Sample records for actual water quality

  1. Association between perceptions of public drinking water quality and actual drinking water quality: A community-based exploratory study in Newfoundland (Canada).

    PubMed

    Ochoo, Benjamin; Valcour, James; Sarkar, Atanu

    2017-11-01

    Studying public perception on drinking water quality is crucial for managing of water resources, generation of water quality standards, and surveillance of the drinking-water quality. However, in policy discourse, the reliability of public perception concerning drinking water quality and associated health risks is questionable. Does the public perception of water quality equate with the actual water quality? We investigated public perceptions of water quality and the perceived health risks and associated with the actual quality of public water supplies in the same communities. The study was conducted in 45 communities of Newfoundland (Canada) in 2012. First, a telephone survey of 100 households was conducted to examine public perceptions of drinking water quality of their respective public sources. Then we extracted public water quality reports of the same communities (1988-2011) from the provincial government's water resources portal. These reports contained the analysis of 2091 water samples, including levels of Disinfection By-Products (DBPs), nutrients, metals, ions and physical parameters. The reports showed that colour, manganese, total dissolved solids, iron, turbidity, and DBPs were the major detected parameters in the public water. However, the majority of the respondents (>56%) were either completely satisfied or very satisfied with the quality of drinking water. Older, higher educated and high-income group respondents were more satisfied with water quality than the younger, less educated and low-income group respondents. The study showed that there was no association with public satisfaction level and actual water quality of the respective communities. Even, in the communities, supplied by the same water system, the respondents had differences in opinion. Despite the effort by the provincial government to make the water-test results available on its website for years, the study showed existing disconnectedness between public perception of drinking water

  2. Perceived versus actual water quality: Community studies in rural Oaxaca, Mexico.

    PubMed

    Rowles, Lewis Stetson; Alcalde, Reinaldo; Bogolasky, Francisca; Kum, Soyoon; Diaz-Arriaga, Farith A; Ayres, Craig; Mikelonis, Anne M; Toledo-Flores, Luis Javier; Alonso-Gutiérrez, Manuel Gerardo; Pérez-Flores, Maria Eufemia; Lawler, Desmond F; Ward, Peter M; Lopez-Cruz, Juana Yolanda; Saleh, Navid B

    2018-05-01

    Compromised water quality risks public health, which becomes particularly acute in economically marginalized communities. Although the majority of the clean-water-deprived population resides in Sub-Saharan Africa and Asia, a significant portion (32 million) lives in Meso- and Latin-America. Oaxaca is one of the marginalized southern states of Mexico, which has experienced high morbidity from infectious diseases and also has suffered from a high rate of infant mortality. However, there has been a paucity of reports on the status of water quality of culturally diverse rural Oaxaca. This study follows community-based participatory research methods to address the data gap by reporting on water quality (chemical and microbiological) and by exploring social realities and water use practices within and among communities. Surveys and water quality analyses were conducted on 73 households in three rural communities, which were selected based on the choice of water sources (i.e., river water, groundwater, and spring water). Statistically significant variations among communities were observed including the sanitation infrastructure (p-value 0.001), public perception on water quality (p-value 0.007), and actual microbiological quality of water (p-value 0.001). Results indicate a high prevalence of diarrheal diseases, a desire to improve water quality and reduce the cost of water, and a need for education on water quality and health in all the surveyed communities. The complexities among the three studied communities highlight the need for undertaking appropriate policies and water treatment solutions. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Published methodological quality of randomized controlled trials does not reflect the actual quality assessed in protocols

    PubMed Central

    Mhaskar, Rahul; Djulbegovic, Benjamin; Magazin, Anja; Soares, Heloisa P.; Kumar, Ambuj

    2011-01-01

    Objectives To assess whether reported methodological quality of randomized controlled trials (RCTs) reflect the actual methodological quality, and to evaluate the association of effect size (ES) and sample size with methodological quality. Study design Systematic review Setting Retrospective analysis of all consecutive phase III RCTs published by 8 National Cancer Institute Cooperative Groups until year 2006. Data were extracted from protocols (actual quality) and publications (reported quality) for each study. Results 429 RCTs met the inclusion criteria. Overall reporting of methodological quality was poor and did not reflect the actual high methodological quality of RCTs. The results showed no association between sample size and actual methodological quality of a trial. Poor reporting of allocation concealment and blinding exaggerated the ES by 6% (ratio of hazard ratio [RHR]: 0.94, 95%CI: 0.88, 0.99) and 24% (RHR: 1.24, 95%CI: 1.05, 1.43), respectively. However, actual quality assessment showed no association between ES and methodological quality. Conclusion The largest study to-date shows poor quality of reporting does not reflect the actual high methodological quality. Assessment of the impact of quality on the ES based on reported quality can produce misleading results. PMID:22424985

  4. Published methodological quality of randomized controlled trials does not reflect the actual quality assessed in protocols.

    PubMed

    Mhaskar, Rahul; Djulbegovic, Benjamin; Magazin, Anja; Soares, Heloisa P; Kumar, Ambuj

    2012-06-01

    To assess whether the reported methodological quality of randomized controlled trials (RCTs) reflects the actual methodological quality and to evaluate the association of effect size (ES) and sample size with methodological quality. Systematic review. This is a retrospective analysis of all consecutive phase III RCTs published by eight National Cancer Institute Cooperative Groups up to 2006. Data were extracted from protocols (actual quality) and publications (reported quality) for each study. Four hundred twenty-nine RCTs met the inclusion criteria. Overall reporting of methodological quality was poor and did not reflect the actual high methodological quality of RCTs. The results showed no association between sample size and actual methodological quality of a trial. Poor reporting of allocation concealment and blinding exaggerated the ES by 6% (ratio of hazard ratio [RHR]: 0.94; 95% confidence interval [CI]: 0.88, 0.99) and 24% (RHR: 1.24; 95% CI: 1.05, 1.43), respectively. However, actual quality assessment showed no association between ES and methodological quality. The largest study to date shows that poor quality of reporting does not reflect the actual high methodological quality. Assessment of the impact of quality on the ES based on reported quality can produce misleading results. Copyright © 2012 Elsevier Inc. All rights reserved.

  5. Tourism guide cloud service quality: What actually delights customers?

    PubMed

    Lin, Shu-Ping; Yang, Chen-Lung; Pi, Han-Chung; Ho, Thao-Minh

    2016-01-01

    The emergence of advanced IT and cloud services has beneficially supported the information-intensive tourism industry, simultaneously caused extreme competitions in attracting customers through building efficient service platforms. On response, numerous nations have implemented cloud platforms to provide value-added sightseeing information and personal intelligent service experiences. Despite these efforts, customers' actual perspectives have yet been sufficiently understood. To bridge the gap, this study attempts to investigate what aspects of tourism cloud services actually delight customers' satisfaction and loyalty. 336 valid survey questionnaire answers were analyzed using structural equation modeling method. The results prove positive impacts of function quality, enjoyment, multiple visual aids, and information quality on customers' satisfaction as well as of enjoyment and satisfaction on use loyalty. The findings hope to provide helpful references of customer use behaviors for enhancing cloud service quality in order to achieve better organizational competitiveness.

  6. Uses and biases of volunteer water quality data

    USGS Publications Warehouse

    Loperfido, J.V.; Beyer, P.; Just, C.L.; Schnoor, J.L.

    2010-01-01

    State water quality monitoring has been augmented by volunteer monitoring programs throughout the United States. Although a significant effort has been put forth by volunteers, questions remain as to whether volunteer data are accurate and can be used by regulators. In this study, typical volunteer water quality measurements from laboratory and environmental samples in Iowa were analyzed for error and bias. Volunteer measurements of nitrate+nitrite were significantly lower (about 2-fold) than concentrations determined via standard methods in both laboratory-prepared and environmental samples. Total reactive phosphorus concentrations analyzed by volunteers were similar to measurements determined via standard methods in laboratory-prepared samples and environmental samples, but were statistically lower than the actual concentration in four of the five laboratory-prepared samples. Volunteer water quality measurements were successful in identifying and classifying most of the waters which violate United States Environmental Protection Agency recommended water quality criteria for total nitrogen (66%) and for total phosphorus (52%) with the accuracy improving when accounting for error and biases in the volunteer data. An understanding of the error and bias in volunteer water quality measurements can allow regulators to incorporate volunteer water quality data into total maximum daily load planning or state water quality reporting. ?? 2010 American Chemical Society.

  7. Water Quality Evaluation of the Yellow River Basin Based on Gray Clustering Method

    NASA Astrophysics Data System (ADS)

    Fu, X. Q.; Zou, Z. H.

    2018-03-01

    Evaluating the water quality of 12 monitoring sections in the Yellow River Basin comprehensively by grey clustering method based on the water quality monitoring data from the Ministry of environmental protection of China in May 2016 and the environmental quality standard of surface water. The results can reflect the water quality of the Yellow River Basin objectively. Furthermore, the evaluation results are basically the same when compared with the fuzzy comprehensive evaluation method. The results also show that the overall water quality of the Yellow River Basin is good and coincident with the actual situation of the Yellow River basin. Overall, gray clustering method for water quality evaluation is reasonable and feasible and it is also convenient to calculate.

  8. An index approach to performance-based payments for water quality.

    PubMed

    Maille, Peter; Collins, Alan R

    2012-05-30

    In this paper we describe elements of a field research project that presented farmers with economic incentives to control nitrate runoff. The approach used is novel in that payments are based on ambient water quality and water quantity produced by a watershed rather than proxies for water quality conservation. Also, payments are made based on water quality relative to a control watershed, and therefore, account for stochastic fluctuations in background nitrate levels. Finally, the program pays farmers as a group to elicit team behavior. We present our approach to modeling that allowed us to estimate prices for water and resulting payment levels. We then compare these preliminary estimates to the actual values recorded over 33 months of fieldwork. We find that our actual payments were 29% less than our preliminary estimates, due in part to the failure of our ecological model to estimate discharge accurately. Despite this shortfall, the program attracted the participation of 53% of the farmers in the watershed, and resulted in substantial nitrate abatement activity. Given this favorable response, we propose that research efforts focus on implementing field trials of group-level performance-based payments. Ideally these programs would be low risk and control for naturally occurring contamination. Copyright © 2012 Elsevier Ltd. All rights reserved.

  9. ENCOURAGING THE USE OF WETLANDS IN WATER QUALITY TRADING PROGRAMS

    EPA Science Inventory

    The interest in water quality trading (WQT) has grown in recent years because of its potential to meet nutrient reduction goals at lower costs. However, one problem identified by researchers in most WQT programs has been few actual trades, usually associated with low numbers of ...

  10. Predicting water suppy and actual evapotranspiration of street trees

    NASA Astrophysics Data System (ADS)

    Wessolek, Gerd; Heiner, Moreen; Trinks, Steffen

    2017-04-01

    It's well known that street trees cool air temperature in summer-time by transpiration and shading and also reduce runoff. However, it's difficult to analyse if trees have water shortage or not. This contribution focus on predicting water supply, actual evapotranspiration, and runoff by using easily available climate data (precipiation, potential evapotranspiration) and site characteristics (water retention, space, sealing degree, groundwater depth). These parameter were used as input data for Hydro-Pedotransfer-Functions (HPTFs) allowing the estimation of the annual water budget. Results give statements on water supply of trees, drought stress, and additional water demand by irrigation. Procedure also analyse, to which extent the surrounding partly sealed surfaces deliver water to the trees. Four representative street canyons of Berlin City were analysed and evaluated within in training program for M.A. students of „Urban Eco-system Science" at the Technische Universität Berlin.

  11. Examining the Relationship Between Perceived Quality of Care and Actual Quality of Care as Measured by 30-Day Readmission Rates.

    PubMed

    Salinas, Stanley R

    To test the relationship between patient experience, as measured by the Hospital Consumer Assessment of Healthcare Providers and Systems (HCAHPS), and actual quality of care, as measured by 30-day readmission rates. Both HCAHPS data and outcome data reported to the Centers of Medicare & Medicaid Services (CMS). This secondary, nationwide (N = 4060), hospital-level study focused only on acute care hospitals. HCAHPS question 22 "Would you recommend this hospital to your friends and family?" was used to determine level of overall satisfaction, and 30-day readmission rates, as reported to the CMS, was used as a proxy for actual quality of care. A statistically significant relationship was found between patient experience and actual quality outcomes. The results of this study reinforce the inclusion of patient experience in Medicare's Value Based Purchasing program as a matter of good public policy.

  12. Water quality

    USDA-ARS?s Scientific Manuscript database

    Aquatic animals are healthiest and grow best when environmental conditions are within certain ranges that define, for a particular species, “good” water quality. From the outset, successful aquaculture requires a high-quality water supply. Water quality in aquaculture systems also deteriorates as an...

  13. Water-quality assessment of the Sacramento River basin, California : water quality of fixed sites, 1996-1998

    USGS Publications Warehouse

    Domagalski, Joseph L.; Dileanis, Peter D.

    2000-01-01

    Water-quality samples were collected from 12 sites in the Sacramento River Basin, Cali-fornia, from February 1996 through April 1998. Field measurements (dissolved oxygen, pH, specific conductance, alkalinity, and water tem-perature) were completed on all samples, and laboratory analyses were done for suspended sediments, nutrients, dissolved and particulate organic carbon, major ions, trace elements, and mercury species. Samples were collected at four types of locations on the Sacramento River?large tributaries to the Sacramento River, agricul-tural drainage canals, an urban stream, and a flood control channel. The samples were collected across a range of flow conditions representative of those sites during the timeframe of the study. The water samples from the Sacramento River indi-cate that specific conductance increases slightly downstream but that the water quality is indicative of dilute water. Water temperature of the Sacramento River increases below Shasta Lake during the spring and summer irrigation season owing to diversion of water out of the river and subsequent lower flow. All 12 sites had generally low concentrations of nutrients, but chlorophyll concentrations were not measured; therefore, the actual consequences of nutrient loading could not be adequately assessed. Concentrations of dis-solved organic carbon in samples from the Sacramento River and the major tributaries were generally low; the formation of trihalomethanes probably does not currently pose a problem when water from the Sacramento River and its major tributaries is chlorinated for drinking-water purposes. However, dissolved organic carbon concentrations were higher in the urban stream and in agricultural drainage canals, but were diluted upon mixing with the Sacramento River. The only trace element that currently poses a water-quality problem in the Sacramento River is mercury. A federal criterion for the protection of aquatic life was exceeded during this study, and floodwater

  14. Real-time water quality monitoring and providing water quality ...

    EPA Pesticide Factsheets

    EPA and the U.S. Geological Survey (USGS) have initiated the “Village Blue” research project to provide real-time water quality monitoring data to the Baltimore community and increase public awareness about local water quality in Baltimore Harbor and the Chesapeake Bay. The Village Blue demonstration project complements work that a number of state and local organizations are doing to make Baltimore Harbor “swimmable and fishable” 2 by 2020. Village Blue is designed to build upon EPA’s “Village Green” project which provides real-time air quality information to communities in six locations across the country. The presentation, “Real-time water quality monitoring and providing water quality information to the Baltimore Community”, summarizes the Village Blue real-time water quality monitoring project being developed for the Baltimore Harbor.

  15. Water quality assessment of Australian ports using water quality evaluation indices

    PubMed Central

    Jahan, Sayka

    2017-01-01

    Australian ports serve diverse and extensive activities, such as shipping, tourism and fisheries, which may all impact the quality of port water. In this work water quality monitoring at different ports using a range of water quality evaluation indices was applied to assess the port water quality. Seawater samples at 30 stations in the year 2016–2017 from six ports in NSW, Australia, namely Port Jackson, Botany, Kembla, Newcastle, Yamba and Eden, were investigated to determine the physicochemical and biological variables that affect the port water quality. The large datasets obtained were designed to determine the Water Quality Index, Heavy metal Evaluation Index, Contamination Index and newly developed Environmental Water Quality Index. The study revealed medium water quality index and high and medium heavy metal evaluation index at three of the study ports and high contamination index in almost all study ports. Low level dissolved oxygen and higher level of total dissolved solids, turbidity, fecal coliforms, copper, iron, lead, zinc, manganese, cadmium and cobalt are mainly responsible for the poor water qualities of the port areas. Good water quality at the background samples indicated that various port activities are the likely cause for poor water quality inside the port area. PMID:29244876

  16. A novel approach in water quality assessment based on fuzzy logic.

    PubMed

    Gharibi, Hamed; Mahvi, Amir Hossein; Nabizadeh, Ramin; Arabalibeik, Hossein; Yunesian, Masud; Sowlat, Mohammad Hossein

    2012-12-15

    The present work aimed at developing a novel water quality index based on fuzzy logic, that is, a comprehensive artificial intelligence (AI) approach to the development of environmental indices for routine assessment of surface water quality, particularly for human drinking purposes. Twenty parameters were included based on their critical importance for the overall water quality and their potential impact on human health. To assess the performance of the proposed index under actual conditions, a case study was conducted at Mamloo dam, Iran, employing water quality data of four sampling stations in the water basin of the dam from 2006 to 2009. Results of this study indicated that the general quality of water in all the sampling stations over all the years of the study period is fairly low (yearly averages are usually in the range of 45-55). According to the results of ANOVA test, water quality did not significantly change over time in any of the sampling stations (P > 0.05). In addition, comparison of the outputs of the fuzzy-based proposed index proposed with those of the NSF water quality index (the WQI) and Canadian Water Quality Index (CWQI) showed similar results and were sensitive to changes in the level of water quality parameters. However, the index proposed by the present study produced a more stringent outputs compared to the WQI and CWQI. Results of the sensitivity analysis suggested that the index is robust against the changes in the rules. In conclusion, the proposed index seems to produce accurate and reliable results and can therefore be used as a comprehensive tool for water quality assessment, especially for the analysis of human drinking water. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. A parsimonious dynamic model for river water quality assessment.

    PubMed

    Mannina, Giorgio; Viviani, Gaspare

    2010-01-01

    Water quality modelling is of crucial importance for the assessment of physical, chemical, and biological changes in water bodies. Mathematical approaches to water modelling have become more prevalent over recent years. Different model types ranging from detailed physical models to simplified conceptual models are available. Actually, a possible middle ground between detailed and simplified models may be parsimonious models that represent the simplest approach that fits the application. The appropriate modelling approach depends on the research goal as well as on data available for correct model application. When there is inadequate data, it is mandatory to focus on a simple river water quality model rather than detailed ones. The study presents a parsimonious river water quality model to evaluate the propagation of pollutants in natural rivers. The model is made up of two sub-models: a quantity one and a quality one. The model employs a river schematisation that considers different stretches according to the geometric characteristics and to the gradient of the river bed. Each stretch is represented with a conceptual model of a series of linear channels and reservoirs. The channels determine the delay in the pollution wave and the reservoirs cause its dispersion. To assess the river water quality, the model employs four state variables: DO, BOD, NH(4), and NO. The model was applied to the Savena River (Italy), which is the focus of a European-financed project in which quantity and quality data were gathered. A sensitivity analysis of the model output to the model input or parameters was done based on the Generalised Likelihood Uncertainty Estimation methodology. The results demonstrate the suitability of such a model as a tool for river water quality management.

  18. WaterQualityWatch and water-quality information bookmark

    USGS Publications Warehouse

    Wilde, Franceska D.

    2014-01-01

    WaterQualityWatch is an online resource of the U.S. Geological Survey (USGS) that provides access to continuous real-time measurements of water temperature, specific electrical conductance, pH, dissolved oxygen, turbidity, and nitrate at selected data-collection stations throughout the Nation. Additional online resources of the USGS that pertain to various types of water-quality information are shown on the reverse side of this bookmark.

  19. Geohydrology of the Antelope Valley Area, California and design for a ground-water-quality monitoring network

    USGS Publications Warehouse

    Duell, L.F.

    1987-01-01

    A basinwide ideal network and an actual network were designed to identify ambient groundwater quality, trends in groundwater quality, and degree of threat from potential pollution sources in Antelope Valley, California. In general, throughout the valley groundwater quality has remained unchanged, and no specific trends are apparent. The main source of groundwater for the valley is generally suitable for domestic, irrigation, and most industrial uses. Water quality data for selected constituents of some network wells and surface-water sites are presented. The ideal network of 77 sites was selected on the basis of site-specific criteria, geohydrology, and current land use (agricultural, residential, and industrial). These sites were used as a guide in the design of the actual network consisting of 44 existing wells. Wells are currently being monitored and were selected whenever possible because of budgetary constraints. Of the remaining ideal sites, 20 have existing wells not part of a current water quality network, and 13 are locations where no wells exist. The methodology used for the selection of sites, constituents monitored, and frequency of analysis will enable network users to make appropriate future changes to the monitoring network. (USGS)

  20. Quality-Assurance Plan for Water-Quality Activities in the USGS Ohio Water Science Center

    USGS Publications Warehouse

    Francy, Donna S.; Shaffer, Kimberly H.

    2008-01-01

    In accordance with guidelines set forth by the Office of Water Quality in the Water Resources Discipline of the U.S. Geological Survey, a quality-assurance plan has been written for use by the Ohio Water Science Center in conducting water-quality activities. This quality-assurance plan documents the standards, policies, and procedures used by the Ohio Water Science Center for activities related to the collection, processing, storage, analysis, and publication of water-quality data. The policies and procedures documented in this quality-assurance plan for water-quality activities are meant to complement the Ohio Water Science Center quality-assurance plans for water-quality monitors, the microbiology laboratory, and surface-water and ground-water activities.

  1. Water quality evaluation of Al-Gharraf river by two water quality indices

    NASA Astrophysics Data System (ADS)

    Ewaid, Salam Hussein

    2017-11-01

    Water quality of Al-Gharraf river, the largest branch of Tigris River south of Iraq, was evaluated by the National Sanitation Foundation Water Quality Index (NFS WQI) and the Heavy Metal Pollution Index (HPI) depending on 13 physical, chemical, and biological parameters of water quality measured monthly at ten stations on the river during 2015. The NSF-WQI range obtained for the sampling sites was 61-70 indicating a medium water quality. The HPI value was 98.6 slightly below the critical value for drinking water of 100, and the water quality in the upstream stations is better than downstream due to decrease in water and the accumulation of contaminants along the river. This study explains the significance of applying the water quality indices that show the aggregate impact of ecological factors in charge of water pollution of surface water and which permits translation of the monitoring data to assist the decision makers.

  2. Water Quality Statistics

    ERIC Educational Resources Information Center

    Hodgson, Ted; Andersen, Lyle; Robison-Cox, Jim; Jones, Clain

    2004-01-01

    Water quality experiments, especially the use of macroinvertebrates as indicators of water quality, offer an ideal context for connecting statistics and science. In the STAR program for secondary students and teachers, water quality experiments were also used as a context for teaching statistics. In this article, we trace one activity that uses…

  3. Linking water quality and well-being for improved assessment and valuation of ecosystem services

    PubMed Central

    Keeler, Bonnie L.; Polasky, Stephen; Brauman, Kate A.; Johnson, Kris A.; Finlay, Jacques C.; O’Neill, Ann; Kovacs, Kent; Dalzell, Brent

    2012-01-01

    Despite broad recognition of the value of the goods and services provided by nature, existing tools for assessing and valuing ecosystem services often fall short of the needs and expectations of decision makers. Here we address one of the most important missing components in the current ecosystem services toolbox: a comprehensive and generalizable framework for describing and valuing water quality-related services. Water quality is often misrepresented as a final ecosystem service. We argue that it is actually an important contributor to many different services, from recreation to human health. We present a valuation approach for water quality-related services that is sensitive to different actions that affect water quality, identifies aquatic endpoints where the consequences of changing water quality on human well-being are realized, and recognizes the unique groups of beneficiaries affected by those changes. We describe the multiple biophysical and economic pathways that link actions to changes in water quality-related ecosystem goods and services and provide guidance to researchers interested in valuing these changes. Finally, we present a valuation template that integrates biophysical and economic models, links actions to changes in service provision and value estimates, and considers multiple sources of water quality-related ecosystem service values without double counting. PMID:23091018

  4. Linking water quality and well-being for improved assessment and valuation of ecosystem services.

    PubMed

    Keeler, Bonnie L; Polasky, Stephen; Brauman, Kate A; Johnson, Kris A; Finlay, Jacques C; O'Neill, Ann; Kovacs, Kent; Dalzell, Brent

    2012-11-06

    Despite broad recognition of the value of the goods and services provided by nature, existing tools for assessing and valuing ecosystem services often fall short of the needs and expectations of decision makers. Here we address one of the most important missing components in the current ecosystem services toolbox: a comprehensive and generalizable framework for describing and valuing water quality-related services. Water quality is often misrepresented as a final ecosystem service. We argue that it is actually an important contributor to many different services, from recreation to human health. We present a valuation approach for water quality-related services that is sensitive to different actions that affect water quality, identifies aquatic endpoints where the consequences of changing water quality on human well-being are realized, and recognizes the unique groups of beneficiaries affected by those changes. We describe the multiple biophysical and economic pathways that link actions to changes in water quality-related ecosystem goods and services and provide guidance to researchers interested in valuing these changes. Finally, we present a valuation template that integrates biophysical and economic models, links actions to changes in service provision and value estimates, and considers multiple sources of water quality-related ecosystem service values without double counting.

  5. Water-Quality Data

    MedlinePlus

    ... compound (VOC) emissions, and more. U.S. Department of Agriculture (USDA) Water Quality Information Center Databases : online databases that may be related to water and agriculture. National Park Service (NPS) Water Quality Program : NPS ...

  6. Drinking Water Quality Surveillance in a Vulnerable Urban Ward of Ahmedabad.

    PubMed

    Iyer, Veena; Choudhury, Nandini; Azhar, Gulrez Shah; Somvanshi, Bhushan

    2014-05-01

    The World Bank estimates that 21% of all communicable diseases in India are related to unsafe water with diarrhoea alone causing more than 0.1 million deaths annually. The WHO drinking water surveillance parameters of quality, quantity, accessibility, affordability and continuity were assessed in one vulnerable ward of Ahmedabad-a fast growing city in Western India. Interviews with key informants of the ward office, health centre and water supply department, secondary analysis and mapping of field test reports and a questionnaire-based survey of different household types were conducted. We found that Ahmedabad Municipal Corporation (AMC) supplies water to the ward intermittently for two hours during the day. Housing society clusters supplement their AMC water supply with untested bore-well water. The water quality surveillance system is designed for a twenty-four-hour piped distribution of treated surface water. However, in order to maintain surveillance over an intermittent supply that includes ground water, the sampling process should include periodic surveys of water actually consumed by the citizens. The laboratory capacity of the Central Water Testing Laboratory should expand to include more refined tests for microbial and chemical contamination.

  7. Marine water quality under climate change conditions/scenarios

    NASA Astrophysics Data System (ADS)

    Rizzi, Jonathan; Torresan, Silvia; Critto, Andrea; Zabeo, Alex; Brigolin, Daniele; Carniel, Sandro; Pastres, Roberto; Marcomini, Antonio

    2016-04-01

    The increase of sea temperature and the changes in marine currents are generating impacts on coastal waters such as changes in water biogeochemical and physical parameters (e.g. primary production, pH, salinity) leading to progressive degradation of the marine environment. With the main aim of analysing the potential impacts of climate change on coastal water quality, a Regional Risk Assessment (RRA) methodology was developed and applied to coastal marine waters of the North Adriatic (i.e. coastal water bodies of the Veneto and Friuli Venezia Giulia regions, Italy). RRA integrates the outputs of regional models providing information on macronutrients (i.e. dissolved inorganic nitrogen e reactive phosphorus), dissolved oxygen, pH, salinity and temperature, etc., under future climate change scenarios with site-specific environmental and socio-economic indicators (e.g. biotic index, presence and extension of seagrasses, presence of aquaculture). The presented approach uses Geographic Information Systems to manage, analyse, and visualize data and employs Multi-Criteria Decision Analysis for the integration of stakeholders preferences and experts judgments into the evaluation process. RRA outputs are hazard, exposure, vulnerability, risk and damage maps useful for the identification and prioritization of hot-spot areas and vulnerable targets in the considered region. Therefore, the main aim of this contribution is to apply the RRA methodology to integrate, visualize, and rank according to spatial distribution, physical and chemical data concerning the coastal waters of the North Adriatic Sea in order to predict possible changes of the actual water quality.

  8. Water Quality

    Treesearch

    Terry L. Maluk; Thomas A. Abrahamsen; Richard H. Day

    2000-01-01

    The U.S. Geological Survey (USGS) began the National Water-Quality Assessment Program (NAWQA) in 1991 to describe the status of and long-term trends in the quality of the Nation's surface- and ground-water resources. The study of the Santee River Basin and Coastal Drainages began in 1994 and included about 60800 km2 in North Carolina and...

  9. Management of Water Quantity and Quality Based on Copula for a Tributary to Miyun Reservoir, Beijing

    NASA Astrophysics Data System (ADS)

    Zang, N.; Wang, X.; Liang, P.

    2017-12-01

    Due to the complex mutual influence between water quantity and water quality of river, it is difficult to reflect the actual characters of the tributaries to reservoir. In this study, the acceptable marginal probability distributions for water quantity and quality of reservoir inflow were calculated. A bivariate Archimedean copula was further applied to establish the joint distribution function of them. Then multiple combination scenarios of water quantity and water quality were designed to analyze their coexistence relationship and reservoir management strategies. Taking Bai river, an important tributary into the Miyun Reservoir, as a study case. The results showed that it is feasible to apply Frank copula function to describe the jointed distribution function of water quality and water quantity for Bai river. Furthermore, the monitoring of TP concentration needs to be strengthen in Bai river. This methodology can be extended to larger dimensions and is transferable to other reservoirs via establishment of models with relevant data for a particular area. Our findings help better analyzing the coexistence relationship and influence degree of the water quantity and quality of the tributary to reservoir for the purpose of water resources protection.

  10. Water Quality Criteria

    EPA Pesticide Factsheets

    EPA develops water quality criteria based on the latest scientific knowledge to protect human health and aquatic life. This information serves as guidance to states and tribes in adopting water quality standards.

  11. The inequality of water scarcity events: who is actually being affected?

    NASA Astrophysics Data System (ADS)

    Veldkamp, Ted I. E.; Wada, Yoshihide; Kummu, Matti; Aerts, Jeroen C. J. H.; Ward, Philip J.

    2015-04-01

    Over the past decades, changing hydro-climatic and socioeconomic conditions increased regional and global water scarcity problems. In the near future, projected changes in human water use and population growth - in combination with climate change - are expected to aggravate water scarcity conditions and its associated impacts on our society. Whilst a wide range of studies have modelled past and future regional and global patterns of change in population or land area impacted by water scarcity conditions, less attention is paid on who is actually affected and how vulnerable this share of the population is to water scarcity conditions. The actual impact of water scarcity events, however, not only depends on the numbers being affected, but merely on how sensitive this population is to water scarcity conditions, how quick and efficient governments can deal with the problems induced by water scarcity, and how many (financial and infrastructural) resources are available to cope with water scarce conditions. Only few studies have investigated the above mentioned interactions between societal composition and water scarcity conditions (e.g. by means of the social water scarcity index and the water poverty index) and, up to our knowledge, a comprehensive global analysis including different water scarcity indicators and multiple climate and socioeconomic scenarios is missing. To address this issue, we assess in this contribution the adaptive capacity of a society to water scarcity conditions, evaluate how this may be driven by different societal factors, and discuss how enhanced knowledge on this topic could be of interest for water managers in their design of adaptation strategies coping with water scarcity events. For that purpose, we couple spatial information on water scarcity conditions with different components from, among others, the Human Development Index and the Worldwide Governance Indicators, such as: the share of the population with an income below the poverty

  12. 78 FR 20252 - Water Quality Standards; Withdrawal of Certain Federal Water Quality Criteria Applicable to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-04

    ... aquatic life water quality criteria applicable to waters of New Jersey, Puerto Rico, and California's San Francisco Bay. In 1992, EPA promulgated the National Toxics Rule or NTR to establish numeric water quality... Water Quality Standards; Withdrawal of Certain Federal Water Quality Criteria Applicable to California...

  13. Toward city-scale water quality control: building a theory for smart stormwater systems

    NASA Astrophysics Data System (ADS)

    Kerkez, B.; Mullapudi, A. M.; Wong, B. P.

    2016-12-01

    Urban stormwater systems are rarely designed as actual systems. Rather, it is often assumed that individual Best Management Practices (BMPs) will add up to achieve desired watershed outcomes. Given the rise of BMPs and green infrastructure, we ask: does doing "best" at the local scale guarantee the "best" at the global scale? Existing studies suggest that the system-level performance of distributed stormwater practices may actually adversely impact watersheds by increasing downstream erosion and reducing water quality. Optimizing spatial placement may not be sufficient, however, since precipitation variability and other sources of uncertainty can drive the overall system into undesirable states. To that end, it is also important to control the temporal behavior of the system, which can be achieved by equipping stormwater elements (ponds, wetlands, basins, bioswales, etc.) with "smart" sensors and valves. Rather than building new infrastructure, this permits for existing assets to be repurposed and controlled to adapt to individual storm events. While we have learned how to build and deploy the necessary sensing and control technologies, we do not have a framework or theory that combines our knowledge of hydrology, hydraulics, water quality and control. We discuss the development of such a framework and investigate how existing water domain knowledge can be transferred into a system-theoretic context to enable real-time, city-scale stormwater control. We apply this framework to water quality control in an urban watershed in southeast Michigan, which has been heavily instrumented and retrofitted for control over the past year.

  14. Summary of surface-water quality, ground-water quality, and water withdrawals for the Spirit Lake Reservation, North Dakota

    USGS Publications Warehouse

    Vining, Kevin C.; Cates, Steven W.

    2006-01-01

    Available surface-water quality, ground-water quality, and water-withdrawal data for the Spirit Lake Reservation were summarized. The data were collected intermittently from 1948 through 2004 and were compiled from U.S. Geological Survey databases, North Dakota State Water Commission databases, and Spirit Lake Nation tribal agencies. Although the quality of surface water on the reservation generally is satisfactory, no surface-water sources are used for consumable water supplies. Ground water on the reservation is of sufficient quality for most uses. The Tokio and Warwick aquifers have better overall water quality than the Spiritwood aquifer. Water from the Spiritwood aquifer is used mostly for irrigation. The Warwick aquifer provides most of the consumable water for the reservation and for the city of Devils Lake. Annual water withdrawals from the Warwick aquifer by the Spirit Lake Nation ranged from 71 million gallons to 122 million gallons during 2000-04.

  15. Quality control in public participation assessments of water quality: the OPAL Water Survey.

    PubMed

    Rose, N L; Turner, S D; Goldsmith, B; Gosling, L; Davidson, T A

    2016-07-22

    Public participation in scientific data collection is a rapidly expanding field. In water quality surveys, the involvement of the public, usually as trained volunteers, generally includes the identification of aquatic invertebrates to a broad taxonomic level. However, quality assurance is often not addressed and remains a key concern for the acceptance of publicly-generated water quality data. The Open Air Laboratories (OPAL) Water Survey, launched in May 2010, aimed to encourage interest and participation in water science by developing a 'low-barrier-to-entry' water quality survey. During 2010, over 3000 participant-selected lakes and ponds were surveyed making this the largest public participation lake and pond survey undertaken to date in the UK. But the OPAL approach of using untrained volunteers and largely anonymous data submission exacerbates quality control concerns. A number of approaches were used in order to address data quality issues including: sensitivity analysis to determine differences due to operator, sampling effort and duration; direct comparisons of identification between participants and experienced scientists; the use of a self-assessment identification quiz; the use of multiple participant surveys to assess data variability at single sites over short periods of time; comparison of survey techniques with other measurement variables and with other metrics generally considered more accurate. These quality control approaches were then used to screen the OPAL Water Survey data to generate a more robust dataset. The OPAL Water Survey results provide a regional and national assessment of water quality as well as a first national picture of water clarity (as suspended solids concentrations). Less than 10 % of lakes and ponds surveyed were 'poor' quality while 26.8 % were in the highest water quality band. It is likely that there will always be a question mark over untrained volunteer generated data simply because quality assurance is uncertain

  16. U.S. Geological Survey Catskill/Delaware Water-Quality Network: Water-Quality Report Water Year 2006

    USGS Publications Warehouse

    McHale, Michael R.; Siemion, Jason

    2010-01-01

    The U.S. Geological Survey operates a 60-station streamgaging network in the New York City Catskill/Delaware Water Supply System. Water-quality samples were collected at 13 of the stations in the Catskill/Delaware streamgaging network to provide resource managers with water-quality and water-quantity data from the water-supply system that supplies about 85 percent of the water needed by the more than 9 million residents of New York City. This report summarizes water-quality data collected at those 13 stations plus one additional station operated as a part of the U.S. Environmental Protection Agency's Regional Long-Term Monitoring Network for the 2006 water year (October 1, 2005 to September 30, 2006). An average of 62 water-quality samples were collected at each station during the 2006 water year, including grab samples collected every other week and storm samples collected with automated samplers. On average, 8 storms were sampled at each station during the 2006 water year. The 2006 calendar year was the second warmest on record and the summer of 2006 was the wettest on record for the northeastern United States. A large storm on June 26-28, 2006, caused extensive flooding in the western part of the network where record peak flows were measured at several watersheds.

  17. Water Quality Assessment for Deep-water Channel area of Guangzhou Port based on the Comprehensive Water Quality Identification Index Method

    NASA Astrophysics Data System (ADS)

    Chen, Yi

    2018-03-01

    The comprehensive water quality identification index method is able to assess the general water quality situation comprehensively and represent the water quality classification; water environment functional zone achieves pollution level and standard objectively and systematically. This paper selects 3 representative zones along deep-water channel of Guangzhou port and applies comprehensive water quality identification index method to calculate sea water quality monitoring data for different selected zones from year 2006 to 2014, in order to investigate the temporal variation of water quality along deep-water channel of Guangzhou port. The comprehensive water quality level from north to south presents an increased trend, and the water quality of the three zones in 2014 is much better than in 2006. This paper puts forward environmental protection measurements and suggestions for Pearl River Estuary, provides data support and theoretical basis for studied sea area pollution prevention and control.

  18. Issues to consider in the derivation of water quality benchmarks for the protection of aquatic life.

    PubMed

    Schneider, Uwe

    2014-01-01

    While water quality benchmarks for the protection of aquatic life have been in use in some jurisdictions for several decades (USA, Canada, several European countries), more and more countries are now setting up their own national water quality benchmark development programs. In doing so, they either adopt an existing method from another jurisdiction, update on an existing approach, or develop their own new derivation method. Each approach has its own advantages and disadvantages, and many issues have to be addressed when setting up a water quality benchmark development program or when deriving a water quality benchmark. Each of these tasks requires a special expertise. They may seem simple, but are complex in their details. The intention of this paper was to provide some guidance for this process of water quality benchmark development on the program level, for the derivation methodology development, and in the actual benchmark derivation step, as well as to point out some issues (notably the inclusion of adapted populations and cryptic species and points to consider in the use of the species sensitivity distribution approach) and future opportunities (an international data repository and international collaboration in water quality benchmark development).

  19. Assessing the extent of altruism in the valuation of community drinking water quality improvements

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Adamowicz, Wiktor; Dupont, Diane P.; Krupnick, Alan

    2013-10-01

    Improvements in publically provided goods and services, like community drinking water treatment, have values to people arising from their self-interest, but may as well have value from their altruistic concerns. The extent to which the value is altruistic versus self-interested is an important empirical issue for policy analysis because the benefits to improving drinking water quality may be larger than previously thought. We conducted an internet survey across Canada to identify both self-interested willingness-to-pay and altruistic willingness-to-pay obtained through hypothetical responses to a series of stated choice tasks and actual self-protection data against health risks from tap water. We use the information on self-protection to identify altruistic WTP. We find significant differences between self-interested and altruistic WTP: the latter can be three times greater than the former. Whether benefits of water protection are actually larger, however, depends on whether the altruism is paternalistic or nonpaternalistic.

  20. Water Resources Data, Georgia, 2002--Volume 1: Continuous water-level, streamflow, water-quality data, and periodic water-quality data, Water Year 2002

    USGS Publications Warehouse

    Hickey, Andrew C.; Kerestes, John F.; McCallum, Brian E.

    2002-01-01

    Water resources data for the 2002 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in two volumes in a digital format on a CD-ROM. Volume one of this report contains water resources data for Georgia collected during water year 2002, including: discharge records of 154 gaging stations; stage for 165 gaging stations; precipitation for 105 gaging stations; information for 20 lakes and reservoirs; continuous water-quality records for 27 stations; the annual peak stage and annual peak discharge for 72 crest-stage partial-record stations; and miscellaneous streamflow measurements at 50 stations, and miscellaneous water-quality data recorded by the NAWQA program in Georgia. Volume two of this report contains water resources data for Georgia collected during calendar year 2002, including continuous water-level records of 155 ground-water wells and periodic records at 132 water-quality stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia.

  1. Water Resources Data, Georgia, 2003, Volume 1: Continuous water-level, streamflow, water-quality data, and periodic water-quality data, Water Year 2003

    USGS Publications Warehouse

    Hickey, Andrew C.; Kerestes, John F.; McCallum, Brian E.

    2004-01-01

    Water resources data for the 2003 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in two volumes in a digital format on a CD-ROM. Volume one of this report contains water resources data for Georgia collected during water year 2003, including: discharge records of 163 gaging stations; stage for 187 gaging stations; precipitation for 140 gaging stations; information for 19 lakes and reservoirs; continuous water-quality records for 40 stations; the annual peak stage and annual peak discharge for 65 crest-stage partial-record stations; and miscellaneous streamflow measurements at 36 stations, and miscellaneous water-quality data at 162 stations in Georgia. Volume two of this report contains water resources data for Georgia collected during calendar year 2003, including continuous water-level records of 156 ground-water wells and periodic records at 130 water-quality stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia.

  2. What's in Your Water? An Educator's Guide to Water Quality.

    ERIC Educational Resources Information Center

    Constabile, Kerry, Comp.; Craig, Heidi, Comp.; O'Laughlin, Laura, Comp.; Reiss, Anne Bei, Comp.; Spencer, Liz, Comp.

    This guide provides basic information on the Clean Water Act, watersheds, and testing for water quality, and presents four science lesson plans on water quality. Activities include: (1) "Introduction to Water Quality"; (2) "Chemical Water Quality Testing"; (3) "Biological Water Quality Testing"; and (4) "What Can We Do?" (YDS)

  3. WATER QUALITY CRITERIA DOCUMENTS

    EPA Science Inventory

    Background

    Water quality standards and criteria are the foundation for a wide range of programs under the Clean Water Act. Specifically, under section 304(a)(1) of the Clean Water Act it requires EPA to develop criteria for water quality that accurately re...

  4. Water quality.

    USGS Publications Warehouse

    Steele, T.D.; Stefan, H.G.

    1979-01-01

    Significant contributions in the broad area of water quality over the quadrennium 1975-78 are highlighted. This summare is concerned primarily with physical and chemical aspects of water quality. The diversity of subject areas within the topic heading and the large volume of published research results necessitated the selection of representative contributions. Over 400 references are cited which are believed to be indicative of general trends in research and of the more important developments during this period.- from Authors

  5. Quality-Assurance Plan for Water-Quality Activities of the U.S. Geological Survey Montana Water Science Center

    USGS Publications Warehouse

    Lambing, John H.

    2006-01-01

    In accordance with guidelines set forth by the Office of Water Quality in the Water Resources Discipline of the U.S. Geological Survey (USGS), a quality-assurance plan has been created for use by the USGS Montana Water Science Center in conducting water-quality activities. This quality-assurance plan documents the standards, policies, and procedures used by the USGS Montana Water Science Center for activities related to the collection, processing, storage, analysis, and publication of water-quality data. The policies and procedures presented in this quality-assurance plan for water-quality activities complement the quality-assurance plans for surface-water and ground-water activities and suspended-sediment analysis.

  6. Water Quantity and Water Quality Impacts of Intensive Woody Biomass Feedstock Production in the Southeastern US.

    NASA Astrophysics Data System (ADS)

    Bitew, M. M.; Jackson, C. R.; Vache, K. B.; Griffiths, N.; Starr, G.; McDonnell, J.; Rau, B.; Younger, S. E.; Fouts, K.

    2016-12-01

    Intensively managed loblolly pine is a candidate species for biofuel feedstock production in the southeastern Coastal Plain of the United States. However, the water quantity and quality effects of high intensity, short-rotation silviculture are largely unknown. Here we evaluate the potential hydrologic and water quality impacts of biofuel-induced land use changes based on model scenarios developed using existing forest BMPs and industry wide experiences. We quantified the effect of bio-energy production scenarios on each of water the balance components by applying an integrated physically based distributed watershed modeling system, and multi-objective assessment functions that accurately describes the flow regimes, water quality, and isotopic observations from three experimental headwater watersheds of Fourmile Creek at Savannah River Site, SC. The model incorporates optimized travel times of groundwater flowpaths and flow control processes in the riparian region allowing water quality analysis of groundwater dominated watershed systems. We compared five different short rotation pine management scenarios ranging from 35 year (low intensity) to 10 year (high intensity) rotations and a mixture of forestry and agriculture/pasture production practices. Simulation results, based on long-term climate records, revealed that complete conversion to short-rotation woody crops would have a negligible effect on water budget components; <2% decrease in streamflow, <1.5% increase in actual evapotranspiration, an average 0.5 m fall in the groundwater table, and no change in subsurface flow due to biofuel production. Simulation results of mixed 50% agriculture and pasture and 50% short-rotation woody crops showed the largest deviation in water budget components compared to the reference condition. Analysis of extreme stream flows showed that the largest effect was observed in the low intensity mixed land use scenario. The smallest effect was in the low intensity biomass

  7. Accelerate Water Quality Improvement

    EPA Pesticide Factsheets

    EPA is committed to accelerating water quality improvement and minimizing negative impacts to aquatic life from contaminants and other stressors in the Bay Delta Estuary by working with California Water Boards to strengthen water quality improvement plans.

  8. Water Quality Monitoring

    NASA Technical Reports Server (NTRS)

    2002-01-01

    With the backing of NASA, researchers at Michigan State University, the University of Minnesota, and the University of Wisconsin have begun using satellite data to measure lake water quality and clarity of the lakes in the Upper Midwest. This false color IKONOS image displays the water clarity of the lakes in Eagan, Minnesota. Scientists measure the lake quality in satellite data by observing the ratio of blue to red light in the satellite data. When the amount of blue light reflecting off of the lake is high and the red light is low, a lake generally had high water quality. Lakes loaded with algae and sediments, on the other hand, reflect less blue light and more red light. In this image, scientists used false coloring to depict the level of clarity of the water. Clear lakes are blue, moderately clear lakes are green and yellow, and murky lakes are orange and red. Using images such as these along with data from the Landsat satellites and NASA's Terra satellite, the scientists plan to create a comprehensive water quality map for the entire Great Lakes region in the next few years. For more information, read: Testing the Waters (Image courtesy Upper Great Lakes Regional Earth Science Applications Center, based on data copyright Space Imaging)

  9. Water Quality Records in California

    USGS Publications Warehouse

    1964-01-01

    The quality-of-water investigations of the U.S. Geological Survey are concerned with the chemical and physical characteristics of surface and ground water supplies of the Nation in conjunction with water usage and its availability. The basic records for the 1964 water year for quality of surface waters within the State of California are given in this report. For convenience and interest there are also records for a few water quality stations in bordering States. The data were collected and computed by the Water Resources Division of the U.S. Geological Survey, under the direction of Eugene Brown, district chemist, Quality of Water Branch.

  10. Quality of waters in California

    USGS Publications Warehouse

    ,

    1963-01-01

    The quality-of-water investigations of the U.S. Geological Survey are concerned with the chemical and physical characteristics of surface and ground water supplies of the nation in conjunction with water usage and its availability. The basic records for the 1963 water year for quality of surface waters within the State of California are given in this report. For convenience and interest there are also records for a few water quality stations in bordering states. The data were collected and computed by the Water Resources Division of the U.S. Geological Survey, under the direction of Eugene Brown, district chemist, Quality of Water Branch.

  11. Water Quality of Hills Water, Supply Water and RO Water Machine at Ulu Yam Selangor

    NASA Astrophysics Data System (ADS)

    Ngadiman, N.; ‘I Bahari, N.; Kaamin, M.; Hamid, N. B.; Mokhtar, M.; Sahat, S.

    2016-07-01

    The rapid development resulted in the deterioration of the quality of drinking water in Malaysia. Recognizing the importance of water quality, new alternatives for drinking water such as mineral water processing from reverse osmosis (RO) machine become more popular. Hence, the demand for mineral water, natural spring water or water from the hills or mountains rose lately. More consumers believed the quality of these spring water better than other source of drinking water. However, the quality of all the drinking water sources is to meet the required quality standard. Therefore, this paper aims to measure the quality of the waters from hills, from RO machine and the water supply in Ulu Yam, Selangor Batang Kali, Malaysia. The water quality was determined based on following parameters: ammoniacal nitrogen (NH3), iron (Fe), turbidity (NTU) and pH. The results show that the water from hills has better quality compared to water supply and water from RO machine. The value of NH3 ranged from 0.03 mg/L- 0.67 mg/L; Fe was from 0.03mg/L - 0.12 mg/L, turbidity at 0.42 NTU - 0.88 NTU and pH is at 6.60 - 0.71. Based on the studied parameters, all three types of water are fit for drinking and have met the required national drinking water quality standard.

  12. National Recommended Water Quality Criteria

    EPA Pesticide Factsheets

    The National Recommended Water Quality Criteria is a compilation of national recommended water quality criteria for the protection of aquatic life and human health in surface water for approximately 150 pollutants. These criteria provide guidance for states and tribes to use in adopting water quality standards.

  13. Quality-control design for surface-water sampling in the National Water-Quality Network

    USGS Publications Warehouse

    Riskin, Melissa L.; Reutter, David C.; Martin, Jeffrey D.; Mueller, David K.

    2018-04-10

    The data-quality objectives for samples collected at surface-water sites in the National Water-Quality Network include estimating the extent to which contamination, matrix effects, and measurement variability affect interpretation of environmental conditions. Quality-control samples provide insight into how well the samples collected at surface-water sites represent the true environmental conditions. Quality-control samples used in this program include field blanks, replicates, and field matrix spikes. This report describes the design for collection of these quality-control samples and the data management needed to properly identify these samples in the U.S. Geological Survey’s national database.

  14. Quality-assurance plan for water-quality activities in the U.S. Geological Survey Washington Water Science Center

    USGS Publications Warehouse

    Conn, Kathleen E.; Huffman, Raegan L.; Barton, Cynthia

    2017-05-08

    In accordance with guidelines set forth by the Office of Water Quality in the Water Mission Area of the U.S. Geological Survey, a quality-assurance plan has been created for use by the Washington Water Science Center (WAWSC) in conducting water-quality activities. This qualityassurance plan documents the standards, policies, and procedures used by the WAWSC for activities related to the collection, processing, storage, analysis, and publication of water-quality data. The policies and procedures documented in this quality-assurance plan for water-quality activities complement the quality-assurance plans for surface-water and groundwater activities at the WAWSC.

  15. TRIBAL WATER QUALITY STANDARDS WORKSHOP

    EPA Science Inventory

    Water quality standards are the foundation for water management actions. They provide the basis for regulating discharges of pollutants to surface waters, and provide a target for restoration of degraded waters. Water quality standards identify and protect uses of the water bod...

  16. Water quality . . . potential sources of pollution

    USGS Publications Warehouse

    Vandas, Stephen; Farrar, Frank

    1996-01-01

    What is water quality? To most students, water quality may suggest only "clean" water for drinking, swimming, and fishing. But to the farmer or manufacturer, water quality may have an entirely different meaning. One of the most important issues concerning the quality of water is how that water will be used. Water that is perfectly fine for irrigation might not be suitable for drinking or swimming.

  17. 18 CFR 801.7 - Water quality.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... water quality management and control. However, protection of the water resources of the basin from... quality program in the comprehensive plan. (c) The Commission's role in water quality management and... 18 Conservation of Power and Water Resources 2 2010-04-01 2010-04-01 false Water quality. 801.7...

  18. Water Quality Standards Handbook

    EPA Pesticide Factsheets

    The Water Quality Standards Handbook is a compilation of the EPA's water quality standards (WQS) program guidance including recommendations for states, authorized tribes, and territories in reviewing, revising, and implementing WQS.

  19. Water quality data for national-scale aquatic research: The Water Quality Portal

    USGS Publications Warehouse

    Read, Emily K.; Carr, Lindsay; DeCicco, Laura; Dugan, Hilary; Hanson, Paul C.; Hart, Julia A.; Kreft, James; Read, Jordan S.; Winslow, Luke

    2017-01-01

    Aquatic systems are critical to food, security, and society. But, water data are collected by hundreds of research groups and organizations, many of which use nonstandard or inconsistent data descriptions and dissemination, and disparities across different types of water observation systems represent a major challenge for freshwater research. To address this issue, the Water Quality Portal (WQP) was developed by the U.S. Environmental Protection Agency, the U.S. Geological Survey, and the National Water Quality Monitoring Council to be a single point of access for water quality data dating back more than a century. The WQP is the largest standardized water quality data set available at the time of this writing, with more than 290 million records from more than 2.7 million sites in groundwater, inland, and coastal waters. The number of data contributors, data consumers, and third-party application developers making use of the WQP is growing rapidly. Here we introduce the WQP, including an overview of data, the standardized data model, and data access and services; and we describe challenges and opportunities associated with using WQP data. We also demonstrate through an example the value of the WQP data by characterizing seasonal variation in lake water clarity for regions of the continental U.S. The code used to access, download, analyze, and display these WQP data as shown in the figures is included as supporting information.

  20. Spatio-temporal evaluation of Yamchi Dam basin water quality using Canadian water quality index.

    PubMed

    Farzadkia, Mahdi; Djahed, Babak; Shahsavani, Esmaeel; Poureshg, Yousef

    2015-04-01

    In recent years, the growth of population and increase of the industries around the tributaries of Yamchi Dam basin have led to deterioration of dam water quality. This study aimed to evaluate the quality of the Yamchi Dam basin water, which is used for drinking and irrigation consumptions using Canadian Water Quality Index (CWQI) model, and to determine the main water pollution sources of this basin. Initially, nine sampling stations were selected in the sensitive locations of the mentioned basin's tributaries, and 12 physico-chemical parameters and 2 biological parameters were measured. The CWQI for drinking consumptions was under 40 at all the stations indicating a poor water quality for drinking consumptions. On the other hand, the CWQI was 62-100 for irrigation at different stations; thus, the water had an excellent to fair quality for irrigation consumptions. Almost in all the stations, the quality of irrigation and drinking water in cold season was better. Besides, for drinking use, total coliform and fecal coliform had the highest frequency of failure, and total coliform had the maximum deviation from the specified objective. For irrigation use, total suspended solids had the highest frequency of failure and deviation from the objective in most of the stations. The pisciculture center, aquaculture center, and the Nir City wastewater discharge were determined as the main pollution sources of the Yamchi Dam basin. Therefore, to improve the water quality in this important surface water resource, urban and industrial wastewater treatment prior to disposal and more stringent environmental legislations are recommended.

  1. Water Quality Assessment and Management

    EPA Pesticide Factsheets

    Overview of Clean Water Act (CWA) restoration framework including; water quality standards, monitoring/assessment, reporting water quality status, TMDL development, TMDL implementation (point & nonpoint source control)

  2. Water Quality Analysis Simulation

    EPA Pesticide Factsheets

    The Water Quality analysis simulation Program, an enhancement of the original WASP. This model helps users interpret and predict water quality responses to natural phenomena and man-made pollution for variious pollution management decisions.

  3. CONNECTICUT GROUND WATER QUALITY CLASSIFICATIONS

    EPA Science Inventory

    This is a 1:24,000-scale datalayer of Ground Water Quality Classifications in Connecticut. It is a polygon Shapefile that includes polygons for GA, GAA, GAAs, GB, GC and other related ground water quality classes. Each polygon is assigned a ground water quality class, which is s...

  4. Intermittent Water Supply: Prevalence, Practice, and Microbial Water Quality.

    PubMed

    Kumpel, Emily; Nelson, Kara L

    2016-01-19

    Intermittent water supplies (IWS), in which water is provided through pipes for only limited durations, serve at least 300 million people around the world. However, providing water intermittently can compromise water quality in the distribution system. In IWS systems, the pipes do not supply water for periods of time, supply periods are shortened, and pipes experience regular flow restarting and draining. These unique behaviors affect distribution system water quality in ways that are different than during normal operations in continuous water supplies (CWS). A better understanding of the influence of IWS on mechanisms causing contamination can help lead to incremental steps that protect water quality and minimize health risks. This review examines the status and nature of IWS practices throughout the world, the evidence of the effect of IWS on water quality, and how the typical contexts in which IWS systems often exist-low-income countries with under-resourced utilities and inadequate sanitation infrastructure-can exacerbate mechanisms causing contamination. We then highlight knowledge gaps for further research to improve our understanding of water quality in IWS.

  5. Assess water scarcity integrating water quantity and quality

    NASA Astrophysics Data System (ADS)

    Liu, J.; Zeng, Z.

    2014-12-01

    Water scarcity has become widespread all over the world. Current methods for water scarcity assessment are mainly based on water quantity and seldom consider water quality. Here, we develop an approach for assessing water scarcity considering both water quantity and quality. In this approach, a new water scarcity index is used to describe the severity of water scarcity in the form of a water scarcity meter, which may help to communicate water scarcity to a wider audience. To illustrate the approach, we analyzed the historical trend of water scarcity for Beijing city in China during 1995-2009, as well as the assessment for different river basins in China. The results show that Beijing made a huge progress in mitigating water scarcity, and that from 1999 to 2009 the blue and grey water scarcity index decreased by 59% and 62%, respectively. Despite this progress, we demonstrate that Beijing is still characterized by serious water scarcity due to both water quantity and quality. The water scarcity index remained at a high value of 3.5 with a blue and grey water scarcity index of 1.2 and 2.3 in 2009 (exceeding the thresholds of 0.4 and 1, respectively). As a result of unsustainable water use and pollution, groundwater levels continue to decline, and water quality shows a continuously deteriorating trend. To curb this trend, future water policies should further decrease water withdrawal from local sources (in particular groundwater) within Beijing, and should limit the grey water footprint below the total amount of water resources.

  6. Quality-assurance and data-management plan for water-quality activities in the Kansas Water Science Center, 2014

    USGS Publications Warehouse

    Rasmussen, Teresa J.; Bennett, Trudy J.; Foster, Guy M.; Graham, Jennifer L.; Putnam, James E.

    2014-01-01

    As the Nation’s largest water, earth, and biological science and civilian mapping information agency, the U.S. Geological Survey is relied on to collect high-quality data, and produce factual and impartial interpretive reports. This quality-assurance and data-management plan provides guidance for water-quality activities conducted by the Kansas Water Science Center. Policies and procedures are documented for activities related to planning, collecting, storing, documenting, tracking, verifying, approving, archiving, and disseminating water-quality data. The policies and procedures described in this plan complement quality-assurance plans for continuous water-quality monitoring, surface-water, and groundwater activities in Kansas.

  7. Application of Nemerow Index Method and Integrated Water Quality Index Method in Water Quality Assessment of Zhangze Reservoir

    NASA Astrophysics Data System (ADS)

    Zhang, Qian; Feng, Minquan; Hao, Xiaoyan

    2018-03-01

    [Objective] Based on the water quality historical data from the Zhangze Reservoir from the last five years, the water quality was assessed by the integrated water quality identification index method and the Nemerow pollution index method. The results of different evaluation methods were analyzed and compared and the characteristics of each method were identified.[Methods] The suitability of the water quality assessment methods were compared and analyzed, based on these results.[Results] the water quality tended to decrease over time with 2016 being the year with the worst water quality. The sections with the worst water quality were the southern and northern sections.[Conclusion] The results produced by the traditional Nemerow index method fluctuated greatly in each section of water quality monitoring and therefore could not effectively reveal the trend of water quality at each section. The combination of qualitative and quantitative measures of the comprehensive pollution index identification method meant it could evaluate the degree of water pollution as well as determine that the river water was black and odorous. However, the evaluation results showed that the water pollution was relatively low.The results from the improved Nemerow index evaluation were better as the single indicators and evaluation results are in strong agreement; therefore the method is able to objectively reflect the water quality of each water quality monitoring section and is more suitable for the water quality evaluation of the reservoir.

  8. Deriving Chesapeake Bay Water Quality Standards

    USGS Publications Warehouse

    Tango, Peter J.; Batiuk, Richard A.

    2013-01-01

    Achieving and maintaining the water quality conditions necessary to protect the aquatic living resources of the Chesapeake Bay and its tidal tributaries has required a foundation of quantifiable water quality criteria. Quantitative criteria serve as a critical basis for assessing the attainment of designated uses and measuring progress toward meeting water quality goals of the Chesapeake Bay Program partnership. In 1987, the Chesapeake Bay Program partnership committed to defining the water quality conditions necessary to protect aquatic living resources. Under section 303(c) of the Clean Water Act, States and authorized tribes have the primary responsibility for adopting water quality standards into law or regulation. The Chesapeake Bay Program partnership worked with U.S. Environmental Protection Agency to develop and publish a guidance framework of ambient water quality criteria with designated uses and assessment procedures for dissolved oxygen, water clarity, and chlorophyll a for Chesapeake Bay and its tidal tributaries in 2003. This article reviews the derivation of the water quality criteria, criteria assessment protocols, designated use boundaries, and their refinements published in six addendum documents since 2003 and successfully adopted into each jurisdiction's water quality standards used in developing the Chesapeake Bay Total Maximum Daily Load.

  9. Introduction to Field Water-Quality Methods for the Collection of Metals - 2007 Project Summary

    USGS Publications Warehouse

    Allen, Monica L.

    2008-01-01

    The U.S. Geological Survey (USGS), Region VI of the U.S. Environmental Protection Agency (USEPA), and the Osage Nation presented three 3-day workshops, in June-August 2007, entitled ?Introduction to Field Water-Quality Methods for the Collection of Metals.? The purpose of the workshops was to provide instruction to tribes within USEPA Region VI on various USGS surface-water measurement methods and water-quality sampling protocols for the collection of surface-water samples for metals analysis. Workshop attendees included members from over 22 tribes and pueblos. USGS instructors came from Oklahoma, New Mexico, and Georgia. Workshops were held in eastern and south-central Oklahoma and New Mexico and covered many topics including presampling preparation, water-quality monitors, and sampling for metals in surface water. Attendees spent one full classroom day learning the field methods used by the USGS Water Resources Discipline and learning about the complexity of obtaining valid water-quality and quality-assurance data. Lectures included (1) a description of metal contamination sources in surface water; (2) introduction on how to select field sites, equipment, and laboratories for sample analysis; (3) collection of sediment in surface water; and (4) utilization of proper protocol and methodology for sampling metals in surface water. Attendees also were provided USGS sampling equipment for use during the field portion of the class so they had actual ?hands-on? experience to take back to their own organizations. The final 2 days of the workshop consisted of field demonstrations of current USGS water-quality sample-collection methods. The hands-on training ensured that attendees were exposed to and experienced proper sampling procedures. Attendees learned integrated-flow techniques during sample collection, field-property documentation, and discharge measurements and calculations. They also used enclosed chambers for sample processing and collected quality

  10. Water quality data for national-scale aquatic research: The Water Quality Portal

    NASA Astrophysics Data System (ADS)

    Read, Emily K.; Carr, Lindsay; De Cicco, Laura; Dugan, Hilary A.; Hanson, Paul C.; Hart, Julia A.; Kreft, James; Read, Jordan S.; Winslow, Luke A.

    2017-02-01

    xml:id="wrcr22485-sec-1001" numbered="no">Aquatic systems are critical to food, security, and society. But, water data are collected by hundreds of research groups and organizations, many of which use nonstandard or inconsistent data descriptions and dissemination, and disparities across different types of water observation systems represent a major challenge for freshwater research. To address this issue, the Water Quality Portal (WQP) was developed by the U.S. Environmental Protection Agency, the U.S. Geological Survey, and the National Water Quality Monitoring Council to be a single point of access for water quality data dating back more than a century. The WQP is the largest standardized water quality data set available at the time of this writing, with more than 290 million records from more than 2.7 million sites in groundwater, inland, and coastal waters. The number of data contributors, data consumers, and third-party application developers making use of the WQP is growing rapidly. Here we introduce the WQP, including an overview of data, the standardized data model, and data access and services; and we describe challenges and opportunities associated with using WQP data. We also demonstrate through an example the value of the WQP data by characterizing seasonal variation in lake water clarity for regions of the continental U.S. The code used to access, download, analyze, and display these WQP data as shown in the figures is included as supporting information.

  11. [Drinking water quality and safety].

    PubMed

    Gómez-Gutiérrez, Anna; Miralles, Maria Josepa; Corbella, Irene; García, Soledad; Navarro, Sonia; Llebaria, Xavier

    2016-11-01

    The purpose of drinking water legislation is to guarantee the quality and safety of water intended for human consumption. In the European Union, Directive 98/83/EC updated the essential and binding quality criteria and standards, incorporated into Spanish national legislation by Royal Decree 140/2003. This article reviews the main characteristics of the aforementioned drinking water legislation and its impact on the improvement of water quality against empirical data from Catalonia. Analytical data reported in the Spanish national information system (SINAC) indicate that water quality in Catalonia has improved in recent years (from 88% of analytical reports in 2004 finding drinking water to be suitable for human consumption, compared to 95% in 2014). The improvement is fundamentally attributed to parameters concerning the organoleptic characteristics of water and parameters related to the monitoring of the drinking water treatment process. Two management experiences concerning compliance with quality standards for trihalomethanes and lead in Barcelona's water supply are also discussed. Finally, this paper presents some challenges that, in the opinion of the authors, still need to be incorporated into drinking water legislation. It is necessary to update Annex I of Directive 98/83/EC to integrate current scientific knowledge, as well as to improve consumer access to water quality data. Furthermore, a need to define common criteria for some non-resolved topics, such as products and materials in contact with drinking water and domestic conditioning equipment, has also been identified. Copyright © 2016 SESPAS. Publicado por Elsevier España, S.L.U. All rights reserved.

  12. Water quality success stories: Integrated assessments from the IOOS regional associations and national water quality monitoring network

    USGS Publications Warehouse

    Ragsdale, Rob; Vowinkel, Eric; Porter, Dwayne; Hamilton, Pixie; Morrison, Ru; Kohut, Josh; Connell, Bob; Kelsey, Heath; Trowbridge, Phil

    2011-01-01

    The Integrated Ocean Observing System (IOOS®) Regional Associations and Interagency Partners hosted a water quality workshop in January 2010 to discuss issues of nutrient enrichment and dissolved oxygen depletion (hypoxia), harmful algal blooms (HABs), and beach water quality. In 2007, the National Water Quality Monitoring Council piloted demonstration projects as part of the National Water Quality Monitoring Network (Network) for U.S. Coastal Waters and their Tributaries in three IOOS Regional Associations, and these projects are ongoing. Examples of integrated science-based solutions to water quality issues of major concern from the IOOS regions and Network demonstration projects are explored in this article. These examples illustrate instances where management decisions have benefited from decision-support tools that make use of interoperable data. Gaps, challenges, and outcomes are identified, and a proposal is made for future work toward a multiregional water quality project for beach water quality.

  13. Marine environmental risk assessment and acute water quality criterion for pentachlorophenol in coastal waters.

    PubMed

    Beiras, R; Tato, T

    2018-04-07

    Pentachlorophenol (PCP) is a organochlorine biocide that, unlike most other organochlorines, is still in use as timber preservative. Its water solubility, high toxicity, bioaccumulation potential, and the concentrations reported in estuarine waters (up to 0.1 µg L -1 ) indicate it may pose a risk in coastal environments. Aquatic environrmental regulations are commonly based on standard freshwater organisms that may not represent the sensitivity of marine species. The present study consists of a water quality criteira reevalutation of PCP in coastal waters based on toxicity tests conducted recording sensitive endpoints of marine species representative of coastal ecosystems, following QA/QC standard procedures. The toxicity thresholds (EC 10 ) found were 4.69 µg L -1 for Paracentrotus lividus sea-urchin embryos, 6.47 µg L -1 for Mytilus galloprovincialis mussel larvae, and 78.4 µg L -1 for Isochrysis galbana cells. Therefore, there is only one order of magnitude between the predicted no-effect concentration (PNEC) for early life stages of bivalves and echinoderms and the maximum concentrations actually recorded in coastal water, which yields a remarkable risk quotient for PCP in these highly productive marine habitats. In addition, we have reviewed the ecotoxicological data on PCP toxicity on marine species representative of the main systematic groups, from algae to chordates, and derived a probabilistic acute saltwater quality criterion of 2.66 µg L -1 , intended to protect 95% of the marine species. Lack of adequate protection for marine ecosystems in some current PCP national guidelines has been identified.

  14. Relationship between Hydrodynamic Conditions and Water Quality in Landscape Water Body

    NASA Astrophysics Data System (ADS)

    Kang, Mengxin; Tian, Yimei; Zhang, Haiya; Wang, Dehong

    2018-01-01

    The urban landscape water usually lacks necessary water cycle and water speed is closed to zero, which easily lead to eutrophication in water system and deterioration of water quality. Therefore, understanding the impact of water circulation on the water quality is of great significance. With that significance, this research has been done to investigate the relationship between hydrodynamic conditions and water quality of urban landscape water based on adopted water quality indexes such as chemical oxygen demand (COD), total nitrogen (TN), total phosphorus (TP) and nitrogen-ammonia (NH3-N). Moreover, MIKE 21 model is used to simulate the hydrodynamics and water quality under different cases in an urban landscape lake. The results of simulation show that water circulation system could effectively improve current speeds, reduce the proportion of stagnation area, and solve the problem of water quality deterioration caused by reclaimed water in the lake.

  15. Water Resources Data - New Jersey, Water Year 1999, Volume 3, Water-Quality Data

    USGS Publications Warehouse

    DeLuca, M.J.; Romanok, K.M.; Riskin, M.L.; Mattes, G.L.; Thomas, A.M.; Gray, B.J.

    2000-01-01

    Water-resources data for the 1999 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water quality of streams; stage and contents of lakes and reservoirs; and water levels and water quality of ground water. Volume 3 contains a summary of surface and ground water hydrologic conditions for the 1999 water year, a listing of current water-resource projects in New Jersey, a bibliography of water-related reports, articles, and fact sheets for New Jersey completed by the Geological Survey in recent years, water-quality records of chemical analyses from 133 surface-water stations, 46 miscellaneous surface-water sites, 30 ground-water stations, 41 miscellaneous ground-water sites, and records of daily statistics of temperature and other physical measurements from 17 continuous-monitoring stations. Locations of water-quality stations are shown in figures 11 and 17-20. Locations of miscellaneous water-quality sites are shown in figures 29-32 and 34. These data represent the part of the National Water Data System operated by the U.S. Geological Survey and cooperating Federal, State, and local agencies in New Jersey.

  16. Healthy Water Healthy People Water Quality Educators Guide

    ERIC Educational Resources Information Center

    Project WET Foundation, 2003

    2003-01-01

    This 200-page activity guide for educators of students in grades six through university level raises the awareness and understanding of water quality issues and their relationship to personal, public and environmental health. "Healthy Water Healthy People Water Quality Educators Guide" will help educators address science standards through 25…

  17. Texas ground-water quality

    USGS Publications Warehouse

    Strause, Jeffrey L.

    1987-01-01

    This report contains summary information on ground-water quality in one of the 50 States, Puerto Rico, the Virgin Islands, or the Trust Territories of the Pacific Islands, Saipan, Guam, and American Samoa. The material is extracted from the manuscript of the 1986 National Water Summary, and with the exception of the illustrations, which will be reproduced in multi-color in the 1986 National Water Summary, the format and content of this report is identical to the State ground-water-quality descriptions to be published in the 1986 National Water Summary. Release of this information before formal publication in the 1986 National Water Summary permits the earliest access by the public.

  18. Minnesota ground-water quality

    USGS Publications Warehouse

    Albin, D.R.; Bruemmer, L.B.

    1987-01-01

    This report contains summary information on ground-water quality in one of the 50 States, Puerto Rico, the Virgin Islands, or the Trust Territories of the Pacific Islands, Saipan, Guam, and American Samoa. The material is extracted from the manuscript of the 1986 National Water Summary, and with the exception of the illustrations, which will be reproduced in multi-color in the 1986 National Water Summary, the format and content of this report is identical to the State ground-water-quality descriptions to be published in the 1986 National Water Summary. Release of this information before formal publication in the 1986 National Water Summary permits the earliest access by the public.

  19. 40 CFR 130.3 - Water quality standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... QUALITY PLANNING AND MANAGEMENT § 130.3 Water quality standards. A water quality standard (WQS) defines the water quality goals of a water body, or portion thereof, by designating the use or uses to be made... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Water quality standards. 130.3 Section...

  20. Understanding the relationship between actual and potential evapotranspirations from long- term water balance analysis and flux observation

    NASA Astrophysics Data System (ADS)

    Yang, D.; Yang, H.; Sun, F.

    2007-12-01

    Increase in air temperature and decrease in pan evaporation was found to be common worldwide during the past half century. This results in controversy in view of the changes to the hydrological cycle. Increases in precipitation have been expected due to the Clausius¡§CClapyeron relation in that the specific humidity increases exponentially with the greenhouse-gas induced temperature increasing and confirmed by measurements over northern extratropical land areas. The hydrologic cycle is expected to be intensified (or accelerated). However, the decreased pan evaporation is found to be well related to the global dimming, i.e., the decreased solar radiation induced by the pollution increasing, thus evaporation (i.e., the latent heat flux) should be steadily decreasing from the energy balance perspective. Many researchers explained that the potential evaporation (usually measured by pan) is decreased with increasing of precipitation; however, the increased soil moisture (due to precipitation increasing) can be evaporated because of extra energy available. Therefore, the actual and potential evaporation are in complementary relationship, which is expected to unify the controversy between global warming and dimming. This means that pan evaporation decrease implicates acceleration of the global hydrologic cycle, i.e., increase in the terrestrial evaporation. Based on the complementary theory, many operational formulae have been introduced to estimated actual evaporation from the potential evaporation. Our recent water balance analysis of 108 catchments in non-humid regions of China has shown that there are no general opposite trends between potential and actual evaporation in the same period. A novel phenomenon has been found that the complementary relationships in evaporation are distinctly confirmed when the annual actual and potential evaporation are plotted against annual precipitation; However, complementary relationships disappear in many catchments when actual and

  1. Ground-water quality assessment of the central Oklahoma aquifer, Oklahoma - Analysis of available water-quality data through 1987

    USGS Publications Warehouse

    Parkhurst, David L.; Christenson, Scott C.; Schlottmann, Jamie L.

    1989-01-01

    Beginning in 1986, the Congress annually has appropriated funds for the U.S. Geological Survey to test and refine concepts for a National Water-Quality Assessment (NAWQA) Program. The long-term goals of a full-scale program would be to:Provide a nationally consistent description of current water-quality conditions for a large part of the Nation's surface- and ground-water resources;Define long-term trends (or lack of trends) in water quality; andIdentify, describe, and explain, as possible, the major factors that affect the observed water-quality conditions and trends.The results of the NAWQA Program will be made available to water managers, policy makers, and the public, and will provide an improved scientific basis for evaluating the effectiveness of water-quality management programs.At present (1988), the assessment program is in a pilot phase in seven project areas throughout the country that represent diverse hydrologic environments and water-quality conditions. The Central Oklahoma aquifer project is one of three pilot ground-water projects. One of the initial activities performed by each pilot project was to compile, screen, and interpret the large amount of water-quality data available within each study unit.The purpose of this report is to assess the water quality of the Central Oklahoma aquifer using the information available through 1987. The scope of the work includes compiling data from Federal, State, and local agencies; evaluating the suitability of the information for conducting a regional water-quality assessment; mapping regional variations in major-ion chemistry; calculating summary statistics of the available water-quality data; producing maps to show the location and number of samples that exceeded water-quality standards; and performing contingency-table analyses to determine the relation of geologic unit and depth to the occurrence of chemical constituents that exceed water-quality standards. This report provides an initial description of

  2. 43 CFR 414.5 - Water quality.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 43 Public Lands: Interior 1 2011-10-01 2011-10-01 false Water quality. 414.5 Section 414.5 Public... OFFSTREAM STORAGE OF COLORADO RIVER WATER AND DEVELOPMENT AND RELEASE OF INTENTIONALLY CREATED UNUSED APPORTIONMENT IN THE LOWER DIVISION STATES Water Quality and Environmental Compliance § 414.5 Water quality. (a...

  3. 43 CFR 414.5 - Water quality.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 43 Public Lands: Interior 1 2010-10-01 2010-10-01 false Water quality. 414.5 Section 414.5 Public... OFFSTREAM STORAGE OF COLORADO RIVER WATER AND DEVELOPMENT AND RELEASE OF INTENTIONALLY CREATED UNUSED APPORTIONMENT IN THE LOWER DIVISION STATES Water Quality and Environmental Compliance § 414.5 Water quality. (a...

  4. 43 CFR 414.5 - Water quality.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 43 Public Lands: Interior 1 2012-10-01 2011-10-01 true Water quality. 414.5 Section 414.5 Public... OFFSTREAM STORAGE OF COLORADO RIVER WATER AND DEVELOPMENT AND RELEASE OF INTENTIONALLY CREATED UNUSED APPORTIONMENT IN THE LOWER DIVISION STATES Water Quality and Environmental Compliance § 414.5 Water quality. (a...

  5. 43 CFR 414.5 - Water quality.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 43 Public Lands: Interior 1 2013-10-01 2013-10-01 false Water quality. 414.5 Section 414.5 Public... OFFSTREAM STORAGE OF COLORADO RIVER WATER AND DEVELOPMENT AND RELEASE OF INTENTIONALLY CREATED UNUSED APPORTIONMENT IN THE LOWER DIVISION STATES Water Quality and Environmental Compliance § 414.5 Water quality. (a...

  6. 43 CFR 414.5 - Water quality.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 43 Public Lands: Interior 1 2014-10-01 2014-10-01 false Water quality. 414.5 Section 414.5 Public... OFFSTREAM STORAGE OF COLORADO RIVER WATER AND DEVELOPMENT AND RELEASE OF INTENTIONALLY CREATED UNUSED APPORTIONMENT IN THE LOWER DIVISION STATES Water Quality and Environmental Compliance § 414.5 Water quality. (a...

  7. Water quality modelling of Jadro spring.

    PubMed

    Margeta, J; Fistanic, I

    2004-01-01

    Management of water quality in karst is a specific problem. Water generally moves very fast by infiltration processes but far more by concentrated flows through fissures and openings in karst. This enables the entire surface pollution to be transferred fast and without filtration into groundwater springs. A typical example is the Jadro spring. Changes in water quality at the spring are sudden, but short. Turbidity as a major water quality problem for the karst springs regularly exceeds allowable standards. Former practice in problem solving has been reduced to intensive water disinfection in periods of great turbidity without analyses of disinfection by-products risks for water users. The main prerequisite for water quality control and an optimization of water disinfection is the knowledge of raw water quality and nature of occurrence. The analysis of monitoring data and their functional relationship with hydrological parameters enables establishment of a stochastic model that will help obtain better information on turbidity in different periods of the year. Using the model a great number of average monthly and extreme daily values are generated. By statistical analyses of these data possibility of occurrence of high turbidity in certain months is obtained. This information can be used for designing expert system for water quality management of karst springs. Thus, the time series model becomes a valuable tool in management of drinking water quality of the Jadro spring.

  8. Assessment of irrigation water quality. A proposal of a quality profile.

    PubMed

    Almeida, César; Quintar, Silvya; González, Patricia; Mallea, Miguel

    2008-07-01

    Water quality indices provide a simple and understandable tool for managers on the quality and possible uses for irrigation water, however an individual quality factor alone is not enough to evaluate the irrigation water quality because it could be restrictive and sometime it could give an unfavorable qualification. The aim of this paper was propose a quality profile of irrigation water using the preexisting water quality indices to be applied to arid and semi-arid regions. As a case studied, the water of the Del Molle River (Nogolí, San Luis, Argentina) was researched. Samples were collected during the period October 2005-May 2006. Conductivity, pH, total hardness, sulphate, nitrate, nitrite, alkalinity, chloride, sodium, potassium, TDS, DO and phosphate were analyzed. The irrigation water quality, according to Riverside Norm, belongs to C(2)-S(1) class, according to Wilcox Norm as excellent to good, according to Scott quality factor it is good and according to SAR < 10 and according to RCS it is recommendable. From the obtained data, it can be concluded that the water quality profile was good, so it is useful for normal irrigation agriculture.

  9. 40 CFR 130.3 - Water quality standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 22 2011-07-01 2011-07-01 false Water quality standards. 130.3 Section 130.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.3 Water quality standards. A water quality standard (WQS) defines...

  10. 40 CFR 130.3 - Water quality standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 23 2012-07-01 2012-07-01 false Water quality standards. 130.3 Section 130.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.3 Water quality standards. A water quality standard (WQS) defines...

  11. 40 CFR 130.3 - Water quality standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 22 2014-07-01 2013-07-01 true Water quality standards. 130.3 Section 130.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.3 Water quality standards. A water quality standard (WQS) defines...

  12. 40 CFR 130.3 - Water quality standards.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 23 2013-07-01 2013-07-01 false Water quality standards. 130.3 Section 130.3 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.3 Water quality standards. A water quality standard (WQS) defines...

  13. OPERATION OF WATER QUALITY DISTRIBUTION SYSTEMS TO IMPROVE WATER QUALITY

    EPA Science Inventory

    The quality of drinking water can change between the discharge from the treatment plant and the point of consumption. n order to study these changes in a systematic manner a Cooperative Agreement was initiated between EPA's Drinking Water Research Division and the North Penn Wate...

  14. Total suspended solids concentrations and yields for water-quality monitoring stations in Gwinnett County, Georgia, 1996-2009

    USGS Publications Warehouse

    Landers, Mark N.

    2013-01-01

    The U.S. Geological Survey, in cooperation with the Gwinnett County Department of Water Resources, established a water-quality monitoring program during late 1996 to collect comprehensive, consistent, high-quality data for use by watershed managers. As of 2009, continuous streamflow and water-quality data as well as discrete water-quality samples were being collected for 14 watershed monitoring stations in Gwinnett County. This report provides statistical summaries of total suspended solids (TSS) concentrations for 730 stormflow and 710 base-flow water-quality samples collected between 1996 and 2009 for 14 watershed monitoring stations in Gwinnett County. Annual yields of TSS were estimated for each of the 14 watersheds using methods described in previous studies. TSS yield was estimated using linear, ordinary least-squares regression of TSS and explanatory variables of discharge, turbidity, season, date, and flow condition. The error of prediction for estimated yields ranged from 1 to 42 percent for the stations in this report; however, the actual overall uncertainty of the estimated yields cannot be less than that of the observed yields (± 15 to 20 percent). These watershed yields provide a basis for evaluation of how watershed characteristics, climate, and watershed management practices affect suspended sediment yield.

  15. Risk-based water resources planning: Coupling water allocation and water quality management under extreme droughts

    NASA Astrophysics Data System (ADS)

    Mortazavi-Naeini, M.; Bussi, G.; Hall, J. W.; Whitehead, P. G.

    2016-12-01

    The main aim of water companies is to have a reliable and safe water supply system. To fulfil their duty the water companies have to consider both water quality and quantity issues and challenges. Climate change and population growth will have an impact on water resources both in terms of available water and river water quality. Traditionally, a distinct separation between water quality and abstraction has existed. However, water quality can be a bottleneck in a system since water treatment works can only treat water if it meets certain standards. For instance, high turbidity and large phytoplankton content can increase sharply the cost of treatment or even make river water unfit for human consumption purposes. It is vital for water companies to be able to characterise the quantity and quality of water under extreme weather events and to consider the occurrence of eventual periods when water abstraction has to cease due to water quality constraints. This will give them opportunity to decide on water resource planning and potential changes to reduce the system failure risk. We present a risk-based approach for incorporating extreme events, based on future climate change scenarios from a large ensemble of climate model realisations, into integrated water resources model through combined use of water allocation (WATHNET) and water quality (INCA) models. The annual frequency of imposed restrictions on demand is considered as measure of reliability. We tested our approach on Thames region, in the UK, with 100 extreme events. The results show increase in frequency of imposed restrictions when water quality constraints were considered. This indicates importance of considering water quality issues in drought management plans.

  16. Application of CCME Water Quality Index to monitor water quality: a case study of the Mackenzie River Basin, Canada.

    PubMed

    Lumb, Ashok; Halliwell, Doug; Sharma, Tribeni

    2006-02-01

    All six ecosystem initiatives evolved from many years of federal, provincial, First Nation, local government and community attention to the stresses on sensitive habitats and species, air and water quality, and the consequent threats to community livability. This paper assesses water quality aspect for the ecosystem initiatives and employs newly developed Canadian Council of Ministers of the Environment Water Quality Index (CCME WQI) which provides a convenient mean of summarizing complex water quality data that can be easily understood by the public, water distributors, planners, managers and policy makers. The CCME WQI incorporates three elements: Scope - the number of water quality parameters (variables) not meeting water quality objectives (F(1)); Frequency - the number of times the objectives are not met (F(2)); and Amplitude. the extent to which the objectives are not met (F(3)). The index produces a number between 0 (worst) to 100 (best) to reflect the water quality. This study evaluates water quality of the Mackenzie - Great Bear sub-basin by employing two modes of objective functions (threshold values): one based on the CCME water quality guidelines and the other based on site-specific values that were determined by the statistical analysis of the historical data base. Results suggest that the water quality of the Mackenzie-Great Bear sub-basin is impacted by high turbidity and total (mostly particulate) trace metals due to high suspended sediment loads during the open water season. Comments are also provided on water quality and human health issues in the Mackenzie basin based on the findings and the usefulness of CCME water quality guidelines and site specific values.

  17. Validation of feasibility and quality of chicken breast meat cooked under various water-cooking conditions.

    PubMed

    Chumngoen, Wanwisa; Chen, Hsin-Yi; Tan, Fa-Jui

    2016-12-01

    Under laboratory conditions, the qualities of boneless chicken breasts are commonly determined by placing them in a bag and cooking them in a water bath. The results are often applied as references for comparing the influences of cooking techniques. However, whether a sample cooked under this "laboratory" condition actually represents the meat cooked under the "real-life" condition in which meat is frequently cooked directly in water without packaging remains unclear. Whether the two cooking conditions lead to comparable results in meat quality should be determined. This study evaluated the influence of cooking conditions, including "placed-in-bag and cooked in a water bath (BC)" and "cooked directly in hot water (WC)" conditions, on the quality of chicken meat. The results reveal that BC samples had a longer cooking time. Deboned-and-skinless BC samples had a higher cooking loss and lower protein solubility (P < 0.01). BC samples with bone and skin had a higher lightness in both skin and muscle. No significant differences were observed in attributes, including shear force, collagen solubility, microstructures, redness, yellowness and descriptive sensory characteristics between treatments. Based on the results, considering the quality attributes that might be influenced, is critical when conducting relevant research. © 2016 Japanese Society of Animal Science.

  18. Quality of ground water in Idaho

    USGS Publications Warehouse

    Yee, Johnson J.; Souza, William R.

    1987-01-01

    The major aquifers in Idaho are categorized under two rock types, sedimentary and volcanic, and are grouped into six hydrologic basins. Areas with adequate, minimally adequate, or deficient data available for groundwater-quality evaluations are described. Wide variations in chemical concentrations in the water occur within individual aquifers, as well as among the aquifers. The existing data base is not sufficient to describe fully the ground-water quality throughout the State; however, it does indicate that the water is generally suitable for most uses. In some aquifers, concentrations of fluoride, cadmium, and iron in the water exceed the U.S. Environmental Protection Agency's drinking-water standards. Dissolved solids, chloride, and sulfate may cause problems in some local areas. Water-quality data are sparse in many areas, and only general statements can be made regarding the areal distribution of chemical constituents. Few data are available to describe temporal variations of water quality in the aquifers. Primary concerns related to special problem areas in Idaho include (1) protection of water quality in the Rathdrum Prairie aquifer, (2) potential degradation of water quality in the Boise-Nampa area, (3) effects of widespread use of drain wells overlying the eastern Snake River Plain basalt aquifer, and (4) disposal of low-level radioactive wastes at the Idaho National Engineering Laboratory. Shortcomings in the ground-water-quality data base are categorized as (1) multiaquifer sample inadequacy, (2) constituent coverage limitations, (3) baseline-data deficiencies, and (4) data-base nonuniformity.

  19. Putting people into water quality modelling.

    NASA Astrophysics Data System (ADS)

    Strickert, G. E.; Hassanzadeh, E.; Noble, B.; Baulch, H. M.; Morales-Marin, L. A.; Lindenschmidt, K. E.

    2017-12-01

    Water quality in the Qu'Appelle River Basin, Saskatchewan is under pressure due to nutrient pollution entering the river system from major cities, industrial zones and agricultural areas. Among these stressors, agricultural activities are basin-wide; therefore, they are the largest non-point source of water pollution in this region. The dynamics of agricultural impacts on water quality are complex and stem from decisions and activities of two distinct stakeholder groups, namely grain farmers and cattle producers, which have different business plans, values, and attitudes towards water quality. As a result, improving water quality in this basin requires engaging with stakeholders to: (1) understand their perspectives regarding a range of agricultural Beneficial Management Practices (BMPs) that can improve water quality in the region, (2) show them the potential consequences of their selected BMPs, and (3) work with stakeholders to better understand the barriers and incentives to implement the effective BMPs. In this line, we held a series of workshops in the Qu'Appelle River Basin with both groups of stakeholders to understand stakeholders' viewpoints about alternative agricultural BMPs and their impact on water quality. Workshop participants were involved in the statement sorting activity (Q-sorts), group discussions, as well as mapping activity. The workshop outcomes show that stakeholder had four distinct viewpoints about the BMPs that can improve water quality, i.e., flow and erosion control, fertilizer management, cattle site management, as well as mixed cattle and wetland management. Accordingly, to simulate the consequences of stakeholder selected BMPs, a conceptual water quality model was developed using System Dynamics (SD). The model estimates potential changes in water quality at the farm, tributary and regional scale in the Qu'Appelle River Basin under each and/or combination of stakeholder selected BMPs. The SD model was then used for real

  20. [Study of long-term water quality of stocked drinking water].

    PubMed

    Kataoka, Hiromi; Kanaoka, Miki; Yamamura, Sayo; Mine, Takanori; Nishikawa, Jun-ichi; Semma, Masanori

    2013-01-01

    We examined changes in the quality of drinking water stockpiled under various conditions for emergency use. The results indicated that the change in the quality of the stocked water was influenced mainly by the preservation period and not by the amount of water in the bottle. To maintain water quality, the amount of residual chlorine is less important than using sufficiently sterilized water, bottles and caps in the bottling process. Washing the bottles with a small amount of boiling water was not sufficient to ensure complete inhibition of microbial growth.

  1. Real-time water quality monitoring and providing water quality information to the Baltimore Community

    EPA Science Inventory

    EPA and the U.S. Geological Survey (USGS) have initiated the “Village Blue” research project to provide real-time water quality monitoring data to the Baltimore community and increase public awareness about local water quality in Baltimore Harbor and the Chesapeake Ba...

  2. Water quality observations of ice-covered, stagnant, eutrophic water bodies and analysis of influence of ice-covered period on water quality

    NASA Astrophysics Data System (ADS)

    sugihara, K.; Nakatsugawa, M.

    2013-12-01

    The water quality characteristics of ice-covered, stagnant, eutrophic water bodies have not been clarified because of insufficient observations. It has been pointed out that climate change has been shortening the duration of ice-cover; however, the influence of climate change on water quality has not been clarified. This study clarifies the water quality characteristics of stagnant, eutrophic water bodies that freeze in winter, based on our surveys and simulations, and examines how climate change may influence those characteristics. We made fixed-point observation using self-registering equipment and vertical water sampling. Self-registering equipment measured water temperature and dissolved oxygen(DO).vertical water sampling analyzed biological oxygen demand(BOD), total nitrogen(T-N), nitrate nitrogen(NO3-N), nitrite nitrogen(NO2-N), ammonium nitrogen(NH4-N), total phosphorus(TP), orthophosphoric phosphorus(PO4-P) and chlorophyll-a(Chl-a). The survey found that climate-change-related increases in water temperature were suppressed by ice covering the water area, which also blocked oxygen supply. It was also clarified that the bottom sediment consumed oxygen and turned the water layers anaerobic beginning from the bottom layer, and that nutrient salts eluted from the bottom sediment. The eluted nutrient salts were stored in the water body until the ice melted. The ice-covered period of water bodies has been shortening, a finding based on the analysis of weather and water quality data from 1998 to 2008. Climate change was surveyed as having caused decreases in nutrient salts concentration because of the shortened ice-covered period. However, BOD in spring showed a tendency to increase because of the proliferation of phytoplankton that was promoted by the climate-change-related increase in water temperature. To forecast the water quality by using these findings, particularly the influence of climate change, we constructed a water quality simulation model that

  3. Water Resources Data, New Jersey, Water Year 2003; Volume 3. Water-Quality Data

    USGS Publications Warehouse

    DeLuca, Michael J.; Hoppe, Heidi L.; Heckathorn, Heather A.; Riskin, Melissa L.; Gray, Bonnie J.; Melvin, Emma-Lynn; Liu, Nicholas A.

    2004-01-01

    Water-resources data for the 2003 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water-quality of streams; stage and contents of lakes and reservoirs; and water levels and water-quality of ground water. Volume 3 contains a summary of surface- and ground-water hydrologic conditions for the 2003 water year, a listing of current water-resources projects in New Jersey, a bibliography of water-related reports, articles, and fact sheets for New Jersey completed by the Geological Survey in recent years, water-quality records of chemical analyses from 123 continuing-record surface-water stations, 35 ground-water sites, records of daily statistics of temperature and other physical measurements from 20 continuous-recording stations, and 5 special-study sites consisting of 2 surface-water sites, 1 spring site, and 240 groundwater sites. Locations of water-quality stations are shown in figures 21-25. Locations of special-study sites are shown in figures 49-53. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating federal, state, and local agencies in New Jersey.

  4. Water Resources Data, New Jersey, Water Year 2005Volume 3 - Water-Quality Data

    USGS Publications Warehouse

    DeLuca, Michael J.; Heckathorn, Heather A.; Lewis, Jason M.; Gray, Bonnie J.; Feinson, Lawrence S.

    2006-01-01

    Water-resources data for the 2005 water year for New Jersey are presented in three volumes, and consists of records of stage, discharge, and water-quality of streams; stage and contents of lakes and reservoirs; and water levels and water-quality of ground water. Volume 3 contains a summary of surface- and ground-water hydrologic conditions for the 2005 water year, a listing of current water-resources projects in New Jersey, a bibliography of water-related reports, articles, and fact sheets for New Jersey completed by the Geological Survey in recent years, water-quality records of chemical analyses from 118 continuing-record surface-water stations, 30 ground-water sites, records of daily statistics of temperature and other physical measurements from 9 continuous-recording stations, and 5 special studies that included 89 stream, 11 lake, and 29 ground-water sites. Locations of water-quality stations are shown in figures 23-25. Locations of special-study sites are shown in figures 41-46. These data represent that part of the National Water Data System operated by the U.S. Geological Survey and cooperating federal, state, and local agencies in New Jersey.

  5. Water Quality Index for measuring drinking water quality in rural Bangladesh: a cross-sectional study.

    PubMed

    Akter, Tahera; Jhohura, Fatema Tuz; Akter, Fahmida; Chowdhury, Tridib Roy; Mistry, Sabuj Kanti; Dey, Digbijoy; Barua, Milan Kanti; Islam, Md Akramul; Rahman, Mahfuzar

    2016-02-09

    Public health is at risk due to chemical contaminants in drinking water which may have immediate health consequences. Drinking water sources are susceptible to pollutants depending on geological conditions and agricultural, industrial, and other man-made activities. Ensuring the safety of drinking water is, therefore, a growing problem. To assess drinking water quality, we measured multiple chemical parameters in drinking water samples from across Bangladesh with the aim of improving public health interventions. In this cross-sectional study conducted in 24 randomly selected upazilas, arsenic was measured in drinking water in the field using an arsenic testing kit and a sub-sample was validated in the laboratory. Water samples were collected to test water pH in the laboratory as well as a sub-sample of collected drinking water was tested for water pH using a portable pH meter. For laboratory testing of other chemical parameters, iron, manganese, and salinity, drinking water samples were collected from 12 out of 24 upazilas. Drinking water at sample sites was slightly alkaline (pH 7.4 ± 0.4) but within acceptable limits. Manganese concentrations varied from 0.1 to 5.5 mg/L with a median value of 0.2 mg/L. The median iron concentrations in water exceeded WHO standards (0.3 mg/L) at most of the sample sites and exceeded Bangladesh standards (1.0 mg/L) at a few sample sites. Salinity was relatively higher in coastal districts. After laboratory confirmation, arsenic concentrations were found higher in Shibchar (Madaripur) and Alfadanga (Faridpur) compared to other sample sites exceeding WHO standard (0.01 mg/L). Of the total sampling sites, 33 % had good-quality water for drinking based on the Water Quality Index (WQI). However, the majority of the households (67 %) used poor-quality drinking water. Higher values of iron, manganese, and arsenic reduced drinking water quality. Awareness raising on chemical contents in drinking water at household level is required to

  6. Protecting water quality in the watershed

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    James, C.R.; Johnson, K.E.; Stewart, E.H.

    1994-08-01

    This article highlights the water quality component of a watershed management plan being developed for the San Francisco (CA) Water Department. The physical characteristics of the 63,000-acre watersheds were analyzed for source and transport vulnerability for five groups of water quality parameters--particulates, THM precursors, microorganisms (Giardia and cryptosporidium), nutrients (nitrogen and phosphorus), and synthetic organic chemicals--and vulnerability zones were mapped. Mapping was achieved through the use of an extensive geographic information system (GIS) database. Each water quality vulnerability zone map was developed based on five watershed physical characteristics--soils, slope, vegetation, wildlife concentration, and proximity to water bodies--and their relationships tomore » each of the five groups of water quality parameters. An approach to incorporate the watershed physical characteristics information into the five water quality vulnerability zone maps was defined and verified. The composite approach was based in part on information gathered from existing watershed management plans.« less

  7. Assessing actual evapotranspiration via surface energy balance aiming to optimize water and energy consumption in large scale pressurized irrigation systems

    NASA Astrophysics Data System (ADS)

    Awada, H.; Ciraolo, G.; Maltese, A.; Moreno Hidalgo, M. A.; Provenzano, G.; Còrcoles, J. I.

    2017-10-01

    Satellite imagery provides a dependable basis for computational models that aimed to determine actual evapotranspiration (ET) by surface energy balance. Satellite-based models enables quantifying ET over large areas for a wide range of applications, such as monitoring water distribution, managing irrigation and assessing irrigation systems' performance. With the aim to evaluate the energy and water consumption of a large scale on-turn pressurized irrigation system in the district of Aguas Nuevas, Albacete, Spain, the satellite-based image-processing model SEBAL was used for calculating actual ET. The model has been applied to quantify instantaneous, daily, and seasonal actual ET over high- resolution Landsat images for the peak water demand season (May to September) and for the years 2006 - 2008. The model provided a direct estimation of the distribution of main energy fluxes, at the instant when the satellite overpassed over each field of the district. The image acquisition day Evapotranspiration (ET24) was obtained from instantaneous values by assuming a constant evaporative fraction (Λ) for the entire day of acquisition; then, monthly and seasonal ET were estimated from the daily evapotranspiration (ETdaily) assuming that ET24 varies in proportion to reference ET (ETr) at the meteorological station, thus accounting for day to day variation in meteorological forcing. The comparison between the hydrants water consumption and the actual evapotranspiration, considering an irrigation efficiency of 85%, showed that a considerable amount of water and energy can be saved at district level.

  8. Maggie Creek Water Quality Data

    EPA Pesticide Factsheets

    These data are standard water quality parameters collected for surface water condition analysis (for example pH, conductivity, DO, TSS).This dataset is associated with the following publication:Kozlowski, D., R. Hall , S. Swanson, and D. Heggem. Linking Management and Riparian Physical Functions to Water Quality and Aquatic Habitat. JOURNAL OF WATER RESOURCES PLANNING AND MANAGEMENT. American Society of Civil Engineers (ASCE), Reston, VA, USA, 8(8): 797-815, (2016).

  9. Reality check of socio-hydrological interactions in water quality and ecosystem management

    NASA Astrophysics Data System (ADS)

    Destouni, Georgia; Fischer, Ida; Prieto, Carmen

    2017-04-01

    Socio-hydrological interactions in water management for improving water quality and ecosystem status include as key components both (i) the societal measures taken for mitigation and control, and (ii) the societal characterization and monitoring efforts made for choosing management targets and checking the effects of measures taken to reach the targets. This study investigates such monitoring, characterization and management efforts and effects over the first six-year management cycle of the EU Water Framework Directive (WFD). The investigation uses Sweden and the WFD-regulated management of its stream and lake waters as a concrete quantification example, with focus on the nutrient and eutrophication conditions that determine the most prominent water quality and ecosystem problems in need of mitigation in the Swedish waters. The case results show a relatively small available monitoring base for determination of these nutrient and eutrophication conditions, even though they constitute key parts in the overall WFD-based approach to classification and management of ecosystem status. Specifically, actual nutrient monitoring exists in only around 1% (down to 0.2% for nutrient loads) of the Swedish stream and lake water bodies; modeling is used to fill the gaps for the remaining unmonitored fraction of classified and managed waters. The available data show that the hydro-climatically driven stream water discharge is a primary explanatory variable for the resulting societal classification of ecosystem status in Swedish waters; this may be due to the discharge magnitude being dominant in determining nutrient loading to these waters. At any rate, with such a hydro-climatically related, rather than human-pressure related, determinant of the societal ecosystem-status classification, the main human-driven causes and effects of eutrophication may not be appropriately identified, and the measures taken for mitigating these may not be well chosen. The available monitoring data

  10. Poor tap water quality experiences and poor sleep quality during the Flint, Michigan Municipal Water Crisis.

    PubMed

    Kruger, Daniel J; Kodjebacheva, Gergana D; Cupal, Suzanne

    2017-08-01

    After inadequate official response to community concerns over water quality following changes in Flint's municipal water supply, this study sought evidence for a relationship between water quality and community mental health. The Speak to Your Health Community Survey is a community-based participatory component of the health surveillance system in Genesee County, Michigan. This cross-sectional survey recruits participants from every residential Census Tract of the county and strives for demographic representativeness. Respondents (n=834) rated their tap water quality (taste, smell, appearance) as poor (36%), fair (18%), good (20%), very good (17%), and excellent (10%). They rated their sleep quality as poor (12%), fair (28%), good (39%), very good (18%), and excellent (4%), and had an average (SD) sleep length of 408(90) minutes. Controlling for age, sex, years of education, and whether respondents were African American and Hispanic/Latino/a, lower perceived tap water quality was associated with lower sleep quality and shorter sleep length. Results indicate that adverse health conditions related to the water crisis extend beyond lead poisoning in children and include deterioration of sleep conditions among adult residents. Copyright © 2017 National Sleep Foundation. Published by Elsevier Inc. All rights reserved.

  11. The quality of raw water for drinking water unit in Jakarta-Indonesia

    NASA Astrophysics Data System (ADS)

    Sidabutar, Noni Valeria; Hartono, Djoko M.; Soesilo, Tri Edhi Budhi; Hutapea, Reynold C.

    2017-03-01

    Water problems, i.e quality, quantity, continuity of clean water faced by the mostly urban area. Jakarta also faces similar issues, because the needs of society higher than the number of water fulfilled by the government. Moreover, Jakarta's water quality does not meet the standard set by the Government and heavily polluted by anthropogenic activities along its rivers. This research employs a quantitative research approach with the mix-method. It examines the raw water quality status for drinking water in West Tarum Canalin 2011-2015. The research results show water quality with this research, using water quality of with the water categorized as heavily-polluted category based on the Ministry of Environment's Decree No 115/2003 regarding the Guidelines for Determination of Water Quality Status. This present research also shown the water quality (parameters pH, temperature, Dissolved Oxygen (DO), Chemical Oxygen Demand (COD), and Biochemical Oxygen Demand (BOD)) from Jatiluhur Dam to the intake drinking water unit. In thirteen points of sampling also, the results obtained the parameters DO, COD, and BOD are fluctuating and exceed the standard.

  12. 40 CFR 130.8 - Water quality report.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... QUALITY PLANNING AND MANAGEMENT § 130.8 Water quality report. (a) Each State shall prepare and submit... quality data and problems identified in the 305(b) report, States develop water quality management (WQM... the 305(b) report should be analyzed through water quality management planning leading to the...

  13. Drinking water quality management: a holistic approach.

    PubMed

    Rizak, S; Cunliffe, D; Sinclair, M; Vulcano, R; Howard, J; Hrudey, S; Callan, P

    2003-01-01

    A growing list of water contaminants has led to some water suppliers relying primarily on compliance monitoring as a mechanism for managing drinking water quality. While such monitoring is a necessary part of drinking water quality management, experiences with waterborne disease threats and outbreaks have shown that compliance monitoring for numerical limits is not, in itself, sufficient to guarantee the safety and quality of drinking water supplies. To address these issues, the Australian National Health and Medical Research Council (NHMRC) has developed a Framework for Management of Drinking Water Quality (the Framework) for incorporation in the Australian Drinking Water Guidelines, the primary reference on drinking water quality in Australia. The Framework was developed specifically for drinking water supplies and provides a comprehensive and preventive risk management approach from catchment to consumer. It includes holistic guidance on a range of issues considered good practice for system management. The Framework addresses four key areas: Commitment to Drinking Water Quality Management, System Analysis and System Management, Supporting Requirements, and Review. The Framework represents a significantly enhanced approach to the management and regulation of drinking water quality and offers a flexible and proactive means of optimising drinking water quality and protecting public health. Rather than the primary reliance on compliance monitoring, the Framework emphasises prevention, the importance of risk assessment, maintaining the integrity of water supply systems and application of multiple barriers to assure protection of public health. Development of the Framework was undertaken in collaboration with the water industry, regulators and other stakeholder, and will promote a common and unified approach to drinking water quality management throughout Australia. The Framework has attracted international interest.

  14. Handbook for aquaculture water quality

    USDA-ARS?s Scientific Manuscript database

    Efficient aquaculture production depends upon maintaining acceptable water quality conditions in culture units. This handbook discusses background information from chemistry, physics, biology, and engineering necessary for understanding the principles of water quality management in aquaculture. It a...

  15. WATER QUALITY

    EPA Science Inventory

    This manual was develped to provide an overview of microfiltration and ultrafiltration technology for operators, administrators, engineers, scientists, educators, and anyone seeking an introduction to these processes. Chapters on theory, water quality, applications, design, equip...

  16. Water Quality Monitor

    NASA Technical Reports Server (NTRS)

    1982-01-01

    An automated water quality monitoring system was developed by Langley Research Center to meet a need of the Environmental Protection Agency (EPA). Designed for unattended operation in water depths up to 100 feet, the system consists of a subsurface buoy anchored in the water, a surface control unit (SCU) and a hydrophone link for acoustic communication between buoy and SCU. Primary functional unit is the subsurface buoy. It incorporates 16 cells for water sampling, plus sensors for eight water quality measurements. Buoy contains all the electronic equipment needed for collecting and storing sensor data, including a microcomputer and a memory unit. Power for the electronics is supplied by a rechargeable nickel cadmium battery that is designed to operate for about two weeks. Through hydrophone link the subsurface buoy reports its data to the SCU, which relays it to land stations. Link allows two-way communications. If system encounters a problem, it automatically shuts down and sends alert signal. Sequence of commands sent via hydrophone link causes buoy to release from anchor and float to the surface for recovery.

  17. Drinking water quality assessment.

    PubMed

    Aryal, J; Gautam, B; Sapkota, N

    2012-09-01

    Drinking water quality is the great public health concern because it is a major risk factor for high incidence of diarrheal diseases in Nepal. In the recent years, the prevalence rate of diarrhoea has been found the highest in Myagdi district. This study was carried out to assess the quality of drinking water from different natural sources, reservoirs and collection taps at Arthunge VDC of Myagdi district. A cross-sectional study was carried out using random sampling method in Arthunge VDC of Myagdi district from January to June,2010. 84 water samples representing natural sources, reservoirs and collection taps from the study area were collected. The physico-chemical and microbiological analysis was performed following standards technique set by APHA 1998 and statistical analysis was carried out using SPSS 11.5. The result was also compared with national and WHO guidelines. Out of 84 water samples (from natural source, reservoirs and tap water) analyzed, drinking water quality parameters (except arsenic and total coliform) of all water samples was found to be within the WHO standards and national standards.15.48% of water samples showed pH (13) higher than the WHO permissible guideline values. Similarly, 85.71% of water samples showed higher Arsenic value (72) than WHO value. Further, the statistical analysis showed no significant difference (P<0.05) of physico-chemical parameters and total coliform count of drinking water for collection taps water samples of winter (January, 2010) and summer (June, 2010). The microbiological examination of water samples revealed the presence of total coliform in 86.90% of water samples. The results obtained from physico-chemical analysis of water samples were within national standard and WHO standards except arsenic. The study also found the coliform contamination to be the key problem with drinking water.

  18. Water resources data Virginia water year 2005 Volume 2. Ground-water level and ground-water quality records

    USGS Publications Warehouse

    Wicklein, Shaun M.; Powell, Eugene D.; Guyer, Joel R.; Owens, Joseph A.

    2006-01-01

    Water-resources data for the 2005 water year for Virginia consist of records of water levels and water quality of ground-water wells. This report (Volume 2. Ground-Water-Level and Ground-Water-Quality Records) contains water levels at 349 observation wells and water quality at 29 wells. Locations of these wells are shown on figures 3 through 8. The data in this report represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Virginia.

  19. Water Availability--The Connection Between Water Use and Quality

    USGS Publications Warehouse

    Hirsch, Robert M.; Hamilton, Pixie A.; Miller, Timothy L.; Myers, Donna N.

    2008-01-01

    Water availability has become a high priority in the United States, in large part because competition for water is becoming more intense across the Nation. Population growth in many areas competes with demands for water to support irrigation and power production. Cities, farms, and power plants compete for water needed by aquatic ecosystems to support their minimum flow requirements. At the same time, naturally occurring and human-related contaminants from chemical use, land use, and wastewater and industrial discharge are introduced into our waters and diminish its quality. The fact that degraded quality limits the availability and suitability of water for critical uses is a well-known reality in many communities. What may be less understood, but equally true, is that our everyday use of water can significantly affect water quality, and thus its availability. Landscape features (such as geology, soils, and vegetation) along with water-use practices (such as ground-water withdrawals and irrigation) govern water availability because, together, they affect the movement of chemical compounds over the land and in the subsurface. Understanding the interactions of human activities with natural sources and the landscape is critical to effectively managing water and sustaining water availability in the future.

  20. R2 Water Quality Portal Monitoring Stations

    EPA Pesticide Factsheets

    The Water Quality Data Portal (WQP) provides an easy way to access data stored in various large water quality databases. The WQP provides various input parameters on the form including location, site, sampling, and date parameters to filter and customize the returned results. The The Water Quality Portal (WQP) is a cooperative service sponsored by the United States Geological Survey (USGS), the Environmental Protection Agency (EPA) and the National Water Quality Monitoring Council (NWQMC) that integrates publicly available water quality data from the USGS National Water Information System (NWIS) the EPA STOrage and RETrieval (STORET) Data Warehouse, and the USDA ARS Sustaining The Earth??s Watersheds - Agricultural Research Database System (STEWARDS).

  1. Impact of RO-desalted water on distribution water qualities.

    PubMed

    Taylor, J; Dietz, J; Randall, A; Hong, S

    2005-01-01

    A large-scale pilot distribution study was conducted to investigate the impacts of blending different source waters on distribution water qualities, with an emphasis on metal release (i.e. corrosion). The principal source waters investigated were conventionally treated ground water (G1), surface water processed by enhanced treatment (S1), and desalted seawater by reverse osmosis membranes (RO). Due to the nature of raw water quality and associated treatment processes, G1 water had high alkalinity, while S1 and RO sources were characterized as high sulfate and high chloride waters, respectively. The blending ratio of different treated waters determined the quality of finished waters. Iron release from aged cast iron pipes increased significantly when exposed to RO and S1 waters: that is, the greater iron release was experienced with alkalinity reduced below the background of G1 water. Copper release to drinking water, however, increased with increasing alkalinity and decreasing pH. Lead release, on the other hand, increased with increasing chloride and decreasing sulfate. The effect of pH and alkalinity on lead release was not clearly observed from pilot blending study. The flat and compact corrosion scales observed for lead surface exposed to S1 water may be attributable to lead concentration less than that of RO water blends.

  2. METHODS FOR DETERMINING RECREATIONAL WATER QUALITY

    EPA Science Inventory

    The goal of the clean water act of 1972 was to restore and maintain physical, chemical & biological quality of waters in the U.S. Although great progress has been made in cleaning up lakes, rivers and coastal waters many still do not meet water quality standards. Most beaches ha...

  3. Methods for computing water-quality loads at sites in the U.S. Geological Survey National Water Quality Network

    USGS Publications Warehouse

    Lee, Casey J.; Murphy, Jennifer C.; Crawford, Charles G.; Deacon, Jeffrey R.

    2017-10-24

    The U.S. Geological Survey publishes information on concentrations and loads of water-quality constituents at 111 sites across the United States as part of the U.S. Geological Survey National Water Quality Network (NWQN). This report details historical and updated methods for computing water-quality loads at NWQN sites. The primary updates to historical load estimation methods include (1) an adaptation to methods for computing loads to the Gulf of Mexico; (2) the inclusion of loads computed using the Weighted Regressions on Time, Discharge, and Season (WRTDS) method; and (3) the inclusion of loads computed using continuous water-quality data. Loads computed using WRTDS and continuous water-quality data are provided along with those computed using historical methods. Various aspects of method updates are evaluated in this report to help users of water-quality loading data determine which estimation methods best suit their particular application.

  4. 9 CFR 108.11 - Water quality requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Water quality requirements. 108.11... LICENSED ESTABLISHMENTS § 108.11 Water quality requirements. A certification from the appropriate water pollution control agency, that the establishment is in compliance with applicable water quality control...

  5. 9 CFR 108.11 - Water quality requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Water quality requirements. 108.11... LICENSED ESTABLISHMENTS § 108.11 Water quality requirements. A certification from the appropriate water pollution control agency, that the establishment is in compliance with applicable water quality control...

  6. 40 CFR 130.8 - Water quality report.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 22 2011-07-01 2011-07-01 false Water quality report. 130.8 Section 130.8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.8 Water quality report. (a) Each State shall prepare and submit...

  7. 40 CFR 130.8 - Water quality report.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 23 2013-07-01 2013-07-01 false Water quality report. 130.8 Section 130.8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.8 Water quality report. (a) Each State shall prepare and submit...

  8. 9 CFR 108.11 - Water quality requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Water quality requirements. 108.11... LICENSED ESTABLISHMENTS § 108.11 Water quality requirements. A certification from the appropriate water pollution control agency, that the establishment is in compliance with applicable water quality control...

  9. 40 CFR 130.8 - Water quality report.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 23 2012-07-01 2012-07-01 false Water quality report. 130.8 Section 130.8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.8 Water quality report. (a) Each State shall prepare and submit...

  10. Mass imbalances in EPANET water-quality simulations

    NASA Astrophysics Data System (ADS)

    Davis, Michael J.; Janke, Robert; Taxon, Thomas N.

    2018-04-01

    EPANET is widely employed to simulate water quality in water distribution systems. However, in general, the time-driven simulation approach used to determine concentrations of water-quality constituents provides accurate results only for short water-quality time steps. Overly long time steps can yield errors in concentration estimates and can result in situations in which constituent mass is not conserved. The use of a time step that is sufficiently short to avoid these problems may not always be feasible. The absence of EPANET errors or warnings does not ensure conservation of mass. This paper provides examples illustrating mass imbalances and explains how such imbalances can occur because of fundamental limitations in the water-quality routing algorithm used in EPANET. In general, these limitations cannot be overcome by the use of improved water-quality modeling practices. This paper also presents a preliminary event-driven approach that conserves mass with a water-quality time step that is as long as the hydraulic time step. Results obtained using the current approach converge, or tend to converge, toward those obtained using the preliminary event-driven approach as the water-quality time step decreases. Improving the water-quality routing algorithm used in EPANET could eliminate mass imbalances and related errors in estimated concentrations. The results presented in this paper should be of value to those who perform water-quality simulations using EPANET or use the results of such simulations, including utility managers and engineers.

  11. 40 CFR 130.4 - Water quality monitoring.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... QUALITY PLANNING AND MANAGEMENT § 130.4 Water quality monitoring. (a) In accordance with section 106(e)(1...; developing and reviewing water quality standards, total maximum daily loads, wasteload allocations and load... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Water quality monitoring. 130.4...

  12. 40 CFR 130.4 - Water quality monitoring.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... QUALITY PLANNING AND MANAGEMENT § 130.4 Water quality monitoring. (a) In accordance with section 106(e)(1...; developing and reviewing water quality standards, total maximum daily loads, wasteload allocations and load... 40 Protection of Environment 22 2011-07-01 2011-07-01 false Water quality monitoring. 130.4...

  13. Water Resources Data for California, 1969; Part 2: Water Quality Records

    USGS Publications Warehouse

    1970-01-01

    Water-resources investigations of the U.S. Geological Survey include the collection of water-quality data on the chemical and physical characteristics of surface and ground-water supplies of the Nation. Theses data for the 1969 water year for the quality of surface water in California are presented in this report. Data for a few water-quality stations in bordering States are also included. The data were collected by the Water Resources Division of the Geological Survey under the direction of R. Stanley Lord, district chief, Menlo Park, Calif.

  14. Influence of water quality on the embodied energy of drinking water treatment.

    PubMed

    Santana, Mark V E; Zhang, Qiong; Mihelcic, James R

    2014-01-01

    Urban water treatment plants rely on energy intensive processes to provide safe, reliable water to users. Changes in influent water quality may alter the operation of a water treatment plant and its associated energy use or embodied energy. Therefore the objective of this study is to estimate the effect of influent water quality on the operational embodied energy of drinking water, using the city of Tampa, Florida as a case study. Water quality and water treatment data were obtained from the David L Tippin Water Treatment Facility (Tippin WTF). Life cycle energy analysis (LCEA) was conducted to calculate treatment chemical embodied energy values. Statistical methods including Pearson's correlation, linear regression, and relative importance were used to determine the influence of water quality on treatment plant operation and subsequently, embodied energy. Results showed that influent water quality was responsible for about 14.5% of the total operational embodied energy, mainly due to changes in treatment chemical dosages. The method used in this study can be applied to other urban drinking water contexts to determine if drinking water source quality control or modification of treatment processes will significantly minimize drinking water treatment embodied energy.

  15. 18 CFR 801.7 - Water quality.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 18 Conservation of Power and Water Resources 2 2011-04-01 2011-04-01 false Water quality. 801.7 Section 801.7 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL POLICIES § 801.7 Water quality. (a) The signatory States have the primary responsibility in the basin for...

  16. 18 CFR 801.7 - Water quality.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 18 Conservation of Power and Water Resources 2 2014-04-01 2014-04-01 false Water quality. 801.7 Section 801.7 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL POLICIES § 801.7 Water quality. (a) The signatory States have the primary responsibility in the basin for...

  17. 18 CFR 801.7 - Water quality.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 18 Conservation of Power and Water Resources 2 2012-04-01 2012-04-01 false Water quality. 801.7 Section 801.7 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL POLICIES § 801.7 Water quality. (a) The signatory States have the primary responsibility in the basin for...

  18. 18 CFR 801.7 - Water quality.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 18 Conservation of Power and Water Resources 2 2013-04-01 2012-04-01 true Water quality. 801.7 Section 801.7 Conservation of Power and Water Resources SUSQUEHANNA RIVER BASIN COMMISSION GENERAL POLICIES § 801.7 Water quality. (a) The signatory States have the primary responsibility in the basin for...

  19. 40 CFR 130.4 - Water quality monitoring.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 22 2014-07-01 2013-07-01 true Water quality monitoring. 130.4 Section 130.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.4 Water quality monitoring. (a) In accordance with section 106(e)(1...

  20. 40 CFR 130.4 - Water quality monitoring.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 23 2012-07-01 2012-07-01 false Water quality monitoring. 130.4 Section 130.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.4 Water quality monitoring. (a) In accordance with section 106(e)(1...

  1. 40 CFR 130.8 - Water quality report.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 22 2014-07-01 2013-07-01 true Water quality report. 130.8 Section 130.8 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.8 Water quality report. (a) Each State shall prepare and submit biennially to...

  2. 40 CFR 130.4 - Water quality monitoring.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 23 2013-07-01 2013-07-01 false Water quality monitoring. 130.4 Section 130.4 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.4 Water quality monitoring. (a) In accordance with section 106(e)(1...

  3. Effects of irrigating with wastewater on ground-water quality at Fort Carson Military Reservation golf course near Colorado Springs, Colorado

    USGS Publications Warehouse

    Edelmann, Patrick

    1984-01-01

    Fort Carson Military Reservation has used treatment wastewater for irrigation of the Fort Carson golf course since 1971. The effect of applied wastewater on groundwater quality at Fort Carson golf course was evaluated using water levels and water-quality data from 20 observation wells. The water-quality constituents analyzed included dissolved solids, major ions, nutrients, detergents, dissolved organic carbon, chemical and biological oxygen demand, and trace elements. Effects of the applied wastewater on ground-water quality for most constituents were obscured by large areal variations and by high concentrations of the constituents upgradient from the golf course. The sources of nitrogen observed in the ground water beneath the golf course were applied wastewater, applied fertilizer, leachate from the organic-rich shale, and from unknown upgradient sources. Nitrogen loading at the golf course from wastewater and applied fertilizer was estimated to be 18 ,900 pounds per year. After 10 years, less than 1 percent of the nitrogen applied was actually present in the ground water. Loss of nitrogen to the atmosphere as nitrous oxides, absorption, and to fixation by grass resulted in the much smaller concentrations observed in the ground water. (USGS)

  4. Microbiological quality of natural waters.

    PubMed

    Borrego, J J; Figueras, M J

    1997-12-01

    Several aspects of the microbiological quality of natural waters, especially recreational waters, have been reviewed. The importance of the water as a vehicle and/or a reservoir of human pathogenic microorganisms is also discussed. In addition, the concepts, types and techniques of microbial indicator and index microorganisms are established. The most important differences between faecal streptococci and enterococci have been discussed, defining the concept and species included. In addition, we have revised the main alternative indicators used to measure the water quality.

  5. Identification of water quality degradation hotspots in developing countries by applying large scale water quality modelling

    NASA Astrophysics Data System (ADS)

    Malsy, Marcus; Reder, Klara; Flörke, Martina

    2014-05-01

    Decreasing water quality is one of the main global issues which poses risks to food security, economy, and public health and is consequently crucial for ensuring environmental sustainability. During the last decades access to clean drinking water increased, but 2.5 billion people still do not have access to basic sanitation, especially in Africa and parts of Asia. In this context not only connection to sewage system is of high importance, but also treatment, as an increasing connection rate will lead to higher loadings and therefore higher pressure on water resources. Furthermore, poor people in developing countries use local surface waters for daily activities, e.g. bathing and washing. It is thus clear that water utilization and water sewerage are indispensable connected. In this study, large scale water quality modelling is used to point out hotspots of water pollution to get an insight on potential environmental impacts, in particular, in regions with a low observation density and data gaps in measured water quality parameters. We applied the global water quality model WorldQual to calculate biological oxygen demand (BOD) loadings from point and diffuse sources, as well as in-stream concentrations. Regional focus in this study is on developing countries i.e. Africa, Asia, and South America, as they are most affected by water pollution. Hereby, model runs were conducted for the year 2010 to draw a picture of recent status of surface waters quality and to figure out hotspots and main causes of pollution. First results show that hotspots mainly occur in highly agglomerated regions where population density is high. Large urban areas are initially loading hotspots and pollution prevention and control become increasingly important as point sources are subject to connection rates and treatment levels. Furthermore, river discharge plays a crucial role due to dilution potential, especially in terms of seasonal variability. Highly varying shares of BOD sources across

  6. Chattahoochee River Water Quality Analysis.

    DTIC Science & Technology

    1978-04-01

    in 1972 with WRE for addition of storm water quality computations. Since then the HEC has added other capabilities including snowmelt and land surface...Geological Survey. The storm water quality data were reported in reference 2. Quantity The quantity calibration involved adjusting the pervious area

  7. 40 CFR 130.6 - Water quality management plans.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 23 2012-07-01 2012-07-01 false Water quality management plans. 130.6 Section 130.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.6 Water quality management plans. (a) Water quality management (WQM...

  8. 40 CFR 130.6 - Water quality management plans.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 23 2013-07-01 2013-07-01 false Water quality management plans. 130.6 Section 130.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.6 Water quality management plans. (a) Water quality management (WQM...

  9. 40 CFR 130.6 - Water quality management plans.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 22 2014-07-01 2013-07-01 true Water quality management plans. 130.6 Section 130.6 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY PLANNING AND MANAGEMENT § 130.6 Water quality management plans. (a) Water quality management (WQM...

  10. 7 CFR 634.23 - Water quality plan.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 7 Agriculture 6 2012-01-01 2012-01-01 false Water quality plan. 634.23 Section 634.23 Agriculture... AGRICULTURE LONG TERM CONTRACTING RURAL CLEAN WATER PROGRAM Participant RCWP Contracts § 634.23 Water quality plan. (a) The participant's water quality plan, developed with technical assistance by the NRCS or its...

  11. 7 CFR 634.23 - Water quality plan.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 7 Agriculture 6 2014-01-01 2014-01-01 false Water quality plan. 634.23 Section 634.23 Agriculture... AGRICULTURE LONG TERM CONTRACTING RURAL CLEAN WATER PROGRAM Participant RCWP Contracts § 634.23 Water quality plan. (a) The participant's water quality plan, developed with technical assistance by the NRCS or its...

  12. 7 CFR 634.23 - Water quality plan.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 6 2013-01-01 2013-01-01 false Water quality plan. 634.23 Section 634.23 Agriculture... AGRICULTURE LONG TERM CONTRACTING RURAL CLEAN WATER PROGRAM Participant RCWP Contracts § 634.23 Water quality plan. (a) The participant's water quality plan, developed with technical assistance by the NRCS or its...

  13. North Dakota ground-water quality

    USGS Publications Warehouse

    Garklavs, George; Nelson, Rick

    1987-01-01

    This report contains summary information on ground-water quality in one of the 50 States, Puerto Rico, the Virgin Islands, or the Trust Territories of the Pacific Islands, Saipan, Guam, and American Samoa. The material is extracted from the manuscript of the 1986 National Water Summary, and with the exception of the illustrations, which will be reproduced in multi-color in the 1986 National Water Summary, the format and content of this report is identical to the State ground-water-quality descriptions to be published in the 1986 National Water Summary. Release of this information before formal publication in the 1986 National Water Summary permits the earliest access by the public.

  14. Water resources data for Kansas, water year 1973; Part 2, Water quality records

    USGS Publications Warehouse

    Diaz, A.M.; Albert, C.D.

    1974-01-01

    Water-resources data for the 1973 water year for Kansas include records of data for the chemical and physical characteristics of surface and ground water. Data on the quality of surface water (chemical, microbiological, temperature, and sediment) were collected from designated sampling sites at predetermined intervals such as once daily, weekly, monthly, or less frequently, and at some sites data were recorded on punched paper tape at 60-minute intervals. Records are given for 70 sampling stations of which 7 are partial-record stations, and for 51 miscellaneous sites. Miscellaneous temperatures of streamflow are given for 77 gaging stations, and records of chemical analyses are given for 224 ground-water sites. Locations of surface water-quality stations are shown in Figure 1, page 2. Records for pertinent water-quality stations in bordering States are also included. The records were collected by the Water Resources Division of the U.S. Geological Survey under the direction of C. W. Lane, district chief. These data represent that portion of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Kansas. Kansas District personnel who contributed significantly to the collection and preparation of data included in this report were: B. L. Day, L. R. Shelton, M. L. Penny, L. R. Stringer, and D. J. Dark (Kansas State Department of Health).The Geological Survey has published records of chemical quality, suspended sediment, and water temperatures since 1941 in annual series of water-supply papers entitled, "Quality of Surface Waters of the United States." Beginning with the 1964 water year, water-quality records also have been released by the Geological Survey in annual reports on a State-boundary basis. Distribution of these reports is limited; they are designed primarily for rapid release of data shortly after the end of the water year to meet local needs. These records will be published later in Geological

  15. 40 CFR 130.6 - Water quality management plans.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false Water quality management plans. 130.6... QUALITY PLANNING AND MANAGEMENT § 130.6 Water quality management plans. (a) Water quality management (WQM... and certified and approved updates to those plans. Continuing water quality planning shall be based...

  16. Water-quality trends in the nation's rivers

    USGS Publications Warehouse

    Smith, R.A.; Alexander, R.B.; Wolman, M.G.

    1987-01-01

    Water-quality records from two nationwide sampling networks now permit nationally consistent analysis of long-term water-quality trends at more than 300 locations on major U.S. rivers. Observed trends in 24 measures of water quality for the period from 1974 to 1981 provide new insight into changes in stream quality that occurred during a time of major changes in both terrestrial and atmospheric influences on surface waters. Particularly noteworthy are widespread decreases in fecal bacteria and lead concentrations and widespread increases in nitrate, chloride, arsenic, and cadmium concentrations. Recorded increases in municipal waste treatment, use of salt on highways, and nitrogen fertilizer application, along with decreases in leaded gasoline consumption and regionally variable trends in coal production and combustion during the period appear to be reflected in water-quality changes.Water-quality records from two nationwide sampling networks now permit nationally consistent analysis of long-term water-quality trends at more than 300 locations on major U. S. rivers. Observed trends in 24 measures of water quality for the period from 1974 to 1981 provide new insight into changes in stream quality that occurred during a time of major changes in both terrestrial and atmospheric influences on surface waters. Particularly noteworthy are widespread decreases in fecal bacteria and lead concentrations and widespread increases in nitrate, chloride, arsenic, and cadmium concentrations. Recorded increases in municipal waste treatment, use of salt on highways, and nitrogen fertilizer application, along with decreases in leaded gasoline consumption and regionally variable trends in coal production and combustion during the period appear to be reflected in water-quality changes.

  17. Fertilizer Use and Water Quality.

    ERIC Educational Resources Information Center

    Reneau, Fred; And Others

    This booklet presents informative materials on fertilizer use and water quality, specifically in regard to environmental pollution and protection in Illinois. The five chapters cover these topics: Fertilizer and Water Quality, Fertilizer Use, Fertilizers and the Environment, Safety Practices, and Fertilizer Management Practices. Key questions are…

  18. 40 CFR 130.6 - Water quality management plans.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 22 2011-07-01 2011-07-01 false Water quality management plans. 130.6... QUALITY PLANNING AND MANAGEMENT § 130.6 Water quality management plans. (a) Water quality management (WQM... when they are needed to address water quality problems. (1) Total maximum daily loads. TMDLs in...

  19. Water quality assessment of bioenergy production

    Treesearch

    Rocio Diaz-Chavez; Goran Berndes; Dan Neary; Andre Elia Neto; Mamadou Fall

    2011-01-01

    Water quality is a measurement of the biological, chemical, and physical characteristics of water against certain standards set to ensure ecological and/or human health. Biomass production and conversion to fuels and electricity can impact water quality in lakes, rivers, and aquifers with consequences for aquatic ecosystem health and also human water uses. Depending on...

  20. Hydrologic and Water Quality System (HAWQS)

    EPA Science Inventory

    The Hydrologic and Water Quality System (HAWQS) is a web-based interactive water quantity and quality modeling system that employs as its core modeling engine the Soil and Water Assessment Tool (SWAT), an internationally-recognized public domain model. HAWQS provides users with i...

  1. Source Water Quality Monitoring

    EPA Science Inventory

    Presentation will provide background information on continuous source water monitoring using online toxicity monitors and cover various tools available. Conceptual and practical aspects of source water quality monitoring will be discussed.

  2. The maladies of water and war: addressing poor water quality in Iraq.

    PubMed

    Zolnikov, Tara Rava

    2013-06-01

    Water is essential in providing nutrients, but contaminated water contributes to poor population health. Water quality and availability can change in unstructured situations, such as war. To develop a practical strategy to address poor water quality resulting from intermittent wars in Iraq, I reviewed information from academic sources regarding waterborne diseases, conflict and war, water quality treatment, and malnutrition. The prevalence of disease was high in impoverished, malnourished populations exposed to contaminated water sources. The data aided in developing a strategy to improve water quality in Iraq, which encompasses remineralized water from desalination plants, health care reform, monitoring and evaluation systems, and educational public health interventions.

  3. The Maladies of Water and War: Addressing Poor Water Quality in Iraq

    PubMed Central

    2013-01-01

    Water is essential in providing nutrients, but contaminated water contributes to poor population health. Water quality and availability can change in unstructured situations, such as war. To develop a practical strategy to address poor water quality resulting from intermittent wars in Iraq, I reviewed information from academic sources regarding waterborne diseases, conflict and war, water quality treatment, and malnutrition. The prevalence of disease was high in impoverished, malnourished populations exposed to contaminated water sources. The data aided in developing a strategy to improve water quality in Iraq, which encompasses remineralized water from desalination plants, health care reform, monitoring and evaluation systems, and educational public health interventions. PMID:23597360

  4. NATIONAL WATER-QUALITY ASSESSMENT (NAWQA) PROGRAM

    EPA Science Inventory

    The National Water-Quality Assessment (NAWQA) Program is designed to describe the status and trends in the quality of the Nations ground- and surface-water resources and to provide a sound understanding of the natural and human factors that affect the quality of these resources. ...

  5. Research on the Relationship between Water Diversion and Water Quality of Xuanwu Lake, China.

    PubMed

    Song, Weiwei; Xu, Qing; Fu, Xingqian; Zhang, Peng; Pang, Yong; Song, Dahao

    2018-06-14

    Water diversion is often used to improve water quality to reach the standard of China in the short term. However, this large amount of water diversion can not only improve the water quality, but also lead to a decline in the water quality (total phosphorus, total nitrogen) of Xuanwu Lake. Through theoretical analysis, the relationship between water quality and water diversion is established. We also found that the multiplication of the pollutant degradation coefficient ( K ) and the water residence time ( T ) is a constant ( N ), K⋅T=N. The water quality changed better at first, with the increase of inflow discharge, and then became worse, and the optimal water quality inflow discharge is 180,000 m³/day. By constructing two-dimensional hydrodynamic and water quality models, the optimal diversion water plan is calculated. Through model calculations, it can be seen that reducing the inflow discharge makes the water residence time longer (15.3 days changed to 23.8 days). Thereby, increasing the degradation of pollutants, and thus improving water quality. Compared with other wind directions, the southwest wind makes the water quality of Xuanwu Lake the most uniform. The concentration of water quality first became smaller and then became larger, as the wind speed increased, and eventually became constant. Implementing these results for water quality improvement in small and medium lakes will significantly reduce the cost of water diversion.

  6. Quality of surface water in Missouri, water year 2012

    USGS Publications Warehouse

    Barr, Miya N.

    2014-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams and springs throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2012 water year (October 1, 2011, through September 30, 2012), data were collected at 81 stations—73 Ambient Water-Quality Monitoring Network stations, 6 alternate Ambient Water-Quality Monitoring Network stations, and 2 U.S. Geological Survey National Stream Quality Accounting Network stations. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite as nitrogen, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 78 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.

  7. Quality of surface water in Missouri, water year 2013

    USGS Publications Warehouse

    Barr, Miya N.; Schneider, Rachel E.

    2014-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams and springs throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2013 water year (October 1, 2012, through September 30, 2013), data were collected at 79 stations—73 Ambient Water-Quality Monitoring Network stations, 4 alternate Ambient Water-Quality Monitoring Network stations, and 2 U.S. Geological Survey National Stream Quality Accounting Network stations. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, Escherichia coli bacteria, fecal coliform bacteria, dissolved nitrate plus nitrite as nitrogen, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 76 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.

  8. Instrumental Surveillance of Water Quality.

    ERIC Educational Resources Information Center

    Miller, J. A.; And Others

    The role analytical instrumentation performs in the surveillance and control of the quality of water resources is reviewed. Commonly performed analyses may range from simple tests for physical parameters to more highly sophisticated radiological or spectrophotometric methods. This publication explores many of these types of water quality analyses…

  9. Post-industrial river water quality-Fit for bathing again?

    PubMed

    Kistemann, Thomas; Schmidt, Alexandra; Flemming, Hans-Curt

    2016-10-01

    For the Ruhr River, bathing has been prohibited for decades. However, along with significant improvements of the hygienic water quality, there is an increasing demand of using the river for recreational purposes, in particular for bathing. In the "Safe Ruhr" interdisciplinary research project, demands, options and chances for lifting the bathing ban for the Ruhr River were investigated. As being the prominent reason for persisting recreational restrictions, microbiological water quality was in the focus of interest. Not only the faecal indicator organisms (FIOs) as required by the European Bathing Water Directive were considered, but also pathogens such as Salmonella, Pseudomonas aeruginosa, Legionella pneumophila, Campylobacter, Leptospira, enteroviruses and protozoan parasites. In this introductory paper, we firstly relate current recreational desires to historical experiences of river bathing. After recapitulating relevant microbial river contamination sources (predominantly sewage treatment plants, combined sewer overflows, and surface runoffs), we review existing knowledge about the relationships of FIOs and pathogens in rivers designated for recreational purposes, and then trace the evolution, rationale and validity of recreational freshwater quality criteria which are, despite obvious uncertainties, mostly relying on the FIO paradigm. In particular, the representativeness of FIOs is critically discussed. The working programme of Safe Ruhr, aiming at initiating and facilitating a process towards legalisation of Ruhr River bathing, is outlined. Sources of contamination can be technically handled which leaves the actual measures to political decisions. As contaminations are transient, only occasionally exceeding legal limits, a flexible bathing site management, warning bathers of non-safe situations, may amend technical interventions and offer innovative solutions. As a result, a situation-adapted system for lifting of the bathing ban for Ruhr River appears

  10. Water Quality Assessment using Satellite Remote Sensing

    NASA Astrophysics Data System (ADS)

    Haque, Saad Ul

    2016-07-01

    The two main global issues related to water are its declining quality and quantity. Population growth, industrialization, increase in agriculture land and urbanization are the main causes upon which the inland water bodies are confronted with the increasing water demand. The quality of surface water has also been degraded in many countries over the past few decades due to the inputs of nutrients and sediments especially in the lakes and reservoirs. Since water is essential for not only meeting the human needs but also to maintain natural ecosystem health and integrity, there are efforts worldwide to assess and restore quality of surface waters. Remote sensing techniques provide a tool for continuous water quality information in order to identify and minimize sources of pollutants that are harmful for human and aquatic life. The proposed methodology is focused on assessing quality of water at selected lakes in Pakistan (Sindh); namely, HUBDAM, KEENJHAR LAKE, HALEEJI and HADEERO. These lakes are drinking water sources for several major cities of Pakistan including Karachi. Satellite imagery of Landsat 7 (ETM+) is used to identify the variation in water quality of these lakes in terms of their optical properties. All bands of Landsat 7 (ETM+) image are analyzed to select only those that may be correlated with some water quality parameters (e.g. suspended solids, chlorophyll a). The Optimum Index Factor (OIF) developed by Chavez et al. (1982) is used for selection of the optimum combination of bands. The OIF is calculated by dividing the sum of standard deviations of any three bands with the sum of their respective correlation coefficients (absolute values). It is assumed that the band with the higher standard deviation contains the higher amount of 'information' than other bands. Therefore, OIF values are ranked and three bands with the highest OIF are selected for the visual interpretation. A color composite image is created using these three bands. The water quality

  11. Water Quality Analysis Simulation Program (WASP)

    EPA Pesticide Factsheets

    The Water Quality Analysis Simulation Program (WASP) model helps users interpret and predict water quality responses to natural phenomena and manmade pollution for various pollution management decisions.

  12. Michigan lakes: An assessment of water quality

    USGS Publications Warehouse

    Minnerick, R.J.

    2004-01-01

    Michigan has more than 11,000 inland lakes, that provide countless recreational opportunities and are an important resource that makes tourism and recreation a $15-billion-dollar per-year industry in the State (Stynes, 2002). Knowledge of the water-quality characteristics of inland lakes is essential for the current and future management of these resources.Historically the U. S. Geological Survey (USGS) and the Michigan Department of Environmental Quality (MDEQ) jointly have monitored water quality in Michigan's lakes and rivers. During the 1990's, however, funding for surface-water-quality monitoring was reduced greatly. In 1998, the citizens of Michigan passed the Clean Michigan Initiative to clean up, protect, and enhance Michigan's environmental infrastructure. Because of expanding water-quality-data needs, the MDEQ and the USGS jointly redesigned and implemented the Lake Water-Quality Assessment (LWQA) Monitoring Program (Michigan Department of Environmental Quality, 1997).

  13. Water Quality Monitor

    NASA Technical Reports Server (NTRS)

    1979-01-01

    In the photo above, the cylindrical container being lowered into the water is a water quality probe developed by NASA's Langley Research Center for the Environmental Protection Agency (EPA) in an applications engineering project. It is part of a system- which also includes recording equipment in the helicopter-for on-the-spot analysis of water samples. It gives EPA immediate and more accurate information than the earlier method, in which samples are transported to a lab for analysis. Designed primarily for rapid assessment of hazardous spills in coastal and inland waters, the system provides a wide range of biological and chemical information relative to water pollution.

  14. Surface water-quality assessment of the lower Kansas River basin, Kansas and Nebraska: analysis of available water-quality data through 1986

    USGS Publications Warehouse

    Jordan, P.R.; Stamer, J.K.

    1991-01-01

    Beginning in 1986, the U.S. Congress appropriated funds for the U.S. Geological Survey to test and refine concepts for a National Water-Quality Assessment (NAWQA) Program. The long-term goals of the full-scale program are to: (1) provide a nationally consistent description of current water-quality conditions for a large part of the Nation's surface- and ground-water resources; (2) define long-term trends (or lack of trends) in water quality; and (3) identify, describe, and explain, insofar as possible, the major factors that affect current conditions and trends in water quality. This information, obtained on a continuing basis, will be made available to water managers, policy makers, and the public to provide an improved scientific basis for evaluating the effectiveness of water-quality-management programs and for predicting the likely effects of contemplated changes in land-and water-management practices. At present (1990), the assessment program is in a pilot phase in seven areas that represent diverse hydrologic environments and water-quality conditions.This report completes one of the first activities undertaken as part of the lower Kansas River basin pilot study, which was to compile, screen, and interpret available water-quality data for the study unit through 1986. The report includes information on the sources and types of water-quality data available, the utility of available water-quality data for assessment purposes, and a description of current water-quality conditions and trends and their relation to natural and human factors.

  15. CONNECTICUT GROUND WATER QUALITY CLASSIFICATIONS - WELLS

    EPA Science Inventory

    This is a 1:24,000-scale datalayer of Ground Water Quality Classifications for public supply wells in Connecticut. It is a polygon Shapefile that includes GAA areas for public water supply wells. Each polygon is assigned a GAA ground water quality class, which is stored in the d...

  16. Management of the water balance and quality in mining areas

    NASA Astrophysics Data System (ADS)

    Pasanen, Antti; Krogerus, Kirsti; Mroueh, Ulla-Maija; Turunen, Kaisa; Backnäs, Soile; Vento, Tiia; Veijalainen, Noora; Hentinen, Kimmo; Korkealaakso, Juhani

    2015-04-01

    Although mining companies have long been conscious of water related risks they still face environmental management problems. These problems mainly emerge because mine sites' water balances have not been adequately assessed in the stage of the planning of mines. More consistent approach is required to help mining companies identify risks and opportunities related to the management of water resources in all stages of mining. This approach requires that the water cycle of a mine site is interconnected with the general hydrologic water cycle. In addition to knowledge on hydrological conditions, the control of the water balance in the mining processes require knowledge of mining processes, the ability to adjust process parameters to variable hydrological conditions, adaptation of suitable water management tools and systems, systematic monitoring of amounts and quality of water, adequate capacity in water management infrastructure to handle the variable water flows, best practices to assess the dispersion, mixing and dilution of mine water and pollutant loading to receiving water bodies, and dewatering and separation of water from tailing and precipitates. WaterSmart project aims to improve the awareness of actual quantities of water, and water balances in mine areas to improve the forecasting and the management of the water volumes. The study is executed through hydrogeological and hydrological surveys and online monitoring procedures. One of the aims is to exploit on-line water quantity and quality monitoring for the better management of the water balances. The target is to develop a practical and end-user-specific on-line input and output procedures. The second objective is to develop mathematical models to calculate combined water balances including the surface, ground and process waters. WSFS, the Hydrological Modeling and Forecasting System of SYKE is being modified for mining areas. New modelling tools are developed on spreadsheet and system dynamics platforms to

  17. WATER QUALITY AND ASSOCIATIONS WITH GASTROINTESTINAL CONDITIONS

    EPA Science Inventory

    Water quality is quantified using several measures, available from various data sources. These can be combined to create a single index of overall water quality which can be used for health research. We developed a water quality index for all United States counties and assessed a...

  18. Mass imbalances in EPANET water-quality simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Davis, Michael J.; Janke, Robert; Taxon, Thomas N.

    EPANET is widely employed to simulate water quality in water distribution systems. However, the time-driven simulation approach used to determine concentrations of water-quality constituents provides accurate results, in general, only for small water-quality time steps; use of an adequately short time step may not be feasible. Overly long time steps can yield errors in concentrations and result in situations in which constituent mass is not conserved. Mass may not be conserved even when EPANET gives no errors or warnings. This paper explains how such imbalances can occur and provides examples of such cases; it also presents a preliminary event-driven approachmore » that conserves mass with a water-quality time step that is as long as the hydraulic time step. Results obtained using the current approach converge, or tend to converge, to those obtained using the new approach as the water-quality time step decreases. Improving the water-quality routing algorithm used in EPANET could eliminate mass imbalances and related errors in estimated concentrations.« less

  19. Water Quality Indicators Guide [and Teacher's Handbook]: Surface Waters.

    ERIC Educational Resources Information Center

    Terrell, Charles R.; Perfetti, Patricia Bytnar

    This guide aids in finding water quality solutions to problems from sediment, animal wastes, nutrients, pesticides, and salts. The guide allows users to learn the fundamental concepts of water quality assessment by extracting basic tenets from geology, hydrology, biology, ecology, and wastewater treatment. An introduction and eight chapters are…

  20. Quality of Drinking Water

    ERIC Educational Resources Information Center

    Roman, Harry T.

    2009-01-01

    The quality of drinking water has been gaining a great deal of attention lately, especially as water delivery infrastructure continues to age. Particles of various metals such as lead and copper, and other substances like radon and arsenic could be entering drinking water supplies. Spilled-on-the-ground hydrocarbon-based substances are also…

  1. Drinking-water quality management: the Australian framework.

    PubMed

    Sinclair, Martha; Rizak, Samantha

    The most effective means of assuring drinking-water quality and the protection of public health is through adoption of a preventive management approach that encompasses all steps in water production from catchment to consumer. However, the reliance of current regulatory structures on compliance monitoring of treated water tends to promote a reactive management style where corrective actions are initiated after monitoring reveals that prescribed levels have been exceeded, and generally after consumers have received the noncomplying water. Unfortunately, the important limitations of treated water monitoring are often not appreciated, and there is a widespread tendency to assume that intensification of compliance monitoring or lowering of compliance limits is an effective strategy to improving the protection of public health. To address these issues and emphasize the role of preventive system management, the Australian National Health and Medical Research Council in collaboration with the Co-operative Research Centre for Water Quality and Treatment has developed a comprehensive quality management approach for drinking water. This Framework for Management of Drinking Water Quality will assist water suppliers in providing a higher level of assurance for drinking water quality and safety. The framework integrates quality and risk management principles, and provides a comprehensive, flexible, and proactive means of optimizing, drinking-water quality and protecting public health. It does not eliminate the requirement for compliance monitoring but allows it to be viewed in the proper perspective as providing verification that preventive measures are effective, rather than as the primary means of protecting public health.

  2. Water Quality of a Micronesian Atoll

    ERIC Educational Resources Information Center

    Mabbett, Arthur N.

    1975-01-01

    In 1972, a water quality survey of the eastern end of Majuro Atoll, Marshall Islands was conducted to determine the water quality of selected lagoon and open ocean sites and provide guidance for the construction of a sewerage system. This study revealed that lagoon waters were moderately to severely contaminated. (BT)

  3. Assessment of Drinking Water Quality from Bottled Water Coolers

    PubMed Central

    FARHADKHANI, Marzieh; NIKAEEN, Mahnaz; AKBARI ADERGANI, Behrouz; HATAMZADEH, Maryam; NABAVI, Bibi Fatemeh; HASSANZADEH, Akbar

    2014-01-01

    Abstract Background Drinking water quality can be deteriorated by microbial and toxic chemicals during transport, storage and handling before using by the consumer. This study was conducted to evaluate the microbial and physicochemical quality of drinking water from bottled water coolers. Methods A total of 64 water samples, over a 5-month period in 2012-2013, were collected from free standing bottled water coolers and water taps in Isfahan. Water samples were analyzed for heterotrophic plate count (HPC), temperature, pH, residual chlorine, turbidity, electrical conductivity (EC) and total organic carbon (TOC). Identification of predominant bacteria was also performed by sequence analysis of 16S rDNA. Results The mean HPC of water coolers was determined at 38864 CFU/ml which exceeded the acceptable level for drinking water in 62% of analyzed samples. The HPC from the water coolers was also found to be significantly (P < 0.05) higher than that of the tap waters. The statistical analysis showed no significant difference between the values of pH, EC, turbidity and TOC in water coolers and tap waters. According to sequence analysis eleven species of bacteria were identified. Conclusion A high HPC is indicative of microbial water quality deterioration in water coolers. The presence of some opportunistic pathogens in water coolers, furthermore, is a concern from a public health point of view. The results highlight the importance of a periodic disinfection procedure and monitoring system for water coolers in order to keep the level of microbial contamination under control. PMID:26060769

  4. Water resources data Virginia water year 2005 Volume 1. Surface-water discharge and surface-water quality records

    USGS Publications Warehouse

    Wicklein, Shaun M.; Powell, Eugene D.; Guyer, Joel R.; Owens, Joseph A.

    2006-01-01

    Water-resources data for the 2005 water year for Virginia includes records of stage, discharge, and water quality of streams and stage, contents, and water quality of lakes and reservoirs. This volume contains records for water discharge at 172 gaging stations; stage only at 2 gaging stations; elevation at 2 reservoirs and 2 tide gages; contents at 1 reservoir, and water quality at 25 gaging stations. Also included are data for 50 crest-stage partial-record stations. Locations of these sites are shown on figures 4A-B and 5A-B. Miscellaneous hydrologic data were collected at 128 measuring sites and 19 water-quality sampling sites not involved in the systematic data-collection program. The data in this report represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Virginia.

  5. Assessment of water quality from water harvesting using small farm reservoir for irrigation

    NASA Astrophysics Data System (ADS)

    Dewi, W. S.; Komariah; Samsuri, I. Y.; Senge, M.

    2018-03-01

    This study aims to assess the quality of rainfall-runoff water harvesting using small farm reservoir (SFR) for irrigation. Water quality assessment criteria based on RI Government Regulation number 82 the year 2001 on Water Quality Management and Pollution Control, and FAO Irrigation Water Quality Guidelines 1985. The experiment was conducted in the dry land of Wonosari Village, Gondangrejo District, Karanganyar Regency. SFR size was 10 m x 3 m x 2 m. Water quality measurements are done every week, ten times. Water samples were taken at 6 points, namely: distance of 2.5 m, 5 m, and 7.5 m from the inlet, at depth 25 cm and 175 cm from surface water. In each sampling point replicated three times. Water quality parameters include dissolved oxygen (DO), Turbidity (TSS), water pH, Nitrate (NO3), and Phosphate. The results show that water harvesting that collected in SFR meets both standards quality used, so the water is feasible for agricultural irrigation. The average value of harvested water was DO 2.6 mg/l, TSS 62.7 mg/l, pH 6.6, P 5.3 mg/l and NO3 0.16 mg/l. Rainfall-runoff water harvesting using SFR prospectus for increasing save water availability for irrigation.

  6. Accounting for metal bioavailability in assessing water quality: A step change?

    PubMed

    Merrington, Graham; Peters, Adam; Schlekat, Christian E

    2016-02-01

    Bioavailability of metals to aquatic organisms can be considered to be a combination of the physicochemical factors governing metal behavior and the specific pathophysiological characteristics of the organism's biological receptor. Effectively this means that a measure of bioavailability will reflect the exposures that organisms in the water column actually "experience". This is important because it has long been established that measures of total metal in waters have limited relevance to potential environmental risk. The concept of accounting for bioavailability in regard to deriving and implementing environmental water quality standards is not new, but the regulatory reality has lagged behind the development of scientific evidence supporting the concept. Practical and technical reasons help to explain this situation. For example, concerns remain from regulators and the regulated that the efforts required to change existing systems of metal environmental protection that have been in place for over 35 yr are so great as not to be commensurate with likely benefits. However, more regulatory jurisdictions are now considering accounting for metal bioavailability in assessments of water quality as a means to support evidence-based decision-making. In the past decade, both the US Environmental Protection Agency and the European Commission have established bioavailability-based standards for metals, including Cu and Ni. These actions have shifted the debate toward identifying harmonized approaches for determining when knowledge is adequate to establish bioavailability-based approaches and how to implement them. © 2016 SETAC.

  7. Quality matters for water scarcity

    NASA Astrophysics Data System (ADS)

    van Vliet, Michelle T. H.; Flörke, Martina; Wada, Yoshihide

    2017-11-01

    Quality requirements for water differ by intended use. Sustainable management of water resources for different uses will not only need to account for demand in water quantity, but also for water temperature and salinity, nutrient levels and other pollutants.

  8. HAWQS (Hydrologic and Water Quality System)

    EPA Pesticide Factsheets

    A water quantity and quality modeling system to evaluate the impacts of management alternatives, pollution control scenarios, and climate change scenarios on the quantity and quality of water at a national scale.

  9. Ground-water quality atlas of Wisconsin

    USGS Publications Warehouse

    Kammerer, Phil A.

    1981-01-01

    This report summarizes data on ground-water quality stored in the U.S. Geological Survey's computer system (WATSTORE). The summary includes water quality data for 2,443 single-aquifer wells, which tap one of the State's three major aquifers (sand and gravel, Silurian dolomite, and sandstone). Data for dissolved solids, hardness, alkalinity, calcium, magnesium, sodium, potassium, iron, manganese, sulfate, chloride, fluoride, and nitrate are summarized by aquifer and by county, and locations of wells for which data are available 1 are shown for each aquifer. Calcium, magnesium, and bicarbonate (the principal component of alkalinity) are the major dissolved constituents in Wisconsin's ground water. High iron concentrations and hardness cause ground-water quality problems in much of the State. Statewide ,summaries of trace constituent (selected trace metals; arsenic, boron, and organic carbon) concentrations show that these constituents impair water quality in only a few isolated wells.

  10. Microbial quality of drinking water from microfiltered water dispensers.

    PubMed

    Sacchetti, R; De Luca, G; Dormi, A; Guberti, E; Zanetti, F

    2014-03-01

    A comparison was made between the microbial quality of drinking water obtained from Microfiltered Water Dispensers (MWDs) and that of municipal tap water. A total of 233 water samples were analyzed. Escherichia coli (EC), enterococci (ENT), total coliforms (TC), Staphylococcus aureus, Pseudomonas aeruginosa and heterotrophic plate count (HPC) at 22 °C and 37 °C were enumerated. In addition, information was collected about the principal structural and functional characteristics of each MWD in order to study the various factors that might influence the microbial quality of the water. EC and ENT were not detected in any of the samples. TC were never detected in the tap water but were found in 5 samples taken from 5 different MWDs. S. aureus was found in a single sample of microfiltered water. P. aeruginosa was found more frequently and at higher concentrations in the samples collected from MWDs. The mean HPCs at 22 °C and 37 °C were significantly higher in microfiltered water samples compared to those of the tap water. In conclusion, the use of MWDs may increase the number of bacteria originally present in tap water. It is therefore important to monitor the quality of the dispensed water over time, especially if it is destined for vulnerable users. Copyright © 2013 Elsevier GmbH. All rights reserved.

  11. Successful integration efforts in water quality from the integrated Ocean Observing System Regional Associations and the National Water Quality Monitoring Network

    USGS Publications Warehouse

    Ragsdale, R.; Vowinkel, E.; Porter, D.; Hamilton, P.; Morrison, R.; Kohut, J.; Connell, B.; Kelsey, H.; Trowbridge, P.

    2011-01-01

    The Integrated Ocean Observing System (IOOS??) Regional Associations and Interagency Partners hosted a water quality workshop in January 2010 to discuss issues of nutrient enrichment and dissolved oxygen depletion (hypoxia), harmful algal blooms (HABs), and beach water quality. In 2007, the National Water Quality Monitoring Council piloted demonstration projects as part of the National Water Quality Monitoring Network (Network) for U.S. Coastal Waters and their Tributaries in three IOOS Regional Associations, and these projects are ongoing. Examples of integrated science-based solutions to water quality issues of major concern from the IOOS regions and Network demonstration projects are explored in this article. These examples illustrate instances where management decisions have benefited from decision-support tools that make use of interoperable data. Gaps, challenges, and outcomes are identified, and a proposal is made for future work toward a multiregional water quality project for beach water quality.

  12. 9 CFR 3.106 - Water quality.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Water quality. 3.106 Section 3.106... Mammals Animal Health and Husbandry Standards § 3.106 Water quality. (a) General. The primary enclosure shall not contain water which would be detrimental to the health of the marine mammal contained therein...

  13. 9 CFR 3.106 - Water quality.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Water quality. 3.106 Section 3.106... Mammals Animal Health and Husbandry Standards § 3.106 Water quality. (a) General. The primary enclosure shall not contain water which would be detrimental to the health of the marine mammal contained therein...

  14. 9 CFR 3.106 - Water quality.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Water quality. 3.106 Section 3.106... Mammals Animal Health and Husbandry Standards § 3.106 Water quality. (a) General. The primary enclosure shall not contain water which would be detrimental to the health of the marine mammal contained therein...

  15. 9 CFR 3.106 - Water quality.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Water quality. 3.106 Section 3.106... Mammals Animal Health and Husbandry Standards § 3.106 Water quality. (a) General. The primary enclosure shall not contain water which would be detrimental to the health of the marine mammal contained therein...

  16. 9 CFR 3.106 - Water quality.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Water quality. 3.106 Section 3.106... Mammals Animal Health and Husbandry Standards § 3.106 Water quality. (a) General. The primary enclosure shall not contain water which would be detrimental to the health of the marine mammal contained therein...

  17. Assessment of Water-Quality Monitoring and a Proposed Water-Quality Monitoring Network for the Mosquito Lagoon Basin, East-Central Florida

    USGS Publications Warehouse

    Kroening, Sharon E.

    2008-01-01

    Surface- and ground-water quality data from the Mosquito Lagoon Basin were compiled and analyzed to: (1) describe historical and current monitoring in the basin, (2) summarize surface- and ground-water quality conditions with an emphasis on identifying areas that require additional monitoring, and (3) develop a water-quality monitoring network to meet the goals of Canaveral National Seashore (a National Park) and to fill gaps in current monitoring. Water-quality data were compiled from the U.S. Environmental Protection Agency's STORET system, the U.S. Geological Survey's National Water Information System, or from the agency which collected the data. Most water-quality monitoring focused on assessing conditions in Mosquito Lagoon. Significant spatial and/or seasonal variations in water-quality constituents in the lagoon were quantified for pH values, fecal coliform bacteria counts, and concentrations of dissolved oxygen, total nitrogen, total phosphorus, chlorophyll-a, and total suspended solids. Trace element, pesticide, and ground-water-quality data were more limited. Organochlorine insecticides were the major class of pesticides analyzed. A surface- and ground-water-quality monitoring network was designed for the Mosquito Lagoon Basin which emphasizes: (1) analysis of compounds indicative of human activities, including pesticides and other trace organic compounds present in domestic and industrial waste; (2) greater data collection in the southern part of Mosquito Lagoon where spatial variations in water-quality constituents were quantified; and (3) additional ground-water-quality data collection in the surficial aquifer system and Upper Floridan aquifer. Surface-water-quality data collected as part of this network would include a fixed-station monitoring network of eight sites in the southern part of the basin, including a canal draining Oak Hill. Ground-water quality monitoring should be done routinely at about 20 wells in the surficial aquifer system and Upper

  18. The quality of our Nation's waters: factors affecting public-supply-well vulnerability to contamination: understanding observed water quality and anticipating future water quality

    USGS Publications Warehouse

    Eberts, Sandra M.; Thomas, Mary Ann; Jagucki, Martha L.

    2013-01-01

    As part of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program, a study was conducted from 2001 to 2011 to shed light on factors that affect the vulnerability of water from public-supply wells to contamination (referred to hereafter as “public-supply-well vulnerability”). The study was designed as a follow-up to earlier NAWQA studies that found mixtures of contaminants at low concentrations in groundwater near the water table in urban areas across the Nation and, less frequently, in deeper groundwater typically used for public supply. Beside the factors affecting public-supply-well vulnerability to contamination, this circular describes measures that can be used to determine which factor (or factors) plays a dominant role at an individual public-supply well. Case-study examples are used throughout to show how such information can be used to improve water quality. In general, the vulnerability of the water from public-supply wells to contamination is a function of contaminant input within the area that contributes water to a well, the mobility and persistence of a contaminant once released to the groundwater, and the ease of groundwater and contaminant movement from the point of recharge to the open interval of a well. The following measures described in this circular are particularly useful for indicating which contaminants in an aquifer might reach an individual public-supply well and when, how, and at what concentration they might arrive: * Sources of recharge—Information on the sources of recharge for a well provides insight into contaminants that might enter the aquifer with the recharge water and potentially reach the well. * Geochemical conditions—Information on the geochemical conditions encountered by groundwater traveling to a well provides insight into contaminants that might persist in the water all the way to the well. * Groundwater-age mixtures—Information on the ages of the different waters that mix in a well

  19. Identification and assessment of potential water quality impact factors for drinking-water reservoirs.

    PubMed

    Gu, Qing; Deng, Jinsong; Wang, Ke; Lin, Yi; Li, Jun; Gan, Muye; Ma, Ligang; Hong, Yang

    2014-06-10

    Various reservoirs have been serving as the most important drinking water sources in Zhejiang Province, China, due to the uneven distribution of precipitation and severe river pollution. Unfortunately, rapid urbanization and industrialization have been continuously challenging the water quality of the drinking-water reservoirs. The identification and assessment of potential impacts is indispensable in water resource management and protection. This study investigates the drinking water reservoirs in Zhejiang Province to better understand the potential impact on water quality. Altogether seventy-three typical drinking reservoirs in Zhejiang Province encompassing various water storage levels were selected and evaluated. Using fifty-two reservoirs as training samples, the classification and regression tree (CART) method and sixteen comprehensive variables, including six sub-sets (land use, population, socio-economy, geographical features, inherent characteristics, and climate), were adopted to establish a decision-making model for identifying and assessing their potential impacts on drinking-water quality. The water quality class of the remaining twenty-one reservoirs was then predicted and tested based on the decision-making model, resulting in a water quality class attribution accuracy of 81.0%. Based on the decision rules and quantitative importance of the independent variables, industrial emissions was identified as the most important factor influencing the water quality of reservoirs; land use and human habitation also had a substantial impact on water quality. The results of this study provide insights into the factors impacting the water quality of reservoirs as well as basic information for protecting reservoir water resources.

  20. The psychology of drinking water quality: An exploratory study

    NASA Astrophysics Data System (ADS)

    Syme, Geoffrey J.; Williams, Katrina D.

    1993-12-01

    Perceptions of drinking water quality were measured for residents at four locations in Western Australia. The total dissolved solid levels for the locations varied. Four scales of drinking water satisfaction were measured: acceptability of water quality; water quality risk judgment; perception of neighborhood water quality; and attitudes toward fluoride as an additive. Responses to each of these scales did not appear to be highly related to total dissolved solids. The relationship between attitudes toward water quality and a variety of psychological, attitudinal, experiential, and demographic variables was investigated. It was found that responses to the acceptability of water quality and water quality risk judgment scales related to perceived credibility of societal institutions and feelings of control over water quality and environmental problems. For the remaining two scales few significant correlations were found. The results support those who advocate localized information and involvement campaigns on drinking water quality issues.

  1. 7 CFR 634.23 - Water quality plan.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... quality management plan. Such BMP's must reduce the amount of pollutants that enter a stream or lake by... 7 Agriculture 6 2010-01-01 2010-01-01 false Water quality plan. 634.23 Section 634.23 Agriculture... AGRICULTURE LONG TERM CONTRACTING RURAL CLEAN WATER PROGRAM Participant RCWP Contracts § 634.23 Water quality...

  2. Water Quality Assessment of Ayeyarwady River in Myanmar

    NASA Astrophysics Data System (ADS)

    Thatoe Nwe Win, Thanda; Bogaard, Thom; van de Giesen, Nick

    2015-04-01

    Myanmar's socio-economic activities, urbanisation, industrial operations and agricultural production have increased rapidly in recent years. With the increase of socio-economic development and climate change impacts, there is an increasing threat on quantity and quality of water resources. In Myanmar, some of the drinking water coverage still comes from unimproved sources including rivers. The Ayeyarwady River is the main river in Myanmar draining most of the country's area. The use of chemical fertilizer in the agriculture, the mining activities in the catchment area, wastewater effluents from the industries and communities and other development activities generate pollutants of different nature. Therefore water quality monitoring is of utmost importance. In Myanmar, there are many government organizations linked to water quality management. Each water organization monitors water quality for their own purposes. The monitoring is haphazard, short term and based on individual interest and the available equipment. The monitoring is not properly coordinated and a quality assurance programme is not incorporated in most of the work. As a result, comprehensive data on the water quality of rivers in Myanmar is not available. To provide basic information, action is needed at all management levels. The need for comprehensive and accurate assessments of trends in water quality has been recognized. For such an assessment, reliable monitoring data are essential. The objective of our work is to set-up a multi-objective surface water quality monitoring programme. The need for a scientifically designed network to monitor the Ayeyarwady river water quality is obvious as only limited and scattered data on water quality is available. However, the set-up should also take into account the current socio-economic situation and should be flexible to adjust after first years of monitoring. Additionally, a state-of-the-art baseline river water quality sampling program is required which

  3. Potential impacts of changing supply-water quality on drinking water distribution: A review.

    PubMed

    Liu, Gang; Zhang, Ya; Knibbe, Willem-Jan; Feng, Cuijie; Liu, Wentso; Medema, Gertjan; van der Meer, Walter

    2017-06-01

    Driven by the development of water purification technologies and water quality regulations, the use of better source water and/or upgraded water treatment processes to improve drinking water quality have become common practices worldwide. However, even though these elements lead to improved water quality, the water quality may be impacted during its distribution through piped networks due to the processes such as pipe material release, biofilm formation and detachment, accumulation and resuspension of loose deposits. Irregular changes in supply-water quality may cause physiochemical and microbiological de-stabilization of pipe material, biofilms and loose deposits in the distribution system that have been established over decades and may harbor components that cause health or esthetical issues (brown water). Even though it is clearly relevant to customers' health (e.g., recent Flint water crisis), until now, switching of supply-water quality is done without any systematic evaluation. This article reviews the contaminants that develop in the water distribution system and their characteristics, as well as the possible transition effects during the switching of treated water quality by destabilization and the release of pipe material and contaminants into the water and the subsequent risks. At the end of this article, a framework is proposed for the evaluation of potential transition effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. An innovative index for evaluating water quality in streams.

    PubMed

    Said, Ahmend; Stevens, David K; Sehlke, Gerald

    2004-09-01

    A water quality index expressed as a single number is developed to describe overall water quality conditions using multiple water quality variables. The index consists of water quality variables: dissolved oxygen, specific conductivity, turbidity, total phosphorus, and fecal coliform. The objectives of this study were to describe the preexisting indices and to define a new water quality index that has advantages over these indices. The new index was applied to the Big Lost River Watershed in Idaho, and the results gave a quantitative picture for the water quality situation. If the new water quality index for the impaired water is less than a certain number, remediation-likely in the form of total maximum daily loads or changing the management practices-may be needed. The index can be used to assess water quality for general beneficial uses. Nevertheless, the index cannot be used in making regulatory decisions, indicate water quality for specific beneficial uses, or indicate contamination from trace metals, organic contaminants, and toxic substances.

  5. Actual performance of mechanical ventilators in ICU: a multicentric quality control study.

    PubMed

    Govoni, Leonardo; Dellaca', Raffaele L; Peñuelas, Oscar; Bellani, Giacomo; Artigas, Antonio; Ferrer, Miquel; Navajas, Daniel; Pedotti, Antonio; Farré, Ramon

    2012-01-01

    Even if the performance of a given ventilator has been evaluated in the laboratory under very well controlled conditions, inappropriate maintenance and lack of long-term stability and accuracy of the ventilator sensors may lead to ventilation errors in actual clinical practice. The aim of this study was to evaluate the actual performances of ventilators during clinical routines. A resistance (7.69 cmH(2)O/L/s) - elastance (100 mL/cmH(2)O) test lung equipped with pressure, flow, and oxygen concentration sensors was connected to the Y-piece of all the mechanical ventilators available for patients in four intensive care units (ICUs; n = 66). Ventilators were set to volume-controlled ventilation with tidal volume = 600 mL, respiratory rate = 20 breaths/minute, positive end-expiratory pressure (PEEP) = 8 cmH(2)O, and oxygen fraction = 0.5. The signals from the sensors were recorded to compute the ventilation parameters. The average ± standard deviation and range (min-max) of the ventilatory parameters were the following: inspired tidal volume = 607 ± 36 (530-723) mL, expired tidal volume = 608 ± 36 (530-728) mL, peak pressure = 20.8 ± 2.3 (17.2-25.9) cmH(2)O, respiratory rate = 20.09 ± 0.35 (19.5-21.6) breaths/minute, PEEP = 8.43 ± 0.57 (7.26-10.8) cmH(2)O, oxygen fraction = 0.49 ± 0.014 (0.41-0.53). The more error-prone parameters were the ones related to the measure of flow. In several cases, the actual delivered mechanical ventilation was considerably different from the set one, suggesting the need for improving quality control procedures for these machines.

  6. 30 CFR 71.601 - Drinking water; quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 71.600 shall meet the applicable minimum health requirements for drinking water established by the...

  7. 30 CFR 71.601 - Drinking water; quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 71.600 shall meet the applicable minimum health requirements for drinking water established by the...

  8. 30 CFR 71.601 - Drinking water; quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 71.600 shall meet the applicable minimum health requirements for drinking water established by the...

  9. 30 CFR 71.601 - Drinking water; quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 71.600 shall meet the applicable minimum health requirements for drinking water established by the...

  10. 30 CFR 71.601 - Drinking water; quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drinking water; quality. 71.601 Section 71.601... Water § 71.601 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 71.600 shall meet the applicable minimum health requirements for drinking water established by the...

  11. DESCRIPTIVE WATER QUALITY FOR THE ATCHAFALAYA BASIN, LOUISIANA

    EPA Science Inventory

    This report describes water quality in the Atchafalaya Basin in terms of geographical areas, seasonal patterns, and its relationships to water regimes and compares water quality in the Basin to water quality in other Louisiana and southeastern lakes. Emphasis in this report is gi...

  12. Water Resources Data, Georgia, 2000, Volume 1: Continuous water-level, streamflow, water-quality data, and periodic water-quality data, Water Year 2000

    USGS Publications Warehouse

    McCallum, Brian E.; Hickey, Andrew C.

    2000-01-01

    Water resources data for the 2000 water year for Georgia consists of records of stage, discharge, and water quality of streams; and the stage and contents of lakes and reservoirs published in one volume in a digital format on a CD-ROM. This volume contains discharge records of 125 gaging stations; stage for 20 gaging stations; information for 18 lakes and reservoirs; continuous water-quality records for 10 stations; the annual peak stage and annual peak discharge for 77 crest-stage partial-record stations; and miscellaneous streamflow measurements at 21 stations. These data represent that part of the National Water Data System collected by the U.S. Geological Survey and cooperating State and Federal agencies in Georgia. Note: Historically, this report was published as a paper report. For the 1999 and subsequent water-year reports, the Water Resources Data for Georgia changed to a new, more informative and functional format on CD-ROM. The format is based on a geographic information system (GIS) user interface that allows the user to view map locations of the hydrologic monitoring stations and networks within respective river basins.

  13. Recent developments in water quality monitoring for Space Station reclaimed wastewaters

    NASA Technical Reports Server (NTRS)

    Small, John W.; Verostko, Charles E.; Linton, Arthur T.; Burchett, Ray

    1987-01-01

    This paper discusses the recent developments in water quality monitoring for Space Station reclaimed wastewaters. A preprototype unit that contains an ultraviolet absorbance organic carbon monitor integrated with pH and conductivity sensors is presented. The preprototype has provisions for automated operation and is a reagentless flow-through system without any gas/liquid interfaces. The organic carbon monitor detects by utraviolet absorbance the organic impurities in reclaimed wastewater which may be correlated to the organic carbon content of the water. A comparison of the preprototype organic carbon detection values with actual total organic carbon measurements is presented. The electrolyte double junction concept for the pH sensor and fixed electrodes for both the pH and conductivity sensors are discussed. In addition, the development of a reagentless organic carbon analyzer that incorporates ultraviolet oxidation and infrared detection is presented. Detection sensitivities, hardware development, and operation are included.

  14. Identification and Assessment of Potential Water Quality Impact Factors for Drinking-Water Reservoirs

    PubMed Central

    Gu, Qing; Deng, Jinsong; Wang, Ke; Lin, Yi; Li, Jun; Gan, Muye; Ma, Ligang; Hong, Yang

    2014-01-01

    Various reservoirs have been serving as the most important drinking water sources in Zhejiang Province, China, due to the uneven distribution of precipitation and severe river pollution. Unfortunately, rapid urbanization and industrialization have been continuously challenging the water quality of the drinking-water reservoirs. The identification and assessment of potential impacts is indispensable in water resource management and protection. This study investigates the drinking water reservoirs in Zhejiang Province to better understand the potential impact on water quality. Altogether seventy-three typical drinking reservoirs in Zhejiang Province encompassing various water storage levels were selected and evaluated. Using fifty-two reservoirs as training samples, the classification and regression tree (CART) method and sixteen comprehensive variables, including six sub-sets (land use, population, socio-economy, geographical features, inherent characteristics, and climate), were adopted to establish a decision-making model for identifying and assessing their potential impacts on drinking-water quality. The water quality class of the remaining twenty-one reservoirs was then predicted and tested based on the decision-making model, resulting in a water quality class attribution accuracy of 81.0%. Based on the decision rules and quantitative importance of the independent variables, industrial emissions was identified as the most important factor influencing the water quality of reservoirs; land use and human habitation also had a substantial impact on water quality. The results of this study provide insights into the factors impacting the water quality of reservoirs as well as basic information for protecting reservoir water resources. PMID:24919129

  15. Portable water quality monitoring system

    NASA Astrophysics Data System (ADS)

    Nizar, N. B.; Ong, N. R.; Aziz, M. H. A.; Alcain, J. B.; Haimi, W. M. W. N.; Sauli, Z.

    2017-09-01

    Portable water quality monitoring system was a developed system that tested varied samples of water by using different sensors and provided the specific readings to the user via short message service (SMS) based on the conditions of the water itself. In this water quality monitoring system, the processing part was based on a microcontroller instead of Lead and Copper Rule (LCR) machines to receive the results. By using four main sensors, this system obtained the readings based on the detection of the sensors, respectively. Therefore, users can receive the readings through SMS because there was a connection between Arduino Uno and GSM Module. This system was designed to be portable so that it would be convenient for users to carry it anywhere and everywhere they wanted to since the processor used is smaller in size compared to the LCR machines. It was also developed to ease the user to monitor and control the water quality. However, the ranges of the sensors' detection still a limitation in this study.

  16. A Review of Surface Water Quality Models

    PubMed Central

    Li, Shibei; Jia, Peng; Qi, Changjun; Ding, Feng

    2013-01-01

    Surface water quality models can be useful tools to simulate and predict the levels, distributions, and risks of chemical pollutants in a given water body. The modeling results from these models under different pollution scenarios are very important components of environmental impact assessment and can provide a basis and technique support for environmental management agencies to make right decisions. Whether the model results are right or not can impact the reasonability and scientificity of the authorized construct projects and the availability of pollution control measures. We reviewed the development of surface water quality models at three stages and analyzed the suitability, precisions, and methods among different models. Standardization of water quality models can help environmental management agencies guarantee the consistency in application of water quality models for regulatory purposes. We concluded the status of standardization of these models in developed countries and put forward available measures for the standardization of these surface water quality models, especially in developing countries. PMID:23853533

  17. National Water Quality Standards Database (NWQSD)

    EPA Pesticide Factsheets

    The National Water Quality Standards Database (WQSDB) provides access to EPA and state water quality standards (WQS) information in text, tables, and maps. This data source was last updated in December 2007 and will no longer be updated.

  18. Spatio-Temporal Trends and Identification of Correlated Variables with Water Quality for Drinking-Water Reservoirs

    PubMed Central

    Gu, Qing; Wang, Ke; Li, Jiadan; Ma, Ligang; Deng, Jinsong; Zheng, Kefeng; Zhang, Xiaobin; Sheng, Li

    2015-01-01

    It is widely accepted that characterizing the spatio-temporal trends of water quality parameters and identifying correlated variables with water quality are indispensable for the management and protection of water resources. In this study, cluster analysis was used to classify 56 typical drinking water reservoirs in Zhejiang Province into three groups representing different water quality levels, using data of four water quality parameters for the period 2006–2010. Then, the spatio-temporal trends in water quality were analyzed, assisted by geographic information systems (GIS) technology and statistical analysis. The results indicated that the water quality showed a trend of degradation from southwest to northeast, and the overall water quality level was exacerbated during the study period. Correlation analysis was used to evaluate the relationships between water quality parameters and ten independent variables grouped into four categories (land use, socio-economic factors, geographical features, and reservoir attributes). According to the correlation coefficients, land use and socio-economic indicators were identified as the most significant factors related to reservoir water quality. The results offer insights into the spatio-temporal variations of water quality parameters and factors impacting the water quality of drinking water reservoirs in Zhejiang Province, and they could assist managers in making effective strategies to better protect water resources. PMID:26492263

  19. Spatio-Temporal Trends and Identification of Correlated Variables with Water Quality for Drinking-Water Reservoirs.

    PubMed

    Gu, Qing; Wang, Ke; Li, Jiadan; Ma, Ligang; Deng, Jinsong; Zheng, Kefeng; Zhang, Xiaobin; Sheng, Li

    2015-10-20

    It is widely accepted that characterizing the spatio-temporal trends of water quality parameters and identifying correlated variables with water quality are indispensable for the management and protection of water resources. In this study, cluster analysis was used to classify 56 typical drinking water reservoirs in Zhejiang Province into three groups representing different water quality levels, using data of four water quality parameters for the period 2006-2010. Then, the spatio-temporal trends in water quality were analyzed, assisted by geographic information systems (GIS) technology and statistical analysis. The results indicated that the water quality showed a trend of degradation from southwest to northeast, and the overall water quality level was exacerbated during the study period. Correlation analysis was used to evaluate the relationships between water quality parameters and ten independent variables grouped into four categories (land use, socio-economic factors, geographical features, and reservoir attributes). According to the correlation coefficients, land use and socio-economic indicators were identified as the most significant factors related to reservoir water quality. The results offer insights into the spatio-temporal variations of water quality parameters and factors impacting the water quality of drinking water reservoirs in Zhejiang Province, and they could assist managers in making effective strategies to better protect water resources.

  20. Water quality risks of 'improved' water sources: evidence from Cambodia.

    PubMed

    Shaheed, A; Orgill, J; Ratana, C; Montgomery, M A; Jeuland, M A; Brown, J

    2014-02-01

    The objective of this study was to investigate the quality of on-plot piped water and rainwater at the point of consumption in an area with rapidly expanding coverage of 'improved' water sources. Cross-sectional study of 914 peri-urban households in Kandal Province, Cambodia, between July-August 2011. We collected data from all households on water management, drinking water quality and factors potentially related to post-collection water contamination. Drinking water samples were taken directly from a subsample of household taps (n = 143), stored tap water (n = 124), other stored water (n = 92) and treated stored water (n = 79) for basic water quality analysis for Escherichia coli and other parameters. Household drinking water management was complex, with different sources used at any given time and across seasons. Rainwater was the most commonly used drinking water source. Households mixed different water sources in storage containers, including 'improved' with 'unimproved' sources. Piped water from taps deteriorated during storage (P < 0.0005), from 520 cfu/100 ml (coefficient of variation, CV: 5.7) E. coli to 1100 cfu/100 ml (CV: 3.4). Stored non-piped water (primarily rainwater) had a mean E. coli count of 1500 cfu/100 ml (CV: 4.1), not significantly different from stored piped water (P = 0.20). Microbial contamination of stored water was significantly associated with observed storage and handling practices, including dipping hands or receptacles in water (P < 0.005), and having an uncovered storage container (P = 0.052). The microbial quality of 'improved' water sources in our study area was not maintained at the point of consumption, possibly due to a combination of mixing water sources at the household level, unsafe storage and handling practices, and inadequately treated piped-to-plot water. These results have implications for refining international targets for safe drinking water access as well as the assumptions underlying global burden of disease

  1. Uncertainties in selected river water quality data

    NASA Astrophysics Data System (ADS)

    Rode, M.; Suhr, U.

    2007-02-01

    Monitoring of surface waters is primarily done to detect the status and trends in water quality and to identify whether observed trends arise from natural or anthropogenic causes. Empirical quality of river water quality data is rarely certain and knowledge of their uncertainties is essential to assess the reliability of water quality models and their predictions. The objective of this paper is to assess the uncertainties in selected river water quality data, i.e. suspended sediment, nitrogen fraction, phosphorus fraction, heavy metals and biological compounds. The methodology used to structure the uncertainty is based on the empirical quality of data and the sources of uncertainty in data (van Loon et al., 2005). A literature review was carried out including additional experimental data of the Elbe river. All data of compounds associated with suspended particulate matter have considerable higher sampling uncertainties than soluble concentrations. This is due to high variability within the cross section of a given river. This variability is positively correlated with total suspended particulate matter concentrations. Sampling location has also considerable effect on the representativeness of a water sample. These sampling uncertainties are highly site specific. The estimation of uncertainty in sampling can only be achieved by taking at least a proportion of samples in duplicates. Compared to sampling uncertainties, measurement and analytical uncertainties are much lower. Instrument quality can be stated well suited for field and laboratory situations for all considered constituents. Analytical errors can contribute considerably to the overall uncertainty of river water quality data. Temporal autocorrelation of river water quality data is present but literature on general behaviour of water quality compounds is rare. For meso scale river catchments (500-3000 km2) reasonable yearly dissolved load calculations can be achieved using biweekly sample frequencies. For

  2. Uncertainties in selected surface water quality data

    NASA Astrophysics Data System (ADS)

    Rode, M.; Suhr, U.

    2006-09-01

    Monitoring of surface waters is primarily done to detect the status and trends in water quality and to identify whether observed trends arise form natural or anthropogenic causes. Empirical quality of surface water quality data is rarely certain and knowledge of their uncertainties is essential to assess the reliability of water quality models and their predictions. The objective of this paper is to assess the uncertainties in selected surface water quality data, i.e. suspended sediment, nitrogen fraction, phosphorus fraction, heavy metals and biological compounds. The methodology used to structure the uncertainty is based on the empirical quality of data and the sources of uncertainty in data (van Loon et al., 2006). A literature review was carried out including additional experimental data of the Elbe river. All data of compounds associated with suspended particulate matter have considerable higher sampling uncertainties than soluble concentrations. This is due to high variability's within the cross section of a given river. This variability is positively correlated with total suspended particulate matter concentrations. Sampling location has also considerable effect on the representativeness of a water sample. These sampling uncertainties are highly site specific. The estimation of uncertainty in sampling can only be achieved by taking at least a proportion of samples in duplicates. Compared to sampling uncertainties measurement and analytical uncertainties are much lower. Instrument quality can be stated well suited for field and laboratory situations for all considered constituents. Analytical errors can contribute considerable to the overall uncertainty of surface water quality data. Temporal autocorrelation of surface water quality data is present but literature on general behaviour of water quality compounds is rare. For meso scale river catchments reasonable yearly dissolved load calculations can be achieved using biweekly sample frequencies. For suspended

  3. Evaluating benefits and costs of changes in water quality.

    Treesearch

    Jessica Koteen; Susan J. Alexander; John B. Loomis

    2002-01-01

    Water quality affects a variety of uses, such as municipal water consumption and recreation. Changes in water quality can influence the benefits water users receive. The problem is how to define water quality for specific uses. It is not possible to come up with one formal definition of water quality that fits all water uses. There are many parameters that influence...

  4. DEVELOPMENT OF MARINE WATER QUALITY CRITERIA

    EPA Science Inventory

    The U.S. Environmental Protectional Agency has developed guidelines for deriving numerical national water quality criteria for the protection of aquatic organisms and their uses. These guidelines provide the method for deriving water quality criteria, including minimum data base...

  5. Refining models for quantifying the water quality benefits of improved animal management for use in water quality trading

    USDA-ARS?s Scientific Manuscript database

    Water quality trading (WQT) is a market-based approach that allows point sources of water pollution to meet their water quality obligations by purchasing credits from the reduced discharges from other point or nonpoint sources. Non-permitted animal operations and fields of permitted animal operatio...

  6. What's a stream without water? Disproportionality in headwater regions impacting water quality.

    PubMed

    Armstrong, Andrea; Stedman, Richard C; Bishop, Joseph A; Sullivan, Patrick J

    2012-11-01

    Headwater streams are critical components of the stream network, yet landowner perceptions, attitudes, and property management behaviors surrounding these intermittent and ephemeral streams are not well understood. Our research uses the concept of watershed disproportionality, where coupled social-biophysical conditions bear a disproportionate responsibility for harmful water quality outcomes, to analyze the potential influence of riparian landowner perceptions and attitudes on water quality in headwater regions. We combine social science survey data, aerial imagery, and an analysis of spatial point processes to assess the relationship between riparian landowner perceptions and attitudes in relation to stream flow regularity. Stream flow regularity directly and positively shapes landowners' water quality concerns, and also positively influences landowners' attitudes of stream importance-a key determinant of water quality concern as identified in a path analysis. Similarly, riparian landowners who do not notice or perceive a stream on their property are likely located in headwater regions. Our findings indicate that landowners of headwater streams, which are critical areas for watershed-scale water quality, are less likely to manage for water quality than landowners with perennial streams in an obvious, natural channel. We discuss the relationships between streamflow and how landowners develop understandings of their stream, and relate this to the broader water quality implications of headwater stream mismanagement.

  7. Enhancing water quality in hydropower system operations

    NASA Astrophysics Data System (ADS)

    Hayes, Donald F.; Labadie, John W.; Sanders, Thomas G.; Brown, Jackson K.

    1998-03-01

    The quality of impounded waters often degrades over time because of thermal stratification, sediment oxygen demands, and accumulation of pollutants. Consequently, reservoir releases impact water quality in tailwaters, channels, and other downstream water bodies. Low dissolved oxygen (DO) concentrations in the Cumberland River below Old Hickory dam result from stratification of upstream reservoirs and seasonally low release rates. Operational changes in upstream hydropower reservoirs may be one method to increase DO levels without substantially impacting existing project purposes. A water quality model of the upper Cumberland basin is integrated into an optimal control algorithm to evaluate water quality improvement opportunities through operational modifications. The integrated water quantity/quality model maximizes hydropower revenues, subject to various flow and headwater operational restrictions for satisfying multiple project purposes, as well as maintenance of water quality targets. Optimal daily reservoir release policies are determined for the summer drawdown period which increase DO concentrations under stratification conditions with minimal impact on hydropower production and other project purposes. Appendixes A-D available with entire article on microfiche. Order by mail from AGU, 2000 Florida Ave., N.W., Washington, DC 20009 or by phone at 800-966-2481; $2.50. Document W97-003. Payment must accompany order.

  8. ANALYTICAL EQUATIONS OF STORAGE RESERVOIR WATER QUALITY

    EPA Science Inventory

    Distribution system water quality protection is an integral aspect of public water supply management. Effective regulatory compliance requires a thorough understanding of the transport and mixing processes in storage reservoirs and their impacts on effluent water quality. This ...

  9. Water quality indicators: bacteria, coliphages, enteric viruses.

    PubMed

    Lin, Johnson; Ganesh, Atheesha

    2013-12-01

    Water quality through the presence of pathogenic enteric microorganisms may affect human health. Coliform bacteria, Escherichia coli and coliphages are normally used as indicators of water quality. However, the presence of above-mentioned indicators do not always suggest the presence of human enteric viruses. It is important to study human enteric viruses in water. Human enteric viruses can tolerate fluctuating environmental conditions and survive in the environment for long periods of time becoming causal agents of diarrhoeal diseases. Therefore, the potential of human pathogenic viruses as significant indicators of water quality is emerging. Human Adenoviruses and other viruses have been proposed as suitable indices for the effective identification of such organisms of human origin contaminating water systems. This article reports on the recent developments in the management of water quality specifically focusing on human enteric viruses as indicators.

  10. Great Lakes Water Quality Agreement (GLWQA)

    EPA Pesticide Factsheets

    The Great Lakes Water Quality Agreement between the U.S. and Canada addresses critical environmental health issues in the Great Lakes region. It's a model of binational cooperation to protect water quality. It was first signed in 1972 and amended in 2012.

  11. Water quality effects of intermittent water supply in Arraiján, Panama.

    PubMed

    Erickson, John J; Smith, Charlotte D; Goodridge, Amador; Nelson, Kara L

    2017-05-01

    Intermittent drinking water supply is common in low- and middle-income countries throughout the world and can cause water quality to degrade in the distribution system. In this study, we characterized water quality in one study zone with continuous supply and three zones with intermittent supply in the drinking water distribution network in Arraiján, Panama. Low or zero pressures occurred in all zones, and negative pressures occurred in the continuous zone and two of the intermittent zones. Despite hydraulic conditions that created risks for backflow and contaminant intrusion, only four of 423 (0.9%) grab samples collected at random times were positive for total coliform bacteria and only one was positive for E. coli. Only nine of 496 (1.8%) samples had turbidity >1.0 NTU and all samples had ≥0.2 mg/L free chlorine residual. In contrast, water quality was often degraded during the first-flush period (when supply first returned after an outage). Still, routine and first-flush water quality under intermittent supply was much better in Arraiján than that reported in a previous study conducted in India. Better water quality in Arraiján could be due to better water quality leaving the treatment plant, shorter supply outages, higher supply pressures, a more consistent and higher chlorine residual, and fewer contaminant sources near pipes. The results illustrate that intermittent supply and its effects on water quality can vary greatly between and within distribution networks. The study also demonstrated that monitoring techniques designed specifically for intermittent supply, such as continuous pressure monitoring and sampling the first flush, can detect water quality threats and degradation that would not likely be detected with conventional monitoring. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. The economics of water reuse and implications for joint water quality-quantity management

    NASA Astrophysics Data System (ADS)

    Kuwayama, Y.

    2015-12-01

    Traditionally, economists have treated the management of water quality and water quantity as separate problems. However, there are some water management issues for which economic analysis requires the simultaneous consideration of water quality and quantity policies and outcomes. Water reuse, which has expanded significantly over the last several decades, is one of these issues. Analyzing the cost effectiveness and social welfare outcomes of adopting water reuse requires a joint water quality-quantity optimization framework because, at its most basic level, water reuse requires decision makers to consider (a) its potential for alleviating water scarcity, (b) the quality to which the water should be treated prior to reuse, and (c) the benefits of discharging less wastewater into the environment. In this project, we develop a theoretical model of water reuse management to illustrate how the availability of water reuse technologies and practices can lead to a departure from established rules in the water resource economics literature for the optimal allocation of freshwater and water pollution abatement. We also conduct an econometric analysis of a unique dataset of county-level water reuse from the state of Florida over the seventeen-year period between 1996 and 2012 in order to determine whether water quality or scarcity concerns drive greater adoption of water reuse practices.

  13. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources materials. Supplement 31, 1987.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    The Environmental Quality Instructional Resources Center in Columbus, Ohio, acquires, reviews, indexes, and announces both print (books, modules, units, etc.) and non-print (films, slides, video tapes, etc.) materials related to water quality and water resources education and instruction. This publication contains abstracts and indexes to selected…

  14. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials. Supplement 32, 1987.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    The Environmental Quality Instructional Resources Center in Columbus, Ohio, acquires, reviews, indexes, and announces both print (books, modules, units, etc.) and non-print (films, slides, video tapes, etc.) materials related to water quality and water resources education and instruction. In addition some materials related to pesticides, hazardous…

  15. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials. Supplement 34, 1988.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    The Environmental Quality Instructional Resources Center in Columbus, Ohio, acquires, reviews, indexes, and announces both print (books, modules, units, etc.) and non-print (films, slides, video tapes, etc.) materials related to water quality and water resources education and instruction. In addition some materials related to pesticides, hazardous…

  16. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials, Supplement 30, 1987.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    The Environmental Quality Instructional Resources Center acquires, reviews, indexes, and announces both print (books, modules, units, etc.) and non-print (films, slides, video tapes, etc.) materials related to water quality and water resources education and instruction. This publication contains abstracts and indexes to selected materials related…

  17. ADDRESSING EMERGING ISSUES IN WATER QUALITY ...

    EPA Pesticide Factsheets

    Public concern over cleanliness and safety of source and recreational waters has prompted researchers to look for indicators of water quality. Giving public water authorities multiple tools to measure and monitor levels of chemical contaminants, as well as chemical markers of contamination, simply and rapidly would enhance public protection. The goals of water quality are outlined in the Water Quality Multi-year Plan [http://intranet.epa.gov/ospintra/Planning/wq.pdf] and the research in this task falls under GPRA Goal 2, 2.3.2, Long Term Goals 1, 2, and 4. The research focused on in the subtasks is the development and application of state-of the-art technologies to meet the needs of the public, Office of Water, and ORD in the area of Water Quality. Located In the subtasks are the various research projects being performed in support of this Task and more in-depth coverage of each project. Briefly, each project's objective is stated below.Subtask 1: To integrate state-of-the-art technologies (polar organic chemical integrative samplers, advanced solid-phase extraction methodologies with liquid chromatography/electrospray/mass spectrometry) and apply them to studying the sources and fate of a select list of PPCPs. Application and improvement of analytical methodologies that can detect non-volatile, polar, water-soluble pharmaceuticals in source waters at levels that could be environmentally significant (at concentrations less than parts per billion, ppb). IAG

  18. 75 FR 41106 - Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan to Update Water...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-15

    ... (also called water quality criteria) for human health and aquatic life for toxic pollutants in the... Commission in 1996 adopted water quality criteria for human health and aquatic life for Water Quality Zones 2... Objectives for Toxic Pollutants for the Protection of Aquatic Life'', Table 6, ``Stream Quality Objectives...

  19. 40 CFR 240.204 - Water quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Water quality. 240.204 Section 240.204 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.204 Water quality. ...

  20. 40 CFR 240.204 - Water quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Water quality. 240.204 Section 240.204 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.204 Water quality. ...

  1. 40 CFR 240.204 - Water quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Water quality. 240.204 Section 240.204 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.204 Water quality. ...

  2. 40 CFR 240.204 - Water quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Water quality. 240.204 Section 240.204 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.204 Water quality. ...

  3. 40 CFR 240.204 - Water quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 26 2013-07-01 2013-07-01 false Water quality. 240.204 Section 240.204 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.204 Water quality. ...

  4. Quality-control results for ground-water and surface-water data, Sacramento River Basin, California, National Water-Quality Assessment, 1996-1998

    USGS Publications Warehouse

    Munday, Cathy; Domagalski, Joseph L.

    2003-01-01

    Evaluating the extent that bias and variability affect the interpretation of ground- and surface-water data is necessary to meet the objectives of the National Water-Quality Assessment (NAWQA) Program. Quality-control samples used to evaluate the bias and variability include annual equipment blanks, field blanks, field matrix spikes, surrogates, and replicates. This report contains quality-control results for the constituents critical to the ground- and surface-water components of the Sacramento River Basin study unit of the NAWQA Program. A critical constituent is one that was detected frequently (more than 50 percent of the time in blank samples), was detected at amounts exceeding water-quality standards or goals, or was important for the interpretation of water-quality data. Quality-control samples were collected along with ground- and surface-water samples during the high intensity phase (cycle 1) of the Sacramento River Basin NAWQA beginning early in 1996 and ending in 1998. Ground-water field blanks indicated contamination of varying levels of significance when compared with concentrations detected in environmental ground-water samples for ammonia, dissolved organic carbon, aluminum, and copper. Concentrations of aluminum in surface-water field blanks were significant when compared with environmental samples. Field blank samples collected for pesticide and volatile organic compound analyses revealed no contamination in either ground- or surface-water samples that would effect the interpretation of environmental data, with the possible exception of the volatile organic compound trichloromethane (chloroform) in ground water. Replicate samples for ground water and surface water indicate that variability resulting from sample collection, processing, and analysis was generally low. Some of the larger maximum relative percentage differences calculated for replicate samples occurred between samples having lowest absolute concentration differences and(or) values near

  5. Water quality in the Cambridge, Massachusetts, drinking-water source area, 2005-8

    USGS Publications Warehouse

    Smith, Kirk P.; Waldron, Marcus C.

    2015-01-01

    During 2005-8, the U.S. Geological Survey, in cooperation with the Cambridge, Massachusetts, Water Department, measured concentrations of sodium and chloride, plant nutrients, commonly used pesticides, and caffeine in base-flow and stormwater samples collected from 11 tributaries in the Cambridge drinking-water source area. These data were used to characterize current water-quality conditions, to establish a baseline for future comparisons, and to describe trends in surface-water quality. The data also were used to assess the effects of watershed characteristics on surface-water quality and to inform future watershed management.

  6. National Water Quality Laboratory - A Profile

    USGS Publications Warehouse

    Raese, Jon W.

    2001-01-01

    The U.S. Geological Survey (USGS) National Water Quality Laboratory (NWQL) is a full-service laboratory that specializes in environmental analytical chemistry. The NWQL's primary mission is to support USGS programs requiring environmental analyses that provide consistent methodology for national assessment and trends analysis. The NWQL provides the following: high-quality chemical data; consistent, published, state-of-the-art methodology; extremely low-detection levels; high-volume capability; biological unit for identifying benthic invertebrates; quality assurance for determining long-term water-quality trends; and a professional staff.

  7. Southwest principal aquifers regional ground-water quality assessment

    USGS Publications Warehouse

    Anning, D.W.; Thiros, Susan A.; Bexfield, L.M.; McKinney, T.S.; Green, J.M.

    2009-01-01

    The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey is conducting a regional analysis of water quality in the principal aquifers in the southwestern United States. The Southwest Principal Aquifers (SWPA) study is building a better understanding of the susceptibility and vulnerability of basin-fill aquifers in the region to ground-water contamination by synthesizing the baseline knowledge of ground-water quality conditions in 15 basins previously studied by the NAWQA Program. The improved understanding of aquifer susceptibility and vulnerability to contamination is assisting in the development of tools that water managers can use to assess and protect the quality of ground-water resources. This fact sheet provides an overview of the basin-fill aquifers in the southwestern United States and description of the completed and planned regional analyses of ground-water quality being performed by the SWPA study.

  8. Overview of the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Leahy, P.P.; Thompson, T.H.

    1994-01-01

    The Nation's water resources are the basis for life and our economic vitality. These resources support a complex web of human activities and fishery and wildlife needs that depend upon clean water. Demands for good-quality water for drinking, recreation, farming, and industry are rising, and as a result, the American public is concerned about the condition and sustainability of our water resources. The American public is asking: Is it safe to swim in and drink water from our rivers or lakes? Can we eat the fish that come from them? Is our ground water polluted? Is water quality degrading with time, and if so, why? Has all the money we've spent to clean up our waters, done any good? The U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program was designed to provide information that will help answer these questions. NAWQA is designed to assess historical, current, and future water-quality conditions in representative river basins and aquifers nationwide. One of the primary objectives of the program is to describe relations between natural factors, human activities, and water-quality conditions and to define those factors that most affect water quality in different parts of the Nation. The linkage of water quality to environmental processes is of fundamental importance to water-resource managers, planners, and policy makers. It provides a strong and unbiased basis for better decisionmaking by those responsible for making decisions that affect our water resources, including the United States Congress, Federal, State, and local agencies, environmental groups, and industry. Information from the NAWQA Program also will be useful for guiding research, monitoring, and regulatory activities in cost effective ways.

  9. Monitoring And Modeling Environmental Water Quality To Support Environmental Water Purchase Decision-making

    NASA Astrophysics Data System (ADS)

    Null, S. E.; Elmore, L.; Mouzon, N. R.; Wood, J. R.

    2016-12-01

    More than 25 million cubic meters (20,000 acre feet) of water has been purchased from willing agricultural sellers for environmental flows in Nevada's Walker River to improve riverine habitat and connectivity with downstream Walker Lake. Reduced instream flows limit native fish populations, like Lahontan cutthroat trout, through warm daily stream temperatures and low dissolved oxygen concentrations. Environmental water purchases maintain instream flows, although effects on water quality are more varied. We use multi-year water quality monitoring and physically-based hydrodynamic and water quality modeling to estimate streamflow, water temperature, and dissolved oxygen concentrations with alternative environmental water purchases. We simulate water temperature and dissolved oxygen changes from increased streamflow to prioritize the time periods and locations that environmental water purchases most enhance trout habitat as a function of water quality. Monitoring results indicate stream temperature and dissolved oxygen limitations generally exist in the 115 kilometers upstream of Walker Lake (about 37% of the study area) from approximately May through September, and this reach acts as a water quality barrier for fish passage. Model results indicate that low streamflows generally coincide with critically warm stream temperatures, water quality refugia exist on a tributary of the Walker River, and environmental water purchases may improve stream temperature and dissolved oxygen conditions for some reaches and seasons, especially in dry years and prolonged droughts. This research supports environmental water purchase decision-making and allows water purchase decisions to be prioritized with other river restoration alternatives.

  10. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials. Supplement 33, 1988.

    ERIC Educational Resources Information Center

    Ohio State Univ., Columbus, OH. Information Reference Center for Science, Mathematics, and Environmental Education.

    The Environmental Quality Instructional Resources Center in Columbus, Ohio, acquires, reviews, indexes, and announces both print (books, modules, units, etc.) and non-print (films, slides, video tapes, etc.) materials related to water quality and water resources education and instruction. In addition some materials related to hazardous materials,…

  11. Hydropower Optimization Using Artificial Neural Network Surrogate Models of a High-Fidelity Hydrodynamics and Water Quality Model

    NASA Astrophysics Data System (ADS)

    Shaw, Amelia R.; Smith Sawyer, Heather; LeBoeuf, Eugene J.; McDonald, Mark P.; Hadjerioua, Boualem

    2017-11-01

    Hydropower operations optimization subject to environmental constraints is limited by challenges associated with dimensionality and spatial and temporal resolution. The need for high-fidelity hydrodynamic and water quality models within optimization schemes is driven by improved computational capabilities, increased requirements to meet specific points of compliance with greater resolution, and the need to optimize operations of not just single reservoirs but systems of reservoirs. This study describes an important advancement for computing hourly power generation schemes for a hydropower reservoir using high-fidelity models, surrogate modeling techniques, and optimization methods. The predictive power of the high-fidelity hydrodynamic and water quality model CE-QUAL-W2 is successfully emulated by an artificial neural network, then integrated into a genetic algorithm optimization approach to maximize hydropower generation subject to constraints on dam operations and water quality. This methodology is applied to a multipurpose reservoir near Nashville, Tennessee, USA. The model successfully reproduced high-fidelity reservoir information while enabling 6.8% and 6.6% increases in hydropower production value relative to actual operations for dissolved oxygen (DO) limits of 5 and 6 mg/L, respectively, while witnessing an expected decrease in power generation at more restrictive DO constraints. Exploration of simultaneous temperature and DO constraints revealed capability to address multiple water quality constraints at specified locations. The reduced computational requirements of the new modeling approach demonstrated an ability to provide decision support for reservoir operations scheduling while maintaining high-fidelity hydrodynamic and water quality information as part of the optimization decision support routines.

  12. Hydropower Optimization Using Artificial Neural Network Surrogate Models of a High-Fidelity Hydrodynamics and Water Quality Model

    DOE PAGES

    Shaw, Amelia R.; Sawyer, Heather Smith; LeBoeuf, Eugene J.; ...

    2017-10-24

    Hydropower operations optimization subject to environmental constraints is limited by challenges associated with dimensionality and spatial and temporal resolution. The need for high-fidelity hydrodynamic and water quality models within optimization schemes is driven by improved computational capabilities, increased requirements to meet specific points of compliance with greater resolution, and the need to optimize operations of not just single reservoirs but systems of reservoirs. This study describes an important advancement for computing hourly power generation schemes for a hydropower reservoir using high-fidelity models, surrogate modeling techniques, and optimization methods. The predictive power of the high-fidelity hydrodynamic and water quality model CE-QUAL-W2more » is successfully emulated by an artificial neural network, then integrated into a genetic algorithm optimization approach to maximize hydropower generation subject to constraints on dam operations and water quality. This methodology is applied to a multipurpose reservoir near Nashville, Tennessee, USA. The model successfully reproduced high-fidelity reservoir information while enabling 6.8% and 6.6% increases in hydropower production value relative to actual operations for dissolved oxygen (DO) limits of 5 and 6 mg/L, respectively, while witnessing an expected decrease in power generation at more restrictive DO constraints. Exploration of simultaneous temperature and DO constraints revealed capability to address multiple water quality constraints at specified locations. Here, the reduced computational requirements of the new modeling approach demonstrated an ability to provide decision support for reservoir operations scheduling while maintaining high-fidelity hydrodynamic and water quality information as part of the optimization decision support routines.« less

  13. Hydropower Optimization Using Artificial Neural Network Surrogate Models of a High-Fidelity Hydrodynamics and Water Quality Model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shaw, Amelia R.; Sawyer, Heather Smith; LeBoeuf, Eugene J.

    Hydropower operations optimization subject to environmental constraints is limited by challenges associated with dimensionality and spatial and temporal resolution. The need for high-fidelity hydrodynamic and water quality models within optimization schemes is driven by improved computational capabilities, increased requirements to meet specific points of compliance with greater resolution, and the need to optimize operations of not just single reservoirs but systems of reservoirs. This study describes an important advancement for computing hourly power generation schemes for a hydropower reservoir using high-fidelity models, surrogate modeling techniques, and optimization methods. The predictive power of the high-fidelity hydrodynamic and water quality model CE-QUAL-W2more » is successfully emulated by an artificial neural network, then integrated into a genetic algorithm optimization approach to maximize hydropower generation subject to constraints on dam operations and water quality. This methodology is applied to a multipurpose reservoir near Nashville, Tennessee, USA. The model successfully reproduced high-fidelity reservoir information while enabling 6.8% and 6.6% increases in hydropower production value relative to actual operations for dissolved oxygen (DO) limits of 5 and 6 mg/L, respectively, while witnessing an expected decrease in power generation at more restrictive DO constraints. Exploration of simultaneous temperature and DO constraints revealed capability to address multiple water quality constraints at specified locations. Here, the reduced computational requirements of the new modeling approach demonstrated an ability to provide decision support for reservoir operations scheduling while maintaining high-fidelity hydrodynamic and water quality information as part of the optimization decision support routines.« less

  14. Quality of surface water in Missouri, water year 2015

    USGS Publications Warehouse

    Barr, Miya N.; Heimann, David C.

    2016-11-14

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams and springs throughout Missouri known as the Ambient Water-Quality Monitoring Network. During water year 2015 (October 1, 2014, through September 30, 2015), data were collected at 74 stations—72 Ambient Water-Quality Monitoring Network stations and 2 U.S. Geological Survey National Stream Quality Assessment Network stations. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, Escherichia coli bacteria, fecal coliform bacteria, dissolved nitrate plus nitrite as nitrogen, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 71 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak streamflows, monthly mean streamflows, and 7-day low flows is presented.

  15. Quality of surface water in Missouri, water year 2014

    USGS Publications Warehouse

    Barr, Miya N.

    2015-12-18

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams and springs throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2014 water year (October 1, 2013, through September 30, 2014), data were collected at 74 stations—72 Ambient Water-Quality Monitoring Network stations and 2 U.S. Geological Survey National Stream Quality Assessment Network stations. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, Escherichia coli bacteria, fecal coliform bacteria, dissolved nitrate plus nitrite as nitrogen, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 71 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.

  16. A ground-water-quality monitoring program for Nevada

    USGS Publications Warehouse

    Nowlin, Jon O.

    1986-01-01

    A program was designed for the systematic monitoring of ground-water quality in Nevada. Basic hydrologic and water-quality principles are discussed in the formulation of a rational approach to developing a statewide monitoring program. A review of ground-water monitoring efforts in Nevada through 1977 indicates that few requirements for an effective statewide program are being met. A suggested program has been developed that consists of five major elements: (1) A Background-Quality Network to assess the existing water quality in Nevada aquifers, (2) a Contamination Source Inventory of known or potential threats to ground-water quality, (3) Surveillance Networks to monitor ground-water quality in selected hydrographic areas, (4) Intensive Surveys of individual instances of known or potential ground-water contamination, and (5) Ground-Water Data File to manage data generated by the other monitoring elements. Two indices have been developed to help assign rational priorities for monitoring ground water in the 255 hydrographic areas of Nevada: (1) A Hydrographic-Area Priority Index for surveillance monitoring, and (2) A Development-Potential Index for background monitoring of areas with little or no current development. Requirements for efficient management of data from ground-water monitoring are discussed and the three major systems containing Nevada ground-water data are reviewed. More than 11,000 chemical analyses of ground water have been acquired from existing systems and incorporated into a prototype data base.

  17. Fraser River watershed, Colorado : assessment of available water-quantity and water-quality data through water year 1997

    USGS Publications Warehouse

    Apodaca, Lori Estelle; Bails, Jeffrey B.

    1999-01-01

    The water-quantity and water-quality data for the Fraser River watershed through water year 1997 were compiled for ground-water and surface-water sites. In order to assess the water-quality data, the data were related to land use/land cover in the watershed. Data from 81 water-quantity and water-quality sites, which consisted of 9 ground-water sites and 72 surface-water sites, were available for analysis. However, the data were limited and frequently contained only one or two water-quality analyses per site.The Fraser River flows about 28 miles from its headwaters at the Continental Divide to the confluence with the Colorado River. Ground-water resources in the watershed are used for residential and municipal drinking-water supplies. Surface water is available for use, but water diversions in the upper parts of the watershed reduce the flow in the river. Land use/land cover in the watershed is predominantly forested land, but increasing urban development has the potential to affect the quantity and quality of the water resources.Analysis of the limited ground-water data in the watershed indicates that changes in the land use/land cover affect the shallow ground-water quality. Water-quality data from eight shallow monitoring wells in the alluvial aquifer show that iron and manganese concentrations exceeded the U.S. Environmental Protection Agency secondary maximum contaminant level. Radon concentrations from these monitoring wells exceeded the U.S. Environmental Protection Agency proposed maximum contaminant level. The proposed radon contaminant level is currently being revised. The presence of volatile organic compounds at two monitoring wells in the watershed indicates that land use affects the shallow ground water. In addition, bacteria detected in three samples are at concentrations that would be a concern for public health if the water was to be used as a drinking supply. Methylene blue active substances were detected in the ground water at some sites and are a

  18. Evaluation on the Quality of Bangkok Tap Water with Other Drinking Purpose Water

    NASA Astrophysics Data System (ADS)

    Kordach, A.; Chardwattananon, C.; Wongin, K.; Chayaput, B.; Wongpat, N.

    2018-02-01

    The concern of drinking purposed water quality in Bangkok, Nonthaburi, and Samutprakarn provinces has been a problem for over fifteen years. Metropolitan Water Works Authority (MWA) of Thailand is fully responsible for providing water supply to the mentioned areas. The objective of Drinkable Tap Water Project is to make people realize in quality of tap water. Communities, school, government agencies, hotels, hospitals, department stores, and other organizations are participating in this project. MWA have collected at least 3 samples of water from the corresponding places and the samples have to meet the World Health Organization (WHO) guidelines level. This study is to evaluate water quality of tap water, storage water, filtered water, and filtered water dispenser. The water samples from 2,354 attending places are collected and analyzed. From October 2011 to September 2016, MWA analyzed 32,711 samples. The analyzed water parameters are free residual chlorine, appearance color, turbidity, pH, conductivity, total dissolved solids (TDS), and pathogenic bacteria; E.coli. The results indicated that a number of tap water samples had the highest number compliance with WHO guidelines levels at 98.40%. The filtered water, filtered water dispenser, and storage water were received 96.71%, 95.63%, and 90.88%, respectively. However, the several samples fail to pass WHO guideline level because they were contaminated by E.coli. The result is that tap water has the highest score among other sources probably because tap water has chlorine for disinfection and always is monitored by professional team round-the-clock services compared to the other water sources with less maintenance or cleaning. Also, water quality reports are continuously sent to customers by mail addresses. Tap water quality data are shown on MWA websites and Facebook. All these steps of work should enhance the confidence of tap water quality.

  19. Quality of water, Quillayute River basin, Washington

    USGS Publications Warehouse

    Fretwell, M.O.

    1984-01-01

    Groundwater in Quillayute River basin is generally of the calcium bicarbonate type, although water from some wells is affected by seawater intrusion and is predominantly of the sodium chloride type. The water is generally of excellent quality for most uses. River-water quality was generally excellent, as evaluated against Washington State water-use and water-quality criteria. Fecal coliform concentrations in all major tributaries met State water-quality criteria; water temperatures occasionally exceeded criteria maximum during periods of warm weather and low streamflow. Nutrient concentrations were generally low to very low. The four largest lakes in the basin were temperature-stratified in summer and one had an algal bloom. The Quillayute estuary had salt-wedge mixing characteristics; pollutants entering the salt wedge tended to spread to the toe of the wedge. Upwelling ocean water was the major cause of the low dissolved-oxygen concentrations observed in the estuary; ammonia concentrations in the estuary, however, were increased by the upwelling ocean waters. As in the rivers, total-coliform bacteria concentrations in the estuary were greater than fecal-coliform concentrations, indicating that many of the bacteria were of nonfecal origin and probably originated from soils. (USGS)

  20. Monitoring and Assessment of Youshui River Water Quality in Youyang

    NASA Astrophysics Data System (ADS)

    Wang, Xue-qin; Wen, Juan; Chen, Ping-hua; Liu, Na-na

    2018-02-01

    By monitoring the water quality of Youshui River from January 2016 to December 2016, according to the indicator grading and the assessment standard of water quality, the formulas for 3 types water quality indexes are established. These 3 types water quality indexes, the single indicator index Ai, single moment index Ak and the comprehensive water quality index A, were used to quantitatively evaluate the quality of single indicator, the water quality and the change of water quality with time. The results show that, both total phosphorus and fecal coliform indicators exceeded the standard, while the other 16 indicators measured up to the standard. The water quality index of Youshui River is 0.93 and the grade of water quality comprehensive assessment is level 2, which indicated that the water quality of Youshui River is good, and there is room for further improvement. To this end, several protection measures for Youshui River environmental management and pollution treatment are proposed.

  1. 40 CFR 227.31 - Applicable marine water quality criteria.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 25 2011-07-01 2011-07-01 false Applicable marine water quality... § 227.31 Applicable marine water quality criteria. Applicable marine water quality criteria means the criteria given for marine waters in the EPA publication “Quality Criteria for Water” as published in 1976...

  2. 40 CFR 227.31 - Applicable marine water quality criteria.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 25 2014-07-01 2014-07-01 false Applicable marine water quality... § 227.31 Applicable marine water quality criteria. Applicable marine water quality criteria means the criteria given for marine waters in the EPA publication “Quality Criteria for Water” as published in 1976...

  3. 40 CFR 227.31 - Applicable marine water quality criteria.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 26 2012-07-01 2011-07-01 true Applicable marine water quality... § 227.31 Applicable marine water quality criteria. Applicable marine water quality criteria means the criteria given for marine waters in the EPA publication “Quality Criteria for Water” as published in 1976...

  4. The quality of our Nation's waters: water quality in the Denver Basin aquifer system, Colorado, 2003-05

    USGS Publications Warehouse

    Bauch, Nancy J.; Musgrove, MaryLynn; Mahler, Barbara J.; Paschke, Suzanne

    2015-01-01

    Availability and sustainability of groundwater in the Denver Basin aquifer system depend on water quantity and water quality. The Denver Basin aquifer system underlies about 7,000 square miles of the Great Plains in eastern Colorado and is the primary or sole source of water for domestic and public supply in many areas of the basin. Use of groundwater from the Denver Basin sandstone aquifers has been instrumental for development of the south Denver metropolitan area and other areas, but has resulted in a decline in water levels in some parts of the system. Human activities in many areas have adversely affected the quality of water in the aquifer system, especially the shallow parts. Groundwater in deeper parts of the system used for drinking water, once considered isolated from the effects of overlying land use, is increasingly vulnerable to contamination from human activities and geologic materials. Availability and sustainability of high-quality groundwater are vital to the economic health of the Denver Basin area.

  5. Hydrogeology, ground-water quality, and source of ground water causing water-quality changes in the Davis well field at Memphis, Tennessee

    USGS Publications Warehouse

    Parks, William S.; Mirecki, June E.; Kingsbury, James A.

    1995-01-01

    NETPATH geochemical model code was used to mix waters from the alluvial aquifer with water from the Memphis aquifer using chloride as a conservative tracer. The resulting models indicated that a mixture containing 3 percent alluvial aquifer water mixed with 97 percent unaffected Memphis aquifer water would produce the chloride concentration measured in water from the Memphis aquifer well most affected by water-quality changes. NETPATH also was used to calculate mixing percentages of alluvial and Memphis aquifer Abstract waters based on changes in the concentrations of selected dissolved major inorganic and trace element constituents that define the dominant reactions that occur during mixing. These models indicated that a mixture containing 18 percent alluvial aquifer water and 82 percent unaffected Memphis aquifer water would produce the major constituent and trace element concentrations measured in water from the Memphis aquifer well most affected by water-quality changes. However, these model simulations predicted higher dissolved methane concentrations than were measured in water samples from the Memphis aquifer wells.

  6. National Water Quality Laboratory Profile

    USGS Publications Warehouse

    Raese, Jon W.

    1994-01-01

    The National Water Quality Laboratory determines organic and inorganic constituents in samples of surface and ground water, river and lake sediment, aquatic plant and animal material, and precipitation collected throughout the United States and its territories by the U.S. Geological Survey. In water year 1994, the Laboratory produced more than 900,000 analytical results for about 65,000 samples. The Laboratory also coordinates an extensive network of contract laboratories for the determination of radiochemical and stable isotopes and work for the U.S. Department of Defense Environmental Contamination Hydrology Program. Heightened concerns about water quality and about the possible effects of toxic chemicals at trace and ultratrace levels have contributed to an increased demand for impartial, objective, and independent data.

  7. Social representations of drinking water: subsidies for water quality surveillance programmes.

    PubMed

    Carmo, Rose Ferraz; Bevilacqua, Paula Dias; Barletto, Marisa

    2015-09-01

    A qualitative study was developed aimed at understanding the social representations of water consumption by a segment of the population of a small town in Brazil. A total of 19 semi-structured interviews were carried out and subjected to a content analysis addressing opinion on drinking water, characteristics of drinking water and its correlation to health and diseases, criteria for water usage and knowledge on the source and accountability for drinking-water quality. Social representations of drinking water predominantly incorporate the municipal water supply and sanitation provider and its quality. The identification of the municipal water supply provider as alone responsible for maintaining water quality indicated the lack of awareness of any health surveillance programme. For respondents, chlorine was accountable for conferring colour, odour and taste to the water. These physical parameters were reported as the cause for rejecting the water supplied and suggest the need to review the focus of health-educational strategies based on notions of hygiene and water-borne diseases. The study allowed the identification of elements that could contribute to positioning the consumers vs. services relationship on a level playing field, enabling dialogue and exchange of knowledge for the benefit of public health.

  8. U.S. Geological Survey quality-assurance plan for continuous water-quality monitoring in Kansas, 2014

    USGS Publications Warehouse

    Bennett, Trudy J.; Graham, Jennifer L.; Foster, Guy M.; Stone, Mandy L.; Juracek, Kyle E.; Rasmussen, Teresa J.; Putnam, James E.

    2014-01-01

    A quality-assurance plan for use in conducting continuous water-quality monitoring activities has been developed for the Kansas Water Science Center in accordance with guidelines set forth by the U.S. Geological Survey. This quality-assurance plan documents the standards, policies, and procedures used by the U.S. Geological Survey in Kansas for activities related to the collection, processing, storage, analysis, and release of continuous water-quality monitoring data. The policies and procedures that are documented in this quality-assurance plan for continuous water-quality monitoring activities complement quality-assurance plans for surface-water and groundwater activities in Kansas.

  9. Using water-quality profiles to characterize seasonal water quality and loading in the upper Animas River basin, southwestern Colorado

    USGS Publications Warehouse

    Leib, Kenneth J.; Mast, M. Alisa; Wright, Winfield G.

    2003-01-01

    One of the important types of information needed to characterize water quality in streams affected by historical mining is the seasonal pattern of toxic trace-metal concentrations and loads. Seasonal patterns in water quality are estimated in this report using a technique called water-quality profiling. Water-quality profiling allows land managers and scientists to assess priority areas to be targeted for characterization and(or) remediation by quantifying the timing and magnitude of contaminant occurrence. Streamflow and water-quality data collected at 15 sites in the upper Animas River Basin during water years 1991?99 were used to develop water-quality profiles. Data collected at each sampling site were used to develop ordinary least-squares regression models for streamflow and constituent concentrations. Streamflow was estimated by correlating instantaneous streamflow measured at ungaged sites with continuous streamflow records from streamflow-gaging stations in the subbasin. Water-quality regression models were developed to estimate hardness and dissolved cadmium, copper, and zinc concentrations based on streamflow and seasonal terms. Results from the regression models were used to calculate water-quality profiles for streamflow, constituent concentrations, and loads. Quantification of cadmium, copper, and zinc loads in a stream segment in Mineral Creek (sites M27 to M34) was presented as an example application of water-quality profiling. The application used a method of mass accounting to quantify the portion of metal loading in the segment derived from uncharacterized sources during different seasonal periods. During May, uncharacterized sources contributed nearly 95 percent of the cadmium load, 0 percent of the copper load (or uncharacterized sources also are attenuated), and about 85 percent of the zinc load at M34. During September, uncharacterized sources contributed about 86 percent of the cadmium load, 0 percent of the copper load (or uncharacterized

  10. Aquatic Plant Water Quality Criteria

    EPA Science Inventory

    The USEPA, as stated in the Clean Water Act, is tasked with developing numerical Aquatic Life Critiera for various pollutants found in the waters of the United States. These criteria serve as guidance for States and Tribes to use in developing their water quality standards. The G...

  11. Water Resources Data for California, 1965; Part 2: Water Quality Records

    USGS Publications Warehouse

    1965-01-01

    Water quality information is presented for chemical quality, fluvial sediment, and water temperatures. The chemical quality includes concentrations of individual dissolved constituents and certain properties or characteristics such as hardness, sodium-adsorption-ratio, specific conductance, and pH. Fluvial sediment information is given for suspended-sediment discharges and concentrations and for particle-size distribution of suspended sediment and bed material. Water temperature data represent once-daily observations except for stations where a continuous temperature recorder furnishes information from which daily minimums and maximums are obtained.

  12. Water Resources Data for California, 1966; Part 2: Water Quality Records

    USGS Publications Warehouse

    1967-01-01

    Water-quality information is presented for chemical quality, fluvial sediment, and water temperatures. The chemical quality includes concentrations of individual dissolved constituents and certain properties or characteristics such as hardness, sodium-adsorption ratio, specific conductance, and pH. Fluvial-sediment information is given for suspended-sediment discharges and concentrations and for particle-size distribution of suspended sediment and bed material. Water-temperature data represent once-daily observations except for stations where a continuous temperature recorder furnishes information from which daily minimums and maximums are obtained.

  13. The European water framework directive: water quality classification and implications to engineering planning.

    PubMed

    Achleitner, Stefan; De Toffol, Sara; Engelhard, Carolina; Rauch, Wolfgang

    2005-04-01

    The European Water framework directive (WFD) is probably the most important environmental management directive that has been enacted over the last decade in the European Union. The directive aims at achieving an overall good ecological status in all European water bodies. In this article, we discuss the implementation steps of the WFD and their implications for environmental engineering practice while focusing on rivers as the main receiving waters. Arising challenges for engineers and scientists are seen in the quantitative assessment of water quality, where standardized systems are needed to estimate the biological status. This is equally of concern in engineering planning, where the prediction of ecological impacts is required. Studies dealing with both classification and prediction of the ecological water quality are reviewed. Further, the combined emission-water quality approach is discussed. Common understanding of this combined approach is to apply the most stringent of either water quality or emission standard to a certain case. In contrast, for example, the Austrian water act enables the application of only the water quality based approach--at least on a temporary basis.

  14. Microcumpter computation of water quality discharges

    USGS Publications Warehouse

    Helsel, Dennis R.

    1983-01-01

    A fully prompted program (SEDQ) has been developed to calculate daily and instantaneous water quality (QW) discharges. It is written in a version of BASIC, and requires inputs of gage heights, discharge rating curve, shifts, and water quality concentration information. Concentration plots may be modified interactively using the display screen. Semi-logarithmic plots of concentration and water quality discharge are output to the display screen, and optionally to plotters. A summary table of data is also output. SEDQ could be a model program for micro and minicomputer systems likely to be in use within the Water Resources Division, USGS, in the near future. The daily discharge-weighted mean concentration is one output from SEDQ. It is defined in this report, differentiated from the currently used mean concentration, and designated the ' equivalent concentration. ' (USGS)

  15. 78 FR 54517 - Water Quality Standards Regulatory Clarifications

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-04

    ... 131 Water Quality Standards Regulatory Clarifications; Proposed Rule #0;#0;Federal Register / Vol. 78... AGENCY 40 CFR Part 131 [EPA-HQ-OW-2010-0606; FRL-9839-7] RIN 2040-AF 16 Water Quality Standards... Environmental Protection Agency (EPA) is proposing changes to the federal water quality standards (WQS...

  16. 40 CFR 35.2023 - Water quality management planning.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Water quality management planning. 35... to the States to carry out water quality management planning including but not limited to: (1... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2023 Water quality...

  17. 40 CFR 35.2023 - Water quality management planning.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Water quality management planning. 35... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2023 Water quality... to the States to carry out water quality management planning including but not limited to: (1...

  18. 40 CFR 35.2023 - Water quality management planning.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Water quality management planning. 35... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2023 Water quality... to the States to carry out water quality management planning including but not limited to: (1...

  19. 40 CFR 35.2023 - Water quality management planning.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2023 Water quality... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Water quality management planning. 35... to the States to carry out water quality management planning including but not limited to: (1...

  20. Klang River water quality modelling using music

    NASA Astrophysics Data System (ADS)

    Zahari, Nazirul Mubin; Zawawi, Mohd Hafiz; Muda, Zakaria Che; Sidek, Lariyah Mohd; Fauzi, Nurfazila Mohd; Othman, Mohd Edzham Fareez; Ahmad, Zulkepply

    2017-09-01

    Water is an essential resource that sustains life on earth; changes in the natural quality and distribution of water have ecological impacts that can sometimes be devastating. Recently, Malaysia is facing many environmental issues regarding water pollution. The main causes of river pollution are rapid urbanization, arising from the development of residential, commercial, industrial sites, infrastructural facilities and others. The purpose of the study was to predict the water quality of the Connaught Bridge Power Station (CBPS), Klang River. Besides that, affects to the low tide and high tide and. to forecast the pollutant concentrations of the Biochemical Oxygen Demand (BOD) and Total Suspended Solid (TSS) for existing land use of the catchment area through water quality modeling (by using the MUSIC software). Besides that, to identifying an integrated urban stormwater treatment system (Best Management Practice or BMPs) to achieve optimal performance in improving the water quality of the catchment using the MUSIC software in catchment areas having tropical climates. Result from MUSIC Model such as BOD5 at station 1 can be reduce the concentration from Class IV to become Class III. Whereas, for TSS concentration from Class III to become Class II at the station 1. The model predicted a mean TSS reduction of 0.17%, TP reduction of 0.14%, TN reduction of 0.48% and BOD5 reduction of 0.31% for Station 1 Thus, from the result after purposed BMPs the water quality is safe to use because basically water quality monitoring is important due to threat such as activities are harmful to aquatic organisms and public health.

  1. Shallow Water Optical Water Quality Buoy

    NASA Technical Reports Server (NTRS)

    Bostater, Charles

    1998-01-01

    This NASA grant was funded as a result of an unsolicited proposal submission to Kennedy Space Center. The proposal proposed the development and testing of a shallow water optical water quality buoy. The buoy is meant to work in shallow aquatic systems (ponds, rivers, lagoons, and semi-enclosed water areas where strong wind wave action is not a major environmental During the project period of three years, a demonstration of the buoy was conducted. The last demonstration during the project period was held in November, 1996 when the buoy was demonstrated as being totally operational with no tethered communications line. During the last year of the project the buoy was made to be solar operated by large gel cell batteries. Fund limitations did not permit the batteries in metal enclosures as hoped for higher wind conditions, however the system used to date has worked continuously for in- situ operation of over 18 months continuous deployment. The system needs to have maintenance and somewhat continuous operational attention since various components have limited lifetime ages. For example, within the last six months the onboard computer has had to be repaired as it did approximately 6 months after deployment. The spectrograph had to be repaired and costs for repairs was covered by KB Science since no ftmds were available for this purpose after the grant expired. Most recently the computer web page server failed and it is currently being repaired by KB Science. In addition, the cell phone operation is currently being ftmded by Dr. Bostater in order to maintain the system's operation. The above points need to be made to allow NASA to understand that like any sophisticated measuring system in a lab or in the field, necessary funding and maintenance is needed to insure the system's operational state and to obtain quality factor. The proposal stated that the project was based upon the integration of a proprietary and confidential sensor and probe design that was developed by

  2. Water quality of hydrologic bench marks; an indicator of water quality in the natural environment

    USGS Publications Warehouse

    Biesecker, James E.; Leifeste, Donald K.

    1974-01-01

    Water-quality data, collected at 57 hydrologic bench-mark stations in 37 States, allow the definition of water quality in the 'natural' environment and the comparison of 'natural' water quality with water quality of major streams draining similar water-resources regions. Results indicate that water quality in the 'natural' environment is generally very good. Streams draining hydrologic bench-mark basins generally contain low concentrations of dissolved constituents. Water collected at the hydrologic bench-mark stations was analyzed for the following minor metals: arsenic, barium, cadmium, hexavalent chromium, cobalt, copper, lead, mercury, selenium, silver, and zinc. Of 642 analyses, about 65 percent of the observed concentrations were zero. Only three samples contained metals in excess of U.S. Public Health Service recommended drinking-water standards--two selenium concentrations and one cadmium concentration. A total of 213 samples were analyzed for 11 pesticidal compounds. Widespread but very low-level occurrence of pesticide residues in the 'natural' environment was found--about 30 percent of all samples contained low-level concentrations of pesticidal compounds. The DDT family of pesticides occurred most commonly, accounting for 75 percent of the detected occurrences. The highest observed concentration of DDT was 0.06 microgram per litre, well below the recommended maximum permissible in drinking water. Nitrate concentrations in the 'natural' environment generally varied from 0.2 to 0.5 milligram per litre. The average concentration of nitrate in many major streams is as much as 10 times greater. The relationship between dissolved-solids concentration and discharge per unit area in the 'natural' environment for the various physical divisions in the United States has been shown to be an applicable tool for approximating 'natural' water quality. The relationship between dissolved-solids concentration and discharge per unit area is applicable in all the physical

  3. 76 FR 16285 - Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan To Update Water...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-23

    ... Plan to update the Commission's human health and aquatic life stream quality objectives (also called... DELAWARE RIVER BASIN COMMISSION 18 CFR Part 410 Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan To Update Water Quality Criteria for Toxic Pollutants in the Delaware...

  4. Water quality program elements for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Sauer, Richard L.; Ramanathan, Raghupathy; Straub, John E.; Schultz, John R.

    1991-01-01

    A strategy is outlined for the development of water-quality criteria and standards relevant to recycling and monitoring the in-flight water for the Space Station Freedom (SSF). The water-reclamation subsystem of the SSF's ECLSS is described, and the objectives of the water-quality are set forth with attention to contaminants. Quality parameters are listed for potable and hygiene-related water including physical and organic parameters, inorganic constituents, bactericides, and microbial content. Comparisons are made to the quality parameters established for the Shuttle's potable water and to the EPA's current standards. Specific research is required to develop in-flight monitoring techniques for unique SSF contaminants, ECLSS microbial control, and on- and off-line monitoring. After discussing some of the in-flight water-monitoring hardware it is concluded that water reclamation and recycling are necessary and feasible for the SSF.

  5. 40 CFR 35.2102 - Water quality management planning.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Water quality management planning. 35... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2102 Water quality... Administrator shall first determine that the project is: (a) Included in any water quality management plan being...

  6. 40 CFR 35.2102 - Water quality management planning.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Water quality management planning. 35... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2102 Water quality... Administrator shall first determine that the project is: (a) Included in any water quality management plan being...

  7. Water quality of Cisadane River based on watershed segmentation

    NASA Astrophysics Data System (ADS)

    Effendi, Hefni; Ayu Permatasari, Prita; Muslimah, Sri; Mursalin

    2018-05-01

    The growth of population and industrialization combined with land development along river cause water pollution and environmental deterioration. Cisadane River is one of the river in Indonesia where urbanization, industrialization, and agricultural are extremely main sources of pollution. Cisadane River is an interesting case for investigating the effect of land use to water quality and comparing water quality in every river segment. The main objectives with this study were to examine if there is a correlation between land use and water quality in Cisadane River and there is a difference in water quality between the upstream section of Cisadane River compared with its downstream section. This study compared water quality with land use condition in each segment of river. Land use classification showed that river segment that has more undeveloped area has better water quality compared to river segment with developed area. in general, BOD and COD values have increased from upstream to downstream. However, BOD and COD values do not show a steady increase in each segment Water quality is closely related to the surrounding land use.Therefore, it can not be concluded that the water quality downstream is worse than in the upstream area.

  8. Variations in statewide water quality of New Jersey streams, water years 1998-2009

    USGS Publications Warehouse

    Heckathorn, Heather A.; Deetz, Anna C.

    2012-01-01

    Statistical analyses were conducted for six water-quality constituents measured at 371 surface-water-quality stations during water years 1998-2009 to determine changes in concentrations over time. This study examined year-round concentrations of total dissolved solids, dissolved nitrite plus nitrate, dissolved phosphorus, total phosphorus, and total nitrogen; concentrations of dissolved chloride were measured only from January to March. All the water-quality data analyzed were collected by the New Jersey Department of Environmental Protection and the U.S. Geological Survey as part of the cooperative Ambient Surface-Water-Quality Monitoring Network. Stations were divided into groups according to the 1-year or 2-year period that the stations were part of the Ambient Surface-Water-Quality Monitoring Network. Data were obtained from the eight groups of Statewide Status stations for water years 1998, 1999, 2000, 2001-02, 2003-04, 2005-06, 2007-08, and 2009. The data from each group were compared to the data from each of the other groups and to baseline data obtained from Background stations unaffected by human activity that were sampled during the same time periods. The Kruskal-Wallis test was used to determine whether median concentrations of a selected water-quality constituent measured in a particular 1-year or 2-year group were different from those measured in other 1-year or 2-year groups. If the median concentrations were found to differ among years or groups of years, then Tukey's multiple comparison test on ranks was used to identify those years with different or equal concentrations of water-quality constituents. A significance level of 0.05 was selected to indicate significant changes in median concentrations of water-quality constituents. More variations in the median concentrations of water-quality constituents were observed at Statewide Status stations (randomly chosen stations scattered throughout the State of New Jersey) than at Background stations

  9. Correlations of water quality parameters with mutagenicity of chlorinated drinking water samples.

    PubMed

    Schenck, Kathleen M; Sivaganesan, Mano; Rice, Glenn E

    2009-01-01

    Adverse health effects that may result from chronic exposure to mixtures of disinfection by-products (DBPs) present in drinking waters may be linked to both the types and concentrations of DBPs present. Depending on the characteristics of the source water and treatment processes used, both types and concentrations of DBPs found in drinking waters vary substantially. The composition of a drinking-water mixture also may change during distribution. This study evaluated the relationships between mutagenicity, using the Ames assay, and water quality parameters. The study included information on treatment, mutagenicity data, and water quality data for source waters, finished waters, and distribution samples collected from five full-scale drinking water treatment plants, which used chlorine exclusively for disinfection. Four of the plants used surface water sources and the fifth plant used groundwater. Correlations between mutagenicity and water quality parameters are presented. The highest correlation was observed between mutagenicity and the total organic halide concentrations in the treated samples.

  10. Linking land cover and water quality in New York City's water supply watersheds.

    PubMed

    Mehaffey, M H; Nash, M S; Wade, T G; Ebert, D W; Jones, K B; Rager, A

    2005-08-01

    The Catskill/Delaware reservoirs supply 90% of New York City's drinking water. The City has implemented a series of watershed protection measures, including land acquisition, aimed at preserving water quality in the Catskill/Delaware watersheds. The objective of this study was to examine how relationships between landscape and surface water measurements change between years. Thirty-two drainage areas delineated from surface water sample points (total nitrogen, total phosphorus, and fecal coliform bacteria concentrations) were used in step-wise regression analyses to test landscape and surface-water quality relationships. Two measurements of land use, percent agriculture and percent urban development, were positively related to water quality and consistently present in all regression models. Together these two land uses explained 25 to 75% of the regression model variation. However, the contribution of agriculture to water quality condition showed a decreasing trend with time as overall agricultural land cover decreased. Results from this study demonstrate that relationships between land cover and surface water concentrations of total nitrogen, total phosphorus, and fecal coliform bacteria counts over a large area can be evaluated using a relatively simple geographic information system method. Land managers may find this method useful for targeting resources in relation to a particular water quality concern, focusing best management efforts, and maximizing benefits to water quality with minimal costs.

  11. The case for regime-based water quality standards

    USGS Publications Warehouse

    Poole, Geoffrey C.; Dunham, J.B.; Keenan, D.M.; Sauter, S.T.; McCullough, D.A.; Mebane, Christopher; Lockwood, Jeffrey C.; Essig, Don A.; Hicks, Mark P.; Sturdevant, Debra J.; Materna, E.J.; Spalding, M.; Risley, John; Deppman, Marianne

    2004-01-01

    Conventional water quality standards have been successful in reducing the concentration of toxic substances in US waters. However, conventional standards are based on simple thresholds and are therefore poorly structured to address human-caused imbalances in dynamic, natural water quality parameters, such as nutrients, sediment, and temperature. A more applicable type of water quality standarda??a a??regime standarda??a??would describe desirable distributions of conditions over space and time within a stream network. By mandating the protection and restoration of the aquatic ecosystem dynamics that are required to support beneficial uses in streams, well-designed regime standards would facilitate more effective strategies for management of natural water quality parameters.

  12. [Influence of water source switching on water quality in drinking water distribution system].

    PubMed

    Wang, Yang; Niu, Zhang-bin; Zhang, Xiao-jian; Chen, Chao; He, Wen-jie; Han, Hong-da

    2007-10-01

    This study investigates the regularity of the change on the physical and chemical water qualities in the distribution system during the process of water source switching in A city. Due to the water source switching, the water quality is chemical-astable. Because of the differences between the two water sources, pH reduced from 7.54 to 7.18, alkalinity reduced from 188 mg x L(-1) to 117 mg x L(-1), chloride (Cl(-)) reduced from 310 mg x L(-1) to 132 mg x L(-1), conductance reduced from 0.176 S x m(-1) to 0.087 S x m(-1) and the ions of calcium and magnesium reduced to 15 mg x L(-1) and 11 mg x L(-1) respectively. Residual chlorine changed while the increase of the chlorine demand and the water quantity decreasing at night, and the changes of pH, alkalinity and residual chlorine brought the iron increased to 0.4 mg x L(-1) at the tiptop, which was over the standard. The influence of the change of the water parameters on the water chemical-stability in the drinking water distribution system is analyzed, and the controlling countermeasure is advanced: increasing pH, using phosphate and enhancing the quality of the water in distribution system especially the residual chlorine.

  13. SEEING THE LIGHT: A WATER CLARITY INDEX FOR INTEGRATED WATER QUALITY ASSESSMENTS

    EPA Science Inventory

    Smith, Lisa M. and Linda C. Harwell. In press. Seeing the Light: A Water Clarity Index for Integrated Water Quality Assessments (Abstract). To be presented at EMAP Symposium 2004: Integrated Monitoring & Assessment for Effective Water Quality Management. 1 p. (ERL,GB R970).
    <...

  14. Water Quality Monitoring by Satellite

    ERIC Educational Resources Information Center

    Journal of Chemical Education, 2004

    2004-01-01

    The availability of abundant water resources in the Upper Midwest of the United States is nullified by their contamination through heavy commercial and industrial activities. Scientists have taken the responsibility of detecting the water quality of these resources through remote-sensing satellites to develop a wide-ranging water purification plan…

  15. Quality of surface water in Missouri, water year 2011

    USGS Publications Warehouse

    Barr, Miya N.

    2012-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2011 water year (October 1, 2010, through September 30, 2011), data were collected at 75 stations—72 Ambient Water-Quality Monitoring Network stations, 2 U.S. Geological Survey National Stream Quality Accounting Network stations, and 1 spring sampled in cooperation with the U.S. Forest Service. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 72 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.

  16. Quality of surface water in Missouri, water year 2010

    USGS Publications Warehouse

    Barr, Miya N.

    2011-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designs and operates a series of monitoring stations on streams throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2010 water year (October 1, 2009 through September 30, 2010), data were collected at 75 stations-72 Ambient Water-Quality Monitoring Network stations, 2 U.S. Geological Survey National Stream Quality Accounting Network stations, and 1 spring sampled in cooperation with the U.S. Forest Service. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 72 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and 7-day low flow is presented.

  17. Quality of surface water in Missouri, water year 2009

    USGS Publications Warehouse

    Barr, Miya N.

    2010-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designs and operates a series of monitoring stations on streams throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2009 water year (October 1, 2008, through September 30, 2009), data were collected at 75 stations-69 Ambient Water-Quality Monitoring Network stations, 2 U.S. Geological Survey National Stream Quality Accounting Network stations, 1 spring sampled in cooperation with the U.S. Forest Service, and 3 stations sampled in cooperation with the Elk River Watershed Improvement Association. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite, total phosphorus, dissolved and total recoverable lead and zinc, and select pesticide compound summaries are presented for 72 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and seven-day low flow is presented.

  18. Texas Water Quality Board Teachers Workshop Program.

    ERIC Educational Resources Information Center

    Texas Water Quality Board, Austin.

    These materials are designed for teachers participating in an inservice workshop on water quality. Included in the materials are a workshop agenda, a water awareness pretest, and the various parameters and tests that are used to determine and measure water quality. The parameters are discussed from the standpoint of their potential impact to…

  19. Water Quality Trading Toolkit for Permit Writers

    EPA Pesticide Factsheets

    The Water Quality Trading Toolkit for Permit Writers is EPA’s first “how-to” manual on designing and implementing water quality trading programs. It helps NPDES permitting authorities incorporate trading provisions into permits.

  20. Characterizing Water Quality in Students' Own Community

    ERIC Educational Resources Information Center

    Lunsford, S. K.; Speelman, Nicole; Yeary, Amber; Slattery, William

    2007-01-01

    The surface water quality studies are developed to help first year college students who are preparing to become high school teachers. These water quality impact studies allow students to correlate geologic conditions and chemistry.

  1. 40 CFR 35.2102 - Water quality management planning.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Water quality management planning. 35... Administrator shall first determine that the project is: (a) Included in any water quality management plan being implemented for the area under section 208 of the Act or will be included in any water quality management plan...

  2. Comparison of 2002 Water Year and Historical Water-Quality Data, Upper Gunnison River Basin, Colorado

    USGS Publications Warehouse

    Spahr, N.E.

    2003-01-01

    Introduction: Population growth and changes in land-use practices have the potential to affect water quality and quantity in the upper Gunnison River basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with local sponsors, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, and Upper Gunnison River Water Conservancy District, established a water-quality monitoring program in the upper Gunnison River basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations, stations that are considered as long term and stations that are rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions have changed over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short term concerns. Another group of stations (rotational group 2) will be chosen and sampled beginning in water year 2004. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality sampling in the upper Gunnison River basin. This summary includes data collected during water year 2002. The introduction provides a map of the sampling locations, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water year 2002 are compared to historical data (data collected for this network since 1995), state water-quality standards, and federal water-quality guidelines

  3. Microbiological Water Quality of Impoundments: A Literature Review.

    DTIC Science & Technology

    1982-12-01

    A123-470 MICROBIOLOGICAL WATER QUALITY OF IMPOUNDMENTS:A i/i LITERATURE REYIEU(U) TEX S UNJY AT DALLAS RICHRDSON G BURTON DEC 82 NES/MP/E-82-6...REPORT G PERIOD COVERED . MICROBIOLOGICAL WATER QUALITY OF IMPOUNDMENTS: Final report A LITERATURE REVIEW 6. PERFORMING ORG. REPORT NUMBER 7. AUTHOR...Va. 22151. IS. KEY WORDS (Continue an reverse side It necessary mid Identify by black numnber) Bacteria Water quality S Impoundments Water sampling

  4. Biological Water Quality Criteria

    EPA Pesticide Factsheets

    Page contains links to Technical Documents pertaining to Biological Water Quality Criteria, including, technical assistance documents for states, tribes and territories, program overviews, and case studies.

  5. Comparing microbial water quality in an intermittent and continuous piped water supply.

    PubMed

    Kumpel, Emily; Nelson, Kara L

    2013-09-15

    Supplying piped water intermittently is a common practice throughout the world that increases the risk of microbial contamination through multiple mechanisms. Converting an intermittent supply to a continuous supply has the potential to improve the quality of water delivered to consumers. To understand the effects of this upgrade on water quality, we tested samples from reservoirs, consumer taps, and drinking water provided by households (e.g. from storage containers) from an intermittent and continuous supply in Hubli-Dharwad, India, over one year. Water samples were tested for total coliform, Escherichia coli, turbidity, free chlorine, and combined chlorine. While water quality was similar at service reservoirs supplying the continuous and intermittent sections of the network, indicator bacteria were detected more frequently and at higher concentrations in samples from taps supplied intermittently compared to those supplied continuously (p < 0.01). Detection of E. coli was rare in continuous supply, with 0.7% of tap samples positive compared to 31.7% of intermittent water supply tap samples positive for E. coli. In samples from both continuously and intermittently supplied taps, higher concentrations of total coliform were measured after rainfall events. While source water quality declined slightly during the rainy season, only tap water from intermittent supply had significantly more indicator bacteria throughout the rainy season compared to the dry season. Drinking water samples provided by households in both continuous and intermittent supplies had higher concentrations of indicator bacteria than samples collected directly from taps. Most households with continuous supply continued to store water for drinking, resulting in re-contamination, which may reduce the benefits to water quality of converting to continuous supply. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Water quality of arctic rivers in Finnish Lapland.

    PubMed

    Niemi, Jorma

    2010-02-01

    The water quality monitoring data of eight rivers situated in the Finnish Lapland above the Arctic Circle were investigated. These rivers are icebound annually for about 200 days. They belong to the International River Basin District founded according to the European Union Water Framework Directive and shared with Norway. They are part of the European river monitoring network that includes some 3,400 river sites. The water quality monitoring datasets available varied between the rivers, the longest comprising the period 1975-2003 and the shortest 1989-2003. For each river, annual medians of eight water quality variables were calculated. In addition, medians and fifth and 95th percentiles were calculated for the whole observation periods. The medians indicated good river water quality in comparison to other national or foreign rivers. However, the river water quality oscillated widely. Some rivers were in practice in pristine state, whereas some showed slight human impacts, e.g., occasional high values of hygienic indicator bacteria.

  7. Drinking Water Quality of Water Vending Machines in Parit Raja, Batu Pahat, Johor

    NASA Astrophysics Data System (ADS)

    Hashim, N. H.; Yusop, H. M.

    2016-07-01

    An increased in demand from the consumer due to their perceptions on tap water quality is identified as one of the major factor on why they are mentally prepared to pay for the price of the better quality drinking water. The thought that filtered water quality including that are commercially available in the market such as mineral and bottled drinking water and from the drinking water vending machine makes they highly confident on the level of hygiene, safety and the mineral content of this type of drinking water. This study was investigated the vended water quality from the drinking water vending machine in eight locations in Parit Raja are in terms of pH, total dissolve solids (TDS), turbidity, mineral content (chromium, arsenic, cadmium, lead and nickel), total organic carbon (TOC), pH, total colony-forming units (CFU) and total coliform. All experiments were conducted in one month duration in triplicate samples for each sampling event. The results indicated the TDS and all heavy metals in eight vended water machines in Parit Raja area were found to be below the Food Act 1983, Regulation 360C (Standard for Packaged Drinking Water and Vended water, 2012) and Malaysian Drinking Water Quality, Ministry of Health 1983. No coliform was presence in any of the vended water samples. pH was found to be slightly excess the limit provided while turbidity was found to be 45 to 95 times more higher than 0.1 NTU as required by the Malaysian Food Act Regulation. The data obtained in this study would suggest the important of routine maintenance and inspection of vended water provider in order to maintain a good quality, hygienic and safety level of vended water.

  8. Evaluating Water Supply and Water Quality Management Options for Las Vegas Valley

    NASA Astrophysics Data System (ADS)

    Ahmad, S.

    2007-05-01

    The ever increasing population in Las Vegas is generating huge demand for water supply on one hand and need for infrastructure to collect and treat the wastewater on the other hand. Current plans to address water demand include importing water from Muddy and Virgin Rivers and northern counties, desalination of seawater with trade- payoff in California, water banking in Arizona and California, and more intense water conservation efforts in the Las Vegas Valley (LVV). Water and wastewater in the LVV are intrinsically related because treated wastewater effluent is returned back to Lake Mead, the drinking water source for the Valley, to get a return credit thereby augmenting Nevada's water allocation from the Colorado River. The return of treated wastewater however, is a major contributor of nutrients and other yet unregulated pollutants to Lake Mead. Parameters that influence the quantity of water include growth of permanent and transient population (i.e., tourists), indoor and outdoor water use, wastewater generation, wastewater reuse, water conservation, and return flow credits. The water quality of Lake Mead and the Colorado River is affected by the level of treatment of wastewater, urban runoff, groundwater seepage, and a few industrial inputs. We developed an integrated simulation model, using system dynamics modeling approach, to account for both water quantity and quality in the LVV. The model captures the interrelationships among many variables that influence both, water quantity and water quality. The model provides a valuable tool for understanding past, present and future pathways of water and its constituents in the LVV. The model is calibrated and validated using the available data on water quantity (flows at water and wastewater treatment facilities and return water credit flow rates) and water quality parameters (TDS and phosphorus concentrations). We used the model to explore important questions: a)What would be the effect of the water transported from

  9. Impacts of climate change on surface water quality in relation to drinking water production.

    PubMed

    Delpla, I; Jung, A-V; Baures, E; Clement, M; Thomas, O

    2009-11-01

    Besides climate change impacts on water availability and hydrological risks, the consequences on water quality is just beginning to be studied. This review aims at proposing a synthesis of the most recent existing interdisciplinary literature on the topic. After a short presentation about the role of the main factors (warming and consequences of extreme events) explaining climate change effects on water quality, the focus will be on two main points. First, the impacts on water quality of resources (rivers and lakes) modifying parameters values (physico-chemical parameters, micropollutants and biological parameters) are considered. Then, the expected impacts on drinking water production and quality of supplied water are discussed. The main conclusion which can be drawn is that a degradation trend of drinking water quality in the context of climate change leads to an increase of at risk situations related to potential health impact.

  10. Management of source and drinking-water quality in Pakistan.

    PubMed

    Aziz, J A

    2005-01-01

    Drinking-water quality in both urban and rural areas of Pakistan is not being managed properly. Results of various investigations provide evidence that most of the drinking-water supplies are faecally contaminated. At places groundwater quality is deteriorating due to the naturally occurring subsoil contaminants or to anthropogenic activities. The poor bacteriological quality of drinking-water has frequently resulted in high incidence of waterborne diseases while subsoil contaminants have caused other ailments to consumers. This paper presents a detailed review of drinking-water quality in the country and the consequent health impacts. It identifies various factors contributing to poor water quality and proposes key actions required to ensure safe drinking-water supplies to consumers.

  11. Changes in water quality in the Owabi water treatment plant in Ghana

    NASA Astrophysics Data System (ADS)

    Akoto, Osei; Gyamfi, Opoku; Darko, Godfred; Barnes, Victor Rex

    2017-03-01

    The study was conducted on the status of the quality of water from the Owabi water treatment plant that supplies drinking water to Kumasi, a major city in Ghana, to ascertain the change in quality of water from source to point-of-use. Physico-chemical, bacteriological water quality parameters and trace metal concentration of water samples from five different treatment points from the Owabi water treatment plant were investigated. The raw water was moderately hard with high turbidity and colour that exceeds the WHO guideline limits. Nutrient concentrations were of the following order: NH3 < NO2 - < NO3 - < PO4 3- < SO4 2- and were all below WHO permissible level for drinking water in all the samples at different stages of treatment. Trace metal concentrations of the reservoir were all below WHO limit except chromium (0.06 mg/L) and copper (0.24 mg/L). The bacteriological study showed that the raw water had total coliform (1,766 cfu/100 mL) and faecal coliform (257 cfu/100 mL) that exceeded the WHO standard limits, rendering it unsafe for domestic purposes without treatment. Colour showed strong positive correlation with turbidity ( r = 0.730), TSS ( r ≥ 0.922) and alkalinity (0.564) significant at p < 0.01. The quality of the treated water indicates that colour, turbidity, Cr and Cu levels reduced and fall within the WHO permissible limit for drinking water. Treatment process at the water treatment plant is adjudged to be good.

  12. San Francisco Bay Water Quality Improvement Fund

    EPA Pesticide Factsheets

    EPAs grant program to protect and restore San Francisco Bay. The San Francisco Bay Water Quality Improvement Fund (SFBWQIF) has invested in 58 projects along with 70 partners contributing to restore wetlands, water quality, and reduce polluted runoff.,

  13. Water-quality monitoring of Sweetwater Reservoir

    USGS Publications Warehouse

    Majewski, Michael

    2001-01-01

    Sweetwater Authority is concerned with the quality of water it provides to its customers. Results from the water-quality monitoring study that the USGS is conducting in the Sweetwater watershed show that the contaminant concentrations in bed sediments, water, and air are reflected in increased urbanization. The bed sediments show the most dramatic evidence of this impact with a sharp increase of persistent organic chemical concentrations over the past 65 years. Water quality is also affected by urbanization in the form of chemicals in the runoff water and deposition of airborne chemicals. The concentrations of the detected organic chemicals in Sweetwater and Loveland Reservoirs are all well below the guidance limits set by State and Federal agencies to protect human health. Many of these compounds are detected only because of the sensitive analytical methods used. This monitoring program provides the Sweetwater Authority with information on what monitored chemicals are present in the reservoirs, and at what concentrations. With this information, the Authority can assess the associated risks, and consider future water treatment and remediation. These results also help focus and support future efforts by Sweetwater Authority to protect the watershed.

  14. DRINKING WATER MICROBIOLOGY - NEW DIRECTIONS TOWARD WATER QUALITY ENHANCEMENT

    EPA Science Inventory

    Many concerns result from information on new waterborne agents, treatment problems of raw water qualities, biofilm development in some distribution systems, and special quality needs unique to hospitals and industries. Protozoan cyst penetration after some disinfection practices ...

  15. Quantifying The Water Quality Services Of Wetlands

    EPA Science Inventory

    Wetlands are well recognized for their potential for providing a wide range of important ecological services including their ability to provide water quality protection. Watershed-scale water quality trading could create market driven incentives to restore and construct wetlands...

  16. 40 CFR 131.22 - EPA promulgation of water quality standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 21 2010-07-01 2010-07-01 false EPA promulgation of water quality standards. 131.22 Section 131.22 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY STANDARDS Procedures for Review and Revision of Water Quality Standards § 131.22 EPA promulgation of water quality...

  17. 40 CFR 131.22 - EPA promulgation of water quality standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 22 2011-07-01 2011-07-01 false EPA promulgation of water quality standards. 131.22 Section 131.22 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER PROGRAMS WATER QUALITY STANDARDS Procedures for Review and Revision of Water Quality Standards § 131.22 EPA promulgation of water quality...

  18. The Upper Colorado River; National Water-Quality Assessment Program; surface-water-monitoring network

    USGS Publications Warehouse

    Spahr, Norman E.; Driver, Nancy E.; Stephens, Verlin C.

    1996-01-01

    The U.S. Geological Survey began full implementation of the National Water-Quality Assessment (NAWQA) program in 1991. The long-term goals of the NAWQA program are to (1) describe current water-quality conditions for a large part of the Nation's freshwater streams, rivers, and aquifers; (2) describe how water quality is changing over time; and (3) improve understanding of the primary natural and human factors that affect water-quality conditions (Leahy and others, 1990). To meet these goals, 60 study units representing the Nation's most important river basins and aquifers are being investigated. The program design balances the unique assessment requirements of individual study units with a nationally consistent design structure that incorporates a multiscale, interdisciplinary approach for assessment of surface and ground water.

  19. National water summary 1990-91: Hydrologic events and stream water quality

    USGS Publications Warehouse

    Paulson, Richard W.; Chase, Edith B.; Williams, John S.; Moody, David W.

    1993-01-01

    The following discussion is an overview of the three parts of this 1990-91 National Water Summary - "Hydrologic Conditions and Water-Related Events, Water Years 1990-91," "Hydrologic Perspectives on Water Issues," and "State Summaries of Stream Water Quality."

  20. Water Quality Instructional Resources Information System (IRIS): A Compilation of Abstracts to Water Quality and Water Resources Materials.

    ERIC Educational Resources Information Center

    Office of Water Program Operations (EPA), Cincinnati, OH. National Training and Operational Technology Center.

    Presented is a compilation of over 3,000 abstracts on print and non-print materials related to water quality and water resources education. Entries are included from all levels of governmental sources, private concerns, and educational institutions. Each entry includes: title, author, cross references, descriptors, and availability. (CLS)

  1. Water quality assessment with hierarchical cluster analysis based on Mahalanobis distance.

    PubMed

    Du, Xiangjun; Shao, Fengjing; Wu, Shunyao; Zhang, Hanlin; Xu, Si

    2017-07-01

    Water quality assessment is crucial for assessment of marine eutrophication, prediction of harmful algal blooms, and environment protection. Previous studies have developed many numeric modeling methods and data driven approaches for water quality assessment. The cluster analysis, an approach widely used for grouping data, has also been employed. However, there are complex correlations between water quality variables, which play important roles in water quality assessment but have always been overlooked. In this paper, we analyze correlations between water quality variables and propose an alternative method for water quality assessment with hierarchical cluster analysis based on Mahalanobis distance. Further, we cluster water quality data collected form coastal water of Bohai Sea and North Yellow Sea of China, and apply clustering results to evaluate its water quality. To evaluate the validity, we also cluster the water quality data with cluster analysis based on Euclidean distance, which are widely adopted by previous studies. The results show that our method is more suitable for water quality assessment with many correlated water quality variables. To our knowledge, it is the first attempt to apply Mahalanobis distance for coastal water quality assessment.

  2. Impacts of extreme flooding on riverbank filtration water quality.

    PubMed

    Ascott, M J; Lapworth, D J; Gooddy, D C; Sage, R C; Karapanos, I

    2016-06-01

    Riverbank filtration schemes form a significant component of public water treatment processes on a global level. Understanding the resilience and water quality recovery of these systems following severe flooding is critical for effective water resources management under potential future climate change. This paper assesses the impact of floodplain inundation on the water quality of a shallow aquifer riverbank filtration system and how water quality recovers following an extreme (1 in 17 year, duration >70 days, 7 day inundation) flood event. During the inundation event, riverbank filtrate water quality is dominated by rapid direct recharge and floodwater infiltration (high fraction of surface water, dissolved organic carbon (DOC) >140% baseline values, >1 log increase in micro-organic contaminants, microbial detects and turbidity, low specific electrical conductivity (SEC) <90% baseline, high dissolved oxygen (DO) >400% baseline). A rapid recovery is observed in water quality with most floodwater impacts only observed for 2-3 weeks after the flooding event and a return to normal groundwater conditions within 6 weeks (lower fraction of surface water, higher SEC, lower DOC, organic and microbial detects, DO). Recovery rates are constrained by the hydrogeological site setting, the abstraction regime and the water quality trends at site boundary conditions. In this case, increased abstraction rates and a high transmissivity aquifer facilitate rapid water quality recoveries, with longer term trends controlled by background river and groundwater qualities. Temporary reductions in abstraction rates appear to slow water quality recoveries. Flexible operating regimes such as the one implemented at this study site are likely to be required if shallow aquifer riverbank filtration systems are to be resilient to future inundation events. Development of a conceptual understanding of hydrochemical boundaries and site hydrogeology through monitoring is required to assess the

  3. Comparison of Water Years 2004-05 and Historical Water-Quality Data, Upper Gunnison River Basin, Colorado

    USGS Publications Warehouse

    Spahr, Norman E.; Hartle, David M.; Diaz, Paul

    2008-01-01

    Population growth and changes in land use have the potential to affect water quality and quantity in the upper Gunnison River Basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Hinsdale County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, Upper Gunnison River Water Conservancy District, and Western State College, established a water-quality monitoring program in the upper Gunnison River Basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations - stations that are considered long term and stations that are considered rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions may change over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short-term concerns. Some stations in the rotational group were changed beginning in water year 2007. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality monitoring in the upper Gunnison River Basin. This summary includes data collected during water years 2004 and 2005. The introduction provides a map of the sampling sites, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water years 2004 and 2005 are compared to historical data, State water-quality standards, and Federal water-quality guidelines. Data were

  4. Automated monitoring of recovered water quality

    NASA Technical Reports Server (NTRS)

    Misselhorn, J. E.; Hartung, W. H.; Witz, S. W.

    1974-01-01

    Laboratory prototype water quality monitoring system provides automatic system for online monitoring of chemical, physical, and bacteriological properties of recovered water and for signaling malfunction in water recovery system. Monitor incorporates whenever possible commercially available sensors suitably modified.

  5. Water quality and management of private drinking water wells in Pennsylvania.

    PubMed

    Swistock, Bryan R; Clemens, Stephanie; Sharpe, William E; Rummel, Shawn

    2013-01-01

    Pennsylvania has over three million rural residents using private water wells for drinking water supplies but is one of the few states that lack statewide water well construction or management standards. The study described in this article aimed to determine the prevalence and causes of common health-based pollutants in water wells and evaluate the need for regulatory management along with voluntary educational programs. Water samples were collected throughout Pennsylvania by Master Well Owner Network volunteers trained by Penn State Extension. Approximately 40% of the 701 water wells sampled failed at least one health-based drinking water standard. The prevalence of most water quality problems was similar to past studies although both lead and nitrate-N were reduced over the last 20 years. The authors' study suggests that statewide water well construction standards along with routine water testing and educational programs to assist water well owners would result in improved drinking water quality for private well owners in Pennsylvania.

  6. Quality-assurance plan for water-quality activities in the North Florida Program Office, Florida District

    USGS Publications Warehouse

    Berndt, Marian P.; Katz, Brian G.

    2000-01-01

    In accordance with guidelines set forth by the Office of Water Quality in the Water Resources Division of the U.S. Geological Survey, a quality-assurance plan was created for use by the Florida District's North Florida Program Office in conducting water-quality activities. This plan documents the standards, policies, and procedures used by the North Florida Program Office for activities related to the collection, processing, storage, analysis, and publication of water-quality data.

  7. Shale Gas Development and Drinking Water Quality.

    PubMed

    Hill, Elaine; Ma, Lala

    2017-05-01

    The extent of environmental externalities associated with shale gas development (SGD) is important for welfare considerations and, to date, remains uncertain (Mason, Muehlenbachs, and Olmstead 2015; Hausman and Kellogg 2015). This paper takes a first step to address this gap in the literature. Our study examines whether shale gas development systematically impacts public drinking water quality in Pennsylvania, an area that has been an important part of the recent shale gas boom. We create a novel dataset from several unique sources of data that allows us to relate SGD to public drinking water quality through a gas well's proximity to community water system (CWS) groundwater source intake areas.1 We employ a difference-in-differences strategy that compares, for a given CWS, water quality after an increase in the number of drilled well pads to background levels of water quality in the geographic area as measured by the impact of more distant well pads. Our main estimate finds that drilling an additional well pad within 1 km of groundwater intake locations increases shale gas-related contaminants by 1.5–2.7 percent, on average. These results are striking considering that our data are based on water sampling measurements taken after municipal treatment, and suggest that the health impacts of SGD 1 A CWS is defined as the subset of public water systems that supplies water to the same population year-round. through water contamination remains an open question.

  8. Drinking Water Quality in Hospitals and Other Buildings ...

    EPA Pesticide Factsheets

    Drinking water quality entering large buildings is generally adequately controlled by the water utility, but localized problems may occur within building or “premise” plumbing. Particular concerns are loss of disinfectant residual and temperature variability, which may enhance pathogen activity and metallic corrosion. Disinfection systems are available to building managers and are being installed in a variety of commercial buildings (hospitals, hotels, office buildings.) Yet our understanding of such additional treatment and of how to monitor end water quality at these buildings is limited. This class lecture will discuss challenges in maintaining acceptable water quality in hospitals, schools and other buildings. To give a lecture to a class of graduate students (ENVE 6054: Physical/Chemical Processes for Water Quality Control) at the University of Cincinnati, by presenting past research projects.

  9. Quality of water, Quillayute River basin, Washington

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fretwell, M.O.

    Ground water in the Quillayute River basin is generally of the calcium bicarbonate type, although water from some wells is affected by seawater intrusion and is predominantly of the sodium chloride type. The water is generally of excellent quality for most uses, with the exception of water in two wells which had iron concentrations that potentially could be tasted in beverages and could cause staining of laundry and porcelain fixtures. A comparison of the chemical compositions of ground and surface waters showed a strong similarity over a wide geographic area. Proportions of the major chemical constituents in the rivers ofmore » the basin were nearly constant despite concentration fluctuations in response to dilution from precipitation and snowmelt. River-water quality was generally excellent, as evaluated against Washington State water use and water-quality criteria. Fecal-coliform bacteria counts generally were much lower than the total-coliform bacteria counts, indicating that most of the coliform bacteria were of nonfecal origin and probably originated in soils. Fecal coliform concentrations in all the major tributaries met State water-quality criteria. Water temperatures occasionally exceeded criteria maximum during periods of warm weather and low streamflow; dissolved-oxygen concentrations were occasionally less than criteria minimum because of increased water temperature. Both conditions occurred naturally. Nutrient concentrations were generally low to very low and about the same as in streams from virgin forestland in the Olympic National Park. However, some slight increases in nutrient concentrations were observed, particularly in the vicinity of Mill Creek and the town of Forks; due to dilution and biological assimilation, these slightly elevated concentrations decreased as the water moved downstream. 35 refs., 24 figs., 16 tabs.« less

  10. Post-fire Water Quality Response and Associated Physical Drivers

    NASA Astrophysics Data System (ADS)

    Rust, A.; Saxe, S.; Hogue, T. S.; McCray, J. E.; Rhoades, C.

    2017-12-01

    The frequency and severity of forest fires is increasing across the western US. Wildfires are known to impact water quality in receiving waters; many of which are important sources of water supply. Studies on individual forest fires have shown an increase in total suspended solids, nutrient and metal concentrations and loading in receiving streams. The current research looks at a large number of fires across a broad region (Western United States) to identify typical water quality changes after fire and the physical characteristics that drive those responses. This presentation will overview recent development of an extensive database on post-fire water quality. Across 172 fires, we found that water quality changed significantly in one out of three fires up to five years after the event compared to pre-burn conditions. For basins with higher frequency data, it was evident that water quality changes were significant in the first three years following fire. In both the initial years following fire and five years after fire, concentrations and loading rates of dissolved nutrients such as nitrite, nitrate and orthophosphate and particulate forms of nutrients, total organic nitrogen, total nitrogen, total phosphate, and total phosphorus increase thirty percent of the time. Concentrations of some major dissolved ions and metals decrease, with increased post-fire flows, while total particulate concentrations increased; the flux of both dissolved and particulate forms increase in thirty percent of the fires over five years. Water quality change is not uniform across the studied watersheds. A second goal of this study is to identify physical characteristics of a watershed that drive water quality response. Specifically, we investigate the physical, geochemical, and climatological characteristics of watersheds that control the type, direction, and magnitude of water quality change. Initial results reveal vegetation recovery is a key driver in post-fire water quality response

  11. Comparative Assessment of Physical and Social Determinants of Water Quantity and Water Quality Concerns

    NASA Astrophysics Data System (ADS)

    Gunda, T.; Hornberger, G. M.

    2017-12-01

    Concerns over water resources have evolved over time, from physical availability to economic access and recently, to a more comprehensive study of "water security," which is inherently interdisciplinary because a secure water system is influenced by and affects both physical and social components. The concept of water security carries connotations of both an adequate supply of water as well as water that meets certain quality standards. Although the term "water security" has many interpretations in the literature, the research field has not yet developed a synthetic analysis of water security as both a quantity (availability) and quality (contamination) issue. Using qualitative comparative and multi-regression analyses, we evaluate the primary physical and social factors influencing U.S. states' water security from a quantity perspective and from a quality perspective. Water system characteristics are collated from academic and government sources and include access/use, governance, and sociodemographic, and ecosystem metrics. Our analysis indicates differences in variables driving availability and contamination concerns; for example, climate is a more significant determinant in water quantity-based security analyses than in water quality-based security analyses. We will also discuss coevolution of system traits and the merits of constructing a robust water security index based on the relative importance of metrics from our analyses. These insights will improve understanding of the complex interactions between quantity and quality aspects and thus, overall security of water systems.

  12. CONNECTICUT SURFACE WATER QUALITY CLASSIFICATIONS

    EPA Science Inventory

    This is a 1:24,000-scale datalayer of Surface Water Quality Classifications for Connecticut. It is comprised of two 0Shapefiles with line and polygon features. Both Shapefiles must be used together with the Hydrography datalayer. The polygon Shapefile includes surface water qual...

  13. Field methods and quality-assurance plan for water-quality activities and water-level measurements, U.S. Geological Survey, Idaho National Laboratory, Idaho

    USGS Publications Warehouse

    Bartholomay, Roy C.; Maimer, Neil V.; Wehnke, Amy J.

    2014-01-01

    Water-quality activities and water-level measurements by the personnel of the U.S. Geological Survey (USGS) Idaho National Laboratory (INL) Project Office coincide with the USGS mission of appraising the quantity and quality of the Nation’s water resources. The activities are carried out in cooperation with the U.S. Department of Energy (DOE) Idaho Operations Office. Results of the water-quality and hydraulic head investigations are presented in various USGS publications or in refereed scientific journals and the data are stored in the National Water Information System (NWIS) database. The results of the studies are used by researchers, regulatory and managerial agencies, and interested civic groups. In the broadest sense, quality assurance refers to doing the job right the first time. It includes the functions of planning for products, review and acceptance of the products, and an audit designed to evaluate the system that produces the products. Quality control and quality assurance differ in that quality control ensures that things are done correctly given the “state-of-the-art” technology, and quality assurance ensures that quality control is maintained within specified limits.

  14. Infectious Disinfection: "Exploring Global Water Quality"

    ERIC Educational Resources Information Center

    Mahaya, Evans; Tippins, Deborah J.; Mueller, Michael P.; Thomson, Norman

    2009-01-01

    Learning about the water situation in other regions of the world and the devastating effects of floods on drinking water helps students study science while learning about global water quality. This article provides science activities focused on developing cultural awareness and understanding how local water resources are integrally linked to the…

  15. Water Quality Vocabulary Development and Deployment

    NASA Astrophysics Data System (ADS)

    Simons, B. A.; Yu, J.; Cox, S. J.

    2013-12-01

    Semantic descriptions of observed properties and associated units of measure are fundamental to understanding of environmental observations, including groundwater, surface water and marine water quality. Semantic descriptions can be captured in machine-readable ontologies and vocabularies, thus providing support for the annotation of observation values from the disparate data sources with appropriate and accurate metadata, which is critical for achieving semantic interoperability. However, current stand-alone water quality vocabularies provide limited support for cross-system comparisons or data fusion. To enhance semantic interoperability, the alignment of water-quality properties with definitions of chemical entities and units of measure in existing widely-used vocabularies is required. Modern ontologies and vocabularies are expressed, organized and deployed using Semantic Web technologies. We developed an ontology for observed properties (i.e. a model for expressing appropriate controlled vocabularies) which extends the NASA/TopQuadrant QUDT ontology for Unit and QuantityKind with two additional classes and two properties (see accompanying paper by Cox, Simons and Yu). We use our ontology to populate the Water Quality vocabulary with a set of individuals of each of the four key classes (and their subclasses), and add appropriate relationships between these individuals. This ontology is aligned with other relevant stand-alone Water Quality vocabularies and domain ontologies. Developing the Water Quality vocabulary involved two main steps. First, the Water Quality vocabulary was populated with individuals of the ObservedProperty class, which was determined from a census of existing datasets and services. Each ObservedProperty individual relates to other individuals of Unit and QuantityKind (taken from QUDT where possible), and to IdentifiedObject individuals. As a large fraction of observed water quality data are classified by the chemical substance involved, the

  16. Ground-water quality in east-central Idaho valleys

    USGS Publications Warehouse

    Parliman, D.J.

    1982-01-01

    From May through November 1978, water quality, geologic, and hydrologic data were collected for 108 wells in the Lemhi, Pahsimeroi, Salman River (Stanley to Salmon), Big Lost River, and Little Lost River valleys in east-central Idaho. Data were assembled to define, on a reconnaissance level, water-quality conditions in major aquifers and to develop an understanding of factors that affected conditions in 1978 and could affect future ground-water quality. Water-quality characteristics determined include specific conductance, pH, water temperature, major dissolved cations, major dissolved anions, and coliform bacteria. Concentrations of hardness, nitrite plus nitrate, coliform bacteria, dissolved solids, sulfate, chloride, fluoride , iron, calcium, magnesium, sodium, potassium or bicarbonate exceed public drinking water regulation limits or were anomalously high in some water samples. Highly mineralized ground water probably is due to the natural composition of the aquifers and not to surface contamination. Concentrations of coliform bacteria that exceed public drinking water limits and anomalously high dissolved nitrite-plus-nitrite concentrations are from 15- to 20-year old irrigation wells in heavily irrigated or more densely populated areas of the valleys. Ground-water quality and quantity in most of the study area are sufficient to meet current (1978) population and economic demands. Ground water in all valleys is characterized by significant concentrations of calcium, magnesium, and bicarbonate plus carbonate ions. Variations in the general trend of ground-water composition (especially in the Lemhi Valley) probably are most directly related to variability in aquifer lithology and proximity of sampling site to source of recharge. (USGS)

  17. Toward a Global Water Quality Observing and Forecasting System

    EPA Science Inventory

    The Group on Earth Observations (GEO) Coastal and Inland Water Quality Working Group held a Water Quality Summit at the World Meteorological Organization (WMO) in Geneva, Switzerland April 20 to 22, 2015. The goal was to define specific water quality component requirements and de...

  18. Monitoring water quality in Toronto's urban stormwater ponds: Assessing participation rates and data quality of water sampling by citizen scientists in the FreshWater Watch.

    PubMed

    Scott, Andrew B; Frost, Paul C

    2017-08-15

    From 2013 to 2015, citizen scientist volunteers in Toronto, Canada were trained to collect and analyze water quality in urban stormwater ponds. This volunteer sampling was part of the research program, FreshWater Watch (FWW), which aimed to standardize urban water sampling efforts from around the globe. We held training sessions for new volunteers twice yearly and trained a total of 111 volunteers. Over the course of project, ~30% of volunteers participated by collecting water quality data after the training session with 124 individual sampling events at 29 unique locations in Toronto, Canada. A few highly engaged volunteers were most active, with 50% of the samples collected by 5% of trainees. Stormwater ponds generally have poor water quality demonstrated by elevated phosphate concentrations (~30μg/L), nitrate (~427μg/L), and turbidity relative to Canadian water quality standards. Compared to other urban waterbodies in the global program, nutrient concentrations in Toronto's urban stormwater ponds were lower, while turbidity was not markedly different. Toronto FWW (FWW-TO) data was comparable to that measured by standard lab analyses and matched results from previous studies of stormwater ponds in Toronto. Combining observational and chemical data acquired by citizen scientists, macrophyte dominated ponds had lower phosphate concentrations while phytoplankton dominated ponds had lower nitrate concentrations, which indicates a potentially important and unstudied role of internal biogeochemical processes on pond nutrient dynamics. This experience in the FWW demonstrates the capabilities and constraints of citizen science when applied to water quality sampling. While analytical limits on in-field analyses produce higher uncertainty in water quality measurements of individual sites, rapid data collection is possible but depends on the motivation and engagement of the group of volunteers. Ongoing efforts in citizen science will thus need to address sampling effort

  19. The quality of our Nation's waters: Water quality in principal aquifers of the United States, 1991-2010

    USGS Publications Warehouse

    DeSimone, Leslie A.; McMahon, Peter B.; Rosen, Michael R.

    2015-01-01

    About 130 million people in the United States rely on groundwater for drinking water, and the need for high-quality drinking-water supplies becomes more urgent as our population grows. Although groundwater is a safe, reliable source of drinking water for millions of people nationwide, high concentrations of some chemical constituents can pose potential human-health concerns. Some of these contaminants come from the rocks and sediments of the aquifers themselves, and others are chemicals that we use in agriculture, industry, and day-to-day life. When groundwater supplies are contaminated, millions of dollars can be required for treatment so that the supplies can be usable. Contaminants in groundwater can also affect the health of our streams and valuable coastal waters. By knowing where contaminants occur in groundwater, what factors control contaminant concentrations, and what kinds of changes in groundwater quality might be expected in the future, we can ensure the availability and quality of this vital natural resource in the future.

  20. Interventions to improve water quality for preventing diarrhoea

    PubMed Central

    Clasen, Thomas F; Alexander, Kelly T; Sinclair, David; Boisson, Sophie; Peletz, Rachel; Chang, Howard H; Majorin, Fiona; Cairncross, Sandy

    2015-01-01

    Background Diarrhoea is a major cause of death and disease, especially among young children in low-income countries. In these settings, many infectious agents associated with diarrhoea are spread through water contaminated with faeces. In remote and low-income settings, source-based water quality improvement includes providing protected groundwater (springs, wells, and bore holes), or harvested rainwater as an alternative to surface sources (rivers and lakes). Point-of-use water quality improvement interventions include boiling, chlorination, flocculation, filtration, or solar disinfection, mainly conducted at home. Objectives To assess the effectiveness of interventions to improve water quality for preventing diarrhoea. Search methods We searched the Cochrane Infectious Diseases Group Specialized Register (11 November 2014), CENTRAL (the Cochrane Library, 7 November 2014), MEDLINE (1966 to 10 November 2014), EMBASE (1974 to 10 November 2014), and LILACS (1982 to 7 November 2014). We also handsearched relevant conference proceedings, contacted researchers and organizations working in the field, and checked references from identified studies through 11 November 2014. Selection criteria Randomized controlled trials (RCTs), quasi-RCTs, and controlled before-and-after studies (CBA) comparing interventions aimed at improving the microbiological quality of drinking water with no intervention in children and adults. Data collection and analysis Two review authors independently assessed trial quality and extracted data. We used meta-analyses to estimate pooled measures of effect, where appropriate, and investigated potential sources of heterogeneity using subgroup analyses. We assessed the quality of evidence using the GRADE approach. Main results Forty-five cluster-RCTs, two quasi-RCTs, and eight CBA studies, including over 84,000 participants, met the inclusion criteria. Most included studies were conducted in low- or middle-income countries (LMICs) (50 studies) with

  1. Progress and lessons learned from water-quality monitoring networks

    USGS Publications Warehouse

    Myers, Donna N.; Ludtke, Amy S.

    2017-01-01

    Stream-quality monitoring networks in the United States were initiated and expanded after passage of successive federal water-pollution control laws from 1948 to 1972. The first networks addressed information gaps on the extent and severity of stream pollution and served as early warning systems for spills. From 1965 to 1972, monitoring networks expanded to evaluate compliance with stream standards, track emerging issues, and assess water-quality status and trends. After 1972, concerns arose regarding the ability of monitoring networks to determine if water quality was getting better or worse and why. As a result, monitoring networks adopted a hydrologic systems approach targeted to key water-quality issues, accounted for human and natural factors affecting water quality, innovated new statistical methods, and introduced geographic information systems and models that predict water quality at unmeasured locations. Despite improvements, national-scale monitoring networks have declined over time. Only about 1%, or 217, of more than 36,000 US Geological Survey monitoring sites sampled from 1975 to 2014 have been operated throughout the four decades since passage of the 1972 Clean Water Act. Efforts to sustain monitoring networks are important because these networks have collected information crucial to the description of water-quality trends over time and are providing information against which to evaluate future trends.

  2. Water quality in New Zealand's planted forests: A review

    Treesearch

    Brenda R. Baillie; Daniel G. Neary

    2015-01-01

    This paper reviewed the key physical, chemical and biological water quality attributes of surface waters in New Zealand’s planted forests. The purpose was to: a) assess the changes in water quality throughout the planted forestry cycle from afforestation through to harvesting; b) compare water quality from planted forests with other land uses in New Zealand; and c)...

  3. Water quality of North Carolina streams

    USGS Publications Warehouse

    Harned, Douglas; Meyer, Dann

    1983-01-01

    Interpretation of water quality data collected by the U.S. Geological Survey and the North Carolina Department of Natural Resources and Community Development, for the Yadkin-Pee Dee River system, has identified water quality variations, characterized the current condition of the river in reference to water quality standards, estimated the degree of pollution caused by man, and evaluated long-term trends in concentrations of major dissolved constituents. Three stations, Yadkin River at Yadkin College (02116500), Rocky River near Norwood (02126000), and Pee Dee River near Rockingham (02129000) have been sampled over different periods of time beginning in 1906. Overall, the ambient water quality of the Yadkin-Pee Dee River system is satisfactory for most water uses. Iron and manganese concentrations are often above desirable levels, but they are not unusually high in comparison to other North Carolina streams. Lead concentrations also periodically rise above the recommended criterion for domestic water use. Mercury concentrations frequently exceed, and pH levels fall below, the recommended criteria for protection of aquatic life. Dissolved oxygen levels, while generally good, are lowest at the Pee Dee near Rockingham, due to the station 's location not far downstream from a lake. Suspended sediment is the most significant water quality problem of the Yadkin-Pee Dee River. The major cation in the river is sodium and the major anions are bicarbonate and carbonate. Eutrophication is currently a problem in the Yadkin-Pee Dee, particularly in High Rock Lake. An estimated nutrient and sediment balance of the system indicates that lakes along the Yadkin-Pee Dee River serve as a sink for sediment, ammonia, and phosphorus. Pollution makes up approximately 59% of the total dissolved solids load of the Yadkin River at Yadkin College, 43% for the Rocky River near Norwood, and 29% for the Pee Dee River near Rockingham. Statistically significant trends show a pattern of increasing

  4. Ground-water-quality assessment of the Central Oklahoma aquifer, Oklahoma; hydrologic, water-quality, and quality-assurance data 1987-90

    USGS Publications Warehouse

    Ferree, D.M.; Christenson, S.C.; Rea, A.H.; Mesander, B.A.

    1992-01-01

    This report presents data collected from 202 wells between June 1987 and September 1990 as part of the Central Oklahoma aquifer pilot study of the National Water-Quality Assessment Program. The report describes the sampling networks, the sampling procedures, and the results of the ground-water quality and quality-assurance sample analyses. The data tables consist of information about the wells sampled and the results of the chemical analyses of ground water and quality-assurance sampling. Chemical analyses of ground-water samples in four sampling networks are presented: A geochemical network, a low-density survey bedrock network, a low-density survey alluvium and terrace deposits network, and a targeted urban network. The analyses generally included physical properties, major ions, nutrients, trace substances, radionuclides, and organic constituents. The chemical analyses of the ground-water samples are presented in five tables: (1) Physical properties and concentrations of major ions, nutrients, and trace substances; (2) concentrations of radionuclides and radioactivities; (3) carbon isotope ratios and delta values (d-values) of selected isotopes; (4) concentrations of organic constituents; and (5) organic constituents not reported in ground-water samples. The quality of the ground water sampled varied substantially. The sum of constituents (dissolved solids) concentrations ranged from 71 to 5,610 milligrams per liter, with 38 percent of the wells sampled exceeding the Secondary Maximum Contaminant Level of 500 milligrams per liter established under the Safe Drinking Water Act. Values of pH ranged from 5.7 to 9.2 units with 20 percent of the wells outside the Secondary Maximum Contaminant Level of 6.5 to 8.5 units. Nitrite plus nitrate concentrations ranged from less than 0.1 to 85 milligrams per liter with 8 percent of the wells exceeding the proposed Maximum Contaminant Level of 10 milligrams per liter. Concentrations of trace substances were highly variable

  5. Landsat Thematic Mapper monitoring of turbid inland water quality

    NASA Technical Reports Server (NTRS)

    Lathrop, Richard G., Jr.

    1992-01-01

    This study reports on an investigation of water quality calibration algorithms under turbid inland water conditions using Landsat Thematic Mapper (TM) multispectral digital data. TM data and water quality observations (total suspended solids and Secchi disk depth) were obtained near-simultaneously and related using linear regression techniques. The relationships between reflectance and water quality for Green Bay and Lake Michigan were compared with results for Yellowstone and Jackson Lakes, Wyoming. Results show similarities in the water quality-reflectance relationships, however, the algorithms derived for Green Bay - Lake Michigan cannot be extrapolated to Yellowstone and Jackson Lake conditions.

  6. A Two-Year Water Quality Monitoring Curriculum.

    ERIC Educational Resources Information Center

    Glazer, Richard B.; And Others

    The Environmental Protection Agency developed this curriculum to train technicians to monitor water quality. Graduates of the program should be able to monitor municipal, industrial, and commercial discharges; test drinking water for purity; and determine quality of aquatic environments. The program includes algebra, communication skills, biology,…

  7. Literature relevant to remote sensing of water quality

    NASA Technical Reports Server (NTRS)

    Middleton, E. M.; Marcell, R. F.

    1983-01-01

    References relevant to remote sensing of water quality were compiled, organized, and cross-referenced. The following general categories were included: (1) optical properties and measurement of water characteristics; (2) interpretation of water characteristics by remote sensing, including color, transparency, suspended or dissolved inorganic matter, biological materials, and temperature; (3) application of remote sensing for water quality monitoring; (4) application of remote sensing according to water body type; and (5) manipulation, processing and interpretation of remote sensing digital water data.

  8. Better Insight Into Water Resources Management With Integrated Hydrodynamic And Water Quality Models

    NASA Astrophysics Data System (ADS)

    Debele, B.; Srinivasan, R.; Parlange, J.

    2004-12-01

    Models have long been used in water resources management to guide decision making and improve understanding of the system. Numerous models of different scales -spatial and temporal - are available. Yet, very few models manage to bridge simulations of hydrological and water quality parameters from both upland watershed and riverine system. Most water quality models, such as QUAL2E and EPD-RIV1 concentrate on the riverine system while CE-QUAL-W2 and WASP models focus on larger waterbodies, such as lakes and reservoirs. On the other hand, the original SWAT model, HSPF and other upland watershed hydrological models simulate agricultural (diffuse) pollution sources with limited number of processes incorporated to handle point source pollutions that emanate from industrial sectors. Such limitations, which are common in most hydrodynamic and water quality models undermine better understanding that otherwise could be uncovered by employing integrated hydrological and water quality models for both upland watershed and riverine system. The SWAT model is a well documented and verified hydrological and water quality model that has been developed to simulate the effects of various management scenarios on the health of the environment in terms of water quantity and quality. Recently, the SWAT model has been extended to include the simulation of hydrodynamic and water quality parameters in the river system. The extended SWAT model (ESWAT) has been further extended to run using diurnally varying (hourly) weather data and produce outputs at hourly timescales. This and other improvements in the ESWAT model have been documented in the current work. Besides, the results from two case studies in Texas will be reported.

  9. WATER QUALITY EARLY WARNING SYSTEMS FOR SOURCE WATER PROTECTION

    EPA Science Inventory

    Source waters of the U.S. are vulnerable to natural and anthropogenic factors affecting quality for use as both a drinking water and ecological media. Important factors include physical parameters such as increased turbidity, ecological cycles such as algal blooms, and episodic ...

  10. Linking Spatial Variations in Water Quality with Water and Land Management using Multivariate Techniques.

    PubMed

    Wan, Yongshan; Qian, Yun; Migliaccio, Kati White; Li, Yuncong; Conrad, Cecilia

    2014-03-01

    Most studies using multivariate techniques for pollution source evaluation are conducted in free-flowing rivers with distinct point and nonpoint sources. This study expanded on previous research to a managed "canal" system discharging into the Indian River Lagoon, Florida, where water and land management is the single most important anthropogenic factor influencing water quality. Hydrometric and land use data of four drainage basins were uniquely integrated into the analysis of 25 yr of monthly water quality data collected at seven stations to determine the impact of water and land management on the spatial variability of water quality. Cluster analysis (CA) classified seven monitoring stations into four groups (CA groups). All water quality parameters identified by discriminant analysis showed distinct spatial patterns among the four CA groups. Two-step principal component analysis/factor analysis (PCA/FA) was conducted with (i) water quality data alone and (ii) water quality data in conjunction with rainfall, flow, and land use data. The results indicated that PCA/FA of water quality data alone was unable to identify factors associated with management activities. The addition of hydrometric and land use data into PCA/FA revealed close associations of nutrients and color with land management and storm-water retention in pasture and citrus lands; total suspended solids, turbidity, and NO + NO with flow and Lake Okeechobee releases; specific conductivity with supplemental irrigation supply; and dissolved O with wetland preservation. The practical implication emphasizes the importance of basin-specific land and water management for ongoing pollutant loading reduction and ecosystem restoration programs. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  11. Groundwater quality data from the National Water-Quality Assessment Project, May 2012 through December 2013

    USGS Publications Warehouse

    Arnold, Terri L.; Desimone, Leslie A.; Bexfield, Laura M.; Lindsey, Bruce D.; Barlow, Jeannie R.; Kulongoski, Justin T.; Musgrove, MaryLynn; Kingsbury, James A.; Belitz, Kenneth

    2016-06-20

    Groundwater-quality data were collected from 748 wells as part of the National Water-Quality Assessment Project of the U.S. Geological Survey National Water-Quality Program from May 2012 through December 2013. The data were collected from four types of well networks: principal aquifer study networks, which assess the quality of groundwater used for public water supply; land-use study networks, which assess land-use effects on shallow groundwater quality; major aquifer study networks, which assess the quality of groundwater used for domestic supply; and enhanced trends networks, which evaluate the time scales during which groundwater quality changes. Groundwater samples were analyzed for a large number of water-quality indicators and constituents, including major ions, nutrients, trace elements, volatile organic compounds, pesticides, and radionuclides. These groundwater quality data are tabulated in this report. Quality-control samples also were collected; data from blank and replicate quality-control samples are included in this report.

  12. Hydrologic and Water Quality Assessment from Managed Turf

    USDA-ARS?s Scientific Manuscript database

    The potential for nutrients and pesticides to be transported to surface water from turf systems (especially golf courses) is often debated because of limited information on water quality exiting these systems. This four year study quantified the amount and quality of water draining from part of Nort...

  13. Quality of Surface Water in Missouri, Water Year 2007

    USGS Publications Warehouse

    Otero-Benitez, William; Davis, Jerri V.

    2009-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2007 water year (October 1, 2006 through September 30, 2007), data were collected at 67 stations including two U.S. Geological Survey National Stream Quality Accounting Network stations and one spring sampled in cooperation with the U.S. Forest Service. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, dissolved nitrite plus nitrte, total phosphorus, dissolved and total recoverable lead and zinc, and selected pesticide data summaries are presented for 64 of these stations, which primarily have been classified in groups corresponding to the physiography of the State, main land use, or unique station types. In addition, a summary of hydrologic conditions in the State during water year 2007 is presented.

  14. Applying a water quality index model to assess the water quality of the major rivers in the Kathmandu Valley, Nepal.

    PubMed

    Regmi, Ram Krishna; Mishra, Binaya Kumar; Masago, Yoshifumi; Luo, Pingping; Toyozumi-Kojima, Asako; Jalilov, Shokhrukh-Mirzo

    2017-08-01

    Human activities during recent decades have led to increased degradation of the river water environment in South Asia. This degradation has led to concerns for the populations of the major cities of Nepal, including those of the Kathmandu Valley. The deterioration of the rivers in the valley is directly linked to the prevalence of poor sanitary conditions, as well as the presence of industries that discharge their effluents into the river. This study aims to investigate the water quality aspect for the aquatic ecosystems and recreation of the major rivers in the Kathmandu Valley using the Canadian Council of Ministers of the Environment water quality index (CCME WQI). Ten physicochemical parameters were used to determine the CCME WQI at 20 different sampling locations. Analysis of the data indicated that the water quality in rural areas ranges from excellent to good, whereas in denser settlements and core urban areas, the water quality is poor. The study results are expected to provide policy-makers with valuable information related to the use of river water by local people in the study area.

  15. Comparison of 2006-2007 Water Years and Historical Water-Quality Data, Upper Gunnison River Basin, Colorado

    USGS Publications Warehouse

    Solberg, P.A.; Moore, Bryan; Smits, Dennis

    2009-01-01

    Population growth and changes in land use have the potential to affect water quality and quantity in the upper Gunnison River basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Hinsdale County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, Upper Gunnison River Water Conservancy District, and Western State College established a water-quality monitoring program in the upper Gunnison River basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of stations - stations that are considered long term and stations that are considered rotational. The long-term stations are monitored to assist in defining temporal changes in water quality (how conditions may change over time). The rotational stations are monitored to assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and to address local and short-term concerns. Some stations in the rotational group were changed beginning in water year 2007. Annual summaries of the water-quality data from the monitoring network provide a point of reference for discussions regarding water-quality monitoring in the upper Gunnison River basin. This summary includes data collected during water years 2006 and 2007. The introduction provides a map of the sampling sites, definitions of terms, and a one-page summary of selected water-quality conditions at the network stations. The remainder of the summary is organized around the data collected at individual stations. Data collected during water years 2006 and 2007 are compared to historical data, State water-quality standards, and Federal water-quality guidelines. Data were

  16. Interim results of quality-control sampling of surface water for the Upper Colorado River National Water-Quality Assessment Study Unit, water years 1995-96

    USGS Publications Warehouse

    Spahr, N.E.; Boulger, R.W.

    1997-01-01

    Quality-control samples provide part of the information needed to estimate the bias and variability that result from sample collection, processing, and analysis. Quality-control samples of surface water collected for the Upper Colorado River National Water-Quality Assessment study unit for water years 1995?96 are presented and analyzed in this report. The types of quality-control samples collected include pre-processing split replicates, concurrent replicates, sequential replicates, post-processing split replicates, and field blanks. Analysis of the pre-processing split replicates, concurrent replicates, sequential replicates, and post-processing split replicates is based on differences between analytical results of the environmental samples and analytical results of the quality-control samples. Results of these comparisons indicate that variability introduced by sample collection, processing, and handling is low and will not affect interpretation of the environmental data. The differences for most water-quality constituents is on the order of plus or minus 1 or 2 lowest rounding units. A lowest rounding unit is equivalent to the magnitude of the least significant figure reported for analytical results. The use of lowest rounding units avoids some of the difficulty in comparing differences between pairs of samples when concentrations span orders of magnitude and provides a measure of the practical significance of the effect of variability. Analysis of field-blank quality-control samples indicates that with the exception of chloride and silica, no systematic contamination of samples is apparent. Chloride contamination probably was the result of incomplete rinsing of the dilute cleaning solution from the outlet ports of the decaport sample splitter. Silica contamination seems to have been introduced by the blank water. Sampling and processing procedures for water year 1997 have been modified as a result of these analyses.

  17. ANIMATION AND VISUALIZATION OF WATER QUALITY IN DISTRIBUTION SYSTEMS

    EPA Science Inventory

    Water may undergo a number of changes in the distribution system, making the quality of the water at the customer's tap different from the quality of the water that leaves the treatment plant. Such changes in quality may be caused by chemical or biological variations or by a loss...

  18. Professional Development for Water Quality Control Personnel.

    ERIC Educational Resources Information Center

    Shepard, Clinton Lewis

    This study investigated the availability of professional development opportunities for water quality control personnel in the midwest. The major objective of the study was to establish a listing of educational opportunities for the professional development of water quality control personnel and to compare these with the opportunities technicians…

  19. Water You Engineering? An Activity to Develop Water-Quality Awareness

    ERIC Educational Resources Information Center

    Riskowski, Jody; Todd, Carrie Davis

    2009-01-01

    Water is one of our most precious resources. However, for many in the United States, having fresh, safe drinking water is taken for granted, and due to this perceived lack of relevance, students may not fully appreciate the luxury of having safe running water--in the home. One approach to resolving water-quality issues in the United States may…

  20. In Brief: Improving Mississippi River water quality

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2007-10-01

    If water quality in the Mississippi River and the northern Gulf of Mexico is to improve, the U.S. Environmental Protection Agency (EPA) needs to take a stronger leadership role in implementing the federal Clean Water Act, according to a 16 October report from the U.S. National Research Council. The report notes that EPA has failed to use its authority to coordinate and oversee activities along the river. In addition, river states need to be more proactive and cooperative in efforts to monitor and improve water quality, and the river should be monitored and evaluated as a single system, the report indicates. Currently, the 10 states along the river conduct separate and widely varying water quality monitoring programs. ``The limited attention being given to monitoring and managing the Mississippi's water quality does not match the river's significant economic, ecological, and cultural importance,'' said committee chair David A. Dzombak, director of the Steinbrenner Institute for Environmental Education and Research at Carnegie Mellon University, Pittsburgh, Pa. The report notes that while measures taken under the Clean Water Act have successfully reduced much point source pollution, nutrient and sediment loads from nonpoint sources continue to be significant problems. For more information, visit the Web site: http://books.nap.edu/catalog.php?record_id=12051.

  1. Water-quality assessment of the Central Arizona Basins, Arizona and northern Mexico; environmental setting and overview of water quality

    USGS Publications Warehouse

    Cordy, Gail E.; Rees, Julie A.; Edmonds, Robert J.; Gebler, Joseph B.; Wirt, Laurie; Gellenbeck, Dorinda J.; Anning, David W.

    1998-01-01

    The Central Arizona Basins study area in central and southern Arizona and northern Mexico is one of 60 study units that are part of the U.S. Geological Survey's National Water-Quality Assessment program. The purpose of this report is to describe the physical, chemical, and environmental characteristics that may affect water quality in the Central Arizona Basins study area and present an overview of water quality. Covering 34,700 square miles, the study area is characterized by generally north to northwestward-trending mountain ranges separated by broad, gently sloping alluvial valleys. Most of the perennial rivers and streams are in the northern part of the study area. Rivers and streams in the south are predominantly intermittent or ephemeral and flow in response to precipitation such as summer thunderstorms. Effluent-dependent streams do provide perennial flow in some reaches. The major aquifers in the study area are in the basin-fill deposits that may be as much as 12,000 feet thick. The 1990 population in the study area was about 3.45 million, and about 61 percent of the total was in Maricopa County (Phoenix and surrounding cities). Extensive population growth over the past decade has resulted in a twofold increase in urban land areas and increased municipal water use; however, agriculture remains the major water use. Seventy-three percent of all water with drawn in the study area during 1990 was used for agricultural purposes. The largest rivers in the study area-the Gila, Salt, and Verde-are perennial near their headwaters but become intermittent downstream because of impoundments and artificial diversions. As a result, the Central Arizona Basins study area is unique compared to less arid basins because the mean surface-water outflow is only 528 cubic feet per second from a total drainage area of 49,650 square miles. Peak flows in the northern part of the study area are the result of snowmelt runoff; whereas, summer thunderstorms account for the peak flows in

  2. National water-quality assessment program : the Albemarle- Pamlico drainage

    USGS Publications Warehouse

    Lloyd, O.B.; Barnes, C.R.; Woodside, M.D.

    1991-01-01

    In 1991, the U.S. Geological Survey (USGS) began to implement a full-scale National Water-Quality Assessment (NAWQA) program. Long-term goals of the NAWQA program are to describe the status and trends in the quality of a large, representative part of the Nation's surface- and ground-water resources and to provide a sound, scientific understanding of the primary natural and human factors affecting the quality of these resources. In meeting these goals, the program will produce a wealth of water quality information that will be useful to policy makers and managers at the national, State, and local levels. Study-unit investigations constitute a major component of the NAWQA program, forming the principal building blocks on which national-level assessment activities are based. The 60 study-unit investigations that make up the program are hydrologic systems that include parts of most major river basins and aquifer systems. These study units cover areas of 1,200 to more than 65,000 square miles and incorporate about 60 to 70 percent of the Nation's water use and population served by public water supply. In 1991, the Albemarle-Pamlico drainage was among the first 20 NAWQA study units selected for study under the full-scale implementation plan. The Albemarle-Pamlico drainage study will examine the physical, chemical, and biological aspects of water quality issues in a coordinated investigation of surface water and ground water in the Albemarle-Pamlico drainage basin. The quantity and quality of discharge from the Albemarle-Pamlico drainage basin contribute to some water quality problems in the biologically sensitive waters of Albemarle and Pamlico Sounds. A retrospective analysis of existing water quality data will precede a 3-year period of intensive data-collection and analysis activities. The data resulting from this study and the improved understanding of important processes and issues in the upstream part of the study unit will enhance understanding of the quality of

  3. Examining Water Quality Variations of Tidal Pond System

    NASA Astrophysics Data System (ADS)

    Chui, T. F. M.; Cui, W.

    2014-12-01

    Brackish tidal shrimp ponds, traditionally referred to as gei wais, have been constructed along coastal areas in many parts of the world. The regular exchange of pond water with the surrounding coastal environment is important as it brings shrimp larvae and nutrients, etc. into and out of the pond. Such a water exchange can reduce the quality of the receiving waters; though there are opposing views recently because farming practices are becoming more sustainable while other sources of pollutions in the surroundings are increasing. This project monitors the water quality of a tidal shrimp pond and its receiving water at high temporal resolution. The pond is located within the wetland complex of Mai Po Nature Reserve in Hong Kong, China. Water quality parameters (i.e., dissolved oxygen, temperature, salinity, pH, water depth and chlorophyll) were recorded at 15-minute interval from December 2013 to March 2014 within the pond and also at its receiving water which is a water channel within a mangrove forest. Data reveals both daily and fortnightly fluctuations. Daily variations in mangrove correspond to both tidal flushing and insolation, whereas those within the pond correspond mainly to insolation. For example, dissolved oxygen in mangrove shows two peaks daily which correlate with tidal elevation, and that within the pond shows only one peak which correlates with sunlight. Dissolved oxygen within the pond also shows a fortnightly pattern that corresponds to the schedule of water exchange. Such high temporal resolution of monitoring reveals the two-way water quality influences between the pond and the mangrove. It sheds insights that can possibly lead to refinement of water exchange practice and water sampling schedule given the temporal variations of the water quality both inside and outside the pond. It thus enables us to take a step closer in adopting more sustainable farming practices despite increasing pollution in the surrounding areas.

  4. Water Quality Analysis Tool (WQAT)

    EPA Science Inventory

    The purpose of the Water Quality Analysis Tool (WQAT) software is to provide a means for analyzing and producing useful remotely sensed data products for an entire estuary, a particular point or area of interest (AOI or POI) in estuaries, or water bodies of interest where pre-pro...

  5. Analysis of trends in water-quality data for water conservation area 3A, the Everglades, Florida

    USGS Publications Warehouse

    Mattraw, H.C.; Scheidt, D.J.; Federico, A.C.

    1987-01-01

    Rainfall and water quality data bases from the South Florida Water Management District were used to evaluate water quality trends at 10 locations near or in Water Conservation Area 3A in The Everglades. The Seasonal Kendall test was applied to specific conductance, orthophosphate-phosphorus, nitrate-nitrogen, total Kjeldahl nitrogen, and total nitrogen regression residuals for the period 1978-82. Residuals of orthophosphate and nitrate quadratic models, based on antecedent 7-day rainfall at inflow gate S-11B, were the only two constituent-structure pairs that showed apparent significant (p < 0.05) increases in constituent concentrations. Elimination of regression models with distinct residual patterns and data outlines resulted in 17 statistically significant station water quality combinations for trend analysis. No water quality trends were observed. The 1979 Memorandum of Agreement outlining the water quality monitoring program between the Everglades National Park and the U.S. Army Corps of Engineers stressed collection four times a year at three stations, and extensive coverage of water quality properties. Trend analysis and other rigorous statistical evaluation programs are better suited to data monitoring programs that include more frequent sampling and that are organized in a water quality data management system. Pronounced areal differences in water quality suggest that a water quality monitoring system for Shark River Slough in Everglades National Park include collection locations near the source of inflow to Water Conservation Area 3A. (Author 's abstract)

  6. OPERATION OF WATER DISTRIBUTION SYSTEMS TO IMPROVE WATER QUALITY

    EPA Science Inventory

    The quality of drinking water can change between the discharge from the treatment plant and the point of consumption. In order to study these changes in a systematic manner a Cooperative Agreement was initiated between EPA's Drinking Water Research Division and the North Penn Wat...

  7. Comparison of 2008-2009 water years and historical water-quality data, upper Gunnison River Basin, Colorado

    USGS Publications Warehouse

    Solberg, Patricia A.; Moore, Bryan; Blacklock, Ty D.

    2012-01-01

    Population growth and changes in land use have the potential to affect water quality and quantity in the upper Gunnison River Basin. In 1995, the U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, City of Gunnison, Colorado River Water Conservation District, Crested Butte South Metropolitan District, Gunnison County, Hinsdale County, Mount Crested Butte Water and Sanitation District, National Park Service, Town of Crested Butte, U.S. Forest Service, Upper Gunnison River Water Conservancy District, and Western State College, established a water-quality monitoring program in the upper Gunnison River Basin to characterize current water-quality conditions and to assess the effects of increased urban development and other land-use changes on water quality. The monitoring network has evolved into two groups of sites: (1) sites that are considered long term and (2) sites that are considered rotational. Data from the long-term sites assist in defining temporal changes in water quality (how conditions may change over time). The rotational sites assist in the spatial definition of water-quality conditions (how conditions differ throughout the basin) and address local and short-term concerns. Biannual summaries of the water-quality data from the monitoring network provide a point of reference for stakeholder discussions regarding the location and purpose of water-quality monitoring sites in the upper Gunnison River Basin. This report compares and summarizes the data collected during water years 2008 and 2009 to the historical data available at these sites. The introduction provides a map of the sampling sites, definitions of terms, and a one-page summary of selected water-quality conditions at the network sites. The remainder of the report is organized around the data collected at individual sites. Data collected during water years 2008 and 2009 are compared to historical data, State water-quality standards, and Federal water-quality guidelines

  8. Water quality status and trends in the United States

    USGS Publications Warehouse

    Larsen, Matthew C.; Hamilton, Pixie A.; Werkheiser, William H.; Ahuja, Satinder

    2013-01-01

    Information about water quality is vital to ensure long-term availability and sustainability of water that is safe for drinking and recreation and suitable for industry, irrigation, fish, and wildlife. Protecting and enhancing water quality is a national priority, requiring information on water-quality status and trends, progress toward clean water standards, continuing problems, and emerging challenges. In this brief review, we discuss U.S. Geological Survey assessments of nutrient pollution, pesticides, mixtures of organic wastewater compounds (known as emerging contaminants), sediment-bound contaminants (like lead and DDT), and mercury, among other contaminants. Additionally, aspects of land use and current and emerging challenges associated with climate change are presented. Climate change must be considered, as water managers continue their efforts to maintain sufficient water of good quality for humans and for the ecosystem.

  9. Quality-assurance results for routine water analysis in US Geological Survey laboratories, water year 1991

    USGS Publications Warehouse

    Maloney, T.J.; Ludtke, A.S.; Krizman, T.L.

    1994-01-01

    The US. Geological Survey operates a quality- assurance program based on the analyses of reference samples for the National Water Quality Laboratory in Arvada, Colorado, and the Quality of Water Service Unit in Ocala, Florida. Reference samples containing selected inorganic, nutrient, and low ionic-strength constituents are prepared and disguised as routine samples. The program goal is to determine precision and bias for as many analytical methods offered by the participating laboratories as possible. The samples typically are submitted at a rate of approximately 5 percent of the annual environmental sample load for each constituent. The samples are distributed to the laboratories throughout the year. Analytical data for these reference samples reflect the quality of environmental sample data produced by the laboratories because the samples are processed in the same manner for all steps from sample login through data release. The results are stored permanently in the National Water Data Storage and Retrieval System. During water year 1991, 86 analytical procedures were evaluated at the National Water Quality Laboratory and 37 analytical procedures were evaluated at the Quality of Water Service Unit. An overall evaluation of the inorganic (major ion and trace metal) constituent data for water year 1991 indicated analytical imprecision in the National Water Quality Laboratory for 5 of 67 analytical procedures: aluminum (whole-water recoverable, atomic emission spectrometric, direct-current plasma); calcium (atomic emission spectrometric, direct); fluoride (ion-exchange chromatographic); iron (whole-water recoverable, atomic absorption spectrometric, direct); and sulfate (ion-exchange chromatographic). The results for 11 of 67 analytical procedures had positive or negative bias during water year 1991. Analytical imprecision was indicated in the determination of two of the five National Water Quality Laboratory nutrient constituents: orthophosphate as phosphorus and

  10. Surface-water, water-quality, and ground-water assessment of the Municipio of Carolina, Puerto Rico, 1997-99

    USGS Publications Warehouse

    Rodríguez-Martínez, Jesús; Gómez-Gómez, Fernando; Santiago-Rivera, Luis; Oliveras-Feliciano, M. L.

    2001-01-01

    To meet the increasing need for a safe and adequate supply of water in the municipio of Carolina, an integrated surface-water, water-quality, and ground-water assessment of the area was conducted. The major results of this study and other important hydrologic and water-quality features were compiled in a Geographic Information System and are presented in two 1:30,000-scale map plates to facilitate interpretation and use of the diverse water-resources data. Because the supply of safe drinking water was a critical issue during recent dry periods, the surface-water assessment portion of this study focused on analysis of low-flow characteristics in local streams and rivers. Low-flow characteristics were evaluated for one continuous-record gaging station, based on graphical curve-fitting techniques and log-Pearson Type III frequency analysis. Estimates of low-flow characteristics for seven partial-record stations were generated using graphical-correlation techniques. Flow-duration characteristics were computed for the one continuous-record gaging station and were estimated for the partial-record stations using the relation curves developed from the low-flow study. Stream low-flow statistics document the general hydrology under current land and water use. Low-flow statistics may substantially change as a result of streamflow diversions for public supply, and an increase in ground-water development, waste-water discharges, and flood-control measures; the current analysis provides baseline information to evaluate these impacts and develop water budgets. A sanitary quality survey of streams utilized 29 sampling stations to evaluate the sanitary quality of about 87 miles of stream channels. River and stream samples were collected on two occasions during base-flow conditions and were analyzed for fecal coliform and fecal streptococcus. Bacteriological analyses indicate that a significant portion of the stream reaches within the municipio of Carolina may have fecal coliform

  11. Quality-assurance data for routine water analysis in the National Water-Quality Laboratory of the US Geological Survey for water year 1988

    USGS Publications Warehouse

    Lucey, K.J.

    1989-01-01

    The US Geological Survey maintains a quality assurance program based on the analysis of reference samples for its National Water Quality Laboratory located in Denver, Colorado. Reference samples containing selected inorganic, nutrient, and precipitation (low-level concentration) constituents are prepared at the Survey 's Water Quality Services Unit in Ocala, Florida, disguised as routine samples, and sent daily or weekly, as appropriate, to the laboratory through other Survey offices. The results are stored permanently in the National Water Data Storage and Retrieval System (WATSTORE), the Survey 's database for all water data. These data are analyzed statistically for precision and bias. An overall evaluation of the inorganic major ion and trace metal constituent data for water year 1988 indicated a lack of precision in the National Water Quality Laboratory for the determination of 8 out of 58 constituents: calcium (inductively coupled plasma emission spectrometry), fluoride, iron (atomic absorption spectrometry), iron (total recoverable), magnesium (atomic absorption spectrometry), manganese (total recoverable), potassium, and sodium (inductively coupled plasma emission spectrometry). The results for 31 constituents had positive or negative bias during water year 1988. A lack of precision was indicated in the determination of three of the six nutrient constituents: nitrate plus nitrite nitrogen as nitrogen, nitrite nitrogen as nitrogen, and orthophosphate as phosphorus. A biased condition was indicated in the determination of ammonia nitrogen as nitrogen, ammonia plus organic nitrogen as nitrogen, and nitrate plus nitrite nitrogen as nitrogen. There was acceptable precision in the determination of all 10 constituents contained in precipitation samples. Results for ammonia nitrogen as nitrogen, sodium, and fluoride indicated a biased condition. (Author 's abstract)

  12. The case for regime-based water quality standards

    Treesearch

    G.C. Poole; J.B. Dunham; D.M. Keenan; S.T. Sauter; D.A. McCullough; C. Mebane; J.C. Lockwood; D.A. Essig; M.P. Hicks; D.J. Sturdevant; E.J. Materna; S.A. Spalding; J. Risley; M. Deppman

    2004-01-01

    Conventional water quality standards have been successful in reducing the concentration of toxic substances in US waters. However, conventional standards are based on simple thresholds and are therefore poorly structured to address human-caused imbalances in dynamic, natural water quality parameters, such as nutrients, sediment, and temperature. A more applicable type...

  13. 30 CFR 75.1718-1 - Drinking water; quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 30 Mineral Resources 1 2011-07-01 2011-07-01 false Drinking water; quality. 75.1718-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718-1 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 75.1718 shall meet the...

  14. 30 CFR 75.1718-1 - Drinking water; quality.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Drinking water; quality. 75.1718-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718-1 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 75.1718 shall meet the...

  15. 40 CFR 35.2111 - Revised water quality standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Revised water quality standards. 35... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2111 Revised water... stream segments which have not, at least once since December 29, 1981, had their water quality standards...

  16. 30 CFR 75.1718-1 - Drinking water; quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 30 Mineral Resources 1 2012-07-01 2012-07-01 false Drinking water; quality. 75.1718-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718-1 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 75.1718 shall meet the...

  17. 40 CFR 35.2111 - Revised water quality standards.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 1 2014-07-01 2014-07-01 false Revised water quality standards. 35... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2111 Revised water... stream segments which have not, at least once since December 29, 1981, had their water quality standards...

  18. 30 CFR 75.1718-1 - Drinking water; quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 30 Mineral Resources 1 2014-07-01 2014-07-01 false Drinking water; quality. 75.1718-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718-1 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 75.1718 shall meet the...

  19. 40 CFR 35.2111 - Revised water quality standards.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 1 2012-07-01 2012-07-01 false Revised water quality standards. 35... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2111 Revised water... stream segments which have not, at least once since December 29, 1981, had their water quality standards...

  20. 30 CFR 75.1718-1 - Drinking water; quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 30 Mineral Resources 1 2013-07-01 2013-07-01 false Drinking water; quality. 75.1718-1 Section 75... AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Miscellaneous § 75.1718-1 Drinking water; quality. (a) Potable water provided in accordance with the provisions of § 75.1718 shall meet the...

  1. Implications of Modeling Uncertainty for Water Quality Decision Making

    NASA Astrophysics Data System (ADS)

    Shabman, L.

    2002-05-01

    The report, National Academy of Sciences report, "Assessing the TMDL Approach to Water Quality Management" endorsed the "watershed" and "ambient water quality focused" approach" to water quality management called for in the TMDL program. The committee felt that available data and models were adequate to move such a program forward, if the EPA and all stakeholders better understood the nature of the scientific enterprise and its application to the TMDL program. Specifically, the report called for a greater acknowledgement of model prediction uncertinaity in making and implementing TMDL plans. To assure that such uncertinaity was addressed in water quality decision making the committee called for a commitment to "adaptive implementation" of water quality management plans. The committee found that the number and complexity of the interactions of multiple stressors, combined with model prediction uncertinaity means that we need to avoid the temptation to make assurances that specific actions will result in attainment of particular water quality standards. Until the work on solving a water quality problem begins, analysts and decision makers cannot be sure what the correct solutions are, or even what water quality goals a community should be seeking. In complex systems we need to act in order to learn; adaptive implementation is a concurrent process of action and learning. Learning requires (1) continued monitoring of the waterbody to determine how it responds to the actions taken and (2) carefully designed experiments in the watershed. If we do not design learning into what we attempt we are not doing adaptive implementation. Therefore, there needs to be an increased commitment to monitoring and experiments in watersheds that will lead to learning. This presentation will 1) explain the logic for adaptive implementation; 2) discuss the ways that water quality modelers could characterize and explain model uncertinaity to decision makers; 3) speculate on the implications

  2. Analysis of water quality on several waters affected by contamination in West Sumbawa Regency

    NASA Astrophysics Data System (ADS)

    Dewi, N. N.; Satyantini, W. H.; Sahidu, A. M.; Sari, L. A.; Mukti, A. T.

    2018-04-01

    This study reports the result of water quality in several waters in West Sumbawa Regency. The load of waste input from anthropogenic activity becomes an indication of the decrease of water quality in West Sumbawa Regency Waters. The existence of illegal mining activities around the water has the potential to cause water pollution. Sample of water were collected on April 2017 in four location such as Sejorong 1, Sejorong 2, Tongo, and Taliwang. Sample were analyzed as insitu and exsitu parameters. The result of this research showed that Sejorong 2 have the highest value of pollution index but generally four site on West Sumbawa Regency Waters were categorized lightly contaminated. Concentration of heavy metal cadmium at four locations exceed the water quality standard for fisheries and drinking water. However, the trophic classification using TSI and TRIX of all location was oligothropic water.

  3. Water quality assessment and meta model development in Melen watershed - Turkey.

    PubMed

    Erturk, Ali; Gurel, Melike; Ekdal, Alpaslan; Tavsan, Cigdem; Ugurluoglu, Aysegul; Seker, Dursun Zafer; Tanik, Aysegul; Ozturk, Izzet

    2010-07-01

    Istanbul, being one of the highly populated metropolitan areas of the world, has been facing water scarcity since the past decade. Water transfer from Melen Watershed was considered as the most feasible option to supply water to Istanbul due to its high water potential and relatively less degraded water quality. This study consists of two parts. In the first part, water quality data covering 26 parameters from 5 monitoring stations were analyzed and assessed due to the requirements of the "Quality Required of Surface Water Intended for the Abstraction of Drinking Water" regulation. In the second part, a one-dimensional stream water quality model with simple water quality kinetics was developed. It formed a basic design for more advanced water quality models for the watershed. The reason for assessing the water quality data and developing a model was to provide information for decision making on preliminary actions to prevent any further deterioration of existing water quality. According to the water quality assessment at the water abstraction point, Melen River has relatively poor water quality with regard to NH(4)(+), BOD(5), faecal streptococcus, manganese and phenol parameters, and is unsuitable for drinking water abstraction in terms of COD, PO(4)(3-), total coliform, total suspended solids, mercury and total chromium parameters. The results derived from the model were found to be consistent with the water quality assessment. It also showed that relatively high inorganic nitrogen and phosphorus concentrations along the streams are related to diffuse nutrient loads that should be managed together with municipal and industrial wastewaters. Copyright 2010 Elsevier Ltd. All rights reserved.

  4. Water Quality Data (WQX)

    EPA Pesticide Factsheets

    The STORET (short for STOrage and RETrieval) Data Warehouse is a repository for water quality, biological, and physical data and is used by state environmental agencies, EPA and other federal agencies, universities, private citizens, and many others.

  5. Principles and Practices of Water Quality Monitoring

    Treesearch

    J.L. Michael

    2001-01-01

    There are many activities in forest management that may affect water quality, i.e., timber harvestine, road building,mechanical and chemical site preparation, release operations, fuel reduction,wildlife opening maintenance, etc. How severely they affect water quality depends on how well the person in charge of the operation understands the activity itself, the...

  6. A space satellite perspective to monitor water quality using ...

    EPA Pesticide Factsheets

    Good water quality is important for human health, economic development, and the health of our environment. Across the country, we face the challenge of degraded water quality in many of our rivers, lakes, coastal regions and oceans. The EPA National Rivers and Stream Assessment report found that more than half - 55 percent - of our rivers and streams are in poor condition for aquatic life. Likewise, the EPA Lakes Assessment found that 22 percent of our lakes are in poor condition for aquatic life. The reasons for unhealthy water quality are vast. Likewise, poor water quality has numerous impacts to ecosystems. One indicator, which trends during warm weather months, is the duration and frequency of harmful algal blooms. A healthy environment includes good water quality to support a rich and varied ecosystem, economic growth, and protects the health of the people in the community who rely on that water. Having the ability to monitor and provide timely response to harmful algal blooms would be one step in protecting the benefits people receive from good water quality (U.S. EPA 2010 and 2013). Published in the North American Lake Management Society-LakeLine Magazine.

  7. The water quality of the Vrgorska Matica River.

    PubMed

    Stambuk-Giljanović, Nives

    2003-04-01

    The article presents the results of investigations carried out on the 42 km long Vrgorska Matica River, which flows through the 15 km long Vrgorsko polje (polje = field) which covers an area of 3000 ha, and is at 24 m a.s.l., located in Southern Croatia. It covers the years 1997-2000 after this field had been reclaimed for agricultural use. The purpose of the investigations was to evaluate the influence of the Vrgorska Matica River which is part of the catchment area of the Trebizat River, on the water quality in Modro Oko Lake and Prud Spring, which are used for water supply and are located downstream of the Vrgorska Matica River on the right bank of the Neretva River. The water quality was evaluated by using the quality index based on the following nine parameters: temperature, mineralization, corrosion coefficient, K = (Cl + SO4)/HCO3, dissolved oxygen, BOD5, total N, protein N, total phosphorus and total coliform bacteria (100 mL)-1 (MPN coli (100 mL)-1) for which concentrations C95 are calculated. After completing the nine parameters the results of C95 were recorded and transferred to the score table to obtain the q-value. The q-value used is an attempt to quantify environmental factors which would otherwise be qualitative. For each parameter the q-value was multiplied by a weighting factor based upon the relative significance of the parameter. The nine resulting scores values were then added to arrive at an overall water quality index (sigmaS95). According to this index the water can be classified into four categories. The first category, according to the Croatian Water Classification Act (Official Bulletin No. 77,1998), includes ground and surface waters used for drinking or in the food industry either in its natural state or after disinfection, and surface water used for raising high-quality species of fish, ranging from 85-100 scores; the second category includes water used in its natural state for swimming and recreation, sports or for other species of

  8. A Water Quality Monitoring Programme for Schools and Communities

    ERIC Educational Resources Information Center

    Spellerberg, Ian; Ward, Jonet; Smith, Fiona

    2004-01-01

    A water quality monitoring programme for schools is described. The purpose of the programme is to introduce school children to the concept of reporting on the "state of the environment" by raising the awareness of water quality issues and providing skills to monitor water quality. The programme is assessed and its relevance in the…

  9. Review on water quality sensors

    NASA Astrophysics Data System (ADS)

    Kruse, Peter

    2018-05-01

    Terrestrial life may be carbon-based, but most of its mass is made up of water. Access to clean water is essential to all aspects of maintaining life. Mainly due to human activity, the strain on the water resources of our planet has increased substantially, requiring action in water management and purification. Water quality sensors are needed in order to quantify the problem and verify the success of remedial actions. This review summarizes the most common chemical water quality parameters, and current developments in sensor technology available to monitor them. Particular emphasis is on technologies that lend themselves to reagent-free, low-maintenance, autonomous and continuous monitoring. Chemiresistors and other electrical sensors are discussed in particular detail, while mechanical, optical and electrochemical sensors also find mentioning. The focus here is on the physics of chemical signal transduction in sensor elements that are in direct contact with the analyte. All other sensing methods, and all other elements of sampling, sample pre-treatment as well as the collection, transmission and analysis of the data are not discussed here. Instead, the goal is to highlight the progress and remaining challenges in the development of sensor materials and designs for an audience of physicists and materials scientists.

  10. Iowa ground-water quality

    USGS Publications Warehouse

    Buchmiller, R.C.; Squillace, P.J.; Drustrup, R.D.

    1987-01-01

    The U.S. Geological Survey, in cooperation with the University of Iowa Hygienic Laboratory, the Iowa Department of Natural Resources, and several counties in Iowa, currently (1986) is monitoring about 1,500 public and private wells for inorganic and organic constituents. The principal objective of this program, begun in 1982, is to collect water-quality data that will describe the long-term chemical quality of the surficial and major bedrock aquifer systems in Iowa (Detroy, 1985).

  11. Study on water quality around mangrove ecosystem for coastal rehabilitation

    NASA Astrophysics Data System (ADS)

    Guntur, G.; Sambah, A. B.; Arisandi, D. M.; Jauhari, A.; Jaziri, A. A.

    2018-01-01

    Coastal ecosystems are vulnerable to environmental degradation including the declining water quality in the coastal environment due to the influence of human activities where the river becomes one of the input channels. Some areas in the coastal regions of East Java directly facing the Madura Strait indicate having experienced the environmental degradation, especially regarding the water quality. This research was conducted in the coastal area of Probolinggo Regency, East Java, aiming to analyze the water quality as the basis for coastal rehabilitation planning. This study was carried out using survey and observation methods. Water quality measurement results were analyzed conforming to predetermined quality standards. The coastal area rehabilitation planning as a means to restore the degraded water quality parameters is presumably implemented through mangrove planting. Thus, the mangrove mapping was also devised in this research. Based on 40 sampling points, the results illustrate that according to the quality standard, the water quality in the study area is likely to be deteriorated. On account of the mapping analysis of mangrove distribution in the study area, the rehabilitation of the coastal zone can be done through planning the mangrove forest plantation. The recommended coastal area maintenance is a periodic water quality observation planning in the river region which is divided into three zones to monitor the impact of fluctuating changes in land use or human activities on the coastal water quality.

  12. Water Quality in the Cook Inlet Basin Alaska, 1998-2001

    USGS Publications Warehouse

    Glass, Roy L.; Brabets, Timothy P.; Frenzel, Steven A.; Whitman, Matthew S.; Ourso, Robert T.

    2004-01-01

    This report contains the major findings of a 1998?2001 assessment of water quality in the Cook Inlet Basin. It is one of a series of reports by the National Water-Quality Assessment (NAWQA) Program that present major findings in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is discussed in terms of local, State, and regional issues. Conditions in a particular basin or aquifer system are compared to conditions found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, State, or local agencies; universities; public interest groups; or in the private sector. The information will be useful in addressing a number of current issues, such as the effects of agricultural and urban land use on water quality, human health, drinking water, source-water protection, hypoxia and excessive growth of algae and plants, pesticide registration, and monitoring and sampling strategies. This report is also for individuals who wish to know more about the quality of streams and ground water in areas near where they live, and how that water quality compares to the quality of water in other areas across the Nation. The water-quality conditions in the Cook Inlet Basin summarized in this report are discussed in detail in other reports that can be accessed at http://ak.water.usgs.gov. Detailed technical information, data and analyses, collection and analytical methodology, models, graphs, and maps that support the findings presented in this report, in addition to reports in this series from other basins, can be accessed from the national NAWQA Web site (http://water.usgs.gov/nawqa).

  13. Water Quality on the Island of Oahu, Hawaii, 1999-2001

    USGS Publications Warehouse

    Anthony, Stephen S.; Hunt, Charles D.; Brasher, Anne M.D.; Miller, Lisa D.; Tomlinson, Michael S.

    2004-01-01

    This report contains the major findings of a 1999-2001 assessment of water quality on the island of Oahu, Hawaii. It is one of a series of reports by the National Water-Quality Assessment (NAWQA) Program that present major findings in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is discussed in terms of local, State, and regional issues. Conditions in a particular basin or aquifer system are compared to conditions found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, State, or local agencies, universities, public interest groups, or in the private sector. The information will be useful in addressing a number of current issues, such as the effects of agricultural and urban land use on water quality, human health, drinking water, source-water protection, and excessive growth of algae and plants, pesticide registration, and monitoring and sampling strategies. This report is also for individuals who wish to know more about the quality of streams and ground water in areas near where they live, and how that water quality compares to the quality of water in other areas across the Nation. The water-quality conditions on Oahu summarized in this report are discussed in detail in other reports that can be accessed from (http://hi.water.usgs.gov/nawqa). Detailed technical information, data and analyses, collection and analytical methodology, models, graphs, and maps that support the findings presented in this report in addition to reports in this series from other basins can be accessed from the national NAWQA Web site (http://water.usgs.gov/nawqa).

  14. Water-Quality Assessment of the Rio Grande Valley, Colorado, New Mexico, and Texas--Surface-Water Quality, Shallow Ground-Water Quality, and Factors Affecting Water Quality in the Rincon Valley, South-Central New Mexico, 1994-95

    USGS Publications Warehouse

    Anderholm, Scott K.

    2002-01-01

    As part of the National Water-Quality Assessment Program, surface-water and ground-water samples were collected in 1994 and 1995 for analysis of common constituents, nutrients, dissolved organic carbon, trace elements, radioactivity, volatile organic compounds, and pesticides to characterize surface- water quality and shallow ground-water quality and to determine factors affecting water quality in the Rincon Valley, south-central New Mexico. Samples of surface water were collected from three sites on the Rio Grande and from sites on three agricultural drains in the Rincon Valley in January 1994 and 1995, April 1994, and October 1994. Ground-water samples were collected in late April and early May 1994 from 30 shallow wells that were installed during the investigation. Dissolved-solids concentrations in surface water ranged from 434 to 1,510 milligrams per liter (mg/L). Dissolved-solids concentrations were smallest in water from the Rio Grande below Caballo Dam and largest in the drains. Nitrite plus nitrate concentrations ranged from less than 0.05 to 3.3 mg/L as nitrogen, and ammonia concentrations ranged from less than 0.015 to 0.33 mg/L as nitrogen in surface-water samples. Trace-element concentrations in surface water were significantly smaller than the acute-fisheries standards. One or more pesticides were detected in 34 of 37 surface-water samples. DCPA (dacthal) and metolachlor were the most commonly detected pesticides. No standards have been established for the pesticides analyzed for in this study. Dissolved-solids concentrations in shallow ground water ranged from 481 to 3,630 mg/L. All but 2 of 30 samples exceeded the secondary maximum contaminant level for dissolved solids of 500 mg/L. Water from about 73 percent of the wells sampled exceeded the secondary maximum contaminant level of 250 mg/L for sulfate, and water from about 7 percent of the wells sampled exceeded the secondary maximum contaminant level of 250 mg/L for chloride. Nitrite plus nitrate

  15. Preliminary Water-Table Map and Water-Quality Data for Part of the Matanuska-Susitna Valley, Alaska, 2005

    USGS Publications Warehouse

    Moran, Edward H.; Solin, Gary L.

    2006-01-01

    The Matanuska-Susitna Valley is in the northeastern part of the Cook Inlet Basin, Alaska, an area experiencing rapid population growth and development proximal to many lakes. Here water commonly flows between lakes and ground water, indicating interrelation between water quantity and quality. Thus concerns exist that poorer quality ground water may degrade local lake ecosystems. This concern has led to water-quality sampling in cooperation with the Alaska Department of Environmental Conservation and the Matanuska-Susitna Borough. A map showing the estimated altitude of the water table illustrates potential ground-water flow directions and areas where ground- and surface-water exchanges and interactions might occur. Water quality measured in selected wells and lakes indicates some differences between ground water and surface water. 'The temporal and spatial scarcity of ground-water-level and water-quality data limits the analysis of flow direction and water quality. Regionally, the water-table map indicates that ground water in the eastern and southern parts of the study area flows southerly. In the northcentral area, ground water flows predominately westerly then southerly. Although ground and surface water in most areas of the Matanuska-Susitna Valley are interconnected, they are chemically different. Analyses of the few water-quality samples collected in the area indicate that dissolved nitrite plus nitrate and orthophosphorus concentrations are higher in ground water than in surface water.'

  16. Nationwide assessment of nonpoint source threats to water quality

    Treesearch

    Thomas C. Brown; Pamela Froemke

    2012-01-01

    Water quality is a continuing national concern, in part because the containment of pollution from nonpoint (diffuse) sources remains a challenge. We examine the spatial distribution of nonpoint-source threats to water quality. On the basis of comprehensive data sets for a series of watershed stressors, the relative risk of water-quality impairment was estimated for the...

  17. Blast vibration damage to water supply well - water quality and quantity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matheson, G.M.; Miller, D.K.

    1997-05-01

    Possible impacts to the water quality and production capacity of ground water supply wells by blasting is a common cause of complaints for blasting contractors, mining companies, and local regulatory authorities. The major complaints of changes in well water quality include; turbidity; discolored water (red, brown, black, yellow and milky water), and nitrate and/or coliform contamination. The major complaints for changes in well water production capacity include: loss of quantity production, air in water and/or water lines, damage to pump, and damage to well screen or borehole. The review of research and common causes of these problems indicates that mostmore » of these complaints are not related to blasting and can be shown to be related to either environmental factors, poor well construction, or wells whose elements required repair or replacement prior to blasting. The paper reviews each of the complaints cited and provides the probable causes of the observed condition and discusses their relation to blasting.« less

  18. Socioeconomic dynamics of water quality in the Egyptian Nile

    NASA Astrophysics Data System (ADS)

    Malik, Maheen; Nisar, Zainab; Karakatsanis, Georgios

    2016-04-01

    The Nile River remains the most important source of freshwater for Egypt as it accounts for nearly all of the country's drinking and irrigation water. About 95% of the total population is accounted to live along the Banks of the Nile(1). Therefore, water quality deterioration in addition to general natural scarcity of water in the region(2) is the main driver for carrying out this study. What further aggravates this issue is the water conflict in the Blue Nile region. The study evaluates different water quality parameters and their concentrations in the Egyptian Nile; further assessing the temporal dynamics of water quality in the area with (a) the Environmental Kuznets Curve (EKC)(3) and (b) the Jevons Paradox (JP)(4) in order to identify water quality improvements or degradations using selected socioeconomic variables(5). For this purpose various environmental indicators including BOD, COD, DO, Phosphorus and TDS were plotted against different economic variables including Population, Gross Domestic Product (GDP), Annual Fresh Water Withdrawal and Improved Water Source. Mathematically, this was expressed by 2nd and 3rd degree polynomial regressions generating the EKC and JP respectively. The basic goal of the regression analysis is to model and highlight the dynamic trend of water quality indicators in relation to their established permissible limits, which will allow the identification of optimal future water quality policies. The results clearly indicate that the dependency of water quality indicators on socioeconomic variables differs for every indicator; while COD was above the permissible limits in all the cases despite of its decreasing trend in each case, BOD and phosphate signified increasing concentrations for the future, if they continue to follow the present trend. This could be an indication of rebound effect explained by the Jevons Paradox i.e. water quality deterioration after its improvement, either due to increase of population or intensification

  19. National water summary 1986; Hydrologic events and ground-water quality

    USGS Publications Warehouse

    Moody, David W.; Carr, Jerry E.; Chase, Edith B.; Paulson, Richard W.

    1988-01-01

    Ground water is one of the most important natural resources of the United States and degradation of its quality could have a major effect on the welfare of the Nation. Currently (1985), ground water is the source of drinking water for 53 percent of the Nation's population and for more than 97 percent of its rural population. It is the source of about 40 percent of the Nation's public water supply, 33 percent of water for irrigation, and 17 percent of freshwater for selfsupplied industries.Ground water also is the source of about 40 percent of the average annual streamflow in the United States, although during long periods of little or no precipitation, ground-water discharges provide nearly all of the base streamflow. This hydraulic connection between aquifers and streams implies that if a persistent pollutant gets into an aquifer, it eventually could discharge into a stream.Information presented in the 1986 National Water Summary clearly shows that the United States has very large amounts of potable ground water available for use. Although naturally occurring constituents, such as nitrate, and human-induced substances, such as synthetic organic chemicals, frequently are detected in ground water, their concentrations usually do not exceed existing Federal or State standards or guidelines for maximum concentrations in drinking water.Troublesome contamination of ground water falls into two basic categories related to the source or sources of the contamination. Locally, high concentrations of a variety of toxic metals, organic chemicals, and petroleum products have been detected in ground water associated with point sources such as wastedisposal sites, storage-tank leaks, and hazardous chemical spills. These types of local problems commonly occur in densely populated urban areas and industrialized areas. Larger, multicounty areas also have been identified where contamination frequently is found in shallow wells. These areas generally are associated with broad

  20. Mechanisms affecting water quality in an intermittent piped water supply.

    PubMed

    Kumpel, Emily; Nelson, Kara L

    2014-01-01

    Drinking water distribution systems throughout the world supply water intermittently, leaving pipes without pressure between supply cycles. Understanding the multiple mechanisms that affect contamination in these intermittent water supplies (IWS) can be used to develop strategies to improve water quality. To study these effects, we tested water quality in an IWS system with infrequent and short water delivery periods in Hubli-Dharwad, India. We continuously measured pressure and physicochemical parameters and periodically collected grab samples to test for total coliform and E. coli throughout supply cycles at 11 sites. When the supply was first turned on, water with elevated turbidity and high concentrations of indicator bacteria was flushed out of pipes. At low pressures (<10 psi), elevated indicator bacteria were frequently detected even when there was a chlorine residual, suggesting persistent contamination had occurred through intrusion or backflow. At pressures between 10 and 17 psi, evidence of periodic contamination suggested that transient intrusion, backflow, release of particulates, or sloughing of biofilms from pipe walls had occurred. Few total coliform and no E. coli were detected when water was delivered with a chlorine residual and at pressures >17 psi.

  1. Quality-Assurance/Quality-Control Manual for Collection and Analysis of Water-Quality Data in the Ohio District, US Geological Survey

    USGS Publications Warehouse

    Francy, D.S.; Jones, A.L.; Myers, Donna N.; Rowe, G.L.; Eberle, Michael; Sarver, K.M.

    1998-01-01

    The U.S. Geological Survey (USGS), Water Resources Division (WRD), requires that quality-assurance/quality-control (QA/QC) activities be included in any sampling and analysis program. Operational QA/QC procedures address local needs while incorporating national policies. Therefore, specific technical policies were established for all activities associated with water-quality project being done by the Ohio District. The policies described in this report provide Ohio District personnel, cooperating agencies, and others with a reference manual on QA/QC procedures that are followed in collecitng and analyzing water-quality samples and reporting water-quality information in the Ohio District. The project chief, project support staff, District Water-Quality Specialist, and District Laboratory Coordinator are all involved in planning and implementing QA/QC activities at the district level. The District Chief and other district-level managers provide oversight, and the Regional Water-Quality Specialist, Office of Water Quality (USGS headquarters), and the Branch of Quality Systems within the Office of Water Quality create national QA/QC polices and provide assistance to District personnel. In the literature, the quality of all measurement data is expressed in terms of precision, variability, bias, accuracy, completeness, representativeness, and comparability. In the Ohio District, bias and variability will be used to describe quality-control data generated from samples in the field and laboratory. Each project chief must plan for implementation and financing of QA/QC activities necessary to achieve data-quality objectives. At least 15 percent of the total project effort must be directed toward QA/QC activities. Of this total, 5-10 percent will be used for collection and analysis of quality-control samples. This is an absolute minimum, and more may be required based on project objectives. Proper techniques must be followed in the collection and processing of surface-water

  2. Observations on a Montana water quality proposal.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veil, J. A.; Puder, M. G.

    2006-01-12

    In May 2005, a group of petitioners led by the Northern Plains Resource Council (NPRC) submitted a petition to revise water quality requirements to the Montana Board of Environmental Review (BER). Under Montana law, the BER had to consider the petition and either reject it or propose it as a new regulation. In September 2005, the BER announced proposed changes to the Montana water quality regulations. The proposal, which included almost the exact language found in the petition, was directed toward discharges of water from coal bed natural gas (CBNG) production. The key elements of the proposal included: (1) Nomore » discharges of CBNG water are allowed to Montana surface waters unless operators can demonstrate that injection to aquifers with the potential for later recovery of the water is not feasible. (2) When operators can demonstrate the injection is not feasible, the CBNG water to be discharged must meet very strict technology-based limits for multiple parameters. (3) The Montana water quality standards for the sodium adsorption ratio (SAR) and electrical conductivity (EC) would be evaluated using the 7Q10 flow (lowest 7-consecutive-day flow in a 10-year period) rather than a monthly flow that is currently used. (4) SAR and EC would be reclassified as ''harmful parameters'', thereby greatly restricting the ability for CBNG discharges to be allowed under Montana's nondegradation regulations. The proposed regulations, if adopted in their current form, are likely to substantially reduce the amount of CBNG production in Montana. The impact also extends to Wyoming CBNG production through much greater restrictions on water quality that must be met at the interstate border.« less

  3. Water-Quality Assessment of the High Plains Aquifer, 1999-2004

    USGS Publications Warehouse

    McMahon, Peter B.; Dennehy, Kevin F.; Bruce, Breton W.; Gurdak, Jason J.; Qi, Sharon L.

    2007-01-01

    Water quality of the High Plains aquifer was assessed for the period 1999-2004 as part of the U.S. Geological Survey's National Water-Quality Assessment (NAWQA) Program. This effort represents the first systematic regional assessment of water quality in this nationally important aquifer. A stratified, nested group of studies was designed to assess linkages between the quality of water recharging the aquifer, the effect of transport through the hydrologic system on water quality, and the quality of the resource used for human consumption and agricultural applications. The stratified, nested design facilitated upscaling of monitoring results to unmonitored areas of the aquifer as well as upscaling of process understanding from local to regional scales.

  4. SF Bay Water Quality Improvement Fund: Projects and Accomplishments

    EPA Pesticide Factsheets

    San Francisco Bay Water Quality Improvement Fund (SFBWQIF) projects listed here are part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  5. Preface to volume 1: status and trends of water quality worldwide

    USGS Publications Warehouse

    Larsen, Matthew C.; Ahuja, Satinder; Eimers, Jo Leslie; Edited by Ahuja, Satinder

    2013-01-01

    Water quality and water quantity are closely linked. In all regions of the world, the quality and quantity of water must be considered together in order to sustain abundant water of the quality needed for drinking, irrigation, environmental health, industry, power generation, and recreation. Protecting and managing water to meet water needs requires comprehensive information and understanding of the impacts of natural settings and anthropogenic activities on water quality.

  6. Water resources data, Wyoming, water year 2004; Volume 1. Surface water; with List of discontinued and active surface-water, water-quality, sediment, and biological stations

    USGS Publications Warehouse

    Watson, K.R.; Woodruff, R.E.; Laidlaw, G.A.; Clark, M.L.; Miller, K.A.

    2005-01-01

    Water resources data for the 2004 water year for Wyoming consist of records of stage, discharge and water quality of streams; stage and contents of lakes and reservoirs, and water levels and water quality of ground water. Volume 1 of this report contains discharge records for 164 gaging stations; water quality for 43 gaging stations and 45 ungaged stations, and stage and contents for one reservoir. Volume 2 of this report contains water levels records for 64 wells. Additional water data were collected at various sites, not part of the systematic data collection program, and are published as miscellaneous measurements. These data represent part of the National Water Information System operated by the U.S. Geological Survey and cooperating State and Federal agencies in Wyoming.

  7. Alternative technologies for water quality management

    Treesearch

    Mandla A. Tshabalala

    2002-01-01

    Cranberry growers are concerned about the quality of water discharged from cranberry bogs into receiving surface waters. These water discharges may contain traces of pesticides arising from herbicide, insecticide or fungicide applications. They may also contain excess phosphorus from fertilizer application. Some cranberry farms have holding ponds to reduce the amount...

  8. Impact of Yangtze River Water Transfer on the Water Quality of the Lixia River Watershed, China

    PubMed Central

    Ma, Xiaoxue; Wang, Lachun; Wu, Hao; Li, Na; Ma, Lei; Zeng, Chunfen; Zhou, Yi; Yang, Jun

    2015-01-01

    To improve water quality and reduce the negative impacts of sudden inputs of water pollution in the Lixia River watershed, China, a series of experimental water transfers from the Yangtze River to the Lixia River were conducted from 2 December 2006 to 7 January 2007. Water samples were collected every six days at 55 monitoring sites during this period. Eight water parameters (water temperature, pH, dissolved oxygen (DO), chemical oxygen demand (COD), potassium permanganate index (CODMn), ammonia nitrogen (NH4 +-N), electrical conductivity (EC), and water transparency (WT)) were analyzed to determine changes in nutrient concentrations during water transfers. The comprehensive pollution index (Pi) and single-factor (Si) evaluation methods were applied to evaluate spatio-temporal patterns of water quality during water transfers. Water quality parameters displayed different spatial and temporal distribution patterns within the watershed. Water quality was improved significantly by the water transfers, especially for sites closer to water intake points. The degree of improvement is positively related to rates of transfer inflow and drainage outflow. The effects differed for different water quality parameters at each site and at different water transfer times. There were notable decreases in NH4 +-N, DO, COD, and CODMn across the entire watershed. However, positive effects on EC and pH were not observed. It is concluded that freshwater transfers from the Yangtze River can be used as an emergency measure to flush pollutants from the Lixia River watershed. Improved understanding of the effects of water transfers on water quality can help the development and implementation of effective strategies to improve water quality within this watershed. PMID:25835525

  9. White Sands Missile Range 2011 Drinking Water Quality Report

    DTIC Science & Technology

    2012-01-01

    This Annual Drinking Water Quality Report, or the Consumer Confi dence Report, is required by the Safe Drinking Water Act (SDWA). The SDWA ensures...public drinking water systems meet national standards for the protection of your health. This report provides details about where your water comes...NMED). WSMR tap water meets all EPA and NMED drinking water standards. What is This Water Quality Report? Este informe contiene informacion importante

  10. Self-actualization: Its Use and Misuse in Teacher Education.

    ERIC Educational Resources Information Center

    Ivie, Stanley D.

    1982-01-01

    The writings of Abraham Maslow are analyzed to determine the meaning of the psychological term "self-actualization." After pointing out that self-actualization is a rare quality and that it has little to do with formal education, the author concludes that the concept has little practical relevance for teacher education. (PP)

  11. National Water Quality Inventory, 1975 Report to Congress.

    ERIC Educational Resources Information Center

    Environmental Protection Agency, Washington, DC. Office of Water Programs.

    This document summarizes state submissions and provides a national overview of water quality as requested in Section 305(b) of the 1972 Federal Water Pollution Control Act Amendments (P.L. 92-500). This report provides the first opportunity for states to summarize their water quality and to report to EPA and Congress. Chapters of this report deal…

  12. National trends in drinking water quality violations.

    PubMed

    Allaire, Maura; Wu, Haowei; Lall, Upmanu

    2018-02-27

    Ensuring safe water supply for communities across the United States is a growing challenge in the face of aging infrastructure, impaired source water, and strained community finances. In the aftermath of the Flint lead crisis, there is an urgent need to assess the current state of US drinking water. However, no nationwide assessment has yet been conducted on trends in drinking water quality violations across several decades. Efforts to reduce violations are of national concern given that, in 2015, nearly 21 million people relied on community water systems that violated health-based quality standards. In this paper, we evaluate spatial and temporal patterns in health-related violations of the Safe Drinking Water Act using a panel dataset of 17,900 community water systems over the period 1982-2015. We also identify vulnerability factors of communities and water systems through probit regression. Increasing time trends and violation hot spots are detected in several states, particularly in the Southwest region. Repeat violations are prevalent in locations of violation hot spots, indicating that water systems in these regions struggle with recurring issues. In terms of vulnerability factors, we find that violation incidence in rural areas is substantially higher than in urbanized areas. Meanwhile, private ownership and purchased water source are associated with compliance. These findings indicate the types of underperforming systems that might benefit from assistance in achieving consistent compliance. We discuss why certain violations might be clustered in some regions and strategies for improving national drinking water quality.

  13. Water quality in the Yukon River Basin, Alaska, water years 2006-2008

    USGS Publications Warehouse

    Schuster, Paul F.; Maracle, Karonhiakta'tie Bryan; Herman-Mercer, Nicole

    2010-01-01

    The Yukon River Inter-Tribal Watershed Council and the U.S. Geological Survey developed a water-quality monitoring program to address a shared interest in the water quality of the Yukon River and its relation to climate. This report contains water-quality data from samples collected in the Yukon River Basin during water years 2006 through 2008. A broad range of chemical analyses from 44 stations throughout the YRB are presented. On August 8, 2009 the USGS signed a Memorandum of Understanding with the Yukon River Inter-Tribal Watershed Council representing the culmination of 5 years of dedicated efforts to forge a working collaboration and partnership with expectations of continuing into the foreseeable future. The Memorandum of Understanding may be viewed at http://www.usgs.gov/mou/docs/yritwc_mou.pdf.

  14. Small drinking water systems under spatiotemporal water quality variability: a risk-based performance benchmarking framework.

    PubMed

    Bereskie, Ty; Haider, Husnain; Rodriguez, Manuel J; Sadiq, Rehan

    2017-08-23

    Traditional approaches for benchmarking drinking water systems are binary, based solely on the compliance and/or non-compliance of one or more water quality performance indicators against defined regulatory guidelines/standards. The consequence of water quality failure is dependent on location within a water supply system as well as time of the year (i.e., season) with varying levels of water consumption. Conventional approaches used for water quality comparison purposes fail to incorporate spatiotemporal variability and degrees of compliance and/or non-compliance. This can lead to misleading or inaccurate performance assessment data used in the performance benchmarking process. In this research, a hierarchical risk-based water quality performance benchmarking framework is proposed to evaluate small drinking water systems (SDWSs) through cross-comparison amongst similar systems. The proposed framework (R WQI framework) is designed to quantify consequence associated with seasonal and location-specific water quality issues in a given drinking water supply system to facilitate more efficient decision-making for SDWSs striving for continuous performance improvement. Fuzzy rule-based modelling is used to address imprecision associated with measuring performance based on singular water quality guidelines/standards and the uncertainties present in SDWS operations and monitoring. This proposed R WQI framework has been demonstrated using data collected from 16 SDWSs in Newfoundland and Labrador and Quebec, Canada, and compared to the Canadian Council of Ministers of the Environment WQI, a traditional, guidelines/standard-based approach. The study found that the R WQI framework provides an in-depth state of water quality and benchmarks SDWSs more rationally based on the frequency of occurrence and consequence of failure events.

  15. Dishwashing water recycling system and related water quality standards for military use.

    PubMed

    Church, Jared; Verbyla, Matthew E; Lee, Woo Hyoung; Randall, Andrew A; Amundsen, Ted J; Zastrow, Dustin J

    2015-10-01

    As the demand for reliable and safe water supplies increases, both water quality and available quantity are being challenged by population growth and climate change. Greywater reuse is becoming a common practice worldwide; however, in remote locations of limited water supply, such as those encountered in military installations, it is desirable to expand its classification to include dishwashing water to maximize the conservation of fresh water. Given that no standards for dishwashing greywater reuse by the military are currently available, the current study determined a specific set of water quality standards for dishwater recycling systems for U.S. military field operations. A tentative water reuse standard for dishwashing water was developed based on federal and state regulations and guidelines for non-potable water, and the developed standard was cross-evaluated by monitoring water quality data from a full-scale dishwashing water recycling system using an innovative electrocoagulation and ultrafiltration process. Quantitative microbial risk assessment (QMRA) was also performed based on exposure scenarios derived from literature data. As a result, a specific set of dishwashing water reuse standards for field analysis (simple, but accurate) was finalized as follows: turbidity (<1 NTU), Escherichia coli (<50 cfu mL(-1)), and pH (6-9). UV254 was recommended as a surrogate for organic contaminants (e.g., BOD5), but requires further calibration steps for validation. The developed specific water standard is the first for dishwashing water reuse and will be expected to ensure that water quality is safe for field operations, but not so stringent that design complexity, cost, and operational and maintenance requirements will not be feasible for field use. In addition the parameters can be monitored using simple equipment in a field setting with only modest training requirements and real-time or rapid sample turn-around. This standard may prove useful in future development

  16. Annotated bibliography on forest practices legislation related to water quality

    Treesearch

    Neil K. Huyler; David McMath; Daphne Hewitt

    1999-01-01

    Includes annotated citations of literature on forest practices regulations related to all aspects of water quality protection. The bibliography is divided into three sections: 1) Water quality protection during timber harvesting; 2) Methods for assessing the costs and benefits of water quality protection; and 3) Effectiveness of regulatory programs in protecting water...

  17. An assessment of drinking-water quality post-Haiyan.

    PubMed

    Magtibay, Bonifacio; Anarna, Maria Sonabel; Fernando, Arturo

    2015-01-01

    Access to safe drinking-water is one of the most important public health concerns in an emergency setting. This descriptive study reports on an assessment of water quality in drinking-water supply systems in areas affected by Typhoon Haiyan immediately following and 10 months after the typhoon. Water quality testing and risk assessments of the drinking-water systems were conducted three weeks and 10 months post-Haiyan. Portable test kits were used to determine the presence of Escherichia coli and the level of residual chlorine in water samples. The level of risk was fed back to the water operators for their action. Of the 121 water samples collected three weeks post-Haiyan, 44% were contaminated, while 65% (244/373) of samples were found positive for E. coli 10 months post-Haiyan. For the three components of drinking-water systems - source, storage and distribution - the proportions of contaminated systems were 70%, 67% and 57%, respectively, 10 months after Haiyan. Vulnerability to faecal contamination was attributed to weak water safety programmes in the drinking-water supply systems. Poor water quality can be prevented or reduced by developing and implementing a water safety plan for the systems. This, in turn, will help prevent waterborne disease outbreaks caused by contaminated water post-disaster.

  18. Drinking Water Quality Status and Contamination in Pakistan.

    PubMed

    Daud, M K; Nafees, Muhammad; Ali, Shafaqat; Rizwan, Muhammad; Bajwa, Raees Ahmad; Shakoor, Muhammad Bilal; Arshad, Muhammad Umair; Chatha, Shahzad Ali Shahid; Deeba, Farah; Murad, Waheed; Malook, Ijaz; Zhu, Shui Jin

    2017-01-01

    Due to alarming increase in population and rapid industrialization, drinking water quality is being deteriorated day by day in Pakistan. This review sums up the outcomes of various research studies conducted for drinking water quality status of different areas of Pakistan by taking into account the physicochemical properties of drinking water as well as the presence of various pathogenic microorganisms. About 20% of the whole population of Pakistan has access to safe drinking water. The remaining 80% of population is forced to use unsafe drinking water due to the scarcity of safe and healthy drinking water sources. The primary source of contamination is sewerage (fecal) which is extensively discharged into drinking water system supplies. Secondary source of pollution is the disposal of toxic chemicals from industrial effluents, pesticides, and fertilizers from agriculture sources into the water bodies. Anthropogenic activities cause waterborne diseases that constitute about 80% of all diseases and are responsible for 33% of deaths. This review highlights the drinking water quality, contamination sources, sanitation situation, and effects of unsafe drinking water on humans. There is immediate need to take protective measures and treatment technologies to overcome unhygienic condition of drinking water supplies in different areas of Pakistan.

  19. Tsukamoto fuzzy implementation to identify the pond water quality of koi

    NASA Astrophysics Data System (ADS)

    Qur'ania, A.; Verananda, D. I.

    2017-01-01

    The colour quality of koi was affected by the water quality in the pond. Koi fish have a diversity of types differentiated based on the body colour groups, such as one colour pattern, two colour patterns, three colours patterns and even more. Each colour characteristic of the koi have different handling, particularly in the handling of water quality, this is because the colour pigments in the body was affected by the composition of water quality include temperature, pH, TDS, do and salinity. The data of koi fish used were sanke, sowa, kohaku, shiro, yamabuki, ogon and chagoi. The aim of this study is to make an application to inform the condition of the pool water quality that can help breeders to know the water quality that will improve the handling strategies through water media. Tsukamoto Fuzzy method used to produce the three outputs namely water quality, water grade, and water conditions. The output of water quality consists of four categories, namely optimal, moderate, poor, and very poor. The output of water grade consists of grade A to D, while the output of water conditions consist of an excellent, good, bad, and very bad. Input to the application consists of five parameters, namely water temperature, pH, TDS, do and salinity.

  20. During a winter of storms in a small UK catchment, hydrology and water quality responses follow a clear rural-urban gradient

    NASA Astrophysics Data System (ADS)

    McGrane, Scott J.; Hutchins, Michael G.; Miller, James D.; Bussi, Gianbattista; Kjeldsen, Thomas R.; Loewenthal, Matt

    2017-02-01

    This paper presents the hydrological and water quality response from a series of extreme storm events that passed across the UK during the winter of 2013/2014, in an experimental catchment with a strong rural-urban gradient across four nested sub-catchment areas. The Ray catchment in the upper Thames basin, UK, was extensively monitored using in-situ, high-resolution (15 min) flow and water quality instrumentation. Dissolved oxygen, ammonium, turbidity and specific conductivity are used to characterise the water quality dynamics. The impact of the Swindon sewage treatment works (SSTW) on water chemistry at the catchment outlet is considerable. Hydrological and water-quality response varies considerably during the events, with the rural catchments exhibiting a much slower hydrological response compared to urban areas. A simple hydrological model (TETIS) was developed to provide insight into water sources in nested subcatchments, highlighting the disparity of the hydrological dynamics across contrasting land-uses during events. The variation in stormwater runoff sources impacts water quality signals with urban sites contributing to dilution dynamics in ammonium, whereas the more rural site experiences a peak in ammonium during the same event. Dissolved oxygen concentrations vary on a rural-urban gradient and experience a notable sag at the Water Eaton outlet (4.4 mg/l) during the events, that would have resulted in significant ecological harm had they occurred during the summer in warmer temperatures. The water-quality legacy of these storms in the wider context of the hydrological year is somewhat negligible, with markedly poorer water quality signals being observed during the summer months of 2014. Although ammonium concentrations during the events are elevated (above the 'good' status threshold under the WFD), higher values are observed during spring and summer months. The high flows actually appear to flush contaminants out of the Ray and its subcatchments

  1. Water-quality assessment of the Kentucky River basin, Kentucky; results of investigations of surface-water quality, 1987-90

    USGS Publications Warehouse

    Haag, K.H.; Garcia, Rene; Jarrett, G.L.; Porter, S.D.

    1995-01-01

    The U.S. Geological Survey investigated the water quality of the Kentucky River Basin in Kentucky as part of the National Water-Quality Assessment program. Data collected during 1987-90 were used to describe the spatial and temporal variability of water-quality constituents including metals and trace elements, nutrients, sediments, pesticides, dissolved oxygen, and fecal-coliform bacteria. Oil-production activities were the source of barium, bromide, chloride, magnesium, and sodium in several watersheds. High concentrations of aluminum, iron, and zinc were related to surface mining in the Eastern Coal Field Region. High concentrations of lead and zinc occurred in streambed sediments in urban areas, whereas concentrations of arsenic, strontium, and uranium were associated with natural geologic sources. Concentrations of phosphorus were significantly correlated with urban and agricultural land use. The high phosphorus content of Bluegrass Region soils was an important source of phosphorus in streams. At many sites in urban areas, most of the stream nitrogen load was attributable to wastewater-treatment-plant effluent. Average suspended-sediment concentrations were positively correlated with discharge. There was a downward trend in suspended-sediment concentrations downstream in the Kentucky River main stem during the study. The most frequently detected herbicides in water samples were atrazine, 2,4-D, alachlor, metolachlor, and dicamba. Diazinon, malathion, and parathion were the most frequently detected organophosphate insecticides in water samples. Detectable concentrations of aldrin, chlordane, DDT, DDE, dieldrin, endrin, endosulfan, heptachlor, and lindane were found in streambed-sediment samples. Dissolved-oxygen concentrations were sometimes below the minimum concentration needed to sustain aquatic life. At some sites, high concentrations of fecal-indicator bacteria were found and water samples did not meet sanitary water-quality criteria.

  2. Community Response to Impaired Drinking Water Quality: Evidence from Bottled Water Sales

    NASA Astrophysics Data System (ADS)

    Allaire, M.; Zheng, S.; Lall, U.

    2017-12-01

    Drinking water contaminants pose a harm to public health. When confronted with elevated contaminate levels, individuals can take averting actions to reduce exposure, such as bottled water purchases. This study addresses a problem of national interest given that 9 to 45 million people have been affected by drinking water quality violations in each of the past 34 years. Moreover, few studies address averting behavior and avoidance costs due to water quality violations. This study assesses how responses might differ across baseline risk of impaired water quality and demographics of service area. We match a panel of weekly supermarket sales data with geocoded violations data for 67 counties in the Southeast from 2006-2015. We estimate the change in bottled water sales due to drinking water violations using a fixed effects model. Observing market behavior also allows us to calculate the cost of these averting actions. Critical findings from this study contribute to understanding how communities respond to water quality violations. We find that violations have considerable effects on bottled water consumption. Sales increase 8.1 percent due to violations related to microorganisms and 31.2 percent due to Tier 1 violations, which pose an immediate health risk. In addition, we calculate a national cost of averting actions of $26 million for microorganism violations from 2006-2015, which represents a lower-bound estimate. Averting costs vary considerably across the U.S. and some counties bear a particularly large burden, such as in California and Texas. Overall, this study provides insight into how averting behavior differs across contaminant type, water utility characteristics, and community demographics. Such knowledge can aid public health agencies, water systems, and environmental regulators to direct assistance to communities most in need.

  3. Water Quality in the Yakima River Basin, Washington, 1999-2000

    USGS Publications Warehouse

    Fuhrer, Gregory J.; Morace, Jennifer L.; Johnson, Henry M.; Rinella, Joseph F.; Ebbert, James C.; Embrey, Sandra S.; Waite, Ian R.; Carpenter, Kurt D.; Wise, Daniel R.; Hughes, Curt A.

    2004-01-01

    This report contains the major findings of a 1999?2000 assessment of water quality in streams and drains in the Yakima River Basin. It is one of a series of reports by the NAWQA Program that present major findings on water resources in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is assessed at many scales?from large rivers that drain lands having many uses to small agricultural watersheds?and is discussed in terms of local, State, and regional issues. Conditions in the Yakima River Basin are compared to those found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, Tribal, State, or local agencies; universities; public interest groups; or the private sector. The information will be useful in addressing a number of current issues, such as source-water protection, pesticide registration, human health, drinking water, hypoxia and excessive growth of algae and plants, the effects of agricultural land use on water quality, and monitoring and sampling strategies. This report is also for individuals who wish to know more about the quality of water resources in areas near where they live, and how that water quality compares to the quality of water in other areas across the Nation. Other products describing water-quality conditions in the Yakima River Basin are available. Detailed technical information, data and analyses, methodology, and maps that support the findings presented in this report can be accessed from http://or.water.usgs.gov/yakima. Other reports in this series and data collected from other basins can be accessed from the national NAWQA Web site (http://water.usgs.gov/nawqa).

  4. Water quality key to protecting patients.

    PubMed

    Pearson, Susan

    2012-11-01

    According to David Graham of the Scottish National Blood Transfusion Service (SNBTS), "the importance of the safe diagnosis and treatment of patients cannot be overstated - yet the role played by water quality in patient safety has sometimes been under-stated". David Graham was speaking at a one day Pall Medical-sponsored meeting on the prevention and control of healthcare-associated waterborne infections in healthcare facilities held in Edinburgh earlier this year. David Graham, other speakers, and the chair, Consultant Microbiologist and Infection Prevention and Control Doctor for NHS Grampian, Dr Anne Marie Karcher, stressed that good quality water is essential in healthcare premises to prevent the potentially catastrophic consequences of contaminated water for some patients. Susan Pearson BSc reports.

  5. Water-Quality and Lake-Stage Data for Wisconsin Lakes, Water Year 2006

    USGS Publications Warehouse

    Rose, W.J.; Garn, H.S.; Goddard, G.L.; Marsh, S.B.; Olson, D.L.; Robertson, Dale M.

    2007-01-01

    The U.S. Geological Survey (USGS), in cooperation with local and other agencies, collects data at selected lakes throughout Wisconsin. These data, accumulated over many years, provide a data base for developing an improved understanding of the water quality of lakes. To make these data available to interested parties outside the USGS, the data are published annually in this report series. The locations of water-quality and lake-stage stations in Wisconsin for water year 2006 are shown in figure 1. A water year is the 12-month period from October 1 through September 30. It is designated by the calendar year in which it ends. Thus, the period October 1, 2005 through September 30, 2006 is called 'water year 2006.' The purpose of this report is to provide information about the chemical and physical characteristics of Wisconsin lakes. Data that have been collected at specific lakes, and information to aid in the interpretation of those data, are included in this report. Data collected include measurements of in-lake water quality and lake stage. Time series of Secchi depths, surface total phosphorus and chlorophyll a concentrations collected during non-frozen periods are included for all lakes. Graphs of vertical profiles of temperature, dissolved oxygen, pH, and specific conductance are included for sites where these parameters were measured. Descriptive information for each lake includes: location of the lake, area of the lake's watershed, period for which data are available, revisions to previously published records, and pertinent remarks. Additional data, such as streamflow and water quality in tributary and outlet streams of some of the lakes, are published in another volume: 'Water Resources Data-Wisconsin, 2006.' Water-resources data, including stage and discharge data at most streamflow-gaging stations, are available through the World Wide Web on the Internet. The Wisconsin Water Science Center's home page is at http://wi.water.usgs.gov/. Information on the

  6. Water-quality and Llake-stage data for Wisconsin Lakes, Water Year 2004

    USGS Publications Warehouse

    Rose, W.J.; Garn, H.S.; Goddard, G.L.; Marsh, S.B.; Olson, D.L.; Robertson, Dale M.

    2005-01-01

    The U.S. Geological Survey (USGS), in cooperation with local and other agencies, collects data at selected lakes throughout Wisconsin. These data, accumulated over many years, provide a data base for developing an improved understanding of the water quality of lakes. To make these data available to interested parties outside the USGS, the data are published annually in this report series. The locations of water-quality and lake-stage stations in Wisconsin for water year 2004 are shown in figure 1. A water year is the 12-month period from October 1 through September 30. It is designated by the calendar year in which it ends. Thus, the period October 1, 2003 through September 30, 2004 is called 'water year 2004.' The purpose of this report is to provide information about the chemical and physical characteristics of Wisconsin lakes. Data that have been collected at specific lakes, and information to aid in the interpretation of those data, are included in this report. Data collected include measurements of in-lake water quality and lake stage. Time series of Secchi depths, surface total phosphorus and chlorophyll a concentrations collected during non-frozen periods are included for all lakes. Graphs of vertical profiles of temperature, dissolved oxygen, pH, and specific conductance are included for sites where these parameters were measured. Descriptive information for each lake includes: location of the lake, area of the lake's watershed, period for which data are available, revisions to previously published records, and pertinent remarks. Additional data, such as streamflow and water quality in tributary and outlet streams of some of the lakes, are published in another volume: 'Water Resources Data-Wisconsin, 2004.' Water-resources data, including stage and discharge data at most streamflow-gaging stations, are available throught the World Wide Web on the Internet. The Wisconsin Water Science Center's home page is at http://wi.water.usgs.gov/. Information on the

  7. School on Alert over Water Quality

    ERIC Educational Resources Information Center

    Bowman, Darcia Harris

    2004-01-01

    This article examines the issue on the quality of water in Seattle's school districts. Seattle's water woes became public when four little containers of rust-colored water from fountains in the city district's Wedgewood Elementary School, collected by concerned parents, were tested by a certified laboratory and found to exceed federal lead limits.…

  8. MEASURING & MODELING VARIATIONS IN DISTRIBUTION WATER QUALITY

    EPA Science Inventory

    Until recently most interest in drinking water quality has been in the finished water as it leaves the treatment plant. he Safe Drinking Water requires that MCLs be met at the consumers tap. ecause finished water may undergo substantial changes while being transported through the...

  9. Chapter 5: Surface water quality sampling in streams and canals

    USDA-ARS?s Scientific Manuscript database

    Surface water sampling and water quality assessments have greatly evolved in the United States since the 1970s establishment of the Clean Water Act. Traditionally, water quality referred to only the chemical characteristics of the water and its toxicological properties related to drinking water or ...

  10. Design of Cycle 3 of the National Water-Quality Assessment Program, 2013-2022: Part 1: Framework of Water-Quality Issues and Potential Approaches

    USGS Publications Warehouse

    Rowe, Gary L.; Belitz, Kenneth; Essaid, Hedeff I.; Gilliom, Robert J.; Hamilton, Pixie A.; Hoos, Anne B.; Lynch, Dennis D.; Munn, Mark D.; Wolock, David W.

    2010-01-01

    In 1991, the U.S. Congress established the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) Program to develop long-term, nationally consistent information on the quality of the Nation's streams and groundwater. Congress recognized the critical need for this information to support scientifically sound management, regulatory, and policy decisions concerning the increasingly stressed water resources of the Nation. The long-term goals of NAWQA are to: (1) assess the status of water-quality conditions in the United States, (2) evaluate long-term trends in water-quality conditions, and (3) link status and trends with an understanding of the natural and human factors that affect water quality. These goals are national in scale, include both surface water and groundwater, and include consideration of water quality in relation to both human uses and aquatic ecosystems. Since 1991, NAWQA assessments and findings have fostered and supported major improvements in the availability and use of unbiased scientific information for decisionmaking, resource management, and planning at all levels of government. These improvements have enabled agencies and stakeholders to cost-effectively address a wide range of water-quality issues related to natural and human influences on the quality of water and potential effects on aquatic ecosystems and human health (http://water.usgs.gov/nawqa/xrel.pdf). NAWQA, like all USGS programs, provides policy relevant information that serves as a scientific basis for decisionmaking related to resource management, protection, and restoration. The information is freely available to all levels of government, nongovernmental organizations, industry, academia, and the public, and is readily accessible on the NAWQA Web site and other diverse formats to serve the needs of the water-resource community at different technical levels. Water-quality conditions in streams and groundwater are described in more than 1,700 publications (available

  11. Santa Margarita Estuary Water Quality Monitoring Data

    DTIC Science & Technology

    2018-02-01

    ADMINISTRATIVE INFORMATION The work described in this report was performed for the Water Quality Section of the Environmental Security Marine Corps Base...water quality model calibration given interest and the necessary resources. The dataset should also inform the stakeholders and Regional Board on...period. Several additional ancillary datasets were collected during the monitoring timeframe that provide key information though they were not collected

  12. Triangle area water supply monitoring project, October 1988 through September 2001, North Carolina -- description of the water-quality network, sampling and analysis methods, and quality-assurance practices

    USGS Publications Warehouse

    Oblinger, Carolyn J.

    2004-01-01

    The Triangle Area Water Supply Monitoring Project was initiated in October 1988 to provide long-term water-quality data for six area water-supply reservoirs and their tributaries. In addition, the project provides data that can be used to determine the effectiveness of large-scale changes in water-resource management practices, document differences in water quality among water-supply types (large multiuse reservoir, small reservoir, run-of-river), and tributary-loading and in-lake data for water-quality modeling of Falls and Jordan Lakes. By September 2001, the project had progressed in four phases and included as many as 34 sites (in 1991). Most sites were sampled and analyzed by the U.S. Geological Survey. Some sites were already a part of the North Carolina Division of Water Quality statewide ambient water-quality monitoring network and were sampled by the Division of Water Quality. The network has provided data on streamflow, physical properties, and concentrations of nutrients, major ions, metals, trace elements, chlorophyll, total organic carbon, suspended sediment, and selected synthetic organic compounds. Project quality-assurance activities include written procedures for sample collection, record management and archive, collection of field quality-control samples (blank samples and replicate samples), and monitoring the quality of field supplies. In addition to project quality-assurance activities, the quality of laboratory analyses was assessed through laboratory quality-assurance practices and an independent laboratory quality-control assessment provided by the U.S. Geological Survey Branch of Quality Systems through the Blind Inorganic Sample Project and the Organic Blind Sample Project.

  13. Monitoring surface-water quality in Arizona: the fixed-station network

    USGS Publications Warehouse

    Tadayon, Saeid

    2000-01-01

    Arizona is an arid State in which economic development is influenced largely by the quantity and quality of water and the location of adequate water supplies. In 1995, surface water supplied about 58 percent of total withdrawals in Arizona. Of the total amount of surface water used in 1995, about 89 percent was for agriculture, 10 percent for public supply, and 1 percent for industrial supply (including mining and thermoelectric; Solley and others, 1998). As a result of rapid population growth in Arizona, historic agricultural lands in the Phoenix (Maricopa County) and Tucson (Pima County) areas are now being developed for residential and commercial use; thus, the amount of water used for public supply is increasing. The Clean Water Act was established by U.S. Congress (1972) in response to public concern about water-pollution control. The act defines a process by which the United States Congress and the citizens are informed of the Nation’s progress in restoring and maintaining the quality of our waters. The Arizona Department of Environmental Quality (ADEQ) is the State-designated agency for this process and, as a result, has developed a monitoring program to assess water quality in Arizona. The ADEQ is required to submit a water-quality assessment report to the United States Environmental Protection Agency (USEPA) every 2 years. The USEPA summarizes the reports from each State and submits a report to the Congress characterizing water quality in the United States. These reports serve to inform Congress and the public of the Nation’s progress toward the restoration and maintenance of water quality in the United States (Arizona Department of Environmental Quality, 1998).

  14. Land use impact on water quality: valuing forest services in terms of the water supply sector.

    PubMed

    Fiquepron, Julien; Garcia, Serge; Stenger, Anne

    2013-09-15

    The aim of this paper is to quantify the impact of the forest on raw water quality within the framework of other land uses. On the basis of measurements of quality parameters that were identified as being the most problematic (i.e., pesticides and nitrates), we modeled how water quality is influenced by land uses. In order to assess the benefits provided by the forest in terms of improved water quality, we used variations of drinking water prices that were determined by the operating costs of water supply services (WSS). Given the variability of links between forests and water quality, we chose to cover all of France using data observed in each administrative department (France is divided into 95 départements), including a description of WSS and information on land uses. We designed a model that describes the impact of land uses on water quality, as well as the operation of WSS and prices. This bioeconomic model was estimated by the generalized method of moments (GMM) to account for endogeneity and heteroscedasticity issues. We showed that the forest has a positive effect on raw water quality compared to other land uses, with an indirect impact on water prices, making them lower for consumers. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Monitoring and modeling of microbial and biological water quality

    USDA-ARS?s Scientific Manuscript database

    Microbial and biological water quality informs on the health of water systems and their suitability for uses in irrigation, recreation, aquaculture, and other activities. Indicators of microbial and biological water quality demonstrate high spatial and temporal variability. Therefore, monitoring str...

  16. A national look at water quality

    USGS Publications Warehouse

    Gilliom, Robert J.; Mueller, David K.; Zogorski, John S.; Ryker, Sarah J.

    2002-01-01

    Most water-quality problems we face today result from diffuse "nonpoint" sources of pollution from agricultural land, urban development, forest harvesting and the atmosphere (U.S. Army Corps of Engineers et al., 1999). It is difficult to quantify nonpoint sources because the contaminants they deliver vary in composition and concentrations from hour to hour and season to season. Moreover, the nature of the contamination is complex and varied. When Congress enacted the Clean Water Act 30 years ago, attention was focused on water-quality issues related to the sanitation of rivers and streams - bacteria counts, oxygen in the water for fish, nutrients, temperature, and salinity. Now, attention is turning to the hundreds of synthetic organic compounds like pesticides used in agricultural and residential areas, volatile organics in solvents and gasoline, microbial and viral contamination, and pharmaceuticals and hormones.

  17. Surface-water-quality assessment of the Kentucky River Basin, Kentucky; fixed-station network and selected water-quality data, April 1987 through August 1991

    USGS Publications Warehouse

    Griffin, M.S.; Martin, G.R.; White, K.D.

    1994-01-01

    This report describes selected data-collection activities and the associated data collected during the Kentucky River Basin pilot study of the U.S. Geological Survey's National Water-Quality Assessment Program. The data are intended to provide a nationally consistent description and improved understanding of current water quality in the basin. The data were collected at seven fixed stations that represent stream cross sections where constituent transport and water-quality trends can be evaluated. The report includes descriptions of (1) the basin; (2) the design of the fixed-station network; (3) the fixed-station sites; (4) the physical and chemical measurements; (5) the methods of sample collection, processing, and analysis; and (6) the quality-assurance and quality-control procedures. Water-quality data collected at the fixed stations during routine periodic sampling and supplemental high-flow sampling from April 1987 to August 1991 are presented.

  18. Water Quality: Water Education for Teachers. A 4-H School Enrichment Program.

    ERIC Educational Resources Information Center

    Powell, G. Morgan; Kling, Emily B.

    This looseleaf notebook is a teacher resource package that is designed for enrichment program use. It contains five units dealing with water quality: (1) The Water Cycle; (2) Our Water Supply; (3) Waste/Water Treatment; (4) Water Conservation; (5) Water Pollution. The units provide background information, experiments, stories, poems, plays, and…

  19. Georgia's Stream-Water-Quality Monitoring Network, 2006

    USGS Publications Warehouse

    Nobles, Patricia L.; ,

    2006-01-01

    The USGS stream-water-quality monitoring network for Georgia is an aggregation of smaller networks and individual monitoring stations that have been established in cooperation with Federal, State, and local agencies. These networks collectively provide data from 130 sites, 62 of which are monitored continuously in real time using specialized equipment that transmits these data via satellite to a centralized location for processing and storage. These data are made available on the Web in near real time at http://waterdata.usgs.gov/ga/nwis/ Ninety-eight stations are sampled periodically for a more extensive suite of chemical and biological constituents that require laboratory analysis. Both the continuous and the periodic water-quality data are archived and maintained in the USGS National Water Information System and are available to cooperators, water-resource managers, and the public. The map at right shows the USGS stream-water-quality monitoring network for Georgia and major watersheds. The network represents an aggregation of smaller networks and individual monitoring stations that collectively provide data from 130 sites.

  20. Producing Quality Water for Industrial Use.

    ERIC Educational Resources Information Center

    Schaezler, Donald J.

    1978-01-01

    This article discusses the quality of water demanded by industrial plants and the techniques which are currently employed to achieve them. Both quality and quantity requirements are considered including total plant operation, physical and chemical operating controls, and systems monitoring. (CS)

  1. Water Quality in the Santa Ana Basin, California, 1999-2001

    USGS Publications Warehouse

    Belitz, Kenneth; Hamlin, Scott N.; Burton, Carmen A.; Kent, Robert; Fay, Ronald G.; Johnson, Tyler D.

    2004-01-01

    This report contains the major findings of a 1999-2001 assessment of water quality in the Santa Ana River Basin. It is one of a series of reports by the National Water-Quality Assessment (NAWQA) Program that present major findings in 51 major river basins and aquifer systems across the Nation. In these reports, water quality is discussed in terms of local, State, and regional issues. Conditions in a particular basin or aquifer system are compared to conditions found elsewhere and to selected national benchmarks, such as those for drinking-water quality and the protection of aquatic organisms. This report is intended for individuals working with water-resource issues in Federal, State, or local agencies, universities, public interest groups, or in the private sector. The information will be useful in addressing a number of current issues, such as the effects of agricultural and urban land use on water quality, human health, drinking water, source-water protection, hypoxia and excessive growth of algae and plants, pesticide registration, and monitoring and sampling strategies. This report is also for individuals who wish to know more about the quality of streams and ground water in areas near where they live and how that water quality compares to other areas across the Nation. The water-quality conditions in the Santa Ana River Basin summarized in this report are discussed in detail in other reports that can be accessed from http://ca.water.usgs.gov/ sana_nawqa/. Detailed technical information, data and analyses, collection and analytical methodology, models, graphs, and maps that support the findings presented in this report in addition to other reports in this series from other basins can be accessed from the national NAWQA Web site (http://water.usgs.gov/nawqa).

  2. GROUND WATER QUALITY SURROUNDING LAKE TEXOMA DURING DROUGHT CONDITIONS

    EPA Science Inventory

    Water quality data from 55 producing monitoring wells during drought conditions surrounding Lake Texoma, located on the border of Oklahoma and Texas, was compared to assess the influence of drought on groundwater quality. The main water quality parameter measured was nitrate, an...

  3. Water quality impacts of forest fires

    Treesearch

    Tecle Aregai; Daniel Neary

    2015-01-01

    Forest fires have been serious menace, many times resulting in tremendous economic, cultural and ecological damage to many parts of the United States. One particular area that has been significantly affected is the water quality of streams and lakes in the water thirsty southwestern United States. This is because the surface water coming off burned areas has resulted...

  4. National Water-Quality Assessment Program: Central Arizona Basins

    USGS Publications Warehouse

    Cordy, Gail E.

    1994-01-01

    In 1991, the U.S. Geological Survey (USGS) began to implement a full-scale National Water-Quality Assessment (NAWQA) program. The long-term goals of the NAWQA program are to describe the status and trends in the quality of a large, representative part of the Nation's surface-water and ground-water resources and to provide a sound, scientific understanding of the primary natural and human factors affecting the quality of these resources. In meeting these goals, the program will produce a wealth of water-quality information that will be useful to policymakers and managers at the National, State, and local levels. Studies of 60 hydrologic systems that include parts of most major river basins and aquifer systems (study-unit investigations) are the building blocks of the national assessment. The 60 study units range in size from 1,000 to about 60,000 mi2 and represent 60 to 70 percent of the Nation's water use and population served by public water supplies. Twenty study-unit investigations were started in 1991, 20 additional studies started in 1994, and 20 more are planned to start in 1997. The Central Arizona Basins study unit began assessment activities in 1994.

  5. Assessment of microbial quality of reclaimed water, roof-harvest water, and creek water for irrigation

    USDA-ARS?s Scientific Manuscript database

    The availability of water for crop irrigation is decreasing due to droughts, population growth, and pollution. The Food Safety and Modernization Act (FSMA) standards for irrigation water may also discourage growers to use poor microbial quality water for produce crop irrigation. Reclaimed water use ...

  6. Assessment of microbial quality of reclaimed water, roof-harvest water, and creek water for irrigation

    USDA-ARS?s Scientific Manuscript database

    The availability of water for crop irrigation is decreasing due to droughts, population growth, and pollution. Food Safety and Modernization Act (FSMA) for irrigation water standards may also discourage growers to use poor microbial quality water for produce crop irrigation. Reclaimed water use for ...

  7. Modeling and water quality assessment during realisation of the coastal projects in Sochi region (Black sea coast of Russia)

    NASA Astrophysics Data System (ADS)

    Prokhoda-Shumskikh, L.

    2012-04-01

    water quality. The developed system dynamics model is realized in the «PowerSim Studio» media. The data of natural measurements of water quality are applied for the model verification, and the correlated numerical results for the Russian Black Sea coast are presented. The main objective of the present paper is to present the actual examples, and to generalise the problems and to discuss the possible approaches of their solution.

  8. National Water Quality Benefits

    EPA Science Inventory

    This project will provide the basis for advancing the goal of producing tools in support of quantifying and valuing changes in water quality for EPA regulations. It will also identify specific data and modeling gaps and Improve benefits estimation for more complete benefit-cost a...

  9. Cellular-enabled water quality measurements

    NASA Astrophysics Data System (ADS)

    Zhao, Y.; Kerkez, B.

    2013-12-01

    While the past decade has seen significant improvements in our ability to measure nutrients and other water quality parameters, the use of these sensors has yet to gain traction due to their costprohibitive nature and deployment expertise required on the part of researchers. Furthermore, an extra burden is incurred when real-time data access becomes an experimental requirement. We present an open-source hardware design to facilitate the real-time, low-cost, and robust measurements of water quality across large urbanized areas. Our hardware platform interfaces an embedded, vastly configurable, high-precision, ultra-low power measurement system, with a low-power cellular module. Each sensor station is configured with an IP address, permitting reliable streaming of sensor data to off-site locations as measurements are made. We discuss the role of high-quality hardware components during extreme event scenarios, and present preliminary performance metrics that validate the ability of the platform to provide streaming access to sensor measurements.

  10. Preferred 11 different job rotation types in automotive company and their effects on productivity, quality and musculoskeletal disorders: comparison between subjective and actual scores by workers' age.

    PubMed

    Jeon, In Sik; Jeong, Byung Yong; Jeong, Ji Hyun

    2016-10-01

    This study investigates workers' favoured rotation types by their age and compares means between subjective and actual scores on productivity, quality and musculoskeletal disorders (MSDs). The subjects of research were 422 assembly line units in Hyundai Motor Company. The survey of 422 units focused on the workers' preference for 11 different rotation types and subjective scores for each type's perceived benefits, both by the workers' age. Then, actual scores on production-related indices were traced over a five-year period. The results suggest that different rotation types lead to different results in productivity, product quality and MSDs. Workers tend to perceive job rotation as a helpful method to enhance satisfaction, productivity and product quality more so than the actual production data suggests. Job rotation was especially effective in preventing MSDs for workers aged under 45, while its effects were not clear for the workers aged 45 years or older. Practitioner's Summary: This research presents appropriate rotation type for different age groups. Taking workers' age into account, administrators can use the paper's outcomes to select and implement the suitable rotation type to attain specific goals such as enhancing productivity, improving product quality or reducing MSDs.

  11. Temporal and spatial evolution characteristics of water environment quality in Heze

    NASA Astrophysics Data System (ADS)

    Gao, Qian; Zhao, Qiang; Li, Xiumei

    2018-06-01

    The evolution of water environment is relatively complicated. The study of its characteristics is helpful to grasp the general direction of spatial and temporal evolution of water environment in Heze city, and to carry out water resources development and water environment protection more rationally. The comprehensive pollution index method for calculation, and the observed data are handled by Excel. In order to facilitate the analysis of the basin, Arcgis is utilized to map the watershed map. In addition, for the spatial evolution, surfer12 is used to analyze the spatial evolution characteristics the spatial evolution, and to draw the pictures of spatial evolution of chemical oxygen demand and water quality evolution. The study shows that: (1) In Heze, the quality of water environment has been improved year by year from 2006 to 2013. In 2014, the water environment has deteriorated. The content of volatile phenol has increased greatly, and the evolution trend of COD is close to the trend of the comprehensive pollution index. (2) In terms of Spatial state of water environment, the water quality of Zhuzhao New River and Wanfu River is poor, and Dongyu River water quality is better. Zhuzhao New River and Wanfu River water qualityis often worse than grade V or V, and Dongyu River water quality is mostly maintained in the grade Ⅳ. Through the analysis on the spatial revolution characteristics of water quality and chemical oxygen demand(COD),as a result, water quality is poor in the northern region,and the water quality in the southern region is better in Heze. Although the water quality has changed in recent years, the overall pattern is relatively stable.

  12. An assessment of drinking-water quality post-Haiyan

    PubMed Central

    Anarna, Maria Sonabel; Fernando, Arturo

    2015-01-01

    Introduction Access to safe drinking-water is one of the most important public health concerns in an emergency setting. This descriptive study reports on an assessment of water quality in drinking-water supply systems in areas affected by Typhoon Haiyan immediately following and 10 months after the typhoon. Methods Water quality testing and risk assessments of the drinking-water systems were conducted three weeks and 10 months post-Haiyan. Portable test kits were used to determine the presence of Escherichia coli and the level of residual chlorine in water samples. The level of risk was fed back to the water operators for their action. Results Of the 121 water samples collected three weeks post-Haiyan, 44% were contaminated, while 65% (244/373) of samples were found positive for E. coli 10 months post-Haiyan. For the three components of drinking-water systems – source, storage and distribution – the proportions of contaminated systems were 70%, 67% and 57%, respectively, 10 months after Haiyan. Discussion Vulnerability to faecal contamination was attributed to weak water safety programmes in the drinking-water supply systems. Poor water quality can be prevented or reduced by developing and implementing a water safety plan for the systems. This, in turn, will help prevent waterborne disease outbreaks caused by contaminated water post-disaster. PMID:26767136

  13. Water-quality assessment of the Albermarle-Pamlico drainage basin, North Carolina and Virginia; environmental setting and water-quality issues

    USGS Publications Warehouse

    McMahon, Gerard; Lloyd, Orville B.

    1995-01-01

    The Albemarle-Pamlico drainage study unit is one of 60 units of the U.S. Geological Survey's National Water-Quality Assessment Program, and includes the large river basins which drain into the Albemarle and Pamlico Sounds-the Chowan, Roanoke, Tar-Pamlico, and Neuse River Basins. The study unit includes about 28,000 square miles and has an interrelated set of environmental characteristics which strongly influence water quality. The chemical and physical nature of these characteristics are the dominant controls on baseline water quality in the study area. About 50 percent of the study area is forested, slightly more than 30 percent is agricultural, about 15 percent is wetlands, and less than 5 percent is developed. Three million people live in the study area, and activities related to agriculture and development have caused increased concentrations of constituents such as nutrients, pesticides, and suspended sediment. About two-thirds of the 36 to 52 inches of precipitation in the area reenters the atmosphere by evapotranspiration. About one-third of the remaining precipitation reaches streams by overland runoff; the remainder recharges the water table aquifer, where much of the water eventually discharges to streams as ground water. Thus, ground-water quality has a substantial influence on surface-water quality, particularly during dry weather. In 1990, about 152,900 tons of elemental nitrogen and 10,500 tons of elemental phosphorus either were applied to crops as fertilizer or fixed by biological processes, and in 1987, about 43,500 tons of nitrogen and 12,200 tons of phosphorus were produced as animal wastes. In addition, about 1,300 tons of selected herbicides and 400 tons of selected insecticides were applied to crops in 1990. Some 249 permitted point sources discharged 410 million gallons per day, containing an annual load of 5,800 tons of nitrogen and 1,800 tons of phosphorus, to the study area in 1990. Data from 1970-79 indicate that mean annual suspended

  14. INTEGRATING PROBABILISTIC AND FIXED-SITE MONITORING FOR ROBUST WATER QUALITY ASSESSMENTS

    EPA Science Inventory

    Determining the extent of water-quality degradation, controlling nonpoint sources, and defining allowable amounts of contaminants are important water-quality issues defined in the Clean Water Act that require new monitoring data. Probabilistic, randomized stream water-quality mon...

  15. Historical water-quality data from the Harlem River, New York

    USGS Publications Warehouse

    Fisher, Shawn C.

    2016-04-22

    Data specific to the Harlem River, New York, have been summarized and are presented in this report. The data illustrate improvements in the quality of water for the past 65 years and emphasize the importance of a continuous water-quality record for establishing trends in environmental conditions. Although there is a paucity of sediment-quality data, the New York City Department of Environmental Protection (NYCDEP) Bureau of Wastewater Treatment has maintained a water-quality monitoring network in the Harlem River (and throughout the harbor of New York City) to which 61 combined sewer outfalls discharge effluent. In cooperation with the NYCDEP, the U.S. Geological Survey evaluated water-quality data collected by the NYCDEP dating back to 1945, which indicate trends in water quality and reveal improvement following the 1972 passage of the Clean Water Act. These improvements are indicated by the steady increase in median dissolved oxygen concentrations and an overall decrease in fecal indicator bacteria concentrations starting in the late 1970s. Further, the magnitude of the highest fecal indicator bacteria concentrations (that is, the 90th percentile) in samples collected from the Harlem River have decreased significantly over the past four decades. Other parameters of water quality used to gauge the health of a water body include total suspended solids and nutrient (inorganic forms of nitrogen and phosphorus) concentrations—mean concentrations for these indicators have also decreased in the past decades. The limited sediment data available for one sample in the Harlem River indicate concentrations of copper, zinc, and lead are above sediment-quality thresholds set by the New York State Department of Environmental Conservation. However, more data are needed to better understand the changes in both sediment and water quality in the Harlem River, both as the tide cycles and during precipitation events. As a partner in the Urban Waters Federal Partnership, the U

  16. ENHANCED STREAM WATER QUALITY MODEL (QUAL2EU)

    EPA Science Inventory

    The enhanced stream water quality model QUAL2E and QUAL2E-UNCAS (37) permits simulation of several water quality constituents in a branching stream system using a finite difference solution to the one-dimensional advective-dispersive mass transport and reaction equation. The con...

  17. Drinking Water Quality Status and Contamination in Pakistan

    PubMed Central

    Nafees, Muhammad; Rizwan, Muhammad; Bajwa, Raees Ahmad; Shakoor, Muhammad Bilal; Arshad, Muhammad Umair; Chatha, Shahzad Ali Shahid; Deeba, Farah; Murad, Waheed; Malook, Ijaz

    2017-01-01

    Due to alarming increase in population and rapid industrialization, drinking water quality is being deteriorated day by day in Pakistan. This review sums up the outcomes of various research studies conducted for drinking water quality status of different areas of Pakistan by taking into account the physicochemical properties of drinking water as well as the presence of various pathogenic microorganisms. About 20% of the whole population of Pakistan has access to safe drinking water. The remaining 80% of population is forced to use unsafe drinking water due to the scarcity of safe and healthy drinking water sources. The primary source of contamination is sewerage (fecal) which is extensively discharged into drinking water system supplies. Secondary source of pollution is the disposal of toxic chemicals from industrial effluents, pesticides, and fertilizers from agriculture sources into the water bodies. Anthropogenic activities cause waterborne diseases that constitute about 80% of all diseases and are responsible for 33% of deaths. This review highlights the drinking water quality, contamination sources, sanitation situation, and effects of unsafe drinking water on humans. There is immediate need to take protective measures and treatment technologies to overcome unhygienic condition of drinking water supplies in different areas of Pakistan. PMID:28884130

  18. Managing water quality under drought conditions in the Llobregat River Basin.

    PubMed

    Momblanch, Andrea; Paredes-Arquiola, Javier; Munné, Antoni; Manzano, Andreu; Arnau, Javier; Andreu, Joaquín

    2015-01-15

    The primary effects of droughts on river basins include both depleted quantity and quality of the available water resources, which can render water resources useless for human needs and simultaneously damage the environment. Isolated water quality analyses limit the action measures that can be proposed. Thus, an integrated evaluation of water management and quality is warranted. In this study, a methodology consisting of two coordinated models is used to combine aspects of water resource allocation and water quality assessment. Water management addresses water allocation issues by considering the storage, transport and consumption elements. Moreover, the water quality model generates time series of concentrations for several pollutants according to the water quality of the runoff and the demand discharges. These two modules are part of the AQUATOOL decision support system shell for water resource management. This tool facilitates the analysis of the effects of water management and quality alternatives and scenarios on the relevant variables in a river basin. This paper illustrates the development of an integrated model for the Llobregat River Basin. The analysis examines the drought from 2004 to 2008, which is an example of a period when the water system was quantitative and qualitatively stressed. The performed simulations encompass a wide variety of water management and water quality measures; the results provide data for making informed decisions. Moreover, the results demonstrated the importance of combining these measures depending on the evolution of a drought event and the state of the water resources system. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. Reconnaissance Assessment of the Potential for Roadside Dry Wells to Affect Water Quality on the Island of Hawai'i

    USGS Publications Warehouse

    Izuka, Scot K.; Senter, Craig A.; Johnson, Adam G.

    2009-01-01

    The County of Hawai'i Department of Public Works (DPW) uses dry wells to dispose of stormwater runoff from roads. Recently, concern has been raised that water entering the dry wells may transport contaminants to groundwater and affect the quality of receiving waters. The DPW operates 2,052 dry wells. Compiling an inventory of these dry wells and sorting it on the basis of presence or absence of urbanization in the drainage area, distance between the bottom of the dry well and the water table, and proximity to receiving waters helps identify the dry wells having greatest potential to affect the quality of receiving waters so that future studies or mitigation efforts can focus on a smaller number of dry wells. The drainage areas of some DPW dry wells encompass urbanized areas, which could be a source of contaminants. Some dry wells penetrate close to or through the water table, eliminating or substantially reducing opportunities for contaminant attenuation between the ground surface and water table. Dry wells that have drainage areas that encompass urbanization, penetrate to near the water table, and are near the coast have the highest potential to affect the quality of coastal waters (this study did not consider specific sections of coastline that may be of greater concern than others). Some DPW dry wells, including a few that have drainage areas that encompass urbanization, lie within the areas contributing recharge (ACR) to drinking-water wells. Numerical groundwater modeling studies by previous investigators indicate that water infiltrating those dry wells could eventually be pumped at drinking-water wells. Dry wells that have a high potential for affecting coastal receiving waters or drinking-water wells can be the focus of studies to further understand the effect of the dry wells on the quality of receiving waters. Possible study approaches include sampling for contaminants at the dry well and receiving water, injecting and monitoring the movement of tracers

  20. Experimental investigation on water quality standard of Yangtze River water source heat pump.

    PubMed

    Qin, Zenghu; Tong, Mingwei; Kun, Lin

    2012-01-01

    Due to the surface water in the upper reaches of Yangtze River in China containing large amounts of silt and algae, high content of microorganisms and suspended solids, the water in Yangtze River cannot be used for cooling a heat pump directly. In this paper, the possibility of using Yangtze River, which goes through Chongqing, a city in southwest China, as a heat source-sink was investigated. Water temperature and quality of the Yangtze River in the Chongqing area were analyzed and the performance of water source heat pump units in different sediment concentrations, turbidity and algae material conditions were tested experimentally, and the water quality standards, in particular surface water conditions, in the Yangtze River region that adapt to energy-efficient heat pumps were also proposed. The experimental results show that the coefficient of performance heat pump falls by 3.73% to the greatest extent, and the fouling resistance of cooling water in the heat exchanger increases up to 25.6% in different water conditions. When the sediment concentration and the turbidity in the river water are no more than 100 g/m3 and 50 NTU respectively, the performance of the heat pump is better, which can be used as a suitable river water quality standard for river water source heat pumps.

  1. Space Station Environmental Health System water quality monitoring

    NASA Technical Reports Server (NTRS)

    Vincze, Johanna E.; Sauer, Richard L.

    1990-01-01

    One of the unique aspects of the Space Station is that it will be a totally encapsulated environment and the air and water supplies will be reclaimed for reuse. The Environmental Health System, a subsystem of CHeCS (Crew Health Care System), must monitor the air and water on board the Space Station Freedom to verify that the quality is adequate for crew safety. Specifically, the Water Quality Subsystem will analyze the potable and hygiene water supplies regularly for organic, inorganic, particulate, and microbial contamination. The equipment selected to perform these analyses will be commercially available instruments which will be converted for use on board the Space Station Freedom. Therefore, the commercial hardware will be analyzed to identify the gravity dependent functions and modified to eliminate them. The selection, analysis, and conversion of the off-the-shelf equipment for monitoring the Space Station reclaimed water creates a challenging project for the Water Quality engineers and scientists.

  2. New Perspectives in Monitoring Drinking Water Microbial Quality

    PubMed Central

    Figueras, Ma José; Borrego, Juan J.

    2010-01-01

    The safety of drinking water is evaluated by the results obtained from faecal indicators during the stipulated controls fixed by the legislation. However, drinking-water related illness outbreaks are still occurring worldwide. The failures that lead to these outbreaks are relatively common and typically involve preceding heavy rain and inadequate disinfection processes. The role that classical faecal indicators have played in the protection of public health is reviewed and the turning points expected for the future explored. The legislation for protecting the quality of drinking water in Europe is under revision, and the planned modifications include an update of current indicators and methods as well as the introduction of Water Safety Plans (WSPs), in line with WHO recommendations. The principles of the WSP approach and the advances signified by the introduction of these preventive measures in the future improvement of dinking water quality are presented. The expected impact that climate change will have in the quality of drinking water is also critically evaluated. PMID:21318002

  3. 78 FR 58985 - Proposed Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan To Update...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-25

    ... DELAWARE RIVER BASIN COMMISSION 18 CFR Part 410 Proposed Amendments to the Water Quality Regulations, Water Code and Comprehensive Plan To Update Water Quality Criteria for pH AGENCY: Delaware River... public hearing to receive comments on proposed amendments to the Commission's Water Quality Regulations...

  4. Estimation of distributional parameters for censored trace level water quality data: 2. Verification and applications

    USGS Publications Warehouse

    Helsel, Dennis R.; Gilliom, Robert J.

    1986-01-01

    Estimates of distributional parameters (mean, standard deviation, median, interquartile range) are often desired for data sets containing censored observations. Eight methods for estimating these parameters have been evaluated by R. J. Gilliom and D. R. Helsel (this issue) using Monte Carlo simulations. To verify those findings, the same methods are now applied to actual water quality data. The best method (lowest root-mean-squared error (rmse)) over all parameters, sample sizes, and censoring levels is log probability regression (LR), the method found best in the Monte Carlo simulations. Best methods for estimating moment or percentile parameters separately are also identical to the simulations. Reliability of these estimates can be expressed as confidence intervals using rmse and bias values taken from the simulation results. Finally, a new simulation study shows that best methods for estimating uncensored sample statistics from censored data sets are identical to those for estimating population parameters. Thus this study and the companion study by Gilliom and Helsel form the basis for making the best possible estimates of either population parameters or sample statistics from censored water quality data, and for assessments of their reliability.

  5. Analysis of River Water Quality and its influencing factors for the Effective Management of Water Environment

    NASA Astrophysics Data System (ADS)

    Shrestha, G.; Sadohara, S.; Yoshida, S.; Yuichi, S.

    2011-12-01

    In Japan, remarkable improvements in water quality have been observed over recent years because of regulations imposed on industrial wastewater and development of sewerage system. However, pollution loads from agricultural lands are still high and coverage ratio of sewerage system is still low in small and medium cities. In present context, nonpoint source pollution such as runoff from unsewered developments, urban and agricultural runoffs could be main water quality impacting factors. Further, atmospheric nitrogen (N) is the complex nonpoint source than can seriously affect river water environment. This study was undertaken to spatially investigate the present status of river water quality of Hadano Basin located in Kanagawa Prefecture, Japan. Water quality of six rivers was investigated and its relationship with nonpoint pollution sources was analyzed. This study, with inclusion of ground water circulation and atmospheric N, can be effectively employed for water quality management of other watersheds also, both with and without influence of ground water circulation. Hence, as a research area of this study, it is significant in terms of water quality management. Total nitrogen (TN) was found consistently higher in urbanized basins indicating that atmospheric N might be influencing TN of river water. Ground water circulation influenced both water quality and quantity. In downstream basins of Muro and Kuzuha rivers, Chemical oxygen demand (COD) and total phosphorus (TP) were diluted by ground water inflow. In Mizunashi River and the upstream of Kuzuha River, surface water infiltrated to the subsurface due to higher river bed permeability. Influencing factors considered in the analysis were unsewered population, agricultural land, urban area, forest and atmospheric N. COD and TP showed good correlation with unsewered population and agricultural land. While TN had good correlation with atmospheric N deposition. Multiple regression analysis between water quality

  6. Investigating Drought Onset, Termination and Recovery According to Water Quality Indicators

    NASA Astrophysics Data System (ADS)

    Ahmadi, B.; Moradkhani, H.

    2016-12-01

    Frequency and severity of droughts are increasing globally. Reduced catchment runoff and river flows caused by the meteorological drivers leads to hydrological drought. Hydrological droughts have significant impacts not only on water quantity but also on water quality. In this study, first the onset of historical hydrological droughts is estimated using daily threshold-based indicators. Then drought termination and recovery period in terms of water quantity is analyzed. This is followed by examination of water quality during these detected hydrological droughts. Four water quality parameters, i.e., water temperature, dissolved oxygen, pH and turbidity are investigated over Willamette river basin located in northwestern Oregon in the United States. Drought vulnerability and resiliency are analyzed for the study period. Droughts and the recovery period are found to have significant impact on water quality parameters. Also, the results indicate a deterioration of water quality during droughts and longer drought recovery if water quality indicators are considered in the analysis.

  7. Water Quality Assessment of Danjiangkou Reservoir and its Tributaries in China

    NASA Astrophysics Data System (ADS)

    Liu, Linghua; Peng, Wenqi; Wu, Leixiang; Liu, Laisheng

    2018-01-01

    Danjiangkou Reservoir is an important water source for the middle route of the South to North Water Diversion Project in China, and water quality of Danjiangkou Reservoir and its tributaries is crucial for the project. The purpose of this study is to evaluate the water quality of Daniiangkou Reservoir and its tributaries based on Canadian Council of Ministers of the Environment Water Quality Index (CCMEWQI). 22 water quality parameters from 25 sampling sites were analyzed to calculate WQI. The results indicate that water quality in Danjiangkou Reservoir area, Hanjiang River and Danjiang River is excellent. And the seriously polluted tributary rivers were Shending River, Jianghe River, Sihe River, Tianhe River, Jianhe River and Jiangjun River. Water quality parameters that cannot meet the standard limit for drinking water source were fecal coliform bacteria, CODcr, CODMn, BOD5, NH3-N, TP, DO, anionic surfactant and petroleum. Fecal coliform bacteria, TP, ammonia nitrogen, CODMn were the most common parameters to fail.

  8. Water-Quality and Lake-Stage Data for Wisconsin Lakes, Water Year 2007

    USGS Publications Warehouse

    Wisconsin Water Science Center Lake-Studies Team: Rose, W. J.; Garn, H.S.; Goddard, G.L.; Marsh, S.B.; Olson, D.L.; Robertson, Dale M.

    2008-01-01

    The U.S. Geological Survey (USGS), in cooperation with local and other agencies, collects data at selected lakes throughout Wisconsin. These data, accumulated over many years, provide a data base for developing an improved understanding of the water quality of lakes. To make these data available to interested parties outside the USGS, the data are published annually in this report series. The locations of water-quality and lake-stage stations in Wisconsin for water year 2007 are shown in figure 1. A water year is the 12-month period from October 1 through September 30. It is designated by the calendar year in which it ends. Thus, the period October 1, 2005 through September 30, 2007 is called 'water year 2007.' The purpose of this report is to provide information about the chemical and physical characteristics of Wisconsin lakes. Data that have been collected at specific lakes, and information to aid in the interpretation of those data, are included in this report. Data collected include measurements of in-lake water quality and lake stage. Time series of Secchi depths, surface total phosphorus and chlorophyll a concentrations collected during non-frozen periods are included for all lakes. Graphs of vertical profiles of temperature, dissolved oxygen, pH, and specific conductance are included for sites where these parameters were measured. Descriptive information for each lake includes: location of the lake, area of the lake?s watershed, period for which data are available, revisions to previously published records, and pertinent remarks. Additional data, such as streamflow and water quality in tributary and outlet streams of some of the lakes, are published in another volume: 'Water Resources Data-Wisconsin, 2007.'

  9. 40 CFR 125.62 - Attainment or maintenance of water quality which assures protection of public water supplies...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ...) water quality criteria shall be based on the following: (i) For aquatic life criteria: The pollutant... quality which assures protection of public water supplies; assures the protection and propagation of a... maintenance of water quality which assures protection of public water supplies; assures the protection and...

  10. 40 CFR 125.62 - Attainment or maintenance of water quality which assures protection of public water supplies...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ...) water quality criteria shall be based on the following: (i) For aquatic life criteria: The pollutant... quality which assures protection of public water supplies; assures the protection and propagation of a... maintenance of water quality which assures protection of public water supplies; assures the protection and...

  11. 40 CFR 125.62 - Attainment or maintenance of water quality which assures protection of public water supplies...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ...) water quality criteria shall be based on the following: (i) For aquatic life criteria: The pollutant... quality which assures protection of public water supplies; assures the protection and propagation of a... maintenance of water quality which assures protection of public water supplies; assures the protection and...

  12. 40 CFR 125.62 - Attainment or maintenance of water quality which assures protection of public water supplies...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ...) water quality criteria shall be based on the following: (i) For aquatic life criteria: The pollutant... quality which assures protection of public water supplies; assures the protection and propagation of a... maintenance of water quality which assures protection of public water supplies; assures the protection and...

  13. 40 CFR 125.62 - Attainment or maintenance of water quality which assures protection of public water supplies...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ...) water quality criteria shall be based on the following: (i) For aquatic life criteria: The pollutant... quality which assures protection of public water supplies; assures the protection and propagation of a... maintenance of water quality which assures protection of public water supplies; assures the protection and...

  14. Chesapeake Bay Program Water Quality Database

    EPA Pesticide Factsheets

    The Chesapeake Information Management System (CIMS), designed in 1996, is an integrated, accessible information management system for the Chesapeake Bay Region. CIMS is an organized, distributed library of information and software tools designed to increase basin-wide public access to Chesapeake Bay information. The information delivered by CIMS includes technical and public information, educational material, environmental indicators, policy documents, and scientific data. Through the use of relational databases, web-based programming, and web-based GIS a large number of Internet resources have been established. These resources include multiple distributed on-line databases, on-demand graphing and mapping of environmental data, and geographic searching tools for environmental information. Baseline monitoring data, summarized data and environmental indicators that document ecosystem status and trends, confirm linkages between water quality, habitat quality and abundance, and the distribution and integrity of biological populations are also available. One of the major features of the CIMS network is the Chesapeake Bay Program's Data Hub, providing users access to a suite of long- term water quality and living resources databases. Chesapeake Bay mainstem and tidal tributary water quality, benthic macroinvertebrates, toxics, plankton, and fluorescence data can be obtained for a network of over 800 monitoring stations.

  15. The effectiveness of large household water storage tanks for protecting the quality of drinking water.

    PubMed

    Graham, Jay P; VanDerslice, James

    2007-06-01

    Many communities along the US-Mexico border remain without infrastructure for water and sewage. Residents in these communities often collect and store their water in open 55-gallon drums. This study evaluated changes in drinking water quality resulting from an intervention that provided large closed water storage tanks (2,500-gallons) to individual homes lacking a piped water supply. After the intervention, many of the households did not change the source of their drinking water to the large storage tanks. Therefore, water quality results were first compared based on the source of the household's drinking water: store or vending machine, large tank, or collected from a public supply and transported by the household. Of the households that used the large storage tank as their drinking water supply, drinking water quality was generally of poorer quality. Fifty-four percent of samples collected prior to intervention had detectable levels of total coliforms, while 82% of samples were positive nine months after the intervention (p < 0.05). Exploratory analyses were also carried out to measure water quality at different points between collection by water delivery trucks and delivery to the household's large storage tank. Thirty percent of the samples taken immediately after water was delivered to the home had high total coliforms (> 10 CFU/100 ml). Mean free chlorine levels dropped from 0.43 mg/l, where the trucks filled their tanks, to 0.20 mg/l inside the household's tank immediately after delivery. Results of this study have implications for interventions that focus on safe water treatment and storage in the home, and for guidelines regarding the level of free chlorine required in water delivered by water delivery trucks.

  16. Human Health Water Quality Criteria and Methods for Toxics

    EPA Pesticide Factsheets

    Documents pertaining to Human Health Water Quality Criteria and Methods for Toxins. Includes 2015 Update for Water Quality Criteria, 2002 National Recommended Human Health Criteria, and 2000 EPA Methodology.

  17. Tidal Influence on Water Quality of Kapuas Kecil River Downstream

    NASA Astrophysics Data System (ADS)

    Purnaini, Rizki; Sudarmadji; Purwono, Suryo

    2018-02-01

    The Kapuas Kecil River is strongly influenced by tidal, in the dry season the intrusion of surface water is often a problem for the WTP because it causes the change of raw water quality to be processed. The purpose of this study was to examine the effect of sea tides on water quality of the Kapuas Kecil River. The study was conducted in Kapuas River downstream along ± 30 km from the upper boundary to the estuary. Water sampling is carried out during the dry and rainy season, when the tidal conditions at 7 (seven) locations of the monitoring station. Descriptive analysis methods and regression-correlation statistics are used to determine the effect of tides on water quality in Kapuas River downstream. In general, the water quality of the Kapuas Kecil River has exceeded the criteria of first class water quality, ie water that can be used for drinking water. The status of water quality of the Kapuas Kecil River based on the pollution index calculation shows the condition of the river is "mild to medium pollutants". The result of multiple linear regression analysis got the value of coefficient of determination (adjusted R square) = 0,760, which in whole show that independent variable (tidal and distance) influence to dependent variable (value of TDS) equal to 76%.

  18. 40 CFR 131.21 - EPA review and approval of water quality standards.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) WATER PROGRAMS WATER QUALITY STANDARDS Procedures for Review and Revision of Water Quality Standards § 131.21 EPA review and approval of water quality standards. (a) After the State submits its... analysis. (b) The Regional Administrator's approval or disapproval of a State water quality standard shall...

  19. Water quality, sediment quality, and stream-channel classification of Rock Creek, Washington, D.C., 1999-2000

    USGS Publications Warehouse

    Anderson, Anita L.; Miller, Cherie V.; Olsen, Lisa D.; Doheny, Edward J.; Phelan, Daniel J.

    2002-01-01

    Rock Creek Park is within the National Capital Region in Washington, D.C., and is maintained by the National Park Service. Part of Montgomery County, Maryland, and part of the District of Columbia drain into Rock Creek, which is a tributary of the Potomac River. Water quality in Rock Creek is important to biotic life in and near the creek, and in the Potomac River Basin and the Chesapeake Bay. The water quality of the Rock Creek Basin has been affected by continued urban and agricultural growth and development. The U.S. Geological Survey, in cooperation with the National Park Service, investigated water quality and sediment quality in Rock Creek over a 2-year period (1998?2000), and performed a stream-channel classification to determine the distribution of bottom sediment in Rock Creek. This report presents and evaluates water quality and bottom sediment in Rock Creek for water years 1999 (October 1, 1998 to September 30, 1999) and 2000 (October 1, 1999 to September 30, 2000). A synoptic surface-water assessment was conducted at five stations from June 23 to June 25, 1999, a temporal surface-water assessment was conducted at one station from February 18, 1999 to September 26, 2000, and bed-sediment samples were collected and assessed from three stations from August 17 to August 19, 1999. The synoptic surface-water assessment included pesticides (parent compounds and selected transformation products), field parameters, nutrients, and major ions. The temporal surface-water assessment included pesticides (parent compounds and selected transformation products) and field parameters. The bed-sediment assessment included trace elements and organic compounds (including low- and high-molecular weight polycyclic aromatic hydrocarbons, poly-chlorinated biphenyls, pesticides, and phthalates). Some, but not all, of the pesticides known to be used in the area were included in the synoptic water-quality assessment, the temporal water-quality assessment, and the bed

  20. Optical sensors for water quality

    USGS Publications Warehouse

    Pellerin, Brian A.; Bergamaschi, Brian A.

    2014-01-01

    Recent advancements in commercially available in situ sensors, data platforms, and new techniques for data analysis provide an opportunity to monitor water quality in rivers, lakes, and estuaries on the time scales in which changes occur. For example, measurements that capture the variability in freshwater systems over time help to assess how shifts in seasonal runoff, changes in precipitation intensity, and increased frequencies of disturbances (such as fire and insect outbreaks) affect the storage, production, and transport of carbon and nitrogen in watersheds. Transmitting these data in real-time also provides information that can be used for early trend detection, help identify monitoring gaps, and provide sciencebased decision support across a range of issues related to water quality, freshwater ecosystems, and human health.

  1. Water-quality assessment of the Smith River drainage basin, California and Oregon

    USGS Publications Warehouse

    Iwatsubo, Rick T.; Washabaugh, Donna S.

    1982-01-01

    A water-quality assessment of the Smith River drainage basin was made to provide a summary of the water-quality conditions including known or potential water-quality problems. Results of the study showed that the water quality of the Smith River is excellent and generally meets the water-quality objectives for the beneficial uses identified by the California Regional Water Quality Control Board, North Coast Region. Known and potential problems related to water quality include: Sedimentation resulting from both natural erosional processes and land-use activities such as timber harvest, road construction, and mining that accelerate the erosional processes; bacterial contamination of surface and ground waters from inundated septic tanks and drainfields, and grazing activities; industrial spills which have resulted in fish kills and oil residues; high concetrations of iron in ground water; log and debris jams creating fish migration barriers; and pesticide and trace-element contamination from timber-harvest and mining activities, respectively. Future studies are needed to establish: (1) a sustained long-term monitoring program to provide a broad coverage of water-quality conditions in order to define long-term water-quality trends; and (2) interpretive studies to determine the source of known and potential water-quality problems. (USGS)

  2. Interventions to improve water quality for preventing diarrhoea.

    PubMed

    Clasen, Thomas F; Alexander, Kelly T; Sinclair, David; Boisson, Sophie; Peletz, Rachel; Chang, Howard H; Majorin, Fiona; Cairncross, Sandy

    2015-10-20

    Diarrhoea is a major cause of death and disease, especially among young children in low-income countries. In these settings, many infectious agents associated with diarrhoea are spread through water contaminated with faeces.In remote and low-income settings, source-based water quality improvement includes providing protected groundwater (springs, wells, and bore holes), or harvested rainwater as an alternative to surface sources (rivers and lakes). Point-of-use water quality improvement interventions include boiling, chlorination, flocculation, filtration, or solar disinfection, mainly conducted at home. To assess the effectiveness of interventions to improve water quality for preventing diarrhoea. We searched the Cochrane Infectious Diseases Group Specialized Register (11 November 2014), CENTRAL (the Cochrane Library, 7 November 2014), MEDLINE (1966 to 10 November 2014), EMBASE (1974 to 10 November 2014), and LILACS (1982 to 7 November 2014). We also handsearched relevant conference proceedings, contacted researchers and organizations working in the field, and checked references from identified studies through 11 November 2014. Randomized controlled trials (RCTs), quasi-RCTs, and controlled before-and-after studies (CBA) comparing interventions aimed at improving the microbiological quality of drinking water with no intervention in children and adults. Two review authors independently assessed trial quality and extracted data. We used meta-analyses to estimate pooled measures of effect, where appropriate, and investigated potential sources of heterogeneity using subgroup analyses. We assessed the quality of evidence using the GRADE approach. Forty-five cluster-RCTs, two quasi-RCTs, and eight CBA studies, including over 84,000 participants, met the inclusion criteria. Most included studies were conducted in low- or middle-income countries (LMICs) (50 studies) with unimproved water sources (30 studies) and unimproved or unclear sanitation (34 studies). The primary

  3. National Water Quality Laboratory, 1995 services catalog

    USGS Publications Warehouse

    Timme, P.J.

    1995-01-01

    This Services Catalog contains information about field supplies and analytical services available from the National Water Quality Laboratory in Denver, Colo., and field supplies available from the Quality Water Service Unit in Ocala, Fla., to members of the U.S. Geological Survey. To assist personnel in the selection of analytical services, this catalog lists sample volume, required containers, applicable concentration range, detection level, precision of analysis, and preservation requirements for samples.

  4. Beyond Flint: National Trends in Drinking Water Quality Violations

    NASA Astrophysics Data System (ADS)

    Allaire, M.; Wu, H.; Lall, U.

    2016-12-01

    Ensuring safe water supply for communities across the U.S. represents an emerging challenge. Aging infrastructure, impaired source water, and strained community finances may increase vulnerability of water systems to quality violations. In the aftermath of Flint, there is a great need to assess the current state of U.S. drinking water quality. How widespread are violations? What are the spatial and temporal patterns in water quality? Which types of communities and systems are most vulnerable? This is the first national assessment of trends in drinking water quality violations across several decades. In 2015, 9% of community water systems violated health-related water quality standards. These non-compliant systems served nearly 23 million people. Thus, the challenge of providing safe drinking water extends beyond Flint and represents a nationwide concern. We use a panel dataset that includes every community water system in the United States from 1981 to 2010 to identify factors that lead to regulatory noncompliance. This study focuses on health-related violations of the Safe Drinking Water Act. Lasso regression informed selection of appropriate covariates, while logistic regressions modeled the probability of noncompliance. We find that compliance is positively associated with private ownership, purchased water supply, and greater household income. Yet, greater concentration of utility ownership and violations in prior years are associated with a higher likelihood of violation. The results suggest that purchased water contracts, which are growing among small utilities, could serve as a way to improve regulatory compliance in the future. However, persistence of violations and ownership concentration deserve attention from policymakers. Already, the EPA has begun to prioritize enforcement of persistent violators. Overall, as the revitalization of U.S. water infrastructure becomes a growing priority area, results of this study are intended to inform investment and

  5. Monitoring water quality in a hypereutrophic reservoir using Landsat ETM+ and OLI sensors: how transferable are the water quality algorithms?

    PubMed

    Deutsch, Eliza S; Alameddine, Ibrahim; El-Fadel, Mutasem

    2018-02-15

    The launch of the Landsat 8 in February 2013 extended the life of the Landsat program to over 40 years, increasing the value of using Landsat to monitor long-term changes in the water quality of small lakes and reservoirs, particularly in poorly monitored freshwater systems. Landsat-based water quality hindcasting often incorporate several Landsat sensors in an effort to increase the temporal range of observations; yet the transferability of water quality algorithms across sensors remains poorly examined. In this study, several empirical algorithms were developed to quantify chlorophyll-a, total suspended matter (TSM), and Secchi disk depth (SDD) from surface reflectance measured by Landsat 7 ETM+ and Landsat 8 OLI sensors. Sensor-specific multiple linear regression models were developed by correlating in situ water quality measurements collected from a semi-arid eutrophic reservoir with band ratios from Landsat ETM+ and OLI sensors, along with ancillary data (water temperature and seasonality) representing ecological patterns in algae growth. Overall, ETM+-based models outperformed (adjusted R 2 chlorophyll-a = 0.70, TSM = 0.81, SDD = 0.81) their OLI counterparts (adjusted R 2 chlorophyll-a = 0.50, TSM = 0.58, SDD = 0.63). Inter-sensor differences were most apparent for algorithms utilizing the Blue spectral band. The inclusion of water temperature and seasonality improved the power of TSM and SDD models.

  6. Interagency field manual for the collection of water-quality data

    USGS Publications Warehouse

    Lurry, Dee L.; Kolbe, Christine M.

    2000-01-01

    The USEPA, IBWC, USGS, and Texas Natural Resource Conservation Commission (TNRCC) have been working cooperatively to establish a Water-Quality Monitoring Council for the international reach of the Rio Grande (Río Bravo). A similar effort is occurring along the western international boundary with interested partners including the U.S. Bureau of Reclamation (BOR), Arizona Department of Environmental Quality (ADEQ), and the California Regional Water Quality Control Board (CRWQCB). As of February 1997, the partners agreed to work towards greater cooperation, specifically: 1. to revise the 1977 Joint Report of IBWC Engineers as specified in IBWC Minute No. 289; 2. to implement a binational Intergovernmental Task Force for Water-Quality Monitoring (ITFM) workgroup by inviting the participation of cooperators from Mexico; 3. to review and revise each agency’s existing monitoring network to reduce interagency redundancy; 4. to develop a bilingual manual for water-quality monitoring that would describe various field methods used for sampling water, aquatic biology, and sediment, and for assessing stream habitat; and selection of methods on the basis of DQOs, representativeness, and limitations; 5. to establish a common, easily accessible water-quality database; and 6. to hold joint training programs in water-quality monitoring and data management. Part of the fourth goal—to develop a field manual for water-sample-collection methods—will be accomplished with the publication of this manual.

  7. CONTRIBUTIONS OF WATER FILTRATION TO IMPROVING WATER QUALITY

    EPA Science Inventory

    A variety of water quality improvements can be accomplished by properly operated filtration plants. These include reduction of turbidity, micro-organisms, asbestos fibers, color, trihalomethane precursors, and organics adsorbed to particulate matter. The focus of the paper is on ...

  8. Great Lakes nearshore-offshore: Distinct water quality regions

    EPA Science Inventory

    We compared water quality of nearshore regions in the Laurentian Great Lakes to water quality in offshore regions. Sample sites for the nearshore region were from the US EPA National Coastal Condition Assessment and based on a criteria or sample-frame of within the 30-m depth co...

  9. 40 CFR 35.2102 - Water quality management planning.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2102 Water quality management planning. Before grant assistance can be awarded for any treatment works project, the Regional... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Water quality management planning. 35...

  10. 40 CFR 35.2111 - Revised water quality standards.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 1 2011-07-01 2011-07-01 false Revised water quality standards. 35... ASSISTANCE STATE AND LOCAL ASSISTANCE Grants for Construction of Treatment Works § 35.2111 Revised water quality standards. After December 29, 1984, no grant can be awarded for projects that discharge into...

  11. The water quality of the LOCAR Pang and Lambourn catchments

    NASA Astrophysics Data System (ADS)

    Neal, C.; Jarvie, H. P.; Wade, A. J.; Neal, M.; Wyatt, R.; Wickham, H.; Hill, L.; Hewitt, N.

    The water quality of the Pang and Lambourn, tributaries of the River Thames, in south-eastern England, is described in relation to spatial and temporal dimensions. The river waters are supplied mainly from Chalk-fed aquifer sources and are, therefore, of a calcium-bicarbonate type. The major, minor and trace element chemistry of the rivers is controlled by a combination of atmospheric and pollutant inputs from agriculture and sewage sources superimposed on a background water quality signal linked to geological sources. Water quality does not vary greatly over time or space. However, in detail, there are differences in water quality between the Pang and Lambourn and between sites along the Pang and the Lambourn. These differences reflect hydrological processes, water flow pathways and water quality input fluxes. The Pang’s pattern of water quality change is more variable than that of the Lambourn. The flow hydrograph also shows both a cyclical and "uniform pattern" characteristic of aquifer drainage with, superimposed, a series of "flashier" spiked responses characteristic of karstic systems. The Lambourn, in contrast, shows simpler features without the "flashier" responses. The results are discussed in relation to the newly developed UK community programme LOCAR dealing with Lowland Catchment Research. A descriptive and box model structure is provided to describe the key features of water quality variations in relation to soil, unsaturated and groundwater flows and storage both away from and close to the river.

  12. Approach to developing numeric water quality criteria for ...

    EPA Pesticide Factsheets

    Human activities on land increase nutrient loads to coastal waters, which can increase phytoplankton production and biomass and potentially cause harmful ecological effects. States can adopt numeric water quality criteria into their water quality standards to protect the designated uses of their coastal waters from eutrophication impacts. The first objective of this study was to provide an approach for developing numeric water quality criteria for coastal waters based on archived SeaWiFS ocean color satellite data. The second objective was to develop an approach for transferring water quality criteria assessments to newer ocean color satellites such as MODIS and MERIS. Spatial and temporal measures of SeaWiFS, MODIS, and MERIS chlorophyll-a (ChlRS-a, mg m-3) were resolved across Florida’s coastal waters between 1998 and 2009. Annual geometric means of SeaWiFS ChlRS-a were evaluated to determine a quantitative reference baseline from the 90th percentile of the annual geometric means. A method for transferring to multiple ocean color sensors was implemented with SeaWiFS as the reference instrument. The ChlRS-a annual geometric means for each coastal segment from MODIS and MERIS were regressed against SeaWiFS to provide a similar response among all three satellites. Standardization factors for each coastal segment were calculated based on differences between 90th percentiles from SeaWiFS to MODIS and SeaWiFS to MERIS. This transfer approach allowed for futu

  13. Quality of Surface Water in Missouri, Water Year 2008

    USGS Publications Warehouse

    Otero-Benitez, William; Davis, Jerri V.

    2009-01-01

    The U.S. Geological Survey, in cooperation with the Missouri Department of Natural Resources, designed and operates a series of monitoring stations on streams throughout Missouri known as the Ambient Water-Quality Monitoring Network. During the 2008 water year (October 1, 2007, through September 30, 2008), data were collected at 67 stations, including two U.S. Geological Survey National Stream Quality Accounting Network stations and one spring sampled in cooperation with the U.S. Forest Service. Dissolved oxygen, specific conductance, water temperature, suspended solids, suspended sediment, fecal coliform bacteria, Escherichia coli bacteria, dissolved nitrate plus nitrite, total phosphorus, dissolved and total recoverable lead and zinc, and selected pesticide data summaries are presented for 64 of these stations. The stations primarily have been classified into groups corresponding to the physiography of the State, primary land use, or unique station types. In addition, a summary of hydrologic conditions in the State including peak discharges, monthly mean discharges, and seven-day low flow is presented.

  14. Summary of the major water-quality findings from the Eastern Iowa Basins study unit of the National Water-Quality Assessment Program

    USGS Publications Warehouse

    Kalkhoff, Stephen J.

    2000-01-01

    Results from the EIWA NAWQA study build on previous and ongoing research and water-quality monitoring programs in Iowa and provide new insights into the relation between the quality of the State's water resources and human activities. The major findings from the study are listed below.

  15. The derivation of water quality criteria of copper in Biliu River

    NASA Astrophysics Data System (ADS)

    Zheng, Hongbo; Jia, Xinru

    2018-03-01

    Excessive copper in water can be detrimental to the health of human and aquatic life. China has promulgated Environmental Quality Standards for Surface Water to control water pollution, but uniform standard values may cause under-protection or over-protection. Therefore, the basic research work on water quality criteria of water source or reservoir is urgently needed. This study deduces the acute and chronic Water Quality Criteria (WQC) of copper in Biliu River by Species Sensitivity Distribution method (SSD). The result shows that BiDoseResp is the most suitable model and the acute and chronic water quality benchmark of copper are 10.72 µg•L-1 and 5.86 µg•L-1. This study provides basis for the construction of water quality standard of Liaoning and the environmental management of Biliu River.

  16. Water Quality Analysis of Yosemite Creek Watershed, San Francisco, California

    NASA Astrophysics Data System (ADS)

    Davis, J. R.; Snow, M. K.; Aquino, A.; Huang, C.; Thai, A.; Yuen, C.

    2003-12-01

    Surface water quality in urban settings can become contaminated by anthropogenic inputs. Yosemite Creek watershed is situated on the east side of San Francisco near Bayview Hunters Point and provides an ideal location for water quality investigations in urban environments. Accordingly, students from Philip and Sala Burton High School monitored water quality at three locations for their physicochemical and biological characteristics. Water was tested for pH, dissolved oxygen, conductivity, total dissolved solids, salinity, and oxidation reduction potential. In addition, a Hach DR 850 digital colorimeter was utilized to measure chlorine, fluorine, nitrogen, phosphorous, and sulfate. The biological component was assessed via monitoring benthic macro invertebrates. Specifically, the presence of caddisfly (Trichoptera) were used to indicate low levels of contaminants and good water quality. Our results indicate that water quality and macro invertebrate populations varied spatially within the watershed. Further investigation is needed to pinpoint the precise location of contaminant inputs.

  17. Evaluation Of Water Quality At River Bian In Merauke Papua

    NASA Astrophysics Data System (ADS)

    Djaja, Irba; Purwanto, P.; Sunoko, H. R.

    2018-02-01

    River Bian in Merauke Regency has been utilized by local people in Papua (the Marind) who live along the river for fulfilling their daily needs, such as shower, cloth and dish washing, and even defecation, waste disposal, including domestic waste, as well as for ceremonial activities related to the locally traditional culture. Change in land use for other necessities and domestic activities of the local people have mounted pressures on the status of the River Bian, thus decreasing the quality of the river. This study had objectives to find out and to analyze river water quality and water quality status of the River Bian, and its compliance with water quality standards for ideal use. The study determined sample point by a purposive sampling method, taking the water samples with a grab method. The analysis of the water quality was performed by standard and pollution index methods. The study revealed that the water quality of River Bian, concerning BOD, at the station 3 had exceeded quality threshold. COD parameter for all stations had exceeded the quality threshold for class III. At three stations, there was a decreasing value due to increasing PI, as found at the stations 1, 2, and 3. In other words, River Bian had been lightly contaminated.

  18. Developing a Water Quality Index (WQI) for an Irrigation Dam

    PubMed Central

    De La Mora-Orozco, Celia; Flores-Lopez, Hugo; Rubio-Arias, Hector; Chavez-Duran, Alvaro; Ochoa-Rivero, Jesus

    2017-01-01

    Pollution levels have been increasing in water ecosystems worldwide. A water quality index (WQI) is an available tool to approximate the quality of water and facilitate the work of decision-makers by grouping and analyzing numerous parameters with a single numerical classification system. The objective of this study was to develop a WQI for a dam used for irrigation of about 5000 ha of agricultural land. The dam, La Vega, is located in Teuchitlan, Jalisco, Mexico. Seven sites were selected for water sampling and samples were collected in March, June, July, September, and December 2014 in an initial effort to develop a WQI for the dam. The WQI methodology, which was recommended by the Mexican National Water Commission (CNA), was used. The parameters employed to calculate the WQI were pH, electrical conductivity (EC), dissolved oxygen (DO), total dissolved solids (TDS), total hardness (TH), alkalinity (Alk), total phosphorous (TP), Cl−, NO3, SO4, Ca, Mg, K, B, As, Cu, and Zn. No significant differences in WQI values were found among the seven sampling sites along the dam. However, seasonal differences in WQI were noted. In March and June, water quality was categorized as poor. By July and September, water quality was classified as medium to good. Quality then decreased, and by December water quality was classified as medium to poor. In conclusion, water treatment must be applied before waters from La Vega dam reservoir can be used for irrigation or other purposes. It is recommended that the water quality at La Vega dam is continually monitored for several years in order to confirm the findings of this short-term study. PMID:28468230

  19. Developing a Water Quality Index (WQI) for an Irrigation Dam.

    PubMed

    De La Mora-Orozco, Celia; Flores-Lopez, Hugo; Rubio-Arias, Hector; Chavez-Duran, Alvaro; Ochoa-Rivero, Jesus

    2017-04-29

    Pollution levels have been increasing in water ecosystems worldwide. A water quality index (WQI) is an available tool to approximate the quality of water and facilitate the work of decision-makers by grouping and analyzing numerous parameters with a single numerical classification system. The objective of this study was to develop a WQI for a dam used for irrigation of about 5000 ha of agricultural land. The dam, La Vega, is located in Teuchitlan, Jalisco, Mexico. Seven sites were selected for water sampling and samples were collected in March, June, July, September, and December 2014 in an initial effort to develop a WQI for the dam. The WQI methodology, which was recommended by the Mexican National Water Commission (CNA), was used. The parameters employed to calculate the WQI were pH, electrical conductivity (EC), dissolved oxygen (DO), total dissolved solids (TDS), total hardness (TH), alkalinity (Alk), total phosphorous (TP), Cl - , NO₃, SO₄, Ca, Mg, K, B, As, Cu, and Zn. No significant differences in WQI values were found among the seven sampling sites along the dam. However, seasonal differences in WQI were noted. In March and June, water quality was categorized as poor. By July and September, water quality was classified as medium to good. Quality then decreased, and by December water quality was classified as medium to poor. In conclusion, water treatment must be applied before waters from La Vega dam reservoir can be used for irrigation or other purposes. It is recommended that the water quality at La Vega dam is continually monitored for several years in order to confirm the findings of this short-term study.

  20. Water quality assessment in terms of water quality index (WQI): case study of the Kolong River, Assam, India

    NASA Astrophysics Data System (ADS)

    Bora, Minakshi; Goswami, Dulal C.

    2017-10-01

    The Kolong River of Nagaon district, Assam has been facing serious degradation leading to its current moribund condition due to a drastic human intervention in the form of an embankment put across it near its take-off point from the Brahmaputra River in the year 1964. The blockage of the river flow was adopted as a flood control measure to protect its riparian areas, especially the Nagaon town, from flood hazard. The river, once a blooming distributary of the mighty Brahmaputra, had high navigability and rich riparian biodiversity with a well established agriculturally productive watershed. However, the present status of Kolong River is highly wretched as a consequence of the post-dam effects thus leaving it as stagnant pools of polluted water with negligible socio-economic and ecological value. The Central Pollution Control Board, in one of its report has placed the Kolong River among 275 most polluted rivers of India. Thus, this study is conducted to analyze the seasonal water quality status of the Kolong River in terms of water quality index (WQI). The WQI scores shows very poor to unsuitable quality of water samples in almost all the seven sampling sites along the Kolong River. The water quality is found to be most deteriorated during monsoon season with an average WQI value of 122.47 as compared to pre-monsoon and post-monsoon season having average WQI value of 85.73 and 80.75, respectively. Out of the seven sampling sites, Hatimura site (S1) and Nagaon Town site (S4) are observed to be the most polluted sites.