but mannitol-dehydrogenase positive lactic acid bacteria may not promote NAFLD. Also, our studies indicate that dietary factors interfering with gastrointestinal microbiota and microbial

  5. Canola Cake as a Potential Substrate for Proteolytic Enzymes Production by a Selected Strain of Aspergillus oryzae: Selection of Process Conditions and Product Characterization

    PubMed Central

    Freitas, Adriana C.; Castro, Ruann J. S.; Fontenele, Maria A.; Egito, Antonio S.; Farinas, Cristiane S.; Pinto, Gustavo A. S.

    2013-01-01

    Oil cakes have excellent nutritional value and offer considerable potential for use in biotechnological processes that employ solid-state fermentation (SSF) for the production of high value products. This work evaluates the feasibility of using canola cake as a substrate for protease production by a selected strain of Aspergillus oryzae cultivated under SSF. The influences of the following process parameters were considered: initial substrate moisture content, incubation temperature, inoculum size, and pH of the buffer used for protease extraction and activity analysis. Maximum protease activity was obtained after cultivating Aspergillus oryzae CCBP 001 at 20°C, using an inoculum size of 107 spores/g in canola cake medium moistened with 40 mL of water to 100 g of cake. Cultivation and extraction under selected conditions increased protease activity 5.8-fold, compared to the initial conditions. Zymogram analysis of the enzymatic extract showed that the protease molecular weights varied between 31 and 200 kDa. The concentrated protease extract induced clotting of casein in 5 min. The results demonstrate the potential application of canola cake for protease production under SSF and contribute to the technological advances needed to increase the efficiency of processes designed to add value to agroindustrial wastes. PMID:24455400

  6. Selective hydrogen production from methanol with a defined iron pincer catalyst under mild conditions.

    PubMed

    Alberico, Elisabetta; Sponholz, Peter; Cordes, Christoph; Nielsen, Martin; Drexler, Hans-Joachim; Baumann, Wolfgang; Junge, Henrik; Beller, Matthias

    2013-12-23

    Molecularly well-defined iron pincer complexes promote the aqueous-phase reforming of methanol to carbon dioxide and hydrogen, which is of interest in the context of a methanol and hydrogen economy. For the first time, the use of earth-abundant iron complexes under mild conditions for efficient hydrogen generation from alcohols is demonstrated.

  7. CONDITION OF THE MID ATLANTIC ESTUARIES: PRODUCTION OF A STATE OF THE ENVIRONMENT REPORT

    EPA Science Inventory

    The U.S. Environmental Protection Agency has released a report entitled Condition of the Mid-Atlantic Estuaries. That report summarizes the findings of several studies conducted by federal and state agencies and academic institutions in Chesapeake Bay, Delaware Estuary, and the c...

  8. Comparison of different twin-screw extraction conditions for the production of arabinoxylans.

    PubMed

    Jacquemin, Leslie; Mogni, Assad; Zeitoun, Rawan; Guinot, Cécile; Sablayrolles, Caroline; Saulnier, Luc; Pontalier, Pierre-Yves

    2015-02-13

    The aim of this article is to compare two different sets of optimal conditions for twin-screw extraction of xylans and define their influence on the purification steps, combining ultrafiltration and industrial chromatography. Two xylan extracts were obtained by twin-screw extrusion of straw and bran. Condition 1 used a high straw/bran ratio (equal to 6) and high sodium hydroxide content, and condition 2 used a lower straw/bran ratio (equal to 2) and low sodium hydroxide content. Arabinoxylan extraction yields are slightly higher for conditions with low straw content (5.1% versus 4.4%). Nevertheless, these recovery yields remain between 9% and 10%. Ultrafiltration is as efficient as evaporation for polysaccharide concentration, with lower energy consumption, but also demineralizes the solution. The combination of ultrafiltration and chromatography gives partial purification of the extract with a final arabinoxylan purity ranging from 16% to 26%. This is slightly higher than by direct precipitation, but limited because all the large molecules such as proteins and lignins were retained by ultrafiltration.

  9. 17 CFR 40.4 - Amendments to terms or conditions of enumerated agricultural products.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... a term or condition, as defined in § 40.1(j), of a contract for future delivery in an agricultural... implemented pursuant to the procedures of § 40.6(a);or (5) Any other rule: (i) The text of which has...

  10. Pickled egg production: effect of brine acetic acid concentration and packing conditions on acidification rate.

    PubMed

    Acosta, Oscar; Gao, Xiaofan; Sullivan, Elizabeth K; Padilla-Zakour, Olga I

    2014-05-01

    U.S. federal regulations require that acidified foods must reach a pH of 4.6 or lower within 24 h of packaging or be kept refrigerated until then. Processes and formulations should be designed to satisfy this requirement, unless proper studies demonstrate the safety of other conditions. Our objective was to determine the effect of brine acetic acid concentration and packing conditions on the acidification rate of hard-boiled eggs. Eggs were acidified (60/40 egg-to-brine ratio) at various conditions of brine temperature, heat treatment to filled jars, and postpacking temperature: (i) 25 °C/none/25 °C (cold fill), (ii) 25 °C/none/2 °C (cold fill/refrigerated), (iii) 85 °C/none/25 °C (hot fill), and (iv) 25 °C/100 °C for 16 min/25 °C (water bath). Three brine concentrations were evaluated (7.5, 4.9, and 2.5% acetic acid) and egg pH values (whole, yolk, four points within egg) were measured from 4 to 144 h, with eggs equilibrating at pH 3.8, 4.0, and 4.3, respectively. Experiments were conducted in triplicate, and effects were considered significant when P < 0.05. Multiple linear regression analysis was conducted to evaluate the effect on pH values at the center of the yolk. Regression analysis showed that brine concentration of 2.5% decreased the acidification rate, while packing conditions of the hot fill trial increased it. Inverse prediction was used to determine the time for the center of the yolk and the total yolk to reach a pH value of 4.6. These results demonstrate the importance of conducting acidification studies with proper pH measurements to determine safe conditions to manufacture commercially stable pickled eggs.

  11. Improvement of the Redox Balance Increases l-Valine Production by Corynebacterium glutamicum under Oxygen Deprivation Conditions

    PubMed Central

    Hasegawa, Satoshi; Uematsu, Kimio; Natsuma, Yumi; Suda, Masako; Hiraga, Kazumi; Jojima, Toru; Inui, Masayuki

    2012-01-01

    Production of l-valine under oxygen deprivation conditions by Corynebacterium glutamicum lacking the lactate dehydrogenase gene ldhA and overexpressing the l-valine biosynthesis genes ilvBNCDE was repressed. This was attributed to imbalanced cofactor production and consumption in the overall l-valine synthesis pathway: two moles of NADH was generated and two moles of NADPH was consumed per mole of l-valine produced from one mole of glucose. In order to solve this cofactor imbalance, the coenzyme requirement for l-valine synthesis was converted from NADPH to NADH via modification of acetohydroxy acid isomeroreductase encoded by ilvC and introduction of Lysinibacillus sphaericus leucine dehydrogenase in place of endogenous transaminase B, encoded by ilvE. The intracellular NADH/NAD+ ratio significantly decreased, and glucose consumption and l-valine production drastically improved. Moreover, l-valine yield increased and succinate formation decreased concomitantly with the decreased intracellular redox state. These observations suggest that the intracellular NADH/NAD+ ratio, i.e., reoxidation of NADH, is the primary rate-limiting factor for l-valine production under oxygen deprivation conditions. The l-valine productivity and yield were even better and by-products derived from pyruvate further decreased as a result of a feedback resistance-inducing mutation in the acetohydroxy acid synthase encoded by ilvBN. The resultant strain produced 1,470 mM l-valine after 24 h with a yield of 0.63 mol mol of glucose−1, and the l-valine productivity reached 1,940 mM after 48 h. PMID:22138982

  12. Children's Rights and Self-Actualization Theory.

    ERIC Educational Resources Information Center

    Farmer, Rod

    1982-01-01

    Educators need to seriously reflect upon the concept of children's rights. Though the idea of children's rights has been debated numerous times, the idea remains vague and shapeless; however, Maslow's theory of self-actualization can provide the children's rights idea with a needed theoretical framework. (Author)

  13. Group Counseling for Self-Actualization.

    ERIC Educational Resources Information Center

    Streich, William H.; Keeler, Douglas J.

    Self-concept, creativity, growth orientation, an integrated value system, and receptiveness to new experiences are considered to be crucial variables to the self-actualization process. A regular, year-long group counseling program was conducted with 85 randomly selected gifted secondary students in the Farmington, Connecticut Public Schools. A…

  14. Culture Studies and Self-Actualization Theory.

    ERIC Educational Resources Information Center

    Farmer, Rod

    1983-01-01

    True citizenship education is impossible unless students develop the habit of intelligently evaluating cultures. Abraham Maslow's theory of self-actualization, a theory of innate human needs and of human motivation, is a nonethnocentric tool which can be used by teachers and students to help them understand other cultures. (SR)

  15. Humanistic Education and Self-Actualization Theory.

    ERIC Educational Resources Information Center

    Farmer, Rod

    1984-01-01

    Stresses the need for theoretical justification for the development of humanistic education programs in today's schools. Explores Abraham Maslow's hierarchy of needs and theory of self-actualization. Argues that Maslow's theory may be the best available for educators concerned with educating the whole child. (JHZ)

  16. Developing Human Resources through Actualizing Human Potential

    ERIC Educational Resources Information Center

    Clarken, Rodney H.

    2012-01-01

    The key to human resource development is in actualizing individual and collective thinking, feeling and choosing potentials related to our minds, hearts and wills respectively. These capacities and faculties must be balanced and regulated according to the standards of truth, love and justice for individual, community and institutional development,…

  17. 50 CFR 253.16 - Actual cost.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 50 Wildlife and Fisheries 9 2011-10-01 2011-10-01 false Actual cost. 253.16 Section 253.16 Wildlife and Fisheries NATIONAL MARINE FISHERIES SERVICE, NATIONAL OCEANIC AND ATMOSPHERIC ADMINISTRATION, DEPARTMENT OF COMMERCE AID TO FISHERIES FISHERIES ASSISTANCE PROGRAMS Fisheries Finance Program §...

  18. Assessing risks from drought and heat stress in productive grasslands under present and future climatic conditions

    NASA Astrophysics Data System (ADS)

    Calanca, Pierluigi; Mosimann, Eric; Meisser, Marco; Deléglise, Claire

    2014-05-01

    Grasslands cover the majority of the world's agricultural area, provide the feedstock for animal production, contribute to the economy of farms, and deliver a variety of ecological and societal services. Assessing responses of grassland ecosystems to climate change, in particular climate-related risks, is therefore an important step toward identifying adaptation options necessary to secure grassland functioning and productivity. Of particular concern are risks in relation to drought and extreme temperatures, on the one hand because grasslands are very sensitive to water stress, on the other hand also because global warming is expected to increase the occurrence and intensity of these events in many agricultural areas of the world. In this contribution we review findings of ongoing experimental and modelling activities that aim at examining the implications of climate extremes and climate change for grassland vegetation dynamics and herbage productivity. Data collected at the Jura foot in western Switzerland indicate that water scarcity and associated anomalous temperatures slowed plant development in relation to both the summer drought of 2003 as well as the spring drought of 2011, with decline in annual yields of up to 40%. Further effects of drought found from the analysis of recent field trials explicitly designed to study the effects of different water management regimes are changes in the functional composition and nutritive value of grasslands. Similar responses are disclosed by simulations with a process based grassland ecosystem model that was originally developed for the simulation of mixed grass/clover swards. Simulations driven with historical weather records from the Swiss Plateau suggest that drought and extreme temperature could represent one of the main reasons for the observed yield variability in productive systems. Simulations with climate change scenarios further reveal important changes in ecosystem dynamics for the current century. The results

  19. A comparative study of biodiesel production using methanol, ethanol, and tert-butyl methyl ether (MTBE) under supercritical conditions.

    PubMed

    Farobie, Obie; Matsumura, Yukihiko

    2015-09-01

    In this study, biodiesel production under supercritical conditions among methanol, ethanol, and tert-butyl methyl ether (MTBE) was compared in order to elucidate the differences in their reaction behavior. A continuous reactor was employed, and experiments were conducted at various reaction temperatures (270-400 °C) and reaction times (3-30 min) and at a fixed pressure of 20 MPa and an oil-to-reactant molar ratio of 1:40. The results showed that under the same reaction conditions, the supercritical methanol method provided the highest yield of biodiesel. At 350 °C and 20 MPa, canola oil was completely converted to biodiesel after 10, 30, and 30 min in the case of - supercritical methanol, ethanol, and MTBE, respectively. The reaction kinetics of biodiesel production was also compared for supercritical methanol, ethanol, and MTBE.

  20. Analysis of Organohalogen Products From Chlorination of Natural Waters Under Simulated Biofouling Control Conditions

    SciTech Connect

    Bean, R. M.; Mann, D. C.; Riley, R. G.

    1980-06-01

    The products of low-level chlorination of natural waters from ten locations across the continental United States have been studied, with emphasis on volatile and lipophilic organohalogen components. A specially designed apparatus permitted continuous sampling and chlorination of water in a manner analogous to some types of cooling water treatments. Volatile components were analyzed using headspace, purge-and-trap, and resin adsorption methods. The less-volatile components were collected by passing large volumes of the chlorinated water over XAD-2 columns. Total organic halogen collected on XAD resins was compared with the halogen contribution of haloform compounds. The XAD samples were further separated into fractions according to molecular weight and polarity using liquid chrOmatography. These studies indicate that haloforms are the most abundant lipophilic halogenated products formed from low-level chlorination of natural waters, but that other halogenated lipophilic material is also formed.

  1. Workers' postural conditions in the charcoal production proccess based on vertical metallic cylynders.

    PubMed

    Maia, Ivana Márcia Oliveira; Francisco, Antonio Carlos de

    2012-01-01

    Considering the importance of posture to the workers' health in the production of charcoal, this paper presents an ergonomic research based on a biomechanical focus that aims to evaluate the posture adopted by these workers on the production of charcoal in vertical metallic cylinders. Thus, it was verified the incidence of pain and/or musculoskeletal injuries to these workers. Also, it was evaluated the weight carried by them and the positions taken in their daily tasks. Applying the Ergonomic Analysis of Labor, the data collection was done by directly observing the workers, registering images, by interviews, and posture analysis based on the OWAS method. The main results of the research show that there are postures with risks in the four levels of musculoskeletal injuries classified by OWAS, concluding that the method is imperative for ergonomic recommendations for minimization or eradication of suffering injury and worker's postural constraints.

  2. Whiteheadian Actual Entitities and String Theory

    NASA Astrophysics Data System (ADS)

    Bracken, Joseph A.

    2012-06-01

    In the philosophy of Alfred North Whitehead, the ultimate units of reality are actual entities, momentary self-constituting subjects of experience which are too small to be sensibly perceived. Their combination into "societies" with a "common element of form" produces the organisms and inanimate things of ordinary sense experience. According to the proponents of string theory, tiny vibrating strings are the ultimate constituents of physical reality which in harmonious combination yield perceptible entities at the macroscopic level of physical reality. Given that the number of Whiteheadian actual entities and of individual strings within string theory are beyond reckoning at any given moment, could they be two ways to describe the same non-verifiable foundational reality? For example, if one could establish that the "superject" or objective pattern of self- constitution of an actual entity vibrates at a specific frequency, its affinity with the individual strings of string theory would be striking. Likewise, if one were to claim that the size and complexity of Whiteheadian 'societies" require different space-time parameters for the dynamic interrelationship of constituent actual entities, would that at least partially account for the assumption of 10 or even 26 instead of just 3 dimensions within string theory? The overall conclusion of this article is that, if a suitably revised understanding of Whiteheadian metaphysics were seen as compatible with the philosophical implications of string theory, their combination into a single world view would strengthen the plausibility of both schemes taken separately. Key words: actual entities, subject/superjects, vibrating strings, structured fields of activity, multi-dimensional physical reality.

  3. Whitebark Pine Stand Condition, Tree Abundance, and Cone Production as Predictors of Visitation by Clark's Nutcracker

    PubMed Central

    Barringer, Lauren E.; Tomback, Diana F.; Wunder, Michael B.; McKinney, Shawn T.

    2012-01-01

    Background Accurately quantifying key interactions between species is important for developing effective recovery strategies for threatened and endangered species. Whitebark pine (Pinus albicaulis), a candidate species for listing under the Endangered Species Act, depends on Clark's nutcracker (Nucifraga columbiana) for seed dispersal. As whitebark pine succumbs to exotic disease and mountain pine beetles (Dendroctonus ponderosae), cone production declines, and nutcrackers visit stands less frequently, reducing the probability of seed dispersal. Methodology/Principal Findings We quantified whitebark pine forest structure, health metrics, and the frequency of nutcracker occurrence in national parks within the Northern and Central Rocky Mountains in 2008 and 2009. Forest health characteristics varied between the two regions, with the northern region in overall poorer health. Using these data, we show that a previously published model consistently under-predicts the proportion of survey hours resulting in nutcracker observations at all cone density levels. We present a new statistical model of the relationship between whitebark pine cone production and the probability of Clark's nutcracker occurrence based on combining data from this study and the previous study. Conclusions/Significance Our model clarified earlier findings and suggested a lower cone production threshold value for predicting likely visitation by nutcrackers: Although nutcrackers do visit whitebark pine stands with few cones, the probability of visitation increases with increased cone production. We use information theoretics to show that beta regression is a more appropriate statistical framework for modeling the relationship between cone density and proportion of survey time resulting in nutcracker observations. We illustrate how resource managers may apply this model in the process of prioritizing areas for whitebark pine restoration. PMID:22662186

  4. Rhodium-Catalyzed Ketone Methylation Using Methanol Under Mild Conditions: Formation of α-Branched Products**

    PubMed Central

    Chan, Louis K M; Poole, Darren L; Shen, Di; Healy, Mark P; Donohoe, Timothy J

    2014-01-01

    The rhodium-catalyzed methylation of ketones has been accomplished using methanol as the methylating agent and the hydrogen-borrowing method. The sequence is notable for the relatively low temperatures that are required and for the ability of the reaction system to form α-branched products with ease. Doubly alkylated ketones can be prepared from methyl ketones and two different alcohols by using a sequential one-pot iridium- and rhodium-catalyzed process. PMID:24288297

  5. Optimizing conditions for production of high levels of soluble recombinant human growth hormone using Taguchi method.

    PubMed

    Savari, Marzieh; Zarkesh Esfahani, Sayyed Hamid; Edalati, Masoud; Biria, Davoud

    2015-10-01

    Human growth hormone (hGH) is synthesized and stored by somatotroph cells of the anterior pituitary gland and can effect on body metabolism. This protein can be used to treat hGH deficiency, Prader-Willi syndrome and Turner syndrome. The limitations in current technology for soluble recombinant protein production, such as inclusion body formation, decrease its usage for therapeutic purposes. To achieve high levels of soluble form of recombinant human growth hormone (rhGH) we used suitable host strain, appropriate induction temperature, induction time and culture media composition. For this purpose, 32 experiments were designed using Taguchi method and the levels of produced proteins in all 32 experiments were evaluated primarily by ELISA and dot blotting and finally the purified rhGH protein products assessed by SDS-PAGE and Western blotting techniques. Our results indicate that media, bacterial strains, temperature and induction time have significant effects on the production of rhGH. The low cultivation temperature of 25°C, TB media (with 3% ethanol and 0.6M glycerol), Origami strain and a 10-h induction time increased the solubility of human growth hormone.

  6. The effect of environmental conditions and glucose feeding in shaking flask on glutathione (GSH) production.

    PubMed

    Li, Y; Chen, J; Zhou, N; Fu, W; Ruan, W; Lun, S

    1998-01-01

    The effects of pH, broth volume, initial sugar concentration, ratio of carbon to nitrogen and phosphorus, and the glucose feeding method on GSH production in a shaking flask were investigated. The results showed that the proper pH and broth content for GSH production were 6.0 and 60 ml broth per 500 ml flask, respectively. The initial glucose concentration distinctly affected the GSH production; the intracellular GSH content of yeast would decrease when the initial glucose concentration was beyond 12 g/L. A glucose feeding strategy with the purpose of controlling the specific growth rate at an expected value was developed and applied to a 12 hour fermentation with the total glucose concentration 26.2 g/L; the final cell concentration (DCW) and the intracellular GSH content could reach 8.78 g/L and 13.6 mg/g, respectively, while the total GSH in the broth was 119.4 mg/L and the yield of cell to glucose was 0.335 g/g.

  7. Fission Product Transport in TRISO Particle Layers under Operating and Off-Normal Conditions

    SciTech Connect

    Van der Ven, Anton; Was, Gary; Wang, Lumin; Taheri, Mitra

    2014-04-26

    The objective of this project is to determine the diffusivity and chemical behavior of key fission products (ag, Cs, I. Te, Eu and Sr) through SiC and PyC both thermally, under irradiation, and under stress using FP introduction techniques that avoid the pitfalls of past experiments. The experimental approach is to create thin PyC-SiC couples containing the fission product to be studied embedded in the PyC layer. These samples will then be subjected to high temperature exposures in a vacuum and also to irradiation at high temperature, and last, to irradiation under stress at high temperature. The PyC serves as a host layer, providing a means of placing the fission product close to the SiC without damaging the SiC layer by its introduction or losing the FP during heating. Experimental measurements of grain boundary structure and distribution (EBSD, HRTEM, APT) will be used in the modeling effort to determine the qualitative dependence of FP diffusion coefficients on grain boundary orientation, temperature and stress.

  8. Reversing subdivision rules: local linear conditions and observations on inner products

    NASA Astrophysics Data System (ADS)

    Bartels, Richard H.; Samavati, Faramarz F.

    2000-07-01

    In a previous work (Samavati and Bartels, Comput. Graphics Forum 18 (1998) 97-119) we investigated how to reverse subdivision rules using global least-squares fitting. This led to multiresolution structures that could be viewed as semiorthogonal wavelet systems whose inner product was that for finite-dimensional Cartesian vector space. We produced simple and sparse reconstruction filters, but had to appeal to matrix factorization to obtain an efficient, exact decomposition. We also made some observations on how the inner product that defines the semiorthogonality influences the sparsity of the reconstruction filters. In this work we carry the investigation further by studying biorthogonal systems based upon subdivision rules and local least-squares fitting problems that reverse the subdivision. We are able to produce multiresolution structures for some common univariate subdivision rules that have both sparse reconstruction and decomposition filters. Three will be presented here - for quadratic and cubic B-spline subdivision and for the four-point interpolatory subdivision of Dyn et al. We observe that each biorthogonal system we produce can be interpreted as a semiorthogonal system with an inner product induced on the multiresolution that is quite different from that normally used. Some examples of the use of this approach on images, curves, and surfaces are given.

  9. Effect of fermentation conditions on toxin production by Clostridium botulinum type B.

    PubMed

    Siegel, L S; Metzger, J F

    1980-12-01

    To obtain high yields of toxin for the preparation of purified neurotoxoids, we examined the time of appearance and the quantity of toxin produced by the Bean strain of Clostridium botulinum type B under various conditions by using a fermentor system. The medium employed consisted of 2.0% casein hydrolylsate and 1.5% yeast extract plus an appropriate concentration of glucose. The maximum toxin concentration (4 x 10(5) to 5 x 10(5) mouse median lethal doses per ml) was attained within 48 h under the following fermentation conditions: an initial glucose concentration of 0.5 or 1.0%, a temperature of 35 degrees C, a nitrogen overlay at a rate of 5 liters/min, and an agitation rate of 50 rpm.

  10. 30 CFR 1206.180 - How do I determine an actual processing allowance?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 3 2014-07-01 2014-07-01 false How do I determine an actual processing... THE INTERIOR NATURAL RESOURCES REVENUE PRODUCT VALUATION Indian Gas Processing Allowances § 1206.180 How do I determine an actual processing allowance? (a) Determining a processing allowance if you...

  11. Biodiesel production from various oils under supercritical fluid conditions by Candida antartica lipase B using a stepwise reaction method.

    PubMed

    Lee, Jong Ho; Kwon, Cheong Hoon; Kang, Jeong Won; Park, Chulhwan; Tae, Bumseok; Kim, Seung Wook

    2009-05-01

    In this study, we evaluate the effects of various reaction factors, including pressure, temperature, agitation speed, enzyme concentration, and water content to increase biodiesel production. In addition, biodiesel was produced from various oils to establish the optimal enzymatic process of biodiesel production. Optimal conditions were determined to be as follows: pressure 130 bar, temperature 45 degrees C, agitation speed 200 rpm, enzyme concentration 20%, and water contents 10%. Among the various oils used for production, olive oil showed the highest yield (65.18%) upon transesterification. However, when biodiesel was produced using a batch system, biodiesel conversion yield was not increased over 65%; therefore, a stepwise reaction was conducted to increase biodiesel production. When a reaction medium with an initial concentration of methanol of 60 mmol was used and adjusted to maintain this concentration of methanol every 1.5 h during biodiesel production, the conversion yield of biodiesel was 98.92% at 6 h. Finally, reusability was evaluated using immobilized lipase to determine if this method was applicable for industrial biodiesel production. When biodiesel was produced repeatedly, the conversion rate was maintained at over 85% after eight reuses.

  12. Effects of crude glycerin supplementation on wool production, feeding behavior, and body condition of Merino ewes.

    PubMed

    Meale, S J; Chaves, A V; Ding, S; Bush, R D; McAllister, T A

    2013-02-01

    The increasing availability of crude glycerin from the biodiesel industry has led to an interest in its use as an energy source in ruminant diets. However, its effects on ruminal fermentation patterns and methane (CH4) production are unclear, and there are no reports on the effect of its inclusion in the diet on wool production or growth of Merino sheep. Thus, the objectives of this study were to determine the effects of increasing levels of crude glycerin on in vitro ruminal fermentation and CH4 production and DMI, BW, feeding behavior, and wool growth and quality in Merino ewes. Crude glycerin (99.2% pure, colorless, odorless, viscous liquid) replaced whole wheat grain in completely pelleted diets at levels of 0%, 6%, and 12% DM in both in vitro and in vivo studies. For in vitro studies, diets were dried and ground through a 1-mm screen and incubated on 2 different days for 24 h. Modified McDougal's buffer and rumen liquor were mixed 3:1, and gas production and CH4 concentration was measured after 6, 12, and 24 h of incubation with pH and IVDMD measured at 24 h. Cumulative gas (mL/g DM) and methane (mL) production was similar (P ≥ 0.35) among dietary treatments. In vitro dry matter disappearance (%) increased (P < 0.01) with increasing concentrations of crude glycerin. For the in vivo study, 39 Merino ewes were randomly assigned to 3 treatments (n = 13 ewes/treatment). Pelleted diets were available continuously for a 10-wk period through the use of automatic feeders. Ewes were weighed every 7 d. Wool yield was determined on mid-side patches of 100 cm(2) shorn at d 0 and d 70. Dye bands were used to determine wool growth and fiber length. Intake and ADG were similar among treatments (P = 0.59). Neither wool yield, length, spinning fineness, nor fiber diameter (μm) were affected after supplementation with crude glycerin (P ≥ 0.13). This study indicates the potential for crude glycerin to be included in the diets of Merino sheep at up to 12% DM without

  13. Optimization of ultrasonic emulsification conditions for the production of orange peel essential oil nanoemulsions.

    PubMed

    Hashtjin, Adel Mirmajidi; Abbasi, Soleiman

    2015-05-01

    The aim of the present study was to investigate the influence of emulsifying conditions on some physical and rheological properties of orange peel essential oil (OPEO) in water nanoemulsions. In this regard, using the response surface methodology, the influence of ultrasonication conditions including sonication amplitude (70-100 %), sonication time (90-150 s) and process temperature (5-45 °C) on the mean droplets diameter (Z-average value), polydispersity index (PDI), and viscosity of the OPEO nanoemulsions was evaluated. In addition, the flow behavior and stability of selected nanoemulsions was evaluated during storage (up to 3 months) at different temperatures (5, 25 and 45 °C). Based on the results of the optimization, the optimum conditions for producing OPEO nanoemulsions (Z-average value 18.16 nm) were determined as 94 % (sonication amplitude), 138 s (sonication time) and 37 °C (process temperature). Moreover, analysis of variance (ANOVA) showed high coefficients of determination values (R (2) > 0.95) for the response surface models of the energy input and Z-average. In addition, the flow behavior of produced nanoemulsions was Newtonian, and the effect of time and storage temperature as well as their interactions on the Z-average value was highly significant (P < 0.0001).

  14. Biological iron oxidation by Gallionella spp. in drinking water production under fully aerated conditions.

    PubMed

    de Vet, W W J M; Dinkla, I J T; Rietveld, L C; van Loosdrecht, M C M

    2011-11-01

    Iron oxidation under neutral conditions (pH 6.5-8) may be a homo- or heterogeneous chemically- or a biologically-mediated process. The chemical oxidation is supposed to outpace the biological process under slightly alkaline conditions (pH 7-8). The iron oxidation kinetics and growth of Gallionella spp. - obligatory chemolithotrophic iron oxidizers - were assessed in natural, organic carbon-containing water, in continuous lab-scale reactors and full-scale groundwater trickling filters in the Netherlands. From Gallionella cell numbers determined by qPCR, balances were made for all systems. The homogeneous chemical iron oxidation occurred in accordance with the literature, but was retarded by a low water temperature (13 °C). The contribution of the heterogeneous chemical oxidation was, despite the presence of freshly formed iron oxyhydroxides, much lower than in previous studies in ultrapure water. This could be caused by the adsorption of natural organic matter (NOM) on the iron oxide surfaces. In the oxygen-saturated natural water with a pH ranging from 6.5 to 7.7, Gallionella spp. grew uninhibited and biological iron oxidation was an important, and probably the dominant, process. Gallionella growth was not even inhibited in a full-scale filter after plate aeration. From this we conclude that Gallionella spp. can grow under neutral pH and fully aerated conditions when the chemical iron oxidation is retarded by low water temperature and inhibition of the autocatalytic iron oxidation.

  15. Deoxyribonucleic Acid Polymerase of Rous Sarcoma Virus: Reaction Conditions and Analysis of the Reaction Product Nucleic Acids

    PubMed Central

    Bishop, D. H. L.; Ruprecht, Ruth; Simpson, R. W.; Spiegelman, S.

    1971-01-01

    Reaction conditions for Rous sarcoma virus ribonucleic acid (RNA)-instructed deoxyribonucleic acid (DNA) polymerase activity are described whereby the viral RNA is relatively protected from endogenous or added nuclease activity. Three analyses of reaction product nucleic acids (3H-RNA, 32P-DNA) were compared, namely, gel electrophoresis, Cs2SO4 gradient centrifugation, and hydroxyapatite column chromatography. It was found that hydroxyapatite analysis could be misleading unless the state of the template RNA was monitored concomitantly with the DNA analysis. Gel electrophoresis and Cs2SO4 gradient centrifugation gave comparable results. It was concluded that analyses of the product of reverse transcriptase reactions should not only refer to the template RNA and product DNA species, but also be performed with virus or viral RNA which do not have or obtain nicks in the 60S RNA. Otherwise, interpretation of the results would have the ambiguity of potential artifacts caused by those degraded RNA molecules. PMID:4332143

  16. Low-cost lipid production by an oleaginous yeast cultured in non-sterile conditions using model waste resources

    PubMed Central

    2014-01-01

    Background The yeast Metschnikowia pulcherrima, previously utilised as a biological control agent, was evaluated for its potential to produce lipids for biofuel production. Results Cultivation in low cost non-sterile conditions was achieved by exploiting its ability to grow at low temperature and pH and to produce natural antimicrobial compounds. Although not previously classified as oleaginous, a combination of low temperature and restricted nutrient availability triggered high levels of oil production in M. pulcherrima cultures. This regime was designed to trigger the sporulation process but prevent its completion to allow the accumulation of a subset of a normally transitional, but oil-rich, ‘pulcherrima’ cell type. This approach resulted in yields of up to 40% lipid, which compares favourably with other oleaginous microbes. We also demonstrate that M. pulcherrima metabolises glycerol and a diverse range of other sugars, suggesting that heterogeneous biomass could provide a suitable carbon source. M. pulcherrima also grows well in a minimal media containing no yeast extract. Finally, we demonstrate the potential of the yeast to produce lipids inexpensively on an industrial scale by culturing the yeast in a 500 L, open air, tank reactor without any significant contamination. Conclusions The production of antimicrobial compounds coupled to efficient growth at low temperature and pH enables culture of this oleaginous yeast in inexpensive, non-sterile conditions providing a potential route to economic biofuel production. PMID:24593824

  17. Bioreactor culture of oil palm (Elaeis guineensis) and effects of nitrogen source, inoculum size, and conditioned medium on biomass production.

    PubMed

    Gorret, Nathalie; bin Rosli, Samsul Kamal; Oppenheim, Sheldon F; Willis, Laura B; Lessard, Philip A; Rha, ChoKyun; Sinskey, Anthony J

    2004-03-18

    We report the successful culture of oil palm (Elaeis guineensis Jacq.) suspension cells in a bioreactor. In vitro propagation of this perennial monocotyledonous tree is an important part of the oil palm industry's approach to clonal propagation of high-yielding accessions. During culture of oil palm cells in a batch bioreactor, nutrients and extracellular metabolites were monitored, and kinetic parameters and nutrient-to-biomass conversion yields were calculated. The biomass increased approximately 3.5-fold per month, consistent with values reported for shake flask cultures. Although the carbon source was completely depleted by the end of the run, nitrogen sources remained in large excess and the sugar-to-biomass conversion yield remained low. Linear growth indicated that the cells were limited. The results obtained from the bioreactor runs indicated that we should be able to improve biomass production by carrying out optimization studies. Therefore, we initiated multi-factorial analyses using response surface experimental designs to investigate the effects of different nitrogen sources, as well as inoculum size and conditioned medium, on biomass production in flask cultures. Whereas glutamine does not have a significant effect on biomass production, ammonia has a positive effect up to an optimum concentration. Both inoculum density and conditioned medium have positive, synergistic effects on biomass production.

  18. Effect of cultural conditions on antrodin C production by basidiomycete Antrodia camphorata in solid-state fermentation.

    PubMed

    Xia, Yongjun; Wang, Yuanlong; Zhang, Bobo; Xu, Ganrong; Ai, Lianzhong

    2014-01-01

    Antrodia camphorata is a medicinal fungus and antrodin C is one of the main bioactive components of A. camphorata in the submerged fermentation (SmF). To optimize the culture conditions, the factors influencing the production of antrodin C by A. camphorata under solid-state fermentation (SSF) were investigated in this study. Different solid substrates and external nitrogen sources were tested for their efficiency in producing antrodin C. The response surface methodology was applied to evaluate the influence of several variables, namely, the concentrations of soybean meal, initial moisture content, and inoculum density on antrodin C production in solid-state fermentation. The experimental results show that the optimum fermentation medium for antrodin C production by A. camphorata was composed of 0.578 g soybean meal, 0.05 g Na2 HPO4 , 0.05 g MgSO4 for 100 g rice, with 51.83% initial moisture content, 22 day culture time, 28 °C culture temperature, and 35.54% inoculum density. At optimized conditions, 6,617.36 ± 92.71 mg kg(-1) yield of antrodin C was achieved. Solid-state fermentation is one good cultural method to improve the production of antrodin C by A. camphorata.

  19. Influence of fermentation conditions on polysaccharide production and the activities of enzymes involved in the polysaccharide synthesis of Cordyceps militaris.

    PubMed

    Zhu, Zhen-Yuan; Liu, Xiao-Cui; Dong, Feng-Ying; Guo, Ming-Zhu; Wang, Xiao-Ting; Wang, Zheng; Zhang, Yong-Min

    2016-05-01

    The influence of different fermentation conditions on intracellular polysaccharide (IPS) production and activities of the phosphoglucomutase (PGM), UDPG-pyrophosphorylase (UGP), phosphoglucose isomerase (PGI), UDPG-dehydrogenase (UGD), and glucokinase (GK) implicated in metabolite synthesis in Cordyceps militaris was evaluated. The highest IPS production (327.57 ± 6.27 mg/100 mL) was obtained when the strain was grown in the optimal medium containing glucose (40 g · L(-1)), beef extract (10 g · L(-1)), and CaCO3 (0.5 g · L(-1)), and the initial pH and temperature were 7 and 25 °C, respectively. The activities of PGM, UGP, and PGI were proved to be influenced by the fermentation conditions. A strong correlation between the activities of these enzymes and the production of IPS was found. The transcription level of the pgm gene (encoding PGM) was 1.049 times and 1.467 times compared to the ugp gene and pgi gene (encoding UGP and PGI), respectively, in the optimal culture medium. This result indicated that PGM might be the highly key enzyme to regulate the biosynthesis of IPS of C. militaris in a liquid-submerged culture. Our study might be helpful for further research on the pathway of polysaccharide biosynthesis aimed to improve the IPS production of C. militaris.

  20. Key Process Conditions for Production of C4 Dicarboxylic Acids in Bioreactor Batch Cultures of an Engineered Saccharomyces cerevisiae Strain▿

    PubMed Central

    Zelle, Rintze M.; de Hulster, Erik; Kloezen, Wendy; Pronk, Jack T.; van Maris, Antonius J. A.

    2010-01-01

    A recent effort to improve malic acid production by Saccharomyces cerevisiae by means of metabolic engineering resulted in a strain that produced up to 59 g liter−1 of malate at a yield of 0.42 mol (mol glucose)−1 in calcium carbonate-buffered shake flask cultures. With shake flasks, process parameters that are important for scaling up this process cannot be controlled independently. In this study, growth and product formation by the engineered strain were studied in bioreactors in order to separately analyze the effects of pH, calcium, and carbon dioxide and oxygen availability. A near-neutral pH, which in shake flasks was achieved by adding CaCO3, was required for efficient C4 dicarboxylic acid production. Increased calcium concentrations, a side effect of CaCO3 dissolution, had a small positive effect on malate formation. Carbon dioxide enrichment of the sparging gas (up to 15% [vol/vol]) improved production of both malate and succinate. At higher concentrations, succinate titers further increased, reaching 0.29 mol (mol glucose)−1, whereas malate formation strongly decreased. Although fully aerobic conditions could be achieved, it was found that moderate oxygen limitation benefitted malate production. In conclusion, malic acid production with the engineered S. cerevisiae strain could be successfully transferred from shake flasks to 1-liter batch bioreactors by simultaneous optimization of four process parameters (pH and concentrations of CO2, calcium, and O2). Under optimized conditions, a malate yield of 0.48 ± 0.01 mol (mol glucose)−1 was obtained in bioreactors, a 19% increase over yields in shake flask experiments. PMID:20008165

  1. The role of methanogens in acetic acid production under different salinity conditions.

    PubMed

    Xiao, Keke; Guo, Chenghong; Maspolim, Yogananda; Zhou, Yan; Ng, Wun Jern

    2016-10-01

    In this study, a fed-batch acidogenic reactor was operated at a 3 d hydraulic retention time (HRT) and fed with alkaline pre-treated sludge to investigate salinity effects on methanogens' abundance, activities and their consumption of produced acetic acid (HAc) and total volatile fatty acids (VFAs). The salinity concentration was increased step-wise by adding sodium chloride. At 3‰ (parts per thousand) salinity, the average produced volatile fatty acids (VFAs) concentration was 2410.16 ± 637.62 mg COD L(-1) and 2.70 ± 0.36 L methane was produced daily in the acidogenic reactor. Further batch tests indicated methanogens showed a HAc degradation rate of 3.81 mg COD g(-1) VSS h(-1) at initial HAc concentration of 1150 mg COD L(-1), and showed tolerance up to 16‰ salinity (3.76 g Na(+) L(-1)) as indicated by a constant HAc degradation rate. The microbiological study indicated this can be related to the predominance of acetate-utilizing Methanosarcinaceae and Methanomicrobiales in the reactor. However, with salinity increased to 20‰ and 40‰, increases in VFAs and HAc production and decreases in methane production, methanogens population, acidogenic bacteria population and acidification extent were observed. This study demonstrated presence of acetate-utilizing methanogens in an acidogenic reactor and their high tolerance to salinity, as well as their negative impacts on net VFAs production. The results would suggest the presence of methanogens in the acidogenic reactor should not be ignored and the recovery of methane from the acidogenic reactor needs to be considered to avoid carbon loss.

  2. Evaluation of GCM Column Radiation Models Under Cloudy Conditions with The Arm BBHRP Value Added Product

    SciTech Connect

    Oreopoulos, Lazaros; Norris, Peter M.

    2010-03-14

    The overarching goal of the project was to improve the transfer of solar and thermal radiation in the most sophisticated computer tools that are currently available for climate studies, namely Global Climate Models (GCMs). This transfer can be conceptually separated into propagation of radiation under cloudy and under cloudless conditions. For cloudless conditions, the factors that affect radiation propagation are gaseous absorption and scattering, aerosol particle absorption and scattering and surface albedo and emissivity. For cloudy atmospheres the factors are the various cloud properties such as cloud fraction, amount of cloud condensate, the size of the cloud particles, and morphological cloud features such as cloud vertical location, cloud horizontal and vertical inhomogeneity and cloud shape and size. The project addressed various aspects of the influence of the above contributors to atmospheric radiative transfer variability. In particular, it examined: (a) the quality of radiative transfer for cloudless and non-complex cloudy conditions for a substantial number of radiation algorithms used in current GCMs; (b) the errors in radiative fluxes from neglecting the horizontal variabiity of cloud extinction; (c) the statistical properties of cloud horizontal and vertical cloud inhomogeneity that can be incorporated into radiative transfer codes; (d) the potential albedo effects of changes in the particle size of liquid clouds; (e) the gaseous radiative forcing in the presence of clouds; and (f) the relative contribution of clouds of different sizes to the reflectance of a cloud field. To conduct the research in the various facets of the project, data from both the DOE ARM project and other sources were used. The outcomes of the project will have tangible effects on how the calculation of radiative energy will be approached in future editions of GCMs. With better calculations of radiative energy in GCMs more reliable predictions of future climate states will be

  3. Effect of Methanethiol Concentration on Sulfur Production in Biological Desulfurization Systems under Haloalkaline Conditions.

    PubMed

    Roman, Pawel; Veltman, René; Bijmans, Martijn F M; Keesman, Karel J; Janssen, Albert J H

    2015-08-04

    Bioremoval of H2S from gas streams became popular in recent years because of high process efficiency and low operational costs. To expand the scope of these processes to gas streams containing volatile organic sulfur compounds, like thiols, it is necessary to provide new insights into their impact on overall biodesulfurization process. Published data on the effect of thiols on biodesulfurization processes are scarce. In this study, we investigated the effect of methanethiol on the selectivity for sulfur production in a bioreactor integrated with a gas absorber. This is the first time that the inhibition of biological sulfur formation by methanethiol is investigated. In our reactor system, inhibition of sulfur production started to occur at a methanethiol loading rate of 0.3 mmol L(-1) d(-1). The experimental results were also described by a mathematical model that includes recent findings on the mode of biomass inhibition by methanethiol. We also found that the negative effect of methanethiol can be mitigated by lowering the salinity of the bioreactor medium. Furthermore, we developed a novel approach to measure the biological activity by sulfide measurements using UV-spectrophotometry. On the basis of this measurement method, it is possible to accurately estimate the unknown kinetic parameters in the mathematical model.

  4. GERDA phase II detectors: Behind the production and characterisation at low background conditions

    SciTech Connect

    Maneschg, Werner; Collaboration: GERDA Collaboration; and others

    2013-08-08

    The low background GERmanium Detector Array (GERDA) at Laboratori Nazionali del Gran Sasso (LNGS) is designed to search for the rare neutrinoless double beta decay (0νββ) in {sup 76}Ge. Bare germanium diodes are operated in liquid argon which is used as coolant, as passive and soon active as well shield against external radiation. Currently, Phase I of the experiment is running using ∼15 kg of co-axial High Purity Germanium diodes. In order to increase the sensitivity of the experiment 30 Broad Energy Germanium (BEGe) diodes will be added within 2013. This presentation reviews the production chain of the new BEGe detectors from isotopic enrichment to diode production and testing. As demonstrated all steps were carefully planned in order to minimize the exposure of the enriched germanium to cosmic radiation. Following this premise, acceptance and characterisation measurement of the newly produced diodes have been performed within the HEROICA project in the Belgian underground laboratory HADES close to the diode manufacturer. The test program and the results from a subset of the recently terminated GERDA Phase II BEGe survey will be presented.

  5. Production of Human Pluripotent Stem Cell Therapeutics Under Defined Xeno-free Conditions: Progress and Challenges

    PubMed Central

    Fan, Yongjia; Wu, Jincheng; Ashok, Preeti; Hsiung, Michael; Tzanakakis, Emmanuel S.

    2014-01-01

    Recent advances on human pluripotent stem cells (hPSCs), including human embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) have brought us closer to the realization of their clinical potential. Nonetheless, tissue engineering and regenerative medicine applications will require the generation of hPSC products well beyond the laboratory scale. This also mandates the production of hPSC therapeutics in fully-defined, xeno-free systems and in a reproducible manner. Toward this goal, we summarize current developments in defined media free of animal-derived components for hPSC culture. Bioinspired and synthetic extracellular matrices for the attachment growth and differentiation of hPSCs are also reviewed. Given that most progress in xeno-free medium and substrate development has been demonstrated in two-dimensional rather than three dimensional culture systems, translation from the former to the latter poses unique difficulties. These challenges are discussed in the context of cultivation platforms of hPSCs as aggregates, on microcarriers or after encapsulation in biocompatible scaffolds. PMID:25077810

  6. GERDA phase II detectors: Behind the production and characterisation at low background conditions

    NASA Astrophysics Data System (ADS)

    Maneschg, Werner; Gerda Collaboration

    2013-08-01

    The low background GERmanium Detector Array (GERDA) at Laboratori Nazionali del Gran Sasso (LNGS) is designed to search for the rare neutrinoless double beta decay (0νββ) in 76Ge. Bare germanium diodes are operated in liquid argon which is used as coolant, as passive and soon active as well shield against external radiation. Currently, Phase I of the experiment is running using ˜15 kg of co-axial High Purity Germanium diodes. In order to increase the sensitivity of the experiment 30 Broad Energy Germanium (BEGe) diodes will be added within 2013. This presentation reviews the production chain of the new BEGe detectors from isotopic enrichment to diode production and testing. As demonstrated all steps were carefully planned in order to minimize the exposure of the enriched germanium to cosmic radiation. Following this premise, acceptance and characterisation measurement of the newly produced diodes have been performed within the HEROICA project in the Belgian underground laboratory HADES close to the diode manufacturer. The test program and the results from a subset of the recently terminated GERDA Phase II BEGe survey will be presented.

  7. The influence of the irradiation regime upon mycotoxins production under experimental conditions.

    PubMed

    Uralová, M; Patzeltová, N; Havlík, F

    1987-01-01

    The paper handles the problem of the inactivation of the toxinogenic strain Aspergillus flavus following the application of gamma radiation to wheat. The amount of the applied dose and of the absorbed dose of ionizing radiation upon the inhibition of mycelium growth and toxin production were defined. The aflatoxin B1 was determined by extracting in chloroform and developed on Silufol R within the choroform; aceton system. The applied doses of gamma radiation (3-30 kGy) have show that the absorbed dose does not inhibit aflatoxin production. By combining the action of gamma radiation with humidity of the wheat (humidity 13-15%; 25% irradiation 6 kGy) an inactivation was reached. With the help of toxicologico-genetical tests (the Dominant Lethal Mutations Test, the Three Generations Test) the influence was traced of contaminated, irradiated substrates upon the health of experimental animals. It follows from the results obtained that in long-term feeding with contaminated wheat irradiated by gamma rays no positive mutagenic activity has been recorded. It allows to presume that wheat of humidity of 25% contaminated by a weakly toxigenic strain Aspergillus flavus irradiated by a dose of 6 kGy, and wheat of a humidity of 13-15%, contaminated by a strongly toxinogenic strain of Aspergillus flavus, irradiated by a dose of 6 kGy, are no genetic risk for white rats.

  8. Is intraspecific variability of growth and mycotoxin production dependent on environmental conditions? A study with Aspergillus carbonarius isolates.

    PubMed

    Garcia, Daiana; Ramos, Antonio J; Sanchis, Vicente; Marín, Sonia

    2011-01-05

    The aim of this study was to assess the impact of suboptimal environmental conditions on the intraspecific variability of A. carbonarius growth and OTA production using thirty isolates of A. carbonarius. Three a(w)/temperature conditions were tested, one optimal (0.98a(w)/25°C) and two suboptimal: 0.90a(w)/25°C and 0.98a(w)/37°C as suboptimal water activity and temperature, respectively, which might take place through over ripening and dehydration of grapes. For each condition, 12 Petri dishes were inoculated, and colony growth and OTA production were measured over time. ANOVA revealed significant differences among μ and λ within the 30 assayed isolates. Coefficients of variation (CV%) revealed a wider dispersion of growth rates at 0.90a(w)/25°C compared to 0.98a(w)/25°C, and a more than 4-fold higher CV at 0.98a(w)/37°C compared to 0.98a(w)/25°C. However, dispersion of lag phases was similar at 0.98a(w)/25°C and 0.90a(w)/25°C and wider at 0.98a(w)/37°C. There were significant differences (p<0.05) among OTA levels (ng/mm(2)) for the different conditions, values being lower under marginal conditions, and particularly at 0.98a(w)/37°C. Coefficients of variation (CV%) revealed a wider dispersion of OTA production at 0.90a(w)/25°C compared to 0.98a(w)/25°C, while CV at 0.98a(w)/37°C was similar to that at 0.98a(w)/25°C. In order to address the strain variability in growth initiation and prove the well-established notion of reducing OTA in foods by preventing fungal growth, a greater number of strains should be included when developing models for conditions that are suboptimal both for a(w) for OTA production and temperature levels for growth.

  9. Effect of growth conditions on microbial activity and iron-sulfide production by Desulfovibrio vulgaris.

    PubMed

    Zhou, Chen; Vannela, Raveender; Hayes, Kim F; Rittmann, Bruce E

    2014-05-15

    Sulfate-reducing bacteria (SRB) can produce iron sulfide (FeS) solids with mineralogical characteristics that may be beneficial for a variety of biogeochemical applications, such as long-term immobilization of uranium. In this study, the growth and metabolism of Desulfovibrio vulgaris, one of the best-studied SRB species, were comprehensively monitored in batch studies, and the biogenic FeS solids were characterized by X-ray diffraction. Controlling the pH by varying the initial pH, the iron-to-sulfate ratio, or the electron donor - affected the growth of D. vulgaris and strongly influenced the formation and growth of FeS solids. In particular, lower pH (from initial conditions or a decrease caused by less sulfate reduction, FeS precipitation, or using pyruvate as the electron donor) produced larger-sized mackinawite (Fe1+xS). Greater accumulation of free sulfide, from more sulfate reduction by D. vulgaris, also led to larger-sized mackinawite and particularly stimulated mackinawite transformation to greigite (Fe3S4) when the free sulfide concentration was 29.3mM. Furthermore, sufficient free Fe(2+) led to the additional formation of vivianite [Fe3(PO4)2·8(H2O)]. Thus, microbially relevant conditions (initial pH, choice of electron donor, and excess or deficiency of sulfide) are tools to generate biogenic FeS solids of different characteristics.

  10. Light intensity and production parameters of phytocenoses cultivated on soil-like substrate under controlled [correction of controled] environment conditions.

    PubMed

    Tikhomirov, A A; Ushakova, S A; Gribovskaya, I A; Tirranen, L S; Manukovsky, N S; Zolotukhin, I G; Karnachuk, R A; Gros, J B; Lasseur, Ch

    2003-01-01

    To increase the degree of closure of biological life support systems of a new generation, we used vermicomposting to involve inedible phytomass in the intra-system mass exchange. The resulting product was a soil-like substrate, which was quite suitable for growing plants (Manukovsky et al. 1996, 1997). However, the soil like substrate can be regarded as a candidate for inclusion in a system only after a comprehensive examination of its physical, chemical, and other characteristics. An important criterion is the ability of the soil-like substrate to supply the necessary mineral elements to the photosynthesizing component under the chosen cultivation conditions. Thus, the purpose of this work was to study the feasibility of enhancing the production activity of wheat and radish crops by varying the intensity of photosynthetically active radiation, without decreasing the harvest index. The increase of light intensity from 920 to 1150 micromoles m-2 s-1 decreased the intensity of apparent photosynthesis of the wheat crops and slightly increased the apparent photosynthesis of the radish crops The maximum total and grain productivity (kg/m2) of the wheat crops was attained at the irradiance of 920 micromoles m-2 s-1. Light intensity of 1150 micromoles m-2 s-1 decreased the productivity of wheat plants and had no significant effect on the productivity of the radish crops (kg/m2) as compared to 920 micromoles m-2 s-1. The qualitative and quantitative composition of microflora of the watering solution and substrate was determined by the condition of plants, developmental phase and light intensity. By the end of wheat growth under 1150 micromoles m-2 s-1 the numbers of bacteria of the coliform family and phytopathogenic bacteria in the watering solution and substrate were an order of magnitude larger than under other illumination conditions. The obtained data suggest that the cultivation of plants in a life support system on soil-like substrate from composts has a number of

  11. Investigation of the Fission Product Release From Molten Pools Under Oxidizing Conditions With the Code RELOS

    SciTech Connect

    Kleinhietpass, Ingo D.; Unger, Hermann; Wagner, Hermann-Josef; Koch, Marco K.

    2006-07-01

    With the purpose of modeling and calculating the core behavior during severe accidents in nuclear power plants system codes are under development worldwide. Modeling of radionuclide release and transport in the case of beyond design basis accidents is an integrated feature of the deterministic safety analysis of nuclear power plants. Following a hypothetical, uncontrolled temperature escalation in the core of light water reactors, significant parts of the core structures may degrade and melt down under formation of molten pools, leading to an accumulation of large amounts of radioactive materials. The possible release of radionuclides from the molten pool provides a potential contribution to the aerosol source term in the late phase of core degradation accidents. The relevance of the amount of transferred oxygen from the gas atmosphere into the molten pool on the specification of a radionuclide and its release depends strongly on the initial oxygen inventory. Particularly for a low oxygen potential in the melt as it is the case for stratification when a metallic phase forms the upper layer and, respectively, when the oxidation has proceeded so far so that zirconium was completely oxidized, a significant influence of atmospheric oxygen on the specification and the release of some radionuclides has to be anticipated. The code RELOS (Release of Low Volatile Fission Products from Molten Surfaces) is under development at the Department of Energy Systems and Energy Economics (formerly Department of Nuclear and New Energy Systems) of the Ruhr-University Bochum. It is based on a mechanistic model to describe the diffusive and convective transport of fission products from the surface of a molten pool into a cooler gas atmosphere. This paper presents the code RELOS, i. e. the features and abilities of the latest code version V2.3 and the new model improvements of V2.4 and the calculated results evaluating the implemented models which deal with the oxygen transfer from the

  12. The Actual Apollo 13 Prime Crew

    NASA Technical Reports Server (NTRS)

    1970-01-01

    The actual Apollo 13 lunar landing mission prime crew from left to right are: Commander, James A. Lovell Jr., Command Module pilot, John L. Swigert Jr.and Lunar Module pilot, Fred W. Haise Jr. The original Command Module pilot for this mission was Thomas 'Ken' Mattingly Jr. but due to exposure to German measles he was replaced by his backup, Command Module pilot, John L. 'Jack' Swigert Jr.

  13. Investigation of the effect of UV-LED exposure conditions on the production of vitamin D in pig skin.

    PubMed

    Barnkob, Line Lundbæk; Argyraki, Aikaterini; Petersen, Paul Michael; Jakobsen, Jette

    2016-12-01

    The dietary intake of vitamin D is currently below the recommended intake of 10-20μg vitamin D/day. Foods with increased content of vitamin D or new products with enhanced vitamin D are warranted. Light-emitting diodes (LEDs) are a potential new resource in food production lines. In the present study the exposure conditions with ultraviolet (UV) LEDs were systematically investigated in the wavelength range 280-340nm for achieving optimal vitamin D bio-fortification in pig skin. A wavelength of 296nm was found to be optimal for vitamin D3 production. The maximum dose of 20kJ/m(2) produced 3.5-4μg vitamin D3/cm(2) pig skin. Vitamin D3 produced was independent on the combination of time and intensity of the LED source. The increased UV exposure by UV-LEDs may be readily implemented in existing food production facilities, without major modifications to the process or processing equipment, for bio-fortifying food products containing pork skin.

  14. Effect of Catalytic Pyrolysis Conditions Using Pulse Current Heating Method on Pyrolysis Products of Wood Biomass

    PubMed Central

    Honma, Sensho; Hata, Toshimitsu; Watanabe, Takashi

    2014-01-01

    The influence of catalysts on the compositions of char and pyrolysis oil obtained by pyrolysis of wood biomass with pulse current heating was studied. The effects of catalysts on product compositions were analyzed using GC-MS and TEM. The compositions of some aromatic compounds changed noticeably when using a metal oxide species as the catalyst. The coexistence or dissolution of amorphous carbon and iron oxide was observed in char pyrolyzed at 800°C with Fe3O4. Pyrolysis oil compositions changed remarkably when formed in the presence of a catalyst compared to that obtained from the uncatalyzed pyrolysis of wood meal. We observed a tendency toward an increase in the ratio of polyaromatic hydrocarbons in the pyrolysis oil composition after catalytic pyrolysis at 800°C. Pyrolysis of biomass using pulse current heating and an adequate amount of catalyst is expected to yield a higher content of specific polyaromatic compounds. PMID:25614894

  15. Biochar and microbial signaling: production conditions determine effects on microbial communication.

    PubMed

    Masiello, Caroline A; Chen, Ye; Gao, Xiaodong; Liu, Shirley; Cheng, Hsiao-Ying; Bennett, Matthew R; Rudgers, Jennifer A; Wagner, Daniel S; Zygourakis, Kyriacos; Silberg, Jonathan J

    2013-10-15

    Charcoal has a long soil residence time, which has resulted in its production and use as a carbon sequestration technique (biochar). A range of biological effects can be triggered by soil biochar that can positively and negatively influence carbon storage, such as changing the decomposition rate of organic matter and altering plant biomass production. Sorption of cellular signals has been hypothesized to underlie some of these effects, but it remains unknown whether the binding of biochemical signals occurs, and if so, on time scales relevant to microbial growth and communication. We examined biochar sorption of N-3-oxo-dodecanoyl-L-homoserine lactone, an acyl-homoserine lactone (AHL) intercellular signaling molecule used by many gram-negative soil microbes to regulate gene expression. We show that wood biochars disrupt communication within a growing multicellular system that is made up of sender cells that synthesize AHL and receiver cells that express green fluorescent protein in response to an AHL signal. However, biochar inhibition of AHL-mediated cell-cell communication varied, with the biochar prepared at 700 °C (surface area of 301 m(2)/g) inhibiting cellular communication 10-fold more than an equivalent mass of biochar prepared at 300 °C (surface area of 3 m(2)/g). These findings provide the first direct evidence that biochars elicit a range of effects on gene expression dependent on intercellular signaling, implicating the method of biochar preparation as a parameter that could be tuned to regulate microbial-dependent soil processes, like nitrogen fixation and pest attack of root crops.

  16. Optimization of Growth Conditions for Purification and Production of L-Asparaginase by Spirulina maxima.

    PubMed

    Abd El Baky, Hanaa H; El Baroty, Gamal S

    2016-01-01

    L-asparaginase (L-AsnA) is widely distributed among microorganisms and has important applications in medicine and in food technology sectors. Therefore, the ability of the production, purification, and characterization of AsnA from Spirulina maxima (SM) were tested. SM cultures grown in Zarrouk medium containing different N2 (in NaNO3 form) concentrations (1.25, 2.50, and 5.0 g/L) for 18 days contained a significant various quantity of dry biomass yields and AsnA enzyme levels. MS L-AsnA activity was found to be directly proportional to the N2 concentration. The cultures of SM at large scales (300 L medium, 5 g/L N2) showed a high AsnA enzyme activity (898 IU), total protein (405 mg/g), specific enzyme activity (2.21 IU/mg protein), and enzyme yield (51.28 IU/L) compared with those in low N2 cultures. The partial purification of crude MS AsnA enzyme achieved by 80% ammonium sulfate AS precipitated and CM-Sephadex C-200 gel filtration led to increases in the purification of enzyme with 5.28 and 10.91 times as great as that in SM crude enzymes. Optimum pH and temperature of purified AsnA for the hydrolyzate were 8.5 and 37 ± 0.2°C, respectively. To the best of our knowledge, this is the first report on L-asparaginase production in S. maxima.

  17. Potentially pathogenic Escherichia coli can form a biofilm under conditions relevant to the food production chain.

    PubMed

    Nesse, Live L; Sekse, Camilla; Berg, Kristin; Johannesen, Karianne C S; Solheim, Heidi; Vestby, Lene K; Urdahl, Anne Margrete

    2014-04-01

    The biofilm-producing abilities of potentially human-pathogenic serotypes of Escherichia coli from the ovine reservoir were studied at different temperatures and on different surfaces. A possible influence of the hydrophobicity of the bacterial cells, as well as the presence of two virulence factors, the Shiga toxin-encoding (Stx) bacteriophage and the eae gene, was also studied. A total of 99 E. coli isolates of serotypes O26:H11, O103:H2, and O103:H25 isolated from sheep feces were included. The results show that isolates of all three E. coli serotypes investigated can produce biofilm on stainless steel, glass, and polystyrene at 12, 20, and 37°C. There was a good general correlation between the results obtained on the different surfaces. E. coli O103:H2 isolates produced much more biofilm than those of the other two serotypes at all three temperatures. In addition, isolates of serotype O26:H11 produced more biofilm than those of O103:H25 at 37°C. The hydrophobicity of the isolates varied between serotypes and was also influenced by temperature. The results strongly indicated that hydrophobicity influenced the attachment of the bacteria rather than their ability to form biofilm once attached. Isolates with the eae gene produced less biofilm at 37°C than isolates without this gene. The presence of a Stx bacteriophage did not influence biofilm production. In conclusion, our results show that potentially human-pathogenic E. coli from the ovine reservoir can form biofilm on various surfaces and at several temperatures relevant for food production and handling.

  18. Correlation between Strawberry (Fragaria ananassa Duch.) Productivity and Photosynthesis-Related Parameters under Various Growth Conditions

    PubMed Central

    Choi, Hyo G.; Moon, Byoung Y.; Kang, Nam J.

    2016-01-01

    In the present study, we investigated changes in chlorophyll fluorescence, photosynthetic parameters and fruit yields, as well as fruit phytochemical accumulation of strawberry (Fragaria ananassa Duch.) that had been cultivated in a greenhouse under different combinations of light intensity and temperature. In plants grown with low light (LL) photosystem II chlorophyll fluorescence was found to increase as compared with those grown under high light (HL). When strawberry plants were grown with temperature higher than 5°C in addition to LL, they showed decrease in non-photochemical quenching (NPQ), photochemical quenching (qP), as well as chlorophyll fluorescence decrease ratio (RFd) when compared with other combinations of light and temperature. Moreover, fruit yield of strawberry was closely correlated with chlorophyll fluorescence-related parameters such as NPQ, qP, and RFd, but not with the maximum efficiency of PS II (Fv/Fm). Although plant groups grown under different combinations of light and temperature showed almost comparable levels of photosynthesis rates (Pr) when irradiated with low-intensity light, they displayed clear differences when measured with higher irradiances. Plants grown under HL with temperature above 10°C showed the highest Pr, in contrast to the plants grown under LL with temperature above 5°C. When the stomatal conductance and the transpiration rate were measured, plants of each treatment showed clear differences even when analyzed with lower irradiances. We also found that fruit production during winter season was more strongly influenced by growth temperature than light intensity. We suggest that fruit productivity of strawberry is closely associated with chlorophyll fluorescence and photosynthesis-related parameters during cultivation under different regimes of temperature and light. PMID:27833628

  19. Optimization of Growth Conditions for Purification and Production of L-Asparaginase by Spirulina maxima

    PubMed Central

    El Baroty, Gamal S.

    2016-01-01

    L-asparaginase (L-AsnA) is widely distributed among microorganisms and has important applications in medicine and in food technology sectors. Therefore, the ability of the production, purification, and characterization of AsnA from Spirulina maxima (SM) were tested. SM cultures grown in Zarrouk medium containing different N2 (in NaNO3 form) concentrations (1.25, 2.50, and 5.0 g/L) for 18 days contained a significant various quantity of dry biomass yields and AsnA enzyme levels. MS L-AsnA activity was found to be directly proportional to the N2 concentration. The cultures of SM at large scales (300 L medium, 5 g/L N2) showed a high AsnA enzyme activity (898 IU), total protein (405 mg/g), specific enzyme activity (2.21 IU/mg protein), and enzyme yield (51.28 IU/L) compared with those in low N2 cultures. The partial purification of crude MS AsnA enzyme achieved by 80% ammonium sulfate AS precipitated and CM-Sephadex C-200 gel filtration led to increases in the purification of enzyme with 5.28 and 10.91 times as great as that in SM crude enzymes. Optimum pH and temperature of purified AsnA for the hydrolyzate were 8.5 and 37 ± 0.2°C, respectively. To the best of our knowledge, this is the first report on L-asparaginase production in S. maxima. PMID:27525017

  20. Correlation between Strawberry (Fragaria ananassa Duch.) Productivity and Photosynthesis-Related Parameters under Various Growth Conditions.

    PubMed

    Choi, Hyo G; Moon, Byoung Y; Kang, Nam J

    2016-01-01

    In the present study, we investigated changes in chlorophyll fluorescence, photosynthetic parameters and fruit yields, as well as fruit phytochemical accumulation of strawberry (Fragaria ananassa Duch.) that had been cultivated in a greenhouse under different combinations of light intensity and temperature. In plants grown with low light (LL) photosystem II chlorophyll fluorescence was found to increase as compared with those grown under high light (HL). When strawberry plants were grown with temperature higher than 5°C in addition to LL, they showed decrease in non-photochemical quenching (NPQ), photochemical quenching (qP), as well as chlorophyll fluorescence decrease ratio (RFd) when compared with other combinations of light and temperature. Moreover, fruit yield of strawberry was closely correlated with chlorophyll fluorescence-related parameters such as NPQ, qP, and RFd, but not with the maximum efficiency of PS II (Fv/Fm). Although plant groups grown under different combinations of light and temperature showed almost comparable levels of photosynthesis rates (Pr) when irradiated with low-intensity light, they displayed clear differences when measured with higher irradiances. Plants grown under HL with temperature above 10°C showed the highest Pr, in contrast to the plants grown under LL with temperature above 5°C. When the stomatal conductance and the transpiration rate were measured, plants of each treatment showed clear differences even when analyzed with lower irradiances. We also found that fruit production during winter season was more strongly influenced by growth temperature than light intensity. We suggest that fruit productivity of strawberry is closely associated with chlorophyll fluorescence and photosynthesis-related parameters during cultivation under different regimes of temperature and light.

  1. Biochar and microbial signaling: production conditions determine effects on microbial communication

    PubMed Central

    Masiello, Caroline A.; Chen, Ye; Gao, Xiaodong; Liu, Shirley; Cheng, Hsiao-Ying; Bennett, Matthew R.; Rudgers, Jennifer A.; Wagner, Daniel S.; Zygourakis, Kyriacos; Silberg, Jonathan J.

    2013-01-01

    Charcoal has a long soil residence time, which has resulted in its production and use as a carbon sequestration technique (biochar). A range of biological effects can be triggered by soil biochar that can positively and negatively influence carbon storage, such as changing the decomposition rate of organic matter and altering plant biomass production. Sorption of cellular signals has been hypothesized to underlie some of these effects, but it remains unknown whether the binding of biochemical signals occurs, and if so, on time scales relevant to microbial growth and communication. We examined biochar sorption of N-3-oxo-dodecanoyl-L-homoserine lactone, an acyl-homoserine lactone (AHL) intercellular signaling molecule used by many gram-negative soil microbes to regulate gene expression. We show that wood biochars disrupt communication within a growing multicellular system that is made up of sender cells that synthesize AHL and receiver cells that express green fluorescent protein in response to an AHL signal. However, biochar inhibition of AHL-mediated cell-cell communication varied, with the biochar prepared at 700°C (surface area of 301 m2/g) inhibiting cellular communication 10-fold more than an equivalent mass of biochar prepared at 300°C (surface area of 3 m2/g). These findings provide the first direct evidence that biochars elicit a range of effects on gene expression dependent on intercellular signaling, implicating the method of biochar preparation as a parameter that could be tuned to regulate microbial-dependent soil processes, like nitrogen fixation and pest attack of root crops. PMID:24066613

  2. [Integrated tobacco production: health, labor, and working conditions of tobacco farmers in Southern Brazil].

    PubMed

    Riquinho, Deise Lisboa; Hennington, Élida Azevedo

    2016-12-22

    This study aimed to analyze the tobacco farming and marketing process in an integrated system and tobacco farmers' living and working conditions in Southern Brazil. A qualitative study was conducted from December 2010 to August 2011, with 31 semi-structured interviews with tobacco farmers and key informants, besides participant observation. The principal analytical reference was the ergological perspective. The integrated system allows the tobacco industry to control the amounts paid and the tobacco's quality. Tobacco growing features high cost of inputs, farmers' indebtedness, insufficient crop insurance, and intensive use of family labor. Accident and disease risks were associated with work in tobacco farming. According to the dynamic three-pole model proposed by ergology, dealing with these problems requires confronting the workers' knowledge with technical and scientific knowledge, linked with ethical and social responsibility.

  3. STARDUST: A simulation experiment of cosmic dust analogues production in microgravity conditions

    NASA Technical Reports Server (NTRS)

    Ferguson, Frank; Lilleleht, Lembit U.; Nuth, J.; Stephens, J. R.; Bussoletti, E.; Carotenuto, L.; Colangeli, L.; Dellaversana, P.; Mele, F.; Mennella, V.

    1992-01-01

    The aim, activity, and some preliminary results of the STARDUST program are presented. The condensation of solid materials from the vapor phase is important in several scientific fields such as chemical vapor deposition, air pollution, and the formation of refractory cosmic dust around stars. Conventional studies of refractory grain formation, using high temperature furnace and shock tube techniques, are restricted to short time scales and suffer from buoyancy induced convection that limit their accuracy. In order to simulate more accurately the condensation of refractory grains near stars and to investigate the advantages of performing condensation studies in microgravity conditions, an experimental investigation of vapor phase condensation in microgravity was undertaken. The experimental equipment currently used is reported. The results from the first flight series and particle aggregation modeling efforts are presented.

  4. STARDUST - A simulation experiment of cosmic dust analogues production in microgravity conditions

    NASA Technical Reports Server (NTRS)

    Ferguson, Frank T.; Lilleleht, L. U.; Nuth, J.; Stephens, J. R.; Bussoletti, E.; Carotenuto, L.; Colangeli, L.; Dell'aversana, P.; Mele, F.; Mennella, V.

    1993-01-01

    The condensation of solid materials from the vapor phase is important in several scientific fields such as chemical vapor deposition, air pollution and the formation of refractory cosmic dust around stars. Conventional studies of refractory grain formation, using high temperature furnace and shock tube techniques, are restricted to short time scales and suffer from buoyancy induced convection that limit their accuracy. In order to simulate more accurately the condensation of refractory grains near stars and to investigate the advantages of performing condensation studies in microgravity conditions, an experimental investigation was undertaken. This work reports the experimental equipment currently used. The results from the first flight series and particle aggregation modelling efforts are presented briefly.

  5. Detecting charged fusion products in high-fluence conditions on OMEGA and the NIF

    NASA Astrophysics Data System (ADS)

    Waugh, C.; Rosenberg, M.; Zylstra, A.; Rinderknecht, H.; Sinenian, N.; Manuel, M.; Casey, D.; Gatu Johnson, M.; Li, C. K.; Seguin, F.; Frenje, J.; Petrasso, R.; Glebov, V.; Sangster, T. C.; Pape, S.; Bionta, R.; MacKinnon, A.; Landen, O.; Kim, Y.; Hermann, H.; Kilkenny, J.; Nikroo, A.

    2011-10-01

    CR-39 solid state nuclear track plastic, used as charged particle detectors on the ``back-end'' of OMEGA and NIF diagnostics/spectrometers, is ideally suited to record particle fluences up to ~ 3x104 / cm2. However, conditions on OMEGA and the NIF can often result in fluences two orders of magnitude greater. By using shorter etch times than the standard (6 hrs), and cross calibrating to CR39 shot on the MIT accelerator to the equivalent (ICF) fluence, the dynamic range of the CR39 can be significantly extended. Specific examples of this analysis from both OMEGA and the NIF will be presented for the case of D3He exploding pushers. This work was supported in part by LLE, the NLUF, the FSC, the US DOE, LLNL, and GA.

  6. Excess production of phage lambda delayed early proteins under conditions supporting high Escherichia coli growth rates.

    PubMed

    Gabig, M; Obuchowski, M; Wegrzyn, A; Szalewska-Pałasz, A; Thomas, M S; Wegrzyn, G

    1998-08-01

    Bacteriophage lambda is unable to lysogenize Escherichia coli hosts harbouring the rpoA341 mutation due to a drastic reduction in transcription from CII-activated lysogenic promoters (pE, pI and paQ). In addition, the level of early transcripts involved in the lytic pathway of lambda development is also decreased in this genetic background due to impaired N-dependent antitermination. Here, it is demonstrated that despite the reduced level of early lytic pL- and pR-derived transcripts, lytic growth of bacteriophage lambda is not affected in rich media. The level of the late lytic, pR-derived transcripts also remains unaffected by the rpoA341 mutation under these conditions. However, it was found that whilst there is no significant difference in the phage burst size in rpoA+ and rpoA341 hosts growing in rich media, phage lambda is not able to produce progeny in the rpoA341 mutant growing in minimal medium, in contrast to otherwise isogenic rpoA+ bacteria. Provision of an excess of the phage replication proteins O and P in trans or overproduction of the antitermination protein N restore the ability of phage lambda to produce progeny in the rpoA341 mutant under the latter conditions. These results suggest that in rich media phage lambda produces some early proteins in excess of that needed for its effective propagation and indicate that replication proteins may be limiting factors for phage lytic growth in poor media.

  7. Environmental conditions associating microcystins production to Microcystis aeruginosa in a reservoir of Thailand.

    PubMed

    Wang, Xiaofeng; Parkpian, Preeda; Fujimoto, Naoshi; Ruchirawat, Khunying Mathuros; DeLaune, R D; Jugsujinda, A

    2002-08-01

    Three heptapeptide toxins, microcystin-RR, microcystin-RY and microcystin-LR, which can cause health problems in animals and humans were monitored in Bang Phra Reservoir, Thailand using reversed-phase high performance liquid chromatography. The concentrations of the three toxins in the reservoir varied greatly depending on location and time water samples were collected. Water quality parameters such as light intensity, temperature, pH, dissolved oxygen, suspended solid, chemical oxygen demand, dissolved organic carbon, total nitrogen, total phosphorus, ammonia, nitrate, phosphate, total dissolved nitrogen, total dissolved phosphorus and chlorophyll-a were also measured in parallel with microcystin determinations. Relationships among water quality parameters, toxins and chlorophyll-a were established. Toxin concentration increased in proportion to increases in total phosphorus, fraction of dissolved phosphorus, but was inversely correlated with water pH and total suspended solids. The other measured parameters in the study showed no correlations to toxin level in reservoir water. Significant correlations between chlorophyll-a and suspended solids, phosphate, nitrate and ammonia were observed suggesting that nitrogen and phosphorus are the two major nutrients governing growth of algae in the reservoir. This relationship suggests that algal production as well as toxin concentration are dependant on nutrient levels in the water body, since both measured light intensity and temperature level was favorable for algal growth. A small algal bloom observed in the rainy season of each year (lasting for only a couple of months) paralleled measured increases in toxin concentration, chlorophyll-a, TP and TN in the water column. Toxin level in the water column remain detectable for 3-4 months period following the initiation of algal bloom. Results indicate that major blooms are likely to occur following the raining season which usually occurs near the end of October when runoff

  8. Rational optimization of culture conditions for the most efficient ethanol production in Scheffersomyces stipitis using design of experiments.

    PubMed

    Unrean, Pornkamol; Nguyen, Nhung H A

    2012-01-01

    Optimization of culture parameters for achieving the most efficient ethanol fermentation is challenging due to multiple variables involved. Here we presented a rationalized methodology for multi-variables optimization through the design of experiments DoE approach. Three critical parameters, pH, temperature, and agitation speed, affecting ethanol fermentation in S. stipitis was investigated. A predictive model showed that agitation speed significantly affected ethanol synthesis. Reducing pH and temperature also improved ethanol production. The model identified the optimum culture conditions for the most efficient ethanol production with the yield and productivity of 0.46 g/g and 0.28 g/l h, respectively, which is consistent with experimental observation. The results also indicated the scalability of the model from shake flask to bioreactor. Thus, DoE is a promising tool permitting the rapid establishment of culture conditions for the most efficient ethanol fermentation in S. stipitis. The approach could be useful to reduce process development time in lignocellulosic ethanol industry.

  9. Bioprocessing of wheat bran for the production of lignocellulolytic enzyme cocktail by Cotylidia pannosa under submerged conditions

    PubMed Central

    Sharma, Deepika; Garlapat, Vijay Kumar; Goel, Gunjan

    2016-01-01

    ABSTRACT Characterization and production of efficient lignocellulytic enzyme cocktails for biomass conversion is the need for biofuel industry. The present investigation reports the modeling and optimization studies of lignocellulolytic enzyme cocktail production by Cotylidia pannosa under submerged conditions. The predominant enzyme activities of cellulase, xylanase and laccase were produced in the cocktail through submerged conditions using wheat bran as a substrate. A central composite design approach was utilized to model the production process using temperature, pH, incubation time and agitation as input variables with the goal of optimizing the output variables namely cellulase, xylanase and laccase activities. The effect of individual, square and interaction terms on cellulase, xylanase and laccase activities were depicted through the non-linear regression equations with significant R2 and P-values. An optimized value of 20 U/ml, 17 U/ml and 13 U/ml of cellulase, xylanase and laccase activities, respectively, were obtained with a media pH of 5.0 in 77 h at 31C, 140 rpm using wheatbran as a substrate. Overall, the present study introduces a fungal strain, capable of producing lignocellulolytic enzyme cocktail for subsequent applications in biofuel industry. PMID:26941214

  10. Effects of cultivation conditions and media composition on cell growth and lipid productivity of indigenous microalga Chlorella vulgaris ESP-31.

    PubMed

    Yeh, Kuei-Ling; Chang, Jo-Shu

    2012-02-01

    The growth and lipid productivity of an isolated microalga Chlorella vulgaris ESP-31 were investigated under different media and cultivation conditions, including phototrophic growth (NaHCO(3) or CO(2), with light), heterotrophic growth (glucose, without light), photoheterotrophic growth (glucose, with light) and mixotrophic growth (glucose and CO(2), with light). C. vulgaris ESP-31 preferred to grow under phototrophic (CO(2)), photoheterotrophic and mixotrophic conditions on nitrogen-rich medium (i.e., Basal medium and Modified Bristol's medium), reaching a biomass concentration of 2-5 g/l. The growth on nitrogen-limiting MBL medium resulted in higher lipid accumulation (20-53%) but slower growth rate. Higher lipid content (40-53%) and higher lipid productivity (67-144 mg/l/d) were obtained under mixotrophic cultivation with all the culture media used. The fatty acid composition of the microalgal lipid comprises over 60-68% of saturated fatty acids (i.e., palmitic acid (C16:0), stearic acid (C18:0)) and monounsaturated acids (i.e., oleic acid (C18:1)). This lipid composition is suitable for biodiesel production.

  11. Bioprocessing of wheat bran for the production of lignocellulolytic enzyme cocktail by Cotylidia pannosa under submerged conditions.

    PubMed

    Sharma, Deepika; Garlapat, Vijay Kumar; Goel, Gunjan

    2016-04-02

    Characterization and production of efficient lignocellulytic enzyme cocktails for biomass conversion is the need for biofuel industry. The present investigation reports the modeling and optimization studies of lignocellulolytic enzyme cocktail production by Cotylidia pannosa under submerged conditions. The predominant enzyme activities of cellulase, xylanase and laccase were produced in the cocktail through submerged conditions using wheat bran as a substrate. A central composite design approach was utilized to model the production process using temperature, pH, incubation time and agitation as input variables with the goal of optimizing the output variables namely cellulase, xylanase and laccase activities. The effect of individual, square and interaction terms on cellulase, xylanase and laccase activities were depicted through the non-linear regression equations with significant R(2) and P-values. An optimized value of 20 U/ml, 17 U/ml and 13 U/ml of cellulase, xylanase and laccase activities, respectively, were obtained with a media pH of 5.0 in 77 h at 31C, 140 rpm using wheatbran as a substrate. Overall, the present study introduces a fungal strain, capable of producing lignocellulolytic enzyme cocktail for subsequent applications in biofuel industry.

  12. Non-Sink Dissolution Conditions for Predicting Product Quality and In Vivo Performance of Supersaturating Drug Delivery Systems.

    PubMed

    Sun, Dajun D; Wen, Hong; Taylor, Lynne S

    2016-09-01

    With recent advances in the development of supersaturating oral dosage forms for poorly water-soluble drugs, pharmaceutical scientists are increasingly applying in vitro dissolution testing under non-sink conditions for a direct evaluation of their ability to generate and maintain supersaturation as a predictive surrogate for ensuring product quality and in vivo performance. However, the scientific rationale for developing the appropriate non-sink dissolution methodologies has not been extensively debated. This calls for a comprehensive discussion of recent research efforts on theoretical and experimental considerations of amorphous solubility, liquid-liquid phase separation, and phase transitions of drugs in a supersaturated solution when dissolution testing is performed under supersaturated non-sink conditions. In addition, we outline the concept of "sink index" that quantifies the magnitude of deviations from perfect sink dissolution conditions in the sink/non-sink continuum and some considerations of non-sink dissolution testing for marketed drug products. These factors should be carefully considered in recommending an adequately discriminatory dissolution method in the performance assessment of supersaturating drug delivery systems.

  13. Direct production of organic acids from starch by cell surface-engineered Corynebacterium glutamicum in anaerobic conditions

    PubMed Central

    2013-01-01

    We produced organic acids, including lactate and succinate, directly from soluble starch under anaerobic conditions using high cell-density cultures of Corynebacterium glutamicum displaying α-amylase (AmyA) from Streptococcus bovis 148 on the cell surface. Notably, reactions performed under anaerobic conditions at 35 and 40°C, which are higher than the optimal growth temperature of 30°C, showed 32% and 19%, respectively, higher productivity of the organic acids lactate, succinate, and acetate compared to that at 30°C. However, α-amylase was not stably anchored and released into the medium from the cell surface during reactions at these higher temperatures, as demonstrated by the 61% and 85% decreases in activity, respectively, from baseline, compared to the only 8% decrease at 30°C. The AmyA-displaying C. glutamicum cells retained their starch-degrading capacity during five 10 h reaction cycles at 30°C, producing 107.8 g/l of total organic acids, including 88.9 g/l lactate and 14.0 g/l succinate. The applicability of cell surface-engineering technology for the production of organic acids from biomass by high cell-density cultures of C. glutamicum under anaerobic conditions was demonstrated. PMID:24342107

  14. Methane excess production in oxygen-rich polar water and a model of cellular conditions for this paradox

    NASA Astrophysics Data System (ADS)

    Damm, E.; Thoms, S.; Beszczynska-Möller, A.; Nöthig, E. M.; Kattner, G.

    2015-09-01

    Summer sea ice cover in the Arctic Ocean has undergone a reduction in the last decade exposing the sea surface to unforeseen environmental changes. Melting sea ice increases water stratification and induces nutrient limitation, which is also known to play a crucial role in methane formation in oxygenated surface water. We report on an excess of methane in the marginal ice zone in the western Fram Strait. Our study is based on measurements of oxygen, methane, DMSP, nitrate and phosphate concentrations as well as on phytoplankton composition and light transmission, conducted along the 79°N oceanographic transect, in the western part of the Fram Strait and in Northeast Water Polynya region off Greenland. Between the eastern Fram Strait, where Atlantic water enters from the south and the western Fram Strait, where Polar water enters from the north, different nutrient limitations occurred and consequently different bloom conditions were established. Ongoing sea ice melting enhances the environmental differences between both water masses and initiates regenerated production in the western Fram Strait. We show that in this region methane is in situ produced while DMSP (dimethylsulfoniopropionate) released from sea ice may serve as a precursor for the methane formation. The methane production occured despite high oxygen concentrations in this water masses. As the metabolic activity (respiration) of unicellular organisms explains the presence of anaerobic conditions in the cellular environment we present a theoretical model which explains the maintenance of anaerobic conditions for methane formation inside bacterial cells, despite enhanced oxygen concentrations in the environment.

  15. Online Condition Monitoring of Bearings to Support Total Productive Maintenance in the Packaging Materials Industry

    PubMed Central

    Gligorijevic, Jovan; Gajic, Dragoljub; Brkovic, Aleksandar; Savic-Gajic, Ivana; Georgieva, Olga; Di Gennaro, Stefano

    2016-01-01

    The packaging materials industry has already recognized the importance of Total Productive Maintenance as a system of proactive techniques for improving equipment reliability. Bearing faults, which often occur gradually, represent one of the foremost causes of failures in the industry. Therefore, detection of their faults in an early stage is quite important to assure reliable and efficient operation. We present a new automated technique for early fault detection and diagnosis in rolling-element bearings based on vibration signal analysis. Following the wavelet decomposition of vibration signals into a few sub-bands of interest, the standard deviation of obtained wavelet coefficients is extracted as a representative feature. Then, the feature space dimension is optimally reduced to two using scatter matrices. In the reduced two-dimensional feature space the fault detection and diagnosis is carried out by quadratic classifiers. Accuracy of the technique has been tested on four classes of the recorded vibrations signals, i.e., normal, with the fault of inner race, outer race, and ball operation. The overall accuracy of 98.9% has been achieved. The new technique can be used to support maintenance decision-making processes and, thus, to increase reliability and efficiency in the industry by preventing unexpected faulty operation of bearings. PMID:26938541

  16. Effects of fermentation substrate conditions on corn-soy co-fermentation for fuel ethanol production.

    PubMed

    Yao, Linxing; Lee, Show-Ling; Wang, Tong; de Moura, Juliana M L N; Johnson, Lawrence A

    2012-09-01

    Soy skim, a protein-rich liquid co-product from the aqueous extraction of soybeans, was co-fermented with corn to produce ethanol. Effects of soy skim addition level, type of skim, corn particle size, water-to-solids ratio, and urea on co-fermentation were determined. The addition of 20-100% skim increased the fermentation rate by 18-27% and shortened the fermentation time by 5-7h without affecting ethanol yield. Finely ground corn or high water-to-solids ratio (≥ 3.0) in the mash gave higher fermentation rates, but did not increase the ethanol yield. When the water was completely replaced with soy skim, the addition of urea became unnecessary. Soy skim retentate that was concentrated by nanofiltration increased fermentation rate by 25%. The highest level of skim addition resulted in a finished beer with 16% solids, 47% protein (dwb) containing 3.6% lysine, and an ethanol yield of 39 g/100g dry corn.

  17. Online Condition Monitoring of Bearings to Support Total Productive Maintenance in the Packaging Materials Industry.

    PubMed

    Gligorijevic, Jovan; Gajic, Dragoljub; Brkovic, Aleksandar; Savic-Gajic, Ivana; Georgieva, Olga; Di Gennaro, Stefano

    2016-03-01

    The packaging materials industry has already recognized the importance of Total Productive Maintenance as a system of proactive techniques for improving equipment reliability. Bearing faults, which often occur gradually, represent one of the foremost causes of failures in the industry. Therefore, detection of their faults in an early stage is quite important to assure reliable and efficient operation. We present a new automated technique for early fault detection and diagnosis in rolling-element bearings based on vibration signal analysis. Following the wavelet decomposition of vibration signals into a few sub-bands of interest, the standard deviation of obtained wavelet coefficients is extracted as a representative feature. Then, the feature space dimension is optimally reduced to two using scatter matrices. In the reduced two-dimensional feature space the fault detection and diagnosis is carried out by quadratic classifiers. Accuracy of the technique has been tested on four classes of the recorded vibrations signals, i.e., normal, with the fault of inner race, outer race, and ball operation. The overall accuracy of 98.9% has been achieved. The new technique can be used to support maintenance decision-making processes and, thus, to increase reliability and efficiency in the industry by preventing unexpected faulty operation of bearings.

  18. Study of conditions of production of roquefortine and other metabolites of Penicillin roqueforti.

    PubMed Central

    Scott, P M; Kennedy, B P; Harwig, J; Blanchfield, B J

    1977-01-01

    Experiments to determine optimum yields of roquefortine, isofumigaclavine A, and PR toxin, metabolites from Penicillum roqueforti Thom, were performed. Four strains, isolated from blue cheese, and five liquid media were evaluated, although not all permutations were studied. Sucrose (15%)-yeast extract (2%) was the medium chosen for time-course studies at 25 and 15 degrees C using one favorable strain. At 25 degrees C, maximum estimated yields of roquefortine were about 100 mg/liter in the mycelium by 16 days, and no subsequent degradation of this alkaloid was observed. On the other hand, production of PR toxin in the medium peaked at 770 mg/liter at 21 days. At 15 degrees C, yields of roquefortine and PR toxin after 49 days were 60 to 70% of the maximum yields obtained at 25 degrees C. However, about three times more isofumigaclavine A (up to 11 mg/liter) was formed in the mycelium at 15 degrees C than at 25 degrees C. All four strains of P. roqueforti procedure both roquefortine and PR toxin on the sucrose-yeast extract medium at 25 degrees C; isofumigaclavine A was detected in all but one strain grown on this medium. PMID:848949

  19. Short rotation willow coppice in Wales: High production under adverse environmental conditions?

    SciTech Connect

    Slater, F.M.; Hodson, R.W.; Randerson, P.F.

    1995-11-01

    The production of short rotation willow coppice in central Wales was once regarded as a vain hope rather than a distinct possibility. Research at the University of Wales, Cardiff, Field Station at Llysdinam in mid-Wales over the last four years has proven that it is possible to produce a commercially viable crop on very poor upland soils and at an altitude of almost 300m provided that lime and inorganic fertilizers are added. Because of the national need to find new routes for the disposal of sewage sludge, its addition to short rotation coppice serves the dual purpose of disposal and nutrient addition. Over the first two years of the sludging experiment, it was found that the addition of 300 m{sup 3}ha{sup -1} of digested sewage sludge significantly increased crop weight, at least in the first year. Unfortunately, the crop yields did not reach those obtained using inorganic fertilizers at the same site but it is suggested that a repeated application regime might improve overall crop yield.

  20. Effect of housing conditions on production, carcass and meat quality traits of growing rabbits.

    PubMed

    Matics, Zs; Szendrő, Zs; Odermatt, M; Gerencsér, Zs; Nagy, I; Radnai, I; Dalle Zotte, A

    2014-01-01

    Production, carcass traits and meat quality of rabbits housed in cages or in different pens were compared. Rabbits (n=579) were sorted into 5 groups: C=cage (2 rabbits/cage); pen without platform: P11=9 rabbits/pen; P16=14 rabbits/pen; pen with platform: PW=wire net platform, 14 rabbits/pen; PD=platform with straw-litter, 14 rabbits/pen. Feed intake and average daily gain between 5 and 11 weeks, and body weight at 11 weeks were significantly higher in C rabbits than that of the mean of pen-housed groups, while the PD group had the lowest growth performance. C rabbits had the smallest hind part to reference carcass (P<0.001) and the largest percentage of perirenal and scapular fat (P<0.001). The meat/bone ratio was the largest in group C (P<0.05). Differences were recorded in a* value and lipid content of m. Longissimus dorsi. Rabbits housed in cages generally had the best performance whereas those housed in pens with platform exhibited the worst.

  1. Optimization pretreatment condition of sweet sorghum bagasse for production of second generation bioethanol

    NASA Astrophysics Data System (ADS)

    Sudiyani, Yanni; Waluyo, Joko; Triwahyuni, Eka; Burhani, Dian; Muryanto, Primandaru, Prasetyo; Riandy, Andika Putra; Sumardi, Novia

    2017-01-01

    The bagasse residue of Sweet sorghum (Sorghum bicolor (L.) Moench) consist of cellulose 39.48%; hemicellulose 16.56% and lignin 24.77% that can be converted to ethanol. Pretreatment is of great importance to ethanol yield. In this study, pretreatment process was conducted in a 5-liter reactor using NaOH 10% at various temperature 110, 130, 150°C and reaction time 10, 20, 30 minutes and optimizing severity parameter (log R0 between 1.3 - 2.9). The statistical analysis using two way anova showed that third variations of temperature give different effects significant on lignin, hemicellulose and cellulose content at 95% the confidence level. The optimum pretreatment of bagasse sorghum were obtained with Log R0 value between 2.4-2.9. High severity value in pretreatment condition reduce lignin almost 84-86%, maximum reducing lignin content was 86% obtained at temperature 150°C for 20 minutes reaction time and cellulose increased almost two times the initial content.

  2. Postmigratory body condition and ovarian steroid production predict breeding decisions by female gray-headed albatrosses.

    PubMed

    Crossin, Glenn T; Phillips, Richard A; Wynne-Edwards, Katherine E; Williams, Tony D

    2013-01-01

    Carryover effects have been documented in many migratory bird species, but we know little about the physiological mechanisms that mediate those effects. Here we show that the energetic, endocrine, and aerobic characteristics of postmigratory female gray-headed albatrosses (Thalassarche chrysostoma) can affect their decision to breed. All females in this study, whether breeding or not, were secreting ovarian steroids when they arrived at the breeding colony at Bird Island, South Georgia, which suggests that all were responding to seasonal cues. However, deferring, nonbreeding birds were characterized by a steroid profile of high progesterone (P4) and low testosterone (T), whereas breeding birds showed the opposite pattern. Deferring birds also had low body mass, hematocrit, and hemoglobin. These results suggest that postmigratory condition can influence patterns of ovarian steroidogenesis and that the maintenance of high P4 without subsequent conversion to T favors breeding deferral. Whereas breeding females normally convert P4 to T, which is a key deterministic step toward 17β-estradiol synthesis, vitellogenesis, and follicle development, deferring females did not make this conversion and instead maintained high levels of P4, perhaps due to inhibition of the hydroxylase-lyase enzyme complex, thus rendering them infertile for the current season. Results are discussed within the context of the biennial breeding system of this species, and comparisons with other biennially and annually breeding albatrosses are made.

  3. Changes in thermodynamic conditions of the Ahuachapán reservoir due to production and injection

    USGS Publications Warehouse

    Steingrimsson, B.; Aunzo, Z.; Bodvarsson, G.S.; Truesdell, A.; Cuellar, G.; Escobar, C.; Quintanilla, A.

    1991-01-01

    Since large-scale exploitation of the Ahuachapán reservoir began in 1975 large changes in the reservoir thermodynamic conditions have occurred. Drawdown of up to 15 bars and significant temperature changes have been observed in the wellfield. Temperatures have declined due to boiling in the reservoir in response to the pressure drawdown; localized and minor cooling due to reinjection of spent geothermal fluids have also been observed. There are indications of cold fluid influx deep into the reservoir from the west and north. Reservoir temperatures show that a significant amount of hot fluid recharge comes to the wellfield from the southeast, and temperatures also indicate that the recharge rate has increased with time as pressure declines in the reservoir. Chemical analyses of the produced fluids show that most wells are fed by a mixture of geothermal fluids and cooler, less-saline waters. The cold water inflow has increased due to exploitation, as demonstrated by decreased salinity of the produced fluids.

  4. Germ-cell culture conditions facilitate the production of mouse embryonic stem cells.

    PubMed

    Ramos-Ibeas, Priscila; Pericuesta, Eva; Fernández-González, Raúl; Gutiérrez-Adán, Alfonso; Ramírez, Miguel Ángel

    2014-09-01

    The derivation of embryonic stem-cell (ESC) lines from blastocysts is a very inefficient process. Murine ESCs are thought to arise from epiblast cells that are already predisposed to a primordial-germ-cell fate. During the process of ESC derivation from B6D2 F1 hybrid mice, if we first culture the embryo from the two-cell stage in medium supplemented with LIF, we improve the quality of the blastocyst. When the blastocyst is then cultured in a germ-line stem-cell culture medium (GSCm), we are able to more efficiently (28.3%) obtain quality ESC lines that have a normal karyotype, proper degree of chimerism, and exhibit germ-line transmission when microinjected into blastocysts. Although germ-cell-specific genes were expressed in all culture medium conditions, GSCm did not shift the transcriptome towards germ-cell specification. A correlation was further observed between ESC derivation efficiency and the expression of some imprinted genes and retrotransposable elements. In conclusion, the combination of LIF supplementation followed by culture in GSCm establishes a higher efficiency method for ESC derivation.

  5. Effect of coal liquefaction conditions on the composition of the product oil

    SciTech Connect

    Karaca, H.

    2006-12-15

    Two methods, catalyst physically mixing method (method I) and catalyst impregnation method (method II) were employed for Beypazari and Tuncbilek lignites liquefaction. Fe{sub 2}O{sub 3} and Mo(CO){sub 6} were used as the catalysts. Oils obtained at the end of the catalytic coal liquefaction were qualitatively analyzed by gas chromatography (GC). With solvent/coal ratio increase, compounds with straight chain and high molecular weight were formed. Likewise, as the reaction time and catalyst concentration were increased, the number and the intensity of the compounds in the oils increased partially. Due to the increase in the reaction time, temperature and catalyst concentration, the oils were enriched in straight chain alkanes and aromatic polycyclic compounds. However, alkanes with straight chain were reduced by the effect of pyrolysis at temperatures over 400{sup o}C. Retention times of the compounds obtained by method II were higher than those of the compounds obtained by method I. Respectively, the compounds in the oils obtained by method II were found to have been composed by high quantities of high molecular straight chain alkanes and aromatic polycyclic compounds. Our data gave us ground to presume that the oils from both lignites were composed by straight chain alkanes and aromatic polycyclic compounds (tetralin, naphthalene and their derivatives, phenols, xylenols, biphenyl, naphthols, etc.). The oil compositions were strongly influenced by the liquefaction conditions.

  6. Influence of different treatment condition on biopolymer yield production for coagulation-flocculation process

    NASA Astrophysics Data System (ADS)

    Aisyah, I. S.; Murshed, M. F.; Norli, I.

    2016-06-01

    Two different agro wastes (banana pseudostem and rice straw) were utilized in order to extract biopolymer (pectin) known as coagulant aid in water and wastewater treatment. Factors such as pH, temperature and time were chosen due to the critical role in hot acid extraction process. The yield of biopolymer extraction from banana pseudostem was found to be higher at 28% meanwhile only 18% from rice straw was manage to produce from the dry weight 10 g, respectively. It was found that extraction temperature and extraction time were the most important factors influencing the biopolymer yield which increased with temperature and time or decreasing pH. Based on two level factorial design, the same condition of pH 1.5, temperature 90 oC and 4 hours extraction time can produce high amount of extracted biopolymer. Fourier Transform Infrared Spectroscopy (FTIR) was used to detect the existence of functional group which helps in the coagulation-flocculation process. Result indicates a similar functional group of biopolymer were detected for both difference agro wastes.

  7. Hydrothermal liquefaction of oil mill wastewater for bio-oil production in subcritical conditions.

    PubMed

    Hadhoum, Loubna; Balistrou, Mourad; Burnens, Gaëtan; Loubar, Khaled; Tazerout, Mohand

    2016-10-01

    The main purpose of this study is to investigate the direct hydrothermal liquefaction of oil mill wastewater (OMWW). Experiments were carried out at different temperatures (240-300°C), water contents (58-88wt.%) and reaction times (15-45min). Results show that the highest bio-oil yield was about 58wt.%, resulting in a higher heating value of 38MJ/kg. This was conducted at the following optimal conditions: water content 88wt.%, a temperature of 280°C, and 30min as reaction time. To put bio-oil into wide application, the various physical and chemical characteristics were determined. A detailed chemical composition analysis of bio-oil was performed by gas chromatography-mass spectrometry (GC-MS) coupled with a flame ionization detector (FID). The dominant compounds were identified by using NIST library. Analyses show that the bio-oil contains mainly oleic acid, hexadecanoic acid, fatty acid methyl ester, fatty acid ethyl ester, amino acid derived compounds and phenolic compounds.

  8. Products of the Strecker Synthesis as Indicators of Parent Body Conditions of the Murchison Meteorite

    NASA Technical Reports Server (NTRS)

    Lerner, Narcinda R.; Cooper, George W.; Chang, Sherwood (Technical Monitor)

    1996-01-01

    The Strecker synthesis, R2C=O + HCN + NH3 yields R2C(NH2)CN + H2O yields R2C(NH2)CO2H has been proposed as a source of amino acids in meteorites. The detection of carbonlyl compounds, the precursors of the amino acids in the Strecker synthesis, and a-hydroxy acids, important by-products of the Strecker synthesis, in the Murchison meteorite supports this conjecture. However, the following observations raise questions about the Strecker synthesis as the source of a-amino and a-hydroxy acids in Murchison: a) Imino acetic acids are also important by-products of the Strecker synthesis and have not been reported in Murchison. b) a-aminisobutyric acid (AIBA) is one of the most abundant amino acids in Murchison but the Strecker synthesis conducted at room temperature produced only small amounts of AIBA relative to other amino acids. c) If the a-amino and a-hydroxy acids observed in Murchison arose from a common precursor this ought to be reflected in their relative abundances, but the straight chain a-hydroxy acids appeared to be relatively abundant compared with the analogous a-amino acids. In order to address question a) we have examined a non-hydrolyzed aqueous extract of the Murchison meteorite. Imino di acetic acid, Imino propionic acetic acid and Imino butyric acetic acid (both isomers) have been identified in this fraction. The relative abundances of amino acids and imino acetic acids in this fraction are consistent with a Strecker synthesis at low temperature (263 K) as a origin of both the amino acids and the imino acetic acids found on Murchison. To deal with questions b) and c) we have carried out laboratory simulations of the Strecker synthesis. The starting concentrations for carbonlyl compounds used were based on estimates of what these concentrations might have been on the parent body. for the carbonyl compounds this estimate was determined by the amount of carbonyl compound found on Murchison plus the amounts of the corresponding amino acid and hydroxy acid

  9. Use of Response Surface Methodology to Optimize Culture Conditions for Hydrogen Production by an Anaerobic Bacterial Strain from Soluble Starch

    NASA Astrophysics Data System (ADS)

    Kieu, Hoa Thi Quynh; Nguyen, Yen Thi; Dang, Yen Thi; Nguyen, Binh Thanh

    2016-05-01

    Biohydrogen is a clean source of energy that produces no harmful byproducts during combustion, being a potential sustainable energy carrier for the future. Therefore, biohydrogen produced by anaerobic bacteria via dark fermentation has attracted attention worldwide as a renewable energy source. However, the hydrogen production capability of these bacteria depends on major factors such as substrate, iron-containing hydrogenase, reduction agent, pH, and temperature. In this study, the response surface methodology (RSM) with central composite design (CCD) was employed to improve the hydrogen production by an anaerobic bacterial strain isolated from animal waste in Phu Linh, Soc Son, Vietnam (PL strain). The hydrogen production process was investigated as a function of three critical factors: soluble starch concentration (8 g L-1 to 12 g L-1), ferrous iron concentration (100 mg L-1 to 200 mg L-1), and l-cysteine concentration (300 mg L-1 to 500 mg L-1). RSM analysis showed that all three factors significantly influenced hydrogen production. Among them, the ferrous iron concentration presented the greatest influence. The optimum hydrogen concentration of 1030 mL L-1 medium was obtained with 10 g L-1 soluble starch, 150 mg L-1 ferrous iron, and 400 mg L-1 l-cysteine after 48 h of anaerobic fermentation. The hydrogen concentration produced by the PL strain was doubled after using RSM. The obtained results indicate that RSM with CCD can be used as a technique to optimize culture conditions for enhancement of hydrogen production by the selected anaerobic bacterial strain. Hydrogen production from low-cost organic substrates such as soluble starch using anaerobic fermentation methods may be one of the most promising approaches.

  10. Effect of vitamin D2- and D3-enriched diets on egg vitamin D content, production, and bird condition during an entire production period.

    PubMed

    Mattila, P; Valaja, J; Rossow, L; Venäläinen, E; Tupasela, T

    2004-03-01

    Vitamin D insufficiency during winter is a common problem for humans in Europe. One way to ease this problem is through the production of vitamin D-fortified eggs. To evaluate such a production process, the effects of vitamin D supplementation during an entire production period were assessed. Transfer of vitamin D3 (cholecalciferol) and vitamin D2 (ergocalciferol) from the diet to egg yolks was measured using 2 different levels of both vitamins (6,000 and 15,000 IU/kg feed) relative to a control treatment (2,500 IU vitamin D3/kg feed). During the experiment, production parameters, egg quality (egg weight, Haugh unit, specific gravity, eggshell fracture force, and Ca content of eggshell), and the condition of hens were monitored. At the end of the experiment histopathological tests were performed. Supplementing diets with vitamin D3 increased egg yolk vitamin D content more effectively than did supplementation with vitamin D2. For groups of hens receiving 6,000 or 15,000 IU of vitamin D3/kg feed, egg yolk vitamin D3 content ranged from 9.1 to 13.6 and from 25.3 to 33.7 microg/100 g, respectively. Corresponding values for birds fed vitamin D2 were 4.7 to 7.0 and 13.3 to 21.0 microg/100 g. Both supplements enhanced vitamin D3 content of egg yolks relative to the control diet (2.5 to 5.0 microg/100 g of egg yolk). Vitamin D supplements had no effects on production parameters compared with the control diet. However, especially vitamin D3 improved bone strength (P < 0.05). Autopsy at the end of the experiment indicated no detrimental accumulation of calcium in the kidneys, liver, heart, muscles, or lungs.

  11. Enhanced succinic acid production under acidic conditions by introduction of glutamate decarboxylase system in E. coli AFP111.

    PubMed

    Wu, Mingke; Li, Xiaozhan; Guo, Shunfeng; Lemma, Wubliker Dessie; Zhang, Wenming; Ma, Jiangfeng; Jia, Honghua; Wu, Hao; Jiang, Min; Ouyang, Pingkai

    2017-04-01

    Biological synthesis of succinic acid at low pH values was favored since it not only decreased investment cost but also simplified downstream purification process. In this study, the feasibility of using glutamate decarboxylase system to improve succinic acid production of Escherichia coli AFP111, a succinate-producing candidate with mutations in pfl, ldhA, and ptsG, under acidic conditions was investigated. By overexpressing gadBC operon in AFP111, a recombinant named as BA201 (AFP111/pMD19T-gadBC) was constructed. Fermentation at pH 5.6 showed that 30 g L(-1) glucose was consumed and 26.58 g L(-1) succinic acid was produced by BA201, which was 1.22- and 1.32-fold higher than that by the control BA200 (AFP111/pMD19T) containing the empty vector. Analysis of intracellular enzymes activities and ATP concentrations revealed that the activities of key enzymes involved in glucose uptake and products synthesis and intracellular ATP levels were all increased after overexpression of gadBC which were benefit for cell metabolism under weak acidic conditions. To further improve the succinic acid titer by recombinant BA201 at pH 5.6, the extracellular glutamate concentration was optimized and the final succinic acid titer increased 20.4% to 32.01 g L(-1). Besides, the fermentation time was prolonged by repetitive fermentation and additional 15.78 g L(-1) succinic acid was produced by recovering cells into fresh medium. The results here demonstrated a potential strategy of overexpressing gadBC for increased succinic acid production of E. coli AFP111 under weak acidic conditions.

  12. Pilot-scale production of cloudy juice from low-quality pear fruit under low-oxygen conditions.

    PubMed

    De Paepe, Domien; Coudijzer, Katleen; Noten, Bart; Valkenborg, Dirk; Servaes, Kelly; De Loose, Marc; Diels, Ludo; Voorspoels, Stefan; Van Droogenbroeck, Bart

    2015-04-15

    In this study, a process for the production of premium quality yellowish, cloudy pear juice from low-quality fruit under low-oxygen conditions was developed. The production process consisted of (1) shredding, (2) pressing with spiral-filter technology including a vacuumised extraction cell, (3) holding in an inert gas buffer tank, (4) pasteurisation, (5) and refrigerated storage. First, the system parameters of a spiral-filter press were optimised with the aim of producing a yellowish, cloudy pear juice with the highest possible juice yield. A maximum juice yield of 78% could be obtained. Enzymatic browning during juice extraction could be suppressed as a result of the fast processing and the low air (oxygen) levels in the extraction chamber of the spiral-filter press. Furthermore, we observed that instantaneous pasteurisation at 107 °C for 6s, subsequent aluminium laminate packaging and cold storage had only a minimum effect on the phenolic composition.

  13. On the conditions of mafic-felsic magmas mixing and its bearing on andesite production in the crust

    NASA Astrophysics Data System (ADS)

    Scaillet, Bruno; Laumonier, Mickael; Pichavant, Michel; Champallier, Rémi; Andujar, Joan; Arbaret, Laurent

    2015-04-01

    Mixing between magmas is thought to affect a variety of processes, from the growth of continental crust to the triggering of volcanic eruptions, but its thermophysical viability remains unclear. Here, using high pressure mixing experiments, we show that mixing only occurs at low viscosity contrast, when the touching crystal network of the more viscous magma breaks down. Using thermal calculations, we show that hybridization requires injection of high proportions of the replenishing magma during short periods. The incremental growth of crustal reservoirs limits the production of hybrids to the waning stage of pluton assembly and to small portions of it. Large scale mixing appears to be more efficient at lower crustal conditions, but requires higher proportions of mafic melt, hence produces hybrids more mafic than in shallow reservoirs. Altogether, hybrid arc magmas correspond to periods of enhanced magma production at depth.

  14. Simultaneous production of nisin and lactic acid from cheese whey: optimization of fermentation conditions through statistically based experimental designs.

    PubMed

    Liu, Chuanbin; Liu, Yan; Liao, Wei; Wen, Zhiyou; Chen, Shulin

    2004-01-01

    A biorefinery process that utilizes cheese whey as substrate to simultaneously produce nisin, a natural food preservative, and lactic acid, a raw material for biopolymer production, was studied. The conditions for nisin biosynthesis and lactic acid coproduction by Lactococcus lactis subsp. lactis (ATCC 11454) in a whey-based medium were optimized using statistically based experimental designs. A Plackett-Burman design was applied to screen seven parameters for significant factors for the production of nisin and lactic acid. Nutrient supplements, including yeast extract, MgSO4, and KH2PO4, were found to be the significant factors affecting nisin and lactic acid formation. As a follow-up, a central-composite design was applied to optimize these factors. Second-order polynomial models were developed to quantify the relationship between nisin and lactic acid production and the variables. The optimal values of these variables were also determined. Finally, a verification experiment was performed to confirm the optimal values that were predicted by the models. The experimented results agreed well with the model prediction, giving a similar production of 19.3 g/L of lactic acid and 92.9 mg/L of nisin.

  15. Behavior of Listeria monocytogenes in Sliced Ready-to-Eat Meat Products Packaged under Vacuum or Modified Atmosphere Conditions.

    PubMed

    Menéndez, Rosa Ana; Rendueles, Eugenia; Sanz, José Javier; Capita, Rosa; García-Fernández, Camino

    2015-10-01

    The objective of this research was to determine the behavior of Listeria monocytogenes in three types of sliced ready-to-eat meat products packaged under vacuum or modified atmosphere conditions and stored at three temperatures. Slices of about 25 g of chorizo (a fermented dry pork sausage), jamón (cured ham), and cecina (a salted, dried beef product) were inoculated with L. monocytogenes NCTC 11994. Slices were packaged in a vacuum or in a modified atmosphere (20% CO2, 80% N2). After packaging, samples were stored for 6 months at three temperatures: 3, 11, or 20°C. Microbiological analyses were performed after 0, 1, 7, 15, 30, 45, 90, and 180 days of storage. The type of meat product, the type of packaging, the temperature, and the day of storage all influenced microbial levels (P < 0.001). L. monocytogenes counts decreased throughout the course of storage in samples of chorizo (quick decrease) and jamón (gradual decrease). In cecina samples, counts of L. monocytogenes increased from day 0 to day 1 of storage and then remained constant until day 90 of the study. These results may be of use for enhancing the safety of these ready-to-eat meat product types. Additional evaluation of the behavior of L. monocytogenes in cecina is needed.

  16. Biomass and lipid production from Nannochloropsis oculata growth in raceway ponds operated in sequential batch mode under greenhouse conditions.

    PubMed

    Millán-Oropeza, Aarón; Fernández-Linares, Luis

    2016-06-06

    The effect of sequential batch cultures of the marine microalgae Nannochloropsis oculata on lipid and biomass production was studied in 200-L raceway ponds for 167 days (nine harvesting cycles) during winter and spring seasons under greenhouse conditions. The highest biomass concentration and productivity were 1.2 g/L and 49.8 mg/L/day on days 73 (5th cycle) and 167 (9th cycle), respectively. The overall interval of lipid production was between 131 and 530 mg/L. Despite the daily and seasonal variations of light irradiance (0-1099 μmol photon/m(2) s), greenhouse temperature (2.1-50.7 °C), and culture temperature (12.5-31.4 °C), ANOVA analysis showed no statistical difference (p value > 0.01) on the fatty acid methyl ester (FAMES) composition over the nine harvesting cycles evaluated. The most abundant FAMES were palmitic (C16:0), stearic (C18:0) and palmitoleic (C16:1∆9) acids with 37.1, 28.6, and 8.4 %, respectively. The sequential batch cultures of N. oculata in raceway ponds showed an increasing biomass production in each new cycle while keeping the quality of the fatty acid mixture under daily and seasonal variations of light irradiance and temperature.

  17. Optimization of conditions for hydrogen production from anodized TiO2 nanotube-based photoelectrochemical cells.

    PubMed

    Hong, Won Sung; Park, Jong Hyeok; Han, Gui Young

    2009-12-01

    The photocatalytic splitting of water into H2 and O2 using semiconductors has received much attention, especially in terms of its potential application to the direct production of H2 as a clean energy source. In this study, the H2 yield increased with increasing reactor temperature, but the TiO2 nanotube arrays collapsed after prolonged operation at temperatures over 75 degrees C. We found that aqueous Na2SO3 reagent was the best hole scavenger of the different aqueous solutions examined. Using the optimum temperatures and electrolytes, we conducted an experiment to produce H2 from solutions with different pH values, and found that acidic conditions were better in terms of the amount of H2 produced. The results obtained allowed us to identify the optimal temperature, electrolyte and pH conditions required to produce H2 by photochemically splitting water.

  18. Fine-tuning of process conditions to improve product uniformity of polystyrene particles used for wind tunnel velocimetry

    NASA Technical Reports Server (NTRS)

    Ray, Asit K.

    1990-01-01

    Monodisperse polymer particles (having uniform diameter) were used for the last two decades in physical, biological, and chemical sciences. In NASA Langley Research Center monodisperse polystyrene particles are used in wind tunnel laser velocimeters. These polystyrene (PS) particles in latex form were formulated at the Engineering Laboratory of FENGD using emulsion-free emulsion polymerization. Monodisperse PS latices particles having different particle diameters were formulated and useful experimental data involving effects of process conditions on particle size were accumulated. However, similar process conditions and chemical recipes for polymerization of styrene monomer have often yielded monodisperse particles having varying diameters. The purpose was to improve the PS latex product uniformity by fine-tuning the process parameters based on the knowledge of suspension and emulsion polymerization.

  19. Effects of Restricted Launch Conditions for the Enhancement of Bandwidth-Distance Product of Multimode Fiber Links

    NASA Technical Reports Server (NTRS)

    Andrawis, Alfred S.

    2000-01-01

    Several techniques had been proposed to enhance multimode fiber bandwidth-distance product. Single mode-to-multimode offset launch condition technique had been experimented with at Kennedy Space Center. Significant enhancement in multimode fiber link bandwidth is achieved using this technique. It is found that close to three-fold bandwidth enhancement can be achieved compared to standard zero offset launch technique. Moreover, significant reduction in modal noise has been observed as a function of offset launch displacement. However, significant reduction in the overall signal-to-noise ratio is also observed due to signal attenuation due to mode radiation from fiber core to its cladding.

  20. Excess Heat Production in Pd/D during Periodic Pulse Discharge Current in Various Conditions

    NASA Astrophysics Data System (ADS)

    Karabut, A. B.

    2006-02-01

    Experimental data from low-energy nuclear reactions (LERN) in condensed media are presented. The nuclear reactions products were found in solid cathode media used in glow discharge. Apparently, the nuclear reactions were initiated when bombarding the cathode surface by plasma ions with the energy of 1.0-2.0 keV. Excess heat from a high current glow discharge reaction in D2, Xe, and Kr using cathodes already charged with preliminary deuterium-charged Pd and Ti cathode samples are given. Excess heat up to 10-15 W and efficiency up to 130% was recorded under the experiments for Pd cathode samples in D2 discharge. Excess heat up to 5 W and efficiency up to 150% was recorded for Pd cathodes that were charged with deuterium before the run, in Xe and Kr discharges. At the same time excess heat was not observed for pure Pd cathode samples in Xe and Kr discharges. The formation of impurity nuclides (7Li, 13C, 15N, 20Ne, 29Si, 44Ca, 48Ca, 56Fe, 57Fe, 59Co, 64Zn, 66Zn, 75As, 107Ag, 109Ag, 110Cg, 111Cg, 112Cg, 114Cg, and 115In) with the efficiency up to 1013 at./s was recorded. The isotopic ratios of these new nuclides ware quite different from the natural ratios. Soft X-ray radiation from the solid-state cathode with the intensity up to 0.01 Gy/s was recorded in experiments with discharges in H2, D2, Ar, Xe, and Kr. The X-ray radiation was observed in bursts of up to 106 photons, with up to 105 bursts per second while the discharge was formed and within 100 ms after turning off the discharge current. The results of the X-ray radiation registration showed that the exited energy levels have a lifetime up to 100 ms or more, and the energy of 1.2-2.5 keV. A possible mechanism for producing excess heat and nuclear transmutation reactions in the solid medium with the exited energy levels is considered.

  1. Power Delivery from an Actual Thermoelectric Generation System

    NASA Astrophysics Data System (ADS)

    Kaibe, Hiromasa; Kajihara, Takeshi; Nagano, Kouji; Makino, Kazuya; Hachiuma, Hirokuni; Natsuume, Daisuke

    2014-06-01

    Similar to photovoltaic (PV) and fuel cells, thermoelectric generators (TEGs) supply direct-current (DC) power, essentially requiring DC/alternating current (AC) conversion for delivery as electricity into the grid network. Use of PVs is already well established through power conditioning systems (PCSs) that enable DC/AC conversion with maximum-power-point tracking, which enables commercial use by customers. From the economic, legal, and regulatory perspectives, a commercial PCS for PVs should also be available for TEGs, preferably as is or with just simple adjustment. Herein, we report use of a PV PCS with an actual TEG. The results are analyzed, and proper application for TEGs is proposed.

  2. Two Methods for Retrieving UV Index for All Cloud Conditions from Sky Imager Products or Total SW Radiation Measurements

    SciTech Connect

    Badosa, Jordi; Calbo, J.; McKenzie, R. L.; Liley, Ben; Gonzalez, J. A.; Forgan, B. W.; Long, Charles N.

    2014-07-01

    In the present study, we assess the cloud effects on UV Index (UVI) and total solar radiation (TR) as a function of cloud cover estimations and sunny conditions (from sky imaging products) as well as of solar zenith angle (SZA). These analyses are undertaken for a southern-hemisphere mid-latitude site where a 10-years dataset is available. It is confirmed that clouds reduce TR more than UV, in particular for obscured Sun conditions, low cloud fraction (< 60%) and large SZA (> 60º). Similarly, clouds enhance TR more than UV, mainly for visible Sun conditions, large cloud fraction and large SZA. Two methods to estimate UVI are developed: 1) from sky imaging cloud cover and sunny conditions, and 2) from TR measurements. Both methods may be used in practical operational applications, although Method 2 shows overall the best performance, since TR allows accounting for cloud optical properties. The mean absolute differences of Method 2 estimations with respect to measured values are 0.17 UVI units (for 1-minute data) and 0.79 Standard Erythemal Dose (SED) units (for daily integrations). Method 1 shows less accurate results but it is still suitable to estimate UVI: mean absolute differences are 0.37 UVI units and 1.6 SED.

  3. Light intensity and production parameters of phytocenoses cultivated on soil-like substrate under controled environment conditions

    NASA Astrophysics Data System (ADS)

    Tikhomirov, A.; Ushakova, S.; Gribovskaya, I.; Tirranen, L.; Manukovsky, N.; Zolotukhin, I.

    To investigate feasibility of enhancing closedness in a new generation of biological life support systems (LSS) to involve the inedible phytomass into intrasystem mass exchange the vermicomposting method we have chosen made possible to produce soil-like substrate (SLS) suitable for growing plants. However, to use the SLS in life support systems call for investigation of its physical, chemical and other parameters. Of special importance among them is the capacity of SLS to provide the LSS photosynthesizing component with required mineral elements in selected cultivation conditions. In this connection the aim of this work was to study opportunities of enhancing pr4oduction activity of wheat and radish cenoses by varying the intensity of photosynthetically active radiation (PAR) without decreasing the harvest index. Increase of light intensity to 250 W/m 2 PAR decreased the intensity of visible photosynthesis of wheat cenosi and slightly increased visible photosynthesis of radish cenosis as compared to 200 W/m 2 PAR. The maximum productivity of wheat cenosis both total and seeds corresponded to the irradiance of 200 W/m 2 PAR. The light intensity of 250 W/m2 PAR decreased productivity of wheat plants and had no significant effect of the productivity of radish cenosis as compared to 200 W/m 2 PAR. Qualitative and quantitative composition of microflora of the watering solution and SLS was determined by the condition of plants, development phase and PAR intensity. By the end of wheat vegetation under 250 W/m 2 there were an order more bacteria of the colon rod group and phytopathogenic bacteria in the watering solution and SLS than under other illumination conditions. Investigation of the mineral composition of SLS and the watering solution demonstrated that one of the reasons of inadequate response of the cenosis under study to elevated PAR intensity may be deficiency of accessible forms of some mineral elements, e.g. nitrogen. The above said materials evidence that

  4. Explosive Percolation Transition is Actually Continuous

    NASA Astrophysics Data System (ADS)

    da Costa, R. A.; Dorogovtsev, S. N.; Goltsev, A. V.; Mendes, J. F. F.

    2010-12-01

    Recently a discontinuous percolation transition was reported in a new “explosive percolation” problem for irreversible systems [D. Achlioptas, R. M. D’Souza, and J. Spencer, Science 323, 1453 (2009)SCIEAS0036-807510.1126/science.1167782] in striking contrast to ordinary percolation. We consider a representative model which shows that the explosive percolation transition is actually a continuous, second order phase transition though with a uniquely small critical exponent of the percolation cluster size. We describe the unusual scaling properties of this transition and find its critical exponents and dimensions.

  5. Neoadjuvant Treatment in Rectal Cancer: Actual Status

    PubMed Central

    Garajová, Ingrid; Di Girolamo, Stefania; de Rosa, Francesco; Corbelli, Jody; Agostini, Valentina; Biasco, Guido; Brandi, Giovanni

    2011-01-01

    Neoadjuvant (preoperative) concomitant chemoradiotherapy (CRT) has become a standard treatment of locally advanced rectal adenocarcinomas. The clinical stages II (cT3-4, N0, M0) and III (cT1-4, N+, M0) according to International Union Against Cancer (IUCC) are concerned. It can reduce tumor volume and subsequently lead to an increase in complete resections (R0 resections), shows less toxicity, and improves local control rate. The aim of this review is to summarize actual approaches, main problems, and discrepancies in the treatment of locally advanced rectal adenocarcinomas. PMID:22295206

  6. Air resistance measurements on actual airplane parts

    NASA Technical Reports Server (NTRS)

    Weiselsberger, C

    1923-01-01

    For the calculation of the parasite resistance of an airplane, a knowledge of the resistance of the individual structural and accessory parts is necessary. The most reliable basis for this is given by tests with actual airplane parts at airspeeds which occur in practice. The data given here relate to the landing gear of a Siemanms-Schuckert DI airplane; the landing gear of a 'Luftfahrzeug-Gesellschaft' airplane (type Roland Dlla); landing gear of a 'Flugzeugbau Friedrichshafen' G airplane; a machine gun, and the exhaust manifold of a 269 HP engine.

  7. Product Characteristics, Market Conditions and Contract Type: U.S. Department of Defense Use of Fixed-Price and Cost Reimbursement Contracts

    DTIC Science & Technology

    2015-07-27

    SERIES Product Characteristics, Market Conditions and Contract Type: U.S. Department of Defense Use of Fixed-Price and Cost Reimbursement Contracts... market conditions on the use of fixed-price and cost reimbursement contracts by the Department of Defense. When the product is easy to specify...easy to produce, and there is a thick market of buyers and sellers, fixed-price contracts are more likely. When the product is difficult to produce

  8. Production of Secondary Metabolites in Extreme Environments: Food- and Airborne Wallemia spp. Produce Toxic Metabolites at Hypersaline Conditions

    PubMed Central

    Frisvad, Jens C.; Kocev, Dragi; Džeroski, Sašo; Gunde-Cimerman, Nina

    2016-01-01

    The food- and airborne fungal genus Wallemia comprises seven xerophilic and halophilic species: W. sebi, W. mellicola, W. canadensis, W. tropicalis, W. muriae, W. hederae and W. ichthyophaga. All listed species are adapted to low water activity and can contaminate food preserved with high amounts of salt or sugar. In relation to food safety, the effect of high salt and sugar concentrations on the production of secondary metabolites by this toxigenic fungus was investigated. The secondary metabolite profiles of 30 strains of the listed species were examined using general growth media, known to support the production of secondary metabolites, supplemented with different concentrations of NaCl, glucose and MgCl2. In more than two hundred extracts approximately one hundred different compounds were detected using high-performance liquid chromatography-diode array detection (HPLC-DAD). Although the genome data analysis of W. mellicola (previously W. sebi sensu lato) and W. ichthyophaga revealed a low number of secondary metabolites clusters, a substantial number of secondary metabolites were detected at different conditions. Machine learning analysis of the obtained dataset showed that NaCl has higher influence on the production of secondary metabolites than other tested solutes. Mass spectrometric analysis of selected extracts revealed that NaCl in the medium affects the production of some compounds with substantial biological activities (wallimidione, walleminol, walleminone, UCA 1064-A and UCA 1064-B). In particular an increase in NaCl concentration from 5% to 15% in the growth media increased the production of the toxic metabolites wallimidione, walleminol and walleminone. PMID:28036382

  9. Effects of Drying Condition and Binding Agent on the Quality Characteristics of Ground Dried-Pork Meat Products

    PubMed Central

    Kim, Hee-Ju; Jang, Aera

    2015-01-01

    The purpose of this study was to investigate the influence of processing conditions (temperature and time) and binding agent types (glutinous rice flour, potato starch, bean flour, and acorn flour) on the physicochemical and sensory characteristics of ground dried-pork meat product. For this purpose, ground dried-pork meat product was produced by adding several binding agents at different drying temperatures and times. The drying time affected moisture content and water activity in all drying temperature. However, under the similar drying conditions, the extent of drying varied depending on the type of binding agents. The results of sensory evaluation for texture degree and overall acceptability indicated the following: overall, higher drying temperatures and longer drying time heightened the degree of texture, and the overall acceptability varied depending on binding agent type. Physicochemical and sensory characteristics were analyzed to determine any possible correlation. The results revealed a high correlation between moisture content, water activity, shear forces, and sensory evaluation (p<0.01). However, there was no correlation with respect to overall acceptability. PMID:26761886

  10. Ecological and evolutionary conditions for fruit abortion to regulate pollinating seed-eaters and increase plant production

    USGS Publications Warehouse

    Holland, J. Nathaniel; DeAngelis, Donald L.

    2002-01-01

    Coevolved mutualisms, such as those between senita cacti, yuccas, and their respective obligate pollinators, benefit both species involved in the interaction. However, in these pollination mutualisms the pollinator's larvae impose a cost on plants through consumption of developing seeds and fruit. The effects of pollinators on benefits and costs are expected to vary with the abundance of pollinators, because large population sizes result in more eggs and larval seed-eaters. Here, we develop the hypothesis that fruit abortion, which is common in yucca, senita, and plants in general, could in some cases have the function of limiting pollinator abundance and, thereby, increasing fruit production. Using a general steady-state model of fruit production and pollinator dynamics, we demonstrate that plants involved in pollinating seed-eater mutualisms can increase their fecundity by randomly aborting fruit. We show that the ecological conditions under which fruit abortion can improve plants fecundity are not unusual. They are best met when the plant is long-lived, the population dynamics of the pollinator are much faster than those of the plant, the loss of one fruit via abortion kills a larva that would have the expectation of destroying more than one fruit through its future egg laying as an adult moth, and the effects of fruit abortion on pollinator abundance are spatially localized. We then use the approach of adaptive dynamics to find conditions under which a fruit abortion strategy based on regulating the pollinator population could feasibly evolve in this type of plant–pollinator interaction.

  11. Impact of Cooking, Storage, and Reheating Conditions on the Formation of Cholesterol Oxidation Products in Pork Loin

    PubMed Central

    Min, Joong-Seok; Khan, Muhammad I.; Lee, Sang-Ok; Yim, Dong Gyun; Seol, Kuk Hwan; Lee, Mooha; Jo, Cheorun

    2016-01-01

    This study investigates the effect of cooking, storage, and reheating conditions on the formation of cholesterol oxidation products (COPs) in pork loin. Samples of pork loin procured 24 h postmortem were initially processed and assessed for total fat and cholesterol content. The cooking methods evaluated were pan roasting, steaming, oven grilling, and microwaving. Cooked pork loin samples were stored at 4℃ and reheated after 3 and 6 d of storage using the original method of preparation or alternately, microwaving. Fat content increased significantly with cooking as a result of the loss in moisture but cholesterol content remained unchanged. Pan roasting and microwave cooking caused a significantly higher production of COPs, as with the process of reheating using microwave, pan roasting, and oven grilling methods. The major COPs found in pork loin were cholestanetriol, 20-hydroxycholesterol, and 25-hydroxycholesterol, whose concentrations varied according to the different cooking and reheating methods used. Moreover, the aerobic storage of cooked pork loin under a refrigerated condition also increased the formation of cholesterol oxides on reheating. PMID:27499660

  12. Optimization of Fermentation Conditions for Recombinant Human Interferon Beta Production by Escherichia coli Using the Response Surface Methodology

    PubMed Central

    Morowvat, Mohammad Hossein; Babaeipour, Valiollah; Rajabi Memari, Hamid; Vahidi, Hossein

    2015-01-01

    Background: The periplasmic overexpression of recombinant human interferon beta (rhIFN-β)-1b using a synthetic gene in Escherichia coli BL21 (DE3) was optimized in shake flasks using Response Surface Methodology (RSM) based on the Box-Behnken Design (BBD). Objectives: This study aimed to predict and develop the optimal fermentation conditions for periplasmic expression of rhIFN-β-1b in shake flasks whilst keeping the acetate excretion as the lowest amount and exploit the best results condition for rhIFN-β in a bench top bioreactor. Materials and Methods: The process variables studied were the concentration of glucose as carbon source, cell density prior the induction (OD 600 nm) and induction temperature. Ultimately, a three-factor three-level BBD was employed during the optimization process. The rhIFN-β production and the acetate excretion served as the evaluated responses. Results: The proposed optimum fermentation condition consisted of 7.81 g L-1 glucose, OD 600 nm prior induction 1.66 and induction temperature of 30.27°C. The model prediction of 0.267 g L-1 of rhIFN-β and 0.961 g L-1 of acetate at the optimum conditions was verified experimentally as 0.255 g L-1 and 0.981 g L-1 of acetate. This agreement between the predicted and observed values confirmed the precision of the applied method to predict the optimum conditions. Conclusions: It can be concluded that the RSM is an effective method for the optimization of recombinant protein expression using synthetic genes in E. coli. PMID:26034535

  13. Thermoregulation during prolonged actual and laboratory-simulated bicycling.

    PubMed

    Brown, S L; Banister, E W

    1985-01-01

    Thermoregulatory and cardiorespiratory responses to bicycling 55 km (mean speed 9.7 m X s-1) outdoors (15 degrees C DB) were compared to equivalent cycle ergometry (90 min at 65% VO2max) in the laboratory (20-23 degrees C DB, 50% RH) in 7 trained cyclists. Outdoor environmental conditions were simulated with fans and lamps, and were contrasted with standard no-wind, no-sun laboratory conditions. Sweating rate was similar during outdoor and laboratory simulated outdoor cycling (0.90 and 0.87 to 0.94 1 X h-1 respectively). During outdoor bicycling, mean heart rate (161 bt X min-1) was 7-13% higher (p less than .05) than under laboratory conditions, suggesting a greater strain for a similar external work rate. The increase in rectal temperature (0.8 degrees C) was 33-50% less (p less than 0.05) at the cooler outdoor ambient temperature than in the laboratory. Thermoregulatory stress was greater under the no-fan, no-lamp laboratory condition than during simulated outdoor conditions (36-38% greater (p less than 0.05) sweating rate, 15-18% greater (p less than 0.01) mean skin temperature, 6.4 to 7.8 fold greater (p less than 0.01) amount of clothing-retrained sweat). The cooling wind encountered in actual road bicycling apparently reduces thermoregulatory and circulatory demands compared with stationary cycle ergometry indoors. Failure to account for this enhanced cooling may result in overestimation of the physiological stress of actual road cycling.(ABSTRACT TRUNCATED AT 250 WORDS)

  14. Study of soot production for double injections of n-dodecane in CI engine-like conditions

    SciTech Connect

    Moiz, Ahmed Abdul; Ameen, Muhsin M.; Lee, Seong-Young; Som, Sibendu

    2016-11-01

    Soot production mechanism in multiple injections is complex since it involves its dependence on turbulent interactions of constituting injections and their combustion progress. A concise study was performed in a constant-volume combustion vessel by considering a double injection scheme of 0.3 ms pilot injection, 0.5 ms dwell time and 1.2 ms main injection (nomenclature: 0.3/0.5/12 ms) with n-dodecane as fuel and replicating the thermodynamic operating condition of a compression ignition (CI) engine. Experimental ambient temperature variations of 900 K and 800 K were performed at 15% ambient oxygen level. Simultaneous planar laser-induced fluorescence (PUP) of formaldehyde and schlieren imaging techniques were employed to analyze the ignition and flame characteristics experimentally. These studies revealed almost similar heat release rates for a double injection at 900 K and 800 K ambient gas temperatures due to combustion of a longer main injection which is enhanced by pilot combustion event A lower soot production for 800 K ambient condition over 900 K case was observed, which was concluded to be due to its higher lift-off length which would allow for a leaner combustion of fuel-air mixtures. Numerical simulations were performed using a Large Eddy Simulation (LES) approach by extensively validating the 900 K double injection condition with respect to non-reacting vapor penetration profiles of both injections, reacting jet heat release rate and spatial as well as temporal (qualitative) soot production. As part of LES work, a dwell time variation of 0.65 ms (0.3/0.65/1.2 ms) was performed to reveal the sensitivity of soot production to variations in dwell time. It was observed numerically that marginally higher quasi steady lift-off length of the 0.3/0.65/1.2 ms injection causes increased entrainment of surrounding oxygen into the flame region. This leads to combustion of slightly leaner fuel-air mixture and hence relatively less soot when compared to a 0

  15. Laboratory Demonstration of the Pretreatment Process with Caustic and Oxidative Leaching Using Actual Hanford Tank Waste

    SciTech Connect

    Fiskum, Sandra K.; Billing, Justin M.; Buck, Edgar C.; Daniel, Richard C.; Draper, Kathryn E.; Edwards, Matthew K.; Jenson, Evan D.; Kozelisky, Anne E.; MacFarlan, Paul J.; Peterson, Reid A.; Shimskey, Rick W.; Snow, Lanee A.

    2009-01-01

    This report describes the bench-scale pretreatment processing of actual tank waste materials through the entire baseline WTP pretreatment flowsheet in an effort to demonstrate the efficacy of the defined leaching processes on actual Hanford tank waste sludge and the potential impacts on downstream pretreatment processing. The test material was a combination of reduction oxidation (REDOX) tank waste composited materials containing aluminum primarily in the form of boehmite and dissolved S saltcake containing Cr(III)-rich entrained solids. The pretreatment processing steps tested included • caustic leaching for Al removal • solids crossflow filtration through the cell unit filter (CUF) • stepwise solids washing using decreasing concentrations of sodium hydroxide with filtration through the CUF • oxidative leaching using sodium permanganate for removing Cr • solids filtration with the CUF • follow-on solids washing and filtration through the CUF • ion exchange processing for Cs removal • evaporation processing of waste stream recycle for volume reduction • combination of the evaporated product with dissolved saltcake. The effectiveness of each process step was evaluated by following the mass balance of key components (such as Al, B, Cd, Cr, Pu, Ni, Mn, and Fe), demonstrating component (Al, Cr, Cs) removal, demonstrating filterability by evaluating filter flux rates under various processing conditions (transmembrane pressure, crossflow velocities, wt% undissolved solids, and PSD) and filter fouling, and identifying potential issues for WTP. The filterability was reported separately (Shimskey et al. 2008) and is not repeated herein.

  16. Light intensity and production parameters of phytocenoses cultivated on soil-like substrate under controled environment conditions

    NASA Astrophysics Data System (ADS)

    Tikhomirov, A. A.; Ushakova, S. A.; Gribovskaya, I. A.; Tirranen, L. S.; Manukovsky, N. S.; Zolotukhin, I. G.; Karnachuk, R. A.; Gros, J.-B.; Lasseur, Ch.

    To increase the degree of closure of biological life support systems of a new generation, we used vermicomposting to involve inedible phytomass in the intra-system mass exchange. The resulting product was a soil-like substrate, which was quite suitable for growing plants (Manukovsky et al. 1996, 1997). However, the soil like substrate can be regarded as a candidate for inclusion in a system only after a comprehensive examination of its physical, chemical, and other characteristics. An important criterion is the ability of the soil-like substrate to supply the necessary mineral elements to the photosynthesizing component under the chosen cultivation conditions. Thus, the purpose of this work was to study the feasibility of enhancing the production activity of wheat and radish crops by varying the intensity of photosynthetically active radiation, without decreasing the harvest index. The increase of light intensity from 920 to 1150 μmol·m -2·s -1 decreased the intensity of apparent photosynthesis of the wheat crops and slightly increased the apparent photosynthesis of the radish crops The maximum total and grain productivity (kg/m -2) of the wheat crops was attained at the irradiance of 920 μmol·m -2·s -1. Light intensity of 1150 μmol·m -2·s -1 decreased the productivity of wheat plants and had no significant effect on the productivity of the radish crops (kg/m 2) as compared to 920 μmol·m -2·s -1. The qualitative and quantitative composition of microflora of the watering solution and substrate was determined by the condition of plants, developmental phase and light intensity. By the end of wheat growth under 1150 μmol·m -2·s -1 the numbers of bacteria of the coliform family and phytopathogenic bacteria in the watering solution and substrate were an order of magnitude larger than under other illumination conditions. The obtained data suggest that the cultivation of plants in a life support system on soil-like substrate from composts has a number of

  17. Clean bio-oil production from fast pyrolysis of sewage sludge: effects of reaction conditions and metal oxide catalysts.

    PubMed

    Park, Hyun Ju; Heo, Hyeon Su; Park, Young-Kwon; Yim, Jin-Heong; Jeon, Jong-Ki; Park, Junhong; Ryu, Changkook; Kim, Seung-Soo

    2010-01-01

    Fast pyrolysis of sewage sludge was carried out under different reaction conditions, and its effects on bio-oil characteristics were studied. The effect of metal oxide catalysts on the removal of chlorine in the bio-oil was also investigated for four types of catalysts. The optimal pyrolysis temperature for bio-oil production was found to be 450 degrees C, while much smaller and larger feed sizes adversely influenced production. Higher flow and feeding rates were more effective but did not greatly affect bio-oil yields. The use of the product gas as the fluidizing medium gave an increased bio-oil yield. Metal oxide catalysts (CaO and La2O3) contributed to a slight decrease in bio-oil yield and an increase in water content but were significantly effective in removal of chlorine from the bio-oil. The fixed catalyst bed system exhibited a higher removal rate than when metal oxide-supported alumina was used as the fluidized bed material.

  18. Mass spectral studies on vinylic degradation products of sulfur mustards under gas chromatography/mass spectrometry conditions.

    PubMed

    Sai Sachin, L; Karthikraj, R; Kalyan Kumar, K; Sony, T; Prasada Raju, N; Prabhakar, S

    2015-01-01

    Sulfur mustards are a class of vesicant chemical warfare agents that rapidly degrade in environmental samples. The most feasible degradation products of sulfur mustards are chloroethyl vinylic compounds and divinylic compounds, which are formed by the elimination of one and two HCl molecules from sulfur mustards, respectively. The detection and characterization of these degradation products in environmental samples are an important proof for the verification of sulfur mustard usage. In this study, we synthesized a set of sulfur mustard degradation products, i.e., divinylic compounds (1-7) and chloroethyl vinylic compounds (8-14), and characterized using gas chromatography/mass spectrometry (GC/MS) under electron ionization (EI) and chemical ionization (CI) (methane) conditions. The EI mass spectra of the studied compounds mainly included the fragment ions that resulted from homolytic cleavages with or without hydrogen migrations. The divinylic compounds (1-7) showed [M-SH](+) ions, whereas the chloroethylvinyl compounds (8-14) showed [M-Cl](+) and [M-CH2CH2Cl](+) ions. Methane/CI mass spectra showed [M+H](+) ions and provided molecular weight information. The GC retention index (RI) values were also calculated for the studied compounds. The EI and CI mass spectral data together with RI values are extremely useful for off-site analysis for the verification of the chemical weapons convention and also to participate in official Organization for the Prohibition of Chemical Weapons proficiency tests.

  19. A quantitative method to monitor reactive oxygen species production by electron paramagnetic resonance in physiological and pathological conditions.

    PubMed

    Mrakic-Sposta, Simona; Gussoni, Maristella; Montorsi, Michela; Porcelli, Simone; Vezzoli, Alessandra

    2014-01-01

    The growing interest in the role of Reactive Oxygen Species (ROS) and in the assessment of oxidative stress in health and disease clashes with the lack of consensus on reliable quantitative noninvasive methods applicable. The study aimed at demonstrating that a recently developed Electron Paramagnetic Resonance microinvasive method provides direct evidence of the "instantaneous" presence of ROS returning absolute concentration levels that correlate with "a posteriori" assays of ROS-induced damage by means of biomarkers. The reliability of the choice to measure ROS production rate in human capillary blood rather than in plasma was tested (step I). A significant (P < 0.01) linear relationship between EPR data collected on capillary blood versus venous blood (R (2) = 0.95), plasma (R (2) = 0.82), and erythrocytes (R (2) = 0.73) was found. Then (step II) ROS production changes of various subjects' categories, young versus old and healthy versus pathological at rest condition, were found significantly different (range 0.0001-0.05 P level). The comparison of the results with antioxidant capacity and oxidative damage biomarkers concentrations showed that all changes indicating increased oxidative stress are directly related to ROS production increase. Therefore, the adopted method may be an automated technique for a lot of routine in clinical trials.

  20. Study of metabolic profile of Rhizopus oryzae to enhance fumaric acid production under low pH condition.

    PubMed

    Liu, Ying; Xu, Qing; Lv, Chunwei; Yan, Caixia; Li, Shuang; Jiang, Ling; Huang, He; Ouyang, Pingkai

    2015-12-01

    Ensuring a suitable pH is a major problem in industrial organic acid fermentation. To circumvent this problem, we used a metabolic profiling approach to analyze metabolite changes in Rhizopus oryzae under different pH conditions. A correlation between fumaric acid production and intracellular metabolic characteristics of R. oryzae was revealed by principal component analysis. The results showed that to help cell survival in the presence of low pH, R. oryzae altered amino acid and fatty acid metabolism and promoted sugar or sugar alcohol synthesis, corresponding with a suppressing of energy metabolism, phenylalanine, and tyrosine synthesis and finally resulting in the low performance of fumaric acid production. Based on this observation, 1 % linoleic acid was added to the culture medium in pH 3.0 to decrease the carbon demand for cell survival, and the fumaric acid titer was enhanced by 39.7 % compared with the control (pH 3.0 without linoleic acid addition), reaching 18.3 g/L after 84 h of fermentation. These findings provide new insights into the mechanism by which R. oryzae responds to acidic stress and would be helpful for the development of efficient strategies for fumaric acid production at low pH.