Science.gov

Sample records for actuated impact device

  1. Self-actuated device

    DOEpatents

    Hecht, Samuel L.

    1984-01-01

    A self-actuated device, of particular use as a valve or an orifice for nuclear reactor fuel and blanket assemblies, in which a gas produced by a neutron induced nuclear reaction gradually accumulates as a function of neutron fluence. The gas pressure increase occasioned by such accumulation of gas is used to actuate the device.

  2. Remotely controllable actuating device

    NASA Technical Reports Server (NTRS)

    McKillip, Jr., Robert M. (Inventor)

    1998-01-01

    An actuating device can change a position of an active member that remains in substantially the same position in the absence of a force of a predetermined magnitude on the active member. The actuating device comprises a shape-memory alloy actuating member for exerting a force when actuated by changing the temperature thereof, which shape-memory alloy actuating member has a portion for connection to the active member for exerting thereon a force having a magnitude at least as large as the predetermined magnitude for moving the active member to a desired position. Actuation circuitry is provided for actuating the shape-memory alloy actuating member by changing the temperature thereof only for the time necessary to move the active member to the desired position. The invention is particularly useful for changing the position of a camber-adjusting tab on a helicopter rotor blade by using two shape-memory alloy members that can act against each other to adjust dynamic properties of the rotor blade as it is rotating.

  3. Actuator device for artificial leg

    NASA Technical Reports Server (NTRS)

    Burch, J. L. (Inventor)

    1976-01-01

    An actuator device is described for moving an artificial leg of a person having a prosthesis replacing an entire leg and hip joint. The device includes a first articulated hip joint assembly carried by the natural leg and a second articulated hip joint assembly carried by the prosthesis whereby energy from the movement of the natural leg is transferred by a compressible fluid from the first hip joint assembly to the second hip joint assembly for moving the artificial leg.

  4. Electrostatically actuatable light modulating device

    DOEpatents

    Koehler, Dale R.

    1991-01-01

    The electrostatically actuatable light modulator utilizes an opaque substrate plate patterned with an array of aperture cells, the cells comprised of physically positionable dielectric shutters and electrostatic actuators. With incorporation of a light source and a viewing screen, a projection display system is effected. Inclusion of a color filter array aligned with the aperture cells accomplishes a color display. The system is realized in terms of a silicon based manufacturing technology allowing fabrication of a high resolution capability in a physically small device which with the utilization of included magnification optics allows both large and small projection displays.

  5. Two position optical element actuator device

    DOEpatents

    Holdener, Fred R.; Boyd, Robert D.

    2002-01-01

    The present invention is a two position optical element actuator device utilizing a powered means to hold an actuation arm, to which an optical element is attached, in a first position. A non-powered means drives the actuation arm to a second position, when the powered means ceases to receive power. The optical element may be a electromagnetic (EM) radiation or particle source, an instrument, or EM radiation or particle transmissive, reflective or absorptive elements. A bearing is used to transfer motion and smoothly transition the actuation arm from the first to second position.

  6. Bi-stable optical element actuator device

    DOEpatents

    Holdener, Fred R.; Boyd, Robert D.

    2002-01-01

    The present invention is a bistable optical element actuator device utilizing a powered means to move an actuation arm, to which an optical element is attached, between two stable positions. A non-powered means holds the actuation arm in either of the two stable positions. The optical element may be a electromagnetic (EM) radiation or particle source, an instrument, or EM radiation or particle transmissive reflective or absorptive elements. A bearing is used to transfer motion and smoothly transition the actuation arm between the two stable positions.

  7. Elastomeric actuator devices for magnetic resonance imaging

    NASA Technical Reports Server (NTRS)

    Dubowsky, Steven (Inventor); Hafez, Moustapha (Inventor); Jolesz, Ferenc A. (Inventor); Kacher, Daniel F. (Inventor); Lichter, Matthew (Inventor); Weiss, Peter (Inventor); Wingert, Andreas (Inventor)

    2008-01-01

    The present invention is directed to devices and systems used in magnetic imaging environments that include an actuator device having an elastomeric dielectric film with at least two electrodes, and a frame attached to the actuator device. The frame can have a plurality of configurations including, such as, for example, at least two members that can be, but not limited to, curved beams, rods, plates, or parallel beams. These rigid members can be coupled to flexible members such as, for example, links wherein the frame provides an elastic restoring force. The frame preferably provides a linear actuation force characteristic over a displacement range. The linear actuation force characteristic is defined as .+-.20% and preferably 10% over a displacement range. The actuator further includes a passive element disposed between the flexible members to tune a stiffness characteristic of the actuator. The passive element can be a bi-stable element. The preferred embodiment actuator includes one or more layers of the elastomeric film integrated into the frame. The elastomeric film can be made of many elastomeric materials such as, for example, but not limited to, acrylic, silicone and latex.

  8. Evolutionary flight and enabling smart actuator devices

    NASA Astrophysics Data System (ADS)

    Manzo, Justin; Garcia, Ephrahim

    2007-04-01

    Recent interest in morphing vehicles with multiple, optimized configurations has led to renewed research on biological flight. The flying vertebrates - birds, bats, and pterosaurs - all made or make use of various morphing devices to achieve lift to suit rapidly changing flight demands, including maneuvers as complex as perching and hovering. The first part of this paper will discuss these devices, with a focus on the morphing elements and structural strong suits of each creature. Modern flight correlations to these devices will be discussed and analyzed as valid adaptations of these evolutionary traits. The second part of the paper will focus on the use of active joint structures for use in morphing aircraft devices. Initial work on smart actuator devices focused on NASA Langley's Hyper-Elliptical Cambered Span (HECS) wing platform, which led to development of a discretized spanwise curvature effector. This mechanism uses shape memory alloy (SMA) as the sole morphing actuator, allowing fast rotation with lightweight components at the expense of energy inefficiency. Phase two of morphing actuator development will add an element of active rigidity to the morphing structure, in the form of shape memory polymer (SMP). Employing a composite structure of polymer and alloy, this joint will function as part of a biomimetic morphing actuator system in a more energetically efficient manner. The joint is thermally actuated to allow compliance on demand and rigidity in the nominal configuration. Analytical and experimental joint models are presented, and potential applications on a bat-wing aircraft structure are outlined.

  9. A film-type haptic actuator for mobile devices

    NASA Astrophysics Data System (ADS)

    Kim, Dong-gu; Kim, Sang-Youn; Kim, Ki-Baek; Kim, Jaehwan

    2012-04-01

    Over time, a wide variety of Haptic actuator have been designed and implemented to apply for mobile devices. This paper addresses an electrostatic actuator composed of an active film and patterned polydimethylsiloxane (PDMS) columns. A cellulose acetate (CA) film charged with an electric potential can generate vibration under the potential. The motion of the actuator is a concave and the actuator performance was modulated by increasing the bias level of the electric potential. The performance was evaluated depending on various actuation conditions in terms of electrical potential, bias voltage and frequency. It was found that the induced displacement of the actuator is proportional to the bias level of electric potential. Fast rising and falling behavior of the proposed haptic actuator can allow the generation of a vibrotactile sensation over a wide frequency range. The CA haptic actuator has a potential to generate a wide variety of tactile sensations.

  10. On the development of planar actuators for variable stiffness devices

    NASA Astrophysics Data System (ADS)

    Henke, Markus; Gerlach, Gerald

    2013-04-01

    This contribution describes the development, the potential and the limitations of planar actuators for controlling bending devices with variable stiffness. Such structures are supposed to be components of new smart, self-sensing and -controlling composite materials for lightweight constructions. To realize a proper stiffness control, it is necessary to develop reliable actuators with high actuation capabilities based on smart materials. Several actuator designs driven by electroactive polymers (EAPs) are presented and discussed regarding to their applicability in such structures. To investigate the actuators, variable-flexural stiffness devices based on the control of its area moment of inertia were developed. The devices consist of a multi-layer stack of thin, individual plates. Stiffness variation is caused by planar actuators which control the sliding behavior between the layers by form closure structures. Previous investigations have shown that actuators with high actuation potential are needed to ensure reliable connections between the layers. For that reason, two kinds of EAPs Danfoss PolyPower and VHB 4905 by 3M, have been studied as driving unit. These EAP-driven actuators will be compared based on experimental measurements and finite element analyses.

  11. Electrokinetic actuation of liquid metal for reconfigurable radio frequency devices

    NASA Astrophysics Data System (ADS)

    Gough, Ryan C.

    oxide layer. Several proof-of-concept devices are designed and tested to demonstrate the effectiveness of these electrical actuation techniques. A pair of tunable slot antennas are presented that achieve frequency reconfigurability through different implementations of liquid metal tuning elements - the first uses liquid metal as a dynamic short-circuit boundary condition for the magnetic current within the resonant aperture, and the second as a variable-length transmission stub that adds and removes reactance from the antenna. The two antennas are tunable across effective bandwidths of 19% and 15%, respectively. In addition, a tunable bandpass filter is demonstrated in which a central liquid-metal resonant element is 'stretched' to lower the passband of the filter by 10% without impacting the insertion loss. Finally, it is demonstrated how liquid metal can be formed into arbitrary shapes at high speeds (approximately 2.5 cm/s) without the need for an external power supply.

  12. Electrically actuatable temporal tristimulus-color device

    DOEpatents

    Koehler, Dale R.

    1992-01-01

    The electrically actuated light filter operates in a cyclical temporal mode to effect a tristimulus-color light analyzer. Construction is based on a Fabry-Perot interferometer comprised of a high-speed movable mirror pair and cyclically powered electrical actuators. When combined with a single vidicon tube or a monochrome solid state image sensor, a temporally operated tristimulus-color video camera is effected. A color-generated is accomplished when constructed with a companion light source and is a flicker-free colored-light source for transmission type display systems. Advantages of low cost and small physical size result from photolithographic batch-processing manufacturability.

  13. Characterization and modeling of electrostatically actuated polysilicon micromechanical devices

    NASA Astrophysics Data System (ADS)

    Chan, Edward Keat Leem

    Sensors, actuators, transducers, microsystems and MEMS (MicroElertroMechanical Systems) are some of the terms describing technologies that interface information processing systems with the physical world. Electrostatically actuated micromechanical devices are important building blocks in many of these technologies. Arrays of these devices are used in video projection displays, fluid pumping systems, optical communications systems, tunable lasers and microwave circuits. Well-calibrated simulation tools are essential for propelling ideas from the drawing board into production. This work characterizes a fabrication process---the widely-used polysilicon MUMPs process---to facilitate the design of electrostatically actuated micromechanical devices. The operating principles of a representative device---a capacitive microwave switch---are characterized using a wide range of electrical and optical measurements of test structures along with detailed electromechanical simulations. Consistency in the extraction of material properties from measurements of both pull-in voltage and buckling amplitude is demonstrated. Gold is identified as an area-dependent source of nonuniformity in polysilicon thicknesses and stress. Effects of stress gradients, substrate curvature, and film coverage are examined quantitatively. Using well-characterized beams as in-situ surface probes, capacitance-voltage and surface profile measurements reveal that compressible surface residue modifies the effective electrical gap when the movable electrode contacts an underlying silicon nitride layer. A compressible contact surface model used in simulations improves the fit to measurements. In addition, the electric field across the nitride causes charge to build up in the nitride, increasing the measured capacitance over time. The rate of charging corresponds to charge injection through direct tunneling. A novel actuator that can travel stably beyond one-third of the initial gap (a trademark limitation of

  14. Actuator device utilizing a conductive polymer gel

    DOEpatents

    Chinn, Douglas A.; Irvin, David J.

    2004-02-03

    A valve actuator based on a conductive polymer gel is disclosed. A nonconductive housing is provided having two separate chambers separated by a porous frit. The conductive polymer is held in one chamber and an electrolyte solution, used as a source of charged ions, is held in the second chamber. The ends of the housing a sealed with a flexible elastomer. The polymer gel is further provide with electrodes with which to apply an electrical potential across the gel in order to initiate an oxidation reaction which in turn drives anions across the porous frit and into the polymer gel, swelling the volume of the gel and simultaneously contracting the volume of the electrolyte solution. Because the two end chambers are sealed the flexible elastomer expands or contracts with the chamber volume change. By manipulating the potential across the gel the motion of the elastomer can be controlled to act as a "gate" to open or close a fluid channel and thereby control flow through that channel.

  15. Modelling of a microfluidic device with piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Seitz, Hermann; Heinzl, Joachim

    2004-08-01

    This paper presents the modelling of a given microfluidic device, that is applied as a drop-on-demand printhead for different printing tasks. Piezoelectric bend mode actuators are used to eject a droplet from the respective nozzle on demand. The device is considered as a coupled system consisting of an electric, a mechanical and a fluidic part. The electric and mechanical parts of the piezoelectric actuator are described by conventional lumped elements, while the complex three-dimensional fluid analysis is performed by a commercial computational fluid dynamics (CFD) free-surface modelling package. The model helps one to understand the fluid dynamics and thus to study different design and operating parameter aspects. The general approach to the problem of modelling a microfluidic device as presented here can also be applied in various other modelling tasks.

  16. Laser-actuated holographic storage device

    NASA Technical Reports Server (NTRS)

    Gange, R. A.; Nagle, E. M.; Steinmetz, C. C.

    1973-01-01

    Device permits automatic selection of one out of thousands of pages in holographic memory system by using laser beam. In typical operation for 2 to 3 C temperature interval, using dc power supply with no power regulation, holograms were successfully written and erased over 2- by 2-cm area, using 80-mW argon laser beam.

  17. Grasp Assist Device with Shared Tendon Actuator Assembly

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Bergelin, Bryan J. (Inventor); Bridgwater, Lyndon (Inventor)

    2015-01-01

    A grasp assist device includes a glove with first and second tendon-driven fingers, a tendon, and a sleeve with a shared tendon actuator assembly. Tendon ends are connected to the respective first and second fingers. The actuator assembly includes a drive assembly having a drive axis and a tendon hook. The tendon hook, which defines an arcuate surface slot, is linearly translatable along the drive axis via the drive assembly, e.g., a servo motor thereof. The flexible tendon is routed through the surface slot such that the surface slot divides the flexible tendon into two portions each terminating in a respective one of the first and second ends. The drive assembly may include a ball screw and nut. An end cap of the actuator assembly may define two channels through which the respective tendon portions pass. The servo motor may be positioned off-axis with respect to the drive axis.

  18. Inductively Heated Shape Memory Polymer for the Magnetic Actuation of Medical Devices

    SciTech Connect

    Buckley, P; Mckinley, G; Wilson, T; Small, W; Benett, W; Bearinger, J; McElfresh, M; Maitland, D

    2005-09-06

    Presently there is interest in making medical devices such as expandable stents and intravascular microactuators from shape memory polymer (SMP). One of the key challenges in realizing SMP medical devices is the implementation of a safe and effective method of thermally actuating various device geometries in vivo. A novel scheme of actuation by Curie-thermoregulated inductive heating is presented. Prototype medical devices made from SMP loaded with Nickel Zinc ferrite ferromagnetic particles were actuated in air by applying an alternating magnetic field to induce heating. Dynamic mechanical thermal analysis was performed on both the particle-loaded and neat SMP materials to assess the impact of the ferrite particles on the mechanical properties of the samples. Calorimetry was used to quantify the rate of heat generation as a function of particle size and volumetric loading of ferrite particles in the SMP. These tests demonstrated the feasibility of SMP actuation by inductive heating. Rapid and uniform heating was achieved in complex device geometries and particle loading up to 10% volume content did not interfere with the shape recovery of the SMP.

  19. Inductively heated shape memory polymer for the magnetic actuation of medical devices.

    PubMed

    Buckley, Patrick R; McKinley, Gareth H; Wilson, Thomas S; Small, Ward; Benett, William J; Bearinger, Jane P; McElfresh, Michael W; Maitland, Duncan J

    2006-10-01

    Presently, there is interest in making medical devices such as expandable stents and intravascular microactuators from shape memory polymer (SMP). One of the key challenges in realizing SMP medical devices is the implementation of a safe and effective method of thermally actuating various device geometries in vivo. A novel scheme of actuation by Curie-thermoregulated inductive heating is presented. Prototype medical devices made from SMP loaded with nickel zinc ferrite ferromagnetic particles were actuated in air by applying an alternating magnetic field to induce heating. Dynamic mechanical thermal analysis was performed on both the particle-loaded and neat SMP materials to assess the impact of the ferrite particles on the mechanical properties of the samples. Calorimetry was used to quantify the rate of heat generation as a function of particle size and volumetric loading of ferrite particles in the SMP. These tests demonstrated the feasibility of SMP actuation by inductive heating. Rapid and uniform heating was achieved in complex device geometries and particle loading up to 10% volume content did not interfere with the shape recovery of the SMP.

  20. Stability, Nonlinearity and Reliability of Electrostatically Actuated MEMS Devices

    PubMed Central

    Zhang, Wen-Ming; Meng, Guang; Chen, Di

    2007-01-01

    Electrostatic micro-electro-mechanical system (MEMS) is a special branch with a wide range of applications in sensing and actuating devices in MEMS. This paper provides a survey and analysis of the electrostatic force of importance in MEMS, its physical model, scaling effect, stability, nonlinearity and reliability in detail. It is necessary to understand the effects of electrostatic forces in MEMS and then many phenomena of practical importance, such as pull-in instability and the effects of effective stiffness, dielectric charging, stress gradient, temperature on the pull-in voltage, nonlinear dynamic effects and reliability due to electrostatic forces occurred in MEMS can be explained scientifically, and consequently the great potential of MEMS technology could be explored effectively and utilized optimally. A simplified parallel-plate capacitor model is proposed to investigate the resonance response, inherent nonlinearity, stiffness softened effect and coupled nonlinear effect of the typical electrostatically actuated MEMS devices. Many failure modes and mechanisms and various methods and techniques, including materials selection, reasonable design and extending the controllable travel range used to analyze and reduce the failures are discussed in the electrostatically actuated MEMS devices. Numerical simulations and discussions indicate that the effects of instability, nonlinear characteristics and reliability subjected to electrostatic forces cannot be ignored and are in need of further investigation.

  1. Flexible Low-Mass Devices and Mechanisms Actuated by Electroactive Polymers

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y; Leary, S.; Shahinpoor, M.; Harrison, J. O.; Smith, J.

    1999-01-01

    Miniature, lightweight, miser actuators that operate similar to biological muscles can be used to develop robotic devices with unmatched capabilities to impact many technology areas. Electroactive polymers (EAP) offer the potential to producing such actuators and their main attractive feature is their ability to induce relatively large bending or longitudinal strain. Generally, these materials produce a relatively low force and the applications that can be considered at the current state of the art are relatively limited. This reported study is concentrating on the development of effective EAPs and the resultant enabling mechanisms employing their unique characteristics. Several EAP driven mechanisms, which emulate human hand, were developed including a gripper, manipulator arm and surface wiper. The manipulator arm was made of a composite rod with an EAP actuator consisting of a scrolled rope that is activated longitudinally by an electrostatic field. A gripper was made to serve as an end effector and it consisted of multiple bending EAP fingers for grabbing and holding such objects as rocks. An EAP surface wiper was developed to operate like a human finger and to demonstrate the potential to remove dust from optical and IR windows as well as solar cells. These EAP driven devices are taking advantage of the large actuation displacement of these materials but there is need for a significantly greater actuation force capability.

  2. Applications catalog of pyrotechnically actuated devices/systems

    NASA Technical Reports Server (NTRS)

    Seeholzer, Thomas L.; Smith, Floyd Z.; Eastwood, Charles W.; Steffes, Paul R.

    1995-01-01

    A compilation of basic information on pyrotechnically actuated devices/systems used in NASA aerospace and aeronautic applications was formatted into a catalog. The intent is to provide (1) a quick reference digest of the types of operational pyro mechanisms and (2) a source of contacts for further details. Data on these items was furnished by the NASA Centers that developed and/or utilized such devices to perform specific functions on spacecraft, launch vehicles, aircraft, and ground support equipment. Information entries include an item title, user center name, commercial contractor/vendor, identifying part number(s), a basic figure, briefly described purpose and operation, previous usage, and operational limits/requirements.

  3. A portable air jet actuator device for mechanical system identification

    NASA Astrophysics Data System (ADS)

    Belden, Jesse; Staats, Wayne L.; Mazumdar, Anirban; Hunter, Ian W.

    2011-03-01

    System identification of limb mechanics can help diagnose ailments and can aid in the optimization of robotic limb control parameters and designs. An interesting fluid phenomenon—the Coandă effect—is utilized in a portable actuator to provide a stochastic binary force disturbance to a limb system. The design of the actuator is approached with the goal of creating a portable device which could be deployed on human or robotic limbs for in situ mechanical system identification. The viability of the device is demonstrated by identifying the parameters of an underdamped elastic beam system with fixed inertia and stiffness and variable damping. The nonparametric compliance impulse response yielded from the system identification is modeled as a second-order system and the resultant parameters are found to be in excellent agreement with those found using more traditional system identification techniques. The current design could be further miniaturized and developed as a portable, wireless, unrestrained mechanical system identification instrument for less intrusive and more widespread use.

  4. A portable air jet actuator device for mechanical system identification.

    PubMed

    Belden, Jesse; Staats, Wayne L; Mazumdar, Anirban; Hunter, Ian W

    2011-03-01

    System identification of limb mechanics can help diagnose ailments and can aid in the optimization of robotic limb control parameters and designs. An interesting fluid phenomenon--the Coandă effect--is utilized in a portable actuator to provide a stochastic binary force disturbance to a limb system. The design of the actuator is approached with the goal of creating a portable device which could be deployed on human or robotic limbs for in situ mechanical system identification. The viability of the device is demonstrated by identifying the parameters of an underdamped elastic beam system with fixed inertia and stiffness and variable damping. The nonparametric compliance impulse response yielded from the system identification is modeled as a second-order system and the resultant parameters are found to be in excellent agreement with those found using more traditional system identification techniques. The current design could be further miniaturized and developed as a portable, wireless, unrestrained mechanical system identification instrument for less intrusive and more widespread use.

  5. Investigations with an implantable, electrically actuated ventricular assist device.

    PubMed

    Bernhard, W F; Gernes, D G; Clay, W C; Schoen, F J; Burgeson, R; Valeri, R C; Melaragno, A J; Poirier, V L

    1984-07-01

    A permanent, implantable, circulatory support system for patients with irreversible cardiomyopathy is gradually becoming a reality. Progress has been achieved toward formation of a stable, nonthrombogenic, blood-prosthesis interface, and an electrically actuated ventricular assist device has reached an advanced stage of fabrication. The two most important components of the system, an electromechanical energy converter and a contiguous, pusher-plate, blood pump (stroke volume 85 ml) were employed in these studies. The energy converter consisted of a 50 volt, low-speed, brushless, torque motor and a mechanism to convert rotary motion into a pulsatile output. An electronic controller and variable-volume compliance chamber were not evaluated. Left ventricular bypass experiments were conducted in 13 calves for periods of 30 to 149 days. Preoperatively, four devices were inoculated with bovine, fetal fibroblasts to accelerate formation of a collagenous lining, and nine nonseeded pumps served as controls. The collagen-lined devices functioned for longer periods of time with unrestricted blood flow and no thromboembolic complications when compared to the control devices. Additional studies are contemplated employing a complete VAD system prior to undertaking preclinical trials.

  6. New Actuators Using ER Fluid and Their Applications to Force Display Devices in Virtual Reality and Medical Treatments

    NASA Astrophysics Data System (ADS)

    Furusho, Junji; Sakaguchi, Masamichi

    We developed ER actuators with low inertia. ER actuator is a torque-controllable clutch which uses an electrorheological fluid. It is shown that this actuator has good properties for force display device, physical therapy treatment, etc. We developed new force display devices for virtual reality which use ER actuators.

  7. Nano scale devices: Fabrication, actuation, and related fluidic dynamics

    NASA Astrophysics Data System (ADS)

    Jing, Hao

    Using external actuating magnetic fields to manipulate magnetic parts is an efficient method to manipulate mesoscopic actable devices. Extensive researches have explored the potentials of self-assembly techniques based on capillary force, static charge force, drying, surface tension, and even dynamic fields as a low cost method for ordered 2D or 3D super-lattice structures for new materials and devices. But the ability of tunable patterning nano-particles for designed actable devices is still a requirement yet to be met. Utilizing anodized aluminum oxide (AAO) membranes as templates, soft-magnetic nanowires around 200 nm in diameter, 10 microns long have been fabricated. In this thesis, I describe a method to assemble these magnetic nanowires into a two dimension Wigner structure, of which the wire-wire distance is conveniently adjustable during the fabrication procedure. Using geometric tailored magnetic fields, we can plant these self-assembled magnetic nanowires with desired patterns into a thin soft polymer support layer. The final devices may be readily actuated by an external actuating magnetic field (a self-designed magnetic system, 3-dimensional force microscope (3DFM)) with precise patterns and frequencies in a micro-fluidic system. This method offers a general method to fabricate mesoscopic devices from a wide range of materials with magnetic dipoles to desired structures. And the actable devices themselves can find direct usage in low Re number flow mixing and bio-physical fluidic dynamic researches. The beating of cilia and flagella, slender cylinders 250 nanometers in diameter with lengths from 7 to 50 microns, is responsible for many important biological functions such as organism feeding, propulsion, for bacterial clearance in the lungs and for the right-left asymmetry in vertebrates. The hydrodynamics produced by these beating structures, including mixing, shear and extensional flows, is not understood. We developed an experimental model system for

  8. Large displacement haptic stimulus actuator using piezoelectric pump for wearable devices.

    PubMed

    Kodama, Taisuke; Izumi, Shintaro; Masaki, Kana; Kawaguchi, Hiroshi; Maenaka, Kazusuke; Yoshimoto, Masahiko

    2015-08-01

    Recently, given Japan's aging society background, wearable healthcare devices have increasingly attracted attention. Many devices have been developed, but most devices have only a sensing function. To expand the application area of wearable healthcare devices, an interactive communication function with the human body is required using an actuator. For example, a device must be useful for medication assistance, predictive alerts of a disease such as arrhythmia, and exercise. In this work, a haptic stimulus actuator using a piezoelectric pump is proposed to realize a large displacement in wearable devices. The proposed actuator drives tactile sensation of the human body. The measurement results obtained using a sensory examination demonstrate that the proposed actuator can generate sufficient stimuli even if adhered to the chest, which has fewer tactile receptors than either the fingertip or wrist.

  9. Newly developed ventricular assist device with linear oscillatory actuator.

    PubMed

    Fukunaga, Kazuyoshi; Funakubo, Akio; Fukui, Yasuhiro

    2003-01-01

    The goal of this study was to develop a new direct electromagnetic left ventricular assist device (DEM-LVAD) with a linear oscillatory actuator (LOA). The DEM-LVAD is a pulsatile pump with a pusher plate. The pusher plate is driven directly by the mover of the LOA. The LOA provides reciprocating motion without using any movement converter such as a roller screw or a hydraulic system. It consists of a stator with a single winding excitation coil and a mover with two permanent magnets. The simple structure of the LOA is based on fewer parts to bring about high reliability and smaller size. The mover moves back and forth when forward and backward electric current is supplied to the excitation coil. The pump housings have been designed using three-dimensional computer aided design software and fabricated with the aid of computer aided manufacturing technology. Monostrut valves (Bjork-Shiley #21) were used for the prototype. The DEM-LVAD dimension is 96 mm in diameter and 50 mm thick with a mass of 0.62 kg and a volume of 280 ml. An in vitro test (afterload 100 mm Hg; preload 10 mm Hg; input power 10 W) demonstrated more than 6 L/minute maximum output and 15% maximum efficiency at 130 beats per minute (bpm). Dynamic stroke volume ranged between 40 and 60 ml. The feasibility of the DEM-LVAD was confirmed.

  10. Analytical model of an Annular Momentum Control Device (AMCD) laboratory test model magnetic bearing actuator

    NASA Technical Reports Server (NTRS)

    Groom, N. J.

    1979-01-01

    An analytical model of an Annular Momentum Control Device (AMCD) laboratory test model magnetic bearing actuator with permanent magnet fluxbiasing is presented. An AMCD consists of a spinning annular rim which is suspended by a noncontacting linear electromagnetic spin motor. The actuator is treated as a lumped-parameter electromechanical system in the development of the model.

  11. Stretchable Materials for Robust Soft Actuators towards Assistive Wearable Devices

    NASA Astrophysics Data System (ADS)

    Agarwal, Gunjan; Besuchet, Nicolas; Audergon, Basile; Paik, Jamie

    2016-09-01

    Soft actuators made from elastomeric active materials can find widespread potential implementation in a variety of applications ranging from assistive wearable technologies targeted at biomedical rehabilitation or assistance with activities of daily living, bioinspired and biomimetic systems, to gripping and manipulating fragile objects, and adaptable locomotion. In this manuscript, we propose a novel two-component soft actuator design and design tool that produces actuators targeted towards these applications with enhanced mechanical performance and manufacturability. Our numerical models developed using the finite element method can predict the actuator behavior at large mechanical strains to allow efficient design iterations for system optimization. Based on two distinctive actuator prototypes’ (linear and bending actuators) experimental results that include free displacement and blocked-forces, we have validated the efficacy of the numerical models. The presented extensive investigation of mechanical performance for soft actuators with varying geometric parameters demonstrates the practical application of the design tool, and the robustness of the actuator hardware design, towards diverse soft robotic systems for a wide set of assistive wearable technologies, including replicating the motion of several parts of the human body.

  12. Stretchable Materials for Robust Soft Actuators towards Assistive Wearable Devices.

    PubMed

    Agarwal, Gunjan; Besuchet, Nicolas; Audergon, Basile; Paik, Jamie

    2016-09-27

    Soft actuators made from elastomeric active materials can find widespread potential implementation in a variety of applications ranging from assistive wearable technologies targeted at biomedical rehabilitation or assistance with activities of daily living, bioinspired and biomimetic systems, to gripping and manipulating fragile objects, and adaptable locomotion. In this manuscript, we propose a novel two-component soft actuator design and design tool that produces actuators targeted towards these applications with enhanced mechanical performance and manufacturability. Our numerical models developed using the finite element method can predict the actuator behavior at large mechanical strains to allow efficient design iterations for system optimization. Based on two distinctive actuator prototypes' (linear and bending actuators) experimental results that include free displacement and blocked-forces, we have validated the efficacy of the numerical models. The presented extensive investigation of mechanical performance for soft actuators with varying geometric parameters demonstrates the practical application of the design tool, and the robustness of the actuator hardware design, towards diverse soft robotic systems for a wide set of assistive wearable technologies, including replicating the motion of several parts of the human body.

  13. Stretchable Materials for Robust Soft Actuators towards Assistive Wearable Devices

    PubMed Central

    Agarwal, Gunjan; Besuchet, Nicolas; Audergon, Basile; Paik, Jamie

    2016-01-01

    Soft actuators made from elastomeric active materials can find widespread potential implementation in a variety of applications ranging from assistive wearable technologies targeted at biomedical rehabilitation or assistance with activities of daily living, bioinspired and biomimetic systems, to gripping and manipulating fragile objects, and adaptable locomotion. In this manuscript, we propose a novel two-component soft actuator design and design tool that produces actuators targeted towards these applications with enhanced mechanical performance and manufacturability. Our numerical models developed using the finite element method can predict the actuator behavior at large mechanical strains to allow efficient design iterations for system optimization. Based on two distinctive actuator prototypes’ (linear and bending actuators) experimental results that include free displacement and blocked-forces, we have validated the efficacy of the numerical models. The presented extensive investigation of mechanical performance for soft actuators with varying geometric parameters demonstrates the practical application of the design tool, and the robustness of the actuator hardware design, towards diverse soft robotic systems for a wide set of assistive wearable technologies, including replicating the motion of several parts of the human body. PMID:27670953

  14. A micropower miniature piezoelectric actuator for implantable middle ear hearing device.

    PubMed

    Wang, Zhigang; Mills, Robert; Luo, Hongyan; Zheng, Xiaolin; Hou, Wensheng; Wang, Lijun; Brown, Stuart I; Cuschieri, Alfred

    2011-02-01

    This paper describes the design and development of a small actuator using a miniature piezoelectric stack and a flextensional mechanical amplification structure for an implantable middle ear hearing device (IMEHD). A finite-element method was used in the actuator design. Actuator vibration displacement was measured using a laser vibrometer. Preliminary evaluation of the actuator for an IMEHD was conducted using a temporal bone model. Initial results from one temporal bone study indicated that the actuator was small enough to be implanted within the middle ear cavity, and sufficient stapes displacement can be generated for patients with mild to moderate hearing losses, especially at higher frequency range, by the actuator suspended onto the stapes. There was an insignificant mass-loading effect on normal sound transmission (<3 dB) when the actuator was attached to the stapes and switched off. Improved vibration performance is predicted by more firm attachment. The actuator power consumption and its generated equivalent sound pressure level are also discussed. In conclusion, the actuator has advantages of small size, lightweight, and micropower consumption for potential use as IMHEDs.

  15. Lead-Free Propellant for Propellant Actuated Devices

    NASA Technical Reports Server (NTRS)

    Goodwin, John L.

    2000-01-01

    Naval Surface Warfare Center, Indian Head Division's CAD/PAD Department has been working to remove toxic compounds from our products for about a decade. In 1992, we embarked on an effort to develop a lead-free double base propellant to replace that of a foreign sole source. At the time there were availability concerns. In 1995, the department developed a strategic proposal to include a wider range of products. Efforts included such efforts as removing lead sheathing from linear explosives and replacing lead azide and lead styphnate compounds. This paper will discuss efforts specifically related to developing non-leaded double base propellant for use in various Propellant Actuated Devices (PADs) for aircrew escape systems. The propellants can replace their leaded counterparts, mitigating lead handling, processing, or toxic exposure to the environment and personnel. This work eliminates the use of leaded compounds, replacing them with a more environmentally benign metal-organic salt. Historically double-base propellants have held an advantage over other families of energetic materials through their relative insensitivity of the burning rate to changes in temperature and pressure. This desirable ballistic effect has been obtained with the use of a lead-organic salt alone or in a physical mixture with a copper-organic salt, or more recently with a lead-copper complex. These ballistic modifiers are typically added to the double-base 'paste' prior to gelatinization on heated calendars or one type or another. The effect of constant burning rate over a pressure range is called a 'plateau' while an even more beneficial effect of decreasing burning rate with increasing pressure is termed a 'mesa.' The latter effect results in very low temperature sensitivity of the propellant burning rate. Propellants with such effects are ideal tactical rocket motor propellants. The use of lead compounds poses a concern for the environment and personnel safety due to the metal's toxic

  16. Pixelized Device Control Actuators for Large Adaptive Optics

    NASA Technical Reports Server (NTRS)

    Knowles, Gareth J.; Bird, Ross W.; Shea, Brian; Chen, Peter

    2009-01-01

    A fully integrated, compact, adaptive space optic mirror assembly has been developed, incorporating new advances in ultralight, high-performance composite mirrors. The composite mirrors use Q-switch matrix architecture-based pixelized control (PMN-PT) actuators, which achieve high-performance, large adaptive optic capability, while reducing the weight of present adaptive optic systems. The self-contained, fully assembled, 11x11x4-in. (approx.= 28x28x10-cm) unit integrates a very-high-performance 8-in. (approx.=20-cm) optic, and has 8-kHz true bandwidth. The assembled unit weighs less than 15 pounds (=6.8 kg), including all mechanical assemblies, power electronics, control electronics, drive electronics, face sheet, wiring, and cabling. It requires just three wires to be attached (power, ground, and signal) for full-function systems integration, and uses a steel-frame and epoxied electronics. The three main innovations are: 1. Ultralightweight composite optics: A new replication method for fabrication of very thin composite 20-cm-diameter laminate face sheets with good as-fabricated optical figure was developed. The approach is a new mandrel resin surface deposition onto previously fabricated thin composite laminates. 2. Matrix (regenerative) power topology: Waveform correction can be achieved across an entire face sheet at 6 kHz, even for large actuator counts. In practice, it was found to be better to develop a quadrant drive, that is, four quadrants of 169 actuators behind the face sheet. Each quadrant has a single, small, regenerative power supply driving all 169 actuators at 8 kHz in effective parallel. 3. Q-switch drive architecture: The Q-switch innovation is at the heart of the matrix architecture, and allows for a very fast current draw into a desired actuator element in 120 counts of a MHz clock without any actuator coupling.

  17. Establishment of a biomimetic device based on tri-layer polymer actuators--propulsion fins.

    PubMed

    Alici, Gursel; Spinks, Geoffrey; Huynh, Nam N; Sarmadi, Laleh; Minato, Rick

    2007-06-01

    We propose to use bending type tri-layer polymer actuators as propulsion fins for a biomimetic device consisting of a rigid body, like a box fish having a carapace, and paired fins running through the rigid body, like a fish having pectoral fins. The fins or polymer bending actuators can be considered as individually controlled flexible membranes. Each fin is activated with sinusoidal inputs such that there is a phase lag between the movements of successive fins to create enough thrust force for propulsion. Eight fins with 0.125 aspect ratio have been used along both sides of the rigid body to move the device in the direction perpendicular to the longitudinal axis of the body. The designed device with the paired fins was successfully tested, moving in an organic solution consisting of solvent, propylene carbonate (PC), and electrolyte. The design procedure outlined in this study is offered as a guide to making functional devices based on polymer actuators and sensors.

  18. Electromechanical model for actuating liquids in a two-plate droplet microfluidic device.

    PubMed

    Chatterjee, Debalina; Shepherd, Heather; Garrell, Robin L

    2009-05-07

    Both conducting and insulating liquids can be actuated in two-plate droplet ("digital") microfluidic devices. Droplet movement is accomplished by applying a voltage across electrodes patterned beneath the dielectric-coated top and bottom plates. This report presents a general electromechanical model for calculating the forces on insulating and conducting liquids in two-plate devices. The devices are modeled as an equivalent circuit in which the dielectric layers and ambient medium (air or oil) are described as capacitors, while the liquid being actuated is described as a resistor and capacitor in parallel. The experimental variables are the thickness and dielectric constant of each layer in the device, the gap between plates, the applied voltage and frequency, and the conductivity of the liquid. The model has been used to calculate the total force acting on droplets of liquids that have been studied experimentally, and to explain the relative ease with which liquids of different conductivities can be actuated. The contributions of the electrowetting (EW) and dielectrophoretic (DEP) forces to droplet actuation have also been calculated. While for conductive liquids the EW force dominates, for dielectric liquids, both DEP and EW contribute, and the DEP force may dominate. The general utility of the model is that it can be used to predict the operating conditions needed to actuate particular liquids in devices of known geometry, and to optimize the design and operating conditions to enable movement of virtually any liquid.

  19. Halbach array type focusing actuator for small and thin optical data storage device

    NASA Astrophysics Data System (ADS)

    Lee, Sung Q.; Park, Kang-Ho; Paek, Mun Chul

    2004-09-01

    The small form factor optical data storage devices are developing rapidly nowadays. Since it is designed for portable and compatibility with flesh memory, its components such as disk, head, focusing actuator, and spindle motor should be assembled within 5 mm. The thickness of focusing actuator is within 2 mm and the total working range is +/-100um, with the resolution of less than 1μm. Since the thickness is limited tightly, it is hard to place the yoke that closes the magnetic circuit and hard to make strong flux density without yoke. Therefore, Halbach array is adopted to increase the magnetic flux of one side without yoke. The proposed Halbach array type focusing actuator has the advantage of thin actuation structure with sacrificing less flex density than conventional magnetic array. The optical head unit is moved on the swing arm type tracking actuator. Focusing coil is attached to swing arm, and Halbach magnet array is positioned at the bottom of deck along the tracking line, and focusing actuator exerts force by the Fleming's left hand rule. The dynamics, working range, control resolution of focusing actuator are analyzed and performed.

  20. Impacting device for testing insulation

    NASA Technical Reports Server (NTRS)

    Redmon, J. W. (Inventor)

    1984-01-01

    An electro-mechanical impacting device for testing the bonding of foam insulation to metal is descirbed. The device lightly impacts foam insulation attached to metal to determine whether the insulation is properly bonded to the metal and to determine the quality of the bond. A force measuring device, preferably a load cell mounted on the impacting device, measures the force of the impact and the duration of the time the hammer head is actually in contact with the insulation. The impactor is designed in the form of a handgun having a driving spring which can propel a plunger forward to cause a hammer head to impact the insulation. The device utilizes a trigger mechanism which provides precise adjustements, allowing fireproof operation.

  1. A Pneumatic Actuated Microfluidic Beads-Trapping Device

    SciTech Connect

    Shao, Guocheng; Cai, Ziliang; Wang, Jun; Wang, Wanjun; Lin, Yuehe

    2011-08-20

    The development of a polydimethylsiloxane (PDMS) microfluidic microbeads trapping device is reported in this paper. Besides fluid channels, the proposed device includes a pneumatic control chamber and a beads-trapping chamber with a filter array structure. The pneumatic flow control chamber and the beads-trapping chamber are vertically stacked and separated by a thin membrane. By adjusting the pressure in the pneumatic control chamber, the membrane can either be pushed against the filter array to set the device in trapping mode or be released to set the device in releasing mode. In this paper, a computational fluid dynamics simulation was conducted to optimize the geometry design of the filter array structure; the device fabrication was also carried out. The prototype device was tested and the preliminary experimental results showed that it can be used as a beads-trapping unit for various biochemistry and analytical chemistry applications, especially for flow injection analysis systems.

  2. Electropolymerized Conducting Polymer as Actuator and Sensor Device

    ERIC Educational Resources Information Center

    Cortes, Maria T.; Moreno, Juan C.

    2005-01-01

    A study demonstrates the potential application of conducting polymers to convert electrical energy into mechanical energy at low voltage or current. The performance of the device is explained using electrochemistry and solid-state chemistry.

  3. Near-infrared–actuated devices for remotely controlled drug delivery

    PubMed Central

    Timko, Brian P.; Arruebo, Manuel; Shankarappa, Sahadev A.; McAlvin, J. Brian; Okonkwo, Obiajulu S.; Mizrahi, Boaz; Stefanescu, Cristina F.; Gomez, Leyre; Zhu, Jia; Zhu, Angela; Santamaria, Jesus; Langer, Robert; Kohane, Daniel S.

    2014-01-01

    A reservoir that could be remotely triggered to release a drug would enable the patient or physician to achieve on-demand, reproducible, repeated, and tunable dosing. Such a device would allow precise adjustment of dosage to desired effect, with a consequent minimization of toxicity, and could obviate repeated drug administrations or device implantations, enhancing patient compliance. It should exhibit low off-state leakage to minimize basal effects, and tunable on-state release profiles that could be adjusted from pulsatile to sustained in real time. Despite the clear clinical need for a device that meets these criteria, none has been reported to date to our knowledge. To address this deficiency, we developed an implantable reservoir capped by a nanocomposite membrane whose permeability was modulated by irradiation with a near-infrared laser. Irradiated devices could exhibit sustained on-state drug release for at least 3 h, and could reproducibly deliver short pulses over at least 10 cycles, with an on/off ratio of 30. Devices containing aspart, a fast-acting insulin analog, could achieve glycemic control after s.c. implantation in diabetic rats, with reproducible dosing controlled by the intensity and timing of irradiation over a 2-wk period. These devices can be loaded with a wide range of drug types, and therefore represent a platform technology that might be used to address a wide variety of clinical indications. PMID:24474759

  4. Demonstration of an integrated electroactive polymer actuator on a microfluidic electrophoresis device.

    PubMed

    Price, Alexander K; Anderson, Kristen M; Culbertson, Christopher T

    2009-07-21

    The construction of microfluidic devices from siloxane-based polymers is widely reported in the current literature. While the use of these materials is primarily due to their rapid and facile fabrication, low cost and robustness, they also have the ability to function as smart materials. This feature, however, has not been commonly exploited in conjunction with their fluid-handling capabilities. Siloxanes are considered smart materials because their shapes can be modified in the presence of an electric field. The energy in the electric field can be transduced into mechanical energy and directly coupled with a microfabricated channel network in order to affect or initiate the movement of fluids. Here, we present a novel microfluidic device into which an electroactive polymer (EAP) actuation unit is integrated. The EAP actuation unit features a microfluidic channel placed above a patterned electrode. The patterned electrode is insulated from the channel by an EAP layer that is composed of PDMS. When a potential is applied across the EAP layer, it changes shape, which also changes the volume of the microfluidic channel above it. With this proof-of-concept device we demonstrated the ability to inject plugs of sample on a standard electrophoresis cross chip solely by changing the magnitude of the electric field between the channel and the electrode. Using an EAP actuation unit, the size of the injection plugs can be varied as a function of the electric field, the active area of the EAP actuation unit and the softness of the EAP.

  5. Design and control of a dual unidirectional brake hybrid actuation system for haptic devices.

    PubMed

    Rossa, Carlos; Lozada, José; Micaelli, Alain

    2014-01-01

    Hybrid actuators combining brakes and motors have emerged as an efficient solution to achieve high performance in haptic devices. In this paper, an actuation approach using two unidirectional brakes and a DC motor is proposed. The brakes are coupled to overrunning clutches and can apply a torque in only one rotational direction. The associated control laws, that are independent of the virtual environment model, calculate the control gains in real time in order limit the energy and the stiffness delivered by the motor to ensure stability. The reference torque is respected using the combination of the motor and the brake. Finally, an user experiment has been performed to evaluate the influence of passive and active torque differences in the perception of elasticity. The proposed actuator has a torque range of 0.03 Nm to 5.5 Nm with a 17.75 kNm (-2) torque density.

  6. A LINEAR ACTUATED TORSIONAL DEVICE TO REPLICATE CLINICALLY RELEVANT SPIRAL FRACTURES IN LONG BONES

    PubMed Central

    Edwards, W. Brent; Troy, Karen L.

    2012-01-01

    To better understand the mechanisms underlying spiral fracture we would like to carry out biomechanical tests of long bones loaded in torsion to failure. A device was fabricated to perform torsional tests of long bones using a single-axis linear actuator. The principal operation of the device was to transform the vertical displacement of a material testing machine’s linear actuator into rotational movement using a spur gear and rack system. Accuracy and precision of the device were quantified using cast-acrylic rods with known torque-rotation behavior. Cadaveric experimentation was used to replicate a clinically relevant spiral fracture in eleven human proximal tibiae; strain gage data were recorded for a single specimen. The device had an experimental error less than 0.2 Nm and was repeatable to within 0.3%. Strain gage data were in line with those expected from pure torsion and the cadaveric tibiae illustrated spiral fractures at ultimate torque and rotation values of 130.6 ± 53.2 Nm and 8.3 ± 1.5°, respectively. Ultimate torque was highly correlated with DXA assessed bone mineral density (r = 0.87; p<0.001). The device presented is applicable to any torsional testing of long bone when only a single-axis linear actuator is available. PMID:23025174

  7. A linear-actuated torsional device to replicate clinically relevant spiral fractures in long bones.

    PubMed

    Edwards, W Brent; Troy, Karen L

    2012-09-01

    To better understand the mechanisms underlying spiral fracture we would like to carry out biomechanical tests of long bones loaded in torsion to failure. A device was fabricated to perform torsional tests of long bones using a single-axis linear actuator. The principal operation of the device was to transform the vertical displacement of a material testing machine's linear actuator into rotational movement using a spur gear and rack system. Accuracy and precision of the device were quantified using cast-acrylic rods with known torque-rotation behavior. Cadaveric experimentation was used to replicate a clinically relevant spiral fracture in eleven human proximal tibiae; strain-gage data were recorded for a single specimen. The device had an experimental error of less than 0.2 Nm and was repeatable to within 0.3%. Strain gage data were in line with those expected from pure torsion and the cadaveric tibiae illustrated spiral fractures at ultimate torque and rotation values of 130.6 +/- 53.2 Nm and 8.3 +/- 1.5 degrees, respectively. Ultimate torque was highly correlated with DXA assessed bone mineral density (r = 0.87; p < 0.00 1). The device presented is applicable to any torsional testing of long bone when only a single-axis linear actuator is available.

  8. Sensor-actuator coupled device for active tracheal tube using solid polymer electrolyte membrane

    NASA Astrophysics Data System (ADS)

    Ihara, Tadashi; Nakamura, Taro; Mukai, Toshiharu; Asaka, Kinji

    2007-04-01

    A sensor-actuator coupled device was developed using solid polymer electrolyte membrane (SPM) as an active tracheal tube for ventilator. Active tracheal tube is a novel type of tube for ventilator that removes patient's phlegm automatically upon sensing the narrowing of trachea by phlegm. This type of active tube is extremely useful in clinical settings as currently the sole measure to remove phlegm from patient's tube is to do it manually by a nurse every few hours. As SPM works both as a sensor and an actuator, an effective compact device was developed. SPM based sensor-actuator coupled device was fabricated with modified gold plating method. Prepared SPM was fixed as an array on a plastic pipe of diameter 22 mm and was connected to a ventilator circuit and driven by a ventilator with a volume control ventilation (VCV) mode. SPM was connected both to a sensing unit and an actuation unit. Generated voltage developed by the membrane with the setting of the maximum pressure from 5 cmH IIO to 20 cmH IIO was in order of several hundred μV. SPM sensor demonstrated a biphasic response to the ventilator flow. The sensor data showed nearly linearly proportional voltage development to the intra-tracheal pressure. The sensed signal was filtered and digitized with an A/D converting unit on a PC board. A real time operating program was used to detect the sensed signal that indicates the narrowing of trachea. The program then activated a driving signal to control the actuation of the membrane. The signal was sent to a D/A converting unit. The output of the D/A unit was sent to an amplifier and the galvanostat unit which drives the membrane with constant current regardless of the change in the load. It was demonstrated that the sensor-actuator unit detects the narrowing of trachea within several hundreds milli-seconds and responds by actuating the same membrane with the driving voltage of 3-4 V and driving current of several hundred milli-ampere for each membrane. SPM array

  9. Pressure-actuated microfluidic devices for electrophoretic separation of pre-term birth biomarkers.

    PubMed

    Sahore, V; Kumar, S; Rogers, C I; Jensen, J K; Sonker, M; Woolley, A T

    2016-01-01

    We have developed microfluidic devices with pressure-driven injection for electrophoretic analysis of amino acids, peptides, and proteins. The novelty of our approach lies in the use of an externally actuated on-chip peristaltic pump and closely spaced pneumatic valves that allow well-defined, small-volume sample plugs to be injected and separated by microchip electrophoresis. We fabricated three-layer poly(dimethylsiloxane) (PDMS) microfluidic devices. The fluidic layer had injection and separation channels, and the control layer had an externally actuated on-chip peristaltic pump and four pneumatic valves around the T-intersection to carry out sample injection. An unpatterned PDMS membrane layer was sandwiched between the fluidic and control layers as the actuated component in pumps and valves. Devices with the same peristaltic pump design but different valve spacings (100, 200, 300, and 400 μm) from the injection intersection were fabricated using soft lithographic techniques. Devices were characterized through fluorescent imaging of captured plugs of a fluorescein-labeled amino acid mixture and through microchip electrophoresis separations. A suitable combination of peak height, separation efficiency, and analysis time was obtained with a peristaltic pump actuation rate of 50 ms, an injection time of 30 s, and a 200-μm valve spacing. We demonstrated the injection of samples in different solutions and were able to achieve a 2.4-fold improvement in peak height and a 2.8-fold increase in separation efficiency though sample stacking. A comparison of pressure-driven injection and electrokinetic injection with the same injection time and separation voltage showed a 3.9-fold increase in peak height in pressure-based injection with comparable separation efficiency. Finally, the microchip systems were used to separate biomarkers implicated in pre-term birth. Although these devices have initially been demonstrated as a stand-alone microfluidic separation tool, they

  10. Self-sensing miniature electromagnetic actuators for a cardiac assist device application

    NASA Astrophysics Data System (ADS)

    Hanson, Ben M.; Walker, Peter G.; Levesley, Martin C.; Watterson, Kevin; Richardson, Robert C.; Yang, Ming

    2004-07-01

    This paper describes the application of self-sensing control to a cardiac assist device. We propose to improve the pumping performance of diseased or weakened hearts by applying direct cardiac compression using artificial muscle. This particular application imposes strict limitations on size, weight and system complexity, therefore employing self-sensing could offer advantages over separate sensors and actuators. Many electromagnetic actuators produce a back-e.m.f. proportional to velocity. Using a simple system model, it is possible to separate this back-e.m.f. from the supply voltage, thus the actuator velocity can be self-sensed. Furthermore, using a more detailed model, it also is possible to self-sense the force being applied. Experimental results are presented for linear moving-coil actuators and miniature d.c. motors. Estimation of position has been performed by numerical integration of self-sensed velocity, and shown to compare favourably to data from displacement sensors. Force estimation has also been shown to closely agree with data from a load cell. Combined force and position control has been implemented, without using sensors. Unfortunately, since self-sensed position is derived by integrating velocity, the estimated position can suffer from drifting. An automatic re-calibration scheme is proposed for the cardiac assist application.

  11. Simple spark erosion device based on optical disk or hard disk drive actuators.

    PubMed

    Kamer, O

    2011-12-01

    We present the design of a compact electric discharge device incorporating hard disk or optical disk drive actuators. It is simple enough to be assembled in the absence of a mechanical workshop. The electronic circuit allows the adjustment of current, voltage, and discharge power. The system has been tested with organic dielectric liquids and deionized water and spark conditions; dynamic properties and machining characteristics were investigated. This device can be used to shape materials or to produce powdered samples with low material loss and minimal liquid consumption.

  12. Inertial impaction air sampling device

    SciTech Connect

    Dewhurst, K.H.

    1990-05-22

    An inertial impactor is designed which is to be used in an air sampling device for collection of respirable size particles in ambient air. The device may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry. 3 figs.

  13. Detailed design of an SMA-actuated self-locking device for rotary feed structure

    NASA Astrophysics Data System (ADS)

    Xiaoyu, Qin; Xiaojun, Yan; Xiaoyong, Zhang; Weibing, Wang; Lianghai, Li

    2016-03-01

    This paper presents a detailed design of a locking device which is used to lock the rotary feed structure of a space-borne microwave radiometer during the launching stage. This locking device employs two redundant shape memory alloy (SMA) wires as the actuating elements, uses a self-locking structure to achieve the locking function and a step structure to ensure a safety clearance after release. Based on the design concept, preliminary design of the locking/release unit and the clamp unit are performed. Then, a more accurate simulation of the release process and the cyclic property of the device is carried out by using an improved Brinson’s SMA constitutive model and a heat transfer equation. After the design and simulation, four prototypes are fabricated and their performance tests are carried out to evaluate the self-locking property, lifetime and thermal tolerance.

  14. Enrichment of nanoparticles and bacteria using electroless and manual actuation modes of a bypass nanofluidic device.

    PubMed

    Aïzel, Koceila; Agache, Vincent; Pudda, Catherine; Bottausci, Frederic; Fraisseix, Coline; Bruniaux, Jonathan; Navarro, Fabrice; Fouillet, Yves

    2013-11-21

    Current efforts in nanofluidics aimed at detecting scarce molecules or particles are focused mainly on the development of electrokinetic-based devices. However, these techniques require either integrated or external electrodes, and a potential drop applied across a carrier fluid. One challenge is to develop a new generation of electroless passive devices involving a simple technological process and packaging without embedded electrodes for micro- and nanoparticles enrichment with a view to applications in biology such as the detection of viral agents or cancers biomarkers. This paper presents an innovative technique for particles handling and enrichment based exclusively on a pressure-driven silicon bypass nanofluidic device. The device is fabricated by standard silicon micro-nanofabrication technology. The concentration operation was demonstrated and quantified according to two different actuation modes, which can also be combined to enhance the concentration factor further. The first, "symmetrical" mode involves a symmetric cross-flow effect that concentrates nanoparticles in a very small volume in a very local point of the device. The second mode, "asymmetrical" mode advantageously generates a streaming potential, giving rise to an Electroless Electropreconcentration (EL-EP). The concentration process can be maintained for several hours and concentration factors as high as ~200 have been obtained when both symmetrical and asymmetrical modes are coupled. Proof of concept for concentrating E. coli bacteria by the manual actuation of the EL-EP device is also demonstrated in this paper. Experiments demonstrate more than a 50-fold increase in the concentration of E. coli bacteria in only ~40 s.

  15. Method for reading sensors and controlling actuators using audio interfaces of mobile devices.

    PubMed

    Aroca, Rafael V; Burlamaqui, Aquiles F; Gonçalves, Luiz M G

    2012-01-01

    This article presents a novel closed loop control architecture based on audio channels of several types of computing devices, such as mobile phones and tablet computers, but not restricted to them. The communication is based on an audio interface that relies on the exchange of audio tones, allowing sensors to be read and actuators to be controlled. As an application example, the presented technique is used to build a low cost mobile robot, but the system can also be used in a variety of mechatronics applications and sensor networks, where smartphones are the basic building blocks.

  16. Method for Reading Sensors and Controlling Actuators Using Audio Interfaces of Mobile Devices

    PubMed Central

    Aroca, Rafael V.; Burlamaqui, Aquiles F.; Gonçalves, Luiz M. G.

    2012-01-01

    This article presents a novel closed loop control architecture based on audio channels of several types of computing devices, such as mobile phones and tablet computers, but not restricted to them. The communication is based on an audio interface that relies on the exchange of audio tones, allowing sensors to be read and actuators to be controlled. As an application example, the presented technique is used to build a low cost mobile robot, but the system can also be used in a variety of mechatronics applications and sensor networks, where smartphones are the basic building blocks. PMID:22438726

  17. Inertial impaction air sampling device

    SciTech Connect

    Dewhurst, K.H.

    1987-12-10

    An inertial impactor to be used in an air sampling device for collection of respirable size particles in ambient air which may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry. 3 figs.

  18. Inertial impaction air sampling device

    DOEpatents

    Dewhurst, Katharine H.

    1990-01-01

    An inertial impactor to be used in an air sampling device for collection of respirable size particles in ambient air which may include a graphite furnace as the impaction substrate in a small-size, portable, direct analysis structure that gives immediate results and is totally self-contained allowing for remote and/or personal sampling. The graphite furnace collects suspended particles transported through the housing by means of the air flow system, and these particles may be analyzed for elements, quantitatively and qualitatively, by atomic absorption spectrophotometry.

  19. Small-size two-axis mechanical devices for FPM and PAM using piezoelectronic actuators

    NASA Astrophysics Data System (ADS)

    Furuya, Mamoru; Araki, Tomohiro; Yamakawa, Shiro; Hisada, Yasumasa; Kondo, Fumika; Akiba, Toshikatsu

    1998-05-01

    We have developed two kinds of small size and light weight mechanical devices which consist of 2-axis piezoelectronic driving actuators and elastic hinges for fine pointing mechanism (FPM) and point ahead mechanism (PAM) optical inter- orbit communication (optical IOC) equipment. These are 'Beam Trapping Mechanism (BTM)' and 'Beam Scanning Mechanism (BSM)' respectively. High sensitivity receive system using single- mode optical fiber should be needed to increase communication data rate, which are a receiver of heterodyne detection in optical fiber and a receiver using optical pre-amplifier (for example, Er doped fiber amplifier). Therefore, both improvement of precision of FPM and control of the end of optical fiber are needed. In order to realize these requirements, we have designed, developed and tested two kinds of mechanical devices. At first, results of BTM, which consists of an optical fiber, four piezoelectric actuators, elastic hinges and a housing which mounts them, are described. The end facet of optical fiber supported by elastic hinges is controlled by piezoelectronic actuators in order to trap spatial received beam into optical fiber with high efficiency and high speed. The functional test results of BTM show a moving range of 140 (mu) rad, a resolution of less than 0.2 (mu) rad and natural frequency of 390 Hz. These values show BTM has enough performance for low-loss received beam trapping into optical fiber core. Furthermore, small-sized and lightweight BTM was realized using piezoelectronic actuators. We designed a BSM which has function of piezoelectronic driving 2-axis FPM in order to improve FPM. BSM have mirror of which size is 15 * 12 mm2. The mechanical concept of BSM is as same as BTM. In BSM, mirror is supported by elastic hinges, replace with optical fiber. Function test results show scanning angle range of more than 2.8 mrad at azimuth direction, 2.0 mrad at elevation direction, scanning resolution of 1.0 (mu) rad and natural frequency is

  20. A Portable, Air-Jet-Actuator-Based Device for System Identification

    NASA Astrophysics Data System (ADS)

    Staats, Wayne; Belden, Jesse; Mazumdar, Anirban; Hunter, Ian

    2010-11-01

    System identification (ID) of human and robotic limbs could help in diagnosis of ailments and aid in optimization of control parameters and future redesigns. We present a self-contained actuator, which uses the Coanda effect to rapidly switch the direction of a high speed air jet to create a binary stochastic force input to a limb for system ID. The design of the actuator is approached with the goal of creating a portable device, which could deployed on robot or human limbs for in situ identification. The viability of the device is demonstrated by performing stochastic system ID on an underdamped elastic beam system with fixed inertia and stiffness, and variable damping. The non-parametric impulse response yielded from the stochastic system ID is modeled as a second order system, and the resultant parameters are found to be in excellent agreement with those found using more traditional system ID techniques. The current design could be further miniaturized and developed as a portable, wireless, on-site multi-axis system identification system for less intrusive and more widespread use.

  1. Stimulus-active polymer actuators for next-generation microfluidic devices

    NASA Astrophysics Data System (ADS)

    Hilber, Wolfgang

    2016-08-01

    Microfluidic devices have not yet evolved into commercial off-the-shelf products. Although highly integrated microfluidic structures, also known as lab-on-a-chip (LOC) and micrototal-analysis-system (µTAS) devices, have consistently been predicted to revolutionize biomedical assays and chemical synthesis, they have not entered the market as expected. Studies have identified a lack of standardization and integration as the main obstacles to commercial breakthrough. Soft microfluidics, the utilization of a broad spectrum of soft materials (i.e., polymers) for realization of microfluidic components, will make a significant contribution to the proclaimed growth of the LOC market. Recent advances in polymer science developing novel stimulus-active soft-matter materials may further increase the popularity and spreading of soft microfluidics. Stimulus-active polymers and composite materials change shape or exert mechanical force on surrounding fluids in response to electric, magnetic, light, thermal, or water/solvent stimuli. Specifically devised actuators based on these materials may have the potential to facilitate integration significantly and hence increase the operational advantage for the end-user while retaining cost-effectiveness and ease of fabrication. This review gives an overview of available actuation concepts that are based on functional polymers and points out promising concepts and trends that may have the potential to promote the commercial success of microfluidics.

  2. Photoresponsive microvalve for remote actuation and flow control in microfluidic devices

    PubMed Central

    Jadhav, Amol D.; Yan, Bao; Luo, Rong-Cong; Wei, Li; Zhen, Xu; Chen, Chia-Hung; Shi, Peng

    2015-01-01

    Microvalves with different actuation methods offer great integrability and flexibility in operation of lab-on-chip devices. In this work, we demonstrate a hydrogel-based and optically controlled modular microvalve that can be easily integrated within a microfluidic device and actuated by an off-chip laser source. The microvalve is based on in-channel trapping of microgel particles, which are composed of poly(N-isopropylacrylamide) and polypyrrole nanoparticles. Upon irradiation by a near-infrared (NIR) laser, the microgel undergoes volumetric change and enables precisely localized fluid on/off switching. The response rate and the “open” duration of the microvalve can be simply controlled by adjusting the laser power and exposure time. We showed that the trapped microgel can be triggered to shrink sufficiently to open a channel within as low as ∼1–2 s; while the microgel swells to re-seal the channel within ∼6–8 s. This is so far one of the fastest optically controlled and hydrogel-based microvalves, thus permitting speedy fluidic switching applications. In this study, we successfully employed this technique to control fluidic interface between laminar flow streams within a Y-junction device. The optically triggered microvalve permits flexible and remote fluidic handling, and enables pulsatile in situ chemical treatment to cell culture in an automatic and programmed manner, which is exemplified by studies of chemotherapeutic drug induced cell apoptosis under different drug treatment strategies. We find that cisplatin induced apoptosis is significantly higher in cancer cells treated with a pulsed dose, as compared to continuous flow with a sustained dose. It is expected that our NIR-controlled valving strategy will provide a simple, versatile, and powerful alternative for liquid handling in microfluidic devices. PMID:26180571

  3. A novel in situ device based on a bionic piezoelectric actuator to study tensile and fatigue properties of bulk materials.

    PubMed

    Wang, Shupeng; Zhang, Zhihui; Ren, Luquan; Zhao, Hongwei; Liang, Yunhong; Zhu, Bing

    2014-06-01

    In this work, a miniaturized device based on a bionic piezoelectric actuator was developed to investigate the static tensile and dynamic fatigue properties of bulk materials. The device mainly consists of a bionic stepping piezoelectric actuator based on wedge block clamping, a pair of grippers, and a set of precise signal test system. Tensile and fatigue examinations share a set of driving system and a set of signal test system. In situ tensile and fatigue examinations under scanning electron microscope or metallographic microscope could be carried out due to the miniaturized dimensions of the device. The structure and working principle of the device were discussed and the effects of output difference between two piezoelectric stacks on the device were theoretically analyzed. The tensile and fatigue examinations on ordinary copper were carried out using this device and its feasibility was verified through the comparison tests with a commercial tensile examination instrument.

  4. A novel in situ device based on a bionic piezoelectric actuator to study tensile and fatigue properties of bulk materials

    NASA Astrophysics Data System (ADS)

    Wang, Shupeng; Zhang, Zhihui; Ren, Luquan; Zhao, Hongwei; Liang, Yunhong; Zhu, Bing

    2014-06-01

    In this work, a miniaturized device based on a bionic piezoelectric actuator was developed to investigate the static tensile and dynamic fatigue properties of bulk materials. The device mainly consists of a bionic stepping piezoelectric actuator based on wedge block clamping, a pair of grippers, and a set of precise signal test system. Tensile and fatigue examinations share a set of driving system and a set of signal test system. In situ tensile and fatigue examinations under scanning electron microscope or metallographic microscope could be carried out due to the miniaturized dimensions of the device. The structure and working principle of the device were discussed and the effects of output difference between two piezoelectric stacks on the device were theoretically analyzed. The tensile and fatigue examinations on ordinary copper were carried out using this device and its feasibility was verified through the comparison tests with a commercial tensile examination instrument.

  5. A novel in situ device based on a bionic piezoelectric actuator to study tensile and fatigue properties of bulk materials

    SciTech Connect

    Wang, Shupeng; Zhang, Zhihui Ren, Luquan; Liang, Yunhong; Zhao, Hongwei; Zhu, Bing

    2014-06-15

    In this work, a miniaturized device based on a bionic piezoelectric actuator was developed to investigate the static tensile and dynamic fatigue properties of bulk materials. The device mainly consists of a bionic stepping piezoelectric actuator based on wedge block clamping, a pair of grippers, and a set of precise signal test system. Tensile and fatigue examinations share a set of driving system and a set of signal test system. In situ tensile and fatigue examinations under scanning electron microscope or metallographic microscope could be carried out due to the miniaturized dimensions of the device. The structure and working principle of the device were discussed and the effects of output difference between two piezoelectric stacks on the device were theoretically analyzed. The tensile and fatigue examinations on ordinary copper were carried out using this device and its feasibility was verified through the comparison tests with a commercial tensile examination instrument.

  6. Development of a flexible and bendable vibrotactile actuator based on wave-shaped poly(vinyl chloride)/acetyl tributyl citrate gels for wearable electronic devices

    NASA Astrophysics Data System (ADS)

    Park, Won-Hyeong; Bae, Jin Woo; Shin, Eun-Jae; Kim, Sang-Youn

    2016-11-01

    The paradigm of consumer electronic devices is being shifted from rigid hand-held devices to flexible/wearable devices in search of benefits such as enhanced usability and portability, excellent wear characteristics, and more functions in less space. However, the fundamental incompatibility of flexible/wearable devices and a rigid actuator brought forth a new issue obstructing commercialization of flexible/wearable devices. In this paper, we propose a new wave-shaped eco-friendly PVC gel, and a new flexible and bendable vibrotactile actuator that could easily be applied to wearable electronic devices. We explain the vibration mechanism of the proposed vibrotactile actuator and investigate its influence on the content of plasticizer for the performance of the proposed actuator. An experiment for measuring vibrational amplitude was conducted over a wide frequency range. The experiment clearly showed that the proposed vibrotactile actuator could create a variety of haptic sensations in wearable devices.

  7. Effects of capacitors, resistors, and residual charges on the static and dynamic performance of electrostatically actuated devices

    NASA Astrophysics Data System (ADS)

    Chan, Edward K.; Dutton, Robert W.

    1999-03-01

    The important practical and realistic design issues of an electrostatic actuator/positioner with full-gap travel are discussed. Analytic expressions and numerical simulations show that parasitic capacitances, and non-uniform deformation in two and three dimensions influence the range of travel of an electrostatic positioner stabilized by the addition of a series capacitor. The effects of residual charge on electrostatically-actuated devices are described. The dynamic stepping characteristics of the positioner under compressible squeeze-film damping and resistive damping are compared. The physical descriptions of devices being fabricated in the MUMPs process are presented along with 3D simulation results that demonstrate viability.

  8. A new impact actuator using linear momentum exchange of inertia mass.

    PubMed

    Min, Hyun-Jin; Lim, Hyung-Jun; Kim, Soo Hyun

    2002-01-01

    For self-controlled endoscopes, many kinds of systems have been proposed. Among these, pneumatic actuators show significant potential. However, existing actuators, such as those used in endoscopes, have many weak points. In particular, free movement inside the human intestine is difficult because the diameter of the intestine varies dramatically along its length. We design and test a new method of locomotion of robotic endoscopes which allows safe manoeuverability in the human intestine. The actuating mechanism is composed of a solenoid at each end of the actuator and a single permanent magnet in the centre guide. If current is supplied to the two solenoids, attractive and repulsive forces occur between the permanent magnet and solenoid at each end. The permanent magnet moves by controlling the current supply period. When the current direction for operation is reversed, repulsive and attractive forces at each side are changed and the permanent magnet moves in the opposite direction. The collision at each period transfers momentum from the moving magnet to the actuator body. Furthermore, the moving speed of the actuator can be changed by the control of the impact force. Modelling and simulation are carried out to predict the performance of the actuator. The results of simulations are verified by comparison with experimental results. Finally, the momentum is measured by attaching an accelerometer to the solenoid head to define moving characteristics.

  9. On stability and passivity of haptic devices characterized by a series elastic actuation and considerable end-point mass.

    PubMed

    Oblak, Jakob; Matjačić, Zlatko

    2011-01-01

    Series elastic actuators have considerable potential in rehabilitation robotics. However, the reflected mass of the motor and considerable robot's end-point mass, both linked by an elastic element, result in a potentially unstable coupled mechanical oscillator. Since rehabilitation devices are in constant contact with patients, safety concerns and consequently the devices' stability are very important. In this study, the conservative conditions that guarantee the stability of the haptic device (with a considerable end-point mass and driven by a series elastic actuator) were established. We have shown that sufficient damping should be presented in parallel to the spring in order to achieve the passivity of the haptic device. Theoretical results were confirmed in an experimental evaluation on previously developed rehabilitation device.

  10. An Ionic-Polymer-Metallic Composite Actuator for Reconfigurable Antennas in Mobile Devices

    PubMed Central

    Lin, Yi-Chen; Yu, Chung-Yi; Li, Chung-Min; Liu, Chin-Heng; Chen, Jiun-Peng; Chu, Tah-Hsiung; Su, Guo-Dung John

    2014-01-01

    In this paper, a new application of an electro-active-polymer for a radio frequency (RF) switch is presented. We used an ionic polymer metallic composite (IPMC) switch to change the operating frequency of an inverted-F antenna. This switch is light in weight, small in volume, and low in cost. In addition, the IPMC is suitable for mobile devices because of its driving voltage of 3 volts and thickness of 200 μm. The IPMC acts as a normally-on switch to control the operating frequency of a reconfigurable antenna in mobile phones. We experimentally demonstrated by network analysis that the IPMC switch could shift its operating frequency from 1.1 to 2.1 GHz, with return losses of than −10 dB at both frequencies. To minimize electrolysis and maximize the operation time in air, propylene carbonate electrolyte with lithium perchlorate (LiClO4) was applied inside the IPMC. The results showed that when the IPMC was actuated over three months at 3.5 V, the tip displacement fell by less than 10%. Therefore, an IPMC actuator is a promising choice for application to a reconfigurable antenna. PMID:24399156

  11. An ionic-polymer-metallic composite actuator for reconfigurable antennas in mobile devices.

    PubMed

    Lin, Yi-Chen; Yu, Chung-Yi; Li, Chung-Min; Liu, Chin-Heng; Chen, Jiun-Peng; Chu, Tah-Hsiung; Su, Guo-Dung John

    2014-01-06

    In this paper, a new application of an electro-active-polymer for a radio frequency (RF) switch is presented. We used an ionic polymer metallic composite (IPMC) switch to change the operating frequency of an inverted-F antenna. This switch is light in weight, small in volume, and low in cost. In addition, the IPMC is suitable for mobile devices because of its driving voltage of 3 volts and thickness of 200 μm. The IPMC acts as a normally-on switch to control the operating frequency of a reconfigurable antenna in mobile phones. We experimentally demonstrated by network analysis that the IPMC switch could shift its operating frequency from 1.1 to 2.1 GHz, with return losses of than -10 dB at both frequencies. To minimize electrolysis and maximize the operation time in air, propylene carbonate electrolyte with lithium perchlorate (LiClO₄) was applied inside the IPMC. The results showed that when the IPMC was actuated over three months at 3.5 V, the tip displacement fell by less than 10%. Therefore, an IPMC actuator is a promising choice for application to a reconfigurable antenna.

  12. A bi-stable buckled energy harvesting device actuated via torque arms

    NASA Astrophysics Data System (ADS)

    Porter, Daniel A.; Berfield, Thomas A.

    2014-07-01

    A bi-stable switching energy harvester made from a buckled steel structure mounted with uni-axially poled piezoelectric polyvinylidene fluoride and 3D printed polylactic acid components is constructed and tested. A data collection system and frequency sweeping program is built to drive the device using a custom compression rig fitted with an accelerometer. The energy harvester is tested with the center beam compressed to different degrees of buckling, as well as in its unloaded state. Root mean square (RMS) accelerations are applied to the device in the range of 0.1-0.9g rms by 0.2 g steps. The device is driven with a frequency between 16 and 40 Hz (by 0.5 Hz) in both forwards and backwards sweeps. Finite element modeling program ANSYS is used to model the device and determine undamped pre-stressed modal frequencies, proof mass displacements to ‘snap-through’, and static buckled profiles for the center beam. As a comparison, a doubly constrained beam (DCB) with the same width and length is constructed and tested in the same manner as the torque arm device. RMS power density for the torque actuated device compressed by 0.13 mm and frequency swept in reverse was 0.246 μW cm-2 (3.13 μW) at 16.5 Hz and 1.5g rms using two 0.19 g proof masses. The DCB RMS power density swept in reverse was 1.287 μW cm-2 (6.18 μW) at 59.5 Hz and 1.5g rms with a 1.38 g proof mass.

  13. ELECTRICALLY ACTUATED, PRESSURE-DRIVEN LIQUID CHROMATOGRAPHY SEPARATIONS IN MICROFABRICATED DEVICES

    PubMed Central

    Fuentes, Hernan V.; Woolley, Adam T.

    2012-01-01

    Electrolysis-based micropumps integrated with microfluidic channels in micromachined glass substrates are presented. Photolithography combined with wet chemical etching and thermal bonding enabled the fabrication of multi-layer devices containing electrically actuated micropumps interfaced with sample and mobile phase reservoirs. A stationary phase was deposited on the microchannel walls by coating with 10% (w/w) chlorodimethyloctadecylsilane in toluene. Pressure-balanced injection was implemented by controlling the electrolysis time and voltage applied in the two independent micropumps. Current fluctuations in the micropumps due to the stochastic formation of bubbles on the electrode surfaces were determined to be the main cause of variation between separations. On-chip electrochemical pumping enabled the loading of pL samples with no dead volume between injection and separation. A mobile phase composed of 70% acetonitrile and 30% 50 mM acetate buffer (pH 5.45) was used for the chromatographic separation of three fluorescently labeled amino acids in <40 s with an efficiency of >3000 theoretical plates in a 2.5-cm-long channel. Our results demonstrate the potential of electrochemical micropumps integrated with microchannels to perform rapid chromatographic separations in a microfabricated platform. Importantly, these devices represent a significant step toward the development of miniaturized and fully integrated liquid chromatography systems. PMID:17960281

  14. Overall life cycle comprehensive assessment of pneumatic and electric actuator

    NASA Astrophysics Data System (ADS)

    Zhang, Yeming; Cai, Maolin

    2014-05-01

    Pneumatic actuators and electric actuators have almost been applied to all manufacturing industries. The two kinds of actuators can replace each other in most fields, such as the point to point transmission occasion and some rotating occasions. However, there are very few research results about the advantages and disadvantages of two kinds of actuators under the same working conditions so far. In this paper, a novel comprehensive assessment method, named as overall life cycle comprehensive assessment (OLCCA), is proposed for comparison and assessment of pneumatic and electric actuators. OLCCA contains mechanical properties evaluation (MPE), life cycle cost analysis based on users (LCCABOU) and life cycle environmental impact analysis (LCEIA) algorithm in order to solve three difficult problems: mechanical properties assessment, cost analysis and environmental impact assessment about actuators. The mechanical properties evaluation of actuators is a multi-objective optimization problem. The fuzzy data quantification and information entropy methods are combined to establish MPE algorithm of actuators. Two kinds of pneumatic actuators and electric actuators with similar bearing capacity and similar work stroke were taken for example to verify the correctness of MPE algorithm. The case study of MPE algorithm for actuators verified its correctness. LCCABOU for actuators is also set up. Considering cost complex structure of pneumatic actuators, public device cost even method (PDCEM) is firstly presented to solve cost division of public devices such as compressors, aftercooler, receivers, etc. LCCABOU method is also effective and verified by the three groups of pneumatic actuators and electric actuators. Finally, LCEIA model of actuators is established for the environmental impact assessment of actuators. LCEIA data collection method and model establishment procedure for actuators are also put forward. With Simapro 7, LCEIA comparison results of six actuators can be

  15. Microfluidic Actuation by Modulation of Surface Stresses: From Theoretical Considerations to Device Development

    NASA Astrophysics Data System (ADS)

    Troian, Sandra

    2003-03-01

    Miniaturized automated systems for transporting small liquid volumes through networked arrays are rapidly expanding diagnostic capabilities in medicine, genomic research and material science. The majority of microfluidic devices utilize micromechanical and electrokinetic techniques for metering flow through encapsulated channels. In this talk, we demonstrate that programmable thermal maps can be used in conjunction with chemical substrate patterning to modulate thermocapillary flow on the surface of a glass or silicon substrate. This method of actuation provides electronic control over the direction, flow rate, mixing, splitting and trapping of discrete droplets or continuous streams. The technique works well with polar and non-polar liquids, requires no moving parts and operates at very low voltages. On-chip capacitance sensors allow automated detection of local film thickness. Best of all, the device provides direct accessibility to liquid samples for handling and diagnostic purposes. Development of this device has progressed through a fundamental understanding of thermocapillary flow on homogeneous and chemically patterned surfaces. The liquid curvature induced by the lateral (chemical) confinement of the flowing liquid plays a key role in modifying the spreading behavior. We survey modeling efforts describing the transient behavior and asymptotic stability of thermocapillary flow on homogeneous surfaces, for which the disturbance operator is non-normal. Extension of the hydrodynamic equations to chemically patterned substrates will be presented. Numerical solutions of the governing lubrication equations for the flow speed and liquid profile delineate various flow regimes. The excellent agreement with interferometric measurements of the same variables demonstrates that the forces controlling the flow are well understood for the case of continuous streaming.

  16. Application of the nonlinear, double-dynamic Taguchi method to the precision positioning device using combined piezo-VCM actuator.

    PubMed

    Liu, Yung-Tien; Fung, Rong-Fong; Wang, Chun-Chao

    2007-02-01

    In this research, the nonlinear, double-dynamic Taguchi method was used as design and analysis methods for a high-precision positioning device using the combined piezo-voice-coil motor (VCM) actuator. An experimental investigation into the effects of two input signals and three control factors were carried out to determine the optimum parametric configuration of the positioning device. The double-dynamic Taguchi method, which permits optimization of several control factors concurrently, is particularly suitable for optimizing the performance of a positioning device with multiple actuators. In this study, matrix experiments were conducted with L9(3(4)) orthogonal arrays (OAs). The two most critical processes for the optimization of positioning device are the identification of the nonlinear ideal function and the combination of the double-dynamic signal factors for the ideal function's response. The driving voltage of the VCM and the waveform amplitude of the PZT actuator are combined into a single quality characteristic to evaluate the positioning response. The application of the double-dynamic Taguchi method, with dynamic signal-to-noise ratio (SNR) and L9(3(4)) OAs, reduced the number of necessary experiments. The analysis of variance (ANOVA) was applied to set the optimum parameters based on the high-precision positioning process.

  17. A novel monolithic piezoelectric actuated flexure-mechanism based wire clamp for microelectronic device packaging

    NASA Astrophysics Data System (ADS)

    Liang, Cunman; Wang, Fujun; Tian, Yanling; Zhao, Xingyu; Zhang, Hongjie; Cui, Liangyu; Zhang, Dawei; Ferreira, Placid

    2015-04-01

    A novel monolithic piezoelectric actuated wire clamp is presented in this paper to achieve fast, accurate, and robust microelectronic device packaging. The wire clamp has compact, flexure-based mechanical structure and light weight. To obtain large and robust jaw displacements and ensure parallel jaw grasping, a two-stage amplification composed of a homothetic bridge type mechanism and a parallelogram leverage mechanism was designed. Pseudo-rigid-body model and Lagrange approaches were employed to conduct the kinematic, static, and dynamic modeling of the wire clamp and optimization design was carried out. The displacement amplification ratio, maximum allowable stress, and natural frequency were calculated. Finite element analysis (FEA) was conducted to evaluate the characteristics of the wire clamp and wire electro discharge machining technique was utilized to fabricate the monolithic structure. Experimental tests were carried out to investigate the performance and the experimental results match well with the theoretical calculation and FEA. The amplification ratio of the clamp is 20.96 and the working mode frequency is 895 Hz. Step response test shows that the wire clamp has fast response and high accuracy and the motion resolution is 0.2 μm. High speed precision grasping operations of gold and copper wires were realized using the wire clamper.

  18. Development of a novel shape memory alloy-actuated resettable locking device for magnetic bearing reaction wheel

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaoyong; Yan, Xiaojun; Zhang, Shaowei; Nie, Jingxu

    2014-01-01

    The current investigation proposes a shape memory alloy (SMA)-actuated resettable locking device for magnetic bearing reaction wheel. The device employed two SMA wire-based actuators to realize locking and unlocking. Dual-slope mating surfaces were used on one hand to transmit the motion between a moving part and a clamp, and on the other hand to achieve a self-locking linkage in the locking state. Moreover, geometric parameters of the two SMA wires and corresponding bias springs were also designed. Based on the proposed design scheme, four locking devices were manufactured and assembled. Performance and environmental tests were performed to verify the proposed locking device. Test results show that the locking device can protect the magnetic bearing reaction wheel from launch vibration damage, and can withstand the thermal environment in the launch and on-orbit stage. Moreover, the device can be successfully operated for 76 times, and the response time for the locking and unlocking processes under 7 V power supply is 0.9 s and 5.6 s, respectively. Considering the results obtained from these tests, we conclude that the proposed resettable locking device is an attractive alternative technology to conventional motor-driven or pyrotechnics-based technologies, and can be applied reliably in the magnetic bearing reaction wheel.

  19. Development of a novel shape memory alloy-actuated resettable locking device for magnetic bearing reaction wheel.

    PubMed

    Zhang, Xiaoyong; Yan, Xiaojun; Zhang, Shaowei; Nie, Jingxu

    2014-01-01

    The current investigation proposes a shape memory alloy (SMA)-actuated resettable locking device for magnetic bearing reaction wheel. The device employed two SMA wire-based actuators to realize locking and unlocking. Dual-slope mating surfaces were used on one hand to transmit the motion between a moving part and a clamp, and on the other hand to achieve a self-locking linkage in the locking state. Moreover, geometric parameters of the two SMA wires and corresponding bias springs were also designed. Based on the proposed design scheme, four locking devices were manufactured and assembled. Performance and environmental tests were performed to verify the proposed locking device. Test results show that the locking device can protect the magnetic bearing reaction wheel from launch vibration damage, and can withstand the thermal environment in the launch and on-orbit stage. Moreover, the device can be successfully operated for 76 times, and the response time for the locking and unlocking processes under 7 V power supply is 0.9 s and 5.6 s, respectively. Considering the results obtained from these tests, we conclude that the proposed resettable locking device is an attractive alternative technology to conventional motor-driven or pyrotechnics-based technologies, and can be applied reliably in the magnetic bearing reaction wheel.

  20. A smooth impact rotation motor using a multi-layered torsional piezoelectric actuator.

    PubMed

    Morita, T; Yoshida, R; Okamoto, Y; Kurosawa, M K; Higuchi, T

    1999-01-01

    A smooth impact rotation motor was fabricated and successfully operated using a torsional piezo actuator. Yoshida et al. reported a linear type smooth impact motor in 1997. This linear motor demonstrated a high output force and a long stroke. A superior feature of the smooth impact drive is a high positioning resolution compared with an impact drive. The positioning resolution of SIDM (smooth impact drive mechanism) is equal to the piezo displacement. The reported positioning resolution of the linear type was 5 nm. Our rotation motor utilized a torsional actuator containing multi-layered piezoelectric material. The torsional actuator was cylindrical in shape with an outer diameter of 15 mm, an inner diameter of 10 mm, and a length of 11 mm. Torsional vibration performance was measured with a laser Doppler vibrometer. The obtained torsional displacement agreed with the calculated values and was sufficient to drive a rotor. The rotor was operated with a saw-shaped input voltage (180 V; 8 kHz). The revolution direction was reversible. The maximum revolution speed was 27 rpm, and the maximum output torque was 56 gfcm. In general, smooth-impact drives do not show high efficiency; however, the level of efficiency of our results (max., 0.045%) could be increased by improving the contact surface material. In addition, we are studying quantitative consideration, for example, about the optimum pre-load or frictional force.

  1. Laplace-Pressure Actuation of Liquid Metal Devices For Reconfigurable Electromagnetics

    NASA Astrophysics Data System (ADS)

    Cumby, Brad Lee

    Present day electronics are now taking on small form factors, unexpected uses, adaptability, and other features that only a decade ago were unimaginable even for most engineers. These electronic devices, such as tablets, smart phones, wearable sensors, and others, have further had a profound impact on how society interacts, works, maintains health, etc. To optimize electronics a growing trend has been to both minimize the physical space taken up by the individual electronic components as well as to maximize the number of functionalities in a single electronic device, forming a compact and efficient package. To accomplish this challenge in one step, many groups have used a design that has reconfigurable electromagnetic properties, maximizing the functionality density of the device. This would allow the replacement of multiple individual components into an integrated system that would achieve a similar result as the separate individual devices while taking up less space. For example, could a device have a reconfigurable antenna, allowing it optimal communication in various settings and across multiple communication bands, thus increasing functionality, range, and even reducing total device size. Thus far a majority of such reconfigurable devices involve connecting/disconnecting various physically static layouts to achieve a summation of individual components that give rise to multiple effects. However, this is not an ideal situation due to the fact that the individual components whether connected or not are taking up real-estate as well as electrical interference with adjacent connected components. This dissertation focuses on the reconfigurability of the metallic component of the electronic device, specifically microwave devices. This component used throughout this dissertation is that of an eutectic liquid metal alloy. The liquid metal allows the utilization of both the inherent compact form (spherical shape) of a liquid in the lowest energy state and the fact that

  2. Application of the moving-actuator type pump as a ventricular assist device: in vitro and in vivo studies.

    PubMed

    Lee, H S; Rho, Y R; Park, C Y; Hwang, C M; Kim, W G; Sun, K; Choi, M J; Lee, K K; Cheong, J T; Shim, E B; Min, B G

    2002-06-01

    A moving actuator type pump has been developed as a multifunctional Korean artificial heart (AnyHeart). The pump consists of a moving actuator as an energy converter, right and left sacs, polymer (or mechanical) valves, and a rigid polyurethane housing. The actuator containing a brushless DC motor moves back and forth on an epicyclical gear train to produce a pendular motion, which compresses both sacs alternately. Of its versatile functions of ventricular assist device and total artificial heart use, we have evaluated the system performance as a single or biventricular assist device through in vitro and in vivo experiments. Pump performance and anatomical feasibility were tested using various animals of different sizes. In the case of single ventricular assist device (VAD) use, one of the sacs remained empty and a mini-compliance chamber was attached to either an outflow or inflow port of the unused sac. The in vitro and in vivo studies show acceptable performance and pump behavior. Further extensive study is required to proceed to human application.

  3. Improvement in sodium cromoglycate delivery from a spacer device by use of an antistatic lining, immediate inhalation, and avoiding multiple actuations of drug.

    PubMed Central

    O'Callaghan, C; Lynch, J; Cant, M; Robertson, C

    1993-01-01

    BACKGROUND--Aerosols generated from metered dose inhalers may be highly charged. The aim of this study was to determine whether lining the walls of a polycarbonate spacer device with an antistatic agent would result in an increase in drug output. The effects of multiple actuations of drug into the spacer device and increasing residence time of drug within the spacer were also determined. METHODS--The amount of sodium cromoglycate contained in particles of various size available for inhalation (per 5 mg actuation) from a 750 ml polycarbonate spacer was determined by impinger measurement and spectrophotometric assay. RESULTS--Lining the spacer with an antistatic agent increased the mean (SD) amount of sodium cromoglycate in particles < 5 microns available for inhalation (per 5 mg actuation) by 244% from (0.59 (0.03) to 1.44 (0.2) mg). When there was a 20 second interval between actuation into the spacer device and inhalation, sodium cromoglycate available for inhalation in particles < 5 micrograms decreased by 67% (from 0.59 (0.03) mg to 0.2 (0.01) mg). Use of the spacer device increased sodium cromoglycate available for inhalation in respirable particles (< 5 microns) by 18% compared with direct delivery by metered dose inhaler. Multiple actuations into the spacer decreased the amount of sodium cromoglycate available for inhalation in particles < 5 microns by 31% after two actuations and 56% after three acutations. CONCLUSIONS--Multiple actuations of sodium cromoglycate into a spacer device before inhalation should be avoided, and inhalation from spacer devices should take place immediately after actuation to ensure maximum dose. Lining of a standard spacer device with an antistatic agent significantly increased output of sodium cromoglycate. This may have implications for improved therapeutic response and drug cost. Images PMID:8346488

  4. Designing of a Si-MEMS device with an integrated skeletal muscle cell-based bio-actuator.

    PubMed

    Fujita, Hideaki; Van Dau, Thanh; Shimizu, Kazunori; Hatsuda, Ranko; Sugiyama, Susumu; Nagamori, Eiji

    2011-02-01

    With the aim of designing a mechanical drug delivery system involving a bio-actuator, we fabricated a Micro Electro Mechanical Systems (MEMS) device that can be driven through contraction of skeletal muscle cells. The device is composed of a Si-MEMS with springs and ratchets, UV-crosslinked collagen film for cell attachment, and C2C12 muscle cells. The Si-MEMS device is 600 μm x 1000 μm in size and the width of the collagen film is 250 ~ 350 μm, which may allow the device to go through small blood vessels. To position the collagen film on the MEMS device, a thermo-sensitive polymer was used as the sacrifice-layer which was selectively removed with O₂ plasma at the positions where the collagen film was glued. The C2C12 myoblasts were seeded on the collagen film, where they proliferated and formed myotubes after induction of differentiation. When C2C12 myotubes were stimulated with electric pulses, contraction of the collagen film-C2C12 myotube complex was observed. When the edge of the Si-MEMS device was observed, displacement of ~8 μm was observed, demonstrating the possibility of locomotive movement when the device is placed on a track of adequate width. Here, we propose that the C2C12-collagen film complex is a new generation actuator for MEMS devices that utilize glucose as fuel, which will be useful in environments in which glucose is abundant such as inside a blood vessel.

  5. Integrating a piezoelectric actuator with mechanical and hydraulic devices to control camless engines

    NASA Astrophysics Data System (ADS)

    Mercorelli, Paolo; Werner, Nils

    2016-10-01

    The paper deals with some interdisciplinary aspects and problems concerning the actuation control which occur in the integration of a piezoelectric structure in an aggregate actuator consisting of a piezoelectric, a stroke ratio displacement, a mechanical and a hydraulic part. Problems like compensation of the piezo hysteresis effect, scaling force-position to obtain an adequate displacement of the actuator and finally the control of such a complex aggregate system are considered and solved. Even though this work considers a particular application, the solutions proposed in the paper are quite general. In fact, the considered technical aspects occurring in systems which utilize piezoelectric technologies can be used in a variegated gamma of actuators integrating piezoelectric technologies. A cascade controller is proposed to combine a Feedforward action with an internal and an external PI-Controller. The Feedforward Controller is based on the model of the whole actuator, so particular attention is paid to the model structure. The resulting Feedforward action is an adaptive one to compensate hydraulic pressure faults. Real measurements are shown.

  6. Subsea valve actuator for ultra deepwater

    SciTech Connect

    Ali, S.Z.; Skeels, H.B.; Montemayor, B.K.; Williams, M.R.

    1996-12-31

    This paper reviews the continuing development of gate valve and actuator technology for subsea completions extending into ultra deep water. The basic technical challenges inherent to subsea valve actuators are reviewed, along with the various factors which affect the design and performance of these devices in deepwater applications. The high external ambient pressures which occur in deep water, coupled with high specific gravity hydraulic control fluids, are shown to have a significant impact on the performance of the actuators. This paper presents design and analysis methods and the verification test procedures which are required to develop and qualify new deep water actuator designs. Gate valve actuators of the type described in this paper are currently in use on subsea christmas trees on the world`s deepest subsea wells offshore Brazil (water depths >3,000 feet). New applications of the deepwater actuators are in process for upcoming Gulf of Mexico subsea production systems in water depths approaching 6,000 feet. The actuator/valve development method described in this paper has been confirmed by performance verification testing of full scale valves and actuators using a hyperbaric chamber to simulate ultra deepwater operating conditions. Performance of the test valves and actuators correlated very well with analytical predictions. Test results have confirmed that the new valve actuator designs will satisfy API 17D performance requirements for water depths up to 7,500 feet, well in excess of the upcoming GOM application.

  7. Hydrodynamic and static performance evaluation of the moving-actuator type biventricular assist device, AnyHeart.

    PubMed

    Chung, Jinhan; Lee, Jung Joo; Choi, Jaesoon; Kim, Jongwon; Min, Byoung Goo

    2003-01-01

    This study evaluated the hydrodynamic characteristics and efficiency of the moving-actuator type implantable biventricular assist device (BVAD), AnyHeart. A blood analog made of 52% glycerin and 48% water was used to simulate the density and viscosity of blood. The maximum pump flow was 9 L/min with 28.8 watts of power input, and the maximum electrical-to-hydraulic power conversion efficiency was approximately 11% at a pump flow of 3.5 L/min. The pump was able to generate 4 L/min output against 100 mm Hg afterload with less than 9 watts of power input. In addition to the overall system efficiency, the inner subpart power conversion efficiency was also evaluated. The system was subdivided according to system mechanism into three major parts: motor part, actuator part, and blood sac part. In normal working conditions (4 L/min, 100 mm Hg) with the AnyHeart, the total system efficiency was 8%, with subpart efficiencies of 50%, 85%, and 19% for motor part, actuator part, and blood sac part, respectively. The pump performance assessed in the in vitro Donovan-type mock circulation loop test was acceptable as a BVAD in terms of flow and pressure.

  8. Wireless actuation of bulk acoustic modes in micromechanical resonators

    NASA Astrophysics Data System (ADS)

    Mateen, Farrukh; Brown, Benjamin; Erramilli, Shyamsunder; Mohanty, Pritiraj

    2016-08-01

    We report wireless actuation of a Lamb wave micromechanical resonator from a distance of over 1 m with an efficiency of over 15%. Wireless actuation of conventional micromechanical resonators can have broad impact in a number of applications from wireless communication and implantable biomedical devices to distributed sensor networks.

  9. Remote switch actuator

    DOEpatents

    Haas, Edwin Gerard; Beauman, Ronald; Palo, Jr., Stefan

    2013-01-29

    The invention provides a device and method for actuating electrical switches remotely. The device is removably attached to the switch and is actuated through the transfer of a user's force. The user is able to remain physically removed from the switch site obviating need for protective equipment. The device and method allow rapid, safe actuation of high-voltage or high-current carrying electrical switches or circuit breakers.

  10. Thermal MEMS actuator operation in aqueous media/seawater: Performance enhancement through atomic layer deposition post processing of PolyMUMPs devices

    SciTech Connect

    Warnat, Stephan Forbrigger, Cameron; Hubbard, Ted; Bertuch, Adam; Sundaram, Ganesh

    2015-01-15

    A method to enhance thermal microelectromechanical systems (MEMS) actuators in aqueous media by using dielectric encapsulation layers is presented. Aqueous media reduces the available mechanical energy of the thermal actuator through an electrical short between actuator structures. Al{sub 2}O{sub 3} and TiO{sub 2} laminates with various thicknesses were deposited on packaged PolyMUMPs devices to electrically separate the actuator from the aqueous media. Atomic layer deposition was used to form an encapsulation layer around released MEMS structures and the package. The enhancement was assessed by the increase of the elastic energy, which is proportional to the mechanical stiffness of the actuator and the displacement squared. The mechanical stiffness of the encapsulated actuators compared with the noncoated actuators was increased by factors ranging from 1.45 (for 45 nm Al{sub 2}O{sub 3} + 20 nm TiO{sub 2}) to 1.87 (for 90 nm Al{sub 2}O{sub 3} + 40 nm TiO{sub 2}). Displacement measurements were made for all laminate combinations in filtered tap water and seawater by using FFT based displacement measurement technique with a repeatability of ∼10 nm. For all laminate structures, the elastic energy increased and enhanced the actuator performance: In seawater, the mechanical output energy increased by factors ranging from 5 (for 90 nm Al{sub 2}O{sub 3}) to 11 (for 90 nm Al{sub 2}O{sub 3} + 40 nm TiO{sub 2}). The authors also measured the long-term actuator stability/reliability in seawater. Samples were stored for 29 days in seawater and tested for 17 days in seawater. Laminates with TiO{sub 2} layers allowed constant operation over the entire measurement period.

  11. Double chamber ventricular assist device with a roller screw linear actuator driven by left and right latissimus dorsi muscles.

    PubMed

    Takatani, S; Takami, Y; Nakazawa, T; Jacobs, G; Nose, Y

    1995-01-01

    A double chamber ventricular assist device (VAD) with a roller screw linear muscle actuator (RSLMA) driven by the left and right latissimus dorsi muscles was developed. The inflow port of each chamber was connected to form the compound inflow port, and the outflow ports were connected to form the compound outflow port. The advantages of this system include 1) the contraction of each muscle contributes to ejection from each ventricle into the common outflow port, thus doubling the net outflow; 2) through proper adjustment of muscle length, the preload to each muscle can be optimized to yield the maximum muscle force; 3) muscle can be stimulated at a lower rate to reduce fatigue and to optimize muscle performance; and 4) the compliance chamber needed in the implantable VAD system is not required with this system. In vitro evaluation in the mock loop with the human arm actuating the RSLMA revealed that the double chamber VAD can provide pump flows of 2-4 L/min against an afterload of 100 mmHg at a stimulation rate of 35-50 beats per minute. The power requirement for each muscle ranged from 2.5 to 3 W at a muscle stroke length of 4 cm. These results verify that the double chamber VAD with the RSLMA driven by the left and right latissimus dorsi muscles can meet the design requirements of a muscle driven VAD to assist the left heart.

  12. Electrically actuatable doped polymer flakes and electrically addressable optical devices using suspensions of doped polymer flakes in a fluid host

    DOEpatents

    Trajkovska-Petkoska, Anka; Jacobs, Stephen D.; Marshall, Kenneth L.; Kosc, Tanya Z.

    2010-05-11

    Doped electrically actuatable (electrically addressable or switchable) polymer flakes have enhanced and controllable electric field induced motion by virtue of doping a polymer material that functions as the base flake matrix with either a distribution of insoluble dopant particles or a dopant material that is completely soluble in the base flake matrix. The base flake matrix may be a polymer liquid crystal material, and the dopants generally have higher dielectric permittivity and/or conductivity than the electrically actuatable polymer base flake matrix. The dopant distribution within the base flake matrix may be either homogeneous or non-homogeneous. In the latter case, the non-homogeneous distribution of dopant provides a dielectric permittivity and/or conductivity gradient within the body of the flakes. The dopant can also be a carbon-containing material (either soluble or insoluble in the base flake matrix) that absorbs light so as to reduce the unpolarized scattered light component reflected from the flakes, thereby enhancing the effective intensity of circularly polarized light reflected from the flakes when the flakes are oriented into a light reflecting state. Electro-optic devices contain these doped flakes suspended in a host fluid can be addressed with an applied electric field, thus controlling the orientation of the flakes between a bright reflecting state and a non-reflecting dark state.

  13. Hand Held Device for Wireless Powering and Interrogation of Biomems Sensors and Actuators

    NASA Technical Reports Server (NTRS)

    Miranda, Felix Antonio (Inventor); Simons, Rainee N (Inventor)

    2007-01-01

    A compact, hand-held device for wireless powering, interrogation and data retrieval from at least one implanted sensor. The hand-held device includes an antenna for powering an implanted sensor and for receiving data from the implanted sensor to the hand-held device for at least one of storage, display or analysis. The hand-held device establishes electromagnetic coupling with a low radiating radio frequency power inductor in the implanted sensor at a predefined separation and the antenna geometry allows for the antenna to power, interrogate and retrieve data from the implanted sensor without strapping the hand-held device to a human body housing the implanted sensor The hand-held device optionally allows for activation of the implanted sensor only during interrogation and data retrieval.

  14. Capacitive sensing of droplets for microfluidic devices based on thermocapillary actuation.

    PubMed

    Chen, Jian Z; Darhuber, Anton A; Troian, Sandra M; Wagner, Sigurd

    2004-10-01

    The design and performance of a miniaturized coplanar capacitive sensor is presented whose electrode arrays can also function as resistive microheaters for thermocapillary actuation of liquid films and droplets. Optimal compromise between large capacitive signal and high spatial resolution is obtained for electrode widths comparable to the liquid film thickness measured, in agreement with supporting numerical simulations which include mutual capacitance effects. An interdigitated, variable width design, allowing for wider central electrodes, increases the capacitive signal for liquid structures with non-uniform height profiles. The capacitive resolution and time response of the current design is approximately 0.03 pF and 10 ms, respectively, which makes possible a number of sensing functions for nanoliter droplets. These include detection of droplet position, size, composition or percentage water uptake for hygroscopic liquids. Its rapid response time allows measurements of the rate of mass loss in evaporating droplets.

  15. Development of nonresonant elliptical vibration cutting device based on parallel piezoelectric actuator

    NASA Astrophysics Data System (ADS)

    Jieqiong, Lin; Jinguo, Han; Mingming, Lu; Yan, Gu; Wenhui, Zhu

    2017-03-01

    Because of its unique intermittent cutting and friction reversal characteristics, elliptical vibration cutting (EVC) has become the most promising method for machining of otherwise difficult-to-machine materials in recent years. However, some problems remain in the research towards development of EVC devices. In this paper, with the intention of solving the existing problems of EVC devices, a nonresonant-type EVC device that is driven by two parallel piezoelectric stacks is developed. After the principle of the device is introduced, the stiffness of the EVC device is calculated, and device simulations and experimental evaluations are performed. In addition, the performance of the EVC device is also tested. The experimental results show that the maximum strokes of the two directional mechanisms operating along the X- and Z-axes can reach 16.78 μm and 15.35 μm, respectively, and the motion resolutions in the X-axis and Z-axis directions both reach approximately 50 nm. Finally, a curved surface cutting experiment is carried out to verify the performance of the developed device.

  16. Simulation of a liquid droplet ejection device using multi-actuator

    NASA Astrophysics Data System (ADS)

    Ono, Yoshihiro; Yoshino, Michitaka; Yasuda, Akira; Tanuma, Chiaki

    2016-07-01

    An equivalent circuit model for a liquid droplet ejection device using a multiactuator has been developed. The equivalent circuit was simplified using a gyrator in the synthesis of the outputs of many elements. The simulation was performed for an inkjet head having three piezoelectric elements using MATLAB/Simulink. In this model, the pressure chamber is filled with a Newtonian fluid. For this reason, the model assumed only the resistance component of the pressure chamber and the nozzle as a load. Furthermore, since the resistance component of the inlet is much larger than that of the nozzle, it is not considered in this model. As a result, by providing a time difference between the driving signals of the piezoelectric elements, we found that the pressure of the ink chamber could be arbitrarily controlled. By this model, it becomes possible to control the pressure in the ink chamber of the inkjet head required for the ejection of various inks.

  17. Impact of ns-DBD plasma actuation on the boundary layer transition using convective heat transfer measurements

    NASA Astrophysics Data System (ADS)

    Ullmer, Dirk; Peschke, Philip; Terzis, Alexandros; Ott, Peter; Weigand, Bernhard

    2015-09-01

    This paper demonstrates that the impact of nanosecond pulsed dielectric barrier discharge (ns-DBD) actuators on the structure of the boundary layer can be investigated using quantitative convective heat transfer measurements. For the experiments, the flow over a flat plate with a C4 leading edge thickness distribution was examined at low speed incompressible flow (6.6-11.5 m s-1). An ns-DBD plasma actuator was mounted 5 mm downstream of the leading edge and several experiments were conducted giving particular emphasis on the effect of actuation frequency and the freestream velocity. Local heat transfer distributions were measured using the transient liquid crystal technique with and without plasma activated. As a result, any effect of plasma on the structure of the boundary layer is interpreted by local heat transfer coefficient distributions which are compared with laminar and turbulent boundary layer correlations. The heat transfer results, which are also confirmed by hot-wire measurements, show the considerable effect of the actuation frequency on the location of the transition point elucidating that liquid crystal thermography is a promising method for investigating plasma-flow interactions very close to the wall. Additionally, the hot-wire measurements indicate possible velocity oscillations in the near wall flow due to plasma activation.

  18. Bi-stable optical actuator

    DOEpatents

    Holdener, Fred R.; Boyd, Robert D.

    2000-01-01

    The present invention is a bi-stable optical actuator device that is depowered in both stable positions. A bearing is used to transfer motion and smoothly transition from one state to another. The optical actuator device may be maintained in a stable position either by gravity or a restraining device.

  19. Fabrication of Polyurethane Dielectric Actuators

    DTIC Science & Technology

    2005-01-01

    a summary of a 3 year Technology Investment Fund Project entitled “Dielectric Polymer Actuators for Active/ Passive Vibration Isolation”, which was...completed in March 2005. The purpose of this project was to investigate dielectric polymer materials for potential use in active/ passive vibration...devices and systems based on dielectric polymer actuators. Keywords: dielectric actuators, electroactive polymers , Technology Investment Fund 1

  20. MEMS fluidic actuator

    DOEpatents

    Kholwadwala, Deepesh K.; Johnston, Gabriel A.; Rohrer, Brandon R.; Galambos, Paul C.; Okandan, Murat

    2007-07-24

    The present invention comprises a novel, lightweight, massively parallel device comprising microelectromechanical (MEMS) fluidic actuators, to reconfigure the profile, of a surface. Each microfluidic actuator comprises an independent bladder that can act as both a sensor and an actuator. A MEMS sensor, and a MEMS valve within each microfluidic actuator, operate cooperatively to monitor the fluid within each bladder, and regulate the flow of the fluid entering and exiting each bladder. When adjacently spaced in a array, microfluidic actuators can create arbitrary surface profiles in response to a change in the operating environment of the surface. In an embodiment of the invention, the profile of an airfoil is controlled by independent extension and contraction of a plurality of actuators, that operate to displace a compliant cover.

  1. Crack detection in a wheel end spindle using wave propagation via modal impacts and piezo actuation

    NASA Astrophysics Data System (ADS)

    Ackers, Spencer; Evans, Ronald; Johnson, Timothy; Kess, Harold; White, Jonathan; Adams, Douglas E.; Brown, Pam

    2006-03-01

    This research demonstrates two methodologies for detecting cracks in a metal spindle housed deep within a vehicle wheel end assembly. First, modal impacts are imposed on the hub of the wheel in the longitudinal direction to produce broadband elastic wave excitation spectra out to 7000 Hz. The response data on the flange is collected using 3000 Hz bandwidth accelerometers. It is shown using frequency response analysis that the crack produces a filter, which amplifies the elastic response of the surrounding components of the wheel assembly. Experiments on wheel assemblies mounted on the vehicle with the vehicle lifted off the ground are performed to demonstrate that the modal impact method can be used to nondestructively evaluate cracks of varying depths despite sources of variability such as the half shaft angular position relative to the non-rotating spindle. Second, an automatic piezo-stack actuator is utilized to excite the wheel hub with a swept sine signal extending from 20 kHz. Accelerometers are then utilized to measure the response on the flange. It is demonstrated using frequency response analysis that the crack filters waves traveling from the hub to the flange. A simple finite element model is used to interpret the experimental results. Challenges discussed include variability from assembly to assembly, the variability in each assembly, and the high amount of damping present in each assembly due to the transmission gearing, lubricant, and other components in the wheel end. A two-channel measurement system with a graphical user interface for detecting cracks was also developed and a procedure was created to ensure that operators properly perform the test.

  2. A novel smooth impact drive mechanism actuation method with dual-slider for a compact zoom lens system.

    PubMed

    Lee, Jonghyun; Kwon, Won Sik; Kim, Kyung-Soo; Kim, Soohyun

    2011-08-01

    In this paper, a novel actuation method for a smooth impact drive mechanism that positions dual-slider by a single piezo-element is introduced and applied to a compact zoom lens system. A mode chart that determines the state of the slider at the expansion or shrinkage periods of the piezo-element is presented, and the design guide of a driving input profile is proposed. The motion of dual-slider holding lenses is analyzed at each mode, and proper modes for zoom functions are selected for the purpose of positioning two lenses. Because the proposed actuation method allows independent movement of two lenses by a single piezo-element, the zoom lens system can be designed to be compact. For a feasibility test, a lens system composed of an afocal zoom system and a focusing lens was developed, and the passive auto-focus method was implemented.

  3. A Gas-Actuated Projectile Launcher for High-Energy Impact Testing of Structures

    NASA Technical Reports Server (NTRS)

    Ambur, Damodar R.; Jaunky, Navin; Lawson, Robin E.; Knight, Norman F., Jr.; Lyle, Karen H.

    1999-01-01

    A gas-act,uated penetration device has been developed for high-energy impact testing of structures. The high-energy impact. t,estiiig is for experimental simulation of uncontained engine failures. The non-linear transient finite element, code LS-DYNA3D has been used in the numerical simula.tions of a titanium rectangular blade with a.n aluminum target, plate. Threshold velocities for different combinations of pitch and yaw angles of the impactor were obtained for the impactor-target, t8est configuration in the numerica.1 simulations. Complet,e penet,ration of the target plate was also simulat,ed numerically. Finally, limited comparison of analytical and experimental results is presented for complete penetration of the target by the impactor.

  4. Advanced Launch System (ALS) actuation and power systems impact operability and cost

    NASA Technical Reports Server (NTRS)

    Sundberg, Gale R.

    1990-01-01

    To obtain the Advanced Launch System (ALS) primary goals of reduced costs and improved operability, there must be significant reductions in the launch operations and servicing requirements relative to current vehicle designs and practices. One of the primary methods for achieving these goals is by using vehicle electrical power system and controls for all actuation and avionics requirements. A brief status review of the ALS and its associated Advanced Development Program is presented to demonstrate maturation of those technologies that will help meet the overall operability and cost goals. The electric power and actuation systems are highlighted as a specific technology ready not only to meet the stringent ALS goals (cryogenic field valves and thrust vector controls with peak power demands to 75 hp), but also those of other launch vehicles, military and civilian aircraft, lunar/Martian vehicles, and a multitude of commercial applications.

  5. Cylindrical Piezoelectric Fiber Composite Actuators

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.

    2008-01-01

    The use of piezoelectric devices has become widespread since Pierre and Jacques Curie discovered the piezoelectric effect in 1880. Examples of current applications of piezoelectric devices include ultrasonic transducers, micro-positioning devices, buzzers, strain sensors, and clocks. The invention of such lightweight, relatively inexpensive piezoceramic-fiber-composite actuators as macro fiber composite (MFC) actuators has made it possible to obtain strains and displacements greater than those that could be generated by prior actuators based on monolithic piezoceramic sheet materials. MFC actuators are flat, flexible actuators designed for bonding to structures to apply or detect strains. Bonding multiple layers of MFC actuators together could increase force capability, but not strain or displacement capability. Cylindrical piezoelectric fiber composite (CPFC) actuators have been invented as alternatives to MFC actuators for applications in which greater forces and/or strains or displacements may be required. In essence, a CPFC actuator is an MFC or other piezoceramic fiber composite actuator fabricated in a cylindrical instead of its conventional flat shape. Cylindrical is used here in the general sense, encompassing shapes that can have circular, elliptical, rectangular or other cross-sectional shapes in the planes perpendicular to their longitudinal axes.

  6. Shape memory alloy actuator

    DOEpatents

    Varma, Venugopal K.

    2001-01-01

    An actuator for cycling between first and second positions includes a first shaped memory alloy (SMA) leg, a second SMA leg. At least one heating/cooling device is thermally connected to at least one of the legs, each heating/cooling device capable of simultaneously heating one leg while cooling the other leg. The heating/cooling devices can include thermoelectric and/or thermoionic elements.

  7. MRF-actuator concepts for HMI and industrial applications

    NASA Astrophysics Data System (ADS)

    Maas, Jürgen; Güth, Dirk; Wiehe, Ansgar

    2011-03-01

    Actuators based on magnetorheological fluids, like brakes and clutches, offer a high dynamical and almost linear force generation combined with fast response times and a high force density. In this paper concepts of MRF based actuators with radial and axial shear gaps for realizing braking and coupling functions in HMI devices and industrial applications are presented. Designing well defined shear gaps and appropriate electromagnetically driven excitation systems, combined brake and clutch functionalities can be realized even by providing current less bias torques. While actuators using radial shear gaps meet often the requirements for applications with low rotational speeds, e.g. HMI applications, designs with axial shear gaps are predestinated for applications for higher rotational speeds due to their robustness against centrifugation impacts. Experimental results of realized actuators underlining the potential for HMI and industrial applications and reveal the advantages of MRF as the smooth adjustable torque, fast response time and noiseless operation.

  8. Designing and testing lightweight shoulder prostheses with hybrid actuators for movements involved in typical activities of daily living and impact absorption.

    PubMed

    Sekine, Masashi; Kita, Kahori; Yu, Wenwei

    2015-01-01

    Unlike forearm amputees, transhumeral amputees have residual stumps that are too small to provide a sufficient range of operation for their prosthetic parts to perform usual activities of daily living. Furthermore, it is difficult for small residual stumps to provide sufficient impact absorption for safe manipulation in daily living, as intact arms do. Therefore, substitution of upper limb function in transhumeral amputees requires a sufficient range of motion and sufficient viscoelasticity for shoulder prostheses under critical weight and dimension constraints. We propose the use of two different types of actuators, ie, pneumatic elastic actuators (PEAs) and servo motors. PEAs offer high power-to-weight performance and have intrinsic viscoelasticity in comparison with motors or standard industrial pneumatic cylinder actuators. However, the usefulness of PEAs in large working spaces is limited because of their short strokes. Servo motors, in contrast, can be used to achieve large ranges of motion. In this study, the relationship between the force and stroke of PEAs was investigated. The impact absorption of both types of actuators was measured using a single degree-of-freedom prototype to evaluate actuator compliance for safety purposes. Based on the fundamental properties of the actuators identified, a four degree-of-freedom robotic arm is proposed for prosthetic use. The configuration of the actuators and functional parts was designed to achieve a specified range of motion and torque calculated from the results of a simulation of typical movements performed in usual activities of daily living. Our experimental results showed that the requirements for the shoulder prostheses could be satisfied.

  9. Designing and testing lightweight shoulder prostheses with hybrid actuators for movements involved in typical activities of daily living and impact absorption

    PubMed Central

    Sekine, Masashi; Kita, Kahori; Yu, Wenwei

    2015-01-01

    Unlike forearm amputees, transhumeral amputees have residual stumps that are too small to provide a sufficient range of operation for their prosthetic parts to perform usual activities of daily living. Furthermore, it is difficult for small residual stumps to provide sufficient impact absorption for safe manipulation in daily living, as intact arms do. Therefore, substitution of upper limb function in transhumeral amputees requires a sufficient range of motion and sufficient viscoelasticity for shoulder prostheses under critical weight and dimension constraints. We propose the use of two different types of actuators, ie, pneumatic elastic actuators (PEAs) and servo motors. PEAs offer high power-to-weight performance and have intrinsic viscoelasticity in comparison with motors or standard industrial pneumatic cylinder actuators. However, the usefulness of PEAs in large working spaces is limited because of their short strokes. Servo motors, in contrast, can be used to achieve large ranges of motion. In this study, the relationship between the force and stroke of PEAs was investigated. The impact absorption of both types of actuators was measured using a single degree-of-freedom prototype to evaluate actuator compliance for safety purposes. Based on the fundamental properties of the actuators identified, a four degree-of-freedom robotic arm is proposed for prosthetic use. The configuration of the actuators and functional parts was designed to achieve a specified range of motion and torque calculated from the results of a simulation of typical movements performed in usual activities of daily living. Our experimental results showed that the requirements for the shoulder prostheses could be satisfied. PMID:26185472

  10. Hydraulic actuation technology for full- and semi-active railway suspensions

    NASA Astrophysics Data System (ADS)

    Goodall, Roger; Freudenthaler, Gerhard; Dixon, Roger

    2014-12-01

    The paper describes a simulation study that provides a comprehensive comparison between full-active and semi-active suspensions for improving the vertical ride quality of railway vehicles. It includes an assessment of the ride quality benefits that can theoretically be achieved with idealised devices, and also examines the impact of real devices based upon hydraulic actuation technology.

  11. Aerosol-Jet-Printing silicone layers and electrodes for stacked dielectric elastomer actuators in one processing device

    NASA Astrophysics Data System (ADS)

    Reitelshöfer, Sebastian; Göttler, Michael; Schmidt, Philip; Treffer, Philipp; Landgraf, Maximilian; Franke, Jörg

    2016-04-01

    In this contribution we present recent findings of our efforts to qualify the so called Aerosol-Jet-Printing process as an additive manufacturing approach for stacked dielectric elastomer actuators (DEA). With the presented system we are able to print the two essential structural elements dielectric layer and electrode in one machine. The system is capable of generating RTV-2 silicone layers made of Wacker Elastosil P 7670. Therefore, two aerosol streams of both precursor components A and B are generated in parallel and mixed in one printing nozzle that is attached to a 4-axis kinematic. At maximum speed the printing of one circular Elastosil layer with a calculated thickness of 10 μm and a diameter of 1 cm takes 12 seconds while the process keeps stable for 4.5 hours allowing a quite high overall material output and the generation of numerous silicone layers. By adding a second printing nozzle and the infrastructure to generate a third aerosol, the system is also capable of printing inks with conductive particles in parallel to the silicone. We have printed a reduced graphene oxide (rGO) ink prepared in our lab to generate electrodes on VHB 4905, Elastosil foils and finally on Aerosol-Jet-Printed Elastosil layers. With rGO ink printed on Elastosil foil, layers with a 4-point measured sheet resistance as low as 4 kΩ can be realized leaving room for improving the electrode printing time, which at the moment is not as good as the quite good time-frame for printing the silicone layers. Up to now we have used the system to print a fully functional two-layer stacked DEA to demonstrate the principle of continuously 3D printing actuators.

  12. Compact electrostatic comb actuator

    DOEpatents

    Rodgers, M. Steven; Burg, Michael S.; Jensen, Brian D.; Miller, Samuel L.; Barnes, Stephen M.

    2000-01-01

    A compact electrostatic comb actuator is disclosed for microelectromechanical (MEM) applications. The actuator is based upon a plurality of meshed electrostatic combs, some of which are stationary and others of which are moveable. One or more restoring springs are fabricated within an outline of the electrostatic combs (i.e. superposed with the moveable electrostatic combs) to considerably reduce the space required for the actuator. Additionally, a truss structure is provided to support the moveable electrostatic combs and prevent bending or distortion of these combs due to unbalanced electrostatic forces or external loading. The truss structure formed about the moveable electrostatic combs allows the spacing between the interdigitated fingers of the combs to be reduced to about one micron or less, thereby substantially increasing the number of active fingers which can be provided in a given area. Finally, electrostatic shields can be used in the actuator to substantially reduce unwanted electrostatic fields to further improve performance of the device. As a result, the compact electrostatic comb actuator of the present invention occupies only a fraction of the space required for conventional electrostatic comb actuators, while providing a substantial increase in the available drive force (up to one-hundred times).

  13. Organisational impact: Definition and assessment methods for medical devices.

    PubMed

    Roussel, Christophe; Carbonneil, Cédric; Audry, Antoine

    2016-02-01

    Health technology assessment (HTA) is a rapidly developing area and the value of taking non-clinical fields into consideration is growing. Although the health-economic aspect is commonly recognised, evaluating organisational impact has not been studied nearly as much. The goal of this work was to provide a definition of organisational impact in the sector of medical devices by defining its contours and exploring the evaluation methods specific to this field. Following an analysis of the literature concerning the impact of technologies on organisations as well as the medical literature, and also after reviewing the regulatory texts in this respect, the group of experts identified 12 types of organisational impact. A number of medical devices were carefully screened using the criteria grid, which proved to be operational and to differentiate properly. From the analysis of the practice and of the methods described, the group was then able to derive a few guidelines to successfully evaluate organisational impact. This work shows that taking organisational impact into consideration may be critical alongside of the other criteria currently in favour (clinically and economically). What remains is to confer a role in the decision-making process on this factor and one that meets the economic efficiency principle.

  14. Electrically controlled polymeric gel actuators

    DOEpatents

    Adolf, Douglas B.; Shahinpoor, Mohsen; Segalman, Daniel J.; Witkowski, Walter R.

    1993-01-01

    Electrically controlled polymeric gel actuators or synthetic muscles capable of undergoing substantial expansion and contraction when subjected to changing pH environments, temperature, or solvent. The actuators employ compliant containers for the gels and their solvents. The gels employed may be cylindrical electromechanical gel fibers such as polyacrylamide fibers or a mixture of poly vinyl alcohol-polyacrylic acid arranged in a parallel aggregate and contained in an electrolytic solvent bath such as salt water. The invention includes smart, electrically activated devices exploiting this phenomenon. These devices are capable of being manipulated via active computer control as large displacement actuators for use in adaptive structure such as robots.

  15. Electrically controlled polymeric gel actuators

    DOEpatents

    Adolf, D.B.; Shahinpoor, M.; Segalman, D.J.; Witkowski, W.R.

    1993-10-05

    Electrically controlled polymeric gel actuators or synthetic muscles are described capable of undergoing substantial expansion and contraction when subjected to changing pH environments, temperature, or solvent. The actuators employ compliant containers for the gels and their solvents. The gels employed may be cylindrical electromechanical gel fibers such as polyacrylamide fibers or a mixture of poly vinyl alcohol-polyacrylic acid arranged in a parallel aggregate and contained in an electrolytic solvent bath such as salt water. The invention includes smart, electrically activated devices exploiting this phenomenon. These devices are capable of being manipulated via active computer control as large displacement actuators for use in adaptive structure such as robots. 11 figures.

  16. Backed Bending Actuator

    NASA Technical Reports Server (NTRS)

    Costen, Robert C.; Su, Ji

    2004-01-01

    Bending actuators of a proposed type would partly resemble ordinary bending actuators, but would include simple additional components that would render them capable of exerting large forces at small displacements. Like an ordinary bending actuator, an actuator according to the proposal would include a thin rectangular strip that would comprise two bonded layers (possibly made of electroactive polymers with surface electrodes) and would be clamped at one end in the manner of a cantilever beam. Unlike an ordinary bending actuator, the proposed device would include a rigid flat backplate that would support part of the bending strip against backward displacement; because of this feature, the proposed device is called a backed bending actuator. When an ordinary bending actuator is inactive, the strip typically lies flat, the tip displacement is zero, and the force exerted by the tip is zero. During activation, the tip exerts a transverse force and undergoes a bending displacement that results from the expansion or contraction of one or more of the bonded layers. The tip force of an ordinary bending actuator is inversely proportional to its length; hence, a long actuator tends to be weak. The figure depicts an ordinary bending actuator and the corresponding backed bending actuator. The bending, the tip displacement (d(sub t)), and the tip force (F) exerted by the ordinary bending actuator are well approximated by the conventional equations for the loading and deflection of a cantilever beam subject to a bending moment which, in this case, is applied by the differential expansion or contraction of the bonded layers. The bending, displacement, and tip force of the backed bending actuator are calculated similarly, except that it is necessary to account for the fact that the force F(sub b) that resists the displacement of the tip could be sufficient to push part of the strip against the backplate; in such a condition, the cantilever beam would be effectively shortened

  17. Thermally actuated piston micromirror arrays

    NASA Astrophysics Data System (ADS)

    Cowan, William D.; Bright, Victor M.

    1997-07-01

    This paper reports design and characterization testing of thermally actuated piston micromirror arrays. The micromirrors were fabricated in the DARPA-sponsored MUMPs polysilicon surface micromachining process. The power averaging characteristic of thermal actuation is exploited in a novel line addressing scheme which reduces wiring for an n2 array to 2n wires. Mirror deflections were measured with a microscope laser interferometer system equipped with a vacuum chamber. Data presented includes device uniformity, frequency response, and deflection versus drive power for varied ambient pressure. Initial test results confirm that thermally actuated piston micromirrors offer several advantages over more common electrostatic designs. Thermally actuated micromirrors offer greater deflections at drive voltages compatible with CMOS circuitry. Measured thermal piston micromirror deflection versus drive voltage is nonlinear, but does not exhibit the 'snap through instability' characteristic of electrostatic devices. Operation of thermally actuated devices in rarefied ambient significantly decreases power dissipation. For a given deflection range, the power reduction facilitated by vacuum operation makes large arrays feasible. Frequency response of thermally actuated devices is limited by the ability of the device to dissipate heat, but operation at 1 kHz rates is feasible.

  18. TMD 2D Materials: Defects, Passivation, Functionalization and Device Impact

    NASA Astrophysics Data System (ADS)

    Wallace, Robert

    Transition metal dichalcogenides (TMDs) such as MoS2 have become popular in ``beyond CMOS'' device concepts and research due to their band structure in two-dimensional layers - viz. a significant band gap. Various device demonstrations have been reported utilizing exfoliated and synthesized single/few layer TMDs for possible electronic and photonic applications. The performance of such devices will also necessarily depend upon the TMD layer quality. The impact of defects and impurities on device transport characteristics is of interest, as well as methods to passivate and minimize their effects. The interaction of the TMDs with component materials, such as dielectrics and contacts, is also an important aspect. This talk will present our recent work using in-situ and ex-situ methods to understand the physics and chemistry of TMDs and their associated interfaces. This work was supported in part by the LEAST Center, one of the six SRC STARnet Centers, sponsored by MARCO and DARPA; the SWAN Center sponsored by the SRC NRI and NIST, and the NSF under Award ECCS-1407765.

  19. Folded dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Carpi, Federico; Salaris, Claudio; DeRossi, Danilo

    2007-04-01

    Polymer-based linear actuators with contractile ability are currently demanded for several types of applications. Within the class of dielectric elastomer actuators, two basic configurations are available today for such a purpose: the multi-layer stack and the helical structure. The first consists of several layers of elementary planar actuators stacked in series mechanically and parallel electrically. The second configuration relies on a couple of helical compliant electrodes alternated with a couple of helical dielectrics. The fabrication of both these configurations presents some specific drawbacks today, arising from the peculiarity of each structure. Accordingly, the availability of simpler solutions may boost the short-term use of contractile actuators in practical applications. For this purpose, a new configuration is here described. It consists of a monolithic structure made of an electroded sheet, which is folded up and compacted. The resulting device is functionally equivalent to a multi-layer stack with interdigitated electrodes. However, with respect to a stack the new configuration is advantageously not discontinuous and can be manufactured in one single phase, avoiding layer-by-layer multi-step procedures. The development and preliminary testing of prototype samples of this new actuator made of a silicone elastomer are presented here.

  20. Electromechanical actuators

    NASA Technical Reports Server (NTRS)

    Bigham, J.

    1982-01-01

    Materials illustrating a presentation on the development of electromechanical actuators (EMA) for electric flight systems are presented. Technology issues are identified, and major steps relative to EMA development, NASA's role, and a technology procurement plan are outlined.

  1. Impact of Environmental Enrichment Devices on NTP In Vivo Studies

    PubMed Central

    Churchill, Sheba R.; Morgan, Daniel L.; Kissling, Grace E.; Travlos, Gregory S.; King-Herbert, Angela P.

    2015-01-01

    The goal of this study was to determine whether the use of nesting material or polycarbonate shelters, as enrichment devices would have an impact on endpoints commonly measured during the conduct of the National Toxicology Program (NTP) 13-week studies. The study design was consistent with the NTP 13-week toxicity studies. Harlan Sprague Dawley (HSD) rats and their offspring, and B6C3F1/N mice were assigned to control (unenriched) and enriched experimental groups. Body weight, food and water consumption, behavioral observations, fecal content, clinical pathology, gross pathology, organ weights, and histopathology were evaluated. Enriched male mice and male and female rats exhibited decreased feed intake without a subsequent decrease in body weight; this may have been the result of the nesting material reducing the effect of cold stress thereby allowing for more efficient use of feed. There were statistical differences in some hematological parameters, however these were not considered physiologically relevant since all values were within the normal range. Gross pathology and histopathological findings were background changes and were not considered enrichment-related. Nesting material and shelters were used frequently and consistently and allowed animals to display species typical behavior. There was no significant impact on commonly measured endpoints in HSD rats and B6C3F1/N mice given enrichment devices. PMID:26873679

  2. Impact of Environmental Enrichment Devices on NTP In Vivo Studies.

    PubMed

    Churchill, Sheba R; Morgan, Daniel L; Kissling, Grace E; Travlos, Gregory S; King-Herbert, Angela P

    2016-02-01

    The goal of this study was to determine whether the use of nesting material or polycarbonate shelters as enrichment devices would have an impact on end points commonly measured during the conduct of the National Toxicology Program (NTP) 13-week studies. The study design was consistent with the NTP 13-week toxicity studies. Harlan Sprague-Dawley (HSD) rats and their offspring and B6C3F1/N mice were assigned to control (unenriched) and enriched experimental groups. Body weight, food and water consumption, behavioral observations, fecal content, clinical pathology, gross pathology, organ weights, and histopathology were evaluated. Enriched male mice and male and female rats exhibited decreased feed intake without a subsequent decrease in body weight; this may have been the result of the nesting material reducing the effect of cold stress, thereby allowing for more efficient use of feed. There were statistical differences in some hematological parameters; however, these were not considered physiologically relevant since all values were within the normal range. Gross pathology and histopathological findings were background changes and were not considered enrichment-related. Nesting material and shelters were used frequently and consistently and allowed animals to display species-typical behavior. There was no significant impact on commonly measured end points in HSD rats and B6C3F1/N mice given enrichment devices.

  3. Self-folding miniature elastic electric devices

    NASA Astrophysics Data System (ADS)

    Miyashita, Shuhei; Meeker, Laura; Tolley, Michael T.; Wood, Robert J.; Rus, Daniela

    2014-09-01

    Printing functional materials represents a considerable impact on the access to manufacturing technology. In this paper we present a methodology and validation of print-and-self-fold miniature electric devices. Polyvinyl chloride laminated sheets based on metalized polyester film show reliable self-folding processes under a heat application, and it configures 3D electric devices. We exemplify this technique by fabricating fundamental electric devices, namely a resistor, capacitor, and inductor. Namely, we show the development of a self-folded stretchable resistor, variable resistor, capacitive strain sensor, and an actuation mechanism consisting of a folded contractible solenoid coil. Because of their pre-defined kinematic design, these devices feature elasticity, making them suitable as sensors and actuators in flexible circuits. Finally, an RLC circuit obtained from the integration of developed devices is demonstrated, in which the coil based actuator is controlled by reading a capacitive strain sensor.

  4. PREFABRICATION DESIGN CONSIDERATIONS FOR A LONG-TERM ELECTRICALLY-ACTUATED ABDOMINAL LEFT VENTRICULAR ASSIST DEVICE (E-TYPE ALVAD)

    PubMed Central

    Sturm, James T.; Igo, Stephen R.; Poirier, Victor L.; Keiser, John T.; Hibbs, C. Wayne; Fuqua, John M.; Edmonds, Charles H.; Holub, Daniel A.; McGee, Michael G.; Fuhrman, Thomas M.; Joseph, Alexander R.; Norman, John C.

    1978-01-01

    The conceptual design and development of a long-term, low-profile intracorporeal left ventricular assist device is a multifaceted project involving a series of technical, anatomic and physiologic considerations. Patients with severe left ventricular failure refractory to all other forms of therapy could benefit from such a device. Prior to fabrication of such a blood pump, consideration must be given to physiologic parameters of the projected patient population. The pump must be designed to meet physiologic demands and yet conform to the anatomic constraints posed by the patient population. We measured the body surface area (BSA) of a group of patients (n=50) and found the mean BSA for this group to be 1.804 ± 0.161 m2. Using 25 ml/m2 as a stroke volume index indicative of left ventricular failure and a stroke volume index of 45 ml/m2 as normal, distributions of stroke volumes (normal and in left ventricular failure) were plotted for a potential population and demonstrated that 63% of the projected population can be returned to normal by a pump with a stroke volume ≥ 83 ml. Cadaver fitting studies established that 73% of the potential population can accommodate an ALVAD 10.8 cm in diameter. In-vitro tests demonstrated that a pump stroke volume ≥ 83 ml could be achieved by the proposed pump with a 15 mmHg filling pressure at rates up to 125 B/min. A pusher-plate stroke of 0.56 inches would be necessary to provide a stroke volume ≥ 83 ml. The percent of the patient population that could be served was determined by excluding those in whom the pump would not fit or in whom it would provide less than a normal resting stroke volume. Approximately 73% of the projected patient population would accommodate this pump and be returned to normal circulatory dynamics. PMID:15216047

  5. Digital Actuator Technology

    SciTech Connect

    Ken Thomas; Ted Quinn; Jerry Mauck; Richard Bockhorst

    2014-09-01

    There are significant developments underway in new types of actuators for power plant active components. Many of these make use of digital technology to provide a wide array of benefits in performance of the actuators and in reduced burden to maintain them. These new product offerings have gained considerable acceptance in use in process plants. In addition, they have been used in conventional power generation very successfully. This technology has been proven to deliver the benefits promised and substantiate the claims of improved performance. The nuclear industry has been reluctant to incorporate digital actuator technology into nuclear plant designs due to concerns due to a number of concerns. These could be summarized as cost, regulatory uncertainty, and a certain comfort factor with legacy analog technology. The replacement opportunity for these types of components represents a decision point for whether to invest in more modern technology that would provide superior operational and maintenance benefits. Yet, the application of digital technology has been problematic for the nuclear industry, due to qualification and regulatory issues. With some notable exceptions, the result has been a continuing reluctance to undertake the risks and uncertainties of implementing digital actuator technology when replacement opportunities present themselves. Rather, utilities would typically prefer to accept the performance limitations of the legacy analog actuator technologies to avoid impacts to project costs and schedules. The purpose of this report is to demonstrate that the benefits of digital actuator technology can be significant in terms of plant performance and that it is worthwhile to address the barriers currently holding back the widespread development and use of this technology. It addresses two important objectives in pursuit of the beneficial use of digital actuator technology for nuclear power plants: 1. To demonstrate the benefits of digital actuator

  6. Development of a point-of-care medical device to measure head impact in contact sports.

    PubMed

    Ambekar, Dhanashree; Al-Deneh, Zakaria; Dao, Triet; Dziech, Alexander L; Subbian, Vignesh; Beyette, Fred R

    2013-01-01

    This paper presents a prototype of a wireless, point-of-care medical device to measure head impacts in contact or collision sports. The device is currently capable of measuring linear acceleration, time, and the duration of impact. The location of the impact can also be recorded by scaling the prototype design to multiple devices. An experimental apparatus was built to simulate head impacts and to verify the data from the device. Preliminary results show that the biomechanical measures from the device are sufficiently accurate.

  7. Dielectric Actuation of Polymers

    NASA Astrophysics Data System (ADS)

    Niu, Xiaofan

    Dielectric polymers are widely used in a plurality of applications, such as electrical insulation, dielectric capacitors, and electromechanical actuators. Dielectric polymers with large strain deformations under an electric field are named dielectric elastomers (DE), because of their relative low modulus, high elongation at break, and outstanding resilience. Dielectric elastomer actuators (DEA) are superior to traditional transducers as a muscle-like technology: large strains, high energy densities, high coupling efficiency, quiet operation, and light weight. One focus of this dissertation is on the design of DE materials with high performance and easy processing. UV radiation curing of reactive species is studied as a generic synthesis methodology to provide a platform for material scientists to customize their own DE materials. Oligomers/monomers, crosslinkers, and other additives are mixed and cured at appropriate ratios to control the stress-strain response, suppress electromechanical instability of the resulting polymers, and provide stable actuation strains larger than 100% and energy densities higher than 1 J/g. The processing is largely simplified in the new material system by removal of the prestretching step. Multilayer stack actuators with 11% linear strain are demonstrated in a procedure fully compatible with industrial production. A multifunctional DE derivative material, bistable electroactive polymer (BSEP), is invented enabling repeatable rigid-to-rigid deformation without bulky external structures. Bistable actuation allows the polymer actuator to have two distinct states that can support external load without device failure. Plasticizers are used to lower the glass transition temperature to 45 °C. Interpenetrating polymer network structure is established inside the BSEP to suppress electromechanical instability, providing a breakdown field of 194 MV/m and a stable bistable strain as large as 228% with a 97% strain fixity. The application of BSEP

  8. Impact of hearing protection devices on sound localization performance

    PubMed Central

    Zimpfer, Véronique; Sarafian, David

    2014-01-01

    Hearing Protection Devices (HPDs) can protect the ear against loud potentially damaging sounds while allowing lower-level sounds such as speech to be perceived. However, the impact of these devices on the ability to localize sound sources is not well known. To address this question, we propose two different methods: one behavioral and one dealing with acoustical measurements. For the behavioral method, sound localization performance was measured with, and without, HPDs on 20 listeners. Five HPDs, including both passive (non-linear attenuation) and three active (talk-through) systems were evaluated. The results showed a significant increase in localization errors, especially front-back and up-down confusions relative to the “naked ear” test condition for all of the systems tested, especially for the talk-through headphone system. For the acoustic measurement method, Head-Related Transfer Functions (HRTFs) were measured on an artificial head both without, and with the HPDs in place. The effects of the HPDs on the spectral cues for the localization of different sound sources in the horizontal plane were analyzed. Alterations of the Interaural Spectral Difference (ISD) cues were identified, which could explain the observed increase in front-back confusions caused by the talk-through headphone protectors. PMID:24966807

  9. Linear precision inertial actuator built for low-impact in-situ installation on structures with vibration problems

    NASA Astrophysics Data System (ADS)

    Updike, Clark A.; Greeley, Scott W.; King, James A.

    1998-10-01

    In the process of designing a control actuator for a vibration cancellation system demonstration on a large, precision optical testbed, it was discovered that the support struts on which the control actuators attach could not be disassembled. This led to the development of a Linear Precision ACTuator (LPACT) with a novel two piece design which could be clamped around the strut in-situ. The design requirements, LPACT characteristics, and LPACT test results are fully described and contrasted with other earlier LPACT designs. Cancellation system performance results are presented for a 3 tone disturbance case. Excellent results, on the order of 40 dB of attenuation per tone (down to the noise floor on two disturbances), are achieved using an Adaptive Neural Controller (ANC).

  10. Compact, planar, translational piezoelectric bimorph actuator with Archimedes’ spiral actuating tethers

    NASA Astrophysics Data System (ADS)

    Yang, Chenye; Liu, Sanwei; Xie, Xin; Livermore, Carol

    2016-12-01

    The design, analytical modelling, finite element analysis (FEA), and experimental characterization of a microelectromechanical system (MEMS) out-of-plane (vertical) translational piezoelectric lead-zirconate-titanate (PZT) bimorph actuator supported on Archimedes’ spiral tethers are presented. Three types of bimorph actuators with different electrode patterns (with spiral tethers half actuated, fully actuated with uniform polarity, or fully actuated with reversed polarity) are designed and modelled. The two actuators with the highest predicted performance (half actuated and fully actuated with uniform polarity) are implemented and characterized. Both designs are fabricated by commercial processes and are compatible with integration into more complex MEMS systems. Analytical modelling and FEA are used to analyze and predict the actuators’ displacements and blocking forces. Experimental measurements of the deflections and blocking forces of actuators with full uniform actuation and half actuation validate the design. At an applied voltage of 110 V, the out-of-plane deflections of the actuators with half actuation and full uniform actuation are measured at about 17 µm and 29 µm respectively, in good agreement with analytical predictions of 17.3 µm and 34.2 µm and FEA predictions of 17.1 µm and 25.8 µm. The blocking force for devices with half-actuated tethers is predicted to be 12 mN (analytical) and 10 mN (FEA), close to the experimental value of 9 mN. The blocking force for devices with full uniform actuation is predicted to be 23 mN (analytical) and 17 mN (FEA), as compared with 15 mN in experiments.

  11. Actuator Placement Via Genetic Algorithm for Aircraft Morphing

    NASA Technical Reports Server (NTRS)

    Crossley, William A.; Cook, Andrea M.

    2001-01-01

    This research continued work that began under the support of NASA Grant NAG1-2119. The focus of this effort was to continue investigations of Genetic Algorithm (GA) approaches that could be used to solve an actuator placement problem by treating this as a discrete optimization problem. In these efforts, the actuators are assumed to be "smart" devices that change the aerodynamic shape of an aircraft wing to alter the flow past the wing, and, as a result, provide aerodynamic moments that could provide flight control. The earlier work investigated issued for the problem statement, developed the appropriate actuator modeling, recognized the importance of symmetry for this problem, modified the aerodynamic analysis routine for more efficient use with the genetic algorithm, and began a problem size study to measure the impact of increasing problem complexity. The research discussed in this final summary further investigated the problem statement to provide a "combined moment" problem statement to simultaneously address roll, pitch and yaw. Investigations of problem size using this new problem statement provided insight into performance of the GA as the number of possible actuator locations increased. Where previous investigations utilized a simple wing model to develop the GA approach for actuator placement, this research culminated with application of the GA approach to a high-altitude unmanned aerial vehicle concept to demonstrate that the approach is valid for an aircraft configuration.

  12. Parallel-coupled micro-macro actuators

    SciTech Connect

    Morrell, J.B.; Salisbury, J.K.

    1998-07-01

    This paper presents a new actuator system consisting of a micro-actuator and a macro-actuator coupled in parallel via a compliant transmission. The system is called the parallel-coupled micro-macro actuator, or PaCMMA. In this system, the micro-actuator is capable of high-bandwidth force control owing to its low mass and direct-drive connection to the output shaft. The compliant transmission of the macro-actuator reduces the impedance (stiffness) at the output shaft, and increases the dynamic range of force. Performance improvement over single-actuator systems was expected in force control, impedance control, force distortion, and transient impact force reduction. Several theoretical performance limits are derived from the saturation limits of the system. A control law is presented. A prototype test bed was built and an experimental comparison was performed between this actuator concept and two single-actuator systems. A set of quantitative measures is proposed and the actuator system is evaluated against them with the following results: force bandwidth of 56 Hz, torque dynamic range of 800:1, peak torque of 1,040 mNm, and minimum torque of 1.3 mNm. Peak impact force, force distortion, and back-driven impedance of the PaCMMA system are shown to be better than either of the single-actuator configurations considered.

  13. The economic impact of educational training assessed by the Handling Questionnaire with three inhalation devices in asthma and Chronic Obstructive Pulmonary Disease patients

    PubMed Central

    Dal Negro, Roberto W; Povero, Massimiliano

    2016-01-01

    Background The usability of inhalation devices depends on several factors, eg, the drug to inhale, device handling, and patients’ training. Usability is then presumed to have economic consequences. Aim To assess and compare the cost of patients’ training for proper usability of Breezhaler and Genuair (both dry powder inhalers) and Respimat (a soft mist inhaler) in asthma and chronic obstructive pulmonary disease (COPD) outpatients. Methods The acceptance and handling of the three devices were investigated by means of the Handling Questionnaire. The time spent in specific training for ensuring a proper actuation and the corresponding costs were also calculated. Linear and logistic regressions were used in order to investigate the factors influencing proper handling of the devices. A significance level of P<0.05 was accepted. Results According to both the patients’ and the nurse’s judgments, Genuair and Respimat were perceived as the easiest devices to use, while Breezhaler required the highest number of attempts for achieving the first proper actuation (2.6 vs 1.6; P<0.0001). The total training cost per patient (including the nurse’s time for demonstration and that for attending the patients’ maneuvers) was €1.38±€1.21. Breezhaler was found to be the most expensive as the cost per patient was €2.35±€1.26, which was three to four times higher than that of Genuair and Respimat (both devices involved a cost of <€1 per patient, with negligible differences between each other). Asthma and COPD patients showed a similar trend, with better outcomes reported for asthma patients probably due to lower age. Conclusion Substantial differences were found to exist in patients’ acceptability and handling of the three devices. The economic impact of specific training was also different and strictly related to the comprehension of the procedure for actuation of each device. Respimat as a soft mist inhaler and Genuair as an metered-dose inhaler proved to be

  14. Modular droplet actuator drive

    NASA Technical Reports Server (NTRS)

    Pollack, Michael G. (Inventor); Paik, Philip (Inventor)

    2011-01-01

    A droplet actuator drive including a detection apparatus for sensing a property of a droplet on a droplet actuator; circuitry for controlling the detection apparatus electronically coupled to the detection apparatus; a droplet actuator cartridge connector arranged so that when a droplet actuator cartridge electronically is coupled thereto: the droplet actuator cartridge is aligned with the detection apparatus; and the detection apparatus can sense the property of the droplet on a droplet actuator; circuitry for controlling a droplet actuator coupled to the droplet actuator connector; and the droplet actuator circuitry may be coupled to a processor.

  15. Light-Driven Polymeric Bimorph Actuators

    NASA Technical Reports Server (NTRS)

    Adamovsky, Gregory; Sarkisov, Sergey S.; Curley, Michael J.

    2009-01-01

    Light-driven polymeric bimorph actuators are being developed as alternatives to prior electrically and optically driven actuators in advanced, highly miniaturized devices and systems exemplified by microelectromechanical systems (MEMS), micro-electro-optical-mechanical systems (MEOMS), and sensor and actuator arrays in smart structures. These light-driven polymeric bimorph actuators are intended to satisfy a need for actuators that (1) in comparison with the prior actuators, are simpler and less power-hungry; (2) can be driven by low-power visible or mid-infrared light delivered through conventional optic fibers; and (3) are suitable for integration with optical sensors and multiple actuators of the same or different type. The immediate predecessors of the present light-driven polymeric bimorph actuators are bimorph actuators that exploit a photorestrictive effect in lead lanthanum zirconate titanate (PLZT) ceramics. The disadvantages of the PLZT-based actuators are that (1) it is difficult to shape the PLZT ceramics, which are hard and brittle; (2) for actuation, it is necessary to use ultraviolet light (wavelengths < 380 nm), which must be generated by use of high-power, high-pressure arc lamps or lasers; (3) it is difficult to deliver sufficient ultraviolet light through conventional optical fibers because of significant losses in the fibers; (4) the response times of the PLZT actuators are of the order of several seconds unacceptably long for typical applications; and (5) the maximum mechanical displacements of the PLZT-based actuators are limited to those characterized by low strains beyond which PLZT ceramics disintegrate because of their brittleness. The basic element of a light-driven bimorph actuator of the present developmental type is a cantilever beam comprising two layers, at least one of which is a polymer that exhibits a photomechanical effect (see figure). The dominant mechanism of the photomechanical effect is a photothermal one: absorption of

  16. Dual output variable pitch turbofan actuation system

    NASA Technical Reports Server (NTRS)

    Griswold, R. H., Jr.; Broman, C. L. (Inventor)

    1976-01-01

    An improved actuating mechanism was provided for a gas turbine engine incorporating fan blades of the variable pitch variety, the actuator adapted to rotate the individual fan blades within apertures in an associated fan disc. The actuator included means such as a pair of synchronizing ring gears, one on each side of the blade shanks, and adapted to engage pinions disposed thereon. Means were provided to impart rotation to the ring gears in opposite directions to effect rotation of the blade shanks in response to a predetermined input signal. In the event of system failure, a run-away actuator was prevented by an improved braking device which arrests the mechanism.

  17. Dynamic actuation of single-crystal diamond nanobeams

    SciTech Connect

    Sohn, Young-Ik; Burek, Michael J.; Lončar, Marko; Kara, Vural; Kearns, Ryan

    2015-12-14

    We show the dielectrophoretic actuation of single-crystal diamond nanomechanical devices. Gradient radio-frequency electromagnetic forces are used to achieve actuation of both cantilever and doubly clamped beam structures, with operation frequencies ranging from a few MHz to ∼50 MHz. Frequency tuning and parametric actuation are also studied.

  18. 21 CFR 870.1670 - Syringe actuator for an injector.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... 21 Food and Drugs 8 2012-04-01 2012-04-01 false Syringe actuator for an injector. 870.1670 Section... actuator for an injector. (a) Identification. A syringe actuator for an injector is an electrical device that controls the timing of an injection by an angiographic or indicator injector and synchronizes...

  19. 21 CFR 870.1670 - Syringe actuator for an injector.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... 21 Food and Drugs 8 2014-04-01 2014-04-01 false Syringe actuator for an injector. 870.1670 Section... actuator for an injector. (a) Identification. A syringe actuator for an injector is an electrical device that controls the timing of an injection by an angiographic or indicator injector and synchronizes...

  20. 21 CFR 870.1670 - Syringe actuator for an injector.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... 21 Food and Drugs 8 2013-04-01 2013-04-01 false Syringe actuator for an injector. 870.1670 Section... actuator for an injector. (a) Identification. A syringe actuator for an injector is an electrical device that controls the timing of an injection by an angiographic or indicator injector and synchronizes...

  1. 21 CFR 870.1670 - Syringe actuator for an injector.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... 21 Food and Drugs 8 2011-04-01 2011-04-01 false Syringe actuator for an injector. 870.1670 Section... actuator for an injector. (a) Identification. A syringe actuator for an injector is an electrical device that controls the timing of an injection by an angiographic or indicator injector and synchronizes...

  2. 21 CFR 870.1670 - Syringe actuator for an injector.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Syringe actuator for an injector. 870.1670 Section... actuator for an injector. (a) Identification. A syringe actuator for an injector is an electrical device that controls the timing of an injection by an angiographic or indicator injector and synchronizes...

  3. Bucky gel actuators optimization towards haptic applications

    NASA Astrophysics Data System (ADS)

    Bubak, Grzegorz; Ansaldo, Alberto; Ceseracciu, Luca; Hata, Kenji; Ricci, Davide

    2014-03-01

    An ideal plastic actuator for haptic applications should generate a relatively large displacement (minimum 0.2-0.6 mm, force (~50 mN/cm2) and a fast actuation response to the applied voltage. Although many different types of flexible, plastic actuators based on electroactive polymers (EAP) are currently under investigation, the ionic EAPs are the only ones that can be operated at low voltage. This property makes them suitable for applications that require inherently safe actuators. Among the ionic EAPs, bucky gel based actuators are very promising. Bucky gel is a physical gel made by grounding imidazolium ionic liquids with carbon nanotubes, which can then be incorporated in a polymeric composite matrix to prepare the active electrode layers of linear and bending actuators. Anyhow, many conflicting factors have to be balanced to obtain required performance. In order to produce high force a large stiffness is preferable but this limits the displacement. Moreover, the bigger the active electrode the larger the force. However the thicker an actuator is, the slower the charging process becomes (it is diffusion limited). In order to increase the charging speed a thin electrolyte would be desirable, but this increases the probability of pinholes and device failure. In this paper we will present how different approaches in electrolyte and electrode preparation influence actuator performance and properties taking particularly into account the device ionic conductivity (which influences the charging speed) and the electrode surface resistance (which influences both the recruitment of the whole actuator length and its speed).

  4. Memory metal actuator

    NASA Technical Reports Server (NTRS)

    Ruoff, C. F. (Inventor)

    1985-01-01

    A mechanical actuator can be constructed by employing a plurality of memory metal actuator elements in parallel to control the amount of actuating force. In order to facilitate direct control by digital control signals provided by a computer or the like, the actuating elements may vary in stiffness according to a binary relationship. The cooling or reset time of the actuator elements can be reduced by employing Peltier junction cooling assemblies in the actuator.

  5. Toward standardization of EAP actuators test procedures

    NASA Astrophysics Data System (ADS)

    Fernandez, Diego; Moreno, Luis; Baselga, Juan

    2005-05-01

    Since the field of Electroactive Polymers (EAP) actuators is fairly new there are no standard testing processes for such intelligent materials. This drawback can seriously limit the scope of application of EAP actuators, since the targeted industrial sectors (aerospace, biomedical...) demand high reliability and product assurance. As a first iteration two elements are required to define a test standard for an EAP actuator: a Unit Tester, and a Component Specification. In this paper a EAP Unit Tester architecture is presented along with the required classification of measurements to be included in the EAP actuator Component Specification. The proposed EAP Unit Tester allows on-line monitoring and recording of the following properties of the specimen under test: large deformation, small tip displacement, temperature at the electrodes, weight of the specimen, voltage and current driven into the EAP, load being applied to the actuator, output voltage of the EAP in sensing operation and mode of operation (structure/sensor/actuator/smart). The measurements are taken simultaneously, in real-time. The EAP Unit Tester includes a friendly Graphical User Interface. It uses embedded Excel tools to visualize data. In addition, real-time connectivity with MATLAB allows an easy testing of control algorithms. A novel methodology to measure the properties of EAP specimens versus a variable load is also presented. To this purpose a force signals generator in the range of mN was developed. The device is based on a DC mini-motor. It generates an opposing force to the movement of the EAP actuator. Since the device constantly opposes the EAP actuator movement it has been named Digital Force Generator (DFG). The DFG design allows simultaneous length and velocity measuring versus different load signals. By including such a device in the EAP Unit Tester the most suitable application for the specimen under test can be easily identified (vibration damper, large deformation actuator, large

  6. Recent Developments in NASA Piezocomposite Actuator Technology

    NASA Technical Reports Server (NTRS)

    Wilkie, William K.; Inman, Daniel J.; High, James W.; Williams, R. Brett

    2004-01-01

    In this paper, we present an overview of recent progress in the development of the NASA Macro-Fiber Composite (MFC) piezocomposite actuator device. This will include a brief history of the development of the MFC, a description of the standard manufacturing process used to fabricate MFC actuators, and a summary of ongoing MFC electromechanical characterization testing. In addition, we describe the development of a prototype single-crystal piezoelectric MFC device, and compare its performance with MFC actuator specimens utilizing conventional piezoceramic materials.

  7. Sensor/Actuator Selection for Gust and Turbulence Control

    NASA Technical Reports Server (NTRS)

    Kincaid, Rex K.

    1998-01-01

    From aircraft fuselages and space stations to vacuum cleaners and automobiles, active control of noise and/or vibration has come of age. Determining the number of active control devices (e.g. actuators) to be placed and where they are to be placed is the prototypical location problem. However, unlike typical location problems, where the customer is readily identified and is actively engaged in the assessment of the performance of the chosen locations, the customers that active control devices serve are not so easily identified and their impact on system performance issues may be unclear. For example, consider the problem of where to locate actuators to attenuate cabin noise in a propeller driven aircraft. Clearly, the ultimate customers are the passengers who will travel in these aircraft. But to decide whether one set of actuator locations is better than another it is unlikely we will ask passengers to fly in the aircraft and fill out a questionnaire about noise levels. Instead a set of sensors (pseudo-customers) are placed and the system performance of the actuators, as measured by these sensors, is recorded. Hence, we have yet another location problem. How many sensors should there be and where should they be located? In many instances collocation of sensors and actuators is the answer but in other instances it is not. A variety of approaches have been taken to address these sensor/actuator location problems. With regard to damping vibrations in truss structures (space station prototypes) it was formulated a new noxious location problem and generated high-quality solutions with a combination of LP-relaxations and heuristic search procedures. Other related efforts are summarized the actuator location problem for a single frequency interior noise control problem was examined for an idealized aircraft cabin. A tabu search procedure was shown to generate better locations for the actuators than a modal decomposition approach. The model was extended to include multi

  8. Actuator lifetime predictions for Ni60Ti40 shape memory alloy plate actuators

    NASA Astrophysics Data System (ADS)

    Wheeler, Robert; Ottmers, Cade; Hewling, Brett; Lagoudas, Dimitris

    2016-04-01

    Shape memory alloys (SMAs), due to their ability to repeatedly recover substantial deformations under applied mechanical loading, have the potential to impact the aerospace, automotive, biomedical, and energy industries as weight and volume saving replacements for conventional actuators. While numerous applications of SMA actuators have been flight tested and can be found in industrial applications, these actuators are generally limited to non-critical components, are not widely implemented and frequently one-off designs, and are generally overdesigned due to a lack of understanding of the effect of the loading path on the fatigue life and the lack of an accurate method of predicting actuator lifetimes. Previous efforts have been effective at predicting actuator lifetimes for isobaric dogbone test specimens. This study builds on previous work and investigates the actuation fatigue response of plate actuators with various stress concentrations through the use of digital image correlation and finite element simulations.

  9. Thermal expansion as a precision actuator

    NASA Astrophysics Data System (ADS)

    Miller, Chris; Montgomery, David; Black, Martin; Schnetler, Hermine

    2016-07-01

    The UK ATC has developed a novel thermal actuator design as part of an OPTICON project focusing on the development of a Freeform Active Mirror Element (FAME). The actuator uses the well understood concept of thermal expansion to generate the required force and displacement. As heat is applied to the actuator material it expands linearly. A resistance temperature device (RTD) is embedded in the centre of the actuator and is used both as a heater and a sensor. The RTD temperature is controlled electronically by injecting a varying amount of current into the device whilst measuring the voltage across it. Temperature control of the RTD has been achieved to within 0.01°C. A 3D printed version of the actuator is currently being used at the ATC to deform a mirror but it has several advantages that may make it suitable to other applications. The actuator is cheap to produce whilst obtaining a high accuracy and repeatability. The actuator design would be suitable for applications requiring large numbers of actuators with high precision.

  10. THEORETICAL DESIGN CONSIDERATIONS AND PHYSIOLOGIC PERFORMANCE CRITERIA FOR AN IMPROVED INTRACORPOREAL (ABDOMINAL) ELECTRICALLY ACTUATED LONG-TERM LEFT VENTRICULAR ASSIST DEVICE (“E-TYPE” ALVAD) OR PARTIAL ARTIFICIAL HEART

    PubMed Central

    Igo, Stephen R.; Hibbs, C. Wayne; Fuqua, John M.; Trono, Ruben; Edmonds, Charles H.; Norman, John C.

    1978-01-01

    Our laboratories are engaged in the design of a clinically-oriented electrically actuated long-term intracorporeal (abdominal) left ventricular assist device (“E-type” ALVAD) or partial artificial heart. This infradiaphragmatic blood pump is designed to be powered by implantable electrical to mechanical energy converter systems. The following analyses were undertaken to: [List: see text] The proposed “E-type” ALVAD should be capable of pumping 4-7 liters per minute at heart rates of 75-100 beats per minute during rest, and 10 liters per minute at rates of 120 beats per minute during moderate exercise. These performance levels should be exceeded with a maximum device stroke volume of 85-90 ml and a mean pump inflow (filling) impedance of ≤ 0.072 gm/sec/cm−5. Images PMID:15216070

  11. Flight control actuation system

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2006-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  12. Flight control actuation system

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2004-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  13. Spectroradiometer Intercomparison and Impact on Characterizing Photovoltaic Device Performance: Preprint

    SciTech Connect

    Habte, A.; Andreas, A.; Ottoson, L.; Gueymard, C.; Fedor, G.; Fowler, S.; Peterson, J.; Naranen, E.; Kobashi, T.; Akiyama, A.; Takagi, S.

    2014-11-01

    Indoor and outdoor testing of photovoltaic (PV) device performance requires the use of solar simulators and natural solar radiation, respectively. This performance characterization requires accurate knowledge of spectral irradiance distribution that is incident on the devices. Spectroradiometers are used to measure the spectral distribution of solar simulators and solar radiation. On September 17, 2013, a global spectral irradiance intercomparison using spectroradiometers was organized by the Solar Radiation Research Laboratory (SRRL) at the National Renewable Energy Laboratory (NREL). This paper presents highlights of the results of this first intercomparison, which will help to decrease systematic inter-laboratory differences in the measurements of the outputs or efficiencies of PV devices and harmonize laboratory experimental procedures.

  14. Photothermal Properties of Shape Memory Polymer Micro-Actuators for Treating Stroke

    SciTech Connect

    Maitland, D J; Metzger, M F; Schumann, D; Lee, A; Wilson, T S

    2001-03-05

    Objective--In this paper the photothermal design aspects of novel shape memory polymer (SMP) microactuators for treating stroke are presented. Materials and Methods--A total of three devices will be presented: two interventional ischemic stroke devices (coil and umbrella) and one device for releasing embolic coils (microgripper). The optical properties of SMP, methods for coupling laser light into SMP, heating distributions in the SMP devices and the impact of operating the thermally activated material in a blood vessel are presented. Results--Actuating the devices requires device temperatures in the range of 65 C-85 C. Attaining these temperatures under flow conditions requires critical engineering of the SMP optical properties, optical coupling into the SMP, and device geometries. Conclusion--Laser-activated SMP devices are a unique combination of laser-tissue and biomaterial technologies. Successful deployment of the microactuator requires well-engineered coupling of the light from the diffusing fiber through the blood into the SMP.

  15. 75 FR 34459 - Converged Communications and Health Care Devices Impact on Regulation; Public Meeting; Request...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-06-17

    ... HUMAN SERVICES Food and Drug Administration Converged Communications and Health Care Devices Impact on... significant developments in recent years in medical and health care devices using radio technology to monitor..., caregivers, and patients. These and other products cover a broad range of health care solutions. At one...

  16. The Impact of Digital Mobile Devices in Higher Education

    ERIC Educational Resources Information Center

    Sevillano-García, M.ª Luisa; Vázquez-Cano, Esteban

    2015-01-01

    This research examined the acceptance, incidence, and use of digital mobile devices (tablets and smartphones) among university students in the European Higher Education Area (EHEA). The research was contextualized in a sample of 419 students from three Spanish public universities. Through a quantitative methodology, we identified the factors and…

  17. Bi-directional electrothermal electromagnetic actuators

    NASA Astrophysics Data System (ADS)

    Cao, Andrew; Kim, Jongbaeg; Lin, Liwei

    2007-05-01

    A new breed of in-plane bi-directional MEMS actuators based on controlled electrothermal buckling and electromagnetic Lorentz force has been demonstrated under both dc and ac operations. Experimentally, bi-directional actuators made by the standard surface-micromachining process have a lateral actuation range of several microns and can exert forces over 100 µN, while those made by SOI and MetalMUMPs processes have an operation range up to several tens of microns and can exert more than 20 mN of force. Reliability tests show that SOI/MetalMUMPs and surface-micromachined actuators can operate for more than 1 and 100 million cycles, respectively, with no signs of degradation. As such, these micro-actuators could be used for MEMS devices that require a bi-directional movement with a large force output such as bi-directional micro-relays.

  18. Lead magnesium niobate actuator for micropositioning

    DOEpatents

    Swift, Charles D.; Bergum, John W.

    1994-01-01

    An improved lead magnesium niobate actuator is disclosed comprising a cylindrical lead magnesium niobate crystal stack mounted in a cylindrical casing wherein a bias means, such as one or more belleville washers, is located between one end of the crystal stack and a partially closed end of the casing; and adjustment means are provided which bear against the opposite end of the crystal stack, whereby an adjustable compressive force is constantly applied against the crystal stack, whether the crystal stack is actuated in an extended position, or is in an unactuated contracted position. In a preferred embodiment, cooling ports are provided for the circulation of coolant in the actuator to cool the crystal stack, and provision is made for removal and replacement of the crystal stack without disconnecting the actuator from the external device being actuated.

  19. Lead magnesium niobate actuator for micropositioning

    DOEpatents

    Swift, C.D.; Bergum, J.W.

    1994-10-25

    An improved lead magnesium niobate actuator is disclosed comprising a cylindrical lead magnesium niobate crystal stack mounted in a cylindrical casing wherein a bias means, such as one or more belleville washers, is located between one end of the crystal stack and a partially closed end of the casing; and adjustment means are provided which bear against the opposite end of the crystal stack, whereby an adjustable compressive force is constantly applied against the crystal stack, whether the crystal stack is actuated in an extended position, or is in an unactuated contracted position. In a preferred embodiment, cooling ports are provided for the circulation of coolant in the actuator to cool the crystal stack, and provision is made for removal and replacement of the crystal stack without disconnecting the actuator from the external device being actuated. 3 figs.

  20. Flexible dielectric elastomer actuators for wearable human-machine interfaces

    NASA Astrophysics Data System (ADS)

    Bolzmacher, Christian; Biggs, James; Srinivasan, Mandayam

    2006-03-01

    Wearable dielectric elastomer actuators have the potential to enable new technologies, such as tactile feedback gloves for virtual reality, and to improve existing devices, such as automatic blood pressure cuffs. They are potentially lighter, quieter, thinner, simpler, and cheaper than pneumatic and hydraulic systems now used to make compliant, actuated interfaces with the human body. Achieving good performance without using a rigid frame to prestrain the actuator is a fundamental challenge in using these actuators on body. To answer this challenge, a new type of fiber-prestrained composite actuator was developed. Equations that facilitate design of the actuator are presented, along with FE analysis, material tests, and experimental results from prototypes. Bending stiffness of the actuator material was found to be comparable to textiles used in clothing, confirming wearability. Two roll-to-roll machines are also presented that permit manufacture of this material in bulk as a modular, compact, prestressed composite that can be cut, stacked, and staggered, in order to build up actuators for a range of desired forces and displacements. The electromechanical properties of single- layered actuators manufactured by this method were measured (N=5). At non-damaging voltages, blocking force ranged from 3,7-5,0 gram per centimeter of actuator width, with linear strains of 20,0-30%. Driving the actuators to breakdown produced maximum force of 8,3-10 gram/cm, and actuation strain in excess 30%. Using this actuator, a prototype tactile display was constructed and demonstrated.

  1. Superconducting linear actuator

    NASA Technical Reports Server (NTRS)

    Johnson, Bruce; Hockney, Richard

    1993-01-01

    Special actuators are needed to control the orientation of large structures in space-based precision pointing systems. Electromagnetic actuators that presently exist are too large in size and their bandwidth is too low. Hydraulic fluid actuation also presents problems for many space-based applications. Hydraulic oil can escape in space and contaminate the environment around the spacecraft. A research study was performed that selected an electrically-powered linear actuator that can be used to control the orientation of a large pointed structure. This research surveyed available products, analyzed the capabilities of conventional linear actuators, and designed a first-cut candidate superconducting linear actuator. The study first examined theoretical capabilities of electrical actuators and determined their problems with respect to the application and then determined if any presently available actuators or any modifications to available actuator designs would meet the required performance. The best actuator was then selected based on available design, modified design, or new design for this application. The last task was to proceed with a conceptual design. No commercially-available linear actuator or modification capable of meeting the specifications was found. A conventional moving-coil dc linear actuator would meet the specification, but the back-iron for this actuator would weigh approximately 12,000 lbs. A superconducting field coil, however, eliminates the need for back iron, resulting in an actuator weight of approximately 1000 lbs.

  2. Impact of optical antennas on active optoelectronic devices.

    PubMed

    Bonakdar, Alireza; Mohseni, Hooman

    2014-10-07

    Remarkable progress has been made in the fabrication and characterization of optical antennas that are integrated with optoelectronic devices. Herein, we describe the fundamental reasons for and experimental evidence of the dramatic improvements that can be achieved by enhancing the light-matter interaction via an optical antenna in both photon-emitting and -detecting devices. In addition, integration of optical antennas with optoelectronic devices can lead to the realization of highly compact multifunctional platforms for future integrated photonics, such as low-cost lab-on-chip systems. In this review paper, we further focus on the effect of optical antennas on the detectivity of infrared photodetectors. One particular finding is that the antenna can have a dual effect on the specific detectivity, while it can elevate light absorption efficiency of sub-wavelength detectors, it can potentially increase the noise of the detectors due to the enhanced spontaneous emission rate. In particular, we predict that the detectivity of interband photon detectors can be negatively affected by the presence of optical antennas across a wide wavelength region covering visible to long wavelength infrared bands. In contrast, the detectivity of intersubband detectors could be generally improved with a properly designed optical antenna.

  3. Examining Factors That Impact Inpatient Management of Diabetes and the Role of Insulin Pen Devices.

    PubMed

    Smallwood, Chelsea; Lamarche, Danièle; Chevrier, Annie

    2017-02-01

    Insulin administration in the acute care setting is an integral component of inpatient diabetes management. Although some institutions have moved to insulin pen devices, many acute care settings continue to employ the vial and syringe method of insulin administration. The aim of this study was to evaluate the impact of insulin pen implementation in the acute care setting on patients, healthcare workers and health resource utilization. A review of published literature, including guidelines, was conducted to identify how insulin pen devices in the acute care setting may impact inpatient diabetes management. Previously published studies have revealed that insulin pen devices have the potential to improve inpatient management through better glycemic control, increased adherence and improved self-management education. Furthermore, insulin pen devices may result in cost savings and improved safety for healthcare workers. There are benefits to the use of insulin pen devices in acute care and, as such, their implementation should be considered.

  4. Hydraulic Actuator System for Rotor Control

    NASA Technical Reports Server (NTRS)

    Ulbrich, Heinz; Althaus, Josef

    1991-01-01

    In the last ten years, several different types of actuators were developed and fabricated for active control of rotors. A special hydraulic actuator system capable of generating high forces to rotating shafts via conventional bearings is addressed. The actively controlled hydraulic force actuator features an electrohydraulic servo valve which can produce amplitudes and forces at high frequencies necessary for influencing rotor vibrations. The mathematical description will be given in detail. The experimental results verify the theoretical model. Simulations already indicate the usefulness of this compact device for application to a real rotor system.

  5. Nanobionics: the impact of nanotechnology on implantable medical bionic devices.

    PubMed

    Wallace, G G; Higgins, M J; Moulton, S E; Wang, C

    2012-08-07

    The nexus of any bionic device can be found at the electrode-cellular interface. Overall efficiency is determined by our ability to transfer electronic information across that interface. The nanostructure imparted to electrodes plays a critical role in controlling the cascade of events that determines the composition and structure of that interface. With commonly used conductors: metals, carbon and organic conducting polymers, a number of approaches that promote control over structure in the nanodomain have emerged in recent years with subsequent studies revealing a critical dependency between nanostructure and cellular behaviour. As we continue to develop our understanding of how to create and characterise electromaterials in the nanodomain, this is expected to have a profound effect on the development of next generation bionic devices. In this review, we focus on advances in fabricating nanostructured electrodes that present new opportunities in the field of medical bionics. We also briefly evaluate the interactions of living cells with the nanostructured electromaterials, in addition to highlighting emerging tools used for nanofabrication and nanocharacterisation of the electrode-cellular interface.

  6. A description of model 3B of the multipurpose ventricular actuating system. [providing controlled driving pressures

    NASA Technical Reports Server (NTRS)

    Webb, J. A., Jr.

    1974-01-01

    The multipurpose ventricular actuating system is a pneumatic signal generating device that provides controlled driving pressures for actuating pulsatile blood pumps. Overall system capabilities, the timing circuitry, and calibration instruction are included.

  7. Impact of iron contamination in multicrystalline silicon solarcells: origins, chemical states, and device impacts

    SciTech Connect

    Buonassisi, Tonio; Heuer, Matthias; Istratov, Andrei A.; Marcus,Matthew A.; Jonczyk, Ralf; Lai, Barry; Cai, Zhonghou; Schindler, Roland; Weber, Eicke R.

    2004-11-08

    Synchrotron-based microprobe techniques have been applied to study the distribution, size, chemical state, and recombination activity of Fe clusters in two types of mc-Si materials: block cast mc-Si, and AstroPower Silicon Film(TM) sheet material. In sheet material, high concentrations of metals were found at recombination-active, micron-sized intragranular clusters consisting of micron and sub-micron sized particles. In addition, Fe nanoparticles were located in densities of {approx}2'107 cm-2 along recombination-active grain boundaries. In cast mc-Si,two types of particles were identified at grain boundaries: (1) micron-sized oxidized Fe particles accompanied by other metals (Cr, Mn, Ca, Ti), and (2) a higher number of sub-micron FeSi2 precipitates that exhibited a preferred orientation along the crystal growth direction. In both materials, it is believed that the larger Fe clusters are inclusions of foreign particles, from which Fe dissolves in the melt to form the smaller FeSi2 nanoprecipitates, which by virtue of their more homogeneous distribution are deemed more dangerous to solar cell device performance. Based on this understanding, strategies proposed to reduce the impact of Fe on mc-Si electrical properties include gettering, passivation, and limiting the dissolution of foreign Fe-rich particles in the melt.

  8. Micromachined electrostatic vertical actuator

    DOEpatents

    Lee, Abraham P.; Sommargren, Gary E.; McConaghy, Charles F.; Krulevitch, Peter A.

    1999-10-19

    A micromachined vertical actuator utilizing a levitational force, such as in electrostatic comb drives, provides vertical actuation that is relatively linear in actuation for control, and can be readily combined with parallel plate capacitive position sensing for position control. The micromachined electrostatic vertical actuator provides accurate movement in the sub-micron to micron ranges which is desirable in the phase modulation instrument, such as optical phase shifting. For example, compact, inexpensive, and position controllable micromirrors utilizing an electrostatic vertical actuator can replace the large, expensive, and difficult-to-maintain piezoelectric actuators. A thirty pound piezoelectric actuator with corner cube reflectors, as utilized in a phase shifting diffraction interferometer can be replaced with a micromirror and a lens. For any very precise and small amplitudes of motion` micromachined electrostatic actuation may be used because it is the most compact in size, with low power consumption and has more straightforward sensing and control options.

  9. Development of a Spring-Loaded Impact Device to Deliver Injurious Mechanical Impacts to the Articular Cartilage Surface

    PubMed Central

    Alexander, Peter G.; Song, Yingjie; Taboas, Juan M.; Chen, Faye H.; Melvin, Gary M.; Manner, Paul A.

    2013-01-01

    Objective: Traumatic impacts on the articular joint surface in vitro are known to lead to degeneration of the cartilage. The main objective of this study was to develop a spring-loaded impact device that can be used to deliver traumatic impacts of consistent magnitude and rate and to find whether impacts cause catabolic activities in articular cartilage consistent with other previously reported impact models and correlated with the development of osteoarthritic lesions. In developing the spring-loaded impactor, the operating hypothesis is that a single supraphysiologic impact to articular cartilage in vitro can affect cartilage integrity, cell viability, sulfated glycosaminoglycan and inflammatory mediator release in a dose-dependent manner. Design: Impacts of increasing force are delivered to adult bovine articular cartilage explants in confined compression. Impact parameters are correlated with tissue damage, cell viability, matrix and inflammatory mediator release, and gene expression 24 hours postimpact. Results: Nitric oxide release is first detected after 7.7 MPa impacts, whereas cell death, glycosaminoglycan release, and prostaglandin E2 release are first detected at 17 MPa. Catabolic markers increase linearly to maximal levels after ≥36 MPa impacts. Conclusions: A single supraphysiologic impact negatively affects cartilage integrity, cell viability, and GAG release in a dose-dependent manner. Our findings showed that 7 to 17 MPa impacts can induce cell death and catabolism without compromising the articular surface, whereas a 17 MPa impact is sufficient to induce increases in most common catabolic markers of osteoarthritic degeneration. PMID:26069650

  10. Appendage mountable electronic devices conformable to surfaces

    DOEpatents

    Rogers, John; Ying, Ming; Bonifas, Andrew; Lu, Nanshu

    2017-01-24

    Disclosed are appendage mountable electronic systems and related methods for covering and conforming to an appendage surface. A flexible or stretchable substrate has an inner surface for receiving an appendage, including an appendage having a curved surface, and an opposed outer surface that is accessible to external surfaces. A stretchable or flexible electronic device is supported by the substrate inner and/or outer surface, depending on the application of interest. The electronic device in combination with the substrate provides a net bending stiffness to facilitate conformal contact between the inner surface and a surface of the appendage provided within the enclosure. In an aspect, the system is capable of surface flipping without adversely impacting electronic device functionality, such as electronic devices comprising arrays of sensors, actuators, or both sensors and actuators.

  11. Assessment and non-clinical impact of medical devices.

    PubMed

    Dervaux, Benoît; Szwarcensztein, Karine; Josseran, Anne; Barna, Alexandre; Carbonneil, Cédric; Chevrie, Karine; Debroucker, Frédérique; Grumblat, Anne; Grumel, Olivier; Massol, Jacques; Maugendre, Philippe; Méchin, Hubert; Orlikowski, David; Roussel, Christophe; Rumeau-Pichon, Catherine; Sales, Jean-Patrick; Vicaut, Eric

    2015-01-01

    Medical devices (MDs) cover a wide variety of products. They accompany changes in medical practice in step with technology innovations. Innovations in the field of MDs can improve the conditions of use of health technology and/or modify the organisation of care beyond the strict diagnostic or therapeutic benefit for the patients. However, these non purely clinical criteria seem to be only rarely documented or taken into account in the assessment of MDs during reimbursement decisions at national level or for formulary listing by hospitals even though multidimensional models for the assessment of health technologies have been developed that take into account the views of all stakeholders in the healthcare system In this article, after summarising the background concerning the assessment of health technologies in France, a definition of non-clinical criteria for the assessment of MDs is proposed and a decision tree for the assessment of MDs is described. Future lines of approach are proposed as a conclusion.

  12. Propellant Flow Actuated Piezoelectric Igniter for Combustion Engines

    NASA Technical Reports Server (NTRS)

    Wollen, Mark A. (Inventor)

    2015-01-01

    A propellant flow actuated piezoelectric igniter device using one or more hammer balls retained by one or more magnets, or other retaining method, until sufficient fluid pressure is achieved to release and accelerate the hammer ball, such that it impacts a piezoelectric crystal to produce an ignition spark. Certain preferred embodiments provide a means for repetitively capturing and releasing the hammer ball after it impacts one or more piezoelectric crystals, thereby oscillating and producing multiple, repetitive ignition sparks. Furthermore, an embodiment is presented for which oscillation of the hammer ball and repetitive impact to the piezoelectric crystal is maintained without the need for a magnet or other retaining mechanism to achieve this oscillating impact process.

  13. Electromagnetic rotational actuation.

    SciTech Connect

    Hogan, Alexander Lee

    2010-08-01

    There are many applications that need a meso-scale rotational actuator. These applications have been left by the wayside because of the lack of actuation at this scale. Sandia National Laboratories has many unique fabrication technologies that could be used to create an electromagnetic actuator at this scale. There are also many designs to be explored. In this internship exploration of the designs and fabrications technologies to find an inexpensive design that can be used for prototyping the electromagnetic rotational actuator.

  14. Status of Electrical Actuator Applications

    NASA Technical Reports Server (NTRS)

    Roth, Mary Ellen; Taylor, Linda M.; Hansen, Irving G.

    1996-01-01

    An ever increasing number of actuation functions historically performed by hydraulics or pneumatics are being accomplished by electric actuation. If 'end to end' systems are considered, electric actuators (EA's) are potentially lighter and more efficient. In general, system redundancies may be more easily implemented and operationally monitored. Typically, electrical components exhibit longer mean times to failure and projected lifetime costs of EA's are potentially much lower than those of other options. EA's have certain characteristics which must be considered in their application. The actual mechanical loadings must be established, for the more easily controlled EA may be operated much closer to its full capabilities. At higher rates of motion, EA's are operating as constant power devices. Therefore, it may be possible to start a movement that can not be stopped. The incorporation of high power electronics into remote locations introduces new concerns of EMI and thermal control. It is the management of these and other characteristics that forms the engineering design challenges. Work is currently in progress on EA's for aircraft and expendable launch vehicles. These applications span from ten to 40+ horsepower. The systematics and status of these actuators will be reported along with current technical trends in this area.

  15. Flexible and stretchable electrodes for dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Rosset, Samuel; Shea, Herbert R.

    2013-02-01

    Dielectric elastomer actuators (DEAs) are flexible lightweight actuators that can generate strains of over 100 %. They are used in applications ranging from haptic feedback (mm-sized devices), to cm-scale soft robots, to meter-long blimps. DEAs consist of an electrode-elastomer-electrode stack, placed on a frame. Applying a voltage between the electrodes electrostatically compresses the elastomer, which deforms in-plane or out-of plane depending on design. Since the electrodes are bonded to the elastomer, they must reliably sustain repeated very large deformations while remaining conductive, and without significantly adding to the stiffness of the soft elastomer. The electrodes are required for electrostatic actuation, but also enable resistive and capacitive sensing of the strain, leading to self-sensing actuators. This review compares the different technologies used to make compliant electrodes for DEAs in terms of: impact on DEA device performance (speed, efficiency, maximum strain), manufacturability, miniaturization, the integration of self-sensing and self-switching, and compatibility with low-voltage operation. While graphite and carbon black have been the most widely used technique in research environments, alternative methods are emerging which combine compliance, conduction at over 100 % strain with better conductivity and/or ease of patternability, including microfabrication-based approaches for compliant metal thin-films, metal-polymer nano-composites, nanoparticle implantation, and reel-to-reel production of μm-scale patterned thin films on elastomers. Such electrodes are key to miniaturization, low-voltage operation, and widespread commercialization of DEAs.

  16. Maximizing strain in miniaturized dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Rosset, Samuel; Araromi, Oluwaseun; Shea, Herbert

    2015-04-01

    We present a theoretical model to optimise the unidirectional motion of a rigid object bonded to a miniaturized dielectric elastomer actuator (DEA), a configuration found for example in AMI's haptic feedback devices, or in our tuneable RF phase shifter. Recent work has shown that unidirectional motion is maximized when the membrane is both anistropically prestretched and subjected to a dead load in the direction of actuation. However, the use of dead weights for miniaturized devices is clearly highly impractical. Consequently smaller devices use the membrane itself to generate the opposing force. Since the membrane covers the entire frame, one has the same prestretch condition in the active (actuated) and passive zones. Because the passive zone contracts when the active zone expands, it does not provide a constant restoring force, reducing the maximum achievable actuation strain. We have determined the optimal ratio between the size of the electrode (active zone) and the passive zone, as well as the optimal prestretch in both in-plane directions, in order to maximize the absolute displacement of the rigid object placed at the active/passive border. Our model and experiments show that the ideal active ratio is 50%, with a displacement twice smaller than what can be obtained with a dead load. We expand our fabrication process to also show how DEAs can be laser-post-processed to remove carefully chosen regions of the passive elastomer membrane, thereby increasing the actuation strain of the device.

  17. Transparent and flexible haptic array actuator made with cellulose acetate for tactile sensation

    NASA Astrophysics Data System (ADS)

    Mohiuddin, Md; Kim, Hyun-Chan; Kim, Sang-Yeon; Kim, Jaehwan

    2014-04-01

    This paper reports an array type film haptic actuator based on cellulose acetate. Suggested actuator can vibrate with faster response time and various frequencies to give a range of haptic feedbacks to users which can be used in touch screen devices. Fabrication process, performance evaluation and electrostatic behavior of haptic actuator are reported for tactile sensation. Cellulose acetate film is suitable for haptic actuator for its transparency, flexibility and high dielectric constant. An element of haptic actuator is made by using cellulose acetate film with patterned adhesive tape spacer, then haptic actuator elements arrayed to 3 x 3 to embed in haptic devices. Experiment to measure vibration acceleration is carried out on wide range of actuation frequency and voltage for single actuator to evaluate 3x3 array actuator.

  18. Bimorphic polymeric photomechanical actuator

    NASA Technical Reports Server (NTRS)

    Sarkisov, Sergey S. (Inventor); Curley, Michael J. (Inventor); Adamovsky, Grigory (Inventor); Sarkisov, Jr., Sergey S. (Inventor); Fields, Aisha B. (Inventor)

    2006-01-01

    A bimorphic polymeric photomechanical actuator, in one embodiment using polyvinylidene fluoride (PVDF) as a photosensitive body, transmitting light over fiber optic cables, and controlling the shape and pulse duration of the light pulse to control movement of the actuator. Multiple light beams are utilized to generate different ranges of motion for the actuator from a single photomechanical body and alternative designs use multiple light beams and multiple photomechanical bodies to provide controlled movement. Actuator movement using one or more ranges of motion is utilized to control motion to position an actuating element in three dimensional space.

  19. Simulation and Performance of Brushless DC Motor Actuators.

    DTIC Science & Technology

    1985-12-01

    AD-RI63 725 SIMULATION AND PERFORMANCE OF IRUSHLESS DC MOTOR ACTUATORS(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CA A GERDA DEC 85 NPS69-85-628 M...California Progress Report SIMULATION AND PERFORMANCE OF BRUSHLESS DC MOTOR ACTUATORS IN SUPPORT OF THE PROGRAM "ADVANCED MISSILE CONTROL DEVICES"I of...34.’ SIMULATION AND PERFORMANCE OF BRUSHLESS DC MOTOR ACTUATORS SUMMARY The simulation model for a Brushless D.C. Motor and the associated * commutation power

  20. High-Performance Multiresponsive Paper Actuators.

    PubMed

    Amjadi, Morteza; Sitti, Metin

    2016-11-22

    There is an increasing demand for soft actuators because of their importance in soft robotics, artificial muscles, biomimetic devices, and beyond. However, the development of soft actuators capable of low-voltage operation, powerful actuation, and programmable shape-changing is still challenging. In this work, we propose programmable bilayer actuators that operate based on the large hygroscopic contraction of the copy paper and simultaneously large thermal expansion of the polypropylene film upon increasing the temperature. The electrothermally activated bending actuators can function with low voltages (≤ 8 V), low input electric power per area (P ≤ 0.14 W cm(-2)), and low temperature changes (≤ 35 °C). They exhibit reversible shape-changing behavior with curvature radii up to 1.07 cm(-1) and bending angle of 360°, accompanied by powerful actuation. Besides the electrical activation, they can be powered by humidity or light irradiation. We finally demonstrate the use of our paper actuators as a soft gripper robot and a lightweight paper wing for aerial robotics.

  1. Impact of Alternative Medical Device Approval Processes on Costs and Health

    PubMed Central

    George, Benjamin P.; Venkataraman, Vinayak; Dorsey, E. Ray; Johnston, S. Claiborne

    2014-01-01

    Background Medical devices are often introduced prior to randomized-trial evidence of efficacy and this slows completion of trials. Alternative regulatory approaches include restricting device use outside of trials prior to trial evidence of efficacy (like the drug approval process) or restricting out-of-trial use but permitting coverage within trials such as Medicare’s Coverage with Study Participation (CSP). Methods We compared the financial impact to manufacturers and insurers of three regulatory alternatives: (1) limited regulation (current approach), (2) CSP, and (3) restrictive regulation (like the current drug approval process). Using data for patent foramen ovale closure devices, we modeled key parameters including recruitment time, probability of device efficacy, market adoption, and device cost/price to calculate profits to manufacturers, costs to insurers, and overall societal impact on health. Results For manufacturers, profits were greatest under CSP—driven by faster market adoption of effective devices—followed by restrictive regulation. Societal health benefit in total quality-adjusted life years was greatest under CSP. Insurers’ expenditures for ineffective devices were greatest with limited regulation. Findings were robust over a reasonable range of probabilities of trial success. Conclusions Regulation restricting out-of-trial device use and extending limited insurance coverage to clinical trial participants may balance manufacturer and societal interests. PMID:25185975

  2. Actuators Based on Liquid Crystalline Elastomer Materials

    PubMed Central

    Jiang, Hongrui; Li, Chensha; Huang, Xuezhen

    2013-01-01

    Liquid crystalline elastomers (LCEs) exhibit a number of remarkable physical effects, including the unique, high-stroke reversible mechanical actuation when triggered by external stimuli. This article reviews some recent exciting developments in the field of LCEs materials with an emphasis on their utilization in actuator applications. Such applications include artificial muscles, industrial manufacturing, health and microelectromechanical systems (MEMS). With suitable synthetic and preparation pathways and well-controlled actuation stimuli, such as heat, light, electric and magnetic field, excellent physical properties of LCE materials can be realized. By comparing the actuating properties of different systems, general relationships between the structure and the property of LCEs are discussed. How these materials can be turned into usable devices using interdisciplinary techniques is also described. PMID:23648966

  3. Feasibility of transparent flexible ultrasonic haptic actuator

    NASA Astrophysics Data System (ADS)

    Akther, Asma; Kafy, Abdullahil; Kim, Hyun Chan; Kim, Jaehwan

    2016-04-01

    Ultrasonic haptics actuator is a device that can create a haptic feedback to user's hand. The modulation of ultrasonic frequency can give different textures to the users. In this study, a feasibility of the ultrasonic haptic actuator made on a flexible piezoelectric substrate is investigated. As the piezoelectric substrate helps to propagate flexural waves, a pair of interdigital transducer (IDT) with reflectors can produce standing waves, which can increase the vibrational displacement of the actuator. A pair of IDT pattern was fabricated on a piezoelectric polymer substrate. A finite element analysis is at first performed to design the actuator. A sinusoidal excitation voltage is applied on IDT electrodes at ultrasonic frequencies and the displacement waveforms are found. The displacement waveforms clearly represent how ultrasonic waves propagate through the piezoelectric substrate.

  4. The Mariner Mark II high precision scan actuator - Results of an options trade study covering pointing performance and system-wide impacts

    NASA Technical Reports Server (NTRS)

    Schier, J. Alan; Bell, Charles E.; Agronin, Michael; Socha, Michael

    1988-01-01

    Four actuators considered as candidates to meet the requirements of the Mariner Mark II high-precision scan platform are evaluated with respect to such criteria as the net effect on spacecraft mass, required power, cost, expected pointing performance, operational considerations, and necessary control complexity. A direct drive actuator is found to be the most suitable candidate. It is noted that for missions where reactionless actuation results in a lower spacecraft mass due to propellant savings, the option of using a platform mounted or spacecraft mounted reaction wheel for platform momentum compensation and spacecraft attitude control is attractive.

  5. Miga Aero Actuator and 2D Machined Mechanical Binary Latch

    NASA Technical Reports Server (NTRS)

    Gummin, Mark A.

    2013-01-01

    actuators. SMA actuators typically perform ideally as latch-release devices, wherein a spring-loaded device is released when the SMA actuator actuates in one direction. But many applications require cycling between two latched states open and closed.

  6. Investigating wind turbine impacts on near-wake flow using profiling Lidar data and large-eddy simulations with an actuator disk model

    SciTech Connect

    Mirocha, Jeffrey D.; Rajewski, Daniel A.; Marjanovic, Nikola; Lundquist, Julie K.; Kosovic, Branko; Draxl, Caroline; Churchfield, Matthew J.

    2015-08-27

    In this study, wind turbine impacts on the atmospheric flow are investigated using data from the Crop Wind Energy Experiment (CWEX-11) and large-eddy simulations (LESs) utilizing a generalized actuator disk (GAD) wind turbine model. CWEX-11 employed velocity-azimuth display (VAD) data from two Doppler lidar systems to sample vertical profiles of flow parameters across the rotor depth both upstream and in the wake of an operating 1.5 MW wind turbine. Lidar and surface observations obtained during four days of July 2011 are analyzed to characterize the turbine impacts on wind speed and flow variability, and to examine the sensitivity of these changes to atmospheric stability. Significant velocity deficits (VD) are observed at the downstream location during both convective and stable portions of four diurnal cycles, with large, sustained deficits occurring during stable conditions. Variances of the streamwise velocity component, σu, likewise show large increases downstream during both stable and unstable conditions, with stable conditions supporting sustained small increases of σu , while convective conditions featured both larger magnitudes and increased variability, due to the large coherent structures in the background flow. Two representative case studies, one stable and one convective, are simulated using LES with a GAD model at 6 m resolution to evaluate the compatibility of the simulation framework with validation using vertically profiling lidar data in the near wake region. Virtual lidars were employed to sample the simulated flow field in a manner consistent with the VAD technique. Simulations reasonably reproduced aggregated wake VD characteristics, albeit with smaller magnitudes than observed, while σu values in the wake are more significantly underestimated. The results illuminate the limitations of using a GAD in combination with coarse model resolution in the simulation of near wake physics, and validation thereof using VAD data.

  7. Investigating wind turbine impacts on near-wake flow using profiling Lidar data and large-eddy simulations with an actuator disk model

    DOE PAGES

    Mirocha, Jeffrey D.; Rajewski, Daniel A.; Marjanovic, Nikola; ...

    2015-08-27

    In this study, wind turbine impacts on the atmospheric flow are investigated using data from the Crop Wind Energy Experiment (CWEX-11) and large-eddy simulations (LESs) utilizing a generalized actuator disk (GAD) wind turbine model. CWEX-11 employed velocity-azimuth display (VAD) data from two Doppler lidar systems to sample vertical profiles of flow parameters across the rotor depth both upstream and in the wake of an operating 1.5 MW wind turbine. Lidar and surface observations obtained during four days of July 2011 are analyzed to characterize the turbine impacts on wind speed and flow variability, and to examine the sensitivity of thesemore » changes to atmospheric stability. Significant velocity deficits (VD) are observed at the downstream location during both convective and stable portions of four diurnal cycles, with large, sustained deficits occurring during stable conditions. Variances of the streamwise velocity component, σu, likewise show large increases downstream during both stable and unstable conditions, with stable conditions supporting sustained small increases of σu , while convective conditions featured both larger magnitudes and increased variability, due to the large coherent structures in the background flow. Two representative case studies, one stable and one convective, are simulated using LES with a GAD model at 6 m resolution to evaluate the compatibility of the simulation framework with validation using vertically profiling lidar data in the near wake region. Virtual lidars were employed to sample the simulated flow field in a manner consistent with the VAD technique. Simulations reasonably reproduced aggregated wake VD characteristics, albeit with smaller magnitudes than observed, while σu values in the wake are more significantly underestimated. The results illuminate the limitations of using a GAD in combination with coarse model resolution in the simulation of near wake physics, and validation thereof using VAD data.« less

  8. Electrothermally-Actuated Micromirrors with Bimorph Actuators--Bending-Type and Torsion-Type.

    PubMed

    Tsai, Cheng-Hua; Tsai, Chun-Wei; Chang, Hsu-Tang; Liu, Shih-Hsiang; Tsai, Jui-Che

    2015-06-22

    Three different electrothermally-actuated MEMS micromirrors with Cr/Au-Si bimorph actuators are proposed. The devices are fabricated with the SOIMUMPs process developed by MEMSCAP, Inc. (Durham, NC, USA). A silicon-on-insulator MEMS process has been employed for the fabrication of these micromirrors. Electrothermal actuation has achieved a large angular movement in the micromirrors. Application of an external electric current 0.04 A to the bending-type, restricted-torsion-type, and free-torsion-type mirrors achieved rotation angles of 1.69°, 3.28°, and 3.64°, respectively.

  9. High-force cofired multilayer actuators

    NASA Astrophysics Data System (ADS)

    Bridger, Keith; Jones, Lorianne; Poppe, Fred; Brown, Steven A.; Winzer, Stephen R.

    1996-05-01

    Various structural control applications (e.g., high-precision machining) require high-force actuation. Actuators made by stacking and gluing plates are not suitable for many of these applications because, unless the plates are very thin (< 1 mm), the glued stack requires high voltages (> 1 kV) and stacks of very thin plates require extreme care in fabrication to avoid compliance due to the joints. This paper describes an effort to fabricate high-force, co- fired multilayer actuators. The actuator modules were designed to be approximately 50 mm X 50 mm X 20 mm (height), with 20 1-mm thick layers and a 12.7-mm diameter hole in the center for a prestress bolt. The modules were to be stacked together to form an actuator capable of delivering > 50 micrometers stroke at 5 degree(s)C under a load of approximately 10,000 lb. The major challenge in this task is fabricating the co-fired modules because of their size. It is exceptionally difficult to burnout and sinter such a large multilayer device without introducing flaws such as delaminations and, to the best of our knowledge, this had never been done successfully before. Three co-fired, high force actuator modules were fabricated and electrically and mechanically characterized. The capacitance of the actuator modules ranged from 1.5 to 9.4 (mu) F. Co-fired actuators gave modulus values of 12.2 X 106 psi (at E equals 1 MV/m) which was close to the modulus of the material. The peak-peak strain of an actuator module at 0 prestress was 600 ppm (at a field of E equals 1 MV/m). At 2000 psi prestress, the strain measured was about 450 ppm (p-p).

  10. Design of a smart bidirectional actuator for space operation

    NASA Astrophysics Data System (ADS)

    Saggin, Bortolino; Scaccabarozzi, Diego; Tarbini, Marco; Magni, Marianna; Biffi, Carlo Alberto; Tuissi, Ausonio

    2017-03-01

    A common need for space borne instruments, satellites and planetary exploration payloads is the usage of compact, light and low power actuators. In the recent years, this need has been partially solved by the development of customized solutions with an increasing usage of smart materials. A linear bidirectional actuator based on shape memory alloy technology is presented in this work. The device has been conceived to lock the double-pendulum scanning mechanism of a miniaturized Fourier transform spectrometer for planetary observation. The mechanism class is that of pin pullers, with the pin locking the movable components of the spectrometer during launch and landing phases. The proposed mechanism, differently from available off-the-shelf devices, allows multiple actuations without the need of manual resetting. Moreover, the device requires to be powered only to change its status. An appealing feature of the adopted concept is that the actuation is intrinsically shock-less, a key requirement for deployment of devices sensitive to mechanical vibration and shocks. All these characteristics, in addition to the design flexibility of the proposed concept in terms of achievable forces and strokes, make the designed actuator promising for many different applications, from space to ground. The designed bidirectional actuator provides 0.6 mm stroke and a 50 N preload but it represents just an example of implementation for the proposed concept. Structural design of the functional elastic components and SMA alloy characterization have guided the actuator development. A mockup of the actuator has been manufactured and the predicted performances preliminary validated.

  11. Stable electroosmotically driven actuators

    NASA Astrophysics Data System (ADS)

    Sritharan, Deepa; Motsebo, Mylene; Tumbic, Julia; Smela, Elisabeth

    2013-04-01

    We have previously presented "nastic" actuators based on electroosmotic (EO) pumping of fluid in microchannels using high electric fields for potential application in soft robotics. In this work we address two challenges facing this technology: applying EO to meso-scale devices and the stability of the pumping fluid. The hydraulic pressure achieved by EO increases with as 1/d2, where d is the depth of the microchannel, but the flow rate (which determines the stroke and the speed) is proportional to nd, where n is the number of channels. Therefore to get high force and high stroke the device requires a large number of narrow channels, which is not readily achievable using standard microfabrication techniques. Furthermore, for soft robotics the structure must be soft. In this work we present a method of fabricating a three-dimensional porous elastomer to serve as the array of channels based on a sacrificial sugar scaffold. We demonstrate the concept by fabricating small pumps. The flexible devices were made from polydimethylsiloxane (PDMS) and comprise the 3D porous elastomer flanked on either side by reservoirs containing electrodes. The second issue addressed here involves the pumping fluid. Typically, water is used for EO, but water undergoes electrolysis even at low voltages. Since EO takes place at kV, these systems must be open to release the gases. We have recently reported that propylene carbonate (PC) is pumped at a comparable rate as water and is also stable for over 30 min at 8 kV. Here we show that PC is, however, degraded by moisture, so future EO systems must prevent water from reaching the PC.

  12. Series elastic actuators

    NASA Astrophysics Data System (ADS)

    Williamson, Matthew M.

    1995-01-01

    This thesis presents the design, construction, control and evaluation of a novel for controlled actuator. Traditional force controlled actuators are designed from the premise that 'Stiffer is better'. This approach gives a high bandwidth system, prone to problems of contact instability, noise, and low power density. The actuator presented in this thesis is designed from the premise that 'Stiffness isn't everything'. The actuator, which incorporates a series elastic element, trades off achievable bandwidth for gains in stable, low noise force control, and protection against shock loads. This thesis reviews related work in robot force control, presents theoretical descriptions of the control and expected performance from a series elastic actuator, and describes the design of a test actuator constructed to gather performance data. Finally the performance of the system is evaluated by comparing the performance data to theoretical predictions.

  13. Effective Actuation: High Bandwidth Actuators and Actuator Scaling Laws

    DTIC Science & Technology

    2007-11-02

    5c. PROGRAM ELEMENT NUMBER I-ioh Bandwidth Actiintorv and Actuator 9clinp Iaw-, 65502F 6. AUTHOR(S) 5d. PROJECT NUMBER A. B. Cain, G. R. Raman , and E...of possible applications include the high frequency excitation for supprc~sion of flow induced resonance in weapons bay cavities (see Raman et al...systems. Adaptive high bandwidth actuators are required to adapt to changes in flow speed and conditions during flight. Raman et al. (2000) and Stanek et

  14. Thermally actuated micropump for biological and medical application

    NASA Astrophysics Data System (ADS)

    Rabaud, D.; Lefevre, R.; Salette, A.; Dargent, L.; Marko, H.; Le Masne, Q.; Dehan, C.; Morfouli, P.; Montès, L.

    2013-06-01

    While most actual micropumps use piezoelectric based actuators, we present an original approach based on bimetallic effect for deflecting a flexible silicon membranes. We have simulated, fabricated and characterized fully integrated thermally actuated membranes. Analytical and numerical models have been used to simulate and optimize the performance of the actuated diaphragm. It predicts the deflection behavior under definite power actuation and pressure. In particular, heat transfer analysis is conducted to evaluate temperature field distribution within the device. High displacements (~80μm) where obtained under low driving power. Our results show a very good fit between experiments under pressure and theoretical predictions.

  15. Modeling of two-hot-arm horizontal thermal actuator

    NASA Astrophysics Data System (ADS)

    Yan, Dong; Khajepour, Amir; Mansour, Raafat

    2003-03-01

    Electrothermal actuators have a very promising future in MEMS applications since they can generate large deflection and force with low actuating voltages and small device areas. In this study, a lumped model of a two-hot-arm horizontal thermal actuator is presented. In order to prove the accuracy of the lumped model, finite element analysis (FEA) and experimental results are provided. The two-hot-arm thermal actuator has been fabricated using the MUMPs process. Both the experimental and FEA results are in good agreement with the results of lumped modeling.

  16. A novel in vivo impact device for evaluation of sudden limb loading response.

    PubMed

    Boutwell, Erin; Stine, Rebecca; Gard, Steven

    2015-01-01

    The lower limbs are subjected to large impact forces on a daily basis during gait, and ambulators rely on various mechanisms to protect the musculoskeletal system from these potentially damaging shocks. However, it is difficult to assess the efficacy of anatomical mechanisms and potential clinical interventions on impact forces because of limitations of the testing environment. The current paper describes a new in vivo measurement device (sudden loading evaluation device, or SLED) designed to address shortcomings of previous loading protocols. To establish the repeatability and validity of this testing device, reliability and human participant data were collected while the stiffnesses of simulated and prosthetic limbs were systematically varied. The peak impact forces delivered by the SLED ranged from 706±3 N to 2157±32 N during reliability testing and from 784±30 N to 938±18 N with the human participant. The relatively low standard deviations indicate good reliability within the impacts delivered by the SLED, while the magnitude of the loads experienced by the human participant (98-117% BW) were comparable to ground reaction forces during level walking. Thus, the SLED may be valuable as a research tool for investigations of lower-limb impact loading events.

  17. Hydraulic Actuator Project

    DTIC Science & Technology

    2003-11-01

    Hydraulic Actuator Project Stakeholder meeting held 7- 8 October in Los Angeles; 58 attendees representing aircraft and actuator OEMs, seal...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) Naval Research Laboratory,4555 Overlook Ave., SW ,Washington,DC,20375 8 . PERFORMING ORGANIZATION REPORT...unclassified c. THIS PAGE unclassified Standard Form 298 (Rev. 8 -98) Prescribed by ANSI Std Z39-18 Actuator JTP: Coupon Testing Substrate

  18. Electrostatically Driven Nanoballoon Actuator.

    PubMed

    Barzegar, Hamid Reza; Yan, Aiming; Coh, Sinisa; Gracia-Espino, Eduardo; Dunn, Gabriel; Wågberg, Thomas; Louie, Steven G; Cohen, Marvin L; Zettl, Alex

    2016-11-09

    We demonstrate an inflatable nanoballoon actuator based on geometrical transitions between the inflated (cylindrical) and collapsed (flattened) forms of a carbon nanotube. In situ transmission electron microscopy experiments employing a nanoelectromechanical manipulator show that a collapsed carbon nanotube can be reinflated by electrically charging the nanotube, thus realizing an electrostatically driven nanoballoon actuator. We find that the tube actuator can be reliably cycled with only modest control voltages (few volts) with no apparent wear or fatigue. A complementary theoretical analysis identifies critical parameters for nanotube nanoballoon actuation.

  19. Improved Electrohydraulic Linear Actuators

    NASA Technical Reports Server (NTRS)

    Hamtil, James

    2004-01-01

    A product line of improved electrohydraulic linear actuators has been developed. These actuators are designed especially for use in actuating valves in rocket-engine test facilities. They are also adaptable to many industrial uses, such as steam turbines, process control valves, dampers, motion control, etc. The advantageous features of the improved electrohydraulic linear actuators are best described with respect to shortcomings of prior electrohydraulic linear actuators that the improved ones are intended to supplant. The flow of hydraulic fluid to the two ports of the actuator cylinder is controlled by a servo valve that is controlled by a signal from a servo amplifier that, in turn, receives an analog position-command signal (a current having a value between 4 and 20 mA) from a supervisory control system of the facility. As the position command changes, the servo valve shifts, causing a greater flow of hydraulic fluid to one side of the cylinder and thereby causing the actuator piston to move to extend or retract a piston rod from the actuator body. A linear variable differential transformer (LVDT) directly linked to the piston provides a position-feedback signal, which is compared with the position-command signal in the servo amplifier. When the position-feedback and position-command signals match, the servo valve moves to its null position, in which it holds the actuator piston at a steady position.

  20. 30 CFR 75.1103-6 - Automatic fire sensors; actuation of fire suppression systems.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Automatic fire sensors; actuation of fire... Protection § 75.1103-6 Automatic fire sensors; actuation of fire suppression systems. Point-type heat sensors or automatic fire sensor and warning device systems may be used to actuate deluge-type water...

  1. Impact Welding of Aluminum to Copper and Stainless Steel by Vaporizing Foil Actuator: Effect of Heat Treatment Cycles on Mechanical Properties and Microstructure

    NASA Astrophysics Data System (ADS)

    Vivek, Anupam; Hansen, Steven; Benzing, Jake; He, Mei; Daehn, Glenn

    2015-10-01

    This work studies the mechanical property effect of microstructure on impact welds of aluminum alloy AA6061 with both copper alloy Cu 110 and stainless steel AISI 304. AA6061-T6 and T4 temper aluminum sheets of 1 mm thickness were launched toward copper and stainless steel targets using the vaporizing foil actuator technique. Flyer plate velocities, measured via photonic Doppler velocimetry, were observed to be approximately 800 m/s. The welded aluminum-copper samples were subjected to instrumented peel testing, microhardness testing, energy-dispersive X-ray spectroscopy, and scanning electron microscopy. The welded joints exhibited cracks through their continuous intermetallic layers. The cracks were impeded upon encountering a ductile metallic wave. The welds created with T6 temper flyer sheets were found to have smaller intermetallic-free and wavy interface regions as compared to those created with T4 temper flyer sheets. Peel strength tests of the two weld combinations resulted in failure along the interface in the case of the T6 flyer welds, while the failure generally occurred in the parent aluminum for the T4 temper flyer welds. Half of the T4 flyer welds were subjected to aging for 18 h at 433 K (160 °C) to convert the aluminum sheet to the T6 condition. Although the aged flyer material did not attain the hardness of the as-received T6 material, it was found to be significantly stronger than the T4 material. These welds retained their strength after the aging process, and diffusion across the interface was minimal. The welded aluminum-stainless steel samples were analyzed on a more basic level than aluminum-copper samples, but were found to exhibit similar results.

  2. The Load Capability of Piezoelectric Single Crystal Actuators

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing; Su, Ji; Jiang, Xiaoning; Rehrig, Paul W.; Hackenberger, Wesley S.

    2006-01-01

    Piezoelectric lead magnesium niobate-lead titanate (PMN-PT) single crystal is one of the most promising materials for electromechanical device applications due to its high electrical field induced strain and high electromechanical coupling factor. PMN-PT single crystal-based multilayer stack actuators and multilayer stack-based flextensional actuators have exhibited high stroke and high displacement-voltage ratios. The actuation capabilities of these two actuators were evaluated using a newly developed method based upon a laser vibrometer system under various loading conditions. The measured displacements as a function of mechanical loads at different driving voltages indicate that the displacement response of the actuators is approximately constant under broad ranges of mechanical load. The load capabilities of these PMN-PT single crystal-based actuators and the advantages of the capability for applications will be discussed.

  3. The Load Capability of Piezoelectric Single Crystal Actuators

    NASA Technical Reports Server (NTRS)

    Xu, Tian-Bing; Su, Ji; Jiang, Xiaoning; Rehrig, Paul W.; Hackenberger, Wesley S.

    2007-01-01

    Piezoelectric lead magnesium niobate-lead titanate (PMN-PT) single crystal is one of the most promising materials for electromechanical device applications due to its high electrical field induced strain and high electromechanical coupling factor. PMN-PT single crystal-based multilayer stack actuators and multilayer stack-based flextensional actuators have exhibited high stroke and high displacement-voltage ratios. The actuation capabilities of these two actuators were evaluated using a newly developed method based upon a laser vibrometer system under various loading conditions. The measured displacements as a function of mechanical loads at different driving voltages indicate that the displacement response of the actuators is approximately constant under broad ranges of mechanical load. The load capabilities of these PMN-PT single crystal-based actuators and the advantages of the capability for applications will be discussed.

  4. Control of a flexible planar truss using proof mass actuators

    NASA Technical Reports Server (NTRS)

    Minas, Constantinos; Garcia, Ephrahim; Inman, Daniel J.

    1989-01-01

    A flexible structure was modeled and actively controlled by using a single space realizable linear proof mass actuator. The NASA/UVA/UB actuator was attached to a flexible planar truss structure at an optimal location and it was considered as both passive and active device. The placement of the actuator was specified by examining the eigenvalues of the modified model that included the actuator dynamics, and the frequency response functions of the modified system. The electronic stiffness of the actuator was specified, such that the proof mass actuator system was tuned to the fourth structural mode of the truss by using traditional vibration absorber design. The active control law was limited to velocity feedback by integrating of the signals of two accelerometers attached to the structure. The two lower modes of the closed-loop structure were placed further in the LHS of the complex plane. The theoretically predicted passive and active control law was experimentally verified.

  5. Tubular dielectric elastomer actuator for active fluidic control

    NASA Astrophysics Data System (ADS)

    McCoul, David; Pei, Qibing

    2015-10-01

    We report a novel low-profile, biomimetic dielectric elastomer tubular actuator capable of actively controlling hydraulic flow. The tubular actuator has been established as a reliable tunable valve, pinching a secondary silicone tube completely shut in the absence of a fluidic pressure bias or voltage, offering a high degree of resistance against fluidic flow, and able to open and completely remove this resistance to flow with an applied low power actuation voltage. The system demonstrates a rise in pressure of ∼3.0 kPa when the dielectric elastomer valve is in the passive, unactuated state, and there is a quadratic fall in this pressure with increasing actuation voltage, until ∼0 kPa is reached at 2.4 kV. The device is reliable for at least 2000 actuation cycles for voltages at or below 2.2 kV. Furthermore, modeling of the actuator and fluidic system yields results consistent with the observed experimental dependence of intrasystem pressure on input flow rate, actuator prestretch, and actuation voltage. To our knowledge, this is the first actuator of its type that can control fluid flow by directly actuating the walls of a tube. Potential applications may include an implantable artificial sphincter, part of a peristaltic pump, or a computerized valve for fluidic or pneumatic control.

  6. Electrical Impact of SiC Structural Crystal Defects on High Electric Field Devices (Invited)

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.

    1999-01-01

    As illustrated by the invited paper at this conference and other works, SiC wafers and epilayers contain a variety of crystallographic imperfections, including micropipes, closed-core screw dislocations, grain boundaries, basal plane dislocations, heteropolytypic inclusions, and surfaces that are often damaged and contain atomically rough features like step bunching and growth pits or hillocks. Present understanding of the operational impact of various crystal imperfections on SiC electrical devices is reviewed, with an emphasis placed on high-field SiC power devices and circuits.

  7. Investigations of the Impact of Biodiesel Metal Contaminants on Emissions Control Devices

    SciTech Connect

    Brookshear, Daniel W; Lance, Michael J; Mccormick, Robert; Toops, Todd J

    2017-01-01

    Biodiesel is a renewable fuel with the potential to displace a portion of petroleum use. However, as with any alternative fuel, in order to be a viable choice it must be compatible with the emissions control devices. The finished biodiesel product can contain up to 5 ppm Na + K and 5 ppm Ca + Mg, and these metal impurities can lead to durability issues with the devices used to control emissions in diesel vehicles. Significant work has been performed to understand how the presence of these metals impacts each individual component of diesel emissions control systems, and this chapter summarizes the findings of these research efforts.

  8. Novel applications of plasma actuators

    NASA Astrophysics Data System (ADS)

    Ozturk, Arzu Ceren

    The current study investigates the effectiveness of two different dielectric barrier discharge plasma actuator configurations, a 3-D annular geometry for use in micro thrusters and internal duct aerodynamics and a jet vectoring actuator that acts as a vortex generator and flow control device. The first configuration consists of a closed circumferential arrangement which yields a body force when a voltage difference is applied across the inner and outer electrodes separated by a dielectric. The primary flow is driven by this zero-net mass flux jet at the wall that then entrains fluid in the core of the duct. PIV experiments in both quiescent flow and freestream are conducted on tubes of different diameters while varying parameters such as the modulation frequency, duty cycle and tunnel speed. The values of the induced velocities increase with the forcing frequency and duty cycle although there is a peak value for the forcing frequency after which the velocity and thrust decrease for each thruster. The velocities and thrust increase as the inner diameter of the tubes are increased while the velocity profiles show a great difference with the (l/di) ratio; recirculation occurs after going below a critical value. Experiments in the wind tunnel illustrate that the jet exit characteristics significantly change upon actuation in freestream flow but the effect tends to diminish with increasing inner diameters and tunnel speeds. Using staged arrays of these thrusters result in higher velocities while operating at both in phase and out of phase. The jet vectoring configuration consists of a single embedded electrode separated from two exposed electrodes on either side by the dielectric. The embedded electrode is grounded while the exposed electrodes are driven with a high frequency high voltage input signal. PIV measurements of the actuator in a freestream show that vectoring the jet yields stronger vortices than a linear configuration and increasing the difference between

  9. Preregulator feedback circuit utilizes Light Actuated Switch

    NASA Technical Reports Server (NTRS)

    Hayser, T. P.

    1966-01-01

    Preregulator feedback circuit employing a Light Actuated Switch /LAS/ provides a simple and efficient feedback device in a power supply preregulator which maintains dc isolation between input and output grounds. The LAS consists of a diode PN junction infrared source close to, but electrically isolated from, a photodetector.

  10. Multiple switch actuator

    DOEpatents

    Beyer, Edward T.

    1976-01-06

    The present invention relates to switches and switch actuating devices to be operated for purposes of arming a bomb or other missile as it is dropped or released from an aircraft. The particular bomb or missile in which this invention is applied is one in which there is a plurality of circuits which are to be armed by the closing of switches upon dropping or releasing of the bomb. The operation of the switches to closed position is normally accomplished by means of a pull-out wire; that is, a wire which is withdrawn from the bomb or missile at the time of release of the bomb, one end of the wire being attached to the aircraft. The conditions to be met are that the arming switches must be positively and surely maintained in open position until the bomb is released and the arming action is effected. The action of the pull-out wire in achieving the arming action must be sure and positive with minimum danger of malfunctioning, jamming or binding.

  11. Explosive actuated valve

    DOEpatents

    Byrne, Kenneth G.

    1983-01-01

    1. A device of the character described comprising the combination of a housing having an elongate bore and including a shoulder extending inwardly into said bore, a single elongate movable plunger disposed in said bore including an outwardly extending flange adjacent one end thereof overlying said shoulder, normally open conduit means having an inlet and an outlet perpendicularly piercing said housing intermediate said shoulder and said flange and including an intermediate portion intersecting and normally openly communicating with said bore at said shoulder, normally closed conduit means piercing said housing and intersecting said bore at a location spaced from said normally open conduit means, said elongate plunger including a shearing edge adjacent the other end thereof normally disposed intermediate both of said conduit means and overlying a portion of said normally closed conduit means, a deformable member carried by said plunger intermediate said flange and said shoulder and normally spaced from and overlying the intermediate portion of said normally open conduit means, and means on the housing communicating with the bore to retain an explosive actuator for moving said plunger to force the deformable member against the shoulder and extrude a portion of the deformable member out of said bore into portions of the normally open conduit means for plugging the same and to effect the opening of said normally closed conduit means by the plunger shearing edge substantially concomitantly with the plugging of the normally open conduit means.

  12. Direct current pulse train actuation to enhance droplet control in digital microfluidics

    NASA Astrophysics Data System (ADS)

    Murran, Miguel A.; Najjaran, Homayoun

    2012-10-01

    The effective operation of a digital microfluidic (DMF) device depends on its ability to actuate droplets. Pulse width modulation of actuating signals (DC pulse train actuation) is proposed as a practical digital implementation and enhanced droplet manipulation technique. Experimental and simulation results demonstrate the efficacy of droplet incremental displacement and velocity control by modulating the width of each actuation pulse. This will in turn enable the control of the non-linear droplet transport dynamics to minimize droplet position overshoot, deformation, and fragmentation. As a result, DCPT actuation offers unparalleled control over droplet position and speed in DMF devices.

  13. Massively Redundant Electromechanical Actuators

    DTIC Science & Technology

    2014-08-30

    date of determination). DoD Controlling Office is (insert controlling DoD office). "Massively Redundant Electromechanical Actuators" August... electromechanical systems) processes are used to manufacture reliable and reproducible stators and sliders for the actuators. These processes include

  14. Fast electrochemical actuator

    NASA Astrophysics Data System (ADS)

    Uvarov, I. V.; Postnikov, A. V.; Svetovoy, V. B.

    2016-03-01

    Lack of fast and strong microactuators is a well-recognized problem in MEMS community. Electrochemical actuators can develop high pressure but they are notoriously slow. Water electrolysis produced by short voltage pulses of alternating polarity can overcome the problem of slow gas termination. Here we demonstrate an actuation regime, for which the gas pressure is relaxed just for 10 μs or so. The actuator consists of a microchamber filled with the electrolyte and covered with a flexible membrane. The membrane bends outward when the pressure in the chamber increases. Fast termination of gas and high pressure developed in the chamber are related to a high density of nanobubbles in the chamber. The physical processes happening in the chamber are discussed so as problems that have to be resolved for practical applications of this actuation regime. The actuator can be used as a driving engine for microfluidics.

  15. Nanophotonic implementation of optoelectrowetting for microdroplet actuation

    NASA Astrophysics Data System (ADS)

    Collier, Christopher M.; Hill, Kyle A.; DeWachter, Mark A.; Huizing, Alexander M.; Holzman, Jonathan F.

    2015-02-01

    The development and ultimate operation of a nanocomposite high-aspect-ratio photoinjection (HARP) device is presented in this work. The device makes use of a nanocomposite material as the optically active layer and the device achieves a large optical penetration depth with a high aspect ratio which provides a strong actuation force far away from the point of photoinjection. The nanocomposite material can be continuously illuminated and the position of the microdroplets can, therefore, be controlled to diffraction limited resolution. The nanocomposite HARP device shows great potential for future on-chip applications.

  16. Characterization of Vertical Impact Device Acceleration Pulses Using Parametric Assessment: Phase II Accelerated Free-Fall

    DTIC Science & Technology

    2016-04-30

    ACCELERATED FREE -FALL Mr. Chris Perry Mr. Chris Burneka Warfighter Interface Division Ms. Rachael Christopher ORISE Mr. Chris Albery Infoscitex...of Vertical Impact Device Acceleration Pulses Using Parametric Assessment: Phase II Accelerated Free -Fall 5a. CONTRACT NUMBER FA8650-14-D-6500...bungee cord system interfaced between the VID free -fall carriage and the reaction mass to provide an initial velocity at carriage release. The approach

  17. Proprioceptive Actuation Design for Dynamic Legged locomotion

    NASA Astrophysics Data System (ADS)

    Kim, Sangbae; Wensing, Patrick; Biomimetic Robotics Lab Team

    Designing an actuator system for highly-dynamic legged locomotion exhibited by animals has been one of the grand challenges in robotics research. Conventional actuators designed for manufacturing applications have difficulty satisfying challenging requirements for high-speed locomotion, such as the need for high torque density and the ability to manage dynamic physical interactions. It is critical to introduce a new actuator design paradigm and provide guidelines for its incorporation in future mobile robots for research and industry. To this end, we suggest a paradigm called proprioceptive actuation, which enables highly- dynamic operation in legged machines. Proprioceptive actuation uses collocated force control at the joints to effectively control contact interactions at the feet under dynamic conditions. In the realm of legged machines, this paradigm provides a unique combination of high torque density, high-bandwidth force control, and the ability to mitigate impacts through backdrivability. Results show that the proposed design provides an impact mitigation factor that is comparable to other quadruped designs with series springs to handle impact. The paradigm is shown to enable the MIT Cheetah to manage the application of contact forces during dynamic bounding, with results given down to contact times of 85ms and peak forces over 450N. As a result, the MIT Cheetah achieves high-speed 3D running up to 13mph and jumping over an 18-inch high obstacle. The project is sponsored by DARPA M3 program.

  18. Design and testing of a double X-frame piezoelectric actuator

    NASA Astrophysics Data System (ADS)

    Hall, Steven R.; Tzianetopoulou, Theodora; Straub, Friedrich K.; Ngo, Hieu T.

    2000-06-01

    The development and testing of a new actuator for helicopter rotor control, the Double X-Frame, is described. The actuator is being developed for wind tunnel and flight testing on an MD-900 helicopter. The double X-frame actuator has a number of design innovations to improve its performance over the original X-frame design of Prechtl and Hall. First, the double X-frame design uses two X-frames operating in opposition, which allows the actuator stack preloads to be applied internally to the actuator, rather than through the actuation path. Second, the frames of the actuator have been modified to improve the actuator form factor, and increase the volume of active material in the actuator. Testing of the double X-frame piezoelectric actuator was conducted in order to determine its performance (stroke and stiffness) and robustness. In general, stiffness test data compared well with the analytical predictions. The actuator stroke was about 15% less than expected, probably due to the stack output being less in the actuator than as measured in single stack segment testing in the lab. The actuator was also tested dynamically, to determine its frequency response. Actuator robustness was evaluated by measuring its performance when subjected to the effects of blade bending, vibration, and centrifugal loading. Blade elastic bending and torsion deformations were simulated by shimming of the actuator mounts. To assess the impact of the blade vibrations, the actuator and bench test rig were mounted on a hydraulic shaker and subjected to flapwise or chordwise accelerations up to 30 g. To assess the impact of centrifugal force loading, the actuator and bench test rig were spun in the University of Maryland vacuum chamber, so that the actuator was subjected to realistic accelerations, up to 115% of nominal. Results showed that actuator output (force times stroke) was largely unaffected by dynamic and steady accelerations or elastic blade deformations.

  19. Design optimization of a novel pMDI actuator for systemic drug delivery.

    PubMed

    Kakade, Prashant P; Versteeg, Henk K; Hargrave, Graham K; Genova, Perry; Williams Iii, Robert C; Deaton, Daniel

    2007-01-01

    Pressurized metered dose inhalers (pMDIs) are the most widely prescribed and economical respiratory drug delivery systems. Conventional pMDI actuators-those based on "two-orifice-and-sump" designs-produce an aerosol with a reasonable respirable fraction, but with high aerosol velocity. The latter is responsible for high oropharyngeal deposition, and consequently low drug delivery efficiency. Kos' pMDI technology is based on a proprietary vortex nozzle actuator (VNA), an innovative actuator configuration that seeks to reduce aerosol plume velocity, thereby promoting deep lung deposition. Using VNA development as a case study, this paper presents a systematic design optimization process to improve the actuator performance through use of advanced optical characterization tools. The optimization effort mainly relied on laser-based optical diagnostics to provide an improved understanding of the fundamentals of aerosol formation and interplay of various geometrical factors. The performance of the optimized VNA design thus evolved was characterized using phase Doppler anemometry and cascade impaction. The aerosol velocities for both standard and optimized VNA designs were found to be comparable, with both notably less than conventional actuators. The optimized VNA design also significantly reduces drug deposition in the actuator as well as USP throat adapter, which in turn, leads to a significantly higher fine particle fraction than the standard design (78 +/- 3% vs. 63 +/- 2% on an ex valve basis). This improved drug delivery efficiency makes VNA technology a practical proposition as a systemic drug delivery platform. Thus, this paper demonstrates how advanced optical diagnostic and characterization tools can be used in the development of high efficiency aerosol drug delivery devices.

  20. Electrical Impact of SiC Structural Crystal Defects on High Electric Field Devices

    NASA Technical Reports Server (NTRS)

    Neudeck, Philip G.

    1999-01-01

    Commercial epilayers are known to contain a variety of crystallographic imperfections. including micropipes, closed core screw dislocations. low-angle boundaries, basal plane dislocations, heteropolytypic inclusions, and non-ideal surface features like step bunching and pits. This paper reviews the limited present understanding of the operational impact of various crystal defects on SiC electrical devices. Aside from micropipes and triangular inclusions whose densities have been shrinking towards manageably small values in recent years, many of these defects appear to have little adverse operational and/or yield impact on SiC-based sensors, high-frequency RF, and signal conditioning electronics. However high-power switching devices used in power management and distribution circuits have historically (in silicon experience) demanded the highest material quality for prolonged safe operation, and are thus more susceptible to operational reliability problems that arise from electrical property nonuniformities likely to occur at extended crystal defects. A particular emphasis is placed on the impact of closed-core screw dislocations on high-power switching devices, because these difficult to observe defects are present in densities of thousands per cm,in commercial SiC epilayers. and their reduction to acceptable levels seems the most problematic at the present time.

  1. Potential resource and toxicity impacts from metals in waste electronic devices.

    PubMed

    Woo, Seung H; Lee, Dae Sung; Lim, Seong-Rin

    2016-04-01

    As a result of the continuous release of new electronic devices, existing electronic devices are quickly made obsolete and rapidly become electronic waste (e-waste). Because e-waste contains a variety of metals, information about those metals with the potential for substantial environmental impact should be provided to manufacturers, recyclers, and disposers to proactively reduce this impact. This study assesses the resource and toxicity (i.e., cancer, noncancer, and ecotoxicity) potentials of various heavy metals commonly found in e-waste from laptop computers, liquid-crystal display (LCD) monitors, LCD TVs, plasma TVs, color cathode ray tube (CRT) TVs, and cell phones and then evaluates such potentials using life cycle impact-based methods. Resource potentials derive primarily from Cu, Sb, Ag, and Pb. Toxicity potentials derive primarily from Pb, Ni, and Hg for cancer toxicity; from Pb, Hg, Zn, and As for noncancer toxicity; and from Cu, Pb, Hg, and Zn for ecotoxicity. Therefore, managing these heavy metals should be a high priority in the design, recycling, and disposal stages of electronic devices.

  2. Fastening apparatus having shape memory alloy actuator

    NASA Technical Reports Server (NTRS)

    Mckinnis, Darin N. (Inventor)

    1992-01-01

    A releasable fastening apparatus is presented. The device includes a connecting member and a housing. The housing supports a gripping mechanism that is adapted to engage the connecting member. A triggering member is movable within the housing between a first position in which it constrains the gripping mechanism in locked engagement with the connecting member, and a second position in which the gripping mechanism is disengaged from the connecting member. A shaped memory alloy actuator is employed for translating the triggering member from its first to its second position. The actuator is designed to expand longitudinally when transitioned from a martensitic to an austenitic state.

  3. Investigation of size effect on film type haptic actuator made with cellulose acetate

    NASA Astrophysics Data System (ADS)

    Kim, Sang-Youn; Kim, Jaehwan; Kim, Ki-Baek

    2014-04-01

    The most important factor in haptic interaction with hand-held devices is to develop a thin film type actuator which can be easily inserted into the devices and create vibrotactile signals with wide frequency bandwidth. This paper reports a film type vibrotactile actuator which is tiny enough to be embedded into small hand-held devices. The vibration mechanism and experiment results for the suggested vibrotactile actuator are explained. The aim of the actuator is to convey a vibrotactile force greater than a human’s vibrotactile threshold with broad frequency bandwidth to users. To achieve the requirement, we fabricate a film type vibrotactile actuator with cellulose acetate. When an AC voltage is applied to the actuator, the cellulose acetate film gets charged and then generates vibration. The suggested vibrotactile actuator is fabricated in two sizes: 50 mm × 25 mm and 25 mm × 25 mm. For each size of actuator, three kinds of actuator are fabricated with different pillar materials to support the cellulose acetate films. An experiment for measuring vibrational amplitude is conducted over a wide frequency range of actuation voltage. It is known that the proposed film type actuator is feasible for haptic application in the small hand-held devices.

  4. Surface micromachined sensors and actuators

    SciTech Connect

    Sniegowski, J.J.

    1995-08-01

    A description of a three-level mechanical polysilicon surface-micromachining technology including a discussion of the advantages of this level of process complexity is presented. This technology is capable of forming mechanical elements ranging from simple cantilevered beams to complex, interconnected, interactive, microactuated micromechanisms. The inclusion of a third deposited layer of mechanical polysilicon greatly extends the degree of complexity available for micromechanism design. Additional features of the Sandia three-level process include the use of Chemical-Mechanical Polishing (CMP) for planarization, and the integration of micromechanics with the Sandia CMOS circuit process. The latter effort includes a CMOS-first, tungsten metallization process to allow the CMOS electronics to withstand high-temperature micromechanical processing. Alternatively, a novel micromechanics-first approach wherein the micromechanical devices are processed first in a well below the surface of the CMOS starting material followed by the standard, aluminum metallization CMOS process is also being pursued. Following the description of the polysilicon surface micromachining are examples of the major sensor and actuator projects based on this technology at the Microelectronics Development Laboratory (MDL) at Sandia National Laboratories. Efforts at the MDL are concentrated in the technology of surface micromachining due to the availability of and compatibility with standard CMOS processes. The primary sensors discussed are a silicon nitride membrane pressure sensor, hot polysilicon filaments for calorimetric gas sensing, and a smart hydrogen sensor. Examples of actuation mechanisms coupled to external devices are also presented. These actuators utilize the three-level process (plus an additional passive level) and employ either surface tension or electrostatic forces.

  5. Eye tracking communication devices in amyotrophic lateral sclerosis: impact on disability and quality of life.

    PubMed

    Caligari, Marco; Godi, Marco; Guglielmetti, Simone; Franchignoni, Franco; Nardone, Antonio

    2013-12-01

    People with amyotrophic lateral sclerosis (PwALS) show progressive loss of voluntary muscle strength. In advanced disease, motor and phonatory impairments seriously hinder the patient's interpersonal communication. High-tech devices such as eye tracking communication devices (ETCDs) are used to aid communication in the later stages of ALS. We sought to evaluate the effect of ETCDs on patient disability, quality of life (QoL), and user satisfaction, in a group of 35 regular ETCD users in late-stage ALS with tetraplegia and anarthria. The following scales were administered: 1) the Individually Prioritized Problem Assessment (IPPA) scale, in three conditions: without device, with ETCD and, when applicable, with an Eye Transfer (ETRAN) board; 2) the Psychosocial Impact of Assistive Devices Scale (PIADS); and 3) the Quebec User Evaluation of Satisfaction with Assistive Technology (QUEST 2.0). With ETRAN, IPPA showed an increase in communicative abilities with respect to the condition without device, but ETCD produced a further significant increase. PIADS evidenced a large increase of QoL, and QUEST 2.0 showed high user satisfaction with ETCD use. In conclusion, ETCDs should be considered in late-stage ALS with tetraplegia and anarthria, since in these patients they can reduce communication disability and improve QoL.

  6. Cryogenic Piezoelectric Actuator

    NASA Technical Reports Server (NTRS)

    Jiang, Xiaoning; Cook, William B.; Hackenberger, Wesley S.

    2009-01-01

    In this paper, PMN-PT single crystal piezoelectric stack actuators and flextensional actuators were designed, prototyped and characterized for space optics applications. Single crystal stack actuators with footprint of 10 mm x10 mm and the height of 50 mm were assembled using 10 mm x10mm x0.15mm PMN-PT plates. These actuators showed stroke > 65 - 85 microns at 150 V at room temperature, and > 30 microns stroke at 77 K. Flextensional actuators with dimension of 10mm x 5 mm x 7.6 mm showed stroke of >50 microns at room temperature at driving voltage of 150 V. A flextensional stack actuator with dimension of 10 mm x 5 mm x 47 mm showed stroke of approx. 285 microns at 150 V at room temperature and > 100 microns at 77K under driving of 150 V should be expected. The large cryogenic stroke and high precision of these actuators are promising for cryogenic optics applications.

  7. NASA pyrotechnically actuated systems program

    NASA Technical Reports Server (NTRS)

    Schulze, Norman R.

    1993-01-01

    The Office of Safety and Mission Quality initiated a Pyrotechnically Actuated Systems (PAS) Program in FY-92 to address problems experienced with pyrotechnically actuated systems and devices used both on the ground and in flight. The PAS Program will provide the technical basis for NASA's projects to incorporate new technological developments in operational systems. The program will accomplish that objective by developing/testing current and new hardware designs for flight applications and by providing a pyrotechnic data base. This marks the first applied pyrotechnic technology program funded by NASA to address pyrotechnic issues. The PAS Program has been structured to address the results of a survey of pyrotechnic device and system problems with the goal of alleviating or minimizing their risks. Major program initiatives include the development of a Laser Initiated Ordnance System, a pyrotechnic systems data base, NASA Standard Initiator model, a NASA Standard Linear Separation System and a NASA Standard Gas Generator. The PAS Program sponsors annual aerospace pyrotechnic systems workshops.

  8. Micromachined sensor and actuator research at the Microelectronics Development Laboratory

    SciTech Connect

    Smith, J.H.; Barron, C.C.; Fleming, J.G.; Montague, S.; Rodriguez, J.L.; Smith, B.K.; Sniegowski, J.J.

    1994-12-31

    An overview of the major sensor and actuator projects using the micromachining capabilities of the Microelectronics Development Laboratory at Sandia National Laboratories is presented. Development efforts are underway for a variety of micromechanical devices and control electronics for those devices. Surface micromachining is the predominant technology under development. Pressure sensors based on silicon nitride diaphragms have been developed. Hot polysilicon filaments for calorimetric gas sensing have been developed. Accelerometers based upon high-aspect ratio surface micromachining are under development. Actuation mechanisms employing either electrostatic or steam power are being combined with a three-level active (plus an additional passive level) polysilicon surface micromachining process to couple these actuators to external devices. Results of efforts toward integration of micromechanics with the driving electronics for actuators or the amplification/signal processing electronics for sensors is also described. This effort includes a tungsten metallization process to allow the CMOS electronics to withstand high-temperature micromechanical processing.

  9. Micro- and nanostructured electro-active polymer actuators as smart muscles for incontinence treatment

    SciTech Connect

    Osmani, Bekim E-mail: tino.toepper@unibas.ch; Töpper, Tino E-mail: tino.toepper@unibas.ch; Weiss, Florian M. E-mail: bert.mueller@unibas.ch; Leung, Vanessa E-mail: bert.mueller@unibas.ch; Müller, Bert E-mail: bert.mueller@unibas.ch

    2015-02-17

    Treatments of severe incontinence are currently based on purely mechanical systems that generally result in revision after three to five years. Our goal is to develop a prototype acting in a natural-analogue manner as artificial muscle, which is based on electro-active polymers. Dielectric actuators have outstanding performances including millisecond response times, mechanical strains of more than 10 % and power to mass densities similar to natural muscles. They basically consist of polymer films sandwiched between two compliant electrodes. The incompressible but elastic polymer film transduces the electrical energy into mechanical work according to the Maxwell pressure. Available polymer films are micrometers thick and voltages as large as kV are necessary to obtain 10 % strain. For medical implants, polymer films should be nanometer thin to realize actuation below 48 V. The metallic electrodes have to be stretchable to follow the strain of 10 % and remain conductive. Recent results on the stress/strain behavior of anisotropic EAP-cantilevers have shown dependencies on metal electrode preparation. We have investigated tunable anisotropic micro- and nanostructures for metallic electrodes. They show a preferred actuation direction with improved stress-strain behavior. The bending of the cantilever has been characterized by the laser beam deflection method. The impact of the electrode on the effective Young's Modulus is measured using an Ultra Nanoindentation Tester with an integrated reference system for soft polymer surfaces. Once ten thousand layers of nanometer-thin EAP actuators are available, devices beyond the envisioned application will flood the market.

  10. Micro- and nanostructured electro-active polymer actuators as smart muscles for incontinence treatment

    NASA Astrophysics Data System (ADS)

    Osmani, Bekim; Töpper, Tino; Deschenaux, Christian; Nohava, Jiri; Weiss, Florian M.; Leung, Vanessa; Müller, Bert

    2015-02-01

    Treatments of severe incontinence are currently based on purely mechanical systems that generally result in revision after three to five years. Our goal is to develop a prototype acting in a natural-analogue manner as artificial muscle, which is based on electro-active polymers. Dielectric actuators have outstanding performances including millisecond response times, mechanical strains of more than 10 % and power to mass densities similar to natural muscles. They basically consist of polymer films sandwiched between two compliant electrodes. The incompressible but elastic polymer film transduces the electrical energy into mechanical work according to the Maxwell pressure. Available polymer films are micrometers thick and voltages as large as kV are necessary to obtain 10 % strain. For medical implants, polymer films should be nanometer thin to realize actuation below 48 V. The metallic electrodes have to be stretchable to follow the strain of 10 % and remain conductive. Recent results on the stress/strain behavior of anisotropic EAP-cantilevers have shown dependencies on metal electrode preparation. We have investigated tunable anisotropic micro- and nanostructures for metallic electrodes. They show a preferred actuation direction with improved stress-strain behavior. The bending of the cantilever has been characterized by the laser beam deflection method. The impact of the electrode on the effective Young's Modulus is measured using an Ultra Nanoindentation Tester with an integrated reference system for soft polymer surfaces. Once ten thousand layers of nanometer-thin EAP actuators are available, devices beyond the envisioned application will flood the market.

  11. Scalability of Localized Arc Filament Plasma Actuators

    NASA Technical Reports Server (NTRS)

    Brown, Clifford A.

    2008-01-01

    Temporal flow control of a jet has been widely studied in the past to enhance jet mixing or reduce jet noise. Most of this research, however, has been done using small diameter low Reynolds number jets that often have little resemblance to the much larger jets common in real world applications because the flow actuators available lacked either the power or bandwidth to sufficiently impact these larger higher energy jets. The Localized Arc Filament Plasma Actuators (LAFPA), developed at the Ohio State University (OSU), have demonstrated the ability to impact a small high speed jet in experiments conducted at OSU and the power to perturb a larger high Reynolds number jet in experiments conducted at the NASA Glenn Research Center. However, the response measured in the large-scale experiments was significantly reduced for the same number of actuators compared to the jet response found in the small-scale experiments. A computational study has been initiated to simulate the LAFPA system with additional actuators on a large-scale jet to determine the number of actuators required to achieve the same desired response for a given jet diameter. Central to this computational study is a model for the LAFPA that both accurately represents the physics of the actuator and can be implemented into a computational fluid dynamics solver. One possible model, based on pressure waves created by the rapid localized heating that occurs at the actuator, is investigated using simplified axisymmetric simulations. The results of these simulations will be used to determine the validity of the model before more realistic and time consuming three-dimensional simulations are conducted to ultimately determine the scalability of the LAFPA system.

  12. Variable Valve Actuation

    SciTech Connect

    Jeffrey Gutterman; A. J. Lasley

    2008-08-31

    Many approaches exist to enable advanced mode, low temperature combustion systems for diesel engines - such as premixed charge compression ignition (PCCI), Homogeneous Charge Compression Ignition (HCCI) or other HCCI-like combustion modes. The fuel properties and the quantity, distribution and temperature profile of air, fuel and residual fraction in the cylinder can have a marked effect on the heat release rate and combustion phasing. Figure 1 shows that a systems approach is required for HCCI-like combustion. While the exact requirements remain unclear (and will vary depending on fuel, engine size and application), some form of substantially variable valve actuation is a likely element in such a system. Variable valve actuation, for both intake and exhaust valve events, is a potent tool for controlling the parameters that are critical to HCCI-like combustion and expanding its operational range. Additionally, VVA can be used to optimize the combustion process as well as exhaust temperatures and impact the after treatment system requirements and its associated cost. Delphi Corporation has major manufacturing and product development and applied R&D expertise in the valve train area. Historical R&D experience includes the development of fully variable electro-hydraulic valve train on research engines as well as several generations of mechanical VVA for gasoline systems. This experience has enabled us to evaluate various implementations and determine the strengths and weaknesses of each. While a fully variable electro-hydraulic valve train system might be the 'ideal' solution technically for maximum flexibility in the timing and control of the valve events, its complexity, associated costs, and high power consumption make its implementation on low cost high volume applications unlikely. Conversely, a simple mechanical system might be a low cost solution but not deliver the flexibility required for HCCI operation. After modeling more than 200 variations of the

  13. Method of Fabricating NASA-Standard Macro-Fiber Composite Piezoelectric Actuators

    NASA Technical Reports Server (NTRS)

    High, James W.; Wilkie, W. Keats

    2003-01-01

    The NASA Macro-Fiber Composite actuator is a flexible piezoelectric composite device designed for controlling vibrations and shape deformations in high performance aerospace structures. A complete method for fabricating the standard NASA Macro-Fiber Composite actuator is presented in this document. When followed precisely, these procedures will yield devices with electromechanical properties identical to the standard actuator manufactured by NASA Langley Research Center.

  14. The psychosocial impact of home use medical devices on the lives of older people: a qualitative study

    PubMed Central

    2013-01-01

    Background Increased life expectancy and the accompanying prevalence of chronic conditions have led to the focus and delivery of health care migrating from the hospital and into people’s homes. While previous studies have investigated the integration of particular types of medical devices into the home, it was our intention to describe how medical devices are integrated into the lives of older people. Methods Adopting a qualitative study design, 12 older people, who used medical devices in the home, took part in in-depth, semi structured interviews. In 7 of the interviews participants and their partners were interviewed together. These interviews were recorded, transcribed and analysed thematically. Results Two themes were constructed that describe how medical devices that are used in the home present certain challenges to older people and their partners in how the device is adopted and the personal adaptations that they are required to make. The first theme of 'self-esteem’ highlighted the psychological impact on users. The second theme of 'the social device' illustrated the social impact of these devices on the user and the people around them. Conclusions We found that these devices had both a positive and negative psychosocial impact on users’ lives. An improved understanding of these psychological and social issues may assist both designers of medical devices and the professionals who issue them to better facilitate the integration of medical devices into the homes and lives of older people. PMID:24195757

  15. Unconventional Impacts from Unconventional Hydropower Devices: The Environmental Effects of Noise, Electromagnetic Fields, and other Stressors

    NASA Astrophysics Data System (ADS)

    Bevelhimer, M.; Cada, G. F.

    2011-12-01

    Conventional dam-based hydropower production produces a variety of environmental stressors that have been debated and confronted for decades. In-current hydrokinetic devices present some of the same or analogous stressors (e.g., changes in sediment transport and deposition, interference with animal movements and migrations, and strike by rotor blades) and some potentially new stressors (e.g., noise during operation, emission of electromagnetic fields [EMF], and toxicity of paints, lubricants, and antifouling coatings). The types of hydrokinetic devices being proposed and tested are varied, as are the locations where they could be deployed, i.e., coastal, estuarine, and big rivers. Differences in hydrology, device type, and the affected aquatic community (marine, estuarine, and riverine) will likely result in a different suite of environmental concerns for each project. Studies are underway at the U.S. Department of Energy's national laboratories to characterize the level of exposure to these stressors and to measure environmental response where possible. In this presentation we present results of studies on EMF, noise, and benthic habitat alteration relevant to hydrokinetic device operation in large rivers. In laboratory studies we tested the behavioral response of a variety of fish and invertebrate organisms to exposure to DC and AC EMF. Our findings suggest that lake sturgeon may be susceptible to EMF like that emitted from underwater cables, but most other species tested are not. Based on recordings of various underwater noise sources, we will show how the spectral density of noises created by hydrokinetic devices compares to that from other anthropogenic sources and natural sources. We will also report the results of hydroacoustic surveys that show how sediments are redistributed behind pilings like those that could be used for mounting hydrokinetic devices. The potential effects of these stressors will be discussed in the context of possible fish population

  16. Control Software for Piezo Stepping Actuators

    NASA Technical Reports Server (NTRS)

    Shields, Joel F.

    2013-01-01

    A control system has been developed for the Space Interferometer Mission (SIM) piezo stepping actuator. Piezo stepping actuators are novel because they offer extreme dynamic range (centimeter stroke with nanometer resolution) with power, thermal, mass, and volume advantages over existing motorized actuation technology. These advantages come with the added benefit of greatly reduced complexity in the support electronics. The piezo stepping actuator consists of three fully redundant sets of piezoelectric transducers (PZTs), two sets of brake PZTs, and one set of extension PZTs. These PZTs are used to grasp and move a runner attached to the optic to be moved. By proper cycling of the two brake and extension PZTs, both forward and backward moves of the runner can be achieved. Each brake can be configured for either a power-on or power-off state. For SIM, the brakes and gate of the mechanism are configured in such a manner that, at the end of the step, the actuator is in a parked or power-off state. The control software uses asynchronous sampling of an optical encoder to monitor the position of the runner. These samples are timed to coincide with the end of the previous move, which may consist of a variable number of steps. This sampling technique linearizes the device by avoiding input saturation of the actuator and makes latencies of the plant vanish. The software also estimates, in real time, the scale factor of the device and a disturbance caused by cycling of the brakes. These estimates are used to actively cancel the brake disturbance. The control system also includes feedback and feedforward elements that regulate the position of the runner to a given reference position. Convergence time for smalland medium-sized reference positions (less than 200 microns) to within 10 nanometers can be achieved in under 10 seconds. Convergence times for large moves (greater than 1 millimeter) are limited by the step rate.

  17. Wireless actuation with functional acoustic surfaces

    NASA Astrophysics Data System (ADS)

    Qiu, T.; Palagi, S.; Mark, A. G.; Melde, K.; Adams, F.; Fischer, P.

    2016-11-01

    Miniaturization calls for micro-actuators that can be powered wirelessly and addressed individually. Here, we develop functional surfaces consisting of arrays of acoustically resonant micro-cavities, and we demonstrate their application as two-dimensional wireless actuators. When remotely powered by an acoustic field, the surfaces provide highly directional propulsive forces in fluids through acoustic streaming. A maximal force of ˜0.45 mN is measured on a 4 × 4 mm2 functional surface. The response of the surfaces with bubbles of different sizes is characterized experimentally. This shows a marked peak around the micro-bubbles' resonance frequency, as estimated by both an analytical model and numerical simulations. The strong frequency dependence can be exploited to address different surfaces with different acoustic frequencies, thus achieving wireless actuation with multiple degrees of freedom. The use of the functional surfaces as wireless ready-to-attach actuators is demonstrated by implementing a wireless and bidirectional miniaturized rotary motor, which is 2.6 × 2.6 × 5 mm3 in size and generates a stall torque of ˜0.5 mN.mm. The adoption of micro-structured surfaces as wireless actuators opens new possibilities in the development of miniaturized devices and tools for fluidic environments that are accessible by low intensity ultrasound fields.

  18. Dielectric elastomer actuators with granular coupling

    NASA Astrophysics Data System (ADS)

    Carpi, Federico; Frediani, Gabriele; Nanni, Massimo; De Rossi, Danilo

    2011-04-01

    So-called 'hydrostatically coupled' dielectric elastomer actuators (HC-DEAs) have recently been shown to offer new opportunities for actuation devices made of electrically responsive elastomeric insulators. HC-DEAs include an incompressible fluid that mechanically couples a dielectric elastomer based active part to a passive part interfaced to the load, so as to enable hydrostatic transmission. Drawing inspiration from that concept, this paper presents a new kind of actuators, analogous to HC-DEAs, except for the fact that the fluid is replaced by fine powder. The related technology, here referred to as 'granularly coupled' DEAs (GC-DEAs), relies entirely on solid-state materials. This permits to avoid drawbacks (such as handling and leakage) inherent to usage of fluids, especially those in liquid phase. The paper presents functionality and actuation performance of bubble-like GC-DEAs, in direct comparison with HC-DEAs. For this purpose, prototype actuators made of two pre-stretched membranes of acrylic elastomer, coupled via talcum powder (for GC-DEA) or silicone grease (for HC-DEA), were manufactured and comparatively tested. As compared to HC-DEAs, GC-DEAs showed a higher maximum stress, the same maximum relative displacement, and nearly the same bandwidth. The paper presents characterization results and discusses advantages and drawbacks of GC-DEAs, in comparison with HC-DEAs.

  19. Elastomeric contractile actuators for hand rehabilitation splints

    NASA Astrophysics Data System (ADS)

    Carpi, Federico; Mannini, Andrea; De Rossi, Danilo

    2008-03-01

    The significant electromechanical performances typically shown by dielectric elastomer actuators make this polymer technology particularly attractive for possible active orthoses for rehabilitation. Folded contractile actuators made of dielectric elastomers were recently described as a simple configuration, suitable to easily implement linear contractile devices. This paper describes an application of folded actuators for so-called hand splints: they consist of orthotic systems for hand rehabilitation. The dynamic versions of the state-of-the-art splints typically include elastic bands, which exert a passive elastic resistance to voluntary elongations of one or more fingers. In order to provide such splints with the possibility of electrically modulating the compliance of the resistive elements, the substitution of the passive elastic bands with the contractile actuators is here described. The electrical activation of the actuators is used to vary the compliance of the system; this enables modulations of the force that acts as an antagonist to voluntary finger movements, according to programmable rehabilitation exercises. The paper reports results obtained from the first prototype implementations of such a type of system.

  20. Magnetically Actuated Seal

    NASA Technical Reports Server (NTRS)

    Pinera, Alex

    2013-01-01

    This invention is a magnetically actuated seal in which either a single electromagnet, or multiple electromagnets, are used to control the seal's position. This system can either be an open/ close type of system or an actively controlled system.

  1. Rotary Series Elastic Actuator

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Mehling, Joshua S. (Inventor); Parsons, Adam H. (Inventor); Griffith, Bryan Kristian (Inventor); Radford, Nicolaus A. (Inventor); Permenter, Frank Noble (Inventor); Davis, Donald R. (Inventor); Ambrose, Robert O. (Inventor); Junkin, Lucien Q. (Inventor)

    2013-01-01

    A rotary actuator assembly is provided for actuation of an upper arm assembly for a dexterous humanoid robot. The upper arm assembly for the humanoid robot includes a plurality of arm support frames each defining an axis. A plurality of rotary actuator assemblies are each mounted to one of the plurality of arm support frames about the respective axes. Each rotary actuator assembly includes a motor mounted about the respective axis, a gear drive rotatably connected to the motor, and a torsion spring. The torsion spring has a spring input that is rotatably connected to an output of the gear drive and a spring output that is connected to an output for the joint.

  2. Rotary series elastic actuator

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Mehling, Joshua S. (Inventor); Parsons, Adam H. (Inventor); Griffith, Bryan Kristian (Inventor); Radford, Nicolaus A. (Inventor); Permenter, Frank Noble (Inventor); Davis, Donald R. (Inventor); Ambrose, Robert O. (Inventor); Junkin, Lucien Q. (Inventor)

    2012-01-01

    A rotary actuator assembly is provided for actuation of an upper arm assembly for a dexterous humanoid robot. The upper arm assembly for the humanoid robot includes a plurality of arm support frames each defining an axis. A plurality of rotary actuator assemblies are each mounted to one of the plurality of arm support frames about the respective axes. Each rotary actuator assembly includes a motor mounted about the respective axis, a gear drive rotatably connected to the motor, and a torsion spring. The torsion spring has a spring input that is rotatably connected to an output of the gear drive and a spring output that is connected to an output for the joint.

  3. Linear Proof Mass Actuator

    NASA Technical Reports Server (NTRS)

    Holloway, Sidney E., III

    1994-01-01

    This paper describes the mechanical design, analysis, fabrication, testing, and lessons learned by developing a uniquely designed spaceflight-like actuator. The linear proof mass actuator (LPMA) was designed to attach to both a large space structure and a ground test model without modification. Previous designs lacked the power to perform in a terrestrial environment while other designs failed to produce the desired accelerations or frequency range for spaceflight applications. Thus, the design for a unique actuator was conceived and developed at NASA Langley Research Center. The basic design consists of four large mechanical parts (mass, upper housing, lower housing, and center support) and numerous smaller supporting components including an accelerometer, encoder, and four drive motors. Fabrication personnel were included early in the design phase of the LPMA as part of an integrated manufacturing process to alleviate potential difficulties in machining an already challenging design. Operating testing of the LPMA demonstrated that the actuator is capable of various types of load functions.

  4. Linear Proof Mass Actuator

    NASA Technical Reports Server (NTRS)

    Holloway, S. E., III

    1995-01-01

    This paper describes the mechanical design, analysis, fabrication, testing, and lessons learned by developing a uniquely designed spaceflight-like actuator. The Linear Proof Mass Actuator (LPMA) was designed to attach to both a large space structure and a ground test model without modification. Previous designs lacked the power to perform in a terrestrial environment while other designs failed to produce the desired accelerations or frequency range for spaceflight applications. Thus, the design for a unique actuator was conceived and developed at NASA Langley Research Center. The basic design consists of four large mechanical parts (Mass, Upper Housing, Lower Housing, and Center Support) and numerous smaller supporting components including an accelerometer, encoder, and four drive motors. Fabrication personnel were included early in the design phase of the LPMA as part of an integrated manufacturing process to alleviate potential difficulties in machining an already challenging design. Operational testing of the LPMA demonstrated that the actuator is capable of various types of load functions.

  5. Muscle Motion Solenoid Actuator

    NASA Astrophysics Data System (ADS)

    Obata, Shuji

    It is one of our dreams to mechanically recover the lost body for damaged humans. Realistic humanoid robots composed of such machines require muscle motion actuators controlled by all pulling actions. Particularly, antagonistic pairs of bi-articular muscles are very important in animal's motions. A system of actuators is proposed using the electromagnetic force of the solenoids with the abilities of the stroke length over 10 cm and the strength about 20 N, which are needed to move the real human arm. The devised actuators are based on developments of recent modern electro-magnetic materials, where old time materials can not give such possibility. Composite actuators are controlled by a high ability computer and software making genuine motions.

  6. Tendon Driven Finger Actuation System

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Reich, David M. (Inventor); Bridgwater, Lyndon (Inventor); Linn, Douglas Martin (Inventor); Askew, Scott R. (Inventor); Diftler, Myron A. (Inventor); Platt, Robert (Inventor); Hargrave, Brian (Inventor); Valvo, Michael C. (Inventor); Abdallah, Muhammad E. (Inventor); Permenter, Frank Noble (Inventor); Mehling, Joshua S. (Inventor)

    2013-01-01

    A humanoid robot includes a robotic hand having at least one finger. An actuation system for the robotic finger includes an actuator assembly which is supported by the robot and is spaced apart from the finger. A tendon extends from the actuator assembly to the at least one finger and ends in a tendon terminator. The actuator assembly is operable to actuate the tendon to move the tendon terminator and, thus, the finger.

  7. Inertial Linear Actuators

    NASA Technical Reports Server (NTRS)

    Laughlin, Darren

    1995-01-01

    Inertial linear actuators developed to suppress residual accelerations of nominally stationary or steadily moving platforms. Function like long-stroke version of voice coil in conventional loudspeaker, with superimposed linear variable-differential transformer. Basic concept also applicable to suppression of vibrations of terrestrial platforms. For example, laboratory table equipped with such actuators plus suitable vibration sensors and control circuits made to vibrate much less in presence of seismic, vehicular, and other environmental vibrational disturbances.

  8. Combustion powered linear actuator

    DOEpatents

    Fischer, Gary J.

    2007-09-04

    The present invention provides robotic vehicles having wheeled and hopping mobilities that are capable of traversing (e.g. by hopping over) obstacles that are large in size relative to the robot and, are capable of operation in unpredictable terrain over long range. The present invention further provides combustion powered linear actuators, which can include latching mechanisms to facilitate pressurized fueling of the actuators, as can be used to provide wheeled vehicles with a hopping mobility.

  9. Laser Initiated Actuator study

    SciTech Connect

    Watson, B.

    1991-06-27

    The program task was to design and study a laser initiated actuator. The design of the actuator is described, it being comprised of the fiber and body subassemblies. The energy source for all experiments was a Spectra Diode 2200-H2 laser diode. The diode is directly coupled to a 100 micron core, 0.3 numerical aperture fiber optic terminated with an SMA connector. The successful testing results are described and recommendations are made.

  10. Hybrid electromechanical actuator and actuation system

    NASA Technical Reports Server (NTRS)

    Su, Ji (Inventor); Xu, Tian-Bing (Inventor)

    2008-01-01

    A hybrid electromechanical actuator has two different types of electromechanical elements, one that expands in a transverse direction when electric power is applied thereto and one that contracts in a transverse direction when electric power is applied thereto. The two electromechanical elements are (i) disposed in relation to one another such that the transverse directions thereof are parallel to one another, and (ii) mechanically coupled to one another at least at two opposing edges thereof. Electric power is applied simultaneously to the elements.

  11. Secondary resonances of electrically actuated resonant microsensors

    NASA Astrophysics Data System (ADS)

    Abdel-Rahman, Eihab M.; Nayfeh, Ali H.

    2003-05-01

    We investigate the response of a microbeam-based resonant sensor to superharmonic and subharmonic electric actuations using a model that incorporates the nonlinearities associated with moderately large displacements and electric forces. The method of multiple scales is used, in each case, to obtain two first-order nonlinear ordinary-differential equations that describe the modulation of the amplitude and phase of the response and its stability. We present typical frequency-response and force-response curves demonstrating, in both cases, the coexistence of multivalued solutions. The solution corresponding to a superharmonic excitation consists of three branches, which meet at two saddle-node bifurcation points. The solution corresponding to a subharmonic excitation consists of two branches meeting a branch of trivial solutions at two pitchfork bifurcation points. One of these bifurcation points is supercritical and the other is subcritical. The results provide an analytical tool to predict the microsensor response to superharmonic and subharmonic excitations, specifically the locations of sudden jumps and regions of hysteretic behavior, thereby enabling designers to safely use these frequencies as measurement signals. They also allow designers to examine the impact of various design parameters on the device behavior.

  12. Shape memory system with integrated actuation using embedded particles

    DOEpatents

    Buckley, Patrick R [New York, NY; Maitland, Duncan J [Pleasant Hill, CA

    2012-05-29

    A shape memory material with integrated actuation using embedded particles. One embodiment provides a shape memory material apparatus comprising a shape memory material body and magnetic pieces in the shape memory material body. Another embodiment provides a method of actuating a device to perform an activity on a subject comprising the steps of positioning a shape memory material body in a desired position with regard to the subject, the shape memory material body capable of being formed in a specific primary shape, reformed into a secondary stable shape, and controllably actuated to recover the specific primary shape; including pieces in the shape memory material body; and actuating the shape memory material body using the pieces causing the shape memory material body to be controllably actuated to recover the specific primary shape and perform the activity on the subject.

  13. Shape memory system with integrated actuation using embedded particles

    DOEpatents

    Buckley, Patrick R; Maitland, Duncan J

    2014-04-01

    A shape memory material with integrated actuation using embedded particles. One embodiment provides a shape memory material apparatus comprising a shape memory material body and magnetic pieces in the shape memory material body. Another embodiment provides a method of actuating a device to perform an activity on a subject comprising the steps of positioning a shape memory material body in a desired position with regard to the subject, the shape memory material body capable of being formed in a specific primary shape, reformed into a secondary stable shape, and controllably actuated to recover the specific primary shape; including pieces in the shape memory material body; and actuating the shape memory material body using the pieces causing the shape memory material body to be controllably actuated to recover the specific primary shape and perform the activity on the subject.

  14. Shape memory system with integrated actuation using embedded particles

    DOEpatents

    Buckley, Patrick R.; Maitland, Duncan J.

    2009-09-22

    A shape memory material with integrated actuation using embedded particles. One embodiment provides a shape memory material apparatus comprising a shape memory material body and magnetic pieces in the shape memory material body. Another embodiment provides a method of actuating a device to perform an activity on a subject comprising the steps of positioning a shape memory material body in a desired position with regard to the subject, the shape memory material body capable of being formed in a specific primary shape, reformed into a secondary stable shape, and controllably actuated to recover the specific primary shape; including pieces in the shape memory material body; and actuating the shape memory material body using the pieces causing the shape memory material body to be controllably actuated to recover the specific primary shape and perform the activity on the subject.

  15. Reversible Switching of Hydrogel-Actuated Nanostructures into Complex Micropatterns

    NASA Astrophysics Data System (ADS)

    Sidorenko, , Alexander; Krupenkin, , Tom; Taylor, , Ashley; Fratzl, , Peter; Aizenberg, Joanna

    2007-01-01

    Responsive behavior, which is intrinsic to natural systems, is becoming a key requirement for advanced artificial materials and devices, presenting a substantial scientific and engineering challenge. We designed dynamic actuation systems by integrating high aspect-ratio silicon nanocolumns, either free-standing or substrate-attached, with a hydrogel layer. The nanocolumns were put in motion by the “muscle” of the hydrogel, which swells or contracts depending on the humidity level. This actuation resulted in a fast reversible reorientation of the nanocolumns from tilted to perpendicular to the surface. By further controlling the stress field in the hydrogel, the formation of a variety of elaborate reversibly actuated micropatterns was demonstrated. The mechanics of the actuation process have been assessed. Dynamic control over the movement and orientation of surface nanofeatures at the micron and submicron scales may have exciting applications in actuators, microfluidics, or responsive materials.

  16. Ultrathin Alvarez lens system actuated by artificial muscles.

    PubMed

    Petsch, S; Grewe, A; Köbele, L; Sinzinger, S; Zappe, H

    2016-04-01

    A key feature of Alvarez lenses is that they may be tuned in focal length using lateral rather than axial translation, thus reducing the overall length of a focus-tunable optical system. Nevertheless the bulk of classical microsystems actuators limits further miniaturization. We present here a new, ultrathin focus-tunable Alvarez lens fabricated using molding techniques and actuated using liquid crystal elastomer (LCE) artificial muscle actuators. The large deformation generated by the LCE actuators permits the integration of the actuators in-plane with the mechanical and optical system and thus reduces the device thickness to only 1.6 mm. Movement of the Alvarez lens pair of 178 μm results in a focal length change of 3.3 mm, based on an initial focal length of 28.4 mm. This design is of considerable interest for realization of ultraflat focus-tunable and zoom systems.

  17. Stabilization of large space structures by linear reluctance actuators

    NASA Technical Reports Server (NTRS)

    Biswas, Saroj K.; Sendaula, Henry M.

    1991-01-01

    Application of magnetic forces are considered for stabilization of vibrations of flexible space structures. Three electromagnetic phenomena are studied, such as: (1) magnetic body force; (2) reluctance torque; and (3) magnetostriction, and their application is analyzed for stabilization of a beam. The magnetic body force actuator uses the force that exists between poles of magnets. The reluctance actuator is configured in such a way that the reluctance of the magnetic circuit will be minimum when the beam is straight. Any bending of the beam increases the reluctance and hence generates a restoring torque that reduces bending. The gain of the actuator is controlled by varying the magnetizing current. Since the energy density of a magnetic device is much higher compared to piezoelectric or thermal actuators, it is expected that the reluctance actuator will be more effective in controlling the structural vibrations.

  18. Floppy swimming: viscous locomotion of actuated elastica.

    PubMed

    Lauga, Eric

    2007-04-01

    Actuating periodically an elastic filament in a viscous liquid generally breaks the constraints of Purcell's scallop theorem, resulting in the generation of a net propulsive force. This observation suggests a method to design simple swimming devices-which we call "elastic swimmers"-where the actuation mechanism is embedded in a solid body and the resulting swimmer is free to move. In this paper, we study theoretically the kinematics of elastic swimming. After discussing the basic physical picture of the phenomenon and the expected scaling relationships, we derive analytically the elastic swimming velocities in the limit of small actuation amplitude. The emphasis is on the coupling between the two unknowns of the problems-namely the shape of the elastic filament and the swimming kinematics-which have to be solved simultaneously. We then compute the performance of the resulting swimming device and its dependence on geometry. The optimal actuation frequency and body shapes are derived and a discussion of filament shapes and internal torques is presented. Swimming using multiple elastic filaments is discussed, and simple strategies are presented which result in straight swimming trajectories. Finally, we compare the performance of elastic swimming with that of swimming micro-organisms.

  19. Biomimetic photo-actuation: sensing, control and actuation in sun-tracking plants.

    PubMed

    Dicker, M P M; Rossiter, J M; Bond, I P; Weaver, P M

    2014-09-01

    Although the actuation mechanisms that drive plant movement have been investigated from a biomimetic perspective, few studies have looked at the wider sensing and control systems that regulate this motion. This paper examines photo-actuation-actuation induced by, and controlled with light-through a review of the sun-tracking functions of the Cornish Mallow. The sun-tracking movement of the Cornish Mallow leaf results from an extraordinarily complex-yet extremely elegant-process of signal perception, generation, filtering and control. Inspired by this process, a concept for a simplified biomimetic analogue of this leaf is proposed: a multifunctional structure employing chemical sensing, signal transmission, and control of composite hydrogel actuators. We present this multifunctional structure, and show that the success of the concept will require improved selection of materials and structural design. This device has application in the solar-tracking of photovoltaic panels for increased energy yield. More broadly it is envisaged that the concept of chemical sensing and control can be expanded beyond photo-actuation to many other stimuli, resulting in new classes of robust solid-state devices.

  20. Monitoring the impact of pressure on the assessment of skin perfusion and oxygenation using a novel pressure device

    NASA Astrophysics Data System (ADS)

    Ramella-Roman, Jessica C.; Ho, Thuan; Le, Du; Ghassemi, Pejhman; Nguyen, Thu; Lichy, Alison; Groah, Suzanne

    2013-03-01

    Skin perfusion and oxygenation is easily disrupted by imposed pressure. Fiber optics probes, particularly those spectroscopy or Doppler based, may relay misleading information about tissue microcirculation dynamics depending on external forces on the sensor. Such forces could be caused by something as simple as tape used to secure the fiber probe to the test subject, or as in our studies by the full weight of a patient with spinal cord injury (SCI) sitting on the probe. We are conducting a study on patients with SCI conducting pressure relief maneuvers in their wheelchairs. This study aims to provide experimental evidence of the optimal timing between pressure relief maneuvers. We have devised a wireless pressure-controlling device; a pressure sensor positioned on a compression aluminum plate reads the imposed pressure in real time and sends the information to a feedback system controlling two position actuators. The actuators move accordingly to maintain a preset value of pressure onto the sample. This apparatus was used to monitor the effect of increasing values of pressure on spectroscopic fiber probes built to monitor tissue oxygenation and Doppler probes used to assess tissue perfusion.

  1. Large-Stroke Self-Aligned Vertical Comb Drive Actuators for Adaptive Optics Applications

    SciTech Connect

    Carr, E J; Olivier, S S; Solgaard, O

    2005-10-27

    A high-stroke micro-actuator array was designed, modeled, fabricated and tested. Each pixel in the 4x4 array consists of a self-aligned vertical comb drive actuator. This micro-actuator array was designed to become the foundation of a micro-mirror array that will be used as a deformable mirror for adaptive optics applications. Analytical models combined with CoventorWare{reg_sign} simulations were used to design actuators that would move up to 10{micro}m in piston motion with 100V applied. Devices were fabricated according to this design and testing of these devices demonstrated an actuator displacement of 1.4{micro}m with 200V applied. Further investigation revealed that fabrication process inaccuracy led to significantly stiffer mechanical springs in the fabricated devices. The increased stiffness of the springs was shown to account for the reduced displacement of the actuators relative to the design.

  2. Non-collinear valve actuator

    NASA Technical Reports Server (NTRS)

    Richard, James A. (Inventor)

    2012-01-01

    A non-collinear valve actuator includes a primary actuating system and a return spring system with each applying forces to a linkage system in order to regulate the flow of a quarter-turn valve. The primary actuating system and return spring system are positioned non-collinearly, which simply means the primary actuating system and return spring system are not in line with each other. By positioning the primary actuating system and return spring system in this manner, the primary actuating system can undergo a larger stroke while the return spring system experiences significantly less displacement. This allows the length of the return spring to be reduced due to the minimization of displacement thereby reducing the weight of the return spring system. By allowing the primary actuating system to undergo longer strokes, the weight of the primary actuating system may also be reduced. Accordingly, the weight of the non-collinear valve actuator is reduced.

  3. Optimization of Actuating Origami Networks

    NASA Astrophysics Data System (ADS)

    Buskohl, Philip; Fuchi, Kazuko; Bazzan, Giorgio; Joo, James; Gregory, Reich; Vaia, Richard

    2015-03-01

    Origami structures morph between 2D and 3D conformations along predetermined fold lines that efficiently program the form, function and mobility of the structure. By leveraging design concepts from action origami, a subset of origami art focused on kinematic mechanisms, reversible folding patterns for applications such as solar array packaging, tunable antennae, and deployable sensing platforms may be designed. However, the enormity of the design space and the need to identify the requisite actuation forces within the structure places a severe limitation on design strategies based on intuition and geometry alone. The present work proposes a topology optimization method, using truss and frame element analysis, to distribute foldline mechanical properties within a reference crease pattern. Known actuating patterns are placed within a reference grid and the optimizer adjusts the fold stiffness of the network to optimally connect them. Design objectives may include a target motion, stress level, or mechanical energy distribution. Results include the validation of known action origami structures and their optimal connectivity within a larger network. This design suite offers an important step toward systematic incorporation of origami design concepts into new, novel and reconfigurable engineering devices. This research is supported under the Air Force Office of Scientific Research (AFOSR) funding, LRIR 13RQ02COR.

  4. Engineering Design Handbook. Propellant Actuated Devices.

    DTIC Science & Technology

    1975-09-30

    History .................................... I-I 1-3 Uses ...................................... 1-2 i References ................................. 1-3 I...TION TO MORE USEFUL FORMS FOR PROPELLANT ACTUA FED D EV ICES ............................................ A - 1 APPENDIX B. TABLE OF WALL RATIOS...B-I APPENDIX C. DERIVATION OF EQUATION USED IN DETER- MINING LENGTH OF ENGAGEMENT THREADS ........... C-I APPENDIX D. COMPUTER PROGRAM

  5. The design and analysis of a MEMS electrothermal actuator

    NASA Astrophysics Data System (ADS)

    Suocheng, Wang; Yongping, Hao; Shuangjie, Liu

    2015-04-01

    This paper introduces a type of out-of-plane microelectrothermal actuator, which is based on the principle of bimetal film thermal expansion in the fuse. A polymer SU-8 material and nickel are used as the functional and structural materials of the actuator. Through heating the resistance wire using electricity, the actuator produces out-of-plane motion in the perpendicular axial direction of the device and the bias layer contact with the substrate, completing signal output. Using Coventorware software to establish the three-dimensional model, the geometric structure is optimized and the electrothermal capabilities are determined theoretically. From electrothermal analysis, the actuator's displacement is 18 μm and the temperature rises from 300 to 440 K under a voltage of 5 V and the response time is 5 ms. The actuator's displacement is 20 μm under a 100000 m/s2 acceleration in the accelerating field. In the coupled field, applying a 3 V voltage, the initial temperature is 300 K, while the acceleration is 50000 m/s2, the driving displacement of the actuator is 23 μm, and temperature rises to 400 K. Finally, through checking the stress in different field sources, the maximum stress of the actuator is smaller than the allowable stress of nickel. The results show that the electrothermal actuator has high reliability.

  6. [Impact of the use of luer access devices on the quality of chronic hemodialysis].

    PubMed

    Raingeard, Erwin; Delcroix, Catherine; Lavainne, Frédéric; Séchet, Emmanuelle; Thibaud, Charlotte; Clouet, Johann; Dimet, Jérôme; Grimandi, Gaël

    2012-11-01

    Luer access valves are medical devices used to reduce infectious risks by securing repetitive handling in chronic hemodialysis using central catheter. Their impact on the effectiveness of a hemodialysis session still remains poorly studied. This in vivo study aims to evaluate its effectiveness. Tego(®) and Q-Syte(®) valves were used in alternation for each patient for four weeks (428 hemodialysis sessions). The two-luer access valves have led to a significant increase in the dysfunction of the hemodialysis sessions (51.8% compared to the usual care (39.3%) (P=0.012). The analysis by sub-category suggests a heterogeneous behavior of the two devices. The Q-Syte(®) valve showed significantly more dysfunction than the Tego(®) valve or the absence of valve. However, both valve systems tested can maintain the performance of the hemodialysis session as they don't change the dose of dialysis. This study highlights that an evaluation of each device must be performed prior to their use to assess the risk-benefit balance.

  7. An electrically actuated molecular toggle switch

    NASA Astrophysics Data System (ADS)

    Gerhard, Lukas; Edelmann, Kevin; Homberg, Jan; Valášek, Michal; Bahoosh, Safa G.; Lukas, Maya; Pauly, Fabian; Mayor, Marcel; Wulfhekel, Wulf

    2017-03-01

    Molecular electronics is considered a promising approach for future nanoelectronic devices. In order that molecular junctions can be used as electrical switches or even memory devices, they need to be actuated between two distinct conductance states in a controlled and reproducible manner by external stimuli. Here we present a tripodal platform with a cantilever arm and a nitrile group at its end that is lifted from the surface. The formation of a coordinative bond between the nitrile nitrogen and the gold tip of a scanning tunnelling microscope can be controlled by both electrical and mechanical means, and leads to a hysteretic switching of the conductance of the junction by more than two orders of magnitude. This toggle switch can be actuated with high reproducibility so that the forces involved in the mechanical deformation of the molecular cantilever can be determined precisely with scanning tunnelling microscopy.

  8. An electrically actuated molecular toggle switch.

    PubMed

    Gerhard, Lukas; Edelmann, Kevin; Homberg, Jan; Valášek, Michal; Bahoosh, Safa G; Lukas, Maya; Pauly, Fabian; Mayor, Marcel; Wulfhekel, Wulf

    2017-03-09

    Molecular electronics is considered a promising approach for future nanoelectronic devices. In order that molecular junctions can be used as electrical switches or even memory devices, they need to be actuated between two distinct conductance states in a controlled and reproducible manner by external stimuli. Here we present a tripodal platform with a cantilever arm and a nitrile group at its end that is lifted from the surface. The formation of a coordinative bond between the nitrile nitrogen and the gold tip of a scanning tunnelling microscope can be controlled by both electrical and mechanical means, and leads to a hysteretic switching of the conductance of the junction by more than two orders of magnitude. This toggle switch can be actuated with high reproducibility so that the forces involved in the mechanical deformation of the molecular cantilever can be determined precisely with scanning tunnelling microscopy.

  9. Flux-Feedback Magnetic-Suspension Actuator

    NASA Technical Reports Server (NTRS)

    Groom, Nelson J.

    1990-01-01

    Flux-feedback magnetic-suspension actuator provides magnetic suspension and control forces having linear transfer characteristics between force command and force output over large range of gaps. Hall-effect devices used as sensors for electronic feedback circuit controlling currents flowing in electromagnetic windings to maintain flux linking suspended element at substantially constant value independent of changes in length of gap. Technique provides effective method for maintenance of constant flux density in gap and simpler than previous methods. Applications include magnetic actuators for control of shapes and figures of antennas and of precise segmented reflectors, magnetic suspensions in devices for storage of angular momentum and/or kinetic energy, and systems for control, pointing, and isolation of instruments.

  10. An electrically actuated molecular toggle switch

    PubMed Central

    Gerhard, Lukas; Edelmann, Kevin; Homberg, Jan; Valášek, Michal; Bahoosh, Safa G.; Lukas, Maya; Pauly, Fabian; Mayor, Marcel; Wulfhekel, Wulf

    2017-01-01

    Molecular electronics is considered a promising approach for future nanoelectronic devices. In order that molecular junctions can be used as electrical switches or even memory devices, they need to be actuated between two distinct conductance states in a controlled and reproducible manner by external stimuli. Here we present a tripodal platform with a cantilever arm and a nitrile group at its end that is lifted from the surface. The formation of a coordinative bond between the nitrile nitrogen and the gold tip of a scanning tunnelling microscope can be controlled by both electrical and mechanical means, and leads to a hysteretic switching of the conductance of the junction by more than two orders of magnitude. This toggle switch can be actuated with high reproducibility so that the forces involved in the mechanical deformation of the molecular cantilever can be determined precisely with scanning tunnelling microscopy. PMID:28276442

  11. Dynamic Actuation of Single-Crystal Diamond Nanobeams

    DTIC Science & Technology

    2014-08-25

    ar X iv :1 40 8. 58 22 v1 [ co nd -m at .m es -h al l] 2 5 A ug 2 01 4 Dynamic Actuation of Single-Crystal Diamond Nanobeams Young-Ik Sohn...United States E-mail: loncar@seas.harvard.edu KEYWORDS: Single-crystal diamond , nanoelectromechanical systems (NEMS), nanofabrica- tion...dielectrophoresis Abstract We show the dielectrophoretic actuation of single-crystal diamond nanomechanical devices using gradient radio-frequency electromagnetic

  12. The Impact of Wearable Device Enabled Health Initiative on Physical Activity and Sleep

    PubMed Central

    Crowley, Olga; Kachnowski, Stan

    2016-01-01

    Objectives The Personal Health Management Study (PHMS) is an assessment of the effect of a voluntary employee-facing health initiative using a commercially-available wearable device implemented among 565 employees of Boehringer Ingelheim Pharmaceuticals, Inc. The results of the initiative on physical activity (measured as steps) and sleep is reported. Methods This was a 12-month, prospective, single-cohort intervention study using a wearable activity-measuring device tracking steps and sleep (entire study period) and a system of health-promoting incentives (first nine months of study period). The findings from the first nine study months are reported. Results The mixed model repeated measures approach was used to analyze the data. There was no significant difference in steps between the first month (7915.6 mean steps per person per day) and the last month (7853.4 mean steps per person per day) of the intervention. However, there was a seasonal decline in steps during the intervention period from fall to winter, followed by an increase in steps from winter to spring. In contrast, sleep tended to increase steadily throughout the study period, and the number of hours slept during the last month (7.52 mean hours per person per day) of the intervention was significantly greater than the number of hours slept during the first month (7.16 mean hours per person per day). Conclusions The impact of the initiative on physical activity and sleep differed over the period of time studied. While physical activity did not change between the first and last month of the intervention, the number of hours slept per night increased significantly. Although seasonal changes and study-device habituation may explain the pattern of change in physical activity, further evaluation is required to clarify the reasons underlying the difference in the impact of the initiative on the dynamics of steps and sleep. PMID:27882272

  13. Fluid logic control circuit operates nutator actuator motor

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Fluid logic control circuit operates a pneumatic nutator actuator motor. It has no moving parts and consists of connected fluid interaction devices. The operation of this circuit demonstrates the ability of fluid interaction devices to operate in a complex combination of series and parallel logic sequence.

  14. Hydraulically actuated artificial muscles

    NASA Astrophysics Data System (ADS)

    Meller, M. A.; Tiwari, R.; Wajcs, K. B.; Moses, C.; Reveles, I.; Garcia, E.

    2012-04-01

    Hydraulic Artificial Muscles (HAMs) consisting of a polymer tube constrained by a nylon mesh are presented in this paper. Despite the actuation mechanism being similar to its popular counterpart, which are pneumatically actuated (PAM), HAMs have not been studied in depth. HAMs offer the advantage of compliance, large force to weight ratio, low maintenance, and low cost over traditional hydraulic cylinders. Muscle characterization for isometric and isobaric tests are discussed and compared to PAMs. A model incorporating the effect of mesh angle and friction have also been developed. In addition, differential swelling of the muscle on actuation has also been included in the model. An application of lab fabricated HAMs for a meso-scale robotic system is also presented.

  15. CONTROL LIMITER DEVICE

    DOEpatents

    DeShong, J.A.

    1960-03-01

    A control-limiting device for monltoring a control system is described. The system comprises a conditionsensing device, a condition-varying device exerting a control over the condition, and a control means to actuate the condition-varying device. A control-limiting device integrates the total movement or other change of the condition-varying device over any interval of time during a continuum of overlapping periods of time, and if the tothl movement or change of the condition-varying device exceeds a preset value, the control- limiting device will switch the control of the operated apparatus from automatic to manual control.

  16. Precision tip-tilt-piston actuator that provides exact constraint

    DOEpatents

    Hale, Layton C.

    1999-01-01

    A precision device which can precisely actuate three degrees of freedom of an optic mount, commonly referred to as tip, tilt, and piston. The device consists of three identical flexure mechanisms, an optic mount to be supported and positioned, a structure that supports the flexure mechanisms, and three commercially available linear actuators. The advantages of the precision device is in the arrangement of the constraints offered by the flexure mechanism and not in the particular design of the flexure mechanisms, as other types of mechanisms could be substituted. Each flexure mechanism constrains two degrees of freedom in the plane of the mechanisms and one direction is actuated. All other degrees of freedom are free to move within the range of flexure mechanisms. Typically, three flexure mechanisms are equally spaced in angle about to optic mount and arranged so that each actuated degree of freedom is perpendicular to the plane formed by the optic mount. This arrangement exactly constrains the optic mount and allows arbitrary actuated movement of the plane within the range of the flexure mechanisms. Each flexure mechanism provides a mechanical advantage, typically on the order of 5:1, between the commercially available actuator and the functional point on the optic mount. This improves resolution by the same ratio and stiffness by the square of the ratio.

  17. Development of an Actuator for Flow Control Utilizing Detonation

    NASA Technical Reports Server (NTRS)

    Lonneman, Patrick J.; Cutler, Andrew D.

    2004-01-01

    Active flow control devices including mass injection systems and zero-net-mass flux actuators (synthetic jets) have been employed to delay flow separation. These devices are capable of interacting with low-speed, subsonic flows, but situations exist where a stronger crossflow interaction is needed. Small actuators that utilize detonation of premixed fuel and oxidizer should be capable of producing supersonic exit jet velocities. An actuator producing exit velocities of this magnitude should provide a more significant interaction with transonic and supersonic crossflows. This concept would be applicable to airfoils on high-speed aircraft as well as inlet and diffuser flow control. The present work consists of the development of a detonation actuator capable of producing a detonation in a single shot (one cycle). Multiple actuator configurations, initial fill pressures, oxidizers, equivalence ratios, ignition energies, and the addition of a turbulence generating device were considered experimentally and computationally. It was found that increased initial fill pressures and the addition of a turbulence generator aided in the detonation process. The actuators successfully produced Chapman-Jouguet detonations and wave speeds on the order of 3000 m/s.

  18. Fault tolerant linear actuator

    DOEpatents

    Tesar, Delbert

    2004-09-14

    In varying embodiments, the fault tolerant linear actuator of the present invention is a new and improved linear actuator with fault tolerance and positional control that may incorporate velocity summing, force summing, or a combination of the two. In one embodiment, the invention offers a velocity summing arrangement with a differential gear between two prime movers driving a cage, which then drives a linear spindle screw transmission. Other embodiments feature two prime movers driving separate linear spindle screw transmissions, one internal and one external, in a totally concentric and compact integrated module.

  19. Hydraulic involute cam actuator

    DOEpatents

    Love, Lonnie J [Knoxville, TN; Lind, Randall F [Loudon, TX

    2011-11-01

    Mechanical joints are provided in which the angle between a first coupled member and a second coupled member may be varied by mechanical actuators. In some embodiments the angle may be varied around a pivot axis in one plane and in some embodiments the angle may be varied around two pivot axes in two orthogonal planes. The joints typically utilize a cam assembly having two lobes with an involute surface. Actuators are configured to push against the lobes to vary the rotation angle between the first and second coupled member.

  20. Tetherless thermobiochemically actuated microgrippers

    PubMed Central

    Leong, Timothy G.; Randall, Christina L.; Benson, Bryan R.; Bassik, Noy; Stern, George M.; Gracias, David H.

    2009-01-01

    We demonstrate mass-producible, tetherless microgrippers that can be remotely triggered by temperature and chemicals under biologically relevant conditions. The microgrippers use a self-contained actuation response, obviating the need for external tethers in operation. The grippers can be actuated en masse, even while spatially separated. We used the microgrippers to perform diverse functions, such as picking up a bead on a substrate and the removal of cells from tissue embedded at the end of a capillary (an in vitro biopsy). PMID:19139411

  1. Low-Actuation Voltage MEMS Digital-to-Analog Converter with Parylene Spring Structures.

    PubMed

    Ma, Cheng-Wen; Lee, Fu-Wei; Liao, Hsin-Hung; Kuo, Wen-Cheng; Yang, Yao-Joe

    2015-08-28

    We propose an electrostatically-actuated microelectromechanical digital-to-analog converter (M-DAC) device with low actuation voltage. The spring structures of the silicon-based M-DAC device were monolithically fabricated using parylene-C. Because the Young's modulus of parylene-C is considerably lower than that of silicon, the electrostatic microactuators in the proposed device require much lower actuation voltages. The actuation voltage of the proposed M-DAC device is approximately 6 V, which is less than one half of the actuation voltages of a previously reported M-DAC equipped with electrostatic microactuators. The measured total displacement of the proposed three-bit M-DAC is nearly 504 nm, and the motion step is approximately 72 nm. Furthermore, we demonstrated that the M-DAC can be employed as a mirror platform with discrete displacement output for a noncontact surface profiling system.

  2. Development of the Second Generation Berry Impact Recording Device (BIRD II)

    PubMed Central

    Xu, Rui; Li, Changying

    2015-01-01

    To quantitatively measure the impacts during blueberry harvesting and post-harvest handling, this study designed the second generation Berry Impact Recording Device (BIRD II) sensor with a size of 21 mm in diameter and a weight of 3.9 g, which reduced the size by 17% and the weight by 50% compared to the previous prototype. The sensor was able to measure accelerations up to 346 g at a maximum frequency of 2 KHz. Universal Serial Bus (USB) was used to directly connect the sensor with the computer, removing the interface box used previously. LabVIEW-based PC software was designed to configure the sensor, download and process the data. The sensor was calibrated using a centrifuge. The accuracy of the sensor was between −1.76 g to 2.17 g, and the precision was between 0.21 g to 0.81 g. Dynamic drop tests showed that BIRD II had smaller variance in measurements than BIRD I. In terms of size and weight, BIRD II is more similar to an average blueberry fruit than BIRD I, which leads to more accurate measurements of the impacts for blueberries. PMID:25664430

  3. Contractive tension force stack actuator based on soft dielectric EAP

    NASA Astrophysics Data System (ADS)

    Kovacs, Gabor; Düring, Lukas

    2009-03-01

    Among the electronic polymers EAPs especially the dielectric elastomers are functional materials that have promising potential as muscle-like actuators due to their inherent compliancy and good overall performance. The combination of huge active deformations, high energy densities, good efficiencies and fast response is unique to dielectric elastomers. Furthermore, they are lightweight, have a simple structure and can be easily tailored to various applications. Up to now most scientific research work has been focused on the planar expanding actuation mode due to the fact that the commercially available acrylic material VHB 4910 (3M) can easily be processed to planar actuators and has demonstrated very high actuation performance when pre-strained. Many different actuator designs have been developed and tested which expands in plane when voltage is applied and shrinks back as soon as the applied charges are removed from the electrodes. Obviously the contractive operation mode at activation is required for a wide range of application. Due to the principle of operation of soft DE EAP, mainly two directions to performed work against external loads are possible. Beside of the commonly used expanding actuation in planar direction the contractile actuation in thickness direction of the DE film represents a very promising option in the multilayer configuration. First approaches have been presented by the folded actuator design and by the multilayer tactile display device. In this study a novel approach for active structures driven by soft dielectric EAP is presented, which can perform contractive displacements at external tensile load. The device is composed of an array of equal segments, where the dielectric films are arranged in a pile-up configuration. In order to maintain satisfying structural integrity when external tension load is applied special attention was paid to the compliant electrode design which takes a central importance concerning the force transmission

  4. Carbon nanotube and graphene-based bioinspired electrochemical actuators.

    PubMed

    Kong, Lirong; Chen, Wei

    2014-02-01

    Bio-inspired actuation materials, also called artificial muscles, have attracted great attention in recent decades for their potential application in intelligent robots, biomedical devices, and micro-electro-mechanical systems. Among them, ionic polymer metal composite (IPMC) actuator has been intensively studied for their impressive high-strain under low voltage stimulation and air-working capability. A typical IPMC actuator is composed of one ion-conductive electrolyte membrane laminated by two electron-conductive metal electrode membranes, which can bend back and forth due to the electrode expansion and contraction induced by ion motion under alternating applied voltage. As its actuation performance is mainly dominated by electrochemical and electromechanical process of the electrode layer, the electrode material and structure become to be more crucial to higher performance. The recent discovery of one dimensional carbon nanotube and two dimensional graphene has created a revolution in functional nanomaterials. Their unique structures render them intriguing electrical and mechanical properties, which makes them ideal flexible electrode materials for IPMC actuators in stead of conventional metal electrodes. Currently although the detailed effect caused by those carbon nanomaterial electrodes is not very clear, the presented outstanding actuation performance gives us tremendous motivation to meet the challenge in understanding the mechanism and thus developing more advanced actuator materials. Therefore, in this review IPMC actuators prepared with different kinds of carbon nanomaterials based electrodes or electrolytes are addressed. Key parameters which may generate important influence on actuation process are discussed in order to shed light on possible future research and application of the novel carbon nanomateials based bio-inspired electrochemical actuators.

  5. Printing low-voltage dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Poulin, Alexandre; Rosset, Samuel; Shea, Herbert R.

    2015-12-01

    We demonstrate the fabrication of fully printed thin dielectric elastomer actuators (DEAs), reducing the operation voltage below 300 V while keeping good actuation strain. DEAs are soft actuators capable of strains greater than 100% and response times below 1 ms, but they require driving voltage in the kV range, limiting the possible applications. One way to reduce the driving voltage of DEAs is to decrease the dielectric membrane thickness, which is typically in the 20-100 μm range, as reliable fabrication becomes challenging below this thickness. We report here the use of pad-printing to produce μm thick silicone membranes, on which we pad-print μm thick compliant electrodes to create DEAs. We achieve a lateral actuation strain of 7.5% at only 245 V on a 3 μm thick pad-printed membrane. This corresponds to a ratio of 125%/kV2, by far the highest reported value for DEAs. To quantify the increasing stiffening impact of the electrodes on DEA performance as the membrane thickness decreases, we compare two circular actuators, one with 3 μm- and one with 30 μm-thick membranes. Our experimental measurements show that the strain uniformity of the 3 μm-DEA is indeed affected by the mechanical impact of the electrodes. We developed a simple DEA model that includes realistic electrodes of finite stiffness, rather than assuming zero stiffness electrodes as is commonly done. The simulation results confirm that the stiffening impact of the electrodes is an important parameter that should not be neglected in the design of thin-DEAs. This work presents a practical approach towards low-voltage DEAs, a critical step for the development of real world applications.

  6. HAIRS: Hydrogel-Actuated Integrated Responsive Systems

    NASA Astrophysics Data System (ADS)

    Aizenberg, Joanna

    2011-03-01

    Responsive behavior, which is intrinsic to natural systems, is becoming a key requirement for advanced artificial materials and devices, presenting a substantial scientific and engineering challenge. We designed dynamic actuation systems by integrating high--aspect-ratio nanocolumns or nanofins, either free-standing or substrate-attached, with a hydrogel layer. The embedded structures are put in motion by the ``muscle'' of the hydrogel, which swells or contracts depending on the humidity level, pH or temperature. This actuation results in a fast reversible reorientation of the nanocolumns and nanofins from tilted to perpendicular to the surface. By further controlling the stress field in the hydrogel by patterning, the formation of a variety of elaborate reversibly actuated micropatterns is demonstrated. Dynamic control over the movement and orientation of surface nanofeatures at the micron and submicron scales may have exciting applications in actuators, microfluidics, or responsive materials. This work was supported by the AFOSR under Award FA9550-09-1-0669-DOD35CAP and by the DOE under award DE-SC0005247.

  7. Dynamics of electrostatic microelectromechanical systems actuators

    NASA Astrophysics Data System (ADS)

    Yang, Yisong; Zhang, Ruifeng; Zhao, Le

    2012-02-01

    Electrostatic actuators are simple but important switching devices for microelectromechanical systems applications. Due to the difficulties associated with the electrostatic nonlinearity, precise mathematical description is often hard to obtain for the dynamics of these actuators. Here we present two sharp theorems concerning the dynamics of an undamped electrostatic actuator with one-degree of freedom, subject to linear and nonlinear elastic forces, respectively. We prove that both situations are characterized by the onset of one-stagnation-point periodic response below a well-defined pull-in voltage and a finite-time touch-down or collapse of the actuator above this pull-in voltage. In the linear-force situation, the stagnation level, pull-in voltage, and pull-in coordinate of the movable electrode may all be determined explicitly, following the recent work of Leus and Elata based on numerics. Furthermore, in the nonlinear-force situation, the stagnation level, pull-in voltage, and pull-in coordinate may be described completely in terms of the electrostatic and mechanical parameters of the model so that they approach those in the linear-force situation monotonically in the zero nonlinear-force limit.

  8. Adaptive flow control of low-Reynolds number aerodynamics using dielectric barrier discharge actuator

    NASA Astrophysics Data System (ADS)

    Cho, Young-Chang; Shyy, Wei

    2011-10-01

    Aerodynamic performance of low-Reynolds number flyers, for a chord-based Reynolds number of 10 5 or below, is sensitive to wind gusts and flow separation. Active flow control offers insight into fluid physics as well as possible improvements in vehicle performance. While facilitating flow control by introducing feedback control and fluidic devices, major challenges of achieving a target aerodynamic performance under unsteady flow conditions lie on the high-dimensional nonlinear dynamics of the flow system. Therefore, a successful flow control framework requires a viable as well as accessible control scheme and understanding of underlying flow dynamics as key information of the flow system. On the other hand, promising devices have been developed recently to facilitate flow control in this flow regime. The dielectric barrier discharge (DBD) actuator is such an example; it does not have moving parts and provides fast impact on the flow field locally. In this paper, recent feedback flow control studies, especially those focusing on unsteady low-Reynolds number aerodynamics, are reviewed. As an example of an effective flow control framework, it is demonstrated that aerodynamic lift of a high angle-of-attack wing under fluctuating free-stream conditions can be stabilized using the DBD actuator and an adaptive algorithm based on general input-output models. System nonlinearities and control challenges are discussed by assessing control performance and the variation of the system parameters under various flow and actuation conditions. Other fundamental issues from the flow dynamics view point, such as the lift stabilization mechanism and the influence on drag fluctuation are also explored. Both potentiality and limitation of the linear modeling approach are discussed. In addition, guidelines on system identification and the controller and actuator setups are suggested.

  9. A small-gap electrostatic micro-actuator for large deflections

    PubMed Central

    Conrad, Holger; Schenk, Harald; Kaiser, Bert; Langa, Sergiu; Gaudet, Matthieu; Schimmanz, Klaus; Stolz, Michael; Lenz, Miriam

    2015-01-01

    Common quasi-static electrostatic micro actuators have significant limitations in deflection due to electrode separation and unstable drive regions. State-of-the-art electrostatic actuators achieve maximum deflections of approximately one third of the electrode separation. Large electrode separation and high driving voltages are normally required to achieve large actuator movements. Here we report on an electrostatic actuator class, fabricated in a CMOS-compatible process, which allows high deflections with small electrode separation. The concept presented makes the huge electrostatic forces within nanometre small electrode separation accessible for large deflections. Electrostatic actuations that are larger than the electrode separation were measured. An analytical theory is compared with measurement and simulation results and enables closer understanding of these actuators. The scaling behaviour discussed indicates significant future improvement on actuator deflection. The presented driving concept enables the investigation and development of novel micro systems with a high potential for improved device and system performance. PMID:26655557

  10. A small-gap electrostatic micro-actuator for large deflections.

    PubMed

    Conrad, Holger; Schenk, Harald; Kaiser, Bert; Langa, Sergiu; Gaudet, Matthieu; Schimmanz, Klaus; Stolz, Michael; Lenz, Miriam

    2015-12-11

    Common quasi-static electrostatic micro actuators have significant limitations in deflection due to electrode separation and unstable drive regions. State-of-the-art electrostatic actuators achieve maximum deflections of approximately one third of the electrode separation. Large electrode separation and high driving voltages are normally required to achieve large actuator movements. Here we report on an electrostatic actuator class, fabricated in a CMOS-compatible process, which allows high deflections with small electrode separation. The concept presented makes the huge electrostatic forces within nanometre small electrode separation accessible for large deflections. Electrostatic actuations that are larger than the electrode separation were measured. An analytical theory is compared with measurement and simulation results and enables closer understanding of these actuators. The scaling behaviour discussed indicates significant future improvement on actuator deflection. The presented driving concept enables the investigation and development of novel micro systems with a high potential for improved device and system performance.

  11. Micromechanism linear actuator with capillary force sealing

    DOEpatents

    Sniegowski, Jeffry J.

    1997-01-01

    A class of micromachine linear actuators whose function is based on gas driven pistons in which capillary forces are used to seal the gas behind the piston. The capillary forces also increase the amount of force transmitted from the gas pressure to the piston. In a major subclass of such devices, the gas bubble is produced by thermal vaporization of a working fluid. Because of their dependence on capillary forces for sealing, such devices are only practical on the sub-mm size scale, but in that regime they produce very large force times distance (total work) values.

  12. "Mighty Worm" Piezoelectric Actuator

    NASA Technical Reports Server (NTRS)

    Bamford, Robert M.; Wada, Ben K.; Moore, Donald M.

    1994-01-01

    "Mighty Worm" piezoelectric actuator used as adjustable-length structural member, active vibrator or vibration suppressor, and acts as simple (fixed-length) structural member when inactive. Load force not applied to piezoelectric element in simple-structural-member mode. Piezoelectric element removed from load path when not in use.

  13. Shape Memory Alloy Actuator

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J. (Inventor)

    2002-01-01

    The present invention discloses and teaches a unique, remote optically controlled micro actuator particularly suitable for aerospace vehicle applications wherein hot gas, or in the alternative optical energy, is employed as the medium by which shape memory alloy elements are activated. In gas turbine powered aircraft the source of the hot gas may be the turbine engine compressor or turbine sections.

  14. Shape Memory Alloy Actuator

    NASA Technical Reports Server (NTRS)

    Baumbick, Robert J. (Inventor)

    2000-01-01

    The present invention discloses and teaches a unique, remote optically controlled micro actuator particularly suitable for aerospace vehicle applications wherein hot gas, or in the alternative optical energy, is employed as the medium by which shape memory alloy elements are activated. In gas turbine powered aircraft the source of the hot gas may be the turbine engine compressor or turbine sections.

  15. Electromechanical flight control actuator

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The feasibility of using an electromechanical actuator (EMA) as the primary flight control equipment in aerospace flight is examined. The EMA motor design is presented utilizing improved permanent magnet materials. The necessary equipment to complete a single channel EMA using the single channel power electronics breadboard is reported. The design and development of an improved rotor position sensor/tachometer is investigated.

  16. Bistable microelectromechanical actuator

    DOEpatents

    Fleming, James G.

    1999-01-01

    A bistable microelectromechanical (MEM) actuator is formed on a substrate and includes a stressed membrane of generally rectangular shape that upon release assumes a curvilinear cross-sectional shape due to attachment at a midpoint to a resilient member and at opposing edges to a pair of elongate supports. The stressed membrane can be electrostatically switched between a pair of mechanical states having mirror-image symmetry, with the MEM actuator remaining in a quiescent state after a programming voltage is removed. The bistable MEM actuator according to various embodiments of the present invention can be used to form a nonvolatile memory element, an optical modulator (with a pair of mirrors supported above the membrane and moving in synchronism as the membrane is switched), a switchable mirror (with a single mirror supported above the membrane at the midpoint thereof) and a latching relay (with a pair of contacts that open and close as the membrane is switched). Arrays of bistable MEM actuators can be formed for applications including nonvolatile memories, optical displays and optical computing.

  17. Bistable microelectromechanical actuator

    DOEpatents

    Fleming, J.G.

    1999-02-02

    A bistable microelectromechanical (MEM) actuator is formed on a substrate and includes a stressed membrane of generally rectangular shape that upon release assumes a curvilinear cross-sectional shape due to attachment at a midpoint to a resilient member and at opposing edges to a pair of elongate supports. The stressed membrane can be electrostatically switched between a pair of mechanical states having mirror-image symmetry, with the MEM actuator remaining in a quiescent state after a programming voltage is removed. The bistable MEM actuator according to various embodiments of the present invention can be used to form a nonvolatile memory element, an optical modulator (with a pair of mirrors supported above the membrane and moving in synchronism as the membrane is switched), a switchable mirror (with a single mirror supported above the membrane at the midpoint thereof) and a latching relay (with a pair of contacts that open and close as the membrane is switched). Arrays of bistable MEM actuators can be formed for applications including nonvolatile memories, optical displays and optical computing. 49 figs.

  18. Piezoelectric actuator renaissance

    NASA Astrophysics Data System (ADS)

    Uchino, Kenji

    2015-03-01

    This paper resumes the content of the invited talk of the author, read at the occasion of the International Workshop on Relaxor Ferroelectrics, IWRF 14, held on October 12-16, 2014 in Stirin, Czech Republic. It reviews the recent advances in materials, designing concepts, and new applications of piezoelectric actuators, as well as the future perspectives of this area.

  19. Thermally Actuated Hydraulic Pumps

    NASA Technical Reports Server (NTRS)

    Jones, Jack; Ross, Ronald; Chao, Yi

    2008-01-01

    Thermally actuated hydraulic pumps have been proposed for diverse applications in which direct electrical or mechanical actuation is undesirable and the relative slowness of thermal actuation can be tolerated. The proposed pumps would not contain any sliding (wearing) parts in their compressors and, hence, could have long operational lifetimes. The basic principle of a pump according to the proposal is to utilize the thermal expansion and contraction of a wax or other phase-change material in contact with a hydraulic fluid in a rigid chamber. Heating the chamber and its contents from below to above the melting temperature of the phase-change material would cause the material to expand significantly, thus causing a substantial increase in hydraulic pressure and/or a substantial displacement of hydraulic fluid out of the chamber. Similarly, cooling the chamber and its contents from above to below the melting temperature of the phase-change material would cause the material to contract significantly, thus causing a substantial decrease in hydraulic pressure and/or a substantial displacement of hydraulic fluid into the chamber. The displacement of the hydraulic fluid could be used to drive a piston. The figure illustrates a simple example of a hydraulic jack driven by a thermally actuated hydraulic pump. The pump chamber would be a cylinder containing encapsulated wax pellets and containing radial fins to facilitate transfer of heat to and from the wax. The plastic encapsulation would serve as an oil/wax barrier and the remaining interior space could be filled with hydraulic oil. A filter would retain the encapsulated wax particles in the pump chamber while allowing the hydraulic oil to flow into and out of the chamber. In one important class of potential applications, thermally actuated hydraulic pumps, exploiting vertical ocean temperature gradients for heating and cooling as needed, would be used to vary hydraulic pressures to control buoyancy in undersea research

  20. The impact of HTA and procurement practices on the selection and prices of medical devices.

    PubMed

    Callea, Giuditta; Armeni, Patrizio; Marsilio, Marta; Jommi, Claudio; Tarricone, Rosanna

    2017-02-01

    Technological innovation in healthcare yields better health outcomes but also drives healthcare expenditure, and governments are struggling to maintain an appropriate balance between patient access to modern care and the economic sustainability of healthcare systems. Health Technology Assessment (HTA) and centralized procurement are increasingly used to govern the introduction and diffusion of new technologies in an effort to make access to innovation financially sustainable. However, little empirical evidence is available to determine how they affect the selection of new technologies and unit prices. This paper focuses on medical devices (MDs) and investigates the combined effect of various HTA governance models and procurement practices on the two steps of the MD purchasing process (i.e., selecting the product and setting the unit price). Our analyses are based on primary data collected through a national survey of Italian public hospitals. The Italian National Health Service is an ideal case study because it is highly decentralized and because regions have adopted different HTA governance models (i.e., regional, hospital-based, double-level or no HTA), often in combination with centralized regional procurement programs. Hence, the Italian case allows us to test the impact of different combinations of HTA models and procurement programs in the various regions. The results show that regional HTA increases the probability of purchasing the costliest devices, whereas hospital-based HTA functions more like a cost-containment unit. Centralized regional procurement does not significantly affect MD selection and is associated with a reduction in the MD unit price: on average, hospitals located in regions with centralized procurement pay 10.1% less for the same product. Hospitals located in regions with active regional HTA programs pay higher prices for the same device (+23.2% for inexpensive products), whereas hospitals that have developed internal HTA programs pay 8

  1. The impact of target luminance and radiance on night vision device visual performance testing

    NASA Astrophysics Data System (ADS)

    Marasco, Peter L.; Task, H. Lee

    2003-09-01

    Visual performance through night-vision devices (NVDs) is a function of many parameters such as target contrast, objective and eyepiece lens focus, signal/noise of the image intensifier tube, quality of the image intensifier, night-vision goggle (NVG) gain, and NVG output luminance to the eye. The NVG output luminance depends on the NVG sensitive radiance emitted (or reflected) from the visual acuity target (usually a vision testing chart). The primary topic of this paper is the standardization (or lack thereof) of the radiance levels used for NVG visual acuity testing. The visual acuity chart light level might be determined in either photometric (luminance) units or radiometric (radiance) units. The light levels are often described as "starlight," "quarter moon," or "optimum" light levels and may not actually provide any quantitative photometric or radiometric information. While these terms may be useful to pilots and the users of night-vision devices, they are inadequate for accurate visual performance testing. This is because there is no widely accepted agreement in the night vision community as to the radiance or luminance level of the target that corresponds to the various named light levels. This paper examines the range of values for "starlight," "quarter moon," and "optimum" light commonly used by the night vision community and referenced in the literature. The impact on performance testing of variations in target luminance/radiance levels is also examined. Arguments for standardizing on NVG-weighted radiometric units for testing night-vision devices instead of photometric units are presented. In addition, the differences between theoretical weighted radiance and actual weighted radiance are also discussed.

  2. Simulation and experimental verification of flexible cellulose acetate haptic array actuator

    NASA Astrophysics Data System (ADS)

    Akther, Asma; Mohiuddin, Md; Min, Seung-Ki; Kim, Sang Yeon; Kim, Jaehwan

    2015-04-01

    This paper reports the experiment and finite element (FEM) simulation of an array type film haptic actuator. Haptic actuator was made of cellulose acetate films and adhesive tape separator between two films. For preparing 3×3 array haptic device, nine identical actuators were joined together. The purpose of an actuator is to create vibration feedback resulting from applied potential. Cellulose acetate based film actuator is suitable for transparent haptic devices because of its high dielectric constant, flexibility and transparency. The focus of this paper is to use a finite element model to simulate and analysis haptic actuator and verify that result with experiment. The reason of preferring ANSYS simulation is for the flexibility of modeling, time saving, post processing criteria and result accuracy.

  3. Laboratory Evaluation of the gForce Tracker™, a Head Impact Kinematic Measuring Device for Use in Football Helmets.

    PubMed

    Campbell, Kody R; Warnica, Meagan J; Levine, Iris C; Brooks, Jeffrey S; Laing, Andrew C; Burkhart, Timothy A; Dickey, James P

    2016-04-01

    This study sought to compare a new head impact-monitoring device, which is not limited to specific helmet styles, against reference accelerometer measurements. Laboratory controlled impacts were delivered using a linear pneumatic impactor to a Hybrid III headform (HIII) fitted with a football helmet and the impact monitoring device (gForce Tracker-GFT) affixed to the inside of the helmet. Linear regression analyses and absolute mean percent error (MAPE) were used to compare the head impact kinematics measured by the GFT to a reference accelerometer located at the HIII's center of mass. The coefficients of determination were strong for the peak linear acceleration, peak rotational velocity, and HIC15 across all impact testing locations (r(2) = 0.82, 0.94, and 0.70, respectively), but there were large MAPE for the peak linear acceleration and HIC15 (MAPE = 49 ± 21% and 108 ± 58%). The raw GFT was accurate at measuring the peak rotational velocity at the center of mass of the HIII (MAPE = 9%). Results from the impact testing were used to develop a correction algorithm. The coefficients of determination for all impact parameters improved using the correction algorithm for the GFT (r(2) > 0.97), and the MAPE were less than 14%. The GFT appears to be a suitable impact-monitoring device that is not limited to specific styles of football helmets, however, correction algorithms will need to be developed for each helmet style.

  4. Asymmetric band offsets in silicon heterojunction solar cells: Impact on device performance

    NASA Astrophysics Data System (ADS)

    Seif, Johannes Peter; Menda, Deneb; Descoeudres, Antoine; Barraud, Loris; Özdemir, Orhan; Ballif, Christophe; De Wolf, Stefaan

    2016-08-01

    Amorphous/crystalline silicon interfaces feature considerably larger valence than conduction band offsets. In this article, we analyze the impact of such band offset asymmetry on the performance of silicon heterojunction solar cells. To this end, we use silicon suboxides as passivation layers—inserted between substrate and (front or rear) contacts—since such layers enable intentionally exacerbated band-offset asymmetry. Investigating all topologically possible passivation layer permutations and focussing on light and dark current-voltage characteristics, we confirm that to avoid fill factor losses, wider-bandgap silicon oxide films (of at least several nanometer thin) should be avoided in hole-collecting contacts. As a consequence, device implementation of such films as window layers—without degraded carrier collection—demands electron collection at the front and hole collection at the rear. Furthermore, at elevated operating temperatures, once possible carrier transport barriers are overcome by thermionic (field) emission, the device performance is mainly dictated by the passivation of its surfaces. In this context, compared to the standard amorphous silicon layers, the wide-bandgap oxide layers applied here passivate remarkably better at these temperatures, which may represent an additional benefit under practical operation conditions.

  5. Asymmetric band offsets in silicon heterojunction solar cells: Impact on device performance

    DOE PAGES

    Seif, Johannes Peter; Menda, Deneb; Descoeudres, Antoine; ...

    2016-08-01

    Here, amorphous/crystalline silicon interfaces feature considerably larger valence than conduction band offsets. In this article, we analyze the impact of such band offset asymmetry on the performance of silicon heterojunction solar cells. To this end, we use silicon suboxides as passivation layers -- inserted between substrate and (front or rear) contacts -- since such layers enable intentionally exacerbated band-offset asymmetry. Investigating all topologically possible passivation layer permutations and focussing on light and dark current-voltage characteristics, we confirm that to avoid fill factor losses, wider-bandgap silicon oxide films (of at least several nanometer thin) should be avoided in hole-collecting contacts. Asmore » a consequence, device implementation of such films as window layers -- without degraded carrier collection -- demands electron collection at the front and hole collection at the rear. Furthermore, at elevated operating temperatures, once possible carrier transport barriers are overcome by thermionic (field) emission, the device performance is mainly dictated by the passivation of its surfaces. In this context, compared to the standard amorphous silicon layers, the wide-bandgap oxide layers applied here passivate remarkably better at these temperatures, which may represent an additional benefit under practical operation conditions.« less

  6. Asymmetric band offsets in silicon heterojunction solar cells: Impact on device performance

    SciTech Connect

    Seif, Johannes Peter; Menda, Deneb; Descoeudres, Antoine; Barraud, Loris; Özdemir, Orhan; Ballif, Christophe; De Wolf, Stefaan

    2016-08-01

    Here, amorphous/crystalline silicon interfaces feature considerably larger valence than conduction band offsets. In this article, we analyze the impact of such band offset asymmetry on the performance of silicon heterojunction solar cells. To this end, we use silicon suboxides as passivation layers -- inserted between substrate and (front or rear) contacts -- since such layers enable intentionally exacerbated band-offset asymmetry. Investigating all topologically possible passivation layer permutations and focussing on light and dark current-voltage characteristics, we confirm that to avoid fill factor losses, wider-bandgap silicon oxide films (of at least several nanometer thin) should be avoided in hole-collecting contacts. As a consequence, device implementation of such films as window layers -- without degraded carrier collection -- demands electron collection at the front and hole collection at the rear. Furthermore, at elevated operating temperatures, once possible carrier transport barriers are overcome by thermionic (field) emission, the device performance is mainly dictated by the passivation of its surfaces. In this context, compared to the standard amorphous silicon layers, the wide-bandgap oxide layers applied here passivate remarkably better at these temperatures, which may represent an additional benefit under practical operation conditions.

  7. Adhesion testing device

    NASA Technical Reports Server (NTRS)

    LaPeyronnie, Glenn M. (Inventor); Huff, Charles M. (Inventor)

    2010-01-01

    The present invention provides a testing apparatus and method for testing the adhesion of a coating to a surface. The invention also includes an improved testing button or dolly for use with the testing apparatus and a self aligning button hook or dolly interface on the testing apparatus. According to preferred forms, the apparatus and method of the present invention are simple, portable, battery operated rugged, and inexpensive to manufacture and use, are readily adaptable to a wide variety of uses, and provide effective and accurate testing results. The device includes a linear actuator driven by an electric motor coupled to the actuator through a gearbox and a rotatable shaft. The electronics for the device are contained in the head section of the device. At the contact end of the device, is positioned a self aligning button hook, attached below the load cell located on the actuator shaft.

  8. Ionic electroactive polymer actuators as active microfluidic mixers

    DOE PAGES

    Meis, Catherine; Montazami, Reza; Hashemi, Nastaran

    2015-11-06

    On-chip sample processing is integral to the continued development of lab-on-a-chip devices for various applications. An active microfluidic mixer prototype is proposed using ionic electroactive polymer actuators (IEAPAs) as artificial cilia. A proof-of-concept experiment was performed in which the actuators were shown to produce localized flow pattern disruptions in the laminar flow regime. Suggestions for further engineering and optimization of a scaled-down, complete device are provided. Furthermore, the device in its current state of development necessitates further engineering, the use of IEAPAs addresses issues currently associated with the use of electromechanical actuators as active microfluidic mixers and may prove tomore » be a useful alternative to other similar materials.« less

  9. Ionic electroactive polymer actuators as active microfluidic mixers

    SciTech Connect

    Meis, Catherine; Montazami, Reza; Hashemi, Nastaran

    2015-11-06

    On-chip sample processing is integral to the continued development of lab-on-a-chip devices for various applications. An active microfluidic mixer prototype is proposed using ionic electroactive polymer actuators (IEAPAs) as artificial cilia. A proof-of-concept experiment was performed in which the actuators were shown to produce localized flow pattern disruptions in the laminar flow regime. Suggestions for further engineering and optimization of a scaled-down, complete device are provided. Furthermore, the device in its current state of development necessitates further engineering, the use of IEAPAs addresses issues currently associated with the use of electromechanical actuators as active microfluidic mixers and may prove to be a useful alternative to other similar materials.

  10. Development of characterization tools for reliability testing of micro-electro-mechanical system actuators

    NASA Astrophysics Data System (ADS)

    Smith, Norman F.; Eaton, William P.; Tanner, Danelle M.; Allen, James J.

    1999-08-01

    Characterization tools have been developed to study the performance characteristics and reliability of surface micromachined actuators. These tools include: (1) the ability to electrically stimulate or stress the actuator, (2) the capability to visually inspect the devices in operation, (3) a method for capturing operational information, and (4) a method to extract performance characteristics from the operational information. Additionally, a novel test structure has been developed to measure electrostatic forces developed by a comb drive actuator.

  11. Electro-mechanical behavior of a shape memory alloy actuator

    NASA Astrophysics Data System (ADS)

    Pausley, Matthew E.; Furst, Stephen J.; Talla, Vamsi; Seelecke, Stefan

    2009-03-01

    This paper presents experimental study and numerical simulation of the electro-thermo-mechanical behavior of a commercially available Flexinol shape memory alloy (SMA) wire [1]. Recently, a novel driver device has been presented [2], which simultaneously controls electric power and measures resistance of an SMA wire actuator. This application of a single wire as both actuator and sensor will fully exploit the multifunctional nature of SMA materials and minimize system complexity by avoiding extra sensors. Though the subject is not new [3-6], comprehensive resistance data under controlled conditions for time-resolved and hysteresis-based experiments is not readily available from the literature. A simple experimental setup consisting of a Flexinol wire mounted in series with the tip of a compliant cantilever beam is used to systematically study the SMA behavior. A Labview-based data acquisition system measures actuator displacement and SMA wire stress and resistance and controls the power passed through the SMA actuator wire. The experimental setup is carefully insulated from ambient conditions, as the thermal response of a 50-micron diameter Flexinol wire is extremely sensitive to temperature fluctuation due to convective heat transfer. Actuator performance is reported for a range of actuation frequencies and input power levels. The effect of varying actuator pre-stress is reported as well. All of the experimental data is compared with simulated behavior that is derived from a numerical model for SMA material [7-10].

  12. Sequential growth for lifetime extension in biomimetic polypyrrole actuator systems

    NASA Astrophysics Data System (ADS)

    Sarrazin, J. C.; Mascaro, Stephen A.

    2015-04-01

    Electroactive polymers (EAPs) present prospective use in actuation and manipulation devices due to their low electrical activation requirements, biocompatibility, and mechanical performance. One of the main drawbacks with EAP actuators is a decrease in performance over extended periods of operation caused by over-oxidation of the polymer and general polymer degradation. Synthesis of the EAP material, polypyrrole with an embedded metal helix allows for sequential growth of the polymer during operation. The helical metal electrode acts as a scaffolding to support the polymer, and direct the 3-dimensional change in volume of the polymer along the axis of the helix during oxidative and reductive cycling. The metal helix also provides a working metal electrode through the entire length of the polymer actuator to distribute charge for actuation, as well as for sequential growth steps during the lifetime of operation of the polymer. This work demonstrates the method of sequential growth can be utilized after extended periods of use to partially restore electrical and mechanical performance of polypyrrole actuators. Since the actuation must be temporarily stopped to allow for a sequential growth cycle to be performed and reverse some of the polymer degradation, these actuator systems more closely mimic natural muscle in their analogous maintenance and repair.

  13. Dielectric elastomer actuators for octopus inspired suction cups.

    PubMed

    Follador, M; Tramacere, F; Mazzolai, B

    2014-09-25

    Suction cups are often found in nature as attachment strategy in water. Nevertheless, the application of the artificial counterpart is limited by the dimension of the actuators and their usability in wet conditions. A novel design for the development of a suction cup inspired by octopus suckers is presented. The main focus of this research was on the modelling and characterization of the actuation unit, and a first prototype of the suction cup was realized as a proof of concept. The actuation of the suction cup is based on dielectric elastomer actuators. The presented device works in a wet environment, has an integrated actuation system, and is soft. The dimensions of the artificial suction cups are comparable to proximal octopus suckers, and the attachment mechanism is similar to the biological counterpart. The design approach proposed for the actuator allows the definition of the parameters for its development and for obtaining a desired pressure in water. The fabricated actuator is able to produce up to 6 kPa of pressure in water, reaching the maximum pressure in less than 300 ms.

  14. Electro-Mechanical Actuators (EMA's) for Space Applications

    NASA Astrophysics Data System (ADS)

    Verhoeven, Didier; De Coster, Francois

    2013-09-01

    The scope of this paper is to present two concepts for electromechanical actuators (EMA's) for space applications:• The first concept implements external anti-rotation devices, as well as a blocking device in order to meet the specific Intermediate eXperimental Vehicle (IXV) constraints.• The second concept is a new anti-rotation device based on DIN 32712-B P4C profile.

  15. Molecular engineering of polymer actuators for biomedical and industrial use

    NASA Astrophysics Data System (ADS)

    Banister, Mark; Eichorst, Rebecca; Gurr, Amy; Schweitzer, Georgette; Geronov, Yordan; Rao, Pavalli; McGrath, Dominic

    2012-04-01

    Five key materials engineering components and how each component impacted the working performance of a polymer actuator material are investigated. In our research we investigated the change of actuation performance that occurred with each change we made to the material. We investigated polymer crosslink density, polymer chain length, polymer gelation, type and density of reactive units, as well as the addition of binders to the polymer matrix. All five play a significant role and need to be addressed at the molecular level to optimize a polymer gel for use as a practical actuator material for biomedical and industrial use.

  16. Development of DBD plasma actuators: The double encapsulated electrode

    NASA Astrophysics Data System (ADS)

    Erfani, Rasool; Zare-Behtash, Hossein; Hale, Craig; Kontis, Konstantinos

    2015-04-01

    Plasma actuators are electrical devices that generate a wall bounded jet without the use of any moving parts. For aerodynamic applications they can be used as flow control devices to delay separation and augment lift on a wing. The standard plasma actuator consists of a single encapsulated (ground) electrode. The aim of this project is to investigate the effect of varying the number and distribution of encapsulated electrodes in the dielectric layer. Utilising a transformer cascade, a variety of input voltages are studied for their effect. In the quiescent environment of a Faraday cage the velocity flow field is recorded using particle image velocimetry. Through understanding of the mechanisms involved in producing the wall jet and the importance of the encapsulated electrode a novel actuator design is proposed. The actuator design distributes the encapsulated electrode throughout the dielectric layer. The experiments have shown that actuators with a shallow initial encapsulated electrode induce velocities greater than the baseline case at the same voltage. Actuators with a deep initial encapsulated electrode are able to induce the highest velocities as they can operate at higher voltages without breakdown of the dielectric.

  17. Accuracy of the actuator disc-RANS approach for predicting the performance and wake of tidal turbines.

    PubMed

    Batten, W M J; Harrison, M E; Bahaj, A S

    2013-02-28

    The actuator disc-RANS model has widely been used in wind and tidal energy to predict the wake of a horizontal axis turbine. The model is appropriate where large-scale effects of the turbine on a flow are of interest, for example, when considering environmental impacts, or arrays of devices. The accuracy of the model for modelling the wake of tidal stream turbines has not been demonstrated, and flow predictions presented in the literature for similar modelled scenarios vary significantly. This paper compares the results of the actuator disc-RANS model, where the turbine forces have been derived using a blade-element approach, to experimental data measured in the wake of a scaled turbine. It also compares the results with those of a simpler uniform actuator disc model. The comparisons show that the model is accurate and can predict up to 94 per cent of the variation in the experimental velocity data measured on the centreline of the wake, therefore demonstrating that the actuator disc-RANS model is an accurate approach for modelling a turbine wake, and a conservative approach to predict performance and loads. It can therefore be applied to similar scenarios with confidence.

  18. Optimal placement of actuators for active vibration control of seismic excited tall buildings using a multiple start guided neighbourhood search (MSGNS) algorithm

    NASA Astrophysics Data System (ADS)

    Rama Mohan Rao, A.; Sivasubramanian, K.

    2008-03-01

    Active control devices can be implemented on seismically excited high rise buildings using appropriate active control theory, to reduce structural responses to a desired level. Certain locations of the structure are advantageous for placement of actuators in the sense that these locations effectively reduce the structural responses. Hence, optimal placement of actuators at discrete locations is an important problem that will have significant impact on control of civil structures like high rise buildings, bridges, etc. This optimal placement problem leads to a combinatorial optimisation and is difficult to solve. This paper presents a multi-start meta-heuristic algorithm called multiple start guided neighbourhood search (MSGNS) algorithm, which makes use of the good features of guided local searches like simulated annealing (SA) and tabu search (TS). Four distinct design criteria which influence the active control design are considered in this paper to study the optimal actuator placement problem. The sensitivities of the four optimisation criteria with respect to different earthquake records are explored. Further, in this paper, we deviate from the usual practice of using shear building models (or simple lumped mass model) in active control research for finding optimal actuator locations. Instead, we use detailed finite element models and demonstrate through numerical examples their effectiveness in arriving at the optimal actuator locations. Finally, the superior performance of the proposed MSGNS algorithm over popular meta-heuristic algorithms like GA, SA and TS is demonstrated through numerical experiments.

  19. How Well Does the Latest Anthropomorphic Test Device Mimic Human Impact Responses?

    NASA Technical Reports Server (NTRS)

    Newby, N.; Somers, J. T.; Caldwell, E.; Gernhardt, M.

    2014-01-01

    One of the goals of the NASA Occupant Protection Group is to understand the human tolerance to dynamic loading. This knowledge has to come through indirect approaches such as existing human response databases, anthropometric test devices (ATD), animal testing, post-mortem human subjects, and models. This study investigated the biofidelity of the National Highway Traffic Safety Administration's ATD named the THOR (test device for human occupant restraint). If THOR responds comparably to humans, then it could potentially be used as a human surrogate to help validate space vehicle requirements for occupant protection. The THOR responses to frontal and spinal impacts (ranging from 8 to 12 G with rise times of 40, 70, and 100 ms) were measured and compared to human volunteer responses (95 trials in frontal and 58 in spinal) previously collected by the U. S. Air Force on the same horizontal impact accelerator. The impact acceleration profiles tested are within the expected range of multi-purpose crew vehicle (MPCV) landing dynamics. A correlation score was calculated for each THOR to human comparison using CORA (CORrelation and Analysis) software. A two-parameter beta distribution model fit was obtained for each dependent variable using maximum likelihood estimation. For frontal impacts, the THOR head x-acceleration peak response correlated with the human response at 8 and 10-G 100 ms but not 10-G 70 ms. The phase lagged the human response. Head z-acceleration was not correlated. Chest x-acceleration was in phase, had a higher peak response, and was well correlated with lighter subjects (Cora = 0.8 for 46 kg vs. Cora = 0.4 for 126 kg). Head x-displacement had a leading phase. Several subjects responded with the same peak displacement but the mean of the group was lower. The shoulder x-displacement was in phase but had higher peaks than the human response. For spinal impacts, the THOR head x-acceleration was not well correlated. Head and chest z-acceleration was in phase

  20. How Well Does the Latest Anthropomorphic Test Device Mimic Human Impact Responses?

    NASA Technical Reports Server (NTRS)

    Newby, Nate; Somers, Jeff; Caldewll, Erin; Gernhardt, Michael

    2014-01-01

    One of the goals of the NASA Occupant Protection Group is to understand the human tolerance to dynamic loading. This knowledge has to come through indirect approaches such as existing human response databases, anthropometric test devices (ATD), animal testing, post-­-mortem human subjects, and models. This study investigated the biofidelity of the National Highway Traffic Safety Administration's ATD named the THOR (test device for human occupant restraint). If THOR responds comparably to humans, then it could potentially be used as a human surrogate to help validate space vehicle requirements for occupant protection. The THOR responses to frontal and spinal impacts (ranging from 8 to 12 G with rise times of 40, 70, and 100 ms) were measured and compared to human volunteer responses (95 trials in frontal and 58 in spinal) previously collected by the U. S. Air Force on the same horizontal impact accelerator. The impact acceleration profiles tested are within the expected range of multi-­-purpose crew vehicle (MPCV) landing dynamics. A correlation score was calculated for each THOR to human comparison using CORA (CORrelation and Analysis) software. A two-­-parameter beta distribution model fit was obtained for each dependent variable using maximum likelihood estimation. For frontal impacts, the THOR head x-­-acceleration peak response correlated with the human response at 8 and 10-­-G 100 ms but not 10-­-G 70 ms. The phase lagged the human response. Head z-­-acceleration was not correlated. Chest x-­-acceleration was in phase, had a higher peak response, and was well correlated with lighter subjects (Cora = 0.8 for 46 kg vs. Cora = 0.4 for 126 kg). Head x-­-displacement had a leading phase. Several subjects responded with the same peak displacement but the mean of the group was lower. The shoulder x-­-displacement was in phase but had higher peaks than the human response. For spinal impacts, the THOR head x-­-acceleration was not well correlated. Head and

  1. Microelectromechanical Systems (MEMS) Actuator for Reconfigurable Patch Antenna Demonstrated

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.

    2001-01-01

    A microstrip patch antenna with two contact actuators along the radiating edges for frequency reconfiguration was demonstrated at K-band frequencies. The layout of the antenna is shown in the following figure. This antenna has the following advantages over conventional semiconductor varactor-diode-tuned patch antennas: 1. By eliminating the semiconductor diode and its nonlinear I-V characteristics, the antenna minimizes intermodulation signal distortion. This is particularly important in digital wireless systems, which are sensitive to intersymbol interference caused by intermodulation products. 2. Because the MEMS actuator is an electrostatic device, it does not draw any current during operation and, hence, requires a negligible amount of power for actuation. This is an important advantage for hand-held, battery-operated, portable wireless systems since the battery does not need to be charged frequently. 3. The MEMS actuator does not require any special epitaxial layers as in the case of diodes and, hence, is cost effective.

  2. Development of an acoustic actuator for launch vehicle noise reduction.

    PubMed

    Henderson, Benjamin K; Lane, Steven A; Gussy, Joel; Griffin, Steve; Farinholt, Kevin M

    2002-01-01

    In many active noise control applications, it is necessary that acoustic actuators be mounted in small enclosures due to volume constraints and in order to remain unobtrusive. However, the air spring of the enclosure is detrimental to the low-frequency performance of the actuator. For launch vehicle noise control applications, mass and volume constraints are very limiting, but the low-frequency performance of the actuator is critical. This work presents a novel approach that uses a nonlinear buckling suspension system and partial evacuation of the air within the enclosure to yield a compact, sealed acoustic driver that exhibits a very low natural frequency. Linear models of the device are presented and numerical simulations are given to illustrate the advantages of this design concept. An experimental prototype was built and measurements indicate that this design can significantly improve the low-frequency response of compact acoustic actuators.

  3. Micromachined actuators/sensors for intratubular positioning/steering

    DOEpatents

    Lee, Abraham P.; Krulevitch, Peter A.; Northrup, M. Allen; Trevino, Jimmy C.

    1998-01-01

    Micromachined thin film cantilever actuators having means for individually controlling the deflection of the cantilevers, valve members, and rudders for steering same through blood vessels, or positioning same within a blood vessel, for example. Such cantilever actuators include tactile sensor arrays mounted on a catheter or guide wire tip for navigation and tissues identification, shape-memory alloy film based catheter/guide wire steering mechanisms, and rudder-based steering devices that allow the selective actuation of rudders that use the flowing blood itself to help direct the catheter direction through the blood vessel. While particularly adapted for medical applications, these cantilever actuators can be used for steering through piping and tubing systems.

  4. Dynamic profile of a prototype pivoted proof-mass actuator

    NASA Astrophysics Data System (ADS)

    Miller, D. W.

    1981-08-01

    A prototype of a linear inertial reaction actuation (damper) device employing a flexure-pivoted reaction (proof) mass is discussed. The mass is driven by an electromechanic motor using a dc electromagnetic field and an ac electromagnetic drive. During the damping process, the actuator dissipates structural kinetic energy as heat through electromagnetic damping. A model of the inertial, stiffness and damping properties is presented along with the characteristic differential equations describing the coupled response of the actuator and structure. The equations, employing the dynamic coefficients, are oriented in the form of a feedback control network in which distributed sensors are used to dictate actuator response leading to a specified amount of structural excitation or damping.

  5. Micromachined actuators/sensors for intratubular positioning/steering

    DOEpatents

    Lee, A.P.; Krulevitch, P.A.; Northrup, M.A.; Trevino, J.C.

    1998-06-30

    Micromachined thin film cantilever actuators having means for individually controlling the deflection of the cantilevers, valve members, and rudders for steering same through blood vessels, or positioning same within a blood vessel, for example. Such cantilever actuators include tactile sensor arrays mounted on a catheter or guide wire tip for navigation and tissues identification, shape-memory alloy film based catheter/guide wire steering mechanisms, and rudder-based steering devices that allow the selective actuation of rudders that use the flowing blood itself to help direct the catheter direction through the blood vessel. While particularly adapted for medical applications, these cantilever actuators can be used for steering through piping and tubing systems. 14 figs.

  6. Study of flow induced by sine wave and saw tooth plasma actuators

    NASA Astrophysics Data System (ADS)

    Liu, Zhifeng; Wang, Lianze; Fu, Song

    2011-11-01

    The effect of plasma actuator that uses saw-tooth or sine-wave shape electrodes on boundary layer flows is experimentally investigated. The measurement results are compared with a corresponding standard configuration (conventional design using two rectangular strip electrodes)—the actuator that produces a nearly two-dimensional horizontal wall jet upon actuation. PIV measurements are used to characterize the actuators in a quiescent chamber. Operating in a steady manner, the new actuators result in the formation of streamwise and spanwise vortices. That is to say, the new actuators render the plasma actuators inducing three-dimensional variations in the shear layer, offering significant flexibility in flow control. The affected flowfield with the new actuators is significantly larger than that with the conventional linear actuators. While the conventional linear actuators affect primarily the boundary layer flow on a scale of about 1 cm above the wall, the new actuators affect the near wall region at a significantly larger scale. This new design broadens the applicability and enhances the flow control effects and it is potentially a more efficient flow control device.

  7. Experimental aerodynamics of mesoscale trailing-edge actuators

    NASA Astrophysics Data System (ADS)

    Solovitz, Stephen Adam

    Uninhabited air vehicles (UAVs) are commonly designed with high-aspect ratio wings, which can be susceptible to significant aeroelastic vibrations. These modes can result in a loss of control or structural failure, and new techniques are necessary to alleviate them. A multidisciplinary effort at Stanford developed a distributed flow control method that used small trailing-edge actuators to alter the aerodynamic loads at specific spanwise locations along an airplane wing. This involved design and production of the actuators, computational and experimental study of their characteristics, and application to a flexible wing. This project focused on the experimental response. The actuators were based on a Gurney flap, which is a trailing-edge flap of small size and large deflection, typically about 2% of the chord and 90 degrees, respectively. Because of the large deflection, there is a significant change to the wing camber, increasing the lift. However, due to the small size, the drag does not increase substantially, and the performance is actually improved for high lift conditions. For this project, a 1.5% flap was divided into small span segments (5.2% of the chord), each individually controllable. These devices are termed microflaps or Micro Trailing-edge Effectors (MiTEs). The aerodynamic response was examined to determine the effects of small flap span, the influence of the device structure, and the transient response to relatively rapid MiTE actuation. Measurements included integrated loads, pressure profiles, wake surveys, and near-wake studies using particle image velocimetry. The basic response was similar to a Gurney flap, as full-span actuation of the devices produced a lift increment of about +0.25 when applied towards the pressure surface. For partial actuated spans, the load increment was approximately linear with the actuated span, regardless of configuration. The primary effects occurred within two device spans, indicating that most of the load was

  8. Soft Actuators for Small-Scale Robotics.

    PubMed

    Hines, Lindsey; Petersen, Kirstin; Lum, Guo Zhan; Sitti, Metin

    2017-04-01

    This review comprises a detailed survey of ongoing methodologies for soft actuators, highlighting approaches suitable for nanometer- to centimeter-scale robotic applications. Soft robots present a special design challenge in that their actuation and sensing mechanisms are often highly integrated with the robot body and overall functionality. When less than a centimeter, they belong to an even more special subcategory of robots or devices, in that they often lack on-board power, sensing, computation, and control. Soft, active materials are particularly well suited for this task, with a wide range of stimulants and a number of impressive examples, demonstrating large deformations, high motion complexities, and varied multifunctionality. Recent research includes both the development of new materials and composites, as well as novel implementations leveraging the unique properties of soft materials.

  9. Bucky gel actuator displacement: experiment and model

    NASA Astrophysics Data System (ADS)

    Ghamsari, A. K.; Jin, Y.; Zegeye, E.; Woldesenbet, E.

    2013-02-01

    Bucky gel actuator (BGA) is a dry electroactive nanocomposite which is driven with a few volts. BGA’s remarkable features make this tri-layered actuator a potential candidate for morphing applications. However, most of these applications would require a better understanding of the effective parameters that influence the BGA displacement. In this study, various sets of experiments were designed to investigate the effect of several parameters on the maximum lateral displacement of BGA. Two input parameters, voltage and frequency, and three material/design parameters, carbon nanotube type, thickness, and weight fraction of constituents were selected. A new thickness ratio term was also introduced to study the role of individual layers on BGA displacement. A model was established to predict BGA maximum displacement based on the effect of these parameters. This model showed good agreement with reported results from the literature. In addition, an important factor in the design of BGA-based devices, lifetime, was investigated.

  10. ToF-SIMS characterization of silk fibroin and polypyrrole composite actuators

    SciTech Connect

    Bradshaw, Nathan P.; Severt, Sean Y.; Wang, Zhaoying; Fengel, Carly V.; Larson, Jesse D.; Zhu, Zihua; Murphy, Amanda R.; Leger., Janelle M.

    2015-11-01

    Biocompatible materials capable of controlled actuation under biologically relevant conditions are in high demand for use in a number of biomedical applications. Recently, we demonstrated that a composite material composed of silk biopolymer and the conducting polymer poly(pyrrole) can bend under an applied voltage using a simple bilayer device. Here we present further characterization of these bilayer actuators using time of flight secondary ion mass spectrometry, and provide clarification on the mechanism of actuation and factors affecting device performance and stability. We will discuss the results of this study in the context of strategies for optimization of device performance.

  11. Microfabricated therapeutic actuator mechanisms

    DOEpatents

    Northrup, M.A.; Ciarlo, D.R.; Lee, A.P.; Krulevitch, P.A.

    1997-07-08

    Electromechanical microstructures (microgrippers), either integrated circuit (IC) silicon-based or precision machined, to extend and improve the application of catheter-based interventional therapies for the repair of aneurysms in the brain or other interventional clinical therapies. These micromechanisms can be specifically applied to release platinum coils or other materials into bulging portions of the blood vessels also known as aneurysms. The ``micro`` size of the release mechanism is necessary since the brain vessels are the smallest in the body. Through a catheter more than one meter long, the micromechanism located at one end of the catheter can be manipulated from the other end thereof. The microgripper (micromechanism) of the invention will also find applications in non-medical areas where a remotely actuated microgripper or similar actuator would be useful or where micro-assembling is needed. 22 figs.

  12. Microfabricated therapeutic actuator mechanisms

    DOEpatents

    Northrup, Milton A.; Ciarlo, Dino R.; Lee, Abraham P.; Krulevitch, Peter A.

    1997-01-01

    Electromechanical microstructures (microgrippers), either integrated circuit (IC) silicon-based or precision machined, to extend and improve the application of catheter-based interventional therapies for the repair of aneurysms in the brain or other interventional clinical therapies. These micromechanisms can be specifically applied to release platinum coils or other materials into bulging portions of the blood vessels also known as aneurysms. The "micro" size of the release mechanism is necessary since the brain vessels are the smallest in the body. Through a catheter more than one meter long, the micromechanism located at one end of the catheter can be manipulated from the other end thereof. The microgripper (micromechanism) of the invention will also find applications in non-medical areas where a remotely actuated microgripper or similar actuator would be useful or where micro-assembling is needed.

  13. Electrical Actuation Technology Bridging

    NASA Technical Reports Server (NTRS)

    Hammond, Monica (Compiler); Sharkey, John (Compiler)

    1993-01-01

    This document contains the proceedings of the NASA Electrical Actuation Technology Bridging (ELA-TB) Workshop held in Huntsville, Alabama, September 29-October 1, 1992. The workshop was sponsored by the NASA Office of Space Systems Development and Marshall Space Flight Center (MSFC). The workshop addressed key technologies bridging the entire field of electrical actuation including systems methodology, control electronics, power source systems, reliability, maintainability, and vehicle health management with special emphasis on thrust vector control (TVC) applications on NASA launch vehicles. Speakers were drawn primarily from industry with participation from universities and government. In addition, prototype hardware demonstrations were held at the MSFC Propulsion Laboratory each afternoon. Splinter sessions held on the final day afforded the opportunity to discuss key issues and to provide overall recommendations. Presentations are included in this document.

  14. Microfabricated therapeutic actuators

    DOEpatents

    Lee, Abraham P.; Northrup, M. Allen; Ciarlo, Dino R.; Krulevitch, Peter A.; Benett, William J.

    1999-01-01

    Microfabricated therapeutic actuators are fabricated using a shape memory polymer (SMP), a polyurethane-based material that undergoes a phase transformation at a specified temperature (Tg). At a temperature above temperature Tg material is soft and can be easily reshaped into another configuration. As the temperature is lowered below temperature Tg the new shape is fixed and locked in as long as the material stays below temperature Tg. Upon reheating the material to a temperature above Tg, the material will return to its original shape. By the use of such SMP material, SMP microtubing can be used as a release actuator for the delivery of embolic coils through catheters into aneurysms, for example. The microtubing can be manufactured in various sizes and the phase change temperature Tg is determinate for an intended temperature target and intended use.

  15. Microfabricated therapeutic actuators

    DOEpatents

    Lee, A.P.; Northrup, M.A.; Ciarlo, D.R.; Krulevitch, P.A.; Benett, W.J.

    1999-06-15

    Microfabricated therapeutic actuators are fabricated using a shape memory polymer (SMP), a polyurethane-based material that undergoes a phase transformation at a specified temperature (Tg). At a temperature above temperature Tg material is soft and can be easily reshaped into another configuration. As the temperature is lowered below temperature Tg the new shape is fixed and locked in as long as the material stays below temperature Tg. Upon reheating the material to a temperature above Tg, the material will return to its original shape. By the use of such SMP material, SMP microtubing can be used as a release actuator for the delivery of embolic coils through catheters into aneurysms, for example. The microtubing can be manufactured in various sizes and the phase change temperature Tg is determinate for an intended temperature target and intended use. 8 figs.

  16. Scissor thrust valve actuator

    DOEpatents

    DeWall, Kevin G.; Watkins, John C; Nitzel, Michael E.

    2006-08-29

    Apparatus for actuating a valve includes a support frame and at least one valve driving linkage arm, one end of which is rotatably connected to a valve stem of the valve and the other end of which is rotatably connected to a screw block. A motor connected to the frame is operatively connected to a motor driven shaft which is in threaded screw driving relationship with the screw block. The motor rotates the motor driven shaft which drives translational movement of the screw block which drives rotatable movement of the valve driving linkage arm which drives translational movement of the valve stem. The valve actuator may further include a sensory control element disposed in operative relationship with the valve stem, the sensory control element being adapted to provide control over the position of the valve stem by at least sensing the travel and/or position of the valve stem.

  17. Failure modes in surface micromachined microelectromechanical actuators

    SciTech Connect

    Miller, S.L.; Rodgers, M.S.; LaVigne, G.; Sniegowski, J.J.; Clews, P.; Tanner, D.M.; Peterson, K.A.

    1998-03-01

    In order for the rapidly emerging field of MicroElectroMechanical Systems (MEMS) to meet its extraordinary expectations regarding commercial impact, issues pertaining to how they fail must be understood. The authors identify failure modes common to a broad range of MEMS actuators, including adhesion (stiction) and friction induced failures caused by improper operational methods, mechanical instabilities, and electrical instabilities. Demonstrated methods to mitigate these failure modes include implementing optimized designs, model based operational methods, and chemical surface treatments.

  18. Dissolution actuated sample container

    SciTech Connect

    Nance, Thomas A.; McCoy, Frank T.

    2013-03-26

    A sample collection vial and process of using a vial is provided. The sample collection vial has an opening secured by a dissolvable plug. When dissolved, liquids may enter into the interior of the collection vial passing along one or more edges of a dissolvable blocking member. As the blocking member is dissolved, a spring actuated closure is directed towards the opening of the vial which, when engaged, secures the vial contents against loss or contamination.

  19. Thermally actuated thermionic switch

    DOEpatents

    Barrus, Donald M.; Shires, Charles D.

    1988-01-01

    A thermally actuated thermionic switch which responds to an increase of temperature by changing from a high impedance to a low impedance at a predictable temperature set point. The switch has a bistable operation mode switching only on temperature increases. The thermionic material may be a metal which is liquid at the desired operation temperature and held in matrix in a graphite block reservoir, and which changes state (ionizes, for example) so as to be electrically conductive at a desired temperature.

  20. Thermally actuated thermionic switch

    DOEpatents

    Barrus, D.M.; Shires, C.D.

    1982-09-30

    A thermally actuated thermionic switch which responds to an increase of temperature by changing from a high impedance to a low impedance at a predictable temperature set point. The switch has a bistable operation mode switching only on temperature increases. The thermionic material may be a metal which is liquid at the desired operation temperature and held in matrix in a graphite block reservoir, and which changes state (ionizes, for example) so as to be electrically conductive at a desired temperature.

  1. Shape Memory Actuator System

    DTIC Science & Technology

    1998-07-31

    The advantage in utilizing 15 shape-memory cables made of Nitinol for size reduction of the remote control actuator system is 1 Fi well suited for...a submarine environment because of its non-magnetic and corrosion resistance 17 properties. Use of thermoelastic Nitinol introduces other...problems because of the cooling and 18 resetting properties of Nitinol cables. It is therefore an important object of the present invention 19 on to

  2. Passively actuated valve

    SciTech Connect

    Modro, S. Michael; Ougouag, Abderrafi M.

    2005-09-20

    A passively actuated valve for isolating a high pressure zone from a low pressure zone and discontinuing the isolation when the pressure in the high pressure zone drops below a preset threshold. If the pressure in the high pressure zone drops below the preset threshold, the valve opens and allows flow from the high pressure zone to the low pressure zone. The valve remains open allowing pressure equalization and back-flow should a pressure inversion between the two pressure zone occur.

  3. Linear mass actuator

    NASA Technical Reports Server (NTRS)

    Holloway, Sidney E., III (Inventor); Crossley, Edward A., Jr. (Inventor); Jones, Irby W. (Inventor); Miller, James B. (Inventor); Davis, C. Calvin (Inventor); Behun, Vaughn D. (Inventor); Goodrich, Lewis R., Sr. (Inventor)

    1992-01-01

    A linear mass actuator includes an upper housing and a lower housing connectable to each other and having a central passageway passing axially through a mass that is linearly movable in the central passageway. Rollers mounted in the upper and lower housings in frictional engagement with the mass translate the mass linearly in the central passageway and drive motors operatively coupled to the roller means, for rotating the rollers and driving the mass axially in the central passageway.

  4. Microelectromechanical (MEM) thermal actuator

    DOEpatents

    Garcia, Ernest J [Albuquerque, NM; Fulcher, Clay W. G. [Sandia Park, NM

    2012-07-31

    Microelectromechanical (MEM) buckling beam thermal actuators are disclosed wherein the buckling direction of a beam is constrained to a desired direction of actuation, which can be in-plane or out-of-plane with respect to a support substrate. The actuators comprise as-fabricated, linear beams of uniform cross section supported above the substrate by supports which rigidly attach a beam to the substrate. The beams can be heated by methods including the passage of an electrical current through them. The buckling direction of an initially straight beam upon heating and expansion is controlled by incorporating one or more directional constraints attached to the substrate and proximal to the mid-point of the beam. In the event that the beam initially buckles in an undesired direction, deformation of the beam induced by contact with a directional constraint generates an opposing force to re-direct the buckling beam into the desired direction. The displacement and force generated by the movement of the buckling beam can be harnessed to perform useful work, such as closing contacts in an electrical switch.

  5. Use of a composite Biomer-butyl rubber/Biomer material to prevent transdiaphragmatic water permeation during long-term, electrically-actuated left ventricular assist device (LVAD) pumping

    PubMed Central

    McGee, Michael G.; Szycher, Michael; Turner, Stephen A.; Clay, Warren; Trono, Ruben; Fuqua, John M.; Norman, John C.

    1980-01-01

    The pumping diaphragm of the Texas Heart Institute (THI) E-Type ALVAD must perform the dual functions of providing a flexible blood interface and isolating the electrical actuator from adjacent fluids. Thus, protection is required against fluid leakage and moisture diffusion to prevent corrosion and damage to electrical actuator components. Average diffusion rates up to 1 ml per day through currently used elastomeric diaphragm materials have been measured during static in-vitro and in-vivo tests. To circumvent this problem, an improved pumping diaphragm has been recently developed for use with the electrically-actuated THI E-Type ALVAD. This trilaminar diaphragm consists of a composite Biomer and butyl rubber design. A.010 inch layer of butyl rubber (characterized by an extremely low diffusion rate for water, ≃ 0 ml per day) is positioned between two Biomer layers (.020 and .010 inches in thickness). Initial invitro and in-vivo studies, in calves, indicate that this composite diaphragm provides an excellent barrier to water permeation, without sacrificing biocompatibility or structural integrity under conditions of chronic flexure. Images PMID:15216255

  6. Speech therapy and communication device: impact on quality of life and mood in patients with amyotrophic lateral sclerosis.

    PubMed

    Körner, Sonja; Sieniawski, Michael; Siniawski, Michael; Kollewe, Katja; Rath, Klaus Jan; Krampfl, Klaus; Zapf, Antonia; Dengler, Reinhard; Petri, Susanne

    2013-01-01

    Dysarthria has a drastic impact on the quality of life of ALS patients. Most patients suffering from dysarthria are offered speech therapy. Communication devices are prescribed less frequently. In the present study we investigated the impact of these therapeutic arrangements on quality of life in ALS patients. Thirty-eight ALS patients with dysarthria or anarthria, who underwent speech therapy and/or used communication devices answered three standardized questionnaires (Beck Depression Inventory - II (BDI), SF-36 Health Survey questionnaire (SF-36) and ALS Functional Rating Scale-revised (ALSFRS-R)) and were further interviewed about their experience with and benefit of speech therapy and communication devices. Most of the patients described a high impact of the communication device on their quality of life while the influence of speech therapy was rated less. By multiple regression analysis we confirmed an independent positive effect of communication device use on depression and psychological distress. In conclusion, communication systems improve or at least stabilize quality of life and mood in dysarthric ALS patients, and should be provided early in the disease course.

  7. Development of an active member using piezoelectric and electrostrictive actuation for control of precision structures

    NASA Technical Reports Server (NTRS)

    Anderson, E. H.; Moore, D. M.; Fanson, J. L.; Ealey, M. A.

    1990-01-01

    The design and development of a zero stiction active member containing piezoelectric and electrostrictive actuator motors is presented. The active member is intended for use in submicron control of structures. Experimental results are shown which illustrate actuator and device characteristics relevant to precision control applications.

  8. 76 FR 31860 - Anthropomorphic Test Devices; Hybrid III Test Dummy, ES-2re Side Impact Crash Test Dummy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-02

    ... National Highway Traffic Safety Administration 49 CFR Part 572 RIN 2127-AK64 Anthropomorphic Test Devices; Hybrid III Test Dummy, ES-2re Side Impact Crash Test Dummy AGENCY: National Highway Traffic Safety... rule published on June 16, 2008, concerning a 50th percentile adult male side crash test dummy...

  9. 75 FR 5931 - Anthropomorphic Test Devices; Hybrid III Test Dummy, ES-2re Side Impact Crash Test Dummy

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-05

    ... National Highway Traffic Safety Administration 49 CFR Part 572 RIN 2127-AK64 Anthropomorphic Test Devices; Hybrid III Test Dummy, ES-2re Side Impact Crash Test Dummy AGENCY: National Highway Traffic Safety... final rule that had adopted specifications and qualification requirements for a new crash test...

  10. Telescoping cylindrical piezoelectric fiber composite actuator assemblies

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Christopher L. (Inventor); Fox Chattin, legal representative, Melanie L. (Inventor)

    2010-01-01

    A telescoping actuator assembly includes a plurality of cylindrical actuators in a concentric arrangement. Each cylindrical actuator is at least one piezoelectric fiber composite actuator having a plurality of piezoelectric fibers extending parallel to one another and to the concentric arrangement's longitudinal axis. Each cylindrical actuator is coupled to concentrically-adjacent ones of the cylindrical actuators such that the plurality of cylindrical actuators can experience telescopic movement. An electrical energy source coupled to the cylindrical actuators applies actuation energy thereto to generate the telescopic movement.

  11. Frequency-dependent stability of parallel-plate electrostatic actuators in conductive fluids

    NASA Astrophysics Data System (ADS)

    Sounart, T. L.; Panchawagh, H. V.; Mahajan, R. L.

    2010-05-01

    We present an electromechanical stability analysis of passivated parallel-plate electrostatic actuators in conductive dielectric media and show that the pull-in instability can be eliminated by tuning the applied frequency below a design-dependent stability limit. A partial instability region is also obtained, where the actuator jumps from the pull-in displacement to another stable position within the gap. The results predict that the stability limit is always greater than the critical actuation frequency, and therefore any device that is feasible to actuate in a conductive fluid can be operated with stability over the full range of motion.

  12. Dynamic Characteristics Analysis of Two-DOF Oscillatory Actuator and Experimental Verification of Prototype

    NASA Astrophysics Data System (ADS)

    Takamichi, Yoshimoto; Hirata, Katsuhiro; Asai, Yasuyoshi; Ueyama, Kenji; Hashimoto, Eiichiro; Takagi, Takahiro

    Recently, linear oscillatory actuators have been used in a wide range of applications. In particular, small linear oscillatory actuators are expected to be applied to haptic devices by extension to multi-degree-of-freedom motion with an arbitrary acceleration. In this paper, we propose a compact two-DOF oscillatory actuator that can move in various directions on the plane. The static and dynamic characteristics of the actuator are determined by the 3-D finite element method. The effectiveness of this method is shown through a comparison of the obtained results with the experimental results of a prototype.

  13. A Hybrid Actuation System Demonstrating Significantly Enhanced Electromechanical Performance

    NASA Technical Reports Server (NTRS)

    Su, Ji; Xu, Tian-Bing; Zhang, Shujun; Shrout, Thomas R.; Zhang, Qiming

    2004-01-01

    A hybrid actuation system (HYBAS) utilizing advantages of a combination of electromechanical responses of an electroactive polymer (EAP), an electrostrictive copolymer, and an electroactive ceramic single crystal, PZN-PT single crystal, has been developed. The system employs the contribution of the actuation elements cooperatively and exhibits a significantly enhanced electromechanical performance compared to the performances of the device made of each constituting material, the electroactive polymer or the ceramic single crystal, individually. The theoretical modeling of the performances of the HYBAS is in good agreement with experimental observation. The consistence between the theoretical modeling and experimental test make the design concept an effective route for the development of high performance actuating devices for many applications. The theoretical modeling, fabrication of the HYBAS and the initial experimental results will be presented and discussed.

  14. Impact of Vice President Cheney on public interest in left ventricular assist devices and heart transplantation.

    PubMed

    Pandey, Ambarish; Abdullah, Kazeen; Drazner, Mark H

    2014-05-01

    Although celebrity illnesses attract a significant amount of media attention in the United States, there are few studies that have looked at how celebrity health conditions impact the awareness of the illness in the general population. Recently, Vice President Cheney underwent left ventricular assist device (LVAD) implantation and subsequently a cardiac transplant. The aim of this study was to determine whether there was evidence of increased interest in these 2 procedures as assessed by social media. We determined the relative frequency of Google searches for LVAD and heart transplantation from 2004 to 2013 using Google trends. We also counted the number of YouTube videos and Twitter messages posted monthly concerning LVADs over a 7-year time frame. There was a significant spike in the Google search interest for LVAD and heart transplantation in the month when Vice President Cheney underwent the respective procedure. Similarly, there was a large increase in YouTube videos and Twitter messages concerning LVADs shortly after he was implanted. In total, these data support the concept that a public figure's illness can significantly influence the public's interest in that condition and its associated therapies.

  15. The impact of communication materials on public responses to a radiological dispersal device (RDD) attack.

    PubMed

    Rogers, M Brooke; Amlôt, Richard; Rubin, G James

    2013-03-01

    It is a common assumption that, in the event of a chemical, biological, radiological, or nuclear (CBRN) attack, a well-prepared and informed public is more likely to follow official recommendations regarding the appropriate safety measures to take. We present findings from a UK study investigating the ability of crisis communication to influence perceptions of risk and behavioral intentions in the general public in response to CBRN terrorism. We conducted a focus group study involving a scenario presented in mock news broadcasts to explore levels of public knowledge, information needs, and intended behavioral reactions to an attack involving an overt radiological dispersal device (RDD), or dirty bomb. We used the findings from these focus groups to design messages for the public that could be presented in a short leaflet. We then tested the effects of the leaflet on reactions to the same scenario in 8 further focus groups. The impact of the new messages on levels of knowledge, information needs, and intended compliance with official recommendations was assessed. The provision of information increased the perceived credibility of official messages and increased reported levels of intended compliance with advice to return to normal/stop sheltering, attend a facility for assessment and treatment, and return to a previously contaminated area after decontamination of the environment has taken place. Should a real attack with an RDD occur, having pretested messages available to address common concerns and information needs should facilitate the public health response to the attack.

  16. Experimental approaches to assessing the impact of a cesium chloride radiological dispersal device

    USGS Publications Warehouse

    Lee, S.; Gibb, Snyder E.; Barzyk, J.; McGee, J.; Koenig, A.

    2008-01-01

    The US EPA, as a part of the Chemical, Biological, Radiological-Nuclear, and Explosives (CBRNE) Research and Technology Initiative (CRTI) project team, is currently working to assess the impacts of an urban radiological dispersion device (RDD) and to develop containment and decontamination strategies. Three efforts in this area are currently underway: development of a laboratory-scale cesium chloride deposition method to mimic a RDD; assessment of cesium (Cs) penetration depth and pathways in urban materials using two dimensional (2-D) mapping laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS); and experimental determination of distribution coefficients (kd) for Cs in water-building material systems. It is critical that, when performing laboratory-scale experiments to assess the fate of Cs from an RDD, the Cs particle deposition method mimics the RDD deposition. Once Cs particles are deposited onto urban surfaces, 2-D mapping of Cs concentrations using LA-ICP-MS is a critical tool for determining Cs transport pathways through these materials. Lastly, distribution coefficients are critical for understanding the transport of Cs in urban settings when direct measurements of its penetration depth are unavailable. An assessment of the newly developed deposition method along with preliminary results from the penetration experiments are presented in this paper.

  17. The impact of on-road motion on BMS touch screen device operation.

    PubMed

    Goode, Natassia; Lenné, Michael G; Salmon, Paul

    2012-01-01

    This study investigates the effect of vehicle motion on performance, usability and workload for a touch screen in-vehicle Battle Management System (BMS). Participants performed a series of battle management tasks while a vehicle was driven over sealed (characteristic of 'normal' vehicle motion) and unsealed (characteristic of 'high' vehicle motion) roads. The results indicate that unsealed road conditions impair the performance of information input tasks (tasks that require the user to enter information, e.g. text entry) but not information extraction tasks (tasks that require the user to retrieve information from the system, e.g. reading coordinates). Participants rated workload as higher and the system as less usable on the unsealed road. In closing, the implications for in-vehicle touch screen design and use in both military and civilian driving contexts are discussed. Practitioner Summary: The effect of motion on interacting with in-vehicle touch screen devices remains largely unexplored. This study examines the effect of different levels of vehicle motion on the use of a BMS. Using the system under off-road conditions had a detrimental impact on workload, performance and usability.

  18. The impact of voltage independent carriers on implied voltage measurements on silicon devices

    NASA Astrophysics Data System (ADS)

    Juhl, M. K.; Trupke, T.

    2016-10-01

    The electrical performance a solar cell is determined from direct measurements of the current voltage relationship, while the so-called implied current-voltage measurements are often performed to estimate the performance of partially processed samples. Implied current voltage measurements are commonly obtained from quasi steady state photoconductance and quasi steady state photoluminescence measurements, where the implied voltage is inferred from the average excess carrier density. As will be shown here, this approach can be problematic due to the presence of excess carriers that do not contribute to the terminal voltage. These carriers are referred to as voltage independent carriers, a concept that is not widely known or generally accepted. This paper provides the theoretical background for the distinction of voltage dependent and voltage independent carriers. It is shown that the relative impact of voltage independent carriers on implied voltage data depends strongly on device parameters and on the illumination wavelength. Practical limits are provided for these parameters for which the voltage independent carriers can be neglected and for which an implied voltage thus accurately reflects the junction voltage.

  19. Direct drive field actuator motors

    DOEpatents

    Grahn, A.R.

    1998-03-10

    A positive-drive field actuator motor is described which includes a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately. 62 figs.

  20. Fault-tolerant rotary actuator

    DOEpatents

    Tesar, Delbert

    2006-10-17

    A fault-tolerant actuator module, in a single containment shell, containing two actuator subsystems that are either asymmetrically or symmetrically laid out is provided. Fault tolerance in the actuators of the present invention is achieved by the employment of dual sets of equal resources. Dual resources are integrated into single modules, with each having the external appearance and functionality of a single set of resources.

  1. Linear Proof-Mass Actuator

    NASA Technical Reports Server (NTRS)

    Holloway, Sidney E., III; Crossley, Edward A.; Miller, James B.; Jones, Irby W.; Davis, C. Calvin; Behun, Vaughn D.; Goodrich, Lewis R., Sr.

    1995-01-01

    Linear proof-mass actuator (LPMA) is friction-driven linear mass actuator capable of applying controlled force to structure in outer space to damp out oscillations. Capable of high accelerations and provides smooth, bidirectional travel of mass. Design eliminates gears and belts. LPMA strong enough to be used terrestrially where linear actuators needed to excite or damp out oscillations. High flexibility designed into LPMA by varying size of motors, mass, and length of stroke, and by modifying control software.

  2. Direct drive field actuator motors

    SciTech Connect

    Grahn, Allen R.

    1998-01-01

    A positive-drive field actuator motor including a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately.

  3. Underground Infrastructure Impacts Due to a Surface Burst Nuclear Device in an Urban Canyon Environment

    SciTech Connect

    Bos, Randall J.; Dey, Thomas N.; Runnels, Scott R.

    2012-07-03

    case. Again, as in the above ground case, the basements create significant shielding causing the shock profile to become more square and reducing the potential for damage diagonal to the line of sight streets. The results for a 1KT device is that the heavily damaged zone (complete destruction) will extend out to 50m from the detonation ({approx}100m for 10KT). The heavily to moderately damaged zone will extend out to 100m ({approx}200m for 10KT). Since the destruction will depend on geometric angle from the detonation and also the variability of response for various critical infrastructure, for planning purposes the area out to 100m from the detonation should be assumed to be non-operational. Specifically for subway tunnels, while not operational, they could be human passable for human egress in the moderately damaged area. The results of the simulations presented in this report indicate only the general underground infrastructure impact. Simulations done with the actual basement geometry would be an important improvement. Equally as important or even more so, knowing the actual underground material configurations and material composition would be critical information to refine the calculations. Coupling of the shock data into structural codes would help inform the emergency planning and first response communities on the impact to underground structures and the state of buildings after the detonation.

  4. Mechanisms and actuators for rotorcraft blade morphing

    NASA Astrophysics Data System (ADS)

    Vocke, Robert D., III

    The idea of improved fight performance through changes in the control surfaces dates back to the advent of aviation with the Wright brothers' pioneering work on "wing warping," but it was not until the recent progress in material and actuator development that such control surfaces seemed practical for modern aircraft. This has opened the door to a new class of aircraft that have the ability to change shape or morph, which are being investigated due to the potential to have a single platform serve multiple mission objectives, as well as improve performance characteristics. While the majority of existing research for morphing aircraft has focused on fixedwing aircraft, rotary-wing aircraft have begun to receive more attention. The purpose of this body of work is to investigate the current state of morphing actuation technology for rotorcraft and improve upon it. Specifically, this work looks at two types of morphing: Pneumatic Artificial Muscle (PAM) actuated trailing edge flaps and conformal variable diameter morphing. First, active camber changes through the use of PAM powered trailing edge flaps were investigated due to the potential for reductions in power requirements and vibration/noise levels. A PAM based antagonistic actuation system was developed utilizing a novel combination of mechanism geometry and PAM bias contraction optimization to overcome the natural extension stiffening characteristics of PAMs. In open-loop bench-top testing against a "worst-case" constant torsional loading, the system demonstrated actuation authority suitable for both primary control and vibration/noise reduction. Additionally, closed-loop test data indicated that the system was capable of tracking complex waveforms consistent with those needed for rotorcraft control. This system demonstrated performance on-par with the state of the art pneumatic trailing edge flap actuators, yet with a much smaller footprint and impact on the rotor-blade. The second morphing system developed in

  5. Electrolysis-based diaphragm actuators

    NASA Astrophysics Data System (ADS)

    Pang, C.; Tai, Y.-C.; Burdick, J. W.; Andersen, R. A.

    2006-02-01

    This work presents a new electrolysis-based microelectromechanical systems (MEMS) diaphragm actuator. Electrolysis is a technique for converting electrical energy to pneumatic energy. Theoretically electrolysis can achieve a strain of 136 000% and is capable of generating a pressure above 200 MPa. Electrolysis actuators require modest electrical power and produce minimal heat. Due to the large volume expansion obtained via electrolysis, small actuators can create a large force. Up to 100 µm of movement was achieved by a 3 mm diaphragm. The actuator operates at room temperature and has a latching and reversing capability.

  6. Rotational actuators based on carbon nanotubes.

    PubMed

    Fennimore, A M; Yuzvinsky, T D; Han, Wei-Qiang; Fuhrer, M S; Cumings, J; Zettl, A

    2003-07-24

    Nanostructures are of great interest not only for their basic scientific richness, but also because they have the potential to revolutionize critical technologies. The miniaturization of electronic devices over the past century has profoundly affected human communication, computation, manufacturing and transportation systems. True molecular-scale electronic devices are now emerging that set the stage for future integrated nanoelectronics. Recently, there have been dramatic parallel advances in the miniaturization of mechanical and electromechanical devices. Commercial microelectromechanical systems now reach the submillimetre to micrometre size scale, and there is intense interest in the creation of next-generation synthetic nanometre-scale electromechanical systems. We report on the construction and successful operation of a fully synthetic nanoscale electromechanical actuator incorporating a rotatable metal plate, with a multi-walled carbon nanotube serving as the key motion-enabling element.

  7. Rotational actuators based on carbon nanotubes

    NASA Astrophysics Data System (ADS)

    Fennimore, A. M.; Yuzvinsky, T. D.; Han, Wei-Qiang; Fuhrer, M. S.; Cumings, J.; Zettl, A.

    2003-07-01

    Nanostructures are of great interest not only for their basic scientific richness, but also because they have the potential to revolutionize critical technologies. The miniaturization of electronic devices over the past century has profoundly affected human communication, computation, manufacturing and transportation systems. True molecular-scale electronic devices are now emerging that set the stage for future integrated nanoelectronics. Recently, there have been dramatic parallel advances in the miniaturization of mechanical and electromechanical devices. Commercial microelectromechanical systems now reach the submillimetre to micrometre size scale, and there is intense interest in the creation of next-generation synthetic nanometre-scale electromechanical systems. We report on the construction and successful operation of a fully synthetic nanoscale electromechanical actuator incorporating a rotatable metal plate, with a multi-walled carbon nanotube serving as the key motion-enabling element.

  8. Modelling and control of double-cone dielectric elastomer actuator

    NASA Astrophysics Data System (ADS)

    Branz, F.; Francesconi, A.

    2016-09-01

    Among various dielectric elastomer devices, cone actuators are of large interest for their multi-degree-of-freedom design. These objects combine the common advantages of dielectric elastomers (i.e. solid-state actuation, self-sensing capability, high conversion efficiency, light weight and low cost) with the possibility to actuate more than one degree of freedom in a single device. The potential applications of this feature in robotics are huge, making cone actuators very attractive. This work focuses on rotational degrees of freedom to complete existing literature and improve the understanding of such aspect. Simple tools are presented for the performance prediction of the device: finite element method simulations and interpolating relations have been used to assess the actuator steady-state behaviour in terms of torque and rotation as a function of geometric parameters. Results are interpolated by fit relations accounting for all the relevant parameters. The obtained data are validated through comparison with experimental results: steady-state torque and rotation are determined at a given high voltage actuation. In addition, the transient response to step input has been measured and, as a result, the voltage-to-torque and the voltage-to-rotation transfer functions are obtained. Experimental data are collected and used to validate the prediction capability of the transfer function in terms of time response to step input and frequency response. The developed static and dynamic models have been employed to implement a feedback compensator that controls the device motion; the simulated behaviour is compared to experimental data, resulting in a maximum prediction error of 7.5%.

  9. Double-section curvature tunable functional actuator with micromachined buckle and grid wire for electricity delivery

    NASA Astrophysics Data System (ADS)

    Feng, Guo-Hua; Hou, Sheng-You

    2015-09-01

    This paper presents an ionic polymer metal composite (IPMC)-driven tentacle-like biocompatible flexible actuator with double-section curvature tunability. This actuator, possessing an embedded electrical transmission ability that mimics skeletal muscle nerves in the human body, affords versatile device functions. Novel micromachined copper buckles and grid wires are fabricated and their superiority in electricity delivery and driving the IPMC component with less flexural rigidity is demonstrated. In addition, soft conductive wires realized on a polydimethylsiloxane structure function as electrical signal transmitters. A light-emitting diode integrated with the developed actuator offers directional guiding light ability while the actuator performs a snake-like motion. The electrical conductivity and Young’s modulus of the key actuator components are investigated, and flexural rigidity and dynamic behavior analyses of the actuator under electrical manipulation are elaborated.

  10. Design and dynamic evaluation for a linear ultrasonic stage using the thin-disc structure actuator.

    PubMed

    Wen, Fuhliang; Yen, C-Y

    2007-12-01

    The design of a novel, single-axis ultrasonic actuating stage has been proposed. It consists of a movable plate, an edge-driving ultrasonic actuator as an actuating device, and a magnetic Magi encoder as a position sensor. The stage is impelled using a friction-contact mechanism by the ultrasonic actuator with long distance movement. Very high actuating and braking abilities are obtained. The stable and precise positioning control of the stage was achieved by using a neural-fuzzy controller. This simple and inexpensive structure of the single-axis stage demonstrates that the mechanical design of ultrasonic actuating concept could be done flexibly according to the requirements for various applications.

  11. Polyimide MEMS actuators for medical imaging

    NASA Astrophysics Data System (ADS)

    Zara, Jason M.; Mills, Patrick; Patterson, Paul

    2005-01-01

    This paper provides an overview of several years of research in the use of polyimide MEMS actuators for medical imaging applications, including high frequency ultrasound and optical coherence tomography (OCT). These scanning devices are microfabricated out of polyimide substrates using conventional integrated circuit technology. The material properties of the polyimide allow very large scan angles to be realized and also allow the resonant frequencies of the structures to be in the appropriate ranges for real-time imaging. The primary application of these probes is endoscopic and catheter-based imaging procedures. The microfabrication enables the creation of very small devices essential for compact imaging probes. In addition, they can be fabricated in bulk, reducing their cost and potentially making them disposable to reduce the cost of patient care and minimize the potential for patient cross-contamination. Several different scanning geometries and actuators have been investigated for imaging applications, including both forward-viewing and side-scanning configurations. Probes that utilize both electrostatic polyimide actuators and piezoelectric bimorphs to mechanically scan the ultrasound or OCT imaging beams will be presented. These probes have been developed for both use in both ultrasound and OCT imaging systems. Medical applications of these probes include the early detection of cancerous and precancerous conditions in the bladder and other mucosal tissues. These imaging probes will allow the physician to visualize the subsurface microstructure of the tissues and detect abnormalities not visible through the use of conventional endoscopic imaging techniques. Prototype devices have been used to image geometric wire phantoms, in vitro porcine tissue, and in vivo subjects. The progress made over the last several years in the development of these polyimide scanning probes will be presented.

  12. Integration of piezoceramic actuators in fiber-reinforced structures for aerospace applications

    NASA Astrophysics Data System (ADS)

    Duerr, Johannes K.; Herold-Schmidt, Ursula; Zaglauer, Helmut W.; Arendts, Franz J.

    1998-06-01

    Up to now experimental and theoretical research on active structures for aerospace applications has put the focus mainly on surface bonded actuators. Simultaneously peizoceramics became the major type of actuating device being investigated for smart structures.In this context various techniques of insulating, bonding and operating these actuators have been developed. However, especially with regard to actuators only a few investigations have dealt with embedding of these components into the load bearing structure so far. With increasing shares of fiber- reinforced plastics applied in aerospace products the option of integrating the actuation capability into the components should be reconsidered during the design process. This paper deals with different aspects related to the integration of piezoceramic actuators into fiber reinforced aerospace structures. An outline of the basic possibilities of either bonding an actuator to the structure's surface or embedding it into the composite is given while the emphasis is put on different aspects related to the latter technology. Subsequently recent efforts at Daimler-Benz Aerospace Dornier concerning aircraft components with surface bonded actuators are presented. Design considerations regarding embedded piezoceramic actuators are discussed. Finally some techniques of non-destructive testing applicable to structures with surface bonded as well as embedded piezoelectric actuators are described.

  13. Light-driven actuation of fluids at microscale

    NASA Astrophysics Data System (ADS)

    Deshpande, Mandar; Saggere, Laxman

    2004-07-01

    This paper discusses the prospects of light-driven actuation particularly for actuating fluids at micro-scale for potential use in a novel retinal prosthesis and other drug delivery applications. The prosthesis is conceived to be comprised of an array of light-driven microfluidic-dispenser units, devices that eject very small amounts of fluids on the order of 1 picoliter per second in response to incident light energy in the range of 0.1-1 mW/cm2. A light-driven actuator, whose size will ideally be smaller than about 100 micrometers in diameter, independently powers each dispenser unit. Towards this application, various approaches for transducing light energy for actuation of fluids are explored. These approaches encompass both direct transduction of light energy to mechanical actuation of fluid and indirect transduction through an intermediary form of energy, for instance, light energy to thermal or electrical energy followed by mechanical actuation of fluid. Various existing schemes for such transduction are reviewed comprehensively and discussed from the standpoint of the application requirements. Direct transduction schemes exploiting recent developments in optically sensitive materials that exhibit direct strain upon illumination, particularly the photostrictive PLZT (Lanthanum modified Lead Zirconate Titanate), are studied for the current application, and results of some preliminary experiments involving measurement of photovoltage, photocurrent, and photo-induced strain in the meso-scale samples of the PLZT material are presented.

  14. Optimal placement of active material actuators using genetic algorithm

    NASA Astrophysics Data System (ADS)

    Johnson, Terrence; Frecker, Mary I.

    2004-07-01

    Actuators based on smart materials generally exhibit a tradeoff between force and stroke. Researchers have surrounded piezoelectric materials (PZT"s) with complaint structures to magnify either their geometric or mechanical advantage. Most of these designs are literally built around a particular piezoelectric device, so the design space consists of only the compliant mechanism. Materials scientists researchers have demonstrated the ability to pole a PZT in an arbitrary direction, and some engineers have taken advantage of this to build "shear mode" actuators. The goal of this work is to determine if the performance of compliant mechanisms improves by the inclusion of the piezoelectric polarization as a design variable. The polarization vector is varied via transformation matrixes, and the compliant actuator is modeled using the SIMP (Solid Isotropic Material with Penalization) or "power-law method." The concept of mutual potential energy is used to form an objective function to measure the piezoelectric actuator"s performance. The optimal topology of the compliant mechanism and orientation of the polarization method are determined using a sequential linear programming algorithm. This paper presents a demonstration problem that shows small changes in the polarization vector have a marginal effect on the optimum topology of the mechanism, but improves actuation.

  15. Lead screw linear actuator

    NASA Technical Reports Server (NTRS)

    Perkins, Gerald S. (Inventor)

    1980-01-01

    A linear actuator which can apply high forces is described, which includes a reciprocating rod having a threaded portion engaged by a nut that is directly coupled to the rotor of an electric motor. The nut is connected to the rotor in a manner that minimizes loading on the rotor, by the use of a coupling that transmits torque to the nut but permits it to shift axially and radially with respect to the rotor. The nut has a threaded hydrostatic bearing for engaging the threaded rod portion, with an oilcarrying groove in the nut being interrupted.

  16. Piezoelectric actuated gimbal

    DOEpatents

    Tschaggeny, Charles W.; Jones, Warren F.; Bamberg, Eberhard

    2011-09-13

    A gimbal is described and which includes a fixed base member defining an axis of rotation; a second member concentrically oriented relative to the axis of rotation; a linear actuator oriented in immediate, adjoining force transmitting relation relative to the base member or to the second member, and which applies force along a linear axis which is tangential to the axis of rotation so as to cause the second member to rotate coaxially relative to the fixed base member; and an object of interest mounted to the second member such that the object of interest is selectively moved relative to the base member about the axis of rotation.

  17. Bending fluidic actuator for smart structures

    NASA Astrophysics Data System (ADS)

    Che-Ming Chang, Benjamin; Berring, John; Venkataram, Manu; Menon, Carlo; Parameswaran, M.

    2011-03-01

    This paper presents a novel silicone-based, millimeter-scale, bending fluidic actuator (BFA). Its unique parallel micro-channel design enables, for the first time, operation at low working pressure while at the same time having a very limited thickness expansion during pressurization. It also enables the actuator to have the highest ratios of angular displacement over length and torque over volume among previously proposed BFAs. In this work, this parallel micro-channel design is implemented by embedding the BFA with an innovative single winding conduit, which yields a simple, single-component configuration suitable for low-cost production and reliable performance. The BFA design can be easily scaled down to smaller dimensions and can be adapted to applications in restricted space, particularly minimally invasive surgery. In this work, the actuator is manufactured in TC-silicone through poly(methyl methacrylate) molds obtained by using laser cutting technology. Repeated angular displacement measurements on multiple prototypes having different stiffness are carried out. The experimental results are compared with an analytical model, which accurately predicts the performance of the device.

  18. Degradation evaluation of microelectromechanical thermal actuators

    NASA Astrophysics Data System (ADS)

    Luo, J. K.; Fu, Y. Q.; Huang, Q. A.; Williams, J. A.; Milne, W. I.

    2008-02-01

    Metal based thermal microactuators normally have lower operation temperatures than those of Si-based ones; hence they have great potential for applications. However, metal-based thermal actuators easily suffer from degradation such as plastic deformation. In this study, planar thermal actuators were made by a single mask process using electroplated nickel as the active material, and their thermal degradation has been studied. Electrical tests show that the Ni-based thermal actuators deliver a maximum displacement of ~20 m at an average temperature of ~420 °C, much lower than that of Si-based microactuators. However, the displacement strongly depends on the frequency and peak voltage of the pulse applied. Back bending was clearly observed at a maximum temperature as low as 240 °C. Both forward and backward displacements increase with increasing the temperature up to ~450 °C, and then decreases with power. Scanning electron microscopy observation clearly showed that Ni structure deforms and reflows at power above 50mW. The compressive stress is believed to be responsible for Ni piling-up (creep), while the tensile stress upon removing the pulse current is responsible for necking at the hottest section of the device. Energy dispersive X-ray diffraction analysis revealed severe oxidation of the Ni-structure induced by Joule-heating of the current.

  19. NASA aerospace pyrotechnically actuated systems: Program plan

    NASA Technical Reports Server (NTRS)

    Schulze, Norman R.

    1992-01-01

    The NASA Aerospace Pyrotechnically Actuated Systems (PAS) Program, a focused technology program, is being initiated to enhance the reliability, safety, and performance of pyrotechnically actuated systems. In broad terms, this Program Plan presents the approach that helps to resolve concerns raised by the NASA/DOD/DOE Aerospace Pyrotechnic Steering Committee. This Plan reflects key efforts needed in PAS technology. The resources committed to implement the Program will be identified in the Program Implementation Plan (PIP). A top level schedule is included along with major Program milestones and products. Responsibilities are defined in the PIP. The Plan identifies the goals and detailed objectives which define how those goals are to be accomplished. The Program will improve NASA's capabilities to design, develop, manufacture, and test pyrotechnically actuated systems for NASA's programs. Program benefits include the following: advanced pyrotechnic systems technology developed for NASA programs; hands-on pyrotechnic systems expertise; quick response capability to investigate and resolve pyrotechnic problems; enhanced communications and intercenter support among the technical staff; and government-industry PAS technical interchange. The PAS Program produces useful products that are of a broad-based technology nature rather than activities intended to meet specific technology objectives for individual programs. Serious problems have occurred with pyrotechnic devices although near perfect performance is demanded by users. The lack of a program to address those problems in the past is considered a serious omission. The nature of problems experienced as revealed by a survey are discussed and the origin of the program is explained.

  20. Non-explosive actuation for the ORBCOMM (TM) satellite

    NASA Technical Reports Server (NTRS)

    Robinson, Anthony; Courtney, Craig; Moran, Tom

    1995-01-01

    Spool-based non-explosive actuator (NEA) devices are used for three important holddown and release functions during the establishment of the ORBCOMM (TM) constellation. Non-explosive separation nuts are used to restrain and release the 26 individual satellites into low earth orbit. Cable release mechanisms based on the same technology are used to release the solar arrays and antenna boom.

  1. Electromechanical Simulation of Actively Controlled Rotordynamic Systems with Piezoelectric Actuators

    NASA Technical Reports Server (NTRS)

    Lin, Reng Rong; Palazzolo, A. B.; Kascak, A. F.; Montague, G.

    1991-01-01

    Theories and tests for incorporating piezoelectric pushers as actuator devices for active vibration control are discussed. It started from a simple model with the assumption of ideal pusher characteristics and progressed to electromechanical models with nonideal pushers. Effects on system stability due to the nonideal characteristics of piezoelectric pushers and other elements in the control loop were investigated.

  2. Energy harvesting for self-powered aerostructure actuation

    NASA Astrophysics Data System (ADS)

    Bryant, Matthew; Pizzonia, Matthew; Mehallow, Michael; Garcia, Ephrahim

    2014-04-01

    This paper proposes and experimentally investigates applying piezoelectric energy harvesting devices driven by flow induced vibrations to create self-powered actuation of aerostructure surfaces such as tabs, flaps, spoilers, or morphing devices. Recently, we have investigated flow-induced vibrations and limit cycle oscillations due to aeroelastic flutter phenomena in piezoelectric structures as a mechanism to harvest energy from an ambient fluid flow. We will describe how our experimental investigations in a wind tunnel have demonstrated that this harvested energy can be stored and used on-demand to actuate a control surface such as a trailing edge flap in the airflow. This actuated control surface could take the form of a separate and discrete actuated flap, or could constitute rotating or deflecting the oscillating energy harvester itself to produce a non-zero mean angle of attack. Such a rotation of the energy harvester and the associated change in aerodynamic force is shown to influence the operating wind speed range of the device, its limit cycle oscillation (LCO) amplitude, and its harvested power output; hence creating a coupling between the device's performance as an energy harvester and as a control surface. Finally, the induced changes in the lift, pitching moment, and drag acting on a wing model are quantified and compared for a control surface equipped with an oscillating energy harvester and a traditional, static control surface of the same geometry. The results show that when operated in small amplitude LCO the energy harvester adds negligible aerodynamic drag.

  3. Spacecraft Jitter Attenuation Using Embedded Piezoelectric Actuators

    NASA Technical Reports Server (NTRS)

    Belvin, W. Keith

    1995-01-01

    Remote sensing from spacecraft requires precise pointing of measurement devices in order to achieve adequate spatial resolution. Unfortunately, various spacecraft disturbances induce vibrational jitter in the remote sensing instruments. The NASA Langley Research Center has performed analysis, simulations, and ground tests to identify the more promising technologies for minimizing spacecraft pointing jitter. These studies have shown that the use of smart materials to reduce spacecraft jitter is an excellent match between a maturing technology and an operational need. This paper describes the use of embedding piezoelectric actuators for vibration control and payload isolation. In addition, recent advances in modeling, simulation, and testing of spacecraft pointing jitter are discussed.

  4. Cooling device

    SciTech Connect

    Teske, L.

    1984-02-21

    A cooling device is claimed for coal dust comprising a housing, a motor-driven conveyor system therein to transport the coal dust over coolable trays in the housing and conveyor-wheel arms of spiral curvature for moving the coal dust from one or more inlets to one or more outlets via a series of communicating passages in the trays over which the conveyor-wheel arms pass under actuation of a hydraulic motor mounted above the housing and driving a vertical shaft, to which the conveyor-wheel arms are attached, extending centrally downwardly through the housing.

  5. Electrostatic Discharge (ESD) Protection for a Laser Diode Ignited Actuator

    SciTech Connect

    SALAS, FREDERICK J.; SANCHEZ, DANIEL H.; WEINLEIN, JOHN HARVEY

    2003-06-01

    The use of laser diodes in devices to ignite pyrotechnics provides unique new capabilities including the elimination of electrostatic discharge (ESD) pulses entering the device. The Faraday cage formed by the construction of these devices removes the concern of inadvertent ignition of the energetic material. However, the laser diode itself can be damaged by ESD pulses, therefore, to enhance reliability, some protection of the laser diode is necessary. The development of the MC4612 Optical Actuator has included a circuit to protect the laser diode from ESD pulses including the ''Fisher'' severe human body ESD model. The MC4612 uses a laser diode and is designed to replace existing hot-wire actuators. Optical energy from a laser diode, instead of electrical energy, is used to ignite the pyrotechnic. The protection circuit is described along with a discussion of how the circuit design addresses and circumvents the historic 1Amp/1Watt requirement that has been applicable to hot-wire devices.

  6. Fully redundant mechanical release actuator

    NASA Technical Reports Server (NTRS)

    Lucy, Melvin H. (Inventor)

    1987-01-01

    A system is described for performing a mechanical release function exhibiting low shock. This system includes two pyrotechnic detents fixed mounted in opposing axial alignment within a cylindrical housing having two mechanical bellows. Two mechanical bellow assemblies, each having one end hermetically bonded to the housing and the other to the respective actuator pin extending from either end of the housing, ensure that all outgassing and contamination from the operation of the pyrotechnic devices will be contained within the housing and bellows. The pin on one end of the assembly is fixed mounted and supported, via a bolt or ball-and-socket joint so that when the charge corresponding to that pin ignites, the entire assembly will exhibit rectilinear movement, including the opposing pin providing the unlatching motion. The release detent pin is supported by a linear bearing and when its corresponding pyrotechnic charge ignites the pin is retracted within the housing producing the same unlatching motion without movement of the entire assembly, thus providing complete mechanical, electrical and pyrotechnic redundancy for the unlatching pin.

  7. Disposable Fluidic Actuators for Miniature In-Vivo Surgical Robotics.

    PubMed

    Pourghodrat, Abolfazl; Nelson, Carl A

    2017-03-01

    Fusion of robotics and minimally invasive surgery (MIS) has created new opportunities to develop diagnostic and therapeutic tools. Surgical robotics is advancing from externally actuated systems to miniature in-vivo robotics. However, with miniaturization of electric-motor-driven surgical robots, there comes a trade-off between the size of the robot and its capability. Slow actuation, low load capacity, sterilization difficulties, leaking electricity and transferring produced heat to tissues, and high cost are among the key limitations of the use of electric motors in in-vivo applications. Fluid power in the form of hydraulics or pneumatics has a long history in driving many industrial devices and could be exploited to circumvent these limitations. High power density and good compatibility with the in-vivo environment are the key advantages of fluid power over electric motors when it comes to in-vivo applications. However, fabrication of hydraulic/pneumatic actuators within the desired size and pressure range required for in-vivo surgical robotic applications poses new challenges. Sealing these types of miniature actuators at operating pressures requires obtaining very fine surface finishes which is difficult and costly. The research described here presents design, fabrication, and testing of a hydraulic/pneumatic double-acting cylinder, a limited-motion vane motor, and a balloon-actuated laparoscopic grasper. These actuators are small, seal-less, easy to fabricate, disposable, and inexpensive, thus ideal for single-use in-vivo applications. To demonstrate the ability of these actuators to drive robotic joints, they were modified and integrated in a robotic arm. The design and testing of this surgical robotic arm are presented to validate the concept of fluid-power actuators for in-vivo applications.

  8. Dielectric barrier discharge plasma actuator for flow control

    NASA Astrophysics Data System (ADS)

    Opaits, Dmitry Florievich

    Electrohydrodynamic (EHD) and magnetohydrodynamic phenomena are being widely studied for aerodynamic applications. The major effects of these phenomena are heating of the gas, body force generation, and enthalpy addition or extraction, [1, 2, 3]. In particular, asymmetric dielectric barrier discharge (DBD) plasma actuators are known to be effective EHD device in aerodynamic control, [4, 5]. Experiments have demonstrated their effectiveness in separation control, acoustic noise reduction, and other aeronautic applications. In contrast to conventional DBD actuators driven by sinusoidal voltages, we proposed and used a voltage profile consisting of nanosecond pulses superimposed on dc bias voltage. This produces what is essentially a non-self-sustained discharge: the plasma is generated by repetitive short pulses, and the pushing of the gas occurs primarily due to the bias voltage. The advantage of this non-self-sustained discharge is that the parameters of ionizing pulses and the driving bias voltage can be varied independently, which adds flexibility to control and optimization of the actuators performance. Experimental studies were conducted of a flow induced in a quiescent room air by a single DBD actuator. A new approach for non-intrusive diagnostics of plasma actuator induced flows in quiescent gas was proposed, consisting of three elements coupled together: the Schlieren technique, burst mode of plasma actuator operation, and 2-D numerical fluid modeling. During the experiments, it was found that DBD performance is severely limited by surface charge accumulation on the dielectric. Several ways to mitigate the surface charge were found: using a reversing DC bias potential, three-electrode configuration, slightly conductive dielectrics, and semi conductive coatings. Force balance measurements proved the effectiveness of the suggested configurations and advantages of the new voltage profile (pulses+bias) over the traditional sinusoidal one at relatively low

  9. Development of highly integrated magetically and electrostatically actuated micropumps : LDRD 64709 final report.

    SciTech Connect

    Sosnowchik, Brian D.; Galambos, Paul C.; Hendrix, Jason R.; Zwolinski, Andrew

    2003-12-01

    The pump and actuator systems designed and built in the SUMMiT{trademark} process, Sandia's surface micromachining polysilicon MEMS (Micro-Electro-Mechanical Systems) fabrication technology, on the previous campus executive program LDRD (SAND2002-0704P) with FSU/FAMU (Florida State University/Florida Agricultural and Mechanical University) were characterized in this LDRD. These results demonstrated that the device would pump liquid against the flow resistance of a microfabricated channel, but the devices were determined to be underpowered for reliable pumping. As a result a new set of SUMMiT{trademark} pumps with actuators that generate greater torque will be designed and submitted for fabrication. In this document we will report details of dry actuator/pump assembly testing, wet actuator/pump testing, channel resistance characterization, and new pump/actuator design recommendations.

  10. Analytical design model for a piezo-composite unimorph actuator and its verification using lightweight piezo-composite curved actuators

    NASA Astrophysics Data System (ADS)

    Yoon, K. J.; Park, K. H.; Lee, S. K.; Goo, N. S.; Park, H. C.

    2004-06-01

    This paper describes an analytical design model for a layered piezo-composite unimorph actuator and its numerical and experimental verification using a LIPCA (lightweight piezo-composite curved actuator) that is lighter than other conventional piezo-composite type actuators. The LIPCA is composed of top fiber composite layers with high modulus and low CTE (coefficient of thermal expansion), a middle PZT ceramic wafer, and base layers with low modulus and high CTE. The advantages of the LIPCA design are to replace the heavy metal layer of THUNDER by lightweight fiber-reinforced plastic layers without compromising the generation of high force and large displacement and to have design flexibility by selecting the fiber direction and the number of prepreg layers. In addition to the lightweight advantage and design flexibility, the proposed device can be manufactured without adhesive layers when we use a resin prepreg system. A piezo-actuation model for a laminate with piezo-electric material layers and fiber composite layers is proposed to predict the curvature and residual stress of the LIPCA. To predict the actuation displacement of the LIPCA with curvature, a finite element analysis method using the proposed piezo-actuation model is introduced. The predicted deformations are in good agreement with the experimental ones.

  11. Dog-Bone Horns for Piezoelectric Ultrasonic/Sonic Actuators

    NASA Technical Reports Server (NTRS)

    Sherrit, Stewart; Bar-Cohen, Yoseph; Chang, Zensheu; Bao, Xiaoqi

    2007-01-01

    A shape reminiscent of a dog bone has been found to be superior to other shapes for mechanical-amplification horns that are components of piezoelectrically driven actuators used in a series of related devices denoted generally as ultrasonic/sonic drill/corers (USDCs). The first of these devices was reported in Ultrasonic/Sonic Drill/Corers With Integrated Sensors (NPO-20856), NASA Tech Briefs, Vol. 25, No. 1 (January 2001), page 38. The dog-bone shape was conceived especially for use in a more recent device in the series, denoted an ultrasonic/ sonic gopher, that was described in Ultrasonic/Sonic Mechanisms for Drilling and Coring (NPO-30291), NASA Tech Briefs, Vol. 27, No. 9 (September 2003), page 65. The figure shows an example of a dog-bone-shaped horn and other components of an ultrasonic gopher. Prerequisite to a meaningful description of this development is an unavoidably lengthy recapitulation of the principle of operation of a USDC and, more specifically, of the ultrasonic/sonic gopher as described previously in NASA Tech Briefs. The ultrasonic actuator includes a stack of piezoelectric rings, the horn, a metal backing, and a bolt that connects the aforementioned parts and provides compressive pre-strain to the piezoelectric stack to prevent breakage of the rings during extension. The stack of piezoelectric rings is excited at the resonance frequency of the overall ultrasonic actuator. Through mechanical amplification by the horn, the displacement in the ultrasonic vibration reaches tens of microns at the tip of the horn. The horn hammers an object that is denoted the free mass because it is free to move longitudinally over a limited distance between hard stops: The free mass bounces back and forth between the ultrasonic horn and a tool bit (a drill bit or a corer). Because the longitudinal speed of the free mass is smaller than the longitudinal speed of vibration of the tip of the horn, contact between the free mass and the horn tip usually occurs at a

  12. Heat tube device

    NASA Technical Reports Server (NTRS)

    Khattar, Mukesh K. (Inventor)

    1990-01-01

    The present invention discloses a heat tube device through which a working fluid can be circulated to transfer heat to air in a conventional air conditioning system. The heat tube device is disposable about a conventional cooling coil of the air conditioning system and includes a plurality of substantially U-shaped tubes connected to a support structure. The support structure includes members for allowing the heat tube device to be readily positioned about the cooling coil. An actuatable adjustment device is connected to the U-shaped tubes for allowing, upon actuation thereof, for the heat tubes to be simultaneously rotated relative to the cooling coil for allowing the heat transfer from the heat tube device to air in the air conditioning system to be selectively varied.

  13. Shape-memory alloy micro-actuator

    NASA Technical Reports Server (NTRS)

    Busch, John D. (Inventor); Johnson, Alfred D. (Inventor)

    1991-01-01

    A method of producing an integral piece of thermo-sensitive material, which is responsive to a shift in temperature from below to above a phase transformation temperature range to alter the material's condition to a shape-memory condition and move from one position to another. The method is characterized by depositing a thin film of shape-memory material, such as Nickel titanium (Ni-Ti) onto a substrate by vacuum deposition process such that the alloy exhibits an amorphous non-crystalline structure. The coated substrate is then annealed in a vacuum or in the presence of an inert atmosphere at a selected temperature, time and cool down rate to produce an ordered, partially disordered or fully disordered BCC structure such that the alloy undergoes thermoelastic, martinsetic phase transformation in response to alteration in temperature to pass from a martinsetic phase when at a temperature below a phase transformation range and capable of a high level of recoverable strain to a parent austenitic phase in a memory shape when at a temperature above the phase transformation range. Also disclosed are actuator devices employing shape-memory material actuators that deform from a set shape toward an original shape when subjected to a critical temperature level after having been initially deformed from the original shape into the set shape while at a lower temperature. The actuators are mechanically coupled to one or more movable elements such that the temperature-induce deformation of the actuators exerts a force or generates a motion of the mechanical element(s).

  14. Is There Any Impact of Copper Intrauterine Device on Female Sexual Functioning?

    PubMed Central

    Deveer, Ruya; Akin, Melike Nur; Gurbuz, Ali Sami; Kasap, Burcu; Guvey, Huri

    2016-01-01

    Introduction Intrauterine Device (IUD) is the most preferred modern contraceptive method in Turkey. Female Sexual Dysfunction (FSD) is defined as lack of one or more of the components in the sexual response cycle which includes sexual desire, impaired arousal and inability achieving an orgasm or pain with intercourse. FSD has multi-factorial aetiology. Advanced age and menopause, fatigue and stress, psychiatric and neurologic disease, childbirth, pelvic floor or bladder dysfunction, endometriosis, uterine fibroids, hypertension obesity, medication and substances, hormonal contraceptives, relationship factors are known risk factors for FSD. Aim To investigate if IUD has any impact on female sexual functioning. Materials and Methods In this cross-sectional study subjects were divided into two groups. Study group consisted of 92 IUD-users (mean 5.1±1.2 years) and the control group consisted of 83 women with no contraception. Female Sexual Function Index (FSFI) questionnaire was performed to both two groups. Women with a total score lower than 26.5 were considered as having sexual dysfunction. Results The prevalence of FSD was 57.1% among participants. IUD users had a lower total FSFI score comparing to control group but the difference was not statistically different (p=0.983). A positive correlation was found between total FSFI score and duration of IUD (p=0.003). Conclusion No difference was found in terms of sexual dysfunction between IUD users and women with no contraception. The prevalence of FSD was very high in both groups which may be attributed to the socio-cultural factors such as embarrassment of women due to conservatism. PMID:27891404

  15. Impact of the Volkswagen emissions control defeat device on US public health

    NASA Astrophysics Data System (ADS)

    Barrett, Steven R. H.; Speth, Raymond L.; Eastham, Sebastian D.; Dedoussi, Irene C.; Ashok, Akshay; Malina, Robert; Keith, David W.

    2015-11-01

    The US Environmental Protection Agency (EPA) has alleged that Volkswagen Group of America (VW) violated the Clean Air Act (CAA) by developing and installing emissions control system ‘defeat devices’ (software) in model year 2009-2015 vehicles with 2.0 litre diesel engines. VW has admitted the inclusion of defeat devices. On-road emissions testing suggests that in-use NOx emissions for these vehicles are a factor of 10 to 40 above the EPA standard. In this paper we quantify the human health impacts and associated costs of the excess emissions. We propagate uncertainties throughout the analysis. A distribution function for excess emissions is estimated based on available in-use NOx emissions measurements. We then use vehicle sales data and the STEP vehicle fleet model to estimate vehicle distance traveled per year for the fleet. The excess NOx emissions are allocated on a 50 km grid using an EPA estimate of the light duty diesel vehicle NOx emissions distribution. We apply a GEOS-Chem adjoint-based rapid air pollution exposure model to produce estimates of particulate matter and ozone exposure due to the spatially resolved excess NOx emissions. A set of concentration-response functions is applied to estimate mortality and morbidity outcomes. Integrated over the sales period (2008-2015) we estimate that the excess emissions will cause 59 (95% CI: 10 to 150) early deaths in the US. When monetizing premature mortality using EPA-recommended data, we find a social cost of ˜450m over the sales period. For the current fleet, we estimate that a return to compliance for all affected vehicles by the end of 2016 will avert ˜130 early deaths and avoid ˜840m in social costs compared to a counterfactual case without recall.

  16. Actuator operated microvalves

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S. (Inventor)

    2008-01-01

    An actuator operated microvalve and the method of making same is disclosed and claimed. The microvalve comprises a SiC housing which includes a first lower portion and a second upper portion. The lower portion of the SiC housing includes a passageway therethrough, a microvalve seat, and a moveable SiC diaphragm. The SiC diaphragm includes a centrally located boss and radially extending corrugations which may be sinusoidally shaped. The boss of the SiC diaphragm moves and modulates in a range of positions between a closed position wherein the boss interengages said microvalve seat prohibiting communication of fluid through the passageway and a fully open position when the boss is spaced apart from the seat at its maximum permitting communication of fluid through said passageway. The actuator includes a SiC top plate affixed to the boss of the diaphragm and a first electrode and the second upper portion of the SiC housing further includes a second electrode.

  17. Motor actuated vacuum door

    NASA Astrophysics Data System (ADS)

    Hanagud, A. V.

    1986-10-01

    Doors that allow scientific instruments to record and retrieve the observed data are often required to be designed and installed as a part of sounding rocket hardware. The motor-actuated vacuum door was designed to maintain a medium vacuum of the order of 0.0001 torr or better while closed, and to provide an opening 15 inches long x 8.5 inches wide while open for cameras to image Halley's comet. When the electric motor receives the instruction to open the door through the payload battery, timer, and relay circuit, the first operation is to unlock the door. After unlatching, the torque transmitted by the motor to the main shaft through the links opens the door. A microswitch actuator, which rides on the linear motion conversion mechanism, is adjusted to trip the limit switch at the end of the travel. The process is repeated in the reverse order to close the door. 'O' rings are designed to maintain the seal. Door mechanisms similar to the one described have flown on Aerobee 17.018 and Black Brant 27.047 payloads.

  18. Remotely-actuated biomedical switch

    NASA Technical Reports Server (NTRS)

    Lee, R. D.

    1969-01-01

    Remotely-actuated biomedical switching circuit using transistors consumes no power in the off position and can be actuated by a single-frequency telemetry pulse to control implanted instrumentation. Silicon controlled rectifiers permit the circuit design which imposes zero drain on supply batteries when not in use.

  19. Actuated Hybrid Mirror Telescope

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory; Redding, David; Lowman, Andrew; Cohen, David; Ohara, Catherine

    2005-01-01

    The figure depicts the planned Actuated Hybrid Mirror Telescope (AHMT), which is intended to demonstrate a new approach to the design and construction of wide-aperture spaceborne telescopes for astronomy and Earth science. This technology is also appropriate for Earth-based telescopes. The new approach can be broadly summarized as using advanced lightweight mirrors that can be manufactured rapidly at relatively low cost. More specifically, it is planned to use precise replicated metallic nanolaminate mirrors to obtain the required high-quality optical finishes. Lightweight, dimensionally stable silicon carbide (SiC) structures will support the nanolaminate mirrors in the required surface figures. To enable diffraction- limited telescope performance, errors in surface figures will be corrected by use of mirror-shape-control actuators that will be energized, as needed, by a wave-front-sensing and control system. The concepts of nanolaminate materials and mirrors made from nanolaminate materials were discussed in several previous NASA Tech Briefs articles. Nanolaminates constitute a relatively new class of materials that can approach theoretical limits of stiffness and strength. Nanolaminate mirrors are synthesized by magnetron sputter deposition of metallic alloys and/or compounds on optically precise master surfaces to obtain optical-quality reflector surfaces backed by thin shell structures. As an integral part of the deposition process, a layer of gold that will constitute the reflective surface layer is deposited first, eliminating the need for a subsequent and separate reflective-coating process. The crystallographic textures of the nanolaminate will be controlled to optimize the performance of the mirror. The entire deposition process for making a nanolaminate mirror takes less than 100 hours, regardless of the mirror diameter. Each nanolaminate mirror will be bonded to its lightweight SiC supporting structure. The lightweight nanolaminate mirrors and Si

  20. Space applications for ionic polymer-metal composite sensors, actuators, and artificial muscles

    NASA Astrophysics Data System (ADS)

    Krishen, Kumar

    2009-06-01

    Ionic polymer-metal composites (IPMCs) are composites of a noble metal, conductive polymer or carbon/graphite, and charged polyelectrolyte membrane. IPMCs have shown considerable progress in producing actuation in electric fields. These composites are also capable of sensing motion by producing a voltage difference when bent by a mechanical force. Work to date has yielded a force greater than 40 times the weight of an IPMC and large bending displacements with very low-input voltages. There is sufficient reason to believe that artificial muscles with viable strength can be produced with these composites. The IPMC, in addition to being resilient and elastic, is also lightweight and has a reaction speed that ranges from 1 microsecond to 1 second. For space missions, devices based on IPMCs will have numerous applications. On planetary surfaces, robotic arms and end effectors, motion-producing motors, actuators, and controllers are just a few examples of devices that can be produced using IPMCs. In this paper, examples of various envisioned space applications of IPMCs will be provided. The impacts of these applications on future space missions will also be discussed.

  1. Bistable electroactive polymer for refreshable Braille display with improved actuation stability

    NASA Astrophysics Data System (ADS)

    Niu, Xiaofan; Brochu, Paul; Stoyanov, Hristiyan; Yun, Sung Ryul; Pei, Qibing

    2012-04-01

    Poly(t-butyl acrylate) is a bistable electroactive polymer (BSEP) capable of rigid-to-rigid actuation. The BSEP combines the large-strain actuation of dielectric elastomers with shape memory property. We have introduced a material approach to overcome pull-in instability in poly(t-butyl acrylate) that significantly improves the actuation lifetime at strains greater than 100%. Refreshable Braille display devices with size of a smartphone screen have been fabricated to manifest a potential application of the BSEP. We will report the testing results of the devices by a Braille user.

  2. Design of an innovative dielectric elastomer actuator for space applications

    NASA Astrophysics Data System (ADS)

    Branz, Francesco; Sansone, Francesco; Francesconi, Alessandro

    2014-03-01

    The capability of Dielectric Elastomers to show large deformations under high voltage loads has been deeply investigated to develop a number of actuators concepts. From a space systems point of view, the advantages introduced by this class of smart materials are considerable and include high conversion efficiency, distributed actuation, self-sensing capability, light weight and low cost. This paper focuses on the design of a solid-state actuator capable of high positioning resolution. The use of Electroactive Polymers makes this device interesting for space mechanisms applications, such as antenna and sensor pointing, solar array orientation, attitude control, adaptive structures and robotic manipulators. In particular, such actuation suffers neither wear, nor fatigue issues and shows highly damped vibrations, thus requiring no maintenance and transferring low disturbance to the surrounding structures. The main weakness of this actuator is the relatively low force/torque values available. The proposed geometry allows two rotational degrees of freedom, and simulations are performed to measure the expected instant angular deflection at zero load and the stall torque of the actuator under a given high voltage load. Several geometric parameters are varied and their influence on the device behaviour is studied. Simplified relations are extrapolated from the numerical results and represent useful predicting tools for design purposes. Beside the expected static performances, the dynamic behaviour of the device is also assessed and the input/output transfer function is estimated. Finally, a prototype design for laboratory tests is presented; the experimental activity aims to validate the preliminary results obtained by numerical analysis.

  3. A study on the effect of surface topography on the actuation performance of stacked-rolled dielectric electro active polymer actuator

    NASA Astrophysics Data System (ADS)

    Sait, Usha; Muthuswamy, Sreekumar

    2016-05-01

    Dielectric electro active polymer (DEAP) is a suitable actuator material that finds wide applications in the field of robotics and medical areas. This material is highly controllable, flexible, and capable of developing large strain. The influence of geometrical behavior becomes critical when the material is used as miniaturized actuation devices in robotic applications. The present work focuses on the effect of surface topography on the performance of flat (single sheet) and stacked-rolled DEAP actuators. The non-active areas in the form of elliptical spots that affect the performance of the actuator are identified using scanning electron microscope (SEM) and energy dissipated X-ray (EDX) experiments. Performance of DEAP actuation is critically evaluated, compared, and presented with analytical and experimental results.

  4. Fabrication of a helical coil shape memory alloy actuator

    NASA Astrophysics Data System (ADS)

    Odonnell, R. E.

    1992-02-01

    A fabrication process was developed to form, heat treat, and join NiTi shape memory alloy helical coils for use as mechanical actuators. Tooling and procedures were developed to wind both extension and compression-type coils on a manual lathe. Heat treating fixtures and techniques were used to set the 'memory' of the NiTi alloy to the desired configuration. A swaging process was devised to fasten shape memory alloy extension coils to end fittings for use in actuator testing and for potential attachment to mechanical devices. The strength of this mechanical joint was evaluated.

  5. Fabrication of a helical coil shape memory alloy actuator

    SciTech Connect

    O'Donnell, R.E.

    1992-02-01

    A fabrication process was developed to form, heat treat, and join NiTi shape memory alloy helical coils for use as mechanical actuators. Tooling and procedures were developed to wind both extension and compression-type coils on a manual lathe. Heat treating fixtures and techniques were used to set the memory'' of the NiTi alloy to the desired configuration. A swaging process was devised to fasten shape memory alloy extension coils to end fittings for use in actuator testing and for potential attachment to mechanical devices. The strength of this mechanical joint was evaluated.

  6. Fabrication of a helical coil shape memory alloy actuator

    SciTech Connect

    O`Donnell, R.E.

    1992-02-01

    A fabrication process was developed to form, heat treat, and join NiTi shape memory alloy helical coils for use as mechanical actuators. Tooling and procedures were developed to wind both extension and compression-type coils on a manual lathe. Heat treating fixtures and techniques were used to set the ``memory`` of the NiTi alloy to the desired configuration. A swaging process was devised to fasten shape memory alloy extension coils to end fittings for use in actuator testing and for potential attachment to mechanical devices. The strength of this mechanical joint was evaluated.

  7. Nuclear storage overpack door actuator and alignment apparatus

    DOEpatents

    Andreyko, Gregory M.

    2005-05-10

    The invention is a door actuator and alignment apparatus for opening and closing the 15,000-pound horizontally sliding door of a storage overpack. The door actuator includes a ball screw mounted horizontally on a rigid frame including a pair of door panel support rails. An electrically powered ball nut moves along the ball screw. The ball nut rotating device is attached to a carriage. The carriage attachment to the sliding door is horizontally pivoting. Additional alignment features include precision cam followers attached to the rails and rail guides attached to the carriage.

  8. Development of a miniature actuator/controller system

    NASA Technical Reports Server (NTRS)

    Stanley, Scott P.

    1995-01-01

    Development of new products is often hampered or prevented by the cost and resource commitments required by a traditional engineering approach. Schaeffer Magnetics, Inc. identified the potential need for a miniature incremental actuator with an integrated controller but did not want the development to be subject to the obstacles inherent in the traditional approach. In response a new approach - the Pathfinder Engineering Program (PEP) - was developed to streamline new product generation and improve product quality. The actuator/controller system resulting from implementation of this new procedure is an exceptionally compact and self-contained device with many applications.

  9. Nuclear Storage Overpack Door Actuator and Alignment Apparatus

    DOEpatents

    Andreyko, Gregory M.

    2005-05-11

    The invention is a door actuator and alignment apparatus for opening and closing the 15,000-pound horizontally sliding door of a storage overpack. The door actuator includes a ball screw mounted horizontally on a rigid frame including a pair of door panel support rails. An electrically powered ball nut moves along the ball screw. The ball nut rotating device is attached to a carriage. The carriage attachment to the sliding door is horizontally pivoting. Additional alignment features include precision cam followers attached to the rails and rail guides attached to the carriage.

  10. T-Slide Linear Actuators

    NASA Technical Reports Server (NTRS)

    Vranish, John

    2009-01-01

    T-slide linear actuators use gear bearing differential epicyclical transmissions (GBDETs) to directly drive a linear rack, which, in turn, performs the actuation. Conventional systems use a rotary power source in conjunction with a nut and screw to provide linear motion. Non-back-drive properties of GBDETs make the new actuator more direct and simpler. Versions of this approach will serve as a long-stroke, ultra-precision, position actuator for NASA science instruments, and as a rugged, linear actuator for NASA deployment duties. The T slide can operate effectively in the presence of side forces and torques. Versions of the actuator can perform ultra-precision positioning. A basic T-slide actuator is a long-stroke, rack-and-pinion linear actuator that, typically, consists of a T-slide, several idlers, a transmission to drive the slide (powered by an electric motor) and a housing that holds the entire assembly. The actuator is driven by gear action on its top surface, and is guided and constrained by gear-bearing idlers on its other two parallel surfaces. The geometry, implemented with gear-bearing technology, is particularly effective. An electronic motor operating through a GBDET can directly drive the T slide against large loads, as a rack and pinion linear actuator, with no break and no danger of back driving. The actuator drives the slide into position and stops. The slide holes position with power off and no brake, regardless of load. With the T slide configuration, this GBDET has an entire T-gear surface on which to operate. The GB idlers coupling the other two T slide parallel surfaces to their housing counterpart surfaces provide constraints in five degrees-of-freedom and rolling friction in the direction of actuation. Multiple GB idlers provide roller bearing strength sufficient to support efficient, rolling friction movement, even in the presence of large, resisting forces. T-slide actuators can be controlled using the combination of an off

  11. Impact of Reflow on the Output Characteristics of Piezoelectric Microelectromechanical System Devices

    NASA Astrophysics Data System (ADS)

    Nogami, Hirofumi; Kobayashi, Takeshi; Okada, Hironao; Masuda, Takashi; Maeda, Ryutaro; Itoh, Toshihiro

    2012-09-01

    An animal health monitoring system and a wireless sensor node aimed at preventing the spread of animal-transmitted diseases and improving pastoral efficiency which are especially suitable for chickens, were developed. The sensor node uses a piezoelectric microelectromechanical system (MEMS) device and an event-driven system that is activated by the movements of a chicken. The piezoelectric MEMS device has two functions: a) it measures the activity of a chicken and b) switches the micro-control unit (MCU) of the wireless sensor node from the sleep mode. The piezoelectric MEMS device is required to produce high output voltages when the chicken moves. However, after the piezoelectric MEMS device was reflowed to the wireless sensor node, the output voltages of the piezoelectric MEMS device decreased. The main reason for this might be the loss of residual polarization, which is affected by the thermal load during the reflow process. After the reflow process, we were not able to apply a voltage to the piezoelectric MEMS device; thus, the piezoelectric output voltage was not increased by repoling the piezoelectric MEMS device. To address the thermal load of the reflow process, we established a thermal poling treatment, which achieves a higher temperature than the reflow process. We found that on increasing the thermal poling temperature, the piezoelectric output voltages did not decreased low significantly. Thus, we considered that a thermal poling temperature higher than that of the reflow process prevents the piezoelectric output voltage reduction caused by the thermal load.

  12. Nuclear radiation actuated valve

    DOEpatents

    Christiansen, David W.; Schively, Dixon P.

    1985-01-01

    A nuclear radiation actuated valve for a nuclear reactor. The valve has a valve first part (such as a valve rod with piston) and a valve second part (such as a valve tube surrounding the valve rod, with the valve tube having side slots surrounding the piston). Both valve parts have known nuclear radiation swelling characteristics. The valve's first part is positioned to receive nuclear radiation from the nuclear reactor's fuel region. The valve's second part is positioned so that its nuclear radiation induced swelling is different from that of the valve's first part. The valve's second part also is positioned so that the valve's first and second parts create a valve orifice which changes in size due to the different nuclear radiation caused swelling of the valve's first part compared to the valve's second part. The valve may be used in a nuclear reactor's core coolant system.

  13. Application Actuation Trade Study

    DTIC Science & Technology

    1982-01-01

    Rectifier Unit 3 1..5 37.5 Battery 40 A-Hr 1 76 75 Battery Charger 1 6.8 6.8 Static Inverter I 12.C 13.C AC Power Pelay 3 PDT 1 1.2 1.2 AC Povmr Relay 3 PD)T...Weight 0.7 pounds Total Weight 4.7 pounds Both actuators are Vowered by 28V DC brush type motors so that the system can be operated from battery pover in... DC -AC Inverter 2 34 68 Battery (2 @ 4C A-Hr) 2 75 150 AC Power Contactor 6POT 2 18 36 AC Power Contactor 6PST 2 12 24 AC Power Contactor SPST 4 1

  14. Investigation on actuation and thermo-mechanical behaviour of Shape Memory Alloy spring using hot water

    NASA Astrophysics Data System (ADS)

    Chouhan, Priya; Nath, Tameshwer; Lad, B. K.; Palani, I. A.

    2016-09-01

    In this paper, hot water is used as an actuation media for Shape memory alloy and its impact on the morphology of structure of Nitinol Shape Memory Alloy (SMA), is presented. With hot water actuation as the temperature reaches 70-80°C, spring gets fully compressed for the first few cycles followed by a displacement loss in actuation. This actuation loss is then studied with different characterization methods such as Thermo Gravimetric Analysis (TGA) and Scanning Electron Microscopy (SEM). With SEM results, it can be inferred that the energy source is not deteriorating the structure. Results observed from TGA shows high oxygen content at lower temperature limits with hot water actuation which suggest the need of conducting experiments in inert atmosphere. As a possible mechanism, a new actuation medium is introduced and various results can be seen in the paper discussed below.

  15. Polypyrrole actuators for tremor suppression

    NASA Astrophysics Data System (ADS)

    Skaarup, Steen; Mogensen, Naja; Bay, Lasse; West, Keld

    2003-07-01

    Neurological tremor affecting limbs can be divided into at least 6 different types with frequencies ranging from 2 to about 20 Hz. In order to alleviate the symptoms by suppressing the tremor, sensing and actuation systems able to perform at these frequencies are needed. Electroactive polymers exemplify "soft actuator" technology that may be especially suitable for use in conjunction with human limbs. The electrochemical and mechanical properties of polypyrrole dodecyl benzene sulphonate actuator films have been studied with this application in mind. The results show that the time constants for the change of length and for the stiffness change are significantly different; the stiffness change being about 10 times faster. Both force measurements and Electrochemical Quartz Crystal Microbalance measurements indicate that the actuation process is complex and involves at least two different processes. The EQCM results make it possible to formulate a hypothesis for the two different time constants: Sodium ions enter the polymer correlated with a fast mass change that probably involves a few (~4) strongly bound water molecules as well. On further reduction, about 10 additional water molecules enter the polymer in a slower process driven by osmotic pressure. Earlier work has tended to focus on achieving the maximum length change, therefore taking the time needed to include all processes. However, since the slower process described above is associated with the lowest strength of the actuator, concentrating on the faster stiffness change results in only a small reduction in the work done by the actuator. This may make actuation at higher frequencies feasible.

  16. Actuator design using electroactive polymers

    NASA Astrophysics Data System (ADS)

    Fernandez, Diego; Moreno, Luis; Baselga, Juan

    2005-07-01

    In order to make EAP actuators technology scalable a design methodology for polymer actuators is required. Design variables, optimization formulas and a general architecture are required as it is usual in electromagnetic or hydraulic actuators design. This will allow the development of large EAP actuators from micro-actuator units, specifically designed for a particular application. It will also help to enhance the EAP material final performance. This approach is not new, since it is found in Nature. Skeletal muscle architecture has a profound influence on muscle force-generating properties and functionality. Based on existing literature on skeletal muscle biomechanics, the Nature design philosophy is inferred. Formulas and curves employed by Nature in the design of muscles are presented. Design units such as fiber, tendon, aponeurosis, and motor units are compared with the equivalent design units to be taken into account in the design of EAP actuators. Finally a complete design methodology for the design of actuators based on multiple EAP fiber/sheets is proposed. In addition, the procedure gives an idea of the required parameters that must be clearly modeled and characterized at EAP material level prior to attempt the design of complex Electromechanical Systems based on Electroactive Polymers.

  17. Microelectromechanical systems integrating molecular spin crossover actuators

    NASA Astrophysics Data System (ADS)

    Manrique-Juarez, Maria D.; Rat, Sylvain; Mathieu, Fabrice; Saya, Daisuke; Séguy, Isabelle; Leïchlé, Thierry; Nicu, Liviu; Salmon, Lionel; Molnár, Gábor; Bousseksou, Azzedine

    2016-08-01

    Silicon MEMS cantilevers coated with a 200 nm thin layer of the molecular spin crossover complex [Fe(H2B(pz)2)2(phen)] (H2B(pz)2 = dihydrobis(pyrazolyl)borate and phen = 1,10-phenantroline) were actuated using an external magnetic field and their resonance frequency was tracked by means of integrated piezoresistive detection. The light-induced spin-state switching of the molecules from the ground low spin to the metastable high spin state at 10 K led to a well-reproducible shift of the cantilever's resonance frequency (Δfr = -0.52 Hz). Control experiments at different temperatures using coated as well as uncoated devices along with simple calculations support the assignment of this effect to the spin transition. This latter translates into changes in mechanical behavior of the cantilever due to the strong spin-state/lattice coupling. A guideline for the optimization of device parameters is proposed so as to efficiently harness molecular scale movements for large-scale mechanical work, thus paving the road for nanoelectromechanical systems (NEMS) actuators based on molecular materials.

  18. Impacts of Co doping on ZnO transparent switching memory device characteristics

    NASA Astrophysics Data System (ADS)

    Simanjuntak, Firman Mangasa; Prasad, Om Kumar; Panda, Debashis; Lin, Chun-An; Tsai, Tsung-Ling; Wei, Kung-Hwa; Tseng, Tseung-Yuen

    2016-05-01

    The resistive switching characteristics of indium tin oxide (ITO)/Zn1-xCoxO/ITO transparent resistive memory devices were investigated. An appropriate amount of cobalt dopant in ZnO resistive layer demonstrated sufficient memory window and switching stability. In contrast, pure ZnO devices demonstrated a poor memory window, and using an excessive dopant concentration led to switching instability. To achieve suitable memory performance, relying only on controlling defect concentrations is insufficient; the grain growth orientation of the resistive layer must also be considered. Stable endurance with an ON/OFF ratio of more than one order of magnitude during 5000 cycles confirmed that the Co-doped ZnO device is a suitable candidate for resistive random access memory application. Additionally, fully transparent devices with a high transmittance of up to 90% at wavelength of 550 nm have been fabricated.

  19. The impact of embolic protection device and stent design on the outcome of CAS.

    PubMed

    Bosiers, Marc; Deloose, Koen; Verbist, Jürgen; Peeters, Patrick

    2008-09-01

    The importance of angioplasty and stenting in the treatment of carotid artery disease cannot be underestimated. Successful carotid stenting does not only depend on the operator's skills and experience but also on an adequate selection of cerebral protection devices, and carotid stents can help avoid neurological complications. A broad spectrum of carotid devices is currently on the market, and because each of them has its own advantages and disadvantages, it is virtually impossible to claim that one specific device is the best. The individual characteristics of each specific protection system or stent may make it an attractive choice in one circumstance but render it a less desirable option in other situations. The applicability depends primarily on the arterial anatomy and the specific details of the lesion being treated. But certainly, personal preferences and familiarity with a specific device may legitimately influence the decision to choose one over another.

  20. Drugs and Medical Devices: Adverse Events and the Impact on Women's Health.

    PubMed

    Carey, Jennifer L; Nader, Nathalie; Chai, Peter R; Carreiro, Stephanie; Griswold, Matthew K; Boyle, Katherine L

    2017-01-01

    A large number of medications and medical devices removed from the market by the US Food and Drug Administration over the past 4 decades specifically posed greater health risks to women. This article reviews the historical background of sex and gender in clinical research policy and describes several approved drugs and devices targeted for use in women that have caused major morbidity and mortality. The intended population for the medications and devices, population affected, approval process, and the basic and legal actions taken against the medication/drug company are also discussed. It is recognized that women are still at risk for harm from unsafe medications and devices, and continued improvements in legislation that promotes inclusion of sex and gender into the design and analysis of research will improve safety for both men and women.

  1. A novel linear elastic actuator for minimally invasive surgery: development of a surgical gripper

    NASA Astrophysics Data System (ADS)

    Gerboni, G.; Brancadoro, M.; Tortora, G.; Diodato, A.; Cianchetti, M.; Menciassi, A.

    2016-10-01

    Minimally invasive surgery (MIS) applications require lightweight actuators that can generate a high force in a limited volume. Among pressure driven actuators, fluid elastic actuators demonstrate high potential for use in the medical field. They are characterized by nearly no friction and wear and they can be made of low-cost biocompatible elastomers. However, when compared to traditional piston-cylinder fluid actuators, fluid elastic actuators often result in smaller output forces as well as weaker return forces. This work is about the design of a linear elastic actuator (LEA) which is able to develop relevant pulling-pushing force in one direction. The LEA is composed of entirely disposable materials and it requires a simple manufacturing process. Thanks to its design, the LEA can be compared to traditional piston-cylinders actuators in terms of output forces (up to 7 N) with the advantage of using relative low working pressures (0, 2 MPa). The actuator has been used for the actuation of a gripper for MIS, as a case study. The whole range of gripping forces developed by the tool actated by the LEA has been evaluated, thus verifying that the gripping device, is able to meet the force requirements for accomplishing typical surgical tasks.

  2. Development of a resonant trailing-edge flap actuation system for helicopter rotor vibration control

    NASA Astrophysics Data System (ADS)

    Kim, J.-S.; Wang, K. W.; Smith, E. C.

    2007-12-01

    A resonant trailing-edge flap actuation system for helicopter rotors is developed and evaluated experimentally. The concept involves deflecting each individual trailing-edge flap using a compact resonant piezoelectric actuation system. Each resonant actuation system yields high authority, while operating at a single frequency. By tailoring the natural frequencies of the actuation system (including the piezoelectric actuator and the related mechanical and electrical elements) to the required operating frequencies, one can increase the output authority. The robustness of the device can be enhanced by increasing the high authority bandwidth through electric circuitry design. Such a resonant actuation system (RAS) is analyzed for a full-scale piezoelectric induced-shear tube actuator, and bench-top testing is conducted to validate the concept. An adaptive feed-forward controller is developed to realize the electric network dynamics and adapt to phase variation. The control strategy is then implemented via a digital signal processor (DSP) system. Analysis is also performed to examine the rotor system dynamics in forward flight with piezoelectric resonant actuators, using a perturbation method to evaluate the system's time-varying characteristics. Numerical simulations reveal that the resonant actuator concept can be applied to forward flights as well as to hover conditions.

  3. Active-passive hybrid piezoelectric actuators for high-precision hard disk drive servo systems

    NASA Astrophysics Data System (ADS)

    Chan, Kwong Wah; Liao, Wei-Hsin

    2006-03-01

    Positioning precision is crucial to today's increasingly high-speed, high-capacity, high data density, and miniaturized hard disk drives (HDDs). The demand for higher bandwidth servo systems that can quickly and precisely position the read/write head on a high track density becomes more pressing. Recently, the idea of applying dual-stage actuators to track servo systems has been studied. The push-pull piezoelectric actuated devices have been developed as micro actuators for fine and fast positioning, while the voice coil motor functions as a large but coarse seeking. However, the current dual-stage actuator design uses piezoelectric patches only without passive damping. In this paper, we propose a dual-stage servo system using enhanced active-passive hybrid piezoelectric actuators. The proposed actuators will improve the existing dual-stage actuators for higher precision and shock resistance, due to the incorporation of passive damping in the design. We aim to develop this hybrid servo system not only to increase speed of track seeking but also to improve precision of track following servos in HDDs. New piezoelectrically actuated suspensions with passive damping have been designed and fabricated. In order to evaluate positioning and track following performances for the dual-stage track servo systems, experimental efforts are carried out to implement the synthesized active-passive suspension structure with enhanced piezoelectric actuators using a composite nonlinear feedback controller.

  4. Design and experimental characterization of a NiTi-based, high-frequency, centripetal peristaltic actuator

    NASA Astrophysics Data System (ADS)

    Borlandelli, E.; Scarselli, D.; Nespoli, A.; Rigamonti, D.; Bettini, P.; Morandini, M.; Villa, E.; Sala, G.; Quadrio, M.

    2015-03-01

    Development and experimental testing of a peristaltic device actuated by a single shape-memory NiTi wire are described. The actuator is designed to radially shrink a compliant silicone pipe, and must work on a sustained basis at an actuation frequency that is higher than those typical of NiTi actuators. Four rigid, aluminum-made circular sectors are sitting along the pipe circumference and provide the required NiTi wire housing. The aluminum assembly acts as geometrical amplifier of the wire contraction and as heat sink required to dissipate the thermal energy of the wire during the cooling phase. We present and discuss the full experimental investigation of the actuator performance, measured in terms of its ability to reduce the pipe diameter, at a sustained frequency of 1.5 Hz. Moreover, we investigate how the diameter contraction is affected by various design parameters as well as actuation frequencies up to 4 Hz. We manage to make the NiTi wire work at 3% in strain, cyclically providing the designed pipe wall displacement. The actuator performance is found to decay approximately linearly with actuation frequencies up to 4 Hz. Also, the interface between the wire and the aluminum parts is found to be essential in defining the functional performance of the actuator.

  5. Design and reliability of a MEMS thermal rotary actuator.

    SciTech Connect

    Baker, Michael Sean; Corwin, Alex David

    2007-09-01

    A new rotary MEMS actuator has been developed and tested at Sandia National Laboratories that utilizes a linear thermal actuator as the drive mechanism. This actuator was designed to be a low-voltage, high-force alternative to the existing electrostatic torsional ratcheting actuator (TRA) [1]. The new actuator, called the Thermal Rotary Actuator (ThRA), is conceptually much simpler than the TRA and consists of a gear on a hub that is turned by a linear thermal actuator [2] positioned outside of the gear. As seen in Figure 1, the gear is turned through a ratcheting pawl, with anti-reverse pawls positioned around the gear for unidirectional motion (see Figure 1). A primary consideration in the design of the ThRA was the device reliability and in particular, the required one-to-one relationship between the ratcheting output motion and the electrical input signal. The electrostatic TRA design has been shown to both over-drive and under-drive relative to the number of input pulses [3]. Two different ThRA designs were cycle tested to measure the skip rate. This was done in an automated test setup by using pattern matching to measure the angle of rotation of the output gear after a defined number of actuation pulses. By measuring this gear angle over time, the number of skips can be determined. Figure 2 shows a picture of the ThRA during testing, with the pattern-matching features highlighted. In the first design tested, it was found that creep in the thermal actuator limited the number of skip-free cycles, as the rest position of the actuator would creep forward enough to prevent the counter-rotation pawls from fully engaging (Figure 3). Even with this limitation, devices were measured with up to 100 million cycles with no skipping. A design modification was made to reduce the operating temperature of the thermal actuator which has been shown in a previous study [2] to reduce the creep rate. In addition, changes were made to the drive ratchet design and actuation

  6. Impact of Magneto-Electric Materials and Devices on Tactical Radio (and Radar)

    DTIC Science & Technology

    2007-04-01

    dielectric loss tangent of 0.0002. The YIG element has a dielectric constant of 12 and a dielectric loss tangent of 0.0002, and a magnetic saturation value... Magnetic saturation field = 1750 Gauss. Figure 8(b). HFSS simulation result for the YIG filter device schematically represented in Figure 7. Active YIG ...Insertion loss. Specifications that are important for nonreciprocal devices, such as circulators and isolators, are saturation magnetization , easy-axis

  7. Gear-Driven Turnbuckle Actuator

    NASA Technical Reports Server (NTRS)

    Rivera, Ricky N.

    2010-01-01

    This actuator design allows the extension and contraction of turnbuckle assemblies. It can be operated manually or remotely, and is extremely compact. It is ideal for turnbuckles that are hard to reach by conventional tools. The tool assembly design solves the problem of making accurate adjustments to the variable geometry guide vanes without having to remove and reinstall the actuator system back on the engine. The actuator does this easily by adjusting the length of the turnbuckles while they are still attached to the engine.

  8. Advanced Layered Composite Polylaminate Electroactive Actuator and Sensor

    NASA Technical Reports Server (NTRS)

    Fox, Robert L. (Inventor); Hellbaum, Richard F. (Inventor); Copeland, Benjamin M., Jr. (Inventor); Bryant, Robert G. (Inventor)

    2000-01-01

    The present invention relates to the mounting of pre-stressed electroactive material in such a manner that large displacement actuators or sensors result. The invention comprises mounting the pre-stressed electroactive material to a support layer. This combination of a pre-stressed electroactive material and support layer may in turn be attached to a mounting surface. The pre-stressed electroactive material may be a ferroelectric, pyroelectric, piezoelectric, or magnetostrictive material. The size, stiffness, mass, and material of the support layer is selected to result in the electroactive device having dynamic response properties, environmental capability characteristics, and the required resilience optimized for a given application. The capacity to connect the support layer to a surface expands the arenas in which the prestressed electroactive device may be used. Application for which the invention may be used include actuators, sensors, or as a component in a pumps, switches, relays, pressure transducers and acoustic devices.

  9. MEMS Actuators for Improved Performance and Durability

    NASA Astrophysics Data System (ADS)

    Yearsley, James M.

    Micro-ElectroMechanical Systems (MEMS) devices take advantage of force-scaling at length scales smaller than a millimeter to sense and interact with directly with phenomena and targets at the microscale. MEMS sensors found in everyday devices like cell-phones and cars include accelerometers, gyros, pressure sensors, and magnetic sensors. MEMS actuators generally serve more application specific roles including micro- and nano-tweezers used for single cell manipulation, optical switching and alignment components, and micro combustion engines for high energy density power generation. MEMS rotary motors are actuators that translate an electric drive signal into rotational motion and can serve as rate calibration inputs for gyros, stages for optical components, mixing devices for micro-fluidics, etc. Existing rotary micromotors suffer from friction and wear issues that affect lifetime and performance. Attempts to alleviate friction effects include surface treatment, magnetic and electrostatic levitation, pressurized gas bearings, and micro-ball bearings. The present work demonstrates a droplet based liquid bearing supporting a rotary micromotor that improves the operating characteristics of MEMS rotary motors. The liquid bearing provides wear-free, low-friction, passive alignment between the rotor and stator. Droplets are positioned relative to the rotor and stator through patterned superhydrophobic and hydrophilic surface coatings. The liquid bearing consists of a central droplet that acts as the motor shaft, providing axial alignment between rotor and stator, and satellite droplets, analogous to ball-bearings, that provide tip and tilt stable operation. The liquid bearing friction performance is characterized through measurement of the rotational drag coefficient and minimum starting torque due to stiction and geometric effects. Bearing operational performance is further characterized by modeling and measuring stiffness, environmental survivability, and high

  10. EWOD (electrowetting on dielectric) digital microfluidics powered by finger actuation.

    PubMed

    Peng, Cheng; Zhang, Zhongning; Kim, Chang-Jin C J; Ju, Y Sungtaek

    2014-03-21

    We report finger-actuated digital microfluidics (F-DMF) based on the manipulation of discrete droplets via the electrowetting on dielectric (EWOD) phenomenon. Instead of requiring an external power supply, our F-DMF uses piezoelectric elements to convert mechanical energy produced by human fingers to electric voltage pulses for droplet actuation. Voltage outputs of over 40 V are provided by single piezoelectric elements, which is necessary for oil-free EWOD devices with thin (typically <1 μm) dielectric layers. Higher actuation voltages can be provided using multiple piezoelectric elements connected in series when needed. Using this energy conversion scheme, we confirmed basic modes of EWOD droplet operation, such as droplet transport, splitting and merging. Using two piezoelectric elements in series, we also successfully demonstrated applications of F-DMF for glucose detection and immunoassay. Not requiring power sources, F-DMF offers intriguing paths for various portable and other microfluidic applications.

  11. Mechanical design of a shape memory alloy actuated prosthetic hand.

    PubMed

    De Laurentis, Kathryn J; Mavroidis, Constantinos

    2002-01-01

    This paper presents the mechanical design for a new five fingered, twenty degree-of-freedom dexterous hand patterned after human anatomy and actuated by Shape Memory Alloy artificial muscles. Two experimental prototypes of a finger, one fabricated by traditional means and another fabricated by rapid prototyping techniques, are described and used to evaluate the design. An important aspect of the Rapid Prototype technique used here is that this multi-articulated hand will be fabricated in one step, without requiring assembly, while maintaining its desired mobility. The use of Shape Memory Alloy actuators combined with the rapid fabrication of the non-assembly type hand, reduce considerably its weight and fabrication time. Therefore, the focus of this paper is the mechanical design of a dexterous hand that combines Rapid Prototype techniques and smart actuators. The type of robotic hand described in this paper can be utilized for applications requiring low weight, compactness, and dexterity such as prosthetic devices, space and planetary exploration.

  12. Updating Gimbal Actuators for the Long Journey to Saturn

    NASA Technical Reports Server (NTRS)

    Iskenderian, Theodore; Joffe, Benjamin; Litty, Edward

    1997-01-01

    The Cassini mission requires extraordinary life and reliability from the linear servo-actuators which position the spacecraft's redundant rocket engines. Both commercial actuators and existing in-house actuator designs were studied for this application. Ultimately a device inherited from JPL's Mariner and Viking missions to Mars was selected because of its close match to functional requirements and its flight pedigree. However, several design improvements were necessary to meet life and reliability goals. Special attention was focused on reliability testing of the motor and mechanism at all stages of procurement and assembly because a brush type of DC motor was retained from the old design. These improvements and, in particular, efforts to develop new component sources are discussed in this paper.

  13. A planar nano-positioner driven by shear piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Dong, W.; Li, H.; Du, Z.

    2016-08-01

    A planar nano-positioner driven by the shear piezoelectric actuators is proposed in this paper based on inertial sliding theory. The performance of the nano-positioner actuated by different driving signals is analyzed and discussed, e.g. the resolution and the average velocity which depend on the frequency, the amplitude and the wave form of the driving curves. Based on the proposed design, a prototype system of the nano-positioner is developed by using a capacitive sensor as the measurement device. The experiment results show that the proposed nano-positioner is capable of outputting two-dimensional motions within an area of 10 mm × 10 mm at a maximum speed of 0.25 mm/s. The corresponding resolution can be as small as 21 nm. The methodology outlined in this paper can be employed and extended to shear piezoelectric actuators involved in high precision positioning systems.

  14. Study on Multi-DOF Ultrasonic Actuator for Laparoscopic Instrument

    NASA Astrophysics Data System (ADS)

    Park, Shinsuk; Takemura, Kenjiro; Maeno, Takashi

    In surgical robots, compact manipulators with multi-degree-of-freedom (DOF) are essential owing to a small work volume in the patient body. Conventional single-DOF actuators such as electromagnetic motors require a multiple number of actuators to generate multi-DOF motion, which in turn results in bulky mechanism combined with transmission device. Our previous work has developed a compact ultrasonic motor capable of generating a multi-DOF rotation of a spherical rotor utilizing three natural vibration modes of a bar-shaped stator. The present study designs and builds a novel multi-DOF master-slave system for laparoscopic surgical procedures, using a single ultrasonic actuator. The system consists of surgical forceps on multi-DOF wrist with joystick controller. Experimental results have confirmed high responsiveness and precise position control of the master-slave system.

  15. Muscular MEMS—the engineering of liquid crystal elastomer actuators

    NASA Astrophysics Data System (ADS)

    Petsch, S.; Khatri, B.; Schuhladen, S.; Köbele, L.; Rix, R.; Zentel, R.; Zappe, H.

    2016-08-01

    A new class of soft-matter actuator, the liquid crystal elastomer (LCE), shows promise for application in a wide variety of mechanical microsystems. Frequently referred to as an ‘artificial muscle’, this family of materials exhibits large actuation stroke and generates considerable force, in a compact form which may easily be combined with the structures and devices commonly used in microsystems and MEMS. We show here how standard microfabrication techniques may be used to integrate LCEs into mechanical microsystems and present an in-depth analysis of their mechanical and actuation properties. Using an example from micro-optics and optical MEMS, we demonstrate that their performance and flexibility allows realization of entirely new types of tunable optical functionality.

  16. Design and Simulation of an Electrothermal Actuator Based Rotational Drive

    NASA Astrophysics Data System (ADS)

    Beeson, Sterling; Dallas, Tim

    2008-10-01

    As a participant in the Micro and Nano Device Engineering (MANDE) Research Experience for Undergraduates program at Texas Tech University, I learned how MEMS devices operate and the limits of their operation. Using specialized AutoCAD-based design software and the ANSYS simulation program, I learned the MEMS fabrication process used at Sandia National Labs, the design limitations of this process, the abilities and drawbacks of micro devices, and finally, I redesigned a MEMS device called the Chevron Torsional Ratcheting Actuator (CTRA). Motion is achieved through electrothermal actuation. The chevron (bent-beam) actuators cause a ratcheting motion on top of a hub-less gear so that as voltage is applied the CTRA spins. The voltage applied needs to be pulsed and the frequency of the pulses determine the angular frequency of the device. The main objective was to design electromechanical structures capable of transforming the electrical signals into mechanical motion without overheating. The design was optimized using finite element analysis in ANSYS allowing multi-physics simulations of our model system.

  17. LC Circuits for Diagnosing Embedded Piezoelectric Devices

    NASA Technical Reports Server (NTRS)

    Chattin, Richard L.; Fox, Robert Lee; Moses, Robert W.; Shams, Qamar A.

    2005-01-01

    A recently invented method of nonintrusively detecting faults in piezoelectric devices involves measurement of the resonance frequencies of inductor capacitor (LC) resonant circuits. The method is intended especially to enable diagnosis of piezoelectric sensors, actuators, and sensor/actuators that are embedded in structures and/or are components of multilayer composite material structures.

  18. Soft Pneumatic Actuator Fascicles for High Force and Reliability.

    PubMed

    Robertson, Matthew A; Sadeghi, Hamed; Florez, Juan Manuel; Paik, Jamie

    2017-03-01

    Soft pneumatic actuators (SPAs) are found in mobile robots, assistive wearable devices, and rehabilitative technologies. While soft actuators have been one of the most crucial elements of technology leading the development of the soft robotics field, they fall short of force output and bandwidth requirements for many tasks. In addition, other general problems remain open, including robustness, controllability, and repeatability. The SPA-pack architecture presented here aims to satisfy these standards of reliability crucial to the field of soft robotics, while also improving the basic performance capabilities of SPAs by borrowing advantages leveraged ubiquitously in biology; namely, the structured parallel arrangement of lower power actuators to form the basis of a larger and more powerful actuator module. An SPA-pack module consisting of a number of smaller SPAs will be studied using an analytical model and physical prototype. Experimental measurements show an SPA pack to generate over 112 N linear force, while the model indicates the benefit of parallel actuator grouping over a geometrically equivalent single SPA scale as an increasing function of the number of individual actuators in the group. For a module of four actuators, a 23% increase in force production over a volumetrically equivalent single SPA is predicted and validated, while further gains appear possible up to 50%. These findings affirm the advantage of utilizing a fascicle structure for high-performance soft robotic applications over existing monolithic SPA designs. An example of high-performance soft robotic platform will be presented to demonstrate the capability of SPA-pack modules in a complete and functional system.

  19. Soft Pneumatic Actuator Fascicles for High Force and Reliability

    PubMed Central

    Robertson, Matthew A.; Sadeghi, Hamed; Florez, Juan Manuel

    2017-01-01

    Abstract Soft pneumatic actuators (SPAs) are found in mobile robots, assistive wearable devices, and rehabilitative technologies. While soft actuators have been one of the most crucial elements of technology leading the development of the soft robotics field, they fall short of force output and bandwidth requirements for many tasks. In addition, other general problems remain open, including robustness, controllability, and repeatability. The SPA-pack architecture presented here aims to satisfy these standards of reliability crucial to the field of soft robotics, while also improving the basic performance capabilities of SPAs by borrowing advantages leveraged ubiquitously in biology; namely, the structured parallel arrangement of lower power actuators to form the basis of a larger and more powerful actuator module. An SPA-pack module consisting of a number of smaller SPAs will be studied using an analytical model and physical prototype. Experimental measurements show an SPA pack to generate over 112 N linear force, while the model indicates the benefit of parallel actuator grouping over a geometrically equivalent single SPA scale as an increasing function of the number of individual actuators in the group. For a module of four actuators, a 23% increase in force production over a volumetrically equivalent single SPA is predicted and validated, while further gains appear possible up to 50%. These findings affirm the advantage of utilizing a fascicle structure for high-performance soft robotic applications over existing monolithic SPA designs. An example of high-performance soft robotic platform will be presented to demonstrate the capability of SPA-pack modules in a complete and functional system. PMID:28289573

  20. Anisotropic Laminar Piezocomposite Actuator Incorporating Machined PMN-PT Single Crystal Fibers

    NASA Technical Reports Server (NTRS)

    Wilkie, W. Keats; Inman, Daniel J.; Lloyd, Justin M.; High, James W.

    2006-01-01

    The design, fabrication, and testing of a flexible, laminar, anisotropic piezoelectric composite actuator utilizing machined PMN-32%PT single crystal fibers is presented. The device consists of a layer of rectangular single crystal piezoelectric fibers in an epoxy matrix, packaged between interdigitated electrode polyimide films. Quasistatic free-strain measurements of the single crystal device are compared with measurements from geometrically identical specimens incorporating polycrystalline PZT-5A and PZT-5H piezoceramic fibers. Free-strain actuation of the single crystal actuator at low bipolar electric fields (+/- 250 V/mm) is approximately 400% greater than that of the baseline PZT-5A piezoceramic device, and 200% greater than that of the PZT-5H device. Free-strain actuation under high unipolar electric fields (0-4kV/mm) is approximately 200% of the PZT-5A baseline device, and 150% of the PZT-5H alternate piezoceramic device. Performance increases at low field are qualitatively consistent with predicted increases based on scaling the low-field d33 piezoelectric constants of the respective piezoelectric materials. High-field increases are much less than scaled d33 estimates, but appear consistent with high-field freestrain measurements reported for similar bulk single-crystal and piezoceramic compositions. Measurements of single crystal actuator capacitance and coupling coefficient are also provided. These properties were poorly predicted using scaled bulk material dielectric and coupling coefficient data. Rules-of-mixtures calculations of the effective elastic properties of the single crystal device and estimated actuation work energy densities are also presented. Results indicate longitudinal stiffnesses significantly lower (50% less) than either piezoceramic device. This suggests that single-crystal piezocomposite actuators will be best suited to low induced-stress, high strain and deflection applications.

  1. Anisotropic Piezocomposite Actuator Incorporating Machined PMN-PT Single Crystal Fibers

    NASA Technical Reports Server (NTRS)

    Wilkie, W. Keats; Inman, Daniel J.; Lloyd, Justin M.; High, James W.

    2004-01-01

    The design, fabrication, and testing of a flexible, planar, anisotropic piezoelectric composite actuator utilizing machined PMN-32%PT single crystal fibers is presented. The device consists of a layer of rectangular single crystal piezoelectric fibers in an epoxy matrix, packaged between interdigitated electrode polyimide films. Quasistatic free-strain measurements of the single crystal device are compared with measurements from geometrically identical specimens incorporating polycrystalline PZT-5A and PZT-5H piezoceramic fibers. Free-strain actuation of the single crystal actuator at low bipolar electric fields (+/- 250 V/mm) is approximately 400% greater than that of the baseline PZT-5A piezoceramic device, and 200% greater than that of the PZT-5H device. Free-strain actuation under high unipolar electric fields (0-4kV/mm) is approximately 200% of the PZT-5A baseline device, and 150% of the PZT-5H alternate piezoceramic device. Performance increases at low field are qualitatively consistent with predicted increases based on scaling the low-field d(sub 33) piezoelectric constants of the respective piezoelectric materials. High-field increases are much less than scaled d(sub 33) estimates, but appear consistent with high-field freestrain measurements reported for similar bulk single-crystal and piezoceramic compositions. Measurements of single crystal actuator capacitance and coupling coefficient are also provided. These properties were poorly predicted using scaled bulk material dielectric and coupling coefficient data. Rules-of-mixtures calculations of the effective elastic properties of the single crystal device and estimated actuation work energy densities are also presented. Results indicate longitudinal stiffnesses significantly lower (50% less) than either piezoceramic device. This suggests that single-crystal piezocomposite actuators will be best suited to low induced-stress, high strain and deflection applications.

  2. A linear actuator for precision positioning of dual objects

    NASA Astrophysics Data System (ADS)

    Peng, Yuxin; Cao, Jie; Guo, Zhao; Yu, Haoyong

    2015-12-01

    In this paper, a linear actuator for precision positioning of dual objects is proposed based on a double friction drive principle using a single piezoelectric element (PZT). The linear actuator consists of an electromagnet and a permanent magnet, which are connected by the PZT. The electromagnet serves as an object 1, and another object (object 2) is attached on the permanent magnet by the magnetic force. For positioning the dual objects independently, two different friction drive modes can be alternated by an on-off control of the electromagnet. When the electromagnet releases from the guide way, it can be driven by impact friction force generated by the PZT. Otherwise, when the electromagnet clamps on the guide way and remains stationary, the object 2 can be driven based on the principle of smooth impact friction drive. A prototype was designed and constructed and experiments were carried out to test the basic performance of the actuator. It has been verified that with a compact size of 31 mm (L) × 12 mm (W) × 8 mm (H), the two objects can achieve long strokes on the order of several millimeters and high resolutions of several tens of nanometers. Since the proposed actuator allows independent movement of two objects by a single PZT, the actuator has the potential to be constructed compactly.

  3. Electro-Active Polymer (EAP) Actuators for Planetary Applications

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.; Leary, S.; Shahinpoor, M.; Harrison, J. O.; Smith, J.

    1999-01-01

    NASA is seeking to reduce the mass, size, consumed power, and cost of the instrumentation used in its future missions. An important element of many instruments and devices is the actuation mechanism and electroactive polymers (EAP) are offering an effective alternative to current actuators. In this study, two families of EAP materials were investigated, including bending ionomers and longitudinal electrostatically driven elastomers. These materials were demonstrated to effectively actuate manipulation devices and their performance is being enhanced in this on-going study. The recent observations are reported in this paper, include the operation of the bending-EAP at conditions that exceed the harsh environment on Mars, and identify the obstacles that its properties and characteristics are posing to using them as actuators. Analysis of the electrical characteristics of the ionomer EAP showed that it is a current driven material rather than voltage driven and the conductivity distribution on the surface of the material greatly influences the bending performance. An accurate equivalent circuit modeling of the ionomer EAP performance is essential for the design of effective drive electronics. The ionomer main limitations are the fact that it needs to be moist continuously and the process of electrolysis that takes place during activation. An effective coating technique using a sprayed polymer was developed extending its operation in air from a few minutes to about four months. The coating technique effectively forms the equivalent of a skin to protect the moisture content of the ionomer. In parallel to the development of the bending EAP, the development of computer control of actuated longitudinal EAP has been pursued. An EAP driven miniature robotic arm was constructed and it is controlled by a MATLAB code to drop and lift the arm and close and open EAP fingers of a 4-finger gripper. Keywords: Miniature Robotics, Electroactive Polymers, Electroactive Actuators, EAP

  4. Torque-Limiting Manipulation Device

    NASA Technical Reports Server (NTRS)

    Moetteli, John B. (Inventor)

    1999-01-01

    A device for manipulating a workpiece in space includes a fixture, a stanchion assembly, a manipulation mechanism, an actuation mechanism, and a reaction mechanism. The fixture has an end onto which the workpiece affixes. The stanchion assembly has an upper and a lower end. The manipulation mechanism connects the fixture and the upper end of the stanchion assembly. The lower end of the stanchion assembly mounts, via probe and a socket, to a structure. The actuation mechanism operably connects to the manipulation mechanism, and moves the fixture in space. The reaction mechanism provides a point through which force inputs into the actuation mechanism may react.

  5. Air Ambient-Operated pNIPAM-Based Flexible Actuators Stimulated by Human Body Temperature and Sunlight.

    PubMed

    Yamamoto, Yuki; Kanao, Kenichiro; Arie, Takayuki; Akita, Seiji; Takei, Kuniharu

    2015-05-27

    Harnessing a natural power source such as the human body temperature or sunlight should realize ultimate low-power devices. In particular, macroscale and flexible actuators that do not require an artificial power source have tremendous potential. Here we propose and demonstrate electrically powerless polymer-based actuators operated at ambient conditions using a packaging technique in which the stimulating power source is produced by heat from the human body or sunlight. The actuating angle, force, and reliability are discussed as functions of temperature and exposure to sunlight. Furthermore, a wearable device platform and a smart curtain actuated by the temperature of human skin and sunlight, respectively, are demonstrated as the first proof-of-concepts. These nature-powered actuators should realize a new class of ultimate low-power devices.

  6. Enzyme actuated bioresponsive hydrogels

    NASA Astrophysics Data System (ADS)

    Wilson, Andrew Nolan

    Bioresponsive hydrogels are emerging with technological significance in targeted drug delivery, biosensors and regenerative medicine. Conferred with the ability to respond to specific biologically derived stimuli, the design challenge is in effectively linking the conferred biospecificity with an engineered response tailored to the needs of a particular application. Moreover, the fundamental phenomena governing the response must support an appropriate dynamic range and limit of detection. The design of these systems is inherently complicated due to the high interdependency of the governing phenomena that guide the sensing, transduction, and the actuation response of hydrogels. To investigate the dynamics of these materials, model systems may be used which seek to interrogate the system dynamics by uni-variable experimentation and limit confounding phenomena such as: polymer-solute interactions, polymer swelling dynamics and biomolecular reaction-diffusion concerns. To this end, a model system, alpha-chymotrypsin (Cht) (a protease) and a cleavable peptide-chromogen (pro-drug) covalently incorporated into a hydrogel, was investigated to understand the mechanisms of covalent loading and release by enzymatic cleavage in bio-responsive delivery systems. Using EDC and Sulfo-NHS, terminal carboxyl groups of N-succinyl-Ala-Ala-Pro-Phe p-nitroanilide, a cleavable chromogen, were conjugated to primary amines of a hydrated poly(HEMA)-based hydrogel. Hydrogel discs were incubated in buffered Cht causing enzyme-mediated cleavage of the peptide and concomitant release of the chromophore for monitoring. To investigate substrate loading and the effects of hydrogel morphology on the system, the concentration of the amino groups (5, 10, 20, and 30 mol%) and the cross-linked density (1, 5, 7, 9 and 12 mol%) were independently varied. Loading-Release Efficiency of the chromogen was shown to exhibit a positive relation to increasing amino groups (AEMA). The release rates demonstrated a

  7. Dynamic analysis of nonlinear behaviour in inertial actuators

    NASA Astrophysics Data System (ADS)

    Dal Borgo, M.; Ghandchi Tehrani, M.; Elliott, S. J.

    2016-09-01

    Inertial actuators are devices typically used to generate the control force on a vibrating structure. Generally, an inertial actuator comprises a proof-mass suspended in a magnetic field. The inertial force due to the moving mass is used to produce the secondary force needed to control the vibration of the primary structure. Inertial actuators can show nonlinear behaviour, such as stroke saturation when driven at high input voltages. If the input voltage is beyond their limit, they can hit the end stop of the actuator casing and saturate. In this paper, the force generated by an inertial actuator is measured experimentally and numerical simulations of a linear piecewise stiffness model are carried out and compared with the results of analytical methods. First, a numerical model for a symmetric bilinear stiffness is derived and a parametric study is carried out to investigate the change of the end stop stiffness. In addition, the variation of the amplitude of the excitation is considered and a comparison is made with the analytical solution using the harmonic balance method. Finally, experimental measurements are carried out and the results are compared with simulated data to establish the accuracy of the model.

  8. Design and calibration of a piezoelectric actuator for interferometric applications

    NASA Astrophysics Data System (ADS)

    Bruno, Luigi; Poggialini, Andrea; Felice, Giuseppina

    2007-12-01

    The present work reports a possible solution for a low-cost piezoelectric actuator available for interferometric applications. In the paper the design, the assembly and the calibration of the actuator are described in detail. The solution adopted consists of a machined stainless steel case deformed by three low-voltage multilayer plumbum zirconate titanate (PZT) ceramic blocks. In the proposed arrangement a three degree of freedom device is obtained, by which a translation and two rotations can be performed. The PZTs are driven by a supply voltage provided by a 16 bit D/A converter directly connected to the parallel port of a personal computer which guarantees a very accurate output. This voltage is applied on each ceramic by means of a variable resistor, by which it is possible to adjust the maximum driving voltage for the single block. This electrical solution allows to match up the strokes of the ceramics in order to obtain a straight expansion of the whole actuator. After the mechanical and electrical set-up of the actuator, a static calibration was carried out by inserting it along one arm of a Michelson speckle interferometer. The calibration procedure had emphasized the hysteresis loop and the non-linearity of the electromechanical behaviour of the actuator.

  9. Parylene coated carbon nanotube actuators for tactile stimulation

    NASA Astrophysics Data System (ADS)

    Bubak, Grzegorz; Ansaldo, Alberto; Gendron, David; Brayda, Luca; Ceseracciu, Luca; Ricci, Davide

    2015-04-01

    Ionic liquid/carbon nanotube based actuators have been constantly improved in recent years owing to their suitability for applications related to human-machine interaction and robotics thanks to their light-weight and low voltage operation. However, while great attention has been paid to the development of better electrodes and electrolytes, no adequate efforts were made to develop actuators to be used in direct contact with the human skin. Herein, we present our approach, based on the use of parylene-C coating. Indeed, owning to its physicochemical properties such as high dielectric strength, resistance to solvents, biological and chemical inactivity/inertness, parylene fulfils the requirements for use in biocompatible actuator fabrication. In this paper, we study the influence of the parylene coating on the actuator performance. To do so, we analyzed its mechanical and electrochemical properties. We looked into the role of parylene as a protection layer that can prevent alteration of the actuator performance likely caused by external conditions. In order to complete our study, we designed a haptic device and investigated the generated force, displacement and energy usage.

  10. Magnetic Actuation of Self-Assembled DNA Hinges

    NASA Astrophysics Data System (ADS)

    Lauback, S.; Mattioli, K.; Armstrong, M.; Miller, C.; Pease, C.; Castro, C.; Sooryakumar, R.

    DNA nanotechnology offers a broad range of applications spanning from the creation of nanoscale devices, motors and nanoparticle templates to the development of precise drug delivery systems. Central to advancing this technology is the ability to actuate or reconfigure structures in real time, which is currently achieved primarily by DNA strand displacement yielding slow actuation times (about 1-10min). Here we exploit superparamagnetic beads to magnetically actuate DNA structures which also provides a system to measure forces associated with molecular interactions. DNA nanodevices are folded using DNA origami, whereby a long single-stranded DNA is folded into a precise compact geometry using hundreds of short oligonucleotides. Our DNA nanodevice is a nanohinge from which rod shaped DNA nanostructures are polymerized into micron-scale filaments forming handles for actuation. By functionalizing one arm of the hinge and the filament ends, the hinge can be attached to a surface while still allowing an arm to rotate and the filaments can be labeled with magnetic beads enabling the hinge to be actuated almost instantaneously by external magnetic fields. These results lay the groundwork to establish real-time manipulation and direct force application of DNA constructs.

  11. The impact of tunnel oxide nitridation to reliability performance of charge storage non-volatile memory devices.

    PubMed

    Lee, Meng Chuan; Wong, Hin Yong

    2014-02-01

    This paper is written to review the development of critical research on the overall impact of tunnel oxide nitridation (TON) with the aim to mitigate reliability issues due to incessant technology scaling of charge storage NVM devices. For more than 30 years, charge storage non-volatile memory (NVM) has been critical in the evolution of intelligent electronic devices and continuous development of integrated technologies. Technology scaling is the primary strategy implemented throughout the semiconductor industry to increase NVM density and drive down average cost per bit. In this paper, critical reliability challenges and key innovative technical mitigation methods are reviewed. TON is one of the major candidates to replace conventional oxide layer for its superior quality and reliability performance. Major advantages and caveats of key TON process techniques are discussed. The impact of TON on quality and reliability performance of charge storage NVM devices is carefully reviewed with emphasis on major advantages and drawbacks of top and bottom nitridation. Physical mechanisms attributed to charge retention and V(t) instability phenomenon are also reviewed in this paper.

  12. Hydraulically actuated well shifting tool

    SciTech Connect

    Roth, B.A.

    1992-10-20

    This patent describes a hydraulically actuated shifting tool for actuating a sliding member in a well tool. It comprises: a housing having a hydraulic fluid bore therein; shifting dog means positioned on the housing for movement away and toward the housing; locking dog means positioned on the housing for movement away and toward the body; shifting dog hydraulic actuating means in fluid communication with the bore for causing engagement of the shifting dogs with the sliding member; locking dog hydraulic actuating means in communication with the bore for causing engagement of the locking dogs with the locking means; and hydraulic shifting means in communication with the bore for causing relative movement between the shifting dog means and the locking dog means for shifting the sliding sleeve.

  13. Analog actuator-piston memory

    NASA Technical Reports Server (NTRS)

    Sable, B. A.

    1980-01-01

    Simple analog control system of digitally controlled acuator uses 'stopped' position of actuator as 'memory' and potentiometer as sensing element during power failure to reload drive circuit to value equal to its last position preceding power loss.

  14. Acoustic actuation of bioinspired microswimmers.

    PubMed

    Kaynak, Murat; Ozcelik, Adem; Nourhani, Amir; Lammert, Paul E; Crespi, Vincent H; Huang, Tony Jun

    2017-01-31

    Acoustic actuation of bioinspired microswimmers is experimentally demonstrated. Microswimmers are fabricated in situ in a microchannel. Upon acoustic excitation, the flagellum of the microswimmer oscillates, which in turn generates linear or rotary movement depending on the swimmer design. The speed of these bioinspired microswimmers is tuned by adjusting the voltage amplitude applied to the acoustic transducer. Simple microfabrication and remote actuation are promising for biomedical applications.

  15. High torque miniature rotary actuator

    NASA Astrophysics Data System (ADS)

    Nalbandian, Ruben

    2005-07-01

    This paper summarizes the design and the development of a miniature rotary actuator (36 mm diameter by 100 mm length) used in spacecraft mechanisms requiring high torques and/or ultra-fine step resolution. This actuator lends itself to applications requiring high torque but with strict volume limitations which challenge the use of conventional rotary actuators. The design challenge was to develop a lightweight (less than 500 grams), very compact, high bandwidth, low power, thermally stable rotary actuator capable of producing torques in excess of 50 N.m and step resolutions as fine as 0.003 degrees. To achieve a relatively high torsional stiffness in excess of 1000 Nm/radian, the design utilizes a combination of harmonic drive and multistage planetary gearing. The unique design feature of this actuator that contributes to its light weight and extremely precise motion capability is a redundant stepper motor driving the output through a multistage reducing gearbox. The rotary actuator is powered by a high reliability space-rated stepper motor designed and constructed by Moog, Inc. The motor is a three-phase stepper motor of 15 degree step angle, producing twenty-four full steps per revolution. Since micro-stepping is not used in the design, and un-powered holding torque is exhibited at every commanded step, the rotary actuator is capable of reacting to torques as high as 35 Nm by holding position with the power off. The output is driven through a gear transmission having a total train ratio of 5120:1, resulting in a resolution of 0.003 degrees output rotation per motor step. The modular design of the multi-stage output transmission makes possible the addition of designs having different output parameters, such as lower torque and higher output speed capability. Some examples of an actuator family based on this growth capability will be presented in the paper.

  16. Large Scale Magnetostrictive Valve Actuator

    NASA Technical Reports Server (NTRS)

    Richard, James A.; Holleman, Elizabeth; Eddleman, David

    2008-01-01

    Marshall Space Flight Center's Valves, Actuators and Ducts Design and Development Branch developed a large scale magnetostrictive valve actuator. The potential advantages of this technology are faster, more efficient valve actuators that consume less power and provide precise position control and deliver higher flow rates than conventional solenoid valves. Magnetostrictive materials change dimensions when a magnetic field is applied; this property is referred to as magnetostriction. Magnetostriction is caused by the alignment of the magnetic domains in the material s crystalline structure and the applied magnetic field lines. Typically, the material changes shape by elongating in the axial direction and constricting in the radial direction, resulting in no net change in volume. All hardware and testing is complete. This paper will discuss: the potential applications of the technology; overview of the as built actuator design; discuss problems that were uncovered during the development testing; review test data and evaluate weaknesses of the design; and discuss areas for improvement for future work. This actuator holds promises of a low power, high load, proportionally controlled actuator for valves requiring 440 to 1500 newtons load.

  17. Downhole hydraulic actuated pump

    SciTech Connect

    Roeder, G.K.

    1988-09-06

    This patent describes a downhole hydraulically actuated pump assembly of the type having a main housing within which an engine and pump is enclosed; a connecting rod, an engine piston, a pump plunger, means by which the engine and connecting rod reciprocate the pump plunger and thereby produces fluid; the main housing has a lower end having a formation fluid inlet; and upper end having a power fluid inlet; and, a produced fluid outlet; the plunger divides one marginal end of the housing into upper and lower production chambers; the lower end of the connecting rod is hollow and extends through the plunger into fluid communication with the formation fluid inlet to provide a source of formation fluid for the upper and lower production chambers; a traveling value assembly contained within the plunger and arranged to transfer formation fluid from the hollow rod, through the plunger, and into the upper and lower production chambers, respectively, as the plunger upstrokes and downstrokes; produced fluid valve means by which fluid flows from the upper and lower production chambers and through the produced fluid outlet.

  18. Quick actuating closure

    NASA Technical Reports Server (NTRS)

    White, III, Dorsey E. (Inventor); Updike, deceased, Benjamin T. (Inventor); Allred, Johnny W. (Inventor)

    1989-01-01

    A quick actuating closure for a pressure vessel 80 in which a wedge ring 30 with a conical outer surface 31 is moved forward to force shear blocks 40, with conical inner surfaces 41, radially outward to lock an end closure plug 70 within an opening 81 in the pressure vessel 80. A seal ring 60 and a preload ramp 50 sit between the shear blocks 40 and the end closure plug 70 to provide a backup sealing capability. Conical surfaces 44 and 55 of the preload ramp 50 and the shear blocks 40 interact to force the seal ring 60 into shoulders 73 and 85 in the end closure plug 70 and opening 81 to form a tight seal. The end closure plug 70 is unlocked by moving the wedge ring 30 rearward, which causes T-bars 32 of the wedge ring 30 riding within T -slots 42 of the shear blocks 40 to force them radially inward. The end closure plug 70 is then removed, allowing access to the interior of the pressure vessel 80.

  19. The Impact of Discourse Signaling Devices on the Listening Comprehension of L2 Learners

    ERIC Educational Resources Information Center

    Tajabadi, Fahimeh; Taghizadeh, Mahboubeh

    2014-01-01

    The purpose of this study was two-fold: first, it aimed at examining the impact of expository text topics on the listening comprehension of L2 learners; second, it aimed to investigate the impact of macro, micro, and macro-micro discourse markers on the listening comprehension of expository texts by L2 learners. The participants (N =105) were male…

  20. Characterization of PolyMUMPs-based in-plane electromagnetic actuator

    NASA Astrophysics Data System (ADS)

    Ahmed, Mawahib Gafare; Dennis, John-Ojur; Khir, Mohd-Haris; Rabih, Almur; Mian, Muhammad Umer

    2016-11-01

    This paper presents a synopsis of the design and fabrication of an in-plane electromagnetic actuator using Polysilicon Multi-Users MEMS Process (PolyMUMPs). The electromagnetic actuator is driven by Lorentz force. This article is based on the premise that the proportionality of Lorentz force to magnetic field and driving current controls lateral displacement. The fabricated actuator consists of two plates; moving plate supported by four beams and a stationary plate in order to form a capacitor setup for sensing. This work experimentally demonstrates the actuation of the device using low frequencies of 0.5 Hz, 1 Hz and 2Hz. The characterization of the micro actuator using a Leica optical microscope showed a displacement exceeding 8 µm. This displacement is attained with a magnetic field of 20mT and applied current of approximately 5 mA.

  1. Design and driving characteristics of a novel ‘pusher’ type piezoelectric actuator

    NASA Astrophysics Data System (ADS)

    Wang, Shupeng; Zhang, Zhihui; Ren, Luquan; Zhao, Hongwei; Liang, Yunhong; Zhu, Bing

    2016-01-01

    This study proposes a novel ‘pusher’ type piezoelectric actuator based on clamping blocks, where a solid mover can be driven at a high resolution and with a designed stroke of 4 mm. The working principle of the actuator is presented and the design process of its key component ‘stator’ is described. Via finite element simulation, the rationality of the structure of the device was analyzed. The prototype actuator was manufactured and its main performance was tested. The driving characteristics of the proposed actuator produced the following experimental results. The movement resolution was 31.5 nm, the maximum speed was 248 μm s-1 and the maximum loading capacity was 123.5 N, verifying that it could meet the needs of precise positioning with a high resolution and a large load capacity. The actuator was also found to achieve various step speeds when the driving voltage and working frequency were changed.

  2. Actuation Using Piezoelectric Materials: Application in Augmenters, Energy Harvesters, and Motors

    NASA Technical Reports Server (NTRS)

    Hasenoehrl, Jennifer

    2012-01-01

    Piezoelectric actuators are used in many manipulation, movement, and mobility applications as well as transducers and sensors. When used at the resonance frequencies of the piezoelectric stack, the actuator performs at its maximum actuation capability. In this Space Grant internship, three applications of piezoelectric actuators were investigated including hammering augmenters of rotary drills, energy harvesters, and piezo-motors. The augmenter shows improved drill performance over rotation only. The energy harvesters rely on moving fluid to convert mechanical energy into electrical power. Specific designs allow the harvesters more freedom to move, which creates more power. The motor uses the linear movement of the actuator with a horn applied to the side of a rotor to create rotational motion. Friction inhibits this motion and is to be minimized for best performance. Tests and measurements were made during this internship to determine the requirements for optimal performance of the studied mechanisms and devices.

  3. The Impact of Interrupted Use of a Speech Generating Device on the Communication Acts of a Child with Autism Spectrum Disorder: A Case Study

    ERIC Educational Resources Information Center

    Neeley, Richard A.; Pulliam, Mary Hannah; Catt, Merrill; McDaniel, D. Mike

    2015-01-01

    This case study examined the initial and renewed impact of speech generating devices on the expressive communication behaviors of a child with autism spectrum disorder. The study spanned six years of interrupted use of two speech generating devices. The child's communication behaviors were analyzed from video recordings and included communication…

  4. Mobile Devices and the Teacher Perceived Barriers Impacting Effective Integration in the K-5 Classroom

    ERIC Educational Resources Information Center

    Nixon, Tina S.

    2013-01-01

    This qualitative, phenomenological study explored the teacher perceived barriers of using mobile devices in the K-5 classroom. Research confirms teachers face various types of variables and become reluctant to use technology within their curriculum driven lessons. This study sought to understand what teachers perceive as barriers, and how the…

  5. Impact of sanctions on procurement of medicine and medical devices in Iran; a technical response.

    PubMed

    Hosseini, Seyed Alireza

    2013-12-01

    Following recent sanctions on foreign trade, financial and banking services, Iran has faced major difficulties for importing medicines (both finished products and pharmaceutical raw materials) and medical devices. Problems with money transfer have made it extremely lengthy in time to import medicine and medical devices and these have negatively affected access to and affordability of medicines. Quality of pharmaceuticals and treatment of patients have also been affected due to changing the sources of imported medicines and raw materials for locally produced pharmaceuticals. Several interventions have been employed during the past few months in Iran to overcome the effects imposed by recent sanctions and drug shortages have been managed to some extent with attempts made by Iran Food and Drug Organization (IRI FDO). As recommended by the experts, a specific Society for Worldwide Interbank Financial Telecommunication line should be allocated for transferring money for medicines and medical devices and certain financial institutions are assigned for this purpose. It is also suggested that defining a white list of Iranian pharmaceuticals and medical device companies together with their foreign counterparts would facilitate this process. It appears that, in a public health prospective, ordinary people and patients are hurt and paying the cost for current sanctions. It remains the responsibility of the public health and international communities to separate public health from politics and to ease the pain of public from sanctions.

  6. Impact of photon recycling and luminescence coupling in III-V photovoltaic devices

    NASA Astrophysics Data System (ADS)

    Walker, A. W.; Höhn, O.; Micha, D. N.; Wagner, L.; Helmers, H.; Bett, A. W.; Dimroth, F.

    2015-03-01

    Single junction photovoltaic devices composed of direct bandgap III-V semiconductors such as GaAs can exploit the effects of photon recycling to achieve record-high open circuit voltages. Modeling such devices yields insight into the design and material criteria required to achieve high efficiencies. For a GaAs cell to reach 28 % efficiency without a substrate, the Shockley-Read-Hall (SRH) lifetimes of the electrons and holes must be longer than 3 μs and 100 ns respectively in a 2 μm thin active region coupled to a very high reflective (>99%) rear-side mirror. The model is generalized to account for luminescence coupling in tandem devices, which yields direct insight into the top cell's non-radiative lifetimes. A heavily current mismatched GaAs/GaAs tandem device is simulated and measured experimentally as a function of concentration between 3 and 100 suns. The luminescence coupling increases from 14 % to 33 % experimentally, whereas the model requires an increasing SRH lifetime for both electrons and holes to explain these experimental results. However, intermediate absorbing GaAs layers between the two sub-cells may also increasingly contribute to the luminescence coupling as a function of concentration.

  7. Biomedical Impact in Implantable Devices-The Transcatheter Aortic Valve as an example

    NASA Astrophysics Data System (ADS)

    Anastasiou, Alexandros; Saatsakis, George

    2015-09-01

    Objective: To update of the scientific community about the biomedical engineering involvement in the implantable devices chain. Moreover the transcatheter Aortic Valve (TAV) replacement, in the field of cardiac surgery, will be analyzed as an example of contemporary implantable technology. Methods: A detailed literature review regarding biomedical engineers participating in the implantable medical product chain, starting from the design of the product till the final implantation technique. Results: The scientific role of biomedical engineers has clearly been established. Certain parts of the product chain are implemented almost exclusively by experienced biomedical engineers such as the transcatheter aortic valve device. The successful professional should have a multidisciplinary knowledge, including medicine, in order to pursue the challenges for such intuitive technology. This clearly indicates that biomedical engineers are among the most appropriate scientists to accomplish such tasks. Conclusions: The biomedical engineering involvement in medical implantable devices has been widely accepted by the scientific community, worldwide. Its important contribution, starting from the design and extended to the development, clinical trials, scientific support, education of other scientists (surgeons, cardiologists, technicians etc.), and even to sales, makes biomedical engineers a valuable player in the scientific arena. Notably, the sector of implantable devices is constantly raising, as emerging technologies continuously set up new targets.

  8. Assistive Devices for Children with Functional Impairments: Impact on Child and Caregiver Function

    ERIC Educational Resources Information Center

    Henderson, Stacey; Skelton, Heather; Rosenbaum, Peter

    2008-01-01

    Functional impairments can limit a child's ability to participate in the experiences of childhood. This "deprivation" can, in turn, have a negative effect on such children's development, academic performance, and quality of life, as well as on the lives of their caregivers and families. Many adults use assistive devices to overcome functional…

  9. The impact of rare earth cobalt permanent magnets on electromechanical device design

    NASA Technical Reports Server (NTRS)

    Fisher, R. L.; Studer, P. A.

    1979-01-01

    Specific motor designs which employ rare earth cobalt magnets are discussed with special emphasis on their unique properties and magnetic field geometry. In addition to performance improvements and power savings, high reliability devices are attainable. Both the mechanism and systems engineering should be aware of the new performance levels which are currently becoming available as a result of the rare earth cobalt magnets.

  10. Design of piezoelectric multi-actuated microtools using topology optimization

    NASA Astrophysics Data System (ADS)

    Carbonari, Ronny C.; Silva, Emílio C. N.; Nishiwaki, Shinji

    2005-12-01

    Microtools offer significant promise in a wide range of applications such as cell manipulation, microsurgery, nanotechnology processes, and many other fields. The development of these microtools is still in the initial stages and it can be strongly enhanced by using design tools. The microtools considered in this paper essentially consist of a multi-flexible structure actuated by two or more piezoceramic devices such that when each piezoceramic is actuated, it generates an output displacement and force in a specified point of the domain and direction. The multi-flexible structure acts as a mechanical transform by amplifying and changing the direction of the piezoceramic output displacements. Thus, the development of microtools requires the design of actuated flexible structures that can perform complex movements. In addition, when multiple piezoceramic devices are involved, coupling effects in their movements become critical, especially the appearance of undesired movements, which makes the design task very complex. One way to avoid such undesirable effects is the use of a systematic design method, such as topology optimization, with appropriate formulation of the optimization problem. Here, a topology optimization formulation is developed for the design of microtools actuated by multiple piezoceramics that minimizes the effects of movement coupling. This method is implemented based on the CAMD (continuous approximation of material distribution) approach where fictitious densities are interpolated in each finite element, providing a continuum material distribution in the domain. In addition, in previous piezoelectric actuator topology optimization works the piezoceramics were excited by charge, which is not realistic, even though it simplifies the sensitivity analysis. In this work, the piezoceramics are excited by voltage and the corresponding sensitivity analysis is presented. Different types of microtools required for various applications are designed to

  11. Electro thermal analysis of rotary type micro thermal actuator

    NASA Astrophysics Data System (ADS)

    Anwar, M. Arefin; Packirisamy, Muthukumaran; Ahmed, A. K. Waiz

    2005-09-01

    In micro domain, thermal actuators are favored because it provides higher force and deflection than others. This paper presents a new type of micro thermal actuator that provides rotary motion of the circular disc shaped cold arm, which can be used in various optical applications, such as, switching, attenuation, diffraction, etc. The device has been fabricated in MUMPS technology. In this new design, the hot arms are arranged with the cold disc in such a way that thermal expansion of the hot arms due to Joule heating, will make the cold disc to rotate and the rotation is unidirectional on loading. The dominant heat transfer modes in the operating temperature zone are through the anchor and the air between the structure and the substrate because of the very low gap provided by MUMPS. A mathematical model was used for predicting steady state temperature profile along the actuator length and rotational behavior of the cold disc under different applied voltages. A 3-D coupled field finite element analysis (FEM) for the device is also presented. A FEM analysis was done by defining an air volume around the structure and substrate below the structure. Results obtained from the mathematical model, was compared with that of the finite element analysis. The presented results confirm the applicability of this novel rotary type thermal actuator for many optical MEMS applications.

  12. Miniature High-Force, Long-Stroke SMA Linear Actuators

    NASA Technical Reports Server (NTRS)

    Cummin, Mark A.; Donakowski, William; Cohen, Howard

    2008-01-01

    at greater cycle speeds, and have stronger housings that can withstand greater externally applied forces and impacts. The main novel features of the improved SMA actuators are the following: 1) The ends of the wires are anchored in compact crimps made from short steel tubes. Each wire end is inserted in a tube, the tube is flattened between planar jaws to make the tube grip the wire, the tube is compressed to a slight U-cross-section deformation to strengthen the grip, then the crimp is welded onto one of the actuator stages. The pull strength of a typical crimp is about 125 N -- comparable to the strength of the SMA wire and greater than the typical pull strengths of wire-end anchors in prior SMA actuators. Greater pull strength is one of the keys to achievement of higher actuation force; 2) For greater strength and resistance to impacts, housings are milled from aluminum instead of being made from polymers. Each housing is made from two pieces in a clamshell configuration. The pieces are anodized to reduce sliding friction; 3) Stages are made stronger (to bear greater compression loads without excessive flexing) by making them from steel sheets thicker than those used in prior SMA actuators. The stages contain recessed pockets to accommodate the crimps. Recessing the pockets helps to keep overall dimensions as small as possible; and, 4) UHT SMA wires are used to satisfy the higher-speed/higher-temperature requirement.

  13. Wireless Displacement Sensing of Micromachined Spiral-Coil Actuator Using Resonant Frequency Tracking

    PubMed Central

    Ali, Mohamed Sultan Mohamed; AbuZaiter, Alaa; Schlosser, Colin; Bycraft, Brad; Takahata, Kenichi

    2014-01-01

    This paper reports a method that enables real-time displacement monitoring and control of micromachined resonant-type actuators using wireless radiofrequency (RF). The method is applied to an out-of-plane, spiral-coil microactuator based on shape-memory-alloy (SMA). The SMA spiral coil forms an inductor-capacitor resonant circuit that is excited using external RF magnetic fields to thermally actuate the coil. The actuation causes a shift in the circuit's resonance as the coil is displaced vertically, which is wirelessly monitored through an external antenna to track the displacements. Controlled actuation and displacement monitoring using the developed method is demonstrated with the microfabricated device. The device exhibits a frequency sensitivity to displacement of 10 kHz/μm or more for a full out-of-plane travel range of 466 μm and an average actuation velocity of up to 155 μm/s. The method described permits the actuator to have a self-sensing function that is passively operated, thereby eliminating the need for separate sensors and batteries on the device, thus realizing precise control while attaining a high level of miniaturization in the device. PMID:25014100

  14. Fabrication of a bubble-driven arrayed actuator for a tactile display

    NASA Astrophysics Data System (ADS)

    Shikida, Mitsuhiro; Imamura, Tsubasa; Ukai, Shinji; Miyaji, Takaaki; Sato, Kazuo

    2008-06-01

    A chip-sized arrayed actuator device has been developed for application to a tactile display. Each actuator uses a liquid-vapour phase change to drive a microneedle that stimulates receptors in a finger in contact with the array. The actuators have a flexible diaphragm structure and a bottom plate bonded together to create a cavity between them. A microneedle and a microheater are formed on the diaphragm and plate of each actuator, respectively. The sealed cavity is filled with an operating liquid. Activating the heater and generating bubbles, which is similar to the process of a thermal ink jet, increase the pressure in the cavity. As a result, the flexible membrane deforms and it drives the needle upwards to stimulate receptors. Microelectromechanical systems technologies are used to fabricate the three components of the actuators, which are manually assembled to form a 3 × 3 arrayed actuator device. The total size of the device is 15 × 15 × 1 mm. The device performance is experimentally evaluated and a large needle displacement (61 µm) is obtained with an input energy of 457 mJ.

  15. Development of in-series piezoelectric bimorph bending beam actuators for active flow control applications

    NASA Astrophysics Data System (ADS)

    Chan, Wilfred K.; Clingman, Dan J.; Amitay, Michael

    2016-04-01

    Piezoelectric materials have long been used for active flow control purposes in aerospace applications to increase the effectiveness of aerodynamic surfaces on aircraft, wind turbines, and more. Piezoelectric actuators are an appropriate choice due to their low mass, small dimensions, simplistic design, and frequency response. This investigation involves the development of piezoceramic-based actuators with two bimorphs placed in series. Here, the main desired characteristic was the achievable displacement amplitude at specific driving voltages and frequencies. A parametric study was performed, in which actuators with varying dimensions were fabricated and tested. These devices were actuated with a sinusoidal waveform, resulting in an oscillating platform on which to mount active flow control devices, such as dynamic vortex generators. The main quantification method consisted of driving these devices with different voltages and frequencies to determine their free displacement, blocking force, and frequency response. It was found that resonance frequency increased with shorter and thicker actuators, while free displacement increased with longer and thinner actuators. Integration of the devices into active flow control test modules is noted. In addition to physical testing, a quasi-static analytical model was developed and compared with experimental data, which showed close correlation for both free displacement and blocking force.

  16. The effect of a braking device in reducing the ground impact forces inherent in plyometric training.

    PubMed

    Humphries, B J; Newton, R U; Wilson, G J

    1995-02-01

    As a consequence of performing plyometric type exercises, such as depth jumps, impact forces placed on the musculoskeletal system during landing can lead to a potential for injury. A reduction of impact forces upon landing could therefore contribute to reduce the risk of injury. Twenty subjects performed a series of loaded jumps for maximal height, with and without a brake mechanism designed to reduce impact force during landing. The braked jumps were performed on the Plyometric Power System (PPS) with its braking mechanism set at 75% of body weight during the downward phase. The non-braked condition involved jumps with no braking. Vertical ground reaction force data, sampled for 5.5 s at 550 Hz from a Kistler forceplate, were collected for each jump condition. The following parameters were then calculated: peak vertical force, time to peak force, passive impact impulse and maximum concentric force. The brake served to significantly (p < 0.01) reduce peak impact force by 155% and passive impact impulse by 200%. No significant differences were found for peak concentric force production. The braking mechanism of the PPS significantly reduced ground impact forces without impeding concentric force production. The reduction in eccentric loading, using the braking mechanism, may reduce the incidence of injury associated with landings from high intensity plyometric exercises.

  17. DEVICE FOR CONTROL OF OXYGEN PARTIAL PRESSURE

    DOEpatents

    Bradner, H.; Gordon, H.S.

    1957-12-24

    A device is described that can sense changes in oxygen partial pressure and cause a corresponding mechanical displacement sufficient to actuate meters, valves and similar devices. A piston and cylinder arrangement contains a charge of crystalline metal chelate pellets which have the peculiar property of responding to variations in the oxygen content of the ambient atmosphere by undergoing a change in dimension. A lever system amplifies the relative displacement of the piston in the cylinder, and actuates the controlled valving device. This partial pressure oxygen sensing device is useful in controlled chemical reactions or in respiratory devices such as the oxygen demand meters for high altitude aircraft.

  18. Analysis, design, and testing of a low cost, direct force command linear proof mass actuator for structural control

    NASA Technical Reports Server (NTRS)

    Slater, G. L.; Shelley, Stuart; Jacobson, Mark

    1993-01-01

    In this paper, the design, analysis, and test of a low cost, linear proof mass actuator for vibration control is presented. The actuator is based on a linear induction coil from a large computer disk drive. Such disk drives are readily available and provide the linear actuator, current feedback amplifier, and power supply for a highly effective, yet inexpensive, experimental laboratory actuator. The device is implemented as a force command input system, and the performance is virtually the same as other, more sophisticated, linear proof mass systems.

  19. Dynamic Characteristics Analysis of a Small-Sized Linear Oscillatory Actuator Employing the 3-D Finite Element Method

    NASA Astrophysics Data System (ADS)

    Shoji, Noritaka; Hirata, Katsuhiro; Ueyama, Kenji; Hashimoto, Eiichiro; Takagi, Takahiro

    Recently, linear oscillatory actuators have been used in a wide range of applications because of their advantages, such as high efficiency, simple structure, and easy control. Small linear oscillatory actuators are expected to be used in haptic devices and the vibration system of mobile phones. In this paper, we propose a new structure of a small linear oscillatory actuator. The static and dynamic characteristics of the actuator are calculated by the 3-D finite element method. The effectiveness of this method is shown by the comparison of the calculated results with the experimental results.

  20. Attempting a classification for electrical polymeric actuators

    NASA Astrophysics Data System (ADS)

    Otero, T. F.; López Cascales, J.; Fernández-Romero, A. J.

    2007-04-01

    Polymeric actuators, electroactive polymer actuators, electromechanical polymeric actuators, artificial muscles, and other, are usual expressions to name actuators developed during the last 15-20 years based on interactions between the electric energy and polymer films. The polymeric actuators can be divided into two main fields: electromechanical actuators working by electrostatic interactions between the polymer and the applied electric fields, and electrochemomechanical actuators, or reactive actuators, working by an electrochemical reaction driven by the flowing electric current. The electromechanical actuators can be classified into electrostrictive, piezoelectric, ferroelectric, electrostatic and electrokinetic. They can include a solvent (wet) or not (dry), or they can include a salt or not. Similitude and differences related to the rate and position control or to the possibility or not to include sensing abilities are discussed.

  1. The Impact of GaN/Substrate Thermal Boundary Resistance on a HEMT Device

    DTIC Science & Technology

    2011-11-01

    stack between the GaN and Substrate layers. The University of Bristol recently reported that this TBR in commercial devices on Silicon Carbide ( SiC ...Circuit RF Radio Frequency PA Power Amplifier SiC Silicon Carbide FEA Finite Element Analysis heff Effective Heat transfer Coefficient (W/m 2 K...substrate material switched from sapphire to silicon , and by another factor of two from silicon to SiC . TABLE 1: SAMPLE RESULTS FROM DOUGLAS ET AL. FOR

  2. Scanning and rotating micromirrors using thermal actuators

    NASA Astrophysics Data System (ADS)

    Butler, Jeffrey T.; Bright, Victor M.; Reid, J. Robert

    1997-07-01

    This paper reports on micromachined polysilicon scanning and rotating micromirrors and the development of a CMOS drive system. The micromirrors described in this research were developed at the Air Force Institute of Technology and fabricated using the DARPA-sponsored multi-user MEMS processes (MUMPs). The scanning micromirror is connected to the substrate using micro-hinges. This allows the mirror plate to rotate off the substrate surface and lock into a support mechanism. The angle between the scanning mirror and the substrate is modulated by driving the mirror with a thermal actuator array through a range of 20 degrees. For the rotating mirror, the mirror plate is attached to the substrate by three floating substrate hinges connected to a rotating base. Actuator arrays are also used to position the rotating mirror. A computer controlled electrical interface was developed which automates the positioning of both the scanning and rotating mirrors. The low operating voltages of the micromirror positioning mechanism makes the use of CMOS technology attractive; and the development of a digital interface allows for flexible operation of the devices. These designs are well suited for micro-optical applications such as optical scanners, corner cube reflectors, and optical couplers where electrical positioning of a mirror is desired.

  3. Manufacturable plastic microfluidic valves using thermal actuation.

    PubMed

    Pitchaimani, Karthik; Sapp, Brian C; Winter, Adam; Gispanski, Austin; Nishida, Toshikazu; Hugh Fan, Z

    2009-11-07

    A low-cost, manufacturable, thermally actuated, plastic microfluidic valve has been developed. The valve contains an encapsulated, temperature-sensitive fluid, which expands, deflecting a thin elastomeric film into a fluidic channel to control fluid flow. The power input for thermal expansion of each microfluidic valve can be controlled using a printed circuit board (PCB)-based controller, which is suitable for mass production and large-scale integration. A plastic microfluidic device with such valves was fabricated using compression molding and thermal lamination. The operation of the valves was investigated by measuring a change in the microchannel's ionic conduction current mediated by the resistance variation corresponding to the deflection of the microvalve. Valve closing was also confirmed by the disappearance of fluorescence when a fluorescent solution was displaced in the valve region. Valve operation was characterized for heater power ranging from 36 mW to 80 mW. When the valve was actuating, the local channel temperature was 10 to 19 degrees C above the ambient temperature depending on the heater power used. Repetitive valve operations (up to 50 times) have been demonstrated with a flow resulting from a hydrostatic head. Valve operation was tested for a flow rate of 0.33-4.7 microL/min.

  4. Variable Frequency Diverter Actuation for Flow Control

    NASA Technical Reports Server (NTRS)

    Culley, Dennis E.

    2006-01-01

    The design and development of an actively controlled fluidic actuator for flow control applications is explored. The basic device, with one input and two output channels, takes advantage of the Coanda effect to force a fluid jet to adhere to one of two axi-symmetric surfaces. The resultant flow is bi-stable, producing a constant flow from one output channel, until a disturbance force applied at the control point causes the flow to switch to the alternate output channel. By properly applying active control the output flows can be manipulated to provide a high degree of modulation over a wide and variable range of frequency and duty cycle. In this study the momentary operative force is applied by small, high speed isolation valves of which several different types are examined. The active fluidic diverter actuator is shown to work in several configurations including that in which the operator valves are referenced to atmosphere as well as to a source common with the power stream.

  5. Probing Cell Deformability via Acoustically Actuated Bubbles

    PubMed Central

    Xie, Yuliang; Nama, Nitesh; Li, Peng; Mao, Zhangming; Huang, Po-Hsun; Zhao, Chenglong; Costanzo, Francesco; Huang, Tony Jun

    2016-01-01

    An acoustically actuated, bubble-based technique is developed to investigate the deformability of cells suspended in microfluidic devices. A microsized bubble is generated by an optothermal effect near the targeted cells, which are suspended in a microfluidic chamber. Subsequently, acoustic actuation is employed to create localized acoustic streaming. In turn, the streaming flow results in hydrodynamic forces that deform the cells in situ. The deformability of the cells is indicative of their mechanical properties. The method in this study measures mechanical biomarkers from multiple cells in a single experiment, and it can be conveniently integrated with other bioanalysis and drug-screening platforms. Using this technique, the mean deformability of tens of HeLa, HEK, and HUVEC cells is measured to distinguish their mechanical properties. HeLa cells are deformed upon treatment with Cytochalasin. The technique also reveals the deformability of each subpopulation in a mixed, heterogeneous cell sample by the use of both fluorescent markers and mechanical biomarkers. The technique in this study, apart from being relevant to cell biology, will also enable biophysical cellular diagnosis. PMID:26715211

  6. Honeycomb Actuators Inspired by the Unfolding of Ice Plant Seed Capsules

    PubMed Central

    Bertinetti, Luca; Turcaud, Sébastien; Rüggeberg, Markus; Weaver, James C.; Fratzl, Peter; Burgert, Ingo; Dunlop, John W. C.

    2016-01-01

    Plant hydro-actuated systems provide a rich source of inspiration for designing autonomously morphing devices. One such example, the pentagonal ice plant seed capsule, achieves complex mechanical actuation which is critically dependent on its hierarchical organization. The functional core of this actuation system involves the controlled expansion of a highly swellable cellulosic layer, which is surrounded by a non-swellable honeycomb framework. In this work, we extract the design principles behind the unfolding of the ice plant seed capsules, and use two different approaches to develop autonomously deforming honeycomb devices as a proof of concept. By combining swelling experiments with analytical and finite element modelling, we elucidate the role of each design parameter on the actuation of the prototypes. Through these approaches, we demonstrate potential pathways to design/develop/construct autonomously morphing systems by tailoring and amplifying the initial material’s response to external stimuli through simple geometric design of the system at two different length scales. PMID:27806052

  7. Large Displacement in Relaxor Ferroelectric Terpolymer Blend Derived Actuators Using Al Electrode for Braille Displays

    PubMed Central

    Lu, S. G.; Chen, X.; Levard, T.; Diglio, P. J.; Gorny, L. J.; Rahn, C. D.; Zhang, Q. M.

    2015-01-01

    Poly(vinylidene fluoride) (PVDF) based polymers are attractive for applications for artificial muscles, high energy density storage devices etc. Recently these polymers have been found great potential for being used as actuators for refreshable full-page Braille displays for visually impaired people in terms of light weight, miniaturized size, and larger displacement, compared with currently used lead zirconate titanate ceramic actuators. The applied voltages of published polymer actuators, however, cannot be reduced to meet the requirements of using city power. Here, we report the polymer actuator generating quite large displacement and blocking force at a voltage close to the city power. Our embodiments also show good self-healing performance and disuse of lead-containing material, which makes the Braille device safer, more reliable and more environment-friendly. PMID:26079628

  8. Large Displacement in Relaxor Ferroelectric Terpolymer Blend Derived Actuators Using Al Electrode for Braille Displays

    NASA Astrophysics Data System (ADS)

    Lu, S. G.; Chen, X.; Levard, T.; Diglio, P. J.; Gorny, L. J.; Rahn, C. D.; Zhang, Q. M.

    2015-06-01

    Poly(vinylidene fluoride) (PVDF) based polymers are attractive for applications for artificial muscles, high energy density storage devices etc. Recently these polymers have been found great potential for being used as actuators for refreshable full-page Braille displays for visually impaired people in terms of light weight, miniaturized size, and larger displacement, compared with currently used lead zirconate titanate ceramic actuators. The applied voltages of published polymer actuators, however, cannot be reduced to meet the requirements of using city power. Here, we report the polymer actuator generating quite large displacement and blocking force at a voltage close to the city power. Our embodiments also show good self-healing performance and disuse of lead-containing material, which makes the Braille device safer, more reliable and more environment-friendly.

  9. Large Displacement in Relaxor Ferroelectric Terpolymer Blend Derived Actuators Using Al Electrode for Braille Displays.

    PubMed

    Lu, S G; Chen, X; Levard, T; Diglio, P J; Gorny, L J; Rahn, C D; Zhang, Q M

    2015-06-16

    Poly(vinylidene fluoride) (PVDF) based polymers are attractive for applications for artificial muscles, high energy density storage devices etc. Recently these polymers have been found great potential for being used as actuators for refreshable full-page Braille displays for visually impaired people in terms of light weight, miniaturized size, and larger displacement, compared with currently used lead zirconate titanate ceramic actuators. The applied voltages of published polymer actuators, however, cannot be reduced to meet the requirements of using city power. Here, we report the polymer actuator generating quite large displacement and blocking force at a voltage close to the city power. Our embodiments also show good self-healing performance and disuse of lead-containing material, which makes the Braille device safer, more reliable and more environment-friendly.

  10. Active flow control over a backward-facing step using plasma actuation

    NASA Astrophysics Data System (ADS)

    Ruisi, R.; Zare-Behtash, H.; Kontis, K.; Erfani, R.

    2016-09-01

    Due to the more stringent aviation regulations on fuel consumption and noise reduction, the interest for smaller and mechanically less complex devices for flow separation control has increased. Plasma actuators are currently among the most studied typology of devices for active flow control purposes due to their small size and lightweight. In this study, a single dielectric barrier discharge (SDBD) actuator is used on a backward-facing step to assess its effects on the separated turbulent shear layer and its reattachment location. A range of actuating modulation frequencies, related to the natural frequencies of shear layer instability (flapping) and vortex shedding instability, are examined. The particle image velocimetry technique is used to analyse the flow over the step and the reattachment location. The bulk-flow experiments show negligible effects both on the shear layer and on the reattachment location for every frequency considered, and the actuator is not able to induce a sufficient velocity increase at the step separation point.

  11. Chord-wise Tip Actuation on Flexible Flapping Plates

    NASA Astrophysics Data System (ADS)

    Martin, Nathan; Gharib, Morteza

    2015-11-01

    The aerodynamic characteristics of low aspect ratio flapping plates are strongly influenced by the interaction between tip and edge vortices. This has led to the development of tip actuation mechanisms which bend the tip towards the root of the plate in the span-wise direction during oscillation to investigate its impact. In our current work, a tip actuation mechanism to bend a flat plate's two free corners towards one another in the chord-wise direction is developed using a shape memory alloy. The aerodynamic forces and resulting flow field are investigated from dynamically altering the tip chord-wise curvature while flapping. The frequency of oscillation, stroke angle, flexibility, and tip actuation timing are independently varied to determine their individual effects. These results will further the fundamental understanding of flapping wing aerodynamics. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE 1144469.

  12. Modeling, fabrication and testing of MEMS tunable inductors varied with piezoelectric actuators

    NASA Astrophysics Data System (ADS)

    Bedair, S. S.; Pulskamp, J. S.; Meyer, C. D.; Polcawich, R. G.; Kierzewski, I. M.

    2014-09-01

    Modeling, fabrication and measurements of tunable inductors are presented where inductance tuning is achieved through mechanical displacement, by piezoelectric actuation, of mutually-coupled coils. The modified Greenhouse method is utilized as a modeling tool to predict the inductance variations as a function of both translation and angular displacement, where coils and traces which are arbitrarily oriented with respect to one another are considered. The use of this modeling approach is verified through experimental results where electrical measurements of inductances are compared with the modeled inductances. The inductance model compares well with the measurements and within 10% of the measured inductance with a 3% mean error. In addition, the impact of the interconnect widths on tunable inductor performances is assessed for both negatively and positively coupled tunable inductor cases, where devices with interconnect widths ranging between 10 and 40 µm are considered. Tuning ratios as high as ~3.9:1 were measured for the negatively-coupled coil designs with 18 V actuation; this corresponds to minimum and maximum quality factors of 5.72 (at 4.05 GHz with a 2.80 nH inductance) and 14.91 (at 2.25 GHz with 10.86 nH inductance), respectively. For the positively coupled inductors, tuning ratios of ~1.2:1 resulted with inductance and peak quality factors of 7.70 nH and ~18 (3.69 GHz), respectively. With 18 V actuation, these values tune to 6.57 nH with a Q ~18 (4.46 GHz). Residual poling stress was found to limit the practical tuning ratio to ~1.8:1 for the negatively coupled coils.

  13. Flow control in low pressure turbine blades using plasma actuators

    NASA Astrophysics Data System (ADS)

    Ramakumar, Karthik

    2005-11-01

    An experimental study of plasma flow control actuators for flow separation control in low pressure turbine (LPT) blades is presented. The actuator arrangement consists of two copper strips separated by a dielectric medium with an input voltage of approximately 5kV and a frequency input varying from 3-5 kHz, creating a region of plasma used for boundary layer flow control. The effect of varying waveform on control efficacy is investigated using sine, square and saw tooth waveforms. The impact of duty cycle and forcing frequency on both displacement and momentum thickness are also examined. Boundary layer measurements are carried out using PIV while measurements of the wake downstream are performed using a 7-hole probe for Reynolds number ranging from 30,000 to 50,000. Separation is fully controlled in most configurations and boundary layer parameters reveal that the actuator entrains the free-stream flow at the actuator location and creates a region of high turbulence, essentially behaving similar to an active boundary layer trip. A small region of reversed flow near the surface indicates the presence of cross-stream vortical structures. The use of plasma synthetic jet actuators flow LPT flow control is also discussed.

  14. Development of a non-explosive release actuator using shape memory alloy wire.

    PubMed

    Yoo, Young Ik; Jeong, Ju Won; Lim, Jae Hyuk; Kim, Kyung-Won; Hwang, Do-Soon; Lee, Jung Ju

    2013-01-01

    We have developed a newly designed non-explosive release actuator that can replace currently used release devices. The release mechanism is based on a separation mechanism, which relies on segmented nuts and a shape memory alloy (SMA) wire trigger. A quite fast and simple trigger operation is made possible through the use of SMA wire. This actuator is designed to allow a high preload with low levels of shock for the solar arrays of medium-size satellites. After actuation, the proposed device can be easily and instantly reset. Neither replacement, nor refurbishment of any components is necessary. According to the results of a performance test, the release time, preload capacity, and maximum shock level are 50 ms, 15 kN, and 350 G, respectively. In order to increase the reliability of the actuator, more than ten sets of performance tests are conducted. In addition, the proposed release actuator is tested under thermal vacuum and extreme vibration environments. No degradation or damage was observed during the two environment tests, and the release actuator was able to operate successfully. Considering the test results as a whole, we conclude that the proposed non-explosive release actuator can be applied reliably to intermediate-size satellites to replace existing release systems.

  15. Lyapunov stable displacement-mode haptic manipulation of hydraulic actuators: theory and experiment

    NASA Astrophysics Data System (ADS)

    Zarei-nia, Kurosh; Sepehri, Nariman

    2012-09-01

    In this article, a stable control scheme is designed and experimentally evaluated for haptic-enabled teleoperated control of hydraulic actuators. At the actuator (slave) side, the controller allows the hydraulic actuator to have a stable position tracking. At the master side, the haptic device provides a kind of 'feel' of telepresence to the operator by creating a force that acts like a virtual spring, coupling the displacement of the haptic device to the displacement of the hydraulic actuator. In free motion, this virtual spring restricts the operator's hand to move fast when the slave manipulator is behind/ahead in terms of tracking the master manipulator's displacement. On the other hand, when interacting with the environment, the constrained force imposed on the hydraulic actuator is indirectly reflected through this virtual spring force. Extension of Lyapunov's stability theory to non-smooth systems is first employed to prove the stability of the resulting control system. Effectiveness of the controller is then validated via experimental studies. It is shown that the control scheme performs well in terms of both positioning the hydraulic actuator and providing a haptic feel to the operator. The control scheme is easy to implement since very little knowledge about system parameters is needed and the required on-line measurements are actuator's supply and line pressures and displacement.

  16. Improving dry carbon nanotube actuators by chemical modifications, material hybridization, and proper engineering

    NASA Astrophysics Data System (ADS)

    Biso, Maurizio; Ansaldo, Alberto; Ricci, Davide

    2013-04-01

    Low voltage, dry electrochemical actuators can be prepared by using a gel made of carbon nanotubes and ionic liquid.1 Their performance can be significantly improved by combining physical and chemical modifications with a proper engineering. We demonstrated that multi walled carbon nanotubes can be effectively used for actuators preparation;2 we achieved interesting performance improvements by chemically cross linking carbon nanotubes using both aromatic and aliphatic diamines;3 we introduced a novel hybrid material, made by in-situ chemical polymerization of pyrrole on carbon nanotubes, that further boosts actuation by taking advantage of the peculiar properties of both materials in terms of maximum strain and conductivity;4 we investigated the influence of actuator thickness showing that the generated strain at high frequency is strongly enhanced when thickness is reduced. To overcome limitations set by bimorphs, we designed a novel actuator in which a metal spring, embedded in the solid electrolyte of a bimorph device, is used as a non-actuating counter plate resulting in a three electrode device capable of both linear and bending motion. Finally, we propose a way to model actuators performance in terms of purely material-dependent parameters instead of geometry-dependent ones.5

  17. Impact of oral fluid collection device on cannabinoid stability following smoked cannabis.

    PubMed

    Anizan, Sébastien; Bergamaschi, Mateus M; Barnes, Allan J; Milman, Garry; Desrosiers, Nathalie; Lee, Dayong; Gorelick, David A; Huestis, Marilyn A

    2015-02-01

    Evaluation of cannabinoid stability in authentic oral fluid (OF) is critical, as most OF stability studies employed fortified or synthetic OF. Participants (n = 16) smoked a 6.8% delta-9-tetrahydrocannabinol (THC) cigarette, and baseline concentrations of THC, 11-nor-9-carboxy-THC (THCCOOH), cannabidiol (CBD), and cannabinol (CBN) were determined within 24 h in 16 separate pooled samples (collected 1 h before to 10.5 or 13 h after smoking). OF was collected with the StatSure Saliva Sampler™ and Oral-Eze® devices. Oral-Eze samples were re-analyzed after room temperature (RT) storage for 1 week, and for both devices after 4 °C for 1 and 4 weeks, and -20 °C for 4 and 24 weeks. Concentrations ±20% from initial concentrations were considered stable. With the StatSure device, all cannabinoids were within 80-120% median %baseline for all storage conditions. Individual THC, CBD, CBN and THCCOOH pool concentrations were stable in 100%, 100%, 80-94% and >85%, respectively, across storage conditions. With the Oral-Eze device, at RT or refrigerated storage (for 1 and 4 weeks), THC, CBD and THCCOOH were stable in 94-100%, 78-89%, and 93-100% of samples, respectively, while CBN concentrations were 53-79% stable. However, after 24 weeks at -20 °C, stability decreased, especially for CBD, with a median of 56% stability. Overall, the collection devices' elution/stabilizing buffers provided good stability for OF cannabinoids, with the exception of the more labile CBN. To ensure OF cannabinoid concentration accuracy, these data suggest analysis within 4 weeks at 4 °C storage for Oral-Eze collection and within 4 weeks at 4 °C or 24 weeks at -20 °C for StatSure collection. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  18. Electrostatic actuation and electromechanical switching behavior of one-dimensional nanostructures.

    PubMed

    Subramanian, Arunkumar; Alt, Andreas R; Dong, Lixin; Kratochvil, Bradley E; Bolognesi, Colombo R; Nelson, Bradley J

    2009-10-27

    We report on the electromechanical actuation and switching performance of nanoconstructs involving doubly clamped, individual multiwalled carbon nanotubes. Batch-fabricated, three-state switches with low ON-state voltages (6.7 V average) are demonstrated. A nanoassembly architecture that permits individual probing of one device at a time without crosstalk from other nanotubes, which are originally assembled in parallel, is presented. Experimental investigations into device performance metrics such as hysteresis, repeatability and failure modes are presented. Furthermore, current-driven shell etching is demonstrated as a tool to tune the nanomechanical clamping configuration, stiffness, and actuation voltage of fabricated devices. Computational models, which take into account the nonlinearities induced by stress-stiffening of 1-D nanowires at large deformations, are presented. Apart from providing accurate estimates of device performance, these models provide new insights into the extension of stable travel range in electrostatically actuated nanowire-based constructs as compared to their microscale counterparts.

  19. Comparison of impact force attenuation by various combinations of hip protector and flooring material using a simplified fall-impact simulation device.

    PubMed

    Li, Ning; Tsushima, Eiki; Tsushima, Hitoshi

    2013-04-05

    Use of hip protectors and compliant flooring has been recommended for preventing hip fracture due to falls. We aimed to identify the factors attenuating forces in falls by comparing and analyzing the impact forces occurring with various combinations of hip protectors and flooring materials. We designed a simplified pendulum device to simulate the impact force at the hip during falling. The impact force was measured on pressure-sensitive recording film under combined conditions of two kinds of hip protector (hard or soft shell) and three kinds of floor material (concrete, wooden, or tatami matting). We then calculated the percentage force attenuation under each test condition compared with the use of a concrete floor and no hip protector. All the tests using tatami matting reduced the impact to below the average fracture threshold of elderly people (3472N). A combination of tatami and soft hip protector provided the best attenuation (72.5%). Multiple regression analyses showed that use of tatami matting and a soft hip protector had the biggest force-attenuation effect. The soft hip protector gave better percentage force attenuation than did the hard one. Use of tatami matting as a flooring material could be an effective strategy for helping prevent hip fractures.

  20. Optimal Control of Shock Wave Turbulent Boundary Layer Interactions Using Micro-Array Actuation

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.; Tinapple, Jon; Surber, Lewis

    2006-01-01

    The intent of this study on micro-array flow control is to demonstrate the viability and economy of Response Surface Methodology (RSM) to determine optimal designs of micro-array actuation for controlling the shock wave turbulent boundary layer interactions within supersonic inlets and compare these concepts to conventional bleed performance. The term micro-array refers to micro-actuator arrays which have heights of 25 to 40 percent of the undisturbed supersonic boundary layer thickness. This study covers optimal control of shock wave turbulent boundary layer interactions using standard micro-vane, tapered micro-vane, and standard micro-ramp arrays at a free stream Mach number of 2.0. The effectiveness of the three micro-array devices was tested using a shock pressure rise induced by the 10 shock generator, which was sufficiently strong as to separate the turbulent supersonic boundary layer. The overall design purpose of the micro-arrays was to alter the properties of the supersonic boundary layer by introducing a cascade of counter-rotating micro-vortices in the near wall region. In this manner, the impact of the shock wave boundary layer (SWBL) interaction on the main flow field was minimized without boundary bleed.