Science.gov

Sample records for actual running speed

  1. The preferred walk to run transition speed in actual lunar gravity.

    PubMed

    De Witt, John K; Edwards, W Brent; Scott-Pandorf, Melissa M; Norcross, Jason R; Gernhardt, Michael L

    2014-09-15

    Quantifying the preferred transition speed (PTS) from walking to running has provided insight into the underlying mechanics of locomotion. The dynamic similarity hypothesis suggests that the PTS should occur at the same Froude number across gravitational environments. In normal Earth gravity, the PTS occurs at a Froude number of 0.5 in adult humans, but previous reports found the PTS occurred at Froude numbers greater than 0.5 in simulated lunar gravity. Our purpose was to (1) determine the Froude number at the PTS in actual lunar gravity during parabolic flight and (2) compare it with the Froude number at the PTS in simulated lunar gravity during overhead suspension. We observed that Froude numbers at the PTS in actual lunar gravity (1.39±0.45) and simulated lunar gravity (1.11±0.26) were much greater than 0.5. Froude numbers at the PTS above 1.0 suggest that the use of the inverted pendulum model may not necessarily be valid in actual lunar gravity and that earlier findings in simulated reduced gravity are more accurate than previously thought. PMID:25232195

  2. Separating Fact from Fiction: Increasing Running Speed

    ERIC Educational Resources Information Center

    Murgia, Carla

    2008-01-01

    From a biomechanical point of view, this article explores the common belief that one must increase stride length and frequency in order to increase running speed. The limb length, explosive power, and anaerobic capacity of the athlete, as well as the type of running (sprinting vs. long distance) must be considered before making such a…

  3. Influence of treadmill acceleration on actual walk-to-run transition.

    PubMed

    Van Caekenberghe, I; Segers, V; De Smet, K; Aerts, P; De Clercq, D

    2010-01-01

    When accelerating continuously, humans spontaneously change from a walking to a running pattern by means of a walk-to-run transition (WRT). Results of previous studies indicate that when higher treadmill accelerations are imposed, higher WRT-speeds can be expected. By studying the kinematics of the WRT at different accelerations, the underlying mechanisms can be unravelled. 19 young, healthy female subjects performed walk-to-run transitions on a constantly accelerating treadmill (0.1, 0.2 and 0.5 m s(-2)). A higher acceleration induced a higher WRT-speed, by effecting the preparation of transition, as well as the actual transition step. Increasing the acceleration caused a higher WRT-speed as a result of a greater step length during the transition step, which was mainly a consequence of a prolonged airborne phase. Besides this effect on the transition step, the direct preparation phase of transition (i.e. the last walking step before transition) appeared to fulfil specific constraints required to execute the transition regardless of the acceleration imposed. This highlights an important role for this step in the debate regarding possible determinants of WRT. In addition spatiotemporal and kinematical data confirmed that WRT remains a discontinuous change of gait pattern in all accelerations imposed. It is concluded that the walk-to-run transition is a discontinuous switch from walking to running which depends on the magnitude of treadmill belt acceleration.

  4. The effect of athletic clothing aerodynamics upon running speed.

    PubMed

    Kyle, C R; Caiozzo, V J

    1986-10-01

    The purpose of this study was to determine the effect of the wind resistance of athletic clothing upon running speed in sprinting and in distance running. Wind tunnel tests of clothing materials, hair, and shoes show that it is possible to lower the wind resistance of a runner from about 0.5% to over 6% by improved aerodynamics. Mathematical models of sprinting and distance running are developed to predict the effect of lower wind resistance upon race times. By lowering the wind resistance of a runner 2%, the models predict the effect of lower wind resistance upon race times. By lowering the wind resistance of a runner 2%, the models predict time savings from 0.01 s in the 100-m dash to 5.7 s in the marathon. This is the equivalent of lead distances of about 0.1 to 31 m. The sprint model may be used to predict the effect of altitude upon running speed. At the altitude of Mexico City, the model predicts an improvement of 0.08 s in 100 m and 0.16 s in 200 m. This is conservative compared to actual time savings. The results show that it is possible to lower the wind resistance significantly by improving clothing or by trimming or covering the hair, and that a small aerodynamic drag reduction can result in a significant performance increase.

  5. Running Speed Can Be Predicted from Foot Contact Time during Outdoor over Ground Running.

    PubMed

    de Ruiter, Cornelis J; van Oeveren, Ben; Francke, Agnieta; Zijlstra, Patrick; van Dieen, Jaap H

    2016-01-01

    The number of validation studies of commercially available foot pods that provide estimates of running speed is limited and these studies have been conducted under laboratory conditions. Moreover, internal data handling and algorithms used to derive speed from these pods are proprietary and thereby unclear. The present study investigates the use of foot contact time (CT) for running speed estimations, which potentially can be used in addition to the global positioning system (GPS) in situations where GPS performance is limited. CT was measured with tri axial inertial sensors attached to the feet of 14 runners, during natural over ground outdoor running, under optimized conditions for GPS. The individual relationships between running speed and CT were established during short runs at different speeds on two days. These relations were subsequently used to predict instantaneous speed during a straight line 4 km run with a single turning point halfway. Stopwatch derived speed, measured for each of 32 consecutive 125m intervals during the 4 km runs, was used as reference. Individual speed-CT relations were strong (r2 >0.96 for all trials) and consistent between days. During the 4km runs, median error (ranges) in predicted speed from CT 2.5% (5.2) was higher (P<0.05) than for GPS 1.6% (0.8). However, around the turning point and during the first and last 125m interval, error for GPS-speed increased to 5.0% (4.5) and became greater (P<0.05) than the error predicted from CT: 2.7% (4.4). Small speed fluctuations during 4km runs were adequately monitored with both methods: CT and GPS respectively explained 85% and 73% of the total speed variance during 4km runs. In conclusion, running speed estimates bases on speed-CT relations, have acceptable accuracy and could serve to backup or substitute for GPS during tarmac running on flat terrain whenever GPS performance is limited. PMID:27648946

  6. Running Speed Can Be Predicted from Foot Contact Time during Outdoor over Ground Running

    PubMed Central

    van Oeveren, Ben; Francke, Agnieta; Zijlstra, Patrick

    2016-01-01

    The number of validation studies of commercially available foot pods that provide estimates of running speed is limited and these studies have been conducted under laboratory conditions. Moreover, internal data handling and algorithms used to derive speed from these pods are proprietary and thereby unclear. The present study investigates the use of foot contact time (CT) for running speed estimations, which potentially can be used in addition to the global positioning system (GPS) in situations where GPS performance is limited. CT was measured with tri axial inertial sensors attached to the feet of 14 runners, during natural over ground outdoor running, under optimized conditions for GPS. The individual relationships between running speed and CT were established during short runs at different speeds on two days. These relations were subsequently used to predict instantaneous speed during a straight line 4 km run with a single turning point halfway. Stopwatch derived speed, measured for each of 32 consecutive 125m intervals during the 4 km runs, was used as reference. Individual speed-CT relations were strong (r2 >0.96 for all trials) and consistent between days. During the 4km runs, median error (ranges) in predicted speed from CT 2.5% (5.2) was higher (P<0.05) than for GPS 1.6% (0.8). However, around the turning point and during the first and last 125m interval, error for GPS-speed increased to 5.0% (4.5) and became greater (P<0.05) than the error predicted from CT: 2.7% (4.4). Small speed fluctuations during 4km runs were adequately monitored with both methods: CT and GPS respectively explained 85% and 73% of the total speed variance during 4km runs. In conclusion, running speed estimates bases on speed-CT relations, have acceptable accuracy and could serve to backup or substitute for GPS during tarmac running on flat terrain whenever GPS performance is limited. PMID:27648946

  7. Multiple Running Speed Signals in Medial Entorhinal Cortex.

    PubMed

    Hinman, James R; Brandon, Mark P; Climer, Jason R; Chapman, G William; Hasselmo, Michael E

    2016-08-01

    Grid cells in medial entorhinal cortex (MEC) can be modeled using oscillatory interference or attractor dynamic mechanisms that perform path integration, a computation requiring information about running direction and speed. The two classes of computational models often use either an oscillatory frequency or a firing rate that increases as a function of running speed. Yet it is currently not known whether these are two manifestations of the same speed signal or dissociable signals with potentially different anatomical substrates. We examined coding of running speed in MEC and identified these two speed signals to be independent of each other within individual neurons. The medial septum (MS) is strongly linked to locomotor behavior, and removal of MS input resulted in strengthening of the firing rate speed signal, while decreasing the strength of the oscillatory speed signal. Thus, two speed signals are present in MEC that are differentially affected by disrupted MS input. PMID:27427460

  8. Speed Trends in Male Distance Running

    PubMed Central

    Kruse, Timothy N.; Carter, Rickey E.; Rosedahl, Jordan K.; Joyner, Michael J.

    2014-01-01

    The major cycling “Grand Tours” have shown an attenuation of performance over the last decade. This has been interpreted as circumstantial evidence that newer anti-doping strategies have reduced the use of performance-enhancing drugs. To examine this idea under more controlled conditions, speed trends for world class 5000 m, 10000 m, and marathon performances by men from 1980 to 2013 were analyzed. We obtained comprehensive records from the International Association of Athletics Federations, Association of Road Racing Statisticians, and the Track and Field All-time Performances database webpages. The top 40 performances for each event and year were selected for regression analysis. For the three distances, we noted cumulative performance improvements in the 1990s thru the mid-2000s. After the peak speed years of the mid 2000 s, there has been limited improvement in the 5000 m and 10,000 m and world records set during that time remain in place today, marking the longest period of time between new records since the early 1940s. By contrast marathon speed continues to increase and the world record has been lowered four times since 2007, including in 2013. While the speed trends for 5000 m and 10000 m track results parallel those seen in elite cycling, the marathon trends do not. We discuss a number of explanations other than improved anti-doping strategies that might account for these divergent findings. PMID:25409192

  9. Running speed alters the frequency of hippocampal gamma oscillations

    PubMed Central

    Ahmed, Omar J.; Mehta, Mayank R.

    2012-01-01

    Successful spatial navigation is thought to employ a combination of at least two strategies: the following of landmark cues and path integration. Path integration requires that the brain use the speed and direction of movement in a meaningful way to continuously compute the position of the animal. Indeed, the running speed of rats modulates both the firing rate of neurons and the spectral properties of low frequency, theta oscillations seen in the local field potential (LFP) of the hippocampus, a region important for spatial memory formation. Higher frequency, gamma-band LFP oscillations are usually associated with decision-making, increased attention and improved reaction times. Here, we show that increased running speed is accompanied by large, systematic increases in the frequency of hippocampal CA1 network oscillations spanning the entire gamma range (30–120 Hz) and beyond. These speed-dependent changes in frequency are seen on both linear tracks and two-dimensional platforms, and are thus independent of the behavioral task. Synchrony between anatomically distant CA1 regions also shifts to higher gamma frequencies as running speed increases. The changes in frequency are strongly correlated with changes in the firing rates of individual interneurons, consistent with models of gamma generation. Our results suggest that as a rat runs faster, there are faster gamma frequency transitions between sequential place cell-assemblies. This may help to preserve the spatial specificity of place cells and spatial memories at vastly different running speeds. PMID:22623683

  10. Are running speeds maximized with simple-spring stance mechanics?

    PubMed

    Clark, Kenneth P; Weyand, Peter G

    2014-09-15

    Are the fastest running speeds achieved using the simple-spring stance mechanics predicted by the classic spring-mass model? We hypothesized that a passive, linear-spring model would not account for the running mechanics that maximize ground force application and speed. We tested this hypothesis by comparing patterns of ground force application across athletic specialization (competitive sprinters vs. athlete nonsprinters, n = 7 each) and running speed (top speeds vs. slower ones). Vertical ground reaction forces at 5.0 and 7.0 m/s, and individual top speeds (n = 797 total footfalls) were acquired while subjects ran on a custom, high-speed force treadmill. The goodness of fit between measured vertical force vs. time waveform patterns and the patterns predicted by the spring-mass model were assessed using the R(2) statistic (where an R(2) of 1.00 = perfect fit). As hypothesized, the force application patterns of the competitive sprinters deviated significantly more from the simple-spring pattern than those of the athlete, nonsprinters across the three test speeds (R(2) <0.85 vs. R(2) ≥ 0.91, respectively), and deviated most at top speed (R(2) = 0.78 ± 0.02). Sprinters attained faster top speeds than nonsprinters (10.4 ± 0.3 vs. 8.7 ± 0.3 m/s) by applying greater vertical forces during the first half (2.65 ± 0.05 vs. 2.21 ± 0.05 body wt), but not the second half (1.71 ± 0.04 vs. 1.73 ± 0.04 body wt) of the stance phase. We conclude that a passive, simple-spring model has limited application to sprint running performance because the swiftest runners use an asymmetrical pattern of force application to maximize ground reaction forces and attain faster speeds.

  11. VO2 responses to running speeds above VO2max.

    PubMed

    Duffield, R; Bishop, D

    2008-06-01

    This study compared VO2, heart rate (HR) and electromyographic (iEMG) responses to speeds above the velocity associated with VO2max (v-VO2max). Eight male, middle-distance runners performed a graded exercise test to determine VO2max and v-VO2max and runs to fatigue at 100 % and 110 % v-VO2max. Breath-by-breath VO2 and HR were continuously recorded; lactate [La (-)] measured pre- and post-run and iEMG measures of rectus femoris (RF) and vastus lateralis were recorded during the first and last 20 s of each run. Analysis indicated longer time to fatigue in the 100 % v-VO2max run with no differences between conditions for VO2 or HR amplitudes or post-run [La (-)] (p > 0.05). There were significantly faster tau values (p < 0.05) in the 110 % condition in VO2 and HR. No significant correlations were observed between VO2 or HR tau values and time to fatigue. RF iEMG was significantly larger in 110 % compared to 100 % run in the first 20 s (p < 0.05). While no association between treadmill performance and VO2 response was evident, faster running speeds resulted in faster VO2 and HR responses, with no difference in amplitude or % VO2max attained. This may potentially be as a result of an increased muscle fibre recruitment stimulus during the faster running velocity resulting in faster cardiodynamic responses.

  12. Asymmetry in Determinants of Running Speed During Curved Sprinting.

    PubMed

    Ishimura, Kazuhiro; Sakurai, Shinji

    2016-08-01

    This study investigates the potential asymmetries between inside and outside legs in determinants of curved running speed. To test these asymmetries, a deterministic model of curved running speed was constructed based on components of step length and frequency, including the distances and times of different step phases, takeoff speed and angle, velocities in different directions, and relative height of the runner's center of gravity. Eighteen athletes sprinted 60 m on the curved path of a 400-m track; trials were recorded using a motion-capture system. The variables were calculated following the deterministic model. The average speeds were identical between the 2 sides; however, the step length and frequency were asymmetric. In straight sprinting, there is a trade-off relationship between the step length and frequency; however, such a trade-off relationship was not observed in each step of curved sprinting in this study. Asymmetric vertical velocity at takeoff resulted in an asymmetric flight distance and time. The runners changed the running direction significantly during the outside foot stance because of the asymmetric centripetal force. Moreover, the outside leg had a larger tangential force and shorter stance time. These asymmetries between legs indicated the outside leg plays an important role in curved sprinting. PMID:27046932

  13. Actual and 'optimum' flight speeds: field data reassessed

    PubMed

    Pennycuick

    1997-01-01

    Previously published field observations of the air speeds of 36 species of birds, all observed by the same method (ornithodolite), were compared with estimates of the corresponding minimum power speeds, calculated with a default body drag coefficient of 0.1. This value, which was derived from recent wind tunnel studies, represents a downward revision from default values previously used and leads, in turn, to an upward revision of estimated minimum power speeds. The mean observed air speeds are now distributed around the minimum power speed, rather than in between the speeds for minimum power and maximum range, as they were before. Although the field data do not represent migration, examination of the marginal effects of small changes of speed, on power and lift:drag ratio, indicates that flying at the maximum range speed on migration may not represent an 'optimal' or even a practical strategy and that cruising speeds may be limited by the muscle power available or by aerobic capacity. Caution in constructing 'optimisation' theories is indicated.

  14. Postactivation potentiation effects after heavy resistance exercise on running speed.

    PubMed

    Chatzopoulos, Dimitris E; Michailidis, Charalambos J; Giannakos, Athanasios K; Alexiou, Kostas C; Patikas, Dimitrios A; Antonopoulos, Christos B; Kotzamanidis, Christos M

    2007-11-01

    The purpose of this study was to investigate the postactivation potentiation effect after a heavy resistance stimulus (HRS) on running speed (RS). Fifteen amateur team game players (basketball, volleyball, handball, and soccer players), ages 18-23 years running the 30-m dash and the intermediate phase of 0-10 and 0-30 m sprints, were used to evaluate RS. Resistance training consisted of 10 single repetitions at 90% of 1 repetition maximum. The running tests were performed 3 times--(a) 3 minutes prior the HRS, (b) 3 minutes after the HRS, and (c) 5 minutes after the HRS--in separated training sessions. Results showed that RS was not affected 3 minutes after the resistance training, but it increased for both selected running phases (0-10 and 0-30 m) 5 minutes after the HRS (p < 0.05). These findings indicate that heavy resistance exercise improves 10- and 30-m sprint performance when performed 5 minutes after the exercise bout.

  15. Limitations to maximum running speed on flat curves.

    PubMed

    Chang, Young-Hui; Kram, Rodger

    2007-03-01

    Why is maximal running speed reduced on curved paths? The leading explanation proposes that an increase in lateral ground reaction force necessitates a decrease in peak vertical ground reaction force, assuming that maximum leg extension force is the limiting factor. Yet, no studies have directly measured these forces or tested this critical assumption. We measured maximum sprint velocities and ground reaction forces for five male humans sprinting along a straight track and compared them to sprints along circular tracks of 1, 2, 3, 4 and 6 m radii. Circular track sprint trials were performed either with or without a tether that applied centripetal force to the center of mass. Sprinters generated significantly smaller peak resultant ground reaction forces during normal curve sprinting compared to straight sprinting. This provides direct evidence against the idea that maximum leg extension force is always achieved and is the limiting factor. Use of the tether increased sprint speed, but not to expected values. During curve sprinting, the inside leg consistently generated smaller peak forces compared to the outside leg. Several competing biomechanical constraints placed on the stance leg during curve sprinting likely make the inside leg particularly ineffective at generating the ground reaction forces necessary to attain maximum velocities comparable to straight path sprinting. The ability of quadrupeds to redistribute function across multiple stance legs and decouple these multiple constraints may provide a distinct advantage for turning performance. PMID:17337710

  16. Limitations to maximum running speed on flat curves.

    PubMed

    Chang, Young-Hui; Kram, Rodger

    2007-03-01

    Why is maximal running speed reduced on curved paths? The leading explanation proposes that an increase in lateral ground reaction force necessitates a decrease in peak vertical ground reaction force, assuming that maximum leg extension force is the limiting factor. Yet, no studies have directly measured these forces or tested this critical assumption. We measured maximum sprint velocities and ground reaction forces for five male humans sprinting along a straight track and compared them to sprints along circular tracks of 1, 2, 3, 4 and 6 m radii. Circular track sprint trials were performed either with or without a tether that applied centripetal force to the center of mass. Sprinters generated significantly smaller peak resultant ground reaction forces during normal curve sprinting compared to straight sprinting. This provides direct evidence against the idea that maximum leg extension force is always achieved and is the limiting factor. Use of the tether increased sprint speed, but not to expected values. During curve sprinting, the inside leg consistently generated smaller peak forces compared to the outside leg. Several competing biomechanical constraints placed on the stance leg during curve sprinting likely make the inside leg particularly ineffective at generating the ground reaction forces necessary to attain maximum velocities comparable to straight path sprinting. The ability of quadrupeds to redistribute function across multiple stance legs and decouple these multiple constraints may provide a distinct advantage for turning performance.

  17. Unmatched perception of speed when running overground and on a treadmill.

    PubMed

    Kong, Pui W; Koh, Tze M C; Tan, Wei C R; Wang, Yu S

    2012-05-01

    This study compared the perception of speed between overground and treadmill running. Twenty-one participants ran overground around an athletic track at their preferred speed for 3 min, immediately followed by a 3-min treadmill run and a further 3-min overground run. During the treadmill run, participants were blinded to the speed display and were free to adjust the speed until it was perceived similar as their previous self-selected overground speed. A video camera was used to determine the average running speed during each overground run. A one-way ANOVA with repeated measures was used to detect differences among the three speeds: overground speed during session 1 (OG1), perceived overground speed on the treadmill (TM), and overground speed during session 2 (OG2). A significant difference among the three running speeds was found (P=.039). Post hoc analyses showed that the treadmill speed was much slower than both overground speeds but the overground speed did not differ between session 1 and session 2 (OG1: 3.99 (0.78) m/s, TM: 2.73 (0.62) m/s, OG2: 3.80 (0.74) m/s). These findings confirmed that one's perception of speed was influenced by the treadmill on which individuals were unable to match their corresponding self-selected overground running speed. The unmatched perception of speed is likely due to the distortion of normal visual inputs resulting from the discrepancy between observed and expected optic flow. Clinicians, therapists and treadmill users should be aware of the different psychological demands between treadmill and overground locomotion when selecting gait speed. PMID:22357398

  18. Repeated sprint training improves intermittent peak running speed in team-sport athletes.

    PubMed

    Hunter, Jayden R; O'Brien, Brendan J; Mooney, Mitchell G; Berry, Jason; Young, Warren B; Down, Neville

    2011-05-01

    The aim of this study was to compare the effect of 2 repeated sprint training interventions on an intermittent peak running speed (IPRS) test designed for Australian Rules football. The test required participants to perform 10 × 10-m maximal efforts on an 80-m course every 25 seconds, for each of which the mean peak speed (kilometers per hour) was recorded to determine IPRS. The training interventions were performed twice weekly for 4 weeks immediately before regular football training. In the constant volume intervention (CVol), sprint repetition number remained at 10 (n = 9), and in the linear increase in volume (LIVol) intervention, repetition number increased linearly each week by 2 repetitions (n = 12). Intermittent peak running speed, 300-m shuttle test performance, and peak running speed were assessed before and upon completion of training. All measures were compared to a control group (CON; n = 8) in which players completed regular football training exclusively. Intermittent peak running speed performance in CVol and LIVol improved significantly (p < 0.01) by 5.2 and 3.8%, respectively, with no change in IPRS for CON. There were no differences in IPRS changes between CVol and LIVol. Additionally, peak running speed improved significantly (p < 0.01) by 5.1% for CVol, whereas 300-m shuttle performance improved significantly (p < 0.01) by 2.6% for LIVol only. Intermittent peak running speed, 300-m shuttle performance and peak running speed were improved after 4 weeks of training; however, progressively increasing sprint repetition number had no greater advantage on IPRS adaptation. Additionally, exclusive regular football training over a 4-week period is unlikely to improve IPRS, peak running speed, or 300-m shuttle performance.

  19. High-speed running performance: a new approach to assessment and prediction.

    PubMed

    Bundle, Matthew W; Hoyt, Reed W; Weyand, Peter G

    2003-11-01

    We hypothesized that all-out running speeds for efforts lasting from a few seconds to several minutes could be accurately predicted from two measurements: the maximum respective speeds supported by the anaerobic and aerobic powers of the runner. To evaluate our hypothesis, we recruited seven competitive runners of different event specialties and tested them during treadmill and overground running on level surfaces. The maximum speed supported by anaerobic power was determined from the fastest speed that subjects could attain for a burst of eight steps (approximately 3 s or less). The maximum speed supported by aerobic power, or the velocity at maximal oxygen uptake, was determined from a progressive, discontinuous treadmill test to failure. All-out running speeds for trials of 3-240 s were measured during 10-13 constant-speed treadmill runs to failure and 4 track runs at specified distances. Measured values of the maximum speeds supported by anaerobic and aerobic power, in conjunction with an exponential constant, allowed us to predict the speeds of all-out treadmill trials to within an average of 2.5% (R2 = 0.94; n = 84) and track trials to within 3.4% (R2 = 0.86; n = 28). An algorithm using this exponent and only two of the all-out treadmill runs to predict the remaining treadmill trials was nearly as accurate (average = 3.7%; R2 = 0.93; n = 77). We conclude that our technique 1) provides accurate predictions of high-speed running performance in trained runners and 2) offers a performance assessment alternative to existing tests of anaerobic power and capacity.

  20. Effect of caffeinated coffee on running speed, respiratory factors, blood lactate and perceived exertion during 1500-m treadmill running.

    PubMed

    Wiles, J D; Bird, S R; Hopkins, J; Riley, M

    1992-06-01

    Using a motorized treadmill the study investigated the effects of the ingestion of 3 g of caffeinated coffee on: the time taken to run 1500 m; the selected speed with which athletes completed a 1-min 'finishing burst' at the end of a high-intensity run; and respiratory factors, perceived exertion and blood lactate levels during a high intensity 1500-m run. In all testing protocols decaffeinated coffee (3 g) was used as a placebo and a double-blind experimental design was used throughout. The participants in the study were middle distance athletes of club, county and national standard. The results showed that ingestion of caffeinated coffee: decreases the time taken to run 1500 m (P less than 0.005); increases the speed of the 'finishing burst' (P less than 0.005); and increases VO2 during the high-intensity 1500-m run (P less than 0.025). The study concluded that under these laboratory conditions, the ingestion of caffeinated coffee could enhance the performance of sustained high-intensity exercise. PMID:1623356

  1. In vivo behavior of the human soleus muscle with increasing walking and running speeds.

    PubMed

    Lai, Adrian; Lichtwark, Glen A; Schache, Anthony G; Lin, Yi-Chung; Brown, Nicholas A T; Pandy, Marcus G

    2015-05-15

    The interaction between the muscle fascicle and tendon components of the human soleus (SO) muscle influences the capacity of the muscle to generate force and mechanical work during walking and running. In the present study, ultrasound-based measurements of in vivo SO muscle fascicle behavior were combined with an inverse dynamics analysis to investigate the interaction between the muscle fascicle and tendon components over a broad range of steady-state walking and running speeds: slow-paced walking (0.7 m/s) through to moderate-paced running (5.0 m/s). Irrespective of a change in locomotion mode (i.e., walking vs. running) or an increase in steady-state speed, SO muscle fascicles were found to exhibit minimal shortening compared with the muscle-tendon unit (MTU) throughout stance. During walking and running, the muscle fascicles contributed only 35 and 20% of the overall MTU length change and shortening velocity, respectively. Greater levels of muscle activity resulted in increasingly shorter SO muscle fascicles as locomotion speed increased, both of which facilitated greater tendon stretch and recoil. Thus the elastic tendon contributed the majority of the MTU length change during walking and running. When transitioning from walking to running near the preferred transition speed (2.0 m/s), greater, more economical ankle torque development is likely explained by the SO muscle fascicles shortening more slowly and operating on a more favorable portion (i.e., closer to the plateau) of the force-length curve.

  2. Use of Relative Speed Zones Increases the High-Speed Running Performed in Team Sport Match Play.

    PubMed

    Gabbett, Tim J

    2015-12-01

    This study investigated the activity profiles of junior rugby league players competing in 3 distinct age groups (Under 13, 14, and 15), and 2 distinct playing standards (division 1 and 4). In addition, we reported global positioning system (GPS) data using predefined absolute speed thresholds and speed thresholds expressed relative to a players' individual peak velocity. Ninety male junior rugby league players, representing 1 of 6 teams competing in the Brisbane junior rugby league competition, underwent measurements of peak velocity (through a 40-m sprint) and GPS analysis during competitive matches. Data were described as both absolute speed zones and relative to the individual player's peak velocity. Absolute measures of moderate-, high-, and very high-speed running distances increased with age with the differences among groups typically small to moderate (effect size = 0.24-0.68) in magnitude. However, when data were expressed relative to a players' capacity, younger players and those from lower playing divisions exhibited higher playing intensities and performed greater amounts of high-intensity activity. Moderate and negative relationships (r = -0.43 to -0.46) were found between peak velocity and the amount of relative high-speed running performed. These findings suggest that individualization of velocity bands increases the high-speed running attributed to slower players and decreases the high-speed running attributed to faster players. From a practical perspective, consideration should be given to both the absolute and relative demands of competition to provide insight into training prescription and the recovery requirements of individual players.

  3. Study on Tire-attached Energy Harvester for Low-speed Actual Vehicle Driving

    NASA Astrophysics Data System (ADS)

    Zhang, Y.; Zheng, R.; Kaizuka, T.; Su, D.; Nakano, K.

    2015-12-01

    This study reports a tire-attached energy harvester, in which a cantilever beam pasted piezoelectric film and magnets with the same polarity are fabricated as a bistable vibrating system, for low-speed actual-vehicle driving. As the wheel rotates, the energy harvester is subjected to the noise produced from the interaction between the paved road and the rotating tire, and tangentially gravitational force as a periodic input can be applied to achieve the occurrence of stochastic resonance. Stochastic resonance can significantly stimulate the response of the bistable vibrating system, and therefore enhance the energy harvesting efficiency.

  4. The effects of eccentric exercise-induced muscle damage on running kinematics at different speeds.

    PubMed

    Tsatalas, Themistoklis; Giakas, Giannis; Spyropoulos, Giannis; Sideris, Vasileios; Lazaridis, Savvas; Kotzamanidis, Christos; Koutedakis, Yiannis

    2013-01-01

    This study investigated the effects of knee localised muscle damage on running kinematics at varying speeds. Nineteen young women (23.2 ± 2.8 years; 164 ± 8 cm; 53.6 ± 5.4 kg), performed a maximal eccentric muscle damage protocol (5 × 15) of the knee extensors and flexors of both legs at 60 rad · s(-1). Lower body kinematics was assessed during level running on a treadmill at three speeds pre- and 48 h after. Evaluated muscle damage indices included isometric torque, muscle soreness and serum creatine kinase activity. The results revealed that all indices changed significantly after exercise, indicating muscle injury. Step length decreased and stride frequency significantly increased 48 h post-exercise only at the fastest running speed (3 m · s(-1)). Support time and knee flexion at toe-off increased only at the preferred transition speed and 2.5 m · s(-1). Knee flexion at foot contact, pelvic tilt and obliquity significantly increased, whereas hip extension during stance-phase, knee flexion during swing-phase, as well as knee and ankle joints range of motion significantly decreased 48 h post-exercise at all speeds. In conclusion, the effects of eccentric exercise of both knee extensors and flexors on particular tempo-spatial parameters and knee kinematics of running are speed-dependent. However, several pelvic and lower joint kinematics present similar behaviour at the three running speeds examined. These findings provide new insights into how running kinematics at different speeds are adapted to compensate for the impaired function of the knee musculature following muscle damage.

  5. Physiologically based GPS speed zones for evaluating running demands in Women's Rugby Sevens.

    PubMed

    Clarke, Anthea C; Anson, Judith; Pyne, David

    2015-01-01

    High-speed running (>5 m · s⁻¹) is commonly reported in men's rugby union and sevens; however, the appropriateness of using the same speed threshold for Women's Rugby Sevens players is unclear, and likely underestimates the degree of high-intensity exercise completed by female players. The aim of this study was to establish, for international Women's Rugby Sevens players, a physiologically defined threshold - speed at the second ventilatory threshold (VT(2peed)) - for the analysis of high-intensity running, using mean and individualised thresholds. Game movement patterns (using 5 Hz GPS) of 12 international Women's Rugby Sevens players (23.5 ± 4.9 ears, 1.68 ± 0.04 m, 68.2 ± 7.7 kg; mean ± s) were collected at an international tournament. Seven of these players also completed a treadmill VO(2max) test to estimate VT(2speed). Compared to the mean VT(2speed) threshold (3.5 m · s⁻¹), the industry-used threshold of 5 m · s⁻¹ underestimated the absolute amount of high-intensity running completed by individual players by up to 30%. Using an individualised threshold, high-intensity running could over- or underestimating high-intensity running by up to 14% compared to the mean VT(2peed) threshold. The use of individualised thresholds provides an accurate individualised assessment of game demands to inform the prescription of training.

  6. Physiologically based GPS speed zones for evaluating running demands in Women's Rugby Sevens.

    PubMed

    Clarke, Anthea C; Anson, Judith; Pyne, David

    2015-01-01

    High-speed running (>5 m · s⁻¹) is commonly reported in men's rugby union and sevens; however, the appropriateness of using the same speed threshold for Women's Rugby Sevens players is unclear, and likely underestimates the degree of high-intensity exercise completed by female players. The aim of this study was to establish, for international Women's Rugby Sevens players, a physiologically defined threshold - speed at the second ventilatory threshold (VT(2peed)) - for the analysis of high-intensity running, using mean and individualised thresholds. Game movement patterns (using 5 Hz GPS) of 12 international Women's Rugby Sevens players (23.5 ± 4.9 ears, 1.68 ± 0.04 m, 68.2 ± 7.7 kg; mean ± s) were collected at an international tournament. Seven of these players also completed a treadmill VO(2max) test to estimate VT(2speed). Compared to the mean VT(2speed) threshold (3.5 m · s⁻¹), the industry-used threshold of 5 m · s⁻¹ underestimated the absolute amount of high-intensity running completed by individual players by up to 30%. Using an individualised threshold, high-intensity running could over- or underestimating high-intensity running by up to 14% compared to the mean VT(2peed) threshold. The use of individualised thresholds provides an accurate individualised assessment of game demands to inform the prescription of training. PMID:25510337

  7. Changing the demand on specific muscle groups affects the walk-run transition speed.

    PubMed

    Bartlett, Jamie L; Kram, Rodger

    2008-04-01

    It has been proposed that muscle-specific factors trigger the human walk-run transition. We investigated if changing the demand on trigger muscles alters the preferred walk-run transition speed. We hypothesized that (1) reducing the demand on trigger muscles would increase the transition speed and (2) increasing the demand on trigger muscles would decrease the transition speed. We first determined the normal preferred walk-run transition speed (PTS) using a step-wise protocol with a randomized speed order. We then determined PTS while subjects walked with external devices that decreased or increased the demand on specific muscle groups. We concurrently measured the electromyographic activity of five leg muscles (tibialis anterior, soleus, rectus femoris, medial and lateral gastrocnemius) at each speed and condition. For this study, we developed a dorsiflexor assist device that aids the dorsiflexor muscles. A leg swing assist device applied forward pulling forces at the feet thus aiding the hip flexors during swing. A third device applied a horizontal force near the center of mass, which impedes or aids forward progression thus overloading or unloading the plantarflexor muscles. We found that when demand was decreased in the muscles measured, the PTS significantly increased. Conversely, when muscle demand was increased in the plantar flexors, the PTS decreased. However, combining assistive devices did not produce an even faster PTS. We conclude that altering the demand on specific muscles can change the preferred walk-run transition speed. However, the lack of a summation effect with multiple external devices, suggests that another underlying factor ultimately determines the preferred walk-run transition speed.

  8. Association of previous injury and speed with running style and stride-to-stride fluctuations.

    PubMed

    Mann, R; Malisoux, L; Nührenbörger, C; Urhausen, A; Meijer, K; Theisen, D

    2015-12-01

    Running-related injuries remain problematic among recreational runners. We evaluated the association between having sustained a recent running-related injury and speed, and the strike index (a measure of footstrike pattern, SI) and spatiotemporal parameters of running. Forty-four previously injured and 46 previously uninjured runners underwent treadmill running at 80%, 90%, 100%, 110%, and 120% of their preferred running speed. Participants wore a pressure insole device to measure SI, temporal parameters, and stride length (S(length)) and stride frequency (S(frequency)) over 2-min intervals. Coefficient of variation and detrended fluctuation analysis provided information on stride-to-stride variability and correlative patterns. Linear mixed models were used to compare differences between groups and changes with speed. Previously injured runners displayed significantly higher stride-to-stride correlations of SI than controls (P = 0.046). As speed increased, SI, contact time (T(contact)), stride time (T(stride)), and duty factor (DF) decreased (P < 0.001), whereas flight time (T(flight)), S(length), and S(frequency) increased (P < 0.001). Stride-to-stride variability decreased significantly for SI, T(contact), T(flight), and DF (P ≤ 0.005), as did correlative patterns for T(contact), T(stride), DF, S(length), and S(frequency) (P ≤ 0.044). Previous running-related injury was associated with less stride-to-stride randomness of footstrike pattern. Overall, runners became more pronounced rearfoot strikers as running speed increased.

  9. The relationship between gamma frequency and running speed differs for slow and fast gamma rhythms in freely behaving rats.

    PubMed

    Zheng, Chenguang; Bieri, Kevin Wood; Trettel, Sean Gregory; Colgin, Laura Lee

    2015-08-01

    In hippocampal area CA1 of rats, the frequency of gamma activity has been shown to increase with running speed (Ahmed and Mehta, 2012). This finding suggests that different gamma frequencies simply allow for different timings of transitions across cell assemblies at varying running speeds, rather than serving unique functions. However, accumulating evidence supports the conclusion that slow (∼25-55 Hz) and fast (∼60-100 Hz) gamma are distinct network states with different functions. If slow and fast gamma constitute distinct network states, then it is possible that slow and fast gamma frequencies are differentially affected by running speed. In this study, we tested this hypothesis and found that slow and fast gamma frequencies change differently as a function of running speed in hippocampal areas CA1 and CA3, and in the superficial layers of the medial entorhinal cortex (MEC). Fast gamma frequencies increased with increasing running speed in all three areas. Slow gamma frequencies changed significantly less across different speeds. Furthermore, at high running speeds, CA3 firing rates were low, and MEC firing rates were high, suggesting that CA1 transitions from CA3 inputs to MEC inputs as running speed increases. These results support the hypothesis that slow and fast gamma reflect functionally distinct states in the hippocampal network, with fast gamma driven by MEC at high running speeds and slow gamma driven by CA3 at low running speeds.

  10. Voluntary running in deer mice: speed, distance, energy costs and temperature effects.

    PubMed

    Chappell, Mark A; Garland, Theodore; Rezende, Enrico L; Gomes, Fernando R

    2004-10-01

    The energetics of terrestrial locomotion are of considerable interest to ecologists and physiologists, but nearly all of our current knowledge comes from animals undergoing forced exercise. To explore patterns of energy use and behavior during voluntary exercise, we developed methods allowing nearly continuous measurements of metabolic rates in freely behaving small mammals, with high temporal resolution over periods of several days. We used this approach to examine relationships between ambient temperature (Ta), locomotor behavior and energy costs in the deer mouse, a small mammal that routinely encounters a large range of temperatures in its natural habitat. We tested for individual consistency in running behavior and metabolic traits, and determined how locomotor costs vary with speed and Ta. Because of the importance of thermoregulatory costs in small mammals, we checked for substitution of exercise heat for thermostatic heat production at Ta below the thermal neutral zone and determined the fraction of the daily energy budget comprising exercise costs. Locomotor behavior was highly variable among individuals but had high repeatability, at least over short intervals. We found few temperature-related changes in speed or distance run, but Ta strongly affected energy costs. Partial substitution of exercise heat for thermogenic heat occurred at low Ta. This reduced energy expenditure during low-temperature running by 23-37%, but running costs comprised a fairly minor fraction of the energy budget, so the daily energy savings via substitution were much smaller. Deer mice did not adjust running speed to maximize metabolic economy, as they seldom used the high speeds that provide the lowest cost of transport. The highest voluntary speeds (4-5 km h(-1)) were almost always below the predicted maximal aerobic speed, and were much less than the species' maximal sprint speed. Maximum voluntarily attained rates of oxygen consumption (VO2) were highest at low Ta, but rarely

  11. Dynamic stability of running: The effects of speed and leg amputations on the maximal Lyapunov exponent

    SciTech Connect

    Look, Nicole; Arellano, Christopher J.; Grabowski, Alena M.; Kram, Rodger; McDermott, William J.; Bradley, Elizabeth

    2013-12-15

    In this paper, we study dynamic stability during running, focusing on the effects of speed, and the use of a leg prosthesis. We compute and compare the maximal Lyapunov exponents of kinematic time-series data from subjects with and without unilateral transtibial amputations running at a wide range of speeds. We find that the dynamics of the affected leg with the running-specific prosthesis are less stable than the dynamics of the unaffected leg and also less stable than the biological legs of the non-amputee runners. Surprisingly, we find that the center-of-mass dynamics of runners with two intact biological legs are slightly less stable than those of runners with amputations. Our results suggest that while leg asymmetries may be associated with instability, runners may compensate for this effect by increased control of their center-of-mass dynamics.

  12. Dynamic stability of running: The effects of speed and leg amputations on the maximal Lyapunov exponent

    NASA Astrophysics Data System (ADS)

    Look, Nicole; Arellano, Christopher J.; Grabowski, Alena M.; McDermott, William J.; Kram, Rodger; Bradley, Elizabeth

    2013-12-01

    In this paper, we study dynamic stability during running, focusing on the effects of speed, and the use of a leg prosthesis. We compute and compare the maximal Lyapunov exponents of kinematic time-series data from subjects with and without unilateral transtibial amputations running at a wide range of speeds. We find that the dynamics of the affected leg with the running-specific prosthesis are less stable than the dynamics of the unaffected leg and also less stable than the biological legs of the non-amputee runners. Surprisingly, we find that the center-of-mass dynamics of runners with two intact biological legs are slightly less stable than those of runners with amputations. Our results suggest that while leg asymmetries may be associated with instability, runners may compensate for this effect by increased control of their center-of-mass dynamics.

  13. Faster top running speeds are achieved with greater ground forces not more rapid leg movements.

    PubMed

    Weyand, P G; Sternlight, D B; Bellizzi, M J; Wright, S

    2000-11-01

    We twice tested the hypothesis that top running speeds are determined by the amount of force applied to the ground rather than how rapidly limbs are repositioned in the air. First, we compared the mechanics of 33 subjects of different sprinting abilities running at their top speeds on a level treadmill. Second, we compared the mechanics of declined (-6 degrees ) and inclined (+9 degrees ) top-speed treadmill running in five subjects. For both tests, we used a treadmill-mounted force plate to measure the time between stance periods of the same foot (swing time, t(sw)) and the force applied to the running surface at top speed. To obtain the force relevant for speed, the force applied normal to the ground was divided by the weight of the body (W(b)) and averaged over the period of foot-ground contact (F(avge)/W(b)). The top speeds of the 33 subjects who completed the level treadmill protocol spanned a 1.8-fold range from 6.2 to 11.1 m/s. Among these subjects, the regression of F(avge)/W(b) on top speed indicated that this force was 1.26 times greater for a runner with a top speed of 11.1 vs. 6.2 m/s. In contrast, the time taken to swing the limb into position for the next step (t(sw)) did not vary (P = 0.18). Declined and inclined top speeds differed by 1.4-fold (9.96+/-0.3 vs. 7.10+/-0.3 m/s, respectively), with the faster declined top speeds being achieved with mass-specific support forces that were 1.3 times greater (2.30+/- 0.06 vs. 1.76+/-0.04 F(avge)/ W(b)) and minimum t(sw) that were similar (+8%). We conclude that human runners reach faster top speeds not by repositioning their limbs more rapidly in the air, but by applying greater support forces to the ground. PMID:11053354

  14. Force-, EMG-, and elasticity-velocity relationships at submaximal, maximal and supramaximal running speeds in sprinters.

    PubMed

    Mero, A; Komi, P V

    1986-01-01

    The relationships between ground reaction forces, electromyographic activity (EMG), elasticity and running velocity were investigated at five speeds from submaximal to supramaximal levels in 11 male and 8 female sprinters. Supramaximal running was performed by a towing system. Reaction forces were measured on a force platform. EMGs were recorded telemetrically with surface electrodes from the vastus lateralis and gastrocnemius muscles, and elasticity of the contact leg was evaluated with spring constant values measured by film analysis. Data showed increases in most of the parameters studied with increasing running speed. At supramaximal velocity (10.36 +/- 0.31 m X s-1; 108.4 +/- 3.8%) the relative increase in running velocity correlated significantly (P less than 0.01) with the relative increase in stride rate of all subjects. In male subjects the relative change in stride rate correlated with the relative change of IEMG in the eccentric phase (P less than 0.05) between maximal and supramaximal runs. Running with the towing system caused a decrease in elasticity during the impact phase but this was significant (P less than 0.05) only in the female sprinters. The average net resultant force in the eccentric and concentric phases correlated significantly (P less than 0.05-0.001) with running velocity and stride length in the maximal run. It is concluded that increased neural activation in supramaximal effort positively affects stride rate and that average net resultant force as a specific force indicator is primarily related to stride length and that the values in this indicator may explain the difference in running velocity between men and women.

  15. Factors affecting the energy cost of level running at submaximal speed.

    PubMed

    Lacour, Jean-René; Bourdin, Muriel

    2015-04-01

    Metabolic measurement is still the criterion for investigation of the efficiency of mechanical work and for analysis of endurance performance in running. Metabolic demand may be expressed either as the energy spent per unit distance (energy cost of running, C r) or as energy demand at a given running speed (running economy). Systematic studies showed a range of costs of about 20 % between runners. Factors affecting C r include body dimensions: body mass and leg architecture, mostly calcaneal tuberosity length, responsible for 60-80 % of the variability. Children show a higher C r than adults. Higher resting metabolism and lower leg length/stature ratio are the main putative factors responsible for the difference. Elastic energy storage and reuse also contribute to the variability of C r. The increase in C r with increasing running speed due to increase in mechanical work is blunted till 6-7 m s(-1) by the increase in vertical stiffness and the decrease in ground contact time. Fatigue induced by prolonged or intense running is associated with up to 10 % increased C r; the contribution of metabolic and biomechanical factors remains unclear. Women show a C r similar to men of similar body mass, despite differences in gait pattern. The superiority of black African runners is presumably related to their leg architecture and better elastic energy storage and reuse. PMID:25681108

  16. Energetics of high-speed running: integrating classical theory and contemporary observations.

    PubMed

    Weyand, Peter G; Bundle, Matthew W

    2005-04-01

    We hypothesized that the anaerobic power and aerobic power outputs during all-out runs of any common duration between 10 and 150 s would be proportional to the maximum anaerobic (E(an-max)) and aerobic powers (E(aer-max)) available to the individual runner. Seventeen runners who differed in E(an-max) and E(aer-max) (5 sprinters, 5 middle-distance runners, and 7 long distance runners) were tested during treadmill running on a 4.6 degrees incline. E(an-max) was estimated from the fastest treadmill speed subjects could attain for eight steps. E(aer-max) was determined from a progressive, discontinuous, treadmill test to failure. Oxygen deficits and rates of uptake were measured to assess the respective anaerobic and aerobic power outputs during 11-16 all-out treadmill runs that elicited failure between 10 and 220 s. We found that, during all-out runs of any common duration, the relative anaerobic and aerobic powers utilized were largely the same for sprint, middle-distance, and long-distance subjects. The similar fractional utilization of the E(an-max) and E(aer-max) available during high-speed running 1) provides empirical values that modify and advance classic theory, 2) allows rates of anaerobic and aerobic energy release to be quantified from individual maxima and run durations, and 3) explains why the high-speed running performances of different event specialists can be accurately predicted (R(2) = 0.97; n = 254) from two direct measurements and the same exponential time constant.

  17. Effects of Cycling Versus Running Training on Sprint and Endurance Capacity in Inline Speed Skating.

    PubMed

    Stangier, Carolin; Abel, Thomas; Mierau, Julia; Hollmann, Wildor; Strüder, Heiko K

    2016-03-01

    The purpose of this study was to compare the effects of running versus cycling training on sprint and endurance capacity in inline speed skating. Sixteen elite athletes (8 male, 8 female, 24 ± 8 yrs) were randomly assigned into 2 training groups performing either 2 session per week of treadmill running or ergometer cycling in addition to 3 skating specific sessions (technique, plyometrics, parkour) for 8 weeks. Training intensity was determined within non-specific (cycling or running) and effects on specific endurance capacity within a specific incremental exercise test. Before and after the intervention all athletes performed a specific (300m) and one non-specific (30s cycling or 200m running) all-out sprint test according to the group affiliation. To determine the accumulation of blood lactate (BLa) and glucose (BGL) 20 μl arterialized blood was drawn at rest, as well as in 1 min intervals for 10 min after the sprint test. The sport-specific peak oxygen uptake (VO2 peak) was significantly increased (+17%; p = 0.01) in both groups and highly correlated with the sprint performance (r = -0.71). BLa values decreased significantly (-18%, p = 0.02) after the specific sprint test from pre to post-testing without any group effect. However, BGL values only showed a significant decrease (-2%, p = 0.04) in the running group. The close relationship between aerobic capacity and sprint performance in inline speed skating highlights the positive effects of endurance training. Although both training programs were equally effective in improving endurance and sprint capacities, the metabolic results indicate a faster recovery after high intensity efforts for all athletes, as well as a higher reliance on the fat metabolism for athletes who trained in the running group. Key pointsIn addition to a highly developed aerobic performance inline speed skaters also require a highly trained anaerobic capacity to be effective in the sprint sections such as the mass start, tactical attacks

  18. Effects of Cycling Versus Running Training on Sprint and Endurance Capacity in Inline Speed Skating

    PubMed Central

    Stangier, Carolin; Abel, Thomas; Mierau, Julia; Hollmann, Wildor; Strüder, Heiko K.

    2016-01-01

    The purpose of this study was to compare the effects of running versus cycling training on sprint and endurance capacity in inline speed skating. Sixteen elite athletes (8 male, 8 female, 24 ± 8 yrs) were randomly assigned into 2 training groups performing either 2 session per week of treadmill running or ergometer cycling in addition to 3 skating specific sessions (technique, plyometrics, parkour) for 8 weeks. Training intensity was determined within non-specific (cycling or running) and effects on specific endurance capacity within a specific incremental exercise test. Before and after the intervention all athletes performed a specific (300m) and one non-specific (30s cycling or 200m running) all-out sprint test according to the group affiliation. To determine the accumulation of blood lactate (BLa) and glucose (BGL) 20 μl arterialized blood was drawn at rest, as well as in 1 min intervals for 10 min after the sprint test. The sport-specific peak oxygen uptake (VO2 peak) was significantly increased (+17%; p = 0.01) in both groups and highly correlated with the sprint performance (r = -0.71). BLa values decreased significantly (-18%, p = 0.02) after the specific sprint test from pre to post-testing without any group effect. However, BGL values only showed a significant decrease (-2%, p = 0.04) in the running group. The close relationship between aerobic capacity and sprint performance in inline speed skating highlights the positive effects of endurance training. Although both training programs were equally effective in improving endurance and sprint capacities, the metabolic results indicate a faster recovery after high intensity efforts for all athletes, as well as a higher reliance on the fat metabolism for athletes who trained in the running group. Key points In addition to a highly developed aerobic performance inline speed skaters also require a highly trained anaerobic capacity to be effective in the sprint sections such as the mass start, tactical attacks

  19. Effects of Cycling Versus Running Training on Sprint and Endurance Capacity in Inline Speed Skating.

    PubMed

    Stangier, Carolin; Abel, Thomas; Mierau, Julia; Hollmann, Wildor; Strüder, Heiko K

    2016-03-01

    The purpose of this study was to compare the effects of running versus cycling training on sprint and endurance capacity in inline speed skating. Sixteen elite athletes (8 male, 8 female, 24 ± 8 yrs) were randomly assigned into 2 training groups performing either 2 session per week of treadmill running or ergometer cycling in addition to 3 skating specific sessions (technique, plyometrics, parkour) for 8 weeks. Training intensity was determined within non-specific (cycling or running) and effects on specific endurance capacity within a specific incremental exercise test. Before and after the intervention all athletes performed a specific (300m) and one non-specific (30s cycling or 200m running) all-out sprint test according to the group affiliation. To determine the accumulation of blood lactate (BLa) and glucose (BGL) 20 μl arterialized blood was drawn at rest, as well as in 1 min intervals for 10 min after the sprint test. The sport-specific peak oxygen uptake (VO2 peak) was significantly increased (+17%; p = 0.01) in both groups and highly correlated with the sprint performance (r = -0.71). BLa values decreased significantly (-18%, p = 0.02) after the specific sprint test from pre to post-testing without any group effect. However, BGL values only showed a significant decrease (-2%, p = 0.04) in the running group. The close relationship between aerobic capacity and sprint performance in inline speed skating highlights the positive effects of endurance training. Although both training programs were equally effective in improving endurance and sprint capacities, the metabolic results indicate a faster recovery after high intensity efforts for all athletes, as well as a higher reliance on the fat metabolism for athletes who trained in the running group. Key pointsIn addition to a highly developed aerobic performance inline speed skaters also require a highly trained anaerobic capacity to be effective in the sprint sections such as the mass start, tactical attacks

  20. Spatiotemporal characteristics of the walk-to-run and run-to-walk transition when gradually changing speed.

    PubMed

    Segers, V; Aerts, P; Lenoir, M; De Clercq, D

    2006-10-01

    The purpose of this study was to examine spatiotemporal parameters of the walk-to-run transition (WRT) and run-to-walk transition (RWT) when speed is altered with different constant accelerations. Twenty women (height: 168.9+/-3.36cm) performed three accelerations (0.05, 0.07 and 0.1ms(-2)) and three decelerations (-0.05, -0.07 and -0.1ms(-2)) on a motor-driven treadmill. The transition step in the WRT (first step with a flight phase) and RWT (first step with a double stance phase) occurred at the same speed for all accelerations but these did not occur in the same way. The most striking difference was the presence of a transition step with specific spatiotemporal characteristics in the WRT, whereas this was not observed in the RWT. The transition is not a sudden one-step-event. WRT occurred before transition and consisted of a "pre-transition period" and the transition step whereas RWT occurred after transition and consisted of the transition step and a "post-transition period". Both transition periods were characterized by an exponential evolution of step frequency and step length. Step frequency and step length showed a linear evolution before and after transition. The flight phase of the transition step in the WRT reached a minimum with comparable duration of the last flight phase in the RWT. The flight phase could be considered as an intrinsic dynamical factor of transition. Further research in kinematics, the trajectory of the body centre of mass and energy fluctuations will give more insight in these transitions.

  1. Effect of reduced gravity on the preferred walk-run transition speed.

    PubMed

    Kram, R; Domingo, A; Ferris, D P

    1997-02-01

    We investigated the effect of reduced gravity on the human walk-run gait transition speed and interpreted the results using an inverted-pendulum mechanical model. We simulated reduced gravity using an apparatus that applied a nearly constant upward force at the center of mass, and the subjects walked and ran on a motorized treadmill. In the inverted pendulum model for walking, gravity provides the centripetal force needed to keep the pendulum in contact with the ground. The ratio of the centripetal and gravitational forces (mv2/L)/(mg) reduces to the dimensionless Froude number (v2/gL). Applying this model to a walking human, m is body mass, v is forward velocity, L is leg length and g is gravity. In normal gravity, humans and other bipeds with different leg lengths all choose to switch from a walk to a run at different absolute speeds but at approximately the same Froude number (0.5). We found that, at lower levels of gravity, the walk-run transition occurred at progressively slower absolute speeds but at approximately the same Froude number. This supports the hypothesis that the walk-run transition is triggered by the dynamics of an inverted-pendulum system. PMID:9076966

  2. Optimal speeds for walking and running, and walking on a moving walkway

    NASA Astrophysics Data System (ADS)

    Srinivasan, Manoj

    2009-06-01

    Many aspects of steady human locomotion are thought to be constrained by a tendency to minimize the expenditure of metabolic cost. This paper has three parts related to the theme of energetic optimality: (1) a brief review of energetic optimality in legged locomotion, (2) an examination of the notion of optimal locomotion speed, and (3) an analysis of walking on moving walkways, such as those found in some airports. First, I describe two possible connotations of the term "optimal locomotion speed:" that which minimizes the total metabolic cost per unit distance and that which minimizes the net cost per unit distance (total minus resting cost). Minimizing the total cost per distance gives the maximum range speed and is a much better predictor of the speeds at which people and horses prefer to walk naturally. Minimizing the net cost per distance is equivalent to minimizing the total daily energy intake given an idealized modern lifestyle that requires one to walk a given distance every day—but it is not a good predictor of animals' walking speeds. Next, I critique the notion that there is no energy-optimal speed for running, making use of some recent experiments and a review of past literature. Finally, I consider the problem of predicting the speeds at which people walk on moving walkways—such as those found in some airports. I present two substantially different theories to make predictions. The first theory, minimizing total energy per distance, predicts that for a range of low walkway speeds, the optimal absolute speed of travel will be greater—but the speed relative to the walkway smaller—than the optimal walking speed on stationary ground. At higher walkway speeds, this theory predicts that the person will stand still. The second theory is based on the assumption that the human optimally reconciles the sensory conflict between the forward speed that the eye sees and the walking speed that the legs feel and tries to equate the best estimate of the

  3. Caffeinated Energy Drinks Improve High-Speed Running in Elite Field Hockey Players.

    PubMed

    Del Coso, Juan; Portillo, Javier; Salinero, Juan José; Lara, Beatriz; Abian-Vicen, Javier; Areces, Francisco

    2016-02-01

    The aim of this investigation was to determine the efficacy of a caffeine-containing energy drink to improve physical performance of elite field hockey players during a game. On 2 days separated by a week, 13 elite field hockey players (age and body mass = 23.2 ± 3.9 years and 76.1 ± 6.1 kg) ingested 3 mg of caffeine per kg of body mass in the form of an energy drink or the same drink without caffeine (placebo drink). After 60 min for caffeine absorption, participants played a simulated field hockey game (2 × 25 min). Individual running pace and instantaneous speed during the game were assessed using GPS devices. The total number of accelerations and decelerations was determined by accelerometry. Compared with the placebo drink, the caffeinated energy drink did not modify the total distance covered during the game (6,035 ± 451 m and 6,055 ± 499 m, respectively; p = .87), average heart rate (155 ± 13 beats per min and 158 ± 18 beats per min, respectively; p = .46), or the number of accelerations and decelerations (697 ± 285 and 618 ± 221, respectively; p = .15). However, the caffeinated energy drink reduced the distance covered at moderate-intensity running (793 ± 135 and 712 ± 116, respectively; p = .03) and increased the distance covered at high-intensity running (303 ± 67 m and 358 ± 117 m; p = .05) and sprinting (85 ± 41 m and 117 ± 55 m, respectively; p = .02). Elite field hockey players can benefit from ingesting caffeinated energy drinks because they increase the running distance covered at high-intensity running and sprinting. Increased running distance at high speed might represent a meaningful advantage for field hockey performance. PMID:26251550

  4. Caffeinated Energy Drinks Improve High-Speed Running in Elite Field Hockey Players.

    PubMed

    Del Coso, Juan; Portillo, Javier; Salinero, Juan José; Lara, Beatriz; Abian-Vicen, Javier; Areces, Francisco

    2016-02-01

    The aim of this investigation was to determine the efficacy of a caffeine-containing energy drink to improve physical performance of elite field hockey players during a game. On 2 days separated by a week, 13 elite field hockey players (age and body mass = 23.2 ± 3.9 years and 76.1 ± 6.1 kg) ingested 3 mg of caffeine per kg of body mass in the form of an energy drink or the same drink without caffeine (placebo drink). After 60 min for caffeine absorption, participants played a simulated field hockey game (2 × 25 min). Individual running pace and instantaneous speed during the game were assessed using GPS devices. The total number of accelerations and decelerations was determined by accelerometry. Compared with the placebo drink, the caffeinated energy drink did not modify the total distance covered during the game (6,035 ± 451 m and 6,055 ± 499 m, respectively; p = .87), average heart rate (155 ± 13 beats per min and 158 ± 18 beats per min, respectively; p = .46), or the number of accelerations and decelerations (697 ± 285 and 618 ± 221, respectively; p = .15). However, the caffeinated energy drink reduced the distance covered at moderate-intensity running (793 ± 135 and 712 ± 116, respectively; p = .03) and increased the distance covered at high-intensity running (303 ± 67 m and 358 ± 117 m; p = .05) and sprinting (85 ± 41 m and 117 ± 55 m, respectively; p = .02). Elite field hockey players can benefit from ingesting caffeinated energy drinks because they increase the running distance covered at high-intensity running and sprinting. Increased running distance at high speed might represent a meaningful advantage for field hockey performance.

  5. Theoretical considerations on maximum running speeds for large and small animals.

    PubMed

    Fuentes, Mauricio A

    2016-02-01

    Mechanical equations for fast running speeds are presented and analyzed. One of the equations and its associated model predict that animals tend to experience larger mechanical stresses in their limbs (muscles, tendons and bones) as a result of larger stride lengths, suggesting a structural restriction entailing the existence of an absolute maximum possible stride length. The consequence for big animals is that an increasingly larger body mass implies decreasing maximal speeds, given that the stride frequency generally decreases for increasingly larger animals. Another restriction, acting on small animals, is discussed only in preliminary terms, but it seems safe to assume from previous studies that for a given range of body masses of small animals, those which are bigger are faster. The difference between speed scaling trends for large and small animals implies the existence of a range of intermediate body masses corresponding to the fastest animals.

  6. Running faster causes disaster: trade-offs between speed, manoeuvrability and motor control when running around corners in northern quolls (Dasyurus hallucatus).

    PubMed

    Wynn, Melissa L; Clemente, Christofer; Nasir, Ami Fadhillah Amir Abdul; Wilson, Robbie S

    2015-02-01

    Movement speed is fundamental to all animal behaviour, yet no general framework exists for understanding why animals move at the speeds they do. Even during fitness-defining behaviours like running away from predators, an animal should select a speed that balances the benefits of high speed against the increased probability of mistakes. In this study, we explored this idea by quantifying trade-offs between speed, manoeuvrability and motor control in wild northern quolls (Dasyurus hallucatus) - a medium-sized carnivorous marsupial native to northern Australia. First, we quantified how running speed affected the probability of crashes when rounding corners of 45, 90 and 135 deg. We found that the faster an individual approached a turn, the higher the probability that they would crash, and these risks were greater when negotiating tighter turns. To avoid crashes, quolls modulated their running speed when they moved through turns of varying angles. Average speed for quolls when sprinting along a straight path was around 4.5 m s(-1) but this decreased linearly to speeds of around 1.5 m s(-1) when running through 135 deg turns. Finally, we explored how an individual's morphology affects their manoeuvrability. We found that individuals with larger relative foot sizes were more manoeuvrable than individuals with smaller relative foot sizes. Thus, movement speed, even during extreme situations like escaping predation, should be based on a compromise between high speed, manoeuvrability and motor control. We advocate that optimal - rather than maximal - performance capabilities underlie fitness-defining behaviours such as escaping predators and capturing prey.

  7. Running faster causes disaster: trade-offs between speed, manoeuvrability and motor control when running around corners in northern quolls (Dasyurus hallucatus).

    PubMed

    Wynn, Melissa L; Clemente, Christofer; Nasir, Ami Fadhillah Amir Abdul; Wilson, Robbie S

    2015-02-01

    Movement speed is fundamental to all animal behaviour, yet no general framework exists for understanding why animals move at the speeds they do. Even during fitness-defining behaviours like running away from predators, an animal should select a speed that balances the benefits of high speed against the increased probability of mistakes. In this study, we explored this idea by quantifying trade-offs between speed, manoeuvrability and motor control in wild northern quolls (Dasyurus hallucatus) - a medium-sized carnivorous marsupial native to northern Australia. First, we quantified how running speed affected the probability of crashes when rounding corners of 45, 90 and 135 deg. We found that the faster an individual approached a turn, the higher the probability that they would crash, and these risks were greater when negotiating tighter turns. To avoid crashes, quolls modulated their running speed when they moved through turns of varying angles. Average speed for quolls when sprinting along a straight path was around 4.5 m s(-1) but this decreased linearly to speeds of around 1.5 m s(-1) when running through 135 deg turns. Finally, we explored how an individual's morphology affects their manoeuvrability. We found that individuals with larger relative foot sizes were more manoeuvrable than individuals with smaller relative foot sizes. Thus, movement speed, even during extreme situations like escaping predation, should be based on a compromise between high speed, manoeuvrability and motor control. We advocate that optimal - rather than maximal - performance capabilities underlie fitness-defining behaviours such as escaping predators and capturing prey. PMID:25653423

  8. Effects of a defender on run-up velocity and ball speed when crossing a football.

    PubMed

    Orth, Dominic; Davids, Keith; Araújo, Duarte; Renshaw, Ian; Passos, Pedro

    2014-01-01

    This study evaluated effects of defensive pressure on running velocity in footballers during the approach to kick a stationary football. Approach velocity and ball speed/accuracy data were recorded from eight football youth academy participants (15.25, SD=0.46 yrs). Participants were required to run to a football to cross it to a receiver to score against a goal-keeper. Defensive pressure was manipulated across three counterbalanced conditions: defender-absent (DA); defender-far (DF) and defender-near (DN). Pass accuracy (percentages of a total of 32 trials with 95% confidence limits in parenthesis) did not significantly reduce under changing defensive pressure: DA, 78% (55-100%); DF, 78% (61-96%); DN, 59% (40-79%). Ball speed (m · s(-1)) significantly reduced as defensive pressure was included and increased: DA, 23.10 (22.38-23.83); DF, 20.40 (19.69-21.11); DN, 19.22 (18.51-19.93). When defensive pressure was introduced, average running velocity of attackers did not change significantly: DA versus DF (m · s(-1)), 5.40 (5.30-5.51) versus 5.41 (5.34-5.48). Scaling defender starting positions closer to the start position of the attacker (DN) significantly increased average running velocity relative to the DA and DF conditions, 5.60 (5.50-5.71). In the final approach footfalls, all conditions significantly differed: DA, 5.69 (5.35-6.03); DF, 6 .22 (5.93-6.50); DN, 6.52 (6.23-6.80). Data suggested that approach velocity is constrained by both presence and initial distance of the defender during task performance. Implications are that the expression of kicking behaviour is specific to a performance context and some movement regulation features will not emerge unless a defender is present as a task constraint in practice. PMID:24444224

  9. Maximum Running Speed of Captive Bar-Headed Geese Is Unaffected by Severe Hypoxia

    PubMed Central

    Hawkes, Lucy A.; Butler, Patrick J.; Frappell, Peter B.; Meir, Jessica U.; Milsom, William K.; Scott, Graham R.; Bishop, Charles M.

    2014-01-01

    While bar-headed geese are renowned for migration at high altitude over the Himalayas, previous work on captive birds suggested that these geese are unable to maintain rates of oxygen consumption while running in severely hypoxic conditions. To investigate this paradox, we re-examined the running performance and heart rates of bar-headed geese and barnacle geese (a low altitude species) during exercise in hypoxia. Bar-headed geese (n = 7) were able to run at maximum speeds (determined in normoxia) for 15 minutes in severe hypoxia (7% O2; simulating the hypoxia at 8500 m) with mean heart rates of 466±8 beats min−1. Barnacle geese (n = 10), on the other hand, were unable to complete similar trials in severe hypoxia and their mean heart rate (316 beats.min−1) was significantly lower than bar-headed geese. In bar-headed geese, partial pressures of oxygen and carbon dioxide in both arterial and mixed venous blood were significantly lower during hypoxia than normoxia, both at rest and while running. However, measurements of blood lactate in bar-headed geese suggested that anaerobic metabolism was not a major energy source during running in hypoxia. We combined these data with values taken from the literature to estimate (i) oxygen supply, using the Fick equation and (ii) oxygen demand using aerodynamic theory for bar-headed geese flying aerobically, and under their own power, at altitude. This analysis predicts that the maximum altitude at which geese can transport enough oxygen to fly without environmental assistance ranges from 6,800 m to 8,900 m altitude, depending on the parameters used in the model but that such flights should be rare. PMID:24710001

  10. Maximum running speed of captive bar-headed geese is unaffected by severe hypoxia.

    PubMed

    Hawkes, Lucy A; Butler, Patrick J; Frappell, Peter B; Meir, Jessica U; Milsom, William K; Scott, Graham R; Bishop, Charles M

    2014-01-01

    While bar-headed geese are renowned for migration at high altitude over the Himalayas, previous work on captive birds suggested that these geese are unable to maintain rates of oxygen consumption while running in severely hypoxic conditions. To investigate this paradox, we re-examined the running performance and heart rates of bar-headed geese and barnacle geese (a low altitude species) during exercise in hypoxia. Bar-headed geese (n = 7) were able to run at maximum speeds (determined in normoxia) for 15 minutes in severe hypoxia (7% O2; simulating the hypoxia at 8500 m) with mean heart rates of 466±8 beats min-1. Barnacle geese (n = 10), on the other hand, were unable to complete similar trials in severe hypoxia and their mean heart rate (316 beats.min-1) was significantly lower than bar-headed geese. In bar-headed geese, partial pressures of oxygen and carbon dioxide in both arterial and mixed venous blood were significantly lower during hypoxia than normoxia, both at rest and while running. However, measurements of blood lactate in bar-headed geese suggested that anaerobic metabolism was not a major energy source during running in hypoxia. We combined these data with values taken from the literature to estimate (i) oxygen supply, using the Fick equation and (ii) oxygen demand using aerodynamic theory for bar-headed geese flying aerobically, and under their own power, at altitude. This analysis predicts that the maximum altitude at which geese can transport enough oxygen to fly without environmental assistance ranges from 6,800 m to 8,900 m altitude, depending on the parameters used in the model but that such flights should be rare.

  11. Estimation of the running speed and bearing defect frequencies of an induction motor from vibration data

    NASA Astrophysics Data System (ADS)

    Ocak, Hasan; Loparo, Kenneth A.

    2004-05-01

    This paper presents two separate algorithms for estimating the running speed and the bearing key frequencies of an induction motor using vibration data. Bearing key frequencies are frequencies at which roller elements pass over a defect point. Most frequency domain-based bearing fault detection and diagnosis techniques (e.g. envelope analysis) rely on vibration measurements and the bearing key frequencies. Thus, estimation of the running speed and the bearing key frequencies are required for failure detection and diagnosis. The paper also incorporates the estimation algorithms with the most commonly used bearing fault detection technique, high-frequency demodulation, to detect bearing faults. Experimental data were used to verify the validity of the algorithms. Data were collected through an accelerometer measuring the vibration from the drive-end ball bearing of an induction motor (Reliance Electric 2HP IQPreAlert)-driven mechanical system. Both inner and outer race defects were artificially introduced to the bearing using electrical discharge machining. A linear vibration model was also developed for generating simulated vibration data. The simulated data were also used to validate the performance of the algorithms. The test results proved the algorithms to be very reliable.

  12. Damage to Liver and Skeletal Muscles in Marathon Runners During a 100 km Run With Regard to Age and Running Speed

    PubMed Central

    Jastrzębski, Zbigniew; Żychowska, Małgorzata; Radzimiński, Łukasz; Konieczna, Anna; Kortas, Jakub

    2015-01-01

    The purpose of this study was to determine: (1) whether damage to liver and skeletal muscles occurs during a 100 km run; (2) whether the metabolic response to extreme exertion is related to the age or running speed of the participant; (3) whether it is possible to determine the optimal running speed and distance for long-distance runners’ health by examining biochemical parameters in venous blood. Fourteen experienced male amateur ultra-marathon runners, divided into two age groups, took part in a 100 km run. Blood samples for liver and skeletal muscle damage indexes were collected from the ulnar vein just before the run, after 25, 50, 75 and 100 km, and 24 hours after termination of the run. A considerable increase in alanine aminotransferase (ALT) and aspartate aminotransferase (AST) was observed with the distance covered (p < 0.05), which continued during recovery. An increase in the mean values of lactate dehydrogenase (LDH), creatine kinase (CK) and C-reactive protein (CRP) (p < 0.05) was observed with each sequential course. The biggest differences between the age groups were found for the activity of liver enzymes and LDH after completing 75 km as well as after 24 hours of recovery. It can be concluded that the response to extreme exertion deteriorates with age in terms of the active movement apparatus. PMID:25964813

  13. The influence of carbohydrate mouth rinse on self-selected speeds during a 30-min treadmill run.

    PubMed

    Rollo, Ian; Williams, Clyde; Gant, Nicholas; Nute, Maria

    2008-12-01

    The purpose of this study was to examine the influences of a carbohydrate (CHO) mouth rinse on self-selected running speeds during a 30-min treadmill run. Ten endurance-trained men performed 2 trials, each involving a 10-min warm-up at 60% VO2max followed by a 30-min run. The run was performed on an automated treadmill that allowed the spontaneous selection of speeds without manual input. Participants were asked to run at speeds that equated to a rating of perceived exertion of 15, mouth rinsing with either a 6% CHO or taste-matched placebo (PLA) solution. In addition to recording self-selected speeds and total distance covered the authors assessed the runners' subjective feelings. The total distance covered was greater during the CHO than during the PLA trial (p < .05). Faster speeds selected during the first 5 min of exercise corresponded with enhanced feelings of pleasure when mouth rinsing with the CHO solution. Mouth rinsing with a CHO solution increased total distance covered during a self-selected 30-min run in comparison with mouth rinsing with a color- and taste-matched placebo.

  14. Effects of treadmill running on mid-term memory and swim speed in the rat with Morris water maze test.

    PubMed

    Alaei, HojjatAllah; Moloudi, Rohallah; Sarkaki, Ali Reza

    2008-01-01

    Previous studies involving exercise and memory showed that learning and memory were improved by exercise. This study was performed to find the effect of treadmill running on memory. Mid-term memory and swim speed were measured within 8 days. Twenty rats were divided into two groups, a control and a test group. Mid-term memory and swim speed were measured in the Morris water maze apparatus. Our results showed that treadmill running produced a significant enhancement on mid-term memory and swim speed in the test group, which may be mediated by specific molecular pathways.

  15. Age-related differences in acceleration, maximum running speed, and repeated-sprint performance in young soccer players.

    PubMed

    Mendez-Villanueva, Alberto; Buchheit, Martin; Kuitunen, Sami; Douglas, Andrew; Peltola, Esa; Bourdon, Pitre

    2011-03-01

    We investigated age-related differences in the relationships among acceleration, maximum running speed, and repeated-sprint performance in 61 highly trained young male soccer players (Under 14, n = 14; Under 16, n = 22; Under 18, n = 25). We also examined the possible influence of anthropometry (stature, body mass, fat-free mass) and biological maturation (age at peak height velocity) on performance in those three sprint-running qualities. Players were tested for 10-m sprint (acceleration), flying 20-m sprint (maximum running speed), and 10 × 30-m sprint (repeated-sprint performance) times. Correlations between acceleration, maximum running speed, and repeated-sprint performance were positive and large to almost perfect (r = 0.55-0.96), irrespective of age group. There were age-based differences both in absolute performance in the three sprint-running qualities (Under 18 > Under 16 > Under 14; P < 0.001) and when body mass and fat-free mass were statistically controlled (P < 0.05). In contrast, all between-group differences disappeared after adjustment for age at peak height velocity (P > 0.05). The large correlations among acceleration, maximum running speed, and repeated-sprint performance in all age groups, as well as the disappearance of between-group differences when adjusted for estimated biological maturity, suggest that these physical qualities in young highly trained soccer players might be considered as a general quality, which is likely to be related to qualitative adaptations that accompany maturation.

  16. Tendon elastic strain energy in the human ankle plantar-flexors and its role with increased running speed.

    PubMed

    Lai, Adrian; Schache, Anthony G; Lin, Yi-Chung; Pandy, Marcus G

    2014-09-01

    The human ankle plantar-flexors, the soleus and gastrocnemius, utilize tendon elastic strain energy to reduce muscle fiber work and optimize contractile conditions during running. However, studies to date have considered only slow to moderate running speeds up to 5 m s(-1). Little is known about how the human ankle plantar-flexors utilize tendon elastic strain energy as running speed is advanced towards maximum sprinting. We used data obtained from gait experiments in conjunction with musculoskeletal modeling and optimization techniques to calculate muscle-tendon unit (MTU) work, tendon elastic strain energy and muscle fiber work for the ankle plantar-flexors as participants ran at five discrete steady-state speeds ranging from jogging (~2 m s(-1)) to sprinting (≥8 m s(-1)). As running speed progressed from jogging to sprinting, the contribution of tendon elastic strain energy to the positive work generated by the MTU increased from 53% to 74% for the soleus and from 62% to 75% for the gastrocnemius. This increase was facilitated by greater muscle activation and the relatively isometric behavior of the soleus and gastrocnemius muscle fibers. Both of these characteristics enhanced tendon stretch and recoil, which contributed to the bulk of the change in MTU length. Our results suggest that as steady-state running speed is advanced towards maximum sprinting, the human ankle plantar-flexors continue to prioritize the storage and recovery of tendon elastic strain energy over muscle fiber work.

  17. Wind Plant Capacity Credit Variations: A Comparison of Results Using Multiyear Actual and Simulated Wind-Speed Data

    SciTech Connect

    Milligan, M.

    1997-06-01

    Although it is widely recognized that variations in annual wind energy capture can be significant, it is not clear how significant this effect is on accurately calculating the capacity credit of a wind plant. An important question is raised concerning whether one year of wind data is representative of long-term patters. This report calculates the range of capacity credit measures based on 13 years of actual wind-speed data. The results are compared to those obtained with synthetic data sets that are based on one year of data. Although the use of synthetic data sets is a considerable improvement over single-estimate techniques, this report finds that the actual inter-annual variation in capacity credit is still understated by the synthetic data technique.

  18. Wind plant capacity credit variations: A comparison of results using multiyear actual and simulated wind-speed data

    SciTech Connect

    Milligan, M.R.

    1997-12-31

    Although it is widely recognized that variations in annual wind energy capture can be significant, it is not clear how significant this effect is on accurately calculating the capacity credit of a wind plant. An important question is raised concerning whether one year of wind data is representative of long-term patterns. This paper calculates the range of capacity credit measures based on 13 years of actual wind-speed data. The results are compared to those obtained with synthetic data sets that are based on one year of data. Although the use of synthetic data sets is a considerable improvement over single-estimate techniques, this paper finds that the actual inter-annual variation in capacity credit is still understated by the synthetic data technique.

  19. Wind Plant Capacity Credit Variations: A Comparison of Results Using Multiyear Actual and Simulated Wind-Speed Data

    SciTech Connect

    Milligan, Michael

    1997-06-01

    Although it is widely recognized that variations in annual wind energy capture can be significant, it is not clear how significant this effect is on accurately calculating the capacity credit of a wind plant. An important question is raised concerning whether one year of wind data is representative of long-term patterns. This paper calculates the range of capacity credit measures based on 13 years of actual wind-speed data. The results are compared to those obtained with synthetic data sets that are based on one year of data. Although the use of synthetic data sets is a considerable improvement over single-estimate techniques, this paper finds that the actual inter- annual variation in capacity credit is still understated by the synthetic data technique.

  20. Muscle contributions to fore-aft and vertical body mass center accelerations over a range of running speeds

    PubMed Central

    Hamner, Samuel R.; Delp, Scott L.

    2012-01-01

    Running is a bouncing gait in which the body mass center slows and lowers during the first half of the stance phase; the mass center is then accelerated forward and upward into flight during the second half of the stance phase. Muscle-driven simulations can be analyzed to determine how muscle forces accelerate the body mass center. However, muscle-driven simulations of running at different speeds have not been previously developed, and it remains unclear how muscle forces modulate mass center accelerations at different running speeds. Thus, to examine how muscles generate accelerations of the body mass center, we created three-dimensional muscle-driven simulations of ten subjects running at 2.0, 3.0, 4.0, and 5.0 m/s. An induced acceleration analysis determined the contribution of each muscle to mass center accelerations. Our simulations included arms, allowing us to investigate the contributions of arm motion to running dynamics. Analysis of the simulations revealed that soleus provides the greatest upward mass center acceleration at all running speeds; soleus generates a peak upward acceleration of 19.8 m/s2 (i.e., the equivalent of approximately 2.0 bodyweights of ground reaction force) at 5.0 m/s. Soleus also provided the greatest contribution to forward mass center acceleration, which increased from 2.5 m/s2 at 2.0 m/s to 4.0 m/s2 at 5.0 m/s. At faster running speeds, greater velocity of the legs produced larger angular momentum about the vertical axis passing through the body mass center; angular momentum about this vertical axis from arm swing simultaneously increased to counterbalance the legs. We provide open-access to data and simulations from this study for further analysis in OpenSim at simtk.org/home/nmbl_running, enabling muscle actions during running to be studied in unprecedented detail. PMID:23246045

  1. Heart rate running speed relationships-during exhaustive bouts in the laboratory.

    PubMed

    Boudet, Gil; Albuisson, Elianne; Bedu, Mario; Chamoux, Alain

    2004-12-01

    The present study was designed to investigate the heart rate-running speed (HR-RS) relationship while exercising continuously, at high intensities, on a treadmill. The purpose was to precisely measure the magnitude of drop in RS necessary to maintain HR during intense exhaustive exercises, and to determine whether the magnitude of drop in RS is directly dependent on exercise intensity. Sixteen male endurance athletes performed five treadmill tests: an incremental test for maximal O2 uptake and maximum aerobic velocity (VMA), and four exhaustive tests: at 82, 86, 89, and 92 % VMA. After an adaptation period of 3 min, the objective was to stabilise HR by adjusting the treadmill speed continuously by +/- 0.5 km x h(-1) every 30 sec. Attained intensities were: 82 % (+/-6), 84 % +/- (6), 89 % (+/-3), and 90 % (+/-6) VMA, respectively [L1, L2] vs. [L3, L4], p < 0.05. Time to exhaustion across the increasing intensities, respectively, were: 36.58 (+/-4.45), 24.63 (+/-3.25), 15.80 (+/-2.00), and 9.87 (+/-1.15) min, p < 0.05, with the exception of L3 vs. L4. The RS/HR ratio vs. speed showed three phases: an increasing adaptive (AB) phase 0-165 sec with an averaging maximal level of 1.67 m x beat(-1) at 165 sec, a transitional period 170-245 sec, and a decreasing (BC) phase 250-1800 sec with a lower level of 1.29 m .beat(-1) at 1800 sec. In our experimental conditions, for high intensities 82 to 90 % VMA, cardiac drift which disturbed the RS-HR relationship with duration was evaluated: -0.143 km x h(-1) per minute for HR stabilisation. This cardiac drift is a linear function of time. Results suggest that HR and RS are not interchangeable variables for this kind of exercises, and it seems more reliable to gauge exercise intensity using RS than HR.

  2. How muscle fiber lengths and velocities affect muscle force generation as humans walk and run at different speeds

    PubMed Central

    Arnold, Edith M.; Hamner, Samuel R.; Seth, Ajay; Millard, Matthew; Delp, Scott L.

    2013-01-01

    SUMMARY The lengths and velocities of muscle fibers have a dramatic effect on muscle force generation. It is unknown, however, whether the lengths and velocities of lower limb muscle fibers substantially affect the ability of muscles to generate force during walking and running. We examined this issue by developing simulations of muscle–tendon dynamics to calculate the lengths and velocities of muscle fibers from electromyographic recordings of 11 lower limb muscles and kinematic measurements of the hip, knee and ankle made as five subjects walked at speeds of 1.0–1.75 m s−1 and ran at speeds of 2.0–5.0 m s−1. We analyzed the simulated fiber lengths, fiber velocities and forces to evaluate the influence of force–length and force–velocity properties on force generation at different walking and running speeds. The simulations revealed that force generation ability (i.e. the force generated per unit of activation) of eight of the 11 muscles was significantly affected by walking or running speed. Soleus force generation ability decreased with increasing walking speed, but the transition from walking to running increased the force generation ability by reducing fiber velocities. Our results demonstrate the influence of soleus muscle architecture on the walk-to-run transition and the effects of muscle–tendon compliance on the plantarflexors' ability to generate ankle moment and power. The study presents data that permit lower limb muscles to be studied in unprecedented detail by relating muscle fiber dynamics and force generation to the mechanical demands of walking and running. PMID:23470656

  3. How muscle fiber lengths and velocities affect muscle force generation as humans walk and run at different speeds.

    PubMed

    Arnold, Edith M; Hamner, Samuel R; Seth, Ajay; Millard, Matthew; Delp, Scott L

    2013-06-01

    The lengths and velocities of muscle fibers have a dramatic effect on muscle force generation. It is unknown, however, whether the lengths and velocities of lower limb muscle fibers substantially affect the ability of muscles to generate force during walking and running. We examined this issue by developing simulations of muscle-tendon dynamics to calculate the lengths and velocities of muscle fibers from electromyographic recordings of 11 lower limb muscles and kinematic measurements of the hip, knee and ankle made as five subjects walked at speeds of 1.0-1.75 m s(-1) and ran at speeds of 2.0-5.0 m s(-1). We analyzed the simulated fiber lengths, fiber velocities and forces to evaluate the influence of force-length and force-velocity properties on force generation at different walking and running speeds. The simulations revealed that force generation ability (i.e. the force generated per unit of activation) of eight of the 11 muscles was significantly affected by walking or running speed. Soleus force generation ability decreased with increasing walking speed, but the transition from walking to running increased the force generation ability by reducing fiber velocities. Our results demonstrate the influence of soleus muscle architecture on the walk-to-run transition and the effects of muscle-tendon compliance on the plantarflexors' ability to generate ankle moment and power. The study presents data that permit lower limb muscles to be studied in unprecedented detail by relating muscle fiber dynamics and force generation to the mechanical demands of walking and running.

  4. Musculotendon variability influences tissue strains experienced by the biceps femoris long head muscle during high-speed running.

    PubMed

    Fiorentino, Niccolo M; Blemker, Silvia S

    2014-10-17

    The hamstring muscles frequently suffer injury during high-speed running, though the factors that make an individual more susceptible to injury remain poorly understood. The goals of this study were to measure the musculotendon dimensions of the biceps femoris long head (BFlh) muscle, the hamstring muscle injured most often, and to use computational models to assess the influence of variability in the BFlh's dimensions on internal tissue strains during high-speed running. High-resolution magnetic resonance (MR) images were acquired over the thigh in 12 collegiate athletes, and musculotendon dimensions were measured in the proximal free tendon/aponeurosis, muscle and distal free tendon/aponeurosis. Finite element meshes were generated based on the average, standard deviation and range of BFlh dimensions. Simulation boundary conditions were defined to match muscle activation and musculotendon length change in the BFlh during high-speed running. Muscle and connective tissue dimensions were found to vary between subjects, with a coefficient of variation (CV) of 17±6% across all dimensions. For all simulations peak local strain was highest along the proximal myotendinous junction, which is where injury typically occurs. Model variations showed that peak local tissue strain increased as the proximal aponeurosis width narrowed and the muscle width widened. The aponeurosis width and muscle width variation models showed that the relative dimensions of these structures influence internal muscle tissue strains. The results of this study indicate that a musculotendon unit's architecture influences its strain injury susceptibility during high-speed running.

  5. The relationship between running speed and measures of vertical jump in professional basketball players: a field-test approach.

    PubMed

    Shalfawi, Shaher A I; Sabbah, Ammar; Kailani, Ghazi; Tønnessen, Espen; Enoksen, Eystein

    2011-11-01

    The purpose of this study was to examine the relationship between vertical jump measures and sprint speed over 10, 20, and 40 m in professional basketball players. Thirty-three professional basketball players aged (±SD) (27.4 ± 3.3 years), body mass (89.8 ± 11.1 kg), and stature (192 ± 8.2 cm) volunteered to participate in this study. All participants were tested on squat jump, countermovement jump, and 40-m running speed. The results show that all jump measures in absolute terms were correlated significantly to running performance over 10-, 20-, and 40-m sprint times. None of the jumping performance peak powers and reactive strength were found to have a correlation to running speed times in absolute term. Furthermore, all jump height measures relative to body mass except reactive strength had a marked and significant relationship with all sprint performance times. The results of this study indicate that while there is a strong and marked relationship between 10-, 20-, and 40-m sprint, there is also a considerable variation within the factors that contribute to performance over these distances. This may indicate that, separate training strategies could be implemented to improve running speed over these distances.

  6. Effect of different types of cricket batting pads on the running and turning speed in cricket batting.

    PubMed

    Loock, N; Du Toit, D E; Ventner, D J L; Stretch, R A

    2006-01-01

    The aim of this study was to compare a batsman's running and turning speed during three runs while wearing either traditional batting pads or one of two models of newly designed cricket batting pads. Fifteen cricketers participated. The running and turning speeds were measured on three different days with players using the three pairs of batting pads for each trial in random order. The weights of the pads were 1.85 kg, 1.70 kg and 1.30 kg for P1, P2 and P3 respectively. Each player had to run three runs (3 x 17.68m), with the times recorded at the completion of each run, as well as the time to cover the distance from 5 m before and after the turn at the end of the first run. The fastest time from two trials for each pair of pads was retained for analysis. An analysis of variance (ANOVA) with repeated measures was used to determine the differences between the mean times of the three trials. The results showed no significant differences between the types of batting pads and the time to complete the run-three-runs test (P1 = 10.67 +/- 0.48 s; P2 = 10.67 +/- 0.43; P3 = 10.69 +/- 0.44 s), the turning time (P1 = 2.34 +/- 0.18 s; P2 = 2.32 +/- 0.18 s; P3 = 2.35 +/- 0.19 s) and to complete the third run (P1 = 3.49 +/- 0.44 s; P2 = 3.53 +/- 0.34 s; P3 = 3.51 +/- 0.36 s). Of the 45 trials of three runs used for analysis, P1 recorded the fastest time on 16 trials (36%), P2 on 19 trials (42%) and P3 on 10 trials (22%). The results showed no significant differences in the running or turning speeds, although there may be some practical relevance to using the newly designed cricket batting pads.

  7. A comparative study of the speeds attained by captive cheetahs during the enrichment practice of the "cheetah run".

    PubMed

    Quirke, Thomas; O'Riordan, Ruth; Davenport, John

    2013-01-01

    The enrichment practice of the "cheetah run" is becoming increasingly popular within zoological institutions as a method to enrich captive cheetahs. A lure moving at speed represents an artificial prey item that the cursorial cheetah can pursue, therefore allowing it to perform an important hunting behavior within a captive setting. This study was conducted in order to highlight how employing different forms of this type of enrichment may influence its efficacy. This is important in relation to the future development of an optimum type of "cheetah run" enrichment which maximizes the potential beneficial effects and therefore positively impacts upon cheetah welfare in captivity. Video recordings were carried out at three separate institutions (Fota Wildlife Park, Ireland; Ann van Dyk Cheetah Centre, South Africa; Cheetah Conservation Fund, Namibia). Randomization tests were carried out to compare the highest speeds attained between males and females, trained and untrained cheetahs and also between the three institutions. Females and trained individuals reached significantly higher speeds compared with males and untrained individuals, respectively. The only significant difference between the three institutions was between the Ann van Dyk Cheetah Centre and the Cheetah Conservation Fund, where cheetahs at the Ann van Dyk center reached significantly higher speeds. The current study represents the first detailed study of any aspect of the "cheetah run" across multiple institutions. It also includes the first quantification of the speed of cheetahs in captivity in relation to differing enrichment practices.

  8. ASIC for high-speed-gating and free running operation of SPADs

    NASA Astrophysics Data System (ADS)

    Rochas, Alexis; Guillaume-Gentil, Christophe; Gautier, Jean-Daniel; Pauchard, Alexandre; Ribordy, Gregoire; Zbinden, Hugo; Leblebici, Yusuf; Monat, Laurent

    2007-05-01

    Single photon detection at telecom wavelengths is of importance in many industrial applications ranging from quantum cryptography, quantum optics, optical time domain reflectometry, non-invasive testing of VLSI circuits, eye-safe LIDAR to laser ranging. In practical applications, the combination of an InGaAs/InP APD with an appropriate electronic circuit still stands as the best solution in comparison with emerging technologies such as superconducting single photon detectors, MCP-PMTs for the near IR or up-conversion technique. An ASIC dedicated to the operation of InGaAs/InP APDs in both gated mode and free-running mode is presented. The 1.6mm2 chip is fabricated in a CMOS technology. It combines a gate generator, a voltage limiter, a fast comparator, a precise timing circuit for the gate signal processing and an output stage. A pulse amplitude of up to +7V can be achieved, which allows the operation of commercially available APDs at a single photon detection probability larger than 25% at 1.55μm. The avalanche quenching process is extremely fast, thus reducing the afterpulsing effects. The packaging of the diode in close proximity with the quenching circuit enables high speed gating at frequencies larger than 10MHz. The reduced connection lengths combined with impedance adaptation technique provide excellent gate quality, free of oscillations or bumps. The excess bias voltage is thus constant over the gate width leading to a stable single photon detection probability and timing resolution. The CMOS integration guarantees long-term stability, reliability and compactness.

  9. The effects of 8-week speed training program on the acceleration ability and maximum speed running at 11 years athletes.

    PubMed

    Gevat, Cecilia; Taskin, Halil; Arslan, Fatma; Larion, Alin; Stanculescu, George

    2012-09-01

    The aim of this study was to examine the effects of an 8-week speed training program on the acceleration ability and maximum speed at 11 years athletes. A total of 30 healthy female athletes volunteered to participate in this study. They were divided randomly into 1 of 2 groups: Experimental group (EG; N = 15) and control group (CG; N = 15). The mean (SD) age was 11.20 +/- 0.32 years, height was 1.44 +/- 0.08 m, and weight was 35.20 +/- 2.02 kg for the experimental group; the mean (SD) age was 11.40 +/- 0.39 years, height was 1.45 +/- 0.05 m, and weight was 36.06 +/- 1.15 kg for the control group. A speed training program was applied to the subjects 3 days a week for 8 weeks. Testing was conducted before and after 8 weeks of training. Acceleration and maximum speed was evaluated for 15-m and 30-m, respectively, involving sprinting 15 m and 30 m as fast as possible from a stationary start position that was ascertained during a 50-m. Electronic timekeeping was conducted by the facility--Brower Timing System--made in Utah, USA., consisting of 4 components. Paired t-tests detected significant differences in pre- and posttests for clearance time of 5 m during 50 m in the experimental and control groups (p < 0.05). Therefore, acceleration phase was significantly reduce at 15 m distance interval for the experimental group and control groups posttraining than pretraining (0-15 m, p < 0.05). Acceleration improvement was 12.6% for the experimental group posttraining, on the other hand, acceleration improvement was 5% for the control groups posttraining. we did not find significant difference between pretest and posttest in 10-15 m, 15-20 m, and 20-25 m for the experimental group (p > 0.05). On the other hand, we did find significant difference between pretest and posttest values of other clearance times of consecutively each 5m during 50 m for the experimental and control groups (p < 0.05). Also, this study observed that athletes reached maximum speed in 30 m. In conclusion

  10. The effects of the overline running model of the high-speed trains on the existing lines

    NASA Astrophysics Data System (ADS)

    Qian, Yong-Sheng; Zeng, Jun-Wei; Zhang, Xiao-Long; Wang, Jia-Yuan; Lv, Ting-Ting

    2016-09-01

    This paper studies the effect on the existing railway which is made by the train with 216 km/h high-speed when running across over the existing railway. The influence on the railway carrying capacity which is made by the transportation organization mode of the existing railway is analyzed under different parking modes of high-speed trains as well. In order to further study the departure intervals of the train, the average speed and the delay of the train, an automata model under these four-aspects is established. The results of the research in this paper could serve as the theoretical references to the newly built high-speed railways.

  11. Effects of unweighting and speed on in-shoe regional loading during running on a lower body positive pressure treadmill.

    PubMed

    Smoliga, James M; Wirfel, Leah Anne; Paul, Danielle; Doarnberger, Mary; Ford, Kevin R

    2015-07-16

    The purpose of this study was to determine how unweighted running on a lower body positive pressure treadmill (LBPPT) modifies in-shoe regional loading. Ten experienced runners were fit with pressure distribution measurement insoles and ran at 100%, 120%, and 140% of self-reported easy training pace on a LBPPT at 20%, 40%, 60%, 80%, and 100% body weight percentage settings (BWSet). Speeds and BWSet were in random order. A linear mixed effect model (p<0.05 significance level) was used to compare differences in whole foot and regional maximum in-shoe plantar force (FMAX), impulse, and relative load distribution across speeds and BWSet. There were significant main effects (p<0.001) for running speed and BWSet for whole foot Fmax and impulse. The model revealed 1.4% and 0.24% increases in whole foot FMAX (times body weight) and impulse, respectively, for every unit increase in body weight percentage. There was a significant main effect for BWSet on Fmax and relative load (p<0.05) for each of the nine foot regions examined, though four regions were not different between 80% and 100% BWSet. There was a significant (p<0.001) main effect for BWSet on forefoot to rear foot relative load. Linear relationships were found between increases in BWSet and increases in-shoe Fmax and impulse, resulting from regional changes in foot pressure which represent a shift towards forefoot loading, most evident <80% BWSet. Estimating in-shoe regional loading parameters may be useful during rehabilitation and training to appropriately prescribe specific speed and body weight levels, without exceeding certain critical peak force levels while running.

  12. Speed: "Run"-Time Compressed Video for Learning Improvement and Digital Time Compression Economy.

    ERIC Educational Resources Information Center

    Gutenko, Gregory

    This paper discusses the benefits that may be realized through "running" time compression (RTC) of video material. RTC is the playback of audio/video at a temporal frame rate faster (with audio pitch correction) than that used when recorded. Previous research has shown that RTC can enhance learning and the retention of content; RTC in both…

  13. Relationship between Running Speed and Cognitive Processes in Orienteering: Two Empirical Studies.

    ERIC Educational Resources Information Center

    Cheshikhina, Valentina V.

    1993-01-01

    Fourteen qualified orienteers completed a stepwise increased treadmill velocity test in which controls had to be transferred from a master map. Orienteering accuracy was greatest at the anaerobic threshold speed. In a second study, 17 orienteers performed arithmetic tasks before and after a treadmill workout. Performance was significantly better…

  14. In search of the pitching momentum that enables some lizards to sustain bipedal running at constant speeds.

    PubMed

    Van Wassenbergh, Sam; Aerts, Peter

    2013-07-01

    The forelimbs of lizards are often lifted from the ground when they start sprinting. Previous research pointed out that this is a consequence of the propulsive forces from the hindlimbs. However, despite forward acceleration being hypothesized as necessary to lift the head, trunk and forelimbs, some species of agamids, teiids and basilisks sustain running in a bipedal posture at a constant speed for a relatively long time. Biomechanical modelling of steady bipedal running in the agamid Ctenophorus cristatus now shows that a combination of three mechanisms must be present to generate the angular impulse needed to cancel or oppose the effect of gravity. First, the trunk must be lifted significantly to displace the centre of mass more towards the hip joint. Second, the nose-up pitching moment resulting from aerodynamic forces exerted at the lizard's surface must be taken into account. Third, the vertical ground-reaction forces at the hindlimb must show a certain degree of temporal asymmetry with higher forces closer to the instant of initial foot contact. Such asymmetrical vertical ground-reaction force profiles, which differ from the classical spring-mass model of bipedal running, seem inherent to the windmilling, splayed-legged running style of lizards. PMID:23658116

  15. In search of the pitching momentum that enables some lizards to sustain bipedal running at constant speeds

    PubMed Central

    Van Wassenbergh, Sam; Aerts, Peter

    2013-01-01

    The forelimbs of lizards are often lifted from the ground when they start sprinting. Previous research pointed out that this is a consequence of the propulsive forces from the hindlimbs. However, despite forward acceleration being hypothesized as necessary to lift the head, trunk and forelimbs, some species of agamids, teiids and basilisks sustain running in a bipedal posture at a constant speed for a relatively long time. Biomechanical modelling of steady bipedal running in the agamid Ctenophorus cristatus now shows that a combination of three mechanisms must be present to generate the angular impulse needed to cancel or oppose the effect of gravity. First, the trunk must be lifted significantly to displace the centre of mass more towards the hip joint. Second, the nose-up pitching moment resulting from aerodynamic forces exerted at the lizard's surface must be taken into account. Third, the vertical ground-reaction forces at the hindlimb must show a certain degree of temporal asymmetry with higher forces closer to the instant of initial foot contact. Such asymmetrical vertical ground-reaction force profiles, which differ from the classical spring-mass model of bipedal running, seem inherent to the windmilling, splayed-legged running style of lizards. PMID:23658116

  16. Running Faster Together: Huge Speed up of Thermal Ratchets due to Hydrodynamic Coupling

    NASA Astrophysics Data System (ADS)

    Malgaretti, Paolo; Pagonabarraga, Ignacio; Frenkel, Daan

    2012-10-01

    We present simulations that reveal a surprisingly large effect of hydrodynamic coupling on the speed of thermal ratchet motors. The model that we use considers particles performing thermal ratchet motion in a hydrodynamic solvent. Using particle-based, mesoscopic simulations that maintain local momentum conservation, we analyze quantitatively how the coupling to the surrounding fluid affects ratchet motion. We find that coupling can increase the mean velocity of the moving particles by almost 2 orders of magnitude, precisely because ratchet motion has both a diffusive and a deterministic component. The resulting coupling also leads to the formation of aggregates at longer times. The correlated motion that we describe increases the efficiency of motor-delivered cargo transport and we speculate that the mechanism that we have uncovered may play a key role in speeding up molecular motor-driven intracellular transport.

  17. Upon an issue of correlation between the running speed of vehicles and traffic capacity of a road section

    NASA Astrophysics Data System (ADS)

    Gaiginschi, L.; Agape, I.

    2016-08-01

    The paper focuses on current algorithms for calculating the traffic capacity of the road sections, provided in various national standards. These algorithms were jointly considering some common groups of factors, such as factors related to the dynamic performance of vehicles and factors related to geometrical - dimensional configuration of the road. The algorithms have particular forms for continuous traffic flow and for discontinuous traffic. As a first stage, there were considered the algorithms for the continuous flows, for which were studied the points of extreme variance for traffic capacity, depending on the running speed. Maximum traffic capacity analytical form for a road section, in continuous traffic flow variant does not depend explicitly of average speed, but allows the evaluation of certain important factors (length section, acceleration at start-up, braking deceleration of vehicles, driver's perception-reaction time, brake friction coefficient, etc.). Consequently, various ways are identified to improve road traffic capacity. The paper justifies reconsideration of the notion of traffic fluence as defined by various national standards; as it stands, the definition of fluency is artificial in relation to the maximum legal speed on that road section, even though the value of that speed is physically impossible.

  18. Stability and control of a high-speed cavity running vehicle

    NASA Astrophysics Data System (ADS)

    Wosnik, Martin; Arndt, Roger E. A.; Ryan, Tyler; Balas, Gary

    2004-11-01

    A vehicle traveling underwater inside a supercavity has only small regions at the nose (cavitator) and on the afterbody in contact with water. It experiences significantly reduced drag compared to the fully wetted case and can reach very high speeds (currently ˜100m/s). Such a vehicle can be controlled with deflection of front (cavitator) or aft control surfaces (fins), thrust vectoring, or a combination thereof. Here an experiment with a semi-axisymmetric, ventilated cavity and a single cavity-piercing fin was carried out in the high-speed water tunnel at SAFL. Initially, different cavitator shapes were tested (two cones, a fore-shortened cone and a sharp-edged disk) and found to have significant effect on cavity size as well as cavity interface instabilities. With a wedge-shaped, swept, cavity-piercing fin the interaction of control surface and supercavity was studied. Hystereses in cavity shape (cavitation number) versus ventilation rate were observed for both the main supercavity and the supercavitating fin. At constant ventilation rate, re-entrant jets were found to penetrate further upstream for increasing fin angles of attack. Currently, fin forces for different cavitation numbers and angles of attack are being measured, and a simple open-loop control experiment with fin response to an upstream/cavity disturbance is being carried out.

  19. Influence of shod/unshod condition and running speed on foot-strike patterns, inversion/eversion, and vertical foot rotation in endurance runners.

    PubMed

    Muñoz-Jimenez, M; Latorre-Román, P A; Soto-Hermoso, V M; García-Pinillos, F

    2015-01-01

    The aim of this study was to determine the influence of barefoot running on foot-strike patterns, eversion-inversion, running speed and vertical foot rotation in endurance runners. Eighty healthy recreational runners (age = 34.11 ± 12.95 years old, body mass index = 22.56 ± 2.65 kg · m(-2)) performed trials in shod/unshod running conditions on a treadmill at comfortable and competitive self-selected speeds. Data were collected by systematic observation of lateral and back recordings at 240 Hz. McNemar's test indicated significant differences between shod/unshod conditions and foot strike at comfortable and competitive speeds (P < 0.001). Speed was related to vertical foot rotation type for shod (P < 0.01) and unshod conditions (P < 0.05). Significant differences were found between shod/unshod conditions in foot rotation at comfortable running speeds (P < 0.001) and competitive running speeds (P < 0.01). No significant difference was found in inversion or eversion (P ≥ 0.05). In conclusion, the results suggest that running kinematics, in terms of foot-strike patterns and vertical foot rotation, differ between shod/unshod conditions, while the inversion or eversion degree remains unchanged.

  20. Sensory processing within cockroach antenna enables rapid implementation of feedback control for high-speed running maneuvers.

    PubMed

    Mongeau, Jean-Michel; Sponberg, Simon N; Miller, John P; Full, Robert J

    2015-08-01

    Animals are remarkably stable during high-speed maneuvers. As the speed of locomotion increases, neural bandwidth and processing delays can limit the ability to achieve and maintain stable control. Processing the information of sensory stimuli into a control signal within the sensor itself could enable rapid implementation of whole-body feedback control during high-speed locomotion. Here, we show that processing in antennal afferents is sufficient to act as the control signal for a fast sensorimotor loop. American cockroaches Periplaneta americana use their antennae to mediate escape running by tracking vertical surfaces such as walls. A control theoretic model of wall following predicts that stable control is possible if the animal can compute wall position (P) and velocity, its derivative (D). Previous whole-nerve recordings from the antenna during simulated turning experiments demonstrated a population response consistent with P and D encoding, and suggested that the response was synchronized with the timing of a turn executed while wall following. Here, we record extracellularly from individual mechanoreceptors distributed along the antenna and show that these receptors encode D and have distinct latencies and filtering properties. The summed output of these receptors can be used as a control signal for rapid steering maneuvers. The D encoding within the antenna in addition to the temporal filtering properties and P dependence of the population of afferents support a sensory-encoding notion from control theory. Our findings support the notion that peripheral sensory processing can enable rapid implementation of whole-body feedback control during rapid running maneuvers.

  1. Concurrent speed endurance and resistance training improves performance, running economy, and muscle NHE1 in moderately trained runners.

    PubMed

    Skovgaard, Casper; Christensen, Peter M; Larsen, Sonni; Andersen, Thomas Rostgaard; Thomassen, Martin; Bangsbo, Jens

    2014-11-15

    The purpose of this study was to examine whether speed endurance training (SET, repeated 30-s sprints) and heavy resistance training (HRT, 80-90% of 1 repetition maximum) performed in succession are compatible and lead to performance improvements in moderately trained endurance runners. For an 8-wk intervention period (INT) 23 male runners [maximum oxygen uptake (V̇O(2max)) 59 ± 1 ml·min(-1)·kg(-1); values are means ± SE] either maintained their training (CON, n = 11) or performed high-intensity concurrent training (HICT, n = 12) consisting of two weekly sessions of SET followed by HRT and two weekly sessions of aerobic training with an average reduction in running distance of 42%. After 4 wk of HICT, performance was improved (P < 0.05) in a 10-km run (42:30 ± 1:07 vs. 44:11 ± 1:08 min:s) with no further improvement during the last 4 wk. Performance in a 1,500-m run (5:10 ± 0:05 vs. 5:27 ± 0:08 min:s) and in the Yo-Yo IR2 test (706 ± 97 vs. 491 ± 65 m) improved (P < 0.001) only following 8 wk of INT. In HICT, running economy (189 ± 4 vs. 195 ± 4 ml·kg(-1)·km(-1)), muscle content of NHE1 (35%) and dynamic muscle strength was augmented (P < 0.01) after compared with before INT, whereas V̇O(2max), muscle morphology, capillarization, content of muscle Na(+)/K(+) pump subunits, and MCT4 were unaltered. No changes were observed in CON. The present study demonstrates that SET and HRT, when performed in succession, lead to improvements in both short- and long-term running performance together with improved running economy as well as increased dynamic muscle strength and capacity for muscular H(+) transport in moderately trained endurance runners.

  2. Concurrent speed endurance and resistance training improves performance, running economy, and muscle NHE1 in moderately trained runners.

    PubMed

    Skovgaard, Casper; Christensen, Peter M; Larsen, Sonni; Andersen, Thomas Rostgaard; Thomassen, Martin; Bangsbo, Jens

    2014-11-15

    The purpose of this study was to examine whether speed endurance training (SET, repeated 30-s sprints) and heavy resistance training (HRT, 80-90% of 1 repetition maximum) performed in succession are compatible and lead to performance improvements in moderately trained endurance runners. For an 8-wk intervention period (INT) 23 male runners [maximum oxygen uptake (V̇O(2max)) 59 ± 1 ml·min(-1)·kg(-1); values are means ± SE] either maintained their training (CON, n = 11) or performed high-intensity concurrent training (HICT, n = 12) consisting of two weekly sessions of SET followed by HRT and two weekly sessions of aerobic training with an average reduction in running distance of 42%. After 4 wk of HICT, performance was improved (P < 0.05) in a 10-km run (42:30 ± 1:07 vs. 44:11 ± 1:08 min:s) with no further improvement during the last 4 wk. Performance in a 1,500-m run (5:10 ± 0:05 vs. 5:27 ± 0:08 min:s) and in the Yo-Yo IR2 test (706 ± 97 vs. 491 ± 65 m) improved (P < 0.001) only following 8 wk of INT. In HICT, running economy (189 ± 4 vs. 195 ± 4 ml·kg(-1)·km(-1)), muscle content of NHE1 (35%) and dynamic muscle strength was augmented (P < 0.01) after compared with before INT, whereas V̇O(2max), muscle morphology, capillarization, content of muscle Na(+)/K(+) pump subunits, and MCT4 were unaltered. No changes were observed in CON. The present study demonstrates that SET and HRT, when performed in succession, lead to improvements in both short- and long-term running performance together with improved running economy as well as increased dynamic muscle strength and capacity for muscular H(+) transport in moderately trained endurance runners. PMID:25190744

  3. A faster running speed is associated with a greater body weight loss in 100-km ultra-marathoners.

    PubMed

    Knechtle, Beat; Knechtle, Patrizia; Wirth, Andrea; Alexander Rüst, Christoph; Rosemann, Thomas

    2012-01-01

    In 219 recreational male runners, we investigated changes in body mass, total body water, haematocrit, plasma sodium concentration ([Na(+)]), and urine specific gravity as well as fluid intake during a 100-km ultra-marathon. The athletes lost 1.9 kg (s = 1.4) of body mass, equal to 2.5% (s = 1.8) of body mass (P < 0.001), 0.7 kg (s = 1.0) of predicted skeletal muscle mass (P < 0.001), 0.2 kg (s = 1.3) of predicted fat mass (P < 0.05), and 0.9 L (s = 1.6) of predicted total body water (P < 0.001). Haematocrit decreased (P < 0.001), urine specific gravity (P < 0.001), plasma volume (P < 0.05), and plasma [Na(+)] (P < 0.05) all increased. Change in body mass was related to running speed (r = -0.16, P < 0.05), change in plasma volume was associated with change in plasma [Na(+)] (r = -0.28, P < 0.0001), and change in body mass was related to both change in plasma [Na(+)] (r = -0.36) and change in plasma volume (r = 0.31) (P < 0.0001). The athletes consumed 0.65 L (s = 0.27) fluid per hour. Fluid intake was related to both running speed (r = 0.42, P < 0.0001) and change in body mass (r = 0.23, P = 0.0006), but not post-race plasma [Na(+)] or change in plasma [Na(+)] (P > 0.05). In conclusion, faster runners lost more body mass, runners lost more body mass when they drank less fluid, and faster runners drank more fluid than slower runners. PMID:22668199

  4. Control entropy identifies differential changes in complexity of walking and running gait patterns with increasing speed in highly trained runners.

    PubMed

    McGregor, Stephen J; Busa, Michael A; Skufca, Joseph; Yaggie, James A; Bollt, Erik M

    2009-06-01

    Regularity statistics have been previously applied to walking gait measures in the hope of gaining insight into the complexity of gait under different conditions and in different populations. Traditional regularity statistics are subject to the requirement of stationarity, a limitation for examining changes in complexity under dynamic conditions such as exhaustive exercise. Using a novel measure, control entropy (CE), applied to triaxial continuous accelerometry, we report changes in complexity of walking and running during increasing speeds up to exhaustion in highly trained runners. We further apply Karhunen-Loeve analysis in a new and novel way to the patterns of CE responses in each of the three axes to identify dominant modes of CE responses in the vertical, mediolateral, and anterior/posterior planes. The differential CE responses observed between the different axes in this select population provide insight into the constraints of walking and running in those who may have optimized locomotion. Future comparisons between athletes, healthy untrained, and clinical populations using this approach may help elucidate differences between optimized and diseased locomotor control. PMID:19566269

  5. Control entropy identifies differential changes in complexity of walking and running gait patterns with increasing speed in highly trained runners

    NASA Astrophysics Data System (ADS)

    McGregor, Stephen J.; Busa, Michael A.; Skufca, Joseph; Yaggie, James A.; Bollt, Erik M.

    2009-06-01

    Regularity statistics have been previously applied to walking gait measures in the hope of gaining insight into the complexity of gait under different conditions and in different populations. Traditional regularity statistics are subject to the requirement of stationarity, a limitation for examining changes in complexity under dynamic conditions such as exhaustive exercise. Using a novel measure, control entropy (CE), applied to triaxial continuous accelerometry, we report changes in complexity of walking and running during increasing speeds up to exhaustion in highly trained runners. We further apply Karhunen-Loeve analysis in a new and novel way to the patterns of CE responses in each of the three axes to identify dominant modes of CE responses in the vertical, mediolateral, and anterior/posterior planes. The differential CE responses observed between the different axes in this select population provide insight into the constraints of walking and running in those who may have optimized locomotion. Future comparisons between athletes, healthy untrained, and clinical populations using this approach may help elucidate differences between optimized and diseased locomotor control.

  6. Control entropy identifies differential changes in complexity of walking and running gait patterns with increasing speed in highly trained runners.

    PubMed

    McGregor, Stephen J; Busa, Michael A; Skufca, Joseph; Yaggie, James A; Bollt, Erik M

    2009-06-01

    Regularity statistics have been previously applied to walking gait measures in the hope of gaining insight into the complexity of gait under different conditions and in different populations. Traditional regularity statistics are subject to the requirement of stationarity, a limitation for examining changes in complexity under dynamic conditions such as exhaustive exercise. Using a novel measure, control entropy (CE), applied to triaxial continuous accelerometry, we report changes in complexity of walking and running during increasing speeds up to exhaustion in highly trained runners. We further apply Karhunen-Loeve analysis in a new and novel way to the patterns of CE responses in each of the three axes to identify dominant modes of CE responses in the vertical, mediolateral, and anterior/posterior planes. The differential CE responses observed between the different axes in this select population provide insight into the constraints of walking and running in those who may have optimized locomotion. Future comparisons between athletes, healthy untrained, and clinical populations using this approach may help elucidate differences between optimized and diseased locomotor control.

  7. Acute Effects of Loaded Half-Squat Jumps on Sprint Running Speed in Track and Field Athletes and Soccer Players.

    PubMed

    Vanderka, Marián; Krčmár, Matúš; Longová, Katarína; Walker, Simon

    2016-06-01

    Vanderka, M, Krčmár, M, Longová, K, and Walker, S. Acute effects of loaded half-squat jumps on sprint running speed in track and field athletes and soccer players. J Strength Cond Res 30(6): 1540-1546, 2016-The purpose of the study was to determine the acute responses to a jump squat protocol designed to induce postactivation potentiation on sprint running performance in experienced track and field athletes and soccer players. Twenty-five regional level athletes (12 track and field: ∼17 years; ∼177 cm; ∼73 kg and 13 soccer: ∼18 years; ∼175 cm; ∼72 kg) performed 2 test sessions assessing 40-m sprint running performance in a balanced, crossover design. Dual-beam light timing gates measured 0-20 and 20-40 m sprint times before and after either 9 minutes of sitting (control) or 2 sets of 6 repetition half-squat jump with the load eliciting maximum power (experimental) conditions. Sprint performance was significantly enhanced over both 0-20 m (3.09 ± 0.07 to 3.04 ± 0.08 seconds; Δ ∼1.5%; p ≤ 0.05) and 20-40 m (2.42 ± 0.09 to 2.39 ± 0.09 seconds; Δ ∼1%; p ≤ 0.05) in track and field athletes only. Also, the magnitude of enhanced sprint performance was related to baseline 0-20 m sprint performance (r = 0.44; p = 0.028; n = 25). It seems that using loaded half-squat jumps to enhance sprint performance could be used in training of high-level young athletes.

  8. Acute Effects of Loaded Half-Squat Jumps on Sprint Running Speed in Track and Field Athletes and Soccer Players.

    PubMed

    Vanderka, Marián; Krčmár, Matúš; Longová, Katarína; Walker, Simon

    2016-06-01

    Vanderka, M, Krčmár, M, Longová, K, and Walker, S. Acute effects of loaded half-squat jumps on sprint running speed in track and field athletes and soccer players. J Strength Cond Res 30(6): 1540-1546, 2016-The purpose of the study was to determine the acute responses to a jump squat protocol designed to induce postactivation potentiation on sprint running performance in experienced track and field athletes and soccer players. Twenty-five regional level athletes (12 track and field: ∼17 years; ∼177 cm; ∼73 kg and 13 soccer: ∼18 years; ∼175 cm; ∼72 kg) performed 2 test sessions assessing 40-m sprint running performance in a balanced, crossover design. Dual-beam light timing gates measured 0-20 and 20-40 m sprint times before and after either 9 minutes of sitting (control) or 2 sets of 6 repetition half-squat jump with the load eliciting maximum power (experimental) conditions. Sprint performance was significantly enhanced over both 0-20 m (3.09 ± 0.07 to 3.04 ± 0.08 seconds; Δ ∼1.5%; p ≤ 0.05) and 20-40 m (2.42 ± 0.09 to 2.39 ± 0.09 seconds; Δ ∼1%; p ≤ 0.05) in track and field athletes only. Also, the magnitude of enhanced sprint performance was related to baseline 0-20 m sprint performance (r = 0.44; p = 0.028; n = 25). It seems that using loaded half-squat jumps to enhance sprint performance could be used in training of high-level young athletes. PMID:26562707

  9. Prediction and mitigation analysis of ground vibration caused by running high-speed trains on rigid-frame viaducts

    NASA Astrophysics Data System (ADS)

    Sun, Liangming; Xie, Weiping; He, Xingwen; Hayashikawa, Toshiro

    2016-03-01

    In this study a 3D numerical analysis approach is developed to predict the ground vibration around rigid-frame viaducts induced by running high-speed trains. The train-bridge-ground interaction system is divided into two subsystems: the train-bridge interaction and the soil-structure interaction. First, the analytical program to simulate bridge vibration with consideration of train-bridge interaction is developed to obtain the vibration reaction forces at the pier bottoms. The highspeed train is described by a multi-DOFs vibration system and the rigid-frame viaduct is modeled with 3D beam elements. Second, applying these vibration reaction forces as input external excitations, the ground vibration is simulated by using a general-purpose program that includes soil-structure interaction effects. The validity of the analytical procedure is confirmed by comparing analytical and experimental results. The characteristics of high-speed train-induced vibrations, including the location of predominant vibration, are clarified. Based on this information a proposed vibration countermeasure using steel strut and new barrier is found effective in reducing train-induced vibrations and it satisfies environmental vibration requirements. The vibration screening efficiency is evaluated by reduction VAL based on 1/3 octave band spectral analysis.

  10. Application of Individualized Speed Thresholds to Interpret Position Specific Running Demands in Elite Professional Rugby Union: A GPS Study.

    PubMed

    Reardon, Cillian; Tobin, Daniel P; Delahunt, Eamonn

    2015-01-01

    A number of studies have used GPS technology to categorise rugby union locomotive demands. However, the utility of the results of these studies is confounded by small sample sizes, sub-elite player status and the global application of absolute speed thresholds to all player positions. Furthermore, many of these studies have used GPS units with low sampling frequencies. The aim of the present study was to compare and contrast the high speed running (HSR) demands of professional rugby union when utilizing micro-technology units sampling at 10 Hz and applying relative or individualised speed zones. The results of this study indicate that application of individualised speed zones results in a significant shift in the interpretation of the HSR demands of both forwards and backs and positional sub-categories therein. When considering the use of an absolute in comparison to an individualised HSR threshold, there was a significant underestimation for forwards of HSR distance (HSRD) (absolute = 269 ± 172.02, individualised = 354.72 ± 99.22, p < 0.001), HSR% (absolute = 5.15 ± 3.18, individualised = 7.06 ± 2.48, p < 0.001) and HSR efforts (HSRE) (absolute = 18.81 ± 12.25; individualised = 24.78 ± 8.30, p < 0.001). In contrast, there was a significant overestimation of the same HSR metrics for backs with the use of an absolute threshold (HSRD absolute = 697.79 ± 198.11, individualised = 570.02 ± 171.14, p < 0.001; HSR% absolute = 10.85 ± 2.82, individualised = 8.95 ± 2.76, p < 0.001; HSRE absolute = 41.55 ± 11.25; individualised = 34.54 ± 9.24, p < 0.001). This under- or overestimation associated with an absolute speed zone applies to varying degrees across the ten positional sub-categories analyzed and also to individuals within the same positional sub-category. The results of the present study indicated that although use of an individulised HSR threshold improves the interpretation of the HSR demands on a positional basis, inter-individual variability in maximum

  11. Application of Individualized Speed Thresholds to Interpret Position Specific Running Demands in Elite Professional Rugby Union: A GPS Study

    PubMed Central

    Reardon, Cillian; Tobin, Daniel P.; Delahunt, Eamonn

    2015-01-01

    A number of studies have used GPS technology to categorise rugby union locomotive demands. However, the utility of the results of these studies is confounded by small sample sizes, sub-elite player status and the global application of absolute speed thresholds to all player positions. Furthermore, many of these studies have used GPS units with low sampling frequencies. The aim of the present study was to compare and contrast the high speed running (HSR) demands of professional rugby union when utilizing micro-technology units sampling at 10 Hz and applying relative or individualised speed zones. The results of this study indicate that application of individualised speed zones results in a significant shift in the interpretation of the HSR demands of both forwards and backs and positional sub-categories therein. When considering the use of an absolute in comparison to an individualised HSR threshold, there was a significant underestimation for forwards of HSR distance (HSRD) (absolute = 269 ± 172.02, individualised = 354.72 ± 99.22, p < 0.001), HSR% (absolute = 5.15 ± 3.18, individualised = 7.06 ± 2.48, p < 0.001) and HSR efforts (HSRE) (absolute = 18.81 ± 12.25; individualised = 24.78 ± 8.30, p < 0.001). In contrast, there was a significant overestimation of the same HSR metrics for backs with the use of an absolute threshold (HSRD absolute = 697.79 ± 198.11, individualised = 570.02 ± 171.14, p < 0.001; HSR% absolute = 10.85 ± 2.82, individualised = 8.95 ± 2.76, p < 0.001; HSRE absolute = 41.55 ± 11.25; individualised = 34.54 ± 9.24, p < 0.001). This under- or overestimation associated with an absolute speed zone applies to varying degrees across the ten positional sub-categories analyzed and also to individuals within the same positional sub-category. The results of the present study indicated that although use of an individulised HSR threshold improves the interpretation of the HSR demands on a positional basis, inter-individual variability in maximum

  12. These studies were conducted to assess the effects of lead toxicity on exploratory behavior and running. Effects of lead on exploratory behavior and running speed in the shrew, Blarina brevicauda (Insectivora).

    PubMed

    Punzo, F; Farmer, C

    2003-10-01

    These studies were conducted to assess the effects of lead toxicity on exploratory behavior and running speed in the short-tailed shrew, Blarina brevicauda. Shrews from the experimental group received 25 mg/kg/day of lead acetate in their drinking water for a period of 90 days. Control subjects received sodium acetate. Exploratory behavior was determined using a computerized activity chamber where movements of test subjects broke infrared beams projected onto the floor of the apparatus. Time spent (sec) in exploration was recorded over eight 6-min intervals. Running speed (km/hr) was measured in a microprocessor-controlled rectangular racetrack fitted with photocell timers. With respect to time spent in exploration, there were significant differences between lead-exposed (20.5-23.9 sec per 6-min testing session) and control subjects (6.8-8.1 sec) after the sixth testing interval in the activity chamber. With respect to maximal running speed, control subjects ran significantly faster (mean: 14.8 km/hr) than their lead-exposed counterparts (5.83 km/hr). Lead-exposed animals exhibited hyperactivity and increased random locomotor movements. They would frequently bump into the walls and their movements were more random. Controls typically ran along the racetrack in a straight line. These results represent the first data for the effects of lead exposure on exploratory behavior and running speed for shrews. PMID:15248655

  13. Pre-Compensation for Continuous-Path Running Trajectory Error in High-Speed Machining of Parts with Varied Curvature Features

    NASA Astrophysics Data System (ADS)

    Jia, Zhenyuan; Song, Dening; Ma, Jianwei; Gao, Yuanyuan

    2016-04-01

    Parts with varied curvature features play increasingly critical roles in engineering, and are often machined under high-speed continuous-path running mode to ensure the machining efficiency. However, the continuous-path running trajectory error is significant during high-feed-speed machining, which seriously restricts the machining precision for such parts with varied curvature features. In order to reduce the continuous-path running trajectory error without sacrificing the machining efficiency, a pre-compensation method for the trajectory error is proposed. Based on the formation mechanism of the continuous-path running trajectory error analyzed, this error is estimated in advance by approximating the desired toolpath with spline curves. Then, an iterative error pre-compensation method is presented. By machining with the regenerated toolpath after pre-compensation instead of the uncompensated toolpath, the continuous-path running trajectory error can be effectively decreased without the reduction of the feed speed. To demonstrate the feasibility of the proposed pre-compensation method, a heart curve toolpath that possesses varied curvature features is employed. Experimental results indicate that compared with the uncompensated processing trajectory, the maximum and average machining errors for the pre-compensated processing trajectory are reduced by 67.19% and 82.30%, respectively. An easy to implement solution for high efficiency and high precision machining of the parts with varied curvature features is provided.

  14. Effect of lead exposure on spatial learning and running speed in the short-tailed opossum, Monodelphis domestica (Didelphidae).

    PubMed

    Punzo, F; Farmer, C

    2004-01-01

    behavior in this marsupial. In addition, animals injected with tetraethyllead showed a significant impairment in running speed and T-maze learning ability as compared to saline-injected controls.

  15. Velocity thresholds for women's soccer matches: sex specificity dictates high-speed running and sprinting thresholds - Female Athletes in Motion (FAiM).

    PubMed

    Bradley, Paul S; Vescovi, Jason D

    2015-01-01

    There is no methodological standardization of velocity thresholds for the quantification of distances covered in various locomotor activities for women's soccer matches, especially for high-speed running and sprinting. Applying velocity thresholds used for motion analysis of men's soccer has likely created skewed observations about high-intensity movement demands for the women's game because these thresholds do not accurately reflect the capabilities of elite female players. Subsequently, a cohesive view of the locomotor characteristics of women's soccer does not yet exist. The aim of this commentary is to provide suggestions for standardizing high-speed running and sprint velocity thresholds specific to women's soccer. The authors also comment on using generic vs individualized thresholds, as well as age-related considerations, to establish velocity thresholds.

  16. Body mass change and ultraendurance performance: a decrease in body mass is associated with an increased running speed in male 100-km ultramarathoners.

    PubMed

    Rüst, Christoph A; Knechtle, Beat; Knechtle, Patrizia; Wirth, Andrea; Rosemann, Thomas

    2012-06-01

    We investigated, in 50 recreational male ultrarunners, the changes in body mass, selected hematological and urine parameters, and fluid intake during a 100-km ultramarathon. The athletes lost (mean and SD) 2.6 (1.8) % in body mass (p < 0.0001). Running speed was significantly and negatively related to the change in body mass (p < 0.05). Serum sodium concentration ([Na⁺]) and the concentration of aldosterone increased with increasing loss in body mass (p < 0.05). Urine-specific gravity increased (p < 0.0001). The change in body mass was significantly and negatively related to postrace serum [Na⁺] (p < 0.05). Fluid intake was significantly and positively related to both running speed (r = 0.33, p = 0.0182) and the change in body mass (r = 0.44, p = 0.0014) and significantly and negatively to both postrace serum [Na⁺] (r = -0.42, p = 0.0022) and the change in serum [Na⁺] (r = -0.38, p = 0.0072). This field study showed that recreational, male, 100-km ultramarathoners dehydrated as evidenced by the decrease in >2 % body mass and the increase in urine-specific gravity. Race performance, however, was not impaired because of the loss in body mass. In contrast, faster athletes lost more body mass compared with slower athletes while also drinking more. The concept that a loss of >2% in body mass leads to dehydration and consequently impairs endurance performance must be questioned for ultraendurance athletes competing in the field. For practical applications, a loss in body mass during a 100-km ultramarathon was associated with a faster running speed.

  17. Body mass change and ultraendurance performance: a decrease in body mass is associated with an increased running speed in male 100-km ultramarathoners.

    PubMed

    Rüst, Christoph A; Knechtle, Beat; Knechtle, Patrizia; Wirth, Andrea; Rosemann, Thomas

    2012-06-01

    We investigated, in 50 recreational male ultrarunners, the changes in body mass, selected hematological and urine parameters, and fluid intake during a 100-km ultramarathon. The athletes lost (mean and SD) 2.6 (1.8) % in body mass (p < 0.0001). Running speed was significantly and negatively related to the change in body mass (p < 0.05). Serum sodium concentration ([Na⁺]) and the concentration of aldosterone increased with increasing loss in body mass (p < 0.05). Urine-specific gravity increased (p < 0.0001). The change in body mass was significantly and negatively related to postrace serum [Na⁺] (p < 0.05). Fluid intake was significantly and positively related to both running speed (r = 0.33, p = 0.0182) and the change in body mass (r = 0.44, p = 0.0014) and significantly and negatively to both postrace serum [Na⁺] (r = -0.42, p = 0.0022) and the change in serum [Na⁺] (r = -0.38, p = 0.0072). This field study showed that recreational, male, 100-km ultramarathoners dehydrated as evidenced by the decrease in >2 % body mass and the increase in urine-specific gravity. Race performance, however, was not impaired because of the loss in body mass. In contrast, faster athletes lost more body mass compared with slower athletes while also drinking more. The concept that a loss of >2% in body mass leads to dehydration and consequently impairs endurance performance must be questioned for ultraendurance athletes competing in the field. For practical applications, a loss in body mass during a 100-km ultramarathon was associated with a faster running speed. PMID:22614141

  18. The effect of sprinting after each set of heavy resistance training on the running speed and jumping performance of young basketball players.

    PubMed

    Tsimahidis, Konstantinos; Galazoulas, Christos; Skoufas, Dimitrios; Papaiakovou, Georgios; Bassa, Eleni; Patikas, Dimitrios; Kotzamanidis, Christos

    2010-08-01

    The purpose of this study was to investigate the effect of a 10-week heavy resistance combined with a running training program on the strength, running speed (RS), and vertical jump performance of young basketball players. Twenty-six junior basketball players were equally divided in 2 groups. The control (CON) group performed only technical preparation and the group that followed the combined training program (CTP) performed additionally 5 sets of 8-5 repetition maximum (RM) half squat with 1 30-m sprint after each set. The evaluation took place before training and after the 5th and 10th weeks of training. Apart from the 1RM half squat test, the 10- and 30-m running time was measured using photocells and the jump height (squat, countermovement jump, and drop jump) was estimated taking into account the flight time. The 1RM increased by 30.3 +/- 1.5% at the 10th week of training for the CTP group (p < 0.05), whereas the CON group showed no significant increase (1.1 +/- 1.6%, p > 0.05). In general, all measured parameters showed a statistically significant increase after the 5th and 10th weeks (p < 0.05), in contrast to the CON group (p > 0.05). This suggests that the applied CTP is beneficial for the strength, RS, and jump height of young basketball players. The observed adaptations in the CTP group could be attributed to learning factors and to a more optimal transfer of the strength gain to running and jumping performance.

  19. Using modeling to understand how athletes in different disciplines solve the same problem: swimming versus running versus speed skating.

    PubMed

    de Koning, Jos J; Foster, Carl; Lucia, Alejandro; Bobbert, Maarten F; Hettinga, Florentina J; Porcari, John P

    2011-06-01

    Every new competitive season offers excellent examples of human locomotor abilities, regardless of the sport. As a natural consequence of competitions, world records are broken every now and then. World record races not only offer spectators the pleasure of watching very talented and highly trained athletes performing muscular tasks with remarkable skill, but also represent natural models of the ultimate expression of human integrated muscle biology, through strength, speed, or endurance performances. Given that humans may be approaching our species limit for muscular power output, interest in how athletes improve on world records has led to interest in the strategy of how limited energetic resources are best expended over a race. World record performances may also shed light on how athletes in different events solve exactly the same problem-minimizing the time required to reach the finish line. We have previously applied mathematical modeling to the understanding of world record performances in terms of improvements in facilities/equipment and improvements in the athletes' physical capacities. In this commentary, we attempt to demonstrate that differences in world record performances in various sports can be explained using a very simple modeling process. PMID:21725112

  20. [Airborne Japanese cedar allergens studied by immunoblotting technique using anti-Cry j I monoclonal antibody--comparison with actual pollen counts and effect of wind speed and directions].

    PubMed

    Iwaya, M; Murakami, G; Matsuno, M; Onoue, Y; Takayanagi, M; Kayahara, M; Adachi, Y; Adachi, Y; Okada, T; Kenda, S

    1995-07-01

    We collected airborne particles of Japanese cedar pollen with Burkard's sampling tape in Toyama from February to April 1992. The tape was cut into two pieces in parallel to time axis. The one of piece of the tapes was stained with glycerin-jerry and stained pollens were counted with a microscope. The other piece was treated according to the immunoblotting technique. The airborne pollen allergens, reacting with anti-Cry j I monoclonal antibody, were stained as blue spots. The spots were classified by diameter into two groups, large spots (> 50 microns) and small spots (< 50 microns). There were significant correlations found between the airborne Cry j I allergen spots (in large and small) and actual pollen counts obtained with the Burkard's sampler and the Durham's sampler (r = 0.729, 0.586 in large spots and r = 0.676, 0.489 in small spots, p < 0.001). The counts of small spots stayed in high level even in April when actual pollen counts decreased. We concluded that this discrepancy was caused by allergenic crushed cedar pollen particles staying floating longer than actual pollens. Secondly we set a gauge of wind speed and direction at the same point as the samplers. The actual pollen counts and large spots counts were significantly larger in the wind (SE wind in Toyama city) from cedar trees blooming area than other areas. However small spots counts did not differ significantly according to wind directions. Wind speed did not effect on actual pollen counts, large spots counts and small spots count.

  1. Can maximal aerobic running speed be predicted from submaximal cycle ergometry in soccer players? The effects of age, anthropometry and positional roles

    PubMed Central

    Nikolaidis, Pantelis T.

    2015-01-01

    Background: Considering maximal aerobic running speed (MAS) as a useful tool to evaluate aerobic capacity and monitor training load in soccer, there is an increasing need to develop indirect assessment methods of MAS, e.g., submaximal tests. The aim of this study was to examine the prediction of MAS from the physical working capacity (PWC) in heart rate (HR) 170 beat/min test (PWC170). Materials and Methods: This cross-sectional study was done on adolescent (n = 67) and adult soccer players (n = 82) were examined for anthropometric characteristics, PWC170 and performed Conconi test to assess MAS. Results: Midfielders scored higher than goalkeepers (GKs) and defenders in MAS while GKs scored lower than all the other playing positions. Although this trend was also observed in PWC170, statistical difference was only observed between midfielders and GKs. Players with higher MAS had also higher PWC170 in both age groups (P < 0.05). The odds ratio of a player of the best PWC170 group to belong also to the best MAS group was 3.96 (95% confidence interval 2.00; 7.84). That is players with high-performance in the PWC170 were about 4 times more likely than those with low PWC170 to achieve a high score in MAS. Regression analysis suggested body fat (BF) percentage, PWC170, maximal HR and age as predictors of MAS (R = 0.61, R2 = 0.37 and standard error of estimate [SEE] =1.3 km/h, in total; R = 0.74, R2 = 0.55 and SEE = 1.2 km/h, in adolescents; R = 0.55, R2 = 0.30 and SEE = 1.3 km/h, in adults). Conclusions: While there was only moderate correlation between MAS and PWC170, the former can be predicted from the latter when BF, HRmax, and age are considered (large to very large multiple correlation coefficients). PMID:26623401

  2. Running Away

    MedlinePlus

    ... Got Homework? Here's Help White House Lunch Recipes Running Away KidsHealth > For Kids > Running Away Print A ... life on the streets. continue The Reality of Running Away When you think about running away, you ...

  3. How Does the Wind Affect Road-Running Achievement?

    ERIC Educational Resources Information Center

    de Villiers, Michael D.

    1991-01-01

    Presents a simple mathematical model in which resultant speed is the sum or difference between wind speed and runner speed and a more complex model that assumes that only a proportion of the wind's speed affects one's running speed to describe the time difference between running with and without wind. (MDH)

  4. From Walking to Running

    NASA Astrophysics Data System (ADS)

    Rummel, Juergen; Blum, Yvonne; Seyfarth, Andre

    The implementation of bipedal gaits in legged robots is still a challenge in state-of-the-art engineering. Human gaits could be realized by imitating human leg dynamics where a spring-like leg behavior is found as represented in the bipedal spring-mass model. In this study we explore the gap between walking and running by investigating periodic gait patterns. We found an almost continuous morphing of gait patterns between walking and running. The technical feasibility of this transition is, however, restricted by the duration of swing phase. In practice, this requires an abrupt gait transition between both gaits, while a change of speed is not necessary.

  5. Fermilab DART run control

    SciTech Connect

    Oleynik, G.; Engelfried, J.; Mengel, L.

    1995-05-01

    DART is the high speed, Unix based data acquisition system being developed by Fermilab in collaboration with seven High Energy Physics Experiments. This paper describes DART run control, which has been developed over the past year and is a flexible, distributed, extensible system for the, control and monitoring of the data acquisition systems. We discuss the unique and interesting concepts of the run control and some of our experiences in developing it. We also give a brief update and status of the whole DART system.

  6. Barefoot Running

    PubMed Central

    Mullen, Scott; Cotton, Jon; Bechtold, Megan; Toby, E. Bruce

    2014-01-01

    Background: It has been proposed that running barefoot can lead to improved strength and proprioception. However, the duration that a runner must train barefoot to observe these changes is unknown. Hypothesis: Runners participating in a barefoot running program will have improved proprioception, increased lower extremity strength, and an increase in the volume or size of the intrinsic musculature of the feet. Study Design: Randomized controlled trial; Level of evidence, 2. Methods: In this 8-week study, 29 runners with a mean age of 36.34 years were randomized into either a control group (n = 10) who completed training in their regular running shoes or to an experimental barefoot group (n = 14). Pretraining tests consisted of a volumetric measurement of the foot followed by a strength and dynamic balance assessment. Five subjects completed the pretests but did not complete the study for reasons not related to study outcomes. Participants then completed 8 weeks of training runs. They repeated the strength and dynamic balance assessment after 8 weeks. Results: Significant changes from baseline to 8 weeks were observed within the barefoot group for single-leg hop (right, P = .0121; left, P = .0430) and reach and balance (right, P = .0029) and within the control group for single–left leg hop (P = .0286) and reach and balance (right, P = .0096; left, P = .0014). However, when comparing the differences in changes from baseline to 8 weeks between the barefoot and control groups, the improvements were not significant at the .05 level for all measures. Conclusion: Although statistically significant changes were not observed between the pre- and posttest evaluations in strength and proprioception with the 8-week low-intensity barefoot running regimen, this does not necessarily mean that these changes do not occur. It is possible that it may take months or years to observe these changes, and a short course such as this trial is insufficient. PMID:26535308

  7. Spatiotemporal characteristics of spontaneous overground walk-to-run transition.

    PubMed

    De Smet, K; Segers, V; Lenoir, M; De Clercq, D

    2009-01-01

    The purpose of the current study was to examine spontaneous overground walk-to-run transitions (WRT). For the first time, subjects' WRT was examined during an overground protocol that allowed them to accelerate freely. The overground speed profile prior to reaching the WRT was analysed together with the spatiotemporal characteristics of the actual transition. Nine women (height: 166.4+/-3.5 cm) performed five spontaneous WRT. Speed, step frequency (SF) and step length (SL) of the accelerating walking steps and the transition step were determined. By means of fourth degree polynomials, subjects' spatiotemporal profiles prior to reaching WRT were determined. A step length index (SLI) was used to calculate the contribution of SF and SL to the increase in walking speed. Subjects took on average 5.9+/-0.9 walking steps prior to reaching transition. When speeding up towards the transition to running, subjects chose to accelerate predominantly in the first half of the walking acceleration period, followed by smaller speed increments in the second half. The SLI values indicated that subjects tended to increase walking speed by increasing SL, more than SF, except during the first 20% of the acceleration period. WRT-speed was 2.664+/-0.230 m s(-1), which was higher than in former treadmill studies using a constant acceleration protocol (+/-2.1 m s(-1)). Subjects made a speed jump of 0.417 m s(-1) from the last walking step to the WRT-step. We can conclude that further transition studies studying the interaction between the acceleration and gait transition behaviour are necessary in order to complete the understanding of the transition phenomenon. PMID:18760925

  8. A running controller for a powered transfemoral prosthesis.

    PubMed

    Huff, Amanda M; Lawson, Brian E; Goldfarb, Michael

    2012-01-01

    This paper describes a running controller for a powered knee and ankle prosthesis. The running controller was implemented on a powered prosthesis prototype and evaluated by a transfemoral amputee subject running on a treadmill at a speed of 2.25 m/s (5.0 mph). The ability of the prosthesis and controller to provide the salient features of a running gait was assessed by comparing the kinematics of running provided by the powered prosthesis to the averaged kinematics of five healthy subjects running at the same speed. This comparison indicates that the powered prosthesis and running controller are able to provide essential features of a healthy running gait.

  9. How Far Would a Home Run Really Have Gone?

    NASA Astrophysics Data System (ADS)

    Sherwin, W. G.; Cheng, Y. C.; Chunko, J. D.; Eagan, T. P.; Brown, R. W.

    2002-04-01

    A controversial issue in professional baseball arises from attempts to estimate how far home run balls would have traveled if they had not hit some obstruction, such as a scoreboard or bleacher seating. A Runge-Kutta numerical simulation model is developed for baseball trajectories including the effects of velocity-dependent drag forces, velocity-dependent Magnus spin forces (including a model for the decrease of the spin rate over the trajectory), and the wind. The computational model is used to build a numerical catalog for the combination of initial ball speeds and angles that give rise to a set of trajectories that have the same final impact point (e.g., on the scoreboard). The data required by an observer to estimate the actual home run range are discussed. A homerun hit by Mark McGwire against the Cleveland Indians on 30 April 1997 that dented the Jacobs Field scoreboard is analyzed.

  10. Form and Actuality

    NASA Astrophysics Data System (ADS)

    Bitbol, Michel

    A basic choice underlies physics. It consists of banishing actual situations from theoretical descriptions, in order to reach a universal formal construct. Actualities are then thought of as mere local appearances of a transcendent reality supposedly described by the formal construct. Despite its impressive success, this method has left major loopholes in the foundations of science. In this paper, I document two of these loopholes. One is the problem of time asymmetry in statistical thermodynamics, and the other is the measurement problem of quantum mechanics. Then, adopting a broader philosophical standpoint, I try to turn the whole picture upside down. Here, full priority is given to actuality (construed as a mode of the immanent reality self-reflectively being itself) over formal constructs. The characteristic aporias of this variety of "Copernican revolution" are discussed.

  11. Alternative methods of normalising EMG during running.

    PubMed

    Albertus-Kajee, Yumna; Tucker, Ross; Derman, Wayne; Lamberts, Robert P; Lambert, Michael I

    2011-08-01

    We evaluated possible methods of normalising EMG measured during running. MVC, Sprint and 70% Peak Running Speed methods were evaluated and their repeatability, reliability and sensitivity to incremental running speed were compared. Twelve runners performed the same experimental protocol on three separate occasions. Each day, subjects firstly performed MVCs, followed by a 20 m maximal sprint (with a 20-30 m run-up). Following this, they performed the peak running speed (PRS) test until exhaustion. After which they ran at 70% of PRS for 5 laps. Results indicated that normalising EMG data to MVC and Sprint methods are more repeatable for VM, BF, MG and RF, VL, LG, respectively, with the average ICC>0.80. The 70% PRS demonstrated poor to fair levels of repeatability ranging between ICC 0.27 and 0.70. Whereas the 70% PRS method had the least intra-subject variability and the greatest sensitivity to increasing running speeds. More specifically, demonstrating significant changes in muscle activity in VM with increasing running speed while MVC and Sprint methods were unable to detect these changes. The dynamic methods were the most appropriate for EMG normalisation showing repeatability, better intra-subject reliability and better sensitivity during running over different days and for once-off measurements. PMID:21531148

  12. Speed estimation from a tri-axial accelerometer using neural networks.

    PubMed

    Song, Yoonseon; Shin, Seungchul; Kim, Seunghwan; Lee, Doheon; Lee, Kwang H

    2007-01-01

    We propose a speed estimation method with human body accelerations measured on the chest by a tri-axial accelerometer. To estimate the speed we segmented the acceleration signal into strides measuring stride time, and applied two neural networks into the patterns parameterized from each stride calculating stride length. The first neural network determines whether the subject walks or runs, and the second neural network with different node interactions according to the subject's status estimates stride length. Walking or running speed is calculated with the estimated stride length divided by the measured stride time. The neural networks were trained by patterns obtained from 15 subjects and then validated by 2 untrained subjects' patterns. The result shows good agreement between actual and estimated speeds presenting the linear correlation coefficient r=0.9874. We also applied the method to the real field and track data.

  13. 40 CFR 92.126 - Test run.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... acquisition is terminated prematurely; or (B) For engine testing, the engine speed or power output exceeds the... 40 Protection of Environment 20 2011-07-01 2011-07-01 false Test run. 92.126 Section 92.126... POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.126 Test run. (a) The following...

  14. 40 CFR 92.126 - Test run.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... acquisition is terminated prematurely; or (B) For engine testing, the engine speed or power output exceeds the... 40 Protection of Environment 21 2012-07-01 2012-07-01 false Test run. 92.126 Section 92.126... POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.126 Test run. (a) The following...

  15. 40 CFR 92.126 - Test run.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... acquisition is terminated prematurely; or (B) For engine testing, the engine speed or power output exceeds the... 40 Protection of Environment 21 2013-07-01 2013-07-01 false Test run. 92.126 Section 92.126... POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.126 Test run. (a) The following...

  16. 40 CFR 92.126 - Test run.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... acquisition is terminated prematurely; or (B) For engine testing, the engine speed or power output exceeds the... 40 Protection of Environment 20 2014-07-01 2013-07-01 true Test run. 92.126 Section 92.126... POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.126 Test run. (a) The following...

  17. 40 CFR 92.126 - Test run.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... acquisition is terminated prematurely; or (B) For engine testing, the engine speed or power output exceeds the... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Test run. 92.126 Section 92.126... POLLUTION FROM LOCOMOTIVES AND LOCOMOTIVE ENGINES Test Procedures § 92.126 Test run. (a) The following...

  18. Sprint running: a new energetic approach.

    PubMed

    di Prampero, P E; Fusi, S; Sepulcri, L; Morin, J B; Belli, A; Antonutto, G

    2005-07-01

    The speed of the initial 30 m of an all-out run from a stationary start on a flat track was determined for 12 medium level male sprinters by means of a radar device. The peak speed of 9.46+/-0.19 m s(-1) (mean +/- s.d.) was attained after about 5 s, the highest forward acceleration (a(f)), attained immediately after the start, amounting to 6.42+/-0.61 m s(-2). During acceleration, the runner's body (assumed to coincide with the segment joining the centre of mass and the point of contact foot terrain) must lean forward, as compared to constant speed running, by an angle alpha = arctang/a(f) (g = acceleration of gravity). The complement (90-alpha) is the angle, with respect to the horizontal, by which the terrain should be tilted upwards to bring the runner's body to a position identical to that of constant speed running. Therefore, accelerated running is similar to running at constant speed up an ;equivalent slope' ES = tan(90-alpha). Maximum ES was 0.643+/-0.059. Knowledge of ES allowed us to estimate the energy cost of sprint running (C(sr), J kg(-1) m(-1)) from literature data on the energy cost measured during uphill running at constant speed. Peak Csr was 43.8+/-10.4 J kg(-1) m(-1); its average over the acceleration phase (30 m) was 10.7+/-0.59 J kg(-1) m(-1), as compared with 3.8 for running at constant speed on flat terrain. The corresponding metabolic powers (in W kg(-1)) amounted to 91.9+/-20.5 (peak) and 61.0+/-4.7 (mean). PMID:16000549

  19. How Fast Can a Human Run? - Bipedal vs. Quadrupedal Running.

    PubMed

    Kinugasa, Ryuta; Usami, Yoshiyuki

    2016-01-01

    Usain Bolt holds the current world record in the 100-m run, with a running time of 9.58 s, and has been described as the best human sprinter in history. However, this raises questions concerning the maximum human running speed, such as "Can the world's fastest men become faster still?" The correct answer is likely "Yes." We plotted the historical world records for bipedal and quadrupedal 100-m sprint times according to competition year. These historical records were plotted using several curve-fitting procedures. We found that the projected speeds intersected in 2048, when for the first time, the winning quadrupedal 100-m sprint time could be lower, at 9.276 s, than the winning bipedal time of 9.383 s. Video analysis revealed that in quadrupedal running, humans employed a transverse gallop with a small angular excursion. These results suggest that in the future, the fastest human on the planet might be a quadrupedal runner at the 2048 Olympics. This may be achieved by shifting up to the rotary gallop and taking longer strides with wide sagittal trunk motion. PMID:27446911

  20. How Fast Can a Human Run? - Bipedal vs. Quadrupedal Running.

    PubMed

    Kinugasa, Ryuta; Usami, Yoshiyuki

    2016-01-01

    Usain Bolt holds the current world record in the 100-m run, with a running time of 9.58 s, and has been described as the best human sprinter in history. However, this raises questions concerning the maximum human running speed, such as "Can the world's fastest men become faster still?" The correct answer is likely "Yes." We plotted the historical world records for bipedal and quadrupedal 100-m sprint times according to competition year. These historical records were plotted using several curve-fitting procedures. We found that the projected speeds intersected in 2048, when for the first time, the winning quadrupedal 100-m sprint time could be lower, at 9.276 s, than the winning bipedal time of 9.383 s. Video analysis revealed that in quadrupedal running, humans employed a transverse gallop with a small angular excursion. These results suggest that in the future, the fastest human on the planet might be a quadrupedal runner at the 2048 Olympics. This may be achieved by shifting up to the rotary gallop and taking longer strides with wide sagittal trunk motion.

  1. Running of the running and entropy perturbations during inflation

    NASA Astrophysics Data System (ADS)

    van de Bruck, Carsten; Longden, Chris

    2016-07-01

    In single field slow-roll inflation, one expects that the spectral index ns-1 is first order in slow-roll parameters. Similarly, its running αs=d ns/d log k and the running of the running βs=d αs/d log k are second and third order and therefore expected to be progressively smaller, and usually negative. Hence, such models of inflation are in considerable tension with a recent analysis hinting that βs may actually be positive, and larger than αs. Motivated by this, in this work we ask the question of what kinds of inflationary models may be useful in achieving such a hierarchy of runnings, particularly focusing on two-field models of inflation in which the late-time transfer of power from isocurvature to curvature modes allows for a much more diverse range of phenomenology. We calculate the runnings due to this effect and briefly apply our results to assess the feasibility of finding |βs|≳|αs| in some specific models.

  2. Effect of Minimalist Footwear on Running Efficiency

    PubMed Central

    Gillinov, Stephen M.; Laux, Sara; Kuivila, Thomas; Hass, Daniel; Joy, Susan M.

    2015-01-01

    Background: Although minimalist footwear is increasingly popular among runners, claims that minimalist footwear enhances running biomechanics and efficiency are controversial. Hypothesis: Minimalist and barefoot conditions improve running efficiency when compared with traditional running shoes. Study Design: Randomized crossover trial. Level of Evidence: Level 3. Methods: Fifteen experienced runners each completed three 90-second running trials on a treadmill, each trial performed in a different type of footwear: traditional running shoes with a heavily cushioned heel, minimalist running shoes with minimal heel cushioning, and barefoot (socked). High-speed photography was used to determine foot strike, ground contact time, knee angle, and stride cadence with each footwear type. Results: Runners had more rearfoot strikes in traditional shoes (87%) compared with minimalist shoes (67%) and socked (40%) (P = 0.03). Ground contact time was longest in traditional shoes (265.9 ± 10.9 ms) when compared with minimalist shoes (253.4 ± 11.2 ms) and socked (250.6 ± 16.2 ms) (P = 0.005). There was no difference between groups with respect to knee angle (P = 0.37) or stride cadence (P = 0.20). When comparing running socked to running with minimalist running shoes, there were no differences in measures of running efficiency. Conclusion: When compared with running in traditional, cushioned shoes, both barefoot (socked) running and minimalist running shoes produce greater running efficiency in some experienced runners, with a greater tendency toward a midfoot or forefoot strike and a shorter ground contact time. Minimalist shoes closely approximate socked running in the 4 measurements performed. Clinical Relevance: With regard to running efficiency and biomechanics, in some runners, barefoot (socked) and minimalist footwear are preferable to traditional running shoes. PMID:26131304

  3. Analysis of the Position Effect to the Vehicle Speed and Stop Probability

    NASA Astrophysics Data System (ADS)

    Lee, Junghoon; Park, Gyung-Leen; Kim, Hye-Jin; Kang, Min-Jae; Kim, Cheol Min; Kim, Jinhwan

    This paper addresses how to manage the location history data collected from the Jeju taxi telematics system and analyzes the effect of the report position in a link to the average speed and stop probability. The analysis cannot only quantify how much the speed value, included in each location report, will be accurate in calculating the actual link speed but also locate bottle-neck links. Using the road network represented by an ESRI shape format, a map match scheme is designed to calculate the position from one of the two end points. Then, the statistical analysis runs database queries on the vehicle speed and stop probability for all records, for the records having the passenger-on status, and for the records belonging to the hot links. The investigation finds that the speed difference between the middle and end points of a road segment can reach 13 kmh on average and locates intersections that blocks vehicle traffic.

  4. Dr. Sheehan on Running.

    ERIC Educational Resources Information Center

    Sheehan, George A.

    This book is both a personal and technical account of the experience of running by a heart specialist who began a running program at the age of 45. In its seventeen chapters, there is information presented on the spiritual, psychological, and physiological results of running; treatment of athletic injuries resulting from running; effects of diet…

  5. High Speed Ice Friction

    NASA Astrophysics Data System (ADS)

    Seymour-Pierce, Alexandra; Sammonds, Peter; Lishman, Ben

    2014-05-01

    Many different tribological experiments have been run to determine the frictional behaviour of ice at high speeds, ostensibly with the intention of applying results to everyday fields such as winter tyres and sports. However, experiments have only been conducted up to linear speeds of several metres a second, with few additional subject specific studies reaching speeds comparable to these applications. Experiments were conducted in the cold rooms of the Rock and Ice Physics Laboratory, UCL, on a custom built rotational tribometer based on previous literature designs. Preliminary results from experiments run at 2m/s for ice temperatures of 271 and 263K indicate that colder ice has a higher coefficient of friction, in accordance with the literature. These results will be presented, along with data from further experiments conducted at temperatures between 259-273K (in order to cover a wide range of the temperature dependent behaviour of ice) and speeds of 2-15m/s to produce a temperature-velocity-friction map for ice. The effect of temperature, speed and slider geometry on the deformation of ice will also be investigated. These speeds are approaching those exhibited by sports such as the luge (where athletes slide downhill on an icy track), placing the tribological work in context.

  6. When Running Is the Basic Form of Activity

    ERIC Educational Resources Information Center

    Kudriavtsev, E. V.

    1974-01-01

    This article discusses running as a universal means of physical training and of developing speed and especially endurance with sections on types of running, time and place for running, methods of exercise, and regulating size of stress load. (Author/JH)

  7. Energetics of bipedal running. II. Limb design and running mechanics.

    PubMed

    Roberts, T J; Chen, M S; Taylor, C R

    1998-10-01

    Compared with quadrupeds, bipedal runners of the same weight have longer legs, take longer steps and can presumably use slower, more economical muscle fibers. One might predict that bipedal running is less expensive, but it is not. We hypothesized that bipeds recruit a larger volume of muscle to support their weight, eliminating the potential economy of longer legs and slower steps. To test our hypothesis, we calculated the relative volume of muscle needed to support body weight over a stride in small dogs (Canis familiaris) and wild turkeys (Meleagris gallopavo) of the same weight. First, we confirmed that turkeys and dogs use approximately the same amount of energy to run at the same speed, and found that turkeys take 1. 8-fold longer steps. Higher muscle forces and/or longer muscle fibers would require a greater volume of active muscle, since muscle volume is proportional to the product of force and fascicle length. We measured both mean fascicle length and mean mechanical advantage for limb extensor muscles. Turkeys generated approximately the same total muscle force to support their weight during running and used muscle fascicles that are on average 2.1 times as long as in dogs, thus requiring a 2.5-fold greater active muscle volume. The greater volume appears to offset the economy of slower rates of force generation, supporting our hypothesis and providing a simple explanation for why it costs the same to run on two and four legs.

  8. SPEEDES benchmarking analysis

    NASA Astrophysics Data System (ADS)

    Capella, Sebastian J.; Steinman, Jeffrey S.; McGraw, Robert M.

    2002-07-01

    SPEEDES, the Synchronous Parallel Environment for Emulation and Discrete Event Simulation, is a software framework that supports simulation applications across parallel and distributed architectures. SPEEDES is used as a simulation engine in support of numerous defense projects including the Joint Simulation System (JSIMS), the Joint Modeling And Simulation System (JMASS), the High Performance Computing and Modernization Program's (HPCMP) development of a High Performance Computing (HPC) Run-time Infrastructure, and the Defense Modeling and Simulation Office's (DMSO) development of a Human Behavioral Representation (HBR) Testbed. This work documents some of the performance metrics obtained from benchmarking the SPEEDES Simulation Framework with respect to the functionality found in the summer of 2001. Specifically this papers the scalability of SPEEDES with respect to its time management algorithms and simulation object event queues with respect to the number of objects simulated and events processed.

  9. On Running and Psychotherapy.

    ERIC Educational Resources Information Center

    Dukes, Denzel; And Others

    1980-01-01

    Frederic Leer's article "Running as an Adjunct to Psychotherapy" (January 1980 issue of this journal) is criticized by three authors. They focus on the psychological and social effects of running and its usefulness as a treatment for depressed adults. (LAB)

  10. Biomechanics of Distance Running.

    ERIC Educational Resources Information Center

    Cavanagh, Peter R., Ed.

    Contributions from researchers in the field of running mechanics are included in the 13 chapters of this book. The following topics are covered: (1) "The Mechanics of Distance Running: A Historical Perspective" (Peter Cavanagh); (2) "Stride Length in Distance Running: Velocity, Body Dimensions, and Added Mass Effects" (Peter Cavanagh, Rodger…

  11. Running and osteoarthritis.

    PubMed

    Willick, Stuart E; Hansen, Pamela A

    2010-07-01

    The overall health benefits of cardiovascular exercise, such as running, are well established. However, it is also well established that in certain circumstances running can lead to overload injuries of muscle, tendon, and bone. In contrast, it has not been established that running leads to degeneration of articular cartilage, which is the hallmark of osteoarthritis. This article reviews the available literature on the association between running and osteoarthritis, with a focus on clinical epidemiologic studies. The preponderance of clinical reports refutes an association between running and osteoarthritis.

  12. Reading Speed as a Constraint of Accuracy of Self-Perception of Reading Skill

    ERIC Educational Resources Information Center

    Kwon, Heekyung; Linderholm, Tracy

    2015-01-01

    We hypothesised that college students take reading speed into consideration when evaluating their own reading skill, even if reading speed does not reliably predict actual reading skill. To test this hypothesis, we measured self-perception of reading skill, self-perception of reading speed, actual reading skill and actual reading speed to…

  13. 40 CFR 86.1234-96 - Running loss test.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... of the emissions test. (6) Dynamometer roll or shaft revolutions shall be used to determine the actual driving distance for the running loss test, DRL, required in § 86.1243. The revolutions shall...

  14. Triathlon: running injuries.

    PubMed

    Spiker, Andrea M; Dixit, Sameer; Cosgarea, Andrew J

    2012-12-01

    The running portion of the triathlon represents the final leg of the competition and, by some reports, the most important part in determining a triathlete's overall success. Although most triathletes spend most of their training time on cycling, running injuries are the most common injuries encountered. Common causes of running injuries include overuse, lack of rest, and activities that aggravate biomechanical predisposers of specific injuries. We discuss the running-associated injuries in the hip, knee, lower leg, ankle, and foot of the triathlete, and the causes, presentation, evaluation, and treatment of each.

  15. EnergyPlus Run Time Analysis

    SciTech Connect

    Hong, Tianzhen; Buhl, Fred; Haves, Philip

    2008-09-20

    EnergyPlus is a new generation building performance simulation program offering many new modeling capabilities and more accurate performance calculations integrating building components in sub-hourly time steps. However, EnergyPlus runs much slower than the current generation simulation programs. This has become a major barrier to its widespread adoption by the industry. This paper analyzed EnergyPlus run time from comprehensive perspectives to identify key issues and challenges of speeding up EnergyPlus: studying the historical trends of EnergyPlus run time based on the advancement of computers and code improvements to EnergyPlus, comparing EnergyPlus with DOE-2 to understand and quantify the run time differences, identifying key simulation settings and model features that have significant impacts on run time, and performing code profiling to identify which EnergyPlus subroutines consume the most amount of run time. This paper provides recommendations to improve EnergyPlus run time from the modeler?s perspective and adequate computing platforms. Suggestions of software code and architecture changes to improve EnergyPlus run time based on the code profiling results are also discussed.

  16. Acceleration patterns in the lower and upper trunk during running.

    PubMed

    Kawabata, Masahiro; Goto, Kenta; Fukusaki, Chiho; Sasaki, Ken; Hihara, Eiji; Mizushina, Takahiro; Ishii, Naokata

    2013-01-01

    The purpose of the present study was to relate 3D acceleration patterns of the lower and upper trunk during running to running gait cycle, assess the validity of stride duration estimated from acceleration patterns, investigate speed-dependent changes in acceleration, and examine the test-retest reliability of these parameters. Thirteen healthy young men performed two running trials each on a treadmill and on land at three speeds (slow, preferred, and fast). The 3D accelerations were measured at the L3 spinous process (lower trunk) and the ensiform process (upper trunk) and synchronised with digital video data. The amplitude and root mean square of acceleration and stride duration were calculated and then analysed by three-way analysis of variance to test effects of running conditions, device location, and running speed. Bland-Altman analysis was used to evaluate the test-retest reliability. Marked changes in acceleration were observed in relation to foot strike during running. Stride durations calculated from the vertical accelerations were nearly equal to those estimated from video data. There were significant speed effects on all parameters, and the low test-retest reliability was confirmed in the anterior-posterior acceleration during treadmill running and the anterior-posterior acceleration at slow speed during treadmill and overground running.

  17. Who Runs Our Universities?

    ERIC Educational Resources Information Center

    Watson, David

    2012-01-01

    Inside the academy there is a cultural perspective that it should run itself, in the sense that "business as usual" should be done with no one's hands obviously on the levers. This theory reaches its high point in the "self-government" of Oxford and Cambridge colleges. In this article, the author explores the question, "who runs our…

  18. Speed cells in the medial entorhinal cortex.

    PubMed

    Kropff, Emilio; Carmichael, James E; Moser, May-Britt; Moser, Edvard I

    2015-07-23

    Grid cells in the medial entorhinal cortex have spatial firing fields that repeat periodically in a hexagonal pattern. When animals move, activity is translated between grid cells in accordance with the animal's displacement in the environment. For this translation to occur, grid cells must have continuous access to information about instantaneous running speed. However, a powerful entorhinal speed signal has not been identified. Here we show that running speed is represented in the firing rate of a ubiquitous but functionally dedicated population of entorhinal neurons distinct from other cell populations of the local circuit, such as grid, head-direction and border cells. These 'speed cells' are characterized by a context-invariant positive, linear response to running speed, and share with grid cells a prospective bias of ∼50-80 ms. Our observations point to speed cells as a key component of the dynamic representation of self-location in the medial entorhinal cortex. PMID:26176924

  19. Speed cells in the medial entorhinal cortex.

    PubMed

    Kropff, Emilio; Carmichael, James E; Moser, May-Britt; Moser, Edvard I

    2015-07-23

    Grid cells in the medial entorhinal cortex have spatial firing fields that repeat periodically in a hexagonal pattern. When animals move, activity is translated between grid cells in accordance with the animal's displacement in the environment. For this translation to occur, grid cells must have continuous access to information about instantaneous running speed. However, a powerful entorhinal speed signal has not been identified. Here we show that running speed is represented in the firing rate of a ubiquitous but functionally dedicated population of entorhinal neurons distinct from other cell populations of the local circuit, such as grid, head-direction and border cells. These 'speed cells' are characterized by a context-invariant positive, linear response to running speed, and share with grid cells a prospective bias of ∼50-80 ms. Our observations point to speed cells as a key component of the dynamic representation of self-location in the medial entorhinal cortex.

  20. [Running and the association with anthropometric and training characteristics].

    PubMed

    Knechtle, Beat; Stiefel, Michael; Rosemann, Thomas; Rüst, Christoph; Zingg, Matthias

    2015-05-01

    Running can be performed as a sprint discipline on the track over a few meters up to 10 km to the marathon and ultramarathon running distances over hundreds to thousands of kilometers. Running performance is influenced by a variety of anthropometric and training factors. Morphological features such as skin fold thickness, body fat percentage, circumferences and length of limbs, body weight, body height and body mass index (BMI) seem to have an influence on the running performance. The training volume and running speed during training are also correlated with running performance. When all variables were investigated comparatively, body fat and running speed during training were usually the most important influencing factors. For longer running performances (over 6 hours or 100 km, respectively), the aspects of experience (number of successfully finished races) and personal best times were, however, far more important than training volume or morphological characteristics such as body fat. It was also shown that ultra runners prepare differently (lower running speed and higher running volume) as runners competing over shorter distances such as half-marathon and marathon.

  1. Run Anyone?... Everyone!

    PubMed Central

    McInnis, W. P.

    1974-01-01

    Fitness and health have become bywords in the past decade, signifying increased emphasis on these factors as necessary for good psychological and physical health. Reasons are given why we should run and how to do it. There is a discussion of the technique of running, and equipment. Brief mention is made of complications. An attempt is made to interest the individual in the benefits of running as a sport as well as the best method for the average person to achieve fitness and health. PMID:20469054

  2. The mechanics of running in children.

    PubMed

    Schepens, B; Willems, P A; Cavagna, G A

    1998-06-15

    1. The effect of age and body size on the bouncing mechanism of running was studied in children aged 2-16 years. 2. The natural frequency of the bouncing system (fs) and the external work required to move the centre of mass of the body were measured using a force platform. 3. At all ages, during running below approximately 11 km h-1, the freely chosen step frequency (f) is about equal to fs (symmetric rebound), independent of speed, although it decreases with age from 4 Hz at 2 years to 2.5 Hz above 12 years. 4. The decrease of step frequency with age is associated with a decrease in the mass-specific vertical stiffness of the bouncing system (k/m) due to an increase of the body mass (m) with a constant stiffness (k). Above 12 years, k/m and f remain approximately constant due to a parallel increase in both k and m with age. 5. Above the critical speed of approximately 11 km h-1, independent of age, the rebound becomes asymmetric, i.e. f < fs. 6. The maximum running speed (Vf, max) increases with age while the step frequency at remains constant (approximately 4 Hz), independent of age. 7. At a given speed, the higher step frequency in preteens results in a mass-specific power against gravity less than that in adults. The external power required to move the centre of mass of the body is correspondingly reduced.

  3. The mechanics of running in children.

    PubMed

    Schepens, B; Willems, P A; Cavagna, G A

    1998-06-15

    1. The effect of age and body size on the bouncing mechanism of running was studied in children aged 2-16 years. 2. The natural frequency of the bouncing system (fs) and the external work required to move the centre of mass of the body were measured using a force platform. 3. At all ages, during running below approximately 11 km h-1, the freely chosen step frequency (f) is about equal to fs (symmetric rebound), independent of speed, although it decreases with age from 4 Hz at 2 years to 2.5 Hz above 12 years. 4. The decrease of step frequency with age is associated with a decrease in the mass-specific vertical stiffness of the bouncing system (k/m) due to an increase of the body mass (m) with a constant stiffness (k). Above 12 years, k/m and f remain approximately constant due to a parallel increase in both k and m with age. 5. Above the critical speed of approximately 11 km h-1, independent of age, the rebound becomes asymmetric, i.e. f < fs. 6. The maximum running speed (Vf, max) increases with age while the step frequency at remains constant (approximately 4 Hz), independent of age. 7. At a given speed, the higher step frequency in preteens results in a mass-specific power against gravity less than that in adults. The external power required to move the centre of mass of the body is correspondingly reduced. PMID:9596810

  4. Linguistic Theory and Actual Language.

    ERIC Educational Resources Information Center

    Segerdahl, Par

    1995-01-01

    Examines Noam Chomsky's (1957) discussion of "grammaticalness" and the role of linguistics in the "correct" way of speaking and writing. It is argued that the concern of linguistics with the tools of grammar has resulted in confusion, with the tools becoming mixed up with the actual language, thereby becoming the central element in a metaphysical…

  5. El Observatorio Gemini - Status actual

    NASA Astrophysics Data System (ADS)

    Levato, H.

    Se hace una breve descripción de la situación actual del Observatorio Gemini y de las últimas decisiones del Board para incrementar la eficiencia operativa. Se hace también una breve referencia al uso argentino del observatorio.

  6. Acute effects of intense interval training on running mechanics.

    PubMed

    Collins, M H; Pearsall, D J; Zavorsky, G S; Bateni, H; Turcotte, R A; Montgomery, D L

    2000-02-01

    The aims of this study were to determine if there are significant kinematic changes in running pattern after intense interval workouts, whether duration of recovery affects running kinematics, and whether changes in running economy are related to changes in running kinematics. Seven highly trained male endurance runners (VO2max = 72.3+/-3.3 ml x kg(-1) x min(-1); mean +/- s) performed three interval running workouts of 10 x 400 m at a speed of 5.94+/-0.19 m x s(-1) (356+/-11.2 m x min(-1)) with a minimum of 4 days recovery between runs. Recovery of 60, 120 or 180 s between each 400 m repetition was assigned at random. Before and after each workout, running economy and several kinematic variables were measured at speeds of 3.33 and 4.47 m x s(-1) (200 and 268 m x min(-1)). Speed was found to have a significant effect on shank angle, knee velocity and stride length (P < 0.05). Correlations between changes pre- and post-test for VO2 (ml x kg(-1) x min(-1)) and several kinematic variables were not significant (P > 0.05) at both speeds. In general, duration of recovery was not found to adversely affect running economy or the kinematic variables assessed, possibly because of intra-individual adaptations to fatigue.

  7. Running for Your Health.

    ERIC Educational Resources Information Center

    Adams, George M.

    1979-01-01

    One way of coping with stress is through regular exercise. The author suggests jogging, or running, and presents some basic rules and suggestions for anyone who is about to take up this method of exercise. (KC)

  8. The LHCb Run Control

    NASA Astrophysics Data System (ADS)

    Alessio, F.; Barandela, M. C.; Callot, O.; Duval, P.-Y.; Franek, B.; Frank, M.; Galli, D.; Gaspar, C.; Herwijnen, E. v.; Jacobsson, R.; Jost, B.; Neufeld, N.; Sambade, A.; Schwemmer, R.; Somogyi, P.

    2010-04-01

    LHCb has designed and implemented an integrated Experiment Control System. The Control System uses the same concepts and the same tools to control and monitor all parts of the experiment: the Data Acquisition System, the Timing and the Trigger Systems, the High Level Trigger Farm, the Detector Control System, the Experiment's Infrastructure and the interaction with the CERN Technical Services and the Accelerator. LHCb's Run Control, the main interface used by the experiment's operator, provides access in a hierarchical, coherent and homogeneous manner to all areas of the experiment and to all its sub-detectors. It allows for automated (or manual) configuration and control, including error recovery, of the full experiment in its different running modes. Different instances of the same Run Control interface are used by the various sub-detectors for their stand-alone activities: test runs, calibration runs, etc. The architecture and the tools used to build the control system, the guidelines and components provided to the developers, as well as the first experience with the usage of the Run Control will be presented

  9. Numerical wind speed simulation model

    SciTech Connect

    Ramsdell, J.V.; Athey, G.F.; Ballinger, M.Y.

    1981-09-01

    A relatively simple stochastic model for simulating wind speed time series that can be used as an alternative to time series from representative locations is described in this report. The model incorporates systematic seasonal variation of the mean wind, its standard deviation, and the correlation speeds. It also incorporates systematic diurnal variation of the mean speed and standard deviation. To demonstrate the model capabilities, simulations were made using model parameters derived from data collected at the Hanford Meteorology Station, and results of analysis of simulated and actual data were compared.

  10. Speed and delay on signalized arterials

    SciTech Connect

    Levinson, D.M.

    1998-05-01

    This paper presents a model to predict the influence of traffic flow on the running speed of signalized arterials in Montgomery County, Maryland, while controlling for link length, the number of lanes, and route type. The model separates the changes to link running speed due to same-direction traffic and intersection approach delay from cross-traffic. It is found that flow has a small impact on link speed, each 1,000 v/l/h reduces speed by 4--8 k/h. Longer links have higher speeds, indicating that they more closely approximate free-flow conditions. Measures of intersection and link travel times are also compared. Although link running times exceed intersection stopped delay in general, total intersection delay (stopped and approach) exceeds the delay caused by same-direction traffic. This information can inform investment decision makers about roadway and intersection improvements.

  11. Wind Speed Perception and Risk

    PubMed Central

    Agdas, Duzgun; Webster, Gregory D.; Masters, Forrest J.

    2012-01-01

    Background How accurately do people perceive extreme wind speeds and how does that perception affect the perceived risk? Prior research on human–wind interaction has focused on comfort levels in urban settings or knock-down thresholds. No systematic experimental research has attempted to assess people's ability to estimate extreme wind speeds and perceptions of their associated risks. Method We exposed 76 people to 10, 20, 30, 40, 50, and 60 mph (4.5, 8.9, 13.4, 17.9, 22.3, and 26.8 m/s) winds in randomized orders and asked them to estimate wind speed and the corresponding risk they felt. Results Multilevel modeling showed that people were accurate at lower wind speeds but overestimated wind speeds at higher levels. Wind speed perceptions mediated the direct relationship between actual wind speeds and perceptions of risk (i.e., the greater the perceived wind speed, the greater the perceived risk). The number of tropical cyclones people had experienced moderated the strength of the actual–perceived wind speed relationship; consequently, mediation was stronger for people who had experienced fewer storms. Conclusion These findings provide a clearer understanding of wind and risk perception, which can aid development of public policy solutions toward communicating the severity and risks associated with natural disasters. PMID:23226230

  12. Running on age in a 15-km road run: minor influence of age on performance.

    PubMed

    Celie, Floortje; Faes, Miriam; Hopman, Maria; Stalenhoef, Anton F H; Rikkert, Marcel G M Olde

    2010-04-01

    The importance of exercise in the elderly is widely recognized, but data on performances and drop-out in short running contests are lacking. This hinders stimulation and coaching of elderly persons in active aging. The aim of the study was to determine age-related changes in running performance in the most popular Dutch road run, and how this is influenced by gender, training, and increased participation rate over the last decade. This is a retrospective analysis of 194,560 participants of a 15-km run from 1995 to 2007. Multiple regression analysis of running time by age, gender, and training was performed. Trends in participation were examined by chi-square tests and ANOVA. Trends in running time and speed were examined by t tests. With aging, running time increased with 0.20% per year (P < 0.001). Running time was on average 13% (P < 0.001) shorter in men than in women and was 15.7% (P < 0.001) shorter in participants who trained on a regular basis. Decline in performance with age was 5.9% larger for men than women (P < 0.01) and 4.5% larger for trained than untrained participants (P < 0.01). Over the last decade, participation numbers increased most for elderly (≥60 years) and female participants, mean running performance declined with 9.9% (P < 0.001). Drop-out number was low at all ages (0.13-0.29%). It appears that aging has only minor negative influences on running performance, which can even be attenuated by training. Our data suggest that exercise by means of running is a safe and rewarding option for improvement of healthy and active aging. PMID:21124752

  13. A Brief Opportunity to Run Does Not Function as a Reinforcer for Mice Selected for High Daily Wheel-Running Rates

    ERIC Educational Resources Information Center

    Belke, Terry W.; Garland, Theodore, Jr.

    2007-01-01

    Mice from replicate lines, selectively bred based on high daily wheel-running rates, run more total revolutions and at higher average speeds than do mice from nonselected control lines. Based on this difference it was assumed that selected mice would find the opportunity to run in a wheel a more efficacious consequence. To assess this assumption…

  14. The Art of Running

    ERIC Educational Resources Information Center

    Brown, Jill Harris

    2007-01-01

    Every year, the Parent-Teacher Association of Ferndale Elementary School in Atlanta, Georgia sponsors a fun road race for the students, teachers, families, and community. This annual event has inspired the author to develop the Running and Art project to show off her students' art and squeeze in a little art history, too. In this article, the…

  15. Running Wheel for Earthworms.

    PubMed

    Wilson, W Jeffrey; Johnson, Brandon A

    2016-01-01

    We describe the construction and use of a running wheel responsive to the movement of the earthworm. The wheel employs readily available, inexpensive components and is easily constructed. Movement of the wheel can be monitored visually or via standard behavioral laboratory computer interfaces. Examples of data are presented, and possibilities for use in the teaching classroom are discussed.

  16. Running Wheel for Earthworms.

    PubMed

    Wilson, W Jeffrey; Johnson, Brandon A

    2016-01-01

    We describe the construction and use of a running wheel responsive to the movement of the earthworm. The wheel employs readily available, inexpensive components and is easily constructed. Movement of the wheel can be monitored visually or via standard behavioral laboratory computer interfaces. Examples of data are presented, and possibilities for use in the teaching classroom are discussed. PMID:27385934

  17. Running Wheel for Earthworms

    PubMed Central

    Wilson, W. Jeffrey; Johnson, Brandon A.

    2016-01-01

    We describe the construction and use of a running wheel responsive to the movement of the earthworm. The wheel employs readily available, inexpensive components and is easily constructed. Movement of the wheel can be monitored visually or via standard behavioral laboratory computer interfaces. Examples of data are presented, and possibilities for use in the teaching classroom are discussed. PMID:27385934

  18. How People Actually Use Thermostats

    SciTech Connect

    Meier, Alan; Aragon, Cecilia; Hurwitz, Becky; Mujumdar, Dhawal; Peffer, Therese; Perry, Daniel; Pritoni, Marco

    2010-08-15

    Residential thermostats have been a key element in controlling heating and cooling systems for over sixty years. However, today's modern programmable thermostats (PTs) are complicated and difficult for users to understand, leading to errors in operation and wasted energy. Four separate tests of usability were conducted in preparation for a larger study. These tests included personal interviews, an on-line survey, photographing actual thermostat settings, and measurements of ability to accomplish four tasks related to effective use of a PT. The interviews revealed that many occupants used the PT as an on-off switch and most demonstrated little knowledge of how to operate it. The on-line survey found that 89% of the respondents rarely or never used the PT to set a weekday or weekend program. The photographic survey (in low income homes) found that only 30% of the PTs were actually programmed. In the usability test, we found that we could quantify the difference in usability of two PTs as measured in time to accomplish tasks. Users accomplished the tasks in consistently shorter times with the touchscreen unit than with buttons. None of these studies are representative of the entire population of users but, together, they illustrate the importance of improving user interfaces in PTs.

  19. Swing- and support-related muscle actions differentially trigger human walk-run and run-walk transitions.

    PubMed

    Prilutsky, B I; Gregor, R J

    2001-07-01

    There has been no consistent explanation as to why humans prefer changing their gait from walking to running and from running to walking at increasing and decreasing speeds, respectively. This study examined muscle activation as a possible determinant of these gait transitions. Seven subjects walked and ran on a motor-driven treadmill for 40s at speeds of 55, 70, 85, 100, 115, 130 and 145% of the preferred transition speed. The movements of subjects were videotaped, and surface electromyographic activity was recorded from seven major leg muscles. Resultant moments at the leg joints during the swing phase were calculated. During the swing phase of locomotion at preferred running speeds (115, 130, 145%), swing-related activation of the ankle, knee and hip flexors and peaks of flexion moments were typically lower (P<0.05) during running than during walking. At preferred walking speeds (55, 70, 85%), support-related activation of the ankle and knee extensors was typically lower during stance of walking than during stance of running (P<0.05). These results support the hypothesis that the preferred walk-run transition might be triggered by the increased sense of effort due to the exaggerated swing-related activation of the tibialis anterior, rectus femoris and hamstrings; this increased activation is necessary to meet the higher joint moment demands to move the swing leg during fast walking. The preferred run-walk transition might be similarly triggered by the sense of effort due to the higher support-related activation of the soleus, gastrocnemius and vastii that must generate higher forces during slow running than during walking at the same speed.

  20. Running energetics in the pronghorn antelope.

    PubMed

    Lindstedt, S L; Hokanson, J F; Wells, D J; Swain, S D; Hoppeler, H; Navarro, V

    1991-10-24

    The pronghorn antelope (Antilocapra americana) has an alleged top speed of 100 km h-1, second only to the cheetah (Acionyx jubatus) among land vertebrates, a possible response to predation in the exposed habitat of the North American prairie. Unlike cheetahs, however, pronghorn antelope are distance runners rather than sprinters, and can run 11 km in 10 min, an average speed of 65 km h-1. We measured maximum oxygen uptake in pronghorn antelope to distinguish between two potential explanations for this ability: either they have evolved a uniquely high muscular efficiency (low cost of transport) or they can supply oxygen to the muscles at unusually high levels. Because the cost of transport (energy per unit distance covered per unit body mass) varies as a predictable function of body mass among terrestrial vertebrates, we can calculate the predicted cost to maintain speeds of 65 and 100 km h-1 in an average 32-kg animal. The resulting range of predicted values, 3.2-5.1 ml O2 kg-1 s-1, far surpasses the predicted maximum aerobic capacity of a 32-kg mammal (1.5 ml O2 kg-1 s-1). We conclude that their performance is achieved by an extraordinary capacity to consume and process enough oxygen to support a predicted running speed greater than 20 ms-1 (70 km h-1), attained without unique respiratory-system structures. PMID:1944533

  1. Running energetics in the pronghorn antelope.

    PubMed

    Lindstedt, S L; Hokanson, J F; Wells, D J; Swain, S D; Hoppeler, H; Navarro, V

    1991-10-24

    The pronghorn antelope (Antilocapra americana) has an alleged top speed of 100 km h-1, second only to the cheetah (Acionyx jubatus) among land vertebrates, a possible response to predation in the exposed habitat of the North American prairie. Unlike cheetahs, however, pronghorn antelope are distance runners rather than sprinters, and can run 11 km in 10 min, an average speed of 65 km h-1. We measured maximum oxygen uptake in pronghorn antelope to distinguish between two potential explanations for this ability: either they have evolved a uniquely high muscular efficiency (low cost of transport) or they can supply oxygen to the muscles at unusually high levels. Because the cost of transport (energy per unit distance covered per unit body mass) varies as a predictable function of body mass among terrestrial vertebrates, we can calculate the predicted cost to maintain speeds of 65 and 100 km h-1 in an average 32-kg animal. The resulting range of predicted values, 3.2-5.1 ml O2 kg-1 s-1, far surpasses the predicted maximum aerobic capacity of a 32-kg mammal (1.5 ml O2 kg-1 s-1). We conclude that their performance is achieved by an extraordinary capacity to consume and process enough oxygen to support a predicted running speed greater than 20 ms-1 (70 km h-1), attained without unique respiratory-system structures.

  2. Safety evaluation of the ITP filter/stripper test runs and quiet time runs using simulant solution. Revision 3

    SciTech Connect

    Gupta, M.K.

    1994-06-01

    The purpose is to provide the technical bases for the evaluation of Unreviewed Safety Question for the In-Tank Precipitation (ITP) Filter/Stripper Test Runs (Ref. 7) and Quiet Time Runs Program (described in Section 3.6). The Filter/Stripper Test Runs and Quiet Time Runs program involves a 12,000 gallon feed tank containing an agitator, a 4,000 gallon flush tank, a variable speed pump, associated piping and controls, and equipment within both the Filter and the Stripper Building.

  3. Effects of treadmill running and fatigue on impact acceleration in distance running.

    PubMed

    García-Pérez, José Antonio; Pérez-Soriano, Pedro; Llana Belloch, Salvador; Lucas-Cuevas, Angel Gabriel; Sánchez-Zuriaga, Daniel

    2014-09-01

    The effects of treadmill running on impact acceleration were examined together with the interaction between running surface and runner's fatigue state. Twenty recreational runners (11 men and 9 women) ran overground and on a treadmill (at 4.0 m/s) before and after a fatigue protocol consisting of a 30-minute run at 85% of individual maximal aerobic speed. Impact accelerations were analysed using two lightweight capacitive uniaxial accelerometers. A two-way repeated-measure analysis of variance showed that, in the pre-fatigue condition, the treadmill running decreased head and tibial peak impact accelerations and impact rates (the rate of change of acceleration), but no significant difference was observed between the two surfaces in shock attenuation. There was no significant difference in acceleration parameters between the two surfaces in the post-fatigue condition. There was a significant interaction between surface (treadmill and overground) and fatigue state (pre-fatigue and post-fatigue). In particular, fatigue when running overground decreased impact acceleration severity, but it had no such effect when running on the treadmill. The effects of treadmill running and the interaction need to be taken into account when interpreting the results of studies that use a treadmill in their experimental protocols, and when prescribing physical exercise. PMID:25325770

  4. Effects of treadmill running and fatigue on impact acceleration in distance running.

    PubMed

    García-Pérez, José Antonio; Pérez-Soriano, Pedro; Llana Belloch, Salvador; Lucas-Cuevas, Angel Gabriel; Sánchez-Zuriaga, Daniel

    2014-09-01

    The effects of treadmill running on impact acceleration were examined together with the interaction between running surface and runner's fatigue state. Twenty recreational runners (11 men and 9 women) ran overground and on a treadmill (at 4.0 m/s) before and after a fatigue protocol consisting of a 30-minute run at 85% of individual maximal aerobic speed. Impact accelerations were analysed using two lightweight capacitive uniaxial accelerometers. A two-way repeated-measure analysis of variance showed that, in the pre-fatigue condition, the treadmill running decreased head and tibial peak impact accelerations and impact rates (the rate of change of acceleration), but no significant difference was observed between the two surfaces in shock attenuation. There was no significant difference in acceleration parameters between the two surfaces in the post-fatigue condition. There was a significant interaction between surface (treadmill and overground) and fatigue state (pre-fatigue and post-fatigue). In particular, fatigue when running overground decreased impact acceleration severity, but it had no such effect when running on the treadmill. The effects of treadmill running and the interaction need to be taken into account when interpreting the results of studies that use a treadmill in their experimental protocols, and when prescribing physical exercise.

  5. Quantifying coordination and coordination variability in backward versus forward running: Implications for control of motion.

    PubMed

    Mehdizadeh, Sina; Arshi, Ahmed Reza; Davids, Keith

    2015-07-01

    The aims of this study were to compare coordination and coordination variability in backward and forward running and to investigate the effects of speed on coordination variability in both backward and forward running. Fifteen healthy male participants took part in this study to run forwards and backwards on a treadmill at 80%, 100% and 120% of their preferred running speeds. The coordinate data of passive reflective markers attached to body segments were recorded using motion capture systems. Coordination of shank-foot and thigh-shank couplings in sagittal plane was quantified using the continuous relative phase method. Coordination variability was calculated as the standard deviation of a coordination pattern over 50 strides. Cross-correlation coefficients and associated phase shifts were determined to quantify similarity in coordination patterns between forward and backward running. Our results demonstrated that the coordination pattern in a gait cycle of backward running was in reverse to that of forward running at all speeds implying that the same neural circuitry is responsible for regulating both forward and backward running gaits. In addition, results demonstrated that there was an average of approximately 11% phase shift between the coordination patterns of backward and forward running which indicates that a single underlying mechanism might be responsible for generating motor patterns in both forward and backward running. Finally, backward running had significantly higher magnitude of coordination variability compared to forward running, signifying that more degrees of freedom were involved in backward running. Speed however, did not affect coordination variability in either task.

  6. Quantifying coordination and coordination variability in backward versus forward running: Implications for control of motion.

    PubMed

    Mehdizadeh, Sina; Arshi, Ahmed Reza; Davids, Keith

    2015-07-01

    The aims of this study were to compare coordination and coordination variability in backward and forward running and to investigate the effects of speed on coordination variability in both backward and forward running. Fifteen healthy male participants took part in this study to run forwards and backwards on a treadmill at 80%, 100% and 120% of their preferred running speeds. The coordinate data of passive reflective markers attached to body segments were recorded using motion capture systems. Coordination of shank-foot and thigh-shank couplings in sagittal plane was quantified using the continuous relative phase method. Coordination variability was calculated as the standard deviation of a coordination pattern over 50 strides. Cross-correlation coefficients and associated phase shifts were determined to quantify similarity in coordination patterns between forward and backward running. Our results demonstrated that the coordination pattern in a gait cycle of backward running was in reverse to that of forward running at all speeds implying that the same neural circuitry is responsible for regulating both forward and backward running gaits. In addition, results demonstrated that there was an average of approximately 11% phase shift between the coordination patterns of backward and forward running which indicates that a single underlying mechanism might be responsible for generating motor patterns in both forward and backward running. Finally, backward running had significantly higher magnitude of coordination variability compared to forward running, signifying that more degrees of freedom were involved in backward running. Speed however, did not affect coordination variability in either task. PMID:26021460

  7. The energy cost of running increases with the distance covered.

    PubMed

    Brueckner, J C; Atchou, G; Capelli, C; Duvallet, A; Barrault, D; Jousselin, E; Rieu, M; di Prampero, P E

    1991-01-01

    The net energy cost of running per unit of body mass and distance (Cr, ml O2.kg-1.km-1) was determined on ten amateur runners before and immediately after running 15, 32 or 42 km on an indoor track at a constant speed. The Cr was determined on a treadmill at the same speed and each run was performed twice. The average value of Cr, as determined before the runs, amounted to 174.9 ml O2.kg-1.km-1, SD 13.7. After 15 km, Cr was not significantly different, whereas it had increased significantly after 32 or 42 km, the increase ranging from 0.20 to 0.31 ml O2.kg-1.km-1 per km of distance (D). However, Cr before the runs decreased, albeit at a progressively smaller rate, with the number of trials (N), indicating an habituation effect (H) to treadmill running. The effects of D alone were determined assuming that Cr increased linearly with D, whereas H decreased exponentially with increasing N, i.e. Cr = Cr0 + a D + He-bN. The Cr0, the "true" energy cost of running in nonfatigued subjects accustomed to treadmill running, was assumed to be equal to the average value of Cr before the run for N equal to or greater than 7 (171.1 ml O2.kg-1.km-1, SD 12.7; n = 30).(ABSTRACT TRUNCATED AT 250 WORDS) PMID:1893899

  8. Oxygen uptake in maximal effort constant rate and interval running.

    PubMed

    Pratt, Daniel; O'Brien, Brendan J; Clark, Bradley

    2013-01-01

    This study investigated differences in average VO2 of maximal effort interval running to maximal effort constant rate running at lactate threshold matched for time. The average VO2 and distance covered of 10 recreational male runners (VO2max: 4158 ± 390 mL · min(-1)) were compared between a maximal effort constant-rate run at lactate threshold (CRLT), a maximal effort interval run (INT) consisting of 2 min at VO2max speed with 2 minutes at 50% of VO2 repeated 5 times, and a run at the average speed sustained during the interval run (CR submax). Data are presented as mean and 95% confidence intervals. The average VO2 for INT, 3451 (3269-3633) mL · min(-1), 83% VO2max, was not significantly different to CRLT, 3464 (3285-3643) mL · min(-1), 84% VO2max, but both were significantly higher than CR sub-max, 3464 (3285-3643) mL · min(-1), 76% VO2max. The distance covered was significantly greater in CLRT, 4431 (4202-3731) metres, compared to INT and CR sub-max, 4070 (3831-4309) metres. The novel finding was that a 20-minute maximal effort constant rate run uses similar amounts of oxygen as a 20-minute maximal effort interval run despite the greater distance covered in the maximal effort constant-rate run. PMID:24288501

  9. Decline in muscle strength and running endurance in klotho deficient C57BL/6 mice.

    PubMed

    Phelps, Michael; Pettan-Brewer, Christina; Ladiges, Warren; Yablonka-Reuveni, Zipora

    2013-12-01

    Alpha klotho (known as klotho) is a multifunctional protein that may be linked to age-associated decline in tissue homeostasis. The original klotho hypomorphic (klotho (hm) ) mouse, produced on a mixed C57BL/6 and C3H background, is short lived and exhibits extensive aging-like deterioration of several body systems. Differently, klotho (hm) mice on a pure C57BL/6 background do not appear sickly nor die young, which has permitted us to gain insight into the effect of klotho deficiency in adult life. First, analyzing klotho transcript levels in the kidney, the main site of klotho production, we demonstrated a 71-fold decline in klotho (hm) females compared to wildtype females versus only a 4-fold decline in mutant males. We then examined the effect of klotho deficiency on muscle-related attributes in adult mice, focusing on 7-11 month old females. Body weight and forelimb grip strength were significantly reduced in klotho (hm) mice compared to wildtype and klotho overexpressing mice. The female mice were also subjected to voluntary wheel running for a period of 6 days. Running endurance was markedly reduced in klotho (hm) mice, which exhibited a sporadic running pattern that may be characteristic of repeated bouts of exhaustions. When actually running, klotho (hm) females ran at the same speed as wildtype and klotho overexpressing mice, but spent about 65 % less time running compared to the other two groups. Our novel results suggest an important link between klotho deficiency and muscle performance. This study provides a foundation for further research on klotho involvement as a potential inhibitor of age-associated muscle deterioration.

  10. Does running strengthen bone?

    PubMed

    Boudenot, Arnaud; Achiou, Zahra; Portier, Hugues

    2015-12-01

    Bone is a living tissue needing mechanical stress to maintain strength. Traditional endurance exercises offer only modest effects on bone. Walking and running produce low impact but lead to bone fatigue. This article is specifically addressed to therapists and explains the mechanisms involved for the effects of exercise on bone. Intermittent exercise limits bone fatigue, and downhill exercises increase ground impact forces and involve eccentric muscle contractions, which are particularly osteogenic. PMID:26562001

  11. Biomechanics of sprint running. A review.

    PubMed

    Mero, A; Komi, P V; Gregor, R J

    1992-06-01

    Understanding of biomechanical factors in sprint running is useful because of their critical value to performance. Some variables measured in distance running are also important in sprint running. Significant factors include: reaction time, technique, electromyographic (EMG) activity, force production, neural factors and muscle structure. Although various methodologies have been used, results are clear and conclusions can be made. The reaction time of good athletes is short, but it does not correlate with performance levels. Sprint technique has been well analysed during acceleration, constant velocity and deceleration of the velocity curve. At the beginning of the sprint run, it is important to produce great force/power and generate high velocity in the block and acceleration phases. During the constant-speed phase, the events immediately before and during the braking phase are important in increasing explosive force/power and efficiency of movement in the propulsion phase. There are no research results available regarding force production in the sprint-deceleration phase. The EMG activity pattern of the main sprint muscles is described in the literature, but there is a need for research with highly skilled sprinters to better understand the simultaneous operation of many muscles. Skeletal muscle fibre characteristics are related to the selection of talent and the training-induced effects in sprint running. Efficient sprint running requires an optimal combination between the examined biomechanical variables and external factors such as footwear, ground and air resistance. Further research work is needed especially in the area of nervous system, muscles and force and power production during sprint running. Combining these with the measurements of sprinting economy and efficiency more knowledge can be achieved in the near future.

  12. Running with a load increases leg stiffness.

    PubMed

    Silder, Amy; Besier, Thor; Delp, Scott L

    2015-04-13

    Spring-mass models have been used to characterize running mechanics and leg stiffness in a variety of conditions, yet it remains unknown how running while carrying a load affects running mechanics and leg stiffness. The purpose of this study was to test the hypothesis that running with a load increases leg stiffness. Twenty-seven subjects ran at a constant speed on a force-measuring treadmill while carrying no load, and while wearing weight vests loaded with 10%, 20%, and 30% of body weight. We measured lower extremity motion and created a scaled musculoskeletal model of each subject, which we used to estimate lower extremity joint angles and leg length. We estimated dimensionless leg stiffness as the ratio of the peak vertical ground reaction force (normalized to body weight) and the change in stance phase leg length (normalized to leg length at initial foot contact). Leg length was calculated as the distance from the center of the pelvis to the center-of-pressure under the foot. We found that dimensionless leg stiffness increased when running with load (p=0.001); this resulted from an increase in the peak vertical ground reaction force (p<0.001) and a smaller change in stance phase leg length (p=0.025). When running with load, subjects had longer ground contact times (p<0.020), greater hip (p<0.001) and knee flexion (p=0.048) at the time of initial foot contact, and greater peak stance phase hip, knee, and ankle flexion (p<0.05). Our results reveal that subjects run in a more crouched posture and with higher leg stiffness to accommodate an added load.

  13. Running with a load increases leg stiffness.

    PubMed

    Silder, Amy; Besier, Thor; Delp, Scott L

    2015-04-13

    Spring-mass models have been used to characterize running mechanics and leg stiffness in a variety of conditions, yet it remains unknown how running while carrying a load affects running mechanics and leg stiffness. The purpose of this study was to test the hypothesis that running with a load increases leg stiffness. Twenty-seven subjects ran at a constant speed on a force-measuring treadmill while carrying no load, and while wearing weight vests loaded with 10%, 20%, and 30% of body weight. We measured lower extremity motion and created a scaled musculoskeletal model of each subject, which we used to estimate lower extremity joint angles and leg length. We estimated dimensionless leg stiffness as the ratio of the peak vertical ground reaction force (normalized to body weight) and the change in stance phase leg length (normalized to leg length at initial foot contact). Leg length was calculated as the distance from the center of the pelvis to the center-of-pressure under the foot. We found that dimensionless leg stiffness increased when running with load (p=0.001); this resulted from an increase in the peak vertical ground reaction force (p<0.001) and a smaller change in stance phase leg length (p=0.025). When running with load, subjects had longer ground contact times (p<0.020), greater hip (p<0.001) and knee flexion (p=0.048) at the time of initial foot contact, and greater peak stance phase hip, knee, and ankle flexion (p<0.05). Our results reveal that subjects run in a more crouched posture and with higher leg stiffness to accommodate an added load. PMID:25728581

  14. Skilled basketball players rotate their shoulders more during running while dribbling.

    PubMed

    Fujii, Keisuke; Yamada, Yosuke; Oda, Shingo

    2010-06-01

    The relationship between running velocity and trunk rotation during normal running and running while dribbling was investigated in 7 male competitive basketball players and 7 male nonplayers. Participants performed a normal 20-m sprint and a 20-m sprint while dribbling a basketball. For the motion analysis, all individuals also performed normal running and running while dribbling at target of their maximal speed of sprinting and dribbling, respectively. Basketball players showed significantly smaller decreases in their running velocity from 85% maximal (target) sprint to 85% maximal (target) dribbling speeds than nonplayers. Furthermore, basketball players rotated their shoulders significantly more during target dribbling than during target running. For all participants, significant positive correlations were found between the decreases in running velocity and shoulder rotation. The results suggested that the basketball players' greater shoulder rotation during dribbling permits their running velocity to decrease less during target dribbling compared to a maximal sprint.

  15. A microanalysis of wheel running in male and female rats.

    PubMed

    Eikelboom, R; Mills, R

    1988-01-01

    The pattern of ad lib wheel running was studied in adult Sprague-Dawley rats. Wheel turns per 20 seconds were recorded for 5 days. Females ran more than males but both ran chiefly at night, with a peak at the beginning and a decline to low levels by daytime. Log-survivor plots showed running occurred in distinct episodes separated by long periods of nonrunning. Both the nightly decrease and the sex difference in running were due to changes in duration of episodes and the running speed. Initiation of running, as reflected in the length of nonrunning periods was similar in both sexes and remained constant over the night. Running was discussed in terms of independent initiation and termination factors and its parallels to eating patterns.

  16. Relationship of perceived and actual motor competence in children.

    PubMed

    Raudsepp, Lennart; Liblik, Raino

    2002-06-01

    The purpose of this study was to examine the relationship between children's actual and perceived motor competence. 280 children between the ages of 10 and 13 years individually completed the Children's Physical Self-perception Profile which assesses perceptions of sport competence, physical conditioning, strength, body attractiveness, and general physical self-worth. The internal reliabilities (a) of the subscales ranged from .75 to .82. After completing the profile, the subject's actual motor competence was measured using tests of aerobic fitness and functional strength. Body fatness (sum of five skinfolds) was measured as an objective measure of perceived body attractiveness. Analysis of variance showed that boys and girls differed in perceived competence and actual motor competence. The boys showed higher perceived competence on four scores, but there was no sex difference in perception of body attractiveness. Correlations and regression analysis showed that actual and perceived motor competence were significantly but only moderately (r =.25-.56) correlated. In addition, items of perceived physical competence and age accounted for 17% (sit-ups) to 25% (endurance shuttle run) of the variance in actual motor competence of the children. These findings showed that 10- to 13-yr-old children can only moderately assess personal motor competence. PMID:12186225

  17. A Study to Determine the Biomechanics of Running in Skilled Trackmen. Final Report.

    ERIC Educational Resources Information Center

    Nelson, Richard C.

    The purpose of this study is to investigate the manner in which selected mechanical elements of the running stride are altered with accompanying variations in the speed of running and the slope upon which running occurs. Subjects, 16 intercollegiate runners, were marked at reference points of the body pertinent to this study and filmed twice…

  18. The aerodynamic signature of running spiders.

    PubMed

    Casas, Jérôme; Steinmann, Thomas; Dangles, Olivier

    2008-05-07

    Many predators display two foraging modes, an ambush strategy and a cruising mode. These foraging strategies have been classically studied in energetic, biomechanical and ecological terms, without considering the role of signals produced by predators and perceived by prey. Wolf spiders are a typical example; they hunt in leaf litter either using an ambush strategy or by moving at high speed, taking over unwary prey. Air flow upstream of running spiders is a source of information for escaping prey, such as crickets and cockroaches. However, air displacement by running arthropods has not been previously examined. Here we show, using digital particle image velocimetry, that running spiders are highly conspicuous aerodynamically, due to substantial air displacement detectable up to several centimetres in front of them. This study explains the bimodal distribution of spider's foraging modes in terms of sensory ecology and is consistent with the escape distances and speeds of cricket prey. These findings may be relevant to the large and diverse array of arthropod prey-predator interactions in leaf litter.

  19. Hip Muscle Loads during Running at Various Step Rates

    PubMed Central

    Lenhart, Rachel; Thelen, Darryl; Heiderscheit, Bryan

    2015-01-01

    Study Design Controlled laboratory study, cross-sectional Objectives To characterize hip muscle forces and powers during running, and to determine how these quantities change when altering step rate for a given running speed. Background Hip musculature has been implicated in a variety of running related injuries, and as such is often the target of rehabilitation interventions including resistance exercises and gait retraining. The differential contributions of the hip muscles to the task of running is not well understood, and may be important for recognizing the biomechanical mechanisms of running-related injuries and refining current treatment and prevention strategies. Methods Thirty healthy participants ran at their preferred speed at 3 different step rates: 90%, 100%, and 110% of their preferred step rate. Whole body kinematics and ground reaction forces were recorded. A 3D musculoskeletal model was used to estimate muscle forces needed to produce the measured joint accelerations. Forces and powers of each muscle were compared across step rate conditions. Results Peak force produced by the gluteus medius during running was substantially greater than any other hip muscle, with the majority of muscles displaying a period of negative work immediately preceding positive work. The higher running step rate led to an increase in hip flexor, hamstring, and hip extensor loading during swing, but conversely substantially diminished peak force and work during loading response for several hip muscles including the gluteal muscles and piriformis. Conclusion Increasing running step rate for a given running speed heightened hamstring and gluteal muscle loading in late swing, while decreasing stance phase loading in the gluteal muscles and piriformis. These results may enable clinicians to support and refine current treatment strategies including exercise prescription and gait retraining for running-related injuries. PMID:25156044

  20. A Star on the Run

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-10-01

    Usually stars that are born together tend to move together but sometimes stars can go rogue and run away from their original birthplace. A pair of astronomers have now discovered the first runaway red supergiant (RSG) ever identified in another galaxy. With a radial velocity discrepancy of 300 km/s, its also the fastest runaway massive star known. Discrepant Speeds: When massive stars form in giant molecular clouds, they create what are known as OB associations: groups of hot, massive, short-lived stars that have similar velocities because theyre moving through space together. But sometimes stars that appear to be part of an OB association dont have the same velocity as the rest of the group. These stars are called runaways.What causes an OB star to run away is still debated, but we know that a fairly significant fraction of OB stars are runaways. In spite of this, surprisingly few runaways have been found that are evolved massive stars i.e., the post-main-sequence state of OB stars. This is presumably because these evolved stars have had more time to move away from their birthplace, and its more difficult to identify a runaway without the context of its original group. An Evolved Runaway: Difference between observed velocity and expected velocity, plotted as a function of expected velocity. The black points are foreground stars. The red points are expected RSGs, clustered around a velocity difference of zero. The green pentagon is the runaway RSG J004330.06+405258.4. [Evans Massey 2015]Despite this challenge, a recent survey of RSGs in the galaxy M31 has led to the detection of a massive star on the run! Kate Evans (Lowell Observatory and California Institute of Technology) and Philip Massey (Lowell Observatory and Northern Arizona University) discovered that RSG J004330.06+405258.4 is moving through the Andromeda Galaxy with a radial velocity thats off by about 300 km/s from the radial velocity expected for its location.Evans and Massey discovered this rogue star

  1. Run II luminosity progress

    SciTech Connect

    Gollwitzer, K.; /Fermilab

    2007-06-01

    The Fermilab Tevatron Collider Run II program continues at the energy and luminosity frontier of high energy particle physics. To the collider experiments CDF and D0, over 3 fb{sup -1} of integrated luminosity has been delivered to each. Upgrades and improvements in the Antiproton Source of the production and collection of antiprotons have led to increased number of particles stored in the Recycler. Electron cooling and associated improvements have help make a brighter antiproton beam at collisions. Tevatron improvements to handle the increased number of particles and the beam lifetimes have resulted in an increase in luminosity.

  2. Sprint running performance: comparison between treadmill and field conditions.

    PubMed

    Morin, Jean-Benoît; Sève, Pierrick

    2011-08-01

    We investigated the differences in performance between 100-m sprints performed on a sprint treadmill recently validated versus on a standard track. To date, studies comparing overground and treadmill running have mainly focused on constant and not maximal "free" running speed, and compared running kinetics and kinematics over a limited number of steps, but not overall sprint performance. Eleven male physical education students including two sprinters performed one 100-m on the treadmill and one on a standard athletics track in a randomized order, separated by 30 min. Performance data were derived in both cases from speed-time relationships measured with a radar and with the instrumented sprint treadmill, which allowed subjects to run and produce speed "freely", i.e. with no predetermined belt speed imposed. Field and treadmill typical speed-distance curves and data of maximal and mean speed, 100-m time and acceleration/deceleration time constants were compared using t tests and field-treadmill correlations were tested. All the performance parameters but time to reach top speed and deceleration time constant differed significantly, by about 20% on average, between field and treadmill (e.g. top speed of 8.84 ± 0.51 vs. 6.90 ± 0.39 m s(-1)). However, significant correlations were found (r > 0.63; P < 0.05) for all the performance parameters except time to reach top speed. Treadmill and field 100-m sprint performances are different, despite the fact that subjects could freely accelerate the belt. However, the significant correlations found make it possible to investigate and interpret inter-individual differences in field performance from treadmill measurements.

  3. Sprint running performance: comparison between treadmill and field conditions.

    PubMed

    Morin, Jean-Benoît; Sève, Pierrick

    2011-08-01

    We investigated the differences in performance between 100-m sprints performed on a sprint treadmill recently validated versus on a standard track. To date, studies comparing overground and treadmill running have mainly focused on constant and not maximal "free" running speed, and compared running kinetics and kinematics over a limited number of steps, but not overall sprint performance. Eleven male physical education students including two sprinters performed one 100-m on the treadmill and one on a standard athletics track in a randomized order, separated by 30 min. Performance data were derived in both cases from speed-time relationships measured with a radar and with the instrumented sprint treadmill, which allowed subjects to run and produce speed "freely", i.e. with no predetermined belt speed imposed. Field and treadmill typical speed-distance curves and data of maximal and mean speed, 100-m time and acceleration/deceleration time constants were compared using t tests and field-treadmill correlations were tested. All the performance parameters but time to reach top speed and deceleration time constant differed significantly, by about 20% on average, between field and treadmill (e.g. top speed of 8.84 ± 0.51 vs. 6.90 ± 0.39 m s(-1)). However, significant correlations were found (r > 0.63; P < 0.05) for all the performance parameters except time to reach top speed. Treadmill and field 100-m sprint performances are different, despite the fact that subjects could freely accelerate the belt. However, the significant correlations found make it possible to investigate and interpret inter-individual differences in field performance from treadmill measurements. PMID:21210279

  4. Is running style and economy affected by wearing respiratory apparatus?

    PubMed

    Siler, W L

    1993-02-01

    The purposes of this investigation were to compare selected gait parameters characteristic of running without respiratory apparatus on a treadmill (NOR) with those displayed while wearing a mouthpiece-breathing valve apparatus (MP) and while wearing a respiratory face mask (MASK), and to compare the running economy (RE) measured during MP with that measured during MASK. Seventeen male volunteers [age = 32 +/- 5 yr (mean +/- SD); mass = 72.4 +/- 9.0 kg] performed three treadmill runs in randomly assigned order. All runs were identical in terms of duration (10 min), speed [200 m. min-2 (7.5 mph)], and grade (0%). During the last minute of each run, RE was measured and coordinate data were collected for determination of mechanical variables. The mechanical analyses were limited to 12 subjects. Stride length, vertical oscillation of the center of mass, hip and ankle range of motion, and average internal mechanical power output were not different for NOR, MP, and MASK. Knee range of motion was significantly less (P < or = 0.05) during MP than during NOR and MASK, primarily due to a significant reduction in maximum knee flexion during nonsupport. MASK RE was not significantly different (P > 0.05) from MP RE. It was concluded that wearing MP or MASK generally does not affect running style of individuals running at comfortable, submaximal running speeds and that RE measured with MP is not different from that measured with MASK. PMID:8450730

  5. The actual goals of geoethics

    NASA Astrophysics Data System (ADS)

    Nemec, Vaclav

    2014-05-01

    The most actual goals of geoethics have been formulated as results of the International Conference on Geoethics (October 2013) held at the geoethics birth-place Pribram (Czech Republic): In the sphere of education and public enlightenment an appropriate needed minimum know how of Earth sciences should be intensively promoted together with cultivating ethical way of thinking and acting for the sustainable well-being of the society. The actual activities of the Intergovernmental Panel of Climate Changes are not sustainable with the existing knowledge of the Earth sciences (as presented in the results of the 33rd and 34th International Geological Congresses). This knowledge should be incorporated into any further work of the IPCC. In the sphere of legislation in a large international co-operation following steps are needed: - to re-formulate the term of a "false alarm" and its legal consequences, - to demand very consequently the needed evaluation of existing risks, - to solve problems of rights of individuals and minorities in cases of the optimum use of mineral resources and of the optimum protection of the local population against emergency dangers and disasters; common good (well-being) must be considered as the priority when solving ethical dilemmas. The precaution principle should be applied in any decision making process. Earth scientists presenting their expert opinions are not exempted from civil, administrative or even criminal liabilities. Details must be established by national law and jurisprudence. The well known case of the L'Aquila earthquake (2009) should serve as a serious warning because of the proven misuse of geoethics for protecting top Italian seismologists responsible and sentenced for their inadequate superficial behaviour causing lot of human victims. Another recent scandal with the Himalayan fossil fraud will be also documented. A support is needed for any effort to analyze and to disclose the problems of the deformation of the contemporary

  6. Running induces nausea in rats: Kaolin intake generated by voluntary and forced wheel running.

    PubMed

    Nakajima, Sadahiko

    2016-10-01

    Three experiments were conducted showing rats' pica behavior (kaolin clay intake) due to running in activity wheels. The amount of kaolin consumed was a positive function of the available time of voluntary running (20, 40, or 60 min), although this relationship was blunted by a descending (i.e., 60 → 40 → 20 min) test series of execution (Experiment 1). Pica was also generated by forced running in a motorized wheel for 60 min as a positive function of the speed of wheel rotations at 98, 185, or 365 m/h, independent of the order of execution (Experiment 2). Voluntary running generated more pica than did forced running at 80 m/h, although the distance travelled in the former condition was 27% lesser than that in the latter condition (Experiment 3). Because kaolin intake is regarded as a reliable measure of nausea in rats, these results show that wheel running, either voluntary or forced, induces nausea in rats.

  7. [Treadmill running enhances the ability of learning in young rats.].

    PubMed

    Lou, Shu-Jie; Liu, Jin-Yan; Yang, Ruo-Yu; Chen, Pei-Jie

    2006-08-25

    To investigate the effect of treadmill running on the ability of learning in young rats, male Sprague-Dawley rats (5 weeks of age) were used for the experiment. Animals were randomly divided into the control and running groups (n=15 in each group). The rats in running group were made run on a motor-driven treadmill for 1 week at a speed of 2 m/min for the first 5 min, at a speed of 5 m/min for the next 5 min, then at a speed of 8 m/min for the last 20 min. Then the Morris water maze was used to observe learning and memory ability of rats in both groups. The tests consisted of place navigation and spatial probe test. We found that, in place navigation training, the latency of rats in running group was less than that in control group (P<0.05); and from the third training session on, there was significant difference between the rats in control and running groups in swimming velocity (P<0.01); furthermore, it was observed that the rats in running group had stronger motivation and more exact orientation in searching for platform, which could be indicated by the index of turn angle and angular velocity. In spatial probe test, there was no significant difference between the two groups in swimming velocity, percentage of swimming distance and frequency of crossing platform in D quadrant, where the platform situated (P>0.05). These findings suggest that low speed treadmill running can enhance the ability of learning in young rats.

  8. Joint kinematics and kinetics of overground accelerated running versus running on an accelerated treadmill.

    PubMed

    Caekenberghe, Ine Van; Segers, Veerle; Aerts, Peter; Willems, Patrick; De Clercq, Dirk

    2013-07-01

    Literature shows that running on an accelerated motorized treadmill is mechanically different from accelerated running overground. Overground, the subject has to enlarge the net anterior-posterior force impulse proportional to acceleration in order to overcome linear whole body inertia, whereas on a treadmill, this force impulse remains zero, regardless of belt acceleration. Therefore, it can be expected that changes in kinematics and joint kinetics of the human body also are proportional to acceleration overground, whereas no changes according to belt acceleration are expected on a treadmill. This study documents kinematics and joint kinetics of accelerated running overground and running on an accelerated motorized treadmill belt for 10 young healthy subjects. When accelerating overground, ground reaction forces are characterized by less braking and more propulsion, generating a more forward-oriented ground reaction force vector and a more forwardly inclined body compared with steady-state running. This change in body orientation as such is partly responsible for the changed force direction. Besides this, more pronounced hip and knee flexion at initial contact, a larger hip extension velocity, smaller knee flexion velocity and smaller initial plantarflexion velocity are associated with less braking. A larger knee extension and plantarflexion velocity result in larger propulsion. Altogether, during stance, joint moments are not significantly influenced by acceleration overground. Therefore, we suggest that the overall behaviour of the musculoskeletal system (in terms of kinematics and joint moments) during acceleration at a certain speed remains essentially identical to steady-state running at the same speed, yet acting in a different orientation. However, because acceleration implies extra mechanical work to increase the running speed, muscular effort done (in terms of power output) must be larger. This is confirmed by larger joint power generation at the level of

  9. Joint kinematics and kinetics of overground accelerated running versus running on an accelerated treadmill

    PubMed Central

    Van Caekenberghe, Ine; Segers, Veerle; Aerts, Peter; Willems, Patrick; De Clercq, Dirk

    2013-01-01

    Literature shows that running on an accelerated motorized treadmill is mechanically different from accelerated running overground. Overground, the subject has to enlarge the net anterior–posterior force impulse proportional to acceleration in order to overcome linear whole body inertia, whereas on a treadmill, this force impulse remains zero, regardless of belt acceleration. Therefore, it can be expected that changes in kinematics and joint kinetics of the human body also are proportional to acceleration overground, whereas no changes according to belt acceleration are expected on a treadmill. This study documents kinematics and joint kinetics of accelerated running overground and running on an accelerated motorized treadmill belt for 10 young healthy subjects. When accelerating overground, ground reaction forces are characterized by less braking and more propulsion, generating a more forward-oriented ground reaction force vector and a more forwardly inclined body compared with steady-state running. This change in body orientation as such is partly responsible for the changed force direction. Besides this, more pronounced hip and knee flexion at initial contact, a larger hip extension velocity, smaller knee flexion velocity and smaller initial plantarflexion velocity are associated with less braking. A larger knee extension and plantarflexion velocity result in larger propulsion. Altogether, during stance, joint moments are not significantly influenced by acceleration overground. Therefore, we suggest that the overall behaviour of the musculoskeletal system (in terms of kinematics and joint moments) during acceleration at a certain speed remains essentially identical to steady-state running at the same speed, yet acting in a different orientation. However, because acceleration implies extra mechanical work to increase the running speed, muscular effort done (in terms of power output) must be larger. This is confirmed by larger joint power generation at the level

  10. Mechanical power output during running accelerations in wild turkeys.

    PubMed

    Roberts, Thomas J; Scales, Jeffrey A

    2002-05-01

    We tested the hypothesis that the hindlimb muscles of wild turkeys (Meleagris gallopavo) can produce maximal power during running accelerations. The mechanical power developed during single running steps was calculated from force-plate and high-speed video measurements as turkeys accelerated over a trackway. Steady-speed running steps and accelerations were compared to determine how turkeys alter their running mechanics from a low-power to a high-power gait. During maximal accelerations, turkeys eliminated two features of running mechanics that are characteristic of steady-speed running: (i) they produced purely propulsive horizontal ground reaction forces, with no braking forces, and (ii) they produced purely positive work during stance, with no decrease in the mechanical energy of the body during the step. The braking and propulsive forces ordinarily developed during steady-speed running are important for balance because they align the ground reaction force vector with the center of mass. Increases in acceleration in turkeys correlated with decreases in the angle of limb protraction at toe-down and increases in the angle of limb retraction at toe-off. These kinematic changes allow turkeys to maintain the alignment of the center of mass and ground reaction force vector during accelerations when large propulsive forces result in a forward-directed ground reaction force. During the highest accelerations, turkeys produced exclusively positive mechanical power. The measured power output during acceleration divided by the total hindlimb muscle mass yielded estimates of peak instantaneous power output in excess of 400 W kg(-1) hindlimb muscle mass. This value exceeds estimates of peak instantaneous power output of turkey muscle fibers. The mean power developed during the entire stance phase increased from approximately zero during steady-speed runs to more than 150 W kg(-1) muscle during the highest accelerations. The high power outputs observed during accelerations

  11. CMS Full Simulation for Run-2

    NASA Astrophysics Data System (ADS)

    Hildreth, M.; Ivanchenko, V. N.; Lange, D. J.; Kortelainen, M. J.

    2015-12-01

    During LHC shutdown between run-1 and run-2 intensive developments were carried out to improve performance of CMS simulation. For physics improvements migration from Geant4 9.4p03 to Geant4 10.0p02 has been performed. CPU performance has been improved by introduction of the Russian roulette method inside CMS calorimeters, optimization of CMS simulation sub-libraries, and usage of statics build of the simulation executable. As a result of these efforts, CMS simulation has been speeded up by about factor two. In this work we provide description of updates for different software components of CMS simulation. Development of a multi-threaded (MT) simulation approach for CMS will be also discuss.

  12. Does Addiction Run in Families?

    MedlinePlus

    ... runs in some families. Addiction runs in ours." Matt's family has a history of addiction. He realizes ... may be more likely to become addicted. Read Matt's story About the National Institute on Drug Abuse ( ...

  13. How Fast Can a Human Run? − Bipedal vs. Quadrupedal Running

    PubMed Central

    Kinugasa, Ryuta; Usami, Yoshiyuki

    2016-01-01

    Usain Bolt holds the current world record in the 100-m run, with a running time of 9.58 s, and has been described as the best human sprinter in history. However, this raises questions concerning the maximum human running speed, such as “Can the world’s fastest men become faster still?” The correct answer is likely “Yes.” We plotted the historical world records for bipedal and quadrupedal 100-m sprint times according to competition year. These historical records were plotted using several curve-fitting procedures. We found that the projected speeds intersected in 2048, when for the first time, the winning quadrupedal 100-m sprint time could be lower, at 9.276 s, than the winning bipedal time of 9.383 s. Video analysis revealed that in quadrupedal running, humans employed a transverse gallop with a small angular excursion. These results suggest that in the future, the fastest human on the planet might be a quadrupedal runner at the 2048 Olympics. This may be achieved by shifting up to the rotary gallop and taking longer strides with wide sagittal trunk motion. PMID:27446911

  14. SAVAGE RUN WILDERNESS, WYOMING.

    USGS Publications Warehouse

    McCallum, M.E.; Kluender, Steven E.

    1984-01-01

    Mineral evaluation and related surveys were conducted in the Savage Run Wilderness in Wyoming and results of these studies indicate probable mineral-resource potential in four areas. Gold and (or) silver mineralization in veins associated with faults was found in two areas; all known occurrences inside the wilderness are very small in size. Slightly anomalous values of platinum, palladium, and nickel were recorded from rock-chip and stream- sediment samples from the southeast portion of the wilderness where layered mafic rocks predominate, and a probable resource potential exists for platinum, palladium, and nickel. An area of sheared rocks in the northeastern corner of the wilderness has a probable resource potential for copper. The nature of the geologic terrane precludes the occurrence of organic fuels.

  15. The Running Athlete

    PubMed Central

    Henning, P. Troy

    2014-01-01

    Context: Pelvic stress fractures, osteitis pubis, and snapping hip syndrome account for a portion of the overuse injuries that can occur in the running athlete. Evidence Acquisition: PubMed searches were performed for each entity using the following keywords: snapping hip syndrome, coxa sultans, pelvic stress fracture, and osteitis pubis from 2008 to 2013. Topic reviews, case reports, case series, and randomized trials were included for review. Study Design: Clinical review. Level of Evidence: Level 4. Results: Collectively, 188 articles were identified. Of these, 58 were included in this review. Conclusion: Based on the available evidence, the majority of these overuse injuries can be managed non-operatively. Primary treatment should include removal from offending activity, normalizing regional muscle strength/length imbalances and nutritional deficiencies, and mitigating training errors through proper education of the athlete and training staff. Strength of Recommendation Taxonomy: C PMID:24587861

  16. Low speed phaselock speed control system. [for brushless dc motor

    NASA Technical Reports Server (NTRS)

    Fulcher, R. W.; Sudey, J. (Inventor)

    1975-01-01

    A motor speed control system for an electronically commutated brushless dc motor is provided which includes a phaselock loop with bidirectional torque control for locking the frequency output of a high density encoder, responsive to actual speed conditions, to a reference frequency signal, corresponding to the desired speed. The system includes a phase comparator, which produces an output in accordance with the difference in phase between the reference and encoder frequency signals, and an integrator-digital-to-analog converter unit, which converts the comparator output into an analog error signal voltage. Compensation circuitry, including a biasing means, is provided to convert the analog error signal voltage to a bidirectional error signal voltage which is utilized by an absolute value amplifier, rotational decoder, power amplifier-commutators, and an arrangement of commutation circuitry.

  17. Why Does My Nose Run?

    MedlinePlus

    ... Homework? Here's Help White House Lunch Recipes Why Does My Nose Run? KidsHealth > For Kids > Why Does My Nose Run? Print A A A Text ... smell, you must be upside down! But why does your nose run? Read on to find out ...

  18. Body image, perceived and actual physical abilities in normal-weight and overweight boys involved in individual and team sports.

    PubMed

    Morano, Milena; Colella, Dario; Capranica, Laura

    2011-02-01

    The aim of the study was to examine the relationships among body image, perception of physical abilities, and motor performance in boys involved in organized individual (i.e. tennis, fencing, judo) and team (i.e. soccer, handball, volleyball) sports. Altogether, 162 children (12.6 ± 1.0 years) were categorized as normal-weight (n = 85) or overweight (n = 77). Body image was measured using Collins' Child Figure Drawings, while individuals' perceptions of strength, speed, and agility were assessed using the Perceived Physical Ability Scale. Fitness tests of the standing long jump, 20 m sprint, and 10 × 5 m shuttle-run were also administered. Overweight boys showed greater body dissatisfaction and lower actual physical abilities than normal-weight peers. Participants involved in team sports reported lower body dissatisfaction and better performances in the shuttle-run compared with those involved in individual sports. For boys participating in team sports, body dissatisfaction was a significant mediator of the effect of body mass index on perceived physical ability. Results may influence intervention efforts, suggesting that targeting personal, psychological, and physical factors may prove efficient across physical activity locations and weight groups. PMID:21184344

  19. Pacing during an ultramarathon running event in hilly terrain

    PubMed Central

    Cole-Hunter, Tom; Wiegand, Aaron N.; Solomon, Colin

    2016-01-01

    Purpose The dynamics of speed selection as a function of distance, or pacing, are used in recreational, competitive, and scientific research situations as an indirect measure of the psycho-physiological status of an individual. The purpose of this study was to determine pacing on level, uphill and downhill sections of participants in a long (>80 km) ultramarathon performed on trails in hilly terrain. Methods Fifteen ultramarathon runners competed in a  173 km event (five finished at  103 km) carrying a Global-Positioning System (GPS) device. Using the GPS data, we determined the speed, relative to average total speed, in level (LEV), uphill (UH) and downhill (DH) gradient categories as a function of total distance, as well as the correlation between overall performance and speed variability, speed loss, and total time stopped. Results There were no significant differences in normality, variances or means in the relative speed in 173-km and 103-km participants. Relative speed decreased in LEV, UH and DH. The main component of speed loss occurred between 5% and 50% of the event distance in LEV, and between 5% and 95% in UH and DH. There were no significant correlations between overall performance and speed loss, the variability of speed, or total time stopped. Conclusions Positive pacing was observed at all gradients, with the main component of speed loss occurring earlier (mixed pacing) in LEV compared to UH and DH. A speed reserve (increased speed in the last section) was observed in LEV and UH. The decrease in speed and variability of speed were more important in LEV and DH than in UH. The absence of a significant correlation between overall performance and descriptors of pacing is novel and indicates that pacing in ultramarathons in trails and hilly terrain differs to other types of running events. PMID:27812406

  20. Rectal temperature after marathon running.

    PubMed Central

    Maughan, R J; Leiper, J B; Thompson, J

    1985-01-01

    Rectal temperature was measured in 62 male runners who competed in the 1983 Dundee marathon race: all measurements were made immediately after the race. Competitors' times were noted at 5, 10, 15 and 20 miles (8.0, 16.1, 24.1, 32.2 km) and at the finish (26.2 miles, 42.2 km). Mean finishing time of the group was 3 hr 33 min +/- 48 min (mean +/- S.D.; range = 2 hr 17 min-5 hr 11 min). Mean running speed of the group decreased progressively as the distance covered increased. Mean post-race rectal temperature was 38.7 +/- 0.9 degrees C (range 35.6-40.3 degrees C). The post-race temperature was correlated (p less than 0.01) with the time taken to cover the last 6.2 miles (10 km) of the race, but not with the overall finishing time (p greater than 0.05). Only the fastest runners were able to maintain an approximately constant pace throughout the race, whereas the slower runners slowed down progressively. The runners with the highest post-race temperature, although not necessarily the fastest runners, also tended to maintain a steady pace throughout. The runners with the lowest post-race temperature slowed down markedly only over the last 6.2 mile section of the race. The results clearly indicate that runners forced by fatigue or injury to slow down in the latter stages of races held at low ambient temperatures may already be hypothermic or at serious risk of hypothermia. Images p192-a p192-b p192-c PMID:4092138

  1. Positional Match Running Performance in Elite Gaelic Football.

    PubMed

    Malone, Shane; Solan, Barry; Collins, Kieran D; Doran, Dominic A

    2016-08-01

    Malone, S, Solan, B, Collins, KD, and Doran, DA. Positional match running performance in elite Gaelic football. J Strength Cond Res 30(8): 2292-2298, 2016-There is currently limited information available on match running performance in Gaelic football. The objective of the current study was to report on the match running profile of elite male Gaelic football and assess positional running performance. In this observational study, 50 elite male Gaelic football players wore 4-Hz global positioning systems units (VX Sports) across 30 competitive games with a total of 215 full game data sets collected. Activity was classed according to total distance, high-speed distance (≥17 km·h), sprint distance (≥22 km·h), mean velocity (km·h), peak velocity (km·h), and number of accelerations. The average match distance was 8,160 ± 1,482 m, reflective of a relative distance of 116 ± 21 m·min, with 1,731 ± 659 m covered at high speed, which is reflective of a relative high-speed distance of 25 ± 9 m·min. The observed sprint distance was 445 ± 169 m distributed across 44 sprint actions. The peak velocity was 30.3 ± 1.8 km·h with a mean velocity of 6.5 ± 1.2 km·h. Players completed 184 ± 40 accelerations, which represent 2.6 ± 0.5 accelerations per minute. There were significant differences between positional groups for both total running distance, high-speed running distance, and sprint distance, with midfielders covering more total and high-speed running distance, compared with other positions (p < 0.001). There was a reduction in high-speed and sprint distance between the first and second half (p < 0.001). Reductions in running performance were position dependent with the middle 3 positions experiencing the highest decrement in performance. The current study is the first to communicate a detailed description of match running performance during competitive elite Gaelic football match play.

  2. Ground reaction forces during treadmill running in microgravity.

    PubMed

    De Witt, John K; Ploutz-Snyder, Lori L

    2014-07-18

    Astronauts perform treadmill exercise during long-duration space missions to counter the harmful effects of microgravity exposure upon bone, muscle, and cardiopulmonary health. When exercising in microgravity, astronauts wear a harness and bungee system that provides forces that maintain attachment to the treadmill. Typical applied forces are less than body weight. The decreased gravity-replacement force could result in differences in ground-reaction force at a given running speed when compared to those achieved in normal gravity, which could influence the adaptive response to the performed exercise. Seven astronauts (6 m/1 f) who completed approximately 6-month missions on the International Space Station (ISS) completed a preflight (1G) and multiple in-flight (0G) data collection sessions. Ground-reaction forces were measured during running at speeds of 8.0 kph and greater on an instrumented treadmill in the lab and on the ISS. Ground-reaction forces in 0G were less than in 1G for a given speed depending upon the gravity-replacement force, but did increase with increased speed and gravity-replacement force. Ground-reaction forces attained in 1G during slower running could be attained by increasing running speed and/or increasing gravity-replacement forces in 0G. Loading rates in 1G, however, could not be replicated in 0G. While current gravity-replacement force devices are limited in load delivery magnitude, we recommend increasing running speeds to increase the mechanical loads applied to the musculoskeletal system during 0G treadmill exercise, and to potentially increase exercise session efficiency.

  3. Improved Algorithms Speed It Up for Codes

    SciTech Connect

    Hazi, A

    2005-09-20

    Huge computers, huge codes, complex problems to solve. The longer it takes to run a code, the more it costs. One way to speed things up and save time and money is through hardware improvements--faster processors, different system designs, bigger computers. But another side of supercomputing can reap savings in time and speed: software improvements to make codes--particularly the mathematical algorithms that form them--run faster and more efficiently. Speed up math? Is that really possible? According to Livermore physicist Eugene Brooks, the answer is a resounding yes. ''Sure, you get great speed-ups by improving hardware,'' says Brooks, the deputy leader for Computational Physics in N Division, which is part of Livermore's Physics and Advanced Technologies (PAT) Directorate. ''But the real bonus comes on the software side, where improvements in software can lead to orders of magnitude improvement in run times.'' Brooks knows whereof he speaks. Working with Laboratory physicist Abraham Szoeke and others, he has been instrumental in devising ways to shrink the running time of what has, historically, been a tough computational nut to crack: radiation transport codes based on the statistical or Monte Carlo method of calculation. And Brooks is not the only one. Others around the Laboratory, including physicists Andrew Williamson, Randolph Hood, and Jeff Grossman, have come up with innovative ways to speed up Monte Carlo calculations using pure mathematics.

  4. Backward running or absence of running from Creutz ratios

    SciTech Connect

    Giedt, Joel; Weinberg, Evan

    2011-10-01

    We extract the running coupling based on Creutz ratios in SU(2) lattice gauge theory with two Dirac fermions in the adjoint representation. Depending on how the extrapolation to zero fermion mass is performed, either backward running or an absence of running is observed at strong bare coupling. This behavior is consistent with other findings which indicate that this theory has an infrared fixed point.

  5. The Effects of Backwards Running Training on Forward Running Economy in Trained Males.

    PubMed

    Ordway, Jason D; Laubach, Lloyd L; Vanderburgh, Paul M; Jackson, Kurt J

    2016-03-01

    Backwards running (BR) results in greater cardiopulmonary response and muscle activity compared with forward running (FR). BR has traditionally been used in rehabilitation for disorders such as stroke and lower leg extremity injuries, as well as in short bursts during various athletic events. The aim of this study was to measure the effects of sustained backwards running training on forward running economy in trained male athletes. Eight highly trained, male runners (26.13 ± 6.11 years, 174.7 ± 6.4 cm, 68.4 ± 9.24 kg, 8.61 ± 3.21% body fat, 71.40 ± 7.31 ml·kg(-1)·min(-1)) trained with BR while harnessed on a treadmill at 161 m·min(-1) for 5 weeks following a 5-week BR run-in period at a lower speed (134 m·min(-1)). Subjects were tested at baseline, postfamiliarized, and post-BR training for body composition, a ramped VO2max test, and an economy test designed for trained male runners. Subjects improved forward running economy by 2.54% (1.19 ± 1.26 ml·kg(-1)·min(-1), p = 0.032) at 215 m·min(-1). VO2max, body mass, lean mass, fat mass, and % body fat did not change (p > 0.05). Five weeks of BR training improved FR economy in healthy, trained male runners without altering VO2max or body composition. The improvements observed in this study could be a beneficial form of training to an already economical population to improve running economy.

  6. Drivers' biased perceptions of speed and safety campaign messages.

    PubMed

    Walton, D; McKeown, P C

    2001-09-01

    One hundred and thirteen drivers were surveyed for their perceptions of driving speed to compare self-reported average speed, perceived average-other speed and the actual average speed, in two conditions (50 and 100 kph zones). These contrasts were used to evaluate whether public safety messages concerning speeding effectively reach their target audience. Evidence is presented supporting the hypothesis that drivers who have a biased perception of their own speed relative to others are more likely to ignore advertising campaigns encouraging people not to speed. A method of self-other-actual comparisons detects biased perceptions when the standard method of self-other comparison does not. In particular, drivers exaggerate the perceived speed of others and this fact is masked using traditional methods. The method of manipulation is proposed as a way to evaluate the effect of future advertising campaigns, and a strategy for such campaigns is proposed based on the results of the self-other comparisons. PMID:11491243

  7. The need for speed: testing acceleration for estimating animal travel rates in terrestrial dead-reckoning systems.

    PubMed

    Bidder, Owen R; Soresina, Marion; Shepard, Emily L C; Halsey, Lewis G; Quintana, Flavio; Gómez-Laich, Agustina; Wilson, Rory P

    2012-02-01

    Numerous methods are currently available to track animal movements. However, only one of these, dead-reckoning, has the capacity to provide continuous data for animal movements over fine scales. Dead-reckoning has been applied almost exclusively in the study of marine species, in part due to the difficulty of accurately measuring the speed of terrestrial species. In the present study we evaluate the use of accelerometers and a metric known as overall dynamic body acceleration (ODBA) as a proxy for the measurement of speed for use in dead-reckoning. Data were collated from previous studies, for 10 species locomoting on a treadmill and their ODBA measured by an attached data logger. All species except one showed a highly significant linear relationship between speed and ODBA; however, there was appreciable inter- and intra-specific variance in this relationship. ODBA was then used to estimate speed in a simple trial run of a dead-reckoning track. Estimating distance travelled using speed derived from prior calibration for ODBA resulted in appreciable errors. We describe a method by which these errors can be minimised, by periodic ground-truthing (e.g., by GPS or VHF telemetry) of the dead-reckoned track and adjusting the relationship between speed and ODBA until actual known positions and dead-reckoned positions accord.

  8. The QCD running coupling

    DOE PAGES

    Deur, Alexandre; Brodsky, Stanley J.; de Téramond, Guy F.

    2016-05-09

    Here, we review present knowledge onmore » $$\\alpha_{s}$$, the Quantum Chromodynamics (QCD) running coupling. The dependence of $$\\alpha_s(Q^2)$$ on momentum transfer $Q$ encodes the underlying dynamics of hadron physics --from color confinement in the infrared domain to asymptotic freedom at short distances. We will survey our present theoretical and empirical knowledge of $$\\alpha_s(Q^2)$$, including constraints at high $Q^2$ predicted by perturbative QCD, and constraints at small $Q^2$ based on models of nonperturbative dynamics. In the first, introductory, part of this review, we explain the phenomenological meaning of the coupling, the reason for its running, and the challenges facing a complete understanding of its analytic behavior in the infrared domain. In the second, more technical, part of the review, we discuss $$\\alpha_s(Q^2)$$ in the high momentum transfer domain of QCD. We review how $$\\alpha_s$$ is defined, including its renormalization scheme dependence, the definition of its renormalization scale, the utility of effective charges, as well as `` Commensurate Scale Relations" which connect the various definitions of the QCD coupling without renormalization scale ambiguity. We also report recent important experimental measurements and advanced theoretical analyses which have led to precise QCD predictions at high energy. As an example of an important optimization procedure, we discuss the ``Principle of Maximum Conformality" which enhances QCD's predictive power by removing the dependence of the predictions for physical observables on the choice of the gauge and renormalization scheme. In last part of the review, we discuss $$\\alpha_s(Q^2)$$ in the low momentum transfer domain, where there has been no consensus on how to define $$\\alpha_s(Q^2)$$ or its analytic behavior. We will discuss the various approaches used for low energy calculations. Among them, we will discuss the light-front holographic approach to QCD in the strongly coupled

  9. Exceptional running and turning performance in a mite.

    PubMed

    Rubin, Samuel; Young, Maria Ho-Yan; Wright, Jonathan C; Whitaker, Dwight L; Ahn, Anna N

    2016-03-01

    The Southern California endemic mite Paratarsotomus macropalpis was filmed in the field on a concrete substrate and in the lab to analyze stride frequency, gait and running speed under different temperature conditions and during turning. At ground temperatures ranging from 45 to 60 °C, mites ran at a mean relative speed of 192.4 ± 2.1 body lengths (BL) s(-1), exceeding the highest previously documented value for a land animal by 12.5%. Stride frequencies were also exceptionally high (up to 135 Hz), and increased with substrate temperature. Juveniles exhibited higher relative speeds than adults and possess proportionally longer legs, which allow for greater relative stride lengths. Although mites accelerated and decelerated rapidly during straight running (7.2 ± 1.2 and -10.1 ± 2.1 m s(-2), respectively), the forces involved were comparable to those found in other animals. Paratarsotomus macropalpis employs an alternating tetrapod gait during steady running. Shallow turns were accomplished by a simple asymmetry in stride length. During tight turns, mites pivoted around the tarsus of the inside third leg (L3), which thus behaved like a grappling hook. Pivot turns were characterized by a 42% decrease in turning radius and a 40% increase in angular velocity compared with non-pivot turns. The joint angle amplitudes of the inner L2 and L3 were negligible during a pivot turn. While exceptional, running speeds in P. macropalpis approximate values predicted from inter-specific scaling relationships.

  10. The physiological consequences of acceleration during shuttle running.

    PubMed

    Akenhead, R; French, D; Thompson, K G; Hayes, P R

    2015-04-01

    This study examined the acceleration demands associated with changing direction and the subsequent physiological consequences of acceleration during running at 3 submaximal speeds. 10 male professional footballers completed four 600 m running bouts at 3 speeds (2.50, 3.25 & 4.00 m·s(-1)). Each bout was in the format of either: i) 3 laps of a 200 m track (CON), ii) ten 60 m shuttles (S60), iii) twenty 30 m shuttles (S30), or iv) thirty 20 m shuttles (S20). Peak heart rate (HRPEAK), blood lactate concentration (BLa) and RPE (Borg CR-10) were recorded for each bout. A single change of direction required 1.2, 1.5 and 2.0 s of acceleration at running speeds of 2.50, 3.25 and 4.00 m s(-1) respectively. An increase in time spent accelerating produced a linear increase in BLa (r=0.43-0.74) and RPE (r=0.81-0.93) at all speeds. Acceleration increases linearly with change of direction frequency during submaximal shuttle running. Increased time spent accelerating elicits proportional increases in perceived exertion, BLa and HRPEAK. The current study further underlines the need to consider acceleration when quantifying training load during activities involving numerous changes of direction.

  11. Exceptional running and turning performance in a mite.

    PubMed

    Rubin, Samuel; Young, Maria Ho-Yan; Wright, Jonathan C; Whitaker, Dwight L; Ahn, Anna N

    2016-03-01

    The Southern California endemic mite Paratarsotomus macropalpis was filmed in the field on a concrete substrate and in the lab to analyze stride frequency, gait and running speed under different temperature conditions and during turning. At ground temperatures ranging from 45 to 60 °C, mites ran at a mean relative speed of 192.4 ± 2.1 body lengths (BL) s(-1), exceeding the highest previously documented value for a land animal by 12.5%. Stride frequencies were also exceptionally high (up to 135 Hz), and increased with substrate temperature. Juveniles exhibited higher relative speeds than adults and possess proportionally longer legs, which allow for greater relative stride lengths. Although mites accelerated and decelerated rapidly during straight running (7.2 ± 1.2 and -10.1 ± 2.1 m s(-2), respectively), the forces involved were comparable to those found in other animals. Paratarsotomus macropalpis employs an alternating tetrapod gait during steady running. Shallow turns were accomplished by a simple asymmetry in stride length. During tight turns, mites pivoted around the tarsus of the inside third leg (L3), which thus behaved like a grappling hook. Pivot turns were characterized by a 42% decrease in turning radius and a 40% increase in angular velocity compared with non-pivot turns. The joint angle amplitudes of the inner L2 and L3 were negligible during a pivot turn. While exceptional, running speeds in P. macropalpis approximate values predicted from inter-specific scaling relationships. PMID:26787481

  12. Voluntary Wheel Running in Mice.

    PubMed

    Goh, Jorming; Ladiges, Warren

    2015-12-02

    Voluntary wheel running in the mouse is used to assess physical performance and endurance and to model exercise training as a way to enhance health. Wheel running is a voluntary activity in contrast to other experimental exercise models in mice, which rely on aversive stimuli to force active movement. This protocol consists of allowing mice to run freely on the open surface of a slanted, plastic saucer-shaped wheel placed inside a standard mouse cage. Rotations are electronically transmitted to a USB hub so that frequency and rate of running can be captured via a software program for data storage and analysis for variable time periods. Mice are individually housed so that accurate recordings can be made for each animal. Factors such as mouse strain, gender, age, and individual motivation, which affect running activity, must be considered in the design of experiments using voluntary wheel running.

  13. The QCD running coupling

    NASA Astrophysics Data System (ADS)

    Deur, Alexandre; Brodsky, Stanley J.; de Téramond, Guy F.

    2016-09-01

    We review the present theoretical and empirical knowledge for αs, the fundamental coupling underlying the interactions of quarks and gluons in Quantum Chromodynamics (QCD). The dependence of αs(Q2) on momentum transfer Q encodes the underlying dynamics of hadron physics-from color confinement in the infrared domain to asymptotic freedom at short distances. We review constraints on αs(Q2) at high Q2, as predicted by perturbative QCD, and its analytic behavior at small Q2, based on models of nonperturbative dynamics. In the introductory part of this review, we explain the phenomenological meaning of the coupling, the reason for its running, and the challenges facing a complete understanding of its analytic behavior in the infrared domain. In the second, more technical, part of the review, we discuss the behavior of αs(Q2) in the high momentum transfer domain of QCD. We review how αs is defined, including its renormalization scheme dependence, the definition of its renormalization scale, the utility of effective charges, as well as "Commensurate Scale Relations" which connect the various definitions of the QCD coupling without renormalization-scale ambiguity. We also report recent significant measurements and advanced theoretical analyses which have led to precise QCD predictions at high energy. As an example of an important optimization procedure, we discuss the "Principle of Maximum Conformality", which enhances QCD's predictive power by removing the dependence of the predictions for physical observables on the choice of theoretical conventions such as the renormalization scheme. In the last part of the review, we discuss the challenge of understanding the analytic behavior αs(Q2) in the low momentum transfer domain. We survey various theoretical models for the nonperturbative strongly coupled regime, such as the light-front holographic approach to QCD. This new framework predicts the form of the quark-confinement potential underlying hadron spectroscopy and

  14. Biodiversity conservation in running waters

    SciTech Connect

    Allan, J.D. ); Flecker, A.S. )

    1993-01-01

    In the concerns about biodiversity conservation, fresh waters have received less attention than tropical forests and oceans. However, running waters harbor a diverse panoply of species, habitats, and ecosystems, including some of the most threatened and many having great value to human society. An overview of the biological diversity of running waters and the state of imperilment is presented. Six major factors that threaten destruction of running water species and ecosystems are discussed: habitat loss and degradation; species invasions; overharvesting; secondary extinctions; chemical and organic pollution; global climate change. General measures for recovery and restoration of running waters conclude the article.

  15. Conversion table for running on lower body positive pressure treadmills.

    PubMed

    Kline, John R; Raab, Scot; Coast, J Richard; Bounds, Roger G; McNeill, David K P; de Heer, Hendrik D

    2015-03-01

    Lower body positive pressure (LBPP) or antigravity treadmills are becoming increasingly popular in sports and rehabilitation settings. Running at a decreased body weight (BW) reduces metabolic cost, which can be offset by running at faster speeds. To date, however, little is known about how much faster someone must run to offset the reduced metabolic cost. This study aimed to develop a user-friendly conversion table showing the speeds required on an LBPP treadmill to match the equivalent metabolic output on a regular, non-LBPP, treadmill across a range of body weight supports. A total of 20 recreational runners (11 males, 9 females) ran multiple 3-minute intervals on a regular treadmill and then on an LBPP treadmill at 6 different BWs (50-100%, 10% increments). Metabolic outputs were recorded and matched between the regular and LBPP treadmill sessions. Using regression analyses, a conversion table was successfully created for the speeds from 6.4 to 16.1 km·h (4 to 10 mph) in 0.8 km·h (0.5 mph) increments on the regular treadmill and BW proportions of 50, 60, 70, 80, 90, and 100% on an LBPP treadmill. The table showed that a greater increase in speed on the LBPP treadmill was needed with more support (p < 0.001) but that the proportion increase was smaller at higher speeds (p < 0.001). This research has implications for coaches or practitioners using or prescribing training on an LBPP treadmill.

  16. Conversion table for running on lower body positive pressure treadmills.

    PubMed

    Kline, John R; Raab, Scot; Coast, J Richard; Bounds, Roger G; McNeill, David K P; de Heer, Hendrik D

    2015-03-01

    Lower body positive pressure (LBPP) or antigravity treadmills are becoming increasingly popular in sports and rehabilitation settings. Running at a decreased body weight (BW) reduces metabolic cost, which can be offset by running at faster speeds. To date, however, little is known about how much faster someone must run to offset the reduced metabolic cost. This study aimed to develop a user-friendly conversion table showing the speeds required on an LBPP treadmill to match the equivalent metabolic output on a regular, non-LBPP, treadmill across a range of body weight supports. A total of 20 recreational runners (11 males, 9 females) ran multiple 3-minute intervals on a regular treadmill and then on an LBPP treadmill at 6 different BWs (50-100%, 10% increments). Metabolic outputs were recorded and matched between the regular and LBPP treadmill sessions. Using regression analyses, a conversion table was successfully created for the speeds from 6.4 to 16.1 km·h (4 to 10 mph) in 0.8 km·h (0.5 mph) increments on the regular treadmill and BW proportions of 50, 60, 70, 80, 90, and 100% on an LBPP treadmill. The table showed that a greater increase in speed on the LBPP treadmill was needed with more support (p < 0.001) but that the proportion increase was smaller at higher speeds (p < 0.001). This research has implications for coaches or practitioners using or prescribing training on an LBPP treadmill. PMID:25162650

  17. A Running Start: Resource Guide for Youth Running Programs

    ERIC Educational Resources Information Center

    Jenny, Seth; Becker, Andrew; Armstrong, Tess

    2016-01-01

    The lack of physical activity is an epidemic problem among American youth today. In order to combat this, many schools are incorporating youth running programs as a part of their comprehensive school physical activity programs. These youth running programs are being implemented before or after school, at school during recess at the elementary…

  18. X-1E Engine Ground Test Run

    NASA Technical Reports Server (NTRS)

    1956-01-01

    The Bell Aircraft Corporation X-1E during a ground engine test run on the NACA High-Speed Flight Station ramp near the Rogers Dry Lake. The rocket technician is keeping the concrete cool by hosing it with water during the test. This also helps in washing away any chemicals that might spill. The test crew worked close to the aircraft during ground tests. There were four versions of the Bell X-1 rocket-powered research aircraft that flew at the NACA High-Speed Flight Research Station, Edwards, California. The bullet-shaped X-1 aircraft were built by Bell Aircraft Corporation, Buffalo, N.Y. for the U.S. Army Air Forces (after 1947, U.S. Air Force) and the National Advisory Committee for Aeronautics (NACA). The X-1 Program was originally designated the XS-1 for EXperimental Supersonic. The X-1's mission was to investigate the transonic speed range (speeds from just below to just above the speed of sound) and, if possible, to break the 'sound barrier.' Three different X-1s were built and designated: X-1-1, X-1-2 (later modified to become the X-1E), and X-1-3. The basic X-1 aircraft were flown by a large number of different pilots from 1946 to 1951. The X-1 Program not only proved that humans could go beyond the speed of sound, it reinforced the understanding that technological barriers could be overcome. The X-1s pioneered many structural and aerodynamic advances including extremely thin, yet extremely strong wing sections; supersonic fuselage configurations; control system requirements; powerplant compatibility; and cockpit environments. The X-1 aircraft were the first transonic-capable aircraft to use an all-moving stabilizer. The flights of the X-1s opened up a new era in aviation. The first X-1 was air-launched unpowered from a Boeing B-29 Superfortress on January 25, 1946. Powered flights began in December 1946. On October 14, 1947, the X-1-1, piloted by Air Force Captain Charles 'Chuck' Yeager, became the first aircraft to exceed the speed of sound, reaching about

  19. Relationship between the 2.4-km run and multistage shuttle run test performance in military personnel.

    PubMed

    Wilkinson, David M; Blacker, Sam D; Richmond, Victoria L; Rayson, Mark P; Bilzon, James L J

    2014-02-01

    In the United Kingdom, all branches of the armed forces use 2.4-km run time and/or the 20-m multistage shuttle run test (MSRT) to assess the aerobic fitness of their personnel. This study quantified the relationship between these two tests in 156 army recruits and officer cadets (100 men and 56 women) to ensure equivalence in the required aerobic fitness standards. The 2.4-km run was performed on surfaced roads and tracks around the training establishment and the MSRT in a gymnasium. Ordinary least product regression was used to describe the relationship between average 2.4-km running speed (km · h(-1)) and the total number of shuttles completed on the U.K. version of the MSRT (r = 0.91, p < 0.01), showing MSRT shuttles = (9.708×2.4-km run speed) - 52.56, with a standard error of prediction of approximately 8 shuttles or 0.8 km · h(-1). The British Army 2.4-km run biannual fitness assessment standard for young men of 10:30 min:s equates to a MSRT score of 82 shuttles (level 10 and 1 shuttle) and for young women of 13:00 min:s equates to 56 shuttles (level 7 and 6 shuttles), with a standard error of estimate of approximately 8 shuttles. PMID:24491618

  20. Coordinating the 2009 RHIC Run

    ScienceCinema

    Brookhaven Lab - Mei Bai

    2016-07-12

    Physicists working at the Brookhaven National Lab's Relativistic Heavy Ion Collider (RHIC) are exploring the puzzle of proton spin as they begin taking data during the 2009 RHIC run. For the first time, RHIC is running at a record energy of 500 giga-elect

  1. Coordinating the 2009 RHIC Run

    SciTech Connect

    Brookhaven Lab - Mei Bai

    2009-04-13

    Physicists working at the Brookhaven National Lab's Relativistic Heavy Ion Collider (RHIC) are exploring the puzzle of proton spin as they begin taking data during the 2009 RHIC run. For the first time, RHIC is running at a record energy of 500 giga-elect

  2. Stereotypic wheel running decreases cortical activity in mice

    PubMed Central

    Fisher, Simon P.; Cui, Nanyi; McKillop, Laura E.; Gemignani, Jessica; Bannerman, David M.; Oliver, Peter L.; Peirson, Stuart N.; Vyazovskiy, Vladyslav V.

    2016-01-01

    Prolonged wakefulness is thought to gradually increase ‘sleep need' and influence subsequent sleep duration and intensity, but the role of specific waking behaviours remains unclear. Here we report the effect of voluntary wheel running during wakefulness on neuronal activity in the motor and somatosensory cortex in mice. We find that stereotypic wheel running is associated with a substantial reduction in firing rates among a large subpopulation of cortical neurons, especially at high speeds. Wheel running also has longer-term effects on spiking activity across periods of wakefulness. Specifically, cortical firing rates are significantly higher towards the end of a spontaneous prolonged waking period. However, this increase is abolished when wakefulness is dominated by running wheel activity. These findings indicate that wake-related changes in firing rates are determined not only by wake duration, but also by specific waking behaviours. PMID:27748455

  3. Biarticular leg muscles and links to running economy.

    PubMed

    Heise, G; Shinohara, M; Binks, L

    2008-08-01

    Relationships between an index of running economy (VO2 per distance) and the temporal electromyographic characteristics of leg muscles were quantified in female runners. Sixteen women performed a 30-min treadmill run at a speed designed to elicit a hard rating of perceived of exertion. Near the end of the run, oxygen uptake, video, and electromyographic data were collected simultaneously. Measures of muscle on-time durations, and on-time coactivation durations were calculated from the following muscles: gastrocnemius, vastus lateralis, rectus femoris, and biceps femoris. Nonparametric correlations between VO2 per distance and temporal electromyographic data were evaluated. Greater on-time duration of rectus femoris during stance, and greater on-time coactivation duration of rectus femoris-gastrocnemius during stance were significantly associated with more economical runners (i.e., lower VO2 per distance). The coactivation of biarticular leg muscles during stance is clearly linked to running economy and this control strategy may elicit greater elastic energy return.

  4. A Self-Paced Intermittent Protocol on a Non-Motorised Treadmill: A Reliable Alternative to Assessing Team-Sport Running Performance

    PubMed Central

    Tofari, Paul J.; McLean, Blake D.; Kemp, Justin; Cormack, Stuart

    2015-01-01

    This study assessed the reliability of a ‘self-paced’ 30-min, team-sport running protocol on a Woodway Curve 3.0 non-motorised treadmill (NMT). Ten male team-sport athletes (20.3 ± 1.2 y, 74.4 ± 9.7 kg, VO2peak 57.1 ± 4.5 ml·kg-1·min-1) attended five sessions (VO2peak testing + familiarisation; four reliability trials). The 30-min protocol consisted of three identical 10-min activity blocks, with visual and audible commands directing locomotor activity; however, actual speeds were self-selected by participants. Reliability of variables was estimated using typical error ± 90% confidence limits expressed as a percentage [coefficient of variation (CV)] and intraclass correlation coefficient. The smallest worthwhile change (SWC) was calculated as 0.2 × between participant standard deviation. Peak/mean speed and distance variables assessed across the 30-min protocol exhibited a CV < 5%, and < 6% for each 10-min activity block. All power variables exhibited a CV < 7.5%, except walking (CV 8.3-10.1%). The most reliable variables were maximum and mean sprint speed (CV < 2%). All variables produced a CV% greater than the SWC. A self-paced, team-sport running protocol performed on a NMT produces reliable speed/distance and power data. Importantly, a single familiarisation session allowed for adequate test-retest reliability. The self-paced design provides an ecologically-valid alternative to externally-paced team-sport running simulations. Key points Self-paced team-sport running protocols on a curved NMT that closely match the locomotor demands of competition deliver reliable test-retest measures of speed, distance and power. Such protocols may be sensitive to changes in running profile following an intervention that may not be detectable during externally-paced protocols. One familiarisation session is adequate to ensure test-retest reliability. PMID:25729291

  5. Running training and adaptive strategies of locomotor-respiratory coordination.

    PubMed

    McDermott, William J; Van Emmerik, Richard E A; Hamill, Joseph

    2003-06-01

    It has been suggested that stronger coupling between locomotory and breathing rhythms may occur as a result of training in the particular movement pattern and also may reduce the perceived workload or metabolic cost of the movement. Research findings on human locomotor-respiratory coordination are equivocal, due in part to the fact that assessment techniques range in sensitivity to important aspects of coordination (e.g. temporal ordering of patterns, half-integer couplings and changes in frequency and phase coupling). An additional aspect that has not received much attention is the adaptability of this coordination to changes in task constraints. The current study investigated the effect of running training on the locomotor-respiratory coordination and the adaptive strategies observed across a wide range of walking and running speeds. Locomotor-respiratory coordination was evaluated by the strength and variability of both frequency and phase coupling patterns that subjects displayed within and across the speed conditions. Male subjects (five runners, five non-runners) locomoted at seven different treadmill speeds. Group results indicated no differences between runners and non-runners with respect to breathing parameters, stride parameters, as well as the strength and variability of the coupling at each speed. Individual results, however, showed that grouping subjects masks large individual differences and strategies across speeds. Coupling strategies indicated that runners show more stable dominant couplings across locomotory speeds than non-runners do. These findings suggest that running training does not change the strength of locomotor-respiratory coupling but rather how these systems adapt to changing speeds.

  6. Oxygen intake in track and treadmill running with observations on the effect of air resistance

    PubMed Central

    Pugh, L. G. C. E.

    1970-01-01

    1. The relation of V̇O2 and speed was measured on seven athletes running on a cinder track and an all-weather track. The results were compared with similar observations on four athletes running on a treadmill. 2. In treadmill running the relation was linear and the zero intercept coincided with resting V̇O2. 3. In track running the relation was curvilinear, but was adequately represented by a linear regression over a range of speeds extending from 8·0 km/hr (2·2 m/sec) to 21·5 km/hr (6·0 m/sec). The slope of this line was substantially steeper than the regression line slope for treadmill running. 4. The influence of air resistance in running was estimated from measurements of V̇O2 on a subject running on a treadmill at constant speed against wind of varying velocity. 5. The extra O2 intake (ΔV̇O2) associated with wind increased as the square of wind velocity. If wind velocity and running velocity are equal, as in running on a track in calm air, ΔV̇O2 will increase as the cube of velocity. 6. It was estimated that the energy cost of overcoming air resistance in track running is about 8% of total energy cost at 21·5 km/hr (5000 m races) and 16% for sprinting 100 m in 10·0 sec. ImagesFig. 4 PMID:5532903

  7. Oxygen intake in track and treadmill running with observations on the effect of air resistance.

    PubMed

    Pugh, L G

    1970-05-01

    1. The relation of V(O2) and speed was measured on seven athletes running on a cinder track and an all-weather track. The results were compared with similar observations on four athletes running on a treadmill.2. In treadmill running the relation was linear and the zero intercept coincided with resting V(O2).3. In track running the relation was curvilinear, but was adequately represented by a linear regression over a range of speeds extending from 8.0 km/hr (2.2 m/sec) to 21.5 km/hr (6.0 m/sec). The slope of this line was substantially steeper than the regression line slope for treadmill running.4. The influence of air resistance in running was estimated from measurements of V(O2) on a subject running on a treadmill at constant speed against wind of varying velocity.5. The extra O(2) intake (DeltaV(O2)) associated with wind increased as the square of wind velocity. If wind velocity and running velocity are equal, as in running on a track in calm air, DeltaV(O2) will increase as the cube of velocity.6. It was estimated that the energy cost of overcoming air resistance in track running is about 8% of total energy cost at 21.5 km/hr (5000 m races) and 16% for sprinting 100 m in 10.0 sec.

  8. The effects of prior incremental cycle exercise on the physiological responses during incremental running to exhaustion: relevance for sprint triathlon performance.

    PubMed

    Bentley, David J; McNaughton, Lars R; Lamyman, Robert; Roberts, Simon P

    2003-01-01

    It is common for the physiological working capacity of a triathlete when cycling and running to be assessed on two separate days. The aim of this study was to establish whether an incremental running test to exhaustion has a negative effect after a 5 h recovery from an incremental cycling test. Eight moderately trained triathletes (age, 26.2 +/- 3.4 years; body mass, 67.3 +/- 9.1 kg; VO2max when cycling, 59 +/- 13 ml x kg x min(-1); mean +/- s) completed an incremental running test 5 h after an incremental cycling test (fatigue) as well as an incremental running test without previous activity (control). Maximum running speed, maximal oxygen uptake (VO2max) and the lactate threshold were determined for each incremental running test and correlated with the average speed during a 5 km run, which was performed immediately after a 20 km cycling time-trial, as in a sprint triathlon. There were no significant differences in maximum running speed, VO2max or the lactate threshold in either incremental running test (control or fatigue). Furthermore, good agreement was found for each physiological variable in both the control and fatigue tests. For the fatigue test, there were significant correlations between the average speed during a 5 km run and both VO2max expressed in absolute terms (r = 0.83) and the lactate threshold (r = 0.88). However, maximum running speed correlated most strongly with the average speed during a 5 km run (r = 0.96). The results of this study indicate that, under controlled conditions, an incremental running test can be performed successfully 5 h after an incremental cycling test to exhaustion. Also, the maximum running speed achieved during an incremental running test is the variable that correlates most strongly with the average running speed during a 5 km run after a 20 km cycling time-trial in well-trained triathletes. PMID:12587889

  9. Wheel running in the wild.

    PubMed

    Meijer, Johanna H; Robbers, Yuri

    2014-07-01

    The importance of exercise for health and neurogenesis is becoming increasingly clear. Wheel running is often used in the laboratory for triggering enhanced activity levels, despite the common objection that this behaviour is an artefact of captivity and merely signifies neurosis or stereotypy. If wheel running is indeed caused by captive housing, wild mice are not expected to use a running wheel in nature. This however, to our knowledge, has never been tested. Here, we show that when running wheels are placed in nature, they are frequently used by wild mice, also when no extrinsic reward is provided. Bout lengths of running wheel behaviour in the wild match those for captive mice. This finding falsifies one criterion for stereotypic behaviour, and suggests that running wheel activity is an elective behaviour. In a time when lifestyle in general and lack of exercise in particular are a major cause of disease in the modern world, research into physical activity is of utmost importance. Our findings may help alleviate the main concern regarding the use of running wheels in research on exercise.

  10. A new method for the evaluation of anaerobic running power in athletes.

    PubMed

    Rusko, H; Nummela, A; Mero, A

    1993-01-01

    A new maximal anaerobic running power (MARP) test was developed. It consisted of n.20-s runs on a treadmill with a 100-s recovery between the runs. During the first run the treadmill speed was 3.97 m.s-1 and the gradient 5 degrees. The speed of the treadmill was increased by 0.35 m.s-1 for each consecutive run until exhaustion. The height of counter-movement jumps and blood lactate concentration ([la-]b) were measured after each run. Submaximal ([la-]b = 3 mmol.l-1 and 10 mmol.l-1) and maximal speed and power (W3mmol, W10mmol and Wmax, respectively) were calculated and W was expressed in oxygen equivalents according to the American College of Sports Medicine equation. Thirteen male athletes whose times over 400 m ranged from 47.98 s to 54.70 s served as subjects. In the MARP-test the speed at exhaustion was 6.89 (SD 0.28) m.s-1 corresponding to a Wmax of 118 (SD 5) ml.kg-1 x min-1. The peak [la-]b after exhaustion was 17.0 (SD 1.6) mmol.l-1. A significant correlation (r = 0.89, P < 0.001) was observed between the Wmax and the average speed in the 400-m sprint. The maximal 20-m sprinting speed on a track and W10mmol correlated with both the Wmax and the 400-m speed. It was concluded that the new method allows the evaluation of several determinants of maximal anaerobic performance including changes in the force-generating capacity of leg muscles and [la-]b relative to the speed of the sprint running. the [la-]b at submaximal sprinting speed was suggested as describing the anaerobic sprinting economy. PMID:8472703

  11. APS runControl library

    SciTech Connect

    Saunders, C.; Borland, M.

    1995-10-25

    This document serves as a User`s Manual and Reference for the runControl library. This library is designed to be used by closed- loop EPICS control applications which are generally run in the background on the controls workstations. It permits an application to `register` itself with an EPICS record, thereby preventing additional instances of the same application from being run. In addition, the executing application may in turn be suspended or aborted via an MEDM control screen or other standard channel access client.

  12. Self-Actualization, Liberalism, and Humanistic Education.

    ERIC Educational Resources Information Center

    Porter, Charles Mack

    1979-01-01

    The relationship between personality factors and political orientation has long been of interest to psychologists. This study tests the hypothesis that there is no significant relationship between self-actualization and liberalism-conservatism. The hypothesis is supported. (Author)

  13. Variation in Foot Strike Patterns during Running among Habitually Barefoot Populations

    PubMed Central

    Hatala, Kevin G.; Dingwall, Heather L.; Wunderlich, Roshna E.; Richmond, Brian G.

    2013-01-01

    Endurance running may have a long evolutionary history in the hominin clade but it was not until very recently that humans ran wearing shoes. Research on modern habitually unshod runners has suggested that they utilize a different biomechanical strategy than runners who wear shoes, namely that barefoot runners typically use a forefoot strike in order to avoid generating the high impact forces that would be experienced if they were to strike the ground with their heels first. This finding suggests that our habitually unshod ancestors may have run in a similar way. However, this research was conducted on a single population and we know little about variation in running form among habitually barefoot people, including the effects of running speed, which has been shown to affect strike patterns in shod runners. Here, we present the results of our investigation into the selection of running foot strike patterns among another modern habitually unshod group, the Daasanach of northern Kenya. Data were collected from 38 consenting adults as they ran along a trackway with a plantar pressure pad placed midway along its length. Subjects ran at self-selected endurance running and sprinting speeds. Our data support the hypothesis that a forefoot strike reduces the magnitude of impact loading, but the majority of subjects instead used a rearfoot strike at endurance running speeds. Their percentages of midfoot and forefoot strikes increased significantly with speed. These results indicate that not all habitually barefoot people prefer running with a forefoot strike, and suggest that other factors such as running speed, training level, substrate mechanical properties, running distance, and running frequency, influence the selection of foot strike patterns. PMID:23326341

  14. Determinants of Distance Running Performance in Children: Analysis of a Path Model

    ERIC Educational Resources Information Center

    Cureton, Kirk J.; And Others

    1977-01-01

    This study does not support the contention that individual differences in distance running ability are primarily due to variations in cardiovascular-respiratory capacity, but that the influences of body size, body composition, and running speed should also be recognized. (MB)

  15. Piketty in the long run.

    PubMed

    Cowell, Frank A

    2014-12-01

    I examine the idea of 'the long run' in Piketty (2014) and related works. In contrast to simplistic interpretations of long-run models of income- and wealth-distribution Piketty (2014) draws on a rich economic analysis that models the intra- and inter-generational processes that underly the development of the wealth distribution. These processes inevitably involve both market and non-market mechanisms. To understand this approach, and to isolate the impact of different social and economic factors on inequality in the long run, we use the concept of an equilibrium distribution. However the long-run analysis of policy should not presume that there is an inherent tendency for the wealth distribution to approach equilibrium. PMID:25516348

  16. Setting Standards for Medically-Based Running Analysis

    PubMed Central

    Vincent, Heather K.; Herman, Daniel C.; Lear-Barnes, Leslie; Barnes, Robert; Chen, Cong; Greenberg, Scott; Vincent, Kevin R.

    2015-01-01

    Setting standards for medically based running analyses is necessary to ensure that runners receive a high-quality service from practitioners. Medical and training history, physical and functional tests, and motion analysis of running at self-selected and faster speeds are key features of a comprehensive analysis. Self-reported history and movement symmetry are critical factors that require follow-up therapy or long-term management. Pain or injury is typically the result of a functional deficit above or below the site along the kinematic chain. PMID:25014394

  17. Setting standards for medically-based running analysis.

    PubMed

    Vincent, Heather K; Herman, Daniel C; Lear-Barnes, Leslie; Barnes, Robert; Chen, Cong; Greenberg, Scott; Vincent, Kevin R

    2014-01-01

    Setting standards for medically based running analyses is necessary to ensure that runners receive a high-quality service from practitioners. Medical and training history, physical and functional tests, and motion analysis of running at self-selected and faster speeds are key features of a comprehensive analysis. Self-reported history and movement symmetry are critical factors that require follow-up therapy or long-term management. Pain or injury is typically the result of a functional deficit above or below the site along the kinematic chain.

  18. Technique and Observation of Angular Gait Patterns in Running

    PubMed Central

    Sykes, K.

    1975-01-01

    A technique for the biomechanical analysis of running is described with specific reference to the angular displacement patterns of the lower limb. From high speed cine film recording profile views of the running gait, the Thigh, Knee and Ankle angles are measured during one complete cycle. Results are presented in the form of vector-space diagrams, namely Thigh-Knee angle and Knee-Ankle angle cyclograms. The diagrams are interpreted and some experimental observations are presented and discussed. The technique provides a useful research tool and a very good `teaching asset' for biomechanical studies of movement.

  19. Determination of muscle activity during running at reduced body weight.

    PubMed

    Liebenberg, Jaco; Scharf, Jennifer; Forrest, Dana; Dufek, Janet S; Masumoto, K; Mercer, J A

    2011-01-01

    The aim of this study was to investigate how lower extremity muscles are influenced by body weight support during running at different speeds. Nine participants (age 24 ± 2 years, height 1.75 ± 0.12 m, mass 73.5 ± 15.7 kg) ran at 100%, 115%, and 125% of preferred speed at 100%, 90%, 80%, 70%, and 60% of body weight on a treadmill that provided body weight support. Preferred speed was self-selected by each participant and represented a speed that he or she could sustain if going for a 30 min run. Electromyography (EMG) data were recorded (1000 Hz, 1 min) from the bicep femoris, rectus femoris, tibialis anterior, and gastrocnemius for each condition together with knee angle (electrogoniometer). Average and root mean square EMG were calculated across 30 s. Muscle patterns were determined by smoothing (low-pass filter, 4 Hz) and extracting patterns for 49 cycles defined by consecutive maximum knee flexion angles. Repeated-measures analyses of variance were used to compare average and root mean square across body weight and speeds. Correlations were computed between the 100% speed/100% body weight condition and all other conditions per muscle. There was no interaction between body weight and speed (P > 0.05). Average and root mean square decreased as body weight decreased for all muscles (P < 0.05) and increased across speeds for all muscles (P < 0.05). Correlations for all muscles between conditions were high (range: 0.921-0.999). Although a percent reduction in body weight did not lead to the same reduction in muscle activity, it was clear that reducing body weight leads to a reduction in muscle activity with no changes in muscle activity patterns. PMID:21170806

  20. Deflection test results on D0 Run IIB stave

    SciTech Connect

    Lanfranco, Giobatta; /Fermilab

    2003-09-01

    The D0 RunIIb final design stave has been tested to verify its actual mechanical performance. The effectiveness of four G-11 (fiberglass/epoxy) braces to bridge the two channels has been investigated as well. All staves have met the goal stiffness for the silicon area. The stave mockups with braces have shown excellent stiffness in complete agreement with what theoretically calculated.

  1. Influence of Stride Frequency and Length on Running Mechanics

    PubMed Central

    Schubert, Amy G.; Kempf, Jenny; Heiderscheit, Bryan C.

    2014-01-01

    Context: A high number of recreational runners sustain a running-related injury each year. To reduce injury risk, alterations in running form have been suggested. One simple strategy for running stride frequency or length has been commonly advocated. Objective: To characterize how running mechanics change when stride frequency and length are manipulated. Data Sources: In January 2012, a comprehensive search of PubMed, CINAHL Plus, SPORTDiscus, PEDro, and Cochrane was performed independently by 2 reviewers. A second search of the databases was repeated in June 2012 to ensure that no additional studies met the criteria after the initial search. Study Selection: Inclusion criteria for studies were an independent variable including manipulation of stride frequency or length at a constant speed with outcome measures of running kinematics or kinetics. Study Design: Systematic review. Level of Evidence: Level 3. Data Extraction: Two reviewers independently appraised each article using a modified version of the Quality Index, designed for assessing bias of nonrandomized studies. Results: Ten studies met the criteria for this review. There was consistent evidence that increased stride rate resulted in decreased center of mass vertical excursion, ground reaction force, shock attenuation, and energy absorbed at the hip, knee, and ankle joints. All but 1 study had a limited number of participants, with several methodological differences existing among studies (eg, overground and treadmill running, duration of test conditions). Although speed was held constant during testing, it was individually self-selected or fixed. Most studies used only male participants. Conclusion: Despite procedural differences among studies, an increased stride rate (reduced stride length) appears to reduce the magnitude of several key biomechanical factors associated with running injuries. PMID:24790690

  2. Delivery Speed, Timeliness and Satisfaction: Patrons' Perceptions About ILL Service.

    ERIC Educational Resources Information Center

    Weaver-Meyers, Pat L.; Stolt, Wilbur A.

    1996-01-01

    Library users' perceptions of the quality of interlibrary loan service are examined. Ten Greater Midwest Research Libraries Consortium members distributed surveys to patrons. Findings indicate patrons' satisfaction is minimally related to actual delivery speed; satisfaction and perceptions of timeliness are strongly correlated; a delivery speed of…

  3. Walking and running at resonance.

    PubMed

    Ahlborn, Boye K; Blake, Robert W

    2002-01-01

    Humans and other animals can temporarily store mechanical energy in elastic oscillations, f(el), of body parts and in pendulum oscillations, f(p) = const sq.rt (g/L), of legs, length L, or other appendages, and thereby reduce the energy consumption of locomotion. However, energy saving only occurs if these oscillations are tuned to the leg propagation frequency f. It has long been known that f is tuned to the pendulum frequency of the free-swinging leg of walkers. During running the leg frequency increases to some new value f = f(r). We propose that in order to maintain resonance the animal, mass M, actively increases its leg pendulum frequency to the new value f(p,r) =const sq.rt (a(y)/L)=f(r), by giving its hips a vertical acceleration a(y)= F(y)/M. The pendulum frequency is increased if the impact force F(y) of the stance foot is larger than Mg, explaining the observation by Alexander and Bennet-Clark (1976) that F(v) becomes larger than Mg when animals start to run. Our model predictions of the running velocity U(r) as function of L, F(v), are in agreement with measurements of these quantities (Farley et al. 1993). The leg's longitudinal elastic oscillation frequency scales as f(el) = const sq.rt (k/M). Experiments by Ferris et al., (1998) show that runners adjust their leg's stiffness, k, when running on surfaces of different elasticity so that the total stiffness k remains constant. Our analysis of their data suggests that the longitudinal oscillations of the stance leg are indeed kept in tune with the running frequency. Therefore we conclude that humans, and by extension all animals, maintain resonance during running. Our model also predicts the Froude number of walking-running transitions, Fr = U(2)/gL approximately 0.5 in good agreement with measurements.

  4. Amputee locomotion: Spring-like leg behavior and stiffness regulation using running-specific prostheses

    PubMed Central

    Hobara, Hiroaki; Baum, Brian S; Kwon, Hyun-Joon; Miller, Ross H; Ogata, Toru; Kim, Yoon Hyuk; Shim, Jae Kun

    2013-01-01

    Carbon fiber running-specific prostheses (RSPs) have allowed individuals with lower extremity amputation (ILEA) to participate in running. It has been established that as running speed increases, leg stiffness (Kleg) remains constant while vertical stiffness (Kvert) increases in able-bodied runners. The Kvert further depends on a combination of the torsional stiffnesses of the joints (joint stiffness; Kjoint) and the touchdown joint angles. Thus, an increased understanding of spring-like leg function and stiffness regulation in ILEA runners using RSPs is expected to aid in prosthetic design and rehabilitation strategies. The aim of this study was to investigate stiffness regulation to various overground running speeds in ILEA wearing RSPs. Eight ILEA performed overground running at a range of running speeds. Kleg, Kvert and Kjoint were calculated from kinetic and kinematic data in both intact and prosthetic limbs. Kleg and Kvert in both limbs remained constant when running speed increased, while intact limbs in ILEA running with RSPs have a higher Kleg and Kvert than residual limbs. There were no significant differences in Kankle, Kknee and touchdown knee angle between the legs at all running speeds. Hip joints in both legs did not demonstrate spring-like function; however, distinct impact peaks were observed only in the intact leg hip extension moment at early stance phase, indicating that differences in Kvert between limbs in ILEA are due to attenuating shock with the hip joint. Therefore, these results suggest that ILEA using RSPs have a different stiffness regulation between the intact and prosthetic limbs during running. PMID:23953671

  5. RHIC Au beam in Run 2014

    SciTech Connect

    Zhang, S. Y.

    2014-09-15

    Au beam at the RHIC ramp in run 2014 is reviewed together with the run 2011 and run 2012. Observed bunch length and longitudinal emittance are compared with the IBS simulations. The IBS growth rate of the longitudinal emittance in run 2014 is similar to run 2011, and both are larger than run 2012. This is explained by the large transverse emittance at high intensity observed in run 2012, but not in run 2014. The big improvement of the AGS ramping in run 2014 might be related to this change. The importance of the injector intensity improvement in run 2014 is emphasized, which gives rise to the initial luminosity improvement of 50% in run 2014, compared with the previous Au-Au run 2011. In addition, a modified IBS model, which is calibrated using the RHIC Au runs from 9.8 GeV/n to 100 GeV/n, is presented and used in the study.

  6. What do tests of formal reasoning actually measure?

    NASA Astrophysics Data System (ADS)

    Lawson, Anton E.

    Tests of formal operational reasoning derived from Piagetian theory have been found to be effective predictors of academic achievement. Yet Piaget's theory regarding the underlying nature of formal operations and their employment in specific contexts has run into considerable empirical difficulty. The primary purpose of this study was to present the core of an alternative theory of the nature of advanced scientific reasoning. That theory, referred to as the multiple-hypothesis theory, argues that tests of formal operational reasoning actually measure the extent to which persons have acquired the ability to initiate reasoning with more than one specific antecedent condition, or if they are unable to imagine more than one antecedent condition, they are aware that more than one is possible; therefore conclusions that are drawn are tempered by this possibility. As a test of this multiple-hypothesis theory of advanced reasoning and the contrasting Piagetian theory of formal operations, a sample of 922 college students were first classified as concrete operational, transitional, or formal operational, based upon responses to standard Piagetian measures of formal operational reasoning. They were then administered seven logic tasks. Actual response patterns to the tasks were analyzed and found to be similar to predicted response patterns derived from the multiple-hypothesis theory and were different from those predicted by Piagetian theory. Therefore, support was obtained for the multiple-hypothesis theory. The terms intuitive and reflective were suggested to replace the terms concrete operational and formal operational to refer to persons at varying levels of intellectual development.

  7. Realizing actual feedback control of complex network

    NASA Astrophysics Data System (ADS)

    Tu, Chengyi; Cheng, Yuhua

    2014-06-01

    In this paper, we present the concept of feedbackability and how to identify the Minimum Feedbackability Set of an arbitrary complex directed network. Furthermore, we design an estimator and a feedback controller accessing one MFS to realize actual feedback control, i.e. control the system to our desired state according to the estimated system internal state from the output of estimator. Last but not least, we perform numerical simulations of a small linear time-invariant dynamics network and a real simple food network to verify the theoretical results. The framework presented here could make an arbitrary complex directed network realize actual feedback control and deepen our understanding of complex systems.

  8. Biomechanics of the human walk-to-run gait transition in persons with unilateral transtibial amputation.

    PubMed

    Giest, Tracy N; Chang, Young-Hui

    2016-06-14

    Propulsive force production (indicative of intrinsic force-length-velocity characteristics of the plantar flexor muscles) has been shown to be a major determinant of the human walk-to-run transition. The purpose of this work was to determine the gait transition speed of persons with unilateral transtibial amputation donning a passive-elastic prosthesis and assess whether a mechanical limit of their intact side plantar flexor muscles is a major determinant of their walk-to-run transition. We determined each individual׳s gait transition speed (GTS) via an incremental protocol and assessed kinetics and kinematics during walking at speeds 50%, 60%, 70%, 80%, 90%, 100%, 120%, and 130% of that gait transition speed (100%:GTS). Unilateral transtibial amputees transitioned between gaits at significantly slower absolute speeds than matched able-bodied controls (1.73±0.13 and 2.09±0.05m/s respectively, p<0.01). Peak anterior-posterior propulsive force increased with speed in controls until 100% of the preferred gait transition speed and decreased at greater speeds. A significant decrease in anterior-posterior propulsive force production was found at 120%GTS (110%: 0.27±0.04>120%: 0.23±0.05BW, p<0.05). In contrast, amputee subjects' intact side generated significantly higher peak anterior-posterior propulsive forces while walking at speeds above their preferred gait transition speed (100%: 0.28±0.04<110%: 0.30±0.04BW, p<0.05). Changes in propulsive force production were found to be a function of changes in absolute speed, rather than relative to the walk-to-run transition speed. Therefore, the walk-to-run transition in unilateral transtibial amputees is not likely dictated by propulsive force production or the force-length-velocity characteristics of the intact side plantar flexor muscles. PMID:27087677

  9. High speed handpieces.

    PubMed

    Bhandary, Nayan; Desai, Asavari; Shetty, Y Bharath

    2014-02-01

    High speed instruments are versatile instruments used by clinicians of all specialties of dentistry. It is important for clinicians to understand the types of high speed handpieces available and the mechanism of working. The centers for disease control and prevention have issued guidelines time and again for disinfection and sterilization of high speed handpieces. This article presents the recent developments in the design of the high speed handpieces. With a view to prevent hospital associated infections significant importance has been given to disinfection, sterilization & maintenance of high speed handpieces. How to cite the article: Bhandary N, Desai A, Shetty YB. High speed handpieces. J Int Oral Health 2014;6(1):130-2.

  10. Aircraft Speed Instruments

    NASA Technical Reports Server (NTRS)

    Beij, K Hilding

    1933-01-01

    This report presents a concise survey of the measurement of air speed and ground speed on board aircraft. Special attention is paid to the pitot-static air-speed meter which is the standard in the United States for airplanes. Air-speed meters of the rotating vane type are also discussed in considerable detail on account of their value as flight test instruments and as service instruments for airships. Methods of ground-speed measurement are treated briefly, with reference to the more important instruments. A bibliography on air-speed measurement concludes the report.

  11. Comparison of Four Actigraph Accelerometers During Walking and Running

    PubMed Central

    John, Dinesh; Tyo, Brian; Bassett, David R.

    2009-01-01

    Currently, researchers can use the Actigraph 7164 or one of three different versions of the Actigraph GT1M to objectively measure physical activity. Purpose To determine if differences exist between activity counts from the Actigraph 7164 and the three versions of the GT1M at given walking and running speeds. Methods Ten male participants (23.6 ± 2.7 yrs) completed treadmill walking and running at ten different speeds (3-minute stages) while wearing either the Actigraph 7164 and the latest GT1M (GT1M-V3) or GT1M version one (GT1M-V1) and GT1M version two (GT1M-V2). Participants walked at 3, 5, and at 7 km˙hr−1 followed by running at 8, 10, 12, 14, 16, 18, and 20 km˙hr−1. The accelerometers were worn on an elastic belt around the waist over the left and right hips. Testing was performed on different days using a counterbalanced within-subjects design to account for potential differences attributable to accelerometer placement. At each speed, a one-way repeated measures ANOVA was used to examine differences between activity counts in counts˙min−1(cpm). Post-hoc pairwise comparisons with Bonferroni adjustments were used where appropriate. Results There were no significant differences between activity counts at any given walking or running speed (p<0.05). At all running speeds, activity counts from the Actigraph 7164 and GT1M-V2 displayed the lowest and highest values, respectively. Output from all accelerometers peaked at 14 km˙hr−1 (mean range: 8974 ± 677 to 9412 ± 982 cpm) and then gradually declined at higher speeds. The mean difference score at peak output between the Actigraph 7164 and GT1M-V2 was 439 ± 565 cpm. Conclusions There were no statistically significant differences between outputs from all the accelerometers indicating that researchers can select any of the four Actigraph accelerometers to do research. PMID:19927022

  12. Whether or not to run in the rain

    NASA Astrophysics Data System (ADS)

    Bocci, Franco

    2012-09-01

    The problem of choosing an optimal strategy for moving in the rain has attracted considerable attention among physicists and other scientists. Taking a novel approach, this paper shows, by studying simple shaped bodies, that the answer depends on the shape and orientation of the moving body and on wind direction and intensity. For different body shapes, the best strategy may be different: in some cases, it is best to run as fast as possible, while in some others there is an optimal speed.

  13. Speed control system for a windmill

    SciTech Connect

    Kenney, C.E.

    1981-06-23

    A speed control system for a windmill having blades which can be feathered for altering speed and with the blades under the control of a mechanism which includes a piston assembly and a fluid governor associated therewith. Spring means are used to feather the blades against the force of the piston assembly which is interconnected with the blades, and the speed of blade rotation actually creates the fluid pressure acting on the piston assembly and a governor is associated with the piston assembly for controlling the position of the piston and thus controlling the feathering of the blades, all according to the speed of rotation of the windmill blades. The windmill can be used for generating electric power, and fail-safe mechanisms are employed for protecting in the event of a windmill blade breakage.

  14. Developing Human Resources through Actualizing Human Potential

    ERIC Educational Resources Information Center

    Clarken, Rodney H.

    2012-01-01

    The key to human resource development is in actualizing individual and collective thinking, feeling and choosing potentials related to our minds, hearts and wills respectively. These capacities and faculties must be balanced and regulated according to the standards of truth, love and justice for individual, community and institutional development,…

  15. [Actual diet of patients with gastrointestinal diseases].

    PubMed

    Loranskaia, T I; Shakhovskaia, A K; Pavliuchkova, M S

    2000-01-01

    The study of actual nutrition of patients with erosive-ulcerative lesions in the gastroduodenal zone and of patients with operated ulcer has revealed defects in intake of essential nutrients by these patients: overeating of animal fat and refined carbohydrates, deficiency of oil, vitamins A, B2, C, D and food fibers.

  16. Humanistic Education and Self-Actualization Theory.

    ERIC Educational Resources Information Center

    Farmer, Rod

    1984-01-01

    Stresses the need for theoretical justification for the development of humanistic education programs in today's schools. Explores Abraham Maslow's hierarchy of needs and theory of self-actualization. Argues that Maslow's theory may be the best available for educators concerned with educating the whole child. (JHZ)

  17. Group Counseling for Self-Actualization.

    ERIC Educational Resources Information Center

    Streich, William H.; Keeler, Douglas J.

    Self-concept, creativity, growth orientation, an integrated value system, and receptiveness to new experiences are considered to be crucial variables to the self-actualization process. A regular, year-long group counseling program was conducted with 85 randomly selected gifted secondary students in the Farmington, Connecticut Public Schools. A…

  18. Teenagers' Perceived and Actual Probabilities of Pregnancy.

    ERIC Educational Resources Information Center

    Namerow, Pearila Brickner; And Others

    1987-01-01

    Explored adolescent females' (N=425) actual and perceived probabilities of pregnancy. Subjects estimated their likelihood of becoming pregnant the last time they had intercourse, and indicated the dates of last intercourse and last menstrual period. Found that the distributions of perceived probability of pregnancy were nearly identical for both…

  19. Running sprint interval training induces fat loss in women.

    PubMed

    Hazell, Tom J; Hamilton, Craig D; Olver, T Dylan; Lemon, Peter W R

    2014-08-01

    Data on whether sprint interval training (SIT) (repeated supermaximal intensity, short-duration exercise) affects body composition are limited, and the data that are available suggest that men respond more favourably than do women. Moreover, most SIT data involve cycling exercise, and running may differ because of the larger muscle mass involved. Further, running is a more universal exercise type. This study assessed whether running SIT can alter body composition (air displacement plethysmography), waist circumference, maximal oxygen consumption, peak running speed, and (or) the blood lipid profile. Fifteen recreationally active women (age, 22.9 ± 3.6 years; height, 163.9 ± 5.1 cm; mass, 60.8 ± 5.2 kg) completed 6 weeks of running SIT (4 to 6, 30-s "all-out" sprints on a self-propelled treadmill separated by 4 min of rest performed 3 times per week). Training decreased body fat mass by 8.0% (15.1 ± 3.6 to 13.9 ± 3.4 kg, P = 0.002) and waist circumference by 3.5% (80.1 ± 4.2 to 77.3 ± 4.4 cm, P = 0.048), whereas it increased fat-free mass by 1.3% (45.7 ± 3.5 to 46.3 ± 2.9 kg, P = 0.05), maximal oxygen consumption by 8.7% (46 ± 5 to 50 ± 6 mL/(kg·min), P = 0.004), and peak running speed by 4.8% (16.6 ± 1.7 to 17.4 ± 1.4 km/h, P = 0.026). There were no differences in food intake assessed by 3-day food records (P > 0.329) or in blood lipids (P > 0.595), except for a slight decrease in high-density lipoprotein concentration (1.34 ± 0.28 to 1.24 ± 0.24 mmol/L, P = 0.034). Running SIT is a time-efficient strategy for decreasing body fat while increasing aerobic capacity, peak running speed, and fat-free mass in healthy young women.

  20. Running droplets of gallium from evaporation of gallium arsenide.

    PubMed

    Tersoff, J; Jesson, D E; Tang, W X

    2009-04-10

    High-temperature annealing of gallium arsenide in vacuum causes excess evaporation of arsenic, with accumulation of gallium as liquid droplets on the surface. Using real-time in situ surface electron microscopy, we found that these droplets spontaneously run across the crystal surface. Running droplets have been seen in many systems, but they typically require special surface preparation or gradient forces. In contrast, we show that noncongruent evaporation automatically provides a driving force for running droplets. The motion is predicted and observed to slow and stop near a characteristic temperature, with the speed increasing both below and above this temperature. The same behavior is expected to occur during the evaporation of similar III-V semiconductors such as indium arsenide.

  1. Children's Fitness. Managing a Running Program.

    ERIC Educational Resources Information Center

    Hinkle, J. Scott; Tuckman, Bruce W.

    1987-01-01

    A running program to increase the cardiovascular fitness levels of fourth-, fifth-, and sixth-grade children is described. Discussed are the running environment, implementation of a running program, feedback, and reinforcement. (MT)

  2. Robust Underestimation of Speed During Driving: A Field Study.

    PubMed

    Schütz, Alexander C; Billino, Jutta; Bodrogi, Peter; Polin, Dmitrij; Khanh, Tran Q; Gegenfurtner, Karl R

    2015-12-01

    Traffic reports consistently identify speeding as a substantial source of accidents. Adequate driving speeds require reliable speed estimation; however, there is still a lack of understanding how speed perception is biased during driving. Therefore, we ran three experiments measuring speed estimation under controlled driving and lighting conditions. In the first experiment, participants had to produce target speeds as drivers or had to judge driven speed as passengers. Measurements were performed at daylight and at night. In the second experiment, participants were required to produce target speeds at dusk, under rapidly changing lighting conditions. In the third experiment, we let two cars approach and pass each other. Drivers were instructed to produce target speeds as well as to judge the speed of the oncoming vehicle. Here measurements were performed at daylight and at night, with full or dipped headlights. We found that passengers underestimated driven speed by about 20% and drivers went over the instructed speed by roughly the same amount. Interestingly, the underestimation of speed extended to oncoming cars. All of these effects were independent of lighting conditions. The consistent underestimation of speed could lead to potentially fatal situations where drivers go faster than intended and judge oncoming traffic to approach slower than it actually is.

  3. Vehicle speed control device

    SciTech Connect

    Thornton-Trump, W.E.

    1987-03-10

    An apparatus is described for automatically limiting the speed of a vehicle powered by an internal combustion engine having a spark ignition system with an ignition coil, comprising: sensor means for generating a speed signal directly representative of the speed of the vehicle comprising a series of speed signal pulses having a pulse repetition frequency proportional to the speed of the vehicle; control means for converting speed signal pulses into a DC voltage proportional to the vehicle speed; means for comparing the DC voltage to a predetermined DC voltage having substantially zero AC components representative of a predetermined maximum speed and for generating a difference signal in response thereto; and means for generating a pulse-width modulated control signal responsive to the difference signal; power means responsive to the control signal for intermittently interrupting the ignition system.

  4. Predicting intermittent running performance: critical velocity versus endurance index.

    PubMed

    Buchheit, M; Laursen, P B; Millet, G P; Pactat, F; Ahmaidi, S

    2008-04-01

    The aim of the present study was to examine the ability of the critical velocity (CV) and the endurance index (EI) to assess endurance performance during intermittent exercise. Thirteen subjects performed two intermittent runs: 15-s runs intersected with 15 s of passive recovery (15/15) and 30-s runs with 30-s rest (30/30). Runs were performed until exhaustion at three intensities (100, 95 and 90 % of the speed reached at the end of the 30 - 15 intermittent fitness test, V (IFT)) to calculate i) CV from the slope of the linear relationship between the total covered distance and exhaustion time (ET) (iCV); ii) anaerobic distance capacity from the Y-intercept of the distance/duration relationship (iADC); and iii) EI from the relationship between the fraction of V (IFT) at which the runs were performed and the log-transformed ET (iEI). Anaerobic capacity was indirectly assessed by the final velocity achieved during the Maximal Anaerobic Running Test (VMART). ET was longer for 15/15 than for 30/30 runs at similar intensities. iCV (15/15) and iCV (30/30) were not influenced by changes in ET and were highly dependent on V (IFT). Neither iADC (15/15) nor iADC (30/30) were related to VMART. In contrast, iEI (15/15) was higher than iEI (30/30), and corresponded with the higher ET. In conclusion, only iEI estimated endurance capacity during repeated intermittent running.

  5. Running and Breathing in Mammals

    NASA Astrophysics Data System (ADS)

    Bramble, Dennis M.; Carrier, David R.

    1983-01-01

    Mechanical constraints appear to require that locomotion and breathing be synchronized in running mammals. Phase locking of limb and respiratory frequency has now been recorded during treadmill running in jackrabbits and during locomotion on solid ground in dogs, horses, and humans. Quadrupedal species normally synchronize the locomotor and respiratory cycles at a constant ratio of 1:1 (strides per breath) in both the trot and gallop. Human runners differ from quadrupeds in that while running they employ several phase-locked patterns (4:1, 3:1, 2:1, 1:1, 5:2, and 3:2), although a 2:1 coupling ratio appears to be favored. Even though the evolution of bipedal gait has reduced the mechanical constraints on respiration in man, thereby permitting greater flexibility in breathing pattern, it has seemingly not eliminated the need for the synchronization of respiration and body motion during sustained running. Flying birds have independently achieved phase-locked locomotor and respiratory cycles. This hints that strict locomotor-respiratory coupling may be a vital factor in the sustained aerobic exercise of endothermic vertebrates, especially those in which the stresses of locomotion tend to deform the thoracic complex.

  6. Teaching Bank Runs through Films

    ERIC Educational Resources Information Center

    Flynn, David T.

    2009-01-01

    The author advocates the use of films to supplement textbook treatments of bank runs and panics in money and banking or general banking classes. Modern students, particularly those in developed countries, tend to be unfamiliar with potential fragilities of financial systems such as a lack of deposit insurance or other safety net mechanisms. Films…

  7. Head-to-head running race simulation alters pacing strategy, performance, and mood state.

    PubMed

    Tomazini, Fabiano; Pasqua, Leonardo A; Damasceno, Mayara V; Silva-Cavalcante, Marcos D; de Oliveira, Fernando R; Lima-Silva, Adriano E; Bertuzzi, Rômulo

    2015-10-01

    The objective of this study was to analyze the influence of the presence and absence of competitors on pacing, overall running performance, and mood state during a self-paced 3-km run. Nine recreational runners participated in this study. They performed the following tests: a) an incremental test to exhaustion to measure the respiratory compensation point (RCP), maximal oxygen uptake, and peak treadmill speed; b) a submaximal speed constant test to measure running economy; and c) two 3-km running time trials performed collectively (COL, head-to-head competition) or individually (IND, performed alone) to establish pacing and running performance. The COL condition was formed of a group of four runners or five runners. Runners were grouped by matched performance times and to retain head-to-head characteristics.A mood state profile questionnaire was completed before and after the 3-km running time trial. The overall performance was better in the COL than in the IND (11.75 ± 0.05 min vs. 12.25 ± 0.06 min, respectively; p = 0.04). The running speeds during the first 500 m were significantly greater in COL (16.8 ± 2.16 km·h−1) than in IND (15.3 ± 2.45 km·h−1) (p = 0.03).The gain in running speed from IND to COL during the first 400 m (i.e. running speed in COL less running speed in IND) was significantly correlated with the RCP (r = 0.88; p = 0.05). The vigor score significantly decreased from pre- to post-running in COL (p=0.05), but not in IND (p=0.20). Additionally, the post running vigor was significantly higher in IND compared to COL (p = 0.03).These findings suggested that the presence of competitors induces a fast start, which results in an improved overall performance and reduced post-exercise vigor scores, compared to an individual run.

  8. Head-to-head running race simulation alters pacing strategy, performance, and mood state.

    PubMed

    Tomazini, Fabiano; Pasqua, Leonardo A; Damasceno, Mayara V; Silva-Cavalcante, Marcos D; de Oliveira, Fernando R; Lima-Silva, Adriano E; Bertuzzi, Rômulo

    2015-10-01

    The objective of this study was to analyze the influence of the presence and absence of competitors on pacing, overall running performance, and mood state during a self-paced 3-km run. Nine recreational runners participated in this study. They performed the following tests: a) an incremental test to exhaustion to measure the respiratory compensation point (RCP), maximal oxygen uptake, and peak treadmill speed; b) a submaximal speed constant test to measure running economy; and c) two 3-km running time trials performed collectively (COL, head-to-head competition) or individually (IND, performed alone) to establish pacing and running performance. The COL condition was formed of a group of four runners or five runners. Runners were grouped by matched performance times and to retain head-to-head characteristics.A mood state profile questionnaire was completed before and after the 3-km running time trial. The overall performance was better in the COL than in the IND (11.75 ± 0.05 min vs. 12.25 ± 0.06 min, respectively; p = 0.04). The running speeds during the first 500 m were significantly greater in COL (16.8 ± 2.16 km·h−1) than in IND (15.3 ± 2.45 km·h−1) (p = 0.03).The gain in running speed from IND to COL during the first 400 m (i.e. running speed in COL less running speed in IND) was significantly correlated with the RCP (r = 0.88; p = 0.05). The vigor score significantly decreased from pre- to post-running in COL (p=0.05), but not in IND (p=0.20). Additionally, the post running vigor was significantly higher in IND compared to COL (p = 0.03).These findings suggested that the presence of competitors induces a fast start, which results in an improved overall performance and reduced post-exercise vigor scores, compared to an individual run. PMID:26013576

  9. Assessment of upper body accelerations in young adults with intellectual disabilities while walking, running, and dual-task running.

    PubMed

    Iosa, Marco; Morelli, Daniela; Nisi, Enrica; Sorbara, Carlo; Negrini, Stefano; Gentili, Paola; Paolucci, Stefano; Fusco, Augusto

    2014-04-01

    There is an increasing interest about upper body accelerations during locomotion and how they are altered by physical impairments. Recent studies have demonstrated that cognitive impairments affect gait stability in the elderly (i.e., their capacity for smoothing upper body accelerations during walking) but little attention has been paid to young adults with intellectual disabilities. The purpose of this study was to examine upright stability in young adults with intellectual disabilities during walking, running, and dual-task running (playing soccer). To this aim a wearable trunk-mounted device that permits on-field assessment was used to quantify trunk acceleration of 18 male teenagers with intellectual disabilities (IDG) and 7 mental-age-matched healthy children (HCG) who participated in the same soccer program. We did not find any significant difference during walking in terms of speed, whereas speed differences were found during running (p=.001). Upper body accelerations were altered in a pathology-specific manner during the dual task: the performance of subjects with autistic disorders was compromised while running and controlling the ball with the feet. Differences in upright locomotor patterns between IDG and HCG emerged during more demanding motor tasks in terms of a loss in the capacity of smoothing accelerations at the trunk level.

  10. Running free: embracing a healthy lifestyle through distance running.

    PubMed

    Shipway, Richard; Holloway, Immy

    2010-11-01

    Sport and leisure activity contribute to both health and quality of life. There is a dearth of qualitative studies on the lived experiences of active people, so the aim of this paper is to develop a deeper understanding of the experiences of one particular group of active leisure participants, distance runners, and to highlight the associated health and well-being benefits that result from participating in this increasingly popular form of active leisure. In doing so, this paper will briefly explore the potential opportunities and implications for sport and leisure policy and provision, and highlight examples of how distance running could positively contribute towards government objectives linked to tackling obesity levels, healthy living and physical well-being. It is suggested that similar benefits also exist across other forms of physical activity, exercise and sport. Qualitative methods of enquiry were adopted to understand the nature of the social world of long distance runners through interviews and observations, which were thematically analyzed. One of the key themes emerging from the data was the desire to embrace a healthy lifestyle, which then led to the emergence of four main sub-themes. The first was linked to the importance of seeking self-esteem and confirmation through running; second, an investigation of a selection of negative aspects associated with exercise addiction; third, the need to exercise among sport and leisure participants; and finally, an understanding of the concept of the 'running body'. Cautionary notes also identified negative aspects associated with exercise and physical activity. The findings highlight the potential role that distance running can play as an easily accessible and enjoyable leisure activity, one that can help facilitate increased participation in exercise and physical activity as an integral part of an active and healthy lifestyle.

  11. Deterministic prediction of surface wind speed variations

    NASA Astrophysics Data System (ADS)

    Drisya, G. V.; Kiplangat, D. C.; Asokan, K.; Satheesh Kumar, K.

    2014-11-01

    Accurate prediction of wind speed is an important aspect of various tasks related to wind energy management such as wind turbine predictive control and wind power scheduling. The most typical characteristic of wind speed data is its persistent temporal variations. Most of the techniques reported in the literature for prediction of wind speed and power are based on statistical methods or probabilistic distribution of wind speed data. In this paper we demonstrate that deterministic forecasting methods can make accurate short-term predictions of wind speed using past data, at locations where the wind dynamics exhibit chaotic behaviour. The predictions are remarkably accurate up to 1 h with a normalised RMSE (root mean square error) of less than 0.02 and reasonably accurate up to 3 h with an error of less than 0.06. Repeated application of these methods at 234 different geographical locations for predicting wind speeds at 30-day intervals for 3 years reveals that the accuracy of prediction is more or less the same across all locations and time periods. Comparison of the results with f-ARIMA model predictions shows that the deterministic models with suitable parameters are capable of returning improved prediction accuracy and capturing the dynamical variations of the actual time series more faithfully. These methods are simple and computationally efficient and require only records of past data for making short-term wind speed forecasts within practically tolerable margin of errors.

  12. Reproducing Actual Morphology of Planetary Lava Flows

    NASA Astrophysics Data System (ADS)

    Miyamoto, H.; Sasaki, S.

    1996-03-01

    Assuming that lava flows behave as non-isothermal laminar Bingham fluids, we developed a numerical code of lava flows. We take the self gravity effects and cooling mechanisms into account. The calculation method is a kind of cellular automata using a reduced random space method, which can eliminate the mesh shape dependence. We can calculate large scale lava flows precisely without numerical instability and reproduce morphology of actual lava flows.

  13. The Actual Apollo 13 Prime Crew

    NASA Technical Reports Server (NTRS)

    1970-01-01

    The actual Apollo 13 lunar landing mission prime crew from left to right are: Commander, James A. Lovell Jr., Command Module pilot, John L. Swigert Jr.and Lunar Module pilot, Fred W. Haise Jr. The original Command Module pilot for this mission was Thomas 'Ken' Mattingly Jr. but due to exposure to German measles he was replaced by his backup, Command Module pilot, John L. 'Jack' Swigert Jr.

  14. Modular Control of Treadmill vs Overground Running.

    PubMed

    Oliveira, Anderson Souza; Gizzi, Leonardo; Ketabi, Shahin; Farina, Dario; Kersting, Uwe Gustav

    2016-01-01

    Motorized treadmills have been widely used in locomotion studies, although a debate remains concerning the extrapolation of results obtained from treadmill experiments to overground locomotion. Slight differences between treadmill (TRD) and overground running (OVG) kinematics and muscle activity have previously been reported. However, little is known about differences in the modular control of muscle activation in these two conditions. Therefore, we aimed at investigating differences between motor modules extracted from TRD and OVG by factorization of multi-muscle electromyographic (EMG) signals. Twelve healthy men ran on a treadmill and overground at their preferred speed while we recorded tibial acceleration and surface EMG from 11 ipsilateral lower limb muscles. We extracted motor modules representing relative weightings of synergistic muscle activations by non-negative matrix factorization from 20 consecutive gait cycles. Four motor modules were sufficient to accurately reconstruct the EMG signals in both TRD and OVG (average reconstruction quality = 92±3%). Furthermore, a good reconstruction quality (80±7%) was obtained also when muscle weightings of one condition (either OVG or TRD) were used to reconstruct the EMG data from the other condition. The peak amplitudes of activation signals showed a similar timing (pattern) across conditions. The magnitude of peak activation for the module related to initial contact was significantly greater for OVG, whereas peak activation for modules related to leg swing and preparation to landing were greater for TRD. We conclude that TRD and OVG share similar muscle weightings throughout motion. In addition, modular control for TRD and OVG is achieved with minimal temporal adjustments, which were dependent on the phase of the running cycle. PMID:27064978

  15. Modular Control of Treadmill vs Overground Running

    PubMed Central

    Farina, Dario; Kersting, Uwe Gustav

    2016-01-01

    Motorized treadmills have been widely used in locomotion studies, although a debate remains concerning the extrapolation of results obtained from treadmill experiments to overground locomotion. Slight differences between treadmill (TRD) and overground running (OVG) kinematics and muscle activity have previously been reported. However, little is known about differences in the modular control of muscle activation in these two conditions. Therefore, we aimed at investigating differences between motor modules extracted from TRD and OVG by factorization of multi-muscle electromyographic (EMG) signals. Twelve healthy men ran on a treadmill and overground at their preferred speed while we recorded tibial acceleration and surface EMG from 11 ipsilateral lower limb muscles. We extracted motor modules representing relative weightings of synergistic muscle activations by non-negative matrix factorization from 20 consecutive gait cycles. Four motor modules were sufficient to accurately reconstruct the EMG signals in both TRD and OVG (average reconstruction quality = 92±3%). Furthermore, a good reconstruction quality (80±7%) was obtained also when muscle weightings of one condition (either OVG or TRD) were used to reconstruct the EMG data from the other condition. The peak amplitudes of activation signals showed a similar timing (pattern) across conditions. The magnitude of peak activation for the module related to initial contact was significantly greater for OVG, whereas peak activation for modules related to leg swing and preparation to landing were greater for TRD. We conclude that TRD and OVG share similar muscle weightings throughout motion. In addition, modular control for TRD and OVG is achieved with minimal temporal adjustments, which were dependent on the phase of the running cycle. PMID:27064978

  16. Adjustments after an ankle dorsiflexion perturbation during human running.

    PubMed

    Scohier, M; De Jaeger, D; Schepens, B

    2012-01-01

    In this study we investigated the effect of a mechanical perturbation of unexpected timing during human running. With the use of a powered exoskeleton, we evoked a dorsiflexion of the right ankle during its swing phase while subjects ran on a treadmill. The perturbation resulted in an increase of the right ankle dorsiflexion of at least 5°. The first two as well as the next five steps after the perturbation were analyzed to observe the possible immediate and late biomechanical adjustments. In all cases subjects continued to run after the perturbation. The immediate adjustments were the greatest and the most frequent when the delay between the right ankle perturbation and the subsequent right foot touch-down was the shortest. For example, the vertical impact peak force was strongly modified on the first step after the perturbations and this adjustment was correlated to a right ankle angle still clearly modified at touch-down. Some late adjustments were observed in the subsequent steps predominantly occurring during left steps. Subjects maintained the step length and the step period as constant as possible by adjusting other step parameters in order to avoid stumbling and continue running at the speed imposed by the treadmill. To our knowledge, our experiments are the first to investigate perturbations of unexpected timing during human running. The results show that humans have a time-dependent, adapted strategy to maintain their running pattern. PMID:21872474

  17. Effects of graduated compression stockings on skin temperature after running.

    PubMed

    Priego Quesada, J I; Lucas-Cuevas, A G; Gil-Calvo, M; Giménez, J V; Aparicio, I; Cibrián Ortiz de Anda, R M; Salvador Palmer, R; Llana-Belloch, S; Pérez-Soriano, P

    2015-08-01

    High skin temperatures reduce the thermal gradient between the core and the skin and they can lead to a reduction in performance and increased risk of injury. Graduated compression stockings have become popular among runners in the last years and their use may influence the athlete's thermoregulation. The aim of this study was to investigate the effects of graduated compression stockings on skin temperature during running in a moderate indoor environment. Forty-four runners performed two running tests lasting 30min (10min of warm-up and 20min at 75% of their maximal aerobic speed) with and without graduated compressive stockings. Skin temperature was measured in 12 regions of interest on the lower limb by infrared thermography before and after running. Heart rate and perception of fatigue were assessed during the last minute of the running test. Compression stockings resulted in greater increase of temperature (p=0.002 and ES=2.2, 95% CI [0.11-0.45°C]) not only in the body regions in contact (tibialis anterior, ankle anterior and gastrocnemius) but also in the body regions that were not in contact with the garment (vastus lateralis, abductor and semitendinosus). No differences were observed between conditions in heart rate and perception of fatigue (p>0.05 and ES<0.8). In conclusion, running with graduated compression stockings produces a greater increase of skin temperature without modifying the athlete's heart rate and perception of fatigue.

  18. Evolution of electromyographic signal, running economy, and perceived exertion during different prolonged exercises.

    PubMed

    Hausswirth, C; Brisswalter, J; Vallier, J M; Smith, D; Lepers, R

    2000-08-01

    The purpose of this study was to compare the electromyographic (EMG) signal of the vastus lateralis muscle obtained during a run section of a triathlon and at the end of a prolonged run performed at the same running velocity. Seven subjects were studied on three occasions: a 2 h 15 min triathlon (30 min swimming, 60 min cycling, and 45 min treadmill running at 75% of the maximal aerobic speed), a 2 h 15 min run, where the last 45 min (Prolonged Run, PR) were run at the same speed as the Triathlon Run (TR) on a motorized treadmill, and a 45 min Isolated Run (IR) performed at the same TR and PR velocity. The three experimental trials were randomised. Oxygen uptake (VO2), heart rate (HR), and EMG data were recorded during the three run sections. The results confirm a greater VO2 and HR during PR compared with IR (P<0.01) and TR (P<0.05). Also the VO2 values obtained during TR were significantly greater compared to IR (P < 0.05). EMG signal, obtained from the vastus lateralis muscle during 4 sec of isometric contraction at 35 % of maximal voluntary contraction (MVC), showed that after PR the mean power frequency (MPF) shifted significantly to lower frequencies (P<0.01) compared with MPF recorded before the prolonged run. Moreover, the signal amplitude (RMS) was increased significantly after PR in comparison to pre-trial (P < 0.01). Similar results were obtained for the TR at P < 0.05. The integrated EMG flow, QIEMG (iEMG/burst duration), recorded during all run sections, was significantly increased near the end of PR (i.e. 2 h 10 min of running) compared with QiEMG recorded after 1 h 30 min of running. No significant increase in QiEMG was observed with TR and IR situations. The results suggest that a long exercise bout of running led to a greater increase in muscle fatigue compared with a triathlon or an isolated run performed at the same running speed. In addition it is suggested that the rating of perceived exertion recorded during isometric contractions is a good

  19. What Keeps Us on the Run?

    ERIC Educational Resources Information Center

    McCutcheon, Lynn

    Running is a popular form of exercise which people do for different reasons. Competitive runners (N=99) and noncompetitive runners (N=28) responded to a survey of 10 reasons for running by choosing their most important reasons for running. Subjects also indicated their age, sex, how long they had been running, their average weekly mileage, how…

  20. Physiologic Responses to Treadmill and Water Running.

    ERIC Educational Resources Information Center

    Bishop, Phillip A.; And Others

    1989-01-01

    Presents results of a study of the physiological responses of uninjured runners to running on a treadmill and in water. Water running may lessen an injured athlete's rate of deconditioning, but indications are that the metabolic cost of water running is not significantly greater than that of treadmill running. (SM)

  1. Preventing Running Injuries through Barefoot Activity

    ERIC Educational Resources Information Center

    Hart, Priscilla M.; Smith, Darla R.

    2008-01-01

    Running has become a very popular lifetime physical activity even though there are numerous reports of running injuries. Although common theories have pointed to impact forces and overpronation as the main contributors to chronic running injuries, the increased use of cushioning and orthotics has done little to decrease running injuries. A new…

  2. Evaluation of model predictive control in run-to-run processing in semiconductor manufacturing

    NASA Astrophysics Data System (ADS)

    Mullins, James A.; Campbell, W. J.; Stock, Allen D.

    1997-08-01

    Many steps in the manufacturing of semiconductors offer no opportunity for real-time measurement of the wafer state, necessitating the use of pre- and post-process measurements of the wafer state in a run-to-run control algorithm. The predominant algorithm in the industry is an extended form of SPC using an EWMA filter to adjust a model parameter vector using the available measurements. This paper evaluates the merits of using an optimal discrete controller relying on a discrete-time constrained state-space process model that incorporates feedforward action using the pre-process measurement and feedback using the post-process measurement, accounts for the process statistics using a noise model and optimal filtering theory, and ensures integral action in the controller by estimating unmeasured disturbances. Comparison to the EWMA algorithm are presented using simulations based on actual plant data from a chemical-mechanical polishing application. The polish process is particularly suitable for the application of such a controller because of the natural method the controller provides for incorporating unmeasured disturbances, like pad and slurry changes, in the control action.

  3. GASIFICATION TEST RUN TC06

    SciTech Connect

    Southern Company Services, Inc.

    2003-08-01

    This report discusses test campaign TC06 of the Kellogg Brown & Root, Inc. (KBR) Transport Reactor train with a Siemens Westinghouse Power Corporation (Siemens Westinghouse) particle filter system at the Power Systems Development Facility (PSDF) located in Wilsonville, Alabama. The Transport Reactor is an advanced circulating fluidized-bed reactor designed to operate as either a combustor or a gasifier using a particulate control device (PCD). The Transport Reactor was operated as a pressurized gasifier during TC06. Test run TC06 was started on July 4, 2001, and completed on September 24, 2001, with an interruption in service between July 25, 2001, and August 19, 2001, due to a filter element failure in the PCD caused by abnormal operating conditions while tuning the main air compressor. The reactor temperature was varied between 1,725 and 1,825 F at pressures from 190 to 230 psig. In TC06, 1,214 hours of solid circulation and 1,025 hours of coal feed were attained with 797 hours of coal feed after the filter element failure. Both reactor and PCD operations were stable during the test run with a stable baseline pressure drop. Due to its length and stability, the TC06 test run provided valuable data necessary to analyze long-term reactor operations and to identify necessary modifications to improve equipment and process performance as well as progressing the goal of many thousands of hours of filter element exposure.

  4. Running Jobs in the Vacuum

    NASA Astrophysics Data System (ADS)

    McNab, A.; Stagni, F.; Ubeda Garcia, M.

    2014-06-01

    We present a model for the operation of computing nodes at a site using Virtual Machines (VMs), in which VMs are created and contextualized for experiments by the site itself. For the experiment, these VMs appear to be produced spontaneously "in the vacuum" rather having to ask the site to create each one. This model takes advantage of the existing pilot job frameworks adopted by many experiments. In the Vacuum model, the contextualization process starts a job agent within the VM and real jobs are fetched from the central task queue as normal. An implementation of the Vacuum scheme, Vac, is presented in which a VM factory runs on each physical worker node to create and contextualize its set of VMs. With this system, each node's VM factory can decide which experiments' VMs to run, based on site-wide target shares and on a peer-to-peer protocol in which the site's VM factories query each other to discover which VM types they are running. A property of this system is that there is no gate keeper service, head node, or batch system accepting and then directing jobs to particular worker nodes, avoiding several central points of failure. Finally, we describe tests of the Vac system using jobs from the central LHCb task queue, using the same contextualization procedure for VMs developed by LHCb for Clouds.

  5. Running: Improving Form to Reduce Injuries.

    PubMed

    2015-08-01

    Running is often perceived as a good option for "getting into shape," with little thought given to the form, or mechanics, of running. However, as many as 79% of all runners will sustain a running-related injury during any given year. If you are a runner-casual or serious-you should be aware that poor running mechanics may contribute to these injuries. A study published in the August 2015 issue of JOSPT reviewed the existing research to determine whether running mechanics could be improved, which could be important in treating running-related injuries and helping injured runners return to pain-free running.

  6. Inter-segment foot kinematics during cross-slope running.

    PubMed

    Dixon, Philippe C; Tisseyre, Magali; Damavandi, Mohsen; Pearsall, David J

    2011-04-01

    Cross-slopes are a common terrain characteristic, however there is no biomechanical knowledge of the intra-foot adaptations required for running on these surface inclinations. The purpose of this study was to evaluate the kinematic changes induced within the foot while running on a transversely inclined surface. A three-segment foot model distinguishing between the hindfoot, forefoot, and hallux was used for this purpose. Nine healthy experienced male runners volunteered to perform level (0°) and cross-slope (10°) running trials barefoot at a moderate speed. Multivariate analysis of variance (MANOVA) for repeated measures was used to analyze the kinematics of the hindfoot with respect to tibia (HF/TB), forefoot with respect to hindfoot (FF/HF), and hallux with respect to forefoot (HX/FF) during level running (LR), incline running up-slope (IRU), and incline running down-slope (IRD) conditions. In the sagittal plane, the FF/HF angle showed greater dorsiflexion at peak vertical force production (MaxFz) in IRD compared to LR (p=0.042). The HX/FF was significantly more extended during IRU than LR at foot strike (p=0.027). More importantly, frontal plane asymmetries were also found. HF/TB angles revealed greater inversion at foot strike followed by greater eversion at MaxFz for IRU compared to IRD (p=0.042 and p=0.018, respectively). For the FF/HF angle, maximum eversion was greater during IRD than LR (p=0.035). Data suggests that running on cross-slopes can induce substantial intra-foot kinematic adaptations, whether this represents a risk of injury to both recreational and professional runners remains to be determined.

  7. High speed machining of space shuttle external tank liquid hydrogen barrel panel

    NASA Technical Reports Server (NTRS)

    Hankins, J. D.

    1983-01-01

    Actual and projected optimum High Speed Machining data for producing shuttle external tank liquid hydrogen barrel panels of aluminum alloy 2219-T87 are reported. The data included various machining parameters; e.g., spindle speeds, cutting speed, table feed, chip load, metal removal rate, horsepower, cutting efficiency, cutter wear (lack of) and chip removal methods.

  8. Lower limb mechanics during moderate high-heel jogging and running in different experienced wearers.

    PubMed

    Fu, Fengqin; Zhang, Yan; Shu, Yang; Ruan, Guoqing; Sun, Jianjun; Baker, Julien; Gu, Yaodong

    2016-08-01

    The aim of this study is to investigate the differences in lower limb kinematics and kinetics between experienced (EW) and inexperienced (IEW) moderate high-heel wearers during jogging and running. Eleven experienced female wearers of moderate high-heel shoes and eleven matched controls participated in jogging and running tests. A Vicon motion analysis system was used to capture kinematic data and a Kistler force platform was used to collect ground reaction force (GRF). There were no significant differences in jogging and running speed respectively. Compared with IEW, EW adopted larger stride length (SL) with lower stride frequency (SF) at each corresponding speed. During running, EW enlarged SL significantly while IEW increased both SL and SF significantly. Kinematic data showed that IEW had generally larger joint range of motion (ROM) and peak angles during stance phase. Speed effect was not obvious within IEW. EW exhibited a significantly increased maximal vertical GRF (Fz2) and vertical average loading rate (VALR) during running, which was potentially caused by overlong stride. These suggest that both EW and IEW are at high risk of joint injuries when running on moderate high heels. For wearers who have to do some running on moderate high heels, it is crucial to control joint stability and balance SL and SF consciously.

  9. Treadmill vs. overground running gait during childhood: a qualitative and quantitative analysis.

    PubMed

    Rozumalski, Adam; Novacheck, Tom F; Griffith, Chad J; Walt, Katie; Schwartz, Michael H

    2015-02-01

    Conventional gait labs are limited in their ability to study running gait due to their size. There is no consensus in the literature regarding the ability to extrapolate results for adult treadmill running to overground. This comparison has not been studied in children. Twenty-four healthy children (mean age 11.7) ran overground at a slow running speed while motion capture, ground reaction force, and surface electromyography (EMG) data were obtained. The same data were then collected while participants ran for 6min on an instrumented treadmill at a speed similar to their overground speed. The kinematic, kinetic, and EMG data for overground and treadmill running were compared. Sagittal plane kinematics demonstrated similar hip and knee waveforms with the exception of more knee extension just before toe off. Ankle kinematic waveforms were similar during stance phase but treadmill running demonstrated decreased dorsiflexion during swing. Kinetic data was significantly different between the two conditions with treadmill running having a more anterior ground reaction force compared to overground. Due to the numerous differences between overground and treadmill gait demonstrated in this study, it is felt that the use of an instrumented treadmill is not a surrogate to the study of overground running in a pediatric population. This data set will function as a normative data set against which future treadmill studies can be compared.

  10. Lower limb mechanics during moderate high-heel jogging and running in different experienced wearers.

    PubMed

    Fu, Fengqin; Zhang, Yan; Shu, Yang; Ruan, Guoqing; Sun, Jianjun; Baker, Julien; Gu, Yaodong

    2016-08-01

    The aim of this study is to investigate the differences in lower limb kinematics and kinetics between experienced (EW) and inexperienced (IEW) moderate high-heel wearers during jogging and running. Eleven experienced female wearers of moderate high-heel shoes and eleven matched controls participated in jogging and running tests. A Vicon motion analysis system was used to capture kinematic data and a Kistler force platform was used to collect ground reaction force (GRF). There were no significant differences in jogging and running speed respectively. Compared with IEW, EW adopted larger stride length (SL) with lower stride frequency (SF) at each corresponding speed. During running, EW enlarged SL significantly while IEW increased both SL and SF significantly. Kinematic data showed that IEW had generally larger joint range of motion (ROM) and peak angles during stance phase. Speed effect was not obvious within IEW. EW exhibited a significantly increased maximal vertical GRF (Fz2) and vertical average loading rate (VALR) during running, which was potentially caused by overlong stride. These suggest that both EW and IEW are at high risk of joint injuries when running on moderate high heels. For wearers who have to do some running on moderate high heels, it is crucial to control joint stability and balance SL and SF consciously. PMID:27101561

  11. Soft tissues store and return mechanical energy in human running.

    PubMed

    Riddick, R C; Kuo, A D

    2016-02-01

    During human running, softer parts of the body may deform under load and dissipate mechanical energy. Although tissues such as the heel pad have been characterized individually, the aggregate work performed by all soft tissues during running is unknown. We therefore estimated the work performed by soft tissues (N=8 healthy adults) at running speeds ranging 2-5 m s(-1), computed as the difference between joint work performed on rigid segments, and whole-body estimates of work performed on the (non-rigid) body center of mass (COM) and peripheral to the COM. Soft tissues performed aggregate negative work, with magnitude increasing linearly with speed. The amount was about -19 J per stance phase at a nominal 3 m s(-1), accounting for more than 25% of stance phase negative work performed by the entire body. Fluctuations in soft tissue mechanical power over time resembled a damped oscillation starting at ground contact, with peak negative power comparable to that for the knee joint (about -500 W). Even the positive work from soft tissue rebound was significant, about 13 J per stance phase (about 17% of the positive work of the entire body). Assuming that the net dissipative work is offset by an equal amount of active, positive muscle work performed at 25% efficiency, soft tissue dissipation could account for about 29% of the net metabolic expenditure for running at 5 m s(-1). During running, soft tissue deformations dissipate mechanical energy that must be offset by active muscle work at non-negligible metabolic cost. PMID:26806689

  12. BMI, a Performance Parameter for Speed Improvement

    PubMed Central

    Sedeaud, Adrien; Marc, Andy; Marck, Adrien; Dor, Frédéric; Schipman, Julien; Dorsey, Maya; Haida, Amal; Berthelot, Geoffroy; Toussaint, Jean-François

    2014-01-01

    The purpose of this study is to investigate the association between anthropometric characteristics and performance in all track and field running events and assess Body Mass Index (BMI) as a relevant performance indicator. Data of mass, height, BMI and speed were collected for the top 100 international men athletes in track events from 100 m to marathon for the 1996–2011 seasons, and analyzed by decile of performance. Speed is significantly associated with mass (r = 0.71) and BMI (r = 0.71) in world-class runners and moderately with height (r = 0.39). Athletes, on average were continuously lighter and smaller with distance increments. In track and field, speed continuously increases with BMI. In each event, performances are organized through physique gradients. «Lighter and smaller is better» in endurance events but «heavier and taller is better» for sprints. When performance increases, BMI variability progressively tightens, but it is always centered around a distance-specific optimum. Running speed is organized through biometric gradients, which both drives and are driven by performance optimization. The highest performance level is associated with narrower biometric intervals. Through BMI indicators, diversity is possible for sprints whereas for long distance events, there is a more restrictive aspect in terms of physique. BMI is a relevant indicator, which allows for a clear differentiation of athletes' capacities between each discipline and level of performance in the fields of human possibilities. PMID:24587266

  13. Air resistance measurements on actual airplane parts

    NASA Technical Reports Server (NTRS)

    Weiselsberger, C

    1923-01-01

    For the calculation of the parasite resistance of an airplane, a knowledge of the resistance of the individual structural and accessory parts is necessary. The most reliable basis for this is given by tests with actual airplane parts at airspeeds which occur in practice. The data given here relate to the landing gear of a Siemanms-Schuckert DI airplane; the landing gear of a 'Luftfahrzeug-Gesellschaft' airplane (type Roland Dlla); landing gear of a 'Flugzeugbau Friedrichshafen' G airplane; a machine gun, and the exhaust manifold of a 269 HP engine.

  14. Explosive Percolation Transition is Actually Continuous

    NASA Astrophysics Data System (ADS)

    da Costa, R. A.; Dorogovtsev, S. N.; Goltsev, A. V.; Mendes, J. F. F.

    2010-12-01

    Recently a discontinuous percolation transition was reported in a new “explosive percolation” problem for irreversible systems [D. Achlioptas, R. M. D’Souza, and J. Spencer, Science 323, 1453 (2009)SCIEAS0036-807510.1126/science.1167782] in striking contrast to ordinary percolation. We consider a representative model which shows that the explosive percolation transition is actually a continuous, second order phase transition though with a uniquely small critical exponent of the percolation cluster size. We describe the unusual scaling properties of this transition and find its critical exponents and dimensions.

  15. High speed handpieces

    PubMed Central

    Bhandary, Nayan; Desai, Asavari; Shetty, Y Bharath

    2014-01-01

    High speed instruments are versatile instruments used by clinicians of all specialties of dentistry. It is important for clinicians to understand the types of high speed handpieces available and the mechanism of working. The centers for disease control and prevention have issued guidelines time and again for disinfection and sterilization of high speed handpieces. This article presents the recent developments in the design of the high speed handpieces. With a view to prevent hospital associated infections significant importance has been given to disinfection, sterilization & maintenance of high speed handpieces. How to cite the article: Bhandary N, Desai A, Shetty YB. High speed handpieces. J Int Oral Health 2014;6(1):130-2. PMID:24653618

  16. Vehicle speed control system

    SciTech Connect

    Yoshida, D.; Tanno, T.; Fukunaga, T.

    1987-06-16

    This patent describes a vehicle speed control system for performing vehicle speed control by controlling the displacement of at least one of a hydraulic pump and a hydraulic motor of a hydraulic transmission through an electric servo device, comprising: vehicle speed setting means for generating a voltage signal corresponding to a vehicle speed to be set; compensating means interposed between the vehicle speed setting means and the electric servo device, the compensating means comprising a first delay element; and second delay element having a response characteristic slower than that of the first delay element. A selecting means for judging as to whether a voltage signal changed by the operation of the vehicle speed setting means represents an acceleration command or a deceleration command and for selecting the first delay element when the voltage signal represents an acceleration command and for selecting the second delay element when the voltage signal represents a deceleration command.

  17. Sequential control by speed drive for ac motor

    NASA Astrophysics Data System (ADS)

    Barsoum, Nader

    2012-11-01

    The speed drive for ac motor is widely used in the industrial field to allow direct control for the speed and torque without any feedback from the motor shaft. By using the ABB ACS800 speed drive unit, the speed and torque can be controlled using sequential control method. Sequential control is one of the application control method provided in the ABB ACS800 Drive, where a set of events or action performed in a particular order one after the other to control the speed and torque of the ac motor. It was claimed that sequential control method is using the preset seven constant speeds being provided in ABB ACS800 drive to control the speed and torque in a continuous and sequential manner. The characteristics and features of controlling the speed and torque using sequential control method can be investigated by observing the graphs and curves plotted which are obtained from the practical result. Sequential control can run either in the Direct Torque Control (DTC) or Scalar motor control mode. By using sequential control method, the ABB ACS800 drive can be programmed to run the motor automatically according to the time setting of the seven preset constant speeds. Besides, the intention of this project is to generate a new form of the experimental set up.

  18. 'What price speed', revisited

    NASA Astrophysics Data System (ADS)

    Teitler, S.; Proodian, R. E.

    1980-02-01

    An attempt is made to examine fuel transport effectiveness as a function of vehicle cruise velocity, when studying limits in speed beyond which a particular form of locomotion becomes inefficient and economically unattractive. Attention is given to the Dix-Riddell relationship and to the specific fuel energy expenditure ratio. It is concluded that for each value of speed at which useful work is carried out, there is an experiential maximum that sets the standard for fuel transport effectiveness at that speed.

  19. Leg-adjustment strategies for stable running in three dimensions.

    PubMed

    Peuker, Frank; Maufroy, Christophe; Seyfarth, André

    2012-09-01

    The dynamics of the center of mass (CoM) in the sagittal plane in humans and animals during running is well described by the spring-loaded inverted pendulum (SLIP). With appropriate parameters, SLIP running patterns are stable, and these models can recover from perturbations without the need for corrective strategies, such as the application of additional forces. Rather, it is sufficient to adjust the leg to a fixed angle relative to the ground. In this work, we consider the extension of the SLIP to three dimensions (3D SLIP) and investigate feed-forward strategies for leg adjustment during the flight phase. As in the SLIP model, the leg is placed at a fixed angle. We extend the scope of possible reference axes from only fixed horizontal and vertical axes to include the CoM velocity vector as a movement-related reference, resulting in six leg-adjustment strategies. Only leg-adjustment strategies that include the CoM velocity vector produced stable running and large parameter domains of stability. The ability of the model to recover from perturbations along the direction of motion (directional stability) depended on the strategy for lateral leg adjustment. Specifically, asymptotic and neutral directional stability was observed for strategies based on the global reference axis and the velocity vector, respectively. Additional features of velocity-based leg adjustment are running at arbitrary low speed (kinetic energy) and the emergence of large domains of stable 3D running that are smoothly transferred to 2D SLIP stability and even to 1D SLIP hopping. One of the additional leg-adjustment strategies represented a large convex region of parameters where stable and robust hopping and running patterns exist. Therefore, this strategy is a promising candidate for implementation into engineering applications, such as robots, for instance. In a preliminary comparison, the model predictions were in good agreement with the experimental data, suggesting that the 3D SLIP is an

  20. 46 CFR 154.1864 - Vessel speed within speed reduction.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Vessel speed within speed reduction. 154.1864 Section... Vessel speed within speed reduction. The master shall ensure that the speed of the vessel is not greater than the posted speed reduction....

  1. 46 CFR 154.1864 - Vessel speed within speed reduction.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Vessel speed within speed reduction. 154.1864 Section... Vessel speed within speed reduction. The master shall ensure that the speed of the vessel is not greater than the posted speed reduction....

  2. 46 CFR 154.1864 - Vessel speed within speed reduction.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Vessel speed within speed reduction. 154.1864 Section... Vessel speed within speed reduction. The master shall ensure that the speed of the vessel is not greater than the posted speed reduction....

  3. 46 CFR 154.1864 - Vessel speed within speed reduction.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Vessel speed within speed reduction. 154.1864 Section... Vessel speed within speed reduction. The master shall ensure that the speed of the vessel is not greater than the posted speed reduction....

  4. 46 CFR 154.1864 - Vessel speed within speed reduction.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Vessel speed within speed reduction. 154.1864 Section... Vessel speed within speed reduction. The master shall ensure that the speed of the vessel is not greater than the posted speed reduction....

  5. Run and tumble, run and reverse, or run reverse and flick - who wins the chemotaxis race?

    NASA Astrophysics Data System (ADS)

    Zaburdaev, Vasily; Denisov, Sergey; Weitz, David

    2012-02-01

    Run and tumble of E.coli bacteria is a well understood example of the stochastic cell motion that is alternated in the presence of signaling chemicals. By regulating the tumbling frequency bacteria are able to navigate toward the food sources. Another bacteria that use twitching to move on a surface, M. xanthus, utilize a different strategy - at the end of the run they completely reverse the direction of motion and continue moving in the opposite direction. The frequency of reversals was shown to be connected to the chemotactic response of the cell. Recently yet another pattern was discovered in marine bacteria V. alginolyticus which alternate sharp reversals with flicks -- making a turn to an angle with a broad distribution and centered around 90 degrees. In this work we are presenting a theoretical framework that describes all above motion patterns. As a highlight of the developed approach we find the exact analytical expressions for the mean squared displacement of moving cells for arbitrary distribution of run times. That allows us to quantitatively compare the performance of bacteria exploring the environment with and without signaling chemicals and, therefore, to find the winner of the chemotactic race.

  6. Joint-level mechanics of the walk-to-run transition in humans.

    PubMed

    Pires, Neville J; Lay, Brendan S; Rubenson, Jonas

    2014-10-01

    Two commonly proposed mechanical explanations for the walk-to-run transition (WRT) include the prevention of muscular over-exertion (effort) and the minimization of peak musculoskeletal loads and thus injury risk. The purpose of this study was to address these hypotheses at a joint level by analysing the effect of speed on discrete lower-limb joint kinetic parameters in humans across a wide range of walking and running speeds including walking above and running below the WRT speed. Joint work, peak instantaneous joint power, and peak joint moments in the sagittal and frontal plane of the ankle, knee and hip from eight participants were collected for 10 walking speeds (30-120% of their WRT) and 10 running speeds (80-170% of their WRT) on a force plate instrumented treadmill. Of the parameters analysed, three satisfied our statistical criteria of the 'effort-load' hypothesis of the WRT. Mechanical parameters that provide an acute signal (peak moment and peak power) were more strongly associated with the gait transition than parameters that reflect the mechanical function across a portion of the stride. We found that both the ankle (peak instantaneous joint power during swing) and hip mechanics (peak instantaneous joint power and peak joint moments in stance) can influence the transition from walking to running in human locomotion and may represent a cascade of mechanical events beginning at the ankle and leading to an unfavourable compensation at the hip. Both the ankle and hip mechanisms may contribute to gait transition by lowering the muscular effort of running compared with walking at the WRT speed. Although few of the examined joint variables satisfied our hypothesis of the WRT, most showed a general marked increase when switching from walking to running across all speeds where both walking and running are possible, highlighting the fundamental differences in the mechanics of walking and running. While not eliciting the WRT per se, these variables may initiate

  7. Nonintrusive shaft speed sensor

    NASA Technical Reports Server (NTRS)

    Barkhoudarian, S.; Wyett, L.; Maram, J.

    1985-01-01

    Reusable rocket engines such as the Space Shuttle Main Engines (SSME), the Orbital Transfer Vehicles (OTV), etc., have throttling capabilities that require real-time, closed-loop control systems of engine propellant flows, combustion temperatures and pressures, and turbopump rotary speeds. In the case of the SSME, there are four turbopumps that require real-time measurement and control of their rotary speeds. Variable-reluctance magnetic speed sensors were designed, fabricated, and tested for all four turbopumps, resulting in the successful implementation and operation of three of these speed sensors during each of the 12 Shuttle flights.

  8. Extending the theory of dash running.

    PubMed

    Senator, M

    1982-08-01

    I extend the theory of dash running by allowing resisting force to be proportional to any positive power of speed and by allowing the runner to be tractive-force-limited at the beginning of the dash and developable-force-limited subsequently. I solve the equation of motion and express the maximum value of developable force as a function of limiting dash velocity, resisting-force/velocity exponent, and indoor and outdoor-track asymptotic intercept times (the intercepts with the time axis of asymptotic lines that are fitted to the distance-time curves) and limiting tractive coefficients. For a 20-yr-mean world record limiting dash velocity of 10.33 m/s and indoor and outdoor asymptotic intercept times of 0.617 and 0.265 s, I find that a composite dash world record holder is tractive-force-limited on indoor tracks, that limiting indoor tractive coefficient is about 0.9, and that the maximum value of developable force exceeds 2.0 times the record holder's weight.

  9. Spring-mass behaviour during the run of an international triathlon competition.

    PubMed

    Le Meur, Y; Thierry, B; Rabita, G; Dorel, S; Honnorat, G; Brisswalter, J; Hausswirth, C

    2013-08-01

    We investigated the changes in step temporal parameters and spring-mass behaviour during the running phase of a major international triathlon competition. 73 elite triathletes were followed during the 2011 World Championships Grand Final. The running speed, ground contact and flight times were assessed over a 30 m flat section at the beginning of the 4 running laps and towards the finish line, by using a high-frequency camera (300 Hz). The leg and vertical stiffness, and vertical displacement of the mass centre were calculated from step temporal characteristics. A concomitant decrease in running speed, vertical stiffness and leg stiffness was reported during the 4 running laps, except towards the finish line, where these parameters increased. Running biomechanics was not affected between the beginning and the end of the 10 km run, when triathletes were compared for the same running speed (1.68±0.16 m vs. 1.70±0.17 m for step length, 3.18±0.11 Hz vs. 3.16±0.15 Hz for step rate, 12.87±3.14 kN.m - 1 vs.12.76±3.05 kN.m - 1 for Kleg, 31.18±4.71 kN.m - 1 vs.30.74±3.88 kN.m - 1 for Kvert, at lap1 and finish, respectively). Multiple regression models revealed that both step rate change and step length change were correlated with running speed change and that the standardized partial regression coefficient was higher for step length change than for step rate. Independent of the cofounding effect of speed and despite the neuromuscular fatigue previously shown after long-duration events, the lower limb mechanical stiffness and the overall spring-mass regulation were not altered over the 10 km triathlon run in elite competitors. This study showed also that step length explained, to a greater extent than step frequency, the running speed variance in elite triathletes.

  10. Variable current speed controller for eddy current motors

    DOEpatents

    Gerth, H.L.; Bailey, J.M.; Casstevens, J.M.; Dixon, J.H.; Griffith, B.O.; Igou, R.E.

    1982-03-12

    A speed control system for eddy current motors is provided in which the current to the motor from a constant frequency power source is varied by comparing the actual motor speed signal with a setpoint speed signal to control the motor speed according to the selected setpoint speed. A three-phase variable voltage autotransformer is provided for controlling the voltage from a three-phase power supply. A corresponding plurality of current control resistors is provided in series with each phase of the autotransformer output connected to inputs of a three-phase motor. Each resistor is connected in parallel with a set of normally closed contacts of plurality of relays which are operated by control logic. A logic circuit compares the selected speed with the actual motor speed obtained from a digital tachometer monitoring the motor spindle speed and operated the relays to add or substract resistance equally in each phase of the motor input to vary the motor current to control the motor at the selected speed.

  11. Variable Joint Elasticities in Running

    NASA Astrophysics Data System (ADS)

    Peter, Stephan; Grimmer, Sten; Lipfert, Susanne W.; Seyfarth, Andre

    In this paper we investigate how spring-like leg behavior in human running is represented at joint level. We assume linear torsion springs in the joints and between the knee and the ankle joint. Using experimental data of the leg dynamics we compute how the spring parameters (stiffness and rest angles) change during gait cycle. We found that during contact the joints reveal elasticity with strongly changing parameters and compare the changes of different parameters for different spring arrangements. The results may help to design and improve biologically inspired spring mechanisms with adjustable parameters.

  12. Method for compression of data using single pass LZSS and run-length encoding

    DOEpatents

    Berlin, Gary J.

    1997-01-01

    A method used preferably with LZSS-based compression methods for compressing a stream of digital data. The method uses a run-length encoding scheme especially suited for data strings of identical data bytes having large run-lengths, such as data representing scanned images. The method reads an input data stream to determine the length of the data strings. Longer data strings are then encoded in one of two ways depending on the length of the string. For data strings having run-lengths less than 18 bytes, a cleared offset and the actual run-length are written to an output buffer and then a run byte is written to the output buffer. For data strings of 18 bytes or longer, a set offset and an encoded run-length are written to the output buffer and then a run byte is written to the output buffer. The encoded run-length is written in two parts obtained by dividing the run length by a factor of 255. The first of two parts of the encoded run-length is the quotient; the second part is the remainder. Data bytes that are not part of data strings of sufficient length are written directly to the output buffer.

  13. Method for compression of data using single pass LZSS and run-length encoding

    DOEpatents

    Berlin, G.J.

    1994-01-01

    A method used preferably with LZSS-based compression methods for compressing a stream of digital data. The method uses a run-length encoding scheme especially suited for data strings of identical data bytes having large run-lengths, such as data representing scanned images. The method reads an input data stream to determine the length of the data strings. Longer data strings are then encoded in one of two ways depending on the length of the string. For data strings having run-lengths less than 18 bytes, a cleared offset and the actual run-length are written to an output buffer and then a run byte is written to the output buffer. For data strings of 18 bytes or longer, a set offset and an encoded run-length are written to the output buffer and then a run byte is written to the output buffer. The encoded run-length is written in two parts obtained by dividing the run length by a factor of 255. The first of two parts of the encoded run-length is the quotient; the second part is the remainder. Data bytes that are not part of data strings of sufficient length are written directly to the output buffer.

  14. Method for compression of data using single pass LZSS and run-length encoding

    DOEpatents

    Berlin, G.J.

    1997-12-23

    A method used preferably with LZSS-based compression methods for compressing a stream of digital data is disclosed. The method uses a run-length encoding scheme especially suited for data strings of identical data bytes having large run-lengths, such as data representing scanned images. The method reads an input data stream to determine the length of the data strings. Longer data strings are then encoded in one of two ways depending on the length of the string. For data strings having run-lengths less than 18 bytes, a cleared offset and the actual run-length are written to an output buffer and then a run byte is written to the output buffer. For data strings of 18 bytes or longer, a set offset and an encoded run-length are written to the output buffer and then a run byte is written to the output buffer. The encoded run-length is written in two parts obtained by dividing the run length by a factor of 255. The first of two parts of the encoded run-length is the quotient; the second part is the remainder. Data bytes that are not part of data strings of sufficient length are written directly to the output buffer. 3 figs.

  15. Current issues in the design of running and court shoes.

    PubMed

    Reinschmidt, C; Nigg, B M

    2000-09-01

    This review paper focuses on the three most important functional design factors for sport shoes: injury prevention, performance and comfort. Concepts for these design factors are discussed for running and court shoes. For running shoes, pronation control and cushioning are still considered to be the key concepts for injury prevention despite the fact that conclusive clinical and epidemiological evidence is missing to show the efficacy of these design strategies. Several design features have been proposed to be effective in controlling the amount of pronation. However, the kinematic effects of such features seem to be subject-specific and rather small especially when looking at the actual skeletal motion. Recent running shoe research suggests that cushioning may not or only marginally be related to injuries and that cushioning during the impact phase of running may be more related to aspects such as comfort, muscle tuning or fatigue. For court shoes, lateral stability, torsional flexibility, cushioning and traction control appear to be important design strategies to decrease the risk of injury. With respect to running performance, the shoe concepts of weight reduction, efficiency and energy return are discussed. The concept of energy return does not seem to be a feasible concept whereas concepts which aim to minimize energy loss appear to be more promising and successful, e.g. weight reduction, reduction of muscle energy required for stabilization. For court shoes, optimal traction seems to be the key factor for performance. Research in the area of shoe comfort is still sparse. Cushioning, fitting and climate concepts appear to improve the comfort of both running and court shoes. Many investigations in the area of sport shoe research have shown that subject-specific responses can be expected. Different groups of athletes may require different types of shoes. The definition of these grouping characteristics and their design needs seem to be the most important

  16. Current issues in the design of running and court shoes.

    PubMed

    Reinschmidt, C; Nigg, B M

    2000-09-01

    This review paper focuses on the three most important functional design factors for sport shoes: injury prevention, performance and comfort. Concepts for these design factors are discussed for running and court shoes. For running shoes, pronation control and cushioning are still considered to be the key concepts for injury prevention despite the fact that conclusive clinical and epidemiological evidence is missing to show the efficacy of these design strategies. Several design features have been proposed to be effective in controlling the amount of pronation. However, the kinematic effects of such features seem to be subject-specific and rather small especially when looking at the actual skeletal motion. Recent running shoe research suggests that cushioning may not or only marginally be related to injuries and that cushioning during the impact phase of running may be more related to aspects such as comfort, muscle tuning or fatigue. For court shoes, lateral stability, torsional flexibility, cushioning and traction control appear to be important design strategies to decrease the risk of injury. With respect to running performance, the shoe concepts of weight reduction, efficiency and energy return are discussed. The concept of energy return does not seem to be a feasible concept whereas concepts which aim to minimize energy loss appear to be more promising and successful, e.g. weight reduction, reduction of muscle energy required for stabilization. For court shoes, optimal traction seems to be the key factor for performance. Research in the area of shoe comfort is still sparse. Cushioning, fitting and climate concepts appear to improve the comfort of both running and court shoes. Many investigations in the area of sport shoe research have shown that subject-specific responses can be expected. Different groups of athletes may require different types of shoes. The definition of these grouping characteristics and their design needs seem to be the most important

  17. The Effects of a Duathlon Simulation on Ventilatory Threshold and Running Economy

    PubMed Central

    Berry, Nathaniel T.; Wideman, Laurie; Shields, Edgar W.; Battaglini, Claudio L.

    2016-01-01

    Multisport events continue to grow in popularity among recreational, amateur, and professional athletes around the world. This study aimed to determine the compounding effects of the initial run and cycling legs of an International Triathlon Union (ITU) Duathlon simulation on maximal oxygen uptake (VO2max), ventilatory threshold (VT) and running economy (RE) within a thermoneutral, laboratory controlled setting. Seven highly trained multisport athletes completed three trials; Trial-1 consisted of a speed only VO2max treadmill protocol (SOVO2max) to determine VO2max, VT, and RE during a single-bout run; Trial-2 consisted of a 10 km run at 98% of VT followed by an incremental VO2max test on the cycle ergometer; Trial-3 consisted of a 10 km run and 30 km cycling bout at 98% of VT followed by a speed only treadmill test to determine the compounding effects of the initial legs of a duathlon on VO2max, VT, and RE. A repeated measures ANOVA was performed to determine differences between variables across trials. No difference in VO2max, VT (%VO2max), maximal HR, or maximal RPE was observed across trials. Oxygen consumption at VT was significantly lower during Trial-3 compared to Trial-1 (p = 0.01). This decrease was coupled with a significant reduction in running speed at VT (p = 0.015). A significant interaction between trial and running speed indicate that RE was significantly altered during Trial-3 compared to Trial-1 (p < 0.001). The first two legs of a laboratory based duathlon simulation negatively impact VT and RE. Our findings may provide a useful method to evaluate multisport athletes since a single-bout incremental treadmill test fails to reveal important alterations in physiological thresholds. Key points Decrease in relative oxygen uptake at VT (ml·kg-1·min-1) during the final leg of a duathlon simulation, compared to a single-bout maximal run. We observed a decrease in running speed at VT during the final leg of a duathlon simulation; resulting in an

  18. The Effects of a Duathlon Simulation on Ventilatory Threshold and Running Economy.

    PubMed

    Berry, Nathaniel T; Wideman, Laurie; Shields, Edgar W; Battaglini, Claudio L

    2016-06-01

    Multisport events continue to grow in popularity among recreational, amateur, and professional athletes around the world. This study aimed to determine the compounding effects of the initial run and cycling legs of an International Triathlon Union (ITU) Duathlon simulation on maximal oxygen uptake (VO2max), ventilatory threshold (VT) and running economy (RE) within a thermoneutral, laboratory controlled setting. Seven highly trained multisport athletes completed three trials; Trial-1 consisted of a speed only VO2max treadmill protocol (SOVO2max) to determine VO2max, VT, and RE during a single-bout run; Trial-2 consisted of a 10 km run at 98% of VT followed by an incremental VO2max test on the cycle ergometer; Trial-3 consisted of a 10 km run and 30 km cycling bout at 98% of VT followed by a speed only treadmill test to determine the compounding effects of the initial legs of a duathlon on VO2max, VT, and RE. A repeated measures ANOVA was performed to determine differences between variables across trials. No difference in VO2max, VT (%VO2max), maximal HR, or maximal RPE was observed across trials. Oxygen consumption at VT was significantly lower during Trial-3 compared to Trial-1 (p = 0.01). This decrease was coupled with a significant reduction in running speed at VT (p = 0.015). A significant interaction between trial and running speed indicate that RE was significantly altered during Trial-3 compared to Trial-1 (p < 0.001). The first two legs of a laboratory based duathlon simulation negatively impact VT and RE. Our findings may provide a useful method to evaluate multisport athletes since a single-bout incremental treadmill test fails to reveal important alterations in physiological thresholds. Key pointsDecrease in relative oxygen uptake at VT (ml·kg(-1)·min(-1)) during the final leg of a duathlon simulation, compared to a single-bout maximal run.We observed a decrease in running speed at VT during the final leg of a duathlon simulation; resulting in an

  19. The Effects of a Duathlon Simulation on Ventilatory Threshold and Running Economy.

    PubMed

    Berry, Nathaniel T; Wideman, Laurie; Shields, Edgar W; Battaglini, Claudio L

    2016-06-01

    Multisport events continue to grow in popularity among recreational, amateur, and professional athletes around the world. This study aimed to determine the compounding effects of the initial run and cycling legs of an International Triathlon Union (ITU) Duathlon simulation on maximal oxygen uptake (VO2max), ventilatory threshold (VT) and running economy (RE) within a thermoneutral, laboratory controlled setting. Seven highly trained multisport athletes completed three trials; Trial-1 consisted of a speed only VO2max treadmill protocol (SOVO2max) to determine VO2max, VT, and RE during a single-bout run; Trial-2 consisted of a 10 km run at 98% of VT followed by an incremental VO2max test on the cycle ergometer; Trial-3 consisted of a 10 km run and 30 km cycling bout at 98% of VT followed by a speed only treadmill test to determine the compounding effects of the initial legs of a duathlon on VO2max, VT, and RE. A repeated measures ANOVA was performed to determine differences between variables across trials. No difference in VO2max, VT (%VO2max), maximal HR, or maximal RPE was observed across trials. Oxygen consumption at VT was significantly lower during Trial-3 compared to Trial-1 (p = 0.01). This decrease was coupled with a significant reduction in running speed at VT (p = 0.015). A significant interaction between trial and running speed indicate that RE was significantly altered during Trial-3 compared to Trial-1 (p < 0.001). The first two legs of a laboratory based duathlon simulation negatively impact VT and RE. Our findings may provide a useful method to evaluate multisport athletes since a single-bout incremental treadmill test fails to reveal important alterations in physiological thresholds. Key pointsDecrease in relative oxygen uptake at VT (ml·kg(-1)·min(-1)) during the final leg of a duathlon simulation, compared to a single-bout maximal run.We observed a decrease in running speed at VT during the final leg of a duathlon simulation; resulting in an

  20. Fatigue associated with prolonged graded running.

    PubMed

    Giandolini, Marlene; Vernillo, Gianluca; Samozino, Pierre; Horvais, Nicolas; Edwards, W Brent; Morin, Jean-Benoît; Millet, Guillaume Y

    2016-10-01

    Scientific experiments on running mainly consider level running. However, the magnitude and etiology of fatigue depend on the exercise under consideration, particularly the predominant type of contraction, which differs between level, uphill, and downhill running. The purpose of this review is to comprehensively summarize the neurophysiological and biomechanical changes due to fatigue in graded running. When comparing prolonged hilly running (i.e., a combination of uphill and downhill running) to level running, it is found that (1) the general shape of the neuromuscular fatigue-exercise duration curve as well as the etiology of fatigue in knee extensor and plantar flexor muscles are similar and (2) the biomechanical consequences are also relatively comparable, suggesting that duration rather than elevation changes affects neuromuscular function and running patterns. However, 'pure' uphill or downhill running has several fatigue-related intrinsic features compared with the level running. Downhill running induces severe lower limb tissue damage, indirectly evidenced by massive increases in plasma creatine kinase/myoglobin concentration or inflammatory markers. In addition, low-frequency fatigue (i.e., excitation-contraction coupling failure) is systematically observed after downhill running, although it has also been found in high-intensity uphill running for different reasons. Indeed, low-frequency fatigue in downhill running is attributed to mechanical stress at the interface sarcoplasmic reticulum/T-tubule, while the inorganic phosphate accumulation probably plays a central role in intense uphill running. Other fatigue-related specificities of graded running such as strategies to minimize the deleterious effects of downhill running on muscle function, the difference of energy cost versus heat storage or muscle activity changes in downhill, level, and uphill running are also discussed. PMID:27456477

  1. Pendulum models of ponytail motion during walking and running

    NASA Astrophysics Data System (ADS)

    Plaut, Raymond H.; Virgin, Lawrence N.

    2013-08-01

    Steady-state motions of a woman's ponytail during level, straight, walking and running are examined. Based on reported data, formulas have been developed for the relationship of the forward speed to the frequencies of vertical and sideways motion of the head, and of the form of that motion. The ponytail is modeled as a compound pendulum or a multi-bar pendulum with 2, 3, or 5 rigid bars. Motions in the vertical plane perpendicular to the direction of progression are analyzed. Rotational springs and dashpots are placed at the joints, and aerodynamic damping (air drag) is included. Attention is focused on the variation of the amplitudes of the bars as the woman's walking speed and then running speed increase. An example of three-dimensional motions of a spherical-pendulum model also is included. Experiments were conducted on a double pendulum with parabolic applied motion at the top. The damping is modeled by rotational friction (i.e., a constant resisting moment at the top and internal joints), and the numerical results agree well with the test data.

  2. Running in the real world: adjusting leg stiffness for different surfaces.

    PubMed Central

    Ferris, D P; Louie, M; Farley, C T

    1998-01-01

    A running animal coordinates the actions of many muscles, tendons, and ligaments in its leg so that the overall leg behaves like a single mechanical spring during ground contact. Experimental observations have revealed that an animal's leg stiffness is independent of both speed and gravity level, suggesting that it is dictated by inherent musculoskeletal properties. However, if leg stiffness was invariant, the biomechanics of running (e.g. peak ground reaction force and ground contact time) would change when an animal encountered different surfaces in the natural world. We found that human runners adjust their leg stiffness to accommodate changes in surface stiffness, allowing them to maintain similar running mechanics on different surfaces. These results provide important insight into mechanics and control of animal locomotion and suggest that incorporating an adjustable leg stiffness in the design of hopping and running robots is important if they are to match the agility and speed of animals on varied terrain. PMID:9675909

  3. Running in the real world: adjusting leg stiffness for different surfaces

    NASA Technical Reports Server (NTRS)

    Ferris, D. P.; Louie, M.; Farley, C. T.

    1998-01-01

    A running animal coordinates the actions of many muscles, tendons, and ligaments in its leg so that the overall leg behaves like a single mechanical spring during ground contact. Experimental observations have revealed that an animal's leg stiffness is independent of both speed and gravity level, suggesting that it is dictated by inherent musculoskeletal properties. However, if leg stiffness was invariant, the biomechanics of running (e.g. peak ground reaction force and ground contact time) would change when an animal encountered different surfaces in the natural world. We found that human runners adjust their leg stiffness to accommodate changes in surface stiffness, allowing them to maintain similar running mechanics on different surfaces. These results provide important insight into mechanics and control of animal locomotion and suggest that incorporating an adjustable leg stiffness in the design of hopping and running robots is important if they are to match the agility and speed of animals on varied terrain.

  4. Atari: Speed Reading.

    ERIC Educational Resources Information Center

    Oliver, Steve

    1983-01-01

    Reviews "Atari Speed Reading" course materials (which include eight units on four cassettes, 200-page workbook, and cassette with pacer/timer program). Indicates that the course is successful in meeting its goal to help average readers double their reading speed and comprehension. (JN)

  5. Speed Listening and Reading.

    ERIC Educational Resources Information Center

    Bradtmueller, Weldon G.

    Compressed speech (speed listening), in which audiotapes are speeded up, is examined in this paper along with its relationship to the reading process. Among the topics discussed first are the close relationship between reading and listening, the rationale behind compressed speech, and the use of compressed speech in business communication, special…

  6. Influence of Strength, Sprint Running, and Combined Strength and Sprint Running Training on Short Sprint Performance in Young Adults.

    PubMed

    Marques, M C; Gabbett, T J; Marinho, D A; Blazevich, A J; Sousa, A; van den Tillaar, R; Izquierdo, M

    2015-10-01

    The purpose of this study was to assess the degree of transference of 6 weeks of full squat vs. full squat plus sprint running training to short (ranged from 0-10 to 0-30 m) sprint running performance in non-athletes. We hypothesized that a speed-full-squat training regimen could enhance squat strength and power with simultaneous improvements in short sprint performance. 122 physically active adults (age: 20.5±2.5 years; body mass: 65.8±6.1 kg; height: 1.71±0.08 m) were randomly divided into 4 groups: full squat training (n=36), combined full squat and sprint training (n=32), speed training only (n=34) and non-training control group (n=20). Each training group completed 2 sessions per week over 6 weeks, while the control group performed only their normal physical activity. Sprint performance was improved after sprint running or full squat training alone (1.7% and 1.8% P<0.05, respectively), however larger enhancements (2.3%; P<0.01) were observed after the combined full squat plus sprint training intervention. These results suggest that in recreationally active adults, combined full squat and sprint training provides a greater stimulus for improving sprint performance than either modality alone.

  7. The actual status of Astronomy in Moldova

    NASA Astrophysics Data System (ADS)

    Gaina, A.

    The astronomical research in the Republic of Moldova after Nicolae Donitch (Donici)(1874-1956(?)) were renewed in 1957, when a satellites observations station was open in Chisinau. Fotometric observations and rotations of first Soviet artificial satellites were investigated under a program SPIN put in action by the Academy of Sciences of former Socialist Countries. The works were conducted by Assoc. prof. Dr. V. Grigorevskij, which conducted also research in variable stars. Later, at the beginning of 60-th, an astronomical Observatory at the Chisinau State University named after Lenin (actually: the State University of Moldova), placed in Lozovo-Ciuciuleni villages was open, which were coordinated by Odessa State University (Prof. V.P. Tsesevich) and the Astrosovet of the USSR. Two main groups worked in this area: first conducted by V. Grigorevskij (till 1971) and second conducted by L.I. Shakun (till 1988), both graduated from Odessa State University. Besides this research areas another astronomical observations were made: Comets observations, astroclimate and atmospheric optics in collaboration with the Institute of the Atmospheric optics of the Siberian branch of the USSR (V. Chernobai, I. Nacu, C. Usov and A.F. Poiata). Comets observations were also made since 1988 by D. I. Gorodetskij which came to Chisinau from Alma-Ata and collaborated with Ukrainean astronomers conducted by K.I. Churyumov. Another part of space research was made at the State University of Tiraspol since the beggining of 70-th by a group of teaching staff of the Tiraspol State Pedagogical University: M.D. Polanuer, V.S. Sholokhov. No a collaboration between Moldovan astronomers and Transdniestrian ones actually exist due to War in Transdniestria in 1992. An important area of research concerned the Radiophysics of the Ionosphere, which was conducted in Beltsy at the Beltsy State Pedagogical Institute by a group of teaching staff of the University since the beginning of 70-th: N. D. Filip, E

  8. MODIS Solar Diffuser: Modelled and Actual Performance

    NASA Technical Reports Server (NTRS)

    Waluschka, Eugene; Xiong, Xiao-Xiong; Esposito, Joe; Wang, Xin-Dong; Krebs, Carolyn (Technical Monitor)

    2001-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument's solar diffuser is used in its radiometric calibration for the reflective solar bands (VIS, NTR, and SWIR) ranging from 0.41 to 2.1 micron. The sun illuminates the solar diffuser either directly or through a attenuation screen. The attenuation screen consists of a regular array of pin holes. The attenuated illumination pattern on the solar diffuser is not uniform, but consists of a multitude of pin-hole images of the sun. This non-uniform illumination produces small, but noticeable radiometric effects. A description of the computer model used to simulate the effects of the attenuation screen is given and the predictions of the model are compared with actual, on-orbit, calibration measurements.

  9. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 10 2014-01-01 2014-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The...

  10. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 10 2012-01-01 2012-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The...

  11. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 10 2011-01-01 2011-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The...

  12. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 10 2013-01-01 2013-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The...

  13. 7 CFR 1437.101 - Actual production history.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 7 Agriculture 10 2010-01-01 2010-01-01 false Actual production history. 1437.101 Section 1437.101... Determining Yield Coverage Using Actual Production History § 1437.101 Actual production history. Actual production history (APH) is the unit's record of crop yield by crop year for the APH base period. The...

  14. Determination of maximum aerobic velocity by a five minute test with reference to running world records. A theoretical approach.

    PubMed

    Chamoux, A; Berthon, P; Laubignat, J F

    1996-01-01

    Field measurement of the maximal aerobic velocity (MAV) is closely linked to effort-duration then to the used protocol. We construct the relationship between running speed and running-duration logarithm from running world records. It appears a noteworthy point at 4.97 minutes, to be suggested as MAV duration point. By agreement, MAV could be measured on field by a five minute test whatever the sport may be.

  15. Repeatability of scores on a novel test of endurance running performance.

    PubMed

    Rollo, Ian; Williams, Clyde; Nevill, Alan

    2008-11-01

    The aim of the present study was to determine the repeatability of a running endurance test using an automated treadmill system that requires no manual input to control running speed. On three separate occasions, 7 days apart, 10 experienced male endurance-trained runners (mean age 32 years, s = 10; VO2peak 61 ml x kg(-1) x min(-1), s = 7) completed a treadmill time trial, in which they were instructed to run as far as possible in 60 min. The treadmill was instrumented with an ultrasonic feedback-controlled radar modulator that spontaneously regulated treadmill belt speed corresponding to the changing running speed of each runner. Estimated running intensity was 70% VO2peak (s = 11) and the distance covered 13.5 km (s = 2), with no difference in mean performances between trials. The coefficient of variation, estimated using analysis of variance, with participant and trial as main effects, was 1.4%. In summary, the use of an automated treadmill system improved the repeatability of a 60-min treadmill time trial compared with time trials in which speed is controlled manually. The present protocol is a reliable method of assessing endurance performance in endurance-trained runners.

  16. From the cradle to the grave: how fast can we run?

    PubMed

    Sterken, Elmer

    2003-06-01

    I model average running speed on distances from 5000 m to the marathon as a function of age, distance and sex. Using data on US age-dependent road-racing records, I simulate optimal performance forages ranging from 3 to 95 years. The results of the correlation between running speed and age are in line with medical results on the relation between age and maximal oxygen uptake. The results show that official track and field age-grading overestimates human performance at older ages. PMID:12846535

  17. Method and system for determining induction motor speed

    DOEpatents

    Parlos, Alexander G.; Bharadwaj, Raj M.

    2004-03-30

    A non-linear, semi-parametric neural network-based adaptive filter is utilized to determine the dynamic speed of a rotating rotor within an induction motor, without the explicit use of a speed sensor, such as a tachometer, is disclosed. The neural network-based filter is developed using actual motor current measurements, voltage measurements, and nameplate information. The neural network-based adaptive filter is trained using an estimated speed calculator derived from the actual current and voltage measurements. The neural network-based adaptive filter uses voltage and current measurements to determine the instantaneous speed of a rotating rotor. The neural network-based adaptive filter also includes an on-line adaptation scheme that permits the filter to be readily adapted for new operating conditions during operations.

  18. The human gluteus maximus and its role in running.

    PubMed

    Lieberman, Daniel E; Raichlen, David A; Pontzer, Herman; Bramble, Dennis M; Cutright-Smith, Elizabeth

    2006-06-01

    The human gluteus maximus is a distinctive muscle in terms of size, anatomy and function compared to apes and other non-human primates. Here we employ electromyographic and kinematic analyses of human subjects to test the hypothesis that the human gluteus maximus plays a more important role in running than walking. The results indicate that the gluteus maximus is mostly quiescent with low levels of activity during level and uphill walking, but increases substantially in activity and alters its timing with respect to speed during running. The major functions of the gluteus maximus during running are to control flexion of the trunk on the stance-side and to decelerate the swing leg; contractions of the stance-side gluteus maximus may also help to control flexion of the hip and to extend the thigh. Evidence for when the gluteus maximus became enlarged in human evolution is equivocal, but the muscle's minimal functional role during walking supports the hypothesis that enlargement of the gluteus maximus was likely important in the evolution of hominid running capabilities. PMID:16709916

  19. Running Tests of a Combined SC Type Linear Generator

    NASA Astrophysics Data System (ADS)

    Hasegawa, Hitoshi; Murai, Toshiaki; Yamamoto, Takamitsu

    In the superconducting maglev system, it is important to develop a non-contact on-board power source without environmental pollution such as noise and exhaust gas. We have studied a combined SC (Superconducting Coil) type linear generator as the most realistic system. The linear generator system has improved to increase output, power factor and measuring equipment. In this paper, the linear generator system is experimented in running tests on the Yamanashi Test line. We can supply power of 25kW to half a car in the speed range 400km/h to 500km/h. A good correlation is recognized between the analysis and measurement in the running tests. This linear generator system can be expected to be applicable in the practical use

  20. Running as an Adjunct to Psychotherapy.

    ERIC Educational Resources Information Center

    Leer, Frederic

    1980-01-01

    Physical benefits of running have been highly publicized. Explores the equally valuable psychological benefits to be derived from running and examines how mastering a physical skill can be generalized to mastery in other areas of life. (Author)

  1. Running Parallel Discrete Event Simulators on Sierra

    SciTech Connect

    Barnes, P. D.; Jefferson, D. R.

    2015-12-03

    In this proposal we consider porting the ROSS/Charm++ simulator and the discrete event models that run under its control so that they run on the Sierra architecture and make efficient use of the Volta GPUs.

  2. Three consecutive days of interval runs to exhaustion affects lymphocyte subset apoptosis and migration.

    PubMed

    Navalta, James W; Tibana, Ramires Alsamir; Fedor, Elizabeth A; Vieira, Amilton; Prestes, Jonato

    2014-01-01

    This investigation assessed the lymphocyte subset response to three days of intermittent run exercise to exhaustion. Twelve healthy college-aged males (n = 8) and females (n = 4) (age = 26 ± 4 years; height = 170.2 ± 10 cm; body mass = 75 ± 18 kg) completed an exertion test (maximal running speed and VO2max) and later performed three consecutive days of an intermittent run protocol to exhaustion (30 sec at maximal running speed and 30 sec at half of the maximal running speed). Blood was collected before exercise (PRE) and immediately following the treadmill bout (POST) each day. When the absolute change from baseline was evaluated (i. e., Δ baseline), a significant change in CD4+ and CD8+ for CX3CR1 cells was observed by completion of the third day. Significant changes in both apoptosis and migration were observed following two consecutive days in CD19+ lymphocytes, and the influence of apoptosis persisted following the third day. Given these lymphocyte responses, it is recommended that a rest day be incorporated following two consecutive days of a high-intensity intermittent run program to minimize immune cell modulations and reduce potential susceptibility. PMID:24895602

  3. Diphoton excess and running couplings

    NASA Astrophysics Data System (ADS)

    Bae, Kyu Jung; Endo, Motoi; Hamaguchi, Koichi; Moroi, Takeo

    2016-06-01

    The recently observed diphoton excess at the LHC may suggest the existence of a singlet (pseudo-)scalar particle with a mass of 750 GeV which couples to gluons and photons. Assuming that the couplings to gluons and photons originate from loops of fermions and/or scalars charged under the Standard Model gauge groups, we show that there is a model-independent upper bound on the cross section σ (pp → S → γγ) as a function of the cutoff scale Λ and masses of the fermions and scalars in the loop. Such a bound comes from the fact that the contribution of each particle to the diphoton event amplitude is proportional to its contribution to the one-loop β functions of the gauge couplings. We also investigate the perturbativity of running Yukawa couplings in models with fermion loops, and show the upper bounds on σ (pp → S → γγ) for explicit models.

  4. Influence of pacing strategy on oxygen uptake during treadmill middle-distance running.

    PubMed

    Sandals, L E; Wood, D M; Draper, S B; James, D V B

    2006-01-01

    The oxygen uptake (VO2) attained during a constant speed 800-m pace trial on a treadmill is less than the maximal VO2 (VO2max) in male middle-distance runners with a high VO2max (i.e., > 65 ml x kg (-1) x min (-1)). We therefore investigated whether the VO2 attained was influenced by the pacing strategy adopted. Eight male middle-distance runners (age 25.8 +/- 3.3 years; height 1.78 +/- 0.10 m; mass 67.8 +/- 4.7 kg) with a personal best 800-m time of 112.0 +/- 3.3 s volunteered to participate. Subjects undertook a speed ramped progressive test to determine VO2max and three 800-m pace runs to exhaustion all in a randomised order. The three 800-m pace runs included constant speed, acceleration, and race simulation runs. Oxygen uptake was determined throughout each test using 15-s Douglas bag collections. Following the application of a 30-s rolling average, the highest VO2 during the progressive test (i.e., VO2max) and the highest VO2 during the 800-m pace runs (i.e., VO2peak) were compared. For the eight runners, VO2max was 67.2 +/- 4.3 ml x kg (-1) x min (-1) x VO2peak was 60.1 +/- 5.1 ml x kg (-1) x min (-1), 61.1 +/- 5.2 ml x kg (-1) x min (-1), and 62.2 +/- 4.9 ml x kg (-1) x min (-1), yielding values of 89.3 +/- 2.4 %, 90.8 +/- 2.8 %, and 92.5 +/- 3.1 % VO2max for the constant speed, acceleration and race simulation runs, respectively. Across runs, repeated measures ANOVA revealed a significant effect (p = 0.048). Trend analysis identified a significant linear trend (p = 0.025) with the % VO2max attained being higher for the acceleration run than the constant speed run, and higher still for the race simulation run. These results demonstrate that in middle-distance runners a) pacing strategy influences the VO2 attained, with a race simulation run elevating the VO2 attained compared with other pacing strategies, and b) regardless of pacing strategy the VO2 attained in an 800-m pace run on a treadmill is less than VO2max. PMID:16388440

  5. Run-off regime of the small rivers in mountain landscapes (on an example of the mountain "Mongun-taiga

    NASA Astrophysics Data System (ADS)

    Pryahina, G.; Zelepukina, E.; Guzel, N.

    2012-04-01

    Hydrological characteristics calculations of the small mountain rivers in the basins with glaciers frequently cause complexity in connection with absence of standard hydrological supervision within remote mountain territories. The unique way of the actual information reception on a water mode of such rivers is field work. The rivers of the mountain Mongun-taiga located on a joint of Altai and Sayan mountains became hydrological researches objects of Russian geographical society complex expeditions in 2010-2011. The Mongun-taiga cluster of international biosphere reserve "Ubsunurskaya hollow" causes heightened interest of researchers — geographers for many years. The original landscape map in scale 1:100000 has been made, hydrological supervision on the rivers East Mugur and ugur, belonging inland basin of Internal Asia are lead. Supervision over the river drain East Mugur runoff were spent in profile of glacier tongue (the freezing area - 22 % (3.2 km2) from the reception basin) and in the closing alignment of the river located on distance of 3,4 km below tongue of glacier. During researches following results have been received. During the ablation period diurnal fluctuations with a strongly shown maximum and minimum of water discharges are typically for the small rivers with considerable share of a glacial food. The run-off maximum from the glacier takes place from 2 to 7 p.m., the run-off minimum is observed early in the morning. High speed of thawed snow running-off from glacier tongue and rather small volume of dynamic stocks water on an ice surface lead to growth of water discharge. In the bottom profile the time of maximum and minimum of water discharge is displaced on the average 2 hours, it depends of the water travel time. Maximum glacial run-off discharge (1.12 m3/s) in the upper profile was registered on July 16 (it was not rain). Volumes of daily runoff in the upper and bottom profiles were 60700-67600 m3 that day. The run-off from nonglacial part of

  6. Gauging triple stores with actual biological data

    PubMed Central

    2012-01-01

    tested queries were better than average among the selected stores; it showed a very good scalability and a reasonable run-to-run reproducibility. Jena SDB and Jena TDB were consistently slower than the other three implementations. Our analysis demonstrated that most queries developed for Virtuoso could be successfully used for other implementations. PMID:22373359

  7. Tissue vibration in prolonged running.

    PubMed

    Friesenbichler, Bernd; Stirling, Lisa M; Federolf, Peter; Nigg, Benno M

    2011-01-01

    The impact force in heel-toe running initiates vibrations of soft-tissue compartments of the leg that are heavily dampened by muscle activity. This study investigated if the damping and frequency of these soft-tissue vibrations are affected by fatigue, which was categorized by the time into an exhaustive exercise. The hypotheses were tested that (H1) the vibration intensity of the triceps surae increases with increasing fatigue and (H2) the vibration frequency of the triceps surae decreases with increasing fatigue. Tissue vibrations of the triceps surae were measured with tri-axial accelerometers in 10 subjects during a run towards exhaustion. The frequency content was quantified with power spectra and wavelet analysis. Maxima of local vibration intensities were compared between the non-fatigued and fatigued states of all subjects. In axial (i.e. parallel to the tibia) and medio-lateral direction, most local maxima increased with fatigue (supporting the first hypothesis). In anterior-posterior direction no systematic changes were found. Vibration frequency was minimally affected by fatigue and frequency changes did not occur systematically, which requires the rejection of the second hypothesis. Relative to heel-strike, the maximum vibration intensity occurred significantly later in the fatigued condition in all three directions. With fatigue, the soft tissue of the triceps surae oscillated for an extended duration at increased vibration magnitudes, possibly due to the effects of fatigue on type II muscle fibers. Thus, the protective mechanism of muscle tuning seems to be reduced in a fatigued muscle and the risk of potential harm to the tissue may increase. PMID:20846656

  8. A Comparison of Stride Length and Lower Extremity Kinematics during Barefoot and Shod Running in Well Trained Distance Runners

    PubMed Central

    Francis, Peter; Ledingham, James; Clarke, Sarah; Collins, DJ; Jakeman, Philip

    2016-01-01

    Stride length, hip, knee and ankle angles were compared during barefoot and shod running on a treadmill at two speeds. Nine well-trained (1500m time: 3min:59.80s ± 14.7 s) male (22 ±3 years; 73 ±9 kg; 1.79 ±0.4 m) middle distance (800 m – 5,000 m) runners performed 2 minutes of running at 3.05 m·s-1 and 4.72 m·s-1 on an treadmill. This approach allowed continuous measurement of lower extremity kinematic data and calculation of stride length. Statistical analysis using a 2X2 factorial ANOVA revealed speed to have a main effect on stride length and hip angle and footwear to have a main effect on hip angle. There was a significant speed*footwear interaction for knee and ankle angles. Compared to shod running at the lower speed (3.05 m·s-1), well trained runners have greater hip, knee and ankle angles when running barefoot. Runners undertake a high volume (~75%) of training at lower intensities and therefore knowledge of how barefoot running alters running kinematics at low and high speeds may be useful to the runner. Key points Barefoot and shod kinematics are examined in competitive track runners with a mean 1500m personal best of 3:59:80. Previous literature has not investigated competitive track runners. Compared to amateur runners, competitive track runners demonstrate a smaller reduction in stride length during barefoot running at ~3 m·s-1. There is no difference in stride length or lower extremity kinematics when running at 4.72 m·s-1. Given that competitive runners spend a large (~75%) amount of time training at lower speeds, interventions which favourably alter running kinematics may be advantageous for the prevention of injury. PMID:27803620

  9. Theoretical research and experimental validation of elastic dynamic load spectra on bogie frame of high-speed train

    NASA Astrophysics Data System (ADS)

    Zhu, Ning; Sun, Shouguang; Li, Qiang; Zou, Hua

    2016-05-01

    When a train runs at high speeds, the external exciting frequencies approach the natural frequencies of bogie critical components, thereby inducing strong elastic vibrations. The present international reliability test evaluation standard and design criteria of bogie frames are all based on the quasi-static deformation hypothesis. Structural fatigue damage generated by structural elastic vibrations has not yet been included. In this paper, theoretical research and experimental validation are done on elastic dynamic load spectra on bogie frame of high-speed train. The construction of the load series that correspond to elastic dynamic deformation modes is studied. The simplified form of the load series is obtained. A theory of simplified dynamic load-time histories is then deduced. Measured data from the Beijing-Shanghai Dedicated Passenger Line are introduced to derive the simplified dynamic load-time histories. The simplified dynamic discrete load spectra of bogie frame are established. Based on the damage consistency criterion and a genetic algorithm, damage consistency calibration of the simplified dynamic load spectra is finally performed. The computed result proves that the simplified load series is reasonable. The calibrated damage that corresponds to the elastic dynamic discrete load spectra can cover the actual damage at the operating conditions. The calibrated damage satisfies the safety requirement of damage consistency criterion for bogie frame. This research is helpful for investigating the standardized load spectra of bogie frame of high-speed train.

  10. Modelling the 2013 Typhoon Haiyan storm surge: Effect of waves, offshore winds, tide phase, and translation speed

    NASA Astrophysics Data System (ADS)

    Bilgera, P. H. T.

    2015-12-01

    Super Typhoon Haiyan, with wind speeds exceeding 300 km h-1 (160 knots) generated a storm surge in San Pedro Bay reaching heights of more than 6m in Tacloban City. Delft Dashboard (DDB), an open-source standalone Matlab based graphical user interface linked to the FLOW and WAVE modeling software of Deltares, was used to develop a coupled flow and wave storm surge model to understand the Typhoon Haiyan storm surge development and propagation. Various experiments were designed to determine the effect of waves, the occurrence of offshore winds prior to the surge, tidal phase, and typhoon translation speed on the surge height. Wave coupling decreased the surge height by about 0.5m probably due to energy dissipation from white capping, bottom friction, and depth-induced breaking. Offshore-directed winds before the arrival of the storm eye resulted to receding of the water level in San Pedro and Cancabato Bay, corroborated by eyewitness and tide gauge data. The experiment wherein the offshore winds were removed resulted to no water receding and a surge with a smaller and gentler surge front, pointing to the importance of the initial water level drawdown in contributing to the destructive power of the wave front. With regard to tides, the effect in Tacloban was actually neither linear nor additive to the surge, with higher surge coincident to low tides and lower surge coincident to high tides. Lastly, the model run with typhoon having a slower translation speed than Haiyan was found to generate higher surges.

  11. An Epidemiologic Perspective. Does Running Cause Osteoarthritis?

    ERIC Educational Resources Information Center

    Eichner, Edward R.

    1989-01-01

    A review of literature on exercise and arthritis considers relevant epidemiologic and experimental studies of animals and humans, focusing on the relationship between running and osteoarthritis. No conclusive evidence exists that running causes osteoarthritis; research trends suggest that running may slow the functional aspects of musculoskeletal…

  12. Running Patterns of Highly Skilled Distance Runners.

    ERIC Educational Resources Information Center

    Dunetts, Michael J.; Dillman, Charles J.

    The biomechanical elements inherent in the running styles of Olympic-level athletes were examined in order to obtain a range of parameter values for specific running velocities. Forty-eight athletes participated in middle and long distance running events that were filmed and later analyzed to determine the relationship between the physical…

  13. Common read-out receiver card for ALICE Run2

    NASA Astrophysics Data System (ADS)

    Engel, H.; Kebschull, U.

    2013-12-01

    ALICE at CERN LHC uses custom FPGA-based computer plug-in cards as interface between the optical detector read-out link and the PC clusters of Data Acquisition (DAQ) and High-Level Trigger (HLT). The cards used at DAQ and HLT during Run1 have been developed as independent projects and are now facing similar problems with obsolete major interfaces and limited link speeds and processing capabilities. A new common card has been developed to enable the upgrade of the read-out chain towards higher link rates while providing backward compatibility with the current architecture. First prototypes could be tested successfully and raised interest from other collaborations.

  14. Standing, walking, running, and jumping on a force plate

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    1999-04-01

    Details are given of an inexpensive force plate designed to measure ground reaction forces involved in human movement. Such measurements provide interesting demonstrations of relations between displacement, velocity, and acceleration, and illustrate aspects of mechanics that are not normally encountered in a conventional mechanics course, or that are more commonly associated with inanimate objects. When walking, the center of mass follows a curved path. The centripetal force is easily measured and it provides an upper limit to the speed at which a person can walk. When running, the legs behave like simple springs and the center of mass follows a path that is the same as that of a perfectly elastic bouncing ball.

  15. Lower Extremity Biomechanical Relationships with Different Speeds in Traditional, Minimalist, and Barefoot Footwear

    PubMed Central

    Fredericks, William; Swank, Seth; Teisberg, Madeline; Hampton, Bethany; Ridpath, Lance; Hanna, Jandy B.

    2015-01-01

    Minimalist running footwear has grown increasingly popular. Prior studies that have compared lower extremity biomechanics in minimalist running to traditional running conditions are largely limited to a single running velocity. This study compares the effects of running at various speeds on foot strike pattern, stride length, knee angles and ankle angles in traditional, barefoot, and minimalist running conditions. Twenty-six recreational runners (19-46 years of age) ran on a treadmill at a range of speeds (2.5-4.0 m·sec-1). Subjects ran with four different footwear conditions: personal, standard, and minimalist shoes and barefoot. 3D coordinates from video data were collected. The relationships between speed, knee and ankle angles at foot strike and toe-off, relative step length, and footwear conditions were evaluated by ANCOVA, with speed as the co-variate. Distribution of non-rearfoot strike was compared across shod conditions with paired t-tests. Non-rearfoot strike distribution was not significantly affected by speed, but was different between shod conditions (p < 0.05). Footwear condition and speed significantly affected ankle angle at touchdown, independent of one another (F [3,71] = 10.28, p < 0.001), with barefoot and minimalist running exhibiting greater plantarflexion at foot strike. When controlling for foot strike style, barefoot and minimalist runners exhibited greater plantarflexion than other conditions (p < 0.05). Ankle angle at lift-off and relative step length exhibited a significant interaction between speed and shod condition. Knee angles had a significant relationship with speed, but not with footwear. There is a clear influence of footwear, but not speed, on foot strike pattern. Additionally, speed and footwear predict ankle angles (greater plantarflexion at foot strike) and may have implications for minimalist runners and their risk of injury. Long-term studies utilizing various speeds and habituation times are needed. Key points Foot strike

  16. Caustic-Side Solvent Extraction: Prediction of Cesium Extraction for Actual Wastes and Actual Waste Simulants

    SciTech Connect

    Delmau, L.H.; Haverlock, T.J.; Sloop, F.V., Jr.; Moyer, B.A.

    2003-02-01

    This report presents the work that followed the CSSX model development completed in FY2002. The developed cesium and potassium extraction model was based on extraction data obtained from simple aqueous media. It was tested to ensure the validity of the prediction for the cesium extraction from actual waste. Compositions of the actual tank waste were obtained from the Savannah River Site personnel and were used to prepare defined simulants and to predict cesium distribution ratios using the model. It was therefore possible to compare the cesium distribution ratios obtained from the actual waste, the simulant, and the predicted values. It was determined that the predicted values agree with the measured values for the simulants. Predicted values also agreed, with three exceptions, with measured values for the tank wastes. Discrepancies were attributed in part to the uncertainty in the cation/anion balance in the actual waste composition, but likely more so to the uncertainty in the potassium concentration in the waste, given the demonstrated large competing effect of this metal on cesium extraction. It was demonstrated that the upper limit for the potassium concentration in the feed ought to not exceed 0.05 M in order to maintain suitable cesium distribution ratios.

  17. Cool running: locomotor performance at low body temperature in mammals.

    PubMed

    Rojas, A Daniella; Körtner, Gerhard; Geiser, Fritz

    2012-10-23

    Mammalian torpor saves enormous amounts of energy, but a widely assumed cost of torpor is immobility and therefore vulnerability to predators. Contrary to this assumption, some small marsupial mammals in the wild move while torpid at low body temperatures to basking sites, thereby minimizing energy expenditure during arousal. Hence, we quantified how mammalian locomotor performance is affected by body temperature. The three small marsupial species tested, known to use torpor and basking in the wild, could move while torpid at body temperatures as low as 14.8-17.9°C. Speed was a sigmoid function of body temperature, but body temperature effects on running speed were greater than those in an ectothermic lizard used for comparison. We provide the first quantitative data of movement at low body temperature in mammals, which have survival implications for wild heterothermic mammals, as directional movement at low body temperature permits both basking and predator avoidance.

  18. Is passive metatarsophalangeal joint stiffness related to leg stiffness, vertical stiffness and running economy during sub-maximal running?

    PubMed

    Man, Hok Sum; Lam, Wing Kai; Lee, Justin; Capio, Catherine M; Leung, Aaron Kam Lun

    2016-09-01

    This study examined whether passive metatarsophalangeal joints (MPJ) stiffness was associated with leg stiffness (Kleg) vertical stiffness (Kvert) and running economy (RE) during sub-maximal running. Nine male experienced runners underwent passive MPJ stiffness measurements in standing and sitting positions followed by sub-maximal running on an instrumented treadmill. With the individual foot position properly aligned, the MPJ passive stiffness in both sitting (MPJsit) and standing positions (MPJstand) were measured with a computerized dynamometer. Data were collected at a running speed of 2.78m/s, representing a stabilized level of energy expenditure. Pedar pressure insole was used to determine the contact time (tc) and peak reaction force for the calculation of Kleg and Kvert. A respiratory gas analysis system was used to estimate the RE. Bivariate correlation test was performed to examine the correlation among MPJ stiffness, contact time, Kleg, Kvert, and RE. The results showed that MPJsit and MPJstand were inversely correlated with RE (p=0.04, r=-0.68 to -0.69), suggesting that stiffer MPJ improves RE. In addition, MPJsit was correlated positively with Kleg (p<0.01, r=0.87),Kvert (p=0.03, r=0.70) but inversely with tc (p=0.02, r=-0.76), while MPJstand was correlated positively with the Kvert (p=0.02, r=0.77). These findings suggested that strength of toe plantar flexors provides stability and agility in the stance phase for more effective and faster forward movement.

  19. Muscle activity while running at 20%-50% of normal body weight.

    PubMed

    Mercer, John A; Applequist, Bryon C; Masumoto, Kenji

    2013-01-01

    Little information exists on how body weight (BW) support influences running biomechanics. The study aim was to determine how reducing BW by 50%-80% influences muscle activity while running at different speeds. Subjects (n = 7) ran at 100%, 115%, 125% of preferred speed at 100%, 50%, 40%, 30%, 20% of BW per speed. Average (AVG) electromyography of the rectified signal was compared (within subject design; 3-speeds × 5-BW, repeated measures ANOVAs; biceps femoris [BF], rectus femoris [RF], tibialis anterior [TA], gastrocnemius [GA]). RF, BF, and GA AVG were not influenced by BW-speed interaction (p > .05) and increased across speeds (p < .05). RF and GA AVG signal was reduced as BW was reduced (p < .05), but BF only tended to be different (p = .08). TA was influenced by BW-speed interaction (p < .05) with EMG decreasing across BW (p < .05) while increasing across speeds except at 100% BW. Overall, muscle activity increased with speed and decreased by BW reductions.

  20. Psycho-Physiological Responses of Obese Adolescents to an Intermittent Run Test Compared with a 20-M Shuttle Run

    PubMed Central

    Rey, Olivier; Maïano, Christophe; Nicol, Caroline; Mercier, Charles-Symphorien; Vallier, Jean-Marc

    2016-01-01

    Among the running field tests that measure aerobic fitness indirectly, the 20-m shuttle run test is the one most commonly used among obese youth. However, this back and forth running test induces premature cessation of exercise in this population. The present study aimed to examine the psycho-physiological responses of obese adolescents to an intermittent (15-15) progressive and maximal run test as compared with a continuous shuttle run test. Eleven obese adolescents (age: 14-15 years; BMI = 34.01 ± 5.30 kg·m-2) performed both tests. A two-way ANOVA examined the main effects of the running test, participant’s sex, and their interaction on maximal aerobic performance (net exercise duration and final velocity), physiological values (heart rate, pulmonary oxygen uptake, respiratory exchange ratio and blood lactate concentration) and psychological responses (rating of perceived exertion, and physical self-perceptions). Oxygen uptake and heart-rate values at 9 km·h-1 were also compared. Compared with a 20-m shuttle run, the 15-15 test induced lower pulmonary oxygen uptake values at 9 km/h (28.3 ± 2.7 vs. 35.4 ± 2.7 ml·min-1·kg-1) and finished with higher maximal velocity and net exercise duration (566 ± 156 vs. 346 ± 156 s, p < 0.001), with no inter-test physiological difference. The 15-15 test also resulted in higher ratings of perceived exertion (16.0 ± 1.2 vs. 12.7 ± 1.6, p < 0.001) and improved perceived physical condition compared with the 20-m shuttle run (+1.4 ± 1.4 vs. +0.2 ± 1.0, p < 0.05). Both tests induced a maximal aerobic power of obese adolescents, but the 15-15 test provided a more progressive speed increment and longer exercise duration. The 15-15 test also elicited a significant improvement of perceived physical condition. In conclusion the 15-15 test can be considered a relevant field test for assessing the aerobic fitness of obese adolescents. Key points In agreement with the previous results of Rey et al. (2013), the present study

  1. High-Speed Photography

    SciTech Connect

    Paisley, D.L.; Schelev, M.Y.

    1998-08-01

    The applications of high-speed photography to a diverse set of subjects including inertial confinement fusion, laser surgical procedures, communications, automotive airbags, lightning etc. are briefly discussed. (AIP) {copyright} {ital 1998 Society of Photo-Optical Instrumentation Engineers.}

  2. High Speed Research Program

    NASA Technical Reports Server (NTRS)

    Anderson, Robert E.; Corsiglia, Victor R.; Schmitz, Frederic H. (Technical Monitor)

    1994-01-01

    An overview of the NASA High Speed Research Program will be presented from a NASA Headquarters perspective. The presentation will include the objectives of the program and an outline of major programmatic issues.

  3. The interday reliability of ankle, knee, leg, and vertical musculoskeletal stiffness during hopping and overground running.

    PubMed

    Joseph, Corey W; Bradshaw, Elizabeth J; Kemp, Justin; Clark, Ross A

    2013-08-01

    A number of methods are used to measure lower extremity musculoskeletal stiffness, but there is a paucity of research examining the reliability of these techniques. Therefore, we investigated the reliability of vertical, leg, knee, and ankle stiffness during overground running and hopping in 20 active men. Participants were required to run on a 10 m overground runway at 3.83 m/s (actual; 3.35 ± 0.12 m/s) and to hop in place at 2.2 Hz (actual; 2.37 ± 0.03 Hz), and at a self-selected frequency (actual; 2.05 ± 0.12 Hz) and at 2.2 Hz (actual; 2.39 ± 0.04 Hz). Reliability was determined using the intraclass correlation coefficient, coefficient of variation, mean differences, and Cohen's effect sizes. There was good reliability for vertical stiffness, moderate reliability for leg stiffness, and poor reliability for knee and ankle stiffness during the running task. Similar results were observed during the 2.2 Hz hopping tasks, with good reliability displayed for vertical stiffness and poor reliability for ankle and knee stiffness. In conclusion, our results suggest that vertical stiffness is a reliable measure when running at 3.83 m/s and hopping at 2.2 Hz.

  4. An Exploratory Study Investigating the Effects of Barefoot Running on Working Memory.

    PubMed

    Alloway, Ross G; Alloway, Tracy Packiam; Magyari, Peter M; Floyd, Shelley

    2016-04-01

    The aim of the present study was to compare the potential cognitive benefits of running barefoot compared to shod. Young adults (N = 72, M age = 24.4 years, SD = 5.5) ran both barefoot and shod on a running track while stepping on targets (poker chips) and when not stepping on targets. The main finding was that participants performed better on a working memory test when running barefoot compared to shod, but only when they had to step on targets. These results supported the idea that additional attention is needed when running barefoot to avoid stepping on objects that could potentially injure the foot. Significant increases in participant's heart rate were also found in the barefoot condition. No significant differences were found in participants' speed across conditions. These findings suggested that working memory may be enhanced after at least 16 minutes of barefoot running if the individual has to focus attention on the ground.

  5. Surface effects on dynamic stability and loading during outdoor running using wireless trunk accelerometry.

    PubMed

    Schütte, Kurt H; Aeles, Jeroen; De Beéck, Tim Op; van der Zwaard, Babette C; Venter, Rachel; Vanwanseele, Benedicte

    2016-07-01

    Despite frequently declared benefits of using wireless accelerometers to assess running gait in real-world settings, available research is limited. The purpose of this study was to investigate outdoor surface effects on dynamic stability and dynamic loading during running using tri-axial trunk accelerometry. Twenty eight runners (11 highly-trained, 17 recreational) performed outdoor running on three outdoor training surfaces (concrete road, synthetic track and woodchip trail) at self-selected comfortable running speeds. Dynamic postural stability (tri-axial acceleration root mean square (RMS) ratio, step and stride regularity, sample entropy), dynamic loading (impact and breaking peak amplitudes and median frequencies), as well as spatio-temporal running gait measures (step frequency, stance time) were derived from trunk accelerations sampled at 1024Hz. Results from generalized estimating equations (GEE) analysis showed that compared to concrete road, woodchip trail had several significant effects on dynamic stability (higher AP ratio of acceleration RMS, lower ML inter-step and inter-stride regularity), on dynamic loading (downward shift in vertical and AP median frequency), and reduced step frequency (p<0.05). Surface effects were unaffected when both running level and running speed were added as potential confounders. Results suggest that woodchip trails disrupt aspects of dynamic stability and loading that are detectable using a single trunk accelerometer. These results provide further insight into how runners adapt their locomotor biomechanics on outdoor surfaces in situ.

  6. Energy costs & performance of transtibial amputees & non-amputees during walking & running.

    PubMed

    Mengelkoch, L J; Kahle, J T; Highsmith, M J

    2014-12-01

    This study compared energy costs and performance differences of walking and running for transtibial amputee (TTA) and matched non-amputee runners. TTA were tested with 3 prosthetic feet: traditional foot, SACH; general purpose, energy storing and return (ESAR) foot, Renegade; running-specific ESAR foot, Nitro. During walking, VO2 and gait efficiency (GE) were similar between prosthetic feet. VO2 was increased (21-33%) and GE was decreased for TTA compared to controls. Self-selected walking speed (SSWS) was slower for SACH (4-6%) compared to Renegade and Nitro but SSWS for TTA was slower (16-22%) than controls. During running, VO2 was increased (8-18%) and GE was decreased using SACH and Renegade, compared to Nitro. During running, VO2 was greater (9-38%), GE was decreased and SSRS was slower (17-30%) for TTA, than controls. VO2 peak was similar for controls and TTA using Nitro, but peak running speed was slower for TTA. In conclusion, during walking energy costs are mostly similar between prosthetic feet, but ESAR feet likely provide faster SSWS for TTA. During running, energy costs and performance are improved for TTA using Nitro. Nonetheless, for all prosthetic feet conditions, TTA demonstrated an energy cost and performance disadvantage during walking and running compared to non-amputee runners.

  7. [Physiological effects of ultra-marathon run].

    PubMed

    Akimov, E B; Son'kin, V D

    2012-01-01

    We investigated the performance of vegetative systems of the body, and gas exchange in the implementation of one athlete (master of skiing, 27 years, MaxVO2 = 67 ml/min/kg) during 6 hours ultra-marathon race in a closed stadium at an average speed of 2.7 m/s. Continuous monitoring of heart rate was carried out using the heart rate monitor Polar RS 800. During the first hour and then for 20-30 minutes each hour gas analysis was performed with Metamaxdevice (Germany), mounted on the test subject during all the time of the race. Before and after the passages of the measured interval distance blood lactate content was measured. These data demonstrate a number of features that accompany fatigue in the final stretches a distance: reduction of body economy, which is to increase heart rate and oxygen cost of work; activation of anaerobic-glycolitic energy production mechanism, the intensification of respiratory function. Along with this, the methods of correlation and regression analysis revealed changes (increase or decrease) the relationship between the functions depending on whether the body is in the initial stage of the physical load, sustainable high performance or in either a state of extreme fatigue. These results suggest the interference effects of the central and tissue mechanisms of fatigue in the organization of the oxygen transport function of the body. Apparently, in the case of ultra-marathon run, that is, long-term work of moderate power, the main limiting factor is not the energy of the body, and the autonomic software. PMID:23393784

  8. Coal-fueled high-speed diesel engine development

    SciTech Connect

    Kakwani, R. M.; Winsor, R. E.; Ryan, III, T. W.; Schwalb, J. A.; Wahiduzzaman, S.; Wilson, Jr., R. P.

    1991-11-01

    The objectives of this program are to study combustion feasibility by running Series 149 engine tests at high speeds with a fuel injection and combustion system designed for coal-water-slurry (CWS). The following criteria will be used to judge feasibility: (1) engine operation for sustained periods over the load range at speeds from 600 to 1900 rpm. The 149 engine for mine-haul trucks has a rated speed of 1900 rpm; (2) reasonable fuel economy and coal burnout rate; (3) reasonable cost of the engine design concept and CWS fuel compared to future oil prices.

  9. Theta oscillations regulate the speed of locomotion via a hippocampus to lateral septum pathway.

    PubMed

    Bender, Franziska; Gorbati, Maria; Cadavieco, Marta Carus; Denisova, Natalia; Gao, Xiaojie; Holman, Constance; Korotkova, Tatiana; Ponomarenko, Alexey

    2015-10-12

    Hippocampal theta oscillations support encoding of an animal's position during spatial navigation, yet longstanding questions about their impact on locomotion remain unanswered. Combining optogenetic control of hippocampal theta oscillations with electrophysiological recordings in mice, we show that hippocampal theta oscillations regulate locomotion. In particular, we demonstrate that their regularity underlies more stable and slower running speeds during exploration. More regular theta oscillations are accompanied by more regular theta-rhythmic spiking output of pyramidal cells. Theta oscillations are coordinated between the hippocampus and its main subcortical output, the lateral septum (LS). Chemo- or optogenetic inhibition of this pathway reveals its necessity for the hippocampal regulation of running speed. Moreover, theta-rhythmic stimulation of LS projections to the lateral hypothalamus replicates the reduction of running speed induced by more regular hippocampal theta oscillations. These results suggest that changes in hippocampal theta synchronization are translated into rapid adjustment of running speed via the LS.

  10. Theta oscillations regulate the speed of locomotion via a hippocampus to lateral septum pathway

    PubMed Central

    Bender, Franziska; Gorbati, Maria; Cadavieco, Marta Carus; Denisova, Natalia; Gao, Xiaojie; Holman, Constance; Korotkova, Tatiana; Ponomarenko, Alexey

    2015-01-01

    Hippocampal theta oscillations support encoding of an animal's position during spatial navigation, yet longstanding questions about their impact on locomotion remain unanswered. Combining optogenetic control of hippocampal theta oscillations with electrophysiological recordings in mice, we show that hippocampal theta oscillations regulate locomotion. In particular, we demonstrate that their regularity underlies more stable and slower running speeds during exploration. More regular theta oscillations are accompanied by more regular theta-rhythmic spiking output of pyramidal cells. Theta oscillations are coordinated between the hippocampus and its main subcortical output, the lateral septum (LS). Chemo- or optogenetic inhibition of this pathway reveals its necessity for the hippocampal regulation of running speed. Moreover, theta-rhythmic stimulation of LS projections to the lateral hypothalamus replicates the reduction of running speed induced by more regular hippocampal theta oscillations. These results suggest that changes in hippocampal theta synchronization are translated into rapid adjustment of running speed via the LS. PMID:26455912

  11. Theta oscillations regulate the speed of locomotion via a hippocampus to lateral septum pathway.

    PubMed

    Bender, Franziska; Gorbati, Maria; Cadavieco, Marta Carus; Denisova, Natalia; Gao, Xiaojie; Holman, Constance; Korotkova, Tatiana; Ponomarenko, Alexey

    2015-01-01

    Hippocampal theta oscillations support encoding of an animal's position during spatial navigation, yet longstanding questions about their impact on locomotion remain unanswered. Combining optogenetic control of hippocampal theta oscillations with electrophysiological recordings in mice, we show that hippocampal theta oscillations regulate locomotion. In particular, we demonstrate that their regularity underlies more stable and slower running speeds during exploration. More regular theta oscillations are accompanied by more regular theta-rhythmic spiking output of pyramidal cells. Theta oscillations are coordinated between the hippocampus and its main subcortical output, the lateral septum (LS). Chemo- or optogenetic inhibition of this pathway reveals its necessity for the hippocampal regulation of running speed. Moreover, theta-rhythmic stimulation of LS projections to the lateral hypothalamus replicates the reduction of running speed induced by more regular hippocampal theta oscillations. These results suggest that changes in hippocampal theta synchronization are translated into rapid adjustment of running speed via the LS. PMID:26455912

  12. Random Test Run Length and Effectiveness

    NASA Technical Reports Server (NTRS)

    Andrews, James H.; Groce, Alex; Weston, Melissa; Xu, Ru-Gang

    2008-01-01

    A poorly understood but important factor in many applications of random testing is the selection of a maximum length for test runs. Given a limited time for testing, it is seldom clear whether executing a small number of long runs or a large number of short runs maximizes utility. It is generally expected that longer runs are more likely to expose failures -- which is certainly true with respect to runs shorter than the shortest failing trace. However, longer runs produce longer failing traces, requiring more effort from humans in debugging or more resources for automated minimization. In testing with feedback, increasing ranges for parameters may also cause the probability of failure to decrease in longer runs. We show that the choice of test length dramatically impacts the effectiveness of random testing, and that the patterns observed in simple models and predicted by analysis are useful in understanding effects observed.

  13. Acute changes in kinematic and muscle activity patterns in habitually shod rearfoot strikers while running barefoot.

    PubMed

    Strauts, Janina; Vanicek, Natalie; Halaki, Mark

    2016-01-01

    The aim of this study was to observe changes in the kinematics and muscle activities when barefoot running was initially adopted by six habitually shod, recreational rearfoot striking runners. Participants ran on a treadmill shod for 5 min, completed 3 × 10-min intervals of barefoot running and then completed a final minute of shod running at a self-selected pace. Dependent variables (speed, joint angles at foot-contact, joint range of motion (ROM), mean and peak electromyography (EMG) activity) were compared across conditions using repeated measures ANOVAs. Anterior pelvic tilt and hip flexion significantly decreased during barefoot conditions at foot contact. The ROM for the trunk, pelvis, knee and ankle angles decreased during the barefoot conditions. Mean EMG activity was reduced for biceps femoris, gastrocnemius lateralis and tibialis anterior during barefoot running. The peak activity across the running cycle decreased in biceps femoris, vastus medialis, gastrocnemius medialis and tibialis anterior during barefoot running. During barefoot running, tibialis anterior activity significantly decreased during the pre-activation and initial contact phases; gastrocnemius lateralis and medialis activity significantly decreased during the push-off phase. Barefoot running caused immediate biomechanical and neuromuscular adaptations at the hip and pelvis, which persisted when the runners donned their shoes, indicating that some learning had occurred during an initial short bout of barefoot running.

  14. Consequences of Predicted or Actual Asteroid Impacts

    NASA Astrophysics Data System (ADS)

    Chapman, C. R.

    2003-12-01

    Earth impact by an asteroid could have enormous physical and environmental consequences. Impactors larger than 2 km diameter could be so destructive as to threaten civilization. Since such events greatly exceed any other natural or man-made catastrophe, much extrapolation is necessary just to understand environmental implications (e.g. sudden global cooling, tsunami magnitude, toxic effects). Responses of vital elements of the ecosystem (e.g. agriculture) and of human society to such an impact are conjectural. For instance, response to the Blackout of 2003 was restrained, but response to 9/11 terrorism was arguably exaggerated and dysfunctional; would society be fragile or robust in the face of global catastrophe? Even small impacts, or predictions of impacts (accurate or faulty), could generate disproportionate responses, especially if news media reports are hyped or inaccurate or if responsible entities (e.g. military organizations in regions of conflict) are inadequately aware of the phenomenology of small impacts. Asteroid impact is the one geophysical hazard of high potential consequence with which we, fortunately, have essentially no historical experience. It is thus important that decision makers familiarize themselves with the hazard and that society (perhaps using a formal procedure, like a National Academy of Sciences study) evaluate the priority of addressing the hazard by (a) further telescopic searches for dangerous but still-undiscovered asteroids and (b) development of mitigation strategies (including deflection of an oncoming asteroid and on- Earth civil defense). I exemplify these issues by discussing several representative cases that span the range of parameters. Many of the specific physical consequences of impact involve effects like those of other geophysical disasters (flood, fire, earthquake, etc.), but the psychological and sociological aspects of predicted and actual impacts are distinctive. Standard economic cost/benefit analyses may not

  15. Measurement of table feed speed in modern CT.

    PubMed

    Fukuda, Atsushi; Lin, Pei-Jan P; Matsubara, Kosuke; Miyati, Tosiaki

    2014-05-08

    The purpose of this study was to develop and evaluate a noninvasive method to assess table feed speed (mm/s) in modern commercial computed tomography (CT) systems. The table feed (mm/rotation) was measured at selected nominal table feed speeds, given as low (26.67 mm/s), intermediate (48.00 mm/s), and high (64.00 mm/s), by utilizing a computed radiography (CR) cassette installed with a photostimulable phosphor plate. The cassette was placed on the examination table to travel through the isocenter longitudinally, with a total scan length of over 430 mm. The distance travelled was employed to determine the total table feed length. To calculate the table feed speed, gantry rotation time was measured concurrently at a preselected nominal rotation time of 750 ms. Upon completion of data acquisition, the table feed and gantry rotation time were analyzed and used to calculate the actual table feed speed (mm/s). Under the low table feed speed setting, the table feed speed was found to be 26.67 mm/s. Similarly, under the intermediate and high table feed speed settings, the table feed speed was found to be 48.10 and 64.07 mm/s, respectively. Measurements of the table feed speed can be accomplished with a CR system and solid-state detector, and the table feed speed results were in excellent agreement with the nominal preset values.

  16. The MICE Run Control System

    NASA Astrophysics Data System (ADS)

    Hanlet, Pierrick; Mice Collaboration

    2014-06-01

    The Muon Ionization Cooling Experiment (MICE) is a demonstration experiment to prove the feasibility of cooling a beam of muons for use in a Neutrino Factory and/or Muon Collider. The MICE cooling channel is a section of a modified Study II cooling channel which will provide a 10% reduction in beam emittance. In order to ensure a reliable measurement, MICE will measure the beam emittance before and after the cooling channel at the level of 1%, or a relative measurement of 0.001. This renders MICE a precision experiment which requires strict controls and monitoring of all experimental parameters in order to control systematic errors. The MICE Controls and Monitoring system is based on EPICS and integrates with the DAQ, Data monitoring systems, and a configuration database. The new MICE Run Control has been developed to ensure proper sequencing of equipment and use of system resources to protect data quality. A description of this system, its implementation, and performance during recent muon beam data collection will be discussed.

  17. Running behavior and its energy cost in mice selectively bred for high voluntary locomotor activity.

    PubMed

    Rezende, Enrico L; Gomes, Fernando R; Chappell, Mark A; Garland, Theodore

    2009-01-01

    Locomotion is central to behavior and intrinsic to many fitness-critical activities (e.g., migration, foraging), and it competes with other life-history components for energy. However, detailed analyses of how changes in locomotor activity and running behavior affect energy budgets are scarce. We quantified these effects in four replicate lines of house mice that have been selectively bred for high voluntary wheel running (S lines) and in their four nonselected control lines (C lines). We monitored wheel speeds and oxygen consumption for 24-48 h to determine daily energy expenditure (DEE), resting metabolic rate (RMR), locomotor costs, and running behavior (bout characteristics). Daily running distances increased roughly 50%-90% in S lines in response to selection. After we controlled for body mass effects, selection resulted in a 23% increase in DEE in males and a 6% increase in females. Total activity costs (DEE - RMR) accounted for 50%-60% of DEE in both S and C lines and were 29% higher in S males and 5% higher in S females compared with their C counterparts. Energetic costs of increased daily running distances differed between sexes because S females evolved higher running distances by running faster with little change in time spent running, while S males also spent 40% more time running than C males. This increase in time spent running impinged on high energy costs because the majority of running costs stemmed from "postural costs" (the difference between RMR and the zero-speed intercept of the speed vs. metabolic rate relationship). No statistical differences in these traits were detected between S and C females, suggesting that large changes in locomotor behavior do not necessarily effect overall energy budgets. Running behavior also differed between sexes: within S lines, males ran with more but shorter bouts than females. Our results indicate that selection effects on energy budgets can differ dramatically between sexes and that energetic constraints in S

  18. Intended rather than actual movement velocity determines the latency of anticipatory postural adjustments.

    PubMed

    Esposti, Roberto; Bruttini, Carlo; Bolzoni, Francesco; Cavallari, Paolo

    2015-02-01

    The literature reports that anticipatory postural adjustments (APAs) are programmed according to movement velocity. However, the linkage between APAs and velocity has been highlighted within single subjects who were asked to voluntarily change movement velocity; therefore, till now, it has been impossible to discern whether the key factor determining APA latency was the intended movement velocity or the actual one. Aim of this study was to distinguish between these two factors. We analyzed the APA chain that stabilizes the arm during a brisk index finger flexion in two groups of subjects: (1) 29 who composed our database from previous experiments and were asked to "go-as-fast-as-possible" (go-fast), but actually performed the movement with different speeds (238-1, 180°/s), and (2) ten new subjects who performed the go-fast movement at more than 500°/s and were then asked to go-slow at about 50% of their initial velocity, thus moving at 300-800°/s. No correlation between APA latency and actual movement speed was observed when all subjects had to go-fast (p > 0.50), while delayed APAs were found in the ten new subjects when they had to go-slow (p < 0.001). Moreover, in the speed range between 300 and 800°/s, the APA latency depended only on movement instruction: subjects going fast showed earlier APAs than those going slow (p < 0.001). These data suggest a stronger role of the intended movement velocity versus the actual one in modifying the timing of postural muscles recruitment with respect to the prime mover. These results also strengthen the idea of a shared postural and voluntary command within the same motor act.

  19. 40 CFR 258.26 - Run-on/run-off control systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Run-on/run-off control systems. 258.26 Section 258.26 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES CRITERIA FOR MUNICIPAL SOLID WASTE LANDFILLS Operating Criteria § 258.26 Run-on/run-off control systems....

  20. Speed Reading Scores in Perspective

    ERIC Educational Resources Information Center

    Smith, Brenda Golembesky

    1975-01-01

    Cites the factors that influence reading rates and comprehension scores on timed speed reading tests, concluding that the reading speed achieved for any particular test or timed reading is the speed for that situation only. (RB)

  1. Speed Reading: Remember the Tortoise

    ERIC Educational Resources Information Center

    Graf, Richard G.

    1973-01-01

    After speed-reading partisans questioned the criticisms in a Psychology Today article, another psychologist conducted a controlled study of speed readers. As we said before, "Speed Readers Don't Read; They Skim". (Editor)

  2. Everyone Deserves a Speeding Ticket.

    ERIC Educational Resources Information Center

    Burris, Harold

    1993-01-01

    Presents a first day physics activity having students determine the fine for a speeding ticket if the speeds considered include the earth's rotation and revolution speed, and the movement through the galaxy. (MDH)

  3. Impact Accelerations of Barefoot and Shod Running.

    PubMed

    Thompson, M; Seegmiller, J; McGowan, C P

    2016-05-01

    During the ground contact phase of running, the body's mass is rapidly decelerated resulting in forces that propagate through the musculoskeletal system. The repetitive attenuation of these impact forces is thought to contribute to overuse injuries. Modern running shoes are designed to reduce impact forces, with the goal to minimize running related overuse injuries. Additionally, the fore/mid foot strike pattern that is adopted by most individuals when running barefoot may reduce impact force transmission. The aim of the present study was to compare the effects of the barefoot running form (fore/mid foot strike & decreased stride length) and running shoes on running kinetics and impact accelerations. 10 healthy, physically active, heel strike runners ran in 3 conditions: shod, barefoot and barefoot while heel striking, during which 3-dimensional motion analysis, ground reaction force and accelerometer data were collected. Shod running was associated with increased ground reaction force and impact peak magnitudes, but decreased impact accelerations, suggesting that the midsole of running shoes helps to attenuate impact forces. Barefoot running exhibited a similar decrease in impact accelerations, as well as decreased impact peak magnitude, which appears to be due to a decrease in stride length and/or a more plantarflexed position at ground contact. PMID:26837933

  4. Impact of Environmental Parameters on Marathon Running Performance

    PubMed Central

    El Helou, Nour; Tafflet, Muriel; Berthelot, Geoffroy; Tolaini, Julien; Marc, Andy; Guillaume, Marion; Hausswirth, Christophe; Toussaint, Jean-François

    2012-01-01

    Purpose The objectives of this study were to describe the distribution of all runners' performances in the largest marathons worldwide and to determine which environmental parameters have the maximal impact. Methods We analysed the results of six European (Paris, London, Berlin) and American (Boston, Chicago, New York) marathon races from 2001 to 2010 through 1,791,972 participants' performances (all finishers per year and race). Four environmental factors were gathered for each of the 60 races: temperature (°C), humidity (%), dew point (°C), and the atmospheric pressure at sea level (hPA); as well as the concentrations of four atmospheric pollutants: NO2 – SO2 – O3 and PM10 (μg.m−3). Results All performances per year and race are normally distributed with distribution parameters (mean and standard deviation) that differ according to environmental factors. Air temperature and performance are significantly correlated through a quadratic model. The optimal temperatures for maximal mean speed of all runners vary depending on the performance level. When temperature increases above these optima, running speed decreases and withdrawal rates increase. Ozone also impacts performance but its effect might be linked to temperature. The other environmental parameters do not have any significant impact. Conclusions The large amount of data analyzed and the model developed in this study highlight the major influence of air temperature above all other climatic parameter on human running capacity and adaptation to race conditions. PMID:22649525

  5. Traction contact performance evaluation at high speeds

    NASA Technical Reports Server (NTRS)

    Tevaarwerk, J. L.

    1981-01-01

    The results of traction tests performed on two fluids are presented. These tests covered a pressure range of 1.0 to 2.5 GPa, an inlet temperature range of 30 'C to 70 'C, a speed range of 10 to 80 m/sec, aspect ratios of .5 to 5 and spin from 0 to 2.1 percent. The test results are presented in the form of two dimensionless parameters, the initial traction slope and the maximum traction peak. With the use of a suitable rheological fluid model the actual traction curves measured can now be reconstituted from the two fluid parameters. More importantly, the knowledge of these parameters together with the fluid rheological model, allow the prediction of traction under conditions of spin, slip and any combination thereof. Comparison between theoretically predicted traction under these conditions and those measured in actual traction tests shows that this method gives good results.

  6. 40 CFR 74.22 - Actual SO2 emissions rate.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 17 2012-07-01 2012-07-01 false Actual SO2 emissions rate. 74.22... (CONTINUED) SULFUR DIOXIDE OPT-INS Allowance Calculations for Combustion Sources § 74.22 Actual SO2 emissions... actual SO2 emissions rate shall be 1985. (2) For combustion sources that commenced operation...

  7. Actualization and the Fear of Death: Retesting an Existential Hypothesis.

    ERIC Educational Resources Information Center

    Wood, Keith; Robinson, Paul J.

    1982-01-01

    Demonstrates that within a group of highly actualized individuals, the degree to which "own death" is integrated into constructs of self is a far more powerful predictor of fear of death than actualization. Findings suggest that actualization and integration are independent in their overall effect on fear of death. (Author)

  8. Visual Discrimination, Learning, and Page Layout: Wrap-Around, Run-Around, and Transparent Text.

    ERIC Educational Resources Information Center

    Knupfer, Nancy Nelson; McIsaac, Marina Stock

    The purpose of this study was to determine the effects of three electronic text variables (run-around, wrap-around, and transparent text) on reading speed and comprehension. One hundred thirty-two undergraduate students in an introductory computer literacy course at a major university were asked to read one of three randomly-distributed passages…

  9. Changing Speed of Comets

    ERIC Educational Resources Information Center

    Follows, Mike

    2003-01-01

    It is shown that highly elliptical orbits, such as those of comets, can be explained well in terms of energy rather than forces. The principle of conservation of energy allows a comet's velocity to be calculated at aphelion and perihelion. An example asks students to calculate whether they can run fast enough to escape from a small asteroid.…

  10. Tuataras and salamanders show that walking and running mechanics are ancient features of tetrapod locomotion.

    PubMed

    Reilly, Stephen M; McElroy, Eric J; Andrew Odum, R; Hornyak, Valerie A

    2006-06-22

    The lumbering locomotor behaviours of tuataras and salamanders are the best examples of quadrupedal locomotion of early terrestrial vertebrates. We show they use the same walking (out-of-phase) and running (in-phase) patterns of external mechanical energy fluctuations of the centre-of-mass known in fast moving (cursorial) animals. Thus, walking and running centre-of-mass mechanics have been a feature of tetrapods since quadrupedal locomotion emerged over 400 million years ago. When walking, these sprawling animals save external mechanical energy with the same pendular effectiveness observed in cursorial animals. However, unlike cursorial animals (that change footfall patterns and mechanics with speed), tuataras and salamanders use only diagonal couplet gaits and indifferently change from walking to running mechanics with no significant change in total mechanical energy. Thus, the change from walking to running is not related to speed and the advantage of walking versus running is unclear. Furthermore, lumbering mechanics in primitive tetrapods is reflected in having total mechanical energy driven by potential energy (rather than kinetic energy as in cursorial animals) and relative centre-of-mass displacements an order of magnitude greater than cursorial animals. Thus, large vertical displacements associated with lumbering locomotion in primitive tetrapods may preclude their ability to increase speed.

  11. Stretching Your Energetic Budget: How Tendon Compliance Affects the Metabolic Cost of Running

    PubMed Central

    Uchida, Thomas K.; Hicks, Jennifer L.; Dembia, Christopher L.; Delp, Scott L.

    2016-01-01

    Muscles attach to bones via tendons that stretch and recoil, affecting muscle force generation and metabolic energy consumption. In this study, we investigated the effect of tendon compliance on the metabolic cost of running using a full-body musculoskeletal model with a detailed model of muscle energetics. We performed muscle-driven simulations of running at 2–5 m/s with tendon force–strain curves that produced between 1 and 10% strain when the muscles were developing maximum isometric force. We computed the average metabolic power consumed by each muscle when running at each speed and with each tendon compliance. Average whole-body metabolic power consumption increased as running speed increased, regardless of tendon compliance, and was lowest at each speed when tendon strain reached 2–3% as muscles were developing maximum isometric force. When running at 2 m/s, the soleus muscle consumed less metabolic power at high tendon compliance because the strain of the tendon allowed the muscle fibers to operate nearly isometrically during stance. In contrast, the medial and lateral gastrocnemii consumed less metabolic power at low tendon compliance because less compliant tendons allowed the muscle fibers to operate closer to their optimal lengths during stance. The software and simulations used in this study are freely available at simtk.org and enable examination of muscle energetics with unprecedented detail. PMID:26930416

  12. All aboard for high-speed rail

    SciTech Connect

    Herman, D.

    1996-09-01

    A sleek, bullet-nosed train whizzing across the countryside is a fairly common sight in many nations. Since the Train a Grande Vitesse (TGV)--the record-setting ``train with great speed``--was introduced in France in 1981, Germany, Japan, and other countries have joined the high-speed club. In addition, the Eurostar passenger train, which travels between Great Britain and France through the Channel Tunnel, can move at 186 miles per hour once it reaches French tracks. Despite the technology`s growth elsewhere, rapid rail travel has not been seen on US shores beyond a few test runs by various manufacturers. Before the end of the century, however, American train spotters will finally be able to see some very fast trains here too. In March, Washington, DC-based Amtrak announced the purchase of 18 American Flyer high-speed train sets for the Northeast Corridor, which stretches from Boston through new York to the nation`s capital. Furthermore, Florida will get its own system by 2004, and other states are now taking a look at the technology. The American Flyer--designed by Montreal-based Bombardier and TGV manufacturer GEC Alsthom Transport in Paris--should venture onto US rails by 1999. Traveling at up to 150 miles per hour, the American Flyer will cut the New York-Boston run from 4 1/2 hours to 3 hours and reduce New York-Washington trip time from 3 hours to less than 2 3/4. Amtrak hopes the new trains and better times will earn it a greater share of travelers from air shuttles and perhaps from Interstate 95. This article describes how technologies that tilt railcars and propel the world`s fastest trains will be merged into one train set for the American Flyer, Amtrak`s first trip along high-speed rails.

  13. On the potential of a chemical Bonds: Possible effects of steroids on home run production in baseball

    NASA Astrophysics Data System (ADS)

    Tobin, R. G.

    2008-01-01

    In recent years several baseball players have hit a remarkable number of home runs, and there has been speculation that their achievements were enhanced by the use of anabolic steroids. Basic mechanics and physiology, combined with simple but reasonable models, show that steroid use by a player who is already highly skilled could produce such dramatic increases in home run production. Because home runs are relatively rare events on the tail of a batter's range distribution, even modest changes in bat speed can increase the proportion of batted balls that result in home runs by 50-100%. The possible effect of steroid use by pitchers is briefly considered.

  14. Miniature, Variable-Speed Control Moment Gyroscope

    NASA Technical Reports Server (NTRS)

    Bilski, Steve; Kline-Schoder, Robert; Sorensen, Paul

    2011-01-01

    The Miniature Variable-Speed Control Moment Gyroscope (MVS-CMG) was designed for small satellites (mass from less than 1 kg up to 500 kg). Currently available CMGs are too large and heavy, and available miniature CMGs do not provide sufficient control authority for use on practical satellites. This primarily results from the need to greatly increase the speed of rotation of the flywheel in order to reduce the flywheel size and mass. This goal was achieved by making use of a proprietary, space-qualified, high-speed (100,000 rpm) motor technology to spin the flywheel at a speed ten times faster than other known miniature CMGs under development. NASA is supporting innovations in propulsion, power, and guidance and navigation systems for low-cost small spacecraft. One of the key enabling technologies is attitude control mechanisms. CMGs are particularly attractive for spacecraft attitude control since they can achieve higher torques with lower mass and power than reaction wheels, and they provide continuous torque capability that enables precision pointing (in contrast to on-off thruster control). The aim of this work was to develop a miniature, variable-speed CMG that is sized for use on small satellites. To achieve improved agility, these spacecraft must be able to slew at high rate, which requires attitude control actuators that can apply torques on the order of 5 N-m. The MVS-CMG is specifically designed to achieve a high-torque output with a minimum flywheel and system mass. The flywheel can be run over a wide range of speeds, which is important to help reduce/eliminate potential gimbal lock, and can be used to optimize the operational envelope of the CMG.

  15. Fast multiple run_before decoding method for efficient implementation of an H.264/advanced video coding context-adaptive variable length coding decoder

    NASA Astrophysics Data System (ADS)

    Ki, Dae Wook; Kim, Jae Ho

    2013-07-01

    We propose a fast new multiple run_before decoding method in context-adaptive variable length coding (CAVLC). The transform coefficients are coded using CAVLC, in which the run_before symbols are generated for a 4×4 block input. To speed up the CAVLC decoding, the run_before symbols need to be decoded in parallel. We implemented a new CAVLC table for simultaneous decoding of up to three run_befores. The simulation results show a Total Speed-up Factor of 205%˜144% over various resolutions and quantization steps.

  16. Endurance running and the evolution of Homo.

    PubMed

    Bramble, Dennis M; Lieberman, Daniel E

    2004-11-18

    Striding bipedalism is a key derived behaviour of hominids that possibly originated soon after the divergence of the chimpanzee and human lineages. Although bipedal gaits include walking and running, running is generally considered to have played no major role in human evolution because humans, like apes, are poor sprinters compared to most quadrupeds. Here we assess how well humans perform at sustained long-distance running, and review the physiological and anatomical bases of endurance running capabilities in humans and other mammals. Judged by several criteria, humans perform remarkably well at endurance running, thanks to a diverse array of features, many of which leave traces in the skeleton. The fossil evidence of these features suggests that endurance running is a derived capability of the genus Homo, originating about 2 million years ago, and may have been instrumental in the evolution of the human body form.

  17. Endurance running and the evolution of Homo.

    PubMed

    Bramble, Dennis M; Lieberman, Daniel E

    2004-11-18

    Striding bipedalism is a key derived behaviour of hominids that possibly originated soon after the divergence of the chimpanzee and human lineages. Although bipedal gaits include walking and running, running is generally considered to have played no major role in human evolution because humans, like apes, are poor sprinters compared to most quadrupeds. Here we assess how well humans perform at sustained long-distance running, and review the physiological and anatomical bases of endurance running capabilities in humans and other mammals. Judged by several criteria, humans perform remarkably well at endurance running, thanks to a diverse array of features, many of which leave traces in the skeleton. The fossil evidence of these features suggests that endurance running is a derived capability of the genus Homo, originating about 2 million years ago, and may have been instrumental in the evolution of the human body form. PMID:15549097

  18. Controlled Speed Accessory Drive demonstration program

    NASA Technical Reports Server (NTRS)

    Hoehn, F. W.

    1981-01-01

    A Controlled Speed Accessory Drive System was examined in an effort to improve the fuel economy of passenger cars. Concept feasibility and the performance of a typical system during actual road driving conditions were demonstrated. The CSAD system is described as a mechanical device which limits engine accessory speeds, thereby reducing parasitic horsepower losses and improving overall vehicle fuel economy. Fuel consumption data were compiled for fleets of GSA vehicles. Various motor pool locations were selected, each representing different climatic conditions. On the basis of a total accumulated fleet usage of nearly three million miles, an overall fuel economy improvement of 6 percent to 7 percent was demonstrated. Coincident chassis dynamometer tests were accomplished on selected vehicles to establish the effect of different accessory drive systems on exhaust emissions, and to evaluate the magnitude of the mileage benefits which could be derived.

  19. Physiological correlates of 2-mile run performance as determined using a novel on-demand treadmill.

    PubMed

    Tolfrey, Keith; Hansen, Simon A; Dutton, Katie; McKee, Tom; Jones, Andrew M

    2009-08-01

    The purpose of this study was to assess the reproducibility of an on-demand motorised treadmill to measure 2-mile (3.2 km) race performance and to examine the physiological variables that best predict this free-running performance in active men. Twelve men (mean (SD): age, 28 (9) years; stature, 1.79 (0.05) m; body mass, 72 (9) kg) completed the study in which maximum oxygen uptake (VO2 max), running economy, and running speedin the abstract section. They appear in the rest of the paper.), running economy, and running speed at VO2 max (vVO2 max), lactate threshold (vLT), and 4 mmol.L-1 fixed blood lactate concentration (v4) were measured. Subsequently, the maximal lactate steady state (MLSS) was identified using a series of 30-min treadmill runs. Finally, each participant completed a 2-mile running performance trial on 2 separate occasions, using an on-demand treadmill that adjusts belt speed according to the participant's position on the moving belt. The average 2-mile run speed was 15.7 (SD, 1.9) km.h-1, with small individual differences between repeat-performance trials (intraclass correlation coefficient = 0.99, 95% CI 0.953 to 0.996; standard error of measurement as coefficient of variation = 1.5%, 95% CI 1.0% to 2.5%). Bivariate regression analyses identified VO2 max, vVO2 max, VO2 (mL.kg-1.min-1) at MLSS, vLT, v4, and velocity at MLSS (vMLSS) as the strongest individual predictor variables (r2 = 0.69 to 0.87; standard error of the estimate = 1.08 to 0.72 km.h-1) for 2-mile running performance. The vLT and vMLSS explained 85% and 87% of the variance in running performance, respectively, suggesting that there is considerable shared variance between these parameters. In conclusion, the on-demand treadmill system provided a reliable measure of distance running performance. Both vLT and vMLSS were strong predictors of 2-mile running performance, with vMLSS explaining marginally more of the variance. PMID:19767813

  20. Energy system contributions in middle-distance running events.

    PubMed

    Hill, D W

    1999-06-01

    The aim of this study was to estimate the energy contributions in middle-distance running events for male and female university athletes. The oxygen uptake (VO2) response during high-speed running was measured directly during exhaustive treadmill tests. Muscle mass was estimated using anthropometry. Each athlete completed an average of three races over 400 m, 800 m or 1500 m. Five minutes after each race, they provided a blood sample for determination of blood lactate concentration. For each race, energy cost, which was expressed as oxygen equivalents, was calculated as the sum of the aerobic and anaerobic components. The aerobic contribution was calculated as the sum of oxygen stores (2.3 ml O2.kg body mass-1) and total VO2 (based on the VO2 response to treadmill running). The anaerobic contribution was calculated as the sum of the energy available from phosphocreatine stores (37 ml O2.kg muscle mass-1) and the energy from glycolysis (3.0 ml O2.kg body mass-1 per mmol.l-1 increase in blood lactate concentration). For the women, the anaerobic energy contributions for the 400 m, 800 m and 1500 m averaged 62%, 33% and 17%, respectively. For the men, the anaerobic contributions averaged 63%, 39% and 20%, respectively. This information will help coaches and sport scientists to design and implement individualized training programmes.

  1. Treadmill running reverses retention deficit induced by morphine.

    PubMed

    Alaei, Hojjatallah; Borjeian, Lila; Azizi, Mohammad; Orian, Shahrbanoo; Pourshanazari, Aliasghar; Hanninen, Osmo

    2006-04-24

    Human and animal studies have suggested that exercise has benefits overall health and cognitive function. The aim of this study was to investigate the effect of treadmill running on passive avoidance learning and memory deficit in morphine-treated rats. The passive avoidance learning was measured in different time intervals (1, 2 and 24 h as well as 1 week and 1 month). Four groups of rats were included as follows: control, morphine-treated, exercised-saline and exercised-morphine-treated group. The electrical foot shock and treadmill training (2 h at a speed of 5 m/min for 10 days) were applied for all the groups. The data obtained was analyzed using unpaired Students t-test and ANOVA test with group as the independent variable, and performance in each session (avoidances and crossings) as the dependent variables. The results show that the total time staying in dark box was decreased in exercised-saline and exercised-morphine-treated rats by treadmill running (P<0.05). The avoidance learning was significantly reduced in morphine-treated group as indicated by the increased total time of staying in the dark box compared with the control group (P<0.05). We could conclude that exercise increased the delay time of entry to the dark electrical foot shock box, suggesting that morphine impaired the short-term memory and learning and this was reversed by the treadmill running.

  2. L-tryptophan supplementation does not improve running performance.

    PubMed

    Stensrud, T; Ingjer, F; Holm, H; Strømme, S B

    1992-08-01

    In 1988 Segura and Ventura (14) reported that 1.2 g of L-Tryptophan (L-TRY) supplementation increased total exercise time by 49.4% when the subjects were running at 80% of maximal oxygen uptake (VO2max). In human performance research, acute improvements of that category are rather uncommon. Both for this reason and because ingestion of purified L-TRY may have adverse effects, it seemed pertinent to repeat the investigation of Segura and Ventura. Forty-nine well-trained male runners, aged 18-44, with an average maximal aerobic power of 66 (57-78) ml.kg-1.min-1, participated in a randomized double blind placebo (P) study. Each subject underwent four trials on the treadmill. The first two served as learning experience, including measurement of VO2max and anaerobic threshold. During the last two trials the subjects ran until exhaustion at a speed corresponding to 100% of their VO2max-first an initial trial and then after receiving a total of 1.2 g L-TRY or P over a 24 hour period prior to the run. No significant difference between the improvements in the L-TRY and P group could be demonstrated. It is concluded that oral L-TRY supplementation does not enhance running performance. PMID:1428380

  3. Gender classification of running subjects using full-body kinematics

    NASA Astrophysics Data System (ADS)

    Williams, Christina M.; Flora, Jeffrey B.; Iftekharuddin, Khan M.

    2016-05-01

    This paper proposes novel automated gender classification of subjects while engaged in running activity. The machine learning techniques include preprocessing steps using principal component analysis followed by classification with linear discriminant analysis, and nonlinear support vector machines, and decision-stump with AdaBoost. The dataset consists of 49 subjects (25 males, 24 females, 2 trials each) all equipped with approximately 80 retroreflective markers. The trials are reflective of the subject's entire body moving unrestrained through a capture volume at a self-selected running speed, thus producing highly realistic data. The classification accuracy using leave-one-out cross validation for the 49 subjects is improved from 66.33% using linear discriminant analysis to 86.74% using the nonlinear support vector machine. Results are further improved to 87.76% by means of implementing a nonlinear decision stump with AdaBoost classifier. The experimental findings suggest that the linear classification approaches are inadequate in classifying gender for a large dataset with subjects running in a moderately uninhibited environment.

  4. Reliability of a Qualitative Video Analysis for Running.

    PubMed

    Pipkin, Andrew; Kotecki, Kristy; Hetzel, Scott; Heiderscheit, Bryan

    2016-07-01

    Study Design Reliability study. Background Video analysis of running gait is frequently performed in orthopaedic and sports medicine practices to assess biomechanical factors that may contribute to injury. However, the reliability of a whole-body assessment has not been determined. Objective To determine the intrarater and interrater reliability of the qualitative assessment of specific running kinematics from a 2-dimensional video. Methods Running-gait analysis was performed on videos recorded from 15 individuals (8 male, 7 female) running at a self-selected pace (3.17 ± 0.40 m/s, 8:28 ± 1:04 min/mi) using a high-speed camera (120 frames per second). These videos were independently rated on 2 occasions by 3 experienced physical therapists using a standardized qualitative assessment. Fifteen sagittal and frontal plane kinematic variables were rated on a 3- or 5-point categorical scale at specific events of the gait cycle, including initial contact (n = 3) and midstance (n = 9), or across the full gait cycle (n = 3). The video frame number corresponding to each gait event was also recorded. Intrarater and interrater reliability values were calculated for gait-event detection (intraclass correlation coefficient [ICC] and standard error of measurement [SEM]) and the individual kinematic variables (weighted kappa [κw]). Results Gait-event detection was highly reproducible within raters (ICC = 0.94-1.00; SEM, 0.3-1.0 frames) and between raters (ICC = 0.77-1.00; SEM, 0.4-1.9 frames). Eleven of the 15 kinematic variables demonstrated substantial (κw = 0.60-0.799) or excellent (κw>0.80) intrarater agreement, with the exception of foot-to-center-of-mass position (κw = 0.59), forefoot position (κw = 0.58), ankle dorsiflexion at midstance (κw = 0.49), and center-of-mass vertical excursion (κw = 0.36). Interrater agreement for the kinematic measures varied more widely (κw = 0.00-0.85), with 5 variables showing substantial or excellent reliability. Conclusion The

  5. Body acceleration distribution and O2 uptake in humans during running and jumping

    NASA Technical Reports Server (NTRS)

    Bhattacharya, A.; Mccutcheon, E. P.; Shvartz, E.; Greenleaf, J. E.

    1980-01-01

    The distribution of body acceleration and associated oxygen uptake and heart rate responses are investigated in treadmill running and trampoline jumping. Accelerations in the +Gz direction were measured at the lateral ankle, lumbosacral region and forehead of eight young men during level treadmill walking and running at four speeds and trampoline jumping at four heights, together with corresponding oxygen uptake and heart rate. With increasing treadmill speed, peak acceleration at the ankle is found always to exceed that at the back and forehead, and acceleration profiles with higher frequency components than those observed during jumping are observed. Acceleration levels are found to be more uniformly distributed with increasing height in jumping, although comparable oxygen uptake and heat rates are obtained. Results indicate that the magnitude of the biomechanical stimuli is greater in trampoline jumping than in running, which finding could be of use in the design of procedures to avert deconditioning in persons exposed to weightlessness.

  6. Running spectral index from inflation with modulations

    SciTech Connect

    Kobayashi, Takeshi; Takahashi, Fuminobu E-mail: fuminobu.takahashi@ipmu.jp

    2011-01-01

    We argue that a large negative running spectral index, if confirmed, might suggest that there are abundant structures in the inflaton potential, which result in a fairly large (both positive and negative) running of the spectral index at all scales. It is shown that the center value of the running spectral index suggested by the recent CMB data can be easily explained by an inflaton potential with superimposed periodic oscillations. In contrast to cases with constant running, the perturbation spectrum is enhanced at small scales, due to the repeated modulations. We mention that such features at small scales may be seen by 21 cm observations in the future.

  7. Physiological correlates to 800 meter running performance.

    PubMed

    Deason, J; Powers, S K; Lawler, J; Ayers, D; Stuart, M K

    1991-12-01

    Much of the previous research efforts aimed at determining those physiological characteristics that contribute to distance running success have centered around distances greater than 1500 meters with little attention to events such as the 800 meter run. Therefore, this investigation examined the relationship between selected physiological and body composition, characteristics and performance in an 800 meter run. Measurements of body composition, VO2max, running economy, and performance times for 100 and 300 meter dashes were obtained on 11 male track athletes. Stepwise multiple regression analysis was performed using 800 meter race time as the dependent variable. Although the combination of 300 and 100 meter run times, percent body fat, running economy and VO2 max as independent variables accounted for the greatest amount of total variance (r2 = .89), the additional variance explained by the model did not increase significantly (p greater than 0.05), when VO2max, percent body fat, and running economy were added to a model which contained 300 and 100 meter run time (r2 = .85) as the explanatory variables. These data offer additional support for the notion that much of the intramuscular ATP produce and utilized during an 800 meter run comes from anaerobic metabolic pathway.

  8. A model-experiment comparison of system dynamics for human walking and running.

    PubMed

    Lipfert, Susanne W; Günther, Michael; Renjewski, Daniel; Grimmer, Sten; Seyfarth, Andre

    2012-01-01

    The human musculo-skeletal system comprises high complexity which makes it difficult to identify underlying basic principles of bipedal locomotion. To tackle this challenge, a common approach is to strip away complexity and formulate a reductive model. With utter simplicity a bipedal spring-mass model gives good predictions of the human gait dynamics, however, it has not been fully investigated whether center of mass motion over time of walking and running is comparable between the model and the human body over a wide range of speed. To test the model's ability in this respect, we compare sagittal center of mass trajectories of model and human data for speeds ranging from 0.5 m/s to 4 m/s. For simulations, system parameters and initial conditions are extracted from experimental observations of 28 subjects. The leg parameters stiffness and length are extracted from functional fitting to the subjects' leg force-length curves. With small variations of the touch-down angle of the leg and the vertical position of the center of mass at apex, we find successful spring-mass simulations for moderate walking and medium running speeds. Predictions of the sagittal center of mass trajectories and ground reaction forces are good, but their amplitudes are overestimated, while contact time is underestimated. At faster walking speeds and slower running speeds we do not find successful model locomotion with the extent of allowed parameter variation. We conclude that the existing limitations may be improved by adding complexity to the model.

  9. The multistage 20 metre shuttle run test for aerobic fitness.

    PubMed

    Léger, L A; Mercier, D; Gadoury, C; Lambert, J

    1988-01-01

    A maximal multistage 20 m shuttle run test was designed to determine the maximal aerobic power of schoolchildren, healthy adults attending fitness class and athletes performing in sports with frequent stops and starts (e.g. basketball, fencing and so on). Subjects run back and forth on a 20 m course and must touch the 20 m line; at the same time a sound signal is emitted from a prerecorded tape. Frequency of the sound signals is increased 0.5 km h-1 each minute from a starting speed of 8.5 km h-1. When the subject can no longer follow the pace, the last stage number announced is used to predict maximal oxygen uptake (VO2max) (Y, ml kg-1 min-1) from the speed (X, km h-1) corresponding to that stage (speed = 8 + 0.5 stage no.) and age (A, year): Y = 31.025 + 3.238 X - 3.248A + 0.1536AX, r = 0.71 with 188 boys and girls aged 8-19 years. To obtain this regression, the test was performed individually. Right upon termination VO2 was measured with four 20 s samples and VO2max was estimated by retroextrapolating the O2 recovery curve at time zero of recovery. For adults, similar measurements indicated that the same equation could be used keeping age constant at 18 (r = 0.90, n = 77 men and women 18-50 years old). Test-retest reliability coefficients were 0.89 for children (139 boys and girls 6-16 years old) and 0.95 for adults (81 men and women, 20-45 years old).(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Forces and mechanical energy fluctuations during diagonal stride roller skiing; running on wheels?

    PubMed

    Kehler, Alyse L; Hajkova, Eliska; Holmberg, Hans-Christer; Kram, Rodger

    2014-11-01

    Mechanical energy can be conserved during terrestrial locomotion in two ways: the inverted pendulum mechanism for walking and the spring-mass mechanism for running. Here, we investigated whether diagonal stride cross-country roller skiing (DIA) utilizes similar mechanisms. Based on previous studies, we hypothesized that running and DIA would share similar phase relationships and magnitudes of kinetic energy (KE), and gravitational potential energy (GPE) fluctuations, indicating elastic energy storage and return, as if roller skiing is like 'running on wheels'. Experienced skiers (N=9) walked and ran at 1.25 and 3 m s(-1), respectively, and roller skied with DIA at both speeds on a level dual-belt treadmill that recorded perpendicular and parallel forces. We calculated the KE and GPE of the center of mass from the force recordings. As expected, the KE and GPE fluctuated with an out-of-phase pattern during walking and an in-phase pattern during running. Unlike walking, during DIA, the KE and GPE fluctuations were in phase, as they are in running. However, during the glide phase, KE was dissipated as frictional heat and could not be stored elastically in the tendons, as in running. Elastic energy storage and return epitomize running and thus we reject our hypothesis. Diagonal stride cross-country skiing is a biomechanically unique movement that only superficially resembles walking or running.

  11. Development of a machine for automatically measuring static/dynamic running parallelism in linear guideways.

    PubMed

    Hsieh, Tung-Hsien; Huang, Hsueh-Liang; Jywe, Wen-Yuh; Liu, Chien-Hung

    2014-03-01

    This work develops a machine for automatically measuring static/dynamic running parallelism for use in the linear guideway manufacturing industry. The automatic static/dynamic running parallelism measurement machine consists of a running parallelism measurement system, a linear motor, a precision granite air-suspension table, and a PC-based human-machine interface. The machine can be used simultaneously to measure the horizontal and vertical running parallelism of a linear guideway and automatically determine its accuracy. The measured parallelism is digitalized and analyzed to detect turning points in the linear guideway. The results concerning the accuracy of the running parallelism are not affected by the measurement platform. Experimental results showed that the standard deviation of the running parallelism measurement system is 0.4 μm and the measuring time is about 10 s for every 1000 mm of length (equal to a measuring speed of 0.1 m/s); this measurement time is 80% shorter than that of a traditional measurement system (which has a maximum speed of 1 m/s, a maximum sampling frequency of 100 kHz, and a maximum measurement length of 2000 mm). PMID:24689628

  12. Stride angle as a novel indicator of running economy in well-trained runners.

    PubMed

    Santos-Concejero, Jordan; Tam, Nicholas; Granados, Cristina; Irazusta, Jon; Bidaurrazaga-Letona, Iraia; Zabala-Lili, Jon; Gil, Susana M

    2014-07-01

    The main purpose of this study was to investigate the relationship between a novel biomechanical variable, the stride angle, and running economy (RE) in a homogeneous group of long-distance athletes. Twenty-five well-trained male runners completed 4-minute running stages on a treadmill at different set velocities. During the test, biomechanical variables such as stride angle, swing time, ground contact time, stride length, stride frequency, and the different sub-phases of ground contact were recorded using an optical measurement system. VO2 values at velocities below the lactate threshold were measured to calculate RE. Stride angle was negatively correlated with RE at every speed (p < 0.001, large effect sizes). Running economy was also negatively correlated with swing phase and positively correlated with ground contact time and running performance according to the best 10-km race time (p ≤ 0.05, moderate and large effect sizes). Last, stride angle was correlated with ground contact time at every speed (p < 0.001, large effect sizes). In conclusion, it seems that optimal execution of stride angle allows runners to minimize contact time during ground contact, whereby facilitating a better RE. Coaches and/or athletes may find stride angle a useful and easily obtainable measure to track and make alterations to running technique, because changes in stride angle may influence the energy cost of running and lead to improved performance.

  13. Development of a machine for automatically measuring static/dynamic running parallelism in linear guideways.

    PubMed

    Hsieh, Tung-Hsien; Huang, Hsueh-Liang; Jywe, Wen-Yuh; Liu, Chien-Hung

    2014-03-01

    This work develops a machine for automatically measuring static/dynamic running parallelism for use in the linear guideway manufacturing industry. The automatic static/dynamic running parallelism measurement machine consists of a running parallelism measurement system, a linear motor, a precision granite air-suspension table, and a PC-based human-machine interface. The machine can be used simultaneously to measure the horizontal and vertical running parallelism of a linear guideway and automatically determine its accuracy. The measured parallelism is digitalized and analyzed to detect turning points in the linear guideway. The results concerning the accuracy of the running parallelism are not affected by the measurement platform. Experimental results showed that the standard deviation of the running parallelism measurement system is 0.4 μm and the measuring time is about 10 s for every 1000 mm of length (equal to a measuring speed of 0.1 m/s); this measurement time is 80% shorter than that of a traditional measurement system (which has a maximum speed of 1 m/s, a maximum sampling frequency of 100 kHz, and a maximum measurement length of 2000 mm).

  14. Speed and agility of 12- and 14-year-old elite male basketball players.

    PubMed

    Jakovljevic, Sasa T; Karalejic, Milivoje S; Pajic, Zoran B; Macura, Marija M; Erculj, Frane F

    2012-09-01

    The aims of this study were (a) to identify and compare the speed and agility of 12- and 14-year-old elite male basketball players and (b) to investigate relations between speed and agility for both age groups of basketball players, to help coaches to improve their work. Sixty-four players aged 12 (M = 11.98 years, SD = 0.311) and 54 players aged 14 (M = 14.092 years, SD = 0.275) were tested. Three agility tests: agility t-test, zigzag agility drill, and agility run 4 × 15 m and 3 speed tests: 20-m run, 30-m run, and 50-m run were applied. Fourteen-year-old players achieved significantly better results in all speed and agility tests compared with 12-year-old players. The correlation coefficient (r = 0.81, p = 0.001) showed that 12-year-old players have the same ability in the 30- and 50-m runs. The other correlation coefficient (r = 0.59, p = 0.001) indicated that 20- and 30-m runs had inherently different qualities. The correlation coefficients between agility tests were <0.71, and therefore, each test in this group represents a specific task. In 14-year-old players, the correlation coefficients between the speed test results were <0.71. In contrast, the correlation coefficients between the agility tests were >0.71, which means that all the 3 tests represent the same quality. During the speed training of 12-year-old players, it is advisable to focus on shorter running distances, up to 30 m. During the agility training of the same players, it is useful to apply exercises with various complexities. In speed training of the 14-year-old players, the 30- and 50-m runs should be applied, and agility training should include more specific basketball movements and activities.

  15. High speed door assembly

    DOEpatents

    Shapiro, Carolyn

    1993-01-01

    A high speed door assembly, comprising an actuator cylinder and piston rods, a pressure supply cylinder and fittings, an electrically detonated explosive bolt, a honeycomb structured door, a honeycomb structured decelerator, and a structural steel frame encasing the assembly to close over a 3 foot diameter opening within 50 milliseconds of actuation, to contain hazardous materials and vapors within a test fixture.

  16. High speed door assembly

    DOEpatents

    Shapiro, C.

    1993-04-27

    A high speed door assembly is described, comprising an actuator cylinder and piston rods, a pressure supply cylinder and fittings, an electrically detonated explosive bolt, a honeycomb structured door, a honeycomb structured decelerator, and a structural steel frame encasing the assembly to close over a 3 foot diameter opening within 50 milliseconds of actuation, to contain hazardous materials and vapors within a test fixture.

  17. Rotational speed control

    NASA Technical Reports Server (NTRS)

    Bastin, Paul

    1990-01-01

    Viewgraphs on rotational speed control are presented. The Centrifuge Facility Systems Study - 2.5 m centrifuge is shown. A life sciences centrifuge is scheduled to fly aboard Space Station Freedom. Live animal and plant specimens will be carried on the rotor and compared with microgravity specimens in racks.

  18. SPEEDE Made Easy.

    ERIC Educational Resources Information Center

    Palmer, Barbara H.; Wei, P. Betty

    1993-01-01

    A nontechnical overview of electronic data interchange (EDI) and of the SPEEDE/ExPRESS Project, which uses EDI to transmit transcripts between schools and colleges, is presented. It explores the fundamental value of the technology, specific costs and benefits, and its potential to transform the delivery of academic support services. (Author/MSE)

  19. High speed civil transport

    NASA Technical Reports Server (NTRS)

    Mcknight, R. L.

    1992-01-01

    The design requirements of the High Speed Civil Transport (HSCT) are discussed. The following design concerns are presented: (1) environmental impact (emissions and noise); (2) critical components (the high temperature combustor and the lightweight exhaust nozzle); and (3) advanced materials (high temperature ceramic matrix composites (CMC's)/intermetallic matrix composites (IMC's)/metal matrix composites (MMC's)).

  20. Transition at hypersonic speeds

    NASA Technical Reports Server (NTRS)

    Morkovin, Mark V.

    1987-01-01

    Certain conjectures on the physics of instabilities in high-speed flows are discussed and the state of knowledge of hypersonic transition summarized. The case is made for an unpressured systematic research program in this area consisting of controlled microscopic experiments, theory, and numerical simulations.

  1. High Speed Vortex Flows

    NASA Technical Reports Server (NTRS)

    Wood, Richard M.; Wilcox, Floyd J., Jr.; Bauer, Steven X. S.; Allen, Jerry M.

    2000-01-01

    A review of the research conducted at the National Aeronautics and Space Administration (NASA), Langley Research Center (LaRC) into high-speed vortex flows during the 1970s, 1980s, and 1990s is presented. The data reviewed is for flat plates, cavities, bodies, missiles, wings, and aircraft. These data are presented and discussed relative to the design of future vehicles. Also presented is a brief historical review of the extensive body of high-speed vortex flow research from the 1940s to the present in order to provide perspective of the NASA LaRC's high-speed research results. Data are presented which show the types of vortex structures which occur at supersonic speeds and the impact of these flow structures to vehicle performance and control is discussed. The data presented shows the presence of both small- and large scale vortex structures for a variety of vehicles, from missiles to transports. For cavities, the data show very complex multiple vortex structures exist at all combinations of cavity depth to length ratios and Mach number. The data for missiles show the existence of very strong interference effects between body and/or fin vortices and the downstream fins. It was shown that these vortex flow interference effects could be both positive and negative. Data are shown which highlights the effect that leading-edge sweep, leading-edge bluntness, wing thickness, location of maximum thickness, and camber has on the aerodynamics of and flow over delta wings. The observed flow fields for delta wings (i.e. separation bubble, classical vortex, vortex with shock, etc.) are discussed in the context of' aircraft design. And data have been shown that indicate that aerodynamic performance improvements are available by considering vortex flows as a primary design feature. Finally a discussing of a design approach for wings which utilize vortex flows for improved aerodynamic performance at supersonic speed is presented.

  2. Running for Exercise Mitigates Age-Related Deterioration of Walking Economy

    PubMed Central

    Ortega, Justus D.; Beck, Owen N.; Roby, Jaclyn M.; Turney, Aria L.; Kram, Rodger

    2014-01-01

    Introduction Impaired walking performance is a key predictor of morbidity among older adults. A distinctive characteristic of impaired walking performance among older adults is a greater metabolic cost (worse economy) compared to young adults. However, older adults who consistently run have been shown to retain a similar running economy as young runners. Unfortunately, those running studies did not measure the metabolic cost of walking. Thus, it is unclear if running exercise can prevent the deterioration of walking economy. Purpose To determine if and how regular walking vs. running exercise affects the economy of locomotion in older adults. Methods 15 older adults (69±3 years) who walk ≥30 min, 3x/week for exercise, “walkers” and 15 older adults (69±5 years) who run ≥30 min, 3x/week, “runners” walked on a force-instrumented treadmill at three speeds (0.75, 1.25, and 1.75 m/s). We determined walking economy using expired gas analysis and walking mechanics via ground reaction forces during the last 2 minutes of each 5 minute trial. We compared walking economy between the two groups and to non-aerobically trained young and older adults from a prior study. Results Older runners had a 7–10% better walking economy than older walkers over the range of speeds tested (p = .016) and had walking economy similar to young sedentary adults over a similar range of speeds (p = .237). We found no substantial biomechanical differences between older walkers and runners. In contrast to older runners, older walkers had similar walking economy as older sedentary adults (p = .461) and ∼26% worse walking economy than young adults (p<.0001). Conclusion Running mitigates the age-related deterioration of walking economy whereas walking for exercise appears to have minimal effect on the age-related deterioration in walking economy. PMID:25411850

  3. Full-Scale Tests of Metal Propellers at High Tip Speeds

    NASA Technical Reports Server (NTRS)

    Wood, Donald H

    1932-01-01

    This report describes tests of 10 full-scale metal propellers of several thickness ratios at various tip speeds up to 1,350 feet per second. The results indicate no loss of efficiency up to tip speeds of approximately 1,000 feet per second. Above this tip speed the loss is at a rate of about 10 per cent per 100 feet per second increase relative to the efficiency at the lower speeds for propellers of pitch diameter ratios 0.3 to 0.4. Propellers having sections of small thickness ratio can be run at slightly higher speeds than thick ones before beginning to lose efficiency.

  4. Teaching Bank Runs with Classroom Experiments

    ERIC Educational Resources Information Center

    Balkenborg, Dieter; Kaplan, Todd; Miller, Timothy

    2011-01-01

    Once relegated to cinema or history lectures, bank runs have become a modern phenomenon that captures the interest of students. In this article, the authors explain a simple classroom experiment based on the Diamond-Dybvig model (1983) to demonstrate how a bank run--a seemingly irrational event--can occur rationally. They then present possible…

  5. Run II data analysis on the grid

    SciTech Connect

    Igor Mandrichenko, Igor Terekhov and Frank Wurthwein

    2002-12-02

    In this document, we begin the technical design for the distributed RunII computing for CDF and D0. The present paper defines the three components of the data handling area of Run II computing, namely the Data Handling System, the Storage System and the Application. We outline their functionality and interaction between them. We identify necessary and desirable elements of the interfaces.

  6. Biomechanics of Distance Running: A Longitudinal Study

    ERIC Educational Resources Information Center

    Nelson, Richard C.; Gregor, Robert J.

    1976-01-01

    Training for distance running over a long period produces meaningful changes in the running mechanics of experienced runners, as revealed in this longitudinal study of the biomechanical components of stride length, stride rate, stride time, and support and nonsupport time. (MB)

  7. Impact of Running Away on Girls' Pregnancy

    ERIC Educational Resources Information Center

    Thrane, Lisa E.; Chen, Xiaojin

    2012-01-01

    This study assessed the impact of running away on pregnancy in the subsequent year among U.S. adolescents. We also investigated interactions between running away and sexual assault, romance, and school disengagement. Pregnancy among females between 11 and 17 years (n = 6100) was examined utilizing the Longitudinal Study of Adolescent Health (Add…

  8. Minimum Wage Effects in the Longer Run

    ERIC Educational Resources Information Center

    Neumark, David; Nizalova, Olena

    2007-01-01

    Exposure to minimum wages at young ages could lead to adverse longer-run effects via decreased labor market experience and tenure, and diminished education and training, while beneficial longer-run effects could arise if minimum wages increase skill acquisition. Evidence suggests that as individuals reach their late 20s, they earn less the longer…

  9. The Meaning of Running Away for Girls

    ERIC Educational Resources Information Center

    Peled, Einat; Cohavi, Ayelet

    2009-01-01

    Objective: The aim of this qualitative research was to understand how runaway girls perceive the processes involved in leaving home and the meaning they attribute to it. Method: Findings are based on in-depth interviews with 10 Israeli girls aged 13-17 with a history of running away from home. Results: The meaning of running away as it emerged…

  10. The Second Student-Run Homeless Shelter

    ERIC Educational Resources Information Center

    Seider, Scott C.

    2012-01-01

    From 1983-2011, the Harvard Square Homeless Shelter (HSHS) in Cambridge, Massachusetts, was the only student-run homeless shelter in the United States. However, college students at Villanova, Temple, Drexel, the University of Pennsylvania, and Swarthmore drew upon the HSHS model to open their own student-run homeless shelter in Philadelphia,…

  11. First Run II results from CDF

    SciTech Connect

    S. Donati

    2002-06-04

    In this paper we report on the first run II results from the CDF experiment. A brief description of the Tevatron collider and CDF detector upgrades and performance achieved in the first part of run II is followed by the CDF expectations in the fields of beauty, top, electroweak and Higgs physics.

  12. TRAINING ERRORS AND RUNNING RELATED INJURIES: A SYSTEMATIC REVIEW

    PubMed Central

    Buist, Ida; Sørensen, Henrik; Lind, Martin; Rasmussen, Sten

    2012-01-01

    Purpose: The purpose of this systematic review was to examine the link between training characteristics (volume, duration, frequency, and intensity) and running related injuries. Methods: A systematic search was performed in PubMed, Web of Science, Embase, and SportDiscus. Studies were included if they examined novice, recreational, or elite runners between the ages of 18 and 65. Exposure variables were training characteristics defined as volume, distance or mileage, time or duration, frequency, intensity, speed or pace, or similar terms. The outcome of interest was Running Related Injuries (RRI) in general or specific RRI in the lower extremity or lower back. Methodological quality was evaluated using quality assessment tools of 11 to 16 items. Results: After examining 4561 titles and abstracts, 63 articles were identified as potentially relevant. Finally, nine retrospective cohort studies, 13 prospective cohort studies, six case-control studies, and three randomized controlled trials were included. The mean quality score was 44.1%. Conflicting results were reported on the relationships between volume, duration, intensity, and frequency and RRI. Conclusion: It was not possible to identify which training errors were related to running related injuries. Still, well supported data on which training errors relate to or cause running related injuries is highly important for determining proper prevention strategies. If methodological limitations in measuring training variables can be resolved, more work can be conducted to define training and the interactions between different training variables, create several hypotheses, test the hypotheses in a large scale prospective study, and explore cause and effect relationships in randomized controlled trials. Level of evidence: 2a PMID:22389869

  13. Effects of Step Rate Manipulation on Joint Mechanics during Running

    PubMed Central

    Heiderscheit, Bryan C.; Chumanov, Elizabeth S.; Michalski, Max P.; Wille, Christa M.; Ryan, Michael B.

    2010-01-01

    Purpose The objective of this study was to characterize the biomechanical effects of step rate modification during running on the hip, knee and ankle joints, so as to evaluate a potential strategy to reduce lower extremity loading and risk for injury. Methods Three-dimensional kinematics and kinetics were recorded from 45 healthy recreational runners during treadmill running at constant speed under various step rate conditions (preferred, ± 5% and ± 10%). We tested our primary hypothesis that a reduction in energy absorption by the lower extremity joints during the loading response would occur, primarily at the knee, when step rate was increased. Results Less mechanical energy was absorbed at the knee (p<0.01) during the +5% and +10% step rate conditions, while the hip (p<0.01) absorbed less energy during the +10% condition only. All joints displayed substantially (p<0.01) more energy absorption when preferred step rate was reduced by 10. Step length (p<0.01), center of mass vertical excursion (p<0.01), breaking impulse (p<0.01) and peak knee flexion angle (p<0.01) were observed to decrease with increasing step rate. When step rate was increased 10% above preferred, peak hip adduction angle (p<0.01), as well as peak hip adduction (p<0.01) and internal rotation (p<0.01) moments, were found to decrease. Conclusion We conclude that subtle increases in step rate can substantially reduce the loading to the hip and knee joints during running and may prove beneficial in the prevention and treatment of common running-related injuries. PMID:20581720

  14. Gait asymmetry: composite scores for mechanical analyses of sprint running.

    PubMed

    Exell, T A; Gittoes, M J R; Irwin, G; Kerwin, D G

    2012-04-01

    Gait asymmetry analyses are beneficial from clinical, coaching and technology perspectives. Quantifying overall athlete asymmetry would be useful in allowing comparisons between participants, or between asymmetry and other factors, such as sprint running performance. The aim of this study was to develop composite kinematic and kinetic asymmetry scores to quantify athlete asymmetry during maximal speed sprint running. Eight male sprint trained athletes (age 22±5 years, mass 74.0±8.7 kg and stature 1.79±0.07 m) participated in this study. Synchronised sagittal plane kinematic and kinetic data were collected via a CODA motion analysis system, synchronised to two Kistler force plates. Bilateral, lower limb data were collected during the maximal velocity phase of sprint running (velocity=9.05±0.37 ms(-1)). Kinematic and kinetic composite asymmetry scores were developed using the previously established symmetry angle for discrete variables associated with successful sprint performance and comparisons of continuous joint power data. Unlike previous studies quantifying gait asymmetry, the scores incorporated intra-limb variability by excluding variables from the composite scores that did not display significantly larger (p<0.05) asymmetry than intra-limb variability. The variables that contributed to the composite scores and the magnitude of asymmetry observed for each measure varied on an individual participant basis. The new composite scores indicated the inter-participant differences that exist in asymmetry during sprint running and may serve to allow comparisons between overall athlete asymmetry with other important factors such as performance.

  15. The Effect of Training in Minimalist Running Shoes on Running Economy.

    PubMed

    Ridge, Sarah T; Standifird, Tyler; Rivera, Jessica; Johnson, A Wayne; Mitchell, Ulrike; Hunter, Iain

    2015-09-01

    The purpose of this study was to examine the effect of minimalist running shoes on oxygen uptake during running before and after a 10-week transition from traditional to minimalist running shoes. Twenty-five recreational runners (no previous experience in minimalist running shoes) participated in submaximal VO2 testing at a self-selected pace while wearing traditional and minimalist running shoes. Ten of the 25 runners gradually transitioned to minimalist running shoes over 10 weeks (experimental group), while the other 15 maintained their typical training regimen (control group). All participants repeated submaximal VO2 testing at the end of 10 weeks. Testing included a 3 minute warm-up, 3 minutes of running in the first pair of shoes, and 3 minutes of running in the second pair of shoes. Shoe order was randomized. Average oxygen uptake was calculated during the last minute of running in each condition. The average change from pre- to post-training for the control group during testing in traditional and minimalist shoes was an improvement of 3.1 ± 15.2% and 2.8 ± 16.2%, respectively. The average change from pre- to post-training for the experimental group during testing in traditional and minimalist shoes was an improvement of 8.4 ± 7.2% and 10.4 ± 6.9%, respectively. Data were analyzed using a 2-way repeated measures ANOVA. There were no significant interaction effects, but the overall improvement in running economy across time (6.15%) was significant (p = 0.015). Running in minimalist running shoes improves running economy in experienced, traditionally shod runners, but not significantly more than when running in traditional running shoes. Improvement in running economy in both groups, regardless of shoe type, may have been due to compliance with training over the 10-week study period and/or familiarity with testing procedures. Key pointsRunning in minimalist footwear did not result in a change in running economy compared to running in traditional footwear

  16. Orthopaedic Perspective on Barefoot and Minimalist Running.

    PubMed

    Roth, Jonathan; Neumann, Julie; Tao, Matthew

    2016-03-01

    In recent years, there has been a movement toward barefoot and minimalist running. Advocates assert that a lack of cushion and support promotes a forefoot or midfoot strike rather than a rearfoot strike, decreasing the impact transient and stress on the hip and knee. Although the change in gait is theorized to decrease injury risk, this concept has not yet been fully elucidated. However, research has shown diminished symptoms of chronic exertional compartment syndrome and anterior knee pain after a transition to minimalist running. Skeptics are concerned that, because of the effects of the natural environment and the lack of a standardized transition program, barefoot running could lead to additional, unforeseen injuries. Studies have shown that, with the transition to minimalist running, there is increased stress on the foot and ankle and risk of repetitive stress injuries. Nonetheless, despite the large gap of evidence-based knowledge on minimalist running, the potential benefits warrant further research and consideration.

  17. High Resolution Nature Runs and the Big Data Challenge

    NASA Technical Reports Server (NTRS)

    Webster, W. Phillip; Duffy, Daniel Q.

    2015-01-01

    NASA's Global Modeling and Assimilation Office at Goddard Space Flight Center is undertaking a series of very computationally intensive Nature Runs and a downscaled reanalysis. The nature runs use the GEOS-5 as an Atmospheric General Circulation Model (AGCM) while the reanalysis uses the GEOS-5 in Data Assimilation mode. This paper will present computational challenges from three runs, two of which are AGCM and one is downscaled reanalysis using the full DAS. The nature runs will be completed at two surface grid resolutions, 7 and 3 kilometers and 72 vertical levels. The 7 km run spanned 2 years (2005-2006) and produced 4 PB of data while the 3 km run will span one year and generate 4 BP of data. The downscaled reanalysis (MERRA-II Modern-Era Reanalysis for Research and Applications) will cover 15 years and generate 1 PB of data. Our efforts to address the big data challenges of climate science, we are moving toward a notion of Climate Analytics-as-a-Service (CAaaS), a specialization of the concept of business process-as-a-service that is an evolving extension of IaaS, PaaS, and SaaS enabled by cloud computing. In this presentation, we will describe two projects that demonstrate this shift. MERRA Analytic Services (MERRA/AS) is an example of cloud-enabled CAaaS. MERRA/AS enables MapReduce analytics over MERRA reanalysis data collection by bringing together the high-performance computing, scalable data management, and a domain-specific climate data services API. NASA's High-Performance Science Cloud (HPSC) is an example of the type of compute-storage fabric required to support CAaaS. The HPSC comprises a high speed Infinib and network, high performance file systems and object storage, and a virtual system environments specific for data intensive, science applications. These technologies are providing a new tier in the data and analytic services stack that helps connect earthbound, enterprise-level data and computational resources to new customers and new mobility

  18. 40 CFR 258.26 - Run-on/run-off control systems.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... storm; (2) A run-off control system from the active portion of the landfill to collect and control at least the water volume resulting from a 24-hour, 25-year storm. (b) Run-off from the active portion...

  19. 40 CFR 258.26 - Run-on/run-off control systems.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... storm; (2) A run-off control system from the active portion of the landfill to collect and control at least the water volume resulting from a 24-hour, 25-year storm. (b) Run-off from the active portion...

  20. 40 CFR 258.26 - Run-on/run-off control systems.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... storm; (2) A run-off control system from the active portion of the landfill to collect and control at least the water volume resulting from a 24-hour, 25-year storm. (b) Run-off from the active portion...

  1. 40 CFR 258.26 - Run-on/run-off control systems.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... storm; (2) A run-off control system from the active portion of the landfill to collect and control at least the water volume resulting from a 24-hour, 25-year storm. (b) Run-off from the active portion...

  2. Leak Locating Experiment for Actual Underground Water Supply Pipelines with a Novel Locating System

    NASA Astrophysics Data System (ADS)

    Lee, Young-Sup; Yoon, Dong-Jin; Kang, Seokhoon; Jun, Kyungkoo; Choi, Byoungjo

    This paper presents a novel leak locating system to identify precise position of leak spots of underground water supply pipelines. The system has been studied and developed upon excellent foundation with modern mobile communication technology and the internet. However, the leak locating algorithm in the new system requires knowing the exact acoustical wave speed inside water-filled pipelines and the accurate time arrival difference between sensors to detect precise leak location. Especially the time difference is calculated with optimal maximum likelihood method. For the demonstration of the new system, an intensive experiment performed with 315 m long actual underground water supply pipelines showed an excellent detection capability.

  3. Shoes alter the spring-like function of the human foot during running.

    PubMed

    Kelly, Luke A; Lichtwark, Glen A; Farris, Dominic J; Cresswell, Andrew

    2016-06-01

    The capacity to store and return energy in legs and feet that behave like springs is crucial to human running economy. Recent comparisons of shod and barefoot running have led to suggestions that modern running shoes may actually impede leg and foot-spring function by reducing the contributions from the leg and foot musculature. Here we examined the effect of running shoes on foot longitudinal arch (LA) motion and activation of the intrinsic foot muscles. Participants ran on a force-instrumented treadmill with and without running shoes. We recorded foot kinematics and muscle activation of the intrinsic foot muscles using intramuscular electromyography. In contrast to previous assertions, we observed an increase in both the peak (flexor digitorum brevis +60%) and total stance muscle activation (flexor digitorum brevis +70% and abductor hallucis +53%) of the intrinsic foot muscles when running with shoes. Increased intrinsic muscle activation corresponded with a reduction in LA compression (-25%). We confirm that running shoes do indeed influence the mechanical function of the foot. However, our findings suggest that these mechanical adjustments are likely to have occurred as a result of increased neuromuscular output, rather than impaired control as previously speculated. We propose a theoretical model for foot-shoe interaction to explain these novel findings. PMID:27307512

  4. Shoes alter the spring-like function of the human foot during running.

    PubMed

    Kelly, Luke A; Lichtwark, Glen A; Farris, Dominic J; Cresswell, Andrew

    2016-06-01

    The capacity to store and return energy in legs and feet that behave like springs is crucial to human running economy. Recent comparisons of shod and barefoot running have led to suggestions that modern running shoes may actually impede leg and foot-spring function by reducing the contributions from the leg and foot musculature. Here we examined the effect of running shoes on foot longitudinal arch (LA) motion and activation of the intrinsic foot muscles. Participants ran on a force-instrumented treadmill with and without running shoes. We recorded foot kinematics and muscle activation of the intrinsic foot muscles using intramuscular electromyography. In contrast to previous assertions, we observed an increase in both the peak (flexor digitorum brevis +60%) and total stance muscle activation (flexor digitorum brevis +70% and abductor hallucis +53%) of the intrinsic foot muscles when running with shoes. Increased intrinsic muscle activation corresponded with a reduction in LA compression (-25%). We confirm that running shoes do indeed influence the mechanical function of the foot. However, our findings suggest that these mechanical adjustments are likely to have occurred as a result of increased neuromuscular output, rather than impaired control as previously speculated. We propose a theoretical model for foot-shoe interaction to explain these novel findings.

  5. Electroweak Prospects for Tevatron RunII

    SciTech Connect

    D. Glenzinski

    2002-10-21

    In RunI each experiment collected about 100 pb{sup -1} of data. During RunIIa, each experiment is expected to collect about 2 fb{sup -1} of data. The center-of-mass energy for RunII, {radical}s = 2.0 TeV, is a bit larger than the 1.8 TeV of RunI and results in an increase of about 10% (35%) in the production cross-sections for W and Z (t{bar t}) events. Additional gains in the event yield are expected due to improvements in the detector acceptance and performance. Taken together, the RunIIa upgrades are expected to yield 2300k (800) W (t{bar t}) events per experiment, including the effects of event selection and triggering, which can be compared to the RunI yields of 77k (20) events. With the RunI data-set, CDF and D0 produced a breadth of electroweak results and obtained the world's only sample of top quarks. While the RunII electroweak physics program is very similar, the RunII upgrade improvements should yield many precision results. The Tevatron began delivering steady data in about June, 2001. The first six months of data taking was ''commissioning dominated'' for CDF and D0. Starting around January, 2002, the experiments were largely commissioned and began taking ''analysis quality'' data. The physics results reported at this conference are based on about 10-20pb{sup -1} (depending on the data-set) per experiment. Thus, the presently available event samples are smaller than those available in RunI. At this early stage of RunII, it is interesting to compare the present detector performance to that assumed when making the RunII physics projections. In the following sections the author discusses some RunII projections for a few electroweak measurements of particular importance, namely the precision determinations of the W-boson mass, M{sub W}, and the top-quark mass, M{sub t}.

  6. Variable speed controller

    NASA Technical Reports Server (NTRS)

    Estes, Christa; Spiggle, Charles; Swift, Shannon; Vangeffen, Stephen; Younger, Frank

    1992-01-01

    This report details a new design for a variable speed controller which can be used to operate lunar machinery without the astronaut using his or her upper body. In order to demonstrate the design, a treadle for an industrial sewing machine was redesigned to be used by a standing operator. Since the invention of an electrically powered sewing machine, the operator has been seated. Today, companies are switching from sit down to stand up operation involving modular stations. The old treadle worked well with a sitting operator, but problems have been found when trying to use the same treadle with a standing operator. Emphasis is placed on the ease of use by the operator along with the ergonomics involved. Included with the design analysis are suggestions for possible uses for the speed controller in other applications.

  7. The speed of light

    NASA Astrophysics Data System (ADS)

    Costa, Benjamin; Larson, Katherine; Bossari, Joshua

    2003-04-01

    Benjamin Costa Katherine Larson Joshua Borsari Advisor: Dr. Jong-Ping Shu Our project analyzes the Michelson- Morley "ether" experiment from three different perspectives: classical physics, special relativity, and from a revised special relativity. The heart of the project is centered on our revised edition of special relativity. Moreover, this modified theory of special relativity is focused on the question: Can the theory of relativity be formulated solely on the basis of the first principle of relativity(without assuming the constancy of the speed of light)? We are essentially trying to prove that the speed of light is not constant in a one way trip, but is constant throughout an entire round trip."

  8. High speed civil transport

    NASA Technical Reports Server (NTRS)

    Bogardus, Scott; Loper, Brent; Nauman, Chris; Page, Jeff; Parris, Rusty; Steinbach, Greg

    1990-01-01

    The design process of the High Speed Civil Transport (HSCT) combines existing technology with the expectation of future technology to create a Mach 3.0 transport. The HSCT was designed to have a range in excess of 6000 nautical miles and carry up to 300 passengers. This range will allow the HSCT to service the economically expanding Pacific Basin region. Effort was made in the design to enable the aircraft to use conventional airports with standard 12,000 foot runways. With a takeoff thrust of 250,000 pounds, the four supersonic through-flow engines will accelerate the HSCT to a cruise speed of Mach 3.0. The 679,000 pound (at takeoff) HSCT is designed to cruise at an altitude of 70,000 feet, flying above most atmospheric disturbances.

  9. A Runs-Test Algorithm: Contingent Reinforcement and Response Run Structures

    ERIC Educational Resources Information Center

    Hachiga, Yosuke; Sakagami, Takayuki

    2010-01-01

    Four rats' choices between two levers were differentially reinforced using a runs-test algorithm. On each trial, a runs-test score was calculated based on the last 20 choices. In Experiment 1, the onset of stimulus lights cued when the runs score was smaller than criterion. Following cuing, the correct choice was occasionally reinforced with food,…

  10. High speed door assembly

    SciTech Connect

    Shapiro, C.

    1991-12-31

    This invention is comprised of a high speed door assembly, comprising an actuator cylinder and piston rods, a pressure supply cylinder and fittings, an electrically detonated explosive bolt, a honeycomb structured door, a honeycomb structured decelerator, and a structural steel frame encasing the assembly to close over a 3 foot diameter opening within 50 milliseconds of actuation, to contain hazardous materials and vapors within a test fixture.

  11. Relationship between perceived and actual motor competence among college students.

    PubMed

    Wang, Jianyu; Liu, Wenhao; Bian, Wei

    2013-02-01

    The relationship between perceived and actual motor competence was examined among college students. Participants were 114 college students (55 men, 59 women; M age = 22.3 yr., SD = 3.9). All participants completed a short survey on perception of motor competence in basketball and took a Control Basketball Dribble Test to assess their actual motor skill. Perceived motor competence in basketball was significantly related to basketball dribbling performance. Given the positive relationship between actual motor competence and perceived competence, enhancing an individual's actual motor competence may contribute to their perceived competence, which may improve an individual's physical activity participation.

  12. Two-speed transaxle

    DOEpatents

    Kalns, Ilmars

    1981-01-01

    Disclosed is a drive assembly (10) for an electrically powered vehicle (12). The assembly includes a transaxle (16) having a two-speed transmission (40) and a drive axle differential (46) disposed in a unitary housing assembly (38), an oil-cooled prime mover or electric motor (14) for driving the transmission input shaft (42), an adapter assembly (24) for supporting the prime mover on the transaxle housing assembly, and a hydraulic system (172) providing pressurized oil flow for cooling and lubricating the electric motor and transaxle and for operating a clutch (84) and a brake (86) in the transmission to shift between the two-speed ratios of the transmission. The adapter assembly allows the prime mover to be supported in several positions on the transaxle housing. The brake is spring-applied and locks the transmission in its low-speed ratio should the hydraulic system fail. The hydraulic system pump is driven by an electric motor (212) independent of the prime mover and transaxle.

  13. Multi-speed transmission

    SciTech Connect

    Ashikawa, N.; Nakayama, H.; Sumi, M.

    1986-12-02

    This patent describes a multi-speed transmission having forward speed gear trains and at least one reverse speed gear train, comprising, a pair of parallel fork shafts, one the shaft being fixed, the other the shaft being slidable along its axial direction, means to selectively engage the gear trains and means to retain the selective engagement means in the selected position. The means selectively engages the gear trains including a first shift fork connected to the fixed fork shaft so as to slide to either side of its disengaged neutral position, a second shift fork connected to the slideable fork shaft so as to slide to either side of its disengaged neutral position, and a third shift fork connected to the slidable fork shaft so as to slide in one direction by motion of the slideable fork shaft to only one side of its disengaged neutral position. Also included is a reverse shift fork connected to the slideable fork shaft and adapted to be actuated by motion of the slideable fork shaft in a direction opposite to the direction of the motion which engages the third shift fork.

  14. Experience with the CSPAD during dedicated detector runs at LCLS

    NASA Astrophysics Data System (ADS)

    Carini, G. A.; Boutet, S.; Chollet, M.; Dragone, A.; Haller, G.; Hart, P. A.; Herrmann, S. C.; Kenney, C. J.; Koglin, J.; Messerschmidt, M.; Nelson, S.; Pines, J.; Robert, A.; Song, S.; Thayer, J. B.; Williams, G. J.; Zhu, D.

    2014-03-01

    In-house developed cameras and other commercial detectors are typically tested with x-ray tubes and at synchrotron beamlines before being deployed and used for science experiments. In a prototyping phase, this is needed to understand and characterize the behavior of the detector. In a more advanced development phase, measurements with x-rays are required to characterize and calibrate the camera. Tests at synchrotron beamlines in actual experimental conditions are indeed a valuable source for detector developers. However, when all photons arrive at once, as for FELs, the response of the detector can be very different from that obtained with a synchrotron beam which behaves more like a CW (continuous) source. This behavior was already observed during users runs at LCLS and recently investigated during dedicated detector beamtime. The linearity of the response of the Cornell-SLAC Pixel Array Detector (CSPAD) was investigated. Results are presented and discussed.

  15. Characterization of running with compliant curved legs.

    PubMed

    Jun, Jae-Yun; Clark, Jonathan E

    2015-07-07

    Running with compliant curved legs involves the progression of the center of pressure, the changes of both the leg's stiffness and effective rest length, and the shift of the location of the maximum stress point along the leg. These phenomena are product of the geometric and material properties of these legs, and the rolling motion produced during stance. We examine these aspects with several reduced-order dynamical models to relate the leg's design parameters (such as normalized foot radius, leg's effective stiffness, location of the maximum stress point and leg shape) to running performance (such as robustness and efficiency). By using these models, we show that running with compliant curved legs can be more efficient, robust with fast recovery behavior from perturbations than running with compliant straight legs. Moreover, the running performance can be further improved by tuning these design parameters in the context of running with rolling. The results shown in this work may serve as potential guidance for future compliant curved leg designs that may further improve the running performance.

  16. Perceived and actual competence among overweight and non-overweight children.

    PubMed

    Jones, Rachel A; Okely, Anthony D; Caputi, Peter; Cliff, Dylan P

    2010-11-01

    Child overweight and obesity continues to be a global public health concern. The aim of this study was to investigate whether children's actual and perceived physical competence and parental perception's of their child's competence differ by weight status. Understanding these differences is important because physical activity levels are significantly lower among overweight children than their lean counterparts and children's motivation to participate in physical activity is influenced by their perceived and actual competence and their parents perceptions of their competence. Cross-sectional data were collected from 1414 9- and 11-year-old children and their parents from 20 primary schools in New South Wales, Australia. Outcomes measured included child and parental perceptions of physical competence and children's actual physical competence. Parents of overweight boys perceived them to be significantly less competent than parents of non-overweight boys. For 11-year-old girls, parent's perception of their daughter's ability to run (mean diff=1.06 [95% CI 0.73, 1.40]), jump (mean diff=0.54 [95% CI 0.15, 0.93]) and leap (mean diff=0.78 [95% CI 0.41, 1.17]) was lower among parents of overweight children. Overweight children also reported lower perceived physical competence than non-overweight children. 9- and 11-year-old overweight boys had lower actual physical competence than non-overweight boys (mean diff=1.32 [95% CI 0.29, 2.35]; mean diff=1.26 [95% CI 0.37, 2.15], respectively). Overweight 11-year-old girls had lower actual competence than non-overweight 11-year-old girls (mean diff=1.14 [95% CI 0.70, 2.12]). This study highlighted several differences between overweight and non-overweight children. Better understanding these differences at different stages of development may lead to identifying more specific and appropriate intervention points to promote physical activity in overweight children.

  17. Impact and intrusion of the foot of a lizard running rapidly on sand

    NASA Astrophysics Data System (ADS)

    Li, Chen; Hsieh, Tonia; Umbanhowar, Paul; Goldman, Daniel

    2012-11-01

    The desert-dwelling zebra-tailed lizard (Callisaurus draconoides, 10 cm, 10 g) runs rapidly (~10 BL/s) on granular media (GM) like sand and gravel. On loosely packed GM, its large hind feet penetrate into the substrate during each step. Based on above-ground observation, a previous study (Li et al., JEB 2012) hypothesized that the hind foot rotated in the vertical plane subsurface to generate lift. To explain the observed center-of-mass dynamics, the model assumed that ground reaction force was dominated by speed-independent frictional drag. Here we use x-ray high speed video to obtain subsurface foot kinematics of the lizard running on GM, which confirms the hypothesized subsurface foot rotation following rapid foot impact at touchdown. However, using impact force measurements, a resistive force model, and the observed foot kinematics, we find that impact force during initial foot touchdown and speed-independent frictional drag during rotation only account for part of the required lift to support locomotion. This suggests that the rapid foot rotation further allows the lizard to utilize inertial forces from the local acceleration of the substrate (particles), similar to small robots running on GM (Qian et al., RSS 2012) and the basilisk (Jesus) lizard running on water.

  18. Lower-body determinants of running economy in male and female distance runners.

    PubMed

    Barnes, Kyle R; Mcguigan, Michael R; Kilding, Andrew E

    2014-05-01

    A variety of training approaches have been shown to improve running economy in well-trained athletes. However, there is a paucity of data exploring lower-body determinants that may affect running economy and account for differences that may exist between genders. Sixty-three male and female distance runners were assessed in the laboratory for a range of metabolic, biomechanical, and neuromuscular measures potentially related to running economy (ml·kg(-1)·min(-1)) at a range of running speeds. At all common test velocities, women were more economical than men (effect size [ES] = 0.40); however, when compared in terms of relative intensity, men had better running economy (ES = 2.41). Leg stiffness (r = -0.80) and moment arm length (r = 0.90) were large-extremely largely correlated with running economy and each other (r = -0.82). Correlations between running economy and kinetic measures (peak force, peak power, and time to peak force) for both genders were unclear. The relationship in stride rate (r = -0.27 to -0.31) was in the opposite direction to that of stride length (r = 0.32-0.49), and the relationship in contact time (r = -0.21 to -0.54) was opposite of that of flight time (r = 0.06-0.74). Although both leg stiffness and moment arm length are highly related to running economy, it seems that no single lower-body measure can completely explain differences in running economy between individuals or genders. Running economy is therefore likely determined from the sum of influences from multiple lower-body attributes.

  19. Do speed cameras reduce speeding in urban areas?

    PubMed

    Oliveira, Daniele Falci de; Friche, Amélia Augusta de Lima; Costa, Dário Alves da Silva; Mingoti, Sueli Aparecida; Caiaffa, Waleska Teixeira

    2015-11-01

    This observational study aimed to estimate the prevalence of speeding on urban roadways and to analyze associated factors. The sample consisted of 8,565 vehicles circulating in areas with and without fixed speed cameras in operation. We found that 40% of vehicles 200 meters after the fixed cameras and 33.6% of vehicles observed on roadways without speed cameras were moving over the speed limit (p < 0.001). Motorcycles showed the highest recorded speed (126km/h). Most drivers were men (87.6%), 3.3% of all drivers were using their cell phones, and 74.6% of drivers (not counting motorcyclists) were wearing their seatbelts. On roadway stretches without fixed speed cameras, more women drivers were talking on their cell phones and wearing seatbelts when compared to men (p < 0.05 for both comparisons), independently of speed limits. The results suggest that compliance with speed limits requires more than structural interventions. PMID:26648375

  20. Comment on Dissociation between running economy and running performance in elite Kenyan distance runners.

    PubMed

    Santos-Concejero, Jordan; Tucker, Ross

    2016-01-01

    Mooses and colleagues suggest that running economy alone does not explain superior distance running performance in elite Kenyan runners. Whilst we agree with the multi-factorial hypothesis for Kenyan running success, we do not believe that running economy can be overlooked to the extent that it was based on this particular study. Based on the methods used and the range of athletes tested, in this response letter we question whether this study provides any basis for downplaying the influence of running economy or suggesting that other factors compensate for it to enable superior performance.

  1. Measuring the speed of cosmological gravitational waves

    NASA Astrophysics Data System (ADS)

    Raveri, Marco; Baccigalupi, Carlo; Silvestri, Alessandra; Zhou, Shuang-Yong

    2015-03-01

    In general relativity gravitational waves propagate at the speed of light; however, in alternative theories of gravity that might not be the case. We investigate the effects of a modified speed of gravity, cT2, on the B modes of the cosmic microwave background (CMB) anisotropy in polarization. We find that a departure from the light speed value would leave a characteristic imprint on the BB spectrum part induced by tensors, manifesting as a shift in the angular scale of its peaks which allows us to constrain cT without any significant degeneracy with other cosmological parameters. We derive constraints from current data and forecast the accuracy with which cT will be measured by the next generation CMB satellites. In the former case, using the available Planck and BICEP2 data sets, we obtain cT2=1.30 ±0.79 and cT2<2.85 at 95% C.L. by assuming a power law primordial tensor power spectrum and cT2<2.33 at 95% C.L. if the running of the spectral index is allowed. More interestingly, in the latter case we find future CMB satellites capable of constraining cT2 at percent level, comparable with bounds from binary pulsar measurements, largely due to the absence of degeneracy with other cosmological parameters.

  2. SPEEDES - A multiple-synchronization environment for parallel discrete-event simulation

    NASA Technical Reports Server (NTRS)

    Steinman, Jeff S.

    1992-01-01

    Synchronous Parallel Environment for Emulation and Discrete-Event Simulation (SPEEDES) is a unified parallel simulation environment. It supports multiple-synchronization protocols without requiring users to recompile their code. When a SPEEDES simulation runs on one node, all the extra parallel overhead is removed automatically at run time. When the same executable runs in parallel, the user preselects the synchronization algorithm from a list of options. SPEEDES currently runs on UNIX networks and on the California Institute of Technology/Jet Propulsion Laboratory Mark III Hypercube. SPEEDES also supports interactive simulations. Featured in the SPEEDES environment is a new parallel synchronization approach called Breathing Time Buckets. This algorithm uses some of the conservative techniques found in Time Bucket synchronization, along with the optimism that characterizes the Time Warp approach. A mathematical model derived from first principles predicts the performance of Breathing Time Buckets. Along with the Breathing Time Buckets algorithm, this paper discusses the rules for processing events in SPEEDES, describes the implementation of various other synchronization protocols supported by SPEEDES, describes some new ones for the future, discusses interactive simulations, and then gives some performance results.

  3. High-speed and ultrahigh-speed cinematographic recording techniques

    NASA Astrophysics Data System (ADS)

    Miquel, J. C.

    1980-12-01

    A survey is presented of various high-speed and ultrahigh-speed cinematographic recording systems (covering a range of speeds from 100 to 14-million pps). Attention is given to the functional and operational characteristics of cameras and to details of high-speed cinematography techniques (including image processing, and illumination). A list of cameras (many of them French) available in 1980 is presented

  4. A Brief Opportunity to Run Does Not Function as a Reinforcer for Mice Selected for High Daily Wheel-running Rates

    PubMed Central

    Belke, Terry W; GarlandJr, Theodore

    2007-01-01

    Mice from replicate lines, selectively bred based on high daily wheel-running rates, run more total revolutions and at higher average speeds than do mice from nonselected control lines. Based on this difference it was assumed that selected mice would find the opportunity to run in a wheel a more efficacious consequence. To assess this assumption within an operant paradigm, mice must be trained to make a response to produce the opportunity to run as a consequence. In the present study an autoshaping procedure was used to compare the acquisition of lever pressing reinforced by the opportunity to run for a brief opportunity (i.e., 90 s) between selected and control mice and then, using an operant procedure, the effect of the duration of the opportunity to run on lever pressing was assessed by varying reinforcer duration over values of 90 s, 30 min, and 90 s. The reinforcement schedule was a ratio schedule (FR 1 or VR 3). Results from the autoshaping phase showed that more control mice met a criterion of responses on 50% of trials. During the operant phase, when reinforcer duration was 90 s, almost all control, but few selected mice completed a session of 20 reinforcers; however, when reinforcer duration was increased to 30 min almost all selected and control mice completed a session of 20 reinforcers. Taken together, these results suggest that selective breeding based on wheel-running rates over 24 hr may have altered the motivational system in a way that reduces the reinforcing value of shorter running durations. The implications of this finding for these mice as a model for attention deficit hyperactivity disorder (ADHD) are discussed. It also is proposed that there may be an inherent trade-off in the motivational system for activities of short versus long duration. PMID:17970415

  5. Pre-race dietary carbohydrate intake can independently influence sub-elite marathon running performance.

    PubMed

    Atkinson, G; Taylor, C E; Morgan, N; Ormond, L R; Wallis, G A

    2011-08-01

    We examined whether selected anthropometric and nutritional factors influenced field-based marathon running performance. An internet-based data collection tool allowed competitors in the 2009 London Marathon (n=257, mean ± SD age: 39 ± 8 years, finish time: 273.8 ± 59.5 min) to record a range of anthropometric, training and nutritional predictors. Multivariate statistical methods were used to quantify the change in running speed mediated by a unit change in each predictor via the 95% confidence interval for each covariate-controlled regression slope ( B). Gender ( B=1.22 to 1.95 km/h), body mass index ( B=-0.14 to -0.27 km/h), training distance ( B=0.01 to 0.04 km/h) and the amount of carbohydrate consumed the day before the race ( B=0.08 to 0.26 km/h) were significant predictors, collectively accounting for 56% of the inter-individual variability in running speed (P<0.0005). Further covariate-adjusted analysis revealed that those competitors who consumed carbohydrate the day before the race at a quantity of >7 g/kg body mass had significantly faster overall race speeds (P=0.01) and maintained their running speed during the race to a greater extent than with those who consumed <7 g/kg body mass (P=0.02). We conclude that, in addition to gender, body size and training, pre-race day carbohydrate intake can significantly and independently influence marathon running performance.

  6. The role of visual processing speed in reading speed development.

    PubMed

    Lobier, Muriel; Dubois, Matthieu; Valdois, Sylviane

    2013-01-01

    A steady increase in reading speed is the hallmark of normal reading acquisition. However, little is known of the influence of visual attention capacity on children's reading speed. The number of distinct visual elements that can be simultaneously processed at a glance (dubbed the visual attention span), predicts single-word reading speed in both normal reading and dyslexic children. However, the exact processes that account for the relationship between the visual attention span and reading speed remain to be specified. We used the Theory of Visual Attention to estimate visual processing speed and visual short-term memory capacity from a multiple letter report task in eight and nine year old children. The visual attention span and text reading speed were also assessed. Results showed that visual processing speed and visual short term memory capacity predicted the visual attention span. Furthermore, visual processing speed predicted reading speed, but visual short term memory capacity did not. Finally, the visual attention span mediated the effect of visual processing speed on reading speed. These results suggest that visual attention capacity could constrain reading speed in elementary school children.

  7. The influence of wind resistance in running and walking and the mechanical efficiency of work against horizontal or vertical forces

    PubMed Central

    Pugh, L. G. C. E.

    1971-01-01

    1. O2 intakes were determined on subjects running and walking at various constant speeds, (a) against wind of up to 18·5 m/sec (37 knots) in velocity, and (b) on gradients ranging from 2 to 8%. 2. In running and walking against wind, O2 intakes increased as the square of wind velocity. 3. In running on gradients the relation of O2 intake and lifting work was linear and independent of speed. In walking on gradients the relation was linear at work rates above 300 kg m/min, but curvilinear at lower work rates. 4. In a 65 kg athlete running at 4·45 m/sec (marathon speed) V̇O2 increased from 3·0 l./min with minimal wind to 5·0 l./min at a wind velocity of 18·5 m/sec. The corresponding values for a 75 kg subject walking at 1·25 m/sec were 0·8 l./min with minimal wind and 3·1 l./min at a wind velocity of 18·5 m/sec. 5. Direct measurements of wind pressure on shapes of similar area to one of the subjects yielded higher values than those predicted from the relation of wind velocity and lifting work at equal O2 intakes. Horizontal work against wind was more efficient than vertical work against gravity. 6. The energy cost of overcoming air resistance in track running may be 7·5% of the total energy cost at middle distance speed and 13% at sprint speed. Running 1 m behind another runner virtually eliminated air resistance and reduced V̇O2 by 6·5% at middle distance speed. PMID:5574828

  8. Speed-dependent chemotactic precision in marine bacteria.

    PubMed

    Son, Kwangmin; Menolascina, Filippo; Stocker, Roman

    2016-08-01

    Chemotaxis underpins important ecological processes in marine bacteria, from the association with primary producers to the colonization of particles and hosts. Marine bacteria often swim with a single flagellum at high speeds, alternating "runs" with either 180° reversals or ∼90° "flicks," the latter resulting from a buckling instability of the flagellum. These adaptations diverge from Escherichia coli's classic run-and-tumble motility, yet how they relate to the strong and rapid chemotaxis characteristic of marine bacteria has remained unknown. We investigated the relationship between swimming speed, run-reverse-flick motility, and high-performance chemotaxis by tracking thousands of Vibrio alginolyticus cells in microfluidic gradients. At odds with current chemotaxis models, we found that chemotactic precision-the strength of accumulation of cells at the peak of a gradient-is swimming-speed dependent in V. alginolyticus Faster cells accumulate twofold more tightly by chemotaxis compared with slower cells, attaining an advantage in the exploitation of a resource additional to that of faster gradient climbing. Trajectory analysis and an agent-based mathematical model revealed that this unexpected advantage originates from a speed dependence of reorientation frequency and flicking, which were higher for faster cells, and was compounded by chemokinesis, an increase in speed with resource concentration. The absence of any one of these adaptations led to a 65-70% reduction in the population-level resource exposure. These findings indicate that, contrary to what occurs in E. coli, swimming speed can be a fundamental determinant of the gradient-seeking capabilities of marine bacteria, and suggest a new model of bacterial chemotaxis. PMID:27439872

  9. Classification of muscle activity based on effort level during constant pace running.

    PubMed

    Stirling, Lisa M; von Tscharner, Vinzenz; Kugler, Patrick F; Nigg, Benno M

    2011-08-01

    During running, psychologic and physiologic changes are manifested in the perception of effort, muscle properties and movement strategies. The latter two aspects are expressed as changes in electromyographic (EMG) activity. This paper tests the hypothesis that the EMG signals change in a systematic way during a run and that these changes are related to the effort level of the runner. Fifteen female recreational runners performed 1-h treadmill runs at a constant speed (95% of speed at ventilatory threshold). EMG signals were recorded from four muscles (tibialis anterior, gastrocnemius medialis, vastus lateralis, and semitendinosus). The wavelet transformed EMG data were used to discriminate between different effort phases of running using a support vector machine (SVM) approach. The effect of the penalty parameter, C, and cross validation folds, n, used were evaluated and found to have little influence on the outcome. Recognition rates of >80% were achieved for all C and n values across all muscles. Average recognition rates were: TA - 89.2, GM - 88.3%, VL - 84.6% and ST - 94.0%. These results suggest that selected lower extremity EMG signals using wavelet-based methods contained highly systematic differences that could be used by the SVM to discriminate between the low- and high-effort stages of prolonged running.

  10. Western and Clark's grebes use novel strategies for running on water.

    PubMed

    Clifton, Glenna T; Hedrick, Tyson L; Biewener, Andrew A

    2015-04-15

    Few vertebrates run on water. The largest animals to accomplish this feat are western and Clark's grebes (Aechmophorus occidentalis and Aechmophorus clarkii). These birds use water running to secure a mate during a display called rushing. Grebes weigh an order of magnitude more than the next largest water runners, basilisk lizards (Basilicus basiliscus), and therefore face a greater challenge to support their body weight. How do these birds produce the hydrodynamic forces necessary to overcome gravity and sustain rushing? We present the first quantitative study of water running by grebes. High-speed video recordings elucidate the hindlimb movements of grebes rushing in the wild. We complement these findings with laboratory experiments using physical models and a preserved grebe foot to estimate how slapping the water surface contributes to weight support. Our results indicate that grebes use three novel tactics to successfully run on water. First, rushing grebes use exceptionally high stride rates, reaching 10 Hz. Second, grebe foot size and high water impact speed allow grebes to generate up to 30-55% of the required weight support through water slap alone. Finally, flattened foot bones reduce downward drag, permitting grebes to retract each foot from the water laterally. Together, these mechanisms outline a water-running strategy qualitatively different from that of the only previously studied water runner, the basilisk lizard. The hydrodynamic specializations of rushing grebes could inform the design of biomimetic appendages. Furthermore, the mechanisms underlying this impressive display demonstrate that evolution can dramatically alter performance under sexual selection.

  11. Classification of muscle activity based on effort level during constant pace running.

    PubMed

    Stirling, Lisa M; von Tscharner, Vinzenz; Kugler, Patrick F; Nigg, Benno M

    2011-08-01

    During running, psychologic and physiologic changes are manifested in the perception of effort, muscle properties and movement strategies. The latter two aspects are expressed as changes in electromyographic (EMG) activity. This paper tests the hypothesis that the EMG signals change in a systematic way during a run and that these changes are related to the effort level of the runner. Fifteen female recreational runners performed 1-h treadmill runs at a constant speed (95% of speed at ventilatory threshold). EMG signals were recorded from four muscles (tibialis anterior, gastrocnemius medialis, vastus lateralis, and semitendinosus). The wavelet transformed EMG data were used to discriminate between different effort phases of running using a support vector machine (SVM) approach. The effect of the penalty parameter, C, and cross validation folds, n, used were evaluated and found to have little influence on the outcome. Recognition rates of >80% were achieved for all C and n values across all muscles. Average recognition rates were: TA - 89.2, GM - 88.3%, VL - 84.6% and ST - 94.0%. These results suggest that selected lower extremity EMG signals using wavelet-based methods contained highly systematic differences that could be used by the SVM to discriminate between the low- and high-effort stages of prolonged running. PMID:21459608

  12. TESTING OF THE SPINTEK ROTARY MICROFILTER USING ACTUAL HANFORD WASTE SAMPLES

    SciTech Connect

    HUBER HJ

    2010-04-13

    The SpinTek rotary microfilter was tested on actual Hanford tank waste. The samples were a composite of archived Tank 241-AN-105 material and a sample representing single-shell tanks (SST). Simulants of the two samples have been used in non-rad test runs at the 222-S laboratory and at Savannah River National Laboratory (SRNL). The results of these studies are compared in this report. Two different nominal pore sizes for the sintered steel rotating disk filter were chosen: 0.5 and 0.1 {micro}m. The results suggest that the 0.5-{micro}m disk is preferable for Hanford tank waste for the following reasons: (1) The filtrate clarity is within the same range (<<4 ntu for both disks); (2) The filtrate flux is in general higher for the 0.5-{micro}m disk; and (3) The 0.1-{micro}m disk showed a higher likelihood of fouling. The filtrate flux of the actual tank samples is generally in the range of 20-30% compared to the equivalent non-rad tests. The AN-105 slurries performed at about twice the filtrate flux of the SST slurries. The reason for this difference has not been identified. Particle size distributions in both cases are very similar; comparison of the chemical composition is not conclusive. The sole hint towards what material was stuck in the filter pore holes came from the analysis of the dried flakes from the surface of the fouled 0.1-{micro}m disk. A cleaning approach developed by SRNL personnel to deal with fouled disks has been found adaptable when using actual Hanford samples. The use of 1 M nitric acid improved the filtrate flux by approximately two times; using the same simulants as in the non-rad test runs showed that the filtrate flux was restored to 1/2 of its original amount.

  13. Self-Actualization Effects Of A Marathon Growth Group

    ERIC Educational Resources Information Center

    Jones, Dorothy S.; Medvene, Arnold M.

    1975-01-01

    This study examined the effects of a marathon group experience on university student's level of self-actualization two days and six weeks after the experience. Gains in self-actualization as a result of marathon group participation depended upon an individual's level of ego strength upon entering the group. (Author)

  14. The Self-Actualization of Polk Community College Students.

    ERIC Educational Resources Information Center

    Pearsall, Howard E.; Thompson, Paul V., Jr.

    This article investigates the concept of self-actualization introduced by Abraham Maslow (1954). A summary of Maslow's Needs Hierarchy, along with a description of the characteristics of the self-actualized person, is presented. An analysis of humanistic education reveals it has much to offer as a means of promoting the principles of…

  15. Depression and Self-Actualization in Gifted Adolescents.

    ERIC Educational Resources Information Center

    Berndt, David J.; And Others

    1982-01-01

    Investigated the relationship between depressive affect and self-actualization in gifted adolescents (N=248). Found that gifted students who were not self-actualizing types were more depressed; and guilt, low self-esteem, learned helplessness, and cognitive difficulty were important symptoms. Gifted adolescents tended to be more socially…

  16. 24 CFR 200.96 - Certificates of actual cost.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... Endorsement Generally Applicable to Multifamily and Health Care Facility Mortgage Insurance Programs; and Continuing Eligibility Requirements for Existing Projects Cost Certification § 200.96 Certificates of actual... 24 Housing and Urban Development 2 2013-04-01 2013-04-01 false Certificates of actual cost....

  17. 24 CFR 200.96 - Certificates of actual cost.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... Endorsement Generally Applicable to Multifamily and Health Care Facility Mortgage Insurance Programs; and Continuing Eligibility Requirements for Existing Projects Cost Certification § 200.96 Certificates of actual... 24 Housing and Urban Development 2 2011-04-01 2011-04-01 false Certificates of actual cost....

  18. 24 CFR 200.96 - Certificates of actual cost.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... Endorsement Generally Applicable to Multifamily and Health Care Facility Mortgage Insurance Programs; and Continuing Eligibility Requirements for Existing Projects Cost Certification § 200.96 Certificates of actual... 24 Housing and Urban Development 2 2014-04-01 2014-04-01 false Certificates of actual cost....

  19. 24 CFR 200.96 - Certificates of actual cost.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... Endorsement Generally Applicable to Multifamily and Health Care Facility Mortgage Insurance Programs; and Continuing Eligibility Requirements for Existing Projects Cost Certification § 200.96 Certificates of actual... 24 Housing and Urban Development 2 2012-04-01 2012-04-01 false Certificates of actual cost....

  20. 24 CFR 200.96 - Certificates of actual cost.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... Endorsement Generally Applicable to Multifamily and Health Care Facility Mortgage Insurance Programs; and Continuing Eligibility Requirements for Existing Projects Cost Certification § 200.96 Certificates of actual... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Certificates of actual cost....

  1. SELF-ACTUALIZATION AND THE UTILIZATION OF TALENT.

    ERIC Educational Resources Information Center

    FRENCH, JOHN R.P.; MILLER, DANIEL R.

    THIS STUDY ATTEMPTED (1) TO DEVELOP A THEORY OF THE CAUSES AND CONSEQUENCES OF SELF-ACTUALIZATION AS RELATED TO THE UTILIZATION OF TALENT, (2) TO FIT THE THEORY TO EXISTING DATA, AND (3) TO PLAN ONE OR MORE RESEARCH PROJECTS TO TEST THE THEORY. TWO ARTICLES ON IDENTITY AND MOTIVATION AND SELF-ACTUALIZATION AND SELF-IDENTITY THEORY REPORTED THE…

  2. Facebook as a Library Tool: Perceived vs. Actual Use

    ERIC Educational Resources Information Center

    Jacobson, Terra B.

    2011-01-01

    As Facebook has come to dominate the social networking site arena, more libraries have created their own library pages on Facebook to create library awareness and to function as a marketing tool. This paper examines reported versus actual use of Facebook in libraries to identify discrepancies between intended goals and actual use. The results of a…

  3. A Study of Self-Actualization and Facilitative Communication.

    ERIC Educational Resources Information Center

    Omizo, Michael M.

    1981-01-01

    Examined the relationship between self-actualization measures and ability in facilitative communication of trainees from counseling, social work, and psychology programs to determine if differences existed between the three groups. Self-actualization indexes were significantly correlated with ability in facilitative communication. (RC)

  4. 26 CFR 1.962-3 - Treatment of actual distributions.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 26 Internal Revenue 10 2013-04-01 2013-04-01 false Treatment of actual distributions. 1.962-3... TAX (CONTINUED) INCOME TAXES (CONTINUED) Controlled Foreign Corporations § 1.962-3 Treatment of actual... a foreign corporation. (ii) Treatment of section 962 earnings and profits under § 1.959-3....

  5. Running economy, not aerobic fitness, independently alters thermoregulatory responses during treadmill running.

    PubMed

    Smoljanić, Jovana; Morris, Nathan B; Dervis, Sheila; Jay, Ollie

    2014-12-15

    We sought to determine the independent influence of running economy (RE) and aerobic fitness [maximum oxygen consumption (V̇O 2max)] on thermoregulatory responses during treadmill running by conducting two studies. In study 1, seven high (HI-FIT: 61 ± 5 ml O2 · kg(-1) · min(-1)) and seven low (LO-FIT: 45 ± 4 ml O2 · kg(-1) · min(-1)) V̇O 2max males matched for physical characteristics and RE (HI-FIT: 200 ± 21; LO-FIT: 200 ± 18 ml O2 · kg(-1) · km(-1)) ran for 60 min at 1) 60%V̇O 2max and 2) a fixed metabolic heat production (Hprod) of 640 W. In study 2, seven high (HI-ECO: 189 ± 15.3 ml O2 · kg(-1) · km(-1)) and seven low (LO-ECO: 222 ± 10 ml O2 · kg(-1) · km(-1)) RE males matched for physical characteristics and V̇O 2max (HI-ECO: 60 ± 3; LO-ECO: 61 ± 7 ml O2 · kg(-1) · min(-1)) ran for 60 min at a fixed 1) speed of 10.5 km/h and 2) Hprod of 640 W. Environmental conditions were 25.4 ± 0.8°C, 37 ± 12% RH. In study 1, at Hprod of 640 W, similar changes in esophageal temperature (ΔTes; HI-FIT: 0.63 ± 0.20; LO-FIT: 0.63 ± 0.22°C; P = 0.986) and whole body sweat losses (WBSL; HI-FIT: 498 ± 66; LO-FIT: 497 ± 149 g; P = 0.984) occurred despite different relative intensities (HI-FIT: 55 ± 6; LO-FIT: 39 ± 2% V̇O 2max; P < 0.001). At 60% V̇O 2max, ΔTes (P = 0.029) and WBSL (P = 0.003) were greater in HI-FIT (1.14 ± 0.32°C; 858 ± 130 g) compared with LO-FIT (0.73 ± 0.34°C; 609 ± 123 g), as was Hprod (HI-FIT: 12.6 ± 0.9; LO-FIT: 9.4 ± 1.0 W/kg; P < 0.001) and the evaporative heat balance requirement (Ereq; HI-FIT: 691 ± 74; LO-FIT: 523 ± 65 W; P < 0.001). Similar sweating onset ΔTes and thermosensitivities occurred between V̇O 2max groups. In study 2, at 10.5 km/h, ΔTes (1.16 ± 0.31 vs. 0.78 ± 0.28°C; P = 0.017) and WBSL (835 ± 73 vs. 667 ± 139 g; P = 0.015) were greater in LO-ECO, as was Hprod (13.5 ± 0.6 vs. 11.3 ± 0.8 W/kg; P < 0.001) and Ereq (741 ± 89 vs. 532 ± 130 W; P = 0.007). At Hprod of 640 W, ΔTes (P = 0

  6. Social network structures and bank runs

    NASA Astrophysics Data System (ADS)

    Li, Shouwei; Li, Jiaheng

    2016-05-01

    This paper investigates the impact of social network structures of depositors on bank runs. The analyzed network structures include random networks, small-world networks and scale-free networks. Simulation results show that the probability of bank run occurrence in random networks is larger than that in small-world networks, but the probability of bank run occurrence in scale-free networks drops from the highest to the lowest among the three types of network structures with the increase of the proportion of impatient depositors. The average degree of depositor networks has a significant impact on bank runs, but this impact is related to the proportion of impatient depositors and the confidence levels of depositors in banks.

  7. Flood-plain delineation for Horsepen Run, Sugarland Run, Nichols Run, Pond Branch, Clarks Branch, and Mine Run Branch basins, Fairfax County, Virginia

    USGS Publications Warehouse

    Soule, Pat LeRoy

    1978-01-01

    Water-surface profiles of the 25-, 50-, and 100-year recurrence interval discharges have been computed for all streams and reaches of channels in Fairfax County, Virginia, having a drainage area greater than 1 square mile except for Dogue Creek, Little Hunting Creek, and that portion of Cameron Run above Lake Barcroft. Maps have a 2-foot contour interval and a horizontal scale of 1 inch equals 100 feet were used for base on which flood boundaries were delineated for 25-, 50-, and 100-year floods to be expected in each basin under ultimate development conditions. This report is one of a series and presents a discussion of techniques employed in computing discharges and profiles as well as the flood profiles and maps on which flood boundaries have been delineated for the Horsepen Run, Sugarland Run, Nichols Run, and Pond Branch basins in Fairfax County. (Woodard-USGS)

  8. A bacterial swimming strategy with two alternating speeds of propagation

    NASA Astrophysics Data System (ADS)

    Theves, Matthias; Taktikos, Johannes; Zaburdaev, Vasily; Stark, Holger; Beta, Carsten

    2014-03-01

    We used microfluidics together with high-speed video microscopy to acquire large data sets of swimming trajectories of Pseudomonas putida, a bacterium with multiple polar flagella known for its ability to degrade aromatic hydrocarbons. The motion of cells in the bulk fluid is dominated by periods of persistent displacement along a straight line (runs) and sharp reorientation events (turns). The distribution of turning angles is bimodal with a dominating peak around 180 degrees and a minor peak around zero degrees. During the majority of turns, the cell reverses its swimming direction and the corresponding trajectories resemble a zig-zag pattern. Our analysis revealed that upon a reversal, the cell systematically changes its swimming speed by a factor of two on average. Based on the experimentally observed values for rotational diffusion and average runtime we developed a run-reverse random walk model with two distinct swimming speeds, which successfully recovers the mean square displacement and in an extended version also the observed negative dip in the directional autocorrelation. Our model demonstrates that by alternating between two swimming speeds, the cell explores its environment more efficiently than a cell swimming at a constant intermediate speed.

  9. Predicting Run Distances for a Modified Wedge Test

    NASA Astrophysics Data System (ADS)

    Dorgan, Robert J.; Lee, Richard; Sutherland, Gerrit

    2012-03-01

    Simulations were used to aid in the development of a modified wedge test (MWT). This explosive sensitivity experiment allows the shockwave curvature to be defined in order to investigate the effect of combined shock-shear loading on sensitivity. Various widths of PBXN-110 donor slabs were used to define the shockwave curvature introduced to wedge samples of the same explosive. The donor slabs were initiated with a linewave generator and a Detasheet booster, and the shock wave was attenuated using a slab of PMMA. In developing simulations for these three material experiments, calibrations of the PBXN-110 ignition and growth model and of the PMMA constitutive model were investigated in order to choose between several models found in the literature. A calibration shot from the MWT was also used to demonstrate the appropriateness of the models selected. Experimental results were compared to CTH calculations to indicate if there were effects associated with highly curved shock fronts that could not be adequately predicted. The run distances predicted in CTH for the thicker donor slab compare very favorably with the actual experiments; however, for thinner donor slabs, the actual experimental results seem to suggest a more sensitive behavior than the simulations are able to capture.

  10. Predicting Run Distances for a Modified Wedge Test

    NASA Astrophysics Data System (ADS)

    Dorgan, Robert; Lee, Richard; Sutherland, Gerrit

    2011-06-01

    Simulations were used to aid in the development of a modified wedge test (MWT). This explosive sensitivity experiment allows the shockwave curvature to be defined in order to investigate the effect of combined shock-shear loading on sensitivity. Various widths of PBXN-110 donor slabs were used to define the shockwave curvature introduced to wedge samples of the same explosive. The donor slabs were initiated with a linewave generator and a Detasheet booster, and the shock wave was attenuated using a slab of PMMA. In developing simulations for these three material experiments, calibrations of the PBXN-110 ignition and growth model and of the PMMA constitutive model were investigated in order to choose between several models found in the literature. A calibration shot from the MWT was also used to demonstrate the appropriateness of the models selected. Experimental results were compared to CTH calculations to indicate if there were effects associated with highly curved shock fronts that could not be adequately predicted. The run distances predicted in CTH for the thicker donor slab compare very favorably with the actual experiments; however, for thinner donor slabs, the actual experimental results seem to suggest a more sensitive behavior than the simulations are able to capture. DISTRIBUTION A. Approved for public release, distribution unlimited. (96ABW-2011-0053)

  11. Design and Development of a Model to Simulate 0-G Treadmill Running Using the European Space Agency's Subject Loading System

    NASA Technical Reports Server (NTRS)

    Caldwell, E. C.; Cowley, M. S.; Scott-Pandorf, M. M.

    2010-01-01

    Develop a model that simulates a human running in 0 G using the European Space Agency s (ESA) Subject Loading System (SLS). The model provides ground reaction forces (GRF) based on speed and pull-down forces (PDF). DESIGN The theoretical basis for the Running Model was based on a simple spring-mass model. The dynamic properties of the spring-mass model express theoretical vertical GRF (GRFv) and shear GRF in the posterior-anterior direction (GRFsh) during running gait. ADAMs VIEW software was used to build the model, which has a pelvis, thigh segment, shank segment, and a spring foot (see Figure 1).the model s movement simulates the joint kinematics of a human running at Earth gravity with the aim of generating GRF data. DEVELOPMENT & VERIFICATION ESA provided parabolic flight data of subjects running while using the SLS, for further characterization of the model s GRF. Peak GRF data were fit to a linear regression line dependent on PDF and speed. Interpolation and extrapolation of the regression equation provided a theoretical data matrix, which is used to drive the model s motion equations. Verification of the model was conducted by running the model at 4 different speeds, with each speed accounting for 3 different PDF. The model s GRF data fell within a 1-standard-deviation boundary derived from the empirical ESA data. CONCLUSION The Running Model aids in conducting various simulations (potential scenarios include a fatigued runner or a powerful runner generating high loads at a fast cadence) to determine limitations for the T2 vibration isolation system (VIS) aboard the International Space Station. This model can predict how running with the ESA SLS affects the T2 VIS and may be used for other exercise analyses in the future.

  12. Functional brain imaging using near-infrared spectroscopy during actual driving on an expressway

    PubMed Central

    Yoshino, Kayoko; Oka, Noriyuki; Yamamoto, Kouji; Takahashi, Hideki; Kato, Toshinori

    2013-01-01

    The prefrontal cortex is considered to have a significant effect on driving behavior, but little is known about prefrontal cortex function in actual road driving. Driving simulation experiments are not the same, because the subject is in a stationary state, and the results may be different. Functional near-infrared spectroscopy (fNIRS) is advantageous in that it can measure cerebral hemodynamic responses in a person driving an actual vehicle. We mounted fNIRS equipment in a vehicle to evaluate brain functions related to various actual driving operations while the subjects drove on a section of an expressway that was not yet open to the public. Measurements were recorded while parked, and during acceleration, constant velocity driving (CVD), deceleration, and U-turns, in the daytime and at night. Changes in cerebral oxygen exchange (ΔCOE) and cerebral blood volume were calculated and imaged for each part of the task. Responses from the prefrontal cortex and the parietal cortex were highly reproducible in the daytime and nighttime experiments. Significant increases in ΔCOE were observed in the frontal eye field (FEF), which has not been mentioned much in previous simulation experiments. In particular, significant activation was detected during acceleration in the right FEF, and during deceleration in the left FEF. Weaker responses during CVD suggest that FEF function was increased during changes in vehicle speed. As the FEF contributes to control of eye movement in three-dimensional space, FEF activation may be important in actual road driving. fNIRS is a powerful technique for investigating brain activation outdoors, and it proved to be sufficiently robust for use in an actual highway driving experiment in the field of intelligent transport systems (ITS). PMID:24399949

  13. RHIC Polarized proton performance in run-8

    SciTech Connect

    Montag,C.; Bai, M.; MacKay, W.W.; Roser, T.; Abreu, N.; Ahrens, L.; Barton, D.; Beebe-Wang, J.; Blaskiewicz, M.; Brennan, J.M.; Brown, K.A.; Bruno, D.; Bunce, G.; Calaga, R.; Cameron, P.; Connolly, R.; D'Ottavio, T.; Drees, A.; Fedotov, A.V.; Fischer, W.; Ganetis, G.; Gardner, C.; Glenn, J.; Hayes, T.; Huang, H.; Ingrassia, P.; Kayran, D.A.; Kewisch, J.; Lee, R.C.; Lin, F.; Litvinenko, V.N.; Luccio, A.U.; Luo, Y.; Makdisi, Y.; Malitsky, N.; Marr, G.; Marusic, A.; Michnoff, R.; Morris, J.; Oerter, B.; Pilat, F.; Pile, P.; Robert-Demolaize, G.; Russo, T.; Satogata, T.; Schultheiss, C.; Sivertz, M.; Smith, K.; Tepikian, S.; D. Trbojevic, D.; Tsoupas, N.; Tuozzolo, J.; Zaltsman, A.; Zelenski, A.; Zeno, K.; Zhang, S.Y.

    2008-10-06

    During Run-8, the Relativistic Heavy Ion Collider (RHIC) provided collisions of spin-polarized proton beams at two interaction regions. Physics data were taken with vertical orientation of the beam polarization, which in the 'Yellow' RHIC ring was significantly lower than in previous years. We present recent developments and improvements as well as the luminosity and polarization performance achieved during Run-8, and we discuss possible causes of the not as high as previously achieved polarization performance of the 'Yellow' ring.

  14. The Ssart of Run II at CDF

    SciTech Connect

    Marco Rescigno

    2002-10-29

    After a hiatus of almost 6 years and an extensive upgrade, Tevatron, the world largest proton-antiproton collider, has resumed the operation for the so called RUN II. In this paper we give a brief overview of the many new features of the Tevatron complex and of the upgraded CDF experiment, and show the presently achieved detector performances as well as highlights of the RUN II physics program in the beauty and electroweak sector.

  15. RHIC polarized proton performance in run-8.

    SciTech Connect

    Montag,C.; Abreu, N.; Ahrens, L.; Bai, M.; Barton, D.; et al.

    2008-06-23

    During Run-8, the Relativistic Heavy Ion Collider (RHIC) provided collisions of spin-polarized proton beams at two interaction regions. Helical spin rotators at these two interaction regions were used to control the spin orientation of both beams at the collision points. Physics data were taken with different orientations of the beam polarization. We present recent developments and improvements as well as the luminosity and polarization performance achieved during Run-8.

  16. Minimum-time running: a numerical approach.

    PubMed

    Maroński, Ryszard; Rogowski, Krzysztof

    2011-01-01

    The article deals with the minimum-time running problem. The time of covering a given distance is minimized. The Hill-Keller model of running employed is based on Newton's second law and the equation of power balance. The problem is formulated in optimal control. The unknown function is the runner's velocity that varies with the distance. The problem is solved applying the direct Chebyshev's pseudospectral method.

  17. High speed flywheel

    DOEpatents

    McGrath, Stephen V.

    1991-01-01

    A flywheel for operation at high speeds utilizes two or more ringlike coments arranged in a spaced concentric relationship for rotation about an axis and an expansion device interposed between the components for accommodating radial growth of the components resulting from flywheel operation. The expansion device engages both of the ringlike components, and the structure of the expansion device ensures that it maintains its engagement with the components. In addition to its expansion-accommodating capacity, the expansion device also maintains flywheel stiffness during flywheel operation.

  18. The need for speed

    PubMed Central

    Suhalim, Jeffrey L.; Boik, John C.; Tromberg, Bruce J.; Potma, Eric O.

    2012-01-01

    One of the key enabling features of coherent Raman scattering (CRS) techniques is the dramatically improved imaging speed over conventional vibrational imaging methods. It is this enhanced imaging acquisition rate that has guided the field of vibrational microscopy into the territory of real-time imaging of live tissues. In this feature article, we review several aspects of fast vibrational imaging and discuss new applications made possible by the improved CRS imaging capabilities. In addition, we reflect on the current limitations of CRS microscopy and look ahead at several new developments towards real-time, hyperspectral vibrational imaging of biological tissues. PMID:22344721

  19. Patellofemoral joint compression forces in backward and forward running

    PubMed Central

    Roos, Paulien E.; Barton, Nick; van Deursen, Robert W.M.

    2012-01-01

    Patellofemoral pain (PFP) is a common injury and increased patellofemoral joint compression forces (PFJCF) may aggravate symptoms. Backward running (BR) has been suggested for exercise with reduced PFJCF. The aims of this study were to (1) investigate if BR had reduced peak PFJCF compared to forward running (FR) at the same speed, and (2) if PFJCF was reduced in BR, to investigate which biomechanical parameters explained this. It was hypothesized that (1) PFJCF would be lower in BR, and (2) that this would coincide with a reduced peak knee moment caused by altered ground reaction forces (GRFs). Twenty healthy subjects ran in forward and backward directions at consistent speed. Kinematic and ground reaction force data were collected; inverse dynamic and PFJCF analyses were performed. PFJCF were higher in FR than BR (4.5±1.5; 3.4±1.4BW; p<0.01). The majority of this difference (93.1%) was predicted by increased knee moments in FR compared to BR (157±54; 124±51 Nm; p<0.01). 54.8% of differences in knee moments could be predicted by the magnitude of the GRF (2.3±0.3; 2.4±0.2BW), knee flexion angle (44±6; 41±7) and center of pressure location on the foot (25±11; 12±6%) at time of peak knee moment. Results were not consistent in all subjects. It was concluded that BR had reduced PFJCF compared to FR. This was caused by an increased knee moment, due to differences in magnitude and location of the GRF vector relative to the knee. BR can therefore be used to exercise with decreased PFJCF. PMID:22503882

  20. The landing-take-off asymmetry in human running.

    PubMed

    Cavagna, G A

    2006-10-01

    In the elastic-like bounce of the body at each running step the muscle-tendon units are stretched after landing and recoil before take-off. For convenience, both the velocity of the centre of mass of the body at landing and take-off, and the characteristics of the muscle-tendon units during stretching and recoil, are usually assumed to be the same. The deviation from this symmetrical model has been determined here by measuring the mechanical energy changes of the centre of mass of the body within the running step using a force platform. During the aerial phase the fall is greater than the lift, and also in the absence of an aerial phase the transduction between gravitational potential energy and kinetic energy is greater during the downward displacement than during the lift. The peak of kinetic energy in the sagittal plane is attained thanks to gravity just prior to when the body starts to decelerate downwards during the negative work phase. In contrast, a lower peak of kinetic energy is attained, during the positive work phase, due to the muscular push continuing to accelerate the body forwards after the end of the acceleration upwards. Up to a speed of 14 km h(-1) the positive external work duration is greater than the negative external work duration, suggesting a contribution of muscle fibres to the length change of the muscle-tendon units. Above this speed, the two durations (<0.1 s) are similar, suggesting that the length change is almost totally due to stretch-recoil of the tendons with nearly isometrically contracting fibres.