Science.gov

Sample records for actuated automatic transmission

  1. Automatic transmission

    SciTech Connect

    Miura, M.; Aoki, H.

    1988-02-02

    An automatic transmission is described comprising: an automatic transmission mechanism portion comprising a single planetary gear unit and a dual planetary gear unit; carriers of both of the planetary gear units that are integral with one another; an input means for inputting torque to the automatic transmission mechanism, clutches for operatively connecting predetermined ones of planetary gear elements of both of the planetary gear units to the input means and braking means for restricting the rotation of predetermined ones of planetary gear elements of both of the planetary gear units. The clutches are disposed adjacent one another at an end portion of the transmission for defining a clutch portion of the transmission; a first clutch portion which is attachable to the automatic transmission mechanism portion for comprising the clutch portion when attached thereto; a second clutch portion that is attachable to the automatic transmission mechanism portion in place of the first clutch portion for comprising the clutch portion when so attached. The first clutch portion comprising first clutch for operatively connecting the input means to a ring gear of the single planetary gear unit and a second clutch for operatively connecting the input means to a single gear of the automatic transmission mechanism portion. The second clutch portion comprising a the first clutch, the second clutch, and a third clutch for operatively connecting the input member to a ring gear of the dual planetary gear unit.

  2. Automatic transmission

    SciTech Connect

    Ohkubo, M.

    1988-02-16

    An automatic transmission is described combining a stator reversing type torque converter and speed changer having first and second sun gears comprising: (a) a planetary gear train composed of first and second planetary gears sharing one planetary carrier in common; (b) a clutch and requisite brakes to control the planetary gear train; and (c) a speed-increasing or speed-decreasing mechanism is installed both in between a turbine shaft coupled to a turbine of the stator reversing type torque converter and the first sun gear of the speed changer, and in between a stator shaft coupled to a reversing stator and the second sun gear of the speed changer.

  3. Automatic transmission

    SciTech Connect

    Miki, N.

    1988-10-11

    This patent describes an automatic transmission including a fluid torque converter, a first gear unit having three forward-speed gears and a single reverse gear, a second gear unit having a low-speed gear and a high-speed gear, and a hydraulic control system, the hydraulic control system comprising: a source of pressurized fluid; a first shift valve for controlling the shifting between the first-speed gear and the second-speed gear of the first gear unit; a second shift valve for controlling the shifting between the second-speed gear and the third-speed gear of the first gear unit; a third shift valve equipped with a spool having two positions for controlling the shifting between the low-speed gear and the high-speed gear of the second gear unit; a manual selector valve having a plurality of shift positions for distributing the pressurized fluid supply from the source of pressurized fluid to the first, second and third shift valves respectively; first, second and third solenoid valves corresponding to the first, second and third shift valves, respectively for independently controlling the operation of the respective shift valves, thereby establishing a six forward-speed automatic transmission by combining the low-speed gear and the high-speed gear of the second gear unit with each of the first-speed gear, the second speed gear and the third-speed gear of the first gear unit; and means to fixedly position the spool of the third shift valve at one of the two positions by supplying the pressurized fluid to the third shift valve when the manual selector valve is shifted to a particular shift position, thereby locking the second gear unit in one of low-speed gear and the high-speed gear, whereby the six forward-speed automatic transmission is converted to a three forward-speed automatic transmission when the manual selector valve is shifted to the particular shift position.

  4. Automatic transmission

    SciTech Connect

    Aoki, H.

    1989-03-21

    An automatic transmission is described, comprising: a torque converter including an impeller having a connected member, a turbine having an input member and a reactor; and an automatic transmission mechanism having first to third clutches and plural gear units including a single planetary gear unit with a ring gear and a dual planetary gear unit with a ring gear. The single and dual planetary gear units have respective carriers integrally coupled with each other and respective sun gears integrally coupled with each other, the input member of the turbine being coupled with the ring gear of the single planetary gear unit through the first clutch, and being coupled with the sun gear through the second clutch. The connected member of the impeller is coupled with the ring gear of the dual planetary gear of the dual planetary gear unit is made to be and ring gear of the dual planetary gear unit is made to be restrained as required, and the carrier is coupled with an output member.

  5. Automatic transmission

    SciTech Connect

    Hamane, M.; Ohri, H.

    1989-03-21

    This patent describes an automatic transmission connected between a drive shaft and a driven shaft and comprising: a planetary gear mechanism including a first gear driven by the drive shaft, a second gear operatively engaged with the first gear to transmit speed change output to the driven shaft, and a third gear operatively engaged with the second gear to control the operation thereof; centrifugally operated clutch means for driving the first gear and the second gear. It also includes a ratchet type one-way clutch for permitting rotation of the third gear in the same direction as that of the drive shaft but preventing rotation in the reverse direction; the clutch means comprising a ratchet pawl supporting plate coaxially disposed relative to the drive shaft and integrally connected to the third gear, the ratchet pawl supporting plate including outwardly projection radial projections united with one another at base portions thereof.

  6. Automatic transmission

    SciTech Connect

    Meyman, U.

    1987-03-10

    An automatic transmission is described comprising wheel members each having discs defining an inner space therebetween; turnable blades and vane members located in the inner space between the discs of at least one of the wheel members, the turnable blades being mechanically connected with the vane members. Each of the turnable blades has an inner surface and an outer surface formed by circular cylindrical surfaces having a common axis, each of the turnable blades being turnable about the common axis of the circular cylindrical surfaces forming the inner and outer surfaces of the respective blade; levers turnable about the axes and supporting the blades; the discs having openings extending coaxially with the surfaces which describe the blades. The blades are partially received in the openings of the discs; and a housing accommodating the wheel members and the turnable blades and the vane members.

  7. Automatic transmission

    SciTech Connect

    Miura, M.; Inuzuka, T.

    1986-08-26

    1. An automatic transmission with four forward speeds and one reverse position, is described which consists of: an input shaft; an output member; first and second planetary gear sets each having a sun gear, a ring gear and a carrier supporting a pinion in mesh with the sun gear and ring gear; the carrier of the first gear set, the ring gear of the second gear set and the output member all being connected; the ring gear of the first gear set connected to the carrier of the second gear set; a first clutch means for selectively connecting the input shaft to the sun gear of the first gear set, including friction elements, a piston selectively engaging the friction elements and a fluid servo in which hydraulic fluid is selectively supplied to the piston; a second clutch means for selectively connecting the input shaft to the sun gear of the second gear set a third clutch means for selectively connecting the input shaft to the carrier of the second gear set including friction elements, a piston selectively engaging the friction elements and a fluid servo in which hydraulic fluid is selectively supplied to the piston; a first drive-establishing means for selectively preventing rotation of the ring gear of the first gear set and the carrier of the second gear set in only one direction and, alternatively, in any direction; a second drive-establishing means for selectively preventing rotation of the sun gear of the second gear set; and a drum being open to the first planetary gear set, with a cylindrical intermediate wall, an inner peripheral wall and outer peripheral wall and forming the hydraulic servos of the first and third clutch means between the intermediate wall and the inner peripheral wall and between the intermediate wall and the outer peripheral wall respectively.

  8. Automatic transmission adapter kit

    SciTech Connect

    Stich, R.L.; Neal, W.D.

    1987-02-10

    This patent describes, in a four-wheel-drive vehicle apparatus having a power train including an automatic transmission and a transfer case, an automatic transmission adapter kit for installation of a replacement automatic transmission of shorter length than an original automatic transmission in the four-wheel-drive vehicle. The adapter kit comprises: an extension housing interposed between the replacement automatic transmission and the transfer case; an output shaft, having a first end which engages the replacement automatic transmission and a second end which engages the transfer case; first sealing means for sealing between the extension housing and the replacement automatic transmission; second sealing means for sealing between the extension housing and the transfer case; and fastening means for connecting the extension housing between the replacement automatic transmission and the transfer case.

  9. Actuator for automatic cruising system

    SciTech Connect

    Suzuki, K.

    1989-03-07

    An actuator for an automatic cruising system is described, comprising: a casing; a control shaft provided in the casing for rotational movement; a control motor for driving the control shaft; an input shaft; an electromagnetic clutch and a reduction gear which are provided between the control motor and the control shaft; and an external linkage mechanism operatively connected to the control shaft; wherein the reduction gear is a type of Ferguson's mechanical paradox gear having a pinion mounted on the input shaft always connected to the control motor; a planetary gear meshing with the pinion so as to revolve around the pinion; a static internal gear meshing with the planetary gear and connected with the electromagnetic clutch for movement to a position restricting rotation of the static internal gear; and a rotary internal gear fixed on the control shaft and meshed with the planetary gear, the rotary internal gear having a number of teeth slightly different from a number of teeth of the static internal gear; and the electromagnetic clutch has a tubular electromagnetic coil coaxially provided around the input shaft and an engaging means for engaging and disengaging with the static internal gear in accordance with on-off operation of the electromagnetic coil.

  10. Automatic transmission control method

    SciTech Connect

    Hasegawa, H.; Ishiguro, T.

    1989-07-04

    This patent describes a method of controlling an automatic transmission of an automotive vehicle. The transmission has a gear train which includes a brake for establishing a first lowest speed of the transmission, the brake acting directly on a ring gear which meshes with a pinion, the pinion meshing with a sun gear in a planetary gear train, the ring gear connected with an output member, the sun gear being engageable and disengageable with an input member of the transmission by means of a clutch. The method comprises the steps of: detecting that a shift position of the automatic transmission has been shifted to a neutral range; thereafter introducing hydraulic pressure to the brake if present vehicle velocity is below a predetermined value, whereby the brake is engaged to establish the first lowest speed; and exhausting hydraulic pressure from the brake if present vehicle velocity is higher than a predetermined value, whereby the brake is disengaged.

  11. Automatic Transmission Vehicle Injuries

    PubMed Central

    Fidler, Malcolm

    1973-01-01

    Four drivers sustained severe injuries when run down by their own automatic cars while adjusting the carburettor or throttle linkages. The transmission had been left in the “Drive” position and the engine was idling. This accident is easily avoidable. PMID:4695693

  12. Method and apparatus for actuating vehicle transmission

    SciTech Connect

    Ishida, H.; Ishihara, M.; Uriuhara, M.

    1988-11-15

    This patent describes a method of actuating a vehicle parallel-gear transmission having gears and an internal lever for moving shift blocks connected with shift rods and shift forks for changing gear ratios of the transmission, a hydraulically controlled select actuator operatively connected to the internal lever for moving the internal lever in a select direction, a hydraulically controlled shift actuator operatively connected to the internal lever for moving the internal lever in a shift direction substantially normal to the select direction, a hydraulically controlled clutch actuator for connecting and disconnecting a clutch of the transmission, and a common fluid discharge passage connected to fluid discharge ports of the select and shift actuators and a fluid discharge port of the clutch actuator, the select and shift actuators being alternately actuatable to effect a gear changing operation.

  13. Automatic transmission structure

    SciTech Connect

    Iwase, Y.; Morisawa, K.

    1987-03-24

    An automatic transmission is described comprising: an output shaft of the transmission including a stepped portion; a parking gear spline-connected with the output shaft on a first side of the stepped portion; a plurality of governor values mounted on a rear side of the parking gear and radially disposed around the output shaft on the first side of the stepped portion; a speed meter drive gear spline-connected with the output shaft on a second side of the stepped portion and on a rear side of the governor valves; and an annular spacer fitted on the output shaft on the second side of the stepped portion between the governor valves and the speed meter drive gear to abut on each of the governor valves and the speed meter drive gear. The annular member is constructed separately from the speed meter drive gear and has an outer diameter larger than an outer diameter of the speed meter drive gear thereby resulting in a contact area between the annular space and the speed meter drive gear which is smaller than a contact area between the annular spacer and the rear side of the governor valves; the drive gear being axially secured relative to the output shaft by a bearing thereby enabling a fixed axial positioning of the annular spacer on the output shaft.

  14. Choosing Actuators for Automatic Control Systems of Thermal Power Plants

    SciTech Connect

    Gorbunov, A. I.; Serdyukov, O. V.

    2015-03-15

    Two types of actuators for automatic control systems of thermal power plants are analyzed: (i) pulse-controlled actuator and (ii) analog-controlled actuator with positioning function. The actuators are compared in terms of control circuit, control accuracy, reliability, and cost.

  15. Electronically controlled automatic transmission

    SciTech Connect

    Ohkubo, M.; Shiba, H.; Nakamura, K.

    1989-03-28

    This patent describes an electronically controlled automatic transmission having a manual valve working in connection with a manual shift lever, shift valves operated by solenoid valves which are driven by an electronic control circuit previously memorizing shift patterns, and a hydraulic circuit controlled by these manual valve and shift valves for driving brakes and a clutch in order to change speed. Shift patterns of 2-range and L-range, in addition to a shift pattern of D-range, are memorized previously in the electronic control circuit, an operation switch is provided which changes the shift pattern of the electronic control circuit to any shift pattern among those of D-range, 2-range and L-range at time of the manual shift lever being in a D-range position, a releasable lock mechanism is provided which prevents the manual shift lever from entering 2-range and L-range positions, and the hydraulic circuit is set to a third speed mode when the manual shift lever is in the D-range position. The circuit is set to a second speed mode when it is in the 2-range position, and the circuit is set to a first speed mode when it is in the L-range position, respectively, in case where the shift valves are not working.

  16. Automatic transmission line monitor

    NASA Technical Reports Server (NTRS)

    Parsons, W. E.; Richards, L. O.

    1971-01-01

    Monitor improves complex network reliability in computer data links and command transmission lines. System evaluates circuit performance against preselected criteria, identifies and stores data indicating out-of-tolerance conditions, conducts closed loop testing, and provides for operation under command of digital computer that determines restoration priorities.

  17. Automatic transmission control system and method of operation

    SciTech Connect

    Lemon, R.W.; Arzoian, J.

    1991-04-16

    This patent describes a control system for an automatic transmission of a vehicle with a fluid torque converter having a bypass clutch, and a change gear assembly providing a variety of ratio changes on selective actuation of a plurality of friction engaging elements of the change gear assembly. The control system provides the selective engagement of three friction elements and the bypass clutch through the selective energization and de-energization of two solenoid operated valves and the selective actuation and de-actuation of three shift control valves.

  18. Automatic transmission for motor vehicles

    SciTech Connect

    Miura, M.; Sakakibara, S.

    1989-06-27

    An automatic transmission for a motor vehicle is described, comprising: a transmission housing; a hydraulic torque converter having rotational axes, an input shaft, an output shaft and a direct coupling clutch for directly coupling the input shaft to the output shaft; an auxiliary transmission mechanism provided coaxially with the hydraulic torque converter and having an input shaft, an output shaft with an input end and an output end and an overdrive mechanism of planetary gear type having a reduction ratio smaller than 1, the input shaft and the output shaft of the auxiliary transmission being located close to and on the side of the hydraulic torque converter with respect to the auxiliary transmission, respectively, and being coupled with a planetary gear carrier and a ring gear of the overdrive mechanism, respectively, a one-way clutch being provided between the planetary gear carrier and a sun gear of the overdrive mechanism, a clutch being provided between the planetary gear carrier and a position radially and outwardly of the one-way clutch for engaging the disengaging the planetary carrier and the sun gear, a brake being provided between the transmission housing and the sun gear and positioned radially and outwardly of the clutch for controlling engagement of the sun gear with a stationary portion of the transmission housing, and the output end of the output shaft being disposed between the auxiliary transmission mechanism and the hydraulic torque converter.

  19. Gear shift controller for automatic transmission

    SciTech Connect

    Nishikawa, M.; Sakai, S.; Sakurai, T.

    1987-01-20

    A gear shift controller is described for an automatic transmission having a gear shift, comprising: a hydraulic torque converter; a gear change group, having a plurality of gears, each gear providing a different transmission ratio for the transmission of power from the hydraulic torque converter to the output of the transmission, each of the gears comprising a gear train; a one-way clutch interposed in at least one of the gear trains; a plurality of clutch means operatively connected with the gear trains for actuating each of the gear trains selectively; a gear change determination circuit operatively connected with the clutch means to control the operation of each of the clutch means according to a predetermined gear shifting program for engaging a gear train selected by the program; a coasting detection circuit for detecting a car in the coasting state; a gear shift limiting circuit, operatively connected with the gear change determination circuit and with the coasting detection circuit. The circuit is for actuating only the gear train in which the one-way clutch is interposed immediately, regardless of the selected gear train and of the operation of the gear change determination circuit, when the coasting detection circuit has determined the car to be coasting; and an operation transfer control system including a brake operation detecting means and a mode selector switch means for transferring the operation of the gear shift limiting circuit. The operation transfer control system is adapted to stop, upon detection of one of the brake operation and a reset state of the mode selector switch, the operation of the gear shift limiting circuit and to place the plurality of clutch means under the control of the gear change determination circuit.

  20. 30 CFR 75.1103-6 - Automatic fire sensors; actuation of fire suppression systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Automatic fire sensors; actuation of fire... Protection § 75.1103-6 Automatic fire sensors; actuation of fire suppression systems. Point-type heat sensors or automatic fire sensor and warning device systems may be used to actuate deluge-type water...

  1. Temperature actuated automatic safety rod release

    DOEpatents

    Hutter, Ernest; Pardini, John A.; Walker, David E.

    1987-01-01

    A temperature-actuated apparatus is disclosed for releasably supporting a safety rod in a nuclear reactor, comprising a safety rod upper adapter having a retention means, a drive shaft which houses the upper adapter, and a bimetallic means supported within the drive shaft and having at least one ledge which engages a retention means of the safety rod upper adapter. A pre-determined increase in temperature causes the bimetallic means to deform so that the ledge disengages from the retention means, whereby the bimetallic means releases the safety rod into the core of the reactor.

  2. Temperature actuated automatic safety rod release

    DOEpatents

    Hutter, E.; Pardini, J.A.; Walker, D.E.

    1984-03-13

    A temperature-actuated apparatus is disclosed for releasably supporting a safety rod in a nuclear reactor, comprising a safety rod upper adapter having a retention means, a drive shaft which houses the upper adapter, and a bimetallic means supported within the drive shaft and having at least one ledge which engages a retention means of the safety rod upper adapter. A pre-determined increase in temperature causes the bimetallic means to deform so that the ledge disengages from the retention means, whereby the bimetallic means releases the safety rod into the core of the reactor.

  3. 30 CFR 75.1107-4 - Automatic fire sensors and manual actuators; installation; minimum requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Automatic fire sensors and manual actuators... § 75.1107-4 Automatic fire sensors and manual actuators; installation; minimum requirements. (a)(1... sensors or equivalent shall be installed for each 50 square feet of top surface area, or fraction...

  4. Automatic transmission with add-on overdrive

    SciTech Connect

    Eastman, R.E.; Woodcock, S.J.

    1989-01-17

    An overdrive unit is described for use with an automatic transmission, the transmission having an extended output shaft extending rearwardly therefrom through the forward open end of an overdrive outer casing and aligned on the longitudinal axis thereof, the overdrive unit comprising: a planetary gear set concentrically disposed about the longitudinal axis and including a sun gear, an annulus gear and a carrier with fore and aft carrier rings supporting a plurality of planetary pinion gears in meshing engagement with the sun gear and the annulus gear, the aft carrier ring concentrically engaged with the transmission output shaft; and a one-way clutch including inner and outer concentrically disposed races with coupling means located therebetween, the one-way clutch positioned rearward of the aft carrier ring, the annulus gear having a rearwardly projecting portion surrounding a portion the outer race concentrically engaged therewith, the inner race concentrically engaged with the transmission output shaft and the outer race concentrically engaged with an overdrive output shaft disposed coaxial with the transmission output shaft.

  5. Electronic automatic gear transmission control apparatus

    SciTech Connect

    Koshizawa, T.

    1989-04-25

    This patent describes an electronic automatic gear transmission control apparatus having a shift schedule map for commanding an optimum gear position based on a vehicle speed signal and an accelerator opening signal, the electronic automatic gear transmission control apparatus comprising: first means for comparing a gear position commanded by the shift schedule map with a present gear position; second means for effecting a gear shift to a gear position which is one gear position higher than the present gear position and for restraining a gear shift to the commanded gear position for a prescribed period of time, if the commanded gear position requires an upshift to a gear position which is two or more gear positions higher than the present gear position as a result of the comparison performed by the first means; and third means for holding the gear position which is one gear position higher than the present gear position until an accelerator pedal is depressed again, when the accelerator opening signal indicates an idling position while the gear shift up to the gear position which is one gear position higher than the present gear position, is being effected by the second means.

  6. Transducer-actuator systems and methods for performing on-machine measurements and automatic part alignment

    DOEpatents

    Barkman, William E.; Dow, Thomas A.; Garrard, Kenneth P.; Marston, Zachary

    2016-07-12

    Systems and methods for performing on-machine measurements and automatic part alignment, including: a measurement component operable for determining the position of a part on a machine; and an actuation component operable for adjusting the position of the part by contacting the part with a predetermined force responsive to the determined position of the part. The measurement component consists of a transducer. The actuation component consists of a linear actuator. Optionally, the measurement component and the actuation component consist of a single linear actuator operable for contacting the part with a first lighter force for determining the position of the part and with a second harder force for adjusting the position of the part. The actuation component is utilized in a substantially horizontal configuration and the effects of gravitational drop of the part are accounted for in the force applied and the timing of the contact.

  7. Planetary gear train of automatic transmission

    SciTech Connect

    Hiraiwa, K.

    1987-03-31

    A planetary gear train is described for an automatic transmission having input and output shafts, comprising: a first planetary gear unit including a first sun gear, a first internal gear and a first pinion carrier; a second planetary gear unit including a second sun gear, a second internal gear and a second pinion carrier, the first internal gear and the second pinion carrier being constantly connected to the output shaft; a first brake unit capable of braking the first and second sun gears which are connected to each other to rotate together; a clutch through which the first pinion carrier is connectable to the input shaft; a second brake unit capable of braking the first pinion carrier; a third brake unit capable of braking the second internal gear; and first and second groups of one-way means which are parallelly interposed between the input shaft and the first sun gear and arranged in a mutually reversed relationship so that the power transmission from the input shaft to the first sun gear and that from the first sun gear to the input shaft are respectively carried out by the first and second groups of one-way means.

  8. Automatic patient respiration failure detection system with wireless transmission

    NASA Technical Reports Server (NTRS)

    Dimeff, J.; Pope, J. M.

    1968-01-01

    Automatic respiration failure detection system detects respiration failure in patients with a surgically implanted tracheostomy tube, and actuates an audible and/or visual alarm. The system incorporates a miniature radio transmitter so that the patient is unencumbered by wires yet can be monitored from a remote location.

  9. Planetary gear train for automatic transmission

    SciTech Connect

    Hiraiwa, K.

    1987-04-28

    A planetary gear train is described for an automatic transmission, the planetary gear train having gear ratios including a first forward gear ratio and a reverse, the planetary gear train comprising: an input shaft; a basic planetary gearing including a first rotary element which is to be held stationary when the first gear ratio is established and also when the reverse is established, and a second rotary element which is to serve as an output member of the basic planetary gearing; an output planetary gear set including a ring gear, a sun gear and a pinion carrier; change speed means for establishing any desired one of the gear ratios; a clutch means for establishing a connection between the other one of the ring gear and the sun gear of the output planetary gear set and the first rotary element of the basic planetary gearing during operation with the first gear ratio and also during operation with the reverse, and a brake means for anchoring the other one of the ring gear and the sun gear of the output planetary gear set during operation with the reverse; and an output shaft connected to the pinion carrier of the output planetary gear set.

  10. Direct-coupling clutch control device for a torque converter in vehicular automatic transmission

    SciTech Connect

    Nishikawa, M.; Sakurai, Y.

    1986-01-21

    This patent describes a direct coupling clutch control device for a torque converter which is utilized in vehicular automatic transmissions. The appartus consists of a number of interactive components operating together to form a functional control device. The first member of the device described in the patent is a fluid-type torque converter equipped with an output element. Coupled to the torque converter is an auxiliary transmission which is capable of selecting any of a number of multi-staged transmission gear ratios. A hydraulic direct-coupling clutch is characterized in the patent as being located between the input and output members and functioning to mechanically couple these components. Closely associated with the clutch is a gear shift control modality which is discussed in detail in the patent in relation to its design function, of selecting any one transmission gear ratio in an automatic or manual fashion with the capacity for switching transmission modes engineered into the device. A direct-coupling clutch modality is depicted in the patent as possessing a variable characteristic by means of which the vehicle speed for commencing the actuation of the clutch is shifted with oil pressure magnitude to the lower speed side in correspondence with an automatic gear shift position of the gear shift control means and to the high speed side in accordance with a manual gear shift position.

  11. Control system for automatic transmission producing shock-free shift

    SciTech Connect

    Takase, S.; Takeda, H.; Isobe, O.

    1989-01-17

    A control system for an automatic transmission is described, comprising: torque sensor means for detecting an output shaft torque of the automatic transmission which varies in a pattern in effecting shifting the automatic transmission; a control unit including means for recognizing the patten of variation of the output shaft torque detected by the torque sensor means, means for evaluating the pattern of variation recognized, and means for determining a variation of fluid pressure to be supplied to a friction element in response to the result of the evaluation of the pattern of variation recognized; and means for regulating a fluid pressure supplied to the friction element in response to the variation of fluid pressure determined, whereby the fluid pressure supplied to the friction element is appropriately adjusted to alleviate substantial shift shock in effecting the same shifting by the friction element subsequently.

  12. Four speed ratio automatic power transmission

    SciTech Connect

    Daggett, W.E.; Zaracki, S.J.

    1989-12-05

    This patent describes a multiple speed power transmission. It comprises: a power input shaft, a power output shaft and an intermediate shaft located between the input shaft and the output shaft, each shaft being coaxially aligned; first, second and third planetary gear units, each unit having a ring gear, a sun gear, a carrier and planet pinions mounted on the carrier in neshing engagement with the sun gear and ring gear; overdrive brake means; coast clutch means; direct clutch means; band brake means; intermediate brake means; a first overrunning brake; and a second overrunning clutch.

  13. Clutch fill control of an automatic transmission for heavy-duty vehicle applications

    NASA Astrophysics Data System (ADS)

    Meng, Fei; Chen, Huiyan; Zhang, Tao; Zhu, Xiaoyuan

    2015-12-01

    In this paper an integrated clutch filling phase control for gearshifts on wet clutch transmissions is developed. In a clutch-to-clutch shift of an automatic transmission, in order to obtain smooth gearshift, it should synchronize the oncoming clutch and the off-going clutch timely as well as precise pressure control for the engagement of the oncoming clutch. However, before the oncoming clutch pressure starts to increase, the initial cavity of the clutch chamber has to be filled first. The filling time and stability of the fill phase are very important for the clutch control. In order to improve the shift quality of the automatic transmission which is equipped on heavy-duty vehicles, the electro-hydraulic clutch actuation system is analysed and modelled. A new fill phase control strategy is proposed based on the system analysis as well as the control parameters are optimized according to the variation of the oil temperature and engine speed. The designed strategy is validated by a simulation work. The results demonstrate that the proposed control strategy and parameters modified method can transit the shift process from the fill phase to the torque phase effectively.

  14. Design of automatic rotor blades folding system using NiTi shape memory alloy actuator

    NASA Astrophysics Data System (ADS)

    Ali, M. I. F.; Abdullah, E. J.

    2016-10-01

    This present paper will study the requirements for development of a new Automatic Rotor Blades Folding (ARBF) system that could possibly solve the availability, compatibility and complexity issue of upgrading a manual to a fully automatic rotor blades folding system of a helicopter. As a subject matter, the Royal Malaysian Navy Super Lynx Mk 100 was chosen as the baseline model. The aim of the study was to propose a design of SMART ARBF's Shape Memory Alloy (SMA) actuator and proof of operating concept using a developed scale down prototype model. The performance target for the full folding sequence is less than ten minutes. Further analysis on design requirements was carried out, which consisted of three main phases. Phase 1 was studying the SMA behavior on the Nickel Titanium (NiTi) SMA wire and spring (extension type). Technical values like activation requirement, contraction length, and stroke- power and stroke-temperature relationship were gathered. Phase 2 was the development of the prototype where the proposed design of stepped-retractable SMA actuator was introduced. A complete model of the SMART ARBF system that consisted of a base, a main rotor hub, four main rotor blades, four SMA actuators and also electrical wiring connections was fabricated and assembled. Phase 3 was test and analysis whereby a PINENG-PN968s-10000mAh Power Bank's 5 volts, which was reduced to 2.5 volts using LM2596 Step-Down Converter, powered and activated the NiTi spring inside each actuator. The bias spring (compression type), which functions to protract and push the blades to spread position, will compress together with the retraction of actuators and pull the blades to the folding position. Once the power was removed and SMA spring deactivated, the bias spring stiffness will extend the SMA spring and casing and push the blades back to spread position. The timing for the whole revolution was recorded. Based on the experimental analysis, the recorded timing for folding sequence is

  15. Active control of harmonic sound transmission into an acoustic enclosure using both structural and acoustic actuators

    PubMed

    Kim; Brennan

    2000-05-01

    This paper describes an analytical and experimental investigation into the active control of harmonic sound transmission in a structural-acoustic coupled system. A rectangular enclosure is considered that has five acoustically rigid walls and a flexible plate on the remaining side through which a harmonic sound wave is transmitted into the enclosure. The control system is designed to globally reduce the sound field inside the enclosure, and the roles of structural and acoustic actuators are of particular interest. Three control configurations, classified by the type of actuators, are compared and discussed. They are: (i) use of a single point-force actuator, (ii) use of a single acoustic piston source, and (iii) simultaneous use of both a point-force actuator and an acoustic piston source. It is shown both analytically and experimentally that the point-force actuator is effective in controlling plate-dominated modes while the acoustic source is effective in controlling cavity-dominated modes. Since the transmitted sound field is governed by both plate- and cavity-dominated modes, the hybrid use of both types of actuators is shown to be a desirable configuration for the active control of sound transmission into a structural-acoustic coupled system.

  16. Evaluation of oleic acid as additive in automatic transmission fluid

    NASA Astrophysics Data System (ADS)

    Khairuldean, A. K.; Ing, T. Chiong; Bambang, S.; Baharin, T. Kamarul; Wira, J. Y.; Syahrullail, S.

    2012-06-01

    Transmission fluid has already being monopolized by petroleum oil over these years, either mineral oil or synthetic oil, the base oil originated from the crude oil. Currently, with environmental issue becomes globally concerned, it is time to move toward green technology and more to the sustainability, resource renewability and biodegradability. To respond to this challenge, a research focusing on development of environmental friendly lubricant for Automatic Transmission (AT) is conducted. In this paper, the Refined, Bleached, and Deodorized Palm-Olein (RBDPO) mixed with the Automatic Transmission Fluid (ATF), is developed and tested. The research focuses on some parameters such as anti wear and friction coefficient characteristics. The test is conducted using four ball wear tester machine to analyze anti wear of the lubricant as well as to simulate the sliding surface of gear operation inside the transmission which is the most critical operation condition for the lubricant. The method of testing is based on ASTM D4172 Test B condition for wear measurement. By comparing the experimental results between mixed lubricants and the commercial ATF, it can be seen that the palm olein is very potential to become a base oil for transmission lubricant in the future due to its promising performance of the tested physical properties.

  17. Multibody simulation of vehicles equipped with an automatic transmission

    NASA Astrophysics Data System (ADS)

    Olivier, B.; Kouroussis, G.

    2016-09-01

    Nowadays automotive vehicles remain as one of the most used modes of transportation. Furthermore automatic transmissions are increasingly used to provide a better driving comfort and a potential optimization of the engine performances (by placing the gear shifts at specific engine and vehicle speeds). This paper presents an effective modeling of the vehicle using the multibody methodology (numerically computed under EasyDyn, an open source and in-house library dedicated to multibody simulations). However, the transmission part of the vehicle is described by the usual equations of motion computed using a systematic matrix approach: del Castillo's methodology for planetary gear trains. By coupling the analytic equations of the transmission and the equations computed by the multibody methodology, the performances of any vehicle can be obtained if the characteristics of each element in the vehicle are known. The multibody methodology offers the possibilities to develop the vehicle modeling from 1D-motion to 3D-motion by taking into account the rotations and implementing tire models. The modeling presented in this paper remains very efficient and provides an easy and quick vehicle simulation tool which could be used in order to calibrate the automatic transmission.

  18. Optimal shifting control strategy in inertia phase of an automatic transmission for automotive applications

    NASA Astrophysics Data System (ADS)

    Meng, Fei; Tao, Gang; Zhang, Tao; Hu, Yihuai; Geng, Peng

    2015-08-01

    Shifting quality is a crucial factor in all parts of the automobile industry. To ensure an optimal gear shifting strategy with best fuel economy for a stepped automatic transmission, the controller should be designed to meet the challenge of lacking of a feedback sensor to measure the relevant variables. This paper focuses on a new kind of automatic transmission using proportional solenoid valve to control the clutch pressure, a speed difference of the clutch based control strategy is designed for the shift control during the inertia phase. First, the mechanical system is shown and the system dynamic model is built. Second, the control strategy is designed based on the characterization analysis of models which are derived from dynamics of the drive line and electro-hydraulic actuator. Then, the controller uses conventional Proportional-Integral-Derivative control theory, and a robust two-degree-of-freedom controller is also carried out to determine the optimal control parameters to further improve the system performance. Finally, the designed control strategy with different controller is implemented on a simulation model. The compared results show that the speed difference of clutch can track the desired trajectory well and improve the shift quality effectively.

  19. Automatic Transmissions and Transaxles. Auto Mechanics Curriculum Guide. Module 8. Instructor's Guide.

    ERIC Educational Resources Information Center

    Hevel, David; Tannehill, Dana, Ed.

    This module is the eighth of nine modules in the competency-based Missouri Auto Mechanics Curriculum Guide. Six units cover: introduction to automatic transmission/transaxle; hydraulic control systems; transmission/transaxle diagnosis; automatic transmission/transaxle maintenance and adjustment; in-vehicle transmission repair; and off-car…

  20. Computer controllable synchronous shifting of an automatic transmission

    SciTech Connect

    Davis, R.I.; Patil, P.B.

    1989-08-08

    A multiple forward speed automatic transmission produces its lowest forward speed ratio when a hydraulic clutch and hydraulic brake are disengaged and a one-way clutch connects a ring gear to the transmission casing. Second forward speed ratio results when the hydraulic clutch is engaged to connect the ring gear to the planetary carrier of a second gear set. Reverse drive and regenerative operation result when an hydraulic brake fixes the planetary and the direction of power flow is reversed. Various sensors produce signals representing the torque at the output of the transmission or drive wheels, the speed of the power source, and the hydraulic pressure applied to a clutch and brake. A control algorithm produces input data representing a commanded upshift, a commanded downshift, a commanded transmission output torque, and commanded power source speed. A microprocessor processes the inputs and produces a response to them in accordance with the execution of a control algorithm. Output or response signals cause selective engagement and disengagement of the clutch and brake at a rate that satisfies the requirements for a short gear ratio change and smooth torque transfer between the friction elements. 6 figs.

  1. Computer controlled synchronous shifting of an automatic transmission

    SciTech Connect

    Davis, Roy I.; Patil, Prabhakar B.

    1989-01-01

    A multiple forward speed automatic transmission produces its lowest forward speed ratio when a hydraulic clutch and hydraulic brake are disengaged and a one-way clutch connects a ring gear to the transmission casing. Second forward speed ratio results when the hydraulic clutch is engaged to connect the ring gear to the planetary carrier of a second gear set. Reverse drive and regenerative operation result when an hydraulic brake fixes the planetary and the direction of power flow is reversed. Various sensors produce signals representing the torque at the output of the transmission or drive wheels, the speed of the power source, and the hydraulic pressure applied to a clutch and brake. A control algorithm produces input data representing a commanded upshift, a commanded downshift, a commanded transmission output torque, and commanded power source speed. A microprocessor processes the inputs and produces a response to them in accordance with the execution of a control algorithm. Output or response signals cause selective engagement and disengagement of the clutch and brake at a rate that satisfies the requirements for a short gear ratio change and smooth torque transfer between the friction elements.

  2. Closed loop computer control for an automatic transmission

    DOEpatents

    Patil, Prabhakar B.

    1989-01-01

    In an automotive vehicle having an automatic transmission that driveably connects a power source to the driving wheels, a method to control the application of hydraulic pressure to a clutch, whose engagement produces an upshift and whose disengagement produces a downshift, the speed of the power source, and the output torque of the transmission. The transmission output shaft torque and the power source speed are the controlled variables. The commanded power source torque and commanded hydraulic pressure supplied to the clutch are the control variables. A mathematical model is formulated that describes the kinematics and dynamics of the powertrain before, during and after a gear shift. The model represents the operating characteristics of each component and the structural arrangement of the components within the transmission being controlled. Next, a close loop feedback control is developed to determine the proper control law or compensation strategy to achieve an acceptably smooth gear ratio change, one in which the output torque disturbance is kept to a minimum and the duration of the shift is minimized. Then a computer algorithm simulating the shift dynamics employing the mathematical model is used to study the effects of changes in the values of the parameters established from a closed loop control of the clutch hydraulic and the power source torque on the shift quality. This computer simulation is used also to establish possible shift control strategies. The shift strategies determined from the prior step are reduced to an algorithm executed by a computer to control the operation of the power source and the transmission.

  3. System for computer controlled shifting of an automatic transmission

    DOEpatents

    Patil, Prabhakar B.

    1989-01-01

    In an automotive vehicle having an automatic transmission that driveably connects a power source to the driving wheels, a method to control the application of hydraulic pressure to a clutch, whose engagement produces an upshift and whose disengagement produces a downshift, the speed of the power source, and the output torque of the transmission. The transmission output shaft torque and the power source speed are the controlled variables. The commanded power source torque and commanded hydraulic pressure supplied to the clutch are the control variables. A mathematical model is formulated that describes the kinematics and dynamics of the powertrain before, during and after a gear shift. The model represents the operating characteristics of each component and the structural arrangement of the components within the transmission being controlled. Next, a close loop feedback control is developed to determine the proper control law or compensation strategy to achieve an acceptably smooth gear ratio change, one in which the output torque disturbance is kept to a minimum and the duration of the shift is minimized. Then a computer algorithm simulating the shift dynamics employing the mathematical model is used to study the effects of changes in the values of the parameters established from a closed loop control of the clutch hydraulic and the power source torque on the shift quality. This computer simulation is used also to establish possible shift control strategies. The shift strategies determine from the prior step are reduced to an algorithm executed by a computer to control the operation of the power source and the transmission.

  4. Automatic transmission having C. V. T. system for a vehicle

    SciTech Connect

    Moroto, S.; Sakakibara, S.

    1987-11-17

    An automatic transmission is described having a C.V.T. system for a vehicle, comprising: a coupling means having an input shaft and an output shaft; a belt type continuously-variable speed transmission system having an input pulley mounted coaxially on a first shaft, an output pulley mounted coaxially on a second shaft and a belt extending between the first and second pulleys to transfer power; a planetary gear mechanism having a first planetary gear set, a second planetary gear set, an input shaft disposed coaxially with and rotatably coupled at one end thereof with the second shaft of the belt type continuously-variable speed transmission system and connected at the other end concentrically with the first sun gear, an output shaft disposed coaxially with the input shaft and connected at one end concentrically with the second planetary carrier, a first intermediate shaft disposed concentrically with and radially outward in connection with the input shaft and connected at one end with the first ring gear and the second sun gear and a second intermediate shaft disposed concentrically with and between the input shaft and the first intermediate shaft in a radial direction and connected at one end with the first planetary carrier and the second ring gear; and a forward-reverse changeover mechanism having one and single shift lever and one and single sleeve.

  5. Lock-up control system for automobile automatic power transmissions

    SciTech Connect

    Matsuoka, T.; Sumida, S.

    1986-04-08

    This patent describes a lock-up control system for an automobile's automatic power transmission. This system consists of a hydraulic torque converter including an input member and an output member, multiple stage transmission gear, the transmission gear means being provided with gear stages which are selected by changing power transmitting paths therein. An engine speed sensor for sensing engine load. A gear stage selector connected with the engine speed sensing means and the load sensor to receive output signals from the speed sensor and the load sensing means. A lock-up zone discriminator is connected with the engine speed sensor and the load sensor to receive the output signals from each of the sensors. The lock-up zone discriminator includes lock-up control map means having at least one lock-up release data line and at least one lock-up engage data line which are drawn on the basis of engine speed and engine load for at least one of the gear stages. The lock-up engage data line is located at a higher engine speed side than the release data line. In the lock-up zone are discriminating means for comparing the output signals with the data lines and generating a control signal for controlling engagement of the lock-up means, gear shift means for selectively shifting the gear stage by changing the power transmitting path in the multiple stage transmission gear means. Electro-megnetic means are responsive to the signal from the gear stage selecting means for controlling the gear shift means. Lock-up control means for releasing the lock-up means are irrespective of the control signal from the lock-up zone discriminating means when en engine throttle valve is full closed and enlarging the lock-up zone so that the lock-up means is engaged when the engine throttle valve is opened again to a position included in the enlarged lock-up zone.

  6. Automatic power transmission mechanism for a four wheel drive vehicle

    SciTech Connect

    Garrett, R.J.

    1987-11-17

    In a transmission for a vehicle having two forward traction wheels and two rear traction wheels, this patent describes a multiple ratio transaxle having an input shaft adapted to be connected to an engine and arranged on a first axis and planetary gearing coaxially disposed relative to the input shaft and an output shaft; a first differential gear mechanism forming a part of the transaxle and having a torque output gear and side gears adapted to be connected to axle shafts for the forward wheels; a torque transfer drive means connecting the output shaft with the torque output gear including a first drive gear coaxially mounted relative to the torque output gear; an interaxle geared differential having a differential carrier and a pair of side gears, an interaxle torque input shaft having a third axis parallel to the second axis; a rear axle drive means connected to one of the interaxle differential side gears; a second drive gear and a third drive gear coaxially mounted with respect to the interaxle differential side gears; and first, second, third and fourth clutch means coaxially arranged with respect to the interaxle torque input shaft and independently actuatable for selectively connecting respectively (i) the third drive gear with the second drive gear, (ii) the second drive gear with the intermediate shaft, (iii) the third drive gear with the other side gear of the interaxle differential and (iv) the rear axle drive means with the carrier of the interaxle differential.

  7. [The application of atomic absorption spectrometry in automatic transmission fault detection].

    PubMed

    Chen, Li-dan; Chen, Kai-kao

    2012-01-01

    The authors studied the innovative applications of atomic absorption spectrometry in the automatic transmission fault detection. After the authors have determined Fe, Cu and Cr contents in the five groups of Audi A6 main metal in automatic transmission fluid whose travel course is respectively 10-15 thousand kilometers, 20-26 thousand kilometers, 32-38 thousand kilometers, 43-49 thousand kilometers, and 52-58 thousand kilometers by atomic absorption spectrometry, the authors founded the database of primary metal content in the Audi A6 different mileage automatic transmission fluid (ATF). The research discovered that the main metal content in the automatic transmission fluid increased with the vehicles mileage and its normal metal content level in the automatic transmission fluid is between the two trend lines. The authors determined the main metal content of automatic transmission fluid which had faulty symptoms and compared it with its database value. Those can not only judge the wear condition of the automatic transmission which had faulty symptoms but also help the automobile detection and maintenance personnel to diagnose automatic transmission failure reasons without disintegration. This reduced automobile maintenance costs, and improved the quality of automobile maintenance.

  8. Design and Control of a 1-DOF MRI Compatible Pneumatically Actuated Robot with Long Transmission Lines

    PubMed Central

    Yang, Bo; Tan, U-Xuan; McMillan, Alan; Gullapalli, Rao; Desai, Jaydev P.

    2011-01-01

    This paper presents the design and control of an MRI-compatible 1-DOF needle driver robot and its precise position control using pneumatic actuation with long transmission lines. MRI provides superior image quality compared to other imaging modalities such as CT or ultrasound, but imposes severe limitations on the material and actuator choice (to prevent image distortion) due to its strong magnetic field. We are primarily interested in developing a pneumatically actuated breast biopsy robot with a large force bandwidth and precise targeting capability during radio-frequency ablation (RFA) of breast tumor, and exploring the possibility of using long pneumatic transmission lines from outside the MRI room to the device in the magnet to prevent any image distortion whatsoever. This paper presents a model of the entire pneumatic system. The pneumatic lines are approximated by a first order system with time delay, because its dynamics are governed by the telegraph equation with varying coefficients and boundary conditions, which cannot be solved precisely. The slow response of long pneumatic lines and valve subsystems make position control challenging. This is further compounded by the presence of non-uniform friction in the device. Sliding mode control (SMC) was adopted, where friction was treated as an uncertainty term to drive the system onto the sliding surface. Three different controllers were designed, developed, and evaluated to achieve precise position control of the RFA probe. Experimental results revealed that all SMCs gave satisfactory performance with long transmission lines. We also performed several experiments with a 3-DOF fiber-optic force sensor attached to the needle driver to evaluate the performance of the device in the MRI under continuous imaging. PMID:22058649

  9. Automatic design of fiber-reinforced soft actuators for trajectory matching

    NASA Astrophysics Data System (ADS)

    Connolly, Fionnuala; Walsh, Conor J.; Bertoldi, Katia

    2017-01-01

    Soft actuators are the components responsible for producing motion in soft robots. Although soft actuators have allowed for a variety of innovative applications, there is a need for design tools that can help to efficiently and systematically design actuators for particular functions. Mathematical modeling of soft actuators is an area that is still in its infancy but has the potential to provide quantitative insights into the response of the actuators. These insights can be used to guide actuator design, thus accelerating the design process. Here, we study fluid-powered fiber-reinforced actuators, because these have previously been shown to be capable of producing a wide range of motions. We present a design strategy that takes a kinematic trajectory as its input and uses analytical modeling based on nonlinear elasticity and optimization to identify the optimal design parameters for an actuator that will follow this trajectory upon pressurization. We experimentally verify our modeling approach, and finally we demonstrate how the strategy works, by designing actuators that replicate the motion of the index finger and thumb.

  10. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT VI, AUTOMATIC TRANSMISSIONS--PLANETARY GEARING.

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO ACQUAINT THE TRAINEE WITH THE OPERATION OF PLANETARY GEARS IN AUTOMATIC TRANSMISSIONS USED ON DIESEL POWERED VEHICLES. TOPICS ARE (1) PURPOSE OF PLANETARY GEARING, (2) POWER TRANSMISSION THROUGH A PLANETARY SYSTEM, (3) HYDRAMATIC TRANSMISSION, (4) HYDRAULIC SYSTEM, AND (5) GEAR FAILURE AND…

  11. Study on shift schedule saving energy of automatic transmission of ground vehicles.

    PubMed

    Gong, Jie; Zhao, Ding-Xuan; Chen, Ying; Chen, Ning

    2004-07-01

    To improve ground vehicle efficiency, shift schedule energy saving was proposed for the ground vehicle automatic transmission by studying the function of the torque converter and transmission in the vehicular drivetrain. The shift schedule can keep the torque converter working in the high efficiency range under all the working conditions except in the low efficiency range on the left when the transmission worked at the lowest shift, and in the low efficiency range on the right when the transmission worked at the highest shift. The shift quality key factors were analysed. The automatic trans-mission's bench-test adopting this shift schedule was made on the automatic transmission's test-bed. The experimental results showed that the shift schedule was correct and that the shift quality was controllable.

  12. The development of a portable, automatic, microwave transmission line test set

    NASA Astrophysics Data System (ADS)

    de La Fuente, Val; Karuschkat, Glenn; Simone, Frederick

    Existing test sets for flightline testing of microwave transmission lines are complex, semiportable systems requiring the piece-part testing of waveguides, antennas, and transmission line components in the aircraft. Moreover, these systems are not fully automated and require a large degree of manual intervention. Therefore, advances in test-set miniaturization and automatic control techniques can now be utilized to develop a fully portable, automatic test set for the flightline functional and diagnostic fault isolation testing of RF avionics and microwave transmission lines. A description is given of the proposed capabilities of such a tester, and the benefits expected to be derived from its use.

  13. Automatic grading of carbon blacks from transmission electron microscopy

    NASA Astrophysics Data System (ADS)

    Luengo, L.; Treuillet, S.; Gomez, E.

    2015-04-01

    Carbon blacks are widely used as filler in industrial products to modify their mechanical, electrical and optical properties. For rubber products, they are the subject of a standard classification system relative to their surface area, particle size and structure. The electron microscope remains the most accurate means of measuring these characteristics on condition that boundaries of aggregates and particles are correctly detected. In this paper, we propose an image processing chain allowing subsequent characterization for automatic grading of the carbon black aggregates. Based on literature review, 31 features are extracted from TEM images to obtain reliable information on the particle size, the shape and microstructure of the carbon black aggregates. Then, they are used for training several classifiers to compare their results for automatic grading. To obtain better results, we suggest to use a cluster identification of aggregates in place of the individual characterization of aggregates.

  14. Application of piezoelectric macro-fiber-composite actuators to the suppression of noise transmission through curved glass plates.

    PubMed

    Nováková, Katerina; Mokrý, Pavel; Václavík, Jan

    2012-09-01

    This paper analyzes the possibility of increasing the acoustic transmission loss of sound transmitted through planar or curved glass shells using attached piezoelectric macro fiber composite (MFC) actuators shunted by active circuits with a negative capacitance. The key features that control the sound transmission through the curved glass shells are analyzed using an analytical approximative model. A detailed analysis of the particular arrangement of MFC actuators on the glass shell is performed using a finite element method (FEM) model. The FEM model takes into account the effect of a flexible frame that clamps the glass shell at its edges. A method is presented for the active control of the Young's modulus and the bending stiffness coefficient of the composite sandwich structure that consists of a glass plate and the attached piezoelectric MFC actuator. The predictions of the acoustic transmission loss frequency dependencies obtained by the FEM model are compared with experimental data. The results indicate that it is possible to increase the acoustic transmission loss by 20 and 25 dB at the frequencies of the first and second resonant modes of the planar and curved glass shells, respectively, using the effect of the shunt circuit with a negative capacitance.

  15. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT X, AUTOMATIC TRANSMISSIONS--HYDRAULIC SYSTEMS (PART II).

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO PROVIDE A SUMMARY OF MAINTENANCE PROCEDURES FOR AUTOMATIC TRANSMISSIONS USED ON DIESEL POWERED VEHICLES. TOPICS ARE (1) CHECKING THE HYDRAULIC SYSTEM, (2) SERVICING THE HYDRAULIC SYSTEM, (3) EXAMINING THE RANGE CONTROL VALVE, (4) EXAMINING THE LOCK-UP AND FLOW VALVE, (5) EXAMINING THE MAIN REGULATOR…

  16. Traction drive automatic transmission for gas turbine engine driveline

    DOEpatents

    Carriere, Donald L.

    1984-01-01

    A transaxle driveline for a wheeled vehicle has a high speed turbine engine and a torque splitting gearset that includes a traction drive unit and a torque converter on a common axis transversely arranged with respect to the longitudinal centerline of the vehicle. The drive wheels of the vehicle are mounted on a shaft parallel to the turbine shaft and carry a final drive gearset for driving the axle shafts. A second embodiment of the final drive gearing produces an overdrive ratio between the output of the first gearset and the axle shafts. A continuously variable range of speed ratios is produced by varying the position of the drive rollers of the traction unit. After starting the vehicle from rest, the transmission is set for operation in the high speed range by engaging a first lockup clutch that joins the torque converter impeller to the turbine for operation as a hydraulic coupling.

  17. Actuatable capacitive transducer for quantitative nanoindentation combined with transmission electron microscopy

    DOEpatents

    Warren, Oden L; Asif, Syed Amanula Syed; Cyrankowski, Edward; Kounev, Kalin

    2013-06-04

    An actuatable capacitive transducer including a transducer body, a first capacitor including a displaceable electrode and electrically configured as an electrostatic actuator, and a second capacitor including a displaceable electrode and electrically configured as a capacitive displacement sensor, wherein the second capacitor comprises a multi-plate capacitor. The actuatable capacitive transducer further includes a coupling shaft configured to mechanically couple the displaceable electrode of the first capacitor to the displaceable electrode of the second capacitor to form a displaceable electrode unit which is displaceable relative to the transducer body, and an electrically-conductive indenter mechanically coupled to the coupling shaft so as to be displaceable in unison with the displaceable electrode unit.

  18. Actuatable capacitive transducer for quantitative nanoindentation combined with transmission electron microscopy

    SciTech Connect

    Warren, Oden L.; Asif, S. A. Syed; Cyrankowski, Edward; Kounev, Kalin

    2010-09-21

    An actuatable capacitive transducer including a transducer body, a first capacitor including a displaceable electrode and electrically configured as an electrostatic actuator, and a second capacitor including a displaceable electrode and electrically configured as a capacitive displacement sensor, wherein the second capacitor comprises a multi-plate capacitor. The actuatable capacitive transducer further includes a coupling shaft configured to mechanically couple the displaceable electrode of the first capacitor to the displaceable electrode of the second capacitor to form a displaceable electrode unit which is displaceable relative to the transducer body, and an electrically-conductive indenter mechanically coupled to the coupling shaft so as to be displaceable in unison with the displaceable electrode unit.-

  19. Improving transaxle performance at low temperature with reduced-viscosity automatic transmission fluids

    SciTech Connect

    Linden, J.L.; Kemp, S.P.

    1987-01-01

    The effects of automatic transmission fluid viscosity on the low-temperature performance of a front-wheel-drive transaxle were determined in a cold room maintained at a temperature of -20/sup 0/F (-28.9/sup 0/C), using both a cranking apparatus and a vehicle. Cranking and vehicle tests were conducted to determine the effects of fluid viscosity on the power required to crack a transaxle and on transaxle performance under low-temperature transient operation, respectively. Four automatic transmission fluids were tested, ranging in viscosity from 2 600 to 16 000 cP at - 20/sup 0/F. All test fluids contained the same additive package and were blended using the same types of base oils.

  20. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT VIII, AUTOMATIC TRANSMISSIONS--ALLISON TORQUMATIC SERIES 5960, 6060, AND 8860 (PART II).

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF SPECIFIC MODELS OF AUTOMATIC TRANSMISSIONS USED ON DIESEL POWERED VEHICLES. TOPICS ARE (1) GENERAL DESCRIPTION, (2) OPTIONAL EQUIPMENT, (3) TRANSMISSION POWER FLOW (SPLITTER SECTION), (4) TRANSMISSION POWER FLOW (RANGE SECTION), (5)…

  1. Automatic Transmission Period Setting for Intermittent Periodic Transmission in Wireless Backhaul System

    NASA Astrophysics Data System (ADS)

    Jin, Guangri; Furukawa, Hiroshi

    Intermittent Periodic Transmission (IPT forwarding) has been proposed as an efficient packet relay method for wireless backhaul. In IPT forwarding, a source node sends packets to a destination node with a certain time interval (IPT duration) so that signal interference between relay nodes that send packets simultaneously are reduced and frequency reuse is realized which brings about an improvement of system throughput. However, optimum IPT duration setting for each node is a difficult problem which is not solved adequately yet. In this paper, we propose a new IPT duration setting protocol which employs some training packets to search for the optimum IPT duration for each node. A simulation and experiment show that the proposed method is not only very effective but also practical for wireless backhaul.

  2. Power-based Shift Schedule for Pure Electric Vehicle with a Two-speed Automatic Transmission

    NASA Astrophysics Data System (ADS)

    Wang, Jiaqi; Liu, Yanfang; Liu, Qiang; Xu, Xiangyang

    2016-11-01

    This paper introduces a comprehensive shift schedule for a two-speed automatic transmission of pure electric vehicle. Considering about driving ability and efficiency performance of electric vehicles, the power-based shift schedule is proposed with three principles. This comprehensive shift schedule regards the vehicle current speed and motor load power as input parameters to satisfy the vehicle driving power demand with lowest energy consumption. A simulation model has been established to verify the dynamic and economic performance of comprehensive shift schedule. Compared with traditional dynamic and economic shift schedules, simulation results indicate that the power-based shift schedule is superior to traditional shift schedules.

  3. Application of multi-variable control for automatic frequency controller of HVDC transmission system

    SciTech Connect

    Sanpei, Masatoshi ); Kakehi, Atsuyuki; Takeda, Hideo )

    1994-04-01

    In an HVDC transmission system that links two ac power systems, the automatic frequency controller (AFC) calculates power to be interchanged between the two ac systems according to their frequencies thereby improving the frequency characteristics of the two power systems. This paper introduces a newly developed dc AFC system, which applies a multi-variable control to the dc system-based frequency control. It is capable of controlling the frequencies of the two ac systems optimally while maintaining their stability. This system was developed for one of Japan's HVDC transmission facilities and produced good results in a combined test using a power system simulator. The field installation will be completed in March 1993, when the AFC system will enter service.

  4. Automatic transmission brake assembly including an overrunning roller brake and a friction brake

    SciTech Connect

    Premiski, V.; Hohnel, R.; Premiski, C.

    1988-10-11

    This patent describes an overrunning roller brake assembly for a planetary gear unit in an automatic transmission for automobiles, the gear unit having a ring gear, a carrier and a sun gear, the carrier having planet pinions thereon engaging the sun and ring gears; a brake for anchoring a reaction member of the gear unit, at least one other member of the gear unit being adapted to receive driving torque; the brake comprising an annular inner brake race surrounding a fixed part of the transmission, an annular outer brake race connected to the reaction member and surrounding the inner race, the outer race comprising an extrusion with an outer brake drum surface adapted to be engaged by a reaction friction brake band; overrunning brake rollers between the races, a pair of support rings between the races on either side of the rollers; the support rings having a C-shaped cross section whereby the inner and outer surfaces thereof provide a bearing support for the races; retainer rings enclosed within the support rings, the retainer rings having a radial thickness approximately equal to the radial inside dimension of the C-shaped cross section of the support rings whereby radial loads are transmitted between the races through the retainer rings and support rings.

  5. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT VII, AUTOMATIC TRANSMISSIONS--ALLISON, TORQUMATIC SERIES 5960 AND 6060 (PART I).

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF SPECIFIC MODELS OF AUTOMATIC TRANSMISSIONS USED ON DIESEL POWERED VEHICLES. TOPICS ARE (1) GENERAL SPECIFICATION DATA, (2) OPTIONS FOR VARIOUS APPLICATIONS, (3) ROAD TEST INSTRUCTIONS, (4) IDENTIFICATION AND SPECIFICATION DATA, (5) ALLISON…

  6. Simulation and control of an electro-hydraulic actuated clutch

    NASA Astrophysics Data System (ADS)

    Balau, Andreea-Elena; Caruntu, Constantin-Florin; Lazar, Corneliu

    2011-08-01

    The basic function of any type of automotive transmission is to transfer the engine torque to the vehicle with the desired ratio smoothly and efficiently and the most common control devices inside the transmission are clutches and hydraulic pistons. The automatic control of the clutch engagement plays a crucial role in Automatic Manual Transmission (AMT) vehicles, being seen as an increasingly important enabling technology for the automotive industry. It has a major role in automatic gear shifting and traction control for improved safety, drivability and comfort and, at the same time, for fuel economy. In this paper, a model for a wet clutch actuated by an electro-hydraulic valve used by Volkswagen for automatic transmissions is presented. Starting from the developed model, a simulator was implemented in Matlab/Simulink and the model was validated against data obtained from a test-bench provided by Continental Automotive Romania, which includes the Volkswagen wet clutch actuated by the electro-hydraulic valve. Then, a predictive control strategy is applied to the model of the electro-hydraulic actuated clutch with the aims of controlling the clutch piston displacement and decreasing the influence of the network-induced delays on the control performances. The simulation results obtained with the proposed method are compared with the ones obtained with different networked controllers and it is shown that the strategy proposed in this paper can indeed improve the performances of the control system.

  7. A Control Allocation System for Automatic Detection and Compensation of Phase Shift Due to Actuator Rate Limiting

    NASA Technical Reports Server (NTRS)

    Yildiz, Yidiray; Kolmanovsky, Ilya V.; Acosta, Diana

    2011-01-01

    This paper proposes a control allocation system that can detect and compensate the phase shift between the desired and the actual total control effort due to rate limiting of the actuators. Phase shifting is an important problem in control system applications since it effectively introduces a time delay which may destabilize the closed loop dynamics. A relevant example comes from flight control where aggressive pilot commands, high gain of the flight control system or some anomaly in the system may cause actuator rate limiting and effective time delay introduction. This time delay can instigate Pilot Induced Oscillations (PIO), which is an abnormal coupling between the pilot and the aircraft resulting in unintentional and undesired oscillations. The proposed control allocation system reduces the effective time delay by first detecting the phase shift and then minimizing it using constrained optimization techniques. Flight control simulation results for an unstable aircraft with inertial cross coupling are reported, which demonstrate phase shift minimization and recovery from a PIO event.

  8. Automatism

    PubMed Central

    McCaldon, R. J.

    1964-01-01

    Individuals can carry out complex activity while in a state of impaired consciousness, a condition termed “automatism”. Consciousness must be considered from both an organic and a psychological aspect, because impairment of consciousness may occur in both ways. Automatism may be classified as normal (hypnosis), organic (temporal lobe epilepsy), psychogenic (dissociative fugue) or feigned. Often painstaking clinical investigation is necessary to clarify the diagnosis. There is legal precedent for assuming that all crimes must embody both consciousness and will. Jurists are loath to apply this principle without reservation, as this would necessitate acquittal and release of potentially dangerous individuals. However, with the sole exception of the defence of insanity, there is at present no legislation to prohibit release without further investigation of anyone acquitted of a crime on the grounds of “automatism”. PMID:14199824

  9. Fundamental study of subharmonic vibration of order 1/2 in automatic transmissions for cars

    NASA Astrophysics Data System (ADS)

    Ryu, T.; Nakae, T.; Matsuzaki, K.; Nanba, A.; Takikawa, Y.; Ooi, Y.; Sueoka, A.

    2016-09-01

    A torque converter is an element that transfers torque from the engine to the gear train in the automatic transmission of an automobile. The damper spring of the lock-up clutch in the torque converter is used to effectively absorb the torsional vibration caused by engine combustion. A damper with low stiffness reduces fluctuations in rotational speed but is difficult to use because of space limitations. In order to address this problem, the damper is designed using a piecewise-linear spring with three stiffness stages. However, the damper causes a nonlinear vibration referred to as a subharmonic vibration of order 1/2. In the subharmonic vibration, the frequency is half that of the vibrations from the engine. In order to clarify the mechanism of the subharmonic vibration, in the present study, experiments are conducted using the fundamental experimental apparatus of a single-degree-of-freedom system with two stiffness stages. In the experiments, countermeasures to reduce the subharmonic vibration by varying the conditions of the experiments are also performed. The results of the experiments are evaluated through numerical analysis using the shooting method. The experimental and analytical results were found to be in close agreement.

  10. Electrostatically Driven Nanoballoon Actuator.

    PubMed

    Barzegar, Hamid Reza; Yan, Aiming; Coh, Sinisa; Gracia-Espino, Eduardo; Dunn, Gabriel; Wågberg, Thomas; Louie, Steven G; Cohen, Marvin L; Zettl, Alex

    2016-11-09

    We demonstrate an inflatable nanoballoon actuator based on geometrical transitions between the inflated (cylindrical) and collapsed (flattened) forms of a carbon nanotube. In situ transmission electron microscopy experiments employing a nanoelectromechanical manipulator show that a collapsed carbon nanotube can be reinflated by electrically charging the nanotube, thus realizing an electrostatically driven nanoballoon actuator. We find that the tube actuator can be reliably cycled with only modest control voltages (few volts) with no apparent wear or fatigue. A complementary theoretical analysis identifies critical parameters for nanotube nanoballoon actuation.

  11. Electronically Integrated Active Compliant Transmission (ACT) Actuation Technologies Proof-of-Concept Investigation of Active Velcro for Smart Attachment Mechanisms

    DTIC Science & Technology

    2006-05-31

    down and be in the center position when off, the current amplification systems that exploit very high energy density materials (such as EC98 by EDO ...project was the synergistic development of complete piezoelectric actuation systems with integrated electronic drivers, material transduction and Active...4 1.2.1. INSTAR System Description

  12. Automotive transmission linkage system

    SciTech Connect

    Yen, F.Y.; Ardayfio, D.D.

    1990-10-02

    This patent describes a system for converting a manual multi-speed transmission to operate as an automatic-manual transmission, the system being disposed within a vehicle, the transmission having a conventional gearshift lever and a clutch pedal. It comprises: a gearshift position selection panel, the panel being located apart from the gearshift lever, the panel enabling a driver to select the desired gear position of the gearshift lever by manipulating the panel without the necessity of the driver handling the gearshift lever; a controller which transforms the gearshift selection of the driver to an output signal, the signal corresponding to the gearshift position selected by the driver; and actuating means for mechanically repositioning the gearshift lever automatically in accordance with the output signal.

  13. Testing and Benchmarking a 2014 GM Silverado 6L80 Six Speed Automatic Transmission

    EPA Science Inventory

    Describe the method and test results of EPA’s partial transmission benchmarking process which involves installing both the engine and transmission in an engine dynamometer test cell with the engine wire harness tethered to its vehicle parked outside the test cell.

  14. Automatic Transmission/Transaxle Specialist. Instructor Manual and Student Workbook. Automotive Service Series.

    ERIC Educational Resources Information Center

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This curriculum guide for transmission/transaxle specialist is one in a series of automotive service speciality publications that is based on the National Institute of Automotive Service Excellence task lists. The curriculum contains nine units. Each unit of instruction includes some or all of the following components: objective sheet,…

  15. AUTOMOTIVE DIESEL MAINTENANCE 2 UNIT IV, AUTOMATIC TRANSMISSIONS--HYDRAULICS (PART II).

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OPERATION AND MAINTENANCE OF VALVES UTILIZED IN HYDRAULIC TRANSMISSIONS USED ON DIESEL POWERED VEHICLES. TOPICS ARE (1) REVIEWING FACTS ABOUT PUMPS, (2) USING VALVES FOR CONTROL, (3) TROUBLESHOOTING PROCEDURES ON RELIEF VALVES, (4) USING DIRECTIONAL CONTROL VALVES,…

  16. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT IX, AUTOMATIC TRANSMISSIONS--HYDRAULIC SYSTEM (PART I).

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO DEVELOP AN UNDERSTANDING OF THE OIL FLOW WITHIN HYDRAULIC TRANSMISSIONS USED ON DIESEL POWERED VEHICLES. TOPICS ARE GENERAL DESCRIPTION, HYDRAULIC CIRCUITS, AND BRAKE HYDRAULIC CIRCUIT AND OPERATION. THE MODULE CONSISTS OF A SELF-INSTRUCTIONAL PROGRAMED TRAINING FILM "LEARNING ABOUT THE ALLISON…

  17. AUTOMOTIVE DIESEL MAINTENANCE 2. UNIT III, AUTOMATIC TRANSMISSIONS--HYDRAULICS (PART I).

    ERIC Educational Resources Information Center

    Human Engineering Inst., Cleveland, OH.

    THIS MODULE OF A 25-MODULE COURSE IS DESIGNED TO INTRODUCE BASIC HYDRAULIC PRINCIPLES AND PROVIDE AN UNDERSTANDING OF HYDRAULIC TRANSMISSIONS USED IN DIESEL POWERED VEHICLES. TOPICS ARE WHY USE HYDRAULICS, REVIEWING BASIC PHYSICS LAWS IN RELATION TO HYDRAULICS, UNDERSTANDING THE HYDRAULIC SYSTEM, AND DEVELOPING A BASIC HYDRAULIC SYSTEM. THE MODULE…

  18. Fault tolerant linear actuator

    DOEpatents

    Tesar, Delbert

    2004-09-14

    In varying embodiments, the fault tolerant linear actuator of the present invention is a new and improved linear actuator with fault tolerance and positional control that may incorporate velocity summing, force summing, or a combination of the two. In one embodiment, the invention offers a velocity summing arrangement with a differential gear between two prime movers driving a cage, which then drives a linear spindle screw transmission. Other embodiments feature two prime movers driving separate linear spindle screw transmissions, one internal and one external, in a totally concentric and compact integrated module.

  19. Automatic mosaicking and volume assembly for high-throughput serial-section transmission electron microscopy

    PubMed Central

    Tasdizen, Tolga; Koshevoy, Pavel; Grimm, Bradley C.; Anderson, James R.; Jones, Bryan W.; Watt, Carl B.; Whitaker, Ross T.; Marc, Robert E.

    2010-01-01

    We describe a computationally efficient and robust fully-automatic method for large-scale electron microscopy image registration. The proposed method is able to construct large image mosaics from thousands of smaller, overlapping tiles with unknown or uncertain positions, and to align sections from a serial section capture into a common coordinate system. The method also accounts for nonlinear deformations both in constructing sections and in aligning sections to each other. The underlying algorithms are based on the Fourier shift property which allows for a computationally efficient and robust method. We demonstrate results on two electron microscopy datasets. We also quantify the accuracy of the algorithm through a simulated image capture experiment. The publicly available software tools include the algorithms and a Graphical User Interface for easy access to the algorithms. PMID:20713087

  20. Automatic Assessment of Acquisition and Transmission Losses in Indian Remote Sensing Satellite Data

    NASA Astrophysics Data System (ADS)

    Roy, D.; Purna Kumari, B.; Manju Sarma, M.; Aparna, N.; Gopal Krishna, B.

    2016-06-01

    The quality of Remote Sensing data is an important parameter that defines the extent of its usability in various applications. The data from Remote Sensing satellites is received as raw data frames at the ground station. This data may be corrupted with data losses due to interferences during data transmission, data acquisition and sensor anomalies. Thus it is important to assess the quality of the raw data before product generation for early anomaly detection, faster corrective actions and product rejection minimization. Manual screening of raw images is a time consuming process and not very accurate. In this paper, an automated process for identification and quantification of losses in raw data like pixel drop out, line loss and data loss due to sensor anomalies is discussed. Quality assessment of raw scenes based on these losses is also explained. This process is introduced in the data pre-processing stage and gives crucial data quality information to users at the time of browsing data for product ordering. It has also improved the product generation workflow by enabling faster and more accurate quality estimation.

  1. Convective Heat Transfer Coefficients of Automatic Transmission Fluid Jets with Implications for Electric Machine Thermal Management: Preprint

    SciTech Connect

    Bennion, Kevin; Moreno, Gilberto

    2015-09-29

    Thermal management for electric machines (motors/ generators) is important as the automotive industry continues to transition to more electrically dominant vehicle propulsion systems. Cooling of the electric machine(s) in some electric vehicle traction drive applications is accomplished by impinging automatic transmission fluid (ATF) jets onto the machine's copper windings. In this study, we provide the results of experiments characterizing the thermal performance of ATF jets on surfaces representative of windings, using Ford's Mercon LV ATF. Experiments were carried out at various ATF temperatures and jet velocities to quantify the influence of these parameters on heat transfer coefficients. Fluid temperatures were varied from 50 degrees C to 90 degrees C to encompass potential operating temperatures within an automotive transaxle environment. The jet nozzle velocities were varied from 0.5 to 10 m/s. The experimental ATF heat transfer coefficient results provided in this report are a useful resource for understanding factors that influence the performance of ATF-based cooling systems for electric machines.

  2. Electromechanical actuators

    NASA Technical Reports Server (NTRS)

    Bigham, J.

    1982-01-01

    Materials illustrating a presentation on the development of electromechanical actuators (EMA) for electric flight systems are presented. Technology issues are identified, and major steps relative to EMA development, NASA's role, and a technology procurement plan are outlined.

  3. Parallel-coupled micro-macro actuators

    SciTech Connect

    Morrell, J.B.; Salisbury, J.K.

    1998-07-01

    This paper presents a new actuator system consisting of a micro-actuator and a macro-actuator coupled in parallel via a compliant transmission. The system is called the parallel-coupled micro-macro actuator, or PaCMMA. In this system, the micro-actuator is capable of high-bandwidth force control owing to its low mass and direct-drive connection to the output shaft. The compliant transmission of the macro-actuator reduces the impedance (stiffness) at the output shaft, and increases the dynamic range of force. Performance improvement over single-actuator systems was expected in force control, impedance control, force distortion, and transient impact force reduction. Several theoretical performance limits are derived from the saturation limits of the system. A control law is presented. A prototype test bed was built and an experimental comparison was performed between this actuator concept and two single-actuator systems. A set of quantitative measures is proposed and the actuator system is evaluated against them with the following results: force bandwidth of 56 Hz, torque dynamic range of 800:1, peak torque of 1,040 mNm, and minimum torque of 1.3 mNm. Peak impact force, force distortion, and back-driven impedance of the PaCMMA system are shown to be better than either of the single-actuator configurations considered.

  4. A turbo engine with automatic transmission? How to marry chemicomotion to the subtleties and robustness of life.

    PubMed

    Koefoed, Sarah; Otten, Marijke; Koebmann, Brian; Bruggeman, Frank; Bakker, Barbara; Snoep, Jacky; Krab, Klaas; van Spanning, Rob; van Verseveld, Henk; Jensen, Peter; Koster, Johanna; Westerhoff, Hans

    2002-09-10

    Most genomes are much more complex than required for the minimum chemistry of life. Evolution has selected sophistication more than life itself. Could this also apply to bioenergetics? We first examine mechanisms through which bioenergetics could deliver sophistication. We illustrate possible benefits of the turbo-charging of catabolic pathways, of loose coupling, low-gear catabolism, automatic transmission in energy coupling, and of homeostasis. Mechanisms for such phenomena may reside at the level of individual proton pumps, or consist of rerouting of electrons over parallel pathways. The mechanisms may be confined to preexisting components, or involve the plasticity of gene expression that is so characteristic of most living organisms. These possible benefits lead us to the conjecture that also bioenergetics has evolved more for sophistication than for necessity. We next discuss a hitherto unresolved enigma, i.e. that bioenergetics does not seem to be critical for the physiological state. To decide on how critical bioenergetics is, we quantified the control exerted by catabolism on important physiological functions such as growth rate and growth yield. We also determined whether a growth inhibition mostly affected bioenergetics (catabolism) or anabolism; if ATP increases with growth rate, then growth should be considered energy (catabolism) limited. The experimental results for Escherichia coli pinpoint the enigma: its energy metabolism (catabolism) is not critical for growth rate. These results might suggest that because it has no direct control over cell function, bioenergetics is unimportant. Paradoxically however, in biology, highly important mechanisms tend to have little control on cell function, precisely because of that importance. Sophistication in terms of homeostatic mechanisms has evolved to guarantee robustness of the most important functions: The most important mechanisms are redundant in biology. Bioenergetics may be an excellent example of this

  5. T-Slide Linear Actuators

    NASA Technical Reports Server (NTRS)

    Vranish, John

    2009-01-01

    T-slide linear actuators use gear bearing differential epicyclical transmissions (GBDETs) to directly drive a linear rack, which, in turn, performs the actuation. Conventional systems use a rotary power source in conjunction with a nut and screw to provide linear motion. Non-back-drive properties of GBDETs make the new actuator more direct and simpler. Versions of this approach will serve as a long-stroke, ultra-precision, position actuator for NASA science instruments, and as a rugged, linear actuator for NASA deployment duties. The T slide can operate effectively in the presence of side forces and torques. Versions of the actuator can perform ultra-precision positioning. A basic T-slide actuator is a long-stroke, rack-and-pinion linear actuator that, typically, consists of a T-slide, several idlers, a transmission to drive the slide (powered by an electric motor) and a housing that holds the entire assembly. The actuator is driven by gear action on its top surface, and is guided and constrained by gear-bearing idlers on its other two parallel surfaces. The geometry, implemented with gear-bearing technology, is particularly effective. An electronic motor operating through a GBDET can directly drive the T slide against large loads, as a rack and pinion linear actuator, with no break and no danger of back driving. The actuator drives the slide into position and stops. The slide holes position with power off and no brake, regardless of load. With the T slide configuration, this GBDET has an entire T-gear surface on which to operate. The GB idlers coupling the other two T slide parallel surfaces to their housing counterpart surfaces provide constraints in five degrees-of-freedom and rolling friction in the direction of actuation. Multiple GB idlers provide roller bearing strength sufficient to support efficient, rolling friction movement, even in the presence of large, resisting forces. T-slide actuators can be controlled using the combination of an off

  6. High torque miniature rotary actuator

    NASA Astrophysics Data System (ADS)

    Nalbandian, Ruben

    2005-07-01

    This paper summarizes the design and the development of a miniature rotary actuator (36 mm diameter by 100 mm length) used in spacecraft mechanisms requiring high torques and/or ultra-fine step resolution. This actuator lends itself to applications requiring high torque but with strict volume limitations which challenge the use of conventional rotary actuators. The design challenge was to develop a lightweight (less than 500 grams), very compact, high bandwidth, low power, thermally stable rotary actuator capable of producing torques in excess of 50 N.m and step resolutions as fine as 0.003 degrees. To achieve a relatively high torsional stiffness in excess of 1000 Nm/radian, the design utilizes a combination of harmonic drive and multistage planetary gearing. The unique design feature of this actuator that contributes to its light weight and extremely precise motion capability is a redundant stepper motor driving the output through a multistage reducing gearbox. The rotary actuator is powered by a high reliability space-rated stepper motor designed and constructed by Moog, Inc. The motor is a three-phase stepper motor of 15 degree step angle, producing twenty-four full steps per revolution. Since micro-stepping is not used in the design, and un-powered holding torque is exhibited at every commanded step, the rotary actuator is capable of reacting to torques as high as 35 Nm by holding position with the power off. The output is driven through a gear transmission having a total train ratio of 5120:1, resulting in a resolution of 0.003 degrees output rotation per motor step. The modular design of the multi-stage output transmission makes possible the addition of designs having different output parameters, such as lower torque and higher output speed capability. Some examples of an actuator family based on this growth capability will be presented in the paper.

  7. Two position optical element actuator device

    DOEpatents

    Holdener, Fred R.; Boyd, Robert D.

    2002-01-01

    The present invention is a two position optical element actuator device utilizing a powered means to hold an actuation arm, to which an optical element is attached, in a first position. A non-powered means drives the actuation arm to a second position, when the powered means ceases to receive power. The optical element may be a electromagnetic (EM) radiation or particle source, an instrument, or EM radiation or particle transmissive, reflective or absorptive elements. A bearing is used to transfer motion and smoothly transition the actuation arm from the first to second position.

  8. Bi-stable optical element actuator device

    DOEpatents

    Holdener, Fred R.; Boyd, Robert D.

    2002-01-01

    The present invention is a bistable optical element actuator device utilizing a powered means to move an actuation arm, to which an optical element is attached, between two stable positions. A non-powered means holds the actuation arm in either of the two stable positions. The optical element may be a electromagnetic (EM) radiation or particle source, an instrument, or EM radiation or particle transmissive reflective or absorptive elements. A bearing is used to transfer motion and smoothly transition the actuation arm between the two stable positions.

  9. Transmission

    SciTech Connect

    Sugano, K.

    1988-12-27

    A transmission is described which consists of: an input shaft; an output shaft; a first planetary gear set including a first sun gear selectively connectable by a first clutch to the input shaft, a first carrier selectively connectable by a second clutch to the input shaft and a first ring gear connected to the output shaft. The first sun gear selectively held stationary by a first brake, the first carrier is allowed to rotate in the same forward direction as the input shaft when the second clutch is engaged, but prevented from rotating in a reverse direction opposite to the forward direction by a first one-way clutch, the first carrier being selectively held stationary by a second brake; a second planetary gear set including a second sun gear connected to the input shaft, a second carrier connected to the first ring gear and also the the output shaft, and a second ring gear.

  10. Modular droplet actuator drive

    NASA Technical Reports Server (NTRS)

    Pollack, Michael G. (Inventor); Paik, Philip (Inventor)

    2011-01-01

    A droplet actuator drive including a detection apparatus for sensing a property of a droplet on a droplet actuator; circuitry for controlling the detection apparatus electronically coupled to the detection apparatus; a droplet actuator cartridge connector arranged so that when a droplet actuator cartridge electronically is coupled thereto: the droplet actuator cartridge is aligned with the detection apparatus; and the detection apparatus can sense the property of the droplet on a droplet actuator; circuitry for controlling a droplet actuator coupled to the droplet actuator connector; and the droplet actuator circuitry may be coupled to a processor.

  11. Apparatus for controlling transmission gear shift selection

    SciTech Connect

    Bailey, T.M.

    1986-07-29

    In an automotive engine having an electrical power source and an automatic or semi-automatic transmission including a manually operated transmission gear shift lever having at least two forward drive positions, an apparatus is described which consists of: (a) a speed sensing means for sensing the rotation speed of the engine and generating an output signal when the engine reaches a preselected rotational speed; and (b) a gear shifting means for changing the shift positions of the gear shift lever from a first drive position to a second drive position automatically in response to the output signal from the speed sensing means, the gear shifting means including (i) a latch actuable between open and closed positions, (ii) a normally de-energized solenoid having a plunger connected to the latch and operable to move the latch to the open position when the solenoid is energized by the electrical power source, (iii) a relay means for allowing the energizing of the solenoid by the power source in response to the output signal from the speed sensing means, and (iv) an actuating means, including a spring biased linkage mechanism operably connected to the gear shift lever and the latch, for actuating the movement of the gear shift lever from the first drive position to the second drive position in response to movement of the latch from the closed to the open position, thereby causing gear shifting to occur when the engine reaches the preselected rotational speed.

  12. Flexible dielectric elastomer actuators for wearable human-machine interfaces

    NASA Astrophysics Data System (ADS)

    Bolzmacher, Christian; Biggs, James; Srinivasan, Mandayam

    2006-03-01

    Wearable dielectric elastomer actuators have the potential to enable new technologies, such as tactile feedback gloves for virtual reality, and to improve existing devices, such as automatic blood pressure cuffs. They are potentially lighter, quieter, thinner, simpler, and cheaper than pneumatic and hydraulic systems now used to make compliant, actuated interfaces with the human body. Achieving good performance without using a rigid frame to prestrain the actuator is a fundamental challenge in using these actuators on body. To answer this challenge, a new type of fiber-prestrained composite actuator was developed. Equations that facilitate design of the actuator are presented, along with FE analysis, material tests, and experimental results from prototypes. Bending stiffness of the actuator material was found to be comparable to textiles used in clothing, confirming wearability. Two roll-to-roll machines are also presented that permit manufacture of this material in bulk as a modular, compact, prestressed composite that can be cut, stacked, and staggered, in order to build up actuators for a range of desired forces and displacements. The electromechanical properties of single- layered actuators manufactured by this method were measured (N=5). At non-damaging voltages, blocking force ranged from 3,7-5,0 gram per centimeter of actuator width, with linear strains of 20,0-30%. Driving the actuators to breakdown produced maximum force of 8,3-10 gram/cm, and actuation strain in excess 30%. Using this actuator, a prototype tactile display was constructed and demonstrated.

  13. Rolling-element fatigue life with traction fluids and automatic transmission fluid in a high-speed rolling-contact rig

    NASA Technical Reports Server (NTRS)

    Parker, R. J.; Nahm, A. H.; Loewenthal, S. H.

    1982-01-01

    Rolling-element fatigue tests were run in standard and high-speed rolling-contact rigs at bar speeds from 5000 to 50,000 rpm to determine the effects of speed and lubricant film parameter on rolling-element fatigue life. AISI 52100 test bars were tested at a maximum Hertz stress of 4.83 GPa (700,000 psi) with three traction fluids and an automatic transmission fluid. Rolling-element fatigue life increased with speed, with the greatest increases occurring from 10,000 to 50,000 rpm. The life data tended to follow published life-versus-lubricant-film-parameter data up to a film parameter of approximately 3.

  14. Memory metal actuator

    NASA Technical Reports Server (NTRS)

    Ruoff, C. F. (Inventor)

    1985-01-01

    A mechanical actuator can be constructed by employing a plurality of memory metal actuator elements in parallel to control the amount of actuating force. In order to facilitate direct control by digital control signals provided by a computer or the like, the actuating elements may vary in stiffness according to a binary relationship. The cooling or reset time of the actuator elements can be reduced by employing Peltier junction cooling assemblies in the actuator.

  15. Overall life cycle comprehensive assessment of pneumatic and electric actuator

    NASA Astrophysics Data System (ADS)

    Zhang, Yeming; Cai, Maolin

    2014-05-01

    Pneumatic actuators and electric actuators have almost been applied to all manufacturing industries. The two kinds of actuators can replace each other in most fields, such as the point to point transmission occasion and some rotating occasions. However, there are very few research results about the advantages and disadvantages of two kinds of actuators under the same working conditions so far. In this paper, a novel comprehensive assessment method, named as overall life cycle comprehensive assessment (OLCCA), is proposed for comparison and assessment of pneumatic and electric actuators. OLCCA contains mechanical properties evaluation (MPE), life cycle cost analysis based on users (LCCABOU) and life cycle environmental impact analysis (LCEIA) algorithm in order to solve three difficult problems: mechanical properties assessment, cost analysis and environmental impact assessment about actuators. The mechanical properties evaluation of actuators is a multi-objective optimization problem. The fuzzy data quantification and information entropy methods are combined to establish MPE algorithm of actuators. Two kinds of pneumatic actuators and electric actuators with similar bearing capacity and similar work stroke were taken for example to verify the correctness of MPE algorithm. The case study of MPE algorithm for actuators verified its correctness. LCCABOU for actuators is also set up. Considering cost complex structure of pneumatic actuators, public device cost even method (PDCEM) is firstly presented to solve cost division of public devices such as compressors, aftercooler, receivers, etc. LCCABOU method is also effective and verified by the three groups of pneumatic actuators and electric actuators. Finally, LCEIA model of actuators is established for the environmental impact assessment of actuators. LCEIA data collection method and model establishment procedure for actuators are also put forward. With Simapro 7, LCEIA comparison results of six actuators can be

  16. Flight control actuation system

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2006-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  17. Flight control actuation system

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2004-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  18. Self-actuating reactor shutdown system

    DOEpatents

    Barrus, Donald M.; Brummond, Willian A; Peterson, Leslie F.

    1988-01-01

    A control system for the automatic or self-actuated shutdown or "scram" of a nuclear reactor. The system is capable of initiating scram insertion by a signal from the plant protection system or by independent action directly sensing reactor conditions of low-flow or over-power. Self-actuation due to a loss of reactor coolant flow results from a decrease of pressure differential between the upper and lower ends of an absorber element. When the force due to this differential falls below the weight of the element, the element will fall by gravitational force to scram the reactor. Self-actuation due to high neutron flux is accomplished via a valve controlled by an electromagnet and a thermionic diode. In a reactor over-power, the diode will be heated to a change of state causing the electromagnet to be shorted thereby actuating the valve which provides the changed flow and pressure conditions required for scramming the absorber element.

  19. Automatic control: the vertebral column of dogfish sharks behaves as a continuously variable transmission with smoothly shifting functions.

    PubMed

    Porter, Marianne E; Ewoldt, Randy H; Long, John H

    2016-09-15

    During swimming in dogfish sharks, Squalus acanthias, both the intervertebral joints and the vertebral centra undergo significant strain. To investigate this system, unique among vertebrates, we cyclically bent isolated segments of 10 vertebrae and nine joints. For the first time in the biomechanics of fish vertebral columns, we simultaneously characterized non-linear elasticity and viscosity throughout the bending oscillation, extending recently proposed techniques for large-amplitude oscillatory shear (LAOS) characterization to large-amplitude oscillatory bending (LAOB). The vertebral column segments behave as non-linear viscoelastic springs. Elastic properties dominate for all frequencies and curvatures tested, increasing as either variable increases. Non-linearities within a bending cycle are most in evidence at the highest frequency, 2.0 Hz, and curvature, 5 m(-1) Viscous bending properties are greatest at low frequencies and high curvatures, with non-linear effects occurring at all frequencies and curvatures. The range of mechanical behaviors includes that of springs and brakes, with smooth transitions between them that allow for continuously variable power transmission by the vertebral column to assist in the mechanics of undulatory propulsion.

  20. Actuators for a space manipulator

    NASA Technical Reports Server (NTRS)

    Chun, W.; Brunson, P.

    1987-01-01

    The robotic manipulator can be decomposed into distinct subsytems. One particular area of interest of mechanical subsystems is electromechanical actuators (or drives). A drive is defined as a motor with an appropriate transmission. An overview is given of existing, as well as state-of-the-art drive systems. The scope is limited to space applications. A design philosophy and adequate requirements are the initial steps in designing a space-qualified actuator. The focus is on the d-c motor in conjunction with several types of transmissions (harmonic, tendon, traction, and gear systems). The various transmissions will be evaluated and key performance parameters will be addressed in detail. Included in the assessment is a shuttle RMS joint and a MSFC drive of the Prototype Manipulator Arm. Compound joints are also investigated. Space imposes a set of requirements for designing a high-performance drive assembly. Its inaccessibility and cryogenic conditions warrant special considerations. Some guidelines concerning these conditions are present. The goal is to gain a better understanding in designing a space actuator.

  1. Automatic pump for deep wells

    SciTech Connect

    Brown, K.D.

    1981-11-24

    An automatic pump for deep wells comprises a long stroke reciprocating pump having its piston normally in its bottom position and an automatic control dependent upon the collection of a predetermined amount of liquid in the pump cylinder above the piston for actuating the piston to pump the liquid into a production line. The automatic control includes an electric motor driven hydraulic pump and a reservoir of hydraulic fluid which is actuated upon filling of the reciprocating pump chamber to supply hydraulic fluid to a closed chamber below the piston and force the piston upwardly to discharge liquid from the pump cylinder. Gas collected in the top of the pump cylinder results in low starting current and a saving of energy. The hydraulic pump is reversed automatically upon completion of the pumping stroke of the piston.

  2. Superconducting linear actuator

    NASA Technical Reports Server (NTRS)

    Johnson, Bruce; Hockney, Richard

    1993-01-01

    Special actuators are needed to control the orientation of large structures in space-based precision pointing systems. Electromagnetic actuators that presently exist are too large in size and their bandwidth is too low. Hydraulic fluid actuation also presents problems for many space-based applications. Hydraulic oil can escape in space and contaminate the environment around the spacecraft. A research study was performed that selected an electrically-powered linear actuator that can be used to control the orientation of a large pointed structure. This research surveyed available products, analyzed the capabilities of conventional linear actuators, and designed a first-cut candidate superconducting linear actuator. The study first examined theoretical capabilities of electrical actuators and determined their problems with respect to the application and then determined if any presently available actuators or any modifications to available actuator designs would meet the required performance. The best actuator was then selected based on available design, modified design, or new design for this application. The last task was to proceed with a conceptual design. No commercially-available linear actuator or modification capable of meeting the specifications was found. A conventional moving-coil dc linear actuator would meet the specification, but the back-iron for this actuator would weigh approximately 12,000 lbs. A superconducting field coil, however, eliminates the need for back iron, resulting in an actuator weight of approximately 1000 lbs.

  3. Automatic safety rod for reactors

    DOEpatents

    Germer, John H.

    1988-01-01

    An automatic safety rod for a nuclear reactor containing neutron absorbing material and designed to be inserted into a reactor core after a loss-of-core flow. Actuation is based upon either a sudden decrease in core pressure drop or the pressure drop decreases below a predetermined minimum value. The automatic control rod includes a pressure regulating device whereby a controlled decrease in operating pressure due to reduced coolant flow does not cause the rod to drop into the core.

  4. Small passenger car transmission test: Mercury Lynx ATX transmission

    NASA Technical Reports Server (NTRS)

    Bujold, M. P.

    1981-01-01

    The testing of a Mercury Lynx automatic transmission is reported. The transmission was tested in accordance with a passenger car automatic transmission test code (SAE J65lb) which required drive performance, coast performance, and no load test conditions. Under these conditions, the transmission attained maximum efficiencies in the mid-ninety percent range both for drive performance test and coast performance tests. The torque, speed, and efficiency curves are presented, which provide the complete performance characteristics for the Mercury Lynx automatic transmission.

  5. Concept evaluation of a novel gear selector for automated manual transmissions

    NASA Astrophysics Data System (ADS)

    Zhong, Zaimin; Kong, Guoling; Yu, Zhuoping; Chen, Xinbo; Chen, Xueping; Xin, Xiangyan

    2012-08-01

    The existing Automatic Mechanical Transmission (AMT), whether electrically or hydraulically actuated, integrates shift actuators with gearbox shell as one unit by installing actuators on the gearbox. The problem it brings about is that the modification of the gearbox shell would be required, which increases the cost of AMT system. This paper proposes a novel gear selector for AMT, the concept of which enables the automation of shift action remotely realized by DC motors through shifting cable that originally used on manual transmission vehicle. Evidently, the advantage of this concept is that the automation of manual transmission could be easily realized by replacing the shift lever with two motors while the original shifting cable and gearbox could be reserved. Then the cost and development period can be shorten remarkably. Firstly, the concept of the novel gear selector is introduced, then the detailed mathematical model of shifting process is studied, and system design and scheme selection of this concept are performed. Optimal control algorithm based on LQR for actuator position feedback control is introduced. The concept and control algorithm are verified on a sample car, and considering the influence of the long path of transmission mechanism, the validation of the stability of this concept is performed through calibration test on mountain pass, and the obtained results show the concept of the novel gear selector for AMT is feasible technically with strong robust on the shifting stability, and it shows enormous potential for industrialization.

  6. Micromachined electrostatic vertical actuator

    DOEpatents

    Lee, Abraham P.; Sommargren, Gary E.; McConaghy, Charles F.; Krulevitch, Peter A.

    1999-10-19

    A micromachined vertical actuator utilizing a levitational force, such as in electrostatic comb drives, provides vertical actuation that is relatively linear in actuation for control, and can be readily combined with parallel plate capacitive position sensing for position control. The micromachined electrostatic vertical actuator provides accurate movement in the sub-micron to micron ranges which is desirable in the phase modulation instrument, such as optical phase shifting. For example, compact, inexpensive, and position controllable micromirrors utilizing an electrostatic vertical actuator can replace the large, expensive, and difficult-to-maintain piezoelectric actuators. A thirty pound piezoelectric actuator with corner cube reflectors, as utilized in a phase shifting diffraction interferometer can be replaced with a micromirror and a lens. For any very precise and small amplitudes of motion` micromachined electrostatic actuation may be used because it is the most compact in size, with low power consumption and has more straightforward sensing and control options.

  7. Electromagnetic rotational actuation.

    SciTech Connect

    Hogan, Alexander Lee

    2010-08-01

    There are many applications that need a meso-scale rotational actuator. These applications have been left by the wayside because of the lack of actuation at this scale. Sandia National Laboratories has many unique fabrication technologies that could be used to create an electromagnetic actuator at this scale. There are also many designs to be explored. In this internship exploration of the designs and fabrications technologies to find an inexpensive design that can be used for prototyping the electromagnetic rotational actuator.

  8. Bimorphic polymeric photomechanical actuator

    NASA Technical Reports Server (NTRS)

    Sarkisov, Sergey S. (Inventor); Curley, Michael J. (Inventor); Adamovsky, Grigory (Inventor); Sarkisov, Jr., Sergey S. (Inventor); Fields, Aisha B. (Inventor)

    2006-01-01

    A bimorphic polymeric photomechanical actuator, in one embodiment using polyvinylidene fluoride (PVDF) as a photosensitive body, transmitting light over fiber optic cables, and controlling the shape and pulse duration of the light pulse to control movement of the actuator. Multiple light beams are utilized to generate different ranges of motion for the actuator from a single photomechanical body and alternative designs use multiple light beams and multiple photomechanical bodies to provide controlled movement. Actuator movement using one or more ranges of motion is utilized to control motion to position an actuating element in three dimensional space.

  9. Development of Testing Methodologies for Nonlinear Solid State Actuation Materials

    DTIC Science & Technology

    2001-06-01

    size and material choice of the different system elements to be recalculated automatically. The masses and stiffnesses were then put into a Matlab ...actuation efficiency and work output for electromechanically fully coupled, non- linear systems working against generalized quasi-static loads. A component...with theoretical prediction. Results show actuation efficiency of a non-linear system is about 200% that of a linear system , and its work output is about

  10. Low-Stroke Actuation for a Serial Robot

    NASA Technical Reports Server (NTRS)

    Gao, Dalong (Inventor); Ihrke, Chris A. (Inventor)

    2014-01-01

    A serial robot includes a base, first and second segments, a proximal joint joining the base to the first segment, and a distal joint. The distal joint that joins the segments is serially arranged and distal with respect to the proximal joint. The robot includes first and second actuators. A first tendon extends from the first actuator to the proximal joint and is selectively moveable via the first actuator. A second tendon extends from the second actuator to the distal joint and is selectively moveable via the second actuator. The robot includes a transmission having at least one gear element which assists rotation of the distal joint when an input force is applied to the proximal and/or distal joints by the first and/or second actuators. A robotic hand having the above robot is also disclosed, as is a robotic system having a torso, arm, and the above-described hand.

  11. Continuously-variable series-elastic actuator.

    PubMed

    Mooney, Luke; Herr, Hugh

    2013-06-01

    Actuator efficiency is an important factor in the design of powered leg prostheses, orthoses, exoskeletons, and legged robots. A continuously-variable series-elastic actuator (CV-SEA) is presented as an efficient actuator for legged locomotion. The CV-SEA implements a continuously-variable transmission (CVT) between a motor and series elastic element. The CVT reduces the torque seen at the motor and allows the motor to operate in speed regimes of higher efficiency, while the series-elastic element efficiently stores and releases mechanical energy, reducing motor work requirements for actuator applications where an elastic response is sought. An energy efficient control strategy for the CV-SEA was developed using a Monte-Carlo minimization method that randomly generates transmission profiles and converges on those that minimize the electrical energy consumption of the motor. The CV-SEA is compared to a standard SEA and an infinitely variable series elastic actuator (IV-SEA). Simulations suggest that a CV-SEA will require less energy that an SEA or IV-SEA when used in a knee prosthesis during level-ground walking.

  12. Elastic actuator for precise force control

    DOEpatents

    Pratt, G.A.; Williamson, M.M.

    1997-07-22

    The invention provides an elastic actuator consisting of a motor and a motor drive transmission connected at an output of the motor. An elastic element is connected in series with the motor drive transmission, and this elastic element is positioned to alone support the full weight of any load connected at an output of the actuator. A single force transducer is positioned at a point between a mount for the motor and an output of the actuator. This force transducer generates a force signal, based on deflection of the elastic element, that indicates force applied by the elastic element to an output of the actuator. An active feedback force control loop is connected between the force transducer and the motor for controlling the motor. This motor control is based on the force signal to deflect the elastic element an amount that produces a desired actuator output force. The produced output force is substantially independent of load motion. The invention also provides a torsional spring consisting of a flexible structure having at least three flat sections each connected integrally with and extending radially from a central section. Each flat section extends axially along the central section from a distal end of the central section to a proximal end of the central section. 30 figs.

  13. Elastic actuator for precise force control

    DOEpatents

    Pratt, Gill A.; Williamson, Matthew M.

    1997-07-22

    The invention provides an elastic actuator consisting of a motor and a motor drive transmission connected at an output of the motor. An elastic element is connected in series with the motor drive transmission, and this elastic element is positioned to alone support the full weight of any load connected at an output of the actuator. A single force transducer is positioned at a point between a mount for the motor and an output of the actuator. This force transducer generates a force signal, based on deflection of the elastic element, that indicates force applied by the elastic element to an output of the actuator. An active feedback force control loop is connected between the force transducer and the motor for controlling the motor. This motor control is based on the force signal to deflect the elastic element an amount that produces a desired actuator output force. The produced output force is substantially independent of load motion. The invention also provides a torsional spring consisting of a flexible structure having at least three flat sections each connected integrally with and extending radially from a central section. Each flat section extends axially along the central section from a distal end of the central section to a proximal end of the central section.

  14. MEMS fluidic actuator

    DOEpatents

    Kholwadwala, Deepesh K.; Johnston, Gabriel A.; Rohrer, Brandon R.; Galambos, Paul C.; Okandan, Murat

    2007-07-24

    The present invention comprises a novel, lightweight, massively parallel device comprising microelectromechanical (MEMS) fluidic actuators, to reconfigure the profile, of a surface. Each microfluidic actuator comprises an independent bladder that can act as both a sensor and an actuator. A MEMS sensor, and a MEMS valve within each microfluidic actuator, operate cooperatively to monitor the fluid within each bladder, and regulate the flow of the fluid entering and exiting each bladder. When adjacently spaced in a array, microfluidic actuators can create arbitrary surface profiles in response to a change in the operating environment of the surface. In an embodiment of the invention, the profile of an airfoil is controlled by independent extension and contraction of a plurality of actuators, that operate to displace a compliant cover.

  15. Series elastic actuators

    NASA Astrophysics Data System (ADS)

    Williamson, Matthew M.

    1995-01-01

    This thesis presents the design, construction, control and evaluation of a novel for controlled actuator. Traditional force controlled actuators are designed from the premise that 'Stiffer is better'. This approach gives a high bandwidth system, prone to problems of contact instability, noise, and low power density. The actuator presented in this thesis is designed from the premise that 'Stiffness isn't everything'. The actuator, which incorporates a series elastic element, trades off achievable bandwidth for gains in stable, low noise force control, and protection against shock loads. This thesis reviews related work in robot force control, presents theoretical descriptions of the control and expected performance from a series elastic actuator, and describes the design of a test actuator constructed to gather performance data. Finally the performance of the system is evaluated by comparing the performance data to theoretical predictions.

  16. Effective Actuation: High Bandwidth Actuators and Actuator Scaling Laws

    DTIC Science & Technology

    2007-11-02

    5c. PROGRAM ELEMENT NUMBER I-ioh Bandwidth Actiintorv and Actuator 9clinp Iaw-, 65502F 6. AUTHOR(S) 5d. PROJECT NUMBER A. B. Cain, G. R. Raman , and E...of possible applications include the high frequency excitation for supprc~sion of flow induced resonance in weapons bay cavities (see Raman et al...systems. Adaptive high bandwidth actuators are required to adapt to changes in flow speed and conditions during flight. Raman et al. (2000) and Stanek et

  17. Hydraulic Actuator Project

    DTIC Science & Technology

    2003-11-01

    Hydraulic Actuator Project Stakeholder meeting held 7- 8 October in Los Angeles; 58 attendees representing aircraft and actuator OEMs, seal...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Research Laboratory,4555 Overlook Ave., SW ,Washington,DC,20375 8 . PERFORMING ORGANIZATION REPORT...unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8 -98) Prescribed by ANSI Std Z39-18 Actuator JTP: Coupon Testing Substrate

  18. Remote switch actuator

    DOEpatents

    Haas, Edwin Gerard; Beauman, Ronald; Palo, Jr., Stefan

    2013-01-29

    The invention provides a device and method for actuating electrical switches remotely. The device is removably attached to the switch and is actuated through the transfer of a user's force. The user is able to remain physically removed from the switch site obviating need for protective equipment. The device and method allow rapid, safe actuation of high-voltage or high-current carrying electrical switches or circuit breakers.

  19. Smart actuators: a novel technique for active damping

    NASA Astrophysics Data System (ADS)

    Muth, Michael; Moldovan, Klaus; Goetz, Bernt

    1995-05-01

    Sensors are important components for any automatic process. Their function is to measure physical variables, and thus to allow automatic actions in a technical process, for example in a manufacturing sequence or a measurement. Selecting a sensor for a process, it is mostly overlooked that actuators used in a process also have sensory properties. The reactions of actuators to the state of a process give the possibility to extract relevant information out of the process with actuators. In using the sensory properties of actuators the costs for additional sensors can be saved. Even more important, under some circumstances it may not even be possible to place a special sensor directly at the location of interest: In that case the information about the physical variable is only accessible by analyzing the return signal of the actuator. An example of such a smart actuator combining active and sensory properties is demonstrated in a simple experiment. This experiment shows a steel ball supported as a pendulum. The steel ball can be pushed off, and on swinging back it can be caught in a single pass without any bounce. The actuator uses the piezoelectric effect which shows the underlying principle most clearly: Application of the reversibility of physical effects. In this case mechanical energy can either be produced or absorbed. This experiment is means as a demonstration model for students. It is also used for preliminary investigations developing a fast, actively damped tipping mechanism (optical scanner).

  20. Improved Electrohydraulic Linear Actuators

    NASA Technical Reports Server (NTRS)

    Hamtil, James

    2004-01-01

    A product line of improved electrohydraulic linear actuators has been developed. These actuators are designed especially for use in actuating valves in rocket-engine test facilities. They are also adaptable to many industrial uses, such as steam turbines, process control valves, dampers, motion control, etc. The advantageous features of the improved electrohydraulic linear actuators are best described with respect to shortcomings of prior electrohydraulic linear actuators that the improved ones are intended to supplant. The flow of hydraulic fluid to the two ports of the actuator cylinder is controlled by a servo valve that is controlled by a signal from a servo amplifier that, in turn, receives an analog position-command signal (a current having a value between 4 and 20 mA) from a supervisory control system of the facility. As the position command changes, the servo valve shifts, causing a greater flow of hydraulic fluid to one side of the cylinder and thereby causing the actuator piston to move to extend or retract a piston rod from the actuator body. A linear variable differential transformer (LVDT) directly linked to the piston provides a position-feedback signal, which is compared with the position-command signal in the servo amplifier. When the position-feedback and position-command signals match, the servo valve moves to its null position, in which it holds the actuator piston at a steady position.

  1. AUTOMATIC FREQUENCY CONTROL SYSTEM

    DOEpatents

    Hansen, C.F.; Salisbury, J.D.

    1961-01-10

    A control is described for automatically matching the frequency of a resonant cavity to that of a driving oscillator. The driving oscillator is disconnected from the cavity and a secondary oscillator is actuated in which the cavity is the frequency determining element. A low frequency is mixed with the output of the driving oscillator and the resultant lower and upper sidebands are separately derived. The frequencies of the sidebands are compared with the secondary oscillator frequency. deriving a servo control signal to adjust a tuning element in the cavity and matching the cavity frequency to that of the driving oscillator. The driving oscillator may then be connected to the cavity.

  2. Electrically actuatable temporal tristimulus-color device

    DOEpatents

    Koehler, Dale R.

    1992-01-01

    The electrically actuated light filter operates in a cyclical temporal mode to effect a tristimulus-color light analyzer. Construction is based on a Fabry-Perot interferometer comprised of a high-speed movable mirror pair and cyclically powered electrical actuators. When combined with a single vidicon tube or a monochrome solid state image sensor, a temporally operated tristimulus-color video camera is effected. A color-generated is accomplished when constructed with a companion light source and is a flicker-free colored-light source for transmission type display systems. Advantages of low cost and small physical size result from photolithographic batch-processing manufacturability.

  3. Self-actuated device

    DOEpatents

    Hecht, Samuel L.

    1984-01-01

    A self-actuated device, of particular use as a valve or an orifice for nuclear reactor fuel and blanket assemblies, in which a gas produced by a neutron induced nuclear reaction gradually accumulates as a function of neutron fluence. The gas pressure increase occasioned by such accumulation of gas is used to actuate the device.

  4. Remotely controllable actuating device

    NASA Technical Reports Server (NTRS)

    McKillip, Jr., Robert M. (Inventor)

    1998-01-01

    An actuating device can change a position of an active member that remains in substantially the same position in the absence of a force of a predetermined magnitude on the active member. The actuating device comprises a shape-memory alloy actuating member for exerting a force when actuated by changing the temperature thereof, which shape-memory alloy actuating member has a portion for connection to the active member for exerting thereon a force having a magnitude at least as large as the predetermined magnitude for moving the active member to a desired position. Actuation circuitry is provided for actuating the shape-memory alloy actuating member by changing the temperature thereof only for the time necessary to move the active member to the desired position. The invention is particularly useful for changing the position of a camber-adjusting tab on a helicopter rotor blade by using two shape-memory alloy members that can act against each other to adjust dynamic properties of the rotor blade as it is rotating.

  5. Massively Redundant Electromechanical Actuators

    DTIC Science & Technology

    2014-08-30

    date of determination). DoD Controlling Office is (insert controlling DoD office). "Massively Redundant Electromechanical Actuators" August... electromechanical systems) processes are used to manufacture reliable and reproducible stators and sliders for the actuators. These processes include

  6. Fast electrochemical actuator

    NASA Astrophysics Data System (ADS)

    Uvarov, I. V.; Postnikov, A. V.; Svetovoy, V. B.

    2016-03-01

    Lack of fast and strong microactuators is a well-recognized problem in MEMS community. Electrochemical actuators can develop high pressure but they are notoriously slow. Water electrolysis produced by short voltage pulses of alternating polarity can overcome the problem of slow gas termination. Here we demonstrate an actuation regime, for which the gas pressure is relaxed just for 10 μs or so. The actuator consists of a microchamber filled with the electrolyte and covered with a flexible membrane. The membrane bends outward when the pressure in the chamber increases. Fast termination of gas and high pressure developed in the chamber are related to a high density of nanobubbles in the chamber. The physical processes happening in the chamber are discussed so as problems that have to be resolved for practical applications of this actuation regime. The actuator can be used as a driving engine for microfluidics.

  7. Cryogenic Piezoelectric Actuator

    NASA Technical Reports Server (NTRS)

    Jiang, Xiaoning; Cook, William B.; Hackenberger, Wesley S.

    2009-01-01

    In this paper, PMN-PT single crystal piezoelectric stack actuators and flextensional actuators were designed, prototyped and characterized for space optics applications. Single crystal stack actuators with footprint of 10 mm x10 mm and the height of 50 mm were assembled using 10 mm x10mm x0.15mm PMN-PT plates. These actuators showed stroke > 65 - 85 microns at 150 V at room temperature, and > 30 microns stroke at 77 K. Flextensional actuators with dimension of 10mm x 5 mm x 7.6 mm showed stroke of >50 microns at room temperature at driving voltage of 150 V. A flextensional stack actuator with dimension of 10 mm x 5 mm x 47 mm showed stroke of approx. 285 microns at 150 V at room temperature and > 100 microns at 77K under driving of 150 V should be expected. The large cryogenic stroke and high precision of these actuators are promising for cryogenic optics applications.

  8. Dielectric elastomer actuators with granular coupling

    NASA Astrophysics Data System (ADS)

    Carpi, Federico; Frediani, Gabriele; Nanni, Massimo; De Rossi, Danilo

    2011-04-01

    So-called 'hydrostatically coupled' dielectric elastomer actuators (HC-DEAs) have recently been shown to offer new opportunities for actuation devices made of electrically responsive elastomeric insulators. HC-DEAs include an incompressible fluid that mechanically couples a dielectric elastomer based active part to a passive part interfaced to the load, so as to enable hydrostatic transmission. Drawing inspiration from that concept, this paper presents a new kind of actuators, analogous to HC-DEAs, except for the fact that the fluid is replaced by fine powder. The related technology, here referred to as 'granularly coupled' DEAs (GC-DEAs), relies entirely on solid-state materials. This permits to avoid drawbacks (such as handling and leakage) inherent to usage of fluids, especially those in liquid phase. The paper presents functionality and actuation performance of bubble-like GC-DEAs, in direct comparison with HC-DEAs. For this purpose, prototype actuators made of two pre-stretched membranes of acrylic elastomer, coupled via talcum powder (for GC-DEA) or silicone grease (for HC-DEA), were manufactured and comparatively tested. As compared to HC-DEAs, GC-DEAs showed a higher maximum stress, the same maximum relative displacement, and nearly the same bandwidth. The paper presents characterization results and discusses advantages and drawbacks of GC-DEAs, in comparison with HC-DEAs.

  9. Liquid rocket actuators and operators. [in spacecraft control systems

    NASA Technical Reports Server (NTRS)

    1973-01-01

    All the types of actuators and associated operators used in booster, upper stage, and spacecraft propulsion and reaction-control systems except for chemical-explosive actuators and turbine actuators are discussed. Discussion of static and dynamic seals, mechanical transmission of motion, and instrumentation is included to the extent that actuator or operator design is affected. Selection of the optimum actuator configuration is discussed for specific application which require a tradeoff study that considers all the relevant factors: available energy sources, load capacity, stroke, speed of response, leakage limitations, environmental conditions, chemical compatibility, storage life and conditions, size, weight, and cost. These factors are interrelated with overall control-system design evaluations that are beyond the scope of this monograph; however, literature references are cited for a detailed review of the general considerations. Perinent advanced-state-of-the-art design concepts are surveyed briefly.

  10. Automatic Imitation

    ERIC Educational Resources Information Center

    Heyes, Cecilia

    2011-01-01

    "Automatic imitation" is a type of stimulus-response compatibility effect in which the topographical features of task-irrelevant action stimuli facilitate similar, and interfere with dissimilar, responses. This article reviews behavioral, neurophysiological, and neuroimaging research on automatic imitation, asking in what sense it is "automatic"…

  11. Automatic safety rod for reactors. [LMFBR

    DOEpatents

    Germer, J.H.

    1982-03-23

    An automatic safety rod for a nuclear reactor containing neutron absorbing material and designed to be inserted into a reactor core after a loss-of-flow. Actuation is based upon either a sudden decrease in core pressure drop or the pressure drop decreases below a predetermined minimum value. The automatic control rod includes a pressure regulating device whereby a controlled decrease in operating pressure due to reduced coolant flow does not cause the rod to drop into the core.

  12. Magnetically Actuated Seal

    NASA Technical Reports Server (NTRS)

    Pinera, Alex

    2013-01-01

    This invention is a magnetically actuated seal in which either a single electromagnet, or multiple electromagnets, are used to control the seal's position. This system can either be an open/ close type of system or an actively controlled system.

  13. Rotary Series Elastic Actuator

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Mehling, Joshua S. (Inventor); Parsons, Adam H. (Inventor); Griffith, Bryan Kristian (Inventor); Radford, Nicolaus A. (Inventor); Permenter, Frank Noble (Inventor); Davis, Donald R. (Inventor); Ambrose, Robert O. (Inventor); Junkin, Lucien Q. (Inventor)

    2013-01-01

    A rotary actuator assembly is provided for actuation of an upper arm assembly for a dexterous humanoid robot. The upper arm assembly for the humanoid robot includes a plurality of arm support frames each defining an axis. A plurality of rotary actuator assemblies are each mounted to one of the plurality of arm support frames about the respective axes. Each rotary actuator assembly includes a motor mounted about the respective axis, a gear drive rotatably connected to the motor, and a torsion spring. The torsion spring has a spring input that is rotatably connected to an output of the gear drive and a spring output that is connected to an output for the joint.

  14. Rotary series elastic actuator

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Mehling, Joshua S. (Inventor); Parsons, Adam H. (Inventor); Griffith, Bryan Kristian (Inventor); Radford, Nicolaus A. (Inventor); Permenter, Frank Noble (Inventor); Davis, Donald R. (Inventor); Ambrose, Robert O. (Inventor); Junkin, Lucien Q. (Inventor)

    2012-01-01

    A rotary actuator assembly is provided for actuation of an upper arm assembly for a dexterous humanoid robot. The upper arm assembly for the humanoid robot includes a plurality of arm support frames each defining an axis. A plurality of rotary actuator assemblies are each mounted to one of the plurality of arm support frames about the respective axes. Each rotary actuator assembly includes a motor mounted about the respective axis, a gear drive rotatably connected to the motor, and a torsion spring. The torsion spring has a spring input that is rotatably connected to an output of the gear drive and a spring output that is connected to an output for the joint.

  15. Linear Proof Mass Actuator

    NASA Technical Reports Server (NTRS)

    Holloway, Sidney E., III

    1994-01-01

    This paper describes the mechanical design, analysis, fabrication, testing, and lessons learned by developing a uniquely designed spaceflight-like actuator. The linear proof mass actuator (LPMA) was designed to attach to both a large space structure and a ground test model without modification. Previous designs lacked the power to perform in a terrestrial environment while other designs failed to produce the desired accelerations or frequency range for spaceflight applications. Thus, the design for a unique actuator was conceived and developed at NASA Langley Research Center. The basic design consists of four large mechanical parts (mass, upper housing, lower housing, and center support) and numerous smaller supporting components including an accelerometer, encoder, and four drive motors. Fabrication personnel were included early in the design phase of the LPMA as part of an integrated manufacturing process to alleviate potential difficulties in machining an already challenging design. Operating testing of the LPMA demonstrated that the actuator is capable of various types of load functions.

  16. Linear Proof Mass Actuator

    NASA Technical Reports Server (NTRS)

    Holloway, S. E., III

    1995-01-01

    This paper describes the mechanical design, analysis, fabrication, testing, and lessons learned by developing a uniquely designed spaceflight-like actuator. The Linear Proof Mass Actuator (LPMA) was designed to attach to both a large space structure and a ground test model without modification. Previous designs lacked the power to perform in a terrestrial environment while other designs failed to produce the desired accelerations or frequency range for spaceflight applications. Thus, the design for a unique actuator was conceived and developed at NASA Langley Research Center. The basic design consists of four large mechanical parts (Mass, Upper Housing, Lower Housing, and Center Support) and numerous smaller supporting components including an accelerometer, encoder, and four drive motors. Fabrication personnel were included early in the design phase of the LPMA as part of an integrated manufacturing process to alleviate potential difficulties in machining an already challenging design. Operational testing of the LPMA demonstrated that the actuator is capable of various types of load functions.

  17. Muscle Motion Solenoid Actuator

    NASA Astrophysics Data System (ADS)

    Obata, Shuji

    It is one of our dreams to mechanically recover the lost body for damaged humans. Realistic humanoid robots composed of such machines require muscle motion actuators controlled by all pulling actions. Particularly, antagonistic pairs of bi-articular muscles are very important in animal's motions. A system of actuators is proposed using the electromagnetic force of the solenoids with the abilities of the stroke length over 10 cm and the strength about 20 N, which are needed to move the real human arm. The devised actuators are based on developments of recent modern electro-magnetic materials, where old time materials can not give such possibility. Composite actuators are controlled by a high ability computer and software making genuine motions.

  18. Tendon Driven Finger Actuation System

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Reich, David M. (Inventor); Bridgwater, Lyndon (Inventor); Linn, Douglas Martin (Inventor); Askew, Scott R. (Inventor); Diftler, Myron A. (Inventor); Platt, Robert (Inventor); Hargrave, Brian (Inventor); Valvo, Michael C. (Inventor); Abdallah, Muhammad E. (Inventor); Permenter, Frank Noble (Inventor); Mehling, Joshua S. (Inventor)

    2013-01-01

    A humanoid robot includes a robotic hand having at least one finger. An actuation system for the robotic finger includes an actuator assembly which is supported by the robot and is spaced apart from the finger. A tendon extends from the actuator assembly to the at least one finger and ends in a tendon terminator. The actuator assembly is operable to actuate the tendon to move the tendon terminator and, thus, the finger.

  19. Inertial Linear Actuators

    NASA Technical Reports Server (NTRS)

    Laughlin, Darren

    1995-01-01

    Inertial linear actuators developed to suppress residual accelerations of nominally stationary or steadily moving platforms. Function like long-stroke version of voice coil in conventional loudspeaker, with superimposed linear variable-differential transformer. Basic concept also applicable to suppression of vibrations of terrestrial platforms. For example, laboratory table equipped with such actuators plus suitable vibration sensors and control circuits made to vibrate much less in presence of seismic, vehicular, and other environmental vibrational disturbances.

  20. Combustion powered linear actuator

    DOEpatents

    Fischer, Gary J.

    2007-09-04

    The present invention provides robotic vehicles having wheeled and hopping mobilities that are capable of traversing (e.g. by hopping over) obstacles that are large in size relative to the robot and, are capable of operation in unpredictable terrain over long range. The present invention further provides combustion powered linear actuators, which can include latching mechanisms to facilitate pressurized fueling of the actuators, as can be used to provide wheeled vehicles with a hopping mobility.

  1. Laser Initiated Actuator study

    SciTech Connect

    Watson, B.

    1991-06-27

    The program task was to design and study a laser initiated actuator. The design of the actuator is described, it being comprised of the fiber and body subassemblies. The energy source for all experiments was a Spectra Diode 2200-H2 laser diode. The diode is directly coupled to a 100 micron core, 0.3 numerical aperture fiber optic terminated with an SMA connector. The successful testing results are described and recommendations are made.

  2. Small passenger car transmission test; Ford C4 transmission

    NASA Technical Reports Server (NTRS)

    Bujold, M. P.

    1980-01-01

    A 1979 Ford C4 automatic transmission was tested per a passenger car automatic transmission test code (SAE J651b) which required drive performance, coast performance, and no load test conditions. Under these test conditions, the transmission attained maximum efficiencies in the mid-eighty percent range for both drive performance tests and coast performance tests. The major results of this test (torque, speed, and efficiency curves) are presented. Graphs map the complete performance characteristics for the Ford C4 transmission.

  3. Compact electrostatic comb actuator

    DOEpatents

    Rodgers, M. Steven; Burg, Michael S.; Jensen, Brian D.; Miller, Samuel L.; Barnes, Stephen M.

    2000-01-01

    A compact electrostatic comb actuator is disclosed for microelectromechanical (MEM) applications. The actuator is based upon a plurality of meshed electrostatic combs, some of which are stationary and others of which are moveable. One or more restoring springs are fabricated within an outline of the electrostatic combs (i.e. superposed with the moveable electrostatic combs) to considerably reduce the space required for the actuator. Additionally, a truss structure is provided to support the moveable electrostatic combs and prevent bending or distortion of these combs due to unbalanced electrostatic forces or external loading. The truss structure formed about the moveable electrostatic combs allows the spacing between the interdigitated fingers of the combs to be reduced to about one micron or less, thereby substantially increasing the number of active fingers which can be provided in a given area. Finally, electrostatic shields can be used in the actuator to substantially reduce unwanted electrostatic fields to further improve performance of the device. As a result, the compact electrostatic comb actuator of the present invention occupies only a fraction of the space required for conventional electrostatic comb actuators, while providing a substantial increase in the available drive force (up to one-hundred times).

  4. Hybrid electromechanical actuator and actuation system

    NASA Technical Reports Server (NTRS)

    Su, Ji (Inventor); Xu, Tian-Bing (Inventor)

    2008-01-01

    A hybrid electromechanical actuator has two different types of electromechanical elements, one that expands in a transverse direction when electric power is applied thereto and one that contracts in a transverse direction when electric power is applied thereto. The two electromechanical elements are (i) disposed in relation to one another such that the transverse directions thereof are parallel to one another, and (ii) mechanically coupled to one another at least at two opposing edges thereof. Electric power is applied simultaneously to the elements.

  5. Backed Bending Actuator

    NASA Technical Reports Server (NTRS)

    Costen, Robert C.; Su, Ji

    2004-01-01

    Bending actuators of a proposed type would partly resemble ordinary bending actuators, but would include simple additional components that would render them capable of exerting large forces at small displacements. Like an ordinary bending actuator, an actuator according to the proposal would include a thin rectangular strip that would comprise two bonded layers (possibly made of electroactive polymers with surface electrodes) and would be clamped at one end in the manner of a cantilever beam. Unlike an ordinary bending actuator, the proposed device would include a rigid flat backplate that would support part of the bending strip against backward displacement; because of this feature, the proposed device is called a backed bending actuator. When an ordinary bending actuator is inactive, the strip typically lies flat, the tip displacement is zero, and the force exerted by the tip is zero. During activation, the tip exerts a transverse force and undergoes a bending displacement that results from the expansion or contraction of one or more of the bonded layers. The tip force of an ordinary bending actuator is inversely proportional to its length; hence, a long actuator tends to be weak. The figure depicts an ordinary bending actuator and the corresponding backed bending actuator. The bending, the tip displacement (d(sub t)), and the tip force (F) exerted by the ordinary bending actuator are well approximated by the conventional equations for the loading and deflection of a cantilever beam subject to a bending moment which, in this case, is applied by the differential expansion or contraction of the bonded layers. The bending, displacement, and tip force of the backed bending actuator are calculated similarly, except that it is necessary to account for the fact that the force F(sub b) that resists the displacement of the tip could be sufficient to push part of the strip against the backplate; in such a condition, the cantilever beam would be effectively shortened

  6. Non-collinear valve actuator

    NASA Technical Reports Server (NTRS)

    Richard, James A. (Inventor)

    2012-01-01

    A non-collinear valve actuator includes a primary actuating system and a return spring system with each applying forces to a linkage system in order to regulate the flow of a quarter-turn valve. The primary actuating system and return spring system are positioned non-collinearly, which simply means the primary actuating system and return spring system are not in line with each other. By positioning the primary actuating system and return spring system in this manner, the primary actuating system can undergo a larger stroke while the return spring system experiences significantly less displacement. This allows the length of the return spring to be reduced due to the minimization of displacement thereby reducing the weight of the return spring system. By allowing the primary actuating system to undergo longer strokes, the weight of the primary actuating system may also be reduced. Accordingly, the weight of the non-collinear valve actuator is reduced.

  7. Digital Actuator Technology

    SciTech Connect

    Ken Thomas; Ted Quinn; Jerry Mauck; Richard Bockhorst

    2014-09-01

    There are significant developments underway in new types of actuators for power plant active components. Many of these make use of digital technology to provide a wide array of benefits in performance of the actuators and in reduced burden to maintain them. These new product offerings have gained considerable acceptance in use in process plants. In addition, they have been used in conventional power generation very successfully. This technology has been proven to deliver the benefits promised and substantiate the claims of improved performance. The nuclear industry has been reluctant to incorporate digital actuator technology into nuclear plant designs due to concerns due to a number of concerns. These could be summarized as cost, regulatory uncertainty, and a certain comfort factor with legacy analog technology. The replacement opportunity for these types of components represents a decision point for whether to invest in more modern technology that would provide superior operational and maintenance benefits. Yet, the application of digital technology has been problematic for the nuclear industry, due to qualification and regulatory issues. With some notable exceptions, the result has been a continuing reluctance to undertake the risks and uncertainties of implementing digital actuator technology when replacement opportunities present themselves. Rather, utilities would typically prefer to accept the performance limitations of the legacy analog actuator technologies to avoid impacts to project costs and schedules. The purpose of this report is to demonstrate that the benefits of digital actuator technology can be significant in terms of plant performance and that it is worthwhile to address the barriers currently holding back the widespread development and use of this technology. It addresses two important objectives in pursuit of the beneficial use of digital actuator technology for nuclear power plants: 1. To demonstrate the benefits of digital actuator

  8. Folded dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Carpi, Federico; Salaris, Claudio; DeRossi, Danilo

    2007-04-01

    Polymer-based linear actuators with contractile ability are currently demanded for several types of applications. Within the class of dielectric elastomer actuators, two basic configurations are available today for such a purpose: the multi-layer stack and the helical structure. The first consists of several layers of elementary planar actuators stacked in series mechanically and parallel electrically. The second configuration relies on a couple of helical compliant electrodes alternated with a couple of helical dielectrics. The fabrication of both these configurations presents some specific drawbacks today, arising from the peculiarity of each structure. Accordingly, the availability of simpler solutions may boost the short-term use of contractile actuators in practical applications. For this purpose, a new configuration is here described. It consists of a monolithic structure made of an electroded sheet, which is folded up and compacted. The resulting device is functionally equivalent to a multi-layer stack with interdigitated electrodes. However, with respect to a stack the new configuration is advantageously not discontinuous and can be manufactured in one single phase, avoiding layer-by-layer multi-step procedures. The development and preliminary testing of prototype samples of this new actuator made of a silicone elastomer are presented here.

  9. Hydraulically actuated artificial muscles

    NASA Astrophysics Data System (ADS)

    Meller, M. A.; Tiwari, R.; Wajcs, K. B.; Moses, C.; Reveles, I.; Garcia, E.

    2012-04-01

    Hydraulic Artificial Muscles (HAMs) consisting of a polymer tube constrained by a nylon mesh are presented in this paper. Despite the actuation mechanism being similar to its popular counterpart, which are pneumatically actuated (PAM), HAMs have not been studied in depth. HAMs offer the advantage of compliance, large force to weight ratio, low maintenance, and low cost over traditional hydraulic cylinders. Muscle characterization for isometric and isobaric tests are discussed and compared to PAMs. A model incorporating the effect of mesh angle and friction have also been developed. In addition, differential swelling of the muscle on actuation has also been included in the model. An application of lab fabricated HAMs for a meso-scale robotic system is also presented.

  10. Biomimetic photo-actuation: sensing, control and actuation in sun-tracking plants.

    PubMed

    Dicker, M P M; Rossiter, J M; Bond, I P; Weaver, P M

    2014-09-01

    Although the actuation mechanisms that drive plant movement have been investigated from a biomimetic perspective, few studies have looked at the wider sensing and control systems that regulate this motion. This paper examines photo-actuation-actuation induced by, and controlled with light-through a review of the sun-tracking functions of the Cornish Mallow. The sun-tracking movement of the Cornish Mallow leaf results from an extraordinarily complex-yet extremely elegant-process of signal perception, generation, filtering and control. Inspired by this process, a concept for a simplified biomimetic analogue of this leaf is proposed: a multifunctional structure employing chemical sensing, signal transmission, and control of composite hydrogel actuators. We present this multifunctional structure, and show that the success of the concept will require improved selection of materials and structural design. This device has application in the solar-tracking of photovoltaic panels for increased energy yield. More broadly it is envisaged that the concept of chemical sensing and control can be expanded beyond photo-actuation to many other stimuli, resulting in new classes of robust solid-state devices.

  11. Hydraulic involute cam actuator

    DOEpatents

    Love, Lonnie J [Knoxville, TN; Lind, Randall F [Loudon, TX

    2011-11-01

    Mechanical joints are provided in which the angle between a first coupled member and a second coupled member may be varied by mechanical actuators. In some embodiments the angle may be varied around a pivot axis in one plane and in some embodiments the angle may be varied around two pivot axes in two orthogonal planes. The joints typically utilize a cam assembly having two lobes with an involute surface. Actuators are configured to push against the lobes to vary the rotation angle between the first and second coupled member.

  12. Tetherless thermobiochemically actuated microgrippers

    PubMed Central

    Leong, Timothy G.; Randall, Christina L.; Benson, Bryan R.; Bassik, Noy; Stern, George M.; Gracias, David H.

    2009-01-01

    We demonstrate mass-producible, tetherless microgrippers that can be remotely triggered by temperature and chemicals under biologically relevant conditions. The microgrippers use a self-contained actuation response, obviating the need for external tethers in operation. The grippers can be actuated en masse, even while spatially separated. We used the microgrippers to perform diverse functions, such as picking up a bead on a substrate and the removal of cells from tissue embedded at the end of a capillary (an in vitro biopsy). PMID:19139411

  13. Methods and systems for micro transmissions

    SciTech Connect

    Stalford, Harold L

    2014-12-23

    Methods and systems for micro transmissions for a micro machine may comprise an input shaft assembly coupled to a micro actuator, an output shaft assembly coupled to a micro shaft, and one or more power conversion elements operable to convert a first type of movement from the micro actuator into a second, disparate type of movement for the micro shaft.

  14. Adaptive and controllable compliant systems with embedded actuators and sensors

    NASA Astrophysics Data System (ADS)

    Trease, Brian; Kota, Sridhar

    2007-04-01

    We present a framework for the design of a compliant system; i.e. the concurrent design of a compliant mechanism with embedded actuators and embedded sensors. Our methods simultaneously synthesize optimal structural topology and placement of actuators and sensors for maximum energy efficiency and adaptive performance, while satisfying various weight and performance constraints. The goal of this research is to lay an algorithmic framework for distributed actuation and sensing within a compliant active structure. Key features of the methodology include (1) the simultaneous optimization of the location, orientation, and size of actuators concurrent with the compliant transmission topology and (2) the concepts of controllability and observability that arise from the consideration of control, and their implementation in compliant systems design. The methods used include genetic algorithms, graph searches for connectivity, and multiple load cases implemented with linear finite element analysis. Actuators, modeled as both force generators and structural compliant elements, are included as topology variables in the optimization. Results are provided for several studies, including: (1) concurrent actuator placement and topology design for a compliant amplifier and (2) a shape-morphing aircraft wing demonstration with three controlled output nodes. Central to this method is the concept of structural orthogonality, which refers to the unique system response for each actuator it contains. Finally, the results from the controllability problem are used to motivate and describe the analogous extension to observability for sensing.

  15. Fabrication of Polyurethane Dielectric Actuators

    DTIC Science & Technology

    2005-01-01

    a summary of a 3 year Technology Investment Fund Project entitled “Dielectric Polymer Actuators for Active/ Passive Vibration Isolation”, which was...completed in March 2005. The purpose of this project was to investigate dielectric polymer materials for potential use in active/ passive vibration...devices and systems based on dielectric polymer actuators. Keywords: dielectric actuators, electroactive polymers , Technology Investment Fund 1

  16. "Mighty Worm" Piezoelectric Actuator

    NASA Technical Reports Server (NTRS)

    Bamford, Robert M.; Wada, Ben K.; Moore, Donald M.

    1994-01-01

    "Mighty Worm" piezoelectric actuator used as adjustable-length structural member, active vibrator or vibration suppressor, and acts as simple (fixed-length) structural member when inactive. Load force not applied to piezoelectric element in simple-structural-member mode. Piezoelectric element removed from load path when not in use.

  17. Shape Memory Alloy Actuator

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J. (Inventor)

    2002-01-01

    The present invention discloses and teaches a unique, remote optically controlled micro actuator particularly suitable for aerospace vehicle applications wherein hot gas, or in the alternative optical energy, is employed as the medium by which shape memory alloy elements are activated. In gas turbine powered aircraft the source of the hot gas may be the turbine engine compressor or turbine sections.

  18. Shape Memory Alloy Actuator

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J. (Inventor)

    2000-01-01

    The present invention discloses and teaches a unique, remote optically controlled micro actuator particularly suitable for aerospace vehicle applications wherein hot gas, or in the alternative optical energy, is employed as the medium by which shape memory alloy elements are activated. In gas turbine powered aircraft the source of the hot gas may be the turbine engine compressor or turbine sections.

  19. Electromechanical flight control actuator

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The feasibility of using an electromechanical actuator (EMA) as the primary flight control equipment in aerospace flight is examined. The EMA motor design is presented utilizing improved permanent magnet materials. The necessary equipment to complete a single channel EMA using the single channel power electronics breadboard is reported. The design and development of an improved rotor position sensor/tachometer is investigated.

  20. Bistable microelectromechanical actuator

    DOEpatents

    Fleming, James G.

    1999-01-01

    A bistable microelectromechanical (MEM) actuator is formed on a substrate and includes a stressed membrane of generally rectangular shape that upon release assumes a curvilinear cross-sectional shape due to attachment at a midpoint to a resilient member and at opposing edges to a pair of elongate supports. The stressed membrane can be electrostatically switched between a pair of mechanical states having mirror-image symmetry, with the MEM actuator remaining in a quiescent state after a programming voltage is removed. The bistable MEM actuator according to various embodiments of the present invention can be used to form a nonvolatile memory element, an optical modulator (with a pair of mirrors supported above the membrane and moving in synchronism as the membrane is switched), a switchable mirror (with a single mirror supported above the membrane at the midpoint thereof) and a latching relay (with a pair of contacts that open and close as the membrane is switched). Arrays of bistable MEM actuators can be formed for applications including nonvolatile memories, optical displays and optical computing.

  1. Bistable microelectromechanical actuator

    DOEpatents

    Fleming, J.G.

    1999-02-02

    A bistable microelectromechanical (MEM) actuator is formed on a substrate and includes a stressed membrane of generally rectangular shape that upon release assumes a curvilinear cross-sectional shape due to attachment at a midpoint to a resilient member and at opposing edges to a pair of elongate supports. The stressed membrane can be electrostatically switched between a pair of mechanical states having mirror-image symmetry, with the MEM actuator remaining in a quiescent state after a programming voltage is removed. The bistable MEM actuator according to various embodiments of the present invention can be used to form a nonvolatile memory element, an optical modulator (with a pair of mirrors supported above the membrane and moving in synchronism as the membrane is switched), a switchable mirror (with a single mirror supported above the membrane at the midpoint thereof) and a latching relay (with a pair of contacts that open and close as the membrane is switched). Arrays of bistable MEM actuators can be formed for applications including nonvolatile memories, optical displays and optical computing. 49 figs.

  2. Piezoelectric actuator renaissance

    NASA Astrophysics Data System (ADS)

    Uchino, Kenji

    2015-03-01

    This paper resumes the content of the invited talk of the author, read at the occasion of the International Workshop on Relaxor Ferroelectrics, IWRF 14, held on October 12-16, 2014 in Stirin, Czech Republic. It reviews the recent advances in materials, designing concepts, and new applications of piezoelectric actuators, as well as the future perspectives of this area.

  3. Passenger car transmissions

    SciTech Connect

    Not Available

    1990-01-01

    This book is organized under the following headings. The Mercedes-Benz 5-speed automatic transmission targets and comparison of concepts. 1991 model year Chrysler mini-van all wheel drive vehicle. Mesh stiffness and transmission error of spur and helical gears. High precision cutting tool system for the manufacture of world class powertrain components.

  4. Thermally Actuated Hydraulic Pumps

    NASA Technical Reports Server (NTRS)

    Jones, Jack; Ross, Ronald; Chao, Yi

    2008-01-01

    Thermally actuated hydraulic pumps have been proposed for diverse applications in which direct electrical or mechanical actuation is undesirable and the relative slowness of thermal actuation can be tolerated. The proposed pumps would not contain any sliding (wearing) parts in their compressors and, hence, could have long operational lifetimes. The basic principle of a pump according to the proposal is to utilize the thermal expansion and contraction of a wax or other phase-change material in contact with a hydraulic fluid in a rigid chamber. Heating the chamber and its contents from below to above the melting temperature of the phase-change material would cause the material to expand significantly, thus causing a substantial increase in hydraulic pressure and/or a substantial displacement of hydraulic fluid out of the chamber. Similarly, cooling the chamber and its contents from above to below the melting temperature of the phase-change material would cause the material to contract significantly, thus causing a substantial decrease in hydraulic pressure and/or a substantial displacement of hydraulic fluid into the chamber. The displacement of the hydraulic fluid could be used to drive a piston. The figure illustrates a simple example of a hydraulic jack driven by a thermally actuated hydraulic pump. The pump chamber would be a cylinder containing encapsulated wax pellets and containing radial fins to facilitate transfer of heat to and from the wax. The plastic encapsulation would serve as an oil/wax barrier and the remaining interior space could be filled with hydraulic oil. A filter would retain the encapsulated wax particles in the pump chamber while allowing the hydraulic oil to flow into and out of the chamber. In one important class of potential applications, thermally actuated hydraulic pumps, exploiting vertical ocean temperature gradients for heating and cooling as needed, would be used to vary hydraulic pressures to control buoyancy in undersea research

  5. Overdrive transmission

    SciTech Connect

    Miller, G.F.

    1986-02-04

    This patent describes an overdrive transmission device for use with a motor vehicle. It consists of: a housing; a driving shaft rotatably mounted within the housing; a planetary gear-train; a driven shaft rotatably mounted in the housing and driven by the planetary gear train; and, a device for selectively connecting the planetary gear carrier to the housing or to the driven shaft for rotation; a hydraulically actuated piston adapted to forcibly contact the clutch friction members of the second clutch; a source of working fluid; a pump in fluid flow communication with the source of working fluid; a first valve downstream of the pump and in fluid flow communication with the pump and the hydraulically activated piston.

  6. Performance of an Electro-Hydrostatic Actuator on the F-18 Systems Research Aircraft

    NASA Technical Reports Server (NTRS)

    Navarro, Robert

    1997-01-01

    An electro-hydrostatic actuator was evaluated at NASA Dryden Flight Research Center, Edwards, California. The primary goal of testing this actuator system was the flight demonstration of power-by-wire technology on a primary flight control surface. The electro-hydrostatic actuator uses an electric motor to drive a hydraulic pump and relies on local hydraulics for force transmission. This actuator replaced the F-18 standard left aileron actuator on the F-18 Systems Research Aircraft and was evaluated throughout the Systems Research Aircraft flight envelope. As of July 24, 1997 the electro-hydrostatic actuator had accumulated 23.5 hours of flight time. This paper presents the electro-hydrostatic actuator system configuration and component description, ground and flight test plans, ground and flight test results, and lessons learned. This actuator performs as well as the standard actuator and has more load capability than required by aileron actuator specifications of McDonnell- Douglas Aircraft, St. Louis, Missouri. The electro-hydrostatic actuator system passed all of its ground tests with the exception of one power-off test during unloaded dynamic cycling.

  7. Optimal design of an electro-hydraulic valve for heavy-duty vehicle clutch actuator with certain constraints

    NASA Astrophysics Data System (ADS)

    Meng, Fei; Shi, Peng; Karimi, Hamid Reza; Zhang, Hui

    2016-02-01

    The main objective of this paper is to investigate the sensitivity analysis and optimal design of a proportional solenoid valve (PSV) operated pressure reducing valve (PRV) for heavy-duty automatic transmission clutch actuators. The nonlinear electro-hydraulic valve model is developed based on fluid dynamics. In order to implement the sensitivity analysis and optimization for the PRV, the PSV model is validated by comparing the results with data obtained from a real test-bench. The sensitivity of the PSV pressure response with regard to the structural parameters is investigated by using Sobol's method. Finally, simulations and experimental investigations are performed on the optimized prototype and the results reveal that the dynamical characteristics of the valve have been improved in comparison with the original valve.

  8. Contractive tension force stack actuator based on soft dielectric EAP

    NASA Astrophysics Data System (ADS)

    Kovacs, Gabor; Düring, Lukas

    2009-03-01

    Among the electronic polymers EAPs especially the dielectric elastomers are functional materials that have promising potential as muscle-like actuators due to their inherent compliancy and good overall performance. The combination of huge active deformations, high energy densities, good efficiencies and fast response is unique to dielectric elastomers. Furthermore, they are lightweight, have a simple structure and can be easily tailored to various applications. Up to now most scientific research work has been focused on the planar expanding actuation mode due to the fact that the commercially available acrylic material VHB 4910 (3M) can easily be processed to planar actuators and has demonstrated very high actuation performance when pre-strained. Many different actuator designs have been developed and tested which expands in plane when voltage is applied and shrinks back as soon as the applied charges are removed from the electrodes. Obviously the contractive operation mode at activation is required for a wide range of application. Due to the principle of operation of soft DE EAP, mainly two directions to performed work against external loads are possible. Beside of the commonly used expanding actuation in planar direction the contractile actuation in thickness direction of the DE film represents a very promising option in the multilayer configuration. First approaches have been presented by the folded actuator design and by the multilayer tactile display device. In this study a novel approach for active structures driven by soft dielectric EAP is presented, which can perform contractive displacements at external tensile load. The device is composed of an array of equal segments, where the dielectric films are arranged in a pile-up configuration. In order to maintain satisfying structural integrity when external tension load is applied special attention was paid to the compliant electrode design which takes a central importance concerning the force transmission

  9. Dielectric Actuation of Polymers

    NASA Astrophysics Data System (ADS)

    Niu, Xiaofan

    Dielectric polymers are widely used in a plurality of applications, such as electrical insulation, dielectric capacitors, and electromechanical actuators. Dielectric polymers with large strain deformations under an electric field are named dielectric elastomers (DE), because of their relative low modulus, high elongation at break, and outstanding resilience. Dielectric elastomer actuators (DEA) are superior to traditional transducers as a muscle-like technology: large strains, high energy densities, high coupling efficiency, quiet operation, and light weight. One focus of this dissertation is on the design of DE materials with high performance and easy processing. UV radiation curing of reactive species is studied as a generic synthesis methodology to provide a platform for material scientists to customize their own DE materials. Oligomers/monomers, crosslinkers, and other additives are mixed and cured at appropriate ratios to control the stress-strain response, suppress electromechanical instability of the resulting polymers, and provide stable actuation strains larger than 100% and energy densities higher than 1 J/g. The processing is largely simplified in the new material system by removal of the prestretching step. Multilayer stack actuators with 11% linear strain are demonstrated in a procedure fully compatible with industrial production. A multifunctional DE derivative material, bistable electroactive polymer (BSEP), is invented enabling repeatable rigid-to-rigid deformation without bulky external structures. Bistable actuation allows the polymer actuator to have two distinct states that can support external load without device failure. Plasticizers are used to lower the glass transition temperature to 45 °C. Interpenetrating polymer network structure is established inside the BSEP to suppress electromechanical instability, providing a breakdown field of 194 MV/m and a stable bistable strain as large as 228% with a 97% strain fixity. The application of BSEP

  10. Small passenger car transmission test: Dodge Omni A-404 transmission

    NASA Technical Reports Server (NTRS)

    Bujold, M. P.

    1980-01-01

    The small passenger car transmission test was initiated to supply electric vehicle manufacturers with technical information regarding the performance of commercially available transmissions. This transmission was tested in accordance with a passenger car automatic transmission test code (SAE J65lb) which required drive performance, coast performance, and no load test conditions. Under these test conditions, the transmission attained maximum efficiencies in the mid eighty percent range for both drive performance test and coast performance tests.

  11. Microfabricated therapeutic actuator mechanisms

    DOEpatents

    Northrup, M.A.; Ciarlo, D.R.; Lee, A.P.; Krulevitch, P.A.

    1997-07-08

    Electromechanical microstructures (microgrippers), either integrated circuit (IC) silicon-based or precision machined, to extend and improve the application of catheter-based interventional therapies for the repair of aneurysms in the brain or other interventional clinical therapies. These micromechanisms can be specifically applied to release platinum coils or other materials into bulging portions of the blood vessels also known as aneurysms. The ``micro`` size of the release mechanism is necessary since the brain vessels are the smallest in the body. Through a catheter more than one meter long, the micromechanism located at one end of the catheter can be manipulated from the other end thereof. The microgripper (micromechanism) of the invention will also find applications in non-medical areas where a remotely actuated microgripper or similar actuator would be useful or where micro-assembling is needed. 22 figs.

  12. Microfabricated therapeutic actuator mechanisms

    DOEpatents

    Northrup, Milton A.; Ciarlo, Dino R.; Lee, Abraham P.; Krulevitch, Peter A.

    1997-01-01

    Electromechanical microstructures (microgrippers), either integrated circuit (IC) silicon-based or precision machined, to extend and improve the application of catheter-based interventional therapies for the repair of aneurysms in the brain or other interventional clinical therapies. These micromechanisms can be specifically applied to release platinum coils or other materials into bulging portions of the blood vessels also known as aneurysms. The "micro" size of the release mechanism is necessary since the brain vessels are the smallest in the body. Through a catheter more than one meter long, the micromechanism located at one end of the catheter can be manipulated from the other end thereof. The microgripper (micromechanism) of the invention will also find applications in non-medical areas where a remotely actuated microgripper or similar actuator would be useful or where micro-assembling is needed.

  13. Electrical Actuation Technology Bridging

    NASA Technical Reports Server (NTRS)

    Hammond, Monica (Compiler); Sharkey, John (Compiler)

    1993-01-01

    This document contains the proceedings of the NASA Electrical Actuation Technology Bridging (ELA-TB) Workshop held in Huntsville, Alabama, September 29-October 1, 1992. The workshop was sponsored by the NASA Office of Space Systems Development and Marshall Space Flight Center (MSFC). The workshop addressed key technologies bridging the entire field of electrical actuation including systems methodology, control electronics, power source systems, reliability, maintainability, and vehicle health management with special emphasis on thrust vector control (TVC) applications on NASA launch vehicles. Speakers were drawn primarily from industry with participation from universities and government. In addition, prototype hardware demonstrations were held at the MSFC Propulsion Laboratory each afternoon. Splinter sessions held on the final day afforded the opportunity to discuss key issues and to provide overall recommendations. Presentations are included in this document.

  14. Microfabricated therapeutic actuators

    DOEpatents

    Lee, Abraham P.; Northrup, M. Allen; Ciarlo, Dino R.; Krulevitch, Peter A.; Benett, William J.

    1999-01-01

    Microfabricated therapeutic actuators are fabricated using a shape memory polymer (SMP), a polyurethane-based material that undergoes a phase transformation at a specified temperature (Tg). At a temperature above temperature Tg material is soft and can be easily reshaped into another configuration. As the temperature is lowered below temperature Tg the new shape is fixed and locked in as long as the material stays below temperature Tg. Upon reheating the material to a temperature above Tg, the material will return to its original shape. By the use of such SMP material, SMP microtubing can be used as a release actuator for the delivery of embolic coils through catheters into aneurysms, for example. The microtubing can be manufactured in various sizes and the phase change temperature Tg is determinate for an intended temperature target and intended use.

  15. Microfabricated therapeutic actuators

    DOEpatents

    Lee, A.P.; Northrup, M.A.; Ciarlo, D.R.; Krulevitch, P.A.; Benett, W.J.

    1999-06-15

    Microfabricated therapeutic actuators are fabricated using a shape memory polymer (SMP), a polyurethane-based material that undergoes a phase transformation at a specified temperature (Tg). At a temperature above temperature Tg material is soft and can be easily reshaped into another configuration. As the temperature is lowered below temperature Tg the new shape is fixed and locked in as long as the material stays below temperature Tg. Upon reheating the material to a temperature above Tg, the material will return to its original shape. By the use of such SMP material, SMP microtubing can be used as a release actuator for the delivery of embolic coils through catheters into aneurysms, for example. The microtubing can be manufactured in various sizes and the phase change temperature Tg is determinate for an intended temperature target and intended use. 8 figs.

  16. Scissor thrust valve actuator

    DOEpatents

    DeWall, Kevin G.; Watkins, John C; Nitzel, Michael E.

    2006-08-29

    Apparatus for actuating a valve includes a support frame and at least one valve driving linkage arm, one end of which is rotatably connected to a valve stem of the valve and the other end of which is rotatably connected to a screw block. A motor connected to the frame is operatively connected to a motor driven shaft which is in threaded screw driving relationship with the screw block. The motor rotates the motor driven shaft which drives translational movement of the screw block which drives rotatable movement of the valve driving linkage arm which drives translational movement of the valve stem. The valve actuator may further include a sensory control element disposed in operative relationship with the valve stem, the sensory control element being adapted to provide control over the position of the valve stem by at least sensing the travel and/or position of the valve stem.

  17. Dissolution actuated sample container

    SciTech Connect

    Nance, Thomas A.; McCoy, Frank T.

    2013-03-26

    A sample collection vial and process of using a vial is provided. The sample collection vial has an opening secured by a dissolvable plug. When dissolved, liquids may enter into the interior of the collection vial passing along one or more edges of a dissolvable blocking member. As the blocking member is dissolved, a spring actuated closure is directed towards the opening of the vial which, when engaged, secures the vial contents against loss or contamination.

  18. Shape memory alloy actuator

    DOEpatents

    Varma, Venugopal K.

    2001-01-01

    An actuator for cycling between first and second positions includes a first shaped memory alloy (SMA) leg, a second SMA leg. At least one heating/cooling device is thermally connected to at least one of the legs, each heating/cooling device capable of simultaneously heating one leg while cooling the other leg. The heating/cooling devices can include thermoelectric and/or thermoionic elements.

  19. Thermally actuated thermionic switch

    DOEpatents

    Barrus, Donald M.; Shires, Charles D.

    1988-01-01

    A thermally actuated thermionic switch which responds to an increase of temperature by changing from a high impedance to a low impedance at a predictable temperature set point. The switch has a bistable operation mode switching only on temperature increases. The thermionic material may be a metal which is liquid at the desired operation temperature and held in matrix in a graphite block reservoir, and which changes state (ionizes, for example) so as to be electrically conductive at a desired temperature.

  20. Thermally actuated thermionic switch

    DOEpatents

    Barrus, D.M.; Shires, C.D.

    1982-09-30

    A thermally actuated thermionic switch which responds to an increase of temperature by changing from a high impedance to a low impedance at a predictable temperature set point. The switch has a bistable operation mode switching only on temperature increases. The thermionic material may be a metal which is liquid at the desired operation temperature and held in matrix in a graphite block reservoir, and which changes state (ionizes, for example) so as to be electrically conductive at a desired temperature.

  1. Shape Memory Actuator System

    DTIC Science & Technology

    1998-07-31

    The advantage in utilizing 15 shape-memory cables made of Nitinol for size reduction of the remote control actuator system is 1 Fi well suited for...a submarine environment because of its non-magnetic and corrosion resistance 17 properties. Use of thermoelastic Nitinol introduces other...problems because of the cooling and 18 resetting properties of Nitinol cables. It is therefore an important object of the present invention 19 on to

  2. Passively actuated valve

    SciTech Connect

    Modro, S. Michael; Ougouag, Abderrafi M.

    2005-09-20

    A passively actuated valve for isolating a high pressure zone from a low pressure zone and discontinuing the isolation when the pressure in the high pressure zone drops below a preset threshold. If the pressure in the high pressure zone drops below the preset threshold, the valve opens and allows flow from the high pressure zone to the low pressure zone. The valve remains open allowing pressure equalization and back-flow should a pressure inversion between the two pressure zone occur.

  3. Linear mass actuator

    NASA Technical Reports Server (NTRS)

    Holloway, Sidney E., III (Inventor); Crossley, Edward A., Jr. (Inventor); Jones, Irby W. (Inventor); Miller, James B. (Inventor); Davis, C. Calvin (Inventor); Behun, Vaughn D. (Inventor); Goodrich, Lewis R., Sr. (Inventor)

    1992-01-01

    A linear mass actuator includes an upper housing and a lower housing connectable to each other and having a central passageway passing axially through a mass that is linearly movable in the central passageway. Rollers mounted in the upper and lower housings in frictional engagement with the mass translate the mass linearly in the central passageway and drive motors operatively coupled to the roller means, for rotating the rollers and driving the mass axially in the central passageway.

  4. Cylindrical Piezoelectric Fiber Composite Actuators

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.

    2008-01-01

    The use of piezoelectric devices has become widespread since Pierre and Jacques Curie discovered the piezoelectric effect in 1880. Examples of current applications of piezoelectric devices include ultrasonic transducers, micro-positioning devices, buzzers, strain sensors, and clocks. The invention of such lightweight, relatively inexpensive piezoceramic-fiber-composite actuators as macro fiber composite (MFC) actuators has made it possible to obtain strains and displacements greater than those that could be generated by prior actuators based on monolithic piezoceramic sheet materials. MFC actuators are flat, flexible actuators designed for bonding to structures to apply or detect strains. Bonding multiple layers of MFC actuators together could increase force capability, but not strain or displacement capability. Cylindrical piezoelectric fiber composite (CPFC) actuators have been invented as alternatives to MFC actuators for applications in which greater forces and/or strains or displacements may be required. In essence, a CPFC actuator is an MFC or other piezoceramic fiber composite actuator fabricated in a cylindrical instead of its conventional flat shape. Cylindrical is used here in the general sense, encompassing shapes that can have circular, elliptical, rectangular or other cross-sectional shapes in the planes perpendicular to their longitudinal axes.

  5. Microelectromechanical (MEM) thermal actuator

    DOEpatents

    Garcia, Ernest J [Albuquerque, NM; Fulcher, Clay W. G. [Sandia Park, NM

    2012-07-31

    Microelectromechanical (MEM) buckling beam thermal actuators are disclosed wherein the buckling direction of a beam is constrained to a desired direction of actuation, which can be in-plane or out-of-plane with respect to a support substrate. The actuators comprise as-fabricated, linear beams of uniform cross section supported above the substrate by supports which rigidly attach a beam to the substrate. The beams can be heated by methods including the passage of an electrical current through them. The buckling direction of an initially straight beam upon heating and expansion is controlled by incorporating one or more directional constraints attached to the substrate and proximal to the mid-point of the beam. In the event that the beam initially buckles in an undesired direction, deformation of the beam induced by contact with a directional constraint generates an opposing force to re-direct the buckling beam into the desired direction. The displacement and force generated by the movement of the buckling beam can be harnessed to perform useful work, such as closing contacts in an electrical switch.

  6. Double-section curvature tunable functional actuator with micromachined buckle and grid wire for electricity delivery

    NASA Astrophysics Data System (ADS)

    Feng, Guo-Hua; Hou, Sheng-You

    2015-09-01

    This paper presents an ionic polymer metal composite (IPMC)-driven tentacle-like biocompatible flexible actuator with double-section curvature tunability. This actuator, possessing an embedded electrical transmission ability that mimics skeletal muscle nerves in the human body, affords versatile device functions. Novel micromachined copper buckles and grid wires are fabricated and their superiority in electricity delivery and driving the IPMC component with less flexural rigidity is demonstrated. In addition, soft conductive wires realized on a polydimethylsiloxane structure function as electrical signal transmitters. A light-emitting diode integrated with the developed actuator offers directional guiding light ability while the actuator performs a snake-like motion. The electrical conductivity and Young’s modulus of the key actuator components are investigated, and flexural rigidity and dynamic behavior analyses of the actuator under electrical manipulation are elaborated.

  7. Modeling and design of a high-performance hybrid actuator

    NASA Astrophysics Data System (ADS)

    Aloufi, Badr; Behdinan, Kamran; Zu, Jean

    2016-12-01

    This paper presents the model and design of a novel hybrid piezoelectric actuator which provides high active and passive performances for smart structural systems. The actuator is composed of a pair of curved pre-stressed piezoelectric actuators, so-called commercially THUNDER actuators, installed opposite each other using two clamping mechanisms constructed of in-plane fixable hinges, grippers and solid links. A fully mathematical model is developed to describe the active and passive dynamics of the actuator and investigate the effects of its geometrical parameters on the dynamic stiffness, free displacement and blocked force properties. Among the literature that deals with piezoelectric actuators in which THUNDER elements are used as a source of electromechanical power, the proposed study is unique in that it presents a mathematical model that has the ability to predict the actuator characteristics and achieve other phenomena, such as resonances, mode shapes, phase shifts, dips, etc. For model validation, the measurements of the free dynamic response per unit voltage and passive acceleration transmissibility of a particular actuator design are used to check the accuracy of the results predicted by the model. The results reveal that there is a good agreement between the model and experiment. Another experiment is performed to teste the linearity of the actuator system by examining the variation of the output dynamic responses with varying forces and voltages at different frequencies. From the results, it can be concluded that the actuator acts approximately as a linear system at frequencies up to 1000 Hz. A parametric study is achieved here by applying the developed model to analyze the influence of the geometrical parameters of the fixable hinges on the active and passive actuator properties. The model predictions in the frequency range of 0-1000 Hz show that the hinge thickness, radius, and opening angle parameters have great effects on the frequency dynamic

  8. Automated manual transmission controller

    DOEpatents

    Lawrie, Robert E.; Reed, Jr., Richard G.; Bernier, David R.

    1999-12-28

    A powertrain system for a hybrid vehicle. The hybrid vehicle includes a heat engine, such as a diesel engine, and an electric machine, which operates as both an electric motor and an alternator, to power the vehicle. The hybrid vehicle also includes a manual-style transmission configured to operate as an automatic transmission from the perspective of the driver. The engine and the electric machine drive an input shaft which in turn drives an output shaft of the transmission. In addition to driving the transmission, the electric machine regulates the speed of the input shaft in order to synchronize the input shaft during either an upshift or downshift of the transmission by either decreasing or increasing the speed of the input shaft. When decreasing the speed of the input shaft, the electric motor functions as an alternator to produce electrical energy which may be stored by a storage device. Operation of the transmission is controlled by a transmission controller which receives input signals and generates output signals to control shift and clutch motors to effect smooth launch, upshift shifts, and downshifts of the transmission, so that the transmission functions substantially as an automatic transmission from the perspective of the driver, while internally substantially functioning as a manual transmission.

  9. Telescoping cylindrical piezoelectric fiber composite actuator assemblies

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Christopher L. (Inventor); Fox Chattin, legal representative, Melanie L. (Inventor)

    2010-01-01

    A telescoping actuator assembly includes a plurality of cylindrical actuators in a concentric arrangement. Each cylindrical actuator is at least one piezoelectric fiber composite actuator having a plurality of piezoelectric fibers extending parallel to one another and to the concentric arrangement's longitudinal axis. Each cylindrical actuator is coupled to concentrically-adjacent ones of the cylindrical actuators such that the plurality of cylindrical actuators can experience telescopic movement. An electrical energy source coupled to the cylindrical actuators applies actuation energy thereto to generate the telescopic movement.

  10. Direct drive field actuator motors

    DOEpatents

    Grahn, A.R.

    1998-03-10

    A positive-drive field actuator motor is described which includes a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately. 62 figs.

  11. Fault-tolerant rotary actuator

    DOEpatents

    Tesar, Delbert

    2006-10-17

    A fault-tolerant actuator module, in a single containment shell, containing two actuator subsystems that are either asymmetrically or symmetrically laid out is provided. Fault tolerance in the actuators of the present invention is achieved by the employment of dual sets of equal resources. Dual resources are integrated into single modules, with each having the external appearance and functionality of a single set of resources.

  12. Linear Proof-Mass Actuator

    NASA Technical Reports Server (NTRS)

    Holloway, Sidney E., III; Crossley, Edward A.; Miller, James B.; Jones, Irby W.; Davis, C. Calvin; Behun, Vaughn D.; Goodrich, Lewis R., Sr.

    1995-01-01

    Linear proof-mass actuator (LPMA) is friction-driven linear mass actuator capable of applying controlled force to structure in outer space to damp out oscillations. Capable of high accelerations and provides smooth, bidirectional travel of mass. Design eliminates gears and belts. LPMA strong enough to be used terrestrially where linear actuators needed to excite or damp out oscillations. High flexibility designed into LPMA by varying size of motors, mass, and length of stroke, and by modifying control software.

  13. Direct drive field actuator motors

    SciTech Connect

    Grahn, Allen R.

    1998-01-01

    A positive-drive field actuator motor including a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately.

  14. Electrolysis-based diaphragm actuators

    NASA Astrophysics Data System (ADS)

    Pang, C.; Tai, Y.-C.; Burdick, J. W.; Andersen, R. A.

    2006-02-01

    This work presents a new electrolysis-based microelectromechanical systems (MEMS) diaphragm actuator. Electrolysis is a technique for converting electrical energy to pneumatic energy. Theoretically electrolysis can achieve a strain of 136 000% and is capable of generating a pressure above 200 MPa. Electrolysis actuators require modest electrical power and produce minimal heat. Due to the large volume expansion obtained via electrolysis, small actuators can create a large force. Up to 100 µm of movement was achieved by a 3 mm diaphragm. The actuator operates at room temperature and has a latching and reversing capability.

  15. Compact change speed transmission

    SciTech Connect

    Iwanaga, K.; Yamaguchi, T.

    1989-06-06

    A change speed transmission is described comprising: a stationary part; an input member; an output member; first and second planetary gear sets; clutch and brake means for selectively controlling the first and second planetary gear sets to provide a plurality of forward speed rations and a reverse speed ratio between the input and output member; the clutch and brake means including a first clutch, a first one-way clutch, and a second one-way clutch which, when the first clutch is engaged, provide a path of transmission of reaction to the stationary part thereby establishing a path of transmission of torque through at least a part of the first and second planetary gear sets to achieve a predetermined one speed ratio of the forward speed ratios; the clutch and brake means including also a brake and a second slutch which, when both of the brake and the second clutch are engaged, hinder the action of the second one-way clutch and that of the first one-way clutch, respectively, thereby providing engine braking during running with the predetermined one speed ratio; the first clutch including means forming a drum-shaped member disposed radially outwardly of and receiving at least one of the first and second planetary gear sets, and an actuating piston of the first clutch; and the second clutch including an actuating piston slidably disposed within the actuating piston of the first clutch.

  16. Lead screw linear actuator

    NASA Technical Reports Server (NTRS)

    Perkins, Gerald S. (Inventor)

    1980-01-01

    A linear actuator which can apply high forces is described, which includes a reciprocating rod having a threaded portion engaged by a nut that is directly coupled to the rotor of an electric motor. The nut is connected to the rotor in a manner that minimizes loading on the rotor, by the use of a coupling that transmits torque to the nut but permits it to shift axially and radially with respect to the rotor. The nut has a threaded hydrostatic bearing for engaging the threaded rod portion, with an oilcarrying groove in the nut being interrupted.

  17. Piezoelectric actuated gimbal

    DOEpatents

    Tschaggeny, Charles W.; Jones, Warren F.; Bamberg, Eberhard

    2011-09-13

    A gimbal is described and which includes a fixed base member defining an axis of rotation; a second member concentrically oriented relative to the axis of rotation; a linear actuator oriented in immediate, adjoining force transmitting relation relative to the base member or to the second member, and which applies force along a linear axis which is tangential to the axis of rotation so as to cause the second member to rotate coaxially relative to the fixed base member; and an object of interest mounted to the second member such that the object of interest is selectively moved relative to the base member about the axis of rotation.

  18. Small passenger car transmission test; Chevrolet LUV transmission

    NASA Technical Reports Server (NTRS)

    Bujold, M. P.

    1980-01-01

    A 1978 Chevrolet LUV manual transmission tested per the applicable portions of a passenger car automatic transmission test code (SAE J65lb) which required drive performance, coast performance, and no load test conditions. Under these test conditions, the transmission attained maximum efficiencies in the upper ninety percent range for both drive performance tests and coast performance tests. The major results of this test (torque, speed, and efficiency curves) are presented. Graphs map the complete performance characteristics for the Chevrolet LUV transmission.

  19. Thermally actuated wedge block

    DOEpatents

    Queen, Jr., Charles C.

    1980-01-01

    This invention relates to an automatically-operating wedge block for maintaining intimate structural contact over wide temperature ranges, including cryogenic use. The wedging action depends on the relative thermal expansion of two materials having very different coefficients of thermal expansion. The wedge block expands in thickness when cooled to cryogenic temperatures and contracts in thickness when returned to room temperature.

  20. Actuator operated microvalves

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S. (Inventor)

    2008-01-01

    An actuator operated microvalve and the method of making same is disclosed and claimed. The microvalve comprises a SiC housing which includes a first lower portion and a second upper portion. The lower portion of the SiC housing includes a passageway therethrough, a microvalve seat, and a moveable SiC diaphragm. The SiC diaphragm includes a centrally located boss and radially extending corrugations which may be sinusoidally shaped. The boss of the SiC diaphragm moves and modulates in a range of positions between a closed position wherein the boss interengages said microvalve seat prohibiting communication of fluid through the passageway and a fully open position when the boss is spaced apart from the seat at its maximum permitting communication of fluid through said passageway. The actuator includes a SiC top plate affixed to the boss of the diaphragm and a first electrode and the second upper portion of the SiC housing further includes a second electrode.

  1. Motor actuated vacuum door

    NASA Astrophysics Data System (ADS)

    Hanagud, A. V.

    1986-10-01

    Doors that allow scientific instruments to record and retrieve the observed data are often required to be designed and installed as a part of sounding rocket hardware. The motor-actuated vacuum door was designed to maintain a medium vacuum of the order of 0.0001 torr or better while closed, and to provide an opening 15 inches long x 8.5 inches wide while open for cameras to image Halley's comet. When the electric motor receives the instruction to open the door through the payload battery, timer, and relay circuit, the first operation is to unlock the door. After unlatching, the torque transmitted by the motor to the main shaft through the links opens the door. A microswitch actuator, which rides on the linear motion conversion mechanism, is adjusted to trip the limit switch at the end of the travel. The process is repeated in the reverse order to close the door. 'O' rings are designed to maintain the seal. Door mechanisms similar to the one described have flown on Aerobee 17.018 and Black Brant 27.047 payloads.

  2. Bi-stable optical actuator

    DOEpatents

    Holdener, Fred R.; Boyd, Robert D.

    2000-01-01

    The present invention is a bi-stable optical actuator device that is depowered in both stable positions. A bearing is used to transfer motion and smoothly transition from one state to another. The optical actuator device may be maintained in a stable position either by gravity or a restraining device.

  3. Remotely-actuated biomedical switch

    NASA Technical Reports Server (NTRS)

    Lee, R. D.

    1969-01-01

    Remotely-actuated biomedical switching circuit using transistors consumes no power in the off position and can be actuated by a single-frequency telemetry pulse to control implanted instrumentation. Silicon controlled rectifiers permit the circuit design which imposes zero drain on supply batteries when not in use.

  4. Actuated Hybrid Mirror Telescope

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory; Redding, David; Lowman, Andrew; Cohen, David; Ohara, Catherine

    2005-01-01

    The figure depicts the planned Actuated Hybrid Mirror Telescope (AHMT), which is intended to demonstrate a new approach to the design and construction of wide-aperture spaceborne telescopes for astronomy and Earth science. This technology is also appropriate for Earth-based telescopes. The new approach can be broadly summarized as using advanced lightweight mirrors that can be manufactured rapidly at relatively low cost. More specifically, it is planned to use precise replicated metallic nanolaminate mirrors to obtain the required high-quality optical finishes. Lightweight, dimensionally stable silicon carbide (SiC) structures will support the nanolaminate mirrors in the required surface figures. To enable diffraction- limited telescope performance, errors in surface figures will be corrected by use of mirror-shape-control actuators that will be energized, as needed, by a wave-front-sensing and control system. The concepts of nanolaminate materials and mirrors made from nanolaminate materials were discussed in several previous NASA Tech Briefs articles. Nanolaminates constitute a relatively new class of materials that can approach theoretical limits of stiffness and strength. Nanolaminate mirrors are synthesized by magnetron sputter deposition of metallic alloys and/or compounds on optically precise master surfaces to obtain optical-quality reflector surfaces backed by thin shell structures. As an integral part of the deposition process, a layer of gold that will constitute the reflective surface layer is deposited first, eliminating the need for a subsequent and separate reflective-coating process. The crystallographic textures of the nanolaminate will be controlled to optimize the performance of the mirror. The entire deposition process for making a nanolaminate mirror takes less than 100 hours, regardless of the mirror diameter. Each nanolaminate mirror will be bonded to its lightweight SiC supporting structure. The lightweight nanolaminate mirrors and Si

  5. AUTOMATIC COUNTER

    DOEpatents

    Robinson, H.P.

    1960-06-01

    An automatic counter of alpha particle tracks recorded by a sensitive emulsion of a photographic plate is described. The counter includes a source of mcdulated dark-field illumination for developing light flashes from the recorded particle tracks as the photographic plate is automatically scanned in narrow strips. Photoelectric means convert the light flashes to proportional current pulses for application to an electronic counting circuit. Photoelectric means are further provided for developing a phase reference signal from the photographic plate in such a manner that signals arising from particle tracks not parallel to the edge of the plate are out of phase with the reference signal. The counting circuit includes provision for rejecting the out-of-phase signals resulting from unoriented tracks as well as signals resulting from spurious marks on the plate such as scratches, dust or grain clumpings, etc. The output of the circuit is hence indicative only of the tracks that would be counted by a human operator.

  6. Use of automatic door closers improves fire safety.

    PubMed

    Waterman, T E

    1979-01-01

    In a series of 16 full-scale fire tests, investigators at the IIT Research Institute have concluded that automatic door control in the room of fire origin can significantly reduce the spread of toxic smoke and gases. The researchers also investigated the effects of sprinkler actuation, and the functional relationship between sprinklers and automatic door closers. This report presents the results of the study, and presents recommendations for health-care facilities.

  7. Direct Adaptive Control of Systems with Actuator Failures: State of the Art and Continuing Challenges

    NASA Technical Reports Server (NTRS)

    Tao, Gang; Joshi, Suresh M.

    2008-01-01

    In this paper, the problem of controlling systems with failures and faults is introduced, and an overview of recent work on direct adaptive control for compensation of uncertain actuator failures is presented. Actuator failures may be characterized by some unknown system inputs being stuck at some unknown (fixed or varying) values at unknown time instants, that cannot be influenced by the control signals. The key task of adaptive compensation is to design the control signals in such a manner that the remaining actuators can automatically and seamlessly take over for the failed ones, and achieve desired stability and asymptotic tracking. A certain degree of redundancy is necessary to accomplish failure compensation. The objective of adaptive control design is to effectively use the available actuation redundancy to handle failures without the knowledge of the failure patterns, parameters, and time of occurrence. This is a challenging problem because failures introduce large uncertainties in the dynamic structure of the system, in addition to parametric uncertainties and unknown disturbances. The paper addresses some theoretical issues in adaptive actuator failure compensation: actuator failure modeling, redundant actuation requirements, plant-model matching, error system dynamics, adaptation laws, and stability, tracking, and performance analysis. Adaptive control designs can be shown to effectively handle uncertain actuator failures without explicit failure detection. Some open technical challenges and research problems in this important research area are discussed.

  8. Study on Multi-DOF Ultrasonic Actuator for Laparoscopic Instrument

    NASA Astrophysics Data System (ADS)

    Park, Shinsuk; Takemura, Kenjiro; Maeno, Takashi

    In surgical robots, compact manipulators with multi-degree-of-freedom (DOF) are essential owing to a small work volume in the patient body. Conventional single-DOF actuators such as electromagnetic motors require a multiple number of actuators to generate multi-DOF motion, which in turn results in bulky mechanism combined with transmission device. Our previous work has developed a compact ultrasonic motor capable of generating a multi-DOF rotation of a spherical rotor utilizing three natural vibration modes of a bar-shaped stator. The present study designs and builds a novel multi-DOF master-slave system for laparoscopic surgical procedures, using a single ultrasonic actuator. The system consists of surgical forceps on multi-DOF wrist with joystick controller. Experimental results have confirmed high responsiveness and precise position control of the master-slave system.

  9. A micropower miniature piezoelectric actuator for implantable middle ear hearing device.

    PubMed

    Wang, Zhigang; Mills, Robert; Luo, Hongyan; Zheng, Xiaolin; Hou, Wensheng; Wang, Lijun; Brown, Stuart I; Cuschieri, Alfred

    2011-02-01

    This paper describes the design and development of a small actuator using a miniature piezoelectric stack and a flextensional mechanical amplification structure for an implantable middle ear hearing device (IMEHD). A finite-element method was used in the actuator design. Actuator vibration displacement was measured using a laser vibrometer. Preliminary evaluation of the actuator for an IMEHD was conducted using a temporal bone model. Initial results from one temporal bone study indicated that the actuator was small enough to be implanted within the middle ear cavity, and sufficient stapes displacement can be generated for patients with mild to moderate hearing losses, especially at higher frequency range, by the actuator suspended onto the stapes. There was an insignificant mass-loading effect on normal sound transmission (<3 dB) when the actuator was attached to the stapes and switched off. Improved vibration performance is predicted by more firm attachment. The actuator power consumption and its generated equivalent sound pressure level are also discussed. In conclusion, the actuator has advantages of small size, lightweight, and micropower consumption for potential use as IMHEDs.

  10. Planetary gear train for automatic transmission

    SciTech Connect

    Hiraiwa, K.

    1987-03-31

    A planetary gear train is described comprising: a first planetary gear set having rotary elements including a first sun gear, a first ring gear and a first pinion carrier rotatably supporting a plurality of first pinions meshing with the first sun gear and the first ring gear; a second planetary gear set having rotary elements including a second sun gear, a second ring gear and a second pinion carrier rotatably supporting a plurality of second pinions meshing with the second sun gear and the second ring gear; an input shaft drivingly-connected with the first ring gear; an output shaft; first drive connection establishing means for connecting the second ring gear with the output shaft; the first drive connection establishing means comprising: a third planetary gear set including a third sun gear constantly connected with the second ring gear, a third ring gear, and a third pinion carrier constantly connected with the output shaft. The third pinion carrier rotatably supports third pinions meshing with the third sun and ring gears.

  11. 40 CFR 86.128-79 - Transmissions.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 19 2013-07-01 2013-07-01 false Transmissions. 86.128-79 Section 86...-Duty Vehicles; Test Procedures § 86.128-79 Transmissions. (a) All test conditions, except as noted... automatic transmissions in “Drive” and the wheels braked; manual transmissions shall be in gear with...

  12. 40 CFR 86.128-79 - Transmissions.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 19 2014-07-01 2014-07-01 false Transmissions. 86.128-79 Section 86...-Duty Vehicles; Test Procedures § 86.128-79 Transmissions. (a) All test conditions, except as noted... automatic transmissions in “Drive” and the wheels braked; manual transmissions shall be in gear with...

  13. 40 CFR 86.128-79 - Transmissions.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Transmissions. 86.128-79 Section 86...-Duty Vehicles; Test Procedures § 86.128-79 Transmissions. (a) All test conditions, except as noted... automatic transmissions in “Drive” and the wheels braked; manual transmissions shall be in gear with...

  14. 40 CFR 86.128-79 - Transmissions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 18 2011-07-01 2011-07-01 false Transmissions. 86.128-79 Section 86...-Duty Vehicles; Test Procedures § 86.128-79 Transmissions. (a) All test conditions, except as noted... automatic transmissions in “Drive” and the wheels braked; manual transmissions shall be in gear with...

  15. 40 CFR 86.128-79 - Transmissions.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 19 2012-07-01 2012-07-01 false Transmissions. 86.128-79 Section 86...-Duty Vehicles; Test Procedures § 86.128-79 Transmissions. (a) All test conditions, except as noted... automatic transmissions in “Drive” and the wheels braked; manual transmissions shall be in gear with...

  16. Nuclear radiation actuated valve

    DOEpatents

    Christiansen, David W.; Schively, Dixon P.

    1985-01-01

    A nuclear radiation actuated valve for a nuclear reactor. The valve has a valve first part (such as a valve rod with piston) and a valve second part (such as a valve tube surrounding the valve rod, with the valve tube having side slots surrounding the piston). Both valve parts have known nuclear radiation swelling characteristics. The valve's first part is positioned to receive nuclear radiation from the nuclear reactor's fuel region. The valve's second part is positioned so that its nuclear radiation induced swelling is different from that of the valve's first part. The valve's second part also is positioned so that the valve's first and second parts create a valve orifice which changes in size due to the different nuclear radiation caused swelling of the valve's first part compared to the valve's second part. The valve may be used in a nuclear reactor's core coolant system.

  17. Application Actuation Trade Study

    DTIC Science & Technology

    1982-01-01

    Rectifier Unit 3 1..5 37.5 Battery 40 A-Hr 1 76 75 Battery Charger 1 6.8 6.8 Static Inverter I 12.C 13.C AC Power Pelay 3 PDT 1 1.2 1.2 AC Povmr Relay 3 PD)T...Weight 0.7 pounds Total Weight 4.7 pounds Both actuators are Vowered by 28V DC brush type motors so that the system can be operated from battery pover in... DC -AC Inverter 2 34 68 Battery (2 @ 4C A-Hr) 2 75 150 AC Power Contactor 6POT 2 18 36 AC Power Contactor 6PST 2 12 24 AC Power Contactor SPST 4 1

  18. Polypyrrole actuators for tremor suppression

    NASA Astrophysics Data System (ADS)

    Skaarup, Steen; Mogensen, Naja; Bay, Lasse; West, Keld

    2003-07-01

    Neurological tremor affecting limbs can be divided into at least 6 different types with frequencies ranging from 2 to about 20 Hz. In order to alleviate the symptoms by suppressing the tremor, sensing and actuation systems able to perform at these frequencies are needed. Electroactive polymers exemplify "soft actuator" technology that may be especially suitable for use in conjunction with human limbs. The electrochemical and mechanical properties of polypyrrole dodecyl benzene sulphonate actuator films have been studied with this application in mind. The results show that the time constants for the change of length and for the stiffness change are significantly different; the stiffness change being about 10 times faster. Both force measurements and Electrochemical Quartz Crystal Microbalance measurements indicate that the actuation process is complex and involves at least two different processes. The EQCM results make it possible to formulate a hypothesis for the two different time constants: Sodium ions enter the polymer correlated with a fast mass change that probably involves a few (~4) strongly bound water molecules as well. On further reduction, about 10 additional water molecules enter the polymer in a slower process driven by osmotic pressure. Earlier work has tended to focus on achieving the maximum length change, therefore taking the time needed to include all processes. However, since the slower process described above is associated with the lowest strength of the actuator, concentrating on the faster stiffness change results in only a small reduction in the work done by the actuator. This may make actuation at higher frequencies feasible.

  19. Actuator design using electroactive polymers

    NASA Astrophysics Data System (ADS)

    Fernandez, Diego; Moreno, Luis; Baselga, Juan

    2005-07-01

    In order to make EAP actuators technology scalable a design methodology for polymer actuators is required. Design variables, optimization formulas and a general architecture are required as it is usual in electromagnetic or hydraulic actuators design. This will allow the development of large EAP actuators from micro-actuator units, specifically designed for a particular application. It will also help to enhance the EAP material final performance. This approach is not new, since it is found in Nature. Skeletal muscle architecture has a profound influence on muscle force-generating properties and functionality. Based on existing literature on skeletal muscle biomechanics, the Nature design philosophy is inferred. Formulas and curves employed by Nature in the design of muscles are presented. Design units such as fiber, tendon, aponeurosis, and motor units are compared with the equivalent design units to be taken into account in the design of EAP actuators. Finally a complete design methodology for the design of actuators based on multiple EAP fiber/sheets is proposed. In addition, the procedure gives an idea of the required parameters that must be clearly modeled and characterized at EAP material level prior to attempt the design of complex Electromechanical Systems based on Electroactive Polymers.

  20. Gear-Driven Turnbuckle Actuator

    NASA Technical Reports Server (NTRS)

    Rivera, Ricky N.

    2010-01-01

    This actuator design allows the extension and contraction of turnbuckle assemblies. It can be operated manually or remotely, and is extremely compact. It is ideal for turnbuckles that are hard to reach by conventional tools. The tool assembly design solves the problem of making accurate adjustments to the variable geometry guide vanes without having to remove and reinstall the actuator system back on the engine. The actuator does this easily by adjusting the length of the turnbuckles while they are still attached to the engine.

  1. Electrically controlled polymeric gel actuators

    DOEpatents

    Adolf, Douglas B.; Shahinpoor, Mohsen; Segalman, Daniel J.; Witkowski, Walter R.

    1993-01-01

    Electrically controlled polymeric gel actuators or synthetic muscles capable of undergoing substantial expansion and contraction when subjected to changing pH environments, temperature, or solvent. The actuators employ compliant containers for the gels and their solvents. The gels employed may be cylindrical electromechanical gel fibers such as polyacrylamide fibers or a mixture of poly vinyl alcohol-polyacrylic acid arranged in a parallel aggregate and contained in an electrolytic solvent bath such as salt water. The invention includes smart, electrically activated devices exploiting this phenomenon. These devices are capable of being manipulated via active computer control as large displacement actuators for use in adaptive structure such as robots.

  2. Electrically controlled polymeric gel actuators

    DOEpatents

    Adolf, D.B.; Shahinpoor, M.; Segalman, D.J.; Witkowski, W.R.

    1993-10-05

    Electrically controlled polymeric gel actuators or synthetic muscles are described capable of undergoing substantial expansion and contraction when subjected to changing pH environments, temperature, or solvent. The actuators employ compliant containers for the gels and their solvents. The gels employed may be cylindrical electromechanical gel fibers such as polyacrylamide fibers or a mixture of poly vinyl alcohol-polyacrylic acid arranged in a parallel aggregate and contained in an electrolytic solvent bath such as salt water. The invention includes smart, electrically activated devices exploiting this phenomenon. These devices are capable of being manipulated via active computer control as large displacement actuators for use in adaptive structure such as robots. 11 figures.

  3. Continuously variable transmission

    SciTech Connect

    Itoh, H.; Okada, M.

    1986-11-25

    This patent describes a continuously variable transmission for transmitting a torque from an engine to a final reduction gear, comprising: an input shaft connected with the engine at one end thereof; a continuously variable transmission means having a driving pulley with a fixed member and a movable member, the movable member being actuated by an hydraulic cylinder to form a V-shaped opening between the fixed member and movable member, a driven pulley with another fixed member and another movable member. The other movable member is similarly actuated by another hydraulic cylinder to form another V-shaped opening between the other fixed member and the other movable member, and a belt member spanning the pulleys provides for a continuously variable transmission ratio; a planetary gear unit including a sun gear, a plurality of pinion gears which mesh with the sun gear and are connected with the driven pulley and a ring gear which meshes with the plurality of pinion gears; and a rotation transmitting means for transmitting rotation of the input shaft to the planetary gear unit. The rotation transmitting means is provided between the input shaft and the planetary gear unit and includes a shaft connected with the sun gear of the planetary gear unit and a first gear connected with the input shaft. The first gear is located between the engine and the continuously variable transmission means.

  4. Automatic inoculating apparatus. [includes movable carraige, drive motor, and swabbing motor

    NASA Technical Reports Server (NTRS)

    Wilkins, J. R.; Mills, S. M. (Inventor)

    1974-01-01

    An automatic inoculating apparatus for agar trays is described and using a simple inoculating element, such as a cotton swab or inoculating loop. The apparatus includes a movable carriage for supporting the tray to be inoculated, a drive motor for moving the tray along a trackway, and a swabbing motor for automatically swabbing the tray during the movement. An actuator motor controls lowering of the inoculating element onto the tray and lifting of the inoculating element. An electrical control system, including limit microswitches, enables automatic control of the actuator motor and return of the carriage to the initial position after inoculating is completed.

  5. Automatic weld torch guidance control system

    NASA Technical Reports Server (NTRS)

    Smaith, H. E.; Wall, W. A.; Burns, M. R., Jr.

    1982-01-01

    A highly reliable, fully digital, closed circuit television optical, type automatic weld seam tracking control system was developed. This automatic tracking equipment is used to reduce weld tooling costs and increase overall automatic welding reliability. The system utilizes a charge injection device digital camera which as 60,512 inidividual pixels as the light sensing elements. Through conventional scanning means, each pixel in the focal plane is sequentially scanned, the light level signal digitized, and an 8-bit word transmitted to scratch pad memory. From memory, the microprocessor performs an analysis of the digital signal and computes the tracking error. Lastly, the corrective signal is transmitted to a cross seam actuator digital drive motor controller to complete the closed loop, feedback, tracking system. This weld seam tracking control system is capable of a tracking accuracy of + or - 0.2 mm, or better. As configured, the system is applicable to square butt, V-groove, and lap joint weldments.

  6. Variable Valve Actuation

    SciTech Connect

    Jeffrey Gutterman; A. J. Lasley

    2008-08-31

    Many approaches exist to enable advanced mode, low temperature combustion systems for diesel engines - such as premixed charge compression ignition (PCCI), Homogeneous Charge Compression Ignition (HCCI) or other HCCI-like combustion modes. The fuel properties and the quantity, distribution and temperature profile of air, fuel and residual fraction in the cylinder can have a marked effect on the heat release rate and combustion phasing. Figure 1 shows that a systems approach is required for HCCI-like combustion. While the exact requirements remain unclear (and will vary depending on fuel, engine size and application), some form of substantially variable valve actuation is a likely element in such a system. Variable valve actuation, for both intake and exhaust valve events, is a potent tool for controlling the parameters that are critical to HCCI-like combustion and expanding its operational range. Additionally, VVA can be used to optimize the combustion process as well as exhaust temperatures and impact the after treatment system requirements and its associated cost. Delphi Corporation has major manufacturing and product development and applied R&D expertise in the valve train area. Historical R&D experience includes the development of fully variable electro-hydraulic valve train on research engines as well as several generations of mechanical VVA for gasoline systems. This experience has enabled us to evaluate various implementations and determine the strengths and weaknesses of each. While a fully variable electro-hydraulic valve train system might be the 'ideal' solution technically for maximum flexibility in the timing and control of the valve events, its complexity, associated costs, and high power consumption make its implementation on low cost high volume applications unlikely. Conversely, a simple mechanical system might be a low cost solution but not deliver the flexibility required for HCCI operation. After modeling more than 200 variations of the

  7. Enzyme actuated bioresponsive hydrogels

    NASA Astrophysics Data System (ADS)

    Wilson, Andrew Nolan

    Bioresponsive hydrogels are emerging with technological significance in targeted drug delivery, biosensors and regenerative medicine. Conferred with the ability to respond to specific biologically derived stimuli, the design challenge is in effectively linking the conferred biospecificity with an engineered response tailored to the needs of a particular application. Moreover, the fundamental phenomena governing the response must support an appropriate dynamic range and limit of detection. The design of these systems is inherently complicated due to the high interdependency of the governing phenomena that guide the sensing, transduction, and the actuation response of hydrogels. To investigate the dynamics of these materials, model systems may be used which seek to interrogate the system dynamics by uni-variable experimentation and limit confounding phenomena such as: polymer-solute interactions, polymer swelling dynamics and biomolecular reaction-diffusion concerns. To this end, a model system, alpha-chymotrypsin (Cht) (a protease) and a cleavable peptide-chromogen (pro-drug) covalently incorporated into a hydrogel, was investigated to understand the mechanisms of covalent loading and release by enzymatic cleavage in bio-responsive delivery systems. Using EDC and Sulfo-NHS, terminal carboxyl groups of N-succinyl-Ala-Ala-Pro-Phe p-nitroanilide, a cleavable chromogen, were conjugated to primary amines of a hydrated poly(HEMA)-based hydrogel. Hydrogel discs were incubated in buffered Cht causing enzyme-mediated cleavage of the peptide and concomitant release of the chromophore for monitoring. To investigate substrate loading and the effects of hydrogel morphology on the system, the concentration of the amino groups (5, 10, 20, and 30 mol%) and the cross-linked density (1, 5, 7, 9 and 12 mol%) were independently varied. Loading-Release Efficiency of the chromogen was shown to exhibit a positive relation to increasing amino groups (AEMA). The release rates demonstrated a

  8. Hydraulically actuated well shifting tool

    SciTech Connect

    Roth, B.A.

    1992-10-20

    This patent describes a hydraulically actuated shifting tool for actuating a sliding member in a well tool. It comprises: a housing having a hydraulic fluid bore therein; shifting dog means positioned on the housing for movement away and toward the housing; locking dog means positioned on the housing for movement away and toward the body; shifting dog hydraulic actuating means in fluid communication with the bore for causing engagement of the shifting dogs with the sliding member; locking dog hydraulic actuating means in communication with the bore for causing engagement of the locking dogs with the locking means; and hydraulic shifting means in communication with the bore for causing relative movement between the shifting dog means and the locking dog means for shifting the sliding sleeve.

  9. Analog actuator-piston memory

    NASA Technical Reports Server (NTRS)

    Sable, B. A.

    1980-01-01

    Simple analog control system of digitally controlled acuator uses 'stopped' position of actuator as 'memory' and potentiometer as sensing element during power failure to reload drive circuit to value equal to its last position preceding power loss.

  10. Real-Time Implementation of Intelligent Actuator Control with a Transducer Health Monitoring Capability

    NASA Technical Reports Server (NTRS)

    Jethwa, Dipan; Selmic, Rastko R.; Figueroa, Fernando

    2008-01-01

    This paper presents a concept of feedback control for smart actuators that are compatible with smart sensors, communication protocols, and a hierarchical Integrated System Health Management (ISHM) architecture developed by NASA s Stennis Space Center. Smart sensors and actuators typically provide functionalities such as automatic configuration, system condition awareness and self-diagnosis. Spacecraft and rocket test facilities are in the early stages of adopting these concepts. The paper presents a concept combining the IEEE 1451-based ISHM architecture with a transducer health monitoring capability to enhance the control process. A control system testbed for intelligent actuator control, with on-board ISHM capabilities, has been developed and implemented. Overviews of the IEEE 1451 standard, the smart actuator architecture, and control based on this architecture are presented.

  11. Acoustic actuation of bioinspired microswimmers.

    PubMed

    Kaynak, Murat; Ozcelik, Adem; Nourhani, Amir; Lammert, Paul E; Crespi, Vincent H; Huang, Tony Jun

    2017-01-31

    Acoustic actuation of bioinspired microswimmers is experimentally demonstrated. Microswimmers are fabricated in situ in a microchannel. Upon acoustic excitation, the flagellum of the microswimmer oscillates, which in turn generates linear or rotary movement depending on the swimmer design. The speed of these bioinspired microswimmers is tuned by adjusting the voltage amplitude applied to the acoustic transducer. Simple microfabrication and remote actuation are promising for biomedical applications.

  12. Preliminary study, analysis and design for a power switch for digital engine actuators

    NASA Technical Reports Server (NTRS)

    Beattie, E. C.; Zickwolf, H. C., Jr.

    1979-01-01

    Innovative control configurations using high temperature switches to operate actuator driving solenoids were studied. The impact on engine control system life cycle costs and reliability of electronic control and (ECU) heat dissipation due to power conditioning and interface drivers were addressed. Various power supply and actuation schemes were investigated, including optical signal transmission and electronics on the actuator, engine driven alternator, and inside the ECU. The use of a switching shunt power conditioner results in the most significant decrease in heat dissipation within the ECU. No overall control system reliability improvement is projected by the use of remote high temperature switches for solenoid drivers.

  13. Large Scale Magnetostrictive Valve Actuator

    NASA Technical Reports Server (NTRS)

    Richard, James A.; Holleman, Elizabeth; Eddleman, David

    2008-01-01

    Marshall Space Flight Center's Valves, Actuators and Ducts Design and Development Branch developed a large scale magnetostrictive valve actuator. The potential advantages of this technology are faster, more efficient valve actuators that consume less power and provide precise position control and deliver higher flow rates than conventional solenoid valves. Magnetostrictive materials change dimensions when a magnetic field is applied; this property is referred to as magnetostriction. Magnetostriction is caused by the alignment of the magnetic domains in the material s crystalline structure and the applied magnetic field lines. Typically, the material changes shape by elongating in the axial direction and constricting in the radial direction, resulting in no net change in volume. All hardware and testing is complete. This paper will discuss: the potential applications of the technology; overview of the as built actuator design; discuss problems that were uncovered during the development testing; review test data and evaluate weaknesses of the design; and discuss areas for improvement for future work. This actuator holds promises of a low power, high load, proportionally controlled actuator for valves requiring 440 to 1500 newtons load.

  14. Thermally actuated piston micromirror arrays

    NASA Astrophysics Data System (ADS)

    Cowan, William D.; Bright, Victor M.

    1997-07-01

    This paper reports design and characterization testing of thermally actuated piston micromirror arrays. The micromirrors were fabricated in the DARPA-sponsored MUMPs polysilicon surface micromachining process. The power averaging characteristic of thermal actuation is exploited in a novel line addressing scheme which reduces wiring for an n2 array to 2n wires. Mirror deflections were measured with a microscope laser interferometer system equipped with a vacuum chamber. Data presented includes device uniformity, frequency response, and deflection versus drive power for varied ambient pressure. Initial test results confirm that thermally actuated piston micromirrors offer several advantages over more common electrostatic designs. Thermally actuated micromirrors offer greater deflections at drive voltages compatible with CMOS circuitry. Measured thermal piston micromirror deflection versus drive voltage is nonlinear, but does not exhibit the 'snap through instability' characteristic of electrostatic devices. Operation of thermally actuated devices in rarefied ambient significantly decreases power dissipation. For a given deflection range, the power reduction facilitated by vacuum operation makes large arrays feasible. Frequency response of thermally actuated devices is limited by the ability of the device to dissipate heat, but operation at 1 kHz rates is feasible.

  15. Small passenger car transmission test-Chevrolet 200 transmission

    NASA Technical Reports Server (NTRS)

    Bujold, M. P.

    1980-01-01

    The small passenger car transmission was tested to supply electric vehicle manufacturers with technical information regarding the performance of commerically available transmissions which would enable them to design a more energy efficient vehicle. With this information the manufacturers could estimate vehicle driving range as well as speed and torque requirements for specific road load performance characteristics. A 1979 Chevrolet Model 200 automatic transmission was tested per a passenger car automatic transmission test code (SAE J651b) which required drive performance, coast performance, and no load test conditions. The transmission attained maximum efficiencies in the mid-eighty percent range for both drive performance tests and coast performance tests. Torque, speed and efficiency curves map the complete performance characteristics for Chevrolet Model 200 transmission.

  16. Multiple switch actuator

    DOEpatents

    Beyer, Edward T.

    1976-01-06

    The present invention relates to switches and switch actuating devices to be operated for purposes of arming a bomb or other missile as it is dropped or released from an aircraft. The particular bomb or missile in which this invention is applied is one in which there is a plurality of circuits which are to be armed by the closing of switches upon dropping or releasing of the bomb. The operation of the switches to closed position is normally accomplished by means of a pull-out wire; that is, a wire which is withdrawn from the bomb or missile at the time of release of the bomb, one end of the wire being attached to the aircraft. The conditions to be met are that the arming switches must be positively and surely maintained in open position until the bomb is released and the arming action is effected. The action of the pull-out wire in achieving the arming action must be sure and positive with minimum danger of malfunctioning, jamming or binding.

  17. Explosive actuated valve

    DOEpatents

    Byrne, Kenneth G.

    1983-01-01

    1. A device of the character described comprising the combination of a housing having an elongate bore and including a shoulder extending inwardly into said bore, a single elongate movable plunger disposed in said bore including an outwardly extending flange adjacent one end thereof overlying said shoulder, normally open conduit means having an inlet and an outlet perpendicularly piercing said housing intermediate said shoulder and said flange and including an intermediate portion intersecting and normally openly communicating with said bore at said shoulder, normally closed conduit means piercing said housing and intersecting said bore at a location spaced from said normally open conduit means, said elongate plunger including a shearing edge adjacent the other end thereof normally disposed intermediate both of said conduit means and overlying a portion of said normally closed conduit means, a deformable member carried by said plunger intermediate said flange and said shoulder and normally spaced from and overlying the intermediate portion of said normally open conduit means, and means on the housing communicating with the bore to retain an explosive actuator for moving said plunger to force the deformable member against the shoulder and extrude a portion of the deformable member out of said bore into portions of the normally open conduit means for plugging the same and to effect the opening of said normally closed conduit means by the plunger shearing edge substantially concomitantly with the plugging of the normally open conduit means.

  18. Downhole hydraulic actuated pump

    SciTech Connect

    Roeder, G.K.

    1988-09-06

    This patent describes a downhole hydraulically actuated pump assembly of the type having a main housing within which an engine and pump is enclosed; a connecting rod, an engine piston, a pump plunger, means by which the engine and connecting rod reciprocate the pump plunger and thereby produces fluid; the main housing has a lower end having a formation fluid inlet; and upper end having a power fluid inlet; and, a produced fluid outlet; the plunger divides one marginal end of the housing into upper and lower production chambers; the lower end of the connecting rod is hollow and extends through the plunger into fluid communication with the formation fluid inlet to provide a source of formation fluid for the upper and lower production chambers; a traveling value assembly contained within the plunger and arranged to transfer formation fluid from the hollow rod, through the plunger, and into the upper and lower production chambers, respectively, as the plunger upstrokes and downstrokes; produced fluid valve means by which fluid flows from the upper and lower production chambers and through the produced fluid outlet.

  19. Quick actuating closure

    NASA Technical Reports Server (NTRS)

    White, III, Dorsey E. (Inventor); Updike, deceased, Benjamin T. (Inventor); Allred, Johnny W. (Inventor)

    1989-01-01

    A quick actuating closure for a pressure vessel 80 in which a wedge ring 30 with a conical outer surface 31 is moved forward to force shear blocks 40, with conical inner surfaces 41, radially outward to lock an end closure plug 70 within an opening 81 in the pressure vessel 80. A seal ring 60 and a preload ramp 50 sit between the shear blocks 40 and the end closure plug 70 to provide a backup sealing capability. Conical surfaces 44 and 55 of the preload ramp 50 and the shear blocks 40 interact to force the seal ring 60 into shoulders 73 and 85 in the end closure plug 70 and opening 81 to form a tight seal. The end closure plug 70 is unlocked by moving the wedge ring 30 rearward, which causes T-bars 32 of the wedge ring 30 riding within T -slots 42 of the shear blocks 40 to force them radially inward. The end closure plug 70 is then removed, allowing access to the interior of the pressure vessel 80.

  20. Automatic thermal switch. [spacecraft applications

    NASA Technical Reports Server (NTRS)

    Cunningham, J. W.; Wing, L. D. (Inventor)

    1983-01-01

    An automatic thermal switch to control heat flow includes two thermally conductive plates and a thermally conductive switch saddle pivotally mounted to the first plate. A flexible heat carrier is connected between the switch saddle and the second plate. A phase-change power unit, including a piston coupled to the switch saddle, is in thermal contact with the first thermally conductive plate. A biasing element biases the switch saddle in a predetermined position with respect to the first plate. When the phase-change power unit is actuated by an increase in heat transmitted through the first place, the piston extends and causes the switch saddle to pivot, thereby varying the thermal conduction between the two plates through the switch saddle and flexible heat carrier. The biasing element, switch saddle, and piston can be arranged to provide either a normally closed or normally opened thermally conductive path between the two plates.

  1. Automatic liquid inventory collecting and dispensing unit

    NASA Technical Reports Server (NTRS)

    Hall, J. B., Jr.; Williams, E. F. (Inventor)

    1975-01-01

    A means is provided for automatically collecting waste liquids and for simultaneously feeding these liquids into water recovery processes. The invention includes first and second tanks with first and second two-way solenoid valves associated with each of the tanks. The first solenoid valve is connected to the liquid source and its associated tank so as to allow liquid to flow into the tank when the valve is in its normal position and to allow the liquid to flow out of the tank when the valve is in its actuated position. The second valve is connected to its associated tank and a gas supply so as to allow gas inside the tank to flow out when the valve is in its normal position and to allow gas to flow from the gas supply into the tank when the valve is in its actuated position. Control circuits are included for actuating the two valves associated with the first tank and not actuating the valves associated with the second tank. The first tank is filled and the second tank is emptied.

  2. Attempting a classification for electrical polymeric actuators

    NASA Astrophysics Data System (ADS)

    Otero, T. F.; López Cascales, J.; Fernández-Romero, A. J.

    2007-04-01

    Polymeric actuators, electroactive polymer actuators, electromechanical polymeric actuators, artificial muscles, and other, are usual expressions to name actuators developed during the last 15-20 years based on interactions between the electric energy and polymer films. The polymeric actuators can be divided into two main fields: electromechanical actuators working by electrostatic interactions between the polymer and the applied electric fields, and electrochemomechanical actuators, or reactive actuators, working by an electrochemical reaction driven by the flowing electric current. The electromechanical actuators can be classified into electrostrictive, piezoelectric, ferroelectric, electrostatic and electrokinetic. They can include a solvent (wet) or not (dry), or they can include a salt or not. Similitude and differences related to the rate and position control or to the possibility or not to include sensing abilities are discussed.

  3. Implantable control, telemetry, and solar energy system in the moving actuator type total artificial heart.

    PubMed

    Ahn, J M; Lee, J H; Choi, S W; Kim, W E; Omn, K S; Park, S K; Kim, W G; Roh, J R; Min, B G

    1998-03-01

    The moving actuator type total artificial heart (TAH) developed in the Seoul National University has numerous design improvements based upon the digital signal processor (DSP). These improvements include the implantability of all electronics, an automatic control algorithm, and extension of the battery run-time in connection with an amorphous silicon solar system (SS). The implantable electronics consist of the motor drive, main processor, intelligent Li ion battery management (LIBM) based upon the DSP, telemetry system, and transcutaneous energy transmission (TET) system. Major changes in the implantable electronics include decreasing the temperature rise by over 21 degrees C on the motor drive, volume reduction (40 x 55 x 33 mm, 7 cell assembly) of the battery pack using a Li ion (3.6 V/cell, 900 mA.h), and improvement of the battery run-time (over 40 min) while providing the cardiac output (CO) of 5 L/min at 100 mm Hg afterload when the external battery for testing is connected with the SS (2.5 W, 192.192, 1 kg) for the external battery recharge or the partial TAH drive. The phase locked loop (PLL) based telemetry system was implemented to improve stability and the error correction DSP algorithm programmed to achieve high accuracy. A field focused light emitting diode (LED) was used to obtain low light scattering along the propagation path, similar to the optical property of the laser and miniature sized, mounted on the pancake type TET coils. The TET operating resonance frequency was self tuned in a range of 360 to 410 kHz to provide enough power even at high afterloads. An automatic cardiac output regulation algorithm was developed based on interventricular pressure analysis and carried out in several animal experiments successfully. All electronics have been evaluated in vitro and in vivo and prepared for implantation of the TAH. Substantial progress has been made in designing a completely implantable TAH at the preclinical stage.

  4. Stable electroosmotically driven actuators

    NASA Astrophysics Data System (ADS)

    Sritharan, Deepa; Motsebo, Mylene; Tumbic, Julia; Smela, Elisabeth

    2013-04-01

    We have previously presented "nastic" actuators based on electroosmotic (EO) pumping of fluid in microchannels using high electric fields for potential application in soft robotics. In this work we address two challenges facing this technology: applying EO to meso-scale devices and the stability of the pumping fluid. The hydraulic pressure achieved by EO increases with as 1/d2, where d is the depth of the microchannel, but the flow rate (which determines the stroke and the speed) is proportional to nd, where n is the number of channels. Therefore to get high force and high stroke the device requires a large number of narrow channels, which is not readily achievable using standard microfabrication techniques. Furthermore, for soft robotics the structure must be soft. In this work we present a method of fabricating a three-dimensional porous elastomer to serve as the array of channels based on a sacrificial sugar scaffold. We demonstrate the concept by fabricating small pumps. The flexible devices were made from polydimethylsiloxane (PDMS) and comprise the 3D porous elastomer flanked on either side by reservoirs containing electrodes. The second issue addressed here involves the pumping fluid. Typically, water is used for EO, but water undergoes electrolysis even at low voltages. Since EO takes place at kV, these systems must be open to release the gases. We have recently reported that propylene carbonate (PC) is pumped at a comparable rate as water and is also stable for over 30 min at 8 kV. Here we show that PC is, however, degraded by moisture, so future EO systems must prevent water from reaching the PC.

  5. Mechanics of Actuated Disc Cutting

    NASA Astrophysics Data System (ADS)

    Dehkhoda, Sevda; Detournay, Emmanuel

    2017-02-01

    This paper investigates the mechanics of an actuated disc cutter with the objective of determining the average forces acting on the disc as a function of the parameters characterizing its motion. The specific problem considered is that of a disc cutter revolving off-centrically at constant angular velocity around a secondary axis rigidly attached to a cartridge, which is moving at constant velocity and undercutting rock at a constant depth. This model represents an idealization of a technology that has been implemented in a number of hard rock mechanical excavators with the goal of reducing the average thrust force to be provided by the excavation equipment. By assuming perfect conformance of the rock with the actuated disc as well as a prescribed motion of the disc (perfectly rigid machine), the evolution of the contact surface between the disc and the rock during one actuation of the disc can be computed. Coupled with simple cutter/rock interaction models that embody either a ductile or a brittle mode of fragmentation, these kinematical considerations lead to an estimate of the average force on the cartridge and of the partitioning of the energy imparted by the disc to the rock between the actuation mechanism of the disc and the translation of the cartridge on which the actuated disc is attached.

  6. Pneumatic Variable Series Elastic Actuator.

    PubMed

    Zheng, Hao; Wu, Molei; Shen, Xiangrong

    2016-08-01

    Inspired by human motor control theory, stiffness control is highly effective in manipulation and human-interactive tasks. The implementation of stiffness control in robotic systems, however, has largely been limited to closed-loop control, and suffers from multiple issues such as limited frequency range, potential instability, and lack of contribution to energy efficiency. Variable-stiffness actuator represents a better solution, but the current designs are complex, heavy, and bulky. The approach in this paper seeks to address these issues by using pneumatic actuator as a variable series elastic actuator (VSEA), leveraging the compressibility of the working fluid. In this work, a pneumatic actuator is modeled as an elastic element with controllable stiffness and equilibrium point, both of which are functions of air masses in the two chambers. As such, for the implementation of stiffness control in a robotic system, the desired stiffness/equilibrium point can be converted to the desired chamber air masses, and a predictive pressure control approach is developed to control the timing of valve switching to obtain the desired air mass while minimizing control action. Experimental results showed that the new approach in this paper requires less expensive hardware (on-off valve instead of proportional valve), causes less control action in implementation, and provides good control performance by leveraging the inherent dynamics of the actuator.

  7. Solar Sail Control Actuator Concepts

    NASA Technical Reports Server (NTRS)

    Mangus, David; Heaton, Andy

    2004-01-01

    The thrust produced by a solar sail is a direct function of its attitude. Thus, solar sail thrust vector control is a key technology that must be developed for sailcraft to become a viable form of deep-space transportation. The solar sail community has been studying various sail Attitude Control System (ACS) actuator designs for near Earth orbit as well as deep space missions. These actuators include vanes, spreader bars, two-axis gimbals, floating/locking gimbals with wheels, and translating masses. This paper documents the various concepts and performs an assessment at the highest level. This paper will only compare the various ACS actuator concepts as they stand at the publication time. This is not an endorsement of any particular concept. As concepts mature, the assessments will change.

  8. Electromechanical propellant control system actuator

    NASA Technical Reports Server (NTRS)

    Myers, W. Neill; Weir, Rae Ann

    1990-01-01

    New control mechanism technologies are currently being sought to provide alternatives to hydraulic actuation systems. The Propulsion Laboratory at Marshall Space Flight Center (MSFC) is involved in the development of electromechanical actuators (EMA's) for this purpose. Through this effort, an in-house designed electromechanical propellant valve actuator has been assembled and is presently being evaluated. This evaluation will allow performance comparisons between EMA and hydraulics systems. The in-house design consists of the following hardware: a three-phase brushless motor, a harmonic drive, and an output spline which will mate with current Space Shuttle Main Engine (SSME) propellant control valves. A resolver and associated electronics supply position feedback for the EMA. System control is provided by a solid-state electronic controller and power supply. Frequency response testing has been performed with further testing planned as hardware and test facilities become available.

  9. A Parylene Bellows Electrochemical Actuator

    PubMed Central

    Li, Po-Ying; Sheybani, Roya; Gutierrez, Christian A.; Kuo, Jonathan T. W.; Meng, Ellis

    2011-01-01

    We present the first electrochemical actuator with Parylene bellows for large-deflection operation. The bellows diaphragm was fabricated using a polyethylene-glycol-based sacrificial molding technique followed by coating in Parylene C. Bellows were mechanically characterized and integrated with a pair of interdigitated electrodes to form an electrochemical actuator that is suitable for low-power pumping of fluids. Pump performance (gas generation rate and pump efficiency) was optimized through a careful examination of geometrical factors. Overall, a maximum pump efficiency of 90% was achieved in the case of electroplated electrodes, and a deflection of over 1.5 mm was demonstrated. Real-time wireless operation was achieved. The complete fabrication process and the materials used in this actuator are bio-compatible, which makes it suitable for biological and medical applications. PMID:21318081

  10. Automated manual transmission clutch controller

    DOEpatents

    Lawrie, Robert E.; Reed, Jr., Richard G.; Rausen, David J.

    1999-11-30

    A powertrain system for a hybrid vehicle. The hybrid vehicle includes a heat engine, such as a diesel engine, and an electric machine, which operates as both an electric motor and an alternator, to power the vehicle. The hybrid vehicle also includes a manual-style transmission configured to operate as an automatic transmission from the perspective of the driver. The engine and the electric machine drive an input shaft which in turn drives an output shaft of the transmission. In addition to driving the transmission, the electric machine regulates the speed of the input shaft in order to synchronize the input shaft during either an upshift or downshift of the transmission by either decreasing or increasing the speed of the input shaft. When decreasing the speed of the input shaft, the electric motor functions as an alternator to produce electrical energy which may be stored by a storage device. Operation of the transmission is controlled by a transmission controller which receives input signals and generates output signals to control shift and clutch motors to effect smooth launch, upshift shifts, and downshifts of the transmission, so that the transmission functions substantially as an automatic transmission from the perspective of the driver, while internally substantially functioning as a manual transmission.

  11. Fast-acting valve actuator

    DOEpatents

    Cho, Nakwon

    1980-01-01

    A fast-acting valve actuator utilizes a spring driven pneumatically loaded piston to drive a valve gate. Rapid exhaust of pressurized gas from the pneumatically loaded side of the piston facilitates an extremely rapid piston stroke. A flexible selector diaphragm opens and closes an exhaust port in response to pressure differentials created by energizing and de-energizing a solenoid which controls the pneumatic input to the actuator as well as selectively providing a venting action to one side of the selector diaphragm.

  12. Electrostatically actuatable light modulating device

    DOEpatents

    Koehler, Dale R.

    1991-01-01

    The electrostatically actuatable light modulator utilizes an opaque substrate plate patterned with an array of aperture cells, the cells comprised of physically positionable dielectric shutters and electrostatic actuators. With incorporation of a light source and a viewing screen, a projection display system is effected. Inclusion of a color filter array aligned with the aperture cells accomplishes a color display. The system is realized in terms of a silicon based manufacturing technology allowing fabrication of a high resolution capability in a physically small device which with the utilization of included magnification optics allows both large and small projection displays.

  13. Soft electrothermal actuators using silver nanowire heaters.

    PubMed

    Yao, Shanshan; Cui, Jianxun; Cui, Zheng; Zhu, Yong

    2017-03-17

    Low-voltage and extremely flexible electrothermal bimorph actuators were fabricated in a simple, efficient and scalable process. The bimorph actuators were made of flexible silver nanowire (AgNW) based heaters, which exhibited a fast heating rate of 18 °C s(-1) and stable heating performance with large bending. The actuators offered the largest bending angle (720°) or curvature (2.6 cm(-1)) at a very low actuation voltage (0.2 V sq(-1) or 4.5 V) among all types of bimorph actuators that have been reported to date. The actuators can be designed and fabricated in different configurations that can achieve complex patterns and shapes upon actuation. Two applications of this type of soft actuators were demonstrated towards biomimetic robotics - a crawling robot that can walk spontaneously on ratchet surfaces and a soft gripper that is capable of manipulating lightweight and delicate objects.

  14. Miniature linear-to-rotary motion actuator

    NASA Technical Reports Server (NTRS)

    Sorokach, Michael R., Jr.

    1993-01-01

    A miniature hydraulic actuation system capable of converting linear actuator motion to control surface rotary motion has been designed for application to active controls on dynamic wind tunnel models. Due to space constraints and the torque requirements of an oscillating control surface at frequencies up to 50 Hertz, a new actuation system was developed to meet research objectives. This new actuation system was designed and developed to overcome the output torque limitations and fluid loss/sealing difficulties associated with an existing vane type actuator. Static control surface deflections and dynamic control surface oscillations through a given angle are provided by the actuation system. The actuator design has been incorporated into a transonic flutter model with an active trailing edge flap and two active spoilers. The model is scheduled for testing in the LaRC 16 Foot Transonic Dynamics Tunnel during Summer 1993. This paper will discuss the actuation system, its design, development difficulties, test results, and application to aerospace vehicles.

  15. Electrodynamic actuators for rocket engine valves

    NASA Technical Reports Server (NTRS)

    Fiet, O.; Doshi, D.

    1972-01-01

    Actuators, employed in acoustic loudspeakers, operate liquid rocket engine valves by replacing light paper cones with flexible metal diaphragms. Comparative analysis indicates better response time than solenoid actuators, and improved service life and reliability.

  16. Distributed structural control using multilayered piezoelectric actuators

    NASA Technical Reports Server (NTRS)

    Cudney, Harley H.; Inman, Daniel J.; Oshman, Yaakov

    1990-01-01

    A method of segmenting piezoelectric sensors and actuators is proposed which can preclude the currently experienced cancelation of sensor signals, or the reduction of actuator effectiveness, due to the integration of the property undergoing measurement or control. The segmentation method is demonstrated by a model developed for beam structures, to which multiple layers of piezoelectric materials are attached. A numerical study is undertaken of increasing active and passive damping of a beam using the segmented sensors and actuators over unsegmented sensors and actuators.

  17. Electromagnetic films as lightweight actuators for active noise reduction

    NASA Astrophysics Data System (ADS)

    Sachau, Delf; Kletschkowski, Thomas

    2006-03-01

    The increasing industrialization and markets across the globe do result in noise pollution that affects humans. In order to reduce the sound pressure level (SPL) of disturbing noise active noise control (also known as noise cancellation, active noise reduction (ANR) or anti-noise) is a good option. Herewith unwanted noise from a primary sound source can be reduced significantly by anti-noise generated from a secondary source: At present commercial active noise reduction systems are using moving-coil loudspeakers as actuators. These actuators need a quite large built-in volume and they are not lightweight. Therefore the industrial application of ANR in vehicles is limited. To reduce these difficulties the use of flat loudspeakers made of electromagnetic films seems to be a promising approach. It is a precondition for the use of such new technologies within an ANR- system to have a basic understanding of the dynamic systems behaviour and the sound transmission behaviour of such a lightweight active component: This paper describes the investigation of a flat panel speaker which is based on electrostatic loudspeaker technology. First of all the passive transmission properties have been measured in a test bed. The passive acoustic insulation has been analyzed and weak spots in the frequency response were discovered. Afterwards the flat panel speaker has been used as actuator in an ANR-System to support insulation at those frequencies. An adaptive filter (FxLMS) was adjusted to the panel and the reduction capabilities of a single-output system have been determined.

  18. Pre-actuation and post-actuation in control applications

    NASA Astrophysics Data System (ADS)

    Iamratanakul, Dhanakorn

    This research proposes a direct approach to solve the output-transition problem in linear systems. The objective is to find an input that changes the system output from an initial value to a final value during a specified output-transition time-interval. It is noted that the output-transition problem (i.e., changing the output of a system from one value to another) is a fundamental control problem, which appears in a wide range of flexible structure applications. When performing fast maneuvers with such flexible structures, it is critical to suppress residual vibrations (at the end of the maneuver) that cause a loss of positioning precision. For example, in disk-drive applications, read and write operations cannot be performed (before and after the output transition) if the output position is not precisely maintained at the desired track. This research studies such residual-vibration-free (rest-to-rest) output transitions, where the output is maintained at a constant value outside the output-transition time-interval. The novelty of the proposed approach is that inputs are not applied just during the output-transition time-interval; rather, inputs are also applied outside the output-transition time-interval, i.e., before the beginning of and after the end of the output-transition time-interval (these inputs are called pre-actuation and post-actuation, respectively). The advantage of using pre-actuation and post-actuation when compared to standard methods that do not use such pre- and post-actuation is studied in this research.

  19. Note: A novel rotary actuator driven by only one piezoelectric actuator.

    PubMed

    Huang, Hu; Fu, Lu; Zhao, Hongwei; Shi, Chengli; Ren, Luquan; Li, Jianping; Qu, Han

    2013-09-01

    This paper presents a novel piezo-driven rotary actuator based on the parasitic motion principle. Output performances of the rotary actuator were tested and discussed. Experiment results indicate that using only one piezoelectric actuator and simple sawtooth wave control, the rotary actuator reaches the rotation velocity of about 20,097 μrad/s when the driving voltage is 100 V and the driving frequency is 90 Hz. The actuator can rotate stably with the minimum resolution of 0.7 μrad. This paper verifies feasibility of the parasitic motion principle for applications of rotary actuators, providing new design ideas for precision piezoelectric rotary actuators.

  20. Optimization of a magnetic disk drive actuator with small skew actuation

    NASA Astrophysics Data System (ADS)

    He, Zhimin; Ong, Eng Hong; Guo, Guoxiao

    2002-05-01

    Currently the utilization of the voice-coil motor for actuating read/write head elements in magnetic hard disk drives results in a skewed actuation, which necessitates an involved microjogging process and thus a complicated servo system. Furthermore, in perpendicular recording systems, a small skew actuation will relax the requirement on pole trimming. This article presents a magnetic hard disk drive actuator and suspension assembly with small skew actuation. In the present study, the distance from the actuator pivot to the read/write head is chosen so that the skew angle variation is minimized. After that, the suspension head is assembled to the actuator arm at a slant angle with respect to the actuator longitudinal direction to achieve an absolute small skew actuation. Finite element modeling and experimental measurements reveal that there are no significant changes of the actuator assembly dynamic performance with and without the slant angle.

  1. Optimized actuators for ultrathin deformable primary mirrors.

    PubMed

    Laslandes, Marie; Patterson, Keith; Pellegrino, Sergio

    2015-05-20

    A novel design and selection scheme for surface-parallel actuators for ultrathin, lightweight mirrors is presented. The actuation system consists of electrodes printed on a continuous layer of piezoelectric material bonded to an optical-quality substrate. The electrodes provide almost full coverage of the piezoelectric layer, in order to maximize the amount of active material that is available for actuation, and their shape is optimized to maximize the correctability and stroke of the mirror for a chosen number of independent actuators and for a dominant imperfection mode. The starting point for the design of the electrodes is the observation that the correction of a figure error that has at least two planes of mirror symmetry is optimally done with twin actuators that have the same optimized shape but are rotated through a suitable angle. Additional sets of optimized twin actuators are defined by considering the intersection between the twin actuators, and hence an arbitrarily fine actuation pattern can be generated. It is shown that this approach leads to actuator systems with better performance than simple, geometrically based actuators. Several actuator patterns to correct third-order astigmatism aberrations are presented, and an experimental demonstration of a 41-actuator mirror is also presented.

  2. Carbon nanotube-polymer composite actuators

    DOEpatents

    Gennett, Thomas; Raffaelle, Ryne P.; Landi, Brian J.; Heben, Michael J.

    2008-04-22

    The present invention discloses a carbon nanotube (SWNT)-polymer composite actuator and method to make such actuator. A series of uniform composites was prepared by dispersing purified single wall nanotubes with varying weight percents into a polymer matrix, followed by solution casting. The resulting nanotube-polymer composite was then successfully used to form a nanotube polymer actuator.

  3. Active Flow Control with Thermoacoustic Actuators

    DTIC Science & Technology

    2014-01-31

    dielectric barrier discharge ( DBD ) plasma actuators [4], or combustion powered actuators [5]. Compared to passive flow control techniques, such as vortex...space nor adding significant weight, which is similar to how DBD plasma actuators can be installed. 3 The sound generation mechanism, known as

  4. Multilayer Piezoelectric Stack Actuator Characterization

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Jones, Christopher M.; Aldrich, Jack B.; Blodget, Chad; Bao, Xioaqi; Badescu, Mircea; Bar-Cohen, Yoseph

    2008-01-01

    Future NASA missions are increasingly seeking to use actuators for precision positioning to accuracies of the order of fractions of a nanometer. For this purpose, multilayer piezoelectric stacks are being considered as actuators for driving these precision mechanisms. In this study, sets of commercial PZT stacks were tested in various AC and DC conditions at both nominal and extreme temperatures and voltages. AC signal testing included impedance, capacitance and dielectric loss factor of each actuator as a function of the small-signal driving sinusoidal frequency, and the ambient temperature. DC signal testing includes leakage current and displacement as a function of the applied DC voltage. The applied DC voltage was increased to over eight times the manufacturers' specifications to investigate the correlation between leakage current and breakdown voltage. Resonance characterization as a function of temperature was done over a temperature range of -180C to +200C which generally exceeded the manufacturers' specifications. In order to study the lifetime performance of these stacks, five actuators from one manufacturer were driven by a 60volt, 2 kHz sine-wave for ten billion cycles. The tests were performed using a Lab-View controlled automated data acquisition system that monitored the waveform of the stack electrical current and voltage. The measurements included the displacement, impedance, capacitance and leakage current and the analysis of the experimental results will be presented.

  5. Status of Electrical Actuator Applications

    NASA Technical Reports Server (NTRS)

    Roth, Mary Ellen; Taylor, Linda M.; Hansen, Irving G.

    1996-01-01

    An ever increasing number of actuation functions historically performed by hydraulics or pneumatics are being accomplished by electric actuation. If 'end to end' systems are considered, electric actuators (EA's) are potentially lighter and more efficient. In general, system redundancies may be more easily implemented and operationally monitored. Typically, electrical components exhibit longer mean times to failure and projected lifetime costs of EA's are potentially much lower than those of other options. EA's have certain characteristics which must be considered in their application. The actual mechanical loadings must be established, for the more easily controlled EA may be operated much closer to its full capabilities. At higher rates of motion, EA's are operating as constant power devices. Therefore, it may be possible to start a movement that can not be stopped. The incorporation of high power electronics into remote locations introduces new concerns of EMI and thermal control. It is the management of these and other characteristics that forms the engineering design challenges. Work is currently in progress on EA's for aircraft and expendable launch vehicles. These applications span from ten to 40+ horsepower. The systematics and status of these actuators will be reported along with current technical trends in this area.

  6. SMA actuators for morphing wings

    NASA Astrophysics Data System (ADS)

    Brailovski, V.; Terriault, P.; Georges, T.; Coutu, D.

    An experimental morphing laminar wing was developed to prove the feasibility of aircraft fuel consumption reduction through enhancement of the laminar flow regime over the wing extrados. The morphing wing prototype designed for subsonic cruise flight conditions (Mach 0.2 … 0.3; angle of attack - 1 … +2∘), combines three principal subsystems: (1) flexible extrados, (2) rigid intrados and (3) an actuator group located inside the wing box. The morphing capability of the wing relies on controlled deformation of the wing extrados under the action of shape memory alloys (SMA) actuators. A coupled fluid-structure model of the morphing wing was used to evaluate its mechanical and aerodynamic performances in different flight conditions. A 0.5 m chord and 1 m span prototype of the morphing wing was tested in a subsonic wind tunnel. In this work, SMA actuators for morphing wings were modeled using a coupled thermo-mechanical finite element model and they were windtunnel validated. If the thermo-mechanical model of SMA actuators presented in this work is coupled with the previously developed structureaerodynamic model of the morphing wing, it could serve for the optimization of the entire morphing wing system.

  7. Multilayer piezoelectric stack actuator characterization

    NASA Astrophysics Data System (ADS)

    Sherrit, Stewart; Jones, Christopher M.; Aldrich, Jack B.; Blodget, Chad; Bao, Xioaqi; Badescu, Mircea; Bar-Cohen, Yoseph

    2008-03-01

    Future NASA missions are increasingly seeking to use actuators for precision positioning to accuracies of the order of fractions of a nanometer. For this purpose, multilayer piezoelectric stacks are being considered as actuators for driving these precision mechanisms. In this study, sets of commercial PZT stacks were tested in various AC and DC conditions at both nominal and extreme temperatures and voltages. AC signal testing included impedance, capacitance and dielectric loss factor of each actuator as a function of the small-signal driving sinusoidal frequency, and the ambient temperature. DC signal testing includes leakage current and displacement as a function of the applied DC voltage. The applied DC voltage was increased to over eight times the manufacturers' specifications to investigate the correlation between leakage current and breakdown voltage. Resonance characterization as a function of temperature was done over a temperature range of -180°C to +200°C which generally exceeded the manufacturers' specifications. In order to study the lifetime performance of these stacks, five actuators from one manufacturer were driven by a 60volt, 2 kHz sine-wave for ten billion cycles. The tests were performed using a Lab-View controlled automated data acquisition system that monitored the waveform of the stack electrical current and voltage. The measurements included the displacement, impedance, capacitance and leakage current and the analysis of the experimental results will be presented.

  8. Smart patch piezoceramic actuator issues

    NASA Technical Reports Server (NTRS)

    Griffin, Steven F.; Denoyer, Keith K.; Yost, Brad

    1993-01-01

    The Phillips Laboratory is undertaking the challenge of finding new and innovative ways to integrate sensing, actuation, and the supporting control and power electronics into a compact self-contained unit to provide vibration suppression for a host structure. This self-contained unit is commonly referred to as a smart patch. The interfaces to the smart patch will be limited to standard spacecraft power and possibly a communications line. The effort to develop a smart patch involves both contractual and inhouse programs which are currently focused on miniaturization of the electronics associated with vibrational control using piezoceramic sensors and actuators. This paper is comprised of two distinct parts. The first part examines issues associated with bonding piezoceramic actuators to a host structure. Experimental data from several specimens with varying flexural stiffness are compared to predictions from two piezoelectric/substructure coupling models, the Blocked Force Model and the Uniform Strain Model with Perfect Bonding. The second part of the paper highlights a demonstration article smart patch created using the insights gained from inhouse efforts at the Phillips Laboratory. This demonstration article has self contained electronics on the same order of size as the actuator powered by a voltage differential of approximately 32 volts. This voltage is provided by four rechargeable 8 volt batteries.

  9. Piezoelectric multilayer actuator life test.

    PubMed

    Sherrit, Stewart; Bao, Xiaoqi; Jones, Christopher M; Aldrich, Jack B; Blodget, Chad J; Moore, James D; Carson, John W; Goullioud, Renaud

    2011-04-01

    Potential NASA optical missions such as the Space Interferometer Mission require actuators for precision positioning to accuracies of the order of nanometers. Commercially available multilayer piezoelectric stack actuators are being considered for driving these precision mirror positioning mechanisms. These mechanisms have potential mission operational requirements that exceed 5 years for one mission life. To test the feasibility of using these commercial actuators for these applications and to determine their reliability and the redundancy requirements, a life test study was undertaken. The nominal actuator requirements for the most critical actuators on the Space Interferometry Mission (SIM) in terms of number of cycles was estimated from the Modulation Optics Mechanism (MOM) and Pathlength control Optics Mechanism (POM) and these requirements were used to define the study. At a nominal drive frequency of 250 Hz, one mission life is calculated to be 40 billion cycles. In this study, a set of commercial PZT stacks configured in a potential flight actuator configuration (pre-stressed to 18 MPa and bonded in flexures) were tested for up to 100 billion cycles. Each test flexure allowed for two sets of primary and redundant stacks to be mechanically connected in series. The tests were controlled using an automated software control and data acquisition system that set up the test parameters and monitored the waveform of the stack electrical current and voltage. The samples were driven between 0 and 20 V at 2000 Hz to accelerate the life test and mimic the voltage amplitude that is expected to be applied to the stacks during operation. During the life test, 10 primary stacks were driven and 10 redundant stacks, mechanically in series with the driven stacks, were open-circuited. The stroke determined from a strain gauge, the temperature and humidity in the chamber, and the temperature of each individual stack were recorded. Other properties of the stacks, including the

  10. Active control of sound transmission using structural modal filters

    NASA Astrophysics Data System (ADS)

    Kaizuka, Tsutomu; Tanaka, Nobuo; Nakano, Kimihiko

    2016-10-01

    This paper addresses active sound transmission control based on structural sensors and actuators. The proposed methodology is to independently measure and control the targeted structural modes, which significantly contribute to sound transmission, with structural modal filters, i.e., modal sensors and modal actuators. The targeting is performed by using modal sound transmission coefficients before control as the criteria. The modal sound transmission coefficient enables the contribution from a structural mode to the sound transmission via the modal interaction with the other structural modes to be determined. The structural modal filters effectively facilitate decreasing the sound transmission and guarantee that the structural vibration and near-field sound, side effects of sound transmission control, will not increase. It is shown with numerical examples that sound transmission can be reduced significantly in a broad frequency band by controlling a small number of structural modes and neither the structural vibration nor near-field sound are increased.

  11. Flight Control System Design with Rate Saturating Actuators

    NASA Technical Reports Server (NTRS)

    Hess, R. A.; Snell, S. A.

    1997-01-01

    Actuator rate saturation is an important factor adversely affecting the stability and performance of aircraft flight control systems. It has been identified as a catalyst in pilot-induced oscillations, some of which have been catastrophic. A simple design technique is described that utilizes software rate limiters to improve the performance of control systems operating in the presence of actuator rate saturation. As described, the technique requires control effectors to be ganged such that any effector is driven by only a single compensated error signal. Using an analysis of the steady-state behavior of the system, requirements are placed upon the type of the loop transmissions and compensators in the proposed technique. Application of the technique to the design of a multi-input/multi-output, lateral-directional control system for a simple model of a high-performance fighter is demonstrated as are the stability and performance improvements that can accrue with the technique.

  12. Design, test and model of a hybrid magnetostrictive hydraulic actuator

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Anirban; Yoo, Jin-Hyeong; Wereley, Norman M.

    2009-08-01

    The basic operation of hybrid hydraulic actuators involves high frequency bi-directional operation of an active material that is converted to uni-directional motion of hydraulic fluid using valves. A hybrid actuator was developed using magnetostrictive material Terfenol-D as the driving element and hydraulic oil as the working fluid. Two different lengths of Terfenol-D rod, 51 and 102 mm, with the same diameter, 12.7 mm, were used. Tests with no load and with load were carried out to measure the performance for uni-directional motion of the output piston at different pumping frequencies. The maximum no-load flow rates were 24.8 cm3 s-1 and 22.7 cm3 s-1 with the 51 mm and 102 mm long rods respectively, and the peaks were noted around 325 Hz pumping frequency. The blocked force of the actuator was close to 89 N in both cases. A key observation was that, at these high pumping frequencies, the inertial effects of the fluid mass dominate over the viscous effects and the problem becomes unsteady in nature. In this study, we also develop a mathematical model of the hydraulic hybrid actuator in the time domain to show the basic operational principle under varying conditions and to capture phenomena affecting system performance. Governing equations for the pumping piston and output shaft were obtained from force equilibrium considerations, while compressibility of the working fluid was taken into account by incorporating the bulk modulus. Fluid inertia was represented by a lumped parameter approach to the transmission line model, giving rise to strongly coupled ordinary differential equations. The model was then used to calculate the no-load velocities of the actuator at different pumping frequencies and simulation results were compared with experimental data for model validation.

  13. Automatic design and manufacture of robotic lifeforms.

    PubMed

    Lipson, H; Pollack, J B

    2000-08-31

    Biological life is in control of its own means of reproduction, which generally involves complex, autocatalysing chemical reactions. But this autonomy of design and manufacture has not yet been realized artificially. Robots are still laboriously designed and constructed by teams of human engineers, usually at considerable expense. Few robots are available because these costs must be absorbed through mass production, which is justified only for toys, weapons and industrial systems such as automatic teller machines. Here we report the results of a combined computational and experimental approach in which simple electromechanical systems are evolved through simulations from basic building blocks (bars, actuators and artificial neurons); the 'fittest' machines (defined by their locomotive ability) are then fabricated robotically using rapid manufacturing technology. We thus achieve autonomy of design and construction using evolution in a 'limited universe' physical simulation coupled to automatic fabrication.

  14. Control strategies and mechanisms for active control of sound transmission into a vibro-acoustic enclosure

    NASA Astrophysics Data System (ADS)

    Jin, Guoyong; Feng, Na; Yang, Tiejun

    2011-06-01

    An analytical study was presented on active control of sound transmission into a vibro-acoustic enclosure comprising two flexible plates. Two types of actuators were used, i.e. acoustic actuator and distributed lead zirconate titanate piezoelectric (PZT) actuator instead of point force actuator. Using the modal acoustic transfer impedance-mobility matrices, the excitation and interaction in the coupled sound transmission system can be described with clear physical significance. With the control system designed to globally reduce the sound field, different control system configurations were considered, including the structural actuator on the incident plate, actuator on the receiving plate, acoustic actuator on the cavity, and their combinations. The effectiveness and performance of the control strategy corresponding to each system configuration were compared and discussed. The role and control mechanism of each type of actuator were of particular interest. It was shown that the incident plate actuator is effective in controlling the cavity-dominated modes and the structural modes dominated by the incident plate and receiving plate. Two main control mechanisms are involved in this control configuration, i.e., modal suppressing and modal rearrangement. For control system configuration with only acoustic actuator in the enclosure, the mechanism involved in this arrangement is purely modal suppression. Desirable placements of structural actuators in terms of total potential energy reduction were also discussed.

  15. Composite flight-control actuator development

    NASA Technical Reports Server (NTRS)

    Bott, Richard; Ching, Fred

    1992-01-01

    The composite actuator is 'jam resistant', satisfying a survivability requirement for the Navy. Typically, the push-pull force needed to drive through the wound area of the composite actuator is 73 percent less than that of an all-metal actuator. In addition to improving the aircraft's combat survivability, significant weight savings were realized. The current design of the survivable, composite actuator cylinder is 36 percent lighter than that of the production steel cylinder, which equates to a 15 percent overall actuator weight savings.

  16. A bidirectional shape memory alloy folding actuator

    NASA Astrophysics Data System (ADS)

    Paik, Jamie K.; Wood, Robert J.

    2012-06-01

    This paper presents a low-profile bidirectional folding actuator based on annealed shape memory alloy sheets applicable for meso- and microscale systems. Despite the advantages of shape memory alloys—high strain, silent operation, and mechanical simplicity—their application is often limited to unidirectional operation. We present a bidirectional folding actuator that produces two opposing 180° motions. A laser-patterned nickel alloy (Inconel 600) heater localizes actuation to the folding sections. The actuator has a thin ( < 1 mm) profile, making it appropriate for use in robotic origami. Various design parameters and fabrication variants are described and experimentally explored in the actuator prototype.

  17. Characterization and modeling of CNT based actuators

    NASA Astrophysics Data System (ADS)

    Riemenschneider, Johannes

    2009-10-01

    In order to get an understanding of the general characteristics of carbon nanotube (CNT) based actuators, the system response of the actuator was analyzed. Special techniques were developed in order to generate a reproducible characteristic measure for the material: the R-curve. In addition, the dynamic response of the system was evaluated in different states of the actuator. A model was generated to capture the general behavior of the system. Finally an actuator incorporating a solid electrolyte was built and tested, showing similar characteristics to an actuator with an aqueous electrolyte.

  18. A piezoelectric pseudo-bimorph actuator

    NASA Astrophysics Data System (ADS)

    Shi, Huaduo; Chen, Jianguo; Liu, Guoxi; Xiao, Wenlei; Dong, Shuxiang

    2013-06-01

    We report a piezoelectric pseudo-bimorph actuator, which is made of only one single plate with interdigitated electrodes on both sides and polarized alternately in longitudinal direction. Like a bimorph actuator, it can also produce a large bending actuation based on anti-symmetrically longitudinal piezoelectric d33 strain effect under an applied electric field. The presented pseudo-bimorph actuator shows much better temperature stability than conventional piezoelectric bimorph actuators from room temperature to the depolarization temperature of the material due to lacking of interface strain loss.

  19. Mars Science Laboratory Rover Actuator Thermal Design

    NASA Technical Reports Server (NTRS)

    Novak, Keith S.; Liu, Yuanming; Lee, Chern-Jiin; Hendricks, Steven

    2010-01-01

    NASA will launch a 900 kg rover, part of the Mars Science Laboratory (MSL) mission, to Mars in October of 2011. The MSL rover is scheduled to land on Mars in August of 2012. The rover employs 31, electric-motor driven actuators to perform a variety of engineering and science functions including: mobility, camera pointing, telecommunications antenna steering, soil and rock sample acquisition and sample processing. This paper describes the MSL rover actuator thermal design. The actuators have stainless steel housings and planetary gearboxes that are lubricated with a "wet" lubricant. The lubricant viscosity increases with decreasing temperature. Warm-up heaters are required to bring the actuators up to temperature (above -55 C) prior to use in the cold wintertime environment of Mars (when ambient atmosphere temperatures are as cold as -113 C). Analytical thermal models of all 31 MSL actuators have been developed. The actuators have been analyzed and warm-up heaters have been designed to improve actuator performance in cold environments. Thermal hardware for the actuators has been specified, procured and installed. This paper presents actuator thermal analysis predicts, and describes the actuator thermal hardware and its operation. In addition, warm-up heater testing and thermal model correlation efforts for the Remote Sensing Mast (RSM) elevation actuator are discussed.

  20. 47 CFR 25.281 - Automatic Transmitter Identification System (ATIS).

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... (ATIS). 25.281 Section 25.281 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Operations § 25.281 Automatic Transmitter Identification System (ATIS). All satellite uplink transmissions carrying broadband video information shall...

  1. 47 CFR 25.281 - Automatic Transmitter Identification System (ATIS).

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... (ATIS). 25.281 Section 25.281 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Operations § 25.281 Automatic Transmitter Identification System (ATIS). All satellite uplink transmissions carrying broadband video information shall...

  2. 47 CFR 25.281 - Automatic Transmitter Identification System (ATIS).

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... (ATIS). 25.281 Section 25.281 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) COMMON CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Operations § 25.281 Automatic Transmitter Identification System (ATIS). All satellite uplink transmissions carrying broadband video information shall...

  3. Dielectric elastomer actuators for facial expression

    NASA Astrophysics Data System (ADS)

    Wang, Yuzhe; Zhu, Jian

    2016-04-01

    Dielectric elastomer actuators have the advantage of mimicking the salient feature of life: movements in response to stimuli. In this paper we explore application of dielectric elastomer actuators to artificial muscles. These artificial muscles can mimic natural masseter to control jaw movements, which are key components in facial expressions especially during talking and singing activities. This paper investigates optimal design of the dielectric elastomer actuator. It is found that the actuator with embedded plastic fibers can avert electromechanical instability and can greatly improve its actuation. Two actuators are then installed in a robotic skull to drive jaw movements, mimicking the masseters in a human jaw. Experiments show that the maximum vertical displacement of the robotic jaw, driven by artificial muscles, is comparable to that of the natural human jaw during speech activities. Theoretical simulations are conducted to analyze the performance of the actuator, which is quantitatively consistent with the experimental observations.

  4. Enhanced IPMC actuation by thermal cycling

    NASA Astrophysics Data System (ADS)

    Rossiter, Jonathan; Takashima, Kazuto; Mukai, Toshiharu

    2012-04-01

    IPMCs are bi-polar actuators capable of large, rapid actuation in flexural configurations. The limit of actuation is defined by the maximal voltage that can be applied to the IPMC, above which electrolysis of the electrolyte and damage to the IPMC may occur. In this paper we present preliminary results that indicate how this actuation limit could be tuned and even exceeded through controlled thermal cycling of gold-plated Nafion IPMCs. Thermal cycling is used to move the centre point of the actuation stroke. Subsequent voltage stimulation actuates the structure around this new centre point. It is shown that by further thermal cycling this centre point naturally returns to its initial position. By exploiting this shape memory characteristic as part of a control system it is expected that more sophisticated IPMC actuation will be achievable.

  5. Light-Driven Polymeric Bimorph Actuators

    NASA Technical Reports Server (NTRS)

    Adamovsky, Gregory; Sarkisov, Sergey S.; Curley, Michael J.

    2009-01-01

    Light-driven polymeric bimorph actuators are being developed as alternatives to prior electrically and optically driven actuators in advanced, highly miniaturized devices and systems exemplified by microelectromechanical systems (MEMS), micro-electro-optical-mechanical systems (MEOMS), and sensor and actuator arrays in smart structures. These light-driven polymeric bimorph actuators are intended to satisfy a need for actuators that (1) in comparison with the prior actuators, are simpler and less power-hungry; (2) can be driven by low-power visible or mid-infrared light delivered through conventional optic fibers; and (3) are suitable for integration with optical sensors and multiple actuators of the same or different type. The immediate predecessors of the present light-driven polymeric bimorph actuators are bimorph actuators that exploit a photorestrictive effect in lead lanthanum zirconate titanate (PLZT) ceramics. The disadvantages of the PLZT-based actuators are that (1) it is difficult to shape the PLZT ceramics, which are hard and brittle; (2) for actuation, it is necessary to use ultraviolet light (wavelengths < 380 nm), which must be generated by use of high-power, high-pressure arc lamps or lasers; (3) it is difficult to deliver sufficient ultraviolet light through conventional optical fibers because of significant losses in the fibers; (4) the response times of the PLZT actuators are of the order of several seconds unacceptably long for typical applications; and (5) the maximum mechanical displacements of the PLZT-based actuators are limited to those characterized by low strains beyond which PLZT ceramics disintegrate because of their brittleness. The basic element of a light-driven bimorph actuator of the present developmental type is a cantilever beam comprising two layers, at least one of which is a polymer that exhibits a photomechanical effect (see figure). The dominant mechanism of the photomechanical effect is a photothermal one: absorption of

  6. Novel applications of plasma actuators

    NASA Astrophysics Data System (ADS)

    Ozturk, Arzu Ceren

    The current study investigates the effectiveness of two different dielectric barrier discharge plasma actuator configurations, a 3-D annular geometry for use in micro thrusters and internal duct aerodynamics and a jet vectoring actuator that acts as a vortex generator and flow control device. The first configuration consists of a closed circumferential arrangement which yields a body force when a voltage difference is applied across the inner and outer electrodes separated by a dielectric. The primary flow is driven by this zero-net mass flux jet at the wall that then entrains fluid in the core of the duct. PIV experiments in both quiescent flow and freestream are conducted on tubes of different diameters while varying parameters such as the modulation frequency, duty cycle and tunnel speed. The values of the induced velocities increase with the forcing frequency and duty cycle although there is a peak value for the forcing frequency after which the velocity and thrust decrease for each thruster. The velocities and thrust increase as the inner diameter of the tubes are increased while the velocity profiles show a great difference with the (l/di) ratio; recirculation occurs after going below a critical value. Experiments in the wind tunnel illustrate that the jet exit characteristics significantly change upon actuation in freestream flow but the effect tends to diminish with increasing inner diameters and tunnel speeds. Using staged arrays of these thrusters result in higher velocities while operating at both in phase and out of phase. The jet vectoring configuration consists of a single embedded electrode separated from two exposed electrodes on either side by the dielectric. The embedded electrode is grounded while the exposed electrodes are driven with a high frequency high voltage input signal. PIV measurements of the actuator in a freestream show that vectoring the jet yields stronger vortices than a linear configuration and increasing the difference between

  7. Efficient Hybrid Actuation Using Solid-State Actuators

    NASA Technical Reports Server (NTRS)

    Leo, Donald J.; Cudney, Harley H.; Horner, Garnett (Technical Monitor)

    2001-01-01

    Piezohydraulic actuation is the use of fluid to rectify the motion of a piezoelectric actuator for the purpose of overcoming the small stroke limitations of the material. In this work we study a closed piezohydraulic circuit that utilizes active valves to rectify the motion of a hydraulic end affector. A linear, lumped parameter model of the system is developed and correlated with experiments. Results demonstrate that the model accurately predicts the filtering of the piezoelectric motion caused by hydraulic compliance. Accurate results are also obtained for predicting the unidirectional motion of the cylinder when the active valves are phased with respect to the piezoelectric actuator. A time delay associated with the mechanical response of the valves is incorporated into the model to reflect the finite time required to open or close the valves. This time delay is found to be the primary limiting factor in achieving higher speed and greater power from the piezohydraulic unit. Experiments on the piezohydraulic unit demonstrate that blocked forces on the order of 100 N and unloaded velocities of 180 micrometers/sec are achieved.

  8. 49 CFR 571.102 - Standard No. 102; Transmission shift position sequence, starter interlock, and transmission...

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... sequence, starter interlock, and transmission braking effect. 571.102 Section 571.102 Transportation Other... braking effect. S1. Purpose and scope. This standard specifies the requirements for the transmission shift position sequence, a starter interlock, and for a braking effect of automatic transmissions, to reduce...

  9. 49 CFR 571.102 - Standard No. 102; Transmission shift position sequence, starter interlock, and transmission...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... sequence, starter interlock, and transmission braking effect. 571.102 Section 571.102 Transportation Other... braking effect. S1. Purpose and scope. This standard specifies the requirements for the transmission shift position sequence, a starter interlock, and for a braking effect of automatic transmissions, to reduce...

  10. 49 CFR 571.102 - Standard No. 102; Transmission shift position sequence, starter interlock, and transmission...

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... sequence, starter interlock, and transmission braking effect. 571.102 Section 571.102 Transportation Other... braking effect. S1. Purpose and scope. This standard specifies the requirements for the transmission shift position sequence, a starter interlock, and for a braking effect of automatic transmissions, to reduce...

  11. Piezoelectric step-motion actuator

    DOEpatents

    Mentesana; Charles P.

    2006-10-10

    A step-motion actuator using piezoelectric material to launch a flight mass which, in turn, actuates a drive pawl to progressively engage and drive a toothed wheel or rod to accomplish stepped motion. Thus, the piezoelectric material converts electrical energy into kinetic energy of the mass, and the drive pawl and toothed wheel or rod convert the kinetic energy of the mass into the desired rotary or linear stepped motion. A compression frame may be secured about the piezoelectric element and adapted to pre-compress the piezoelectric material so as to reduce tensile loads thereon. A return spring may be used to return the mass to its resting position against the compression frame or piezoelectric material following launch. Alternative embodiment are possible, including an alternative first embodiment wherein two masses are launched in substantially different directions, and an alternative second embodiment wherein the mass is eliminated in favor of the piezoelectric material launching itself.

  12. Hydraulically amplified PZT mems actuator

    DOEpatents

    Miles, Robin R.

    2004-11-02

    A hydraulically amplified microelectromechanical systems actuator. A piece of piezoelectric material or stacked piezo bimorph is bonded or deposited as a thin film. The piece is operatively connected to a primary membrane. A reservoir is operatively connected to the primary membrane. The reservoir contains a fluid. A membrane is operatively connected to the reservoir. In operation, energizing the piezoelectric material causing the piezoelectric material to bow. Bowing of the piezoelectric material causes movement of the primary membrane. Movement of the primary membrane results in a force in being transmitted to the liquid in the reservoir. The force in the liquid causes movement of the membrane. Movement of the membrane results in an operating actuator.

  13. Analysis for the stick-slip motion of differential power screw actuator

    NASA Astrophysics Data System (ADS)

    Zhang, Jun-bo; Yao, Ping; Zhang, Xue-jun; Tang, Jin-long; Zhang, Yu-dong

    2011-08-01

    The model for differential power screw transmission is established, and the mathematical expression of the stick-slip motion is derived based on the friction, in addition, influences of parameters of differential power screw transmission on the stick-slip motion are analyzed qualitatively. Based on dynamical equations of the analysis, the precision and stability of the designed differential power screw actuator is obtained, and the result is compared to it with software SIMULINK to verify.

  14. Simulating Magneto-Aerodynamic Actuator

    DTIC Science & Technology

    2007-12-20

    2005. 19. Boeuf, J.P., Lagmich, Y., Callegari, Th., and Pitchford , L.C., Electro- hydrodynamic Force and Acceleration in Surface Discharge, AIAA 2006...Plasmadynamics and Laser Award, 2004 AFRL Point of Contact Dr. Donald B. Paul , AFRL/VA WPAFB, OH 937-255-7329, met weekly. Dr. Alan Garscadden, AFRL/PR...validating database for numerical simulation of magneto-aerodynamic actuator for hypersonic flow control. Points of contact at the AFRL/VA are Dr. D. Paul

  15. Actuation performances of anisotropic gels

    NASA Astrophysics Data System (ADS)

    Nardinocchi, P.; Teresi, L.

    2016-12-01

    We investigated the actuation performances of anisotropic gels driven by mechanical and chemical stimuli, in terms of both deformation processes and stroke-curves, and distinguished between the fast response of gels before diffusion starts and the asymptotic response attained at the steady state. We also showed as the range of forces that an anisotropic hydrogel can exert when constrained is especially wide; indeed, changing fiber orientation allows us to induce shear as well as transversely isotropic extensions.

  16. Microspoiler Actuation for Guided Projectiles

    DTIC Science & Technology

    2016-01-06

    between the Georgia Institute of Technology (Georgia Tech ) and the Army Research Laboratory (ARL) for DARPA.  Objective 1: Perform Trade Studies to...required. These prototypes were fabricated at the Georgia Tech Mechanical Engineering machine shop. A detailed description of the selected actuator... Tech fabricated the projectiles according to a detailed specification of the Army-Navy Finner (30mm). Projectile manufacturing methods drew on existing

  17. Actuator device for artificial leg

    NASA Technical Reports Server (NTRS)

    Burch, J. L. (Inventor)

    1976-01-01

    An actuator device is described for moving an artificial leg of a person having a prosthesis replacing an entire leg and hip joint. The device includes a first articulated hip joint assembly carried by the natural leg and a second articulated hip joint assembly carried by the prosthesis whereby energy from the movement of the natural leg is transferred by a compressible fluid from the first hip joint assembly to the second hip joint assembly for moving the artificial leg.

  18. Subsea valve actuator for ultra deepwater

    SciTech Connect

    Ali, S.Z.; Skeels, H.B.; Montemayor, B.K.; Williams, M.R.

    1996-12-31

    This paper reviews the continuing development of gate valve and actuator technology for subsea completions extending into ultra deep water. The basic technical challenges inherent to subsea valve actuators are reviewed, along with the various factors which affect the design and performance of these devices in deepwater applications. The high external ambient pressures which occur in deep water, coupled with high specific gravity hydraulic control fluids, are shown to have a significant impact on the performance of the actuators. This paper presents design and analysis methods and the verification test procedures which are required to develop and qualify new deep water actuator designs. Gate valve actuators of the type described in this paper are currently in use on subsea christmas trees on the world`s deepest subsea wells offshore Brazil (water depths >3,000 feet). New applications of the deepwater actuators are in process for upcoming Gulf of Mexico subsea production systems in water depths approaching 6,000 feet. The actuator/valve development method described in this paper has been confirmed by performance verification testing of full scale valves and actuators using a hyperbaric chamber to simulate ultra deepwater operating conditions. Performance of the test valves and actuators correlated very well with analytical predictions. Test results have confirmed that the new valve actuator designs will satisfy API 17D performance requirements for water depths up to 7,500 feet, well in excess of the upcoming GOM application.

  19. The 15-meter diameter hoop/column antenna surface control actuator system

    NASA Technical Reports Server (NTRS)

    Ahl, Elvin L., Jr.; Miller, James B.

    1988-01-01

    The design, development, and implementation status of the Surface Control Actuator System (SCAS) for the Hoop/Column Antenna are described with the primary focus on the design of the mechanical element. The SCAS is an electromechanical system that will automatically adjust the antenna shape by changing the length of control cords. Achieving and maintaining the proper surface shape and smoothness are critical to optimizing the electromagnetic characteristics of the antenna.

  20. Small passenger car transmission test: Mercury Lynx ATX transmission

    SciTech Connect

    Bujold, M P

    1981-09-01

    The small passenger car transmission test was initiated to supply electric vehicle manufacturers with technical information regarding the performance of commercially available transmissions. This information would enable EV manufacturers to design a more energy efficient vehicle. With this information the manufacturers would be able to estimate vehicle driving range as well as speed and torque requirements for specific road load performance characteristics. This report covers the 1981 Mercury Lynx ATX transaxle. This transmission was tested per a passenger car automatic transmission test code (SAE J65lb) which required drive performance, coast performance, and no load test conditions. Under these test conditions the transmission attained maximum efficiencies in the 93% range for drive performance tests. The major results of this test are the torque, speed and efficiency curves which are located in the data section of this report. These graphs map performance characteristics for the Mercury Lynx ATX transmission.

  1. Chopping of near- and mid-infrared radiation using a curled electrostatic MEMS actuator

    NASA Astrophysics Data System (ADS)

    Dausch, David E.; Goodwin, Scott H.; Exarhos, Gregory J.

    2003-09-01

    An electrostatic MEMS actuator known as the "Artificial Eyelid" can be used as a micromechanical chopper for IR detectors. The actuator structure consists of a curled polymer/metal film stack which is microfabricated and released from an IR transparent substrate. The film stack is uncurled by applying an electric field between the curled film and the transparent fixed electrode on the substrate. These flexible film actuators can act as IR choppers, providing transmission of radiation to the sensor elements when open (curled) and reflection when closed (uncurled). Arrays of actuators were fabricated on ITO-coated glass substrates and ranged in size from 4 x 4 mm to 7.5 x 15 mm with individual elements ranging from 250 to 500 μm on a side. Actuation for devices with average radius of curvature of 120 μ was consistently achieved at 150-170 V operation with 98-100% of the elements functioning and long lifetimes. IR chopper characteristics were measured using a blackbody source and pyroelectric detector by applying sine and square wave voltage to the actuators at a frequency of 30 Hz. The capability of the artificial eyelid for chopping near- and mid-IR radiation, including future fabrication of devices using NiCo2O4 or NiRh2O4 films for IR transparent electrodes, will be discussed.

  2. Silkworm protein: its possibility as an actuator

    NASA Astrophysics Data System (ADS)

    Jin, Hyoung-Joon; Myung, Seung Jun; Kim, Heung Soo; Jung, Woochul; Kim, Jaehwan

    2006-03-01

    The possibility of silkworm (Bombyx mori) protein as a base material of biomimetic actuator was investigated in this paper. Silkworm films were prepared from high concentrations of regenerated fibroin in aqueous solution. Films with thickness of about 100 μm were prepared for coating electrodes. The cast silk films were coated by very thin gold electrode on both sides of the film. Tensile test of cast film showed bi-modal trend, which is typical stress-strain relation of polymeric film. As the test of a possible biomimetic actuator, silkworm film actuator provides bending deformations according to the magnitude and frequency of the applied electric filed. Although the present bending deformation of silkworm film actuator is smaller than that of Electro-Active Paper actuator, it provides the possibility of biomimetic actuator.

  3. Microwave Power for Smart Membrane Actuators

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Song, Kyo D.; Golembiewski, Walter T.; Chu, Sang-Hyon; King, Glen C.

    2002-01-01

    The concept of microwave-driven smart membrane actuators is envisioned as the best option to alleviate the complexity associated with hard-wired control circuitry. A large, ultra-light space structure, such as solar sails and Gossamer spacecrafts, requires a distribution of power into individual membrane actuators to control them in an effective way. A patch rectenna array with a high voltage output was developed to drive smart membrane actuators. Networked patch rectenna array receives and converts microwave power into a DC power for an array of smart actuators. To use microwave power effectively, the concept of a power allocation and distribution (PAD) circuit is developed and tested for networking a rectenna/actuator patch array. For the future development, the PAD circuit could be imbedded into a single embodiment of rectenna and actuator array with the thin-film microcircuit embodiment. Preliminary design and fabrication of PAD circuitry that consists of a sixteen nodal elements were made for laboratory testing.

  4. Series Elastic Actuators for legged robots

    NASA Astrophysics Data System (ADS)

    Pratt, Jerry E.; Krupp, Benjamin T.

    2004-09-01

    Series Elastic Actuators provide many benefits in force control of robots in unconstrained environments. These benefits include high force fidelity, extremely low impedance, low friction, and good force control bandwidth. Series Elastic Actuators employ a novel mechanical design architecture which goes against the common machine design principal of "stiffer is better." A compliant element is placed between the gear train and driven load to intentionally reduce the stiffness of the actuator. A position sensor measures the deflection, and the force output is accurately calculated using Hooke"s Law (F=Kx). A control loop then servos the actuator to the desired output force. The resulting actuator has inherent shock tolerance, high force fidelity and extremely low impedance. These characteristics are desirable in many applications including legged robots, exoskeletons for human performance amplification, robotic arms, haptic interfaces, and adaptive suspensions. We describe several variations of Series Elastic Actuators that have been developed using both electric and hydraulic components.

  5. Smooth Vibrotactile Flow Generation Using Two Piezoelectric Actuators.

    PubMed

    Jeonggoo Kang; Jongsuh Lee; Heewon Kim; Kwangsu Cho; Semyung Wang; Jeha Ryu

    2012-01-01

    This paper proposes a method for generating a smooth directional vibrotactile flow on a thin plate. While actuating two piezoelectric actuators spatially across the plate, temporal sweeping of the input excitation frequency from zero to the first mode of the resonance frequency can smooth the perceived directional vibrotactile flow, as compared to a vibrotactile flow generated by conventional apparent tactile movement and phantom sensation methods. In order to ascertain important factors in the excitation pattern, a user study was conducted for three factors (amplitude (constant versus modulated), frequency (constant versus swept), and ending shape (sharp versus smooth)). The results showed that frequency sweeping in addition to amplitude modulation and smooth ending were the most important factors in smoothing vibrotactile flows. Moreover, an excitation signal with a smooth ending shape was important for generating nonspiky flows at the midpoint. In this study, a vibration isolation design is also proposed in order to substantially decrease the transmission of the actuator vibration to the mockup housing. As such, it is expected that the proposed vibrotactile flow generation method and vibration isolation design may be useful in applications including generating directional information in navigation maps or for identifying callers in mobile devices.

  6. Actuation fluid adapter for hydraulically-actuated electronically-controlled fuel injector and engine using same

    DOEpatents

    Keyster, Eric S.; Merchant, Jack A.

    2002-01-01

    A fuel injector adapter consists of a block defining a pressure communication passage therethrough and an actuation fluid passage. The actuation fluid passage includes three separate branches that open through an outer surface of the block at three separate locations.

  7. Surface Control of Actuated Hybrid Space Mirrors

    DTIC Science & Technology

    2010-10-01

    precision Nanolaminate foil facesheet and Silicon Carbide ( SiC ) substrate embedded with electroactive ceramic actuators. Wavefront sensors are used to...integrate precision Nanolaminate foil facesheet with Silicon Carbide ( SiC ) substrate equipped with embedded electroactive ceramic actuators...IAC-10.C2.5.8 SURFACE CONTROL OF ACTUATED HYBRID SPACE MIRRORS Brij. N. Agrawal Naval Postgraduate School, Monterey, CA, 93943, agrawal

  8. Advanced Actuation Systems Development. Volume 2

    DTIC Science & Technology

    1989-08-01

    servovalve was constructed with discrete high-speed solenoid valve , Ito cotroI thie flow to a control actuator, The solenoid valves were a poppet design...was constructed with discrete high-speed solenoid valves to control the flow to a control actuator. The solenoih vaIlves were a poppet design using a...controlled high-speed solenoid valves , (3) the performance evaltiation of an F- 15 rudder actuator tinder applied loads, (4) the performance

  9. Fluidic self-actuating control assembly

    DOEpatents

    Grantz, Alan L.

    1979-01-01

    A fluidic self-actuating control assembly for use in a reactor wherein no external control inputs are required to actuate (scram) the system. The assembly is constructed to scram upon sensing either a sudden depressurization of reactor inlet flow or a sudden increase in core neutron flux. A fluidic control system senses abnormal flow or neutron flux transients and actuates the system, whereupon assembly coolant flow reverses, forcing absorber balls into the reactor core region.

  10. MRI-powered Actuators for Robotic Interventions

    PubMed Central

    Vartholomeos, Panagiotis; Qin, Lei; Dupont, Pierre E.

    2012-01-01

    This paper presents a novel actuation technology for robotically assisted MRI-guided interventional procedures. Compact and wireless, the actuators are both powered and controlled by the MRI scanner. The design concept and performance limits are described and derived analytically. Simulation and experiments in a clinical MR scanner are used to validate the analysis and to demonstrate the capability of the approach for needle biopsies. The concepts of actuator locking mechanisms and multi-axis control are also introduced. PMID:22287082

  11. Direct-drive field actuator motors

    DOEpatents

    Grahn, A.R.

    1995-07-11

    A high-torque, low speed, positive-drive field actuator motor is disclosed including a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately. 37 figs.

  12. Direct-drive field actuator motors

    SciTech Connect

    Grahn, Allen R.

    1995-01-01

    A high-torque, low speed, positive-drive field actuator motor including a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately.

  13. Serpentine Geometry Plasma Actuators for Flow Control

    DTIC Science & Technology

    2013-08-23

    Serpentine geometry plasma actuators for flow control Mark Riherd and Subrata Roy Citation: J. Appl. Phys. 114, 083303 (2013); doi: 10.1063...DATES COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Serpentine geometry plasma actuators for flow control 5a. CONTRACT NUMBER 5b...unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8-98) Prescribed by ANSI Std Z39-18 Serpentine geometry plasma actuators for flow

  14. Compact, planar, translational piezoelectric bimorph actuator with Archimedes’ spiral actuating tethers

    NASA Astrophysics Data System (ADS)

    Yang, Chenye; Liu, Sanwei; Xie, Xin; Livermore, Carol

    2016-12-01

    The design, analytical modelling, finite element analysis (FEA), and experimental characterization of a microelectromechanical system (MEMS) out-of-plane (vertical) translational piezoelectric lead-zirconate-titanate (PZT) bimorph actuator supported on Archimedes’ spiral tethers are presented. Three types of bimorph actuators with different electrode patterns (with spiral tethers half actuated, fully actuated with uniform polarity, or fully actuated with reversed polarity) are designed and modelled. The two actuators with the highest predicted performance (half actuated and fully actuated with uniform polarity) are implemented and characterized. Both designs are fabricated by commercial processes and are compatible with integration into more complex MEMS systems. Analytical modelling and FEA are used to analyze and predict the actuators’ displacements and blocking forces. Experimental measurements of the deflections and blocking forces of actuators with full uniform actuation and half actuation validate the design. At an applied voltage of 110 V, the out-of-plane deflections of the actuators with half actuation and full uniform actuation are measured at about 17 µm and 29 µm respectively, in good agreement with analytical predictions of 17.3 µm and 34.2 µm and FEA predictions of 17.1 µm and 25.8 µm. The blocking force for devices with half-actuated tethers is predicted to be 12 mN (analytical) and 10 mN (FEA), close to the experimental value of 9 mN. The blocking force for devices with full uniform actuation is predicted to be 23 mN (analytical) and 17 mN (FEA), as compared with 15 mN in experiments.

  15. Modeling and Synthesis Methods for Retrofit Design of Submarine Actuation Systems. Energy Storage for Electric Actuators

    DTIC Science & Technology

    2011-12-15

    for Retrofit Design of Submarine Actuation Systems 5b. GRANT NUMBER Energy Storage for Electric Actuators NOOO 14-08-1-0424 5c. PROGRAM ELEMENT...are used to derive power and energy storage requirements for control surface actuation during extreme submarine maneuvers, such as emergency...and for initially sizing system components. 15. SUBJECT TERMS Submarines, electromagnetic actuators, energy storage , simulation-based design

  16. A thermokinetically driven metal-hydride actuator

    NASA Astrophysics Data System (ADS)

    Jung, Kwangmok; Kim, Kwang J.

    2008-03-01

    The purpose of this study is to develop a novel thermokinetically-driven actuator technology based on the physics of metal hydrides (MH's). A metal hydride absorbs and desorbs hydrogen due to the imposed temperature swing(s). The MH can also work as an effective thermally-driven hydrogen compressor producing more than 5,000 psia net pressure swing. The MH actuation system can be built in a simple structure, exhibits high power, produces soft actuating, and is essentially noiseless. Moreover, it is much more powerful and compact than conventional pneumatic systems that require bulky auxiliary systems. It is our belief that the MH actuators are useful for many emerging industrial, biorobotic, and civil structural applications. In this paper, we report the recent preliminary experimental results for a laboratory-prototyped MH actuation system. In particular, the dynamic response characteristics, enhanced controllability, thermodynamic performances, and reliability of the metal hydride actuator were studied in order to estimate the actuation capability of the MH actuator. A unique design of the MH actuator was created. It encases a so-called "porous metal hydride (PMH)" in the reactor to effectively achieve desirable performance by improving overall thermal conductance.

  17. Performance of dielectric elastomer actuators and materials

    NASA Astrophysics Data System (ADS)

    Sommer-Larsen, Peter; Kofod, Guggi; Shridhar, M. H.; Benslimane, Mohammed; Gravesen, Peter

    2002-07-01

    Dielectric elastomer actuators performance depends on their construction and the way they are driven. We describe the governing equations for the dynamic performance of actuators and show examples of their use. Both the properties of the base elastomer material and the compliant electrodes influence the actuators performance. The mechanical and electrical properties of elastomers are discussed with a focus on an acrylate pressure sensitive adhesive from 3M, which is used by a number of groups. The influence of these properties on the actuator properties is analyzed.

  18. Dual output variable pitch turbofan actuation system

    NASA Technical Reports Server (NTRS)

    Griswold, R. H., Jr.; Broman, C. L. (Inventor)

    1976-01-01

    An improved actuating mechanism was provided for a gas turbine engine incorporating fan blades of the variable pitch variety, the actuator adapted to rotate the individual fan blades within apertures in an associated fan disc. The actuator included means such as a pair of synchronizing ring gears, one on each side of the blade shanks, and adapted to engage pinions disposed thereon. Means were provided to impart rotation to the ring gears in opposite directions to effect rotation of the blade shanks in response to a predetermined input signal. In the event of system failure, a run-away actuator was prevented by an improved braking device which arrests the mechanism.

  19. Bucky gel actuators optimization towards haptic applications

    NASA Astrophysics Data System (ADS)

    Bubak, Grzegorz; Ansaldo, Alberto; Ceseracciu, Luca; Hata, Kenji; Ricci, Davide

    2014-03-01

    An ideal plastic actuator for haptic applications should generate a relatively large displacement (minimum 0.2-0.6 mm, force (~50 mN/cm2) and a fast actuation response to the applied voltage. Although many different types of flexible, plastic actuators based on electroactive polymers (EAP) are currently under investigation, the ionic EAPs are the only ones that can be operated at low voltage. This property makes them suitable for applications that require inherently safe actuators. Among the ionic EAPs, bucky gel based actuators are very promising. Bucky gel is a physical gel made by grounding imidazolium ionic liquids with carbon nanotubes, which can then be incorporated in a polymeric composite matrix to prepare the active electrode layers of linear and bending actuators. Anyhow, many conflicting factors have to be balanced to obtain required performance. In order to produce high force a large stiffness is preferable but this limits the displacement. Moreover, the bigger the active electrode the larger the force. However the thicker an actuator is, the slower the charging process becomes (it is diffusion limited). In order to increase the charging speed a thin electrolyte would be desirable, but this increases the probability of pinholes and device failure. In this paper we will present how different approaches in electrolyte and electrode preparation influence actuator performance and properties taking particularly into account the device ionic conductivity (which influences the charging speed) and the electrode surface resistance (which influences both the recruitment of the whole actuator length and its speed).

  20. Using Voice Coils to Actuate Modular Soft Robots: Wormbot, an Example.

    PubMed

    Nemitz, Markus P; Mihaylov, Pavel; Barraclough, Thomas W; Ross, Dylan; Stokes, Adam A

    2016-12-01

    In this study, we present a modular worm-like robot, which utilizes voice coils as a new paradigm in soft robot actuation. Drive electronics are incorporated into the actuators, providing a significant improvement in self-sufficiency when compared with existing soft robot actuation modes such as pneumatics or hydraulics. The body plan of this robot is inspired by the phylum Annelida and consists of three-dimensional printed voice coil actuators, which are connected by flexible silicone membranes. Each electromagnetic actuator engages with its neighbor to compress or extend the membrane of each segment, and the sequence in which they are actuated results in an earthworm-inspired peristaltic motion. We find that a minimum of three segments is required for locomotion, but due to our modular design, robots of any length can be quickly and easily assembled. In addition to actuation, voice coils provide audio input and output capabilities. We demonstrate transmission of data between segments by high-frequency carrier waves and, using a similar mechanism, we note that the passing of power between coupled coils in neighboring modules-or from an external power source-is also possible. Voice coils are a convenient multifunctional alternative to existing soft robot actuators. Their self-contained nature and ability to communicate with each other are ideal for modular robotics, and the additional functionality of sound input/output and power transfer will become increasingly useful as soft robots begin the transition from early proof-of-concept systems toward fully functional and highly integrated robotic systems.

  1. Using Voice Coils to Actuate Modular Soft Robots: Wormbot, an Example

    PubMed Central

    Nemitz, Markus P.; Mihaylov, Pavel; Barraclough, Thomas W.; Ross, Dylan

    2016-01-01

    Abstract In this study, we present a modular worm-like robot, which utilizes voice coils as a new paradigm in soft robot actuation. Drive electronics are incorporated into the actuators, providing a significant improvement in self-sufficiency when compared with existing soft robot actuation modes such as pneumatics or hydraulics. The body plan of this robot is inspired by the phylum Annelida and consists of three-dimensional printed voice coil actuators, which are connected by flexible silicone membranes. Each electromagnetic actuator engages with its neighbor to compress or extend the membrane of each segment, and the sequence in which they are actuated results in an earthworm-inspired peristaltic motion. We find that a minimum of three segments is required for locomotion, but due to our modular design, robots of any length can be quickly and easily assembled. In addition to actuation, voice coils provide audio input and output capabilities. We demonstrate transmission of data between segments by high-frequency carrier waves and, using a similar mechanism, we note that the passing of power between coupled coils in neighboring modules—or from an external power source—is also possible. Voice coils are a convenient multifunctional alternative to existing soft robot actuators. Their self-contained nature and ability to communicate with each other are ideal for modular robotics, and the additional functionality of sound input/output and power transfer will become increasingly useful as soft robots begin the transition from early proof-of-concept systems toward fully functional and highly integrated robotic systems. PMID:28078195

  2. Dry actuation testing of viscous drag micropumping systems for determination of optimal drive waveforms

    NASA Astrophysics Data System (ADS)

    Sosnowchik, Brian D.; Galambos, Paul C.; Sharp, Kendra V.; Jenkins, Mark W.; Horn, Mark W.; Hendrix, Jason R.

    2003-12-01

    This paper presents the dry actuation testing procedures and results for novel viscous drag micropumping systems. To overcome the limitations of previously developed mechanical pumps, we have developed pumps that are surface micromachined for efficient mass production which utilize viscous drag (dominant at low Reynolds numbers typical of microfluidics) to move fluid. The SUMMiT (www.sandia.gov/micromachine) fabricated pumps, presented first by Kilani et al., are being experimentally and computationally analyzed. In this paper we will describe the development of optimal waveforms to drive the electrostatic pumping mechanism while dry. While wet actuation will be significantly different, dry testing provides insight into how to optimally move the mechanism and differences between dry and wet actuation can be used to isolate fluid effects. Characterization began with an analysis of the driving voltage waveforms for the torsional ratcheting actuator (TRA), a micro-motor that drove the gear transmission for the pump, actuated with SAMA (Sandia"s Arbitrary waveform MEMS Actuator), a new waveform generating computer program with the ability to generate and output arbitrary voltage signals. Based upon previous research, a 50% duty cycle half-sine wave was initially selected for actuation of the TRA. However, due to the geometry of the half-sine waveform, the loaded micromotor could not transmit the motion required to pump the tested liquids. Six waveforms were then conceived, constructed, and selected for device actuation testing. Dry actuation tests included high voltage, low voltage, high frequency, and endurance/reliability testing of the TRA, gear transmission and pump assembly. In the SUMMiT process, all of the components of the system are fabricated together on one silicon chip already assembled in a monolithic microfabrication process. A 40% duty cycle quarter-sine waveform with a 20% DC at 60V has currently proved to be the most reliable, allowing for an 825Hz

  3. Dry actuation testing of viscous drag micropumping systems for determination of optimal drive waveforms

    NASA Astrophysics Data System (ADS)

    Sosnowchik, Brian D.; Galambos, Paul C.; Sharp, Kendra V.; Jenkins, Mark W.; Horn, Mark W.; Hendrix, Jason R.

    2004-01-01

    This paper presents the dry actuation testing procedures and results for novel viscous drag micropumping systems. To overcome the limitations of previously developed mechanical pumps, we have developed pumps that are surface micromachined for efficient mass production which utilize viscous drag (dominant at low Reynolds numbers typical of microfluidics) to move fluid. The SUMMiT (www.sandia.gov/micromachine) fabricated pumps, presented first by Kilani et al., are being experimentally and computationally analyzed. In this paper we will describe the development of optimal waveforms to drive the electrostatic pumping mechanism while dry. While wet actuation will be significantly different, dry testing provides insight into how to optimally move the mechanism and differences between dry and wet actuation can be used to isolate fluid effects. Characterization began with an analysis of the driving voltage waveforms for the torsional ratcheting actuator (TRA), a micro-motor that drove the gear transmission for the pump, actuated with SAMA (Sandia"s Arbitrary waveform MEMS Actuator), a new waveform generating computer program with the ability to generate and output arbitrary voltage signals. Based upon previous research, a 50% duty cycle half-sine wave was initially selected for actuation of the TRA. However, due to the geometry of the half-sine waveform, the loaded micromotor could not transmit the motion required to pump the tested liquids. Six waveforms were then conceived, constructed, and selected for device actuation testing. Dry actuation tests included high voltage, low voltage, high frequency, and endurance/reliability testing of the TRA, gear transmission and pump assembly. In the SUMMiT process, all of the components of the system are fabricated together on one silicon chip already assembled in a monolithic microfabrication process. A 40% duty cycle quarter-sine waveform with a 20% DC at 60V has currently proved to be the most reliable, allowing for an 825Hz

  4. Crack detection in a wheel end spindle using wave propagation via modal impacts and piezo actuation

    NASA Astrophysics Data System (ADS)

    Ackers, Spencer; Evans, Ronald; Johnson, Timothy; Kess, Harold; White, Jonathan; Adams, Douglas E.; Brown, Pam

    2006-03-01

    This research demonstrates two methodologies for detecting cracks in a metal spindle housed deep within a vehicle wheel end assembly. First, modal impacts are imposed on the hub of the wheel in the longitudinal direction to produce broadband elastic wave excitation spectra out to 7000 Hz. The response data on the flange is collected using 3000 Hz bandwidth accelerometers. It is shown using frequency response analysis that the crack produces a filter, which amplifies the elastic response of the surrounding components of the wheel assembly. Experiments on wheel assemblies mounted on the vehicle with the vehicle lifted off the ground are performed to demonstrate that the modal impact method can be used to nondestructively evaluate cracks of varying depths despite sources of variability such as the half shaft angular position relative to the non-rotating spindle. Second, an automatic piezo-stack actuator is utilized to excite the wheel hub with a swept sine signal extending from 20 kHz. Accelerometers are then utilized to measure the response on the flange. It is demonstrated using frequency response analysis that the crack filters waves traveling from the hub to the flange. A simple finite element model is used to interpret the experimental results. Challenges discussed include variability from assembly to assembly, the variability in each assembly, and the high amount of damping present in each assembly due to the transmission gearing, lubricant, and other components in the wheel end. A two-channel measurement system with a graphical user interface for detecting cracks was also developed and a procedure was created to ensure that operators properly perform the test.

  5. Transmissive Microshutter Arrays

    NASA Astrophysics Data System (ADS)

    Kutyrev, A. S.; Moseley, H. S.; Fettig, R. K.; Kuhn, J. L.; Woodgate, B. E.; Kimble, R. A.; Orloff, J. H.

    1999-12-01

    We report further progress on the development of a two-dimensional array of microshutters, which can be used as a high efficiency, high contrast field selection device for a multi-object spectrometer for the Next Generation Space Telescope (NGST). The device is a close packed array of shutters, with a typical size of 100 microns square and an area filling factor of up to 80%. Each shutter, made of single crystal silicon or silicon nitride with an appropriate optical coating, pivots on a torsion flexure along one edge. Each of the shutters is individually selectable. Although these devices can be used as reflection devices, their primary mode of operation is in transmission, which provides the minimum possible level of scattered light. An original double-shutter mechanism is employed for actuation. Small shutter arrays have been built using a Focus Ion Beam milling machine is a 3 x 3 double shutter actuation with a micro-manipulator under electron microscope observation has been demonstrated. An important aspect of this study has been to demonstrate the reliability of the structures over its expected lifetime. We analyzed stiffness, strength and fatigue issues of two good candidate materials, single crystal silicon and silicon nitride. Both appear to be suitable from the mechanical point of view. This project is supported by NASA grants.

  6. Surface micromachined sensors and actuators

    SciTech Connect

    Sniegowski, J.J.

    1995-08-01

    A description of a three-level mechanical polysilicon surface-micromachining technology including a discussion of the advantages of this level of process complexity is presented. This technology is capable of forming mechanical elements ranging from simple cantilevered beams to complex, interconnected, interactive, microactuated micromechanisms. The inclusion of a third deposited layer of mechanical polysilicon greatly extends the degree of complexity available for micromechanism design. Additional features of the Sandia three-level process include the use of Chemical-Mechanical Polishing (CMP) for planarization, and the integration of micromechanics with the Sandia CMOS circuit process. The latter effort includes a CMOS-first, tungsten metallization process to allow the CMOS electronics to withstand high-temperature micromechanical processing. Alternatively, a novel micromechanics-first approach wherein the micromechanical devices are processed first in a well below the surface of the CMOS starting material followed by the standard, aluminum metallization CMOS process is also being pursued. Following the description of the polysilicon surface micromachining are examples of the major sensor and actuator projects based on this technology at the Microelectronics Development Laboratory (MDL) at Sandia National Laboratories. Efforts at the MDL are concentrated in the technology of surface micromachining due to the availability of and compatibility with standard CMOS processes. The primary sensors discussed are a silicon nitride membrane pressure sensor, hot polysilicon filaments for calorimetric gas sensing, and a smart hydrogen sensor. Examples of actuation mechanisms coupled to external devices are also presented. These actuators utilize the three-level process (plus an additional passive level) and employ either surface tension or electrostatic forces.

  7. Single element magnetic suspension actuator

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J. (Inventor)

    1991-01-01

    The invention, a single element magnetic suspension actuator with bidirectional force capability along a single axis, includes an electromagnet and a nonmagnetic suspended element. A permanent magnet mounted on the suspended element interacts with a magnetic field established by the electromagnet to produce bidirectional forces in response to a variable force command voltage V (sub FC) applied to the electromagnet. A sensor measures the position of the suspended element on the single axis which is a function of force command voltage V (sub FC).

  8. Flutter suppression via piezoelectric actuation

    NASA Technical Reports Server (NTRS)

    Heeg, Jennifer

    1991-01-01

    Experimental flutter results obtained from wind tunnel tests of a two degree of freedom wind tunnel model are presented for the open and closed loop systems. The wind tunnel model is a two degree of freedom system which is actuated by piezoelectric plates configured as bimorphs. The model design was based on finite element structural analyses and flutter analyses. A control law was designed based on a discrete system model; gain feedback of strain measurements was utilized in the control task. The results show a 21 pct. increase in the flutter speed.

  9. Toward standardization of EAP actuators test procedures

    NASA Astrophysics Data System (ADS)

    Fernandez, Diego; Moreno, Luis; Baselga, Juan

    2005-05-01

    Since the field of Electroactive Polymers (EAP) actuators is fairly new there are no standard testing processes for such intelligent materials. This drawback can seriously limit the scope of application of EAP actuators, since the targeted industrial sectors (aerospace, biomedical...) demand high reliability and product assurance. As a first iteration two elements are required to define a test standard for an EAP actuator: a Unit Tester, and a Component Specification. In this paper a EAP Unit Tester architecture is presented along with the required classification of measurements to be included in the EAP actuator Component Specification. The proposed EAP Unit Tester allows on-line monitoring and recording of the following properties of the specimen under test: large deformation, small tip displacement, temperature at the electrodes, weight of the specimen, voltage and current driven into the EAP, load being applied to the actuator, output voltage of the EAP in sensing operation and mode of operation (structure/sensor/actuator/smart). The measurements are taken simultaneously, in real-time. The EAP Unit Tester includes a friendly Graphical User Interface. It uses embedded Excel tools to visualize data. In addition, real-time connectivity with MATLAB allows an easy testing of control algorithms. A novel methodology to measure the properties of EAP specimens versus a variable load is also presented. To this purpose a force signals generator in the range of mN was developed. The device is based on a DC mini-motor. It generates an opposing force to the movement of the EAP actuator. Since the device constantly opposes the EAP actuator movement it has been named Digital Force Generator (DFG). The DFG design allows simultaneous length and velocity measuring versus different load signals. By including such a device in the EAP Unit Tester the most suitable application for the specimen under test can be easily identified (vibration damper, large deformation actuator, large

  10. SiC/Si diode trigger circuit provides automatic range switching for log amplifier

    NASA Technical Reports Server (NTRS)

    1967-01-01

    SiC/Si diode pair provides automatic range change to extend the operating range of a logarithmic amplifier-conversion circuit and assures stability at or near the range switch-over point. the diode provides hysteresis for a trigger circuit that actuates a relay at the desired range extension point.

  11. Optimization of Actuating Origami Networks

    NASA Astrophysics Data System (ADS)

    Buskohl, Philip; Fuchi, Kazuko; Bazzan, Giorgio; Joo, James; Gregory, Reich; Vaia, Richard

    2015-03-01

    Origami structures morph between 2D and 3D conformations along predetermined fold lines that efficiently program the form, function and mobility of the structure. By leveraging design concepts from action origami, a subset of origami art focused on kinematic mechanisms, reversible folding patterns for applications such as solar array packaging, tunable antennae, and deployable sensing platforms may be designed. However, the enormity of the design space and the need to identify the requisite actuation forces within the structure places a severe limitation on design strategies based on intuition and geometry alone. The present work proposes a topology optimization method, using truss and frame element analysis, to distribute foldline mechanical properties within a reference crease pattern. Known actuating patterns are placed within a reference grid and the optimizer adjusts the fold stiffness of the network to optimally connect them. Design objectives may include a target motion, stress level, or mechanical energy distribution. Results include the validation of known action origami structures and their optimal connectivity within a larger network. This design suite offers an important step toward systematic incorporation of origami design concepts into new, novel and reconfigurable engineering devices. This research is supported under the Air Force Office of Scientific Research (AFOSR) funding, LRIR 13RQ02COR.

  12. Coalescence-induced droplet actuation

    NASA Astrophysics Data System (ADS)

    Sellier, Mathieu; Verdier, Claude; Nock, Volker

    2011-11-01

    This work investigates a little explored driving mechanism to actuate droplets: the surface tension gradient which arises during the coalescence of two droplets of liquid having different compositions and therefore surface tensions. The resulting surface tension gradient gives rise to a Marangoni flow which, if sufficiently large, can displace the droplet. In order to understand, the flow dynamics arising during the coalescence of droplets of different fluids, a model has been developed in the lubrication framework. The numerical results confirm the existence of a self-propulsion window which depends on two dimensionless groups representing competing effects during the coalescence: the surface tension contrast between the droplets which promotes actuation and species diffusion which tends to make the mixture uniform thereby anihilating Marangoni flow and droplet motion. In parallel, experiments have been conducted to confirm this self-propulsion behaviour. The experiment consists in depositing a droplet of distilled water on a ``hydrophilic highway.'' This stripe was obtained by plasma-treating a piece of PDMS shielded in some parts by glass coverslips. This surface functionalization was found to be the most convenient way to control the coalescence. When a droplet of ethanol is deposited near the ``water slug,'' coalescence occurs and a rapid motion of the resulting mixture is observed. The support of the Dumont d'Urville NZ-France Science & Technology program is gratefully acknowledged.

  13. NASA pyrotechnically actuated systems program

    NASA Technical Reports Server (NTRS)

    Schulze, Norman R.

    1993-01-01

    The Office of Safety and Mission Quality initiated a Pyrotechnically Actuated Systems (PAS) Program in FY-92 to address problems experienced with pyrotechnically actuated systems and devices used both on the ground and in flight. The PAS Program will provide the technical basis for NASA's projects to incorporate new technological developments in operational systems. The program will accomplish that objective by developing/testing current and new hardware designs for flight applications and by providing a pyrotechnic data base. This marks the first applied pyrotechnic technology program funded by NASA to address pyrotechnic issues. The PAS Program has been structured to address the results of a survey of pyrotechnic device and system problems with the goal of alleviating or minimizing their risks. Major program initiatives include the development of a Laser Initiated Ordnance System, a pyrotechnic systems data base, NASA Standard Initiator model, a NASA Standard Linear Separation System and a NASA Standard Gas Generator. The PAS Program sponsors annual aerospace pyrotechnic systems workshops.

  14. Reversibly Actuating Solid Janus Polymeric Fibers.

    PubMed

    Ionov, Leonid; Stoychev, Georgi; Jehnichen, Dieter; Sommer, Jens Uwe

    2017-02-08

    It is commonly assumed that the substantial element of reversibly actuating soft polymeric materials is chemical cross-linking, which is needed to provide elasticity required for the reversible actuation. On the example of melt spun and three-dimensional printed Janus fibers, we demonstrate here for the first time that cross-linking is not an obligatory prerequisite for reversible actuation of solid entangled polymers, since the entanglement network itself can build elasticity during crystallization. Indeed, we show that not-cross-linked polymers, which typically demonstrate plastic deformation in melt, possess enough elastic behavior to actuate reversibly. The Janus polymeric structure bends because of contraction of the polymer and due to entanglements and formation of nanocrystallites upon cooling. Actuation upon melting is simply due to relaxation of the stressed nonfusible component. This approach opens perspectives for design of solid active materials and actuator for robotics, biotechnology, and smart textile applications. The great advantage of our principle is that it allows design of non-cross-linked self-moving materials, which are able to actuate in both water and air, which are not cross-linked. We demonstrate application of actuating fibers for design of walkers, structures with switchable length, width, and thickness, which can be used for smart textile applications.

  15. Performance evaluation of lightweight piezocomposite curved actuator

    NASA Astrophysics Data System (ADS)

    Goo, Nam Seo; Kim, Cheol; Park, Hoon C.; Yoon, Kwang J.

    2001-07-01

    A numerical method for the performance evaluation of LIPCA actuators is proposed using a finite element method. Fully-coupled formulations for piezo-electric materials are introduced and eight-node incompatible elements used. After verifying the developed code, the behavior of LIPCA actuators is investigated.

  16. Sensors and actuators based on SOI materials

    NASA Astrophysics Data System (ADS)

    Sanz-Velasco, Anke; Nafari, Alexandra; Rödjegård, Henrik; Bring, Martin; Hedsten, Karin; Enoksson, Peter; Bengtsson, Stefan

    2006-05-01

    Examples of using SOI materials for formation of novel sensor and actuator structures at Chalmers University of Technology are given. Using SOI material gives advantages in formation of sensor and actuator structures, such as a nanoindentation force sensor, a three-axis accelerometer, a miniaturized pinball game and integration of diffractive optical elements onto silicon.

  17. Thermal expansion as a precision actuator

    NASA Astrophysics Data System (ADS)

    Miller, Chris; Montgomery, David; Black, Martin; Schnetler, Hermine

    2016-07-01

    The UK ATC has developed a novel thermal actuator design as part of an OPTICON project focusing on the development of a Freeform Active Mirror Element (FAME). The actuator uses the well understood concept of thermal expansion to generate the required force and displacement. As heat is applied to the actuator material it expands linearly. A resistance temperature device (RTD) is embedded in the centre of the actuator and is used both as a heater and a sensor. The RTD temperature is controlled electronically by injecting a varying amount of current into the device whilst measuring the voltage across it. Temperature control of the RTD has been achieved to within 0.01°C. A 3D printed version of the actuator is currently being used at the ATC to deform a mirror but it has several advantages that may make it suitable to other applications. The actuator is cheap to produce whilst obtaining a high accuracy and repeatability. The actuator design would be suitable for applications requiring large numbers of actuators with high precision.

  18. Hydraulic Actuator for Ganged Control Rods

    NASA Technical Reports Server (NTRS)

    Thompson, D. C.; Robey, R. M.

    1986-01-01

    Hydraulic actuator moves several nuclear-reactor control rods in unison. Electromagnetic pump pushes liquid lithium against ends of control rods, forcing them out of or into nuclear reactor. Color arrows show lithium flow for reactor startup and operation. Flow reversed for shutdown. Conceived for use aboard spacecraft, actuator principle applied to terrestrial hydraulic machinery involving motion of ganged rods.

  19. Improvements In Ball-Screw Linear Actuators

    NASA Technical Reports Server (NTRS)

    Iskenderian, Theodore; Joffe, Benjamin; Summers, Robert

    1996-01-01

    Report describes modifications of design of type of ball-screw linear actuator driven by dc motor, with linear-displacement feedback via linear variable-differential transformer (LVDT). Actuators used to position spacecraft engines to direct thrust. Modifications directed toward ensuring reliable and predictable operation during planned 12-year cruise and interval of hard use at end of cruise.

  20. Active vibration control using DEAP actuators

    NASA Astrophysics Data System (ADS)

    Sarban, Rahimullah; Jones, Richard W.

    2010-04-01

    Dielectric electro-active polymer (DEAP) is a new type of smart material, which has the potential to be used to provide effective actuation for a wide range of applications. The properties of DEAP material place it somewhere between those of piezoceramics and shape memory alloys. Of the range of DEAP-based actuators that have been developed those having a cylindrical configuration are among the most promising. This contribution introduces the use of a tubular type DEAP actuator for active vibration control purposes. Initially the DEAP-based tubular actuator to be used in this study, produced by Danfoss PolyPower A/S, is introduced along with the static and dynamic characteristics. Secondly an electromechanical model of the tubular actuator is briefly reviewed and its ability to model the actuator's hysteresis characteristics for a range of periodic input signals at different frequencies demonstrated. The model will be used to provide hysteresis compensation in future vibration isolation studies. Experimental active vibration control using the actuator is then examined, specifically active vibration isolation of a 250 g mass subject to shaker generated 'ground vibration'. An adaptive feedforward control strategy is used to achieve this. The ability of the tubular actuator to reject both tonal and broadband random vibratory disturbances is then demonstrated.

  1. [Study on a wireless energy transmission system for the noninvasive examination micro system inside alimentary tracts].

    PubMed

    He, Xiu; Yan, Guo-Zheng; Wang, Fu-Min

    2008-01-01

    A wireless energy transmission system for the MEMS system inside alimentary tracts is reported here in the paper. It consists of an automatic frequency tracking circuit of phase lock loop and phase shift PWM control circuit. Experimental results show that the energy transmission system is capable of automatic frequency-tracking and transmission power-adjusting and has stable received energy.

  2. Actuator lifetime predictions for Ni60Ti40 shape memory alloy plate actuators

    NASA Astrophysics Data System (ADS)

    Wheeler, Robert; Ottmers, Cade; Hewling, Brett; Lagoudas, Dimitris

    2016-04-01

    Shape memory alloys (SMAs), due to their ability to repeatedly recover substantial deformations under applied mechanical loading, have the potential to impact the aerospace, automotive, biomedical, and energy industries as weight and volume saving replacements for conventional actuators. While numerous applications of SMA actuators have been flight tested and can be found in industrial applications, these actuators are generally limited to non-critical components, are not widely implemented and frequently one-off designs, and are generally overdesigned due to a lack of understanding of the effect of the loading path on the fatigue life and the lack of an accurate method of predicting actuator lifetimes. Previous efforts have been effective at predicting actuator lifetimes for isobaric dogbone test specimens. This study builds on previous work and investigates the actuation fatigue response of plate actuators with various stress concentrations through the use of digital image correlation and finite element simulations.

  3. Automatic differentiation bibliography

    SciTech Connect

    Corliss, G.F.

    1992-07-01

    This is a bibliography of work related to automatic differentiation. Automatic differentiation is a technique for the fast, accurate propagation of derivative values using the chain rule. It is neither symbolic nor numeric. Automatic differentiation is a fundamental tool for scientific computation, with applications in optimization, nonlinear equations, nonlinear least squares approximation, stiff ordinary differential equation, partial differential equations, continuation methods, and sensitivity analysis. This report is an updated version of the bibliography which originally appeared in Automatic Differentiation of Algorithms: Theory, Implementation, and Application.

  4. Bi-directional electrothermal electromagnetic actuators

    NASA Astrophysics Data System (ADS)

    Cao, Andrew; Kim, Jongbaeg; Lin, Liwei

    2007-05-01

    A new breed of in-plane bi-directional MEMS actuators based on controlled electrothermal buckling and electromagnetic Lorentz force has been demonstrated under both dc and ac operations. Experimentally, bi-directional actuators made by the standard surface-micromachining process have a lateral actuation range of several microns and can exert forces over 100 µN, while those made by SOI and MetalMUMPs processes have an operation range up to several tens of microns and can exert more than 20 mN of force. Reliability tests show that SOI/MetalMUMPs and surface-micromachined actuators can operate for more than 1 and 100 million cycles, respectively, with no signs of degradation. As such, these micro-actuators could be used for MEMS devices that require a bi-directional movement with a large force output such as bi-directional micro-relays.

  5. Electrostatic micromembrane actuator arrays as motion generator

    NASA Astrophysics Data System (ADS)

    Wu, X. T.; Hui, J.; Young, M.; Kayatta, P.; Wong, J.; Kennith, D.; Zhe, J.; Warde, C.

    2004-05-01

    A rigid-body motion generator based on an array of micromembrane actuators is described. Unlike previous microelectromechanical systems (MEMS) techniques, the architecture employs a large number (typically greater than 1000) of micron-sized (10-200 μm) membrane actuators to simultaneously generate the displacement of a large rigid body, such as a conventional optical mirror. For optical applications, the approach provides optical design freedom of MEMS mirrors by enabling large-aperture mirrors to be driven electrostatically by MEMS actuators. The micromembrane actuator arrays have been built using a stacked architecture similar to that employed in the Multiuser MEMS Process (MUMPS), and the motion transfer from the arrayed micron-sized actuators to macro-sized components was demonstrated.

  6. Piezoelectric Actuator/Sensor Technology at Rockwell

    NASA Technical Reports Server (NTRS)

    Neurgaonkar, Ratnakar R.

    1996-01-01

    We describe the state-of-the art of piezoelectric materials based on perovskite and tungsten bronze families for sensor, actuator and smart structure applications. The microstructural defects in these materials have been eliminated to a large extent and the resulting materials exhibit exceedingly high performance for various applications. The performance of Rockwell actuators/sensors is at least 3 times better than commercially available products. These high performance actuators are being incorporated into various applications including, DOD, NASA and commercial. The multilayer actuator stacks fabricated from our piezoceramics are advantageous for sensing and high capacitance applications. In this presentation, we will describe the use of our high performance piezo-ceramics for actuators and sensors, including multilayer stacks and composite structures.

  7. Lead magnesium niobate actuator for micropositioning

    DOEpatents

    Swift, Charles D.; Bergum, John W.

    1994-01-01

    An improved lead magnesium niobate actuator is disclosed comprising a cylindrical lead magnesium niobate crystal stack mounted in a cylindrical casing wherein a bias means, such as one or more belleville washers, is located between one end of the crystal stack and a partially closed end of the casing; and adjustment means are provided which bear against the opposite end of the crystal stack, whereby an adjustable compressive force is constantly applied against the crystal stack, whether the crystal stack is actuated in an extended position, or is in an unactuated contracted position. In a preferred embodiment, cooling ports are provided for the circulation of coolant in the actuator to cool the crystal stack, and provision is made for removal and replacement of the crystal stack without disconnecting the actuator from the external device being actuated.

  8. Lead magnesium niobate actuator for micropositioning

    DOEpatents

    Swift, C.D.; Bergum, J.W.

    1994-10-25

    An improved lead magnesium niobate actuator is disclosed comprising a cylindrical lead magnesium niobate crystal stack mounted in a cylindrical casing wherein a bias means, such as one or more belleville washers, is located between one end of the crystal stack and a partially closed end of the casing; and adjustment means are provided which bear against the opposite end of the crystal stack, whereby an adjustable compressive force is constantly applied against the crystal stack, whether the crystal stack is actuated in an extended position, or is in an unactuated contracted position. In a preferred embodiment, cooling ports are provided for the circulation of coolant in the actuator to cool the crystal stack, and provision is made for removal and replacement of the crystal stack without disconnecting the actuator from the external device being actuated. 3 figs.

  9. Microfabrication of stacked dielectric elastomer actuator fibers

    NASA Astrophysics Data System (ADS)

    Corbaci, Mert; Walter, Wayne; Lamkin-Kennard, Kathleen

    2016-04-01

    Dielectric elastomer actuators (DEA) are one of the best candidate materials for next generation of robotic actuators, soft sensors and artificial muscles due to their fast response, mechanical robustness and compliance. However, high voltage requirements of DEAs have impeded their potential to become widely used in such applications. In this study, we propose a method for fabrication of silicon based multilayer DEA fibers composed of microlevel dielectric layers to improve the actuation ratios of DEAs at lower voltages. A multi-walled carbon nanotube - polydimethylsiloxane (MWCNT/PDMS) composite was used to fabricate mechanically compliant, conductive parallel plates and electrode connections for the DEA actuators. Active surface area and layer thickness were varied to study the effects of these parameters on actuation ratio as a function of applied voltage. Different structures were fabricated to assess the flexibility of the fabrication method for specific user-end applications.

  10. Genetic Algorithm Approaches for Actuator Placement

    NASA Technical Reports Server (NTRS)

    Crossley, William A.

    2000-01-01

    This research investigated genetic algorithm approaches for smart actuator placement to provide aircraft maneuverability without requiring hinged flaps or other control surfaces. The effort supported goals of the Multidisciplinary Design Optimization focus efforts in NASA's Aircraft au program. This work helped to properly identify various aspects of the genetic algorithm operators and parameters that allow for placement of discrete control actuators/effectors. An improved problem definition, including better definition of the objective function and constraints, resulted from this research effort. The work conducted for this research used a geometrically simple wing model; however, an increasing number of potential actuator placement locations were incorporated to illustrate the ability of the GA to determine promising actuator placement arrangements. This effort's major result is a useful genetic algorithm-based approach to assist in the discrete actuator/effector placement problem.

  11. Active vibration control of rotating machinery with a hybrid piezohydraulic actuator system

    SciTech Connect

    Tang, P.; Palazzolo, A.B.; Kascak, A.F.; Montague, G.T.

    1995-10-01

    An integrated, compact piezohydraulic actuator system for active vibration control was designed and developed with a primary application for gas turbine aircraft engines. Copper tube was chosen as the transmission line material for ease of assembly. Liquid plastic, which meets incompressibility and low-viscosity requirements, was adjusted to provide optimal actuator performance. Variants of the liquid plastic have been prepared with desired properties between {minus}40 F and 400 F. The effectiveness of this hybrid actuator for active vibration control (AVC) was demonstrated for suppressing critical speed vibration through two critical speeds for various levels of intentionally placed imbalance. A high-accuracy closed-loop simulation, which combines both finite element and state space methods, was applied for the closed-loop unbalance response simulation with/without AVC. Good correlation between the simulation and test results was achieved.

  12. New Exoskeleton Arm Concept Design And Actuation For Haptic Interaction With Virtual Objects

    NASA Astrophysics Data System (ADS)

    Chakarov, D.; Veneva, I.; Tsveov, M.; Tiankov, T.

    2014-12-01

    In the work presented in this paper the conceptual design and actuation of one new exoskeleton of the upper limb is presented. The device is designed for application where both motion tracking and force feedback are required, such as human interaction with virtual environment or rehabilitation tasks. The choice is presented of mechanical structure kinematical equivalent to the structure of the human arm. An actuation system is selected based on braided pneumatic muscle actuators. Antagonistic drive system for each joint is shown, using pulley and cable transmissions. Force/displacement diagrams are presented of two antagonistic acting muscles. Kinematics and dynamic estimations are performed of the system exoskeleton and upper limb. Selected parameters ensure in the antagonistic scheme joint torque regulation and human arm range of motion.

  13. CARAPACE: a novel composite advanced robotic actuator powering assistive compliant exoskeleton: preliminary design.

    PubMed

    Masia, Lorenzo; Cappello, Leonardo; Morasso, Pietro; Lachenal, Xavier; Pirrera, Alberto; Weaver, Paul; Mattioni, Filippo

    2013-06-01

    A novel actuator is introduced that combines an elastically compliant composite structure with conventional electromechanical elements. The proposed design is analogous to that used in Series Elastic Actuators, its distinctive feature being that the compliant composite part offers different stable configurations. In other words, its elastic potential presents points of local minima that correspond to robust stable positions (multistability). This potential is known a priori as a function of the structural geometry, thus providing tremendous benefits in terms of control implementation. Such knowledge enables the complexities arising from the additional degrees of freedom associated with link deformations to be overcome and uncover challenges that extends beyond those posed by standard rigidlink robot dynamics. It is thought that integrating a multistable elastic element in a robotic transmission can provide new scenarios in the field of assistive robotics, as the system may help a subject to stand or carry a load without the need for an active control effort by the actuators.

  14. Assessment of the value of microgravity to estimate the principal directions of the anisotropic transmissivity of aquifers from pumping tests: A study using a Hough transform based automatic algorithm

    NASA Astrophysics Data System (ADS)

    Fernández-Álvarez, José-Paulino; González-Quirós, Andrés; Rubio-Melendi, David

    2016-11-01

    Estimation of the hydraulic parameters of an aquifer is usually performed via interpretation of pumping tests. This invasive method requires drilling both pumping and observation wells. As the process is expensive, only a single pumping well and one or two observation wells or piezometers are generally drilled, at most. The interpretation is done assuming aquifer isotropy and homogeneity. However, in many aquifers, horizontal anisotropy in hydraulic conductivity greatly affects the flow regime. Its disregard may lead to important misinterpretations, especially for environmental impact assessments. This paper studies the capabilities of gravity for the identification and determination of the principal directions of anisotropy. This has been automatized using a methodology based on the Hough Transform. The results show how a microgravity survey could be an adequate and relatively cheap monitoring tool for the identification of anisotropy. This is valuable information that can be used in the decision making process for performing or discarding additional studies. Even more, the presented methodology can be extended to other studies in which contour maps are used to identify directionality in any process or property.

  15. Spooled packaging of shape memory alloy actuators

    NASA Astrophysics Data System (ADS)

    Redmond, John A.

    A vast cross-section of transportation, manufacturing, consumer product, and medical technologies rely heavily on actuation. Accordingly, progress in these industries is often strongly coupled to the advancement of actuation technologies. As the field of actuation continues to evolve, smart materials show significant promise for satisfying the growing needs of industry. In particular, shape memory alloy (SMA) wire actuators present an opportunity for low-cost, high performance actuation, but until now, they have been limited or restricted from use in many otherwise suitable applications by the difficulty in packaging the SMA wires within tight or unusually shaped form constraints. To address this packaging problem, SMA wires can be spool-packaged by wrapping around mandrels to make the actuator more compact or by redirecting around multiple mandrels to customize SMA wire pathways to unusual form factors. The goal of this dissertation is to develop the scientific knowledge base for spooled packaging of low-cost SMA wire actuators that enables high, predictable performance within compact, customizable form factors. In developing the scientific knowledge base, this dissertation defines a systematic general representation of single and multiple mandrel spool-packaged SMA actuators and provides tools for their analysis, understanding, and synthesis. A quasi-static analytical model distills the underlying mechanics down to the three effects of friction, bending, and binding, which enables prediction of the behavior of generic spool-packaged SMA actuators with specifiable geometric, loading, frictional, and SMA material parameters. An extensive experimental and simulation-based parameter study establishes the necessary understanding of how primary design tradeoffs between performance, packaging, and cost are governed by the underlying mechanics of spooled actuators. A design methodology outlines a systematic approach to synthesizing high performance SMA wire actuators

  16. Automatic Versus Manual Indexing

    ERIC Educational Resources Information Center

    Vander Meulen, W. A.; Janssen, P. J. F. C.

    1977-01-01

    A comparative evaluation of results in terms of recall and precision from queries submitted to systems with automatic and manual subject indexing. Differences were attributed to query formulation. The effectiveness of automatic indexing was found equivalent to manual indexing. (Author/KP)

  17. Automatic Differentiation Package

    SciTech Connect

    Gay, David M.; Phipps, Eric; Bratlett, Roscoe

    2007-03-01

    Sacado is an automatic differentiation package for C++ codes using operator overloading and C++ templating. Sacado provide forward, reverse, and Taylor polynomial automatic differentiation classes and utilities for incorporating these classes into C++ codes. Users can compute derivatives of computations arising in engineering and scientific applications, including nonlinear equation solving, time integration, sensitivity analysis, stability analysis, optimization and uncertainity quantification.

  18. Automatic Test Program Generation.

    DTIC Science & Technology

    1978-03-01

    presents a test description language, NOPAL , in which a user may describe diagnostic tests, and a software system which automatically generates test...programs for an automatic test equipment based on the descriptions of tests. The software system accepts as input the tests specified in NOPAL , performs

  19. Digital automatic gain control

    NASA Technical Reports Server (NTRS)

    Uzdy, Z.

    1980-01-01

    Performance analysis, used to evaluated fitness of several circuits to digital automatic gain control (AGC), indicates that digital integrator employing coherent amplitude detector (CAD) is best device suited for application. Circuit reduces gain error to half that of conventional analog AGC while making it possible to automatically modify response of receiver to match incoming signal conditions.

  20. Methods and apparatus for laser beam scanners with different actuating mechanisms

    NASA Astrophysics Data System (ADS)

    Chen, Si-hai; Xiang, Si-hua; Wu, Xin; Dong, Shan; Xiao, Ding; Zheng, Xia-wei

    2009-07-01

    In this paper, 3 types of laser beam scanner are introduced. One is transmissive beam scanner, which is composed of convex and concave microlens arrays (MLAs). By moving the concave lens in the plane vertical to the optical axis, the incident beam can be deflected in two dimensions. Those two kinds of MLAs are fabricated by thermal reflow and replication process. A set of mechanical scanner frame is fabricated with the two MLAs assembling in it. The testing result shown that the beam deflection angles are 9.5° and 9.6°, in the 2 dimension(2D) with the scanning frequency of 2 HZ and 8 HZ, respectively. The second type of laser beam scanner is actuated by voice coil actuators (VCAs). Based on ANSOFT MAXWELL software, we have designed VCAs with small size and large force which have optimized properties. The model of VCAs is built using AutoCAD and is analyzed by Ansoft maxwell. According to the simulation results, high performance VCAs are fabricated and tested. The result is that the force of the VCAs is 6.39N/A, and the displacement is +/-2.5mm. A set up of beam scanner is fabricated and actuated by the designed VCAs. The testing result shown that the two dimensional scanning angle is 15° and 10° respectively at the frequency of 60HZ. The two dimensional scanning angle is 8.3° and 6° respectively at the frequency of 100HZ. The third type of scanner is actuated by amplified piezoelectric actuators (APAs). The scanning mirror is actuated by the piezoelectric (PZ) actuators with the scanning frequency of 700HZ, 250HZ and 87HZ respectively. The optical scanning angle is +/-0.5° at the three frequencies.

  1. Enhanced Actuation Performance and Reduced Heat Generation in Shear-Bending Mode Actuator at High Temperature.

    PubMed

    Chen, Jianguo; Liu, Guoxi; Cheng, Jinrong; Dong, Shuxiang

    2016-08-01

    The actuation performance, strain hysteresis, and heat generation of the shear-bending mode actuators based on soft and hard BiScO3-PbTiO3 (BS-PT) ceramics were investigated under different thermal (from room temperature to 300 °C) and electrical loadings (from 2 to 10 kV/cm and from 1 to 1000 Hz). The actuator based on both soft and hard BS-PT ceramics worked stably at the temperature as high as 300 °C. The maximum working temperature of this shear-bending actuators is 150 °C higher than those of the traditional piezoelectric actuators based on commercial Pb(Zr, Ti)O3 materials. Furthermore, although the piezoelectric properties of soft-type ceramics based on BS-PT ceramics were superior to those of hard ceramics, the maximum displacement of the actuator based on hard ceramics was larger than that fabricated by soft ceramics at high temperature. The maximum displacement of the actuator based on hard ceramics was [Formula: see text] under an applied electric field of 10 kV/cm at 300 °C. The strain hysteresis and heat generation of the actuator based on hard ceramics was smaller than those of the actuator based on soft ceramics in the wide temperature range. These results indicated that the shear-bending actuator based on hard piezoelectric ceramics was more suitable for high-temperature piezoelectric applications.

  2. Magnetic actuation of hair cells

    PubMed Central

    Rowland, David; Roongthumskul, Yuttana; Lee, Jae-Hyun; Cheon, Jinwoo; Bozovic, Dolores

    2011-01-01

    The bullfrog sacculus contains mechanically sensitive hair cells whose stereociliary bundles oscillate spontaneously when decoupled from the overlying membrane. Steady-state offsets on the resting position of a hair bundle can suppress or modulate this native motility. To probe the dynamics of spontaneous oscillation in the proximity of the critical point, we describe here a method for mechanical actuation that avoids loading the bundles or contributing to the viscous drag. Magnetite beads were attached to the tips of the stereocilia, and a magnetic probe was used to impose deflections. This technique allowed us to observe the transition from multi-mode to single-mode state in freely oscillating bundles, as well as the crossover from the oscillatory to the quiescent state. PMID:22163368

  3. Pressure-actuated joint system

    NASA Technical Reports Server (NTRS)

    McGuire, John R. (Inventor)

    2004-01-01

    A pressure vessel is provided that includes first and second case segments mated with one another. First and second annular rubber layers are disposed inboard of the first and second case segments, respectively. The second annular rubber layer has a slot extending from the radial inner surface across a portion of its thickness to define a main body portion and a flexible portion. The flexible portion has an interfacing surface portion abutting against an interfacing surface portion of the first annular rubber layer to follow movement of the first annular rubber layer during operation of the pressure vessel. The slot receives pressurized gas and establishes a pressure-actuated joint between the interfacing surface portions. At least one of the interfacing surface portions has a plurality of enclosed and sealed recesses formed therein.

  4. Droplet actuator analyzer with cartridge

    NASA Technical Reports Server (NTRS)

    Smith, Gregory F. (Inventor); Sturmer, Ryan A. (Inventor); Paik, Philip Y. (Inventor); Srinivasan, Vijay (Inventor); Pollack, Michael G. (Inventor); Pamula, Vamsee K. (Inventor); Brafford, Keith R. (Inventor); West, Richard M. (Inventor)

    2011-01-01

    A droplet actuator with cartridge is provided. According to one embodiment, a sample analyzer is provided and includes an analyzer unit comprising electronic or optical receiving means, a cartridge comprising self-contained droplet handling capabilities, and a wherein the cartridge is coupled to the analyzer unit by a means which aligns electronic and/or optical outputs from the cartridge with electronic or optical receiving means on the analyzer unit. According to another embodiment, a sample analyzer is provided and includes a sample analyzer comprising a cartridge coupled thereto and a means of electrical interface and/or optical interface between the cartridge and the analyzer, whereby electrical signals and/or optical signals may be transmitted from the cartridge to the analyzer.

  5. Mechanically actuated downhole locking sub

    SciTech Connect

    Menard, M.

    1986-09-30

    A mechanically actuated locking sub is described for setting and releasing a downhole tool from an oilwell borehole, having landing nipples, without interrupting a production flow therethrough, comprising: an inner tubular member, having a central conduit and a lower end provided with means for attachment to the downhole tool to be set in or released from the oilwell bore; an outer sleeve member circumferentially encompassing at least a part of the inner tubular member, the sleeve having a plurality of apertures therein; locking dog members intermediate the inner tubular member and the outer sleeve member, having an engaging portion extending outwardly through the apertures of the outer sleeve member; slidable sleeve means intermediate the outer sleeve member and the inner tubular member, movable between a first, extended and a second, retracted position with respect to the inner tubular member; and a double acting spring means engaging the locking dogs; adapted to bias the locking dogs towards the inner tubular member.

  6. Bi-directional series-parallel elastic actuator and overlap of the actuation layers.

    PubMed

    Furnémont, Raphaël; Mathijssen, Glenn; Verstraten, Tom; Lefeber, Dirk; Vanderborght, Bram

    2016-01-27

    Several robotics applications require high torque-to-weight ratio and energy efficient actuators. Progress in that direction was made by introducing compliant elements into the actuation. A large variety of actuators were developed such as series elastic actuators (SEAs), variable stiffness actuators and parallel elastic actuators (PEAs). SEAs can reduce the peak power while PEAs can reduce the torque requirement on the motor. Nonetheless, these actuators still cannot meet performances close to humans. To combine both advantages, the series parallel elastic actuator (SPEA) was developed. The principle is inspired from biological muscles. Muscles are composed of motor units, placed in parallel, which are variably recruited as the required effort increases. This biological principle is exploited in the SPEA, where springs (layers), placed in parallel, can be recruited one by one. This recruitment is performed by an intermittent mechanism. This paper presents the development of a SPEA using the MACCEPA principle with a self-closing mechanism. This actuator can deliver a bi-directional output torque, variable stiffness and reduced friction. The load on the motor can also be reduced, leading to a lower power consumption. The variable recruitment of the parallel springs can also be tuned in order to further decrease the consumption of the actuator for a given task. First, an explanation of the concept and a brief description of the prior work done will be given. Next, the design and the model of one of the layers will be presented. The working principle of the full actuator will then be given. At the end of this paper, experiments showing the electric consumption of the actuator will display the advantage of the SPEA over an equivalent stiff actuator.

  7. Constrained modes in control theory - Transmission zeros of uniform beams

    NASA Technical Reports Server (NTRS)

    Williams, T.

    1992-01-01

    Mathematical arguments are presented demonstrating that the well-established control system concept of the transmission zero is very closely related to the structural concept of the constrained mode. It is shown that the transmission zeros of a flexible structure form a set of constrained natural frequencies for it, with the constraints depending explicitly on the locations and the types of sensors and actuators used for control. Based on this formulation, an algorithm is derived and used to produce dimensionless plots of the zero of a uniform beam with a compatible sensor/actuator pair.

  8. High-Performance Multiresponsive Paper Actuators.

    PubMed

    Amjadi, Morteza; Sitti, Metin

    2016-11-22

    There is an increasing demand for soft actuators because of their importance in soft robotics, artificial muscles, biomimetic devices, and beyond. However, the development of soft actuators capable of low-voltage operation, powerful actuation, and programmable shape-changing is still challenging. In this work, we propose programmable bilayer actuators that operate based on the large hygroscopic contraction of the copy paper and simultaneously large thermal expansion of the polypropylene film upon increasing the temperature. The electrothermally activated bending actuators can function with low voltages (≤ 8 V), low input electric power per area (P ≤ 0.14 W cm(-2)), and low temperature changes (≤ 35 °C). They exhibit reversible shape-changing behavior with curvature radii up to 1.07 cm(-1) and bending angle of 360°, accompanied by powerful actuation. Besides the electrical activation, they can be powered by humidity or light irradiation. We finally demonstrate the use of our paper actuators as a soft gripper robot and a lightweight paper wing for aerial robotics.

  9. Active Damping Using Distributed Anisotropic Actuators

    NASA Technical Reports Server (NTRS)

    Schiller, Noah H.; Cabell, Randolph H.; Quinones, Juan D.; Wier, Nathan C.

    2010-01-01

    A helicopter structure experiences substantial high-frequency mechanical excitation from powertrain components such as gearboxes and drive shafts. The resulting structure-borne vibration excites the windows which then radiate sound into the passenger cabin. In many cases the radiated sound power can be reduced by adding damping. This can be accomplished using passive or active approaches. Passive treatments such as constrained layer damping tend to reduce window transparency. Therefore this paper focuses on an active approach utilizing compact decentralized control units distributed around the perimeter of the window. Each control unit consists of a triangularly shaped piezoelectric actuator, a miniature accelerometer, and analog electronics. Earlier work has shown that this type of system can increase damping up to approximately 1 kHz. However at higher frequencies the mismatch between the distributed actuator and the point sensor caused control spillover. This paper describes new anisotropic actuators that can be used to improve the bandwidth of the control system. The anisotropic actuators are composed of piezoelectric material sandwiched between interdigitated electrodes, which enables the application of the electric field in a preferred in-plane direction. When shaped correctly the anisotropic actuators outperform traditional isotropic actuators by reducing the mismatch between the distributed actuator and point sensor at high frequencies. Testing performed on a Plexiglas panel, representative of a helicopter window, shows that the control units can increase damping at low frequencies. However high frequency performance was still limited due to the flexible boundary conditions present on the test structure.

  10. Magnetic suspension characteristics of electromagnetic actuators

    NASA Technical Reports Server (NTRS)

    Rao, Dantam K.; Dill, J.; Zorzi, E.

    1993-01-01

    Electromagnetic actuators that use a current-carrying coil (which is placed in a magnetic field) to generate mechanical force are conceptually attractive components for active control of rotating shafts. In one concept that is being tested in the laboratory, the control forces from such actuators are applied on the flexibly supported bearing housings of the rotor. Development of this concept into a practical reality requires a clear and thorough understanding of the role of electromechanical parameters of these actuators in delivering the right amount of control force at the right phase into the rotor. The electromechanical parameters of the actuators investigated are the mass of the armature, stiffness of its suspension, electrical resistance, and inductance of the coils. Improper selection of these parameters can result in degradation in their performance, leading to mistuning between the actuator and the rotor. Through a simple analysis, it is shown that use of such mistuned actuators could result in sharp fluctuations in the phase of the control force delivered into the rotor around the critical speeds. These sharp fluctuations in phase, called 'Phase Glitches', are undesirable. Hence, future designs of controllers should take into account the undesirable mistuning effects between the actuator and the rotor caused by the phase glitches.

  11. Smart film actuators using biomass plastic

    NASA Astrophysics Data System (ADS)

    Yoneyama, Satoshi; Tanaka, Nobuo

    2011-04-01

    This paper presents a novel smart film actuator based on the use of a biomass plastic as a piezoelectric film. Conventional polymeric smart sensors and actuators have been based upon synthetic piezoelectric polymer films such as PVDF. Almost all synthetic polymers are made from nearly depleted oil resources. In addition combustion of their materials releases carbon dioxide, thereby contributing to global warming. Thus at least two important sustainability principles are violated when employing synthetic polymers: avoiding depletable resources and avoiding ecosystem destruction. To overcome such problems, industrial plastic products made from synthetic polymers were developed to replace oil-based plastics with biomass plastics. This paper applies a biomass plastic with piezoelectricity such as poly-L-lactic acid (PLLA). As a result, PLLA film becomes a distributed parameter actuator per se, hence an environmentally conscious smart film actuator is developed. Firstly, this paper overviews the fundamental properties of piezoelectric synthetic polymers and biopolymers. The concept of carbon neutrality using biopolymers is mentioned. Then a two-dimensional modal actuator for exciting a specific structural mode is proposed. Furthermore, a biomass plastic-based cantilever beam with the capability of modal actuation is developed, the validity of the proposed smart film actuator based upon a biomass plastic being analytically as well as experimentally verified.

  12. Characterization of piezoelectric macrofiber composite actuated winglets

    NASA Astrophysics Data System (ADS)

    Guha, T. K.; Oates, W. S.; Kumar, R.

    2015-06-01

    The present study primarily focuses on the design, development, and structural characterization of an oscillating winglet actuated using a piezoelectric macrofiber composite (MFC). The primary objective is to study the effect of controlled wingtip oscillations on the evolution of wingtip vortices, with a goal of weakening these potentially harmful tip vortices by introducing controlled instabilities through both spatial and temporal perturbations producible through winglet oscillations. MFC-actuated winglets have been characterized under different input excitation and pressure-loading conditions. The winglet oscillations show bimodal behavior for both structural and actuation modes of resonance. The oscillatory amplitude at these actuation modes increases linearly with the magnitude of excitation. During wind-tunnel tests, fluid-structure interactions led to structural vibrations of the wing. The effect of these vibrations on the overall winglet oscillations decreased when the strength of actuation increased. At high input excitation, the actuated winglet was capable of generating controlled oscillations. As a proof of concept, the current study has demonstrated that microfiber composite-actuated winglets produce sufficient displacements to alter the development of the wingtip vortex.

  13. Elastomeric actuator devices for magnetic resonance imaging

    NASA Technical Reports Server (NTRS)

    Dubowsky, Steven (Inventor); Hafez, Moustapha (Inventor); Jolesz, Ferenc A. (Inventor); Kacher, Daniel F. (Inventor); Lichter, Matthew (Inventor); Weiss, Peter (Inventor); Wingert, Andreas (Inventor)

    2008-01-01

    The present invention is directed to devices and systems used in magnetic imaging environments that include an actuator device having an elastomeric dielectric film with at least two electrodes, and a frame attached to the actuator device. The frame can have a plurality of configurations including, such as, for example, at least two members that can be, but not limited to, curved beams, rods, plates, or parallel beams. These rigid members can be coupled to flexible members such as, for example, links wherein the frame provides an elastic restoring force. The frame preferably provides a linear actuation force characteristic over a displacement range. The linear actuation force characteristic is defined as .+-.20% and preferably 10% over a displacement range. The actuator further includes a passive element disposed between the flexible members to tune a stiffness characteristic of the actuator. The passive element can be a bi-stable element. The preferred embodiment actuator includes one or more layers of the elastomeric film integrated into the frame. The elastomeric film can be made of many elastomeric materials such as, for example, but not limited to, acrylic, silicone and latex.

  14. Thermostatic Valves Containing Silicone-Oil Actuators

    NASA Technical Reports Server (NTRS)

    Bhandari, Pradeep; Birur, Gajanana C.; Bame, David P.; Karlmann, Paul B.; Prina, Mauro; Young, William; Fisher, Richard

    2009-01-01

    Flow-splitting and flow-mixing thermally actuated spool valves have been developed for controlling flows of a heat-transfer fluid in a temperature-regulation system aboard the Mars Science Laboratory (MSL) rover. Valves like these could also be useful in terrestrial temperature-regulation systems, including automobile air-conditioning systems and general refrigeration systems. These valves are required to provide smoother actuation over a wider temperature range than the flow-splitting, thermally actuated spool valves used in the Mars Explorer Rover (MER). Also, whereas the MER valves are unstable (tending to oscillate) in certain transition temperature ranges, these valves are required not to oscillate. The MER valves are actuated by thermal expansion of a wax against spring-loaded piston rods (as in common automotive thermostats). The MSL valves contain similar actuators that utilize thermal expansion of a silicone oil, because silicone-oil actuators were found to afford greater and more nearly linear displacements, needed for smoother actuation, over the required wider temperature range. The MSL valves also feature improved spool designs that reflect greater understanding of fluid dynamics, consideration of pressure drops in valves, and a requirement for balancing of pressures in different flow branches.

  15. Automatic-repeat-request error control schemes

    NASA Technical Reports Server (NTRS)

    Lin, S.; Costello, D. J., Jr.; Miller, M. J.

    1983-01-01

    Error detection incorporated with automatic-repeat-request (ARQ) is widely used for error control in data communication systems. This method of error control is simple and provides high system reliability. If a properly chosen code is used for error detection, virtually error-free data transmission can be attained. Various types of ARQ and hybrid ARQ schemes, and error detection using linear block codes are surveyed.

  16. High-force cofired multilayer actuators

    NASA Astrophysics Data System (ADS)

    Bridger, Keith; Jones, Lorianne; Poppe, Fred; Brown, Steven A.; Winzer, Stephen R.

    1996-05-01

    Various structural control applications (e.g., high-precision machining) require high-force actuation. Actuators made by stacking and gluing plates are not suitable for many of these applications because, unless the plates are very thin (< 1 mm), the glued stack requires high voltages (> 1 kV) and stacks of very thin plates require extreme care in fabrication to avoid compliance due to the joints. This paper describes an effort to fabricate high-force, co- fired multilayer actuators. The actuator modules were designed to be approximately 50 mm X 50 mm X 20 mm (height), with 20 1-mm thick layers and a 12.7-mm diameter hole in the center for a prestress bolt. The modules were to be stacked together to form an actuator capable of delivering > 50 micrometers stroke at 5 degree(s)C under a load of approximately 10,000 lb. The major challenge in this task is fabricating the co-fired modules because of their size. It is exceptionally difficult to burnout and sinter such a large multilayer device without introducing flaws such as delaminations and, to the best of our knowledge, this had never been done successfully before. Three co-fired, high force actuator modules were fabricated and electrically and mechanically characterized. The capacitance of the actuator modules ranged from 1.5 to 9.4 (mu) F. Co-fired actuators gave modulus values of 12.2 X 106 psi (at E equals 1 MV/m) which was close to the modulus of the material. The peak-peak strain of an actuator module at 0 prestress was 600 ppm (at a field of E equals 1 MV/m). At 2000 psi prestress, the strain measured was about 450 ppm (p-p).

  17. Biomimetic photo-actuation: progress and challenges

    NASA Astrophysics Data System (ADS)

    Dicker, Michael P. M.; Weaver, Paul M.; Rossiter, Jonathan M.; Bond, Ian P.; Faul, Charl F. J.

    2016-04-01

    Photo-actuation, such as that observed in the reversible sun-tracking movements of heliotropic plants, is produced by a complex, yet elegant series of processes. In the heliotropic leaf movements of the Cornish Mallow, photo-actuation involves the generation, transport and manipulation of chemical signals from a distributed network of sensors in the leaf veins to a specialized osmosis driven actuation region in the leaf stem. It is theorized that such an arrangement is both efficient in terms of materials use and operational energy conversion, as well as being highly robust. We concern ourselves with understanding and mimicking these light driven, chemically controlled actuating systems with the aim of generating intelligent structures which share the properties of efficiency and robustness that are so important to survival in Nature. In this work we present recent progress in mimicking these photo-actuating systems through remote light exposure of a metastable state photoacid and the resulting signal and energy transfer through solution to a pH-responsive hydrogel actuator. Reversible actuation strains of 20% were achieved from this arrangement, with modelling then employed to reveal the critical influence hydrogel pKa has on this result. Although the strong actuation achieved highlights the progress that has been made in replicating the principles of biomimetic photo-actuation, challenges such as photoacid degradation were also revealed. It is anticipated that current work can directly lead to the development of high-performance and low-cost solartrackers for increased photovoltaic energy capture and to the creation of new types of intelligent structures employing chemical control systems.

  18. Hydraulic Actuator System for Rotor Control

    NASA Technical Reports Server (NTRS)

    Ulbrich, Heinz; Althaus, Josef

    1991-01-01

    In the last ten years, several different types of actuators were developed and fabricated for active control of rotors. A special hydraulic actuator system capable of generating high forces to rotating shafts via conventional bearings is addressed. The actively controlled hydraulic force actuator features an electrohydraulic servo valve which can produce amplitudes and forces at high frequencies necessary for influencing rotor vibrations. The mathematical description will be given in detail. The experimental results verify the theoretical model. Simulations already indicate the usefulness of this compact device for application to a real rotor system.

  19. Refreshable Braille Displays Using EAP Actuators

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph

    2010-01-01

    Refreshable Braille can help visually impaired persons benefit from the growing advances in computer technology. The development of such displays in a full screen form is a great challenge due to the need to pack many actuators in small area without interferences. In recent years, various displays using actuators such as piezoelectric stacks have become available in commercial form but most of them are limited to one line Braille code. Researchers in the field of electroactive polymers (EAP) investigated methods of using these materials to form full screen displays. This manuscript reviews the state of the art of producing refreshable Braille displays using EAP-based actuators..

  20. Recent Developments in NASA Piezocomposite Actuator Technology

    NASA Technical Reports Server (NTRS)

    Wilkie, William K.; Inman, Daniel J.; High, James W.; Williams, R. Brett

    2004-01-01

    In this paper, we present an overview of recent progress in the development of the NASA Macro-Fiber Composite (MFC) piezocomposite actuator device. This will include a brief history of the development of the MFC, a description of the standard manufacturing process used to fabricate MFC actuators, and a summary of ongoing MFC electromechanical characterization testing. In addition, we describe the development of a prototype single-crystal piezoelectric MFC device, and compare its performance with MFC actuator specimens utilizing conventional piezoceramic materials.

  1. Bluff Body Flow Control Using Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Thomas, Flint

    2005-11-01

    In this study, the use of single dielectric barrier discharge plasma actuators for the control of bluff body flow separation is investigated. In particular, surface mounted plasma actuators are used to reduce both drag and unsteady vortex shedding from circular cylinders in cross-flow. It is demonstrated that the plasma-induced surface blowing gives rise to a local Coanda effect that promotes the maintenance of flow attachment. Large reductions in vortex shedding and drag are demonstrated for Reynolds numbers ˜ 10^410^5. Both steady and unsteady plasma-induced surface blowing is explored. Results are presented from experiments involving both two and four surface mounted actuators.

  2. Refreshable Braille displays using EAP actuators

    NASA Astrophysics Data System (ADS)

    Bar-Cohen, Yoseph

    2010-04-01

    Refreshable Braille can help visually impaired persons benefit from the growing advances in computer technology. The development of such displays in a full screen form is a great challenge due to the need to pack many actuators in small area without interferences. In recent years, various displays using actuators such as piezoelectric stacks have become available in commercial form but most of them are limited to one line Braille code. Researchers in the field of electroactive polymers (EAP) investigated methods of using these materials to form full screen displays. This manuscript reviews the state of the art of producing refreshable Braille displays using EAP-based actuators.

  3. Optimization Strategies for Sensor and Actuator Placement

    NASA Technical Reports Server (NTRS)

    Padula, Sharon L.; Kincaid, Rex K.

    1999-01-01

    This paper provides a survey of actuator and sensor placement problems from a wide range of engineering disciplines and a variety of applications. Combinatorial optimization methods are recommended as a means for identifying sets of actuators and sensors that maximize performance. Several sample applications from NASA Langley Research Center, such as active structural acoustic control, are covered in detail. Laboratory and flight tests of these applications indicate that actuator and sensor placement methods are effective and important. Lessons learned in solving these optimization problems can guide future research.

  4. Misfire tolerant combustion-powered actuation

    DOEpatents

    Spletzer, Barry L.; Fischer, Gary J.; Marron, Lisa C.; Kuehl, Michael A.

    2001-01-01

    The present invention provides a combustion-powered actuator that is suitable for intermittent actuation, that is suitable for use with atmospheric pressure carburetion, and that requires little electrical energy input. The present invention uses energy from expansion of pressurized fuel to effectively purge a combustion chamber, and to achieve atmospheric pressure carburetion. Each purge-fill-power cycle can be independent, allowing the actuator to readily tolerate misfires. The present invention is suitable for use with linear and rotary operation combustion chambers, and is suitable for use in a wide variety of applications.

  5. A Model of the THUNDER Actuator

    NASA Technical Reports Server (NTRS)

    Curtis, Alan R. D.

    1997-01-01

    A THUNDER actuator is a composite of three thin layers, a metal base, a piezoelectric wafer and a metal top cover, bonded together under pressure and at high temperature with the LaRC SI polyimid adhesive. When a voltage is applied between the metal layers across the PZT the actuator will bend and can generate a force. This document develops and describes an analytical model the transduction properties of THUNDER actuators. The model development is divided into three sections. First, a static model is described that relates internal stresses and strains and external displacements to the thermal pre-stress and applied voltage. Second, a dynamic energy based model is described that allows calculation of the resonance frequencies, developed force and electrical input impedance. Finally, a fully coupled electro-mechanical transducer model is described. The model development proceeds by assuming that both the thermal pre-stress and the piezoelectric actuation cause the actuator to deform in a pure bend in a single plane. It is useful to think of this as a two step process, the actuator is held flat, differential stresses induce a bending moment, the actuator is released and it bends. The thermal pre-stress is caused by the different amounts that the constituent layers shrink due to their different coefficients of thermal expansion. The adhesive between layers sets at a high temperature and as the actuator cools, the metal layers shrink more than the PZT. The PZT layer is put into compression while the metal layers are in tension. The piezoelectric actuation has a similar effect. An applied voltage causes the PZT layer to strain, which in turn strains the two metal layers. If the PZT layer expands it will put the metal layers into tension and PZT layer into compression. In both cases, if shear force effects are neglected, the actuator assembly will experience a uniform in-plane strain. As the materials each have a different elastic modulus, different stresses will

  6. How automatic is manual gear shifting?

    PubMed

    Shinar, D; Meir, M; Ben-Shoham, I

    1998-12-01

    Manual gear shifting is often used as an example of an automated (vs. controlled) process in driving. The present study provided an empirical evaluation of this assumption by evaluating sign detection and recall performance of novice and experienced drivers driving manual shift and automatic transmission cars in a downtown area requiring frequent gear shifting. The results showed that manual gear shifting significantly impaired sign detection performance of novice drivers using manual gears compared with novice drivers using an automatic transmission, whereas no such differences existed between the two transmission types for experienced drivers. The results clearly demonstrate that manual gear shifting is a complex psychomotor skill that is not easily (or quickly) automated and that until it becomes automated, it is an attention-demanding task that may impair other monitoring aspects of driving performance. Actual or potential applications of this research include a reevaluation of the learning process in driving and the need for phased instruction in driving from automatic gears to manual gears.

  7. Noise transmission properties and control strategies for composite structures

    NASA Technical Reports Server (NTRS)

    Silcox, Richard J.; Beyer, Todd B.; Lester, Harold C.

    1991-01-01

    A study of several component technologies required to apply active control techniques to reduce interior noise in composite aircraft structures is described. The mechanisms of noise transmission in an all composite, large-scale, fuselage model are studied in an experimental program and found similar to mechanisms found in conventional aircraft construction. Two primary conditions of structural acoustic response are found to account for the dominant interior acoustic response. A preliminary study of active noise control in cylinders used piezoceramic actuators as force inputs for a simple aluminum fuselage model. These actuators provided effective control for the same two conditions of noise transmission found in the composite fuselage structure. The use of piezoceramic actuators to apply force inputs overcomes the weight and structural requirements of conventional shaker actuators. Finally, in order to accurately simulate these types of actuators in a cylindrical shell, two analytical models are investigated that apply either in-plane forces or bending moments along the boundaries of a finite patch. It is shown that the bending model may not be as effective as the force model for exciting the low order azimuthal modes that typically dominate the structural acoustic response in these systems. This result will affect the arrangement and distribution of actuators required for effective active control systems.

  8. Automated manual transmission mode selection controller

    DOEpatents

    Lawrie, Robert E.

    1999-11-09

    A powertrain system for a hybrid vehicle. The hybrid vehicle includes a heat engine, such as a diesel engine, and an electric machine, which operates as both an electric motor and an alternator, to power the vehicle. The hybrid vehicle also includes a manual-style transmission configured to operate as an automatic transmission from the perspective of the driver. The engine and the electric machine drive an input shaft which in turn drives an output shaft of the transmission. In addition to driving the transmission, the electric machine regulates the speed of the input shaft in order to synchronize the input shaft during either an upshift or downshift of the transmission by either decreasing or increasing the speed of the input shaft. When decreasing the speed of the input shaft, the electric motor functions as an alternator to produce electrical energy which may be stored by a storage device. Operation of the transmission is controlled by a transmission controller which receives input signals and generates output signals to control shift and clutch motors to effect smooth launch, upshift shifts, and downshifts of the transmission, so that the transmission functions substantially as an automatic transmission from the perspective of the driver, while internally substantially functioning as a manual transmission.

  9. Automated manual transmission shift sequence controller

    DOEpatents

    Lawrie, Robert E.; Reed, Richard G.; Rausen, David J.

    2000-02-01

    A powertrain system for a hybrid vehicle. The hybrid vehicle includes a heat engine, such as a diesel engine, and an electric machine, which operates as both, an electric motor and an alternator, to power the vehicle. The hybrid vehicle also includes a manual-style transmission configured to operate as an automatic transmission from the perspective of the driver. The engine and the electric machine drive an input shaft which in turn drives an output shaft of the transmission. In addition to driving the transmission, the electric machine regulates the speed of the input shaft in order to synchronize the input shaft during either an upshift or downshift of the transmission by either decreasing or increasing the speed of the input shaft. When decreasing the speed of the input shaft, the electric motor functions as an alternator to produce electrical energy which may be stored by a storage device. Operation of the transmission is controlled by a transmission controller which receives input signals and generates output signals to control shift and clutch motors to effect smooth launch, upshift shifts, and downshifts of the transmission, so that the transmission functions substantially as an automatic transmission from the perspective of the driver, while internally substantially functioning as a manual transmission.

  10. Communication Range Dynamics and Performance Analysis for a Self-Adaptive Transmission Power Controller.

    PubMed

    Lucas Martínez, Néstor; Martínez Ortega, José-Fernán; Hernández Díaz, Vicente; Del Toro Matamoros, Raúl M

    2016-05-12

    The deployment of the nodes in a Wireless Sensor and Actuator Network (WSAN) is typically restricted by the sensing and acting coverage. This implies that the locations of the nodes may be, and usually are, not optimal from the point of view of the radio communication. Additionally, when the transmission power is tuned for those locations, there are other unpredictable factors that can cause connectivity failures, like interferences, signal fading due to passing objects and, of course, radio irregularities. A control-based self-adaptive system is a typical solution to improve the energy consumption while keeping good connectivity. In this paper, we explore how the communication range for each node evolves along the iterations of an energy saving self-adaptive transmission power controller when using different parameter sets in an outdoor scenario, providing a WSAN that automatically adapts to surrounding changes keeping good connectivity. The results obtained in this paper show how the parameters with the best performance keep a k-connected network, where k is in the range of the desired node degree plus or minus a specified tolerance value.

  11. Communication Range Dynamics and Performance Analysis for a Self-Adaptive Transmission Power Controller †

    PubMed Central

    Lucas Martínez, Néstor; Martínez Ortega, José-Fernán; Hernández Díaz, Vicente; del Toro Matamoros, Raúl M.

    2016-01-01

    The deployment of the nodes in a Wireless Sensor and Actuator Network (WSAN) is typically restricted by the sensing and acting coverage. This implies that the locations of the nodes may be, and usually are, not optimal from the point of view of the radio communication. Additionally, when the transmission power is tuned for those locations, there are other unpredictable factors that can cause connectivity failures, like interferences, signal fading due to passing objects and, of course, radio irregularities. A control-based self-adaptive system is a typical solution to improve the energy consumption while keeping good connectivity. In this paper, we explore how the communication range for each node evolves along the iterations of an energy saving self-adaptive transmission power controller when using different parameter sets in an outdoor scenario, providing a WSAN that automatically adapts to surrounding changes keeping good connectivity. The results obtained in this paper show how the parameters with the best performance keep a k-connected network, where k is in the range of the desired node degree plus or minus a specified tolerance value. PMID:27187397

  12. Automatic Mechetronic Wheel Light Device

    DOEpatents

    Khan, Mohammed John Fitzgerald

    2004-09-14

    A wheel lighting device for illuminating a wheel of a vehicle to increase safety and enhance aesthetics. The device produces the appearance of a "ring of light" on a vehicle's wheels as the vehicle moves. The "ring of light" can automatically change in color and/or brightness according to a vehicle's speed, acceleration, jerk, selection of transmission gears, and/or engine speed. The device provides auxiliary indicator lights by producing light in conjunction with a vehicle's turn signals, hazard lights, alarm systems, and etc. The device comprises a combination of mechanical and electronic components and can be placed on the outer or inner surface of a wheel or made integral to a wheel or wheel cover. The device can be configured for all vehicle types, and is electrically powered by a vehicle's electrical system and/or battery.

  13. Self-sensing miniature electromagnetic actuators for a cardiac assist device application

    NASA Astrophysics Data System (ADS)

    Hanson, Ben M.; Walker, Peter G.; Levesley, Martin C.; Watterson, Kevin; Richardson, Robert C.; Yang, Ming

    2004-07-01

    This paper describes the application of self-sensing control to a cardiac assist device. We propose to improve the pumping performance of diseased or weakened hearts by applying direct cardiac compression using artificial muscle. This particular application imposes strict limitations on size, weight and system complexity, therefore employing self-sensing could offer advantages over separate sensors and actuators. Many electromagnetic actuators produce a back-e.m.f. proportional to velocity. Using a simple system model, it is possible to separate this back-e.m.f. from the supply voltage, thus the actuator velocity can be self-sensed. Furthermore, using a more detailed model, it also is possible to self-sense the force being applied. Experimental results are presented for linear moving-coil actuators and miniature d.c. motors. Estimation of position has been performed by numerical integration of self-sensed velocity, and shown to compare favourably to data from displacement sensors. Force estimation has also been shown to closely agree with data from a load cell. Combined force and position control has been implemented, without using sensors. Unfortunately, since self-sensed position is derived by integrating velocity, the estimated position can suffer from drifting. An automatic re-calibration scheme is proposed for the cardiac assist application.

  14. Electromechanical characteristic analysis of a dielectric electroactive polymer (DEAP) actuator

    NASA Astrophysics Data System (ADS)

    Zhu, Yinlong; Zhou, Hongpin; Wang, Huaming

    2015-10-01

    To assist in the design and optimization of dielectric electroactive polymer (DEAP) actuators, an analytical model for the electromechanical response of cone DEAP actuators is developed. Using the Yeoh form strain energy potential and the Maxwell stress tensor, the constitutive relationship of the DEAP that accounts for the electromechanical coupling behavior is deduced. The equilibrium equations of DEAP actuators with a cone configuration are derived and an analytical model is then proposed. With this model, the actuation characteristics of the DEAP actuator, including actuation displacement, force output and efficiency can be calculated. Additionally, the principal stresses and principal stretch ratio of the membrane under different actuation voltages can be determined, along with the wrinkling failure mode of DEAP actuators. The experimental results for the DEAP actuator matched the numerical results determined using the proposed model. As such, the proposed work is beneficial as a guide for the design optimization of DEAP actuators.

  15. Electrokinetic actuation of liquid metal for reconfigurable radio frequency devices

    NASA Astrophysics Data System (ADS)

    Gough, Ryan C.

    oxide layer. Several proof-of-concept devices are designed and tested to demonstrate the effectiveness of these electrical actuation techniques. A pair of tunable slot antennas are presented that achieve frequency reconfigurability through different implementations of liquid metal tuning elements - the first uses liquid metal as a dynamic short-circuit boundary condition for the magnetic current within the resonant aperture, and the second as a variable-length transmission stub that adds and removes reactance from the antenna. The two antennas are tunable across effective bandwidths of 19% and 15%, respectively. In addition, a tunable bandpass filter is demonstrated in which a central liquid-metal resonant element is 'stretched' to lower the passband of the filter by 10% without impacting the insertion loss. Finally, it is demonstrated how liquid metal can be formed into arbitrary shapes at high speeds (approximately 2.5 cm/s) without the need for an external power supply.

  16. Automatic wire twister.

    PubMed

    Smith, J F; Rodeheaver, G T; Thacker, J G; Morgan, R F; Chang, D E; Fariss, B L; Edlich, R F

    1988-06-01

    This automatic wire twister used in surgery consists of a 6-inch needle holder attached to a twisting mechanism. The major advantage of this device is that it twists wires significantly more rapidly than the conventional manual techniques. Testing has found that the ultimate force required to disrupt the wires twisted by either the automatic wire twister or manual techniques did not differ significantly and was directly related to the number of twists. The automatic wire twister reduces the time needed for wire twisting without altering the security of the twisted wire.

  17. Experimental Study of the Unsteady Actuation Effect on Induced Flow Characteristics in DBD Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Sohrab Gholamhosein, Pouryoussefi; Masoud, Mirzaei

    2015-05-01

    The main aim of this paper is to investigate unsteady actuation effects on the operation of dielectric barrier discharge (DBD) plasma actuators and to study induced flow characteristics of steady and unsteady actuators in quiescent air. The parameters affecting the operation of unsteady plasma actuators were experimentally measured and compared with the ones for steady actuators. The effects of excitation frequency and duty cycle on the induced flow pattern properties were studied by means of hot-wire anemometers, and the smoke visualization method was also used. It was observed that the current and the mean induced velocity linearly increase with increasing duty cycle while they are not sensitive to excitation frequency. Furthermore, with increasing excitation frequency, the magnitude of vortices shedding from the actuator decreases while their frequency increases. Nevertheless, when the excitation frequency grows beyond a certain level, the induced flow downstream of the actuator behaves as a steady flow. However, the results for steady actuators show that by increasing the applied voltage and carrier frequency, the velocity of the induced flow first increases and then decreases with actuator saturation and the onset of the emission of streaky glow discharge.

  18. Smart actuators for active vibration control

    NASA Astrophysics Data System (ADS)

    Pourboghrat, Farzad; Daneshdoost, Morteza

    1998-07-01

    In this paper, the design and implementation of smart actuators for active vibration control of mechanical systems are considered. A smart actuator is composed of one or several layers of piezo-electric materials which work both as sensors and actuators. Such a system also includes micro- electronic or power electronic amplifiers, depending on the power requirements and applications, as well as digital signal processing systems for digital control implementation. In addition, PWM type micro/power amplifiers are used for control implementation. Such amplifiers utilize electronic switching components that allow for miniaturization, thermal efficiency, cost reduction, and precision controls that are robust to disturbances and modeling errors. An adaptive control strategy is then developed for vibration damping and motion control of cantilever beams using the proposed smart self-sensing actuators.

  19. Considerations for contractile electroactive materials and actuators

    NASA Astrophysics Data System (ADS)

    Rasmussen, Lenore; Schramm, David; Rasmussen, Paul; Mullally, Kevin; Meixler, Lewis D.; Pearlman, Daniel; Kirk, Alice

    2011-04-01

    Ras Labs produces contractile electroactive polymer (EAP) based materials and actuators that bend, swell, ripple, and contract (new development) with low electric input. In addition, Ras Labs produces EAP materials that quickly contract and expand, repeatedly, by reversing the polarity of the electric input, which can be cycled. This phenomenon was explored using molecular modeling, followed by experimentation. Applied voltage step functions were also investigated. High voltage steps followed by low voltage steps produced a larger contraction followed by a smaller contraction. Actuator control by simply adjusting the electric input is extremely useful for biomimetic applications. Muscles are able to partially contract. If muscles could only completely contract, nobody could hold an egg, for example, without breaking it. A combination of high and low voltage step functions could produce gross motor function and fine manipulation within the same actuator unit. Plasma treated electrodes with various geometries were investigated as a means of providing for more durable actuation.

  20. Nylon-muscle-actuated robotic finger

    NASA Astrophysics Data System (ADS)

    Wu, Lianjun; Jung de Andrade, Monica; Rome, Richard S.; Haines, Carter; Lima, Marcio D.; Baughman, Ray H.; Tadesse, Yonas

    2015-04-01

    This paper describes the design and experimental analysis of novel artificial muscles, made of twisted and coiled nylon fibers, for powering a biomimetic robotic hand. The design is based on circulating hot and cold water to actuate the artificial muscles and obtain fast finger movements. The actuation system consists of a spring and a coiled muscle within a compliant silicone tube. The silicone tube provides a watertight, expansible compartment within which the coiled muscle contracts when heated and expands when cooled. The fabrication and characterization of the actuating system are discussed in detail. The performance of the coiled muscle fiber in embedded conditions and the related characteristics of the actuated robotic finger are described.

  1. Overview of Honeywell electromechanical actuation programs

    NASA Technical Reports Server (NTRS)

    Wyllie, C.

    1982-01-01

    Materials illustrating a presentation on electromechanical actuation programs (EMA) are presented. The development history is outlined. Space shuttle flight control systems and the advantages of EMAS, and EMA technology status and development requirements are outlined.

  2. Surface chemistry driven actuation in nanoporous gold

    SciTech Connect

    Biener, J; Wittstock, A; Zepeda-Ruiz, L; Biener, M M; Zielasek, V; Kramer, D; Viswanath, R N; Weissmuller, J; Baumer, M; Hamza, A V

    2008-04-14

    Although actuation in biological systems is exclusively powered by chemical energy, this concept has not been realized in man-made actuator technologies, as these rely on generating heat or electricity first. Here, we demonstrate that surface-chemistry driven actuation can be realized in high surface area materials such as nanoporous gold. For example, we achieve reversible strain amplitudes in the order of a few tenths of a percent by alternating exposure of nanoporous Au to ozone and carbon monoxide. The effect can be explained by adsorbate-induced changes of the surface stress, and can be used to convert chemical energy directly into a mechanical response thus opening the door to surface-chemistry driven actuator and sensor technologies.

  3. Hybrid transition control approach for plasma actuators

    NASA Astrophysics Data System (ADS)

    Kurz, A.; Goldin, N.; King, R.; Tropea, C.; Grundmann, S.

    2013-11-01

    This work reports on the development of a novel hybrid transition control method for single DBD plasma actuators. The experiments have been carried out on a natural laminar flow airfoil in a wind tunnel and combine two methods previously used for transition control purposes with DBD plasma actuators: boundary-layer stabilization by quasi-steady wall-parallel momentum addition, and active wave cancelation by linear superposition utilizing modulated momentum injection. For this purpose, the modulated body force is controlled using an improved extremum seeking controller based on an extended Kalman filter. Combining the two methods in a single actuator has advantages. Applied to 2-D Tollmien-Schlichting waves, the achievable transition delay in hybrid mode is significantly larger than the isolated effects, while the energy consumption remains almost unchanged compared to the case of continuous actuation. For a Reynolds number of , a transition delay of could be observed.

  4. Considerations for Contractile Electroactive Materials and Actuators

    SciTech Connect

    Lenore Rasmussen, David Schramm, Paul Rasmussen, Kevin Mullaly, Ras Labs, LLC, Intelligent Materials for Prosthetics & Automation, Lewis D. Meixler, Daniel Pearlman and Alice Kirk

    2011-05-23

    Ras Labs produces contractile electroactive polymer (EAP) based materials and actuators that bend, swell, ripple, and contract (new development) with low electric input. In addition, Ras Labs produces EAP materials that quickly contract and expand, repeatedly, by reversing the polarity of the electric input, which can be cycled. This phenomenon was explored using molecular modeling, followed by experimentation. Applied voltage step functions were also investigated. High voltage steps followed by low voltage steps produced a larger contraction followed by a smaller contraction. Actuator control by simply adjusting the electric input is extremely useful for biomimetic applications. Muscles are able to partially contract. If muscles could only completely contract, nobody could hold an egg, for example, without breaking it. A combination of high and low voltage step functions could produce gross motor function and fine manipulation within the same actuator unit. Plasma treated electrodes with various geometries were investigated as a means of providing for more durable actuation.

  5. Cannon launched electromechanical control actuation system development

    NASA Technical Reports Server (NTRS)

    Johnston, J. G.

    1983-01-01

    The evolution of an electromechanical control actuation system from trade study results through breadboard test and high-g launch demonstration tests is summarized. Primary emphasis is on design, development, integration and test of the gear reduction system.

  6. Tension Stiffened and Tendon Actuated Manipulator

    NASA Technical Reports Server (NTRS)

    Doggett, William R. (Inventor); Dorsey, John T. (Inventor); Ganoe, George G. (Inventor); King, Bruce D. (Inventor); Jones, Thomas C. (Inventor); Mercer, Charles D. (Inventor); Corbin, Cole K. (Inventor)

    2015-01-01

    A tension stiffened and tendon actuated manipulator is provided performing robotic-like movements when acquiring a payload. The manipulator design can be adapted for use in-space, lunar or other planetary installations as it is readily configurable for acquiring and precisely manipulating a payload in both a zero-g environment and in an environment with a gravity field. The manipulator includes a plurality of link arms, a hinge connecting adjacent link arms together to allow the adjacent link arms to rotate relative to each other and a cable actuation and tensioning system provided between adjacent link arms. The cable actuation and tensioning system includes a spreader arm and a plurality of driven and non-driven elements attached to the link arms and the spreader arm. At least one cable is routed around the driven and non-driven elements for actuating the hinge.

  7. Sensors and actuators inherent in biological species

    NASA Astrophysics Data System (ADS)

    Taya, Minoru; Stahlberg, Rainer; Li, Fanghong; Zhao, Ying Joyce

    2007-04-01

    This paper addresses examples of sensing and active mechanisms inherent in some biological species where both plants and animals cases are discussed: mechanosensors and actuators in Venus Fly Trap and cucumber tendrils, chemosensors in insects, two cases of interactions between different kingdoms, (i) cotton plant smart defense system and (ii) bird-of-paradise flower and hamming bird interaction. All these cases lead us to recognize how energy-efficient and flexible the biological sensors and actuators are. This review reveals the importance of integration of sensing and actuation functions into an autonomous system if we make biomimetic design of a set of new autonomous systems which can sense and actuate under a number of different stimuli and threats.

  8. Actuators Based on Liquid Crystalline Elastomer Materials

    PubMed Central

    Jiang, Hongrui; Li, Chensha; Huang, Xuezhen

    2013-01-01

    Liquid crystalline elastomers (LCEs) exhibit a number of remarkable physical effects, including the unique, high-stroke reversible mechanical actuation when triggered by external stimuli. This article reviews some recent exciting developments in the field of LCEs materials with an emphasis on their utilization in actuator applications. Such applications include artificial muscles, industrial manufacturing, health and microelectromechanical systems (MEMS). With suitable synthetic and preparation pathways and well-controlled actuation stimuli, such as heat, light, electric and magnetic field, excellent physical properties of LCE materials can be realized. By comparing the actuating properties of different systems, general relationships between the structure and the property of LCEs are discussed. How these materials can be turned into usable devices using interdisciplinary techniques is also described. PMID:23648966

  9. Feasibility of transparent flexible ultrasonic haptic actuator

    NASA Astrophysics Data System (ADS)

    Akther, Asma; Kafy, Abdullahil; Kim, Hyun Chan; Kim, Jaehwan

    2016-04-01

    Ultrasonic haptics actuator is a device that can create a haptic feedback to user's hand. The modulation of ultrasonic frequency can give different textures to the users. In this study, a feasibility of the ultrasonic haptic actuator made on a flexible piezoelectric substrate is investigated. As the piezoelectric substrate helps to propagate flexural waves, a pair of interdigital transducer (IDT) with reflectors can produce standing waves, which can increase the vibrational displacement of the actuator. A pair of IDT pattern was fabricated on a piezoelectric polymer substrate. A finite element analysis is at first performed to design the actuator. A sinusoidal excitation voltage is applied on IDT electrodes at ultrasonic frequencies and the displacement waveforms are found. The displacement waveforms clearly represent how ultrasonic waves propagate through the piezoelectric substrate.

  10. Serpentine Robot Arm Contains Electromagnetic Actuators

    NASA Technical Reports Server (NTRS)

    Moya, Israel A.; Studer, Philip A.

    1994-01-01

    Identical modules assembled into flexible robot arm configured in serpentlike fashion to manipulate objects while avoiding obstacles. Each module includes integral electromagnetic actuators energized selectively to produce variety of motions, stationary configurations, and combinations thereof.

  11. Piezoelectric Morphing versus Servo-Actuated MAV Control Surfaces

    DTIC Science & Technology

    2012-04-01

    bandwidth, and reliability has revealed several observations. The conformal morphing airfoil geometry increases the lift-to-drag ratio over a servo...actuated flapped airfoil design, showing benefits in aerodynamic efficiency. The embedded MFC actuators eliminate the servo actuator volume from vehicle...morphing actuation over a servo-actuated design. Nomenclature A = Airfoil planform area, ft2 Cd = Drag coefficient (2D), D/(0.5!V2A) Cl = Lift

  12. Mirrors Containing Biomimetic Shape-Control Actuators

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Mouroulis, Pantazis; Bao, Xiaoqi; Sherrit, Stewart

    2003-01-01

    Curved mirrors of a proposed type would comprise lightweight sheets or films containing integral, biologically inspired actuators for controlling their surface figures. These mirrors could be useful in such applications as collection of solar energy, focusing of radio beams, and (provided sufficient precision could be achieved) imaging. These mirrors were originally intended for use in outer space, but it should also be possible to develop terrestrial versions. Several prior NASA Tech Briefs articles have described a variety of approaches to the design of curved, lightweight mirrors containing integral shape-control actuators. The primary distinction between the present approach and the prior approaches lies in the actuator design concept, which involves shapes and movements reminiscent of those of a variety of small, multi-armed animals. The shape and movement of an actuator of this type can also be characterized as reminiscent of that of an umbrella. This concept can be further characterized as a derivative of that of multifinger grippers, the fingers of which are bimorph bending actuators (see Figure 1). The fingers of such actuators can be strips containing any of a variety of materials that have been investigated for use as actuators, including such electroactive polymers as ionomeric polymer/metal composites (IPMCs), ferroelectric polymers, and grafted elastomers. A mirror according to this proposal would be made from a sheet of one of the actuator composites mentioned above. The design would involve many variables, including the pre-curvature and stiffness of the mirror sheet, the required precision of figure control, the required range of variation in focal length (see Figure 2), the required precision of figure control for imaging or non-imaging use, the bending and twisting moments needed to effect the required deformations, and voltage-tomoment coefficients of the actuators, and the voltages accordingly required for actuation. A typical design would call

  13. Transmission eigenvalues

    NASA Astrophysics Data System (ADS)

    Cakoni, Fioralba; Haddar, Houssem

    2013-10-01

    In inverse scattering theory, transmission eigenvalues can be seen as the extension of the notion of resonant frequencies for impenetrable objects to the case of penetrable dielectrics. The transmission eigenvalue problem is a relatively late arrival to the spectral theory of partial differential equations. Its first appearance was in 1986 in a paper by Kirsch who was investigating the denseness of far-field patterns for scattering solutions of the Helmholtz equation or, in more modern terminology, the injectivity of the far-field operator [1]. The paper of Kirsch was soon followed by a more systematic study by Colton and Monk in the context of developing the dual space method for solving the inverse scattering problem for acoustic waves in an inhomogeneous medium [2]. In this paper they showed that for a spherically stratified media transmission eigenvalues existed and formed a discrete set. Numerical examples were also given showing that in principle transmission eigenvalues could be determined from the far-field data. This first period of interest in transmission eigenvalues was concluded with papers by Colton et al in 1989 [3] and Rynne and Sleeman in 1991 [4] showing that for an inhomogeneous medium (not necessarily spherically stratified) transmission eigenvalues, if they existed, formed a discrete set. For the next seventeen years transmission eigenvalues were ignored. This was mainly due to the fact that, with the introduction of various sampling methods to determine the shape of an inhomogeneous medium from far-field data, transmission eigenvalues were something to be avoided and hence the fact that transmission eigenvalues formed at most a discrete set was deemed to be sufficient. In addition, questions related to the existence of transmission eigenvalues or the structure of associated eigenvectors were recognized as being particularly difficult due to the nonlinearity of the eigenvalue problem and the special structure of the associated transmission

  14. AQUIFER TRANSMISSIVITY

    EPA Science Inventory

    Evaluation of groundwater resources requires the knowledge of the capacity of aquifers to store and transmit ground water. This requires estimates of key hydraulic parameters, such as the transmissivity, among others. The transmissivity T (m2/sec) is a hydrauli...

  15. Handbook of actuators and edge alignment sensors

    SciTech Connect

    Krulewich, D A

    1992-11-01

    This actuator and sensor handbook was developed during a cooperative project between the NASA-Marshall Space Flight Center, the SDI-Directed Energy Program and LLNL. The common purpose of the joint effort was to develop precision actuators and sensors for the NASA initiated SpacE Laser ENE-rgy Program (SELENE). The purpose of the SELENE Program is to develop a highly cost effective segmented adaptive optics system for beaming laser power directly to spacecraft in earth orbit.

  16. Electromechanical flight control actuator, volume 1

    NASA Technical Reports Server (NTRS)

    1978-01-01

    An electromechanical actuator was developed that will follow a proportional control command with minimum wasted energy to demonstrate the feasibility of meeting space vehicle actuator requirements using advanced electromechanical concepts. The approach was restricted to a four-channel redundant configuration. Each channel has independent drive and control electronics, a brushless electric motor with brake, and velocity and position feedback transducers. A differential gearbox sums the output velocities of the motors. Normally, two motors are active and the other two are braked.

  17. SparkJet Actuators for Flow Control

    DTIC Science & Technology

    2007-03-01

    from 300 to 1000 K and velocities from -100 to 400 m/sec. The rectangular zone that represents the annular energy deposition region in 3D is visible in...and Glezer, A., "Flow Reattachment Dynamics over a Thick Airfoil Controlled by Synthetic Jet Actuators," AIAA Paper No. 99-1001, 37th AIAA Aerospace...Sciences Meeting, Reno, NV, January 1999. 3 Amitay, M., and Glezer, A., "Aerodynamic Flow Control of a Thick Airfoil using Synthetic Jet Actuators

  18. Digital flight control actuation system study

    NASA Technical Reports Server (NTRS)

    Rossing, R.; Hupp, R.

    1974-01-01

    Flight control actuators and feedback sensors suitable for use in a redundant digital flight control system were examined. The most appropriate design approach for an advanced digital flight control actuation system for development and use in a fly-by-wire system was selected. The concept which was selected consisted of a PM torque motor direct drive. The selected system is compatible with concurrent and independent development efforts on the computer system and the control law mechanizations.

  19. Microelectromechanical Systems Actuator Based Reconfigurable Printed Antenna

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N. (Inventor)

    2005-01-01

    A polarization reconfigurable patch antenna is disclosed. The antenna includes a feed element, a patch antenna element electrically connected to the feed element, and at least one microelectromechanical systems (MEMS) actuator, with a partial connection to the patch antenna element along an edge of the patch antenna element. The polarization of the antenna can be switched between circular polarization and linear polarization through action of the at least one MEMS actuator.

  20. Self-contained hybrid electro-hydraulic actuators using magnetostrictive and electrostrictive materials

    NASA Astrophysics Data System (ADS)

    Chaudhuri, Anirban

    dominates the viscous effects and the problem becomes unsteady in nature. Due to high pressures inside the actuator and the presence of entrained air, compressibility of the hydraulic fluid is important. A new mathematical model of the hydraulic hybrid actuator was formulated in time-domain to show the basic operational principle under varying operating conditions and to capture the phenomena affecting system performance. Linear induced strain behavior was assumed to model the active material. Governing equations for the moving parts were obtained from force equilibrium considerations, while the coupled inertiacompliance of the fluid passages was represented by a lumped parameter approach to the transmission line model, giving rise to strongly coupled ordinary differential equations. Compressibility of the working fluid was incorporated by using the bulk modulus. The model was then validated using the measured performance of both the magnetostrictive and electrostrictive-based hybrid actuators.

  1. Data-based fault-tolerant control for affine nonlinear systems with actuator faults.

    PubMed

    Xie, Chun-Hua; Yang, Guang-Hong

    2016-09-01

    This paper investigates the fault-tolerant control (FTC) problem for unknown nonlinear systems with actuator faults including stuck, outage, bias and loss of effectiveness. The upper bounds of stuck faults, bias faults and loss of effectiveness faults are unknown. A new data-based FTC scheme is proposed. It consists of the online estimations of the bounds and a state-dependent function. The estimations are adjusted online to compensate automatically the actuator faults. The state-dependent function solved by using real system data helps to stabilize the system. Furthermore, all signals in the resulting closed-loop system are uniformly bounded and the states converge asymptotically to zero. Compared with the existing results, the proposed approach is data-based. Finally, two simulation examples are provided to show the effectiveness of the proposed approach.

  2. Sensor-actuator coupled device for active tracheal tube using solid polymer electrolyte membrane

    NASA Astrophysics Data System (ADS)

    Ihara, Tadashi; Nakamura, Taro; Mukai, Toshiharu; Asaka, Kinji

    2007-04-01

    A sensor-actuator coupled device was developed using solid polymer electrolyte membrane (SPM) as an active tracheal tube for ventilator. Active tracheal tube is a novel type of tube for ventilator that removes patient's phlegm automatically upon sensing the narrowing of trachea by phlegm. This type of active tube is extremely useful in clinical settings as currently the sole measure to remove phlegm from patient's tube is to do it manually by a nurse every few hours. As SPM works both as a sensor and an actuator, an effective compact device was developed. SPM based sensor-actuator coupled device was fabricated with modified gold plating method. Prepared SPM was fixed as an array on a plastic pipe of diameter 22 mm and was connected to a ventilator circuit and driven by a ventilator with a volume control ventilation (VCV) mode. SPM was connected both to a sensing unit and an actuation unit. Generated voltage developed by the membrane with the setting of the maximum pressure from 5 cmH IIO to 20 cmH IIO was in order of several hundred μV. SPM sensor demonstrated a biphasic response to the ventilator flow. The sensor data showed nearly linearly proportional voltage development to the intra-tracheal pressure. The sensed signal was filtered and digitized with an A/D converting unit on a PC board. A real time operating program was used to detect the sensed signal that indicates the narrowing of trachea. The program then activated a driving signal to control the actuation of the membrane. The signal was sent to a D/A converting unit. The output of the D/A unit was sent to an amplifier and the galvanostat unit which drives the membrane with constant current regardless of the change in the load. It was demonstrated that the sensor-actuator unit detects the narrowing of trachea within several hundreds milli-seconds and responds by actuating the same membrane with the driving voltage of 3-4 V and driving current of several hundred milli-ampere for each membrane. SPM array

  3. Networked Rectenna Array for Smart Material Actuators

    NASA Technical Reports Server (NTRS)

    Choi, Sang H.; Golembiewski, Walter T.; Song, Kyo D.

    2000-01-01

    The concept of microwave-driven smart material actuators is envisioned as the best option to alleviate the complexity associated with hard-wired control circuitry. Networked rectenna patch array receives and converts microwave power into a DC power for an array of smart actuators. To use microwave power effectively, the concept of a power allocation and distribution (PAD) circuit is adopted for networking a rectenna/actuator patch array. The PAD circuit is imbedded into a single embodiment of rectenna and actuator array. The thin-film microcircuit embodiment of PAD circuit adds insignificant amount of rigidity to membrane flexibility. Preliminary design and fabrication of PAD circuitry that consists of a few nodal elements were made for laboratory testing. The networked actuators were tested to correlate the network coupling effect, power allocation and distribution, and response time. The features of preliminary design are 16-channel computer control of actuators by a PCI board and the compensator for a power failure or leakage of one or more rectennas.

  4. Dielectric Elastomer Actuated Systems and Methods

    NASA Technical Reports Server (NTRS)

    Dubowsky, Steven (Inventor); Hafez, Moustapha (Inventor); Lichter, Matthew (Inventor); Weiss, Peter (Inventor); Wingert, Andreas (Inventor)

    2008-01-01

    The system of the present invention includes an actuator having at least two electrodes, an elastomeric dielectric film disposed between the two electrodes, and a frame attached to the elastomeric dielectric film. The frame provides a linear actuation force characteristic over a displacement range. The displacement range is preferably the stroke of the actuator. The displacement range can be about 5 mm and greater. Further, the frame can include a plurality of configurations, for example, at least a rigid members coupled to a flexible member wherein the frame provides an elastic restoring force. In preferred embodiments, the rigid member can be, but is not limited to, curved beams, parallel beams, rods and plates. In a preferred embodiment the actuator can further include a passive element disposed between two flexible members such as, for example, links to tune a stiffness characteristic of the actuator. The passive element can be a bi-stable element. Further, the actuator can include a plurality of layers of the elastomeric dielectric film integrated into the frame. The elastomeric film can be made of different materials such as, for example, acrylic, silicone and latex.

  5. Sweeping Jet Actuator in a Quiescent Environment

    NASA Technical Reports Server (NTRS)

    Koklu, Mehti; Melton, Latunia P.

    2013-01-01

    This study presents a detailed analysis of a sweeping jet (fluidic oscillator) actuator. The sweeping jet actuator promises to be a viable flow control actuator candidate due to its simple, no moving part structure and its high momentum, spatially oscillating flow output. Hot-wire anemometer and particle image velocimetry measurements were carried out with an emphasis on understanding the actuator flow field in a quiescent environment. The time averaged, fluctuating, and instantaneous velocity measurements are provided. A modified actuator concept that incorporates high-speed solenoid valves to control the frequency of oscillation enabled phase averaged measurements of the oscillating jet. These measurements reveal that in a given oscillation cycle, the oscillating jet spends more time on each of the Coanda surfaces. In addition, the modified actuator generates four different types of flow fields, namely: a non oscillating downward jet, a non oscillating upward jet, a non oscillating straight jet, and an oscillating jet. The switching from an upward jet to a downward jet is accomplished by providing a single pulse from the solenoid valve. Once the flow is switched, the flow stays there until another pulse is received. The oscillating jet is compared with a non oscillating straight jet, which is a typical planar turbulent jet. The results indicate that the oscillating jet has a higher (5 times) spreading rate, more flow entrainment, and higher velocity fluctuations (equal to the mean velocity).

  6. Pulsed-DC DBD Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Duong, Alan; McGowan, Ryan; Disser, Katherine; Corke, Thomas; Matlis, Eric

    2016-11-01

    A new powering system for dielectric barrier discharge (DBD) plasma actuators that utilizes a pulsed-DC waveform is presented. The plasma actuator arrangement is identical to most typical AC-DBD designs with staggered electrodes that are separated by a dielectric insulator. However instead of an AC voltage input to drive the actuator, the pulsed-DC utilizes a DC voltage source. The DC source is supplied to both electrodes, and remains constant in time for the exposed electrode. The DC source for the covered electrode is periodically grounded for very short instants and then allowed to rise to the source DC level. This process results in a plasma actuator body force that is significantly larger than that with an AC-DBD at the same voltages. The important characteristics used in optimizing the pulsed-DC plasma actuators are presented. Time-resolved velocity measurements near the actuator are further used to understand the underlying physics of its operation compared to the AC-DBD. Supported by NASA Glenn RC.

  7. A one-stage, high-load capacity separation actuator using anti-friction rollers and redundant shape memory alloy wires

    NASA Astrophysics Data System (ADS)

    Xiaojun, Yan; Dawei, Huang; Xiaoyong, Zhang; Ying, Liu; Qiaolong, Yang

    2015-12-01

    This paper proposes a SMA (shape memory alloy) wire-based separation actuator with high-load capacity and simple structure. The novel actuator is based on a one-stage locking mechanism, which means that the separation is directly driven by the SMA wire. To release a large preload, a group of anti-friction rollers are adopted to reduce the force for triggering. In addition, two SMA wires are used redundantly to ensure a high reliability. After separation, the actuator can be reset automatically without any auxiliary tool or manual operation. Three prototypes of the separation actuator are fabricated and tested. According to the performance test results, the actuator can release a maximum preload of 40 kN. The separation time tends to decrease as the operation current increases and it can be as short as 0.5 s under a 7.5 A (the voltage is 5.8 V) current. Lifetime test indicates that the actuator has a lifetime of more than 50 cycles. The environmental tests demonstrate that the actuator can endure the typical thermal and vibration environment tests without unexpected separation or structure damage, and separate normally after these environment tests.

  8. A one-stage, high-load capacity separation actuator using anti-friction rollers and redundant shape memory alloy wires.

    PubMed

    Xiaojun, Yan; Dawei, Huang; Xiaoyong, Zhang; Ying, Liu; Qiaolong, Yang

    2015-12-01

    This paper proposes a SMA (shape memory alloy) wire-based separation actuator with high-load capacity and simple structure. The novel actuator is based on a one-stage locking mechanism, which means that the separation is directly driven by the SMA wire. To release a large preload, a group of anti-friction rollers are adopted to reduce the force for triggering. In addition, two SMA wires are used redundantly to ensure a high reliability. After separation, the actuator can be reset automatically without any auxiliary tool or manual operation. Three prototypes of the separation actuator are fabricated and tested. According to the performance test results, the actuator can release a maximum preload of 40 kN. The separation time tends to decrease as the operation current increases and it can be as short as 0.5 s under a 7.5 A (the voltage is 5.8 V) current. Lifetime test indicates that the actuator has a lifetime of more than 50 cycles. The environmental tests demonstrate that the actuator can endure the typical thermal and vibration environment tests without unexpected separation or structure damage, and separate normally after these environment tests.

  9. Automatic switching matrix

    DOEpatents

    Schlecht, Martin F.; Kassakian, John G.; Caloggero, Anthony J.; Rhodes, Bruce; Otten, David; Rasmussen, Neil

    1982-01-01

    An automatic switching matrix that includes an apertured matrix board containing a matrix of wires that can be interconnected at each aperture. Each aperture has associated therewith a conductive pin which, when fully inserted into the associated aperture, effects electrical connection between the wires within that particular aperture. Means is provided for automatically inserting the pins in a determined pattern and for removing all the pins to permit other interconnecting patterns.

  10. Self-assembled polymer MEMS sensors and actuators

    NASA Astrophysics Data System (ADS)

    Hill, Andrea J.; Claus, Richard O.; Lalli, Jennifer H.; Homer, Michelle

    2006-03-01

    This paper describes the use of Metal Rubber TM, which is an electrically-conductive, low modulus, highly-flexible, and optically transparent free-standing or conformal coating nanocomposite material that is fabricated via Electrostatic Self-Assembly (ESA), as a polymer MEMS sensor for actuator materials. ESA is an environmentally-friendly layer-by-layer fabrication technique in which Metal Rubber TM can be tailor designed at the molecular level to function as a sensor and/or electrode for active polymer devices. With its controllable and tailorable properties (such as mechanical modulus [from less than 0.1 MPa to greater than 500 MPa], electrical conductivity, sensitivity to flex and strain (tension and compression), thickness, transmission, glass transition, and more), Metal Rubber TM exhibits massive improvements over traditional stiff electrodes and sensors (with bulky/heavy wire components) that physically constrain the actuator device motion and thus limit productivity. Metal RubberTM shows exceptional potential for use as flexible sensors, electrodes, and interconnect components for many active polymer applications. One example of such is NanoSonic's Metal Rubber TM-Polymer MEMS (MR TM-PMEMS) nanocluster-based corrosion sensor for aircraft coatings that was developed for an Air Force SBIR program. MR TM-PMEMS was tailored via ESA for use as an in-situ sensor of chemical modifications and the breakdown of surface coatings via micro-strain measurements.

  11. Low backlash direct drive actuator

    DOEpatents

    Kuklo, T.C.

    1994-10-25

    A low backlash direct drive actuator is described which comprises a motor such as a stepper motor having at least 200 steps per revolution; a two part hub assembly comprising a drive hub coaxially attached to the shaft of the motor and having a plurality of drive pins; a driven hub having a plurality of bores in one end thereof in alignment with the drive pins in the drive hub and a threaded shaft coaxially mounted in an opposite end of the driven hub; and a housing having a central bore therein into which are fitted the drive hub and driven hub, the housing having a motor mount on one end thereof to which is mounted the stepper motor, and a closed end portion with a threaded opening therein coaxial with the central bore in the housing and receiving therein the threaded shaft attached to the driven hub. Limit switches mounted to the housing cooperate with an enlarged lip on the driven hub to limit the lateral travel of the driven hub in the housing, which also acts to limit the lateral travel of the threaded shaft which functions as a lead screw. 10 figs.

  12. Lightweight Exoskeletons with Controllable Actuators

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Yoseph; Mavrodis, Constantinos; Melli-Huber, Juan; Fisch, Avi (Alan)

    2004-01-01

    A proposed class of lightweight exoskeletal electromechanical systems would include electrically controllable actuators that would generate torques and forces that, depending on specific applications, would resist and/or assist wearers movements. The proposed systems would be successors to relatively heavy, bulky, and less capable human-strength-amplifying exoskeletal electromechanical systems that have been subjects of research during the past four decades. The proposed systems could be useful in diverse applications in which there are needs for systems that could be donned or doffed easily, that would exert little effect when idle, and that could be activated on demand: examples of such applications include (1) providing controlled movement and/or resistance to movement for physical exercise and (2) augmenting wearers strengths in the performance of military, law-enforcement, and industrial tasks. An exoskeleton according to the proposal would include adjustable lightweight graphite/epoxy struts and would be attached to the wearer's body by belts made of hook-and-pile material. At selected rotary and linear joints, the exoskeleton would be fitted, variously, with lightweight, low-power-consumption rotary and linear brakes, clutches, and motors. The exoskeleton would also be equipped with electronic circuitry for monitoring, control, and possibly communication with external electronic circuits that would perform additional monitoring and control functions.

  13. Low backlash direct drive actuator

    DOEpatents

    Kuklo, Thomas C.

    1994-01-01

    A low backlash direct drive actuator is described which comprises a motor such as a stepper motor having at least 200 steps per revolution; a two part hub assembly comprising a drive hub coaxially attached to the shaft of the motor and having a plurality of drive pins; a driven hub having a plurality of bores in one end thereof in alignment with the drive pins in the drive hub and a threaded shaft coaxially mounted in an opposite end of the driven hub; and a housing having a central bore therein into which are fitted the drive hub and driven hub, the housing having a motor mount on one end thereof to which is mounted the stepper motor, and a closed end portion with a threaded opening therein coaxial with the central bore in the housing and receiving therein the threaded shaft attached to the driven hub. Limit switches mounted to the housing cooperate with an enlarged lip on the driven hub to limit the lateral travel of the driven hub in the housing, which also acts to limit the lateral travel of the threaded shaft which functions as a lead screw.

  14. Fully redundant mechanical release actuator

    NASA Technical Reports Server (NTRS)

    Lucy, Melvin H. (Inventor)

    1987-01-01

    A system is described for performing a mechanical release function exhibiting low shock. This system includes two pyrotechnic detents fixed mounted in opposing axial alignment within a cylindrical housing having two mechanical bellows. Two mechanical bellow assemblies, each having one end hermetically bonded to the housing and the other to the respective actuator pin extending from either end of the housing, ensure that all outgassing and contamination from the operation of the pyrotechnic devices will be contained within the housing and bellows. The pin on one end of the assembly is fixed mounted and supported, via a bolt or ball-and-socket joint so that when the charge corresponding to that pin ignites, the entire assembly will exhibit rectilinear movement, including the opposing pin providing the unlatching motion. The release detent pin is supported by a linear bearing and when its corresponding pyrotechnic charge ignites the pin is retracted within the housing producing the same unlatching motion without movement of the entire assembly, thus providing complete mechanical, electrical and pyrotechnic redundancy for the unlatching pin.

  15. High-pressure microhydraulic actuator

    DOEpatents

    Mosier, Bruce P [San Francisco, CA; Crocker, Robert W [Fremont, CA; Patel, Kamlesh D [Dublin, CA

    2008-06-10

    Electrokinetic ("EK") pumps convert electric to mechanical work when an electric field exerts a body force on ions in the Debye layer of a fluid in a packed bed, which then viscously drags the fluid. Porous silica and polymer monoliths (2.5-mm O.D., and 6-mm to 10-mm length) having a narrow pore size distribution have been developed that are capable of large pressure gradients (250-500 psi/mm) when large electric fields (1000-1500 V/cm) are applied. Flowrates up to 200 .mu.L/min and delivery pressures up to 1200 psi have been demonstrated. Forces up to 5 lb-force at 0.5 mm/s (12 mW) have been demonstrated with a battery-powered DC-DC converter. Hydraulic power of 17 mW (900 psi@ 180 uL/min) has been demonstrated with wall-powered high voltage supplies. The force and stroke delivered by an actuator utilizing an EK pump are shown to exceed the output of solenoids, stepper motors, and DC motors of similar size, despite the low thermodynamic efficiency.

  16. Larger-Stroke Piezoelectrically Actuated Microvalve

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok

    2003-01-01

    A proposed normally-closed microvalve would contain a piezoelectric bending actuator instead of a piezoelectric linear actuator like that of the microvalve described in the preceding article. Whereas the stroke of the linear actuator of the preceding article would be limited to approximately equal to 6 micrometers, the stroke of the proposed bending actuator would lie in the approximate range of 10 to 15 micrometers-large enough to enable the microvalve to handle a variety of liquids containing suspended particles having sizes up to 10 m. Such particulate-laden liquids occur in a variety of microfluidic systems, one example being a system that sorts cells or large biomolecules for analysis. In comparison with the linear actuator of the preceding article, the bending actuator would be smaller and less massive. The combination of increased stroke, smaller mass, and smaller volume would be obtained at the cost of decreased actuation force: The proposed actuator would generate a force in the approximate range of 1 to 4 N, the exact amount depending on operating conditions and details of design. This level of actuation force would be too low to enable the valve to handle a fluid at the high pressure level mentioned in the preceding article. The proposal encompasses two alternative designs one featuring a miniature piezoelectric bimorph actuator and one featuring a thick-film unimorph piezoelectric actuator (see figure). In either version, the valve would consume a power of only 0.01 W when actuated at a frequency of 100 Hz. Also, in either version, it would be necessary to attach a soft elastomeric sealing ring to the valve seat so that any particles that settle on the seat would be pushed deep into the elastomeric material to prevent or reduce leakage. The overall dimensions of the bimorph version would be 7 by 7 by 1 mm. The actuator in this version would generate a force of 1 N and a stroke of 10 m at an applied potential of 150 V. The actuation force would be

  17. Licklider Transmission Protocol Implementation

    NASA Technical Reports Server (NTRS)

    Burleigh, Scott C.; Krupiarz, Chris

    2011-01-01

    This software is an implementation of the Licklider Transmission Protocol (LTP), a communications protocol intended to support the Bundle Protocol in Delay-Tolerant Network (DTN) operations. LTP is designed to provide retransmission-based reliability over links characterized by extremely long message round-trip times and/or frequent interruptions in connectivity. Communication in interplanetary space is the most prominent example of this sort of environment, and LTP is principally aimed at supporting long-haul reliable transmission over deep-space RF links. Like any reliable transport service employing ARQ (Automatic Repeat re-Quests), LTP is stateful. In order to assure the reception of a block of data it has sent, LTP must retain for possible retransmission all portions of that block which might not have been received yet. In order to do so, it must keep track of which portions of the block are known to have been received so far, and which are not, together with any additional information needed for purposes of retransmitting part, or all, of the block. Long round-trip times mean substantial delay between the transmission of a block of data and the reception of an acknowledgement from the block s destination, signaling arrival of the block. If LTP postponed transmission of additional blocks of data until it received acknowledgement of the arrival of all prior blocks, valuable opportunities to use what little deep space transmission bandwidth is available would be forever lost. For this reason, LTP is based in part on a notion of massive state retention. Any number of requested transmission conversations (sessions) may be concurrently in flight at various displacements along the link between two LTP engines, and the LTP engines must necessarily retain transmission status and retransmission resources for all of them. Moreover, if any of the data of a given block are lost en route, it will be necessary to retain the state of that transmission during an additional

  18. Engineering model of the electric drives of separation device for simulation of automatic control systems of reactive power compensation by means of serially connected capacitors

    NASA Astrophysics Data System (ADS)

    Juromskiy, V. M.

    2016-09-01

    It is developed a mathematical model for an electric drive of high-speed separation device in terms of the modeling dynamic systems Simulink, MATLAB. The model is focused on the study of the automatic control systems of the power factor (Cosφ) of an actuator by compensating the reactive component of the total power by switching a capacitor bank in series with the actuator. The model is based on the methodology of the structural modeling of dynamic processes.

  19. Electrochemically driven actuators from conducting polymers, hydrogels, and carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Spinks, Geoffrey M.; Wallace, Gordon G.; Lewis, Trevor W.; Fifield, Leonard S.; Dai, Liming; Baughman, Ray H.

    2001-04-01

    The mechanisms of actuation operating in polymeric actuators are reviewed along with a comparison of actuator performance. Polymer hydrogel actuators show very large dimensional changes, but relatively low response times. The mechanism of actuation involves several processes including electro-osmosis and electrochemical effects. Conducting polymer actuators operate by Faradaic reactions causing oxidation and reduction of the polymer backbone. Associated ion movements produce dimensional changes of typically up to 3%. The maximum stress achieved to date from conducting polymers is not more than 10 MPA. Carbon nanotubes have recently been demonstrated as new actuator materials. The nanotubes undergo useful dimensional changes (approximately 1%) but have the capacity to respond very rapidly (kHz) and generate giant stresses (600 MPa). The advantages of nanotube actuators stem from their exceptional mechanical properties and the non-Faradaic actuation mechanism.

  20. Scalability of Localized Arc Filament Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.

    2008-01-01

    Temporal flow control of a jet has been widely studied in the past to enhance jet mixing or reduce jet noise. Most of this research, however, has been done using small diameter low Reynolds number jets that often have little resemblance to the much larger jets common in real world applications because the flow actuators available lacked either the power or bandwidth to sufficiently impact these larger higher energy jets. The Localized Arc Filament Plasma Actuators (LAFPA), developed at the Ohio State University (OSU), have demonstrated the ability to impact a small high speed jet in experiments conducted at OSU and the power to perturb a larger high Reynolds number jet in experiments conducted at the NASA Glenn Research Center. However, the response measured in the large-scale experiments was significantly reduced for the same number of actuators compared to the jet response found in the small-scale experiments. A computational study has been initiated to simulate the LAFPA system with additional actuators on a large-scale jet to determine the number of actuators required to achieve the same desired response for a given jet diameter. Central to this computational study is a model for the LAFPA that both accurately represents the physics of the actuator and can be implemented into a computational fluid dynamics solver. One possible model, based on pressure waves created by the rapid localized heating that occurs at the actuator, is investigated using simplified axisymmetric simulations. The results of these simulations will be used to determine the validity of the model before more realistic and time consuming three-dimensional simulations are conducted to ultimately determine the scalability of the LAFPA system.

  1. Position Sensor Integral with a Linear Actuator

    NASA Technical Reports Server (NTRS)

    Howard, David E.; Alhorn, Dean C.

    2004-01-01

    A noncontact position sensor has been designed for use with a specific two-dimensional linear electromagnetic actuator. To minimize the bulk and weight added by the sensor, the sensor has been made an integral part of the actuator: that is to say, parts of the actuator structure and circuitry are used for sensing as well as for varying position. The actuator (see Figure 1) includes a C-shaped permanent magnet and an armature that is approximately centered in the magnet gap. The intended function of the actuator is to cause the permanent magnet to translate to, and/or remain at, commanded x and y coordinates, relative to the armature. In addition, some incidental relative motion along the z axis is tolerated but not controlled. The sensor is required to measure the x and y displacements from a nominal central position and to be relatively insensitive to z displacement. The armature contains two sets of electromagnet windings oriented perpendicularly to each other and electrically excited in such a manner as to generate forces in the x,y plane to produce the required motion. Small sensor excitation coils are mounted on the pole tips of the permanent magnet. These coils are excited with a sine wave at a frequency of 20 kHz. This excitation is transformer-coupled to the armature windings. The geometric arrangement of the excitation coils and armature windings is such that the amplitudes of the 20-kHz voltages induced in the armature windings vary nearly linearly with x and y displacements and do not vary significantly with small z displacements. Because the frequency of 20 kHz is much greater than the maximum frequency characteristic of the actuation signals applied to the armature windings, there is no appreciable interference between actuator and sensor functions of the armature windings.

  2. Cruise and turning performance of an improved fish robot actuated by piezoceramic actuators

    NASA Astrophysics Data System (ADS)

    Nguyen, Quang Sang; Heo, Seok; Park, Hoon Cheol; Goo, Nam Seo; Byun, Doyoung

    2009-03-01

    The purpose of this study is improvement of a fish robot actuated by four light-weight piezocomposite actuators (LIPCAs). In the fish robot, we developed a new actuation mechanism working without any gear and thus the actuation mechanism was simple in fabrication. By using the new actuation mechanism, cross section of the fish robot became 30% smaller than that of the previous model. Performance tests of the fish robot in water were carried out to measure tail-beat angle, thrust force, swimming speed and turning radius for tail-beat frequencies from 1Hz to 5Hz. The maximum swimming speed of the fish robot was 7.7 cm/s at 3.9Hz tail-beat frequency. Turning experiment showed that swimming direction of the fish robot could be controlled with 0.41 m turning radius by controlling tail-beat angle.

  3. Vehicle transmission having countershaft and planetary portions

    SciTech Connect

    Nerstad, K.A.; Windish, W.E.

    1986-09-30

    This patent describes a vehicle transmission comprising: a countershaft transmission including an input first shaft, a second shaft, an output third shaft, gears operatively associated with the shafts, a reversing idler gear cooperatively engaging two of the gears, and low, high, and reverse clutch assembly means for selectively connecting the gears in a preselected manner. The reverse clutch assembly provides either one of two forward speeds and one reverse speed at the third shaft, the low and high clutch assembly means being disposed generally along the second shaft; and a planetary transmission serially driven by the third shaft and including interconnected planetary gear sets and brake assembly means for selectively actuating one of the planetary gear sets and providing one speed for use with each speed of the countershaft transmission.

  4. Light-Mediated Manufacture and Manipulation of Actuators.

    PubMed

    Han, Dong-Dong; Zhang, Yong-Lai; Ma, Jia-Nan; Liu, Yu-Qing; Han, Bing; Sun, Hong-Bo

    2016-10-01

    Recent years have seen a considerable growth of research interests in developing novel technologies that permit designable manufacture and controllable manipulation of actuators. Among various fabrication and driving strategies, light has emerged as an enabler to reach this end, contributing to the development of actuators. Several accessible light-mediated manufacturing technologies, such as ultraviolet (UV) lithography and direct laser writing (DLW), are summarized. A series of light-driven strategies including optical trapping, photochemical actuation, and photothermal actuation for controllable manipulation of actuators is introduced. Current challenges and future perspectives of this field are discussed. To generalize, light holds great promise for the development of actuators.

  5. Improved electromechanical behavior in castable dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Akbari, Samin; Rosset, Samuel; Shea, Herbert R.

    2013-02-01

    Non-viscoelastic castable elastomers are replacing the polyacrylate VHB films in the new generations of dielectric elastomer actuators (DEAs) to achieve fast and reliable actuation. We introduce the optimum prestretch conditions to enhance the electromechanical behavior of the castable DEAs resulting in large actuation strain. For castable actuator in which the thickness is selected independent of the prestretch, uniaxial prestretch mode offers the highest actuation strain in the transverse direction compared to biaxial and pure shear. We experimentally demonstrate that miniaturization hinders the loss of tension and up to 85% linear actuation strain is generated with a 300 × 300 μm2 polydimethylsiloxanes-based DEA.

  6. A novel energy-efficient rotational variable stiffness actuator.

    PubMed

    Rao, Shodhan; Carloni, Raffaella; Stramigioli, Stefano

    2011-01-01

    This paper presents the working principle, the design and realization of a novel rotational variable stiffness actuator, whose stiffness can be varied independently of its output angular position. This actuator is energy-efficient, meaning that the stiffness of the actuator can be varied by keeping constant the internal stored energy of the actuator. The principle of the actuator is an extension of the principle of translational energy-efficient actuator vsaUT. A prototype based on the principle has been designed, in which ball-bearings and linear slide guides have been used in order to reduce losses due to friction.

  7. Electrostatic actuators for portable microfluidic systems

    NASA Astrophysics Data System (ADS)

    Tice, Joshua

    Both developed and developing nations have an urgent need to diagnose disease cheaply, reliably, and independently of centralized facilities. Microfulidic platforms are well-positioned to address the need for portable diagnostics, mainly due to their obvious advantage in size. However, most microfluidic methods rely on equipment outside of the chip either for driving fluid flow (e.g., syringe pumps) or for taking measurements (e.g., lasers or microscopes). The energy and space requirements of the whole system inhibit portability and contribute to costs. To capitalize on the strengths of microfluidic platforms and address the serious needs of society, system components need to be miniaturized. Also, miniaturization should be accomplished as simply as possible, considering that simplicity is usually requisite for achieving truly transformative technology. Herein, I attempt to address the issue of controlling fluid flow in portable microfluidic systems. I focus on systems that are driven by elastomer-based membrane valves, since these valves are inherently simple, yet they are capable of sophisticated fluid manipulation. Others have attempted to modify pneumatic microvalves for portable applications, e.g., by transitioning to electromagnetic, thermopneumatic, or piezoelectric actuation principles. However, none of these strategies maintain the proper balance of simplicity, functionality, and ease of integration. My research centers on electrostatic actuators, due to their conceptual simplicity and the efficacy of electrostatic forces on the microscale. To ensure easy integration with polymer-based systems, and to maintain simplicity in the fabrication procedure, the actuators were constructed solely from poly(dimethylsiloxane) and multi-walled carbon nanotubes. In addition, the actuators were fabricated exclusively with soft-lithographic techniques. A mathematical model was developed to identify actuator parameters compatible with soft-lithography, and also to

  8. Curved Piezoelectric Actuators for Stretching Optical Fibers

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.

    2008-01-01

    Assemblies containing curved piezoceramic fiber composite actuators have been invented as means of stretching optical fibers by amounts that depend on applied drive voltages. Piezoceramic fiber composite actuators are conventionally manufactured as sheets or ribbons that are flat and flexible, but can be made curved to obtain load-carrying ability and displacement greater than those obtainable from the flat versions. In the primary embodiment of this invention, piezoceramic fibers are oriented parallel to the direction of longitudinal displacement of the actuators so that application of drive voltage causes the actuator to flatten, producing maximum motion. Actuator motion can be transmitted to the optical fiber by use of hinges and clamp blocks. In the original application of this invention, the optical fiber contains a Bragg grating and the purpose of the controlled stretching of the fiber is to tune the grating as part of a small, lightweight, mode-hop-free, rapidly tunable laser for demodulating strain in Bragg-grating strain-measurement optical fibers attached to structures. The invention could also be used to apply controllable tensile force or displacement to an object other than an optical fiber.

  9. Microscale plasma actuators for improved thrust density

    SciTech Connect

    Wang, C.-C.; Roy, Subrata

    2009-07-01

    We present a study of the dielectric barrier discharge (DBD) plasma actuators for microscale applications. Traditional macroscale DBD actuators suffer from relatively small actuation effect as characterized by small induced force density and resulting flow velocity. As a remedy we propose microscale plasma actuators that may induce orders of magnitude higher force density. We study the physics of such actuation using a multiscale ionized gas flow code based on the high-fidelity finite-element procedure. First, a two-dimensional volume discharge with nitrogen as a working gas is investigated using a first-principles approach solving coupled system of hydrodynamic plasma equations and Poisson equation for ion density, electron density, and electric field distribution. The quasi-neutral plasma and the sheath regions are identified. As the gap between electrodes is reduced, the sheath structure dominates the plasma region. Second, we simulate a first generation plasma micropump. We solve multiscale plasma-gas interaction inside a two-dimensional cross section of the microscale pump geometry. The result shows that a reasonable mass flow rate can be pumped using a set of small active electrodes.

  10. Wireless actuation with functional acoustic surfaces

    NASA Astrophysics Data System (ADS)

    Qiu, T.; Palagi, S.; Mark, A. G.; Melde, K.; Adams, F.; Fischer, P.

    2016-11-01

    Miniaturization calls for micro-actuators that can be powered wirelessly and addressed individually. Here, we develop functional surfaces consisting of arrays of acoustically resonant micro-cavities, and we demonstrate their application as two-dimensional wireless actuators. When remotely powered by an acoustic field, the surfaces provide highly directional propulsive forces in fluids through acoustic streaming. A maximal force of ˜0.45 mN is measured on a 4 × 4 mm2 functional surface. The response of the surfaces with bubbles of different sizes is characterized experimentally. This shows a marked peak around the micro-bubbles' resonance frequency, as estimated by both an analytical model and numerical simulations. The strong frequency dependence can be exploited to address different surfaces with different acoustic frequencies, thus achieving wireless actuation with multiple degrees of freedom. The use of the functional surfaces as wireless ready-to-attach actuators is demonstrated by implementing a wireless and bidirectional miniaturized rotary motor, which is 2.6 × 2.6 × 5 mm3 in size and generates a stall torque of ˜0.5 mN.mm. The adoption of micro-structured surfaces as wireless actuators opens new possibilities in the development of miniaturized devices and tools for fluidic environments that are accessible by low intensity ultrasound fields.

  11. Accommodating Actuator Failures in Flight Control Systems

    NASA Technical Reports Server (NTRS)

    Hess, R. A.; Siwakosit, W.; Chung, J.

    1998-01-01

    A technique for the design of flight control systems that can accommodate a set of actuator failures is presented. As employed herein, an actuator failure is defined as any change in the parametric model of the actuator which can adversely affect actuator performance. The technique is based upon the formulation of a fixed feedback topology which ensures at least stability in the presence of the failures in the set. The fixed compensation is obtained from a loop-shaping design procedure similar to Quantitative Feedback Theory and provides stability robustness in the presence of uncertainty in the vehicle dynamics caused by the failures. System adaptation to improve performance after actuator failure(s) occurs through a static gain adjustment in the compensator followed by modification of the system prefilter. Precise identification of the vehicle dynamics is unnecessary. Application to a single-input, single-output design using a simplified model of the longitudinal dynamics of the NASA High Angle of Attack Research Vehicle is discussed. Non-real time simulations of the system including a model of the pilot demonstrate the effectiveness and limitations of the approach.

  12. Bio inspired Magnet-polymer (Magpol) actuators

    NASA Astrophysics Data System (ADS)

    Ahmed, Anansa S.; Ramanujan, R. V.

    2014-03-01

    Magnet filler-polymer matrix composites (Magpol) are an emerging class of morphing materials. Magpol composites have an interesting ability to undergo large strains in response to an external magnetic field. The potential to develop Magpol as large strain actuators is due to the ability to incorporate large particle loading into the composite and also due to the increased interaction area at the interface of the nanoparticles and the composite. Mn-Zn ferrite fillers with different saturation magnetizations (Ms) were synthesized. Magpol composites consisting of magnetic ferrite filler particles in an Poly ethylene vinyl acetate (EVA) matrix were prepared. The deformation characteristics of the actuator were determined. The morphing ability of the Magpol composite was studied under different magnetic fields and also with different filler loadings. All films exhibited large strain under the applied magnetic field. The maximum strain of the composite showed an exponential dependence on the Ms. The work output of Magpol was also calculated using the work loop method. Work densities of upto 1 kJ/m3 were obtained which can be compared to polypyrrole actuators, but with almost double the typical strain. Applications of Magpol can include artificial muscles, drug delivery, adaptive optics and self healing structures. Advantages of Magpol include remote contactless actuation, high actuation strain and strain rate and quick response.

  13. Interfacing dielectric elastomer actuators with liquids

    NASA Astrophysics Data System (ADS)

    Poulin, Alexandre; Maffli, Luc; Rosset, Samuel; Shea, Herbert

    2015-04-01

    Methods and materials for liquid encapsulation in thin (19 μm) silicone membranes are presented in this work. A set of 12 liquids including solvents, oils, silicone pre-polymers and one ionic liquid are experimentally tested. We show that all selected liquids are chemically inert to silicone and that vapor pressure is the key parameter for stable encapsulation. It is demonstrated that encapsulated volume of silicone pre-polymers and ionic liquids can stay stable for more than 1 month. The actuation of dielectric elastomer actuators (DEAs) in conductive liquids is also investigated. An analysis of the equivalent electrical circuits of immersed DEAs shows that non-overlapping regions of the electrodes should be minimized. It also provides guidelines to determine when the electrodes should be passivated. The effects of immersion in a conductive liquid are assessed by measuring the actuation strain and capacitance over periodic actuation. The experimental results show no sign of liquid-induced degradation over more than 45k actuation cycles.

  14. Smart materials for actuation in microrobotics

    NASA Astrophysics Data System (ADS)

    Kortschack, Axel; Fatikow, Sergej

    2002-11-01

    This paper describes the implementation of smart materials in actuators which are employed by mobile microrobots. A versatile microrobot is able to perform complex handling and joining procedures of microobjects with high precision. Such a microrobot requires precise actuators made of specific smart materials. These materials enable the microrobots to fulfill movements in coarse- and fine-positioning mode. The actuator material, currently most frequently used for the coarse-positioning mode, is a piezoelectric ceramic. It is important for the coarse-positioning actuators to be able to carry the entire weight of the microrobots, to provide a velocity of several cm/s and a positioning accuracy in a range of a few μm. The actuators for a fine-positioning unit have to provide an accuracy in the range of a few nanometers. The workspace of a fine-positioning unit depends on a task and is in between a few μm3 and several cm3. For this use, piezoelectric ceramics are suitable as well. Furthermore, the employment of ferrofluids is promising.

  15. An algorithm for LQ optimal actuator location

    NASA Astrophysics Data System (ADS)

    Darivandi, Neda; Morris, Kirsten; Khajepour, Amir

    2013-03-01

    The locations of the control hardware are typically a design variable in controller design for distributed parameter systems. In order to obtain the most efficient control system, the locations of control hardware as well as the feedback gain should be optimized. These optimization problems are generally non-convex. In addition, the models for these systems typically have a large number of degrees of freedom. Consequently, existing optimization schemes for optimal actuator placement may be inaccurate or computationally impractical. In this paper, the feedback control is chosen to be an optimal linear quadratic regulator. The optimal actuator location problem is reformulated as a convex optimization problem. A subgradient-based optimization scheme which leads to the global solution of the problem is used to optimize actuator locations. The optimization algorithm is applied to optimize the placement of piezoelectric actuators in vibration control of flexible structures. This method is compared with a genetic algorithm, and is observed to be faster and more accurate. Experiments are performed to verify the efficacy of optimal actuator placement.

  16. Elastomeric contractile actuators for hand rehabilitation splints

    NASA Astrophysics Data System (ADS)

    Carpi, Federico; Mannini, Andrea; De Rossi, Danilo

    2008-03-01

    The significant electromechanical performances typically shown by dielectric elastomer actuators make this polymer technology particularly attractive for possible active orthoses for rehabilitation. Folded contractile actuators made of dielectric elastomers were recently described as a simple configuration, suitable to easily implement linear contractile devices. This paper describes an application of folded actuators for so-called hand splints: they consist of orthotic systems for hand rehabilitation. The dynamic versions of the state-of-the-art splints typically include elastic bands, which exert a passive elastic resistance to voluntary elongations of one or more fingers. In order to provide such splints with the possibility of electrically modulating the compliance of the resistive elements, the substitution of the passive elastic bands with the contractile actuators is here described. The electrical activation of the actuators is used to vary the compliance of the system; this enables modulations of the force that acts as an antagonist to voluntary finger movements, according to programmable rehabilitation exercises. The paper reports results obtained from the first prototype implementations of such a type of system.

  17. Miniature Linear Actuator for Small Spacecraft

    NASA Technical Reports Server (NTRS)

    Willey, Cliff E.; Hill, Stuart W.

    2004-01-01

    A report discusses the development of a kit of mechanisms intended for use aboard future spacecraft having masses between 10 and 100 kg. The report focuses mostly on two prototypes of one of the mechanisms: a miniature linear actuator based on a shape-memory-alloy (SMA) wire. In this actuator, as in SMA-wire actuators described previously in NASA Tech Briefs, a spring biases a moving part toward one limit of its stroke and is restrained or pulled toward the other limit of the stroke by an SMA wire, which assumes a slightly lesser or greater "remembered" length, depending on whether or not an electric current is applied to the wire to heat it above a transition temperature. Topics addressed in the report include the need to develop mechanisms like these, the general approach to be taken in designing SMA actuators, tests of the two prototypes of the miniature linear actuators, and improvements in the second prototype over the first prototype resulting in reduced mass and increased stroke. The report also presents recommendations for future development, briefly discusses problems of tolerances and working with small parts, states a need for better understanding of behaviors of SMAs, and presents conclusions.

  18. Evolutionary flight and enabling smart actuator devices

    NASA Astrophysics Data System (ADS)

    Manzo, Justin; Garcia, Ephrahim

    2007-04-01

    Recent interest in morphing vehicles with multiple, optimized configurations has led to renewed research on biological flight. The flying vertebrates - birds, bats, and pterosaurs - all made or make use of various morphing devices to achieve lift to suit rapidly changing flight demands, including maneuvers as complex as perching and hovering. The first part of this paper will discuss these devices, with a focus on the morphing elements and structural strong suits of each creature. Modern flight correlations to these devices will be discussed and analyzed as valid adaptations of these evolutionary traits. The second part of the paper will focus on the use of active joint structures for use in morphing aircraft devices. Initial work on smart actuator devices focused on NASA Langley's Hyper-Elliptical Cambered Span (HECS) wing platform, which led to development of a discretized spanwise curvature effector. This mechanism uses shape memory alloy (SMA) as the sole morphing actuator, allowing fast rotation with lightweight components at the expense of energy inefficiency. Phase two of morphing actuator development will add an element of active rigidity to the morphing structure, in the form of shape memory polymer (SMP). Employing a composite structure of polymer and alloy, this joint will function as part of a biomimetic morphing actuator system in a more energetically efficient manner. The joint is thermally actuated to allow compliance on demand and rigidity in the nominal configuration. Analytical and experimental joint models are presented, and potential applications on a bat-wing aircraft structure are outlined.

  19. Waveguiding Actuators Based on Photothermally Responsive Hydrogels

    NASA Astrophysics Data System (ADS)

    Zhou, Ying; Hauser, Adam; Bende, Nakul; Kuzyk, Mark; Hayward, Ryan

    A simple means to achieve rapid and highly reversible photo-responsiveness in a hydrogel is to combine a thermally-responsive gel such as poly(N-isopropyl acrylamide) (PNIPAM), with the photothermal effect of gold nanoparticles. Relying on such composite gels, we fabricate micro-scale bilayer photoactuators by photolithographic patterning, and demonstrate their controlled bending/unbending behavior in response to visible light. In addition to actuation by flood exposure, 532 nm laser light can be waveguided through a plastic optical fiber to direct it into the photoactuator, providing the possibility for remotely controllable actuators that do not require line-of-sight access. The actuators show large magnitude responses within time-scales of ~1 s, consistent with the small dimensions of the actuators, but also exhibit smaller-scale responses over much longer times, suggesting the possibility of slow internal relaxations within the network. Based on our study on this bilayer system, we further explore fabrication methods for cylindrical actuators that are able to bend in arbitrary directions.

  20. Proprioceptive Actuation Design for Dynamic Legged locomotion

    NASA Astrophysics Data System (ADS)

    Kim, Sangbae; Wensing, Patrick; Biomimetic Robotics Lab Team

    Designing an actuator system for highly-dynamic legged locomotion exhibited by animals has been one of the grand challenges in robotics research. Conventional actuators designed for manufacturing applications have difficulty satisfying challenging requirements for high-speed locomotion, such as the need for high torque density and the ability to manage dynamic physical interactions. It is critical to introduce a new actuator design paradigm and provide guidelines for its incorporation in future mobile robots for research and industry. To this end, we suggest a paradigm called proprioceptive actuation, which enables highly- dynamic operation in legged machines. Proprioceptive actuation uses collocated force control at the joints to effectively control contact interactions at the feet under dynamic conditions. In the realm of legged machines, this paradigm provides a unique combination of high torque density, high-bandwidth force control, and the ability to mitigate impacts through backdrivability. Results show that the proposed design provides an impact mitigation factor that is comparable to other quadruped designs with series springs to handle impact. The paradigm is shown to enable the MIT Cheetah to manage the application of contact forces during dynamic bounding, with results given down to contact times of 85ms and peak forces over 450N. As a result, the MIT Cheetah achieves high-speed 3D running up to 13mph and jumping over an 18-inch high obstacle. The project is sponsored by DARPA M3 program.

  1. Maximizing strain in miniaturized dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Rosset, Samuel; Araromi, Oluwaseun; Shea, Herbert

    2015-04-01

    We present a theoretical model to optimise the unidirectional motion of a rigid object bonded to a miniaturized dielectric elastomer actuator (DEA), a configuration found for example in AMI's haptic feedback devices, or in our tuneable RF phase shifter. Recent work has shown that unidirectional motion is maximized when the membrane is both anistropically prestretched and subjected to a dead load in the direction of actuation. However, the use of dead weights for miniaturized devices is clearly highly impractical. Consequently smaller devices use the membrane itself to generate the opposing force. Since the membrane covers the entire frame, one has the same prestretch condition in the active (actuated) and passive zones. Because the passive zone contracts when the active zone expands, it does not provide a constant restoring force, reducing the maximum achievable actuation strain. We have determined the optimal ratio between the size of the electrode (active zone) and the passive zone, as well as the optimal prestretch in both in-plane directions, in order to maximize the absolute displacement of the rigid object placed at the active/passive border. Our model and experiments show that the ideal active ratio is 50%, with a displacement twice smaller than what can be obtained with a dead load. We expand our fabrication process to also show how DEAs can be laser-post-processed to remove carefully chosen regions of the passive elastomer membrane, thereby increasing the actuation strain of the device.

  2. Performance study of a hydrogen powered metal hydride actuator

    NASA Astrophysics Data System (ADS)

    Mainul Hossain Bhuiya, Md; Kim, Kwang J.

    2016-04-01

    A thermally driven hydrogen powered actuator integrating metal hydride hydrogen storage reactor, which is compact, noiseless, and able to generate smooth actuation, is presented in this article. To test the plausibility of a thermally driven actuator, a conventional piston type actuator was integrated with LaNi5 based hydrogen storage system. Copper encapsulation followed by compaction of particles into pellets, were adopted to improve overall thermal conductivity of the reactor. The operation of the actuator was thoroughly investigated for an array of operating temperature ranges. Temperature swing of the hydride reactor triggering smooth and noiseless actuation over several operating temperature ranges were monitored for quantification of actuator efficiency. Overall, the actuator generated smooth and consistent strokes during repeated cycles of operation. The efficiency of the actuator was found to be as high as 13.36% for operating a temperature range of 20 °C-50 °C. Stress-strain characteristics, actuation hysteresis etc were studied experimentally. Comparison of stress-strain characteristics of the proposed actuator with traditional actuators, artificial muscles and so on was made. The study suggests that design modification and use of high pressure hydride may enhance the performance and broaden the application horizon of the proposed actuator in future.

  3. Sequential growth and monitoring of a polypyrrole actuator system

    NASA Astrophysics Data System (ADS)

    Sarrazin, J. C.; Mascaro, Stephen A.

    2014-03-01

    Electroactive polymers (EAPs) have emerged as viable materials in sensing and actuating applications, but the capability to mimic the structure and function of natural muscle is increased due to their ability to permit additional, sequential synthesis steps between stages of actuation. Current work is improving upon the mechanical performance in terms of achievable stresses, strains, and strain rates, but issues still remain with actuator lifetime and adaptability. This work seeks to create a bioinspired polymer actuation system that can be monitored using state estimation and adjusted in vivo during operation. The novel, time-saving process of sequential growth was applied to polymer actuator systems for the initial growth, as well as additional growth steps after actuation cycles. Synthesis of conducting polymers on a helical metal electrode directs polymer shape change during actuation, assists in charge distribution along the polymer for actuation, and as is described in this work, constructs a constant working electrode/polymer connection during operation which allows sequential polymer growth based on a performance need. The polymer system is monitored by means of a reduced-order, state estimation model that works between growth and actuation cycles. In this case, actuator stress is improved between growth cycles. The ability for additional synthesis of the polymer actuator not only creates an actuator system that can be optimized based on demand, but creates a dynamic actuator system that more closely mimics natural muscle capability.

  4. WOLF; automatic typing program

    USGS Publications Warehouse

    Evenden, G.I.

    1982-01-01

    A FORTRAN IV program for the Hewlett-Packard 1000 series computer provides for automatic typing operations and can, when employed with manufacturer's text editor, provide a system to greatly facilitate preparation of reports, letters and other text. The input text and imbedded control data can perform nearly all of the functions of a typist. A few of the features available are centering, titles, footnotes, indentation, page numbering (including Roman numerals), automatic paragraphing, and two forms of tab operations. This documentation contains both user and technical description of the program.

  5. AUTOMATIC COUNTING APPARATUS

    DOEpatents

    Howell, W.D.

    1957-08-20

    An apparatus for automatically recording the results of counting operations on trains of electrical pulses is described. The disadvantages of prior devices utilizing the two common methods of obtaining the count rate are overcome by this apparatus; in the case of time controlled operation, the disclosed system automatically records amy information stored by the scaler but not transferred to the printer at the end of the predetermined time controlled operations and, in the case of count controlled operation, provision is made to prevent a weak sample from occupying the apparatus for an excessively long period of time.

  6. Polyaniline-Carbon Nanotubes Composite Actuators

    NASA Astrophysics Data System (ADS)

    Rosa, Sabrina; Camargo, Carlos; Campo, Eva; Esteve, Jaume; Ramos, Idalia

    2012-02-01

    The understanding of photoactuation in Carbon Nanotubes (CNT)-polymer composites can contribute to the development of micro- and nano-optical-mechanical systems for applications that include intracellular motors, artificial muscles, and tactile displays for blind people. The integration of CNTs into polymers combines the good processability of polymers with the functional properties of CNTs. CNTs-polymer composite fibers were fabricated using the electrospinning technique. electrospinning process orients the CNTs along the precursor stream and can contribute to enhance photo actuation properties. The addition of polyaniline, an electroactive conductive polymer is expected to enhance the actuation strain of the composite. aim of this research is to study photoactuation in MWCNT-Polyanilile electrospun fibers. fibers were characterized using Scanning Electron Microscopy, Atomic Force Microscopy, and X-Ray Diffraction. Results demonstrate evidence of photo-actuation after irradiating the fibers with visible light. tests are being conducted to understand the mechanisms of the composites response to light stimulation.

  7. Cylinder Flow Control Using Plasma Actuators

    NASA Astrophysics Data System (ADS)

    Kozlov, Alexey; Thomas, Flint

    2007-11-01

    In this study the results of flow control experiments utilizing single dielectric barrier discharge plasma actuators to control flow separation and unsteady vortex shedding from a circular cylinder in cross-flow are reported. Two optimized quartz dielectric plasma actuators mounted on the cylinder surface utilizing an improved saw-tooth waveform high-voltage generator allowed flow control at Reynolds number approaching supercritical. Using either steady or unsteady actuation, it is demonstrated that the plasma-induced surface blowing gives rise to a local Coanda effect that promotes the maintenance of flow attachment. PIV based flow fields and wake velocity profiles obtained with hot-wire anemometry show large reductions in vortex shedding, wake width and turbulence intensity.

  8. A self-healing dielectric elastomer actuator

    NASA Astrophysics Data System (ADS)

    Hunt, Stacy; McKay, Thomas G.; Anderson, Iain A.

    2014-03-01

    Dielectric elastomer actuators that can provide muscle-like actuation are unable to self-heal like real muscle tissue. This severely limits dielectric elastomer reliability and robustness. This paper describes a way to instill self-healing into the DE by using a two-phase dielectric consisting of an open-cell silicone sponge saturated with silicone oil. When the dielectric is breached, the oil is able to flow back into any void, re-establishing the dielectric structure. The sponge holds the oil in place and provides dimensional stability, while the oil ensures the integrity of the dielectric layer. The operation of this has been demonstrated in a prototype DE actuator that continued to function despite being perforated multiple times with a sharp object.

  9. How Actuated Particles Effectively Capture Biomolecular Targets

    PubMed Central

    2017-01-01

    Because of their high surface-to-volume ratio and adaptable surface functionalization, particles are widely used in bioanalytical methods to capture molecular targets. In this article, a comprehensive study is reported of the effectiveness of protein capture by actuated magnetic particles. Association rate constants are quantified in experiments as well as in Brownian dynamics simulations for different particle actuation configurations. The data reveal how the association rate depends on the particle velocity, particle density, and particle assembly characteristics. Interestingly, single particles appear to exhibit target depletion zones near their surface, caused by the high density of capture molecules. The depletion effects are even more limiting in cases with high particle densities. The depletion effects are overcome and protein capture rates are enhanced by applying dynamic particle actuation, resulting in an increase in the association rate constants by up to 2 orders of magnitude. PMID:28192952

  10. Engine having a variable valve actuation system

    DOEpatents

    Hefler, Gregory W.

    2005-10-12

    An engine has a cylinder head having a first surface and a second surface spaced from the first surface. A valve is moveably connected to the cylinder head. A rocker arm is connected to the valve, and a rocker shaft having a first location spaced a maximum distance from the cylinder head is connected to the rocker arm. A support member has and an actuator fluid passage network. The actuator fluid passage network defines a volume. The support member is connected to the cylinder head and is positioned such that a majority of the volume of the actuator fluid passage network is between the first location of the rocker shaft and the second surface of the cylinder head.

  11. Engine having a variable valve actuation system

    DOEpatents

    Hefler, Gregory W.

    2004-10-12

    An engine has a cylinder head having a first surface and a second surface spaced from the first surface. A valve is moveably connected to the cylinder head. A rocker arm is connected to the valve, and a rocker shaft having a first location spaced a maximum distance from the cylinder head is connected to the rocker arm. A support member has and an actuator fluid passage network. The actuator fluid passage network defines a volume. The support member is connected to the cylinder head and is positioned such that a majority of the volume of the actuator fluid passage network is between the first location of the rocker shaft and the second surface of the cylinder head.

  12. Actuator Grouping Optimization on Flexible Space Reflectors

    NASA Technical Reports Server (NTRS)

    Hill, Jeffrey R.; Wang, K. W.; Fang, Houfei; Quijano, Ubaldo

    2011-01-01

    With the rapid advances in deployable membrane and mesh antenna technologies, the feasibility of developing large, lightweight reflectors has greatly improved. In order to achieve the required surface accuracy, precision surface control is needed on these lightweight reflectors. For this study, an analytical model is shown which combines a flexible Kapton reflector with Polyvinylidene fluoride (PVDF) actuators for surface control. Surface errors are introduced that are similar to real world scenarios, and a least squares control algorithm is developed for surface control. Experimental results on a 2.4 meter reflector show that while the analytical reflector model is generally correct, due to idiosyncrasies in the reflector it cannot be used for online control. A new method called the En Mass Elimination algorithm is used to determine the optimal grouping of actuators when the number of actuators in the system exceeds the number of power supplies available.

  13. Tunable electromechanical actuation in silicone dielectric film

    NASA Astrophysics Data System (ADS)

    Lamberti, Andrea; Di Donato, Marco; Chiappone, Annalisa; Giorgis, Fabrizio; Canavese, Giancarlo

    2014-10-01

    Dielectric elastomer actuator films were fabricated on transparent conductive electrode using bi-component poly(dimethyl)siloxane (PDMS). PDMS is a well-known material in microfluidics and soft lithography for biomedical applications, being easy to process, low cost, biocompatible and transparent. Moreover its mechanical properties can be easily tuned by varying the mixing ratio between the oligomer base and the crosslinking agent. In this work we investigate the chemical composition and the electromechanical properties of PDMS thin film verifying for the first time the tuneable actuation response by simply modifying the amount of the curing agent. We demonstrate that, for a 20:1 ratio of base:crosslinker mixture, a striking 150% enhancement of Maxwell strain occurs at 1 Hz actuating frequency.

  14. Control Software for Piezo Stepping Actuators

    NASA Technical Reports Server (NTRS)

    Shields, Joel F.

    2013-01-01

    A control system has been developed for the Space Interferometer Mission (SIM) piezo stepping actuator. Piezo stepping actuators are novel because they offer extreme dynamic range (centimeter stroke with nanometer resolution) with power, thermal, mass, and volume advantages over existing motorized actuation technology. These advantages come with the added benefit of greatly reduced complexity in the support electronics. The piezo stepping actuator consists of three fully redundant sets of piezoelectric transducers (PZTs), two sets of brake PZTs, and one set of extension PZTs. These PZTs are used to grasp and move a runner attached to the optic to be moved. By proper cycling of the two brake and extension PZTs, both forward and backward moves of the runner can be achieved. Each brake can be configured for either a power-on or power-off state. For SIM, the brakes and gate of the mechanism are configured in such a manner that, at the end of the step, the actuator is in a parked or power-off state. The control software uses asynchronous sampling of an optical encoder to monitor the position of the runner. These samples are timed to coincide with the end of the previous move, which may consist of a variable number of steps. This sampling technique linearizes the device by avoiding input saturation of the actuator and makes latencies of the plant vanish. The software also estimates, in real time, the scale factor of the device and a disturbance caused by cycling of the brakes. These estimates are used to actively cancel the brake disturbance. The control system also includes feedback and feedforward elements that regulate the position of the runner to a given reference position. Convergence time for smalland medium-sized reference positions (less than 200 microns) to within 10 nanometers can be achieved in under 10 seconds. Convergence times for large moves (greater than 1 millimeter) are limited by the step rate.

  15. Multi-speed transmission

    SciTech Connect

    Ashikawa, N.; Nakayama, H.; Sumi, M.

    1986-12-02

    This patent describes a multi-speed transmission having forward speed gear trains and at least one reverse speed gear train, comprising, a pair of parallel fork shafts, one the shaft being fixed, the other the shaft being slidable along its axial direction, means to selectively engage the gear trains and means to retain the selective engagement means in the selected position. The means selectively engages the gear trains including a first shift fork connected to the fixed fork shaft so as to slide to either side of its disengaged neutral position, a second shift fork connected to the slideable fork shaft so as to slide to either side of its disengaged neutral position, and a third shift fork connected to the slidable fork shaft so as to slide in one direction by motion of the slideable fork shaft to only one side of its disengaged neutral position. Also included is a reverse shift fork connected to the slideable fork shaft and adapted to be actuated by motion of the slideable fork shaft in a direction opposite to the direction of the motion which engages the third shift fork.

  16. Tuneable Auxiliary Control Mechanisms For RUM Actuators

    NASA Technical Reports Server (NTRS)

    Polites, Michael E.; Alhorn, Dean C.

    1995-01-01

    Tuneable auxiliary control mechanisms for rotating unbalanced-mass (RUM) actuators used to maximize scan amplitudes and/or minimize power consumption during changing conditions. This type of mechanism more sophisticated version of type of mechanism described in "Auxiliary Control Mechanisms for RUM Actuators" (MFS-28817). Torsional stiffness of torsionally flexible coupling made adjustable on command. Torsionally flexible coupling in tuneable version of auxiliary control mechanism adjustable by use of stepping-motor-driven worm-gear mechanism that varies bending length of flexible blade.

  17. Advanced Cooling for High Power Electric Actuators.

    DTIC Science & Technology

    1998-10-01

    Winding Temperature Response 2.3-7 3.1.1-1 Reflux/PCM Design Concept 3.1.1-2 Typical Loading Percentage for Spoiler Electromotor -Actuator 3.1.2-1...for a switched reluctance electromotor that is to be used in the spoiler of a large aircraft. A cooler was designed to dissipate over 850 W of heat...Loading Percentage for Spoiler Electromotor -Actuator 0162ms Page 3-2 3.1.2 Small Cooler Design Problem Definition The heat exchanger was designed

  18. Redundant actuator development program. [for flight control

    NASA Technical Reports Server (NTRS)

    Chenoweth, C. C.; Fain, D. M.; Svensson, C. I.

    1975-01-01

    Two concepts of redundant secondary actuator mechanization, applicable to future advanced flight control systems, were studied to quantitatively assess their design applicability to an AST. The two actuator concepts, a four-channel, force summed system and a three-channel, active/standby system have been developed and evaluated through analysis, analog computer simulation, and piloted motion simulation. The quantitative comparison of the two concepts indicates that the force summed concept better meet performance requirements, although the active/standby is superior in other respects. Both concepts are viable candidates for advanced control application dependent on the specific performance requirements.

  19. Fastening apparatus having shape memory alloy actuator

    NASA Technical Reports Server (NTRS)

    Mckinnis, Darin N. (Inventor)

    1992-01-01

    A releasable fastening apparatus is presented. The device includes a connecting member and a housing. The housing supports a gripping mechanism that is adapted to engage the connecting member. A triggering member is movable within the housing between a first position in which it constrains the gripping mechanism in locked engagement with the connecting member, and a second position in which the gripping mechanism is disengaged from the connecting member. A shaped memory alloy actuator is employed for translating the triggering member from its first to its second position. The actuator is designed to expand longitudinally when transitioned from a martensitic to an austenitic state.

  20. Methodology for artificial microswimming using magnetic actuation

    NASA Astrophysics Data System (ADS)

    Ghanbari, A.; Bahrami, M.; Nobari, M. R. H.

    2011-04-01

    We propose a methodology for swimming at low-Reynolds-number flows based on ciliary motion of a microswimmer using magnetic actuation of artificial cilia. By solving the coupled magnetic-elastic-hydrodynamic problem, we demonstrate nonreciprocal effective and recovery strokes for cilia that nicely mimic natural cilia beating. Cilia drag forces, microswimmer net displacement, velocity, and efficiency are calculated, and we show the model can swim using a prespecified magnetic actuation. The proposed methodology can be used for devising biomedical microdevices that swim in viscous flows inside the human body.

  1. Methodology for artificial microswimming using magnetic actuation.

    PubMed

    Ghanbari, A; Bahrami, M; Nobari, M R H

    2011-04-01

    We propose a methodology for swimming at low-Reynolds-number flows based on ciliary motion of a microswimmer using magnetic actuation of artificial cilia. By solving the coupled magnetic-elastic-hydrodynamic problem, we demonstrate nonreciprocal effective and recovery strokes for cilia that nicely mimic natural cilia beating. Cilia drag forces, microswimmer net displacement, velocity, and efficiency are calculated, and we show the model can swim using a prespecified magnetic actuation. The proposed methodology can be used for devising biomedical microdevices that swim in viscous flows inside the human body.

  2. Artificial muscle actuators in biorobotic fish fins.

    PubMed

    Phelan, Christopher T; Macdonald, Robert J; Tangorra, James L

    2009-01-01

    Artificial muscle technologies offer the possibility of designing robotic systems that take full advantage of biological architectures. Of current artificial muscle technologies, nickel titanium (Ni-Ti) shape memory alloys are among a few that are readily usable by engineering labs without specialized skills in material science and/or chemistry. Ni-Ti actuators are now being used to replace servomotors in biorobotic fins. This has significantly reduced the volume that is required for actuators, and will enable several fins to be integrated into a multi finned, flexible bodied, biorobotic fish.

  3. Fabrication of Electrostatically Actuated Microshutters Arrays

    NASA Technical Reports Server (NTRS)

    Oh, L.; Li, M.; Kelly, D.; Kutyrev, A.; Moseley, S.

    2016-01-01

    A new fabrication process has been developed to actuate microshutter arrays (MSA) electrostatically at NASA Goddard Space Flight Center. The microshutters, made with silicon nitride membranes with a pixel size of 100 x 200 sq microns, rotate on torsion bars. The microshutters are actuated, latched, and addressed electrostatically by applying voltages on the electrodes the front and back sides of the microshutters. The atomic layer deposition (ALD) of aluminum oxide was used to insulate electrodes on the back side of walls; the insulation can withstand over 100 V. The ALD aluminum oxide is dry etched, and then the microshutters are released in vapor HF.

  4. Droplets merging through wireless ultrasonic actuation.

    PubMed

    Nayak, Praveen Priyaranjan; Kar, Durga Prasanna; Bhuyan, Satyanarayan

    2016-01-01

    A new technique of droplets merging through wireless ultrasonic actuation has been proposed and experimentally investigated in this work. The proposed method is based on the principle of resonant inductive coupling and piezoelectric resonance. When a mechanical vibration is excited in a piezoelectric plate, the ultrasonic vibration transmitted to the droplets placed on its surface and induces merging. It has been observed that the merging rate of water droplets depends on the operating frequency, mechanical vibration of piezoelectric plate, separation distance between the droplets, and volume of droplets. The investigated technique of droplets merging through piezoelectric actuation is quite useful for microfluidics, chemical and biomedical engineering applications.

  5. High Performance Piezoelectric Actuated Gimbal (HIERAX)

    SciTech Connect

    Charles Tschaggeny; Warren Jones; Eberhard Bamberg

    2007-04-01

    This paper presents a 3-axis gimbal whose three rotational axes are actuated by a novel drive system: linear piezoelectric motors whose linear output is converted to rotation by using drive disks. Advantages of this technology are: fast response, high accelerations, dither-free actuation and backlash-free positioning. The gimbal was developed to house a laser range finder for the purpose of tracking and guiding unmanned aerial vehicles during landing maneuvers. The tilt axis was built and the test results indicate excellent performance that meets design specifications.

  6. Power transmission

    SciTech Connect

    Yale, O.S.

    1989-12-12

    This patent describes a power transmission. It comprises: in combination, a master gear having at least one annular tooth set, means for drivingly engaging the master gear with a power source, driven shaft, a yoke member attached to the shaft and including a screw pump housing extending radially with respect to the shaft with a pair of ports in spaced relation, a pump screw rotatable in the housing and a pump gear attached to the screw and engaging the annular tooth set, and a casing for transmission fluid. The pump housing being located for immersion in the fluid.

  7. Actuator assembly including a single axis of rotation locking member

    DOEpatents

    Quitmeyer, James N.; Benson, Dwayne M.; Geck, Kellan P.

    2009-12-08

    An actuator assembly including an actuator housing assembly and a single axis of rotation locking member fixedly attached to a portion of the actuator housing assembly and an external mounting structure. The single axis of rotation locking member restricting rotational movement of the actuator housing assembly about at least one axis. The single axis of rotation locking member is coupled at a first end to the actuator housing assembly about a Y axis and at a 90.degree. angle to an X and Z axis providing rotation of the actuator housing assembly about the Y axis. The single axis of rotation locking member is coupled at a second end to a mounting structure, and more particularly a mounting pin, about an X axis and at a 90.degree. angle to a Y and Z axis providing rotation of the actuator housing assembly about the X axis. The actuator assembly is thereby restricted from rotation about the Z axis.

  8. A film-type haptic actuator for mobile devices

    NASA Astrophysics Data System (ADS)

    Kim, Dong-gu; Kim, Sang-Youn; Kim, Ki-Baek; Kim, Jaehwan

    2012-04-01

    Over time, a wide variety of Haptic actuator have been designed and implemented to apply for mobile devices. This paper addresses an electrostatic actuator composed of an active film and patterned polydimethylsiloxane (PDMS) columns. A cellulose acetate (CA) film charged with an electric potential can generate vibration under the potential. The motion of the actuator is a concave and the actuator performance was modulated by increasing the bias level of the electric potential. The performance was evaluated depending on various actuation conditions in terms of electrical potential, bias voltage and frequency. It was found that the induced displacement of the actuator is proportional to the bias level of electric potential. Fast rising and falling behavior of the proposed haptic actuator can allow the generation of a vibrotactile sensation over a wide frequency range. The CA haptic actuator has a potential to generate a wide variety of tactile sensations.

  9. Electrothermally-Actuated Micromirrors with Bimorph Actuators--Bending-Type and Torsion-Type.

    PubMed

    Tsai, Cheng-Hua; Tsai, Chun-Wei; Chang, Hsu-Tang; Liu, Shih-Hsiang; Tsai, Jui-Che

    2015-06-22

    Three different electrothermally-actuated MEMS micromirrors with Cr/Au-Si bimorph actuators are proposed. The devices are fabricated with the SOIMUMPs process developed by MEMSCAP, Inc. (Durham, NC, USA). A silicon-on-insulator MEMS process has been employed for the fabrication of these micromirrors. Electrothermal actuation has achieved a large angular movement in the micromirrors. Application of an external electric current 0.04 A to the bending-type, restricted-torsion-type, and free-torsion-type mirrors achieved rotation angles of 1.69°, 3.28°, and 3.64°, respectively.

  10. Automaticity of Conceptual Magnitude.

    PubMed

    Gliksman, Yarden; Itamar, Shai; Leibovich, Tali; Melman, Yonatan; Henik, Avishai

    2016-02-16

    What is bigger, an elephant or a mouse? This question can be answered without seeing the two animals, since these objects elicit conceptual magnitude. How is an object's conceptual magnitude processed? It was suggested that conceptual magnitude is automatically processed; namely, irrelevant conceptual magnitude can affect performance when comparing physical magnitudes. The current study further examined this question and aimed to expand the understanding of automaticity of conceptual magnitude. Two different objects were presented and participants were asked to decide which object was larger on the screen (physical magnitude) or in the real world (conceptual magnitude), in separate blocks. By creating congruent (the conceptually larger object was physically larger) and incongruent (the conceptually larger object was physically smaller) pairs of stimuli it was possible to examine the automatic processing of each magnitude. A significant congruity effect was found for both magnitudes. Furthermore, quartile analysis revealed that the congruity was affected similarly by processing time for both magnitudes. These results suggest that the processing of conceptual and physical magnitudes is automatic to the same extent. The results support recent theories suggested that different types of magnitude processing and representation share the same core system.

  11. Automatic Program Synthesis Reports.

    ERIC Educational Resources Information Center

    Biermann, A. W.; And Others

    Some of the major results of future goals of an automatic program synthesis project are described in the two papers that comprise this document. The first paper gives a detailed algorithm for synthesizing a computer program from a trace of its behavior. Since the algorithm involves a search, the length of time required to do the synthesis of…

  12. Automatic Language Identification

    DTIC Science & Technology

    2000-08-01

    the speech utterance is hypothesized. ter performance for his HMM approach than his static ap- Finally, Thyme -Gobbel et al. [47] have also looked...1998. [47] A.E. Thyme -Gobbel and S.E. Hutchins. On using prosodic cues in automatic language identification. In International Conference on Spoken

  13. Automatic multiple applicator electrophoresis

    NASA Technical Reports Server (NTRS)

    Grunbaum, B. W.

    1977-01-01

    Easy-to-use, economical device permits electrophoresis on all known supporting media. System includes automatic multiple-sample applicator, sample holder, and electrophoresis apparatus. System has potential applicability to fields of taxonomy, immunology, and genetics. Apparatus is also used for electrofocusing.

  14. Automaticity of Conceptual Magnitude

    PubMed Central

    Gliksman, Yarden; Itamar, Shai; Leibovich, Tali; Melman, Yonatan; Henik, Avishai

    2016-01-01

    What is bigger, an elephant or a mouse? This question can be answered without seeing the two animals, since these objects elicit conceptual magnitude. How is an object’s conceptual magnitude processed? It was suggested that conceptual magnitude is automatically processed; namely, irrelevant conceptual magnitude can affect performance when comparing physical magnitudes. The current study further examined this question and aimed to expand the understanding of automaticity of conceptual magnitude. Two different objects were presented and participants were asked to decide which object was larger on the screen (physical magnitude) or in the real world (conceptual magnitude), in separate blocks. By creating congruent (the conceptually larger object was physically larger) and incongruent (the conceptually larger object was physically smaller) pairs of stimuli it was possible to examine the automatic processing of each magnitude. A significant congruity effect was found for both magnitudes. Furthermore, quartile analysis revealed that the congruity was affected similarly by processing time for both magnitudes. These results suggest that the processing of conceptual and physical magnitudes is automatic to the same extent. The results support recent theories suggested that different types of magnitude processing and representation share the same core system. PMID:26879153

  15. Reactor component automatic grapple

    DOEpatents

    Greenaway, Paul R.

    1982-01-01

    A grapple for handling nuclear reactor components in a medium such as liquid sodium which, upon proper seating and alignment of the grapple with the component as sensed by a mechanical logic integral to the grapple, automatically seizes the component. The mechanical logic system also precludes seizure in the absence of proper seating and alignment.

  16. 47 CFR 25.281 - Automatic Transmitter Identification System (ATIS).

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... CARRIER SERVICES SATELLITE COMMUNICATIONS Technical Operations § 25.281 Automatic Transmitter Identification System (ATIS). All satellite uplink transmissions carrying broadband video information shall be... integrated into the uplink transmitter chain in a method that cannot easily be defeated. (c) The ATIS...

  17. Automatic semi-continuous accumulation chamber for diffuse gas emissions monitoring in volcanic and non-volcanic areas

    NASA Astrophysics Data System (ADS)

    Lelli, Matteo; Raco, Brunella; Norelli, Francesco; Virgili, Giorgio; Continanza, Davide

    2016-04-01

    Since various decades the accumulation chamber method is intensively used in monitoring activities of diffuse gas emissions in volcanic areas. Although some improvements have been performed in terms of sensitivity and reproducibility of the detectors, the equipment used for measurement of gas emissions temporal variation usually requires expensive and bulky equipment. The unit described in this work is a low cost, easy to install-and-manage instrument that will make possible the creation of low-cost monitoring networks. The Non-Dispersive Infrared detector used has a concentration range of 0-5% CO2, but the substitution with other detector (range 0-5000 ppm) is possible and very easy. Power supply unit has a 12V, 7Ah battery, which is recharged by a 35W solar panel (equipped with charge regulator). The control unit contains a custom programmed CPU and the remote transmission is assured by a GPRS modem. The chamber is activated by DataLogger unit, using a linear actuator between the closed position (sampling) and closed position (idle). A probe for the measure of soil temperature, soil electrical conductivity, soil volumetric water content, air pressure and air temperature is assembled on the device, which is already arranged for the connection of others external sensors, including an automatic weather station. The automatic station has been tested on the field at Lipari island (Sicily, Italy) during a period of three months, performing CO2 flux measurement (and also weather parameters), each 1 hour. The possibility to measure in semi-continuous mode, and at the same time, the gas fluxes from soil and many external parameters, helps the time series analysis aimed to the identification of gas flux anomalies due to variations in deep system (e.g. onset of volcanic crises) from those triggered by external conditions.

  18. Shape-Memory-Alloy Actuator For Flight Controls

    NASA Technical Reports Server (NTRS)

    Barret, Chris

    1995-01-01

    Report proposes use of shape-memory-alloy actuators, instead of hydraulic actuators, for aerodynamic flight-control surfaces. Actuator made of shape-memory alloy converts thermal energy into mechanical work by changing shape as it makes transitions between martensitic and austenitic crystalline phase states of alloy. Because both hot exhaust gases and cryogenic propellant liquids available aboard launch rockets, shape-memory-alloy actuators exceptionally suited for use aboard such rockets.

  19. 47 CFR 97.113 - Prohibited transmissions.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... station, except an auxiliary, repeater, or space station, may automatically retransmit the radio signals... SERVICE Station Operation Standards § 97.113 Prohibited transmissions. (a) No amateur station shall... rules; (3) Communications in which the station licensee or control operator has a pecuniary...

  20. 47 CFR 97.113 - Prohibited transmissions.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... station, except an auxiliary, repeater, or space station, may automatically retransmit the radio signals... SERVICE Station Operation Standards § 97.113 Prohibited transmissions. (a) No amateur station shall... rules; (3) Communications in which the station licensee or control operator has a pecuniary...