Science.gov

Sample records for actuated mems scanning

  1. Wide-Angle-Scanning Reflectarray Antennas Actuated by MEMS

    NASA Technical Reports Server (NTRS)

    Fang, Houfei; Huang, John; Thomson, Mark W.

    2009-01-01

    An effort to develop large-aperture, wide-angle-scanning reflectarray antennas for microwave radar and communication systems is underway. In an antenna of this type as envisioned, scanning of the radiated or incident microwave beam would be effected through mechanical rotation of the passive (reflective) patch antenna elements, using microelectromechanical systems (MEMS) stepping rotary actuators typified by piezoelectric micromotors. It is anticipated that the cost, mass, and complexity of such an antenna would be less than, and the reliability greater than, those of an electronically scanned phased-array antenna of comparable beam-scanning capability and angular resolution. In the design and operation of a reflectarray, one seeks to position and orient an array of passive patch elements in a geometric pattern such that, through constructive interference of the reflections from them, they collectively act as an efficient single reflector of radio waves within a desired frequency band. Typically, the patches lie in a common plane and radiation is incident upon them from a feed horn.

  2. Model-Based Angular Scan Error Correction of an Electrothermally-Actuated MEMS Mirror

    PubMed Central

    Zhang, Hao; Xu, Dacheng; Zhang, Xiaoyang; Chen, Qiao; Xie, Huikai; Li, Suiqiong

    2015-01-01

    In this paper, the actuation behavior of a two-axis electrothermal MEMS (Microelectromechanical Systems) mirror typically used in miniature optical scanning probes and optical switches is investigated. The MEMS mirror consists of four thermal bimorph actuators symmetrically located at the four sides of a central mirror plate. Experiments show that an actuation characteristics difference of as much as 4.0% exists among the four actuators due to process variations, which leads to an average angular scan error of 0.03°. A mathematical model between the actuator input voltage and the mirror-plate position has been developed to predict the actuation behavior of the mirror. It is a four-input, four-output model that takes into account the thermal-mechanical coupling and the differences among the four actuators; the vertical positions of the ends of the four actuators are also monitored. Based on this model, an open-loop control method is established to achieve accurate angular scanning. This model-based open loop control has been experimentally verified and is useful for the accurate control of the mirror. With this control method, the precise actuation of the mirror solely depends on the model prediction and does not need the real-time mirror position monitoring and feedback, greatly simplifying the MEMS control system. PMID:26690432

  3. Model-Based Angular Scan Error Correction of an Electrothermally-Actuated MEMS Mirror.

    PubMed

    Zhang, Hao; Xu, Dacheng; Zhang, Xiaoyang; Chen, Qiao; Xie, Huikai; Li, Suiqiong

    2015-01-01

    In this paper, the actuation behavior of a two-axis electrothermal MEMS (Microelectromechanical Systems) mirror typically used in miniature optical scanning probes and optical switches is investigated. The MEMS mirror consists of four thermal bimorph actuators symmetrically located at the four sides of a central mirror plate. Experiments show that an actuation characteristics difference of as much as 4.0% exists among the four actuators due to process variations, which leads to an average angular scan error of 0.03°. A mathematical model between the actuator input voltage and the mirror-plate position has been developed to predict the actuation behavior of the mirror. It is a four-input, four-output model that takes into account the thermal-mechanical coupling and the differences among the four actuators; the vertical positions of the ends of the four actuators are also monitored. Based on this model, an open-loop control method is established to achieve accurate angular scanning. This model-based open loop control has been experimentally verified and is useful for the accurate control of the mirror. With this control method, the precise actuation of the mirror solely depends on the model prediction and does not need the real-time mirror position monitoring and feedback, greatly simplifying the MEMS control system. PMID:26690432

  4. Dynamic focus-tracking MEMS scanning micromirror with low actuation voltages for endoscopic imaging

    PubMed Central

    Strathman, Matthew; Liu, Yunbo; Li, Xingde; Lin, Lih Y.

    2013-01-01

    We demonstrate a 3-D scanning micromirror device that combines 2-D beam scanning with focus control in the same device using micro-electro-mechanical-systems (MEMS) technology. 2-D beam scanning is achieved with a biaxial gimbal structure and focus control is obtained with a deformable mirror membrane surface. The micromirror with 800 micrometer diameter is designed to be sufficiently compact and efficient so that it can be incorporated into an endoscopic imaging probe in the future. The design, fabrication and characterization of the device are described in this paper. Using the focus-tracking MEMS scanning mirror, we achieved an optical scanning range of >16 degrees with <40 V actuation voltage at resonance and a tunable focal length between infinity and 25 mm with <100V applied bias. PMID:24104304

  5. Dynamic focus-tracking MEMS scanning micromirror with low actuation voltages for endoscopic imaging.

    PubMed

    Strathman, Matthew; Liu, Yunbo; Li, Xingde; Lin, Lih Y

    2013-10-01

    We demonstrate a 3-D scanning micromirror device that combines 2-D beam scanning with focus control in the same device using micro-electro-mechanical-systems (MEMS) technology. 2-D beam scanning is achieved with a biaxial gimbal structure and focus control is obtained with a deformable mirror membrane surface. The micromirror with 800 micrometer diameter is designed to be sufficiently compact and efficient so that it can be incorporated into an endoscopic imaging probe in the future. The design, fabrication and characterization of the device are described in this paper. Using the focus-tracking MEMS scanning mirror, we achieved an optical scanning range of >16 degrees with <40 V actuation voltage at resonance and a tunable focal length between infinity and 25 mm with <100V applied bias. PMID:24104304

  6. High-speed and large-scale electromagnetically actuated MEMS scanning-mirror

    NASA Astrophysics Data System (ADS)

    Mu, Canjun; Zhang, Feiling; Wu, Yaming

    2008-03-01

    Large-scale micro-electromechanical systems (MEMS) scanning mirrors play a primary role in many fields of manipulating light beam scanning, such as rapid optical spectrum analyzers (OSAs) based on dispersive gratings using in near infrared (NIR) region. According to the applications, a high speed electromagnetically actuated MEMS scanning mirror with large mirror area of 9×6mm2 has been developed. The MEMS scanning mirror chip, which is fabricated using bulk silicon micromachining process and electroplating technique, is immersed in a constant 365 mT magnetic field parallel to the coil plane and generates the maximum optical deflection angle of +/-11.15° at the 1.39 kHz resonant frequency. The quality factor, Q, of 77 is achieved in air corresponding to a low power consumption of 102.6 mW. In addition, the surface roughness of less than 20nm for scanning mirror has been measured and the optical reflectivity at the wavelength of 1550nm is high up to 87%. The results show that the device is adequate for mm-sized scanning systems and compatible with smart OSAs applications.

  7. MEMS fluidic actuator

    DOEpatents

    Kholwadwala, Deepesh K.; Johnston, Gabriel A.; Rohrer, Brandon R.; Galambos, Paul C.; Okandan, Murat

    2007-07-24

    The present invention comprises a novel, lightweight, massively parallel device comprising microelectromechanical (MEMS) fluidic actuators, to reconfigure the profile, of a surface. Each microfluidic actuator comprises an independent bladder that can act as both a sensor and an actuator. A MEMS sensor, and a MEMS valve within each microfluidic actuator, operate cooperatively to monitor the fluid within each bladder, and regulate the flow of the fluid entering and exiting each bladder. When adjacently spaced in a array, microfluidic actuators can create arbitrary surface profiles in response to a change in the operating environment of the surface. In an embodiment of the invention, the profile of an airfoil is controlled by independent extension and contraction of a plurality of actuators, that operate to displace a compliant cover.

  8. MEMS Actuated Deformable Mirror

    SciTech Connect

    Papavasiliou, A; Olivier, S; Barbee, T; Walton, C; Cohn, M

    2005-11-10

    This ongoing work concerns the creation of a deformable mirror by the integration of MEMS actuators with Nanolaminate foils through metal compression boning. These mirrors will use the advantages of these disparate technologies to achieve dense actuation of a high-quality, continuous mirror surface. They will enable advanced adaptive optics systems in large terrestrial telescopes. While MEMS actuators provide very dense actuation with high precision they can not provide large forces typically necessary to deform conventional mirror surfaces. Nanolaminate foils can be fabricated with very high surface quality while their extraordinary mechanical properties enable very thin, flexible foils to survive the rigors of fabrication. Precise metal compression bonding allows the attachment of the fragile MEMS actuators to the thin nanolaminate foils without creating distortions at the bond sites. This paper will describe work in four major areas: (1) modeling and design, (2) bonding development, (3) nanolaminate foil development, (4) producing a prototype. A first-principles analytical model was created and used to determine the design parameters. A method of bonding was determined that is both strong, and minimizes the localized deformation or print through. Work has also been done to produce nanolaminate foils that are sufficiently thin, flexible and flat to be deformed by the MEMS actuators. Finally a prototype was produced by bonding thin, flexible nanolaminate foils to commercially available MEMS actuators.

  9. A large-scan-angle piezoelectric MEMS optical scanner actuated by a Nb-doped PZT thin film

    NASA Astrophysics Data System (ADS)

    Naono, Takayuki; Fujii, Takamichi; Esashi, Masayoshi; Tanaka, Shuji

    2014-01-01

    Resonant 1D microelectromechanical systems (MEMS) optical scanners actuated by piezoelectric unimorph actuators with a Nb-doped lead zirconate titanate (PNZT) thin film were developed for endoscopic optical coherence tomography (OCT) application. The MEMS scanners were designed as the resonance frequency was less than 125 Hz to obtain enough pixels per frame in OCT images. The device size was within 3.4 mm × 2.5 mm, which is compact enough to be installed in a side-imaging probe with 4 mm inner diameter. The fabrication process started with a silicon-on-insulator wafer, followed by PNZT deposition by the Rf sputtering and Si bulk micromachining process. The fabricated MEMS scanners showed maximum optical scan angles of 146° at 90 Hz, 148° at 124 Hz, 162° at 180 Hz, and 152° at 394 Hz at resonance in atmospheric pressure. Such wide scan angles were obtained by a drive voltage below 1.3 Vpp, ensuring intrinsic safety in in vivo uses. The scanner with the unpoled PNZT film showed three times as large a scan angle as that with a poled PZT films. A swept-source OCT system was constructed using the fabricated MEMS scanner, and cross-sectional images of a fingertip with image widths of 4.6 and 2.3 mm were acquired. In addition, a PNZT-based angle sensor was studied for feedback operation.

  10. Microelectromechanical (MEM) thermal actuator

    DOEpatents

    Garcia, Ernest J.; Fulcher, Clay W. G.

    2012-07-31

    Microelectromechanical (MEM) buckling beam thermal actuators are disclosed wherein the buckling direction of a beam is constrained to a desired direction of actuation, which can be in-plane or out-of-plane with respect to a support substrate. The actuators comprise as-fabricated, linear beams of uniform cross section supported above the substrate by supports which rigidly attach a beam to the substrate. The beams can be heated by methods including the passage of an electrical current through them. The buckling direction of an initially straight beam upon heating and expansion is controlled by incorporating one or more directional constraints attached to the substrate and proximal to the mid-point of the beam. In the event that the beam initially buckles in an undesired direction, deformation of the beam induced by contact with a directional constraint generates an opposing force to re-direct the buckling beam into the desired direction. The displacement and force generated by the movement of the buckling beam can be harnessed to perform useful work, such as closing contacts in an electrical switch.

  11. Microelectromechanical Systems (MEMS) Actuators for Antenna Reconfigurability

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Chun, Donghoon; Katehi, Linda P. B.

    2001-01-01

    A novel microelectromechanical systems (MEMS) actuator for patch antenna reconfiguration, is presented for the first time. A key feature is the capability of multi-band operation without greatly increasing the antenna element dimensions. Experimental results demonstrate that the center frequency can be reconfigured from few hundred MHz to few GHz away from the nominal operating frequency.

  12. Hydraulically amplified PZT mems actuator

    DOEpatents

    Miles, Robin R.

    2004-11-02

    A hydraulically amplified microelectromechanical systems actuator. A piece of piezoelectric material or stacked piezo bimorph is bonded or deposited as a thin film. The piece is operatively connected to a primary membrane. A reservoir is operatively connected to the primary membrane. The reservoir contains a fluid. A membrane is operatively connected to the reservoir. In operation, energizing the piezoelectric material causing the piezoelectric material to bow. Bowing of the piezoelectric material causes movement of the primary membrane. Movement of the primary membrane results in a force in being transmitted to the liquid in the reservoir. The force in the liquid causes movement of the membrane. Movement of the membrane results in an operating actuator.

  13. MEMS Actuators for Improved Performance and Durability

    NASA Astrophysics Data System (ADS)

    Yearsley, James M.

    Micro-ElectroMechanical Systems (MEMS) devices take advantage of force-scaling at length scales smaller than a millimeter to sense and interact with directly with phenomena and targets at the microscale. MEMS sensors found in everyday devices like cell-phones and cars include accelerometers, gyros, pressure sensors, and magnetic sensors. MEMS actuators generally serve more application specific roles including micro- and nano-tweezers used for single cell manipulation, optical switching and alignment components, and micro combustion engines for high energy density power generation. MEMS rotary motors are actuators that translate an electric drive signal into rotational motion and can serve as rate calibration inputs for gyros, stages for optical components, mixing devices for micro-fluidics, etc. Existing rotary micromotors suffer from friction and wear issues that affect lifetime and performance. Attempts to alleviate friction effects include surface treatment, magnetic and electrostatic levitation, pressurized gas bearings, and micro-ball bearings. The present work demonstrates a droplet based liquid bearing supporting a rotary micromotor that improves the operating characteristics of MEMS rotary motors. The liquid bearing provides wear-free, low-friction, passive alignment between the rotor and stator. Droplets are positioned relative to the rotor and stator through patterned superhydrophobic and hydrophilic surface coatings. The liquid bearing consists of a central droplet that acts as the motor shaft, providing axial alignment between rotor and stator, and satellite droplets, analogous to ball-bearings, that provide tip and tilt stable operation. The liquid bearing friction performance is characterized through measurement of the rotational drag coefficient and minimum starting torque due to stiction and geometric effects. Bearing operational performance is further characterized by modeling and measuring stiffness, environmental survivability, and high

  14. Polarization Reconfigurable Patch Antenna Using Microelectromechanical Systems (MEMS) Actuators

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Chun, Donghoon; Katehi, Linda P. B.

    2002-01-01

    The paper demonstrates a nearly square patch antenna integrated with a novel microelectromechanical systems (MEMS) actuator for reconfiguring the polarization. Experimental results demonstrate that at a fixed frequency, the polarization can be reconfigured, from circular to linear.

  15. Experimental investigation of resonant MEMS switch with ac actuation

    NASA Astrophysics Data System (ADS)

    Pal, Jitendra; Zhu, Yong; Wang, Boyi; Lu, Junwei; Khan, Fahimullah; Viet Dao, Dzung; Wang, Yifan

    2016-06-01

    In this letter, modeling, analysis, and experimental investigation for a resonant MEMS switch are presented. The resonant switch harnesses its mechanical resonance to lower the required actuation voltage by a substantial factor over the switch with static actuation. With alternating actuation voltage at its mechanical resonance frequency of 6.6 kHz, the average capacitance is tuned by changing the gap between fixed and movable electrodes. Based on the proposed actuation method, the device offers 57.44% lower actuation voltage compared with the switch with static actuation.

  16. Scanning and rotating micromirrors using thermal actuators

    NASA Astrophysics Data System (ADS)

    Butler, Jeffrey T.; Bright, Victor M.; Reid, J. Robert

    1997-07-01

    This paper reports on micromachined polysilicon scanning and rotating micromirrors and the development of a CMOS drive system. The micromirrors described in this research were developed at the Air Force Institute of Technology and fabricated using the DARPA-sponsored multi-user MEMS processes (MUMPs). The scanning micromirror is connected to the substrate using micro-hinges. This allows the mirror plate to rotate off the substrate surface and lock into a support mechanism. The angle between the scanning mirror and the substrate is modulated by driving the mirror with a thermal actuator array through a range of 20 degrees. For the rotating mirror, the mirror plate is attached to the substrate by three floating substrate hinges connected to a rotating base. Actuator arrays are also used to position the rotating mirror. A computer controlled electrical interface was developed which automates the positioning of both the scanning and rotating mirrors. The low operating voltages of the micromirror positioning mechanism makes the use of CMOS technology attractive; and the development of a digital interface allows for flexible operation of the devices. These designs are well suited for micro-optical applications such as optical scanners, corner cube reflectors, and optical couplers where electrical positioning of a mirror is desired.

  17. Stability, Nonlinearity and Reliability of Electrostatically Actuated MEMS Devices

    PubMed Central

    Zhang, Wen-Ming; Meng, Guang; Chen, Di

    2007-01-01

    Electrostatic micro-electro-mechanical system (MEMS) is a special branch with a wide range of applications in sensing and actuating devices in MEMS. This paper provides a survey and analysis of the electrostatic force of importance in MEMS, its physical model, scaling effect, stability, nonlinearity and reliability in detail. It is necessary to understand the effects of electrostatic forces in MEMS and then many phenomena of practical importance, such as pull-in instability and the effects of effective stiffness, dielectric charging, stress gradient, temperature on the pull-in voltage, nonlinear dynamic effects and reliability due to electrostatic forces occurred in MEMS can be explained scientifically, and consequently the great potential of MEMS technology could be explored effectively and utilized optimally. A simplified parallel-plate capacitor model is proposed to investigate the resonance response, inherent nonlinearity, stiffness softened effect and coupled nonlinear effect of the typical electrostatically actuated MEMS devices. Many failure modes and mechanisms and various methods and techniques, including materials selection, reasonable design and extending the controllable travel range used to analyze and reduce the failures are discussed in the electrostatically actuated MEMS devices. Numerical simulations and discussions indicate that the effects of instability, nonlinear characteristics and reliability subjected to electrostatic forces cannot be ignored and are in need of further investigation.

  18. Damage of MEMS thermal actuators heated by laser irradiation.

    SciTech Connect

    Walraven, Jeremy Allen; Klody, Kelly Anne; Sackos, John T.; Phinney, Leslie Mary

    2004-11-01

    Optical actuation of microelectromechanical systems (MEMS) is advantageous for applications for which electrical isolation is desired. Thirty-two polycrystalline silicon opto-thermal actuators, optically-powered MEMS thermal actuators, were designed, fabricated, and tested. The design of the opto-thermal actuators consists of a target for laser illumination suspended between angled legs that expand when heated, providing the displacement and force output. While the amount of displacement observed for the opto-thermal actuators was fairly uniform for the actuators, the amount of damage resulting from the laser heating ranged from essentially no damage to significant amounts of damage on the target. The likelihood of damage depended on the target design with two of the four target designs being more susceptible to damage. Failure analysis of damaged targets revealed the extent and depth of the damage.

  19. Damage of MEMS thermal actuators heated by laser irradiation.

    SciTech Connect

    Walraven, Jeremy Allen; Klody, Kelly Anne; Sackos, John T.; Phinney, Leslie Mary

    2005-01-01

    Optical actuation of microelectromechanical systems (MEMS) is advantageous for applications for which electrical isolation is desired. Thirty-two polycrystalline silicon opto-thermal actuators, optically-powered MEMS thermal actuators, were designed, fabricated, and tested. The design of the opto-thermal actuators consists of a target for laser illumination suspended between angled legs that expand when heated, providing the displacement and force output. While the amount of displacement observed for the opto-thermal actuators was fairly uniform for the actuators, the amount of damage resulting from the laser heating ranged from essentially no damage to significant amounts of damage on the target. The likelihood of damage depended on the target design with two of the four target designs being more susceptible to damage. Failure analysis of damaged targets revealed the extent and depth of the damage.

  20. MEMS scanning micromirror for optical coherence tomography

    PubMed Central

    Strathman, Matthew; Liu, Yunbo; Keeler, Ethan G.; Song, Mingli; Baran, Utku; Xi, Jiefeng; Sun, Ming-Ting; Wang, Ruikang; Li, Xingde; Lin, Lih Y.

    2014-01-01

    This paper describes an endoscopic-inspired imaging system employing a micro-electromechanical system (MEMS) micromirror scanner to achieve beam scanning for optical coherence tomography (OCT) imaging. Miniaturization of a scanning mirror using MEMS technology can allow a fully functional imaging probe to be contained in a package sufficiently small for utilization in a working channel of a standard gastroesophageal endoscope. This work employs advanced image processing techniques to enhance the images acquired using the MEMS scanner to correct non-idealities in mirror performance. The experimental results demonstrate the effectiveness of the proposed technique. PMID:25657887

  1. Frequency-dependent electrostatic actuation in microfluidic MEMS.

    SciTech Connect

    Zavadil, Kevin Robert; Michalske, Terry A.; Sounart, Thomas L.

    2003-09-01

    Electrostatic actuators exhibit fast response times and are easily integrated into microsystems because they can be fabricated with standard IC micromachining processes and materials. Although electrostatic actuators have been used extensively in 'dry' MEMS, they have received less attention in microfluidic systems probably because of challenges such as electrolysis, anodization, and electrode polarization. Here we demonstrate that ac drive signals can be used to prevent electrode polarization, and thus enable electrostatic actuation in many liquids, at potentials low enough to avoid electrochemistry. We measure the frequency response of an interdigitated silicon comb-drive actuator in liquids spanning a decade of dielectric permittivities and four decades of conductivity, and present a simple theory that predicts the characteristic actuation frequency. The analysis demonstrates the importance of the native oxide on silicon actuator response, and suggests that the actuation frequency can be shifted by controlling the thickness of the oxide. For native silicon devices, actuation is predicted at frequencies less than 10 MHz, in electrolytes of ionic strength up to 100 mmol/L, and thus electrostatic actuation may be feasible in many bioMEMS and other microfluidic applications.

  2. Microelectromechanical Systems (MEMS) Actuator for Reconfigurable Patch Antenna Demonstrated

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.

    2001-01-01

    A microstrip patch antenna with two contact actuators along the radiating edges for frequency reconfiguration was demonstrated at K-band frequencies. The layout of the antenna is shown in the following figure. This antenna has the following advantages over conventional semiconductor varactor-diode-tuned patch antennas: 1. By eliminating the semiconductor diode and its nonlinear I-V characteristics, the antenna minimizes intermodulation signal distortion. This is particularly important in digital wireless systems, which are sensitive to intersymbol interference caused by intermodulation products. 2. Because the MEMS actuator is an electrostatic device, it does not draw any current during operation and, hence, requires a negligible amount of power for actuation. This is an important advantage for hand-held, battery-operated, portable wireless systems since the battery does not need to be charged frequently. 3. The MEMS actuator does not require any special epitaxial layers as in the case of diodes and, hence, is cost effective.

  3. Final report : compliant thermo-mechanical MEMS actuators, LDRD #52553.

    SciTech Connect

    Walraven, Jeremy Allen; Baker, Michael Sean; Headley, Thomas Jeffrey; Plass, Richard Anton

    2004-12-01

    Thermal actuators have proven to be a robust actuation method in surface-micromachined MEMS processes. Their higher output force and lower input voltage make them an attractive alternative to more traditional electrostatic actuation methods. A predictive model of thermal actuator behavior has been developed and validated that can be used as a design tool to customize the performance of an actuator to a specific application. This tool has also been used to better understand thermal actuator reliability by comparing the maximum actuator temperature to the measured lifetime. Modeling thermal actuator behavior requires the use of two sequentially coupled models, the first to predict the temperature increase of the actuator due to the applied current and the second to model the mechanical response of the structure due to the increase in temperature. These two models have been developed using Matlab for the thermal response and ANSYS for the structural response. Both models have been shown to agree well with experimental data. In a parallel effort, the reliability and failure mechanisms of thermal actuators have been studied. Their response to electrical overstress and electrostatic discharge has been measured and a study has been performed to determine actuator lifetime at various temperatures and operating conditions. The results from this study have been used to determine a maximum reliable operating temperature that, when used in conjunction with the predictive model, enables us to design in reliability and customize the performance of an actuator at the design stage.

  4. Reconfigurable Array Antenna Using Microelectromechanical Systems (MEMS) Actuators

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.; Chun, Donghoon; Katehi, Linda P. B.

    2001-01-01

    The paper demonstrates a patch antenna integrated with a novel microelectromechanical systems (MEMS) actuator for reconfiguring the operating frequency. Experimental results demonstrate that the center frequency can be reconfigured by as much as 1.6 percent of the nominal operating frequency at K-Band In addition, a novel on-wafer antenna pattern measurement technique is demonstrated.

  5. A novel multi-actuation CMOS RF MEMS switch

    NASA Astrophysics Data System (ADS)

    Lee, Chiung-I.; Ko, Chih-Hsiang; Huang, Tsun-Che

    2008-12-01

    This paper demonstrates a capacitive shunt type RF MEMS switch, which is actuated by electro-thermal actuator and electrostatic actuator at the same time, and than latching the switching status by electrostatic force only. Since thermal actuators need relative low voltage compare to electrostatic actuators, and electrostatic force needs almost no power to maintain the switching status, the benefits of the mechanism are very low actuation voltage and low power consumption. Moreover, the RF MEMS switch has considered issues for integrated circuit compatible in design phase. So the switch is fabricated by a standard 0.35um 2P4M CMOS process and uses wet etching and dry etching technologies for postprocess. This compatible ability is important because the RF characteristics are not only related to the device itself. If a packaged RF switch and a packaged IC wired together, the parasitic capacitance will cause the problem for optimization. The structure of the switch consists of a set of CPW transmission lines and a suspended membrane. The CPW lines and the membrane are in metal layers of CMOS process. Besides, the electro-thermal actuators are designed by polysilicon layer of the CMOS process. So the RF switch is only CMOS process layers needed for both electro-thermal and electrostatic actuations in switch. The thermal actuator is composed of a three-dimensional membrane and two heaters. The membrane is a stacked step structure including two metal layers in CMOS process, and heat is generated by poly silicon resistors near the anchors of membrane. Measured results show that the actuation voltage of the switch is under 7V for electro-thermal added electrostatic actuation.

  6. Resonant biaxial 7-mm MEMS mirror for omnidirectional scanning

    NASA Astrophysics Data System (ADS)

    Hofmann, U.; Aikio, M.; Janes, J.; Senger, F.; Stenchly, V.; Weiss, M.; Quenzer, H.-J.; Wagner, B.; Benecke, W.

    2013-03-01

    Low-cost automotive laser scanners for environment perception are needed to enable the integration of advanced driver assistant systems (ADAS) into all automotive vehicle segments, a key to reducing the number of traffic accidents on roads. An omnidirectional 360 degree laser scanning concept has been developed based on combination of an omnidirectional lens and a biaxial large aperture MEMS mirror. This omnidirectional scanning concept is the core of a small sized low-cost time-of-flight based range sensor development. This paper describes concept, design, fabrication and first measurement results of a resonant biaxial 7mm gimbal-less MEMS mirror that is electrostatically actuated by stacked vertical comb drives. Identical frequencies of the two resonant axes are necessary to enable the required circle scanning capability. A tripod suspension was chosen since it allows minimizing the frequency splitting of the two resonant axes. Low mirror curvature is achieved by a thickness of the mirror of more than 500 μm. Hermetic wafer level vacuum packaging of such large mirrors based on multiple wafer bonding has been developed to enable to achieve a large mechanical tilt angle of +/- 6.5 degrees in each axis. The 7mm-MEMS mirror demonstrates large angle circular scanning at 1.5kHz.

  7. MEMS Electrostatic Actuation in Conducting Biological Media

    PubMed Central

    Mukundan, Vikram; Pruitt, Beth L.

    2009-01-01

    We present design and experimental implementation of electrostatic comb-drive actuators in solutions of high conductivity relevant for biological cells. The actuators are operated in the frequency range 1–10 MHz in ionic and biological cell culture media, with ionic strengths up to 150 mMoles/L. Typical displacement is 3.5 μm at an applied peak-to-peak signal of 5V. Two different actuation schemes are presented and tested for performance at high frequency. A differential drive design is demonstrated to overcome the attenuation due to losses in parasitic impedances. The frequency dependence of the electrostatic force has been characterized in media of different ionic strengths. Circuit models for the electric double layer phenomena are used to understand and predict the actuator behavior. The actuator is integrated into a planar force sensing system to measure the stiffness of cells cultured on suspended structures. PMID:20161046

  8. Performance analysis of two high actuator count MEMS deformable mirrors

    NASA Astrophysics Data System (ADS)

    Ryan, Peter J.; Cornelissen, Steven A.; Lam, Charlie V.; Bierden, Paul A.

    2013-03-01

    Two new MEMS deformable mirrors have been designed and fabricated, one having a continuous facesheet with an active aperture of 20mm and 2040 actuators and the other, a similarly sized segmented tip tilt piston DM containing 1021 elements and 3063 actuators. The surface figures, electro mechanical performances, and actuator yield of these devices, with statistical information, are reported here. The statistical distributions of these measurements directly illustrate the surface variance of Boston Micromachines deformable mirrors. Measurements of the surface figure were also performed with the elements at different actuation states. Also presented here are deviations of the surface figure under actuation versus at its rest state, the electromechanical distribution, and a dynamic analysis.

  9. Comprehensive modeling of electrostatically actuated MEMS beams including uncertainty quantification

    NASA Astrophysics Data System (ADS)

    Snow, Michael G.

    MEMS switches have offered dramatic improvements in the performance of RF systems. However, difficulties with reliability has slowed the adoption of MEMS switches in RF systems. These reliability issues are partly due to the poor manufacturing tolerances endemic to MEMS manufacturing processes. These manufacturing tolerances may cause significant variations in performance characteristics. This work focuses on electrostatically actuated MEMS beam capacitive shunt switches. A non-linear dynamic model for these switches was developed. The model accounts for a variety of physical effects including; beam stretching, residual stress, non-rigid boundary conditions, initial curvature, electrostatic fringing field, finite electrodes, squeeze film damping, and distributed contact. The effects of uncertain parameters on the outputs of the model are discovered through response surface based uncertainty quantification techniques. The model accurately predicts the actuation voltages and switching times of these MEMS switches as well as the effects of uncertain parameters. The derived model is widely applicable and accuratly reproduces the results of other models in the literature. Future researchers will be able to rapidly iterate designs and accurately understand the behavior of these switches.

  10. On electrostatically actuated NEMS/MEMS circular plates

    NASA Astrophysics Data System (ADS)

    Caruntu, Dumitru I.; Alvarado, Iris

    2011-04-01

    This paper deals with electrostatically actuated micro and nano-electromechanical (MEMS/NEMS) circular plates. The system under investigation consists of two bodies, a deformable and conductive circular plate placed above a fixed, rigid and conductive ground plate. The deformable circular plate is electrostatically actuated by applying an AC voltage between the two plates. Nonlinear parametric resonance and pull-in occur at certain frequencies and relatively large AC voltage, respectively. Such phenomena are useful for applications such as sensors, actuators, switches, micro-pumps, micro-tweezers, chemical and mass sensing, and micro-mirrors. A mathematical model of clamped circular MEMS/NEMS electrostatically actuated plates has been developed. Since the model is in the micro- and nano-scale, surface forces, van der Waals and/or Casimir, acting on the plate are included. A perturbation method, the Method of Multiple Scales (MMS), is used for investigating the case of weakly nonlinear MEMS/NEMS circular plates. Two time scales, fast and slow, are considered in this work. The amplitude-frequency and phase-frequency response of the plate in the case of primary resonance are obtained and discussed.

  11. Design and fabrication of a MEMS chevron-type thermal actuator

    SciTech Connect

    Baracu, Angela; Voicu, Rodica; Müller, Raluca; Avram, Andrei; Pustan, Marius Chiorean, Radu Birleanu, Corina Dudescu, Cristian

    2015-02-17

    This paper presents the design and fabrication of a MEMS chevron-type thermal actuator. The device was designed for fabrication in the standard MEMS technology, where the topography of the upper layers depends on the patterns of structural and sacrificial layers underneath. The proposed actuator presents some advantages over usual thermal vertical chevron actuators by means of low operating voltages, high output force and linear movement without deformation of the shaft. The device simulations were done using COVENTOR software. The movement obtained by simulation was 12 μm, for a voltage of 0.2 V and the current intensity of 257 mA. The design optimizes the in-plane displacement by fixed anchors and beam inclination angle. Heating is provided by Joule dissipation. The material used for manufacture of chevron-based actuator was aluminum due to its thermal and mechanical properties. The release of the movable part was performed using isotropic dry etching by Reactive Ion Etching (RIE). A first inspection was achieved using Scanning Electron Microscope (SEM). In order to obtain the in-plane displacement we carried out electrical measurements. The thermal actuator can be used for a variety of optical and microassembling applications. This kind of thermal actuator could be integrated easily with other micro devices since its fabrication is compatible with the general semiconductor processes.

  12. Simulating MEMS Chevron Actuator for Strain Engineering 2D Materials

    NASA Astrophysics Data System (ADS)

    Vutukuru, Mounika; Christopher, Jason; Bishop, David; Swan, Anna

    2D materials pose an exciting paradigm shift in the world of electronics. These crystalline materials have demonstrated high electric and thermal conductivities and tensile strength, showing great potential as the new building blocks of basic electronic circuits. However, strain engineering 2D materials for novel devices remains a difficult experimental feat. We propose the integration of 2D materials with MEMS devices to investigate the strain dependence on material properties such as electrical and thermal conductivity, refractive index, mechanical elasticity, and band gap. MEMS Chevron actuators, provides the most accessible framework to study strain in 2D materials due to their high output force displacements for low input power. Here, we simulate Chevron actuators on COMSOL to optimize actuator design parameters and accurately capture the behavior of the devices while under the external force of a 2D material. Through stationary state analysis, we analyze the response of the device through IV characteristics, displacement and temperature curves. We conclude that the simulation precisely models the real-world device through experimental confirmation, proving that the integration of 2D materials with MEMS is a viable option for constructing novel strain engineered devices. The authors acknowledge support from NSF DMR1411008.

  13. Aligning Optical Fibers by Means of Actuated MEMS Wedges

    NASA Technical Reports Server (NTRS)

    Morgan, Brian; Ghodssi, Reza

    2007-01-01

    Microelectromechanical systems (MEMS) of a proposed type would be designed and fabricated to effect lateral and vertical alignment of optical fibers with respect to optical, electro-optical, optoelectronic, and/or photonic devices on integrated circuit chips and similar monolithic device structures. A MEMS device of this type would consist of a pair of oppositely sloped alignment wedges attached to linear actuators that would translate the wedges in the plane of a substrate, causing an optical fiber in contact with the sloping wedge surfaces to undergo various displacements parallel and perpendicular to the plane. In making it possible to accurately align optical fibers individually during the packaging stages of fabrication of the affected devices, this MEMS device would also make it possible to relax tolerances in other stages of fabrication, thereby potentially reducing costs and increasing yields. In a typical system according to the proposal (see Figure 1), one or more pair(s) of alignment wedges would be positioned to create a V groove in which an optical fiber would rest. The fiber would be clamped at a suitable distance from the wedges to create a cantilever with a slight bend to push the free end of the fiber gently to the bottom of the V groove. The wedges would be translated in the substrate plane by amounts Dx1 and Dx2, respectively, which would be chosen to move the fiber parallel to the plane by a desired amount Dx and perpendicular to the plane by a desired amount Dy. The actuators used to translate the wedges could be variants of electrostatic or thermal actuators that are common in MEMS.

  14. A MEMS Electrochemical Bellows Actuator for Fluid Metering Applications

    PubMed Central

    Sheybani, Roya; Gensler, Heidi; Meng, Ellis

    2013-01-01

    We present a high efficiency wireless MEMS electrochemical bellows actuator capable of rapid and repeatable delivery of boluses for fluid metering and drug delivery applications. Nafion®-coated Pt electrodes were combined with Parylene bellows filled with DI water to form the electrolysis-based actuator. The performance of actuators with several bellows configurations was compared for a range of applied currents (1-10 mA). Up to 75 boluses were delivered with an average pumping flow rate of 114.40 ± 1.63 μL/min. Recombination of gases into water, an important factor in repeatable and reliable actuation, was studied for uncoated and Nafion®-coated actuators. Real-time pressure measurements were conducted and the effects of temperature, physiological back pressure, and drug viscosity on delivery performance were investigated. Lastly, we present wireless powering of the actuator using a class D inductive powering system that allowed for repeatable delivery with less than 2% variation in flow rate values. PMID:22833156

  15. A MEMS electrochemical bellows actuator for fluid metering applications.

    PubMed

    Sheybani, Roya; Gensler, Heidi; Meng, Ellis

    2013-02-01

    We present a high efficiency wireless MEMS electrochemical bellows actuator capable of rapid and repeatable delivery of boluses for fluid metering and drug delivery applications. Nafion®-coated Pt electrodes were combined with Parylene bellows filled with DI water to form the electrolysis-based actuator. The performance of actuators with several bellows configurations was compared for a range of applied currents (1-10 mA). Up to 75 boluses were delivered with an average pumping flow rate of 114.40 ± 1.63 μL/min. Recombination of gases into water, an important factor in repeatable and reliable actuation, was studied for uncoated and Nafion®-coated actuators. Real-time pressure measurements were conducted and the effects of temperature, physiological back pressure, and drug viscosity on delivery performance were investigated. Lastly, we present wireless powering of the actuator using a class D inductive powering system that allowed for repeatable delivery with less than 2 % variation in flow rate values. PMID:22833156

  16. Validation of thermal models for a prototypical MEMS thermal actuator.

    SciTech Connect

    Gallis, Michail A.; Torczynski, John Robert; Piekos, Edward Stanley; Serrano, Justin Raymond; Gorby, Allen D.; Phinney, Leslie Mary

    2008-09-01

    This report documents technical work performed to complete the ASC Level 2 Milestone 2841: validation of thermal models for a prototypical MEMS thermal actuator. This effort requires completion of the following task: the comparison between calculated and measured temperature profiles of a heated stationary microbeam in air. Such heated microbeams are prototypical structures in virtually all electrically driven microscale thermal actuators. This task is divided into four major subtasks. (1) Perform validation experiments on prototypical heated stationary microbeams in which material properties such as thermal conductivity and electrical resistivity are measured if not known and temperature profiles along the beams are measured as a function of electrical power and gas pressure. (2) Develop a noncontinuum gas-phase heat-transfer model for typical MEMS situations including effects such as temperature discontinuities at gas-solid interfaces across which heat is flowing, and incorporate this model into the ASC FEM heat-conduction code Calore to enable it to simulate these effects with good accuracy. (3) Develop a noncontinuum solid-phase heat transfer model for typical MEMS situations including an effective thermal conductivity that depends on device geometry and grain size, and incorporate this model into the FEM heat-conduction code Calore to enable it to simulate these effects with good accuracy. (4) Perform combined gas-solid heat-transfer simulations using Calore with these models for the experimentally investigated devices, and compare simulation and experimental temperature profiles to assess model accuracy. These subtasks have been completed successfully, thereby completing the milestone task. Model and experimental temperature profiles are found to be in reasonable agreement for all cases examined. Modest systematic differences appear to be related to uncertainties in the geometric dimensions of the test structures and in the thermal conductivity of the

  17. MEMS-based non-rotatory circumferential scanning optical probe for endoscopic optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Xu, Yingshun; Singh, Janak; Siang, Teo Hui; Ramakrishna, Kotlanka; Premchandran, C. S.; Sheng, Chen Wei; Kuan, Chuah Tong; Chen, Nanguang; Olivo, Malini C.; Sheppard, Colin J. R.

    2007-07-01

    In this paper, we present a non-rotatory circumferential scanning optical probe integrated with a MEMS scanner for in vivo endoscopic optical coherence tomography (OCT). OCT is an emerging optical imaging technique that allows high resolution cross-sectional imaging of tissue microstructure. To extend its usage to endoscopic applications, a miniaturized optical probe based on Microelectromechanical Systems (MEMS) fabrication techniques is currently desired. A 3D electrothermally actuated micromirror realized using micromachining single crystal silicon (SCS) process highlights its very large angular deflection, about 45 degree, with low driving voltage for safety consideration. The micromirror is integrated with a GRIN lens into a waterproof package which is compatible with requirements for minimally invasive endoscopic procedures. To implement circumferential scanning substantially for diagnosis on certain pathological conditions, such as Barret's esophagus, the micromirror is mounted on 90 degree to optical axis of GRIN lens. 4 Bimorph actuators that are connected to the mirror on one end via supporting beams and springs are selected in this micromirror design. When actuators of the micromirror are driven by 4 channels of sinusoidal waveforms with 90 degree phase differences, beam focused by a GRIN is redirected out of the endoscope by 45 degree tilting mirror plate and achieve circumferential scanning pattern. This novel driving method making full use of very large angular deflection capability of our micromirror is totally different from previously developed or developing micromotor-like rotatory MEMS device for circumferential scanning.

  18. MEMS-Based Piezoelectric/Electrostatic Inchworm Actuator

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok

    2003-01-01

    A proposed inchworm actuator, to be designed and fabricated according to the principles of microelectromechanical systems (MEMS), would effect linear motion characterized by steps as small as nanometers and an overall range of travel of hundreds of microns. Potential applications for actuators like this one include precise positioning of optical components and active suppression of noise and vibration in scientific instruments, conveyance of wafers in the semiconductor industry, precise positioning for machine tools, and positioning and actuation of micro-surgical instruments. The inchworm motion would be generated by a combination of piezoelectric driving and electrostatic clamping. The actuator (see figure), would include a pair of holders (used for electrostatic clamping), a slider (the part that would engage in the desired linear motion), a driver, a piezoelectric stack under the driver, and a pair of polymer beams centrally clamped to the flexure beam via a T bar. The holders would be held stationary. One end of the piezoelectric stack would be held stationary; the other end would be connected to the bottom of the driver, which would be free to move up and down. All of these components except the piezoelectric stack and the polymer beams would be micromachined from a 500- m-thick silicon wafer by deep reactive-ion etching. The inchworm motion would be perpendicular to the broad faces of the wafer (perpendicular to the plane of the figure). The combination of the polymer beams and the centrally clamped flexure beam would spring-bias the slider into a position such that, in the absence of electrostatic clamping, the gap between the slider on the one hand and both the driver and the holder on the other hand would be no more than a few microns. This arrangement would make it possible to electrostatically pull the slider into contact with either the holders or the driver at a clamping force of the order of 1 N by applying a reasonably small voltage (of the order of

  19. Flexures for large stroke electrostatic actuation in MEMS

    NASA Astrophysics Data System (ADS)

    Krijnen, B.; Brouwer, D. M.

    2014-01-01

    The stroke of a microelectromechanical systems (MEMS) stage suspended by a flexure mechanism and actuated by electrostatic comb-drives is limited by pull-in. A method to analyze the electrostatic stability of a flexure mechanism and to optimize the stroke with respect to the footprint of flexure mechanisms is presented. Four flexure mechanisms for large stroke are investigated; the standard folded flexure, the slaved folded flexure, the tilted folded flexure and the Watt flexure. Given a certain stroke and load force, the flexures are optimized to have a minimum wafer footprint. From these optimizations it is concluded that the standard folded flexure mechanism is the best flexure mechanism for relatively small strokes (up to ±40 μm) and for larger strokes it is better to use the tilted folded flexure. Several optimized flexure mechanisms have been fabricated and experimentally tested to reach a stroke of ±100 μm. The displacement of the fabricated stages as a function of the actuation voltage could be predicted with 82% accuracy, limited by the fairly large tolerances of our fabrication process.

  20. Design and Simulation of Optically Actuated Bistable MEMS

    NASA Astrophysics Data System (ADS)

    Lucas, Thomas; Moiseeva, Evgeniya; Harnett, Cindy

    2012-02-01

    In this project, bistable three-dimensional MEMS actuators are designed to be optically switched between stable states for biological research applications. The structure is a strained rectangular frame created with stress-mismatched metal-oxide bilayers. The devices curl into an arc in one of two directions tangent to the substrate, and can switch orientation when regions are selectively heated. The heating is powered by infrared laser, and localized with patterned infrared-resonant gold nanoparticles on critical regions. The enhanced energy absorption on selected areas provides switching control and heightened response to narrow-band infrared light. Coventorware has been used for finite element analysis of the system. The numerical simulations indicate that it has two local minimum states with extremely rapid transition time (<<0.1 s) when the structure is thermally deformed. Actuation at laser power and thermal limits compatible with physiological applications will enable microfluidic pumping elements and fundamental studies of tissue response to three-dimensional mechanical stimuli, artificial-muscle based pumps and other biomedical devices triggered by tissue-permeant infrared light.

  1. Real-time open-loop control of a 1024-actuator MEMS deformable mirror

    NASA Astrophysics Data System (ADS)

    Blain, Célia; Conan, Rodolphe; Bradley, Colin; Guyon, Olivier; Gamroth, Darryl; Nash, Reston

    2010-07-01

    This article reports the progress made at the University of Victoria AO Lab, regarding the realtime open-loop control of a 1024-actuator MEMS deformable mirror (DM). The setup is an hybrid woofer-tweeter/open-loop bench. A tip-tilt mirror and a woofer DM (a 57-actuator CILAS DM) are driven in closed-loop while a 1024-actuator MEMS DM is utilized on a parallel open-loop path. Previous work shows that open-loop control providing low residual error (with frozen Kolmogorov turbulence) can be obtained without the need of DM modelling. A preliminary methodical calibration of the DM is employed instead. The MEMS electronics were upgraded to an update rate of 500 Hz and the experiment lays the groundwork for showing how these performances can also be achieved on the bench with dynamic turbulence (created with custom hot air turbulence generators). The current status of the experiment and the next milestones are presented.

  2. Actuation voltage wave-form dependence of charge accumulation in RF MEMS switches

    NASA Astrophysics Data System (ADS)

    San, Haisheng; Zhan, Linxian; Xu, Peng; Li, Gang; Chen, Xuyuan

    2008-03-01

    RF MEMS capacitive switches hold great promise in commercial, aerospace, and military applications. However, their commercialization is hindered by reliability concerns: charging effect in the dielectric layer can cause irreversible stiction of the actuating part of the switch. Presently, a popular method to investigate the charging/discharging in the dielectric layer is to measure an actual RF MEMS capacitive switch, which means a high experimental cost in fabricating MEMS switch devices. In this paper, a Metal-Insulator-Semiconductor (MIS) capacitor is used to investigate the charge accumulation in the dielectric layer of RF MEMS switches. By measuring the capacitance versus voltage (C-V) curves of MIS capacitor after voltage stressing, the dielectric charging/discharging characteristics are obtained. The experiment results indicate that the injected charges from the metal bridge in RF MEMS switches are responsible for stiction phenomena. In SiNx dielectric, the hole capture is more favored over electron capture, and the trapped charges tend to inhibit the charges further injecting. The effects of the actuation voltage waveform on the charge accumulation in the dielectric layer were investigated. It is verified that the tailored actuation voltage waveforms can be used to improve the reliability of RF MEMS capacitive switches.

  3. Twymann Green interferometry in study of AlN material as an actuation layer in MEMS

    NASA Astrophysics Data System (ADS)

    Gorecki, C.; Krupa, K.; Andrei, A.; Jozwik, M.; Nieradko, L.; Delobelle, P.; Hirsinger, L.

    2008-08-01

    In this study we focus on the aluminium nitride (AlN). This material shows a large number of advantages associated with good piezoelectric properties. Therefore, AlN is an excellent candidate for MEMS actuation where low dielectric loss, low thermal drift and high signal-to-noise ratios are required. In this paper, the case of AlN driven cantilevers composed of three thin layers deposited on the silicon substrate will be considered. Precise knowledge of physical and material parameters of AlN applied in these simple elements are necessary for their further applications. However, up to now, AlN still represents a technological challenge and many of its micromechanical and piezoelectric properties are not precisely described. That is why, our study has been concentrated on determination of such parameters like the residual thin film stresses, thermal expansion coefficient α and piezoelectric coefficient d31. In this paper the interactions between the theoretical solution, the numerical FEM simulations and experimental results were performed. This hybrid methodology allows to identify the main source of behaviors discrepancy between the physical and numerical model of tested cantilevers. Obtained knowledge leads to optimization of the technological process and required parameters of actuator functionality achievement by better understanding of the tested microdevices properties. In experimental procedure, it was used nanoindentation tests for obtaining an elastic properties of AlN, interferometric techniques for performing the static and dynamic measurements of cantilevers and scanning electron microscope for measuring topography.

  4. Centimeter-scale MEMS scanning mirrors for high power laser application

    NASA Astrophysics Data System (ADS)

    Senger, F.; Hofmann, U.; v. Wantoch, T.; Mallas, C.; Janes, J.; Benecke, W.; Herwig, Patrick; Gawlitza, P.; Ortega-Delgado, M.; Grune, C.; Hannweber, J.; Wetzig, A.

    2015-02-01

    A higher achievable scan speed and the capability to integrate two scan axes in a very compact device are fundamental advantages of MEMS scanning mirrors over conventional galvanometric scanners. There is a growing demand for biaxial high speed scanning systems complementing the rapid progress of high power lasers for enabling the development of new high throughput manufacturing processes. This paper presents concept, design, fabrication and test of biaxial large aperture MEMS scanning mirrors (LAMM) with aperture sizes up to 20 mm for use in high-power laser applications. To keep static and dynamic deformation of the mirror acceptably low all MEMS mirrors exhibit full substrate thickness of 725 μm. The LAMM-scanners are being vacuum packaged on wafer-level based on a stack of 4 wafers. Scanners with aperture sizes up to 12 mm are designed as a 4-DOF-oscillator with amplitude magnification applying electrostatic actuation for driving a motor-frame. As an example a 7-mm-scanner is presented that achieves an optical scan angle of 32 degrees at 3.2 kHz. LAMM-scanners with apertures sizes of 20 mm are designed as passive high-Q-resonators to be externally excited by low-cost electromagnetic or piezoelectric drives. Multi-layer dielectric coatings with a reflectivity higher than 99.9 % have enabled to apply cw-laser power loads of more than 600 W without damaging the MEMS mirror. Finally, a new excitation concept for resonant scanners is presented providing advantageous shaping of intensity profiles of projected laser patterns without modulating the laser. This is of interest in lighting applications such as automotive laser headlights.

  5. Two-axis MEMS Scanning Catheter for Ultrahigh Resolution Three-dimensional and En Face Imaging.

    PubMed

    Aguirre, Aaron D; Hertz, Paul R; Chen, Yu; Fujimoto, James G; Piyawattanametha, Wibool; Fan, Li; Wu, Ming C

    2007-03-01

    Ultrahigh resolution two and three-dimensional optical coherence tomography (OCT) imaging was performed using a miniaturized, two-axis scanning catheter based upon microelectromechanical systems (MEMS) mirror technology. The catheter incorporated a custom-designed and fabricated, 1-mm diameter MEMS mirror driven by angular vertical comb (AVC) actuators on both an inner mirror axis and an outer, orthogonal gimbal axis. Using a differential drive scheme, a linearized position response over +/- 6 degrees mechanical angle was achieved. The flexible, fiber-optic catheter device measured < 5 mm in outer diameter with a rigid length of ~ 2.5 cm at the distal end. In vivo and ex vivo images are presented with < 4 microm axial and ~ 12 microm transverse resolution in tissue. PMID:19532481

  6. Water-Immersible MEMS scanning mirror designed for wide-field fast-scanning photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Yao, Junjie; Huang, Chih-Hsien; Martel, Catherine; Maslov, Konstantin I.; Wang, Lidai; Yang, Joon-Mo; Gao, Liang; Randolph, Gwendalyn; Zou, Jun; Wang, Lihong V.

    2013-03-01

    By offering images with high spatial resolution and unique optical absorption contrast, optical-resolution photoacoustic microscopy (OR-PAM) has gained increasing attention in biomedical research. Recent developments in OR-PAM have improved its imaging speed, but have sacrificed either the detection sensitivity or field of view or both. We have developed a wide-field fast-scanning OR-PAM by using a water-immersible MEMS scanning mirror (MEMS-ORPAM). Made of silicon with a gold coating, the MEMS mirror plate can reflect both optical and acoustic beams. Because it uses an electromagnetic driving force, the whole MEMS scanning system can be submerged in water. In MEMS-ORPAM, the optical and acoustic beams are confocally configured and simultaneously steered, which ensures uniform detection sensitivity. A B-scan imaging speed as high as 400 Hz can be achieved over a 3 mm scanning range. A diffraction-limited lateral resolution of 2.4 μm in water and a maximum imaging depth of 1.1 mm in soft tissue have been experimentally determined. Using the system, we imaged the flow dynamics of both red blood cells and carbon particles in a mouse ear in vivo. By using Evans blue dye as the contrast agent, we also imaged the flow dynamics of lymphatic vessels in a mouse tail in vivo. The results show that MEMS-OR-PAM could be a powerful tool for studying highly dynamic and time-sensitive biological phenomena.

  7. MEMS-based fabrication of multiple-degree-of-freedom ionic polymer-metal composite actuators

    NASA Astrophysics Data System (ADS)

    Chen, Zheng; Tan, Xiaobo

    2010-04-01

    Ionic polymer-metal composites (IPMC) are soft actuation materials with promising applications in robotics and biomedical devices. In this paper, a MEMS-based approach is presented for monolithic, batch fabrication of IPMC pectoral fin actuators that are capable of complex deformation. Such an actuator consists of multiple, individually controlled IPMC regions that are mechanically coupled through compliant, passive regions. Prototypes of artificial pectoral fins have been fabricated with the proposed method, and sophisticated deformation modes, including bending, twisting, and cupping, have been demonstrated, which shows the promise of the pectoral fin in robotic fish applications.

  8. Design and characterization of a thermally actuated latching MEMS switch for telecommunication applications

    NASA Astrophysics Data System (ADS)

    Dellaert, D.; Doutreloigne, J.

    2014-07-01

    This paper describes the design and characterization of a thermal actuator and a latching MEMS switch, using the actuator. The proposed MEMS switch is designed for applications in telecommunication, in which it could be an alternative solution for the now existing electromagnetic relays for automated distribution frames. A MEMS-based switching matrix could be a very attractive solution as it can be made very compact, cost-effective, reliable and scalable. The actuators used in the switch use a polysilicon heater, which heats up the structure and causes deflection. The actuators were fabricated by using MetalMUMPs technology and measured results showed good agreement with the finite element results. Using these actuators, latching switches were also successfully fabricated. No energy is needed to stay in the open or closed state of the switch, which saves energy, but also keeps the interconnection state of the switching matrix in case of a power failure. The time- and current-dependent switch resistance was also measured and remained below 1.52 Ω after 105 latching cycles. The proposed switches could be very useful in a switching matrix for an automated distribution frame.

  9. Metrology of electromagnetic static actuation of MEMS microbridge using atomic force microscopy.

    PubMed

    Moczała, M; Majstrzyk, W; Sierakowski, A; Dobrowolski, R; Grabiec, P; Gotszalk, T

    2016-05-01

    The objective of this paper is to describe application of atomic force microscopy (AFM) for characterization and calibration of static deflection of electromagnetically and/or thermally actuated micro-electromechanical (MEMS) bridge. The investigated MEMS structure is formed by a silicon nitride bridge and a thin film metal path enabling electromagnetic and/or thermal deflection actuation. We present how static microbridge deflection can be measured using contact mode AFM technology with resolution of 0.05nm in the range of up to tens of nm. We also analyze, for very small structure deflections and under defined and controlled load force varied in the range up to ca. 32nN, properties of thermal and electromagnetical microbridge deflection actuation schemes. PMID:26914501

  10. Reliability of a MEMS Actuator Improved by Spring Corner Designs and Reshaped Driving Waveforms

    PubMed Central

    Hsieh, Hsin-Ta; Su, Guo-Dung John

    2007-01-01

    In this paper, we report spring corner designs and driving waveforms to improve the reliability for a MEMS (Micro-Electro-Mechanical System) actuator. In order to prevent the stiction problems, no stopper or damping absorber is adopted. Therefore, an actuator could travel long distance by electromagnetic force without any object in moving path to absorb excess momentum. Due to long displacement and large mass, springs of MEMS actuators tend to crack from weak points with high stress concentration and this situation degrades reliability performance. Stress distribution over different spring designs were simulated and a serpentine spring with circular and wide corner design was chosen due to its low stress concentration. This design has smaller stress concentration versus displacement. Furthermore, the resonant frequencies are removed from the driving waveform based on the analysis of discrete Fourier transfer function. The reshaped waveform not only shortens actuator switching time, but also ensures that the spring is in a small displacement region without overshooting so that the maximum stress is kept below 200 MPa. The experimental results show that the MEMS device designed by theses principles can survive 500 g (gravity acceleration) shock test and pass 150 million switching cycles without failure.

  11. MEMS scanned laser head-up display

    NASA Astrophysics Data System (ADS)

    Freeman, Mark O.

    2011-03-01

    Head-up displays (HUD) in automobiles and other vehicles have been shown to significantly reduce accident rates by keeping the driver's eyes on the road. The requirements for automotive HUDs are quite demanding especially in terms of brightness, dimming range, supplied power, and size. Scanned laser display technology is particularly well-suited to this application since the lasers can be very efficiently relayed to the driver's eyes. Additionally, the lasers are only turned on where the light is needed in the image. This helps to provide the required brightness while minimizing power and avoiding a background glow that disturbs the see-through experience. Microvision has developed a couple of HUD architectures that are presented herein. One design uses an exit pupil expander and relay optics to produce a high quality virtual image for built-in systems where the image appears to float above the hood of the auto. A second design uses a patented see-through screen technology and pico projector to make automotive HUDs available to anyone with a projector. The presentation will go over the basic designs for the two types of HUD and discuss design tradeoffs.

  12. Development of Electrostatic Actuator for Ohmic-Contact RF MEMS Switch/Relay

    NASA Astrophysics Data System (ADS)

    Seki, Tomonori; Masuda, Takahiro; Uno, Yutaka; Sato, Fumihiko; Imanaka, Koichi; Sugiyama, Susumu

    A compact switch/relay with excellent high frequency performance at around 2GHz is developed by adopting a novel non-linear spring structure and high frequency signal line structure. The non-linear spring system applied to an electrostatic actuator of RF MEMS switch/relay increases restoration force for switching reliability. The maximum restoration force can be three times higher than that of a linear spring system actuator. No failure due to restoration force shortage is observed during switching test up to 100 million cycles. The present RF MEMS switch/relay has been shown competitive RF performance over conventional RF switches such as PIN diodes and GaAs MMIC both by the experimental results.

  13. Enhanced Visualization of Fine Needles Under Sonographic Guidance Using a MEMS Actuator

    PubMed Central

    Shen, Zhiyuan; Zhou, Yufeng; Miao, Jianmin; Vu, Kien Fong

    2015-01-01

    Localization of a needle tip is important for biopsy examinations in clinics. However, the needle tip is sometimes difficult to discern under the guidance of sonography due to its poor visibility. A mini actuator that radiates a low-intensity ultrasound wave was manufactured using micro-electro-mechanical system (MEMS) technology. Interference between the radiated and diagnostic ultrasound pulses was observed as bright lines in the B-mode ultrasound image, from which the mini actuator could be recognized with ease. Because the distance between the mini actuator and the needle tip is fixed, the needle tip can be determined despite its inconsistent appearance in the sonography. Both gel phantom and ex vivo tissue evaluation showed that the needle tip can be determined reliably utilizing the acoustic interference pattern. PMID:25647740

  14. Miniaturized FTIR-spectrometer based on optical MEMS translatory actuator

    NASA Astrophysics Data System (ADS)

    Sandner, Thilo; Kenda, Andreas; Drabe, Christian; Schenk, Harald; Scherf, Werner

    2007-01-01

    In this paper we present a MOEMS based miniaturized Fourier-transform infrared (FTIR) spectrometer capable to perform time resolved measurements from NIR to MIR. The FTIR-spectrometer is based on a MOEMS translatory actuator which replaces the macroscopic mirror drive enabling a miniaturized, robust and low cost FTIR system. The MOEMS device is manufactured in a CMOS compatible process using SOI technology. Due to the electrostatic driving principle based on in-plane electrode combs, 200 μm stroke can be achieved with comparatively low voltages (<40 V) at an ambient pressure below 500 Pa. The actuator plate, acting as mirror with an area of 1.65 mm2, operates at a resonant frequency of 5 kHz. Consequently this yields a maximum spectral resolution of 25 cm -1 and an acquisition time of 200 μs per spectrum. Based on a Michelson setup the infrared optical bench of the presented FTIR system is designed to account for the mirror aperture and the desired spectral bandwidth of 2 μm to 5 μm. The integrated signal processing electronics has to cope with a bandwidth of 8 MHz as a result of the mirror motion. A digital signal processor manages system control and data processing. The high acquisition rate and integration level of the system makes it appropriate for applications like process control and surveillance of fast reactions. First results of transmission and absorbance measurements are shown. In addition we present a novel MOEMS device with increased mirror aperture and stroke which will be used for further optimization of the spectral FTIR-resolution.

  15. A versatile MEMS bimorph actuator with large vertical displacement and high resolution: Design and fabrication process

    NASA Astrophysics Data System (ADS)

    Rangra, Aarushee; Maninder, K.; Soni, Shilpi; Rangra, K. J.

    2016-04-01

    This paper presents design, simulation results and envisaged fabrication process for a versatile MEMS bimorph actuator with large out of plane displacement and high resolution. A comparative study of mechanical, thermal and electrical response of the micro-actuator is presented by using two well-known MEMS simulation tools. The bimorph structure measuring 700 × 1280 mm2 is fully integrable with CMOS fabrication process. It is indented for tunable filter applications where the precise vertical motion of the payload, the top metallic electrode anchored rigidly to bimorph `springs' spans the vertical range of 250-300 microns with submicron resolution. Each bimorph spring resembles a hair pin structure and is composed of materials with large difference in thermal expansion coefficients e.g. electroplated gold and polysilicon for optimal out-of-the plane deflection. The novel structure can also be configured for analog micro-mirror based optical and IR spectroscopy applications by controlling the actuation bias and top electrode surface parameters.

  16. Scalable, MEMS-enabled, vibrational tactile actuators for high resolution tactile displays

    NASA Astrophysics Data System (ADS)

    Xie, Xin; Zaitsev, Yuri; Velásquez-García, Luis Fernando; Teller, Seth J.; Livermore, Carol

    2014-12-01

    The design, fabrication, and characterization of a new type of tactile display for people with blindness or low vision is reported. Each tactile element comprises a piezoelectric extensional actuator that vibrates in plane, with a microfabricated scissor mechanism to convert the in-plane actuations into robust, higher-amplitude, out-of-plane (vertical) vibrations that are sensed with the finger pads. When the tactile elements are formed into a 2D array, information can be conveyed to the user by varying the pattern of vibrations in space and time. Analytical models and finite element analysis were used to design individual tactile elements, which were implemented with PZT actuators and both SU-8 and 3D-printed scissor amplifiers. The measured displacements of these 3 mm × 10 mm, MEMS-enabled tactile elements exceed 10 µm, in agreement with models, with measured forces exceeding 45 mN. The performance of the MEMS-enabled tactile elements is compared with the performance of larger, fully-macroscale tactile elements to demonstrate the scale dependence of the devices. The creation of a 28-element prototype is also reported, and the qualitative user experience with the individual tactile elements and displays is described.

  17. Laterally-actuated inside-driven RF MEMS switches fabricated by a SOG process

    NASA Astrophysics Data System (ADS)

    Wang, Li-Feng; Han, Lei; Tang, Jie-Ying; Huang, Qing-An

    2015-06-01

    This paper presents two RF MEMS switches, both of them are laterally-actuated and inside-driven. One is the push-pull type switch controlled by only one actuation signal, and the other is the low voltage three-state switch actuated by rhombic structures. To fabricate RF MEMS switches, the silicon on glass (SOG) based microwave transmission line is redesigned, and an electroplated gold layer is added to the standard SOG process flow. The measured insertion loss and isolation of the push-pull type switch at 6 GHz are -0.28 dB and -38.4 dB, respectively, and its measured pull-in voltage is 57 V. The measured insertion loss and isolation of the low voltage three-state switch at 6 GHz are -0.77 dB and -53 dB, respectively, and the measured pull-in voltage is only 15 V. Preliminary lifetime tests show the lifetimes of both switches exceed the magnitude of 107 cycles.

  18. Dynamic pull-in of parallel plate and torsional electrostatic MEMS actuators.

    SciTech Connect

    Nielson, Gregory N.; Barbastathis, George

    2005-02-01

    An analysis of the dynamic characteristics of pull-in for parallel-plate and torsional electrostatic actuators is presented. Traditionally, the analysis for pull-in has been done using quasi-static assumptions. However, it was recently shown experimentally that a step input can cause a decrease in the voltage required for pull-in to occur. We propose an energy-based solution for the step voltage required for pull-in that predicts the experimentally observed decrease in the pull-in voltage. We then use similar energy techniques to explore pull-in due to an actuation signal that is modulated depending on the sign of the velocity of the plate (i.e., modulated at the instantaneous mechanical resonant frequency). For this type of actuation signal, significant reductions in the pull-in voltage can theoretically be achieved without changing the stiffness of the structure. This analysis is significant to both parallel-plate and torsional electrostatic microelectromechanical systems (MEMS) switching structures where a reduced operating voltage without sacrificing stiffness is desired, as well as electrostatic MEMS oscillators where pull-in due to dynamic effects needs to be avoided.

  19. A MEMS-based valveless impedance pump utilizing electromagnetic actuation

    NASA Astrophysics Data System (ADS)

    Lee, Chia-Yen; Chang, Hsien-Tsung; Wen, Chih-Yung

    2008-03-01

    This study presents a planar valveless impedance-based micro pump for biomedical applications. The micro pump comprises four major components, namely a lower glass substrate containing a copper micro coil, a microchannel, an upper glass cover plate and a PDMS diaphragm with a magnet mounted on its upper surface. When a current is passed through the micro coil, an electromagnetic force is established between the coil and the magnet. The resulting deflection of the PDMS diaphragm creates an acoustic impedance mismatch within the microchannel, which results in a net flow. The performance of the micro pump is characterized both experimentally and numerically using Ansoft/Maxwell3D FEA software. The results show that the mechanical integrity of the micro pump is assured provided that the diaphragm deflection does not exceed 110 µm. This deflection is obtained by supplying the micro coil with an input current of 0.6 A, and results in a flow rate of 7.2 ml min-1 when the PDMS membrane is driven by an actuating frequency of 200 Hz.

  20. Low Voltage MEMS Digital Loudspeaker Array Based on Thin-film PZT Actuators

    NASA Astrophysics Data System (ADS)

    Fanget, S.; Casset, F.; Dejaeger, R.; Maire, F.; Desloges, B.; Deutzer, J.; Morisson, R.; Bohard, Y.; Laroche, B.; Escato, J.; Leclere, Q.

    This paper reports on the development of a Digital Loudspeaker Array (DLA) solution based on Pb(Zr0.52,Ti0.48)O3 (PZT) thin-film actuated membranes. These membranes called speaklets are arranged in a matrix and operate in a binary manner by emitting short pulses of sound pressure. Using the principle of additivity of pressures in the air, it is possible to reconstruct audible sounds. For the first time, electromechanical and acoustic characterizations are reported on a 256-MEMS-membranes DLA. Sounds audible as far as several meters from the loudspeaker have been generated using low voltage (8 V).

  1. Design and fabrication of MEMS-based thermally-actuated image stabilizer for cell phone camera

    NASA Astrophysics Data System (ADS)

    Lin, Chun-Ying; Chiou, Jin-Chern

    2012-11-01

    A micro-electro-mechanical system (MEMS)-based image stabilizer is proposed to counteracting shaking in cell phone cameras. The proposed stabilizer (dimensions, 8.8 × 8.8 × 0.2 mm3) includes a two-axis decoupling XY stage and has sufficient strength to suspend an image sensor (IS) used for anti-shaking function. The XY stage is designed to send electrical signals from the suspended IS by using eight signal springs and 24 signal outputs. The maximum actuating distance of the stage is larger than 25 μm, which is sufficient to resolve the shaking problem. Accordingly, the applied voltage for the 25 μm moving distance is lower than 20 V; the dynamic resonant frequency of the actuating device is 4485 Hz, and the rising time is 21 ms.

  2. Multi-function optical characterization and inspection of MEMS components using stroboscopic coherence scanning interferometry

    NASA Astrophysics Data System (ADS)

    Tapilouw, Abraham Mario; Chen, Liang-Chia; Xuan-Loc, Nguyen; Chen, Jin-Liang

    2014-08-01

    A Micro-electro-mechanical-system (MEMS) is a widely used component in many industries, including energy, biotechnology, medical, communications, and automotive industries. However, effective inspection systems are also needed to ensure the functional reliability of MEMS. This study developed a stroboscopic coherence scanning Interferometry (SCSI) technique for measuring key characteristics typically used as criteria in MEMS inspections. Surface profiles of MEMS both static and dynamic conditions were measured by means of coherence scanning Interferometry (CSI). Resonant frequencies of vibrating MEMS were measured by deformation of interferogram fringes for out-of-plane vibration and by image correlation for in-plane vibration. The measurement bandwidth of the developed system can be tuned up to three megahertz or higher for both in-plane and out-of-plane measurement of MEMS.

  3. Wide-angle structured light with a scanning MEMS mirror in liquid.

    PubMed

    Zhang, Xiaoyang; Koppal, Sanjeev J; Zhang, Rui; Zhou, Liang; Butler, Elizabeth; Xie, Huikai

    2016-02-22

    Microelectromechanical (MEMS) mirrors have extended vision capabilities onto small, low-power platforms. However, the field-of-view (FOV) of these MEMS mirrors is usually less than 90° and any increase in the MEMS mirror scanning angle has design and fabrication trade-offs in terms of power, size, speed and stability. Therefore, we need techniques to increase the scanning range while still maintaining a small form factor. In this paper we exploit our recent breakthrough that has enabled the immersion of MEMS mirrors in liquid. While allowing the MEMS to move, the liquid additionally provides a "Snell's window" effect and enables an enlarged FOV (≈ 150°). We present an optimized MEMS mirror design and use it to demonstrate applications in extreme wide-angle structured light. PMID:26907006

  4. Discharging-phototransistor-integrated high-voltage Si photovoltaic cells for fast driving demonstration of an electrostatic MEMS actuator by wavelength modulation

    NASA Astrophysics Data System (ADS)

    Mori, Isao; Lebrasseur, Eric; Mita, Yoshio

    2016-04-01

    In this article, the authors propose a high-voltage photovoltaic (PV) cell array integrating discharging phototransistors for the fast driving of an electrostatic MEMS actuator by light with wavelength modulation. A PV cell array and phototransistors are connected in parallel and colored with green and red lacquer, respectively. This circuit repeats the charge and discharge of a MEMS actuator by being illuminated with light whose color periodically changes between red and green. This method requires only a small additional area and can discharge the actuator at an arbitrary timing. The authors extract the parameters of the circuit and also demonstrate the dynamic driving of a MEMS comb-drive actuator.

  5. Clear evidence of mechanical deformation in RF-MEMS switches during prolonged actuation

    NASA Astrophysics Data System (ADS)

    Mulloni, V.; Resta, G.; Margesin, B.

    2014-07-01

    Dielectric charging is normally considered one of the most important problems when dealing with RF-MEMS switch reliability, especially for applications which require long-term operation. Other important effects are therefore often neglected. In this paper we demonstrate that, for the case of long-term actuation in dielectric-less switches, the most important issue for switch reliability is not dielectric charging but viscoelastic deformation and creep of the mobile membrane. The measurements and the analysis are performed both for a cantilever and for a clamped-clamped switch configuration, evidencing that in the first case the mechanical deformations are more pronounced, and that they can justify almost completely the variation of actuation and release voltage experimentally measured. Mechanical deformation is also detected in a clamped-clamped switch, but it is less evident than that in the previous case. Nonetheless, even in this case they are responsible for most of the actuation and de-actuation voltage change experimentally detected.

  6. All-optical photoacoustic microscopy using a MEMS scanning mirror

    NASA Astrophysics Data System (ADS)

    Chen, Sung-Liang; Xie, Zhixing; Ling, Tao; Wei, Xunbin; Guo, L. Jay; Wang, Xueding

    2013-03-01

    It has been studied that a potential marker to obtain prognostic information about bladder cancer is tumor neoangiogenesis, which can be quantified by morphometric characteristics such as microvascular density. Photoacoustic microscopy (PAM) can render sensitive three-dimensional (3D) mapping of microvasculature, providing promise to evaluate the neoangiogenesis that is closely related to the diagnosis of bladder cancer. To ensure good image quality, it is desired to acquire bladder PAM images from its inside via the urethra, like conventional cystoscope. Previously, we demonstrated all-optical PAM systems using polymer microring resonators to detect photoacoustic signals and galvanometer mirrors for laser scanning. In this work, we build a miniature PAM system using a microelectromechanical systems (MEMS) scanning mirror, demonstrating a prototype of an endoscopic PAM head capable of high imaging quality of the bladder. The system has high resolutions of 17.5 μm in lateral direction and 19 μm in the axial direction at a distance of 5.4 mm. Images of printed grids and the 3D structure of microvasculature in animal bladders ex vivo by the system are demonstrated.

  7. Realtime Surface Shear Stress Control with MEMS Sensors/Actuators in Turbulent Boundary Layers

    NASA Astrophysics Data System (ADS)

    Huang, Adam; Lew, James; Ho, Chih-Ming; Xu, Yong; Tai, Yu-Chong

    2003-11-01

    High-speed surface streaks in turbulent boundary layers have been attributed to approximately 40friction drag. A real-time control system for reducing surface shear stress has being developed. The system consists of two linear arrays of MEMS surface shear stress imagers for providing control and feedback measurements and a recently developed, micro-machined flap-type actuator for interaction with the streak structures. Driven by a constant temperature anemometry circuit with an overheat ratio of 12sensitivity of 100 mV/Pa and frequency response of 20 kHz. The micro-machined bubble-flap actuator is essentially a thin silicon cantilever beam which hangs/sits on top of a silicone diaphragm molded into a bulk etched silicon cavity. The flap shape used is a 3mm long (streamwise) by 1mm wide rectangular beam, with a thickness of 40 um. Actuation is achieved by pneumatically inflating the silicone diaphragm, which then pushes up the silicon beam. The current flap can achieve off-plane deflections of over 130 um at frequencies up to 150 Hz, with a rise time of 2ms and a fall time of 4ms. Experiments are carried out with the system installed onto the wall of a 2-D turbulent wind tunnel. At Re 10k, corresponding to flow velocity of 10 m/s, time-averaged reduction of 4achieved continuous actuation at 130 um and 150 Hz. Furthermore, in offline data processing, it has been found that the actuator interacting with the streak structures has reduce the peak shear stress of a streak by an additional 0.2 Pa, or about 50

  8. MEMS segmented-based adaptive optics scanning laser ophthalmoscope

    PubMed Central

    Manzanera, Silvestre; Helmbrecht, Michael A.; Kempf, Carl J.; Roorda, Austin

    2011-01-01

    The performance of a MEMS (micro-electro-mechanical-system) segmented deformable mirror was evaluated in an adaptive optics (AO) scanning laser ophthalmoscope. The tested AO mirror (Iris AO, Inc, Berkeley, CA) is composed of 37 hexagonal segments that allow piston/tip/tilt motion up to 5 μm stroke and ±5 mrad angle over a 3.5 mm optical aperture. The control system that implements the closed-loop operation employs a 1:1 matched 37-lenslet Shack-Hartmann wavefront sensor whose measurements are used to apply modal corrections to the deformable mirror. After a preliminary evaluation of the AO mirror optical performance, retinal images from 4 normal subjects over a 0.9°x0.9° field size were acquired through a 6.4 mm ocular pupil, showing resolved retinal features at the cellular level. Cone photoreceptors were observed as close as 0.25 degrees from the foveal center. In general, the quality of these images is comparable to that obtained using deformable mirrors based on different technologies. PMID:21559132

  9. MEMS scanning laser projection based on high-Q vacuum packaged 2D-resonators

    NASA Astrophysics Data System (ADS)

    Hofmann, U.; Eisermann, C.; Quenzer, H.-J.; Janes, J.; Schroeder, C.; Schwarzelbach, O.; Jensen, B.; Ratzmann, L.; Giese, T.; Senger, F.; Hagge, J.; Weiss, M.; Wagner, B.; Benecke, W.

    2011-03-01

    Small size, low power consumption and the capability to produce sharp images without need of an objective make MEMS scanning laser based pico-projectors an attractive solution for embedded cell-phone projection displays. To fulfil the high image resolution demands the MEMS scanning mirror has to show large scan angles, a large mirror aperture size and a high scan frequency. An additional important requirement in pico-projector applications is to minimize power consumption of the MEMS scanner to enable a long video projection time. Typically high losses in power are caused by gas damping. For that reason Fraunhofer ISIT has established a fabrication process for 2D-MEMS mirrors that includes vacuum encapsulation on 8-inch wafers. Quality factors as high as 145,000 require dedicated closed loop phase control electronics to enable stable image projection even at rapidly changing laser intensities. A capacitive feedback signal is the basis for controlling the 2D MEMS oscillation and for synchronising the laser sources. This paper reports on fabrication of two-axis wafer level vacuum packaged scanning micromirrors and its use in a compact laser projection display. The paper presents different approaches of overcoming the well-known reflex problem of packaged MEMS scanning mirrors.

  10. MEMS-scanned ladar sensor for small ground robots

    NASA Astrophysics Data System (ADS)

    Stann, Barry L.; Dammann, John F.; Giza, Mark M.; Jian, Pey-Schuan; Lawler, William B.; Nguyen, Hung M.; Sadler, Laurel C.

    2010-04-01

    The Army Research Laboratory (ARL) is researching a short-range ladar imager for small unmanned ground vehicles for navigation, obstacle/collision avoidance, and target detection and identification. To date, commercial ladars for this application have been flawed by one or more factors including, low pixelization, insufficient range or range resolution, image artifacts, no daylight operation, large size, high power consumption, and high cost. In the prior year we conceived a scanned ladar design based on a newly developed but commercial MEMS mirror and a pulsed Erbium fiber laser. We initiated construction, and performed in-lab tests that validated the basic ladar architecture. This year we improved the transmitter and receiver modules and successfully tested a new low-cost and compact Erbium laser candidate. We further developed the existing software to allow adjustment of operating parameters on-the-fly and display of the imaged data in real-time. For our most significant achievement we mounted the ladar on an iRobot PackBot and wrote software to integrate PackBot and ladar control signals and ladar imagery on the PackBot's computer network. We recently remotely drove the PackBot over an inlab obstacle course while displaying the ladar data real-time over a wireless link. The ladar has a 5-6 Hz frame rate, an image size of 256 (h) × 128 (v) pixels, a 60° x 30° field of regard, 20 m range, eyesafe operation, and 40 cm range resolution (with provisions for super-resolution or accuracy). This paper will describe the ladar design and update progress in its development and performance.

  11. A finite element technique for accurate determination of interfacial adhesion force in MEMS using electrostatic actuation

    NASA Astrophysics Data System (ADS)

    Shavezipur, M.; Li, G. H.; Laboriante, I.; Gou, W. J.; Carraro, C.; Maboudian, R.

    2011-11-01

    This paper reports on accurate analysis of adhesion force between polysilicon-polysilicon surfaces in micro-/nanoelectromechanical systems (M/NEMS). The measurement is carried out using double-clamped beams. Electrostatic actuation and structural restoring force are exploited to respectively initiate and terminate the contact between the two surfaces under investigation. The adhesion force is obtained by balancing the electrostatic and mechanical forces acting on the beam just before the separation of the two surfaces. Different finite element models are developed to simulate the coupled-field multiphysics problem. The effects of fringing field in the electrostatic domain and geometric nonlinearity and residual stress in the structural domain are taken into consideration. Moreover, the beam stiffness is directly obtained for the case of combined loading (electrostatic and adhesion). Therefore, the overall electrostatic and structural forces used to extract the actual adhesion force from measured data are determined with high accuracy leading to accurate values for the adhesion force. The finite element simulations presented in this paper are not limited to adhesion force measurement and can be used to design or characterize electrostatically actuated devices such as MEM tunable capacitors and micromirrors, RF switches and M/NEM relays.

  12. Fundamentals and application of materials integration for low-power piezoelectrically actuated ultra-nanocrystalline diamond MEMS/NEMS.

    SciTech Connect

    Auciello, O.; Srinivasan, S.; Hiller, J.; Kabius, B.

    2009-01-01

    Most current micro/nanoelectromechanical systems (MEMS/NEMS) are based on silicon. However, silicon exhibits relatively poor mechanical/tribological properties, compromising applications to several projected MEMS/NEMS devices, particularly those that require materials with high Young's modulus for MEMS resonators or low surface adhesion forces for MEMS/NEMS working in conditions with extensive surface contact. Diamond films with superior mechanical/tribological properties provide an excellent alternative platform material. Ultrananocrystalline diamond (UNCD{cflx W}) in film form with 2-5 nm grains exhibits excellent properties for high-performance MEMS/NEMS devices. Concurrently, piezoelectric Pb(Zr{sub x}Ti{sub 1-x})O{sub 3} (PZT) films provide high sensitivity/low electrical noise for sensing/high-force actuation at relatively low voltages. Therefore, integration of PZT and UNCD films provides a high-performance platform for advanced MEMS/NEMS devices. This paper describes the bases of such integration and demonstration of low voltage piezoactuated hybrid PZT/UNCD cantilevers.

  13. Three-dimensional time and Fourier domain endoscopic OCT using 2-axis scanning MEMS mirror

    NASA Astrophysics Data System (ADS)

    Jung, Woonggyu; McCormick, Daniel T.; Ahn, Yeh-Chan; Zhang, Jun; Tien, Norman C.; Chen, Zhongping

    2006-02-01

    We present a three-dimensional (3-D) endoscopic optical coherence tomography (OCT) system based on a dual axis microelectromechanical system (MEMS) mirror. The diameter of MEMS mirror was 1.2 mm and both axes were capable of scanning up to 20° (optical) at greater than 1 kHz with excellent linearity. The MEMS mirror was packaged in a machined acrylic endoscopic housing which provided mechanical protection and electrical interconnects as well as optical alignment of the MEMS device to a focusing GRIN lens. The endoscopic MEMS probe was integrated and tested with both a fiber-based time domain (TD) OCT system and Fourier domain (FD) OCT system. Combining the 2-axis lateral scanning of the MEMS device with an axial scan allowed 3-D volume images to be obtained at a rate of 3 frames/s for the TD system and 7 frames/s for the FD system. In the initial investigations, in vivo 3-D OCT images of a human finger as well as images of animal tissue such as healthy rabbit trachea, normal and cancerous regions of hamster cheek pouch tissue were obtained. These images allowed real-time diagnosis of diseased tissue and also clearly delineated important features and tissue structures.

  14. A 2-axis Polydimethylsiloxane (PDMS) based electromagnetic MEMS scanning mirror for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Kim, Sehui; Lee, Changho; Kim, Jin Young; Lim, Geunbae; Kim, Jeehyun; Kim, Chulhong

    2016-03-01

    Optical coherence tomography (OCT) is a noninvasive imaging tool for visualizing cross-sectional images of biological tissues on a microscale. Various microelectromechanical system (MEMS) techniques have been applied to OCT for endoscopic catheters and handheld probes. Despite having several advantages such as compact sizes and high speeds for real-time imaging, the complexities of the fabrication processes and relatively high costs were bottlenecks for fast clinical translation and commercialization of the earlier MEMS scanners. To overcome these issues, we developed a 2-axis polydimethylsiloxane (PDMS)-based electromagnetic MEMS scanning mirror based on flexible, cost-effective, and handleable PDMS. The size of this MEMS scanner was 15 × 15 × 15 mm3. To realize the characteristics of the scanner, we obtained the DC/AC responses and scanning patterns. The measured maximum scanning angles were 16.6° and 11.6° along the X and Y axes, respectively. The resonance frequencies were 82 and 57 Hz along the X and Y axes, respectively. The scanning patterns (raster and Lissajous scan patterns) are also demonstrated by controlling the frequency and amplitude. Finally, we showed the in vivo 2D-OCT images of human fingers by using a spectral domain OCT system with a PDMSbased MEMS scanning mirror. We then reconstructed the 3D images of human fingers. The obtained field of view was 8 × 8 mm2. The PDMS-based MEMS scanning mirror has the potential to combine other optical modalities and be widely used in preclinical and clinical translation research.

  15. High-resolution 3D OCT imaging with a MEMS scanning endoscope

    NASA Astrophysics Data System (ADS)

    Fan, Li S.; Piyawattanametha, Wibool; Wu, Ming C.; Aguirre, Aaron D.; Herz, Paul R.; Chen, Yu; Fujimoto, James G.

    2005-01-01

    Three-dimensional imaging is achieved by optical coherence tomography (OCT) integrated with a two-axis MEMS scanner to enable noninvasive volume imaging of biological tissues. The longitudinal scan is obtained by optical coherence interferometry. The transverse scan is obtained by tilting the two-axis MEMS mirror to scan the optical beam across the target. High-resolution OCT imaging has enabled in vivo observation of tissue architectural layers and differentiation of normal from tumor lesions within the human gastrointestinal tract. MEMS scanner based catheters with distal beam scanning can image with higher speed, precision, and repeatability than conventional linear scanning catheters. In this work, a 1-mm diameter MEMS scanning mirror with collimator and focusing optics is integrated into a compact 5-mm diameter package that is compatible with limited space in the endoscope. A large fill factor mirror provides high aperture over large scan angle and frequencies of hundreds of Hz in both axes. Using a broadband femtosecond laser light source, high axial image resolution of ~5 um is achieved at 1.06 um wavelength. Transverse resolution of ~ 12-um is demonstrated for cross-sectional image with the endoscope.

  16. An optimal design of thermal-actuated and piezoresistive-sensed CMOS-MEMS resonant sensor

    NASA Astrophysics Data System (ADS)

    Wang, Chun-Chieh; Tsai, Chun-Yin; Chen, Tsung-Lin; Liao, Sin-Hao

    2013-11-01

    This paper proposes an optimal design of the thermal-actuated, piezoresistive-sensed resonator fabricated by a foundry-provided CMOS-MEMS process. The optimal design is achieved both by quantitatively comparing the mechanical properties of different composite films as well as by deriving an analytical model for determining the device dimensions. The analytical model includes a stress model of an asymmetric mechanical structure and a piezoresistivity model of the heavily doped, n-type polysilicon film. The analytical model predicts that the optimal length of the displacement sensor is 200 μm when the thermal actuator is 200 μm in length and the absorption plate is 100 μm in length. Additionally, the model predicts the resistivity of the polysilicon film of (6.8 ± 2.2) mΩ cm and the gauge factor of (6.8 ± 2.9) when the grain size is (250 ± 100) nm. Experimental results agree well with simulation results. Experimental data show that the resonant frequency of the device is 80.06 kHz and shifts to 79.8 kHz when a brick of Pt mass is deposited on the resonator. The mass of the Pt estimated from the frequency shift is 4.5419 × 10-12 kg, while estimated from the measured dimension is 4.4204 × 10-12 kg. Sensitivity of the resonant sensor is calculated to be 1.8 × 102 Hz ng-1. Experimental results further show that the polysilicon film used in the experiments has a grain size of (241 ± 105) nm, an average gauge factor of 5.56 and average resistivity of 5.5 mΩ cm.

  17. High-speed horizontal-path atmospheric turbulence correction using a large actuator-number MEMS spatial light modulator in an interferometric phase conjugation engine

    SciTech Connect

    Baker, K; Stappaerts, E; Gavel, D; Wilks, S; Tucker, J; Silva, D; Olsen, J; Olivier, S; Young, P; Kartz, M; Flath, L; Kruelivitch, P; Crawford, J; Azucena, O

    2004-03-04

    Atmospheric propagation results for a high-speed, large-actuator-number, adaptive optics system are presented. The system uses a MEMS-based spatial light modulator correction device with 1024 actuators. Tests over a 1.35 km path achieved correction speeds in excess of 800 Hz and Strehl ratios close to 0.5. The wave-front sensor was based on a quadrature interferometer that directly measures phase. This technique does not require global wave-front reconstruction, making it relatively insensitive to scintillation and phase residues. The results demonstrate the potential of large actuator number MEMS-based spatial light modulators to replace conventional deformable mirrors.

  18. Angle extended linear MEMS scanning system for 3D laser vision sensor

    NASA Astrophysics Data System (ADS)

    Pang, Yajun; Zhang, Yinxin; Yang, Huaidong; Zhu, Pan; Gai, Ye; Zhao, Jian; Huang, Zhanhua

    2016-09-01

    Scanning system is often considered as the most important part for 3D laser vision sensor. In this paper, we propose a method for the optical system design of angle extended linear MEMS scanning system, which has features of huge scanning degree, small beam divergence angle and small spot size for 3D laser vision sensor. The principle of design and theoretical formulas are derived strictly. With the help of software ZEMAX, a linear scanning optical system based on MEMS has been designed. Results show that the designed system can extend scanning angle from ±8° to ±26.5° with a divergence angle small than 3.5 mr, and the spot size is reduced for 4.545 times.

  19. Wafer-level vacuum-packaged two-axis MEMS scanning mirror for pico-projector application

    NASA Astrophysics Data System (ADS)

    Hofmann, Ulrich; Senger, Frank; Janes, Joachim; Mallas, Christian; Stenchly, Vanessa; von Wantoch, Thomas; Quenzer, Hans-Joachim; Weiss, Manfred

    2014-03-01

    Hermetic wafer level packaging of optical MEMS scanning mirrors is essential for mass-market applications. It is the key to enable reliable low-cost mass producible scanning solutions. Vacuum packaging of resonant MEMS scanning mirrors widens the parameter range specifically with respect to scan angle and scan frequency. It also allows extending the utilizable range of mirror aperture size based on the fact that the energy of the high-Q oscillator can be effectively conserved and accumulated. But there are also some drawbacks associated with vacuum packaging. This paper discusses the different advantageous and disadvantageous aspects of vacuum packaging of MEMS scanning mirrors with respect to laser projection displays. Improved MEMS scanning mirror designs are being presented which focus on overcoming previous limitations. Finally an outlook is presented on the suitability of this technology for very large aperture scanning mirrors to be used in high power laser applications.

  20. MEMS metrology techniques

    NASA Astrophysics Data System (ADS)

    Novak, Erik

    2004-12-01

    The MEMS industry currently produces over $13 billion in annual revenue, with devices in such diverse applications as blood pressure sensors, projection displays, optical switches, printers, hard drives, and gyroscopes. As production techniques improve, ever more functions may be served by MEMS, and the industry is growing at an annual rate of more than 15%. The large diversity of MEMS leads to many challenges in metrology, as each design has different critical factors which will affect its performance. Unlike traditional semiconductor devices, MEMS require characterization both in their static state and under actuation. Parameters of interest include shape, dimensions, surface roughness, sidewall angles, film thickness, residual stress, feature volumes, response times, thermal properties, resonance frequencies, stiction, environmental immunity and more. This talk will discuss the strengths and weaknesses of a variety of techniques for MEMS surface metrology. Bright- and dark-field microscopy, scanning electron microscopy, contact and non-contact surface profilometry, atomic force microscopy, laser Doppler vibrometry and digital holography are some of the primary techniques used to evaluate MEMS surfaces and motion. While no single technique can fully characterize all MEMS devices, or even one device under all conditions, the utility of each of the different types of instruments is increasing as they are pushed by MEMS and other industries to provide more characterization capability. With a broad understanding of the various metrology techniques available, the one or few critical instruments to measure a given class of devices will hopefully be more easily understood.

  1. MEMS metrology techniques

    NASA Astrophysics Data System (ADS)

    Novak, Erik

    2005-01-01

    The MEMS industry currently produces over $13 billion in annual revenue, with devices in such diverse applications as blood pressure sensors, projection displays, optical switches, printers, hard drives, and gyroscopes. As production techniques improve, ever more functions may be served by MEMS, and the industry is growing at an annual rate of more than 15%. The large diversity of MEMS leads to many challenges in metrology, as each design has different critical factors which will affect its performance. Unlike traditional semiconductor devices, MEMS require characterization both in their static state and under actuation. Parameters of interest include shape, dimensions, surface roughness, sidewall angles, film thickness, residual stress, feature volumes, response times, thermal properties, resonance frequencies, stiction, environmental immunity and more. This talk will discuss the strengths and weaknesses of a variety of techniques for MEMS surface metrology. Bright- and dark-field microscopy, scanning electron microscopy, contact and non-contact surface profilometry, atomic force microscopy, laser Doppler vibrometry and digital holography are some of the primary techniques used to evaluate MEMS surfaces and motion. While no single technique can fully characterize all MEMS devices, or even one device under all conditions, the utility of each of the different types of instruments is increasing as they are pushed by MEMS and other industries to provide more characterization capability. With a broad understanding of the various metrology techniques available, the one or few critical instruments to measure a given class of devices will hopefully be more easily understood.

  2. Two-axis magnetically-driven MEMS scanning catheter for endoscopic high-speed optical coherence tomography.

    PubMed

    Kim, Ki Hean; Park, B Hyle; Maguluri, Gopi N; Lee, Tom W; Rogomentich, Fran J; Bancu, Mirela G; Bouma, Brett E; de Boer, Johannes F; Bernstein, Jonathan J

    2007-12-24

    A two-axis scanning catheter was developed for 3D endoscopic imaging with spectral domain optical coherence tomography (SD-OCT). The catheter incorporates a micro-mirror scanner implemented with microelectromechanical systems (MEMS) technology: the micro-mirror is mounted on a two-axis gimbal comprised of folded flexure hinges and is actuated by magnetic field. The scanner can run either statically in both axes or at the resonant frequency (>= 350Hz) for the fast axis. The assembled catheter has an outer diameter of 2.8 mm and a rigid part of 12 mm in length. Its scanning range is +/- 20 in optical angle in both axes with low voltages (1 approximately 3V), resulting in a scannable length of approximately 1 mm at the surface in both axes, even with the small catheter size. The catheter was incorporated with a multi-functional SD-OCT system for 3D endoscopic imaging. Both intensity and polarization-sensitive images could be acquired simultaneously at 18.5K axial scans/s. In vivo 3D images of human fingertips and oral cavity tissue are presented as a demonstration. PMID:19551111

  3. A systematic reliability investigation of the dielectric charging process in electrostatically actuated MEMS based on Kelvin probe force microscopy

    NASA Astrophysics Data System (ADS)

    Zaghloul, U.; Papaioannou, G. J.; Coccetti, F.; Pons, P.; Plana, R.

    2010-06-01

    This paper presents a comprehensive investigation for the dielectric charging problem in electrostatically actuated microelectromechanical system (MEMS) devices. The approach is based on Kelvin probe force microscopy (KPFM) and targets, in this specific paper, thin PECVD silicon nitride films for electrostatic capacitive RF MEMS switches. KPFM has been employed in order to mimic the potential induced at the dielectric surface due to charge injection through asperities. The effect of dielectric thickness has been investigated through depositing SiNx films with different thicknesses. Then, in order to simulate the different scenarios of dielectric charging in real MEMS switches, SiNx films have been deposited over thermally grown oxide, evaporated gold and electroplated gold layers. Also, the effect of the deposition conditions has been investigated through depositing dielectric films using low and high frequency PECVD methods. The investigation reveals that thin dielectric films have larger relaxation times compared to thick ones when the same injection bias is applied, independently of the substrate nature. For the same SiNx film thickness, the decay time constant is found to be smaller in dielectric films deposited over metallic layers compared to the ones deposited over silicon substrates. Finally, the material stoichiometry is found to affect the surface potential distribution as well as the relaxation time constant.

  4. Comment on ``MEMS-based high speed scanning probe microscopy'' [Rev. Sci. Instrum. 81, 043702 (2010)

    NASA Astrophysics Data System (ADS)

    Degertekin, F. Levent; Torun, Hamdi

    2010-11-01

    In a recent article, Disseldorp et al. [Rev. Sci. Instrum. 81, 043702 (2010)] present a micromachined z-scanner for scanning probe microscopy (SPM). The scanner comprises a micromachined electrostatically actuated membrane anchored to its substrate with crab-leg flexures. This structure is used as a fast actuator specifically for atomic force microscope and scanning tunneling microscope. The authors present topographic images acquired using the scanner in this paper and elsewhere [F. C. Tabak et al., Ultramicroscopy 110, 599 (2010)]. Although the work is clearly described, it does not appear to be placed in proper context. For example, the authors claim that previous work on microelectromechanical systems SPM has not been focused on high-speed imaging with feedback, which is not supported by the existing literature. In addition, similar actuator structures, albeit slightly larger scale, have been designed and used for SPM applications. Here, we would like comment briefly on the existing literature to clarify the significance of the work.

  5. A MEMS-Based Micro Biopsy Actuator for the Capsular Endoscope Using LiGA Process

    NASA Astrophysics Data System (ADS)

    Park, Sunkil; Koo, Kyo-In; Kim, Gil-Sub; Bang, Seoung Min; Song, Si Young; Chu, Chong Nam; Jeon, Doyoung; Cho, Dongil ``Dan''

    2007-01-01

    This paper presents a LiGA (German acronym for LIthografie, Galvanoformung, Abformung) based micro biopsy actuator for the capsular endoscope. The proposed fabricated actuator aims to extract sample tissues inside small gastric intestines, that cannot be reached by conventional biopsy. The actuator size is 10 mm in diameter and 1.8 mm in length. The mechanism is of a slider-crank type. The actuator consists of trigger, rotational module, and micro biopsy tool. The core components are fabricated using the LiGA process, for overcoming the limitations in accuracy of conventional precision machining.

  6. A high-force, out-of-plane actuator with a MEMS-enabled microscissor motion amplifier

    NASA Astrophysics Data System (ADS)

    Xie, Xin; Livermore, Carol

    2015-12-01

    The design, fabrication, and demonstration of a set of 2 mm2, high-force actuators that combine piezoelectric in-plane actuators with MEMS-enabled scissor mechanisms (motion amplifiers) to simultaneously produce high out-of-plane forces and large out-of-plane displacements are presented. The microscissor motion amplifier employs two layers of lithographically-patterned SU-8 microstructure laminated with a thin film of structural polyimide and adhesive to form hinges. Performance is optimized by varying layer thickness and adhesive types. Measured displacements of >3 μm and measured forces of >5 mN are observed, corresponding to a displacement per unit area of 1.6 μm/mm2 and a force per unit area of 2.6 mN/mm2. Cyanoacrylate adhesive provides superior performance to silicone adhesive, with larger force output. Thicker polyimide hinges provide smaller displacement but greater force than thinner polyimide hinges. These powerful, compact actuators have significant potential for high-force applications like tactile displays and micropumps.

  7. Low-Actuation Voltage MEMS Digital-to-Analog Converter with Parylene Spring Structures

    PubMed Central

    Ma, Cheng-Wen; Lee, Fu-Wei; Liao, Hsin-Hung; Kuo, Wen-Cheng; Yang, Yao-Joe

    2015-01-01

    We propose an electrostatically-actuated microelectromechanical digital-to-analog converter (M-DAC) device with low actuation voltage. The spring structures of the silicon-based M-DAC device were monolithically fabricated using parylene-C. Because the Young’s modulus of parylene-C is considerably lower than that of silicon, the electrostatic microactuators in the proposed device require much lower actuation voltages. The actuation voltage of the proposed M-DAC device is approximately 6 V, which is less than one half of the actuation voltages of a previously reported M-DAC equipped with electrostatic microactuators. The measured total displacement of the proposed three-bit M-DAC is nearly 504 nm, and the motion step is approximately 72 nm. Furthermore, we demonstrated that the M-DAC can be employed as a mirror platform with discrete displacement output for a noncontact surface profiling system. PMID:26343682

  8. Low-Actuation Voltage MEMS Digital-to-Analog Converter with Parylene Spring Structures.

    PubMed

    Ma, Cheng-Wen; Lee, Fu-Wei; Liao, Hsin-Hung; Kuo, Wen-Cheng; Yang, Yao-Joe

    2015-01-01

    We propose an electrostatically-actuated microelectromechanical digital-to-analog converter (M-DAC) device with low actuation voltage. The spring structures of the silicon-based M-DAC device were monolithically fabricated using parylene-C. Because the Young's modulus of parylene-C is considerably lower than that of silicon, the electrostatic microactuators in the proposed device require much lower actuation voltages. The actuation voltage of the proposed M-DAC device is approximately 6 V, which is less than one half of the actuation voltages of a previously reported M-DAC equipped with electrostatic microactuators. The measured total displacement of the proposed three-bit M-DAC is nearly 504 nm, and the motion step is approximately 72 nm. Furthermore, we demonstrated that the M-DAC can be employed as a mirror platform with discrete displacement output for a noncontact surface profiling system. PMID:26343682

  9. MEMS Actuators for Tuning Nanometer-scale Airgaps in Heterostructures and Optical Instrumentation for Glacier Ice Studies

    NASA Astrophysics Data System (ADS)

    Chan, Wing Shan

    MEMS Actuators for Tuning Nanometer-scale Airgaps in Heterostructures: We developed a new actuator microstructure to control the spacing between closely spaced surfaces. Creating and controlling nanometer gaps is of interest in areas such as plasmonics and quantum electronics. For example, energy states in quantum well heterostructures can be tuned by adjusting the physical coupling distance between wells. Unfortunately, such an application calls for active control of a nano-scale air gap between surfaces which are orders of magnitude larger, which is difficult due to stiction forces. A vertical electrostatic wedge actuator was designed to control the air gap between two closely spaced quantum wells in a collapsed cantilever structure. A six-mask fab- rication process was developed and carried out on an InGaAs/InP quantum well het- erostructure on an InP substrate. Upon actuation, the gap spacing between the surfaces was tuned over a maximum range of 55 nm from contact with an applied voltage of 60 V. Challenges in designing and fabricating the device are discussed. Optical Instrumentation for Glacier Ice Studies: We explored new optical instrumentation for glacier ice studies. Glacier ice, such as that of the Greenland and Antarctic ice sheets, is formed by the accumulation of snowfall over hundreds of thousands of years. Not all snowfalls are the same. Their isotopic compositions vary according to the planet's climate at the time, and may contain part of the past atmosphere. The physical properties and chemical content of the ice are therefore proxies of Earth's climate history. In this work, new optical methods and instrumentation based on light scattering and polarization were developed to more efficiently study glacier ice. Field deployments in Antarctica of said instrumentation and results acquired are presented.

  10. A dynamically tunable terahertz metamaterial absorber based on an electrostatic MEMS actuator and electrical dipole resonator array

    NASA Astrophysics Data System (ADS)

    Hu, Fangrong; Xu, Ningning; Wang, Weiming; Wang, Yue'e.; Zhang, Wentao; Han, Jiaguang; Zhang, Weili

    2016-02-01

    We experimentally demonstrate a dynamically tunable terahertz (THz) metamaterial absorber based on an electrostatic microelectromechanical systems (MEMS) actuator and electrical dipole resonator array. The absorption of the THz wave is mainly a result of the electrical dipole resonance, which shows a tunable performance on demand. By preforming the finite integral technique, we discovered that the central absorption frequency and the amplitude can be simultaneously tuned by the applied voltage U. Characterized by a white light interferometer and a THz time domain spectroscopy system, our THz absorber is measured to show a modulation of the central frequency and the amplitude to about 10% and 20%, respectively. The experimental results show good agreement with the simulation. This dynamically tunable absorber has potential applications on THz filters, modulators and controllers.

  11. Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror

    PubMed Central

    Lu, Chen D.; Kraus, Martin F.; Potsaid, Benjamin; Liu, Jonathan J.; Choi, WooJhon; Jayaraman, Vijaysekhar; Cable, Alex E.; Hornegger, Joachim; Duker, Jay S.; Fujimoto, James G.

    2013-01-01

    We developed an ultrahigh speed, handheld swept source optical coherence tomography (SS-OCT) ophthalmic instrument using a 2D MEMS mirror. A vertical cavity surface-emitting laser (VCSEL) operating at 1060 nm center wavelength yielded a 350 kHz axial scan rate and 10 µm axial resolution in tissue. The long coherence length of the VCSEL enabled a 3.08 mm imaging range with minimal sensitivity roll-off in tissue. Two different designs with identical optical components were tested to evaluate handheld OCT ergonomics. An iris camera aided in alignment of the OCT beam through the pupil and a manual fixation light selected the imaging region on the retina. Volumetric and high definition scans were obtained from 5 undilated normal subjects. Volumetric OCT data was acquired by scanning the 2.4 mm diameter 2D MEMS mirror sinusoidally in the fast direction and linearly in the orthogonal slow direction. A second volumetric sinusoidal scan was obtained in the orthogonal direction and the two volumes were processed with a software algorithm to generate a merged motion-corrected volume. Motion-corrected standard 6 x 6 mm2 and wide field 10 x 10 mm2 volumetric OCT data were generated using two volumetric scans, each obtained in 1.4 seconds. High definition 10 mm and 6 mm B-scans were obtained by averaging and registering 25 B-scans obtained over the same position in 0.57 seconds. One of the advantages of volumetric OCT data is the generation of en face OCT images with arbitrary cross sectional B-scans registered to fundus features. This technology should enable screening applications to identify early retinal disease, before irreversible vision impairment or loss occurs. Handheld OCT technology also promises to enable applications in a wide range of settings outside of the traditional ophthalmology or optometry clinics including pediatrics, intraoperative, primary care, developing countries, and military medicine. PMID:24466495

  12. Handheld ultrahigh speed swept source optical coherence tomography instrument using a MEMS scanning mirror.

    PubMed

    Lu, Chen D; Kraus, Martin F; Potsaid, Benjamin; Liu, Jonathan J; Choi, Woojhon; Jayaraman, Vijaysekhar; Cable, Alex E; Hornegger, Joachim; Duker, Jay S; Fujimoto, James G

    2013-12-20

    We developed an ultrahigh speed, handheld swept source optical coherence tomography (SS-OCT) ophthalmic instrument using a 2D MEMS mirror. A vertical cavity surface-emitting laser (VCSEL) operating at 1060 nm center wavelength yielded a 350 kHz axial scan rate and 10 µm axial resolution in tissue. The long coherence length of the VCSEL enabled a 3.08 mm imaging range with minimal sensitivity roll-off in tissue. Two different designs with identical optical components were tested to evaluate handheld OCT ergonomics. An iris camera aided in alignment of the OCT beam through the pupil and a manual fixation light selected the imaging region on the retina. Volumetric and high definition scans were obtained from 5 undilated normal subjects. Volumetric OCT data was acquired by scanning the 2.4 mm diameter 2D MEMS mirror sinusoidally in the fast direction and linearly in the orthogonal slow direction. A second volumetric sinusoidal scan was obtained in the orthogonal direction and the two volumes were processed with a software algorithm to generate a merged motion-corrected volume. Motion-corrected standard 6 x 6 mm(2) and wide field 10 x 10 mm(2) volumetric OCT data were generated using two volumetric scans, each obtained in 1.4 seconds. High definition 10 mm and 6 mm B-scans were obtained by averaging and registering 25 B-scans obtained over the same position in 0.57 seconds. One of the advantages of volumetric OCT data is the generation of en face OCT images with arbitrary cross sectional B-scans registered to fundus features. This technology should enable screening applications to identify early retinal disease, before irreversible vision impairment or loss occurs. Handheld OCT technology also promises to enable applications in a wide range of settings outside of the traditional ophthalmology or optometry clinics including pediatrics, intraoperative, primary care, developing countries, and military medicine. PMID:24466495

  13. Novel piezoelectric actuation mechanism for a gimbal-less mirror in 2D raster scanning applications

    NASA Astrophysics Data System (ADS)

    How Koh, Kah; Kobayashi, Takeshi; Xie, Jin; Yu, Aibin; Lee, Chengkuo

    2011-07-01

    In this paper, we present the design, fabrication and measurement results of a 2D scanning mirror actuated by 1 × 10 piezoelectric Pb(Zr,Ti)O3 (PZT) cantilever actuators integrated on a thin silicon beam. A combination of bulk silicon micromachining based on a silicon-on-insulator (SOI) substrate and thin-film surface micromachining on a 5 µm thick Si device layer is used to fabricate the device. Multi-layers of Pt/Ti/PZT/Pt/Ti are deposited as electrode materials. A large silicon mirror plate (5 mm × 5 mm) and a 1 × 10 PZT cantilever array arranged in parallel are formed after the backside release process. The ten PZT cantilever actuators are electrically isolated from one another. The device can operate in three modes: bending, torsional and mixed (or combinational) modes. In bending mode, the first resonant frequency was measured to be 30 Hz and an optical deflection angle of ±8° was obtained when all ten cantilevers were actuated at 9 Vpp. In torsional mode, the resonant frequency was measured to be 89 Hz and an optical deflection angle of ±4.6° was obtained by applying a gradually declining ac voltage started at 8 Vpp to two sets of actuators, where each set comprises five cantilever actuators of the said 1 × 10 array, i.e. 1-5 and 6-10. A 2D raster scanning pattern was achieved in the mixed mode when the bending mode was carried out by cantilever actuators of 4-7 and the torsional modes were exercised by two different sets of cantilever actuators, i.e. 1-3 and 8-10, under opposite biasing direction. This mixed mode operation mechanism demonstrates the first 2D raster scanning mirror-driven beam actuators.

  14. Design, fabrication, test, and evaluation of RF MEMS series switches using lead zirconate titanate (PZT) thin film actuators

    NASA Astrophysics Data System (ADS)

    Polcawich, Ronald G.

    The aim of this thesis was to design and prototype a robust, low voltage RF MEMS switch for use in military phased arrays. The frequencies of interest for this work include very low frequencies down to DC operation with the upper limit extending to at least 40 GHz. This broad frequency requirement requires a robust high frequency design and simulation using microwave transmission lines. With the aid of researchers at the US Army Research Laboratory, co-planar waveguide (CPW) transmission lines were chosen and designed to provide a low loss, 50 ohm impedance transmission line for the switch. CPW designs allow for both series and shunt switch configuration with this work focusing on a series switch. Furthermore, a series switch an ohmic contact was chosen as opposed to capacitive contacts. Piezoelectric actuation is chosen for the switch to enable operating voltages less than 10 volts while still maintaining a restoring force to prevent stiction. To meet these demands, lead zirconate titanate (PZT) thin films have been chosen for the piezoelectric actuator. Mechanical modeling of cantilevers comprised of an elastic layer and a Pt-PZT-Pt actuator were used to demonstrate feasibility of closing large gaps between switch contacts. Placement of the actuator to minimize perturbations to the RF transmission line is critical for broadband performance. Using fabrication design rules, electro-mechanical modeling, and high frequency design, the actuators were designed to fit with the RF gap between the RF conductor and ground planes of the CPW transmission line. Optimal performance was obtained with the actuators mechanically isolated from a majority of the RF transmission except for a small section that provides the contact pad to enable switch closure. The resulting switch is the first demonstrated first surface micromachined RF MEMS switch operating from DC to 65 GHz. This switch has a median actuation voltage below 5 volts with operation as low as 2 volts. Isolation in the

  15. Correction of image distortions in endoscopic optical coherence tomography based on two-axis scanning MEMS mirrors

    PubMed Central

    Wang, Donglin; Liang, Peng; Samuelson, Sean; Jia, Hongzhi; Ma, Junshan; Xie, Huikai

    2013-01-01

    A two-axis scanning microelectromechanical (MEMS) mirror enables an optical coherence tomography (OCT) system to perform three-dimensional endoscopic imaging due to its fast scan speed and small size. However, the radial scan from the MEMS mirror causes various distortions in OCT images, namely spherical, fan-shaped and keystone distortions. In this paper, a new method is proposed to correct all of three distortions presented in OCT systems based on two-axis MEMS scanning mirrors. The spherical distortion is corrected first by directly manipulating the original spectral interferograms in the phase domain, followed by Fourier transform and three-dimensional geometrical transformation for correcting the other two types of distortions. OCT imaging experiments on a paper with square ink printed arrays and a glass tube filled with milk have been used to validate the proposed method. Distortions in OCT images of flat or curved surfaces can all be effectively removed. PMID:24156064

  16. Correction of image distortions in endoscopic optical coherence tomography based on two-axis scanning MEMS mirrors.

    PubMed

    Wang, Donglin; Liang, Peng; Samuelson, Sean; Jia, Hongzhi; Ma, Junshan; Xie, Huikai

    2013-01-01

    A two-axis scanning microelectromechanical (MEMS) mirror enables an optical coherence tomography (OCT) system to perform three-dimensional endoscopic imaging due to its fast scan speed and small size. However, the radial scan from the MEMS mirror causes various distortions in OCT images, namely spherical, fan-shaped and keystone distortions. In this paper, a new method is proposed to correct all of three distortions presented in OCT systems based on two-axis MEMS scanning mirrors. The spherical distortion is corrected first by directly manipulating the original spectral interferograms in the phase domain, followed by Fourier transform and three-dimensional geometrical transformation for correcting the other two types of distortions. OCT imaging experiments on a paper with square ink printed arrays and a glass tube filled with milk have been used to validate the proposed method. Distortions in OCT images of flat or curved surfaces can all be effectively removed. PMID:24156064

  17. 2D MEMS scanning for LIDAR with sub-Nyquist sampling, electronics, and measurement procedure

    NASA Astrophysics Data System (ADS)

    Giese, Thorsten; Janes, Joachim

    2015-05-01

    Electrostatic driven 2D MEMS scanners resonantly oscillate in both axes leading to Lissajous trajectories of a digitally modulated laser beam reflected from the micro mirror. A solid angle of about 0.02 is scanned by a 658nm laser beam with a maximum repetition rate of 350MHz digital pulses. Reflected light is detected by an APD with a bandwidth of 80MHz. The phase difference between the scanned laser light and the light reflected from an obstacle is analyzed by sub-Nyquist sampling. The FPGA-based electronics and software for the evaluation of distance and velocity of objects within the scanning range are presented. Furthermore, the measures to optimize the Lidar accuracy of about 1mm and the dynamic range of up to 2m are examined. First measurements demonstrating the capability of the system and the evaluation algorithms are discussed.

  18. Real-time DC-dynamic biasing method for switching time improvement in severely underdamped fringing-field electrostatic MEMS actuators.

    PubMed

    Small, Joshua; Fruehling, Adam; Garg, Anurag; Liu, Xiaoguang; Peroulis, Dimitrios

    2014-01-01

    Mechanically underdamped electrostatic fringing-field MEMS actuators are well known for their fast switching operation in response to a unit step input bias voltage. However, the tradeoff for the improved switching performance is a relatively long settling time to reach each gap height in response to various applied voltages. Transient applied bias waveforms are employed to facilitate reduced switching times for electrostatic fringing-field MEMS actuators with high mechanical quality factors. Removing the underlying substrate of the fringing-field actuator creates the low mechanical damping environment necessary to effectively test the concept. The removal of the underlying substrate also a has substantial improvement on the reliability performance of the device in regards to failure due to stiction. Although DC-dynamic biasing is useful in improving settling time, the required slew rates for typical MEMS devices may place aggressive requirements on the charge pumps for fully-integrated on-chip designs. Additionally, there may be challenges integrating the substrate removal step into the back-end-of-line commercial CMOS processing steps. Experimental validation of fabricated actuators demonstrates an improvement of 50x in switching time when compared to conventional step biasing results. Compared to theoretical calculations, the experimental results are in good agreement. PMID:25145811

  19. Real-Time DC-dynamic Biasing Method for Switching Time Improvement in Severely Underdamped Fringing-field Electrostatic MEMS Actuators

    PubMed Central

    Small, Joshua; Fruehling, Adam; Garg, Anurag; Liu, Xiaoguang; Peroulis, Dimitrios

    2014-01-01

    Mechanically underdamped electrostatic fringing-field MEMS actuators are well known for their fast switching operation in response to a unit step input bias voltage. However, the tradeoff for the improved switching performance is a relatively long settling time to reach each gap height in response to various applied voltages. Transient applied bias waveforms are employed to facilitate reduced switching times for electrostatic fringing-field MEMS actuators with high mechanical quality factors. Removing the underlying substrate of the fringing-field actuator creates the low mechanical damping environment necessary to effectively test the concept. The removal of the underlying substrate also a has substantial improvement on the reliability performance of the device in regards to failure due to stiction. Although DC-dynamic biasing is useful in improving settling time, the required slew rates for typical MEMS devices may place aggressive requirements on the charge pumps for fully-integrated on-chip designs. Additionally, there may be challenges integrating the substrate removal step into the back-end-of-line commercial CMOS processing steps. Experimental validation of fabricated actuators demonstrates an improvement of 50x in switching time when compared to conventional step biasing results. Compared to theoretical calculations, the experimental results are in good agreement. PMID:25145811

  20. Thermal MEMS actuator operation in aqueous media/seawater: Performance enhancement through atomic layer deposition post processing of PolyMUMPs devices

    SciTech Connect

    Warnat, Stephan Forbrigger, Cameron; Hubbard, Ted; Bertuch, Adam; Sundaram, Ganesh

    2015-01-15

    A method to enhance thermal microelectromechanical systems (MEMS) actuators in aqueous media by using dielectric encapsulation layers is presented. Aqueous media reduces the available mechanical energy of the thermal actuator through an electrical short between actuator structures. Al{sub 2}O{sub 3} and TiO{sub 2} laminates with various thicknesses were deposited on packaged PolyMUMPs devices to electrically separate the actuator from the aqueous media. Atomic layer deposition was used to form an encapsulation layer around released MEMS structures and the package. The enhancement was assessed by the increase of the elastic energy, which is proportional to the mechanical stiffness of the actuator and the displacement squared. The mechanical stiffness of the encapsulated actuators compared with the noncoated actuators was increased by factors ranging from 1.45 (for 45 nm Al{sub 2}O{sub 3} + 20 nm TiO{sub 2}) to 1.87 (for 90 nm Al{sub 2}O{sub 3} + 40 nm TiO{sub 2}). Displacement measurements were made for all laminate combinations in filtered tap water and seawater by using FFT based displacement measurement technique with a repeatability of ∼10 nm. For all laminate structures, the elastic energy increased and enhanced the actuator performance: In seawater, the mechanical output energy increased by factors ranging from 5 (for 90 nm Al{sub 2}O{sub 3}) to 11 (for 90 nm Al{sub 2}O{sub 3} + 40 nm TiO{sub 2}). The authors also measured the long-term actuator stability/reliability in seawater. Samples were stored for 29 days in seawater and tested for 17 days in seawater. Laminates with TiO{sub 2} layers allowed constant operation over the entire measurement period.

  1. Fiber-optic raster scanning two-photon endomicroscope using a tubular piezoelectric actuator

    NASA Astrophysics Data System (ADS)

    Do, Dukho; Yoo, Hongki; Gweon, Dae-Gab

    2014-06-01

    A nonresonant, fiber-optic raster scanning endomicroscope was developed using a quarter-tubular piezoelectric (PZT) actuator. A fiber lever mechanism was utilized to enhance the small actuation range of the tubular PZT actuator and to increase its field-of-view. Finite element method simulation of the endoscopic probe was conducted for various conditions to maximize its scanning range. After fabricating the probe using a double clad fiber, we obtained two-photon fluorescence images using raster beam scanning of the fiber. The outer diameter of the probe was 3.5 mm and its rigid distal length was 30 mm including a high numerical aperture gradient index lens. These features are sufficient for input into the instrumental channel of a commercial colonoscope or gastroscope to obtain high resolution images in vivo.

  2. Novel On-wafer Radiation Pattern Measurement Technique for MEMS Actuator Based Reconfigurable Patch Antennas

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.

    2002-01-01

    The paper presents a novel on-wafer, antenna far field pattern measurement technique for microelectromechanical systems (MEMS) based reconfigurable patch antennas. The measurement technique significantly reduces the time and the cost associated with the characterization of printed antennas, fabricated on a semiconductor wafer or dielectric substrate. To measure the radiation patterns, the RF probe station is modified to accommodate an open-ended rectangular waveguide as the rotating linearly polarized sampling antenna. The open-ended waveguide is attached through a coaxial rotary joint to a Plexiglas(Trademark) arm and is driven along an arc by a stepper motor. Thus, the spinning open-ended waveguide can sample the relative field intensity of the patch as a function of the angle from bore sight. The experimental results include the measured linearly polarized and circularly polarized radiation patterns for MEMS-based frequency reconfigurable rectangular and polarization reconfigurable nearly square patch antennas, respectively.

  3. Novel On-Wafer Radiation Pattern Measurement Technique for MEMS Actuator Based Reconfigurable Patch Antennas

    NASA Astrophysics Data System (ADS)

    Simons, Rainee N.

    2002-10-01

    The paper presents a novel on-wafer, antenna far field pattern measurement technique for microelectromechanical systems (MEMS) based reconfigurable patch antennas. The measurement technique significantly reduces the time and the cost associated with the characterization of printed antennas, fabricated on a semiconductor wafer or dielectric substrate. To measure the radiation patterns, the RF probe station is modified to accommodate an open-ended rectangular waveguide as the rotating linearly polarized sampling antenna. The open-ended waveguide is attached through a coaxial rotary joint to a Plexiglas(Trademark) arm and is driven along an arc by a stepper motor. Thus, the spinning open-ended waveguide can sample the relative field intensity of the patch as a function of the angle from bore sight. The experimental results include the measured linearly polarized and circularly polarized radiation patterns for MEMS-based frequency reconfigurable rectangular and polarization reconfigurable nearly square patch antennas, respectively.

  4. High-speed MEMS swept-wavelength light source for FBG sensor system

    NASA Astrophysics Data System (ADS)

    Saitoh, Takanori; Nakamura, Kenichi; Takahashi, Yoshifumi; Miyagi, Koichiro

    2005-05-01

    A high-speed MEMS swept-wavelength light source (SLS) for an FBG sensor system is proposed and demonstrated. It is basically a multi-mode external-cavity laser diode (LD), and consists mainly of an LD head, diffraction grating, and electromagnetically actuated MEMS scanning mirror. It has a linewidth of 0.03 nm, scan range from 1508 to 1582 nm, scan rate of 0.57 ms and output power of 10 mW. The heart of the MEMS SLS is the MEMS scanning mirror (8 x 6 mm) that changes the oscillation wavelength continuously and rapidly. The scanning mirror is actuated by electromagnetic force derived from a permalloy piece glued on the back of the mirror and a C-shape electromagnet. The MEMS SLS allows construction of a low-cost, simple and high-speed FBG interrogator system.

  5. Low-cost compact MEMS scanning ladar system for robotic applications

    NASA Astrophysics Data System (ADS)

    Moss, Robert; Yuan, Ping; Bai, Xiaogang; Quesada, Emilio; Sudharsanan, Rengarajan; Stann, Barry L.; Dammann, John F.; Giza, Mark M.; Lawler, William B.

    2012-06-01

    Future robots and autonomous vehicles require compact low-cost Laser Detection and Ranging (LADAR) systems for autonomous navigation. Army Research Laboratory (ARL) had recently demonstrated a brass-board short-range eye-safe MEMS scanning LADAR system for robotic applications. Boeing Spectrolab is doing a tech-transfer (CRADA) of this system and has built a compact MEMS scanning LADAR system with additional improvements in receiver sensitivity, laser system, and data processing system. Improved system sensitivity, low-cost, miniaturization, and low power consumption are the main goals for the commercialization of this LADAR system. The receiver sensitivity has been improved by 2x using large-area InGaAs PIN detectors with low-noise amplifiers. The FPGA code has been updated to extend the range to 50 meters and detect up to 3 targets per pixel. Range accuracy has been improved through the implementation of an optical T-Zero input line. A compact commercially available erbium fiber laser operating at 1550 nm wavelength is used as a transmitter, thus reducing the size of the LADAR system considerably from the ARL brassboard system. The computer interface has been consolidated to allow image data and configuration data (configuration settings and system status) to pass through a single Ethernet port. In this presentation we will discuss the system architecture and future improvements to receiver sensitivity using avalanche photodiodes.

  6. A Two-Dimensional Laser Scanning Mirror Using Motion-Decoupling Electromagnetic Actuators

    PubMed Central

    Shin, Bu Hyun; Dongho, Oh; Lee, Seung-Yop

    2013-01-01

    This work proposes a two-dimensional (2-D) laser scanning mirror with a novel actuating structure composed of one magnet and two coils. The mirror-actuating device generates decoupled scanning motions about two orthogonal axes by combining two electromagnetic actuators of the conventional moving-coil and the moving-magnet types. We implement a finite element analysis to calculate magnetic flux in the electromagnetic system and experiments using a prototype with the overall size of 22 mm (W) × 20 mm (D) × 15 mm (H) for the mirror size of 8 mm × 8 mm. The upper moving-coil type actuator to rotate only the mirror part has the optical reflection angle of 15.7° at 10 Hz, 90°at the resonance frequency of 60 Hz at ±3V(±70mA) and the bandwidth of 91 Hz. The lowermoving-magnet type actuator has the optical reflection angle of 16.20°at 10 Hz and50°at the resonance frequency of 60 Hz at ±5V(±34mA) and the bandwidth of 88 Hz. The proposed compact and simple 2-D scanning mirror has advantages of large 2-D angular deflections, wide frequency bandwidth and low manufacturing cost. PMID:23535717

  7. Ultrahigh resolution OCT imaging with a two-dimensional MEMS scanning endoscope

    NASA Astrophysics Data System (ADS)

    Aguirre, Aaron D.; Herz, Paul R.; Chen, Yu; Fujimoto, James G.; Piyawattanametha, Wibool; Fan, Li; Hsu, ShuTing; Fujino, Makoto; Wu, Ming C.; Kopf, Daniel

    2005-04-01

    This paper reports preliminary results from the development and application of a two-dimensional MEMS endoscopic scanner for OCT imaging. A 1 mm diameter mirror provides high aperture over large scan angle and can scan at rates of hundreds of Hz in both axes. The mirror is integrated with focusing optics and a fiber-optic collimator into a package of ~5 mm diameter. Using a broadband femtosecond laser light source, ultrahigh axial image resolution of < 5 um in tissue is achieved at 1.06 um center wavelength. Ultrahigh resolution cross-sectional and three-dimensional OCT imaging is demonstrated with the endoscope with ~12 um transverse resolution and < 5 um axial resolution.

  8. Close infrared thermography using an intensified CCD camera: application in nondestructive high resolution evaluation of electrothermally actuated MEMS

    NASA Astrophysics Data System (ADS)

    Serio, B.; Hunsinger, J. J.; Conseil, F.; Derderian, P.; Collard, D.; Buchaillot, L.; Ravat, M. F.

    2005-06-01

    This communication proposes the description of an optical method for thermal characterization of MEMS devices. The method is based on the use of an intensified CCD camera to record the thermal radiation emitted by the studied device in the spectral domain from 600 nm to about 850 nm. The camera consists of an intensifier associated to a CCD sensor. The intensification allows for very low signal levels to be amplified and detected. We used a standard optical microscope to image the device with sub-micron resolution. Since, in close infrared, at very small scale and low temperature, typically 250°C for thermal MEMS (Micro-Electro-Mechanical Systems), the thermal radiation is very weak, we used image integration in order to increase the signal to noise ratio. Knowing the imaged materials emissivity, the temperature is given by using Planck"s law. In order to evaluate the system performances we have made micro-thermographies of a micro-relay thermal actuator. This device is an "U-shape" Al/SiO2 bimorph cantilever micro-relay with a gold-to-gold electrical contact, designed for secured harsh environment applications. The initial beam curvature resulting from residual stresses ensures a large gap between the contacts of the micro-relay. The current flow through the metallic layer heats the bimorph by Joule effect, and the differential expansion provides the vertical displacement for contact. The experimental results are confronted to FEM and analytical simulations. A good agreement was obtained between experimental results and simulations.

  9. The design and simulation of single detector MIR spectrometer based on MEMS scanning mirror

    NASA Astrophysics Data System (ADS)

    Zhang, Zhong-wei; Wen, Zhi-yu; Zeng, Tian-ling; Wei, Kang-lin

    2011-08-01

    Infrared (IR) spectrometers are very important optical equipments that can be used in industry, science, medicine, agriculture, biology and food safety etc., and the market is growing. However, most traditional IR spectrometers, such as Fourier transform spectrometer (FTS) that based on Michelson interferometer principle and scanning monochromator that based on grating scanning, are expensive, relative large volume, and stationary, which can't meet the requirements of specific application such as rapidity, special environment and some special samples. To overcome these drawbacks, innovatory technology-micro electro mechanical systems (MEMS) technology was used in micro IR spectrometers in the past few years. And several prototypes and products that based on several operational principles have been emerged. In this paper, a novel IR micro spectrometer which based on MEMS technology and used single element detector was presented over a wide spectral range (from 2500nm to 5000nm) in the mid infrared (MIR) wavelength regime, and the optical system of it was designed on the basis of traditional scanning monochromator principle. In the optical system, there is a highlighted characteristic that dual spherical focus mirror was used to focus the diffraction light of the diffraction grating, which improved the spectral resolution of the optical system. Finally, using Zemax optical software, three torsion angle locations were selected to simulate the optical system of the spectrometer with the slit's size 0.1mm×1mm. The simulation result indicated that in the whole wavelength range the spectral resolution of the optical system was less than 30nm, and a high accuracy MIR spectrometer with compact volume will be realized in future hopefully.

  10. Feedback/feedforward control of hysteresis-compensated piezoelectric actuators for high-speed scanning applications

    NASA Astrophysics Data System (ADS)

    Liu, Yanfang; Shan, Jinjun; Gabbert, Ulrich

    2015-01-01

    This paper presents the control system design for a piezoelectric actuator (PEA) for a high-speed trajectory scanning application. First nonlinear hysteresis is compensated for by using the Maxwell resistive capacitor model. Then the linear dynamics of the hysteresis-compensated piezoelectric actuator are identified. A proportional plus integral (PI) controller is designed based on the linear system, enhanced by feedforward hysteresis compensation. It is found that the feedback controller does not always improve tracking accuracy. When the input frequency exceeds a certain value, feedforward control only may result in better control performance. Experiments are conducted, and the results demonstrate the effectiveness of the proposed control approach.

  11. Comparison of Control Algorithms for a MEMS-based Adaptive Optics Scanning Laser Ophthalmoscope

    PubMed Central

    Li, Kaccie Y.; Mishra, Sandipan; Tiruveedhula, Pavan; Roorda, Austin

    2010-01-01

    We compared four algorithms for controlling a MEMS deformable mirror of an adaptive optics (AO) scanning laser ophthalmoscope. Interferometer measurements of the static nonlinear response of the deformable mirror were used to form an equivalent linear model of the AO system so that the classic integrator plus wavefront reconstructor type controller can be implemented. The algorithms differ only in the design of the wavefront reconstructor. The comparisons were made for two eyes (two individuals) via a series of imaging sessions. All four controllers performed similarly according to estimated residual wavefront error not reflecting the actual image quality observed. A metric based on mean image intensity did consistently reflect the qualitative observations of retinal image quality. Based on this metric, the controller most effective for suppressing the least significant modes of the deformable mirror performed the best. PMID:20454552

  12. Design of a MEMS-based retina scanning system for biometric authentication

    NASA Astrophysics Data System (ADS)

    Woittennek, Franziska; Knobbe, Jens; Pügner, Tino; Schelinski, Uwe; Grüger, Heinrich

    2014-05-01

    There is an increasing need for reliable authentication for a number of applications such as e commerce. Common authentication methods based on ownership (ID card) or knowledge factors (password, PIN) are often prone to manipulations and may therefore be not safe enough. Various inherence factor based methods like fingerprint, retinal pattern or voice identifications are considered more secure. Retina scanning in particular offers both low false rejection rate (FRR) and low false acceptance rate (FAR) with about one in a million. Images of the retina with its characteristic pattern of blood vessels can be made with either a fundus camera or laser scanning methods. The present work describes the optical design of a new compact retina laser scanner which is based on MEMS (Micro Electric Mechanical System) technology. The use of a dual axis micro scanning mirror for laser beam deflection enables a more compact and robust design compared to classical systems. The scanner exhibits a full field of view of 10° which corresponds to an area of 4 mm2 on the retinal surface surrounding the optical disc. The system works in the near infrared and is designed for use under ambient light conditions, which implies a pupil diameter of 1.5 mm. Furthermore it features a long eye relief of 30 mm so that it can be conveniently used by persons wearing glasses. The optical design requirements and the optical performance are discussed in terms of spot diagrams and ray fan plots.

  13. Microelectromechanical Systems (MEMS) Actuator-Based, Polarization Reconfigurable Patch Antenna Demonstrated

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.

    2002-01-01

    A nearly square patch antenna with a contact actuator along a radiating edge for polarization reconfiguration was demonstrated at Ka-band frequencies at the NASA Glenn Research Center. The layout of the antenna is shown in the following sketch. This antenna has the following advantages: 1) It can be dynamically reconfigured to receive and transmit a linearly polarized signal or a circularly polarized signal. This feature allows the substitution of multiple antennas on a satellite by a single antenna, thereby resulting in significant cost savings. 2) In our approach, the polarization is switched between the two states without affecting the frequency of operation; thus, valuable frequency spectrum is conserved. 3) The ability to switch polarization also helps mitigate propagation effects due to adverse weather on the performance of a satellite-to-ground link. Hence, polarization reconfigurability enhances link reliability.

  14. Single-body lensed-fiber scanning probe actuated by magnetic force for optical imaging.

    PubMed

    Min, Eun Jung; Na, Jihoon; Ryu, Seon Young; Lee, Byeong Ha

    2009-06-15

    We propose a fiber-based hand-held scanning probe suitable for the sample arm of an optical imaging system including optical coherence tomography. To achieve compactness, a single-body lensed-fiber and a solenoid actuator were utilized. The focusing lens of the probe was directly formed onto the distal end of a fiber, which eliminated the need for additional optical components and optical alignment. A ferromagnetic iron bead was glued onto the middle of the fiber to enable actuation by magnetic force, which allowed easy fabrication and good practicality. The fiber piece having the built-in fiber lens was forced to oscillate in its resonant frequency. With the implemented probe, optical coherence tomography images of a human fingertip and a pearl were obtained at an imaging speed of 30 frames/s over a scanning range of 4 mm. PMID:19529740

  15. Nanotribology-based novel characterization techniques for the dielectric charging failure mechanism in electrostatically actuated NEMS/MEMS devices using force-distance curve measurements.

    PubMed

    Zaghloul, Usama; Bhushan, Bharat; Papaioannou, George; Coccetti, Fabio; Pons, Patrick; Plana, Robert

    2012-01-01

    The work presents a comprehensive package of novel nanoscale characterization techniques to study dielectric charging in electrostatic nano- and microelectromechanical systems (NEMS and MEMS). The proposed assessment methodologies are based on the force-distance curve (FDC) measurements performed using an atomic force microscope (AFM) to measure, for the first time, the induced surface potential and adhesive force over charged dielectric films. They were employed to study plasma enhanced chemical vapor deposition (PECVD) silicon nitride films for application in electrostatic capacitive RF MEMS switches. Three different techniques were introduced including the application of FDC measurements to study charging in bare SiN(x) films, metal-insulator-metal (MIM) capacitors, and MEMS switches. The results from the three methods were correlated and compared with the published data from other characterization techniques, mainly charge/discharge current transient (C/DCT) and Kelvin probe force microscopy (KPFM). The unique advantages of the proposed FDC-based characterization techniques are twofold. First, they can measure the multiphysics coupling between the dielectric charging phenomenon and tribological issues at the interface between the switch bridge and the dielectric surface. Second, the FDC-based techniques can measure larger levels of induced surface potential over charged dielectric films which results from the high electric field normally used to actuate MEMS switches. Based on the proposed FDC techniques, the influence of several parameters on dielectric charging/discharging processes was investigated: the dielectric film thickness, deposition conditions, substrate, and electrical stress conditions. PMID:21962432

  16. Pre-stressed piezoelectric bimorph micro-actuators based on machined 40 µm PZT thick films: batch scale fabrication and integration with MEMS

    NASA Astrophysics Data System (ADS)

    Wilson, S. A.; Jourdain, R. P.; Owens, S.

    2010-09-01

    The projected force-displacement capability of piezoelectric ceramic films in the 20-50 µm thickness range suggests that they are well suited to many micro-fluidic and micro-pneumatic applications. Furthermore when they are configured as bending actuators and operated at ~ 1 V µm - 1 they do not necessarily conform to the high-voltage, very low-displacement piezoelectric stereotype. Even so they are rarely found today in commercial micro-electromechanical devices, such as micro-pumps and micro-valves, and the main barriers to making them much more widely available would appear to be processing incompatibilities rather than commercial desirability. In particular, the issues associated with integration of these devices into MEMS at the production level are highly significant and they have perhaps received less attention in the mainstream than they deserve. This paper describes a fabrication route based on ultra-precision ceramic machining and full-wafer bonding for cost-effective batch scale production of thick film PZT bimorph micro-actuators and their integration with MEMS. The resulting actuators are pre-stressed (ceramic in compression) which gives them added performance, they are true bimorphs with bi-directional capability and they exhibit full bulk piezoelectric ceramic properties. The devices are designed to integrate with ancillary systems components using transfer-bonding techniques. The work forms part of the European Framework 6 Project 'Q2M—Quality to Micro'.

  17. 10-25 GHz frequency reconfigurable MEMS 5-bit phase shifter using push-pull actuator based toggle mechanism

    NASA Astrophysics Data System (ADS)

    Dey, Sukomal; Koul, Shiban K.

    2015-06-01

    This paper presents a frequency tunable 5-bit true-time-delay digital phase shifter using radio frequency microelectromechanical system (RF MEMS) technology. The phase shifter is based on the distributed MEMS transmission line (DMTL) concept utilizing a MEMS varactor. The main source of frequency tuning in this work is a bridge actuation mechanism followed by capacitance variation. Two stages of actuation mechanisms (push and pull) are used to achieve a 2:1 tuning ratio. Accurate control of the actuation voltage between the pull to push stages contributes differential phase shift over the band of interest. The functional behavior of the push-pull actuation over the phase shifter application is theoretically established, experimentally investigated and validated with simulation. The phase shifter is fabricated monolithically using a gold based surface micromachining process on an alumina substrate. The individual primary phase-bits (11.25°/22.5°/45°/90°/180°) that are the fundamental building blocks of the complete 5-bit phase shifter are designed, fabricated and experimentally characterized from 10-25 GHz for specific applications. Finally, the complete 5-bit phase shifter demonstrates an average phase error of 4.32°, 2.8°, 1° and 1.58°, an average insertion loss of 3.76, 4.1, 4.2 and 4.84 dB and an average return loss of 11.7, 12, 14 and 11.8 dB at 10, 12, 17.2 and 25 GHz, respectively. To the best of the authors’ knowledge, this is the first reported band tunable stand alone 5-bit phase shifter in the literature which can work over the large spectrum for different applications. The total area of the 5-bit phase shifter is 15.6 mm2. Furthermore, the cold-switched reliability of the unit cell and the complete 5-bit MEMS phase shifter are extensively investigated and presented.

  18. Elastomeric photo-actuators and their investigation by confocal laser scanning microscopy

    NASA Astrophysics Data System (ADS)

    Czaniková, Klaudia; Ilčíková, Markéta; Krupa, Igor; Mičušík, Matej; Kasák, Peter; Pavlova, Ewa; Mosnáček, Jaroslav; Chorvát, Dušan, Jr.; Omastová, Mária

    2013-10-01

    The photo-actuation behavior of nanocomposites based on ethylene-vinylacetate copolymer (EVA) and styrene-isoprene-styrene (SIS) block copolymer filled with well-dispersed and modified multiwalled carbon nanotubes (MWCNTs) is discussed in this paper. The nanocomposites were prepared by casting from solution. To improve the dispersion of the MWCNTs in EVA, the MWCNT surface was modified with a non-covalent surfactant, cholesteryl 1-pyrenecarboxylate (PyChol). To prepare SIS nanocomposites, the MWCNT surface was covalently modified with polystyrene chains. The good dispersion of the filler was confirmed by transmission electron microscopy (TEM). Special, custom-made punch/die molds were used to create a Braille element (BE)-like shape, which under shear forces induces a uniaxial orientation of the MWCNTs within the matrix. The uniaxial orientation of MWCNTs is an essential precondition to ensure the photo-actuating behavior of MWCNTs in polymeric matrices. The orientation of the MWCNTs within the matrices was examined by scanning electron microscopy (SEM). Nanocomposite BEs were illuminated from the bottom by a red light-emitting diode (LED), and the photo-actuation was investigated by confocal laser scanning microscopy (CLSM). When the BEs were exposed to light, a temporary increase in the height of the element was detected. This process was observed to be reversible: after switching off the light, the BEs returned to their original shape and height.

  19. Modeling and simulation of blazed grating based on MEMS scanning micro-mirror for NIR micro-spectrometer

    NASA Astrophysics Data System (ADS)

    Zhou, Ying; Wen, Zhiyu; Yang, Tingyan; Lei, Hongjie

    2015-11-01

    Near infrared micro-spectrometer (NIRMS) as a vital detection equipment for various elements has been investigated over the last few years. Traditional MEMS NIRMS employs CCD array detectors for NIR spectrum collection and this leads to higher fabrication cost. In this paper, to ensure the higher diffraction efficiency as well as lower fabrication cost, a novel blazed grating based on MEMS scanning micro-mirror (SMM) is proposed. By our design method, the NIRMS needs only one single InGaAs detector photo diode to collect NIR spectrum and ensure the high diffraction efficiency. Our results show that the diffraction efficiency of the blazed grating is almost 50% and the peak value reaches to 90% in the range of 900-2,100 nm while the optical scanning angle is 14.2°.

  20. Q-factor enhancement for self-actuated self-sensing piezoelectric MEMS resonators applying a lock-in driven feedback loop

    NASA Astrophysics Data System (ADS)

    Kucera, M.; Manzaneque, T.; Sánchez-Rojas, J. L.; Bittner, A.; Schmid, U.

    2013-08-01

    This paper presents a robust Q-control approach based on an all-electrical feedback loop enhancing the quality factor of a resonant microstructure by using the self-sensing capability of a piezoelectric thin film actuator made of aluminium nitride. A lock-in amplifier is used to extract the feedback signal which is proportional to the piezoelectric current. The measured real part is used to replace the originally low-quality and noisy feedback signal to modulate the driving voltage of the piezoelectric thin-film actuator. Since the lock-in amplifier reduces the noise in the feedback signal substantially, the proposed enhancement loop avoids the disadvantage of a constant signal-to-noise ratio, which an analogue feedback circuit usually suffers from. The quality factor was increased from the intrinsic value of 1766 to a maximum of 34 840 in air. These promising results facilitate precise measurements for self-actuated and self-sensing MEMS cantilevers even when operated in static viscous media.

  1. Electro-thermal MEMS fiber scanner for endoscopic optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Park, Hyeon-Cheol; Zhang, Xiaoyang; Mavadia-Shukla, Jessica; Yuan, Wu; Xie, Huikai; Li, Xingde

    2016-03-01

    This work report an electro-thermal micro-electro-mechanical system (MEMS) fiber scanner for endoscopic optical coherence tomography (OCT) imaging. The electro-thermal MEMS actuator is composed of a micro-platform, a group of bimorph actuators and a substrate. At first, a 40 mm long bare fiber was fixed on the actuator while keeping the distal end tip free. The micro-platform was then, attached with the fiber at 20 mm apart from the fixed end. Electro-thermal bimorph MEMS actuator with large vertical displacement realizes 1-D forward optical scanning up to 3 mm of scanning range with only 5 VACp-p and 2 VDC operation voltages. The electro-thermal MEMS fiber scanner was combined with the high speed FDML-based swept-source OCT (SS-OCT) system and demonstrated its capability of performing cross-sectional imaging. The FDML laser source has a central wavelength of 1310 nm and a full wavelength sweeping range of ~ 150 nm, which provided an axial resolution of ~ 9.3 to 9.5 µm in air. The FDML sweeping frequency was 220 kHz, and the OCT imaging frame rate was synchronized with the resonant frequency of the MEMS fiber scanner (~88 frames per second). Due to the high actuation force of the electro-thermal actuation, proposed MEMS fibers canner can scan the fiber tip to a millimeter range with low actuation voltages and thus may have potential of performing raster scan with non-resonant fiber cantilevers directly.

  2. A planar monolithic large size resonant scanning mirror actuated by electromagnetic induction

    NASA Astrophysics Data System (ADS)

    Oliveira, Luiz C. M.; Ferreira, Luiz O. S.

    2008-11-01

    A new design of resonant scanning mirror actuated by electromagnetic induction is presented. It is a planar device that was manufactured from 0.5 mm thick phosphor bronze by batch photofabrication. The monolithic mechanical structure have a frame, tree torsion bars and two rotors. Folded torsion bars connect the frame to the rotors, and a straight torsion bar interconnects both rotors. One rotor is devoted to the armature (moving coil), and the other rotor carries the mirror. There is a hole in the armature where a branch of the actuating magnetic core (stator) passes through, carrying the magnetic flux generated by an excitation coil of the stator. The efficiency on converting electric power to mechanical motion was increased two orders of magnitude from a previously published inductive planar device (0.005 W/deg against 2.2 W/deg). A prototype measuring 69 x 49 mm2 oscillating at 64.4 Hz presented deflection angle of 12°pp, and a quality factor Q of 200. A mathematical model was derived and a design procedure was developed. The results shown that this device has potential to replace conventional resonant scanners on high-aperture optical systems or high-power laser applications.

  3. Integration and demonstration of MEMS-scanned LADAR for robotic navigation

    NASA Astrophysics Data System (ADS)

    Stann, Barry L.; Dammann, John F.; Del Giorno, Mark; DiBerardino, Charles; Giza, Mark M.; Powers, Michael A.; Uzunovic, Nenad

    2014-06-01

    LADAR is among the pre-eminent sensor modalities for autonomous vehicle navigation. Size, weight, power and cost constraints impose significant practical limitations on perception systems intended for small ground robots. In recent years, the Army Research Laboratory (ARL) developed a LADAR architecture based on a MEMS mirror scanner that fundamentally improves the trade-offs between these limitations and sensor capability. We describe how the characteristics of a highly developed prototype correspond to and satisfy the requirements of autonomous navigation and the experimental scenarios of the ARL Robotics Collaborative Technology Alliance (RCTA) program. In particular, the long maximum and short minimum range capability of the ARL MEMS LADAR makes it remarkably suitable for a wide variety of scenarios from building mapping to the manipulation of objects at close range, including dexterous manipulation with robotic arms. A prototype system was applied to a small (approximately 50 kg) unmanned robotic vehicle as the primary mobility perception sensor. We present the results of a field test where the perception information supplied by the LADAR system successfully accomplished the experimental objectives of an Integrated Research Assessment (IRA).

  4. Optical MEMS-based arrays

    NASA Astrophysics Data System (ADS)

    Ruffin, Paul B.

    2003-07-01

    Industrial Micro Electro Mechanical Systems (MEMS) developers are rapidly bringing to demonstration inertial radio frequency, and optical MEMS devices and components. The Army has a requirement for compact, highly reliable, and inexpensive laser beam steering components for missile seekers and unmanned aerial vehicles remote sensing components to provide a fast scanning capability for pointing, acquisition, tracking, and data communication. The coupling of this requirement with recent developments in the micro-optics area, has led scientists and engineers at the Army Aviation and Missile Command (AMCOM) to consider optical MEMS-based phased arrays, which have potential applications in the commercial industry as well as in the military, as a replacement for gimbals. Laser beam steering in commercial applications such as free space communicataion, scanning display, bar-code reading, and gimbaled seekers; require relatively large monolithic micro-mirrors to accomplish the required optical resolution. The Army will benefit from phased arrays composed of relatively small micro-mirrors that can be actuated through large deflection angles with substantially reduced volume times. The AMCOM Aviation and Missile Research, Development, and Engineering Center (AMRDEC) has initiated a research project to develop MEMS-based phased arrays for use in a small volume, inexpensive Laser Detection and Ranging (LADAR) seeker that is particularly attractive because of its ability to provide large field-of-regard and autonomous target acquisition for reconnaissance mission applications. The primary objective of the collaborative project with the Defence Advanced Research Projects Agency (DARPA) is to develop a rugged, MEMS-based phased arrays for incorporation into the 2-D scanner of a LADAR seeker. Design challenges and approach to achieving performance requirements will be discussed.

  5. High-stroke silicon-on-insulator MEMS nanopositioner: Control design for non-raster scan atomic force microscopy

    SciTech Connect

    Maroufi, Mohammad Fowler, Anthony G. Bazaei, Ali Moheimani, S. O. Reza

    2015-02-15

    A 2-degree of freedom microelectromechanical systems nanopositioner designed for on-chip atomic force microscopy (AFM) is presented. The device is fabricated using a silicon-on-insulator-based process and is designed as a parallel kinematic mechanism. It contains a central scan table and two sets of electrostatic comb actuators along each orthogonal axis, which provides displacement ranges greater than ±10 μm. The first in-plane resonance modes are located at 1274 Hz and 1286 Hz for the X and Y axes, respectively. To measure lateral displacements of the stage, electrothermal position sensors are incorporated in the design. To facilitate high-speed scans, the highly resonant dynamics of the system are controlled using damping loops in conjunction with internal model controllers that enable accurate tracking of fast sinusoidal set-points. To cancel the effect of sensor drift on controlled displacements, washout controllers are used in the damping loops. The feedback controlled nanopositioner is successfully used to perform several AFM scans in contact mode via a Lissajous scan method with a large scan area of 20 μm × 20 μm. The maximum scan rate demonstrated is 1 kHz.

  6. High-stroke silicon-on-insulator MEMS nanopositioner: control design for non-raster scan atomic force microscopy.

    PubMed

    Maroufi, Mohammad; Fowler, Anthony G; Bazaei, Ali; Moheimani, S O Reza

    2015-02-01

    A 2-degree of freedom microelectromechanical systems nanopositioner designed for on-chip atomic force microscopy (AFM) is presented. The device is fabricated using a silicon-on-insulator-based process and is designed as a parallel kinematic mechanism. It contains a central scan table and two sets of electrostatic comb actuators along each orthogonal axis, which provides displacement ranges greater than ±10 μm. The first in-plane resonance modes are located at 1274 Hz and 1286 Hz for the X and Y axes, respectively. To measure lateral displacements of the stage, electrothermal position sensors are incorporated in the design. To facilitate high-speed scans, the highly resonant dynamics of the system are controlled using damping loops in conjunction with internal model controllers that enable accurate tracking of fast sinusoidal set-points. To cancel the effect of sensor drift on controlled displacements, washout controllers are used in the damping loops. The feedback controlled nanopositioner is successfully used to perform several AFM scans in contact mode via a Lissajous scan method with a large scan area of 20 μm × 20 μm. The maximum scan rate demonstrated is 1 kHz. PMID:25725850

  7. MEMS in microfluidic channels.

    SciTech Connect

    Ashby, Carol Iris Hill; Okandan, Murat; Michalske, Terry A.; Sounart, Thomas L.; Matzke, Carolyn M.

    2004-03-01

    Microelectromechanical systems (MEMS) comprise a new class of devices that include various forms of sensors and actuators. Recent studies have shown that microscale cantilever structures are able to detect a wide range of chemicals, biomolecules or even single bacterial cells. In this approach, cantilever deflection replaces optical fluorescence detection thereby eliminating complex chemical tagging steps that are difficult to achieve with chip-based architectures. A key challenge to utilizing this new detection scheme is the incorporation of functionalized MEMS structures within complex microfluidic channel architectures. The ability to accomplish this integration is currently limited by the processing approaches used to seal lids on pre-etched microfluidic channels. This report describes Sandia's first construction of MEMS instrumented microfluidic chips, which were fabricated by combining our leading capabilities in MEMS processing with our low-temperature photolithographic method for fabricating microfluidic channels. We have explored in-situ cantilevers and other similar passive MEMS devices as a new approach to directly sense fluid transport, and have successfully monitored local flow rates and viscosities within microfluidic channels. Actuated MEMS structures have also been incorporated into microfluidic channels, and the electrical requirements for actuation in liquids have been quantified with an elegant theory. Electrostatic actuation in water has been accomplished, and a novel technique for monitoring local electrical conductivities has been invented.

  8. Development of Microelectromechanical Systems (MEMS) forceps for intraocular surgery

    PubMed Central

    Bhisitkul, R B; Keller, C G

    2005-01-01

    Aim: To develop silicon microforceps for intraocular surgery using Microelectromechanical Systems (MEMS) technology, the application of microchip fabrication techniques for the production of controllable three dimensional devices on the micrometre scale. Methods: Prototype MEMS forceps were designed and manufactured for intraocular surgery. Scanning electron microscopy was used to evaluate device tip construction. Designs using both thermal expansion actuators and conventional mechanical activation were tested in human cadaver eyes and in vivo rabbit eyes to assess functionality in standard vitreoretinal surgery. Results: MEMS forceps were constructed with various tip designs ranging from 100 μm to 2 mm in length. Scanning electron microscopy confirmed accurate construction of micro features such as forceps teeth as small as tens of micrometres. In surgical testing, the silicon forceps tips were effective in surgical manoeuvres, including grasping retinal membranes and excising tissue. The mechanical actuator design on a 20 gauge handle was more operational in the intraocular environment than the thermal expansion actuator design. While handheld operation was possible, the precision of the forceps was best exploited when mounted on a three axis micromanipulator. Conclusion: MEMS microforceps are feasible for conventional vitreoretinal surgery, and offer advances in terms of small scale, operating precision, and construction tolerance. PMID:16299136

  9. Electrodeposition of low residual stress CoNiMnP hard magnetic thin films for magnetic MEMS actuators

    NASA Astrophysics Data System (ADS)

    Guan, Shan; Nelson, Bradley J.

    2005-04-01

    A new technique for electrodeposition of CoNiMnP hard magnetic thin films is developed to provide thin films with low residual stress and magnetic properties useful for MEMS applications. Processing parameters including applied current density, film thickness, pH and temperature of the electrolyte are regulated in order to reduce residual stress of the film. In addition, a hybrid residual stress reliever composed of sodium saccharine and a rare-earth salts mixture of Ce 2(SO 4) 3 and Nd 2(SO 4) 3 is created to further reduce the residual stress, eliminate microcracks and improve surface morphology of the film. The effects of residual stress on the magnetic properties of electrodeposited CoNiMnP hard magnetic films such as coercivity, saturation and residual magnetization are reported in this paper.

  10. Infrared MEMS-based Lamellar grating spectrometer

    NASA Astrophysics Data System (ADS)

    Manzardo, Omar; Shadelin, Felix; Noell, Wilfried; de Rooij, Nicolaas F.; Herzig, Hans Peter

    2004-08-01

    We present a lamellar grating interferometer realized with MEMS technology. It is used as time-scanning Fourier transform spectrometer. The motion is carried out by an electrostatic comb drive actuator fabricated by silicon micromachining, particularly by silicon-on-insulator technology. We have measured the spectrum of an extended white light source with a resolution of 1.2 nm at a wavelength of 436 nm, and of 13 nm at 1544 nm. The wavelength accuracy is better than 0.5 nm and the inspected wavelength range extends from 380 nm to 1700 nm. The optical path difference maximum is 226 μm and is limited by the mechanical instability of the actuator. The dimension of the device is 7 mm x 8 mm x 0.5 mm. The device includes two individual lamellar grating spectrometers operated by the same actuator, allowing the immediate calibration of the optical path difference.

  11. MEMS-based handheld scanning probe with pre-shaped input signals for distortion-free images in Gabor-domain optical coherence microscopy.

    PubMed

    Cogliati, Andrea; Canavesi, Cristina; Hayes, Adam; Tankam, Patrice; Duma, Virgil-Florin; Santhanam, Anand; Thompson, Kevin P; Rolland, Jannick P

    2016-06-13

    High-speed scanning in optical coherence tomography (OCT) often comes with either compromises in image quality, the requirement for post-processing of the acquired images, or both. We report on distortion-free OCT volumetric imaging with a dual-axis micro-electro-mechanical system (MEMS)-based handheld imaging probe. In the context of an imaging probe with optics located between the 2D MEMS and the sample, we report in this paper on how pre-shaped open-loop input signals with tailored non-linear parts were implemented in a custom control board and, unlike the sinusoidal signals typically used for MEMS, achieved real-time distortion-free imaging without post-processing. The MEMS mirror was integrated into a compact, lightweight handheld probe. The MEMS scanner achieved a 12-fold reduction in volume and 17-fold reduction in weight over a previous dual-mirror galvanometer-based scanner. Distortion-free imaging with no post-processing with a Gabor-domain optical coherence microscope (GD-OCM) with 2 μm axial and lateral resolutions over a field of view of 1 × 1 mm2 is demonstrated experimentally through volumetric images of a regular microscopic structure, an excised human cornea, and in vivo human skin. PMID:27410354

  12. Mechanical contact in system-level models of electrostatically actuated RF-MEMS switches: experimental analysis and modeling

    NASA Astrophysics Data System (ADS)

    Niessner, Martin; Iannacci, Jacopo; Schrag, Gabriele

    2011-06-01

    Three different multi-energy domain coupled system-level models are used to simulate the closing and opening transients of a respective ohmic contact type RF-MEMS switch. The comparison of simulated and measured data shows that, due to the presence of multiple structural modes, none of the system-level models is able to capture exactly the initial closing and contact phase whilst dynamic pull-in. The system-level model, that uses a mechanical submodel based on modal superposition, produces the result closest to the real situation. Notably, the effective residual air gap, assumed whilst contact between the membrane with high surface roughness and the contact pads of the switch, is the most influential parameter in the simulation of the closing transient, as this parameter strongly affects the air damping on the device during pull-in. This finding demonstrates that a reliable model of air damping is a vital prerequisite for the predictive simulation of pull-in and pull-out transients.

  13. Brassboard development of a MEMS-scanned ladar sensor for small ground robots

    NASA Astrophysics Data System (ADS)

    Stann, Barry L.; Dammann, John F.; Enke, Joseph A.; Jian, Pey-Schuan; Giza, Mark M.; Lawler, William B.; Powers, Michael A.

    2011-06-01

    The Army Research Laboratory (ARL) is researching a short-range ladar imager for navigation, obstacle/collision avoidance, and target detection/identification on small unmanned ground vehicles (UGV).To date, commercial UGV ladars have been flawed by one or more factors including low pixelization, insufficient range or range resolution, image artifacts, no daylight operation, large size, high power consumption, and high cost. ARL built a breadboard ladar based on a newly developed but commercially available micro-electro-mechanical system (MEMS) mirror coupled to a lowcost pulsed Erbium fiber laser transmitter that largely addresses these problems. Last year we integrated the ladar and associated control software on an iRobot PackBot and distributed the ladar imagery data via the PackBot's computer network. The un-tethered PackBot was driven through an indoor obstacle course while displaying the ladar data realtime on a remote laptop computer over a wireless link. We later conducted additional driving experiments in cluttered outdoor environments. This year ARL partnered with General Dynamics Robotics Systems to start construction of a brass board ladar design. This paper will discuss refinements and rebuild of the various subsystems including the transmitter and receiver module, the data acquisition and data processing board, and software that will lead to a more compact, lower cost, and better performing ladar. The current ladar breadboard has a 5-6 Hz frame rate, an image size of 256 (h) × 128 (v) pixels, a 60° × 30° field of regard, 20 m range, eyesafe operation, and 40 cm range resolution (with provisions for super-resolution or accuracy).

  14. Design and Development of an Optical Path Difference Scan Mechanism for Fourier Transform Spectrometers using High Displacement RAINBOW Actuators

    NASA Technical Reports Server (NTRS)

    Wise, Stephanie A.; Hardy, Robin C.; Dausch, David E.

    1997-01-01

    A new piezoelectric drive mechanism has been developed for optical translation in space-based spectrometer systems. The mechanism utilizes a stack of RAINBOW high displacement piezoelectric actuators to move optical components weighing less than 250 grams through a one centimeter travel. The mechanism uses the direct motion of the piezoelectric devices, stacked such that the displacement of the individual RAINBOW actuators is additive. A prototype device has been built which utilizes 21 RAINBOWs to accomplish the necessary travel. The mechanism weighs approximately 0.6 kilograms and uses less than 2 Watts of power at a scanning frequency of 0.5 Hertz, significantly less power than that required by state-of-the-art motor systems.

  15. MEMS programs at DARPA

    NASA Astrophysics Data System (ADS)

    Tang, William C.

    2001-10-01

    Microelectromechanical Systems (MEMS) is one of the three core enabling technologies within the Microsystems Technology Office (MTO) of the Defense Advanced Research Projects Agency (DARPA). Together with Photonics and Electronics, MEMS forms the foundation for a broad variety of advanced research projects sponsored by MTO as well as other offices within DARPA. MEMS technology merges the functions of compute, communicate and power together with sense, actuate and control to change completely the way people and machines interact with the physical world. Using an ever-expanding set of fabrication processes and materials, MEMS will provide the advantages of small size, low-power, low-mass, low-cost and high-functionality to integrated electromechanical systems both on the micro as well as on the macro scales. Further, demands for increased performance; reliability, robustness, lifetime, maintainability and capability of military equipment of all kinds can be met by the integration of MEMS into macro devices and systems. In the post-cold-war era, U.S. forces must be able to conduct prompt, sustained, and synchronized operations with our allies in specific situations and with the freedom to operate in all four domains of military engagementsea, land, air, and space. MEMS technology has now been demonstrated in all four domains. The long-term goal of the DARPA MEMS program is to merge information processing with sensing and actuation to realize new systems and strategies to bring co-located perception and control to systems, processes and the environment.

  16. MEMS scanner mirror based system for retina scanning and in eye projection

    NASA Astrophysics Data System (ADS)

    Woittennek, Franziska; Knobbe, Jens; Pügner, Tino; Dallmann, Hans-Georg; Schelinski, Uwe; Grüger, Heinrich

    2015-02-01

    Many applications could benefit from miniaturized systems to scan blood vessels behind the retina in the human eye, so called "retina scanning". This reaches from access control to sophisticated security applications and medical devices. High volume systems for consumer applications require low cost and a user friendly operation. For example this includes no need for removal of glasses and self-adjustment, in turn guidance of focus and point of attraction by simultaneous projection for the user. A new system has been designed based on the well-known resonantly driven 2-d scanner mirror of Fraunhofer IPMS. A combined NIR and VIS laser system illuminates the eye through an eye piece designed for an operating distance allowing the use of glasses and granting sufficient field of view. This usability feature was considered to be more important than highest miniaturization. The modulated VIS laser facilitates the projection of an image directly onto the retina. The backscattered light from the continuous NIR laser contains the information of the blood vessels and is detected by a highly sensitive photo diode. A demonstrational setup has been realized including readout and driving electronics. The laser power was adjusted to an eye-secure level. Additional security features were integrated. Test measurements revealed promising results. In a first demonstration application the detection of biometric pattern of the blood vessels was evaluated for issues authentication in.

  17. Effects of radiation on MEMS

    NASA Astrophysics Data System (ADS)

    Shea, Herbert R.

    2011-02-01

    The sensitivity of MEMS devices to radiation is reviewed, with an emphasis on radiation levels representative of space missions. While silicon and metals generally do not show mechanical degradation at the radiation levels encountered in most missions, MEMS devices have been reported to fail at doses of as few krad, corresponding to less than one year in most orbits. Radiation sensitivity is linked primarily to the impact on device operation of radiation-induced trapped charge in dielectrics, and thus affects most strongly MEMS devices operating on electrostatic principles. A survey of all published reports of radiation effects on MEMS is presented. The different sensing and actuation physical principles and materials used in MEMS are compared, leading to suggested was to increase radiation tolerance by design, for instance by choice of actuation principle or by electrical shielding of dielectrics.

  18. Development of a Compact Optical-MEMS Scanner with Integrated VCSEL Light Source and Diffractive Optics

    SciTech Connect

    Krygowski, Thomas W.; Reyes, David; Rodgers, M. Steven; Smith, James H.; Warren, Mial; Sweatt, William; Blum-Spahn, Olga; Wendt, Joel R.; Asbill, Randy

    1999-06-30

    In this work the design and initial fabrication results are reported for the components of a compact optical-MEMS laser scanning system. This system integrates a silicon MEMS laser scanner, a Vertical Cavity Surface Emitting Laser (VCSEL) and passive optical components. The MEMS scanner and VCSEL are mounted onto a fused silica substrate which serves as an optical interconnect between the devices. Two Diffractive Optical Elements (DOEs) are etched into the fused silica substrate to focus the VCSEL beam and increase the scan range. The silicon MEMS scanner consists of an actuator that continuously scans the position of a large polysilicon gold-coated shuttle containing a third DOE. Interferometric measurements show that the residual stress in the 500 {micro}m x 1000 {micro}m shuttle is extremely low, with a maximum deflection of only 0.18{micro}m over an 800 {micro}m span for an unmetallized case and a deflection of 0.56{micro}m for the metallized case. A conservative estimate for the scan range is {approximately}{+-}4{degree}, with a spot size of about 0.5 mm, producing 50 resolvable spots. The basic system architecture, optical and MEMS design is reported in this paper, with an emphasis on the design and fabrication of the silicon MEMS scanner portion of the system.

  19. Design and characterization of a hybrid-integrated MEMS scanning grating spectrometer

    NASA Astrophysics Data System (ADS)

    Grüger, Heinrich; Knobbe, Jens; Pügner, Tino; Schenk, Harald

    2013-03-01

    Grating spectrometer, like the well-established Czerny-Turner, are based on an optical design consisting of several components. Typically at least two slits, two mirrors, the grating stage and a detector are required. There has been much work to reduce this effort, setups using only one mirror (Ebert - Fastie) or the replacement of the entrance slit through the use of thin optical fibers as well as integrated electronic detector arrays instead of a moving grating and an exit slit and single detector device have been applied. Reduced effort comes along with performance limitations: Either the optical resolution or throughput is affected or the use of the system is limited to the availability of detectors arrays with reasonable price. Components in micro opto electro mechanical systems (MOEMS-) technology and spectroscopic systems based thereon have been developed to improve this situation. Miniaturized scanning gratings fabricated on bonded silicon on insulator (BSOI-) wafers were used to design grating spectrometer for the near infrared requiring single detectors only. Discrete components offer flexibility but also need for adjustment of two mirrors, grating stage, fiber mount and the detector with its slit and optionally a second slit in the entrance area. Further development leads towards the integration of the slits into the MOEMS chip, thus less effort for adjustment. Flexibility might be reduced as adjustments of the optical design or grating spacing would require a new chip with own set of masks. Nevertheless if extreme miniaturization is desired this approach seems to be promising. Besides this, high volume production might be able for a comparable low price. A new chip was developed offering grating, two slits and a cavity for the detector chip. The optical design was adjusted to a planar arrangement of grating and slits. A detector buried in a chip cavity required a new mounting strategy. Other optical components were optimized and fabricated then the

  20. Failure analysis for micro-electrical-mechanical systems (MEMS)

    SciTech Connect

    Peterson, K.A.; Tangyunyong, P.; Barton, D.L.

    1997-10-01

    Micro-Electrical Mechanical Systems (MEMS) is an emerging technology with demonstrated potential for a wide range of applications including sensors and actuators for medical, industrial, consumer, military, automotive and instrumentation products. Failure analysis (FA) of MEMS is critically needed for the successful design, fabrication, performance analysis and reliability assurance of this new technology. Many devices have been examined using techniques developed for integrated circuit analysis, including optical inspection, scanning laser microscopy (SLM), scanning electron microscopy (SEM), focused ion beam (FIB) techniques, atomic force microscopy (AFM), infrared (IR) microscopy, light emission (LE) microscopy, acoustic microscopy and acoustic emission analysis. For example, the FIB was used to microsection microengines that developed poor performance characteristics. Subsequent SEM analysis clearly demonstrated the absence of wear on gear, hub, and pin joint bearing surfaces, contrary to expectations. Another example involved the use of infrared microscopy for thermal analysis of operating microengines. Hot spots were located, which did not involve the gear or hub, but indicated contact between comb structures which drive microengines. Voltage contrast imaging proved useful on static and operating MEMS in both the SEM and the FIB and identified electrostatic clamping as a potentially significant contributor to failure mechanisms in microengines. This work describes MEMS devices, FA techniques, failure modes, and examples of FA of MEMS.

  1. Electronic linearization of piezoelectric actuators and noise budget in scanning probe microscopy

    NASA Astrophysics Data System (ADS)

    Aloisi, G.; Santucci, A.; Carlà, M.; Dolci, D.; Lanzi, L.

    2006-07-01

    The maximum resolution achievable with a scanning probe microscope is limited by the probe size, by the mechanism of interaction with the sample, as is widely known, and by the electronic noise in the instrument. The evaluation of this noise for the three motion axes of a linearized high resolution scanning electrochemical microscope has been carried through and the intrinsic maximum resolution is discussed.

  2. Bi-axial magnetic drive for scanned beam display mirrors

    NASA Astrophysics Data System (ADS)

    Sprague, Randy B.; Montague, Tom; Brown, Dean

    2005-01-01

    A novel MEMS actuation technique has been developed for scanned beam display and imaging applications that allows driving a two-axes scanning mirror to wide angles at high frequency. This actuation technique delivers sufficient torque to allow non-resonant operation as low as DC in the slow-scan axis while at the same time allowing one-atmosphere operation even at fast-scan axis frequencies great enough to support SXGA resolutions. Several display and imaging products have been developed employing this new MEMS actuation technique. Exceptionally good displays can be made by scanning laser beams much the same way a CRT scans electron beams. The display applications can be as diverse as an automotive head up display, where the laser beams are scanned onto the inside of the car"s windshield to be reflected into the driver"s eyes, and a head-worn display where the light beams are scanned directly over the viewer"s vision. For high performance displays the design challenges for a MEMS scanner are great. The scanner represents the system"s limiting aperture so it must be of sufficient size; it must remain flat to fractions of a wavelength so as to not distort the beam"s wave front; it must scan fast enough to handle the many millions of pixels written every second; and it must scan in two axes over significant angles in order to "paint" a wide angle, two-dimensional image. Using the new actuation method described, several MEMS scanner designs have been fabricated which meet the requirements of a variety of display and imaging applications.

  3. Fiber-optic nonlinear endomicroscopy with focus scanning by using shape memory alloy actuation

    NASA Astrophysics Data System (ADS)

    Wu, Yicong; Zhang, Yuying; Xi, Jiefeng; Li, Ming-Jun; Li, Xingde

    2010-11-01

    A miniature fiber optic endomicroscope with built-in dynamic focus scanning capability is developed for the first time for 3-D two-photon fluorescence (TPF) imaging of biological samples. Fast 2-D lateral beam scanning is realized by resonantly vibrating a double-clad fiber cantilever with a tubular piezoactuator. Slow axial scanning is achieved by moving the distal end of the imaging probe with an extremely compact electrically driven shape memory alloy (SMA). The 10-mm-long SMA allows 150-μm contractions with a driving voltage varying only from 50 to 100 mV. The response of the SMA contraction with the applied voltage is nonlinear, but repeatable and can be accurately calibrated. Depth-resolved imaging of acriflavine-stained biological tissues and unstained white paper with the endomicroscope is performed, and the results demonstrate the feasibility of 3-D nonlinear optical imaging with the SMA-based scanning fiber-optic endomicroscope.

  4. Gamma-ray irradiation of ohmic MEMS switches

    NASA Astrophysics Data System (ADS)

    Maciel, John J.; Lampen, James L.; Taylor, Edward W.

    2012-10-01

    Radio Frequency (RF) Microelectromechanical System (MEMS) switches are becoming important building blocks for a variety of military and commercial applications including switch matrices, phase shifters, electronically scanned antennas, switched filters, Automatic Test Equipment, instrumentation, cell phones and smart antennas. Low power consumption, large ratio of off-impedance to on-impedance, extreme linearity, low mass, small volume and the ability to be integrated with other electronics makes MEMS switches an attractive alternative to other mechanical and solid-state switches for a variety of space applications. Radant MEMS, Inc. has developed an electrostatically actuated broadband ohmic microswitch that has applications from DC through the microwave region. Despite the extensive earth based testing, little is known about the performance and reliability of these devices in space environments. To help fill this void, we have irradiated our commercial-off-the-shelf SPST, DC to 40 GHz MEMS switches with gamma-rays as an initial step to assessing static impact on RF performance. Results of Co-60 gamma-ray irradiation of the MEMS switches at photon energies ≥ 1.0 MeV to a total dose of ~ 118 krad(Si) did not show a statistically significant post-irradiation change in measured broadband, RF insertion loss, insertion phase, return loss and isolation.

  5. MEMS tunable VCSEL light source for ultrahigh speed 60kHz - 1MHz axial scan rate and long range centimeter class OCT imaging

    NASA Astrophysics Data System (ADS)

    Potsaid, Benjamin; Jayaraman, Vijaysekhar; Fujimoto, James G.; Jiang, James; Heim, Peter J. S.; Cable, Alex E.

    2012-01-01

    This paper demonstrates new wavelength swept light source technology, MEMS tunable VCSELs, for OCT imaging. The VCSEL achieves a combination of ultrahigh sweep speeds, wide spectral tuning range, flexibility in sweep trajectory, and extremely long coherence length, which cannot be simultaneously achieved with other technologies. A second generation prototype VCSEL is optically pumped at 980nm and a low mass electrostatically tunable mirror enables high speed wavelength tuning centered at ~1310nm with ~110nm of tunable bandwidth. Record coherence length >100mm enables extremely long imaging range. By changing the drive waveform, a single 1310nm VCSEL was driven to sweep at speeds from 100kHz to 1.2MHz axial scan rate with unidirectional and bidirectional high duty cycle sweeps. We demonstrate long range and high resolution 1310nm OCT imaging of the human anterior eye at 100kHz axial scan rate and imaging of biological samples at speeds of 60kHz - 1MHz. A first generation 1050nm device is shown to sweep over 100nm. The results of this study suggest that MEMS based VCSEL swept light source technology has unique performance characteristics and will be a critical technology for future ultrahigh speed and long depth range OCT imaging.

  6. Failure analysis of radio frequency (rf) micro-electro-mechanical systems (MEMS)

    NASA Astrophysics Data System (ADS)

    Walraven, Jeremy A.; Cole, Edward I., Jr.; Sloan, Lynn R.; Hietala, Susan L.; Tigges, Chris P.; Dyck, Christopher W.

    2001-10-01

    MEMS are rapidly emerging as critical components in the telecommunications industry. This enabling technology is currently being implemented in a variety of product and engineering applications. MEMS are currently being used as optical switches to reroute light, tunable filters, and mechanical resonators. Radio frequency (RF) MEMS must be compatible with current Gallium Arsenide (GaAs) microwave integrated circuit (MMIC) processing technologies for maximum integration levels. The RF MEMS switch discussed in this paper was fabricated using various layers of polyimide, silicon oxynitride (SiON), gold, and aluminum monolithically fabricated on a GaAs substrate. Fig. 1 shows a metal contacting series switch. This switch consists of gold signal lines (transmission lines), and contact metallization. SiON was deposited to form the fixed-fixed beam, and aluminum was deposited to form the top actuation electrode. To ensure product performance and reliability, RF MEMS switches are tested at both the wafer and package levels. Various processing irregularities may pass the visual inspection but fail electrical testing. This paper will focus on the failure mechanisms found in the first generation of RF MEMS developed at Sandia National Laboratories. Various tools and techniques such as scanning electron microscopy (SEM), resistive contrast imaging (RCI), focused ion beam (FIB), and thermally-induced voltage alteration (TIVA) have been employed to diagnose the failure mechanisms. The analysis performed using these tools and techniques led to corrective actions implemented in the next generation of RF MEMS metal contacting series switches.

  7. Heterogeneous MEMS device assembly and integration

    NASA Astrophysics Data System (ADS)

    Topart, Patrice; Picard, Francis; Ilias, Samir; Alain, Christine; Chevalier, Claude; Fisette, Bruno; Paultre, Jacques E.; Généreux, Francis; Legros, Mathieu; Lepage, Jean-François; Laverdière, Christian; Ngo Phong, Linh; Caron, Jean-Sol; Desroches, Yan

    2014-03-01

    In recent years, smart phone applications have both raised the pressure for cost and time to market reduction, and the need for high performance MEMS devices. This trend has led the MEMS community to develop multi-die packaging of different functionalities or multi-technology (i.e. wafer) approaches to fabricate and assemble devices respectively. This paper reports on the fabrication, assembly and packaging at INO of various MEMS devices using heterogeneous assembly at chip and package-level. First, the performance of a giant (e.g. about 3 mm in diameter), electrostatically actuated beam steering mirror is presented. It can be rotated about two perpendicular axes to steer an optical beam within an angular cone of up to 60° in vector scan mode with an angular resolution of 1 mrad and a response time of 300 ms. To achieve such angular performance relative to mirror size, the microassembly was performed from sub-components fabricated from 4 different wafers. To combine infrared detection with inertial sensing, an electroplated proof mass was flip-chipped onto a 256×1 pixel uncooled bolometric FPA and released using laser ablation. In addition to the microassembly technology, performance results of packaged devices are presented. Finally, to simulate a 3072×3 pixel uncooled detector for cloud and fire imaging in mid and long-wave IR, the staggered assembly of six 512×3 pixel FPAs with a less than 50 micron pixel co-registration is reported.

  8. Bistable microelectromechanical actuator

    DOEpatents

    Fleming, J.G.

    1999-02-02

    A bistable microelectromechanical (MEM) actuator is formed on a substrate and includes a stressed membrane of generally rectangular shape that upon release assumes a curvilinear cross-sectional shape due to attachment at a midpoint to a resilient member and at opposing edges to a pair of elongate supports. The stressed membrane can be electrostatically switched between a pair of mechanical states having mirror-image symmetry, with the MEM actuator remaining in a quiescent state after a programming voltage is removed. The bistable MEM actuator according to various embodiments of the present invention can be used to form a nonvolatile memory element, an optical modulator (with a pair of mirrors supported above the membrane and moving in synchronism as the membrane is switched), a switchable mirror (with a single mirror supported above the membrane at the midpoint thereof) and a latching relay (with a pair of contacts that open and close as the membrane is switched). Arrays of bistable MEM actuators can be formed for applications including nonvolatile memories, optical displays and optical computing. 49 figs.

  9. Bistable microelectromechanical actuator

    DOEpatents

    Fleming, James G.

    1999-01-01

    A bistable microelectromechanical (MEM) actuator is formed on a substrate and includes a stressed membrane of generally rectangular shape that upon release assumes a curvilinear cross-sectional shape due to attachment at a midpoint to a resilient member and at opposing edges to a pair of elongate supports. The stressed membrane can be electrostatically switched between a pair of mechanical states having mirror-image symmetry, with the MEM actuator remaining in a quiescent state after a programming voltage is removed. The bistable MEM actuator according to various embodiments of the present invention can be used to form a nonvolatile memory element, an optical modulator (with a pair of mirrors supported above the membrane and moving in synchronism as the membrane is switched), a switchable mirror (with a single mirror supported above the membrane at the midpoint thereof) and a latching relay (with a pair of contacts that open and close as the membrane is switched). Arrays of bistable MEM actuators can be formed for applications including nonvolatile memories, optical displays and optical computing.

  10. Electrostatic micromembrane actuator arrays as motion generator

    NASA Astrophysics Data System (ADS)

    Wu, X. T.; Hui, J.; Young, M.; Kayatta, P.; Wong, J.; Kennith, D.; Zhe, J.; Warde, C.

    2004-05-01

    A rigid-body motion generator based on an array of micromembrane actuators is described. Unlike previous microelectromechanical systems (MEMS) techniques, the architecture employs a large number (typically greater than 1000) of micron-sized (10-200 μm) membrane actuators to simultaneously generate the displacement of a large rigid body, such as a conventional optical mirror. For optical applications, the approach provides optical design freedom of MEMS mirrors by enabling large-aperture mirrors to be driven electrostatically by MEMS actuators. The micromembrane actuator arrays have been built using a stacked architecture similar to that employed in the Multiuser MEMS Process (MUMPS), and the motion transfer from the arrayed micron-sized actuators to macro-sized components was demonstrated.

  11. Analysis of metal-metal contacts in RF MEMS switches

    NASA Astrophysics Data System (ADS)

    Kurth, Steffen; Voigt, Sven; Haas, Sven; Bertz, Andreas; Kaufmann, Christian; Gessner, Thomas; Akiba, Akira; Ikeda, Koichi

    2013-03-01

    This contribution reports on the analysis of metal-metal contacts of MEMS switches. A novel high aspect ratio MEMS fabrication sequence in combination with wafer level packaging is applied for fabrication of an RF MEMS switch with lateral motion. It allows for a relatively large actuation electrode area in a small package, and for high actuation force even with an actuation voltage of 5 V. The focus of this contribution is on the contact behavior. It is shown how operation conditions as like as actuation voltage, RF power, and DC bias influence the contact resistance. The power handling capability and its influence on the contacts, and the intermodulation were investigated also.

  12. Inertial measurement unit using rotatable MEMS sensors

    DOEpatents

    Kohler, Stewart M.; Allen, James J.

    2007-05-01

    A MEM inertial sensor (e.g. accelerometer, gyroscope) having integral rotational means for providing static and dynamic bias compensation is disclosed. A bias compensated MEM inertial sensor is described comprising a MEM inertial sense element disposed on a rotatable MEM stage. A MEM actuator drives the rotation of the stage between at least two predetermined rotational positions. Measuring and comparing the output of the MEM inertial sensor in the at least two rotational positions allows for both static and dynamic bias compensation in inertial calculations based on the sensor's output. An inertial measurement unit (IMU) comprising a plurality of independently rotatable MEM inertial sensors and methods for making bias compensated inertial measurements are disclosed.

  13. Inertial measurement unit using rotatable MEMS sensors

    DOEpatents

    Kohler, Stewart M.; Allen, James J.

    2006-06-27

    A MEM inertial sensor (e.g. accelerometer, gyroscope) having integral rotational means for providing static and dynamic bias compensation is disclosed. A bias compensated MEM inertial sensor is described comprising a MEM inertial sense element disposed on a rotatable MEM stage. A MEM actuator for drives the rotation of the stage between at least two predetermined rotational positions. Measuring and comparing the output of the MEM inertial sensor in the at least two rotational positions allows, for both static and dynamic bias compensation in inertial calculations based on the sensor's output. An inertial measurement unit (IMU) comprising a plurality of independently rotatable MEM inertial sensors and methods for making bias compensated inertial measurements are disclosed.

  14. Fast electrochemical actuator

    NASA Astrophysics Data System (ADS)

    Uvarov, I. V.; Postnikov, A. V.; Svetovoy, V. B.

    2016-03-01

    Lack of fast and strong microactuators is a well-recognized problem in MEMS community. Electrochemical actuators can develop high pressure but they are notoriously slow. Water electrolysis produced by short voltage pulses of alternating polarity can overcome the problem of slow gas termination. Here we demonstrate an actuation regime, for which the gas pressure is relaxed just for 10 μs or so. The actuator consists of a microchamber filled with the electrolyte and covered with a flexible membrane. The membrane bends outward when the pressure in the chamber increases. Fast termination of gas and high pressure developed in the chamber are related to a high density of nanobubbles in the chamber. The physical processes happening in the chamber are discussed so as problems that have to be resolved for practical applications of this actuation regime. The actuator can be used as a driving engine for microfluidics.

  15. In situ TEM/SEM electronic/mechanical characterization of nano material with MEMS chip

    NASA Astrophysics Data System (ADS)

    Yuelin, Wang; Tie, Li; Xiao, Zhang; Hongjiang, Zeng; Qinhua, Jin

    2014-08-01

    Our investigation of in situ observations on electronic and mechanical properties of nano materials using a scanning electron microscope (SEM) and a transmission electron microscope (TEM) with the help of traditional micro-electro-mechanical system (MEMS) technology has been reviewed. Thanks to the stability, continuity and controllability of the loading force from the electrostatic actuator and the sensitivity of the sensor beam, a MEMS tensile testing chip for accurate tensile testing in the nano scale is obtained. Based on the MEMS chips, the scale effect of Young's modulus in silicon has been studied and confirmed directly in a tensile experiment using a transmission electron microscope. Employing the nanomanipulation technology and FIB technology, Cu and SiC nanowires have been integrated into the tensile testing device and their mechanical, electronic properties under different stress have been achieved, simultaneously. All these will aid in better understanding the nano effects and contribute to the designation and application in nano devices.

  16. Wafer-level vacuum packaged resonant micro-scanning mirrors for compact laser projection displays

    NASA Astrophysics Data System (ADS)

    Hofmann, Ulrich; Oldsen, Marten; Quenzer, Hans-Joachim; Janes, Joachim; Heller, Martin; Weiss, Manfred; Fakas, Georgios; Ratzmann, Lars; Marchetti, Eleonora; D'Ascoli, Francesco; Melani, Massimiliano; Bacciarelli, Luca; Volpi, Emilio; Battini, Francesco; Mostardini, Luca; Sechi, Francesco; De Marinis, Marco; Wagner, Bernd

    2008-02-01

    Scanning laser projection using resonant actuated MEMS scanning mirrors is expected to overcome the current limitation of small display size of mobile devices like cell phones, digital cameras and PDAs. Recent progress in the development of compact modulated RGB laser sources enables to set up very small laser projection systems that become attractive not only for consumer products but also for automotive applications like head-up and dash-board displays. Within the last years continuous progress was made in increasing MEMS scanner performance. However, only little is reported on how mass-produceability of these devices and stable functionality even under harsh environmental conditions can be guaranteed. Automotive application requires stable MEMS scanner operation over a wide temperature range from -40° to +85°Celsius. Therefore, hermetic packaging of electrostatically actuated MEMS scanning mirrors becomes essential to protect the sensitive device against particle contamination and condensing moisture. This paper reports on design, fabrication and test of a resonant actuated two-dimensional micro scanning mirror that is hermetically sealed on wafer level. With resonant frequencies of 30kHz and 1kHz, an achievable Theta-D-product of 13mm.deg and low dynamic deformation <20nm RMS it targets Lissajous projection with SVGA-resolution. Inevitable reflexes at the vacuum package surface can be seperated from the projection field by permanent inclination of the micromirror.

  17. Applications of scanned pipettes to the localized characterization of actuating conducting polymers: an SICM design for simultaneous ion flux and topography measurements

    NASA Astrophysics Data System (ADS)

    Kannappan, Karthik; Laslau, Cosmin; Williams, David E.; Travas-Sejdic, Jadranka

    2012-04-01

    Recent applications of the scanned pipette to materials science problems have included its quantification of the ion flux resulting from conducting polymer actuation. However, in order to correlate this flux with the precise height changes arising from actuation, a separate experiment must be carried out. Herein we propose a new design that may be capable of simultaneously determining both ion flux and topography, on the basis of subtle current density magnitude shifts and precisely chosen experimental positioning parameters. A simulation of the geometrical model - consisting of the pipette, conducting polymer film and electrodes - was setup and solved in 2D axi-symmetrical domain. The ion concentrations, voltage potentials and current densities were determined as a function of time, with three key parameters varied: the maximum ion flux value Jmax, conducting polymer swelling Tp and overall separation distance d between pipette and polymer. It was found that the separation Tp - d should be around 50 to 150 nm, roughly the same as the actuation itself. Furthermore, the current density component arising from geometrical changes due to actuation was on the order of a few percent, and was highly sensitive to Jmax levels.

  18. A MEMS-based heating holder for the direct imaging of simultaneous in-situ heating and biasing experiments in scanning/transmission electron microscopes.

    PubMed

    Mele, Luigi; Konings, Stan; Dona, Pleun; Evertz, Francis; Mitterbauer, Christoph; Faber, Pybe; Schampers, Ruud; Jinschek, Joerg R

    2016-04-01

    The introduction of scanning/transmission electron microscopes (S/TEM) with sub-Angstrom resolution as well as fast and sensitive detection solutions support direct observation of dynamic phenomena in-situ at the atomic scale. Thereby, in-situ specimen holders play a crucial role: accurate control of the applied in-situ stimulus on the nanostructure combined with the overall system stability to assure atomic resolution are paramount for a successful in-situ S/TEM experiment. For those reasons, MEMS-based TEM sample holders are becoming one of the preferred choices, also enabling a high precision in measurements of the in-situ parameter for more reproducible data. A newly developed MEMS-based microheater is presented in combination with the new NanoEx™-i/v TEM sample holder. The concept is built on a four-point probe temperature measurement approach allowing active, accurate local temperature control as well as calorimetry. In this paper, it is shown that it provides high temperature stability up to 1,300°C with a peak temperature of 1,500°C (also working accurately in gaseous environments), high temperature measurement accuracy (<4%) and uniform temperature distribution over the heated specimen area (<1%), enabling not only in-situ S/TEM imaging experiments, but also elemental mapping at elevated temperatures using energy-dispersive X-ray spectroscopy (EDS). Moreover, it has the unique capability to enable simultaneous heating and biasing experiments. Microsc. Res. Tech. 79:239-250, 2016. © 2016 Wiley Periodicals, Inc. PMID:26818213

  19. Microelectromechanical Systems Actuator Based Reconfigurable Printed Antenna

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N. (Inventor)

    2005-01-01

    A polarization reconfigurable patch antenna is disclosed. The antenna includes a feed element, a patch antenna element electrically connected to the feed element, and at least one microelectromechanical systems (MEMS) actuator, with a partial connection to the patch antenna element along an edge of the patch antenna element. The polarization of the antenna can be switched between circular polarization and linear polarization through action of the at least one MEMS actuator.

  20. Printed Antennas Made Reconfigurable by Use of MEMS Switches

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.

    2005-01-01

    A class of reconfigurable microwave antennas now undergoing development comprise fairly conventional printed-circuit feed elements and radiating patches integrated with novel switches containing actuators of the microelectromechanical systems (MEMS) type. In comparison with solid-state electronic control devices incorporated into some prior printed microwave antennas, the MEMS-based switches in these antennas impose lower insertion losses and consume less power. Because the radio-frequency responses of the MEMS switches are more nearly linear, they introduce less signal distortion. In addition, construction and operation are simplified because only a single DC bias line is needed to control each MEMS actuator.

  1. SOI based electromagnetic MEMS scanners and applications in laser systems

    NASA Astrophysics Data System (ADS)

    Brown, G.; Bauer, R.; Lubeigt, W.; Uttamchandani, D.

    2013-03-01

    MEMS scanners are of interest for their potential as low-cost, low operating power devices for use in various photonic systems. The devices reported here are actuated by the electromagnetic force between a static external magnetic field and a current flowing through an SOI MEMS scanner. These scanners have several modes of operation: their mirrors may be rotated and maintained at a static angle (up to +/- 1.4 degrees), scanned rapidly (up to 500 Hz); or may be operated in a resonance mode, at the device's mechanical resonance frequency (~1.2 kHz) for higher rate scanning. The use of these scanners as a Q-switching element within a Nd:YAG laser cavity has been demonstrated. Pulse durations of 400 ns were obtained with a pulse energy of 58 μJ and a pulse peak power of 145 W. The use of an external magnetic field, generated by compact rare-earth magnets, allows a simple and cost-effective commercial fabrication process to be employed (the multi-user SOI process provided by MEMSCAP Inc) and avoids the requirement to deposit magnetic materials on the MEMS structure.

  2. Closed-loop control of a 2-D mems micromirror with sidewall electrodes for a laser scanning microscope system

    NASA Astrophysics Data System (ADS)

    Chen, Hui; Chen, Albert; Jie Sun, Wei; Sun, Zhen Dong; Yeow, John TW

    2016-01-01

    This article presents the development and implementation of a robust nonlinear control scheme for a 2-D micromirror-based laser scanning microscope system. The presented control scheme, built around sliding mode control approach and augmented an adaptive algorithm, is proposed to improve the tracking accuracy in presence of cross-axis effect. The closed-loop controlled imaging system is developed through integrating a 2-D micromirror with sidewall electrodes (SW), a laser source, NI field-programmable gate array (FPGA) hardware, the optics, position sensing detector (PSD) and photo detector (PD). The experimental results demonstrated that the proposed scheme is able to achieve accurate tracking of a reference triangular signal. Compared with open-loop control, the scanning performance is significantly improved, and a better 2-D image is obtained using the micromirror with the proposed scheme.

  3. Miniature in vivo MEMS-based line-scanned dual-axis confocal microscope for point-of-care pathology

    PubMed Central

    Yin, C.; Glaser, A.K.; Leigh, S. Y.; Chen, Y.; Wei, L.; Pillai, P. C. S.; Rosenberg, M. C.; Abeytunge, S.; Peterson, G.; Glazowski, C.; Sanai, N.; Mandella, M. J.; Rajadhyaksha, M.; Liu, J. T. C.

    2016-01-01

    There is a need for miniature optical-sectioning microscopes to enable in vivo interrogation of tissues as a real-time and noninvasive alternative to gold-standard histopathology. Such devices could have a transformative impact for the early detection of cancer as well as for guiding tumor-resection procedures. Miniature confocal microscopes have been developed by various researchers and corporations to enable optical sectioning of highly scattering tissues, all of which have necessitated various trade-offs in size, speed, depth selectivity, field of view, resolution, image contrast, and sensitivity. In this study, a miniature line-scanned (LS) dual-axis confocal (DAC) microscope, with a 12-mm diameter distal tip, has been developed for clinical point-of-care pathology. The dual-axis architecture has demonstrated an advantage over the conventional single-axis confocal configuration for reducing background noise from out-of-focus and multiply scattered light. The use of line scanning enables fast frame rates (16 frames/sec is demonstrated here, but faster rates are possible), which mitigates motion artifacts of a hand-held device during clinical use. We have developed a method to actively align the illumination and collection beams in a DAC microscope through the use of a pair of rotatable alignment mirrors. Incorporation of a custom objective lens, with a small form factor for in vivo clinical use, enables our device to achieve an optical-sectioning thickness and lateral resolution of 2.0 and 1.1 microns respectively. Validation measurements with reflective targets, as well as in vivo and ex vivo images of tissues, demonstrate the clinical potential of this high-speed optical-sectioning microscopy device. PMID:26977337

  4. Design of Surface micromachined Compliant MEMS

    SciTech Connect

    Joe Anthony Bradley

    2002-08-01

    The consideration of compliant mechanisms as Microelectromechanical Systems (MEMS) is the focus of this research endeavor. MEMS are micron to millimeter devices that combine electrical, mechanical, and information processing capabilities on the same device. These MEMS need some mechanical motion or parts that move relative to each other. This relative motion, using multiple parts, is not desired because of the assembly requirement and the friction introduced. Compliant devices limits or eliminates friction and the need for multi-component assembly. Compliant devices improve designs by creating single piece mechanisms. The purpose of this research is to validate surface micromachining as a viable fabrication process for compliant MEMS designs. Specifically, this research has sought to fabricate a micro-compliant gripper and a micro-compliant clamp to illustrate the process. While other researchers have created compliant MEMS, most have used comb-drive actuation methods and bulk micromachining processes. This research focuses on fully-compliant devices that use device flexibility for motion and actuation. Validation of these compliant MEMS is achieved by structural optimization of device design and functional performance testing. This research contributes to the ongoing research in MEMS by evaluating the potential of using surface micromachining as a process for fabricating compliant micro-mechanisms.

  5. Design of Surface Micromachined Compliant MEMS

    SciTech Connect

    Joe Anthony Bradley

    2002-12-31

    The consideration of compliant mechanisms as Microelectromechanical Systems (MEMS) is the focus of this research endeavor. MEMS are micron to millimeter devices that combine electrical, mechanical, and information processing capabilities on the same device. These MEMS need some mechanical motion or parts that move relative to each other. This relative motion, using multiple parts, is not desired because of the assembly requirement and the friction introduced. Compliant devices limits or eliminates friction and the need for multi-component assembly. Compliant devices improve designs by creating single piece mechanisms. The purpose of this research is to validate surface micromachining as a viable fabrication process for compliant MEMS designs. Specifically, this research has sought to fabricate a micro-compliant gripper and a micro-compliant clamp to illustrate the process. While other researchers have created compliant MEMs, most have used comb-drive actuation methods and bulk micromachining processes. This research focused on fully-compliant devices that use device flexibility for motion and actuation. Validation of these compliant MEMS is achieved by structural optimization of device design and functional performance testing. This research contributes to the ongoing research in MEMS by evaluating the potential of using surface micromachining as a process for fabricating compliant micro-mechanisms.

  6. Sandia MEMS

    2002-06-13

    SUMMiT V (Sandia Ultra planar Multi level MEMS Technology) is a 5 level surface micromachine fabrication technology, which customers intornal and external to Sandia can access to fabricate prototype MEMS devices. This CD contains an integrated set of electronic files that: a) Describe the SUMMiT V fabrication process b) Provide enabling educational information (including pictures, videos, technical information) c) Facilitate the process of designing MEMS with the SUMMiT process (prototype file, Design Rule Checker, Standardmore » Parts Library) d) Facilitate the process of having MEMS fabricated at Sandia National Laboratories e) Facilitate the process of having post-fabrication services performed. While there exist some files on the CD that are used in conjunction with software package AutoCAD, these files are not intended for use independent of the CD. Nole that the customer must purchase his/her own copy of Aut0CAD to use with these files.« less

  7. Spectral and temporal control of Q-switched solid-state lasers using intracavity MEMS

    NASA Astrophysics Data System (ADS)

    Paterson, A.; Bauer, R.; Li, R.; Clark, C.; Lubeigt, W.; Uttamchandani, D.

    2016-03-01

    Active control of the spectral and temporal output characteristics of solid-state lasers through use of MEMS scanning micromirrors is presented. A side-pumped Nd:YAG laser with two intracavity scanning micromirrors, enabling Q-switching operation with controllable pulse duration and pulse-on-demand capabilities, is investigated. Changing the actuation signal of one micromirror allows a variation of the pulse duration between 370 ns and 1.06 μs at a pulse repetition frequency of 21.37 kHz and average output power of 50 mW. Pulse-on-demand lasing is enabled through actuation of the second micromirror. To our knowledge this is the first demonstration of the use of multiple intracavity MEMS devices as active tuning elements in a single solid-state laser cavity. Furthermore, we present the first demonstration of control over the output wavelength of a solid-state laser using a micromirror and a prism in an intracavity Littman configuration. A static tilt actuation of the micromirror resulted in tuning the output wavelength of an Yb:KGW laser from 1024 nm to 1031.5 nm, with FWHM bandwidths between 0.2 nm and 0.4 nm. These proof-of-principle demonstrations provide the first steps towards a miniaturized, flexible solid-state laser system with potential defense and industrial applications.

  8. Electroactive polymers: an emerging technology for MEMS

    NASA Astrophysics Data System (ADS)

    Kornbluh, Roy D.; Pelrine, Ron; Prahlad, Harsha; Heydt, Richard

    2004-01-01

    Electroactive polymer (EAP) transducers are an emerging technology with many features that are desirable for MEMS devices. These advantages include simple fabrication in a variety of size scales, and ruggedness due to their inherent flexibility. Dielectric elastomer, a type of EAP transducer that couples the deformation of a rubbery polymer film to an applied electric field, shows particular promise because it can produce high strain and energy density, high efficiency and fast speed of response, and inherent environmental tolerance. A variety of proof-of-principle dielectric elastomer actuator configurations have been demonstrated at the small size scales needed for MEMS devices, including rolled "artificial muscle" actuators for insect-inspired microrobots, framed and bending beam actuators for efficient opto-mechanical switches, diaphragm and enhanced-thickness-mode actuators for microfluidic pumps, and valves and arrays of diaphragms for haptic displays. Several challenges remain for EAPs, including integration with driving electronics, and operational lifetime.

  9. Sacrificial bridges for MEMS fabrication

    NASA Astrophysics Data System (ADS)

    Chang, Chao-Min; Chen, Yang-Che; Fong, Chien-Fu; Guu, Yunn-Horng; Chen, Rongshun; Yeh, J. Andrew; Hou, Max T.

    2011-09-01

    This study discusses sacrificial bridges that are used to release MEMS devices. Before being released, sacrificial bridges connect all the component structures into an integral structure. Solder bump bonding is used to mount the MEMS chip on another chip or a printed circuit board (PCB) and to maintain the alignment among all component structures after removal of the sacrificial bridges. Two types of sacrificial bridges were designed, analyzed and fabricated. The fabrication process—which used low resistivity single crystal silicon (SCS) wafers as the device material—was developed to implement the sacrificial bridges. Novel SCS through silicon vias (TSVs), which interconnect stacked chips, was made using the same process. An electrostatic comb drive actuator was fabricated and mounted onto a PCB. The fabricated actuator was tested to demonstrate the feasibility of the fabrication process, sacrificial bridges and SCS TSVs. The results show that the actuator worked well. Its maximum displacement and resonant frequency were 69.9 µm and 406 Hz, respectively. This method is promising for the delivery of a novel 3D system in package for MEMS devices.

  10. Compact electrostatic comb actuator

    DOEpatents

    Rodgers, M. Steven; Burg, Michael S.; Jensen, Brian D.; Miller, Samuel L.; Barnes, Stephen M.

    2000-01-01

    A compact electrostatic comb actuator is disclosed for microelectromechanical (MEM) applications. The actuator is based upon a plurality of meshed electrostatic combs, some of which are stationary and others of which are moveable. One or more restoring springs are fabricated within an outline of the electrostatic combs (i.e. superposed with the moveable electrostatic combs) to considerably reduce the space required for the actuator. Additionally, a truss structure is provided to support the moveable electrostatic combs and prevent bending or distortion of these combs due to unbalanced electrostatic forces or external loading. The truss structure formed about the moveable electrostatic combs allows the spacing between the interdigitated fingers of the combs to be reduced to about one micron or less, thereby substantially increasing the number of active fingers which can be provided in a given area. Finally, electrostatic shields can be used in the actuator to substantially reduce unwanted electrostatic fields to further improve performance of the device. As a result, the compact electrostatic comb actuator of the present invention occupies only a fraction of the space required for conventional electrostatic comb actuators, while providing a substantial increase in the available drive force (up to one-hundred times).

  11. SCAN+

    SciTech Connect

    Kenneth Krebs, John Svoboda

    2009-11-01

    SCAN+ is a software application specifically designed to control the positioning of a gamma spectrometer by a two dimensional translation system above spent fuel bundles located in a sealed spent fuel cask. The gamma spectrometer collects gamma spectrum information for the purpose of spent fuel cask fuel loading verification. SCAN+ performs manual and automatic gamma spectrometer positioning functions as-well-as exercising control of the gamma spectrometer data acquisitioning functions. Cask configuration files are used to determine the positions of spent fuel bundles. Cask scanning files are used to determine the desired scan paths for scanning a spent fuel cask allowing for automatic unattended cask scanning that may take several hours.

  12. Electrothermally-Actuated Micromirrors with Bimorph Actuators--Bending-Type and Torsion-Type.

    PubMed

    Tsai, Cheng-Hua; Tsai, Chun-Wei; Chang, Hsu-Tang; Liu, Shih-Hsiang; Tsai, Jui-Che

    2015-01-01

    Three different electrothermally-actuated MEMS micromirrors with Cr/Au-Si bimorph actuators are proposed. The devices are fabricated with the SOIMUMPs process developed by MEMSCAP, Inc. (Durham, NC, USA). A silicon-on-insulator MEMS process has been employed for the fabrication of these micromirrors. Electrothermal actuation has achieved a large angular movement in the micromirrors. Application of an external electric current 0.04 A to the bending-type, restricted-torsion-type, and free-torsion-type mirrors achieved rotation angles of 1.69°, 3.28°, and 3.64°, respectively. PMID:26110409

  13. Initial performance results for high-aspect ratio gold MEMS deformable mirrors

    NASA Astrophysics Data System (ADS)

    Fernández, Bautista; Kubby, Joel

    2009-02-01

    The fabrication and initial performance results of high-aspect ratio 3-dimensional Micro-Electro-Mechanical System (MEMS) Deformable Mirrors (DM) for Adaptive Optics (AO) will be discussed. The DM systems were fabricated out of gold, and consist of actuators bonded to a continuous face sheet, with different boundary conditions. DM mirror displacements vs. voltage have been measured with a white light interferometer and the corresponding results compared to Finite Element Analysis (FEA) simulations. Interferometer scans of a DM have shown that ~9.4um of stroke can be achieved with low voltage, thus showing that this fabrication process holds promise in the manufacturing of future MEMS DM's for the next generation of extremely large telescopes.

  14. Development, characterization and application of compact spectrometers based on MEMS with in-plane capacitive drives

    NASA Astrophysics Data System (ADS)

    Kenda, A.; Kraft, M.; Tortschanoff, A.; Scherf, Werner; Sandner, T.; Schenk, Harald; Luettjohann, Stephan; Simon, A.

    2014-05-01

    With a trend towards the use of spectroscopic systems in various fields of science and industry, there is an increasing demand for compact spectrometers. For UV/VIS to the shortwave near-infrared spectral range, compact hand-held polychromator type devices are widely used and have replaced larger conventional instruments in many applications. Still, for longer wavelengths this type of compact spectrometers is lacking suitable and affordable detector arrays. In perennial development Carinthian Tech Research AG together with the Fraunhofer Institute for Photonic Microsystems endeavor to close this gap by developing spectrometer systems based on photonic MEMS. Here, we review on two different spectrometer developments, a scanning grating spectrometer working in the NIR and a FT-spectrometer accessing the mid-IR range up to 14 μm. Both systems are using photonic MEMS devices actuated by in-plane comb drive structures. This principle allows for high mechanical amplitudes at low driving voltages but results in gratings respectively mirrors oscillating harmonically. Both systems feature special MEMS structures as well as aspects in terms of system integration which shall tease out the best possible overall performance on the basis of this technology. However, the advantages of MEMS as enabling technology for high scanning speed, miniaturization, energy efficiency, etc. are pointed out. Whereas the scanning grating spectrometer has already evolved to a product for the point of sale analysis of traditional Chinese medicine products, the purpose of the FT-spectrometer as presented is to demonstrate what is achievable in terms of performance. Current developments topics address MEMS packaging issues towards long term stability, further miniaturization and usability.

  15. SCAN+

    2009-11-01

    SCAN+ is a software application specifically designed to control the positioning of a gamma spectrometer by a two dimensional translation system above spent fuel bundles located in a sealed spent fuel cask. The gamma spectrometer collects gamma spectrum information for the purpose of spent fuel cask fuel loading verification. SCAN+ performs manual and automatic gamma spectrometer positioning functions as-well-as exercising control of the gamma spectrometer data acquisitioning functions. Cask configuration files are used to determinemore » the positions of spent fuel bundles. Cask scanning files are used to determine the desired scan paths for scanning a spent fuel cask allowing for automatic unattended cask scanning that may take several hours.« less

  16. MEMS Calculator

    National Institute of Standards and Technology Data Gateway

    SRD 166 MEMS Calculator (Web, free access)   This MEMS Calculator determines the following thin film properties from data taken with an optical interferometer or comparable instrument: a) residual strain from fixed-fixed beams, b) strain gradient from cantilevers, c) step heights or thicknesses from step-height test structures, and d) in-plane lengths or deflections. Then, residual stress and stress gradient calculations can be made after an optical vibrometer or comparable instrument is used to obtain Young's modulus from resonating cantilevers or fixed-fixed beams. In addition, wafer bond strength is determined from micro-chevron test structures using a material test machine.

  17. Change of characteristic length with packaging for torsional MEMS switch

    NASA Astrophysics Data System (ADS)

    Bansal, Deepak; Anuroop, Kumar, Prem; Kaur, Maninder; Gaur, Surender; Kothari, Prateek; Singh, Arvind K.; Rangra, Kamaljit

    2016-04-01

    Fluid continuity theory is used to describe the dynamic response of open Micro-Electro-Mechanical-System (MEMS) devices. For a packaged device, at low pressure, the fluid continuity theory is no longer valid and a rarefication theory based on a Knudsen number is used. In an open MEMS device, the characteristic length which determines the Knudsen number is represented by the gap between the MEMS bridge and underneath actuation electrodes. On the other hand, for a packaged device, effective characteristic length is modified with the packaging cavity height. In this paper, for a packaged MEMS device, effective characteristic length with reference to the packaging height is derived.

  18. Reliability modelling and analysis of thermal MEMS

    NASA Astrophysics Data System (ADS)

    Muratet, Sylvaine; Lavu, Srikanth; Fourniols, Jean-Yves; Bell, George; Desmulliez, Marc P. Y.

    2006-04-01

    This paper presents a MEMS reliability study methodology based on the novel concept of 'virtual prototyping'. This methodology can be used for the development of reliable sensors or actuators and also to characterize their behaviour in specific use conditions and applications. The methodology is demonstrated on the U-shaped micro electro thermal actuator used as test vehicle. To demonstrate this approach, a 'virtual prototype' has been developed with the modeling tools MatLab and VHDL-AMS. A best practice FMEA (Failure Mode and Effect Analysis) is applied on the thermal MEMS to investigate and assess the failure mechanisms. Reliability study is performed by injecting the identified defaults into the 'virtual prototype'. The reliability characterization methodology predicts the evolution of the behavior of these MEMS as a function of the number of cycles of operation and specific operational conditions.

  19. Characterization of assembled MEMS

    NASA Astrophysics Data System (ADS)

    Jandric, Zoran; Randall, John N.; Saini, Rahul; Nolan, Michael; Skidmore, George

    2005-01-01

    Zyvex is developing a low-cost high-precision method for manufacturing MEMS-based three-dimensional structures/assemblies. The assembly process relies on compliant properties of the interconnecting components. The sockets and connectors are designed to benefit from their compliant nature by allowing the mechanical component to self-align, i.e. reposition themselves to their designed, stable position, independent of the initial placement of the part by the external robot. Thus, the self-aligning property guarantees the precision of the assembled structure to be very close to, or the same, as the precision of the lithography process itself. A three-dimensional (3D) structure is achieved by inserting the connectors into the sockets through the use of a passive end-effector. We have developed the automated, high-yield, assembly procedure which permits connectors to be picked up from any location within the same die, or a separate die. This general procedure allows for the possibility to assemble parts of dissimilar materials. We have built many 3D MEMS structures, including several 3D MEMS devices such as a scanning electron microscope (SEM) micro column, mass-spectrometer column, variable optical attenuator. For these 3D MEMS structures we characterize their mechanical strength through finite element simulation, dynamic properties by finite-element analysis and experimentally with UMECH"s MEMS motion analyzer (MMA), alignment accuracy by using an in-house developed dihedral angle measurement laser autocollimator, and impact properties by performing drop tests. The details of the experimental set-ups, the measurement procedures, and the experimental data are presented in this paper.

  20. Characterization of assembled MEMS

    NASA Astrophysics Data System (ADS)

    Jandric, Zoran; Randall, John N.; Saini, Rahul; Nolan, Michael; Skidmore, George

    2004-12-01

    Zyvex is developing a low-cost high-precision method for manufacturing MEMS-based three-dimensional structures/assemblies. The assembly process relies on compliant properties of the interconnecting components. The sockets and connectors are designed to benefit from their compliant nature by allowing the mechanical component to self-align, i.e. reposition themselves to their designed, stable position, independent of the initial placement of the part by the external robot. Thus, the self-aligning property guarantees the precision of the assembled structure to be very close to, or the same, as the precision of the lithography process itself. A three-dimensional (3D) structure is achieved by inserting the connectors into the sockets through the use of a passive end-effector. We have developed the automated, high-yield, assembly procedure which permits connectors to be picked up from any location within the same die, or a separate die. This general procedure allows for the possibility to assemble parts of dissimilar materials. We have built many 3D MEMS structures, including several 3D MEMS devices such as a scanning electron microscope (SEM) micro column, mass-spectrometer column, variable optical attenuator. For these 3D MEMS structures we characterize their mechanical strength through finite element simulation, dynamic properties by finite-element analysis and experimentally with UMECH"s MEMS motion analyzer (MMA), alignment accuracy by using an in-house developed dihedral angle measurement laser autocollimator, and impact properties by performing drop tests. The details of the experimental set-ups, the measurement procedures, and the experimental data are presented in this paper.

  1. Failure modes in surface micromachined microelectromechanical actuators

    SciTech Connect

    Miller, S.L.; Rodgers, M.S.; LaVigne, G.; Sniegowski, J.J.; Clews, P.; Tanner, D.M.; Peterson, K.A.

    1998-03-01

    In order for the rapidly emerging field of MicroElectroMechanical Systems (MEMS) to meet its extraordinary expectations regarding commercial impact, issues pertaining to how they fail must be understood. The authors identify failure modes common to a broad range of MEMS actuators, including adhesion (stiction) and friction induced failures caused by improper operational methods, mechanical instabilities, and electrical instabilities. Demonstrated methods to mitigate these failure modes include implementing optimized designs, model based operational methods, and chemical surface treatments.

  2. Remotely accessible laboratory for MEMS testing

    NASA Astrophysics Data System (ADS)

    Sivakumar, Ganapathy; Mulsow, Matthew; Melinger, Aaron; Lacouture, Shelby; Dallas, Tim E.

    2010-02-01

    We report on the construction of a remotely accessible and interactive laboratory for testing microdevices (aka: MicroElectroMechancial Systems - MEMS). Enabling expanded utilization of microdevices for research, commercial, and educational purposes is very important for driving the creation of future MEMS devices and applications. Unfortunately, the relatively high costs associated with MEMS devices and testing infrastructure makes widespread access to the world of MEMS difficult. The creation of a virtual lab to control and actuate MEMS devices over the internet helps spread knowledge to a larger audience. A host laboratory has been established that contains a digital microscope, microdevices, controllers, and computers that can be logged into through the internet. The overall layout of the tele-operated MEMS laboratory system can be divided into two major parts: the server side and the client side. The server-side is present at Texas Tech University, and hosts a server machine that runs the Linux operating system and is used for interfacing the MEMS lab with the outside world via internet. The controls from the clients are transferred to the lab side through the server interface. The server interacts with the electronics required to drive the MEMS devices using a range of National Instruments hardware and LabView Virtual Instruments. An optical microscope (100 ×) with a CCD video camera is used to capture images of the operating MEMS. The server broadcasts the live video stream over the internet to the clients through the website. When the button is pressed on the website, the MEMS device responds and the video stream shows the movement in close to real time.

  3. Out-of-Plane Translational PZT Bimorph Actuator with Archimedes’ Spiral Actuating Tethers

    NASA Astrophysics Data System (ADS)

    Yang, Chenye; Liu, Sanwei; Livermore, Carol

    2015-12-01

    The design, finite element analysis (FEA), and experimental characterization of a MEMS out-of-plane (vertical) translational lead-zirconate-titanate (PZT) bimorph actuator supported on Archimedes’ spiral tethers are presented. Two types of bimorph actuators with different electrode patterns (with spiral tethers half actuated or fully actuated) are designed and fabricated. Both designs are fabricated by commercial processes and are compatible with integration into more complex MEMS systems. Finite element analysis (FEA) was used to analyze and predict the displacements of both types of actuators. The deflections of both fully- actuated and half-actuated devices were measured experimentally to validate the design. At an applied voltage of 110V, the out-of-plane deflections of the actuators with half-actuated and fully-actuated tethers were measured at about 17 μm and 29 μm respectively, in good agreement with FEA predictions of 17.1 μm and 25.8 μm. The corresponding blocking forces are predicted as 10 mN and 17 mN by FEA.

  4. Design and characterization of MEMS interferometric sensing

    NASA Astrophysics Data System (ADS)

    Snyder, R.; Siahmakoun, A.

    2010-02-01

    A MEMS-based interferometric sensor is produced using the multi-user MEMS processing standard (MUMPS) micromirrors, movable by thermal actuation. The interferometer is comprised of gold reflection surfaces, polysilicon thermal actuators, hinges, latches and thin film polarization beam splitters. A polysilicon film of 3.5 microns reflects and transmits incident polarized light from an external laser source coupled to a multi-mode optical fiber. The input beam is shaped to a diameter of 10 to 20 microns for incidence upon the 100 micron mirrors. Losses in the optical path include diffraction effects from etch holes created in the manufacturing process, surface roughness of both gold and polysilicon layers, and misalignment of micro-scale optical components. Numerous optical paths on the chip vary by length, number of reflections, and mirror subsystems employed. Subsystems include thermal actuator batteries producing lateral position displacement, angularly tunable mirrors, double reflection surfaces, and static vertical mirrors. All mirror systems are raised via manual stimulation using two micron, residue-free probe tips and some may be aligned using electrical signals causing resistive heating in thermal actuators. The characterization of thermal actuator batteries includes maximum displacement, deflection, and frequency response that coincides with theoretical thermodynamic simulations using finite-element analysis. Maximum deflection of 35 microns at 400 mW input electrical power is shown for three types of actuator batteries as is deflection dependent frequency response data for electrical input signals up to 10 kHz.

  5. Liquid Tunable Microlenses based on MEMS techniques

    PubMed Central

    Zeng, Xuefeng; Jiang, Hongrui

    2013-01-01

    The recent rapid development in microlens technology has provided many opportunities for miniaturized optical systems, and has found a wide range of applications. Of these microlenses, tunable-focus microlenses are of special interest as their focal lengths can be tuned using micro-scale actuators integrated with the lens structure. Realization of such tunable microlens generally relies on the microelectromechanical system (MEMS) technologies. Here, we review the recent progress in tunable liquid microlenses. The underlying physics relevant to these microlenses are first discussed, followed by description of three main categories of tunable microlenses involving MEMS techniques, mechanically driven, electrically driven, and those integrated within microfluidic systems. PMID:24163480

  6. Liquid tunable microlenses based on MEMS techniques

    NASA Astrophysics Data System (ADS)

    Zeng, Xuefeng; Jiang, Hongrui

    2013-08-01

    The recent rapid development in microlens technology has provided many opportunities for miniaturized optical systems, and has found a wide range of applications. Of these microlenses, tunable-focus microlenses are of special interest as their focal lengths can be tuned using micro-scale actuators integrated with the lens structure. Realization of such tunable microlens generally relies on the microelectromechanical system (MEMS) technologies. Here, we review the recent progress in tunable liquid microlenses. The underlying physics relevant to these microlenses are first discussed, followed by description of three main categories of tunable microlenses involving MEMS techniques, mechanically driven, electrically driven and those integrated within microfluidic systems.

  7. Design and simulation of MEMS capacitive magnetometer

    NASA Astrophysics Data System (ADS)

    Jyoti, Aditi, Tripathi, C. C.; Gopal, Ram

    2016-04-01

    This paper presents the design and simulation of a MEMS Capacitive Magnetometer using FEM (Finite Element Method) tool COMSOL Multiphysics 4.3b and results from this simulation are closely matched with analytically calculated results. A comb drive structure is used for actuation purpose which operates at resonant frequency of device is 11.791 kHz to achieve maximum displacement. A magnetic field in z-axis can be detected by this comb drive structure. Quality factor of MEMS capacitive magnetometer obtained is 18 and it has good linear response in the magnetic field range of 100 µT.

  8. Micromirror-scanned dual-axis confocal microscope utilizing a gradient-index relay lens for image guidance during brain surgery

    PubMed Central

    Liu, Jonathan T.C.; Mandella, Michael J.; Loewke, Nathan O.; Haeberle, Henry; Ra, Hyejun; Piyawattanametha, Wibool; Solgaard, Olav; Kino, Gordon S.; Contag, Christopher H.

    2010-01-01

    A fluorescence confocal microscope incorporating a 1.8-mm-diam gradient-index relay lens is developed for in vivo histological guidance during resection of brain tumors. The microscope utilizes a dual-axis confocal architecture to efficiently reject out-of-focus light for high-contrast optical sectioning. A biaxial microelectromechanical system (MEMS) scanning mirror is actuated at resonance along each axis to achieve a large field of view with low-voltage waveforms. The unstable Lissajous scan, which results from actuating the orthogonal axes of the MEMS mirror at highly disparate resonance frequencies, is optimized to fully sample 500×500 pixels at two frames per second. Optically sectioned fluorescence images of brain tissues are obtained in living mice to demonstrate the utility of this microscope for image-guided resections. PMID:20459274

  9. MEMS Louvers for Thermal Control

    NASA Technical Reports Server (NTRS)

    Champion, J. L.; Osiander, R.; Darrin, M. A. Garrison; Swanson, T. D.

    1998-01-01

    Mechanical louvers have frequently been used for spacecraft and instrument thermal control purposes. These devices typically consist of parallel or radial vanes, which can be opened or closed to vary the effective emissivity of the underlying surface. This project demonstrates the feasibility of using Micro-Electromechanical Systems (MEMS) technology to miniaturize louvers for such purposes. This concept offers the possibility of substituting the smaller, lighter weight, more rugged, and less costly MEMS devices for such mechanical louvers. In effect, a smart skin that self adjusts in response to environmental influences could be developed composed of arrays of thousands of miniaturized louvers. Several orders of magnitude size, weight, and volume decreases are potentially achieved using micro-electromechanical techniques. The use of this technology offers substantial benefits in spacecraft/instrument design, integration and testing, and flight operations. It will be particularly beneficial for the emerging smaller spacecraft and instruments of the future. In addition, this MEMS thermal louver technology can form the basis for related spacecraft instrument applications. The specific goal of this effort was to develop a preliminary MEMS device capable of modulating the effective emissivity of radiators on spacecraft. The concept pursued uses hinged panels, or louvers, in a manner such that heat emitted from the radiators is a function of louver angle. An electrostatic comb drive or other such actuator can control the louver position. The initial design calls for the louvers to be gold coated while the underlying surface is of high emissivity. Since, the base MEMS material, silicon, is transparent in the InfraRed (IR) spectrum, the device has a minimum emissivity when closed and a maximum emissivity when open. An initial set of polysilicon louver devices was designed at the Johns Hopkins Applied Physics Laboratory in conjunction with the Thermal Engineering Branch at

  10. Membrane Mirrors With Bimorph Shape Actuators

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok

    2003-01-01

    Deformable mirrors of a proposed type would be equipped with relatively-large-stroke microscopic piezoelectric actuators that would be used to maintain their reflective surfaces in precise shapes. These mirrors would be members of the class of MEMS-DM (for microelectromechanical system deformable mirror) devices, which offer potential for a precise optical control in adaptive-optics applications in such diverse fields as astronomy and vision science. The proposed mirror would be fabricated, in part, by use of a membrane-transfer technique. The actuator design would contain bimorph-type piezoelectric actuators.

  11. RF MEMS reconfigurable triangular patch antenna.

    SciTech Connect

    Nordquist, Christopher Daniel; Christodoulou, Christos George; Feldner, Lucas Matthew

    2005-01-01

    A Ka-band RF MEMS enabled frequency reconfigurable triangular microstrip patch antenna has been designed for monolithic integration with RF MEMS phase shifters to demonstrate a low-cost monolithic passive electronically scanned array (PESA). This paper introduces our first prototype reconfigurable triangular patch antenna currently in fabrication. The aperture coupled patch antenna is fabricated on a dual-layer quartz/alumina substrate using surface micromachining techniques.

  12. RF MEMS reconfigurable triangular patch antenna.

    SciTech Connect

    Christodoulou, Christos George; Nordquist, Christopher Daniel; Feldner, Lucas Matthew

    2005-07-01

    A Ka-band RF MEMS enabled frequency reconfigurable triangular microstrip patch antenna has been designed for monolithic integration with RF MEMS phase shifters to demonstrate a low-cost monolithic passive electronically scanned array (PESA). This paper introduces our first prototype reconfigurable triangular patch antenna currently in fabrication. The aperture coupled patch antenna is fabricated on a dual-layer quartz/alumina substrate using surface micromachining techniques.

  13. Optical beam steering using a 2D MEMS scanner

    NASA Astrophysics Data System (ADS)

    Pétremand, Yves; Clerc, Pierre-André; Epitaux, Marc; Hauffe, Ralf; Noell, Wilfried; de Rooij, N. F.

    2007-10-01

    This paper presents the design, fabrication and operation principle of an optical beam steerer for laser fiber coupling based on a MEMS device. The MEMS chip consists on a bi-dimensional movable platform based on uni-dimensional comb drive actuation. An optical lens is assembled onto the mobile platform to focus and steer the light comping from a laser diode and couple it into an optical fiber. Assembly of a complete system and measurements were performed and compared to simulation results. Both the trajectory of the MEMS and resonance frewquency measurements agree with the simulated ones.

  14. Characterization of a MEMS deformable mirror by far field intensity evaluation

    NASA Astrophysics Data System (ADS)

    Greiner, Cherry; Finn, Susanna; Choi, Stacey; Doble, Nathan

    2013-03-01

    The performance of an adaptive optics (AO) system is typically measured using the wavefront sensor (WFS). However, another method is to use the point spread function (PSF), which is sensitive to scatter, does not act as a low pass filter and is not dependent on the WFS calibration. We decided to examine the performance of an AO system built for vision science that employed a micromechanical systems (MEMS) based deformable mirror (DM). Specifically, the MEMS DM consists of 489 actuators, resulting in 163 segments each with individual piston/tip/tilt control. Initial evaluation of the DM with a model eye included determining the ability of the DM to generate individual Zernike polynomials and evaluating the far field PSF to measure wavefront correction performance. For individual Zernike polynomial terms, the DM was found to be capable of correcting the aberration magnitudes expected from previously published human population studies.1, 2 Finally, the DM was used in an AO fundus camera to successfully acquire images of cone photoreceptors in a living human eye. This is part of ongoing work which will incorporate the MEMS DM into both an AO scanning laser ophthalmoscope (SLO) and an AO optical coherence tomography (OCT) system where the form of the PSF at the confocal pinhole/optical fiber is important for optimal imaging.

  15. Cantilever RF-MEMS for monolithic integration with phased array antennas on a PCB

    NASA Astrophysics Data System (ADS)

    Aguilar-Armenta, C. J.; Porter, S. J.

    2015-12-01

    This article presents the development and operation of a novel electrostatic metal-to-metal contact cantilever radio-frequency microelectromechanical system (RF-MEMS) switch for monolithic integration with microstrip phased array antennas (PAAs) on a printed circuit board. The switch is fabricated using simple photolithography techniques on a Rogers 4003c substrate, with a footprint of 200 µm × 100 µm, based on a 1 µm-thick copper cantilever. An alternative wet-etching technique for effectively releasing the cantilever is described. Electrostatic and electromagnetic measurements show that the RF-MEMS presents an actuation voltage of 90 V for metal-to-metal contact, an isolation of -8.7 dB, insertion loss of -2.5 dB and a return loss of -15 dB on a 50 Ω microstrip line at 12.5 GHz. For proof-of-concept, a beam-steering 2 × 2 microstrip PAA, based on two 1-bit phase shifters suitable for the monolithic integration of the RF-MEMS, has been designed and measured at 12.5 GHz. Measurements show that the beam-steering system presents effective radiation characteristics with scanning capabilities from broadside towards 29° in the H-plane.

  16. Piston-Driven Fluid Ejectors In Silicon Mems

    DOEpatents

    Galambos, Paul C.; Benavides, Gilbert L.; Jokiel, Jr., Bernhard; Jakubczak II, Jerome F.

    2005-05-03

    A surface-micromachined fluid-ejection apparatus is disclosed which utilizes a piston to provide for the ejection of jets or drops of a fluid (e.g. for ink-jet printing). The piston, which is located at least partially inside a fluid reservoir, is moveable into a cylindrical fluid-ejection chamber connected to the reservoir by a microelectromechanical (MEM) actuator which is located outside the reservoir. In this way, the reservoir and fluid-ejection chamber can be maintained as electric-field-free regions thereby allowing the apparatus to be used with fluids that are electrically conductive or which may react or break down in the presence of a high electric field. The MEM actuator can comprise either an electrostatic actuator or a thermal actuator.

  17. Light-Driven Polymeric Bimorph Actuators

    NASA Technical Reports Server (NTRS)

    Adamovsky, Gregory; Sarkisov, Sergey S.; Curley, Michael J.

    2009-01-01

    Light-driven polymeric bimorph actuators are being developed as alternatives to prior electrically and optically driven actuators in advanced, highly miniaturized devices and systems exemplified by microelectromechanical systems (MEMS), micro-electro-optical-mechanical systems (MEOMS), and sensor and actuator arrays in smart structures. These light-driven polymeric bimorph actuators are intended to satisfy a need for actuators that (1) in comparison with the prior actuators, are simpler and less power-hungry; (2) can be driven by low-power visible or mid-infrared light delivered through conventional optic fibers; and (3) are suitable for integration with optical sensors and multiple actuators of the same or different type. The immediate predecessors of the present light-driven polymeric bimorph actuators are bimorph actuators that exploit a photorestrictive effect in lead lanthanum zirconate titanate (PLZT) ceramics. The disadvantages of the PLZT-based actuators are that (1) it is difficult to shape the PLZT ceramics, which are hard and brittle; (2) for actuation, it is necessary to use ultraviolet light (wavelengths < 380 nm), which must be generated by use of high-power, high-pressure arc lamps or lasers; (3) it is difficult to deliver sufficient ultraviolet light through conventional optical fibers because of significant losses in the fibers; (4) the response times of the PLZT actuators are of the order of several seconds unacceptably long for typical applications; and (5) the maximum mechanical displacements of the PLZT-based actuators are limited to those characterized by low strains beyond which PLZT ceramics disintegrate because of their brittleness. The basic element of a light-driven bimorph actuator of the present developmental type is a cantilever beam comprising two layers, at least one of which is a polymer that exhibits a photomechanical effect (see figure). The dominant mechanism of the photomechanical effect is a photothermal one: absorption of

  18. Automated multiscale measurement system for MEMS characterisation

    NASA Astrophysics Data System (ADS)

    Lyda, W.; Burla, A.; Haist, T.; Zimmermann, J.; Osten, W.; Sawodny, O.

    2010-05-01

    In former publications we presented an automated multiscale measurement system (AMMS) based on an adaptable active exploration strategy. The system is armed with several sensors linked by indicator algorithms to identify unresolved defects and to trigger finer resolved measurements. The advantage of this strategy in comparison to single sensor approaches is its high flexibility which is used to balance the conflict between measurement range, resolution and duration. For an initial proof of principle we used the system for inspection of microlens arrays. An even higher challenge for inspection systems are modern micro electro-mechanical systems (MEMS). MEMS consist of critical functional components which range from several millimeters down to micrometers and typically have tolerances in sub-micron scale. This contribution is focused on the inspection of MEMS using the example of micro calibration devices. This new class of objects has completely different surface characteristics and features hence it is necessary to adapted the components of the AMMS. Typical defects found on calibration devices are for example broken actuator combs and springs, surface cracks or missing features. These defects have less influence on the optical properties of the surface and the MEMS surface generates more complex intensity distributions in comparison microlense arrays. At the same time, the surface features of the MEMS have a higher variety and less periodicity which reduce the performance of currently used algorithms. To meet these requirements, we present new indicator algorithms for the automated analysis of confocal as well as conventional imaging data and show initial multiscale inspection results.

  19. MEMS Applications in Aerodynamic Measurement Technology

    NASA Technical Reports Server (NTRS)

    Reshotko, E.; Mehregany, M.; Bang, C.

    1998-01-01

    Microelectromechanical systems (MEMS) embodies the integration of sensors, actuators, and electronics on a single substrate using integrated circuit fabrication techniques and compatible bulk and surface micromachining processes. Silicon and its derivatives form the material base for the MEMS technology. MEMS devices, including microsensors and microactuators, are attractive because they can be made small (characteristic dimension about 100 microns), be produced in large numbers with uniform performance, include electronics for high performance and sophisticated functionality, and be inexpensive. For aerodynamic measurements, it is preferred that sensors be small so as to approximate measurement at a point, and in fact, MEMS pressure sensors, wall shear-stress sensors, heat flux sensors and micromachined hot wires are nearing application. For the envisioned application to wind tunnel models, MEMS sensors can be placed on the surface or in very shallow grooves. MEMS devices have often been fabricated on stiff, flat silicon substrates, about 0.5 mm thick, and therefore were not easily mounted on curved surfaces. However, flexible substrates are now available and heat-flux sensor arrays have been wrapped around a curved turbine blade. Electrical leads can also be built into the flexible substrate. Thus MEMS instrumented wind tunnel models do not require deep spanwise grooves for tubes and leads that compromise the strength of conventionally instrumented models. With MEMS, even the electrical leads can potentially be eliminated if telemetry of the signals to an appropriate receiver can be implemented. While semiconductor silicon is well known for its electronic properties, it is also an excellent mechanical material for MEMS applications. However, silicon electronics are limited to operations below about 200 C, and silicon's mechanical properties start to diminish above 400 C. In recent years, silicon carbide (SiC) has emerged as the leading material candidate for

  20. A study on high isolation RF MEMS switch

    NASA Astrophysics Data System (ADS)

    Lin, Lingling; Hu, Guoqing; Lin, Zonghua; Liu, Wenyan

    2006-01-01

    A new type of high isolation RF MEMS switch is studied in this paper. The structure of cantilever beam with electrodes Sandwiched between Si and SiO2 layers has been evaluated. The top and bottom dielectric materials separate two conducting electrodes when actuated. Therefore the reliability has been improved greatly. The curves of the cantilever beam and the voltage have been simulated.

  1. Modeling of two-hot-arm horizontal thermal actuator

    NASA Astrophysics Data System (ADS)

    Yan, Dong; Khajepour, Amir; Mansour, Raafat

    2003-03-01

    Electrothermal actuators have a very promising future in MEMS applications since they can generate large deflection and force with low actuating voltages and small device areas. In this study, a lumped model of a two-hot-arm horizontal thermal actuator is presented. In order to prove the accuracy of the lumped model, finite element analysis (FEA) and experimental results are provided. The two-hot-arm thermal actuator has been fabricated using the MUMPs process. Both the experimental and FEA results are in good agreement with the results of lumped modeling.

  2. Through-wafer interrogation of microstructure motion for MEMS feedback control

    NASA Astrophysics Data System (ADS)

    Dawson, Jeremy M.; Chen, Jingdong; Brown, Kolin S.; Famouri, Parviz F.; Hornak, Lawrence A.

    1999-09-01

    Closed-loop MEMS control enables mechanical microsystems to adapt to the demands of the environment which they are actuating opening a new window of opportunity for future MEMS applications. Planar diffractive optical microsystems have the potential to enable the integrated optical interrogation of MEMS microstructure position fully decoupled from the means of mechanical actuation which is central to realization of feedback control. This paper presents the results of initial research evaluating through-wafer optical microsystems for MEMS integrated optical monitoring. Positional monitoring results obtained from a 1.3 micrometer wavelength through- wafer free-space optical probe of a lateral comb resonator fabricated using the Multi-User MEMS Process Service (MUMPS) are presented. Given the availability of positional information via probe signal feedback, a simulation of the application of nonlinear sliding control is presented illustrating position control of the lateral comb resonator structure.

  3. Very compact, high-stability electrostatic actuator featuring contact-free self-limiting displacement

    DOEpatents

    Rodgers, M. Steven; Miller, Samuel L.

    2003-01-01

    A compact electrostatic actuator is disclosed for microelectromechanical (MEM) applications. The actuator utilizes stationary and moveable electrodes, with the stationary electrodes being formed on a substrate and the moveable electrodes being supported above the substrate on a frame. The frame provides a rigid structure which allows the electrostatic actuator to be operated at high voltages (up to 190 Volts) to provide a relatively large actuation force compared to conventional electrostatic comb actuators which are much larger in size. For operation at its maximum displacement, the electrostatic actuator is relatively insensitive to the exact value of the applied voltage and provides a self-limiting displacement.

  4. Design, fabrication and applications of MEMS tunable blazed gratings

    NASA Astrophysics Data System (ADS)

    Li, Xiang

    Micro-electro-mechanical systems (MEMS) technology originated from the integrated circuits (IC) industry, and has gradually evolved into a wide range of technologies across multiple disciplines in three decades. With the boom of the IT industry in the late 1990's, micro-opto-electro-mechanical systems (MOEMS) or optical MEMS technology, a branch of MEMS, has rapidly been applied to a large variety of fields including optical telecommunications, information display, spectroscopy and medical imaging. In this dissertation, we focus on optical filtering technology based on diffractive optical MEMS, which manipulate the light by modulating its phase through micro-actuation, or sense mechanical and other physical property changes at the microscale based on the principles of diffractive optics. The fundamental trade-off between the average transmission power and complexity of diffractive optical filters leads us to the concept of tunable blazed gratings, which trade spectral complexity for power transmission efficiency. MEMS tunable blazed gratings (TBG) are blazed gratings whose individual elements can be actuated at the micro-level using MEMS actuators. The TBG not only possess the advantages of high transmission and large dispersion of traditional blazed gratings, but also have the potential to enable novel optical filtering functionality beyond the reach of conventional monolithic blazed gratings with a much larger number of degrees of freedom. Starting from the first principles of diffractive optics, we develop the theoretical understanding of tunable blazed gratings, which serves as guidelines to our design and fabrication of TBG. We show different generations of TBG designs and the corresponding fabrication processes and focus on one the ones based on SOI technology which combine anisotropic wet silicon etching that defines mirror surface on crystalline surfaces of silicon, and deep reactive ion etching that can flexibly define electrostatic actuators. We

  5. Real-time thickness measurement of biological tissues using a microfabricated magnetically-driven lens actuator.

    PubMed

    Mansoor, Hadi; Zeng, Haishan; Chiao, Mu

    2011-08-01

    A fiber optic confocal catheter with a micro scanning lens was developed for real-time and non-contact thickness measurement of biological tissue. The catheter has an outer diameter and rigid length of 4.75 mm and 30 mm respectively and is suitable for endoscopic applications. The catheter incorporates a lens actuator that is fabricated using microelectromechanical systems (MEMS) technology. The lens is mounted on a folded flexure made of nickel and is actuated by magnetic field. Thickness measurements are performed by positioning the catheter in front of the tissue and actuating the lens scanner in the out-of-plane direction. A single-mode optical fiber (SMF) is used to deliver a 785 nm laser beam to the tissue and relay back the reflected light from the tissue to a photomultiplier tube (PMT). When the focal point of the scanning lens passes tissue boundaries, intensity peaks are detected in the reflecting signal. Tissue thickness is calculated using its index of refraction and the lens displacement between intensity peaks. The utility of the confocal catheter was demonstrated by measuring the cornea and skin thicknesses of a mouse. Measurement uncertainty of 8.86 µm within 95% confidence interval has been achieved. PMID:21468630

  6. MEMS- and NEMS-based smart devices and systems

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.

    2001-11-01

    The microelectronics industry has seen explosive growth during the last thirty years. Extremely large markets for logic and memory devices have driven the development of new materials, and technologies for the fabrication of even more complex devices with features sized now don at the sub micron and nanometer level. Recent interest has arisen in employing these materials, tools and technologies for the fabrication of miniature sensors and actuators and their integration with electronic circuits to produce smart devices and systems. This effort offers the promise of: 1) increasing the performance and manufacturability of both sensors and actuators by exploiting new batch fabrication processes developed including micro stereo lithographic an micro molding techniques; 2) developing novel classes of materials and mechanical structures not possible previously, such as diamond like carbon, silicon carbide and carbon nanotubes, micro-turbines and micro-engines; 3) development of technologies for the system level and wafer level integration of micro components at the nanometer precision, such as self-assembly techniques and robotic manipulation; 4) development of control and communication systems for MEMS devices, such as optical and RF wireless, and power delivery systems, etc. A novel composite structure can be tailored by functionalizing carbon nano tubes and chemically bonding them with the polymer matrix e.g. block or graft copolymer, or even cross-linked copolymer, to impart exceptional structural, electronic and surface properties. Bio- and Mechanical-MEMS devices derived from this hybrid composite provide a new avenue for future smart systems. The integration of NEMS (NanoElectroMechanical Systems), MEMS, IDTs (Interdigital Transducers) and required microelectronics and conformal antenna in the multifunctional smart materials and composites results in a smart system suitable for sensing and control of a variety functions in automobile, aerospace, marine and civil

  7. Efforts in developing design and simulation tools for MEMS: DS/MEMS and CA/MEMS

    NASA Astrophysics Data System (ADS)

    Youn, Sung Kie; Kwak, Byung M.; Kwon, Jang-Hyuk; Chang, Su-Young; Huh, Jae S.; Kim, Eugene

    2002-04-01

    In this work, multi-physics simulation software (CA/MEMS) and design-optimization software (DS/MEMS) tailored for MEMS devices are introduced. The CA/MEMS, which is a simulation engine for DS/MEMS, is a 3-D multi-physics analysis code utilizing various numerical methods such as FEM, BEM and FVM to efficiently model MEMS application problems. The current CA/MEMS includes analysis- modules for structural, thermal, electric, electromagnetic and fluidic fields and is capable of the analyses of various coupled- field problems for MEMS applications. DS/MEMS is design optimization engine for MEMS devices. With integrating CA/MEMS and pre/post processor into CAD environment, DS/MEMS is organized to work in parametric CAD platform. DS/MEMS consists of optimal design module and robust design module. The optimal design module provides users three methods nonlinear programming, Taguchi parameter design and the response surface method. The robust design module, which is specially developed for MEMS application, can be used to minimize the perturbation of performances of MEMS devices under uncertainties of MEMS devices, such as process tolerance and the change of operating environments. To verify the efficiency and accuracy of CA/MEMS and the practical usefulness of DS/MEMS, we have been comparing the simulated results of CA/MEMS with those of other commercial codes and experimental data of manufactured MEMS devices, and investigating the performances of the optimized designs through DS/MEMS.

  8. Actuators Based on Liquid Crystalline Elastomer Materials

    PubMed Central

    Jiang, Hongrui; Li, Chensha; Huang, Xuezhen

    2013-01-01

    Liquid crystalline elastomers (LCEs) exhibit a number of remarkable physical effects, including the unique, high-stroke reversible mechanical actuation when triggered by external stimuli. This article reviews some recent exciting developments in the field of LCEs materials with an emphasis on their utilization in actuator applications. Such applications include artificial muscles, industrial manufacturing, health and microelectromechanical systems (MEMS). With suitable synthetic and preparation pathways and well-controlled actuation stimuli, such as heat, light, electric and magnetic field, excellent physical properties of LCE materials can be realized. By comparing the actuating properties of different systems, general relationships between the structure and the property of LCEs are discussed. How these materials can be turned into usable devices using interdisciplinary techniques is also described. PMID:23648966

  9. Fabrication processes for MEMS deformable mirrors in the next generation telescope instruments

    NASA Astrophysics Data System (ADS)

    Diouf, Alioune

    This dissertation advances three critical technology areas at the frontier of research for micro electro-mechanical systems (MEMS) deformable minors (DMs) needed for next generation telescopes (NGTs). High actuator-count MEMS deformable minors are needed for future ground-based large astronomical telescopes. Scaling up the current MEMS DMs to unprecedented numbers of independent actuators---up to 10,000 on a single DM---will require new electrical connection architecture for the actuators in order to replace the wire-bonded scheme that has been used to date. A through-wafer via interconnection fabrication process for MEMS DMs is developed to offer a path to transform the frontier of high actuator count MEMS micromirrors. In a class of NGTs instrument known as the Multi-Object Adaptive Optics (MOAO), the correction made by the DM of the wavefront phase error over the entire telescope field view is not accessible to the sensing unit. To achieve compensation, precise, single step "open-loop" commands must be developed for the DM. Due to the nonlinear relationship between applied voltage and actuation displacement at each actuator, and the mechanical coupling among actuators through the mirror membrane, such open-loop control is a formidable task. A combination of mirror surface modeling and sparse actuator empirical calibration is used to demonstrate open-loop control of MEMS deformable minors to the accuracy of closed-loop control over the entire available DM stroke. Shapes at the limit of achievable minor spatial frequencies with up to 2.5microm amplitudes have been achieved within 20nm RMS error accuracy of closed-loop control. The calibration of a single actuator to be used for predicting shapes results in an additional 14nm RMS surface error compared to parallel calibration of all actuators in the deformable minor. The ubiquitous reflective coatings for MEMS deformable minors are gold and aluminum. Emerging adaptive optics application require broadband optical

  10. Calibration of High Frequency MEMS Microphones

    NASA Technical Reports Server (NTRS)

    Shams, Qamar A.; Humphreys, William M.; Bartram, Scott M.; Zuckewar, Allan J.

    2007-01-01

    Understanding and controlling aircraft noise is one of the major research topics of the NASA Fundamental Aeronautics Program. One of the measurement technologies used to acquire noise data is the microphone directional array (DA). Traditional direction array hardware, consisting of commercially available condenser microphones and preamplifiers can be too expensive and their installation in hard-walled wind tunnel test sections too complicated. An emerging micro-machining technology coupled with the latest cutting edge technologies for smaller and faster systems have opened the way for development of MEMS microphones. The MEMS microphone devices are available in the market but suffer from certain important shortcomings. Based on early experiments with array prototypes, it has been found that both the bandwidth and the sound pressure level dynamic range of the microphones should be increased significantly to improve the performance and flexibility of the overall array. Thus, in collaboration with an outside MEMS design vendor, NASA Langley modified commercially available MEMS microphone as shown in Figure 1 to meet the new requirements. Coupled with the design of the enhanced MEMS microphones was the development of a new calibration method for simultaneously obtaining the sensitivity and phase response of the devices over their entire broadband frequency range. Over the years, several methods have been used for microphone calibration. Some of the common methods of microphone calibration are Coupler (Reciprocity, Substitution, and Simultaneous), Pistonphone, Electrostatic actuator, and Free-field calibration (Reciprocity, Substitution, and Simultaneous). Traditionally, electrostatic actuators (EA) have been used to characterize air-condenser microphones for wideband frequency ranges; however, MEMS microphones are not adaptable to the EA method due to their construction and very small diaphragm size. Hence a substitution-based, free-field method was developed to

  11. Direct integration of MEMS, dielectric pumping and cell manipulation with reversibly bonded gecko adhesive microfluidics

    NASA Astrophysics Data System (ADS)

    Warnat, S.; King, H.; Wasay, A.; Sameoto, D.; Hubbard, T.

    2016-09-01

    We present an approach to form a microfluidic environment on top of MEMS dies using reversibly bonded microfluidics. The reversible polymeric microfluidics moulds bond to the MEMS die using a gecko-inspired gasket architecture. In this study the formed microchannels are demonstrated in conjunction with a MEMS mechanical single cell testing environment for BioMEMS applications. A reversible microfluidics placement technique with an x-y and rotational accuracy of  ±2 µm and 1° respectively on a MEMS die was developed. No leaks were observed during pneumatic pumping of common cell media (PBS, sorbitol, water, seawater) through the fluidic channels. Thermal chevron actuators were successful operated inside this fluidic environment and a performance deviation of ~15% was measured compared to an open MEMS configuration. Latex micro-spheres were pumped using traveling wave di-electrophoresis and compared to an open (no-microfluidics) configuration with velocities of 24 µm s‑1 and 20 µm s‑1.

  12. Characteristics and performance of MEMS accelerometers

    SciTech Connect

    Kant, R.A.; Nagel, D.J.

    1996-04-01

    Until recently, accelerometer manufacturing appeared to be a reasonably mature field. But, this situation changed rapidly when researchers began to build miniature accelerometers using micron scale lithographic techniques developed for producing integrated circuits. Several micro- electro-mechanical systems (MEMS) accelerometers are now available commercially. The MEMS devices are attractive because they are relatively inexpensive to produce and they include electronic circuits to perform a variety control and signal processing functions on the same chip. How does the performance of these new devices compare to their older and larger competitors? The physics of the scaling laws suggests that performance should decrease with size. The MEMS technology may be well positioned to take advantage of new, small-scale sensing and actuating methods and, in the process, MEMS fabricated accelerometers may avoid or overcome the engineering limitations of older generation devices by using high precision micro-machining, arrays of sensors, on-chip temperature control circuitry, etc. This study compares the performance and physical characteristics of micro-machined and conventional accelerometers. We review the physical operating principles and describe the basic scaling laws and other factors that ultimately limit accelerometer performance. Then we tabulate and discuss the current performance and characteristics of diverse types of commercial accelerometers. {copyright} {ital 1996 American Institute of Physics.}

  13. MEMS deformable mirrors for astronomical adaptive optics

    NASA Astrophysics Data System (ADS)

    Cornelissen, S. A.; Hartzell, A. L.; Stewart, J. B.; Bifano, T. G.; Bierden, P. A.

    2010-07-01

    We report on the development of high actuator count, micro-electromechanical (MEMS) deformable mirrors designed for high order wavefront correction in ground and space-based astronomical adaptive optics instruments. The design of these polysilicon, surface-micromachined MEMS deformable mirrors builds on technology that has been used extensively to correct for ocular aberrations in retinal imaging systems and for compensation of atmospheric turbulence in free-space laser communication. These light-weight, low power deformable mirrors have an active aperture of up to 25.2mm consisting of a thin silicon membrane mirror supported by an array of 140 to 4092 electrostatic actuators which exhibit no hysteresis and have sub-nanometer repeatability making them well suited for open-loop control applications such as Multi-Object Adaptive Optics (MOAO). The continuous membrane deformable mirrors, coated with a highly reflective metal film, are capable of up to 6μm of stroke, have a surface finish of <10nm RMS with a fill factor of 99.8%. Presented in this paper are device characteristics and performance test results, as well as reliability test data and device lifetime predictions that show that trillions of actuator cycles can be achieved without failures.

  14. MEMS for Practical Applications

    NASA Astrophysics Data System (ADS)

    Esashi, Masayoshi

    Silicon MEMS as electrostatically levitated rotational gyroscopes and 2D optical scanners, and wafer level packaged devices as integrated capacitive pressure sensors and MEMS switches are described. MEMS which use non-silicon materials as LTCC with electrical feedthrough, SiC and LiNbO3 for probe cards for wafer-level burn-in test, molds for glass press molding and SAW wireless passive sensors respectively are also described.

  15. MEMS tactile display: from fabrication to characterization

    NASA Astrophysics Data System (ADS)

    Miki, Norihisa; Kosemura, Yumi; Watanabe, Junpei; Ishikawa, Hiroaki

    2014-03-01

    We report fabrication and characterization of MEMS-based tactile display that can display users various tactile information, such as Braille codes and surface textures. The display consists of 9 micro-actuators that are equipped with hydraulic displacement amplification mechanism (HDAM) to achieve large enough displacement to stimulate the human tactile receptors. HDAM encapsulates incompressible liquids. We developed a liquid encapsulation process, which we termed as Bonding-in-Liquid Technique, where bonding with a UV-curable resin in glycerin is conducted in the liquid, which prevented interfusion of air bubbles and deformation of the membrane during the bonding. HDAM successfully amplified the displacement generated by piezoelectric actuators by a factor of 6. The display could virtually produce "rough" and "smooth" surfaces, by controlling the vibration frequency, displacement, and the actuation periods of an actuator until the adjacent actuator was driven. We introduced a sample comparison method to characterize the surfaces, which involves human tactile sensation. First, we prepared samples whose mechanical properties are known. We displayed a surface texture to the user by controlling the parameters and then, the user selects a sample that has the most similar surface texture. By doing so, we can correlate the parameters with the mechanical properties of the sample as well as find the sets of the parameters that can provide similar tactile information to many users. The preliminary results with respect to roughness and hardness is presented.

  16. Reliability enhancement of Ohmic RF MEMS switches

    NASA Astrophysics Data System (ADS)

    Kurth, Steffen; Leidich, Stefan; Bertz, Andreas; Nowack, Markus; Frömel, Jörg; Kaufmann, Christian; Faust, Wolfgang; Gessner, Thomas; Akiba, Akira; Ikeda, Koichi

    2011-02-01

    This contribution deals with capacitively actuated Ohmic switches in series single pole single throw (SPST) configuration for DC up to 4 GHz signal frequency (<0.5 dB insertion loss, 35 dB isolation) and in shunt switch SPST configuration for a frequency range from DC up to 80 GHz (<1.2 dB insertion loss, 18 dB isolation at 60 GHz). A novel high aspect ratio MEMS fabrication sequence in combination with wafer level packaging is applied for fabrication of the samples and allows for a relatively large actuation electrode area, and for high actuation force resulting in fast onresponse time of 10 μs and off-response time of 6 μs at less than 5 V actuation voltage. Large actuation electrode area and a particular design feature for electrode over travel and dynamic contact separation lead to high contact force in the closed state and to high force for contact separation to overcome sticking. The switch contacts, which are consisting of noble metal, are made in one of the latest process steps. This minimizes contamination of the contact surfaces by fabrication sequence residuals. A life time of 1 Billion switch cycles has been achieved. This paper covers design for reliability issues and reliability test methods using accelerated life time test. Different test methods are combined to examine electric and mechanical motion parameters as well as RF performance.

  17. Differentially-driven MEMS spatial light modulator

    DOEpatents

    Stappaerts, Eddy A.

    2004-09-14

    A MEMS SLM and an electrostatic actuator associated with a pixel in an SLM. The actuator has three electrodes: a lower electrode; an upper electrode fixed with respect to the lower electrode; and a center electrode suspended and actuable between the upper and lower electrodes. The center electrode is capable of resiliently-biasing to restore the center electrode to a non-actuated first equilibrium position, and a mirror is operably connected to the center electrode. A first voltage source provides a first bias voltage across the lower and center electrodes and a second voltage source provides a second bias voltage across the upper and center electrodes, with the first and second bias voltages determining the non-actuated first equilibrium position of the center electrode. A third voltage source provides a variable driver voltage across one of the lower/center and upper/center electrode pairs in series with the corresponding first or second bias voltage, to actuate the center electrode to a dynamic second equilibrium position.

  18. New technologies for the actuation and controls of large aperture lightweight quality mirrors

    NASA Technical Reports Server (NTRS)

    Lih, S. S.; Yang, E. H.; Gullapalli, S. N.; Flood, R.

    2003-01-01

    This paper presents a set of candidate components: MEMS based large stroke (>100 microns) ultra lightweight (0.01 gm) discrete inch worm actuator technology, and a distributed actuator technology, in the context of a novel lightweight active flexure-hinged substrate concept that uses the nanolaminate face sheet.

  19. Deformable MEMS grating for wide tunability and high operating speed

    NASA Astrophysics Data System (ADS)

    Tormen, Maurizio; Peter, Yves-Alain; Niedermann, Philippe; Hoogerwerf, Arno; Shea, Herbert; Stanley, Ross

    2006-01-01

    Diffractive MEMS are interesting for a wide range of applications, including displays, scanners or switching elements. Their advantages are compactness, potentially high actuation speed and in the ability to deflect light at large angles. We have designed and fabricated deformable diffractive MEMS grating to be used as tuning elements for external cavity lasers. The resulting device is compact, has wide tunability and a high operating speed. The initial design is a planar grating where the beams are free-standing and attached to each other using leaf springs. Actuation is achieved through two electrostatic comb drives at either end of the grating. To prevent deformation of the free-standing grating, the device is 10 μm thick made from a Silicon on Insulator (SOI) wafer in a single mask process. At 100V a periodicity tuning of 3% has been measured. The first resonant mode of the grating is measured at 13.8 kHz, allowing high speed actuation. This combination of wide tunability and high operating speed represents state of the art in the domain of tunable MEMS filters. In order to improve diffraction efficiency and to expand the usable wavelength range, a blazed version of the deformable MEMS grating has been designed. A key issue is maintaining the mechanical properties of the original device while providing optically smooth blazed beams. Using a process based on anisotropic KOH etching, blazed gratings have been obtained and preliminary characterization is promising.

  20. Design of RF MEMS switches without pull-in instability

    NASA Astrophysics Data System (ADS)

    Proctor, W. Cyrus; Richards, Gregory P.; Shen, Chongyi; Skorczewski, Tyler; Wang, Min; Zhang, Jingyan; Zhong, Peng; Massad, Jordan E.; Smith, Ralph

    2010-04-01

    Micro-electro-mechanical systems (MEMS) switches for radio-frequency (RF) signals have certain advantages over solid-state switches, such as lower insertion loss, higher isolation, and lower static power dissipation. Mechanical dynamics can be a determining factor for the reliability of RF MEMS. The RF MEMS ohmic switch discussed in this paper consists of a plate suspended over an actuation pad by four double-cantilever springs. Closing the switch with a simple step actuation voltage typically causes the plate to rebound from its electrical contacts. The rebound interrupts the signal continuity and degrades the performance, reliability and durability of the switch. The switching dynamics are complicated by a nonlinear, electrostatic pull-in instability that causes high accelerations. Slow actuation and tailored voltage control signals can mitigate switch bouncing and effects of the pull-in instability; however, slow switching speed and overly-complex input signals can significantly penalize overall system-level performance. Examination of a balanced and optimized alternative switching solution is sought. A step toward one solution is to consider a pull-in-free switch design. In this paper, determine how simple RC-circuit drive signals and particular structural properties influence the mechanical dynamics of an RF MEMS switch designed without a pull-in instability. The approach is to develop a validated modeling capability and subsequently study switch behavior for variable drive signals and switch design parameters. In support of project development, specifiable design parameters and constraints will be provided. Moreover, transient data of RF MEMS switches from laser Doppler velocimetry will be provided for model validation tasks. Analysis showed that a RF MEMS switch could feasibly be designed with a single pulse waveform and no pull-in instability and achieve comparable results to previous waveform designs. The switch design could reliably close in a timely

  1. MEM application to IRAS CPC images

    NASA Technical Reports Server (NTRS)

    Marston, A. P.

    1994-01-01

    A method for applying the Maximum Entropy Method (MEM) to Chopped Photometric Channel (CPC) IRAS additional observations is illustrated. The original CPC data suffered from problems with repeatability which MEM is able to cope with by use of a noise image, produced from the results of separate data scans of objects. The process produces images of small areas of sky with circular Gaussian beams of approximately 30 in. full width half maximum resolution at 50 and 100 microns. Comparison is made to previous reconstructions made in the far-infrared as well as morphologies of objects at other wavelengths. Some projects with this dataset are discussed.

  2. Actuated atomizer

    NASA Technical Reports Server (NTRS)

    Tilton, Charles (Inventor); Weiler, Jeff (Inventor); Palmer, Randall (Inventor); Appel, Philip (Inventor)

    2008-01-01

    An actuated atomizer is adapted for spray cooling or other applications wherein a well-developed, homogeneous and generally conical spray mist is required. The actuated atomizer includes an outer shell formed by an inner ring; an outer ring; an actuator insert and a cap. A nozzle framework is positioned within the actuator insert. A base of the nozzle framework defines swirl inlets, a swirl chamber and a swirl chamber. A nozzle insert defines a center inlet and feed ports. A spool is positioned within the coil housing, and carries the coil windings having a number of turns calculated to result in a magnetic field of sufficient strength to overcome the bias of the spring. A plunger moves in response to the magnetic field of the windings. A stop prevents the pintle from being withdrawn excessively. A pintle, positioned by the plunger, moves between first and second positions. In the first position, the head of the pintle blocks the discharge passage of the nozzle framework, thereby preventing the atomizer from discharging fluid. In the second position, the pintle is withdrawn from the swirl chamber, allowing the atomizer to release atomized fluid. A spring biases the pintle to block the discharge passage. The strength of the spring is overcome, however, by the magnetic field created by the windings positioned on the spool, which withdraws the plunger into the spool and further compresses the spring.

  3. Electrothermally-Actuated Micromirrors with Bimorph Actuators—Bending-Type and Torsion-Type

    PubMed Central

    Tsai, Cheng-Hua; Tsai, Chun-Wei; Chang, Hsu-Tang; Liu, Shih-Hsiang; Tsai, Jui-Che

    2015-01-01

    Three different electrothermally-actuated MEMS micromirrors with Cr/Au-Si bimorph actuators are proposed. The devices are fabricated with the SOIMUMPs process developed by MEMSCAP, Inc. (Durham, NC, USA). A silicon-on-insulator MEMS process has been employed for the fabrication of these micromirrors. Electrothermal actuation has achieved a large angular movement in the micromirrors. Application of an external electric current 0.04 A to the bending-type, restricted-torsion-type, and free-torsion-type mirrors achieved rotation angles of 1.69°, 3.28°, and 3.64°, respectively. PMID:26110409

  4. MEMS in Singapore

    NASA Astrophysics Data System (ADS)

    Tay, Francis E.

    2001-03-01

    Microelectromechanical Systems (MEMS) can be termed as a crossroad technology. Cross road in the sense that it is an amalgamation of various disciplines to produce a solution. Cross road also, in the sense that it is disruptive to the way that solutions used to be provided. At the crossroad, a decision needs to be made either to do things the old way or to embrace the new technology. In this paper, a review is made to the research and development of MEMS technology with potentially widespread applications in Singapore. In most cases, these are preparations to a possible acceleration of MEMS related industry in this part of the world. However, the author also noted that the transfer of MEMS technology from the laboratory to the industry is not a trivial matter. A major decision has to be made due to the high capital outlay and the high operational costs involved. Further, many production related issues such as yield and packaging have to be considered. A large number of MEMS commercial outfits such as Bosch are serving internal customers. As a small country with limited resources, Singapore places great emphasis on building up MEMS research and development activities to support future high value-added design and fabrication. In this paper, some of the MEMS activities in the national universities and institutes in Singapore are introduced, and some recent progress and development of MEMS technology in Singapore are presented.

  5. Close Up - Mem Fox.

    ERIC Educational Resources Information Center

    Moss, Barbara

    2003-01-01

    Presents an interview with Mem Fox, a teacher educator and children's book author well known throughout the world. Discusses writing books for children, and the mistakes she made early in her career as a writer. Notes that Mem is a tireless advocate for meaningful literacy instruction, and her "Radical Reflections: Passionate Opinions on Teaching,…

  6. Performance of a MEMS-base Adaptive Optics Optical Coherency Tomography System

    SciTech Connect

    Evans, J; Zadwadzki, R J; Jones, S; Olivier, S; Opkpodu, S; Werner, J S

    2008-01-16

    We have demonstrated that a microelectrical mechanical systems (MEMS) deformable mirror can be flattened to < 1 nm RMS within controllable spatial frequencies over a 9.2-mm aperture making it a viable option for high-contrast adaptive optics systems (also known as Extreme Adaptive Optics). The Extreme Adaptive Optics Testbed at UC Santa Cruz is being used to investigate and develop technologies for high-contrast imaging, especially wavefront control. A phase shifting diffraction interferometer (PSDI) measures wavefront errors with sub-nm precision and accuracy for metrology and wavefront control. Consistent flattening, required testing and characterization of the individual actuator response, including the effects of dead and low-response actuators. Stability and repeatability of the MEMS devices was also tested. An error budget for MEMS closed loop performance will summarize MEMS characterization.

  7. A MEMS Micro-Translation Stage with Long Linear Translation

    NASA Technical Reports Server (NTRS)

    Ferguson, Cynthia K.; English, J. M.; Nordin, G. P.; Ashley, P. R.; Abushagur, M. A. G.

    2004-01-01

    A MEMS Micro-Translation Stage (MTS) actuator concept has been developed that is capable of traveling long distances, while maintaining low power, low voltage, and accuracy as required by many applications, including optical coupling. The Micro-Translation Stage (MTS) uses capacitive electrostatic forces in a linear motor application, with stationary stators arranged linearly on both sides of a channel, and matching rotors on a moveable shuttle. This creates a force that allows the shuttle to be pulled along the channel. It is designed to carry 100 micron-sized elements on the top surface, and can travel back and forth in the channel, either in a stepping fashion allowing many interim stops, or it can maintain constant adjustable speeds for a controlled scanning motion. The MTS travel range is limited only by the size of the fabrication wafer. Analytical modeling and simulations were performed based on the fabrication process, to assure the stresses, friction and electrostatic forces were acceptable to allow successful operation of this device. The translation forces were analyzed to be near 0.5 micron N, with a 300 micron N stop-to-stop time of 11.8 ms.

  8. New emerging MEMS applications

    NASA Astrophysics Data System (ADS)

    Mounier, Eric; Eloy, Jean-Christophe

    2007-02-01

    This paper presents the trends for the years to come for the different MEMS markets. Consumer applications have really started to push the MEMS business in 2005. Many different devices are involved, like pressure sensors (altimeters), microphones, accelerometers, gyroscopes . . . One of the most significant consequences is that all the Top 50 semiconductor companies are now looking at these MEMS applications as possible growth areas. Another result of the growth of the MEMS market is the strong growth of the foundries and contract manufacturers. We have seen growth of more than 35% in 2005 compared to 2004 and we expect similar growth in the next 3 years. We will review the next MEMS applications which have currently a high growth: Si microphones, microdisplays (for RPTV, portable projectors or automotive HUDs), gyroscopes and micro-fuel cells. In the longer term, micro-source of energy could also become an important MEMS market. In term of milestones, the following points can be highlighted: -In 2005 market, the MEMS market is 5.1 B worldwide and very fragmented in terms of companies and products. -In 2010, it will be a 9.7 B market worldwide. MEMS foundries and contract manufacturers will account for at least 8 % of the world market with several being public companies. More than 50% of today's systems companies who have integrated fabs will be using external manufacturers. Several large integrated companies will have created independent MEMS spin-offs and IC manufacturers will be deeply involved in MEMS manufacturing. -In 2015, it will be an 18 B$ market worldwide with no longer systems manufacturers with internal fabs. And we forecast that 50% of the total market will be in the hands of semiconductor manufacturers.

  9. Actuator-valve interface optimization. [Explosive actuators

    SciTech Connect

    Burchett, O.L.; Jones, R.L.

    1987-02-01

    The interface of explosive actuator driven valves can be optimized to maximize the velocity of the valve plunger by using the computer code Actuator-Valve Response. Details of the AVR model of the actuator driven valve plunger and the results of optimizing an actuator-valve interface with AVR are presented. 5 refs., 5 figs., 3 tabs.

  10. Magnetic cantilever actuator with sharpened magnetic thin film ellipses

    NASA Astrophysics Data System (ADS)

    Huang, Chen-Yu; Ger, Tzong-Rong; Lai, Mei-Feng; Chen, We-Yun; Huang, Hao-Ting; Chen, Jiann-Yeu; Wang, Pei-Jen; Wei, Zung-Hang

    2015-05-01

    A SiO2 cantilever covered by elliptical magnetic thin films was designed as an actuator. Under magnetic field, the elliptical magnetic film with sharp ends would exhibit single-domain structures and generate torque to push or pull the two arms of the cantilever. The cantilever could then stretch or compress and the displacement could be controlled by adjusting the magnitude and direction of the external magnetic field. The combination between micromagnetism of patterned films and actuator was successfully demonstrated. The magnetic actuator can be applied for future application in the biological field and would be valuable for microelectromechanical systems (MEMS).

  11. A Nuclear Microbattery for MEMS Devices

    SciTech Connect

    Blanchard, James; Henderson, Douglass; Lal, Amit

    2002-08-20

    This project was designed to demonstrate the feasibility of producing on-board power for MEMS devices using radioisotopes. MEMS is a fast growing field, with hopes for producing a wide variety of revolutionary applications, including ''labs on a chip,'' micromachined scanning tunneling microscopes, microscopic detectors for biological agents, microsystems for DNA identification, etc. Currently, these applications are limited by the lack of an on-board power source. Research is ongoing to study approaches such as fuel cells, fossil fuels, and chemical batteries, but all these concepts have limitations. For long-lived, high energy density applications, on-board radioisotope power offers the best choice. We have succeeded in producing such devices using a variety of isotopes, incorporation methods, and device geometries. These experiments have demonstrated the feasibility of using radioisotope power and that there are a variety of options available for MEMS designers. As an example of an integrated, self-powered application, we have created an oscillating cantilever beam that is capable of consistent, periodic oscillations over very long time periods without the need for refueling. Ongoing work will demonstrate that this cantilever is capable of radio frequency transmission, allowing MEMS devices to communicate with one another wirelessly. Thus, this will be the first self-powered wireless transmitter available for use in MEMS devices, permitting such applications as sensors embedded in buildings for continuous monitoring of the building performance and integrity.

  12. Acoustofluidic actuation of in situ fabricated microrotors.

    PubMed

    Kaynak, Murat; Ozcelik, Adem; Nama, Nitesh; Nourhani, Amir; Lammert, Paul E; Crespi, Vincent H; Huang, Tony Jun

    2016-09-21

    We have demonstrated in situ fabricated and acoustically actuated microrotors. A polymeric microrotor with predefined oscillating sharp-edge structures is fabricated in situ by applying a patterned UV light to polymerize a photocrosslinkable polyethylene glycol solution inside a microchannel around a polydimethylsiloxane axle. To actuate the microrotors by oscillating the sharp-edge structures, we employed piezoelectric transducers which generate tunable acoustic waves. The resulting acoustic streaming flows rotate the microrotors. The rotation rate is tuned by controlling the peak-to-peak voltage applied to the transducer. A 6-arm microrotor can exceed 1200 revolutions per minute. Our technique is an integration of single-step microfabrication, instant assembly around the axle, and easy acoustic actuation for various applications in microfluidics and microelectromechanical systems (MEMS). PMID:27466140

  13. Rotary actuator

    NASA Technical Reports Server (NTRS)

    Brudnicki, Myron (Inventor)

    1995-01-01

    Rotary actuators and other mechanical devices incorporating shape memory alloys are provided herein. Shape memory alloys are a group of metals which when deformed at temperatures below their martensite temperatures, resume the shapes which they had prior to the deformation if they are heated to temperatures above their austensite temperatures. Actuators in which shape memory alloys are employed include bias spring types, in which springs deform the shape memory alloy (SMA), and differential actuators, which use two SMA members mechanically connected in series. Another type uses concentric cylindrical members. One member is in the form of a sleeve surrounding a cylinder, both being constructed of shape memory alloys. Herein two capstans are mounted on a shaft which is supported in a framework. Each capstan is capable of rotating the shaft. Shape memory wire, as two separate lengths of wire, is wrapped around each capstan to form a winding around that capstan. The winding on one capstan is so wrapped that the wire is in a prestretched state. The winding on the other capstan is so wrapped that the wire is in a taut, but not a prestretched, state. Heating one performs work in one direction, thus deforming the other one. When the other SMA is heated the action is reversed.

  14. Large stroke actuators for adaptive optics

    NASA Astrophysics Data System (ADS)

    Fernández, B.; Kubby, J. A.

    2006-01-01

    In this paper we review the use of a 3-dimensional MEMS fabrication process to prototype long stroke (>10 μm) actuators as are required for use in future adaptive optics systems in astronomy and vision science. The Electrochemical Fabrication (EFAB TM) process that was used creates metal micro-structures by electroplating multiple, independently patterned layers. The process has the design freedom of rapid prototyping where multiple patterned layers are stacked to build structures with virtually any desired geometry, but in contrast has much greater precision, the capability for batch fabrication and provides parts in engineering materials such as nickel. The design freedom enabled by this process has been used to make both parallel plate and comb drive actuator deformable mirror designs that can have large vertical heights of up to 1 mm. As the thickness of the sacrificial layers used to release the actuator is specified by the designer, rather than by constraints of the fabrication process, the design of large-stroke actuators is straightforward and does not require any new process development. Since the number of material layers in the EFAB TM process is also specified by the designer it has been possible to gang multiple parallel plate actuators together to decrease the voltage required for long-stroke actuators.

  15. Nonlinear Actuation Dynamics of Driven Casimir Oscillators with Rough Surfaces

    NASA Astrophysics Data System (ADS)

    Broer, Wijnand; Waalkens, Holger; Svetovoy, Vitaly B.; Knoester, Jasper; Palasantzas, George

    2015-11-01

    At separations below 100 nm, Casimir-Lifshitz forces strongly influence the actuation dynamics of microelectromechanical systems (MEMS) in dry vacuum conditions. For a micron-size plate oscillating near a surface, which mimics a frequently used setup in experiments with MEMS, we show that the roughness of the surfaces significantly influences the qualitative dynamics of the oscillator. Via a combination of analytical and numerical methods, it is shown that surface roughness leads to a clear increase of initial conditions associated with chaotic motion, that eventually lead to stiction between the surfaces. Since stiction leads to a malfunction of MEMS oscillators, our results are of central interest for the design of microdevices. Moreover, stiction is of significance for fundamentally motivated experiments performed with MEMS.

  16. Muscular MEMS—the engineering of liquid crystal elastomer actuators

    NASA Astrophysics Data System (ADS)

    Petsch, S.; Khatri, B.; Schuhladen, S.; Köbele, L.; Rix, R.; Zentel, R.; Zappe, H.

    2016-08-01

    A new class of soft-matter actuator, the liquid crystal elastomer (LCE), shows promise for application in a wide variety of mechanical microsystems. Frequently referred to as an ‘artificial muscle’, this family of materials exhibits large actuation stroke and generates considerable force, in a compact form which may easily be combined with the structures and devices commonly used in microsystems and MEMS. We show here how standard microfabrication techniques may be used to integrate LCEs into mechanical microsystems and present an in-depth analysis of their mechanical and actuation properties. Using an example from micro-optics and optical MEMS, we demonstrate that their performance and flexibility allows realization of entirely new types of tunable optical functionality.

  17. Variable Emissivity Through MEMS Technology

    NASA Technical Reports Server (NTRS)

    Darrin, Ann Garrison; Osiander, Robert; Champion, John; Swanson, Ted; Douglas, Donya; Grob, Lisa M.; Powers, Edward I. (Technical Monitor)

    2000-01-01

    This paper discusses a new technology for variable emissivity (vari-e) radiator surfaces, which has significant advantages over traditional radiators and promises an alternative design technique for future spacecraft thermal control systems. All spacecraft rely on radiative surfaces to dissipate waste heat. These radiators have special coatings, typically with a low solar absorptivity and a high infrared-red emissivity, that are intended to optimize performance under the expected heat load and thermal sink environment. The dynamics of the heat loads and thermal environment make it a challenge to properly size the radiator and often require some means of regulating the heat rejection rate of the radiators in order to achieve proper thermal balance. Specialized thermal control coatings, which can passively or actively adjust their emissivity offer an attractive solution to these design challenges. Such systems would allow intelligent control of the rate of heat loss from a radiator in response to heat load and thermal environmental variations. Intelligent thermal control through variable emissivity systems is well suited for nano and pico spacecraft applications where large thermal fluctuations are expected due to the small thermal mass and limited electric resources. Presently there are three different types of vari-e technologies under development: Micro ElectroMechanical Systems (MEMS) louvers, Electrochromic devices, and Electrophoretic devices. This paper will describe several prototypes of micromachined (MEMS) louvers and experimental results for the emissivity variations measured on theses prototypes. It will further discuss possible actuation mechanisms and space reliability aspects for different designs. Finally, for comparison parametric evaluations of the thermal performances of the new vari-e technology and standard thermal control systems are presented in this paper.

  18. memP

    2010-02-05

    The lightweight heap profiling tool memP Version 1 provides a library that can be used with MPI applications that make use of heap memory allocations to provide profile data based on the per-task high-water-mark of heap allocation. The memP output is generated as a text report that can present summary information or specific detail of the allocation call site data for each task The memP library source code is based on teh mpiP MPI profilingmore » library (http://mpip.sourceforge.net), but is substantially different in functionality and organization.« less

  19. Modular droplet actuator drive

    NASA Technical Reports Server (NTRS)

    Pollack, Michael G. (Inventor); Paik, Philip (Inventor)

    2011-01-01

    A droplet actuator drive including a detection apparatus for sensing a property of a droplet on a droplet actuator; circuitry for controlling the detection apparatus electronically coupled to the detection apparatus; a droplet actuator cartridge connector arranged so that when a droplet actuator cartridge electronically is coupled thereto: the droplet actuator cartridge is aligned with the detection apparatus; and the detection apparatus can sense the property of the droplet on a droplet actuator; circuitry for controlling a droplet actuator coupled to the droplet actuator connector; and the droplet actuator circuitry may be coupled to a processor.

  20. Reliability of MEMS deformable mirror technology used in adaptive optics imaging systems

    NASA Astrophysics Data System (ADS)

    Hartzell, Allyson L.; Cornelissen, Steven A.; Bierden, Paul A.; Lam, Charlie V.; Davis, Daniel F.

    2010-02-01

    Deformable mirror (DM) technology based on microelectromechanical systems (MEMS) technology produced by Boston Micromachines Corporation has been demonstrated to be an enabling component in a variety of adaptive optics applications such as high contrast imaging in astronomy, multi object adaptive optics, free-space laser communication, and microscopy. Many of these applications require DMs with thousands of actuators operating at frame rates up to 10 kHz for many years requiring sufficient device reliability to avoid device failures. In this paper we present improvements in MEMS deformable mirrors for reliability along with test data and device lifetime prediction that show trillions of actuator-cycles can be achieved without failures.

  1. Miniature Inchworm Actuators Fabricated by Use of LIGA

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok

    2003-01-01

    Miniature inchworm actuators that would have relatively simple designs have been proposed for applications in which there are requirements for displacements of the order of microns or tens of microns and for the ability to hold their positions when electric power is not applied. The proposed actuators would be members of the class of microelectromechanical systems (MEMS), but would be designed and fabricated following an approach that is somewhat unusual for MEMS. Like other MEMS actuators, the proposed inchworm actuators could utilize thermoplastic, bimetallic, shape-memory-alloy, or piezoelectric actuation principles. The figure depicts a piezoelectric inchworm actuator according to the proposal. As in other inchworm actuators, linear motion of an extensible member would be achieved by lengthening and shortening the extensible member in synchronism with alternately clamping and releasing one and then the other end of the member. In this case, the moving member would be the middle one; the member would be piezoelectric and would be shortened by applying a voltage to it. The two outer members would also be piezoelectric; the release of the clamps on the upper or lower end would be achieved by applying a voltage to the electrodes on the upper or lower ends, respectively, of these members. Usually, MEMS actuators cannot be fabricated directly on the side walls of silicon wafers, yet the geometry of this actuator necessitates such fabrication. The solution, according to the proposal, would be to use the microfabrication technique known by the German acronym LIGA - "lithographie, galvanoformung, abformung," which means lithography, electroforming, molding. LIGA involves x-ray lithography of a polymer film followed by selective removal of material to form a three-dimensional pattern from which a mold is made. Among the advantages of LIGA for this purpose are that it is applicable to a broad range of materials, can be used to implement a variety of designs, including

  2. The use of a high-order MEMS deformable mirror in the Gemini Planet Imager

    SciTech Connect

    Poyneer, L A; Bauman, B; Cornelissen, S; Jones, S; Macintosh, B; Palmer, D; Isaacs, J

    2010-12-17

    We briefly review the development history of the Gemini Planet Imager's 4K Boston Micromachines MEMS deformable mirror. We discuss essential calibration steps and algorithms to control the MEMS with nanometer precision, including voltage-phase calibration and influence function characterization. We discuss the integration of the MEMS into GPI's Adaptive Optics system at Lawrence Livermore and present experimental results of 1.5 kHz closed-loop control. We detail mitigation strategies in the coronagraph to reduce the impact of abnormal actuators on final image contrast.

  3. Insulator charging in RF MEMS capacitive switches

    NASA Astrophysics Data System (ADS)

    Kucko, Jay F.

    2005-11-01

    While capacitive radio frequency microelectromechanical (RF MEM) switches are poised to provide a low cost, low power alternative to current RF switch technologies, there are still reliability issues limiting switch lifetime. Previous research identified insulator charging as a primary cause of switch failure. Changes in switch pull-in and release voltages were measured to provide insight into the mechanisms responsible for charging and switch failure. A spatial and temporal dependent model was developed to describe silicon nitride's time-dependent charging as a function of applied bias. This model was verified by applying constant biases to metal-silicon nitride-silicon capacitors and tracking flatband voltage shifts. This knowledge of silicon nitride was then applied to MEM switches. Using novel waveforms and exploiting differences in actuation characteristics allowed the determination of charging characteristics and the investigation of switch failure. Results show tunneling is responsible for changes in the pull-in voltages---this includes a super-saturation effect explained by a steady-state trap charge and discharge condition. A program that models switch actuation was enhanced to include the time-dependent tunneling model. Finally, it was discovered insulator charging cannot explain permanent switch failure; instead, stiction from a contaminant on the insulator surface is likely the cause.

  4. Thermoelectric microdevice fabricated by a MEMS-like electrochemical process

    NASA Technical Reports Server (NTRS)

    Snyder, G. Jeffrey; Lim, James R.; Huang, Chen-Kuo; Fleurial, Jean-Pierre

    2003-01-01

    Microelectromechanical systems (MEMS) are the basis of many rapidly growing technologies, because they combine miniature sensors and actuators with communications and electronics at low cost. Commercial MEMS fabrication processes are limited to silicon-based materials or two-dimensional structures. Here we show an inexpensive, electrochemical technique to build MEMS-like structures that contain several different metals and semiconductors with three-dimensional bridging structures. We demonstrate this technique by building a working microthermoelectric device. Using repeated exposure and development of multiple photoresist layers, several different metals and thermoelectric materials are fabricated in a three-dimensional structure. A device containing 126 n-type and p-type (Bi, Sb)2Te3 thermoelectric elements, 20 microm tall and 60 microm in diameter with bridging metal interconnects, was fabricated and cooling demonstrated. Such a device should be of technological importance for precise thermal control when operating as a cooler, and for portable power when operating as a micro power generator.

  5. Smart electronics and MEMS for aerospace structures

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.; Varadan, Vasundara V.

    1995-09-01

    In this paper, smart electronics and MEMS are employed to sense and control the drag in aircraft structures. The sensors are fabricated with interdigital transducers printed on a piezoelectric polymer. They in turn are mounted onto an ultra thin Penn State's novel RF antenna (Patent field). The sensor are designed to measure both pressure and shear of the fluid flow on aerospace structures. The wave form measurements may be monitored at a remote location either at the cockpit or elsewhere via the antennas in the sensors and an outside antenna. The integrated MEMS actuators which comprise of cantilever-, diaphram- and microbridge-based MEMS with suitable smart electronics etched onto the structure are controlled by the built-in antennas through feedback and feedforward control architecture. The integration of such materials and smart electronics into the skin of airfoil is ideal for sensing and controlling drag. The basic idea of this concept involves detection of the point of transition from laminar to turbulent flow and transmitting acoustical energy into the boundary layer so that the low energy fluid particles accelerate in the transverse direction and mix with the high energy flow outside of the boundary layer. 3D microriblets can be fabricated using stereo lithography and UV curable conducting polymers. The control of drag using these active microriblets are outlined.

  6. Investigation of adhesion during operation of MEMS cantilevers

    NASA Astrophysics Data System (ADS)

    Ali, Shaikh M.; Phinney, Leslie M.

    2004-01-01

    Reliability of MEMS is a major concern for the commercialization of laboratory prototypes. Surface adhesion or stiction strongly affects the reliability of MEMS devices which have sliding or rubbing contacts. Determination of adhesion energies, adhesion forces, and pull-off forces are important for predicting stiction in MEMS. We present an experimental technique to estimate the pull-off forces for MEMS surfaces. Polysilicon microcantilevers were electrostatically actuated using gradually varying voltages. A hysteresis was observed in the voltage at which the tip of the cantilevers made and broke contact with the substrate. Pull-off forces were estimated from the hysteresis in the voltage values using a strain energy formulation. The pull-off forces for microcantilevers dried out of isopropyl alcohol and repaired using laser irradiation were estimated to be in the range of 45-121 nN. The role of adhered length, variable external loading, and actuating signal on in-use stiction is also investigated. From our experimental results, we demonstrate an empirical approach to predict in-use stiction of microcantilevers.

  7. Investigation of adhesion during operation of MEMS cantilevers

    NASA Astrophysics Data System (ADS)

    Ali, Shaikh M.; Phinney, Leslie M.

    2003-12-01

    Reliability of MEMS is a major concern for the commercialization of laboratory prototypes. Surface adhesion or stiction strongly affects the reliability of MEMS devices which have sliding or rubbing contacts. Determination of adhesion energies, adhesion forces, and pull-off forces are important for predicting stiction in MEMS. We present an experimental technique to estimate the pull-off forces for MEMS surfaces. Polysilicon microcantilevers were electrostatically actuated using gradually varying voltages. A hysteresis was observed in the voltage at which the tip of the cantilevers made and broke contact with the substrate. Pull-off forces were estimated from the hysteresis in the voltage values using a strain energy formulation. The pull-off forces for microcantilevers dried out of isopropyl alcohol and repaired using laser irradiation were estimated to be in the range of 45-121 nN. The role of adhered length, variable external loading, and actuating signal on in-use stiction is also investigated. From our experimental results, we demonstrate an empirical approach to predict in-use stiction of microcantilevers.

  8. Memory metal actuator

    NASA Technical Reports Server (NTRS)

    Ruoff, C. F. (Inventor)

    1985-01-01

    A mechanical actuator can be constructed by employing a plurality of memory metal actuator elements in parallel to control the amount of actuating force. In order to facilitate direct control by digital control signals provided by a computer or the like, the actuating elements may vary in stiffness according to a binary relationship. The cooling or reset time of the actuator elements can be reduced by employing Peltier junction cooling assemblies in the actuator.

  9. MEMS-Based Dual Axes Confocal Microendoscopy

    PubMed Central

    Piyawattanametha, Wibool; Wang, Thomas D.

    2011-01-01

    We demonstrate a miniature, near-infrared microscope (λ = 785 nm) that uses a novel dual axes confocal architecture. Scalability is achieved with post-objective scanning, and a MEMS mirror provides real time (>4 Hz) in vivo imaging. This instrument can achieve sub-cellular resolution with deep tissue penetration and large field of view. An endoscope-compatible version can image digestive tract epithelium to guide tissue biopsy and monitor therapy. PMID:22190845

  10. Empirical measurement of MEMS stroke saturation, with implications for woofer-tweeter architectures

    NASA Astrophysics Data System (ADS)

    Morzinski, Katie M.; Macintosh, Bruce A.; Dillon, Daren; Gavel, Don; Palmer, Dave; Norton, Andrew

    2008-07-01

    The Gemini Planet Imager (GPI) is currently in production for the Gemini Telescope in Chile. This instrument will directly image young jovian exoplanets, aided by a micro-electrical mechanical systems (MEMS) deformable mirror (DM). Boston Micromachines MEMS mirrors operate thousands of actuators to provide a well-sampled correction at high spatial frequencies. However, because MEMS stroke alone is insufficient to fully correct the atmosphere in the near-IR on an 8-meter telescope, a dual-mirror system is planned for GPI: The MEMS is used as a 'tweeter' to correct the higher spatial frequencies while a separate 'woofer' DM will be used to correct the lower frequencies. During operation at GPI, any saturated actuators would scatter starlight into the dark hole instead of allowing it to be removed coronagraphically; thus, stroke saturation on the MEMS is tolerated only at the 5-sigma level. In the Laboratory for Adaptive Optics, we test the ability of the MEMS to counter atmospheric turbulence. The MEMS shape is set to random iterations of woofer-corrected Kolmogorov phase screens with varying woofer sizes. We find that, for r0 = 10 cm, saturation decreases from several percent to a few tenths of a percent (~3-sigma) when using a 100cm-pitch woofer. The MEMS we tested has 0.2 μm inter-actuator stroke for a 200V-range. Nonetheless, saturation (when it occurs) appears to be due to low-order peak-to-valley stroke even in the woofer-corrected case. Gemini characteristically has r0 = 15 cm, so future work includes extrapolating to find where the 5-sigma saturation level occurs.

  11. Biomimetic actuator

    NASA Astrophysics Data System (ADS)

    Bouda, Vaclav; Boudova, Lea; Haluzikova, Denisa

    2005-05-01

    The aim of the presentation is to propose an alternative model of mammalian skeletal muscle function, which reflects the simplicity of nature and can be applied in engineering. Van der Waals attractive and repulsive electrostatic forces are assumed to control the design of internal structures and functions of contractile units of the muscles - sarcomere. The role of myosin heads is crucial for the higher order formation. The model of the myosin head lattice is the working model for the sarcomere contraction interpretation. The contraction is interpreted as a calcium induced phase transition of the lattice, which results in relative actin-myosin sliding and/or force generation. The model should provide the engineering science with a simple analogy to technical actuators of high performance.

  12. Development of an SU-8 MEMS process with two metal electrodes using amorphous silicon as a sacrificial material

    NASA Astrophysics Data System (ADS)

    Ramadan, Khaled S.; Nasr, Tarek; Foulds, Ian G.

    2013-03-01

    This work presents an SU-8 surface micromachining process using amorphous silicon as a sacrificial material, which also incorporates two metal layers for electrical excitation. SU-8 is a photo-patternable polymer that is used as a structural layer for MEMS and microfluidic applications due to its mechanical properties, biocompatibility and low cost. Amorphous silicon is used as a sacrificial layer in MEMS applications because it can be deposited in large thicknesses, and can be released in a dry method using XeF2, which alleviates release-based stiction problems related to MEMS applications. In this work, an SU-8 MEMS process was developed using α-Si as a sacrificial layer. Two conductive metal electrodes were integrated in this process to allow out-of-plane electrostatic actuation for applications like MEMS switches and variable capacitors. In order to facilitate more flexibility for MEMS designers, the process can fabricate dimples that can be conductive or nonconductive. Additionally, this SU-8 process can fabricate SU-8 MEMS structures of a single layer of two different thicknesses. Process parameters were optimized for two sets of thicknesses: thin (5-10 µm) and thick (130 µm). The process was tested fabricating MEMS switches, capacitors and thermal actuators.

  13. Optical sensors with MEMS, slit masks, and micromechanical devices

    NASA Astrophysics Data System (ADS)

    Riesenberg, Rainer; Wuttig, Andreas

    2001-10-01

    Concepts to increase the performance of optical sensors by combination with optical MEMS are discussed. Architectures of subsystems are reviewed, which modulate or switch the amplitude of the light by scanning, multiplexing and selecting interesting signal components (multi-object-mode). Arrangements with MEMS for optical sensors and instruments can decrease the pixel size and increase their number by creating virtual pixels. A number of signal components can be detected with a smaller number of detectors (detector pixels) by scanning. If the scanning is substituted by multiplexing the best efficiency is achieved. The measurement time can be reduced by selecting interesting objects or signal components to be detected. Architectures which combine single sensors, linear sensor arrays or two dimensional detector arrays with MEMS, slit masks, and micro-mechanical devices are discussed. Such devices are micro-mirrors, micro-shutters, the slit positioning system, the fibre positioning system, and other optical switches.

  14. Uncertainty quantification in capacitive RF MEMS switches

    NASA Astrophysics Data System (ADS)

    Pax, Benjamin J.

    Development of radio frequency micro electrical-mechanical systems (RF MEMS) has led to novel approaches to implement electrical circuitry. The introduction of capacitive MEMS switches, in particular, has shown promise in low-loss, low-power devices. However, the promise of MEMS switches has not yet been completely realized. RF-MEMS switches are known to fail after only a few months of operation, and nominally similar designs show wide variability in lifetime. Modeling switch operation using nominal or as-designed parameters cannot predict the statistical spread in the number of cycles to failure, and probabilistic methods are necessary. A Bayesian framework for calibration, validation and prediction offers an integrated approach to quantifying the uncertainty in predictions of MEMS switch performance. The objective of this thesis is to use the Bayesian framework to predict the creep-related deflection of the PRISM RF-MEMS switch over several thousand hours of operation. The PRISM switch used in this thesis is the focus of research at Purdue's PRISM center, and is a capacitive contacting RF-MEMS switch. It employs a fixed-fixed nickel membrane which is electrostatically actuated by applying voltage between the membrane and a pull-down electrode. Creep plays a central role in the reliability of this switch. The focus of this thesis is on the creep model, which is calibrated against experimental data measured for a frog-leg varactor fabricated and characterized at Purdue University. Creep plasticity is modeled using plate element theory with electrostatic forces being generated using either parallel plate approximations where appropriate, or solving for the full 3D potential field. For the latter, structure-electrostatics interaction is determined through immersed boundary method. A probabilistic framework using generalized polynomial chaos (gPC) is used to create surrogate models to mitigate the costly full physics simulations, and Bayesian calibration and forward

  15. COTS MEMS Flow-Measurement Probes

    NASA Technical Reports Server (NTRS)

    Redding, Chip; Smith, Floyd A.; Blank, Greg; Cruzan, Charles

    2004-01-01

    cm) in diameter and could weigh enough that two technicians are needed to handle it. Replacing hard tubing with electronic chips can eliminate much of the bulk. Each sensor would fit on the tip of a 1/16-in. tube with room to spare. The Lucas NovaSensor P592 piezoresistive silicon pressure sensor was chosen for this project because of its cost, availability, and tolerance to extreme ambient conditions. The sensor chip is 1 mm square by 0.6 mm thick (about 0.039 by 0.039 by 0.024 in.) and includes 0.12-mm (approx.=0.005-in.) wire connection tabs. The figure shows a flow-angularity probe that was built by use of three such MEMS chips. It is planned to demonstrate this MEMS probe as an alternative to a standard tube-type "Cobra" probe now used routinely in wind tunnels and aeronautical hardware. This MEMS probe could be translated across a flow field by use of a suitable actuator, so that its accuracy and the shortness of its response time could be exploited to obtain precise dynamic measurements of a sort that cannot be made by use of conventional tubing-based instrumentation.

  16. MEMS in Space Systems

    NASA Technical Reports Server (NTRS)

    Lyke, J. C.; Michalicek, M. A.; Singaraju, B. K.

    1995-01-01

    Micro-electro-mechanical systems (MEMS) provide an emerging technology that has the potential for revolutionizing the way space systems are designed, assembled, and tested. The high launch costs of current space systems are a major determining factor in the amount of functionality that can be integrated in a typical space system. MEMS devices have the ability to increase the functionality of selected satellite subsystems while simultaneously decreasing spacecraft weight. The Air Force Phillips Laboratory (PL) is supporting the development of a variety of MEMS related technologies as one of several methods to reduce the weight of space systems and increase their performance. MEMS research is a natural extension of PL research objectives in micro-electronics and advanced packaging. Examples of applications that are under research include on-chip micro-coolers, micro-gyroscopes, vibration sensors, and three-dimensional packaging technologies to integrate electronics with MEMS devices. The first on-orbit space flight demonstration of these and other technologies is scheduled for next year.

  17. Applications of MEMS in segmented mirror space telescopes

    NASA Astrophysics Data System (ADS)

    Agrawal, Brij; Kubby, Joel

    2011-03-01

    Development of space telescopes, such as the Hubble Space Telescope and the James Webb Telescope has been very challenging in terms of cost, schedule, and performance. For several future space missions, larger aperture and lightweight deployable mirrors, in the range of 10-20 meters in diameter with high surface accuracy, are required. In order to achieve lightweight, reduce cost for development and provide performance robustness, actuated hybrid mirror (AHM) technology is under development. The Naval Postgraduate School (NPS) recently received a 3-meter diameter space telescope testbed with six segments that uses an AHM technology. This paper will discuss the work performed at NPS on the surface control of the primary mirror using adaptive optics. This paper will also discuss how we can use a MEMS deformable mirror to improve the performance of the NPS segmented mirror telescope. The high-stroke, high-order actuated MEMS deformable mirror will correct the residual alignment and surface errors that are not corrected by the actuators on the mirrors. The mirror will use electrostatic actuation to eliminate the need for power to hold its position and will be capable of open-loop, go-to positioning.

  18. RF MEMS Based Reconfigurable Antennas

    NASA Technical Reports Server (NTRS)

    Simons, Rainee N.

    2004-01-01

    The presentation will first of all address the advantages of RF MEMS circuit in antenna applications and also the need for electronically reconfigurable antennas. Next, discuss some of the recent examples of RF MEMS based reconfigurable microstrip antennas. Finally, conclude the talk with a summary of MEMS antenna performance.

  19. Powerful Electromechanical Linear Actuator

    NASA Technical Reports Server (NTRS)

    Cowan, John R.; Myers, William N.

    1994-01-01

    Powerful electromechanical linear actuator designed to replace hydraulic actuator that provides incremental linear movements to large object and holds its position against heavy loads. Electromechanical actuator cleaner and simpler, and needs less maintenance. Two principal innovative features that distinguish new actuator are use of shaft-angle resolver as source of position feedback to electronic control subsystem and antibacklash gearing arrangement.

  20. Study on actuating mode shapes of electro-active paper

    NASA Astrophysics Data System (ADS)

    Sundaresan, Mannur; Park, Yongkun; Craft, William J.; Sankar, Jag; Kim, Jaehwan

    2006-03-01

    This paper focuses on actuating mode shapes of cellulose-based electro-active paper (EAPap) in order to investigate its suitability as actuators. Firstly, actuating mechanism of EAPap is addressed based on intrinsic characteristics of cellulose structures under electric fields. EAPap actuator is then fabricated by embedding gold as electrodes into both sides of cellophane sheets. Actuating mode shapes under electric fields are phenomenological measured via laser scanning vibrometer at different exciting frequencies as well as relative humidity. Various actuating performances with large deformations are obtained by applying low electric fields, which can produce a suitable deformation capability with light weight, low power consumption and simple fabrication. Experimental results provide that EAPap can be used as a potential actuating candidate for shape control of smart structures, along with bio-inspired actuator materials.

  1. Control model for a continuous face sheet, MEMS based deformable membrane mirror

    NASA Astrophysics Data System (ADS)

    Carreras, R. A.; Marker, D. K.; Wilkes, J. M.

    2005-08-01

    Small Micro-Electro-Mechanical Systems (MEMS) deformable mirror (DM) technology is of great interest to the adaptive optics (AO) community. These MEMS-DM's are being considered for many conventional AO applications since they posses some advantages over conventional DM's. The MEMS-DM technology is driven by the expectation of achieving improved performance with lower costs, low electrical power, high number of actuators, high production rates, and large reductions in structural mass and volume. In addition to the imaging community, the directed energy community is also interested in taking advantage of the characteristics which MEMS-DM's offer. Unlike imaging, the optical fill-factor of a high-energy laser DM, has to be essentially 100 percent! Many modern MEMS-DM designs consist of small, lightweight, segmented mirrors that can be precisely controlled. For high-energy laser applications, the MEMS DM's should have a continuous reflective face-sheet with no gaps. This continuous reflective face-sheet must include high-energy laser coatings, which render the face sheet very stiff. This is a new challenge for MEMS-DM's, which has not previously been addressed. The Air Force Research Laboratory has proposed to meet this challenge with several continuous face-sheet high-energy laser MEMS-DM's designs. This paper will give a generic description of a MEMS-DM computer model. The research goal is to develop a MEMS-DM model for closed loop control of a high-energy laser, MEMS-DM adaptive optics application.

  2. Flight control actuation system

    NASA Technical Reports Server (NTRS)

    Wingett, Paul T. (Inventor); Gaines, Louie T. (Inventor); Evans, Paul S. (Inventor); Kern, James I. (Inventor)

    2004-01-01

    A flight control actuation system comprises a controller, electromechanical actuator and a pneumatic actuator. During normal operation, only the electromechanical actuator is needed to operate a flight control surface. When the electromechanical actuator load level exceeds 40 amps positive, the controller activates the pneumatic actuator to offset electromechanical actuator loads to assist the manipulation of flight control surfaces. The assistance from the pneumatic load assist actuator enables the use of an electromechanical actuator that is smaller in size and mass, requires less power, needs less cooling processes, achieves high output forces and adapts to electrical current variations. The flight control actuation system is adapted for aircraft, spacecraft, missiles, and other flight vehicles, especially flight vehicles that are large in size and travel at high velocities.

  3. Electrothermal MEMS fiber scanner for optical endomicroscopy.

    PubMed

    Seo, Yeong-Hyeon; Hwang, Kyungmin; Park, Hyeon-Cheol; Jeong, Ki-Hun

    2016-02-22

    We report a novel MEMS fiber scanner with an electrothermal silicon microactuator and a directly mounted optical fiber. The microactuator comprises double hot arm and cold arm structures with a linking bridge and an optical fiber is aligned along a silicon fiber groove. The unique feature induces separation of resonant scanning frequencies of a single optical fiber in lateral and vertical directions, which realizes Lissajous scanning during the resonant motion. The footprint dimension of microactuator is 1.28 x 7 x 0.44 mm3. The resonant scanning frequencies of a 20 mm long optical fiber are 239.4 Hz and 218.4 Hz in lateral and vertical directions, respectively. The full scanned area indicates 451 μm x 558 μm under a 16 Vpp pulse train. This novel laser scanner can provide many opportunities for laser scanning endomicroscopic applications. PMID:26907043

  4. Sputtered highly oriented PZT thin films for MEMS applications

    NASA Astrophysics Data System (ADS)

    Kalpat, Sriram S.

    Recently there has been an explosion of interest in the field of micro-electro-mechanical systems (MEMS). MEMS device technology has become critical in the growth of various fields like medical, automotive, chemical, and space technology. Among the many applications of ferroelectric thin films in MEMS devices, microfluidics is a field that has drawn considerable amount of research from bio-technology industries as well as chemical and semiconductor manufacturing industries. PZT thin films have been identified as best suited materials for micro-actuators and micro-sensors used in MEMS devices. A promising application for piezoelectric thin film based MEMS devices is disposable drug delivery systems that are capable of sensing biological parameters, mixing and delivering minute and precise amounts of drugs using micro-pumps or micro mixers. These devices call for low driving voltages, so that they can be battery operated. Improving the performance of the actuator material is critical in achieving battery operated disposal drug delivery systems. The device geometry and power consumption in MEMS devices largely depends upon the piezoelectric constant of the films, since they are most commonly used to convert electrical energy into a mechanical response of a membrane or cantilever and vice versa. Phenomenological calculation on the crystal orientation dependence of piezoelectric coefficients for PZT single crystal have reported a significant enhancement of the piezoelectric d33 constant by more than 3 times along [001] in the rhombohedral phase as compared to the conventionally used orientation PZT(111) since [111] is the along the spontaneous polarization direction. This could mean considerable improvement in the MEMS device performance and help drive the operating voltages lower. The motivation of this study is to investigate the crystal orientation dependence of both dielectric and piezoelectric coefficients of PZT thin films in order to select the appropriate

  5. Triz in Mems

    NASA Astrophysics Data System (ADS)

    Apte, Prakash R.

    1999-11-01

    TRIZ is a Russian abbreviation. Genrich Altshuller developed it fifty years ago in the former Soviet Union. He examined thousands of inventions made in different technological systems and formulated a 'Theory of Inventive problem solving' (TRIZ). Altshuller's research of over fifty years on Creativity and Inventive Problem Solving has led to many different classifications, methods and tools of invention. Some of these are, Contradictions table, Level of inventions, Patterns in evolution of technological systems, ARIZ-Algorithm for Inventive Problem Solving, Diagnostic problem solving and Anticipatory Failure Determination. MEMS research consists of conceptual design, process technology and including of various Mechanical, ELectrical, Thermal, Magnetic, Acoustic and other effects. MEMS system s are now rapidly growing in complexity. Each system will thus follow one or more 'patterns of evolution' as given by Altshuller. This paper attempts to indicate how various TRIZ tools can be used in MEMS research activities.

  6. Physical and reliability issues in MEMS microrelays with gold contacts

    NASA Astrophysics Data System (ADS)

    Lafontan, Xavier; Pressecq, Francis; Perez, Guy; Dufaza, Christian; Karam, Jean Michel

    2001-10-01

    This paper presents the work we have done on micro-relays with gold micro-contacts in MUMPs. Firstly, the theoretical physical principles of MEMS micro-relay are described. This study is divided in two parts: the micro-contact and the micro-actuator. The micro-contact part deals with resistance of constriction, contact area, adhesion, arcing and wear. Whereas the micro-actuator part describes general principles, contact force, restoring force and actuator reliability. Then, in a second part, an innovative electrostatic relay design in MUMPs is presented. The concept, the implementation and the final realization are discussed. Then, in the third part, characterization results are reported. This part particularly focuses on the micro-contact study. Conduction mode, contact area, mechanical and thermal deformation, and adhesion energies are presented.

  7. MEMS Using SOI Substrate

    NASA Technical Reports Server (NTRS)

    Tang, Tony K.

    1999-01-01

    At NASA, the focus for smaller, less costly missions has given impetus for the development of microspacecraft. MicroElectroMechanical System (MEMS) technology advances in the area of sensor, propulsion systems, and instruments, make the notion of a specialized microspacecraft feasible in the immediate future. Similar to the micro-electronics revolution,the emerging MEMS technology offers the integration of recent advances in micromachining and nanofabrication techniques with microelectronics in a mass-producible format,is viewed as the next step in device and instrument miniaturization. MEMS technology offers the potential of enabling or enhancing NASA missions in a variety of ways. This new technology allows the miniaturization of components and systems, where the primary benefit is a reduction in size, mass and power. MEMS technology also provides new capabilities and enhanced performance, where the most significant impact is in performance, regardless of system size. Finally,with the availability of mass-produced, miniature MEMS instrumentation comes the opportunity to rethink our fundamental measurement paradigms. It is now possible to expand our horizons from a single instrument perspective to one involving multi-node distributed systems. In the distributed systems and missions, a new system in which the functionality is enabled through a multiplicity of elements. Further in the future, the integration of electronics, photonics, and micromechanical functionalities into "instruments-on-a-chip" will provide the ultimate size, cost, function, and performance advantage. In this presentation, I will discuss recent development, requirement, and applications of various MEMS technologies and devices for space applications.

  8. EDITORIAL: International MEMS Conference 2006

    NASA Astrophysics Data System (ADS)

    Tay, Francis E. H.; Jianmin, Miao; Iliescu, Ciprian

    2006-04-01

    The International MEMS conference (iMEMS2006) organized by the Institute of Bioengineering and Nanotechnology and Nanyang Technological University aims to provide a platform for academicians, professionals and industrialists in various related fields from all over the world to share and learn from each other. Of great interest is the incorporation of the theme of life sciences application using MEMS. It is the desire of this conference to initiate collaboration and form network of cooperation. This has continued to be the objective of iMEMS since its inception in 1997. The technological advance of MEMS over the past few decades has been truly exciting in terms of development and applications. In order to participate in this rapid development, a conference involving delegates from within the MEMS community and outside the community is very meaningful and timely. With the receipt of over 200 articles, delegates related to MEMS field from all over the world will share their perspectives on topics such as MEMS/MST Design, MEMS Teaching and Education, MEMS/MST Packaging, MEMS/MST Fabrication, Microsystems Applications, System Integration, Wearable Devices, MEMSWear and BioMEMS. Invited speakers and delegates from outside the field have also been involved to provide challenges, especially in the life sciences field, for the MEMS community to potentially address. The proceedings of the conference will be published as an issue in the online Journal of Physics: Conference Series and this can reach a wider audience and will facilitate the reference and citation of the work presented in the conference. We wish to express our deep gratitude to the International Scientific Committee members and the organizing committee members for contributing to the success of this conference. We would like to thank all the delegates, speakers and sponsors from all over the world for presenting and sharing their perspectives on topics related to MEMS and the challenges that MEMS can

  9. Microelectromechanical mirrors and electrically-programmable diffraction gratings based on two-stage actuation

    DOEpatents

    Allen, James J.; Sinclair, Michael B.; Dohner, Jeffrey L.

    2005-11-22

    A microelectromechanical (MEM) device for redirecting incident light is disclosed. The MEM device utilizes a pair of electrostatic actuators formed one above the other from different stacked and interconnected layers of polysilicon to move or tilt an overlying light-reflective plate (i.e. a mirror) to provide a reflected component of the incident light which can be shifted in phase or propagation angle. The MEM device, which utilizes leveraged bending to provide a relatively-large vertical displacement up to several microns for the light-reflective plate, has applications for forming an electrically-programmable diffraction grating (i.e. a polychromator) or a micromirror array.

  10. Microcantilever actuation via periodic internal heating

    SciTech Connect

    Lee, Jungchul; King, William P.

    2007-12-15

    This paper reports electrothermal actuation of silicon microcantilevers having integrated resistive heaters. Periodic electrical excitation induced periodic resistive heating in the cantilever, while the cantilever deflection was monitored with a photodetector. Excitation was either at the cantilever resonant frequency, f{sub 0}, f{sub 0}/2, or f{sub 0}/3. When the time averaged maximum cantilever temperature was 174 deg. C, the cantilever out-of-plane actuation amplitude was 484 nm near the cantilever resonance frequency of 24.9 kHz. This actuation was sufficiently large to operate the cantilever in intermittent contact mode and scan a calibration grating of height of 20 nm.

  11. Electrostatic actuated strain engineering in monolithically integrated VLS grown silicon nanowires

    NASA Astrophysics Data System (ADS)

    Wagesreither, Stefan; Bertagnolli, Emmerich; Kawase, Shinya; Isono, Yoshitada; Lugstein, Alois

    2014-11-01

    In this paper we demonstrate the fabrication and application of an electrostatic actuated tensile straining test (EATEST) device enabling strain engineering in individual suspended nanowires (NWs). Contrary to previously reported approaches, this special setup guarantees the application of pure uniaxial tensile strain with no shear component of the stress while e.g. simultaneously measuring the resistance change of the NW. To demonstrate the potential of this approach we investigated the piezoresistivity of about 3 μm long and 100 nm thick SiNWs but in the same way one can think about the application of such a device on other geometries, other materials beyond Si as well as the use of other characterization techniques beyond electrical measurements. Therefore single-crystal SiNWs were monolithically integrated in a comb drive actuated MEMS device based on a silicon-on-insulator (SOI) wafer using the vapor-liquid-solid (VLS) growth technique. Strain values were verified by a precise measurement of the NW elongation with scanning electron microscopy (SEM). Further we employed confocal μ-Raman microscopy for in situ, high spatial resolution measurements of the strain in individual SiNWs during electrical characterization. A giant piezoresistive effect was observed, resulting in a fivefold increase in conductivity for 3% uniaxially strained SiNWs. As the EATEST approach can be easily integrated into an existing Si technology platform this architecture may pave the way toward a new generation of nonconventional devices by leveraging the strain degree of freedom.

  12. Electrostatic actuated strain engineering in monolithically integrated VLS grown silicon nanowires.

    PubMed

    Wagesreither, Stefan; Bertagnolli, Emmerich; Kawase, Shinya; Isono, Yoshitada; Lugstein, Alois

    2014-11-14

    In this paper we demonstrate the fabrication and application of an electrostatic actuated tensile straining test (EATEST) device enabling strain engineering in individual suspended nanowires (NWs). Contrary to previously reported approaches, this special setup guarantees the application of pure uniaxial tensile strain with no shear component of the stress while e.g. simultaneously measuring the resistance change of the NW. To demonstrate the potential of this approach we investigated the piezoresistivity of about 3 μm long and 100 nm thick SiNWs but in the same way one can think about the application of such a device on other geometries, other materials beyond Si as well as the use of other characterization techniques beyond electrical measurements. Therefore single-crystal SiNWs were monolithically integrated in a comb drive actuated MEMS device based on a silicon-on-insulator (SOI) wafer using the vapor-liquid-solid (VLS) growth technique. Strain values were verified by a precise measurement of the NW elongation with scanning electron microscopy (SEM). Further we employed confocal μ-Raman microscopy for in situ, high spatial resolution measurements of the strain in individual SiNWs during electrical characterization. A giant piezoresistive effect was observed, resulting in a fivefold increase in conductivity for 3% uniaxially strained SiNWs. As the EATEST approach can be easily integrated into an existing Si technology platform this architecture may pave the way toward a new generation of nonconventional devices by leveraging the strain degree of freedom. PMID:25337772

  13. Nanotechnology: MEMS and NEMS and their applications to smart systems and devices

    NASA Astrophysics Data System (ADS)

    Varadan, Vijay K.

    2003-10-01

    The microelectronics industry has seen explosive growth during the last thirty years. Extremely large markets for logic and memory devices have driven the development of new materials, and technologies for the fabrication of even more complex devices with features sizes now down at the sub micron and nanometer level. Recent interest has arisen in employing these materials, tools and technologies for the fabrication of miniature sensors and actuators and their integration with electronic circuits to produce smart devices and systems. This effort offers the promise of: (1) increasing the performance and manufacturability of both sensors and actuators by exploiting new batch fabrication processes developed including micro stereo lithographic and micro molding techniques; (2) developing novel classes of materials and mechanical structures not possible previously, such as diamond like carbon, silicon carbide and carbon nanotubes, micro-turbines and micro-engines; (3) development of technologies for the system level and wafer level integration of micro components at the nanometer precision, such as self-assembly techniques and robotic manipulation; (4) development of control and communication systems for MEMS devices, such as optical and RF wireless, and power delivery systems, etc. A novel composite structure can be tailored by functionalizing carbon nano tubes and chemically bonding them with the polymer matrix e.g. block or graft copolymer, or even cross-linked copolymer, to impart exceptional structural, electronic and surface properties. Bio- and Mechanical-MEMS devices derived from this hybrid composite provide a new avenue for future smart systems. The integration of NEMS (NanoElectroMechanical Systems), MEMS, IDTs (Interdigital Transducers) and required microelectronics and conformal antenna in the multifunctional smart materials and composites results in a smart system suitable for sending and control of a variety functions in automobile, aerospace, marine and

  14. Micro-Ball-Lens Optical Switch Driven by SMA Actuator

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok

    2003-01-01

    The figure is a simplified cross section of a microscopic optical switch that was partially developed at the time of reporting the information for this article. In a fully developed version, light would be coupled from an input optical fiber to one of two side-by-side output optical fibers. The optical connection between the input and the selected output fiber would be made via a microscopic ball lens. Switching of the optical connection from one output fiber to another would be effected by using a pair of thin-film shape-memory-alloy (SMA) actuators to toggle the lens between two resting switch positions. There are many optical switches some made of macroscopic parts by conventional fabrication techniques and some that are microfabricated and, hence, belong to the class of microelectromechanical systems (MEMS). Conventionally fabricated optical switches tend to be expensive. MEMS switches can be mass-produced at relatively low cost, but their attractiveness has been diminished by the fact that, heretofore, MEMS switches have usually been found to exhibit high insertion losses. The present switch is intended to serve as a prototype of low-loss MEMS switches. In addition, this is the first reported SMA-based optical switch. The optical fibers would be held in V grooves in a silicon frame. The lens would have a diameter of 1 m; it would be held by, and positioned between, the SMA actuators, which would be made of thin films of TiNi alloy. Although the SMA actuators are depicted here as having simple shapes for the sake of clarity of illustration, the real actuators would have complex, partly net-like shapes. With the exception of the lens and the optical fibers, the SMA actuators and other components of the switch would be made by microfabrication techniques. The components would be assembled into a sandwich structure to complete the fabrication of the switch. To effect switching, an electric current would be passed through one of the SMA actuators to heat it above

  15. Superconducting linear actuator

    NASA Technical Reports Server (NTRS)

    Johnson, Bruce; Hockney, Richard

    1993-01-01

    Special actuators are needed to control the orientation of large structures in space-based precision pointing systems. Electromagnetic actuators that presently exist are too large in size and their bandwidth is too low. Hydraulic fluid actuation also presents problems for many space-based applications. Hydraulic oil can escape in space and contaminate the environment around the spacecraft. A research study was performed that selected an electrically-powered linear actuator that can be used to control the orientation of a large pointed structure. This research surveyed available products, analyzed the capabilities of conventional linear actuators, and designed a first-cut candidate superconducting linear actuator. The study first examined theoretical capabilities of electrical actuators and determined their problems with respect to the application and then determined if any presently available actuators or any modifications to available actuator designs would meet the required performance. The best actuator was then selected based on available design, modified design, or new design for this application. The last task was to proceed with a conceptual design. No commercially-available linear actuator or modification capable of meeting the specifications was found. A conventional moving-coil dc linear actuator would meet the specification, but the back-iron for this actuator would weigh approximately 12,000 lbs. A superconducting field coil, however, eliminates the need for back iron, resulting in an actuator weight of approximately 1000 lbs.

  16. Photonic MEMS switch applications

    NASA Astrophysics Data System (ADS)

    Husain, Anis

    2001-07-01

    As carriers and service providers continue their quest for profitable network solutions, they have shifted their focus from raw bandwidth to rapid provisioning, delivery and management of revenue generating services. Inherently transparent to data rate the transmission wavelength and data format, MEMS add scalability, reliability, low power and compact size providing flexible solutions to the management and/or fiber channels in long haul, metro, and access networks. MEMS based photonic switches have gone from the lab to commercial availability and are now currently in carrier trials and volume production. 2D MEMS switches offer low up-front deployment costs while remaining scalable to large arrays. They allow for transparent, native protocol transmission. 2D switches enable rapid service turn-up and management for many existing and emerging revenue rich services such as storage connectivity, optical Ethernet, wavelength leasing and optical VPN. As the network services evolve, the larger 3D MEMS switches, which provide greater scalability and flexibility, will become economically viable to serve the ever-increasing needs.

  17. In-plane deeply-etched optical MEMS notch filter with high-speed tunability

    NASA Astrophysics Data System (ADS)

    Sabry, Yasser M.; Eltagoury, Yomna M.; Shebl, Ahmed; Soliman, Mostafa; Sadek, Mohamed; Khalil, Diaa

    2015-12-01

    Notch filters are used in spectroscopy, multi-photon microscopy, fluorescence instrumentation, optical sensors and other life science applications. One type of notch filter is based on a fiber-coupled Fabry-Pérot cavity, which is formed by a reflector (external mirror) facing a dielectric-coated end of an optical fiber. Tailoring this kind of optical filter for different applications is possible because the external mirror has fewer mechanical and optical constraints. In this paper we present optical modeling and implementation of a fiber-coupled Fabry-Pérot filter based on dielectric-coated optical fiber inserted into a micromachined fiber groove facing a metallized micromirror, which is driven by a high-speed MEMS actuator. The optical MEMS chip is fabricated using deep reactive ion etching (DRIE) technology on a silicon on insulator wafer, where the optical axis is parallel to the substrate (in-plane) and the optical/mechanical components are self-aligned by the photolithographic process. The DRIE etching depth is 150 μm, chosen to increase the micromirror optical throughput and improving the out-of-plane stiffness of the MEMS actuator. The MEMS actuator type is closing-gap, while its quality factor is almost doubled by slotting the fixed plate. A low-finesse Fabry-Pérot interferometer is formed by the metallized surface of the micromirror and a cleaved end of a standard single-mode fiber, for characterization of the MEMS actuator stroke and resonance frequency. The actuator achieves a travel distance of 800 nm at a resonance frequency of 89.9 kHz. The notch filter characteristics were measured using an optical spectrum analyzer, and the filter exhibits a free spectral range up to 100 nm and a notch rejection ratio up to 20 dB around a wavelength of 1300 nm. The presented device provides batch processing and low-cost production of the filter.

  18. A MEMS XY-stage integrating compliant mechanism for nanopositioning at sub-nanometer resolution

    NASA Astrophysics Data System (ADS)

    Xi, Xiang; Clancy, Tyler; Wu, Xuezhong; Sun, Yu; Liu, Xinyu

    2016-02-01

    This paper reports a microelectromechanical systems (MEMS) based XY-stage integrating compliant motion amplification mechanism for nanopositioning at sub nanometer resolution. The MEMS stage is driven by bidirectional Z-beam electrothermal actuators that generate large output forces to actuate the motion amplification mechanism. The motion amplification mechanisms are used in their inverse (motion reduction) mode to convert micrometer input displacements (from the Z-beam actuators) into nanometer output displacements at a constant motion reduction ratio with good linearity. This unique design significantly enhances the positioning resolution of the XY-stage. An analytical model is developed to predict output displacements of the XY-stage as a function of the input voltages applied to the Z-beam actuators, and the predicted results agree with the experimental results. Capacitive displacement sensors are arranged along both X- and Y-axes for measuring the input displacements of the amplification mechanisms, enabling closed-loop nanopositioning control of the XY-stage. The device calibration results show that, within an actuation voltage of  ±15 V, the MEMS stage offers a motion range close to  ±1 μm and a displacement resolution better than 0.3 nm \\sqrt{\\text{Hz}} -1.

  19. A MEMS turbine prototype for respiration harvesting

    NASA Astrophysics Data System (ADS)

    Goreke, U.; Habibiabad, S.; Azgin, K.; Beyaz, M. I.

    2015-12-01

    The design, manufacturing, and performance characterization of a MEMS-scale turbine prototype is reported. The turbine is designed for integration into a respiration harvester that can convert normal human breathing into electrical power through electromagnetic induction. The device measures 10 mm in radius, and employs 12 blades located around the turbine periphery along with ball bearings around the center. Finite element simulations showed that an average torque of 3.07 μNm is induced at 12 lpm airflow rate, which lies in normal breathing levels. The turbine and a test package were manufactured using CNC milling on PMMA. Tests were performed at respiration flow rates between 5-25 lpm. The highest rotational speed was measured to be 9.84 krpm at 25 lpm, resulting in 8.96 mbar pressure drop across the device and 370 mW actuation power.

  20. European MEMS foundries

    NASA Astrophysics Data System (ADS)

    Salomon, Patric R.

    2003-01-01

    According to the latest release of the NEXUS market study, the market for MEMS or Microsystems Technology (MST) is predicted to grow to $68B by the year 2005, with systems containing these components generating even higher revenues and growth. The latest advances in MST/MEMS technology have enabled the design of a new generation of microsystems that are smaller, cheaper, more reliable, and consume less power. These integrated systems bring together numerous analog/mixed signal microelectronics blocks and MEMS functions on a single chip or on two or more chips assembled within an integrated package. In spite of all these advances in technology and manufacturing, a system manufacturer either faces a substantial up-front R&D investment to create his own infrastructure and expertise, or he can use design and foundry services to get the initial product into the marketplace fast and with an affordable investment. Once he has a viable product, he can still think about his own manufacturing efforts and investments to obtain an optimized high volume manufacturing for the specific product. One of the barriers to successful exploitation of MEMS/MST technology has been the lack of access to industrial foundries capable of producing certified microsystems devices in commercial quantities, including packaging and test. This paper discusses Multi-project wafer (MPW) runs, requirements for foundries and gives some examples of foundry business models. Furthermore, this paper will give an overview on MST/MEMS services that are available in Europe, including pure commercial activities, European project activities (e.g. Europractice), and some academic services.

  1. Piezoelectrically Actuated Microvalve for Liquid Effluents

    NASA Technical Reports Server (NTRS)

    Yang, Eui-Hyeok

    2003-01-01

    Modifications have been proposed to effect further improvement of the device described in Improved Piezoelectrically Actuated Microvalve (NPO-30158), NASA Tech Briefs, Vol. 26, No. 1 (January 2002), page 29. To recapitulate: What is being developed is a prototype of valves for microfluidic systems and other microelectromechanical systems (MEMS). The version of the valve reported in the cited previous article included a base (which contained a seat, an inlet, and an outlet), a diaphragm, and a linear actuator. With the exception of the actuator, the parts were micromachined from silicon. The linear actuator consisted of a stack of piezoelectric disks in a rigid housing. To make the diaphragm apply a large sealing force on the inlet and outlet, the piezoelectric stack was compressed into a slightly contracted condition during assembly of the valve. Application of a voltage across the stack caused the stack to contract into an even more compressed condition, lifting the diaphragm away from the seat, thereby creating a narrow channel between the inlet and outlet. The positions of the inlet and outlet, relative to the diaphragm and seat, were such that the inlet flow and pressure contributed to sealing and thus to a desired normally-closed mode of operation.

  2. Long-term lifetime prediction for RF-MEMS switches

    NASA Astrophysics Data System (ADS)

    Mulloni, V.; Barbato, M.; Meneghesso, G.

    2016-07-01

    Time to failure estimations of RF-MEMS (radio-frequency microelectromechanical system) switches under prolonged actuation is particularly interesting for satellite applications, where the devices have to retain their functionality for years. At present, a well-assessed methodology to predict RF-MEMS lifetime is still lacking, probably because, in the case of MEMS, failure may originate from either electrical or mechanical sources. Temperature is the most common failure accelerating factor, but it accelerates all failure mechanisms at the same time. In this paper, we take into account the effect of temperature on three different failure mechanisms, namely charge trapping, mechanical creep, and contact degradation. Short-term and long-term continuous actuation measurements for an ohmic clamped–clamped switch are reported and analyzed, showing that failure is strongly accelerated by temperature in the range of temperatures investigated. The maximum temperature exploitable is, however, quite low, around 75 °C, because of structural modifications due to internal stress variations and buckling. Based on the experimental data, a prediction model is presented and discussed. While failure at 55 °C has been measured after a few days, the extrapolated lifetimes at 25 °C are around five years. Contact deterioration has been found to be the reason of failure, but the switch fails only when the spring constant has been sufficiently lowered by mechanical creep.

  3. Lifetime characteristics of ohmic MEMS switches

    NASA Astrophysics Data System (ADS)

    Maciel, John; Majumder, Sumit; Morrison, Richard; Lampen, James

    2003-12-01

    In the future, MEMS switches will be important building blocks for designing phase shifters, smart antennas, cell phones and switched filters for military and commercial markets, to name a few. Low power consumption, large ratio of off-impedance to on-impedance and the ability to be integrated with other electronics makes MEMS switches an attractive alternative to other mechanical and solid-state switches. Radant MEMS has developed an electrostatically actuated broadband ohmic microswitch that has applications from DC through the microwave region. The microswitch is a 3-terminal device based on a cantilever beam and is fabricated using an all-metal, surface micromachining process. It operates in a hermetic environment obtained through a wafer-bonding process. We have developed PC-based test stations to cycle switches and measure lifetime under DC and RF loads. Best-case lifetimes of 1011 cycles have been achieved in T0-8 cans (a precursor to our wafer level cap) while greater than 1010 cycles have been achieved in the wafer level package. Several switches from different lots have been operated to 1010 cycles. Current typical lifetime exceeds 2 billion cycles and is limited by contact stiction resulting in stuck-closed failures. Stuck-closed failures can be intermittent with a large number of switches continuing to operate with occasional sticks beyond several billion cycles. To eliminate contact stiction, we need to better control the ambient gas composition in the die cavity. We expect lifetime to improve as we continue to develop and optimize the wafer capping process. We present DC and RF lifetime data under varying conditions.

  4. Lifetime characteristics of ohmic MEMS switches

    NASA Astrophysics Data System (ADS)

    Maciel, John; Majumder, Sumit; Morrison, Richard; Lampen, James

    2004-01-01

    In the future, MEMS switches will be important building blocks for designing phase shifters, smart antennas, cell phones and switched filters for military and commercial markets, to name a few. Low power consumption, large ratio of off-impedance to on-impedance and the ability to be integrated with other electronics makes MEMS switches an attractive alternative to other mechanical and solid-state switches. Radant MEMS has developed an electrostatically actuated broadband ohmic microswitch that has applications from DC through the microwave region. The microswitch is a 3-terminal device based on a cantilever beam and is fabricated using an all-metal, surface micromachining process. It operates in a hermetic environment obtained through a wafer-bonding process. We have developed PC-based test stations to cycle switches and measure lifetime under DC and RF loads. Best-case lifetimes of 1011 cycles have been achieved in T0-8 cans (a precursor to our wafer level cap) while greater than 1010 cycles have been achieved in the wafer level package. Several switches from different lots have been operated to 1010 cycles. Current typical lifetime exceeds 2 billion cycles and is limited by contact stiction resulting in stuck-closed failures. Stuck-closed failures can be intermittent with a large number of switches continuing to operate with occasional sticks beyond several billion cycles. To eliminate contact stiction, we need to better control the ambient gas composition in the die cavity. We expect lifetime to improve as we continue to develop and optimize the wafer capping process. We present DC and RF lifetime data under varying conditions.

  5. MEMS thermal switch for spacecraft thermal control

    NASA Astrophysics Data System (ADS)

    Beasley, Matthew A.; Firebaugh, Samara L.; Edwards, Richard L.; Keeney, Allen C.; Osiander, Robert

    2004-01-01

    Small satellites with their low thermal capacitance are vulnerable to rapid temperature fluctuations. Therefore, thermal control becomes important, but the limitations on mass and electrical power require new approaches. Possible solutions to actively vary the heat rejection of the satellite in response to variations in the thermal load and environmental condition are the use of a variable emissivity coating (VEC), micro-machined shutters and louvers, or thermal switches. An elegant way the radiate heat is to switch the thermal contact between the emitting surface and the radiator electrostatically. This paper describes the design and fabrication of an active radiator for satellite thermal control based on such a micro electromechanical (MEMS) thermal switch. The switch operates by electrostatically moving a high emissivity surface layer in and out of contact with the radiator. The electromechanical model and material considerations for the thermal design of the MEMS device are discussed. The design utilizes a highly thermal conductive gold membrane supported by low-conductance SU-8 posts. The fabrication process is described. Measured actuation voltages were consistent with the electrostatic model, ranging from 8 to 25 volts.

  6. Bias Dependence of Gallium Nitride Micro-Electro-Mechanical Systems Actuation Using a Two-Dimensional Electron Gas

    NASA Astrophysics Data System (ADS)

    Amar, Achraf Ben; Faucher, Marc; Grimbert, Bertrand; Cordier, Yvon; Fran\\{c}ois, Marc; Tilmant, Pascal; Werquin, Matthieu; Zhang, Victor; Ducatteau, Damien; Gaquière, Christophe; Buchaillot, Lionel; Théron, Didier

    2012-06-01

    The piezoelectric actuation of a micro-electro-mechanical system (MEMS) resonator based on an AlGaN/GaN heterostructure is studied under various bias conditions. Using an actuator electrode that is also a transistor gate, we correlate the mechanical behaviour to the two-dimensional electron gas (2DEG) presence. The measured amplitude of the actuated resonator is maximum at moderate negative biases and drops near the pinch-off voltage in concordance with the 2DEG becoming depleted. Below the pinch-off voltage, residual actuation is still present, which is attributed to a more complex electric field pattern supported by quantitative modelling. The results confirm that epitaxial AlGaN barriers are fully adapted to the piezoelectric actuation of MEMS.

  7. Study on a Two-Dimensional Scanning Micro-Mirror and Its Application in a MOEMS Target Detector

    PubMed Central

    Zhang, Chi; You, Zheng; Huang, Hu; Li, Guanhua

    2010-01-01

    A two-dimensional (2D) scanning micro-mirror for target detection and measurement has been developed. This new micro-mirror is used in a MOEMS target detector to replace the conventional scanning detector. The micro-mirror is fabricated by MEMS process and actuated by a piezoelectric actuator. To achieve large deflection angles, the micro-mirror is excited in the resonance modes. It has two degrees of freedom and changes the direction of the emitted laser beam for a regional 2D scanning. For the deflection angles measurement, piezoresistors are integrated in the micro-mirror and the deflection angles of each direction can be detected independently and precisely. Based on the scanning micro-mirror and the phase-shift ranging technology, a MOEMS target detector has been developed in a size of 90 mm × 35 mm × 50 mm. The experiment shows that the target can be detected in the scanning field and the relative range and orientation can be measured by the MOEMS target detector. For the target distance up to 3 m with a field of view about 20° × 20°, the measurement resolution is about 10.2 cm in range, 0.15° in the horizontal direction and 0.22° in the vertical direction for orientation. PMID:22163580

  8. MEMS for medical technology applications

    NASA Astrophysics Data System (ADS)

    Frisk, Thomas; Roxhed, Niclas; Stemme, Göran

    2007-01-01

    This paper gives an in-depth description of two recent projects at the Royal Institute of Technology (KTH) which utilize MEMS and microsystem technology for realization of components intended for specific applications in medical technology and diagnostic instrumentation. By novel use of the DRIE fabrication technology we have developed side-opened out-of-plane silicon microneedles intended for use in transdermal drug delivery applications. The side opening reduces clogging probability during penetration into the skin and increases the up-take area of the liquid in the tissue. These microneedles offer about 200µm deep and pain-free skin penetration. We have been able to combine the microneedle chip with an electrically and heat controlled liquid actuator device where expandable microspheres are used to push doses of drug liquids into the skin. The entire unit is made of low cost materials in the form of a square one cm-sized patch. Finally, the design, fabrication and evaluation of an integrated miniaturized Quartz Crystal Microbalance (QCM) based "electronic nose" microsystem for detection of narcotics is described. The work integrates a novel environment-to-chip sample interface with the sensor element. The choice of multifunctional materials and the geometric features of a four-component microsystem allow a functional integration of a QCM crystal, electrical contacts, fluidic contacts and a sample interface in a single system with minimal assembly effort, a potential for low-cost manufacturing, and a few orders of magnitude reduced in system size (12*12*4 mm 3) and weight compared to commercially available instruments. The sensor chip was successfully used it for the detection of 200 ng of narcotics sample.

  9. Design and Simulation of an Electrothermal Actuator Based Rotational Drive

    NASA Astrophysics Data System (ADS)

    Beeson, Sterling; Dallas, Tim

    2008-10-01

    As a participant in the Micro and Nano Device Engineering (MANDE) Research Experience for Undergraduates program at Texas Tech University, I learned how MEMS devices operate and the limits of their operation. Using specialized AutoCAD-based design software and the ANSYS simulation program, I learned the MEMS fabrication process used at Sandia National Labs, the design limitations of this process, the abilities and drawbacks of micro devices, and finally, I redesigned a MEMS device called the Chevron Torsional Ratcheting Actuator (CTRA). Motion is achieved through electrothermal actuation. The chevron (bent-beam) actuators cause a ratcheting motion on top of a hub-less gear so that as voltage is applied the CTRA spins. The voltage applied needs to be pulsed and the frequency of the pulses determine the angular frequency of the device. The main objective was to design electromechanical structures capable of transforming the electrical signals into mechanical motion without overheating. The design was optimized using finite element analysis in ANSYS allowing multi-physics simulations of our model system.

  10. Electrothermal actuators fabricated in four-level planarized surface-miromachined polycrystalline silicon

    SciTech Connect

    Comtois, J.H.; Michalicek, A.; Barron, C.C.

    1997-11-01

    This paper presents the results of tests performed on a variety of electrochemical microactuators and arrays of these actuators fabricated in the SUMMiT process at the U.S. Department of Energy`s Sandia National Laboratories. These results are intended to aid designers of thermally actuated mechanisms, and they apply to similar actuators made in other polysilicon MEMS processes such as the MUMPS process. Measurements include force and deflection versus input power, maximum operating frequency, effects of long term operation, and ideal actuator and array geometries for different applications` force requirements. Also, different methods of arraying these actuators together are compared. It is found that a method using rotary joints, enabled by the advanced features of the SUMMiT fabrication process, is the most efficient array design. The design and operation of a thermally actuated stepper motor is explained to illustrate a useful application of these arrays.

  11. Micromachined electrostatic vertical actuator

    DOEpatents

    Lee, Abraham P.; Sommargren, Gary E.; McConaghy, Charles F.; Krulevitch, Peter A.

    1999-10-19

    A micromachined vertical actuator utilizing a levitational force, such as in electrostatic comb drives, provides vertical actuation that is relatively linear in actuation for control, and can be readily combined with parallel plate capacitive position sensing for position control. The micromachined electrostatic vertical actuator provides accurate movement in the sub-micron to micron ranges which is desirable in the phase modulation instrument, such as optical phase shifting. For example, compact, inexpensive, and position controllable micromirrors utilizing an electrostatic vertical actuator can replace the large, expensive, and difficult-to-maintain piezoelectric actuators. A thirty pound piezoelectric actuator with corner cube reflectors, as utilized in a phase shifting diffraction interferometer can be replaced with a micromirror and a lens. For any very precise and small amplitudes of motion` micromachined electrostatic actuation may be used because it is the most compact in size, with low power consumption and has more straightforward sensing and control options.

  12. Development of ionic polymer actuator arrays

    NASA Astrophysics Data System (ADS)

    Le Guilly, Marie

    Ionic polymer metal composites (IPMC) are bending type actuators which are soft, and show large deformation at low voltage. This work explored the creation of IPMC actuator arrays to take advantage of the unique features of IPMCs, in applications such as pump and valve arrays for micro-fluidic devices, microwave switch arrays etc. In the design of the arrays, the concept of integration is key, to make the actuator array reliable, compact and scalable. The arrays are created as a single physical part, by electrode patterning on the ionic polymer and material engineering. Gold chemical plating was used to create the flexible electrodes with large capacitance on Flemion and Nafion. Patterning was done with masks created in various ways. Nafion, because of its high flexibility, can be made into diaphragm actuators with very good dynamic properties. Flemion in cantilever mode was found to generate large forces without relaxation, a key feature for the design of IPMC switches and valves. A new electrode fabrication technique was developed based on plasma polymerization on an amine monomer on the membrane and subsequent self assembly of Au colloids. A 14-micron thick Flemion sample with 10 layers of 13nm diameter Au colloids showed actuation at +/-1.5V. The demonstration of actuation of IPMC with self-assembled electrodes is a milestone for the future application of IPMC to MEMS. Finally the actuation mechanisms of Nafion and Flemion were modeled. Two dominant contributions in the actuation of IPMC were considered: electro-osmosis, and equilibrium volume which can change upon cation redistribution. A large volume transition upon pH change was observed for Flemion, whereas Nafion proved indifferent to pH. It is proposed that Flemion is generally weakly ionized and has many ionic groups in acid form. Upon cation redistribution, this structure is perturbed and the ionization increases at the cathode side because of the increase in sodium concentration, leading to an increase

  13. Electromagnetic rotational actuation.

    SciTech Connect

    Hogan, Alexander Lee

    2010-08-01

    There are many applications that need a meso-scale rotational actuator. These applications have been left by the wayside because of the lack of actuation at this scale. Sandia National Laboratories has many unique fabrication technologies that could be used to create an electromagnetic actuator at this scale. There are also many designs to be explored. In this internship exploration of the designs and fabrications technologies to find an inexpensive design that can be used for prototyping the electromagnetic rotational actuator.

  14. Conjugated Polymer Actuators for Articulating Neural Probes and Electrode Interfaces

    NASA Astrophysics Data System (ADS)

    Daneshvar, Eugene Dariush

    This thesis investigated the potential use of polypyrrole (PPy) doped with dodecylbenzenesulfonate (DBS) to controllably articulate (bend or guide) flexible neural probes and electrodes. PPy(DBS) actuation performance was characterized in the ionic mixture and temperature found in the brain. Nearly all the ions in aCSF were exchanged into the PPy---the cations Na +, K+, Mg2+, Ca2+, as well as the anion PO43-; Cl- was not present. Nevertheless, deflections in aCSF were comparable to those in NaDBS and they were monotonic with oxidation level: strain increased upon reduction, with no reversal of motion despite the mixture of ionic charges and valences being exchanged. Actuation depended on temperature. Upon warming, the cyclic voltammograms showed additional peaks and an increase of 70% in the consumed charge. Actuation strain was monotonic under these conditions, demonstrating that conducting polymer actuators can indeed be used for neural interface and neural probe applications. In addition, a novel microelectro-mechanical system (MEMS) was developed to measure previously disregarded residual stress in a bilayer actuator. Residual stresses are a major concern for MEMS devices as that they can dramatically influence their yield and functionality. This device introduced a new technique to measure micro-scaled actuation forces that may be useful for characterization of other MEMS actuators. Finally, a functional movable parylene-based neural electrode prototype was developed. Employing PPy(DBS) actuators, electrode projections were successfully controlled to either remain flat or actuate out-of-plane and into a brain phantom during insertion. An electrode projection 800 microm long and 50 microm wide was able to deflect almost 800 microm away from the probe substrate. Applications that do not require insertion into tissue may also benefit from the electrode projections described here. Implantable neural interface devices are a critical component to a broad class of

  15. AMSD Cryo Actuator Testing

    NASA Technical Reports Server (NTRS)

    Mullette, Mark; Matthews, Gary; Russell, Kevin (Technical Monitor)

    2002-01-01

    The actuator technology required for AMSD and subsequently NGST are critical in the successful development for future cryogenic systems. Kodak has undertaken an extensive test plan to determine the performance of the force actuators developed under the AMSD program. These actuators are currently in testing at MSFC and are expected to finish this test cycle in early June 2002.

  16. Subminiature hydraulic actuator

    NASA Technical Reports Server (NTRS)

    Sevart, F. D.

    1978-01-01

    Subminiature, single-vane rotary actuator for wind-tunnel test-model control-surface actuation systems presents severe torque and system band-pass requirements with stringent space and weight limitations. Actuator has very low leakage of fluid from one side to other, permitting use in precision position servo-systems.

  17. Dual drive actuators

    NASA Technical Reports Server (NTRS)

    Packard, D. T.

    1982-01-01

    A new class of electromechanical actuators is described. These dual drive actuators were developed for the NASA-JPL Galileo Spacecraft. The dual drive actuators are fully redundant and therefore have high inherent reliability. They can be used for a variety of tasks, and they can be fabricated quickly and economically.

  18. MEMS Incandescent Light Source

    NASA Technical Reports Server (NTRS)

    Tuma, Margaret; King, Kevin; Kim, Lynn; Hansler, Richard; Jones, Eric; George, Thomas

    2001-01-01

    A MEMS-based, low-power, incandescent light source is being developed. This light source is fabricated using three bonded chips. The bottom chip consists of a reflector on Silicon, the middle chip contains a Tungsten filament bonded to silicon and the top layer is a transparent window. A 25-micrometer-thick spiral filament is fabricated in Tungsten using lithography and wet-etching. A proof-of-concept device has been fabricated and tested in a vacuum chamber. Results indicate that the filament is electrically heated to approximately 2650 K. The power required to drive the proof-of-concept spiral filament to incandescence is 1.25 W. The emitted optical power is expected to be approximately 1.0 W with the spectral peak at 1.1 microns. The micromachining techniques used to fabricate this light source can be applied to other MEMS devices.

  19. MEMS microshutter arrays for James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Li, Mary J.; Adachi, Tomoko; Allen, Christine; Babu, Sachi; Bajikar, Sateesh; Beamesderfer, Michael; Bradley, Ruth; Denis, Kevin; Costen, Nick; Ewin, Audrey; Franz, David; Hess, Larry; Hu, Ron; Jackson, Kamili M.; Jhabvala, Murzy; Kelly, Dan; King, Todd; Kletetschka, Gunther; Kutyrev, Alexander; Lynch, Barney; Miller, Timothy; Moseley, Harvey, Jr.; Mikula, Vilem; Mott, Brent; Oh, Lance; Pontius, James T.; Rapchun, David; Ray, Chris; Schulte, Eric; Schwinger, Scott; Shu, Peter; Silverberg, Robert; Smith, Wayne; Snodgrass, Steve; Sohl, David; Sparr, Leroy; Steptoe-Jackson, Rosalind; Veronica, Valeriano; Wang, Liqin; Zheng, Yun; Zincke, Chris

    2006-12-01

    MEMS microshutter arrays (MSAs) are being developed at NASA Goddard Space Flight Center for use as an aperture array for the Near-Infrared Spectrometer (NirSpec). The instruments will be carried on the James Webb Space Telescope (JWST), the next generation of space telescope after Hubble Space Telescope retires. The microshutter arrays are designed for the selective transmission of light with high efficiency and high contrast. Arrays are close-packed silicon nitride membranes with a pixel size of 105x204 μm. Individual shutters are patterned with a torsion flexure permitting shutters to open 90 degrees with a minimized mechanical stress concentration. Light shields are made on each shutter for light leak prevention to enhance optical contrast. Shutters are actuated magnetically, latched and addressed electrostatically. The shutter arrays are fabricated using MEMS technologies. Single-side indium flip chip bonding is performed to attach microshutter arrays to substrates.

  20. MEMS Microshutter Arrays for James Webb Space Telescope

    NASA Technical Reports Server (NTRS)

    Li, Mary J.; Beamesderfer, Michael; Babu, Sachi; Bajikar, Sateesh; Ewin, Audrey; Franz, Dave; Hess, Larry; Hu, Ron; Jhabvala, Murzy; Kelly, Dan; King, Todd; Kletetschkar, Gunther; Kutyrev, Alexander; Lynch, Barney; Moseley, Harvey; Mott, Brent; Oh, Lance; Rapchum, Dave; Ray, Chris; Sappington, Carol; Silverberg, Robert; Smith, Wayne; Snodgrass, Steve; Steptoe-Jackson, Rosalind; Valeriano

    2006-01-01

    MEMS microshutter arrays are being developed at NASA Goddard Space Flight Center for use as an aperture array for a Near-Infrared Spectrometer (NirSpec). The instruments will be carried on the James Webb Space Telescope (JWST), the next generation of space telescope after Hubble Space Telescope retires. The microshutter arrays are designed for the selective transmission of light with high efficiency and high contrast, Arrays are close-packed silicon nitride membranes with a pixel size of 100x200 microns. Individual shutters are patterned with a torsion flexure permitting shutters to open 90 degrees with a minimized mechanical stress concentration. Light shields are made on to each shutter for light leak prevention so to enhance optical contrast, Shutters are actuated magnetically, latched and addressed electrostatically. The shutter arrays are fabricated using MEMS technologies.

  1. Designing MEMS for manufacturing

    NASA Astrophysics Data System (ADS)

    Wolter, Alexander; Herrmann, Andreas; Yildiz, Goekhan; Schenk, Harald; Lakner, Hubert

    2004-10-01

    MEMS (micro electro-mechanical systems) are often expected to take a development as microelectronics did in the last 35 years. Several devices are already established in mass markets like acceleration sensors, gyros, pressure sensors, ink jet heads and the DLP micromirror array. On the other hand many companies have stopped their business after the telecom bubble. Others are struggling. Many dreams based on MEMS-devices that were not at all mature and could not be manufactured in high numbers. When a commercial product is the goal, several questions must be answered already in concept phase. The specifications must clearly reflect the requirements of the application. Performance and price must be competitive to any other technology. The relation between fabrication process and design is strong and mutual. The process must create all features of the device and the design must consider the limitations of the process. Only if the design is tolerant against all process variations reproducible performance can be achieved. And only if the design is robust in all process steps the devices can survive. Regarding the time and cost frame it is always preferable to change the layout rather than the process. This article looks at MEMS technology and identifies what has been adopted from CMOS, what is desirable to adopt and what needs new solutions. Examples are given in the fields of design, modeling layout, process, test, and packaging.

  2. Stroke saturation on a MEMS deformable mirror for woofer-tweeter adaptive optics

    NASA Astrophysics Data System (ADS)

    Morzinski, Katie; Macintosh, Bruce; Gavel, Donald; Dillon, Daren

    2009-03-01

    High-contrast imaging of extrasolar planet candidates around a main-sequence star has recently been realized from the ground using current adaptive optics (AO) systems. Advancing such observations will be a task for the Gemini Planet Imager, an upcoming "extreme" AO instrument. High-order "tweeter" and low-order "woofer" deformable mirrors (DMs) will supply a >90%-Strehl correction, a specialized coronagraph will suppress the stellar flux, and any planets can then be imaged in the "dark hole" region. Residual wavefront error scatters light into the DM-controlled dark hole, making planets difficult to image above the noise. It is crucial in this regard that the high-density tweeter, a micro-electrical mechanical systems (MEMS) DM, have sufficient stroke to deform to the shapes required by atmospheric turbulence. Laboratory experiments were conducted to determine the rate and circumstance of saturation, i.e. stroke insufficiency. A 1024-actuator 1.5-um-stroke MEMS device was empirically tested with software Kolmogorov-turbulence screens of r_0=10-15cm. The MEMS when solitary suffered saturation ~4% of the time. Simulating a woofer DM with ~5-10 actuators across a 5-m primary mitigated MEMS saturation occurrence to a fraction of a percent. While no adjacent actuators were saturated at opposing positions, mid-to-high-spatial-frequency stroke did saturate more frequently than expected, implying that correlations through the influence functions are important. Analytical models underpredict the stroke requirements, so empirical studies are important.

  3. MEMS applications in turbulence and flow control

    NASA Astrophysics Data System (ADS)

    Löfdahl, Lennart; Gad-el-Hak, Mohamed

    1999-02-01

    Manufacturing processes that can create extremely small machines have been developed in recent years. Microelectromechanical systems (MEMS) refer to devices that have characteristic length of less than 1 mm but more than 1 μm, that combine electrical and mechanical components and that are fabricated using integrated circuit batch-processing techniques. Electrostatic, magnetic, pneumatic and thermal actuators, motors, valves, gears and tweezers of less than 100 μm size have been fabricated. These have been used as sensors for pressure, temperature, mass flow, velocity and sound, as actuators for linear and angular motions, and as simple components for complex systems such as micro-heat-engines and micro-heat-pumps. In this paper, we focus on the use of microelectromechanical systems for the diagnosis and control of turbulent shear flows. We survey the status and outlook of microsensors and microactuators as used for those particular applications, and compare the minute devices to their larger cousins. Microsensors can resolve all relevant scales even in high-Reynolds-number turbulent flows. Arrays of microsensors and microactuators make it feasible, for the first time, to achieve effective reactive control targeted toward specific small-scale coherent structures in turbulent wall-bounded flows.

  4. PDMS-on-silicon microsystems: Integration of polymer micro/nanostructures for new MEMS device functions

    NASA Astrophysics Data System (ADS)

    Tung, Yi-Chung

    2005-11-01

    Modern technologies found in military, space-craft, automotive, and telecommunications applications strongly demand reductions of the manufacturing cost, power consumption, size, and weight of integrated sensors and actuators. The research field of microelectromechanical systems (MEMS) has seen significant technological innovations and advancements to meet this demand in the last two decades. Historically, MEMS technology has been seen as an offspring of silicon-based integrated circuit (IC) technology. But recently, the roles that polymer materials play in MEMS have been more pronounced due to their cost effectiveness, manufacturability, and compatibility with micro/nanoscale biological and chemical systems. Among these polymers, an organic elastomer, Polydimethylsiloxane (PDMS), has become one of the most popular materials because of its unique material properties and moldability suited for low-cost rapid prototyping based on a fabrication technique called soft lithography. However, PDMS micro/nanostructures, not allowed to be integrated with other silicon-based devices, find their limited use in MEMS other than in passive microfluidic components. The lack of a technology bridging the gap between silicon and PDMS prohibits us to realize new MEMS devices potentially resulting from the simultaneous use of these two materials. This research explores a fully new technological concept of "PDMS-on-silicon microsystems." "PDMS-on-silicon microsystems" refers to a class of novel MEMS devices integrating PDMS micro/nanostructures onto silicon actuators and/or sensors. The research aims to demonstrate a new type of MEMS devices taking advantage of benefits resulting from both of silicon and PDMS. To achieve this goal, this work develops a new MEMS fabrication technique called "soft-lithographic lift-off and grafting (SLLOG)." The SLLOG process starts with soft lithography-based molding and release of a three-dimensional (3D) PDMS microstructure. This is followed by

  5. Micro-electro-mechanical system (MEMS) component research and development for army missile applications

    NASA Astrophysics Data System (ADS)

    Hudson, Tracy D.; McMillen, Deanna K.; Ashley, Paul R.; Ruffin, Paul B.; Baeder, Janet

    1999-07-01

    The US Army Aviation and Missile Command Missile Research, Development and Engineering Center has identified MEMS as an emerging technology with high potential for fulfilling the mission of future missiles. The technology holds the promise of reducing the size, weight, cost, and power requirements for performing existing functions in Army missile systems, as well las providing opportunities for new computing, sensing, and actuation functions that cannot be achieved with conventional electromechanical technology. MEMS will enable the Army's next generation of smaller and lighter missiles. The military market drives the thrust for development of miniature sensor with applications such as: competent and smart munitions, aircraft and missile autopilots, tactical missile guidance, fire control system, platform stabilization, smart structures with embedded inertial sensors, missile system health monitoring, missile and ground-based radar, radio frequency seekers, aerodynamic flow control, IR imagers, and multiple intelligent small projectiles. Current efforts at AMCOM include the development of MEMS-based inertial components to include accelerometers with wide dynamic range, tactical grade gyros with high rate range, and miniature three-axis inertial measurement unit with common interface electronics. Performance requirements of such components will be presented in terms of current and future Army missile systems. Additional MEMS based efforts under investigation at AMCOM include missile storage health monitoring, RF MEMS components, encoders for actuators, and aerodynamic flow control will also be discussed.

  6. Locomotion Control of MEMS Micro Robot Using Pulse-Type Hardware Neural Networks

    NASA Astrophysics Data System (ADS)

    Saito, Ken; Okazaki, Kazuto; Ogiwara, Tatsuya; Takato, Minami; Saeki, Katsutoshi; Sekine, Yoshifumi; Uchikoba, Fumio

    This paper presents the locomotion control of micro electro mechanical systems (MEMS) micro robot. MEMS micro robot demonstrates the locomotion control by the pulse-type hardware neural networks (P-HNN). P-HNN generates oscillatory patterns of electrical activity such as living organisms. The basic component of P-HNN is pulse-type hardware neuron model (P-HNM). P-HNM has same basic features of biological neurons such as threshold, refractory period, spatio-temporal summation characteristics and enables the generation of continuous action potentials. P-HNN was constructed by MOSFETs, can be integrated by CMOS technology. Same as the living organisms P-HNN realized the robot control without using software programs, or A/D converters. The size of micro robot fabricated by the MEMS technology was 4×4×3.5 [mm]. The frame of robot was made of silicon wafer, equipped with rotary type actuators, link mechanisms and 6 legs. MEMS micro robot emulated the locomotion method and the neural networks of the insect by rotary actuators, link mechanisms and P-HNN. As a result, we show that P-HNN can control the forward and backward locomotion of fabricated MEMS micro robot, and also switched the direction by inputting the external trigger pulse. The locomotion speed was 19.5 [mm/min] and the step width was 1.3 [mm].

  7. Omnidirectional Actuator Handle

    NASA Technical Reports Server (NTRS)

    Moetteli, John B.

    1995-01-01

    Proposed actuator handle comprises two normally concentric rings, cables, and pulleys arranged such that relative displacement of rings from concentricity results in pulling of cable and consequent actuation of associated mechanism. Unlike conventional actuator handles like levers on farm implements, actuated from one or two directions only, proposed handle reached from almost any direction and actuated by pulling or pushing inner ring in any direction with respect to outer ring. Flanges installed on inner ring to cover gap between inner ring and housing to prevent clothing from being caught.

  8. Bimorphic polymeric photomechanical actuator

    NASA Technical Reports Server (NTRS)

    Sarkisov, Sergey S. (Inventor); Curley, Michael J. (Inventor); Adamovsky, Grigory (Inventor); Sarkisov, Jr., Sergey S. (Inventor); Fields, Aisha B. (Inventor)

    2006-01-01

    A bimorphic polymeric photomechanical actuator, in one embodiment using polyvinylidene fluoride (PVDF) as a photosensitive body, transmitting light over fiber optic cables, and controlling the shape and pulse duration of the light pulse to control movement of the actuator. Multiple light beams are utilized to generate different ranges of motion for the actuator from a single photomechanical body and alternative designs use multiple light beams and multiple photomechanical bodies to provide controlled movement. Actuator movement using one or more ranges of motion is utilized to control motion to position an actuating element in three dimensional space.

  9. High fidelity frictional models for MEMS.

    SciTech Connect

    Carpick, Robert W.; Reedy, Earl David, Jr.; Bitsie, Fernando; de Boer, Maarten Pieter; Corwin, Alex David; Ashurst, William Robert; Jones, Reese E.; Subhash, Ghatu S.; Street, Mark D.; Sumali, Anton Hartono; Antoun, Bonnie R.; Starr, Michael James; Redmond, James Michael; Flater, Erin E.

    2004-10-01

    The primary goals of the present study are to: (1) determine how and why MEMS-scale friction differs from friction on the macro-scale, and (2) to begin to develop a capability to perform finite element simulations of MEMS materials and components that accurately predicts response in the presence of adhesion and friction. Regarding the first goal, a newly developed nanotractor actuator was used to measure friction between molecular monolayer-coated, polysilicon surfaces. Amontons law does indeed apply over a wide range of forces. However, at low loads, which are of relevance to MEMS, there is an important adhesive contribution to the normal load that cannot be neglected. More importantly, we found that at short sliding distances, the concept of a coefficient of friction is not relevant; rather, one must invoke the notion of 'pre-sliding tangential deflections' (PSTD). Results of a simple 2-D model suggests that PSTD is a cascade of small-scale slips with a roughly constant number of contacts equilibrating the applied normal load. Regarding the second goal, an Adhesion Model and a Junction Model have been implemented in PRESTO, Sandia's transient dynamics, finite element code to enable asperity-level simulations. The Junction Model includes a tangential shear traction that opposes the relative tangential motion of contacting surfaces. An atomic force microscope (AFM)-based method was used to measure nano-scale, single asperity friction forces as a function of normal force. This data is used to determine Junction Model parameters. An illustrative simulation demonstrates the use of the Junction Model in conjunction with a mesh generated directly from an atomic force microscope (AFM) image to directly predict frictional response of a sliding asperity. Also with regards to the second goal, grid-level, homogenized models were studied. One would like to perform a finite element analysis of a MEMS component assuming nominally flat surfaces and to include the effect of

  10. An all-nickel magnetostatic MEMS scanner

    NASA Astrophysics Data System (ADS)

    Weber, Niklas; Zappe, Hans; Seifert, Andreas

    2012-12-01

    The design, fabrication and detailed characterization of a fully electroplated, magnetostatic low-cost MEMS scanning mirror are presented. By electroplating bright nickel on a sacrificial substrate, robust soft-magnetic micromirrors may be fabricated. The technology is simpler and cheaper than the standard process using bulk silicon micromachining of silicon-on-insulator wafers for fabricating magnetostatic scanners. The presented Ni mirrors exhibit deflection angles of ±7° at resonance for small external magnetic fields of 0.23 mT. Such magnetic fields are easily generated by miniaturized solenoids, making integration, for instance, into endoscopic systems possible.

  11. Fabrication and integration of permanent magnet materials into MEMS transducers

    NASA Astrophysics Data System (ADS)

    Wang, Naigang

    Microscale permanent magnets (PM) are a key building block for magnetically based microelectromechanical systems (MEMS), such as sensors, actuators, and energy converters. However, the inability to concurrently achieve good magnetic properties and an integrated magnet fabrication process hinders the development of magnetic MEMS. To address this need, this dissertation develops methods for wafer-level microfabrication of thick (10--500+ microm), high-performance, permanent magnets using low-temperature (<180 °C) process steps. These methods and materials are then used to demonstrate fully batch-fabricated magnetic MEMS transducers. Two methods to fabricate micromagnets are developed: electroplating of Co-rich Co-Pt magnets into photoresist-defined molds and micro-packing of rare-earth magnetic powders to form wax-bonded magnets embedded in silicon. Patterned micromagnets with excellent magnetic properties and process-flow compatibility are demonstrated. Electroplated Co-Pt micromagnets with thickness up to 10 microm exhibit out-of-plane anisotropy with coercivities and energy products of 330 kA/m and 69 kJ/m3, respectively. Wax-bonded Nd-Fe-B micromagnets (500 x 500 x 320 microm3) exhibit a coercivity of 737 kA/m and a maximum energy product of 17 kJ/m3 with isotopic behavior. The wax-bonded powder magnets are then integrated into MEMS fabrication processes to batch-fabricate various electrodynamic transducer prototypes. A cantilever-type microtransducer achieves a 2.7 microm vertical deflection at a driving current of 5.5 mArms at 100 Hz. A piston-type transducer with elastomeric membrane obtains a 2.2 microm vertical displacement at a driving current of 670 mArms at 200 Hz. These devices demonstrate the integrability of wax-bonded Nd-Fe-B powder magnets into microscale electromechanical transducers. Electromechanical lumped element models are then developed for the piston-type electrodynamic actuators. The models enable prediction of the device performance as an

  12. Field emission in actuation pads of radio frequency microelectromechanical systems ohmic switches: A potential contamination mechanism

    NASA Astrophysics Data System (ADS)

    Koutsoureli, M.; Reig, B.; Papandreou, E.; Poulain, C.; Souchon, F.; Deborgies, F.; Papaioannou, G.

    2016-01-01

    The field emission current generated across the actuation pads in ohmic MEMS switches during ON state is shown to constitute an additional source of degradation. Switches with Au/Au and Au/Ru contacts have been subjected to 24 h continuous stress. In both cases the switch ohmic contact resistance and field emission current across actuation pads were monitored simultaneously. The experimental results revealed a negligible degradation in Au/Au contact devices while the Au/Ru contact devices show a fast degradation. The experimental results from Au/Au and Ru/Au contact switches have been compared taking into account the plasma generation in the actuation pads.

  13. Charging characteritiscs of ultrananocrystalline diamond in RF MEMS capacitive switches.

    SciTech Connect

    Sumant, A. V.; Goldsmith, C.; Auciello, O.; Carlisle, J.; Zheng, H.; Hwang, J. C. M.; Palego, C.; Wang, W.; Carpick, R.; Adiga, V.; Datta, A.; Gudeman, C.; O'Brien, S.; Sampath, S.

    2010-05-01

    Modifications to a standard capacitive MEMS switch process have been made to allow the incorporation of ultra-nano-crystalline diamond as the switch dielectric. The impact on electromechanical performance is minimal. However, these devices exhibit uniquely different charging characteristics, with charging and discharging time constants 5-6 orders of magnitude quicker than conventional materials. This operation opens the possibility of devices which have no adverse effects of dielectric charging and can be operated near-continuously in the actuated state without significant degradation in reliability.

  14. The Polychromator: A programmable MEMS diffraction grating for synthetic spectra

    SciTech Connect

    HOCKER,G.B.; YOUNGNER,D.; BUTLER,MICHAEL A.; SINCLAIR,MICHAEL B.; PLOWMAN,THOMAS E.; DEUTSCH,E.; VOLPICELLI,A.; SENTURIA,S.; RICCO,A.J.

    2000-04-17

    The authors report here the design, fabrication and demonstration of an electrostatically actuated MEMS diffractive optical device, the Polychromator grating. The Polychromator grating enables a new type of correlation spectrometer for remote detection of a wide range of chemical species, offering electronic programmability, high specificity and sensitivity, fast response and ruggedness. Significant results include: (1) The first demonstrations of user-defined synthetic spectra in the 3-5 {micro}m wavelength regime based upon controlled deflection of individual grating elements in the Polychromator grating; (2) The first demonstration of gas detection by correlation spectroscopy using synthetic spectra generated by the Polychromator grating.

  15. Optimization Of PVDF-TrFE Processing Conditions For The Fabrication Of Organic MEMS Resonators

    PubMed Central

    Ducrot, Pierre-Henri; Dufour, Isabelle; Ayela, Cédric

    2016-01-01

    This paper reports a systematic optimization of processing conditions of PVDF-TrFE piezoelectric thin films, used as integrated transducers in organic MEMS resonators. Indeed, despite data on electromechanical properties of PVDF found in the literature, optimized processing conditions that lead to these properties remain only partially described. In this work, a rigorous optimization of parameters enabling state-of-the-art piezoelectric properties of PVDF-TrFE thin films has been performed via the evaluation of the actuation performance of MEMS resonators. Conditions such as annealing duration, poling field and poling duration have been optimized and repeatability of the process has been demonstrated. PMID:26792224

  16. Optimization Of PVDF-TrFE Processing Conditions For The Fabrication Of Organic MEMS Resonators.

    PubMed

    Ducrot, Pierre-Henri; Dufour, Isabelle; Ayela, Cédric

    2016-01-01

    This paper reports a systematic optimization of processing conditions of PVDF-TrFE piezoelectric thin films, used as integrated transducers in organic MEMS resonators. Indeed, despite data on electromechanical properties of PVDF found in the literature, optimized processing conditions that lead to these properties remain only partially described. In this work, a rigorous optimization of parameters enabling state-of-the-art piezoelectric properties of PVDF-TrFE thin films has been performed via the evaluation of the actuation performance of MEMS resonators. Conditions such as annealing duration, poling field and poling duration have been optimized and repeatability of the process has been demonstrated. PMID:26792224

  17. Optimization Of PVDF-TrFE Processing Conditions For The Fabrication Of Organic MEMS Resonators

    NASA Astrophysics Data System (ADS)

    Ducrot, Pierre-Henri; Dufour, Isabelle; Ayela, Cédric

    2016-01-01

    This paper reports a systematic optimization of processing conditions of PVDF-TrFE piezoelectric thin films, used as integrated transducers in organic MEMS resonators. Indeed, despite data on electromechanical properties of PVDF found in the literature, optimized processing conditions that lead to these properties remain only partially described. In this work, a rigorous optimization of parameters enabling state-of-the-art piezoelectric properties of PVDF-TrFE thin films has been performed via the evaluation of the actuation performance of MEMS resonators. Conditions such as annealing duration, poling field and poling duration have been optimized and repeatability of the process has been demonstrated.

  18. EDITORIAL: MEMS in biology and medicine MEMS in biology and medicine

    NASA Astrophysics Data System (ADS)

    Pruitt, Beth L.; Herr, Amy E.

    2011-05-01

    Stimulating—the first word that springs to mind regarding the emerging and expanding role of MEMS in biological inquiry. When invited to guest-edit this special issue on 'MEMS in biology and medicine' for JMM, we jumped at the opportunity. Partly owing to the breadth of the stimulating research in this nascent area and partly owing to the stimulating of biological function made possible with MEMS accessible length and time scales, we were eager to assemble manuscripts detailing some of the most cutting edge biological research being conducted around the globe. In addition to cutting edge engineering, this special issue features challenging biological questions addressed with innovative MEMS technologies. Topics span from Yetisen and colleagues' inquiry into quantifying pollen tube behaviour in response to pistil tissues [1] to Morimoto and colleagues' engineering efforts to produce monodisperse droplets capable of encapsulating single cells (without surface modification) [2]. Questions are bold, including a means to achieve therapeutically-relevant scaling for enrichment of leukocytes from blood (Inglis et al [3]), assessing the dependence of Escherichia coli biofilm formation on bacterial signalling (Meyer et al [4]), and elucidation of adhesion dynamics of circulating tumour cells (Cheung et al [5]) among others. Technologies are diverse, including microfabricated magnetic actuators (Lee et al [6]), stimuli-responsive polymer nanocomposites (Hess et al [7]), and SU-8 electrothermal microgrippers (Chu et al [8]) to name but a few. Contributing authors do indeed span a large swathe of the globe, with contributions from Australia, Italy, China, Canada, Denmark, Japan, the USA and numerous other locations. Collaboration finds a home here—with researchers from macromolecular science and electrical engineering collaborating with the Veterans Affairs Medical Center or neurosurgery researchers working with biological and electrical engineers. The questions posed by

  19. MEMS Rate Sensors for Space

    NASA Technical Reports Server (NTRS)

    Gambino, Joel P.

    1999-01-01

    Micromachined Electro Mechanical System Rate sensors offer many advantages that make them attractive for space use. They are smaller, consume less power, and cost less than the systems currently available. MEMS Rate Sensors however, have not been optimized for use on spacecraft. This paper describes an approach to developing MEMS Rate Sensors systems for space use.

  20. Vertical scanning white light interfering profilometer based on Linnik interference microscope

    NASA Astrophysics Data System (ADS)

    Wang, Shuzhen; Xie, Tiebang; Chang, Suping

    2010-10-01

    In this paper we provide a vertical scanning white light interfering profilometer based on Linnik type interference microscope. A vertical scanning system with coarse-fine dual-stage actuators is developed, in which the coarse positioning is performed by inclined sliding guides, AC servo motor, ballscrew and the fine positioning is performed by parallel board flexure hinge and piezoelectric ceramic, respectively. The displacement range of the vertical scanning system is 0~2mm and 0.4nm theoretical motion resolution can be achieved. The whole interference microscope of the profilometer is driven by the vertical scanning system, which will eliminate the movement coupling error of vertical direction caused by horizontal movement of 2D precision stage. The interference fringes or the focal plane can be automatically located by moving the vertical scanning system. To eliminate the measurement errors of the profilometer caused by incorrect positioning of the vertical scanning system, its displacement is measured in real-time by a laser interferometer with theoretical resolution of 0.01nm. A single groove specimen with the depth of 1.26μm calibrated by National Institute of Metrology P.R.China, MEMS device and textured steel sheet was measured to illustrate the capabilities of the profilometer.

  1. Electropneumatic actuator, phase 1

    NASA Astrophysics Data System (ADS)

    Bloomfield, D. P.

    1989-10-01

    The program demonstrated the feasibility of an electropneumatic actuator which can be used in manufacturing applications. The electropneumatic actuator, an alternative to the electric, hydraulic, and pneumatic actuators used in industry, consists of an electrochemical compressor, a power supply, and an actuator. The electrochemical compressor working fluid is hydrogen and a solvent such as water or ammonia. The compressor has no moving parts and runs on low voltage DC. The actuator is a conventional, commercially available unit. Researchers designed, constructed, and tested the electrochemical compressor in conjunction with the actuator, power supply, and computerized control. The one inch actuator can lift a fifty pound weight a distance of ten inches in about 1.5 minutes. The electrochemically powered system is capable of driving its loaded actuator to a prescribed location at a controlled rate. A defined set of design changes will combine the compressor and actuator in the same housing, and will develop two orders of magnitude increased actuator speed at the same or higher force levels.

  2. Review of polymer MEMS micromachining

    NASA Astrophysics Data System (ADS)

    Kim, Brian J.; Meng, Ellis

    2016-01-01

    The development of polymer micromachining technologies that complement traditional silicon approaches has enabled the broadening of microelectromechanical systems (MEMS) applications. Polymeric materials feature a diverse set of properties not present in traditional microfabrication materials. The investigation and development of these materials have opened the door to alternative and potentially more cost effective manufacturing options to produce highly flexible structures and substrates with tailorable bulk and surface properties. As a broad review of the progress of polymers within MEMS, major and recent developments in polymer micromachining are presented here, including deposition, removal, and release techniques for three widely used MEMS polymer materials, namely SU-8, polyimide, and Parylene C. The application of these techniques to create devices having flexible substrates and novel polymer structural elements for biomedical MEMS (bioMEMS) is also reviewed.

  3. In vivo cellular imaging with microscopes enabled by MEMS scanners

    NASA Astrophysics Data System (ADS)

    Ra, Hyejun

    High-resolution optical imaging plays an important role in medical diagnosis and biomedical research. Confocal microscopy is a widely used imaging method for obtaining cellular and sub-cellular images of biological tissue in reflectance and fluorescence modes. Its characteristic optical sectioning capability also enables three-dimensional (3-D) image reconstruction. However, its use has mostly been limited to excised tissues due to the requirement of high numerical aperture (NA) lenses for cellular resolution. Microscope miniaturization can enable in vivo imaging to make possible early cancer diagnosis and biological studies in the innate environment. In this dissertation, microscope miniaturization for in vivo cellular imaging is presented. The dual-axes confocal (DAC) architecture overcomes limitations of the conventional single-axis confocal (SAC) architecture to allow for miniaturization with high resolution. A microelectromechanical systems (MEMS) scanner is the central imaging component that is key in miniaturization of the DAC architecture. The design, fabrication, and characterization of the two-dimensional (2-D) MEMS scanner are presented. The gimbaled MEMS scanner is fabricated on a double silicon-on-insulator (SOI) wafer and is actuated by self-aligned vertical electrostatic combdrives. The imaging performance of the MEMS scanner in a DAC configuration is shown in a breadboard microscope setup, where reflectance and fluorescence imaging is demonstrated. Then, the MEMS scanner is integrated into a miniature DAC microscope. The whole imaging system is integrated into a portable unit for research in small animal models of human biology and disease. In vivo 3-D imaging is demonstrated on mouse skin models showing gene transfer and siRNA silencing. The siRNA silencing process is sequentially imaged in one mouse over time.

  4. Micro Electromechanical Systems (MEMS) Based Microfluidic Devices for Biomedical Applications

    PubMed Central

    Ashraf, Muhammad Waseem; Tayyaba, Shahzadi; Afzulpurkar, Nitin

    2011-01-01

    Micro Electromechanical Systems (MEMS) based microfluidic devices have gained popularity in biomedicine field over the last few years. In this paper, a comprehensive overview of microfluidic devices such as micropumps and microneedles has been presented for biomedical applications. The aim of this paper is to present the major features and issues related to micropumps and microneedles, e.g., working principles, actuation methods, fabrication techniques, construction, performance parameters, failure analysis, testing, safety issues, applications, commercialization issues and future prospects. Based on the actuation mechanisms, the micropumps are classified into two main types, i.e., mechanical and non-mechanical micropumps. Microneedles can be categorized according to their structure, fabrication process, material, overall shape, tip shape, size, array density and application. The presented literature review on micropumps and microneedles will provide comprehensive information for researchers working on design and development of microfluidic devices for biomedical applications. PMID:21747700

  5. Analysis of capacitive sensing for 2D-MEMS scanner laser projection

    NASA Astrophysics Data System (ADS)

    von Wantoch, Thomas; Mallas, Christian; Hofmann, Ulrich; Janes, Joachim; Wagner, Bernhard; Benecke, Wolfgang

    2014-03-01

    Typical applications for resonantly driven vacuum packaged MEMS scanners including laser projection displays require a feedback signal for closed-loop operation as well as high accuracy angle synchronization for data processing. A well known and widely used method is based on determining the angular velocity of the oscillating micromirror by measuring the time derivative of a capacitance. In this work we analyze a capacitive sensing approach that uses integrated vertical comb structures to synchronize the angular motion of a torsional micromirror oscillating in resonance. The investigated measurement method is implemented in a laser display that generates a video projection by scanning a RBG laser beam. As the 2D-micromirror performs sinusoidal oscillations on both perpendicular axes a continuously moving Lissajous pattern is projected. By measuring the displacement current due to an angular deflection of the movable comb structures an appropriate feedback signal for actuation and data synchronization is computed. In order to estimate the angular deflection and velocity a mathematical model of the capacitive sensing system is presented. In particular, the nonlinear characteristic of the capacitance as a function of the angle that is calculated using FEM analysis is approximated using cubic splines. Combining this nonlinear function with a dynamic model of the micromirror oscillation and the analog electronics a mathematical model of the capacitive measurement system is derived. To evaluate the proposed model numerical simulations are realized using MATLAB/Simulink and are compared to experimental measurements.

  6. A new class of high force, low-voltage, compliant actuation system

    SciTech Connect

    RODGERS,M. STEVEN; KOTA,SRIDHAR; HETRICK,JOEL; LI,ZHE; JENSEN,BRIAN D.; KRYGOWSKI,THOMAS W.; MILLER,SAMUEL L.; BARNES,STEPHEN MATTHEW; BURG,MICHAEL STANLEY

    2000-04-10

    Although many actuators employing electrostatic comb drives have been demonstrated in a laboratory environment, widespread acceptance in mass produced microelectromechanical systems (MEMS) may be limited due to issues associated with low drive force, large real estate demands, high operating voltages, and reliability concerns due to stiction. On the other hand, comb drives require very low drive currents, offer predictable response, and are highly compatible with the fabrication technology. The expand the application space and facilitate the widespread deployment of self-actuated MEMS, a new class of advanced actuation systems has been developed that maintains the highly desirable aspects of existing components, while significantly diminishing the issues that could impede large scale acceptance. In this paper, the authors will present low-voltage electrostatic actuators that offer a dramatic increase in force over conventional comb drive designs. In addition, these actuators consume only a small fraction of the chip area previously used, yielding significant gains in power density. To increase the stroke length of these novel electrostatic actuators, the authors have developed highly efficient compliant stroke amplifiers. The coupling of compact, high-force actuators with fully compliant displacement multipliers sets a new paradigm for highly integrated microelectromechanical systems.

  7. Molecular sensors for MEMS

    NASA Astrophysics Data System (ADS)

    Huang, Chih-Yung

    Molecular sensors, known as pressure-sensitive paint and temperature-sensitive paint, are applied inside MEMS devices to obtain the internal and external flow fields. The spatial resolution for the PSP and TSP measurements has improved to 5 mum. The low-pressure PSP sensor has been investigated for use in MEMS measurements, with an application range from continuum flow to transition flow. PSP and TSP measurements in different micro devices have been obtained with the flow fields covering steady and unsteady, subsonic and supersonic flow. In microchannel measurements, the pressure distributions inside the microchannel have been obtained for Knudsen number from 0.006 to 0.8. Compressibility and rarefaction effects can be observed in the PSP data. Detailed information at the channel inlet was also collected to discuss the entrance effect for different flow regimes. For micronozzle experiments, four different micronozzles have been fabricated to study geometry effects at the micro scale. The pressure maps inside the micronozzle devices have been obtained with PSP sensors. A modified schlieren technique is used to compare the PSP results and investigate the shock wave behavior at high- and low-pressure conditions. Thick viscous layers in the micronozzle have been observed in the low-pressure measurements. For microjet impingements, heat transfer measurements have been collected with different microjet devices by using TSP sensors. For supersonic impinging microjet measurements, both pressure and temperature data have been obtained at different pressure ratios, impingement angles and impingement distances. Measurements reveal that the magnitude and number of shock cells decreases in the micro scale due to strong viscous effects. For microturbine measurements, averaged results of PSP and TSP measurements have been obtained for a rotation speed from 1300 to 4000 rpm. Phase-averaged results have been collected by using a laser triggering system at rotation speed of 1400 rpm

  8. Development of highly integrated magetically and electrostatically actuated micropumps : LDRD 64709 final report.

    SciTech Connect

    Sosnowchik, Brian D.; Galambos, Paul C.; Hendrix, Jason R.; Zwolinski, Andrew

    2003-12-01

    The pump and actuator systems designed and built in the SUMMiT{trademark} process, Sandia's surface micromachining polysilicon MEMS (Micro-Electro-Mechanical Systems) fabrication technology, on the previous campus executive program LDRD (SAND2002-0704P) with FSU/FAMU (Florida State University/Florida Agricultural and Mechanical University) were characterized in this LDRD. These results demonstrated that the device would pump liquid against the flow resistance of a microfabricated channel, but the devices were determined to be underpowered for reliable pumping. As a result a new set of SUMMiT{trademark} pumps with actuators that generate greater torque will be designed and submitted for fabrication. In this document we will report details of dry actuator/pump assembly testing, wet actuator/pump testing, channel resistance characterization, and new pump/actuator design recommendations.

  9. Improved Electrohydraulic Linear Actuators

    NASA Technical Reports Server (NTRS)

    Hamtil, James

    2004-01-01

    A product line of improved electrohydraulic linear actuators has been developed. These actuators are designed especially for use in actuating valves in rocket-engine test facilities. They are also adaptable to many industrial uses, such as steam turbines, process control valves, dampers, motion control, etc. The advantageous features of the improved electrohydraulic linear actuators are best described with respect to shortcomings of prior electrohydraulic linear actuators that the improved ones are intended to supplant. The flow of hydraulic fluid to the two ports of the actuator cylinder is controlled by a servo valve that is controlled by a signal from a servo amplifier that, in turn, receives an analog position-command signal (a current having a value between 4 and 20 mA) from a supervisory control system of the facility. As the position command changes, the servo valve shifts, causing a greater flow of hydraulic fluid to one side of the cylinder and thereby causing the actuator piston to move to extend or retract a piston rod from the actuator body. A linear variable differential transformer (LVDT) directly linked to the piston provides a position-feedback signal, which is compared with the position-command signal in the servo amplifier. When the position-feedback and position-command signals match, the servo valve moves to its null position, in which it holds the actuator piston at a steady position.

  10. Comprehensive piezoceramic actuator review

    NASA Astrophysics Data System (ADS)

    Taylor, Chris J.; Washington, Gregory N.

    2002-07-01

    Piezoceramic actuation has become an area of increased interest in the past ten years. Having been used for many years as sensors in such applications as pressure transducers and smoke detectors, piezoceramics are now being used as prime movers in fuel injectors and valve lifters. In an effort to aid the engineering community, this paper will conduct a comprehensive review of several piezoceramic actuators. Classical design parameters will be derived for each actuator such as blocked force and free stroke. In addition, more esoteric entities such as mechanical efficiency and energy density will also be derived. The result will be design metrics of popular piezoceramic actuators containing vital design equations, validated with empirical data. Of the many different configurations of piezoceramic actuators, this paper will investigate the bimorph and unimorph bender. These actuator types are finding increased use in semi-active structural damping, energy harvesting and vibration control. The work in this paper will show experimental verification of various actuator types as well as theoretical derivations. In addition to unimorphs, bimorphs and stack actuators a novel type of unimorph bender, the THUNDER actuator (developed and licensed by NASA) will be included in the review.

  11. Swept-source common-path optical coherence tomography with a MEMS endoscopic imaging probe

    NASA Astrophysics Data System (ADS)

    Duan, Can; Wang, Donglin; Zhou, Zhengwei; Liang, Peng; Samuelson, Sean; Pozzi, Antonio; Xie, Huikai

    2014-03-01

    A MEMS-based common-path endoscopic imaging probe for 3D swept-source optical coherence tomography (SSOCT) has been developed. The common path is achieved by setting the reference plane at the rear surface of the GRIN lens inside the probe. MEMS devices have the advantages of low cost, small size and fast speed, which are suitable for miniaturizing endoscopic probes. The aperture size of the two-axis MEMS mirror employed in this endoscopic probe is 1 mm by 1 mm and the footprint of the MEMS chip is 1.55 mm by 1.7 mm. The MEMS mirror achieves large two dimensional optical scan angles up to 34° at 4.0 V. The endoscopic probe using the MEMS mirror as the scan engine is only 4.0 mm in diameter. Additionally, an optimum length of the GRIN lens is established to remove the artifacts in the SSOCT images generated from the multiple interfaces inside the endoscopic imaging probe. The MEMS based commonpath probe demonstrates real time 3D OCT images of human finger with 10.6 μm axial resolution, 17.5 μm lateral resolution and 1.0 mm depth range at a frame rate of 50 frames per second.

  12. Piezoelectric MEMS for energy harvesting

    NASA Astrophysics Data System (ADS)

    Kanno, Isaku

    2015-12-01

    Recently, piezoelectric MEMS have been intensively investigated to create new functional microdevices, and some of them have already been commercialized such as MEMS gyrosensors or miropumps of inkjet printer head. Piezoelectric energy harvesting is considered to be one of the promising future applications of piezoelectric MEMS. In this report, we introduce the deposition of the piezoelectric PZT thin films as well as lead-free KNN thin films. We fabricated piezoelectric energy harvesters of PZT and KNN thin films deposited on stainless steel cantilevers and compared their power generation performance.

  13. Mechanical behavior simulation of MEMS-based cantilever beam using COMSOL multiphysics

    SciTech Connect

    Acheli, A. Serhane, R.

    2015-03-30

    This paper presents the studies of mechanical behavior of MEMS cantilever beam made of poly-silicon material, using the coupling of three application modes (plane strain, electrostatics and the moving mesh) of COMSOL Multi-physics software. The cantilevers playing a key role in Micro Electro-Mechanical Systems (MEMS) devices (switches, resonators, etc) working under potential shock. This is why they require actuation under predetermined conditions, such as electrostatic force or inertial force. In this paper, we present mechanical behavior of a cantilever actuated by an electrostatic force. In addition to the simplification of calculations, the weight of the cantilever was not taken into account. Different parameters like beam displacement, electrostatics force and stress over the beam have been calculated by finite element method after having defining the geometry, the material of the cantilever model (fixed at one of ends but is free to move otherwise) and his operational space.

  14. Integrated microphotonic-MEMS inertial sensors

    NASA Astrophysics Data System (ADS)

    Zandi, Kazem

    The objective of this thesis is to design, simulate, fabricate and characterize high sensitive low cost in-plane photonic-band-gap (PBG)-micro electromechanical systems (MEMS)-based miniature accelerometers and rotational rate sensors (gyroscopes) on a silicon-on-insulator (SOI) substrate in order to enable the integration of an array of two-axis of these sensors on a single SOI platform. Use of guided-wave optical devices integrated with MEMS on SOI for multichannel/multifunction sensor systems allows the use of multiple sensors to extend the measurement range and accuracy. This provides essential redundancy which makes long-term reliability in the space environment possible therefore reducing the possibility of system failure. The navigator microchip also represents the ability of accommodating diverse attitude and inertial sensors on the same microchip to eliminate the need of many separate sensors. The end product exhibits orders of magnitude reduction in system mass and size. Furthermore, redundancy improves the net performance and precision of the navigation measurement systems. Two classes of optical accelerometers/gyroscopes are considered in this thesis for application in smallsats navigation, one based on tunable Fabry-Perot (FP) filter, where the sensor is actuated by the applied acceleration providing a shift in the operating wavelength that varies linearly with the applied acceleration and the other one based on variable optical attenuator (VOA), where the sensor is actuated by the applied acceleration providing a linear change for small displacements around the waveguide propagation axis in the relative signal intensity with the applied acceleration. In the case of FP-based sensors, the FP microcavity consists of two distributed Bragg reflectors (DBR) in which one DBR mirror is attached to the proof mass of the system. As a consequence of acceleration/rotation, the relative displacement of the movable mirror with respect to the fixed mirror changes

  15. MEMS tunable terahertz metamaterials using out-of-plane mechanisms

    NASA Astrophysics Data System (ADS)

    Lin, Yu-Sheng; Pitchappa, Prakash; Ho, Chong Pei; Lee, Chengkuo

    2015-03-01

    The tunable terahertz metamaterial (TTM) has attracted intense research interest, since the electromagnetic response of the metamaterial can be actively controlled through external stimulus, which is of great significance in real time applications. The active control of metamaterial characteristics is crucial in order to provide a flexible and versatile platform for mimicking fundamental physical effects. To realize the electromagnetic tunability, various approaches have been demonstrated to increase the flexibility in applications, such as changing the effective electromagnetic properties. Alternatively, MEMS-based techniques are well developed. The structural reconfiguration is a straightforward way to control the electromagnetic properties. The metamaterial properties can be directly modified by reconfiguring the unit cell which is the fundamental building block of metamaterials. Currently, our research works are focusing on MEMS-based TTM adopting stress-induced curved actuators (SICA) to adjust the resonant frequency of devices. Herein, the proposed TTM designs are double split-ring resonator (DSRR), electric split-ring resonator (eSRR), Omega-ring metamaterial (ORM), symmetric and asymmetric T-shape metamaterial (STM and ATM), respectively. We demonstrated these TTM can be active, continuous, and recoverable control the resonant frequency by using electrostatic or electrothermal actuation mechanism. Therefore, the TTM devices can be effectively used for sensors, optical switches, and filters applications.

  16. Tuneable Auxiliary Control Mechanisms For RUM Actuators

    NASA Technical Reports Server (NTRS)

    Polites, Michael E.; Alhorn, Dean C.

    1995-01-01

    Tuneable auxiliary control mechanisms for rotating unbalanced-mass (RUM) actuators used to maximize scan amplitudes and/or minimize power consumption during changing conditions. This type of mechanism more sophisticated version of type of mechanism described in "Auxiliary Control Mechanisms for RUM Actuators" (MFS-28817). Torsional stiffness of torsionally flexible coupling made adjustable on command. Torsionally flexible coupling in tuneable version of auxiliary control mechanism adjustable by use of stepping-motor-driven worm-gear mechanism that varies bending length of flexible blade.

  17. Thermoelectric microdevice fabricated by a MEMS-like electrochemical process.

    PubMed

    Snyder, G Jeffrey; Lim, James R; Huang, Chen-Kuo; Fleurial, Jean-Pierre

    2003-08-01

    Microelectromechanical systems (MEMS) are the basis of many rapidly growing technologies, because they combine miniature sensors and actuators with communications and electronics at low cost. Commercial MEMS fabrication processes are limited to silicon-based materials or two-dimensional structures. Here we show an inexpensive, electrochemical technique to build MEMS-like structures that contain several different metals and semiconductors with three-dimensional bridging structures. We demonstrate this technique by building a working microthermoelectric device. Using repeated exposure and development of multiple photoresist layers, several different metals and thermoelectric materials are fabricated in a three-dimensional structure. A device containing 126 n-type and p-type (Bi, Sb)2Te3 thermoelectric elements, 20 microm tall and 60 microm in diameter with bridging metal interconnects, was fabricated and cooling demonstrated. Such a device should be of technological importance for precise thermal control when operating as a cooler, and for portable power when operating as a micro power generator. PMID:12883550

  18. Friction of different monolayer lubricants in MEMs interfaces.

    SciTech Connect

    Carpick, Robert W. (University of Wisconsin, Madison, WI); Street, Mark D.; Ashurst, William Robert; Corwin, Alex David

    2006-01-01

    This report details results from our last year of work (FY2005) on friction in MEMS as funded by the Campaign 6 program for the Microscale Friction project. We have applied different monolayers to a sensitive MEMS friction tester called the nanotractor. The nanotractor is also a useful actuator that can travel {+-}100 {micro}m in 40 nm steps, and is being considered for several MEMS applications. With this tester, we can find static and dynamic coefficients of friction. We can also quantify deviations from Amontons' and Coulomb's friction laws. Because of the huge surface-to-volume ratio at the microscale, surface properties such as adhesion and friction can dominate device performance, and therefore such deviations are important to quantify and understand. We find that static and dynamic friction depend on the monolayer lubricant applied. The friction data can be modeled with a non-zero adhesion force, which represents a deviation from Amontons' Law. Further, we show preliminary data indicating that the adhesion force depends not only on the monolayer, but also on the normal load applied. Finally, we also observe slip deflections before the transition from static to dynamic friction, and find that they depend on the monolayer.

  19. Vertical electrostatic force in MEMS cantilever IR sensor

    NASA Astrophysics Data System (ADS)

    Rezadad, Imen; Boroumand Azad, Javaneh; Smith, Evan M.; Alhasan, Ammar; Peale, Robert E.

    2014-06-01

    A MEMS cantilever IR detector that repetitively lifts from the surface under the influence of a saw-tooth electrostatic force, where the contact duty cycle is a measure of the absorbed IR radiation, is analyzed. The design is comprised of three parallel conducting plates. Fixed buried and surface plates are held at opposite potential. A moveable cantilever is biased the same as the surface plate. Calculations based on energy methods with position-dependent capacity and electrostatic induction coefficients demonstrate the upward sign of the force on the cantilever and determine the force magnitude. 2D finite element method calculations of the local fields confirm the sign of the force and determine its distribution across the cantilever. The upward force is maximized when the surface plate is slightly larger than the other two. The electrostatic repulsion is compared with Casimir sticking force to determine the maximum useful contact area. MEMS devices were fabricated and the vertical displacement of the cantilever was observed in a number of experiments. The approach may be applied also to MEMS actuators and micromirrors.

  20. Design for reliability of drift-free MEMS micromirrors

    NASA Astrophysics Data System (ADS)

    Shea, Herbert R.; Gasparyan, Arman

    2004-08-01

    The rapid commercialization and long-term reliability of optical MEMS is greatly facilitated by a Design-for-Reliability mindset, relying on an interdependent development framework simultaneously optimizing design, materials choices, processing, reliability, subsystem design, and packaging. Even with the best mechanical design, the electrical design and packaging choices of these devices has a large impact both on performance (e.g., speed and stability) and on reliability (e.g., corrosion and dielectric or gas breakdown). In this paper we discuss the reliability and performance of two-axis MEMS micromirrors and present several design, processing and packaging steps that were needed to achieve open-loop drift-free operation and mean-time-to-failure in excess of 2000 years. In particular the relationship between leakage currents and the accumulation of quasi-static charge in dielectrics are discussed, along with several techniques to mitigate charging and the associated drift in electrostatically actuated or sensed MEMS devices. Two key parameters are shown to be the electrode geometry and the conductivity of the dielectric. Electrical breakdown in sub-micron gaps is presented as a function of packaging gas and electrode spacing. We discuss the trade-offs involved in choosing gap geometries, dielectric properties, and packaging solutions. Finally galvanic corrosion of poly-silicon in HF release etch baths is discussed along with techniques to minimize this corrosion.

  1. Remote control thermal actuator

    NASA Technical Reports Server (NTRS)

    Englund, D. R.; Harrigill, W. T.; Krsek, A.

    1969-01-01

    Thermal actuator makes precise changes in the position of one object with respect to another. Expansion of metal tubes located in the actuator changes the position of the mounting block. Capacitance probe measures the change in position of the block relative to the fixed target plate.

  2. Self-actuated device

    DOEpatents

    Hecht, Samuel L.

    1984-01-01

    A self-actuated device, of particular use as a valve or an orifice for nuclear reactor fuel and blanket assemblies, in which a gas produced by a neutron induced nuclear reaction gradually accumulates as a function of neutron fluence. The gas pressure increase occasioned by such accumulation of gas is used to actuate the device.

  3. Control surface actuator

    NASA Technical Reports Server (NTRS)

    Seidel, Gerhard E. (Inventor)

    1988-01-01

    A device which actuates aircraft control surfaces is disclosed. The actuator is disposed entirely within the control surface structure. This allows the gap between the wing structural box and the control surface to be reduced. Reducing the size of the gap is especially desirable for wings with high aspect ratio, wherein the volume of the structural box is at a premium.

  4. Superhydrophobic Surface Coatings for Microfluidics and MEMs.

    SciTech Connect

    Branson, Eric D.; Singh, Seema; Houston, Jack E.; van Swol, Frank B.; Brinker, C. Jeffrey

    2006-11-01

    Low solid interfacial energy and fractally rough surface topography confer to Lotus plants superhydrophobic (SH) properties like high contact angles, rolling and bouncing of liquid droplets, and self-cleaning of particle contaminants. This project exploits the porous fractal structure of a novel, synthetic SH surface for aerosol collection, its self-cleaning properties for particle concentration, and its slippery nature 3 to enhance the performance of fluidic and MEMS devices. We propose to understand fundamentally the conditions needed to cause liquid droplets to roll rather than flow/slide on a surface and how this %22rolling transition%22 influences the boundary condition describing fluid flow in a pipe or micro-channel. Rolling of droplets is important for aerosol collection strategies because it allows trapped particles to be concentrated and transported in liquid droplets with no need for a pre-defined/micromachined fluidic architecture. The fluid/solid boundary condition is important because it governs flow resistance and rheology and establishes the fluid velocity profile. Although many research groups are exploring SH surfaces, our team is the first to unambiguously determine their effects on fluid flow and rheology. SH surfaces could impact all future SNL designs of collectors, fluidic devices, MEMS, and NEMS. Interfaced with inertial focusing aerosol collectors, SH surfaces would allow size-specific particle populations to be collected, concentrated, and transported to a fluidic interface without loss. In microfluidic systems, we expect to reduce the energy/power required to pump fluids and actuate MEMS. Plug-like (rather than parabolic) velocity profiles can greatly improve resolution of chip-based separations and enable unprecedented control of concentration profiles and residence times in fluidic-based micro-reactors. Patterned SH/hydrophilic channels could induce mixing in microchannels and enable development of microflow control elements

  5. Failure mechanisms of DC and capacitive RF MEMS switches

    NASA Astrophysics Data System (ADS)

    Patton, Steven T.; Zabinski, Jeffrey S.

    2006-01-01

    , the electrical effect was not present until the surfaces were worn smooth by cycling. Surface smoothening increases the electric field in the dielectric, which results in trapped charges, alterations in electrostatic force, and higher adhesion. Excessive adhesion can explain decreased lifetime at high bias voltage previously reported with actual capacitive MEMS switches. Switch sticking, self actuation, failure to actuate, and self release can all be explained by the experimental results.

  6. Study of scratch drive actuator force characteristics

    NASA Astrophysics Data System (ADS)

    Li, Lijie; Brown, J. Gordon; Uttamchandani, Deepak

    2002-11-01

    Microactuators are one of the key components in MEMS technology, and various designs have been realized through different fabrication processes. One type of microactuator commonly used is the scratch drive actuator (SDA) that is frequently fabricated by surface micromachining processes. An experimental investigation has been conducted on the force characteristics of SDAs fabricated using the JDSU Microsystems MUMPs process. One-, two-, three- and four-plate SDAs connected to box-springs have been designed and fabricated for these experiments using MUMPs run 44. The spring constant for the box-springs has been calculated by FEM using ANSYS software. The product of the spring constant and spring extension is used to measure the forces produced by these SDAs. It is estimated that the forces produced exceed 250 μN from a one-plate SDA and 850 μN from a four-plate SDA.

  7. Dynamic MEMS-based linear (1D) diffusers for laser beam homogenizing and beam shaping

    NASA Astrophysics Data System (ADS)

    Masson, J.; Bich, A.; Noell, W.; Voelkel, R.; Weible, K. J.; De Rooij, N. F.

    2009-08-01

    We present a dynamic laser beam shaper based on MEMS technology. We show a prototype of a dynamic diffuser made of single crystal silicon. A linearly deformable silicon micromembrane is used to diffuse a laser beam in one dimension. Resonance frequencies of the membrane can range from 1 kHz to 100 kHz. Diffusing angle can be tuned by adjusting the driving voltage. We measured a diffusing angle of 0.16° for an actuation voltage of 20 V.

  8. Ovenized microelectromechanical system (MEMS) resonator

    SciTech Connect

    Olsson, Roy H; Wojciechowski, Kenneth; Kim, Bongsang

    2014-03-11

    An ovenized micro-electro-mechanical system (MEMS) resonator including: a substantially thermally isolated mechanical resonator cavity; a mechanical oscillator coupled to the mechanical resonator cavity; and a heating element formed on the mechanical resonator cavity.

  9. A generalized analytical approach to the coupled effect of SMA actuation and elastica deflection

    NASA Astrophysics Data System (ADS)

    Sreekumar, M.; Singaperumal, M.

    2009-11-01

    A compliant miniature parallel manipulator made of superelastic nitinol pipe as its central pillar and actuated by three symmetrically attached shape memory alloy (SMA) wires is under development. The mobility for the platform is obtained by the selective actuation of one or two wires at a time. If one wire is actuated, the other two unactuated wires provide the counter effect. Similarly, if two wires are actuated simultaneously or in a differential manner, the third unactuated wire resists the movement of the platform. In an earlier work of the authors, the static displacement analysis was presented without considering the effect of unactuated wires. In this contribution, the force-displacement analysis is presented considering the effect of both actuated and unactuated wires. Subsequently, an attempt has been made to obtain a generalized approach from which six types of actuation methods are identified using a group of conditional parameters. Each method leads to a set of large deflection expressions suitable for a particular actuation method. As the large deflection expressions derived for the mechanism are nonlinear and involve interdependent parameters, their simplified form using a parametric approximation have also been obtained using Howell's algorithm. The generalized approach and the solution algorithm developed can be applied to any kind of compliant mechanism having large deflection capabilities, including planar and spatial MEMS devices and stability analysis of long slender columns supported by wires or cables. The procedure developed is also suitable for the static analysis of spatial compliant mechanisms actuated by multiple SMA actuators.

  10. Optically transduced MEMS magnetometer

    SciTech Connect

    Nielson, Gregory N; Langlois, Eric

    2014-03-18

    MEMS magnetometers with optically transduced resonator displacement are described herein. Improved sensitivity, crosstalk reduction, and extended dynamic range may be achieved with devices including a deflectable resonator suspended from the support, a first grating extending from the support and disposed over the resonator, a pair of drive electrodes to drive an alternating current through the resonator, and a second grating in the resonator overlapping the first grating to form a multi-layer grating having apertures that vary dimensionally in response to deflection occurring as the resonator mechanically resonates in a plane parallel to the first grating in the presence of a magnetic field as a function of the Lorentz force resulting from the alternating current. A plurality of such multi-layer gratings may be disposed across a length of the resonator to provide greater dynamic range and/or accommodate fabrication tolerances.

  11. Sandia's Arbitrary Waveform MEMO Actuator

    2003-08-07

    SAMA is a multichannel, arbitrary waveform generator program for driving microelectromechanical systems (MEMS). It allows the user to piece together twelve available wave parts, thereby permitting the user to create practically any waveform, or upload a previously constructed signal. The waveforms (bundled together as a signal) may simultaneously be output through four different channels to actuate MEMS devices, and the number of output channels may be increased depending on the DAQ card or instrument utilized.more » Additionally, real-time changes may be made to the frequency and amplitude. The signal may be paused temporarily. The waveform may be saved to file for future uploading. Recent work for this version has focused on modifications that will allow loading previously generated arbitrary waveforms, independent channel waveform amplification, adding a pause function, separating the "modify waveform: and "end program" functions, and simplifying the user interface by adding test blocks with statements to help the user program and output the desired signals. The program was developed in an effort to alleviate some of the limitations of Micro Driver. For example, Micro Driver will not allow the user to select a segment of a sine wave, but rather the user is limited to choosing either a whole or half sine wave pattern. It therefore becomes quite difficult ot construct partial sine wave patterns out of a "ramp" waveparts for several reasons. First, one must determine on paper how many data points each ramp will cover, and what the slopes of these ramps will be. Second, from what was observed, Micro Driver has difficulty processing more than six distinct waveparts during sequencing. The program will allow the user to input the various waves into the desired sequence; however, it will not allow the user to compile them (by clicking "ok" and returning to the main screen). Third, should the user decide that they want to increase the amplitute of the output signal

  12. Payload characterization for CubeSat demonstration of MEMS deformable mirrors

    NASA Astrophysics Data System (ADS)

    Marinan, Anne; Cahoy, Kerri; Webber, Matthew; Belikov, Ruslan; Bendek, Eduardo

    2014-08-01

    Coronagraphic space telescopes require wavefront control systems for high-contrast imaging applications such as exoplanet direct imaging. High-actuator-count MEMS deformable mirrors (DM) are a key element of these wavefront control systems yet have not been flown in space long enough to characterize their on-orbit performance. The MEMS Deformable Mirror CubeSat Testbed is a conceptual nanosatellite demonstration of MEMS DM and wavefront sensing technology. The testbed platform is a 3U CubeSat bus. Of the 10 x 10 x 34.05 cm (3U) available volume, a 10 x 10 x 15 cm space is reserved for the optical payload. The main purpose of the payload is to characterize and calibrate the onorbit performance of a MEMS deformable mirror over an extended period of time (months). Its design incorporates both a Shack Hartmann wavefront sensor (internal laser illumination), and a focal plane sensor (used with an external aperture to image bright stars). We baseline a 32-actuator Boston Micromachines Mini deformable mirror for this mission, though the design is flexible and can be applied to mirrors from other vendors. We present the mission design and payload architecture and discuss experiment design, requirements, and performance simulations.

  13. MemAxes Visualization Software

    2014-08-28

    Hardware advancements such as Intel's PEBS and AMD's IBS, as well as software developments such as the perf_event API in Linux have made available the acquisition of memory access samples with performance information. MemAxes is a visualization and analysis tool for memory access sample data. By mapping the samples to their associated code, variables, node topology, and application dataset, MemAxes provides intuitive views of the data.

  14. MEMS: Enabled Drug Delivery Systems.

    PubMed

    Cobo, Angelica; Sheybani, Roya; Meng, Ellis

    2015-05-01

    Drug delivery systems play a crucial role in the treatment and management of medical conditions. Microelectromechanical systems (MEMS) technologies have allowed the development of advanced miniaturized devices for medical and biological applications. This Review presents the use of MEMS technologies to produce drug delivery devices detailing the delivery mechanisms, device formats employed, and various biomedical applications. The integration of dosing control systems, examples of commercially available microtechnology-enabled drug delivery devices, remaining challenges, and future outlook are also discussed. PMID:25703045

  15. Design and fabrication of microflap actuators for steering of micro air vehicles

    NASA Astrophysics Data System (ADS)

    Zimbru, George C.; Lee, Woo Ho; Popa, Dan O.

    2009-05-01

    This paper presents the design, analysis, and fabrication of an array of microflap actuators that can produce a substantial aerodynamic force for course corrections of Micro Air Vehicles (MAVs) and low speed projectiles. In the past, several actuation principles, including microjet, magnetic and bubble actuators, and flapping wings have been proposed, and had varying degrees of success. In this paper, we discuss the benefits and drawbacks of past attempts, and the technology that can be used to address the microflap steering problem. We propose a hybrid microflap actuation scheme that combines two types of actuators including: 1) a MEMS fabricated "active" microactuator connected to a microflap, and 2) a "passive" fluidic channel system that harvests the potential energy in the high pressure field on the leading edge of the MAV or high speed projectile to achieve a desired deflection. An array of microflap actuators was prototyped using silicon MEMS fabrication and microassembly. A Silicon On Insulator (SOI) wafer with 100 micron thick device layer was used to as a substrate material to fabricate microflap structures with springs. Front and back side DRIE process was used to etch and release the microstructures including microflaps. Then, the microactuator was assembled on top of the microflap. The static and dynamic behaviors of a microflap were measured using a laser displacement sensor and were compared to the analytic model. In the near future, a prototyped microflap will be tested inside of a wind tunnel to measure the lift and drag at various air speeds.

  16. Preliminary characterization of active MEMS valves.

    SciTech Connect

    Barnard, Casey Anderson

    2010-08-01

    Partial characterization of a series of electrostatically actuated active microfluidic valves is to be performed. Tests are performed on a series of 24 valves from two different MEMS sets. Focus is on the physical deformation of the structures under variable pressure loadings, as well as voltage levels. Other issues that inhibit proper performance of the valves are observed, addressed and documented as well. Many microfluidic applications have need for the distribution of gases at finely specified pressures and times. To this end a series of electrostatically actuated active valves have been fabricated. Eight separate silicon die are discussed, each with a series of four active valves present. The devices are designed such that the valve boss is held at a ground, with a voltage applied to lower contacts. Resulting electrostatic forces pull the boss down against a series of stops, intended to create a seal as well as prevent accidental shorting of the device. They have been uniquely packaged atop a stack of material layers, which have inlaid channels for application of fluid flow to the backside of the valve. Electrical contact is supplied from the underlying printed circuit board, attached to external supplies and along traces on the silicon. Pressure is supplied from a reservoir of house compressed air, up to 100 Psig. This is routed through a Norgren R07-200-RGKA pressure regulator, rated to 150 Psig. From there flow passes a manually operated ball valve, and to a flow meter. Two flow meters were utilized; initially an Omega FMA1802 rated at 10 sccm, and followed by a Flocat model for higher flow rates up to 100 sccm. An Omega DPG4000-500 pressure gauge produced pressure measurements. Optical measurements were returned via a WYKO Interferometry probe station. This would allow for determination of physical deformations of the device under a variety of voltage and pressure loads. This knowledge could lead to insight as to the failure mechanisms of the device

  17. Performance evaluation of bending actuators made from electrostrictive graft elastomers

    NASA Astrophysics Data System (ADS)

    Su, Ji; Costen, Robert C.; Harrison, Joycelyn S.; Newbury, Kenneth M.; Leo, Donald J.

    2002-07-01

    Recently a new class of electrostrictive polymers, called electrostrictive graft elastomers, was developed at NASA Langley Research Center. In this work, the output force of a bending actuator made from electrostrictive graft elastomer was measured and modeled to understand the dependence of performance on device configuration. This understanding should lead to better actuator design and fabrication. The prototype bending actuator is 47micrometers thick and 8 mm wide. The output bending force at the tip was measured as a function of applied voltage and the distance from the tip to the holding stage. The output force at 2.1 kV increases from 124(mu) N at a length of 33.5 mm to 662(mu) N at 7 mm. Accourding to a small displacement, 5-layer, a strength-of- materials model, the output bending force of the actuator varies inversely with its length and directly with the square of the applied voltage. Consequently, the output bending force can be about 5 mN when the length of the actuator is reduced to 1 mm for application to micro- electromechanical (MEMS) devices. The experimental results will be presented and a method for enhancing the performance will also be discussed.

  18. On-Chip Micro-Electro-Mechanical System Fourier Transform Infrared (MEMS FT-IR) Spectrometer-Based Gas Sensing.

    PubMed

    Erfan, Mazen; Sabry, Yasser M; Sakr, Mohammad; Mortada, Bassem; Medhat, Mostafa; Khalil, Diaa

    2016-05-01

    In this work, we study the detection of acetylene (C2H2), carbon dioxide (CO2) and water vapor (H2O) gases in the near-infrared (NIR) range using an on-chip silicon micro-electro-mechanical system (MEMS) Fourier transform infrared (FT-IR) spectrometer in the wavelength range 1300-2500 nm (4000-7692 cm(-1)). The spectrometer core engine is a scanning Michelson interferometer micro-fabricated using a deep-etching technology producing self-aligned components. The light is free-space propagating in-plane with respect to the silicon chip substrate. The moving mirror of the interferometer is driven by a relatively large stroke electrostatic comb-drive actuator corresponding to about 30 cm(-1) resolution. Multi-mode optical fibers are used to connect light between the wideband light source, the interferometer, the 10 cm gas cell, and the optical detector. A wide dynamic range of gas concentration down to 2000 parts per million (ppm) in only 10 cm length gas cell is demonstrated. Extending the wavelength range to the mid-infrared (MIR) range up to 4200 nm (2380 cm(-1)) is also experimentally demonstrated, for the first time, using a bulk micro-machined on-chip MEMS FT-IR spectrometer. The obtained results open the door for an on-chip optical gas sensor for many applications including environmental sensing and industrial process control in the NIR/MIR spectral ranges. PMID:27044847

  19. Usage induced changes to surface topography and material properties in polysilicon MEMS electrothermal structures

    NASA Astrophysics Data System (ADS)

    Oak, Sahil; Ramachandran, Gautham; Dallas, Tim

    2012-03-01

    This paper presents the results of an experimental study of electrothermal poly-Si MEMS structures wherein changes to the surface topography and material properties are observed due to use. The ex-situ AFM characterization reveals changes in the surface topography after cyclic actuation. The extent of topical SiO2 appears to increase with the number of actuation cycles and increasing stress levels on the polysilicon surfaces. The differences in the surface topography and oxide thickness are characterized as a function of fatigue cycling and in-situ annealing of the electrothermal actuators. FEA analyses were performed to evaluate the magnitude and distribution of stresses in the actuators to compare stress effects from oxide development on electrothermomechanical structures. With the observation of topographical changes, the intrinsic material property like resistivity was also affected. A change of 1.4% was seen for a 20% duty cycle, 3.1% for 50% duty cycle and 4.1% for 80% duty cycle. Similar experiments were performed for sealed devices in order to observe the changes in resistivity under inert conditions. A comparison of change in resistivity for sealed devices and nonsealed devices was done. Finally, force-distance curves were plotted to ascertain the adhesion forces for the actuator surfaces before and after actuation. The adhesion forces increases from ~7nN (un-actuated chevron) to ~40nN (10,000 cycles).

  20. Micro-mechanics of ionic electroactive polymer actuators

    NASA Astrophysics Data System (ADS)

    Punning, Andres; Põldsalu, Inga; Kaasik, Friedrich; Vunder, Veiko; Aabloo, Alvo

    2015-04-01

    Commonly, modeling of the bending behavior of the ionic electroactive polymer (IEAP) actuators is based on the classical mechanics of cantilever beam. It is acknowledged, that the actuation of the ionic electroactive polymer (IEAP) actuators is symmetric about the centroid - the convex side of the actuator is expanding and the concave side is contracting for exactly the same amount, while the thickness of the actuator remains invariant. Actuating the IEAP actuators and sensors under scanning electron microscope (SEM), in situ, reveals that for some types of them this approach is incorrect. Comparison of the SEM micrographs using the Digital Image Correction (DIC) method results with the precise strain distribution of the IEAP actuators in two directions: in the axial direction, and in the direction of thickness. This information, in turn, points to the physical processes taking place within the electrodes as well as membrane of the trilayer laminate of sub-millimeter thickness. Comparison of the EAP materials, engaged as an actuator as well as a sensor, reveals considerable differences between the micro-mechanics of the two modes.

  1. Electro-Mechanical Actuators

    NASA Technical Reports Server (NTRS)

    2001-01-01

    The electro-mechanical actuator, a new electronics technology, is an electronic system that provides the force needed to move valves that control the flow of propellant to the engine. It is proving to be advantageous for the main propulsion system plarned for a second generation reusable launch vehicle. Hydraulic actuators have been used successfully in rocket propulsion systems. However, they can leak when high pressure is exerted on such a fluid-filled hydraulic system. Also, hydraulic systems require significant maintenance and support equipment. The electro-mechanical actuator is proving to be low maintenance and the system weighs less than a hydraulic system. The electronic controller is a separate unit powering the actuator. Each actuator has its own control box. If a problem is detected, it can be replaced by simply removing one defective unit. The hydraulic systems must sustain significant hydraulic pressures in a rocket engine regardless of demand. The electro-mechanical actuator utilizes power only when needed. A goal of the Second Generation Reusable Launch Vehicle Program is to substantially improve safety and reliability while reducing the high cost of space travel. The electro-mechanical actuator was developed by the Propulsion Projects Office of the Second Generation Reusable Launch Vehicle Program at the Marshall Space Flight Center.

  2. Cryogenic Piezoelectric Actuator

    NASA Technical Reports Server (NTRS)

    Jiang, Xiaoning; Cook, William B.; Hackenberger, Wesley S.

    2009-01-01

    In this paper, PMN-PT single crystal piezoelectric stack actuators and flextensional actuators were designed, prototyped and characterized for space optics applications. Single crystal stack actuators with footprint of 10 mm x10 mm and the height of 50 mm were assembled using 10 mm x10mm x0.15mm PMN-PT plates. These actuators showed stroke > 65 - 85 microns at 150 V at room temperature, and > 30 microns stroke at 77 K. Flextensional actuators with dimension of 10mm x 5 mm x 7.6 mm showed stroke of >50 microns at room temperature at driving voltage of 150 V. A flextensional stack actuator with dimension of 10 mm x 5 mm x 47 mm showed stroke of approx. 285 microns at 150 V at room temperature and > 100 microns at 77K under driving of 150 V should be expected. The large cryogenic stroke and high precision of these actuators are promising for cryogenic optics applications.

  3. Surface chemical modification for exceptional wear life of MEMS materials

    NASA Astrophysics Data System (ADS)

    Singh, R. Arvind; Satyanarayana, N.; Sinha, Sujeet Kumar

    2011-12-01

    Micro-Electro-Mechanical-Systems (MEMS) are built at micro/nano-scales. At these scales, the interfacial forces are extremely strong. These forces adversely affect the smooth operation and cause wear resulting in the drastic reduction in wear life (useful operating lifetime) of actuator-based devices. In this paper, we present a surface chemical modification method that reduces friction and significantly extends the wear life of the two most popular MEMS structural materials namely, silicon and SU-8 polymer. The method includes surface chemical treatment using ethanolamine-sodium phosphate buffer, followed by coating of perfluoropolyether (PFPE) nanolubricant on (i) silicon coated with SU-8 thin films (500 nm) and (ii) MEMS process treated SU-8 thick films (50 μm). After the surface chemical modification, it was observed that the steady-state coefficient of friction of the materials reduced by 4 to 5 times and simultaneously their wear durability increased by more than three orders of magnitude (> 1000 times). The significant reduction in the friction coefficients is due to the lubrication effect of PFPE nanolubricant, while the exceptional increase in their wear life is attributed to the bonding between the -OH functional group of ethanolamine treated SU-8 thin/thick films and the -OH functional group of PFPE. The surface chemical modification method acts as a common route to enhance the performance of both silicon and SU-8 polymer. It is time-effective (process time ≤ 11 min), cost-effective and can be readily integrated into MEMS fabrication/assembly processes. It can also work for any kind of structural material from which the miniaturized devices are/can be made.

  4. MEMS tunable filter for telecom applications

    NASA Astrophysics Data System (ADS)

    Overstolz, Thomas; Niederer, Guido; Noell, Wilfried; Gale, Michael T.; Herzig, Hans Peter; Obi, Samuel; Thiele, Hans; de Rooij, Nicolaas F.

    2004-08-01

    We report on an angle-tunable oblique incidence resonant grating filter that can be used to drop individual channels from the C-band for incident TE-polarized light. For tuning purpose, the filter is glued onto a tiltable platform of a MEMS device. Continues scanning of the platform allows to monitor channel presence and power. The reflected wavelength is tuned by changing the angle of incidence of the resonant grating filter, which is composed of two thin films with a grating pattern on top of it. The first layer on a glass substrate acts as a waveguide, and the second layer separates the waveguide from the grating. The grating has been patterned by holographic recording and dry etching. The filter works over a wavelength range of 1520-1580 nm and its response has a Lorentian shape with 0.5 nm FWHM peak width. The MEMS part is based on SOI technology and is processed in only two DRIE steps. The platform measures 2 x 2 mm2 with a through-hole of 1.6 x 1.8 mm2 for light transmission. Two arrays of combs attached to the platform as well as a set of four static combs are used to electrostatically incline the platform by +/- 4° with a driving voltage of about 60 V.

  5. A MEMS Dielectric Affinity Glucose Biosensor.

    PubMed

    Huang, Xian; Li, Siqi; Davis, Erin; Li, Dachao; Wang, Qian; Lin, Qiao

    2013-06-20

    Continuous glucose monitoring (CGM) sensors based on affinity detection are desirable for long-term and stable glucose management. However, most affinity sensors contain mechanical moving structures and complex design in sensor actuation and signal readout, limiting their reliability in subcutaneously implantable glucose detection. We have previously demonstrated a proof-of-concept dielectric glucose sensor that measured pre-mixed glucose-sensitive polymer solutions at various glucose concentrations. This sensor features simplicity in sensor design, and possesses high specificity and accuracy in glucose detection. However, lack of glucose diffusion passage, this device is unable to fulfill real-time in-vivo monitoring. As a major improvement to this device, we present in this paper a fully implantable MEMS dielectric affinity glucose biosensor that contains a perforated electrode embedded in a suspended diaphragm. This capacitive-based sensor contains no moving parts, and enables glucose diffusion and real-time monitoring. The experimental results indicate that this sensor can detect glucose solutions at physiological concentrations and possesses good reversibility and reliability. This sensor has a time constant to glucose concentration change at approximately 3 min, which is comparable to commercial systems. The sensor has potential applications in fully implantable CGM that require excellent long-term stability and reliability. PMID:24511215

  6. MEMS electromagnetic energy harvesters with multiple resonances

    NASA Astrophysics Data System (ADS)

    Nelatury, Sudarshan R.; Gray, Robert

    2014-06-01

    There is going on a flurry of research activity in the development of effcient energy harvesters from all branches of energy conversion. The need for developing self-powered wireless sensors and actuators to be employed in unmanned combat vehicles also seems to grow steadily. These vehicles are inducted into perilous war zones for silent watch missions. Energy management is sometimes carried out using misson-aware energy expenditure strategies. Also, when there is a requirement for constant monitoring of events, the sensors and the subsystems of combat vehicles require energy harvesters that can operate over a discrete set of spot frequencies. This paper attempts to review some of the recent techniques and the energy harvesting devices based on electromagnetic and electromechanical principles. In particular, we shall discuss the design and performance of a MEMS-harvester that exhibits multiple resonances. Frequency response of a simulated electromagnetic harvester is plotted. It has three dominant peaks at three different resonant frequencies. Variation in the load power in the normalized units as a function of load is found, which determines the matched load resistance.

  7. A Novel Dog-Bone Oscillating AFM Probe with Thermal Actuation and Piezoresistive Detection †

    PubMed Central

    Xiong, Zhuang; Mairiaux, Estelle; Walter, Benjamin; Faucher, Marc; Buchaillot, Lionel; Legrand, Bernard

    2014-01-01

    In order to effectively increase the resonance frequency and the quality factor of atomic force microscope (AFM) probes, a novel oscillating probe based on a dog-bone shaped MEMS resonator was conceived, designed, fabricated and evaluated. The novel probe with 400 μm in length, 100 μm in width and 5 μm in thickness was enabled to feature MHz resonance frequencies with integrated thermal actuation and piezoresistive detection. Standard silicon micromachining was employed. Both electrical and optical measurements were carried out in air. The resonance frequency and the quality factor of the novel probe were measured to be 5.4 MHz and 4000 respectively, which are much higher than those (about several hundreds of kHz) of commonly used cantilever probes. The probe was mounted onto a commercial AFM set-up through a dedicated probe-holder and circuit board. Topographic images of patterned resist samples were obtained. It is expected that the resonance frequency and the measurement bandwidth of such probes will be further increased by a proper downscaling, thus leading to a significant increase in the scanning speed capability of AFM instruments. PMID:25365463

  8. Magnetically Actuated Seal

    NASA Technical Reports Server (NTRS)

    Pinera, Alex

    2013-01-01

    This invention is a magnetically actuated seal in which either a single electromagnet, or multiple electromagnets, are used to control the seal's position. This system can either be an open/ close type of system or an actively controlled system.

  9. Rotary Series Elastic Actuator

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Mehling, Joshua S. (Inventor); Parsons, Adam H. (Inventor); Griffith, Bryan Kristian (Inventor); Radford, Nicolaus A. (Inventor); Permenter, Frank Noble (Inventor); Davis, Donald R. (Inventor); Ambrose, Robert O. (Inventor); Junkin, Lucien Q. (Inventor)

    2013-01-01

    A rotary actuator assembly is provided for actuation of an upper arm assembly for a dexterous humanoid robot. The upper arm assembly for the humanoid robot includes a plurality of arm support frames each defining an axis. A plurality of rotary actuator assemblies are each mounted to one of the plurality of arm support frames about the respective axes. Each rotary actuator assembly includes a motor mounted about the respective axis, a gear drive rotatably connected to the motor, and a torsion spring. The torsion spring has a spring input that is rotatably connected to an output of the gear drive and a spring output that is connected to an output for the joint.

  10. Rotary series elastic actuator

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Mehling, Joshua S. (Inventor); Parsons, Adam H. (Inventor); Griffith, Bryan Kristian (Inventor); Radford, Nicolaus A. (Inventor); Permenter, Frank Noble (Inventor); Davis, Donald R. (Inventor); Ambrose, Robert O. (Inventor); Junkin, Lucien Q. (Inventor)

    2012-01-01

    A rotary actuator assembly is provided for actuation of an upper arm assembly for a dexterous humanoid robot. The upper arm assembly for the humanoid robot includes a plurality of arm support frames each defining an axis. A plurality of rotary actuator assemblies are each mounted to one of the plurality of arm support frames about the respective axes. Each rotary actuator assembly includes a motor mounted about the respective axis, a gear drive rotatably connected to the motor, and a torsion spring. The torsion spring has a spring input that is rotatably connected to an output of the gear drive and a spring output that is connected to an output for the joint.

  11. Muscle Motion Solenoid Actuator

    NASA Astrophysics Data System (ADS)

    Obata, Shuji

    It is one of our dreams to mechanically recover the lost body for damaged humans. Realistic humanoid robots composed of such machines require muscle motion actuators controlled by all pulling actions. Particularly, antagonistic pairs of bi-articular muscles are very important in animal's motions. A system of actuators is proposed using the electromagnetic force of the solenoids with the abilities of the stroke length over 10 cm and the strength about 20 N, which are needed to move the real human arm. The devised actuators are based on developments of recent modern electro-magnetic materials, where old time materials can not give such possibility. Composite actuators are controlled by a high ability computer and software making genuine motions.

  12. Linear Proof Mass Actuator

    NASA Technical Reports Server (NTRS)

    Holloway, Sidney E., III

    1994-01-01

    This paper describes the mechanical design, analysis, fabrication, testing, and lessons learned by developing a uniquely designed spaceflight-like actuator. The linear proof mass actuator (LPMA) was designed to attach to both a large space structure and a ground test model without modification. Previous designs lacked the power to perform in a terrestrial environment while other designs failed to produce the desired accelerations or frequency range for spaceflight applications. Thus, the design for a unique actuator was conceived and developed at NASA Langley Research Center. The basic design consists of four large mechanical parts (mass, upper housing, lower housing, and center support) and numerous smaller supporting components including an accelerometer, encoder, and four drive motors. Fabrication personnel were included early in the design phase of the LPMA as part of an integrated manufacturing process to alleviate potential difficulties in machining an already challenging design. Operating testing of the LPMA demonstrated that the actuator is capable of various types of load functions.

  13. Linear Proof Mass Actuator

    NASA Technical Reports Server (NTRS)

    Holloway, S. E., III

    1995-01-01

    This paper describes the mechanical design, analysis, fabrication, testing, and lessons learned by developing a uniquely designed spaceflight-like actuator. The Linear Proof Mass Actuator (LPMA) was designed to attach to both a large space structure and a ground test model without modification. Previous designs lacked the power to perform in a terrestrial environment while other designs failed to produce the desired accelerations or frequency range for spaceflight applications. Thus, the design for a unique actuator was conceived and developed at NASA Langley Research Center. The basic design consists of four large mechanical parts (Mass, Upper Housing, Lower Housing, and Center Support) and numerous smaller supporting components including an accelerometer, encoder, and four drive motors. Fabrication personnel were included early in the design phase of the LPMA as part of an integrated manufacturing process to alleviate potential difficulties in machining an already challenging design. Operational testing of the LPMA demonstrated that the actuator is capable of various types of load functions.

  14. Microelectromechanical systems integrating molecular spin crossover actuators

    NASA Astrophysics Data System (ADS)

    Manrique-Juarez, Maria D.; Rat, Sylvain; Mathieu, Fabrice; Saya, Daisuke; Séguy, Isabelle; Leïchlé, Thierry; Nicu, Liviu; Salmon, Lionel; Molnár, Gábor; Bousseksou, Azzedine

    2016-08-01

    Silicon MEMS cantilevers coated with a 200 nm thin layer of the molecular spin crossover complex [Fe(H2B(pz)2)2(phen)] (H2B(pz)2 = dihydrobis(pyrazolyl)borate and phen = 1,10-phenantroline) were actuated using an external magnetic field and their resonance frequency was tracked by means of integrated piezoresistive detection. The light-induced spin-state switching of the molecules from the ground low spin to the metastable high spin state at 10 K led to a well-reproducible shift of the cantilever's resonance frequency (Δfr = -0.52 Hz). Control experiments at different temperatures using coated as well as uncoated devices along with simple calculations support the assignment of this effect to the spin transition. This latter translates into changes in mechanical behavior of the cantilever due to the strong spin-state/lattice coupling. A guideline for the optimization of device parameters is proposed so as to efficiently harness molecular scale movements for large-scale mechanical work, thus paving the road for nanoelectromechanical systems (NEMS) actuators based on molecular materials.

  15. Laser Initiated Actuator study

    SciTech Connect

    Watson, B.

    1991-06-27

    The program task was to design and study a laser initiated actuator. The design of the actuator is described, it being comprised of the fiber and body subassemblies. The energy source for all experiments was a Spectra Diode 2200-H2 laser diode. The diode is directly coupled to a 100 micron core, 0.3 numerical aperture fiber optic terminated with an SMA connector. The successful testing results are described and recommendations are made.

  16. Inertial Linear Actuators

    NASA Technical Reports Server (NTRS)

    Laughlin, Darren

    1995-01-01

    Inertial linear actuators developed to suppress residual accelerations of nominally stationary or steadily moving platforms. Function like long-stroke version of voice coil in conventional loudspeaker, with superimposed linear variable-differential transformer. Basic concept also applicable to suppression of vibrations of terrestrial platforms. For example, laboratory table equipped with such actuators plus suitable vibration sensors and control circuits made to vibrate much less in presence of seismic, vehicular, and other environmental vibrational disturbances.

  17. Combustion powered linear actuator

    DOEpatents

    Fischer, Gary J.

    2007-09-04

    The present invention provides robotic vehicles having wheeled and hopping mobilities that are capable of traversing (e.g. by hopping over) obstacles that are large in size relative to the robot and, are capable of operation in unpredictable terrain over long range. The present invention further provides combustion powered linear actuators, which can include latching mechanisms to facilitate pressurized fueling of the actuators, as can be used to provide wheeled vehicles with a hopping mobility.

  18. Tendon Driven Finger Actuation System

    NASA Technical Reports Server (NTRS)

    Ihrke, Chris A. (Inventor); Reich, David M. (Inventor); Bridgwater, Lyndon (Inventor); Linn, Douglas Martin (Inventor); Askew, Scott R. (Inventor); Diftler, Myron A. (Inventor); Platt, Robert (Inventor); Hargrave, Brian (Inventor); Valvo, Michael C. (Inventor); Abdallah, Muhammad E. (Inventor); Permenter, Frank Noble (Inventor); Mehling, Joshua S. (Inventor)

    2013-01-01

    A humanoid robot includes a robotic hand having at least one finger. An actuation system for the robotic finger includes an actuator assembly which is supported by the robot and is spaced apart from the finger. A tendon extends from the actuator assembly to the at least one finger and ends in a tendon terminator. The actuator assembly is operable to actuate the tendon to move the tendon terminator and, thus, the finger.

  19. MEMS Reliability Assurance Activities at JPL

    NASA Technical Reports Server (NTRS)

    Kayali, S.; Lawton, R.; Stark, B.

    2000-01-01

    An overview of Microelectromechanical Systems (MEMS) reliability assurance and qualification activities at JPL is presented along with the a discussion of characterization of MEMS structures implemented on single crystal silicon, polycrystalline silicon, CMOS, and LIGA processes. Additionally, common failure modes and mechanisms affecting MEMS structures, including radiation effects, are discussed. Common reliability and qualification practices contained in the MEMS Reliability Assurance Guideline are also presented.

  20. Hybrid electromechanical actuator and actuation system

    NASA Technical Reports Server (NTRS)

    Su, Ji (Inventor); Xu, Tian-Bing (Inventor)

    2008-01-01

    A hybrid electromechanical actuator has two different types of electromechanical elements, one that expands in a transverse direction when electric power is applied thereto and one that contracts in a transverse direction when electric power is applied thereto. The two electromechanical elements are (i) disposed in relation to one another such that the transverse directions thereof are parallel to one another, and (ii) mechanically coupled to one another at least at two opposing edges thereof. Electric power is applied simultaneously to the elements.

  1. Status of the MEMS industry

    NASA Astrophysics Data System (ADS)

    Eloy, J. C.; Mounier, E.

    2005-01-01

    This paper analyzes the current status of the MEMS industry. After the 2000 and 2001 years with high expectation for MEMS devices for the optical telecommunications, followed by the 2002/2003 downturn leading to the closing of more than 100 MEMS fabs worldwide, this industry has come back to a more normal way of working. There are still 10 to 15 companies worldwide which will certainly end their business within 16 months but the overall activity is more stabilized. MEMS markets will reach 5.4 B$ in 2005, with growth rates which are very different if one compares different market segments. The top 30 MEMS manufacturers have a market share of more than 60% of the total market; the remaining 40% is shared by more than 200 companies. Most of the smallest companies have 2 business models: either small companies developing specific processes, with R&D and small volume production, or systems manufacturers with integrated fabs. These fabs are loaded at less than 40% but considered as an enabler for the system business. Many changes are currently appearing: as contract manufacturers become more credible, system manufacturers are looking to externalise their fabrication processes; fabless companies are also finding companies able to produce at the right cost and quality. The fabless business model is now well structured.

  2. Thermally actuated resonant silicon crystal nanobalances

    NASA Astrophysics Data System (ADS)

    Hajjam, Arash

    As the potential emerging technology for next generation integrated resonant sensors and frequency references as well as electronic filters, micro-electro-mechanical resonators have attracted a lot of attention over the past decade. As a result, a wide variety of high frequency micro/nanoscale electromechanical resonators have recently been presented. MEMS resonators, as low-cost highly integrated and ultra-sensitive mass sensors, can potentially provide new opportunities and unprecedented capabilities in the area of mass sensing. Such devices can provide orders of magnitude higher mass sensitivity and resolution compared to Film Bulk Acoustic resonators (FBAR) or the conventional quartz and Surface Acoustic Wave (SAW) resonators due to their much smaller sizes and can be batch-fabricated and utilized in highly integrated large arrays at a very low cost. In this research, comprehensive experimental studies on the performance and durability of thermally actuated micromechanical resonant sensors with frequencies up to tens of MHz have been performed. The suitability and robustness of the devices have been demonstrated for mass sensing applications related to air-borne particles and organic gases. In addition, due to the internal thermo-electro-mechanical interactions, the active resonators can turn some of the consumed electronic power back into the mechanical structure and compensate for the mechanical losses. Therefore, such resonators can provide self-sustained-oscillation without the need for any electronic circuitry. This unique property has been deployed to demonstrate a prototype self-sustained sensor for air-borne particle monitoring. I have managed to overcome one of the obstacles for MEMS resonators, which is their relatively poor temperature stability. This is a major drawback when compared with the conventional quartz crystals. A significant decrease of the large negative TCF for the resonators has been attained by doping the devices with a high

  3. Electrostatic MEMS devices with high reliability

    SciTech Connect

    Goldsmith, Charles L; Auciello, Orlando H; Sumant, Anirudha V; Mancini, Derrick C; Gudeman, Chris; Sampath, Suresh; Carlilse, John A; Carpick, Robert W; Hwang, James

    2015-02-24

    The present invention provides for an electrostatic microelectromechanical (MEMS) device comprising a dielectric layer separating a first conductor and a second conductor. The first conductor is moveable towards the second conductor, when a voltage is applied to the MEMS device. The dielectric layer recovers from dielectric charging failure almost immediately upon removal of the voltage from the MEMS device.

  4. MEMS Reliability Assurance Guidelines for Space Applications

    NASA Technical Reports Server (NTRS)

    Stark, Brian (Editor)

    1999-01-01

    This guide is a reference for understanding the various aspects of microelectromechanical systems, or MEMS, with an emphasis on device reliability. Material properties, failure mechanisms, processing techniques, device structures, and packaging techniques common to MEMS are addressed in detail. Design and qualification methodologies provide the reader with the means to develop suitable qualification plans for the insertion of MEMS into the space environment.

  5. Implementation and analysis of an innovative digital charge amplifier for hysteresis reduction in piezoelectric stack actuators

    SciTech Connect

    Bazghaleh, Mohsen Grainger, Steven; Cazzolato, Ben; Lu, Tien-Fu; Oskouei, Reza

    2014-04-15

    Smart actuators are the key components in a variety of nanopositioning applications, such as scanning probe microscopes and atomic force microscopes. Piezoelectric actuators are the most common smart actuators due to their high resolution, low power consumption, and wide operating frequency but they suffer hysteresis which affects linearity. In this paper, an innovative digital charge amplifier is presented to reduce hysteresis in piezoelectric stack actuators. Compared to traditional analog charge drives, experimental results show that the piezoelectric stack actuator driven by the digital charge amplifier has less hysteresis. It is also shown that the voltage drop of the digital charge amplifier is significantly less than the voltage drop of conventional analog charge amplifiers.

  6. Cavity optoelectromechanical system combining strong electrical actuation with ultrasensitive transduction

    SciTech Connect

    McRae, Terry G.; Lee, Kwan H.; Harris, Glen I.; Knittel, Joachim; Bowen, Warwick P.

    2010-08-15

    A cavity optoelectromechanical system is reported which combines the ultrasensitive transduction of cavity optomechanical systems with the electrical actuation of nanoelectromechanical systems. Ultrasensitive mechanical transduction is achieved via optomechanical coupling. Electrical gradient forces as large as 0.40 {mu}N are realized, facilitating strong actuation with ultralow dissipation. A scanning probe microscope is implemented, capable of characterizing the mechanical modes. The integration of electrical actuation into optomechanical devices is an enabling step toward the regime of quantum nonlinear dynamics and provides capabilities for quantum control of mechanical motion.

  7. Development of scanning micromirror with discrete steering angles

    NASA Astrophysics Data System (ADS)

    Wang, Z. F.; Noell, W.; Zickar, M.; de Rooij, N. F.; Lim, S. P.

    2006-04-01

    This paper describes the development of a new MEMS-based optical mirror, which can perform optical switching (or scanning) function with discrete reflection angles in an outof- plane configuration. The device is fabricated through the Deep Reactive Ion Etching (DRIE) process on silicon-on-insulator (SOI) wafer, followed by wafer dicing and assembly with two metalised glass dies. The MEMS mirror can be tilted under electrostatic force between the opposite electrodes embedded on SOI and glass structures. The most outstanding feature of this MEMS mirror is the discrete and therefore, reliable tilting angles, which generated by its unique mechanical structural design and electrostatic-driven mechanism. In this paper, the concept of the new scanning mirror is presented, followed by the introduction of device design, mechanical simulation, microfabrication process, assembly solution, and some testing results. The potential applications of this new MEMS mirror include optical scanning, optical sensing (or detection), and optical switching.

  8. Non-collinear valve actuator

    NASA Technical Reports Server (NTRS)

    Richard, James A. (Inventor)

    2012-01-01

    A non-collinear valve actuator includes a primary actuating system and a return spring system with each applying forces to a linkage system in order to regulate the flow of a quarter-turn valve. The primary actuating system and return spring system are positioned non-collinearly, which simply means the primary actuating system and return spring system are not in line with each other. By positioning the primary actuating system and return spring system in this manner, the primary actuating system can undergo a larger stroke while the return spring system experiences significantly less displacement. This allows the length of the return spring to be reduced due to the minimization of displacement thereby reducing the weight of the return spring system. By allowing the primary actuating system to undergo longer strokes, the weight of the primary actuating system may also be reduced. Accordingly, the weight of the non-collinear valve actuator is reduced.

  9. MEMS fluid viscosity sensor.

    PubMed

    Ballato, Arthur

    2010-03-01

    Quartz shear resonators are employed widely as sensors to measure Newtonian viscosities of liquids. Perturbation of the electrical equivalent circuit parameters of the plate resonator by the fluid loading permits calculation of the mass density-shear viscosity product. Use of doubly rotated resonators does permit additional information to be obtained, but in no case can the viscosity and mass density values be separated. In these measurements, the resonator surface is exposed to a measurand bath whose extent greatly exceeds the penetration depth of the evanescent shear mode excited by the active element. Here we briefly review past techniques and current art, and sketch a proposal involving the interesting situation in which the separation between the resonator and a confining wall is less than the penetration depth of the fluid occupying the intervening region. To highlight the salient features of this novel case, the discussion is limited to the very idealized circumstance of a strictly 1-D problem, unencumbered by the vicissitudes inevitably encountered in practice. An appendix mentions some of these functional impedimenta and indicates how deviations from ideality might be approached in engineering embodiments. When the fluid confinement is of the order of the penetration depth, the resonator perturbation becomes a sensitive function of the separation, and it is found that viscosity and density may be separately and uniquely determined. Moreover, extreme miniaturization is a natural consequence because the penetration depth generally is on the order of micrometers for frequencies around 1 MHz at temperatures and pressures ordinarily encountered with gases and liquids. Micro-electro-mechanical (MEMS) versions of viscometers and associated types of fluid sensors are thereby enabled. PMID:20211786

  10. Influence of materials' optical response on actuation dynamics by Casimir forces

    NASA Astrophysics Data System (ADS)

    Sedighi, M.; Broer, W. H.; Van der Veeke, S.; Svetovoy, V. B.; Palasantzas, G.

    2015-06-01

    The dependence of the Casimir force on the frequency-dependent dielectric functions of interacting materials makes it possible to tailor the actuation dynamics of microactuators. The Casimir force is largest for metallic interacting systems due to the high absorption of conduction electrons in the far-infrared range. For less conductive systems, such as phase change materials or conductive silicon carbide, the reduced force offers the advantage of increased stable operation of MEMS devices against pull-in instabilities that lead to unwanted stiction. Bifurcation analysis with phase portraits has been used to compare the sensitivity of a model actuator when the optical properties are altered.

  11. Modeling, simulation, and testing of the mechanical dynamics of and RF MEMS switch.

    SciTech Connect

    Sumali, Hartono; Epp, David S.; Massad, Jordan Elias; Dyck, Christopher William; Starr, Michael James

    2005-07-01

    Mechanical dynamics can be a determining factor for the switching speed of radio-frequency microelectromechanical systems (RF MEMS) switches. This paper presents the simulation of the mechanical motion of a microswitch under actuation. The switch has a plate suspended by springs. When an electrostatic actuation is applied, the plate moves toward the substrate and closes the switch. Simulations are calculated via a high-fidelity finite element model that couples solid dynamics with electrostatic actuation. It incorporates non-linear coupled dynamics and accommodates fabrication variations. Experimental modal analysis gives results in the frequency domain that verifies the natural frequencies and mode shapes predicted by the model. An effective 1D model is created and used to calculate an actuation voltage waveform that minimizes switch velocity at closure. In the experiment, the switch is actuated with this actuation voltage, and the displacements of the switch at various points are measured using a laser Doppler velocimeter through a microscope. The experiments are repeated on several switches from different batches. The experimental results verify the model.

  12. "Mem's the Word": Examining the Writing of Mem Fox.

    ERIC Educational Resources Information Center

    Gilles, Carol

    2000-01-01

    Focuses on the work of Mem Fox. Explores Fox's life in order to better understand her work; examines books she has written for teachers and for parents; and reviews her children's books, emphasizing children's and teachers comments. Looks at best-loved books, bedtime books, predictable books for early readers, books that play with language, and…

  13. Digital Actuator Technology

    SciTech Connect

    Ken Thomas; Ted Quinn; Jerry Mauck; Richard Bockhorst

    2014-09-01

    There are significant developments underway in new types of actuators for power plant active components. Many of these make use of digital technology to provide a wide array of benefits in performance of the actuators and in reduced burden to maintain them. These new product offerings have gained considerable acceptance in use in process plants. In addition, they have been used in conventional power generation very successfully. This technology has been proven to deliver the benefits promised and substantiate the claims of improved performance. The nuclear industry has been reluctant to incorporate digital actuator technology into nuclear plant designs due to concerns due to a number of concerns. These could be summarized as cost, regulatory uncertainty, and a certain comfort factor with legacy analog technology. The replacement opportunity for these types of components represents a decision point for whether to invest in more modern technology that would provide superior operational and maintenance benefits. Yet, the application of digital technology has been problematic for the nuclear industry, due to qualification and regulatory issues. With some notable exceptions, the result has been a continuing reluctance to undertake the risks and uncertainties of implementing digital actuator technology when replacement opportunities present themselves. Rather, utilities would typically prefer to accept the performance limitations of the legacy analog actuator technologies to avoid impacts to project costs and schedules. The purpose of this report is to demonstrate that the benefits of digital actuator technology can be significant in terms of plant performance and that it is worthwhile to address the barriers currently holding back the widespread development and use of this technology. It addresses two important objectives in pursuit of the beneficial use of digital actuator technology for nuclear power plants: 1. To demonstrate the benefits of digital actuator

  14. Thermally actuated mechanical systems

    NASA Astrophysics Data System (ADS)

    Sul, Onejae

    This thesis will discuss the generation of controlled sub-micron motions using novel micro actuators. Our research focuses on the development of an arm-type actuator and a free-motion locomotive walking device. Nano-science and nano-technology focuses on the creation of novel functional materials and also at the development of new fabrication techniques incorporating them. In the fields of novel fabrication techniques, manipulations of micron or sub-micron objects by micro actuators have been suggested in the science and engineering societies for mainly two reasons. From a scientific standpoint, new tools enable new prospective sciences, as is evident from the development of the atomic force microscope. From an engineering standpoint, the miniaturization of manipulation tools will require less material and less energy during a material's production. In spite of such importance, progress in the actuator miniaturization is in a primitive state, especially for the micro mobile devices. The thesis will be a key step in pursuit of this goal with an emphasis on generating motions. Our static actuator uses the excellent elastic properties of multiwall carbon nanotubes as a template for a bimorph system. Deflections in response to temperature variations are demonstrated. The mobile device itself is a bimorph system consisting of thin metal films. Control mechanisms for its velocity and steering are discussed. Finally, fundamental limits on the capabilities of the two devices in a more general sense are discussed under via laws of physics.

  15. Advancing MEMS Technology Usage through the MUMPS (Multi-User MEMS Processes) Program

    NASA Technical Reports Server (NTRS)

    Koester, D. A.; Markus, K. W.; Dhuler, V.; Mahadevan, R.; Cowen, A.

    1995-01-01

    In order to help provide access to advanced micro-electro-mechanical systems (MEMS) technologies and lower the barriers for both industry and academia, the Microelectronic Center of North Carolina (MCNC) and ARPA have developed a program which provides users with access to both MEMS processes and advanced electronic integration techniques. The four distinct aspects of this program, the multi-user MEMS processes (MUMP's), the consolidated micro-mechanical element library, smart MEMS, and the MEMS technology network are described in this paper. MUMP's is an ARPA-supported program created to provide inexpensive access to MEMS technology in a multi-user environment. It is both a proof-of-concept and educational tool that aids in the development of MEMS in the domestic community. MUMP's technologies currently include a 3-layer poly-silicon surface micromachining process and LIGA (lithography, electroforming, and injection molding) processes that provide reasonable design flexibility within set guidelines. The consolidated micromechanical element library (CaMEL) is a library of active and passive MEMS structures that can be downloaded by the MEMS community via the internet. Smart MEMS is the development of advanced electronics integration techniques for MEMS through the application of flip chip technology. The MEMS technology network (TechNet) is a menu of standard substrates and MEMS fabrication processes that can be purchased and combined to create unique process flows. TechNet provides the MEMS community greater flexibility and enhanced technology accessibility.

  16. MEMS-based phased arrays for army applications

    NASA Astrophysics Data System (ADS)

    Ruffin, Paul B.; Holt, James C.; Mullins, James H.; Hudson, Tracy; Rock, Janice

    2007-04-01

    The Army Aviation and Missile Research, Development, and Engineering Center (AMRDEC) initiated a research and development project several years ago to develop Micro Electro-Mechanical Systems (MEMS)-based phased arrays to provide rapid beam steering for sensors, optical and Radio Frequency (RF) missile seekers, and RF communication links. In particular, the joint AMRDEC/Army Research Laboratory (ARL) project, which leverages low-cost phased array components developed under the Defense Advanced Research Projects Agency (DARPA) Low Cost Cruise Missile Defense (LCCMD) project, is developing RF switches, phase shifters, and passive phased sub-arrays to provide a fast scanning capability for pointing, acquisition, tracking, and data communication; and rugged, optical MEMS-based phased arrays to be employed in small volume, low-cost Laser Detection and Ranging (LADAR) seekers. The current status of the project is disclosed in this paper. Critical technical challenges, which include design and fabrication of the RF switches and phase shifters, design and fabrication of micro lens arrays, control of beam steering, scanning angular resolution and array losses, are discussed. Our approach to overcoming the technical barriers and achieving required performance is also discussed. Finally, the validity of a MEMS technology approach against competing low cost technologies is presented.

  17. Electro thermal analysis of rotary type micro thermal actuator

    NASA Astrophysics Data System (ADS)

    Anwar, M. Arefin; Packirisamy, Muthukumaran; Ahmed, A. K. Waiz

    2005-09-01

    In micro domain, thermal actuators are favored because it provides higher force and deflection than others. This paper presents a new type of micro thermal actuator that provides rotary motion of the circular disc shaped cold arm, which can be used in various optical applications, such as, switching, attenuation, diffraction, etc. The device has been fabricated in MUMPS technology. In this new design, the hot arms are arranged with the cold disc in such a way that thermal expansion of the hot arms due to Joule heating, will make the cold disc to rotate and the rotation is unidirectional on loading. The dominant heat transfer modes in the operating temperature zone are through the anchor and the air between the structure and the substrate because of the very low gap provided by MUMPS. A mathematical model was used for predicting steady state temperature profile along the actuator length and rotational behavior of the cold disc under different applied voltages. A 3-D coupled field finite element analysis (FEM) for the device is also presented. A FEM analysis was done by defining an air volume around the structure and substrate below the structure. Results obtained from the mathematical model, was compared with that of the finite element analysis. The presented results confirm the applicability of this novel rotary type thermal actuator for many optical MEMS applications.

  18. MEMS micromirrors for optical switching in multichannel spectrophotometers

    NASA Astrophysics Data System (ADS)

    Tuantranont, Adisorn; Lomas, Tanom; Bright, Victor M.

    2004-04-01

    This paper reports for the first time that a novel MEMS-based micromirror switch has successfully demonstrated for optical switching in a multi-channel fiber optics spectrophotometer system. The conventional optomechanical fiber optic switches for multi-channel spectrophotometers available in market are bulky, slow, low numbers of channels and expensive. Our foundry MEMS-based micromirror switch designed for integrating with commercially available spectrophotometers offers more compact devices, increased number of probing channels, higher performance and cheaper. Our MEMS-based micromirror switch is a surface micromachined mirror fabricated through MUMPs foundry. The 280 μm x 280 μm gold coated mirror is suspended by the double-gimbal structure for X and Y axis scanning. Self-assembly by solders is used to elevate the torsion mirror 30 μm over the substrate to achieve large scan angle. The solder self-assembly approach dramatically reduces the time to assembly the switch. The scan mirror is electrostatically controlled by applying voltages. The individual probing signal from each probing head is guided by fibers with collimated lenses and incidents on the center of the mirror. The operating scan angle is in the range of 3.5 degrees with driving voltage of 0-100 V. The fastest switching time of 4 millisecond (1 ms rise time and 3 ms fall time) is measured corresponding to the maximum speed of the mirror of 0.25 kHz when the mirror is scanning at +/- 1.5 degrees. The micromirror switch is packaged with a multi-mode fiber bundle using active alignment technique. A centered fiber is the output fiber that is connected to spectrophotometer. Maximum insertion loss of 5 dB has been obtained. The accuracy of measured spectral data is equivalent to the single channel spectrophotometer with a small degradation on probing signal due to fiber coupling.

  19. A polymer-based Fabry-Perot filter integrated with 3-D MEMS structures

    NASA Astrophysics Data System (ADS)

    Zhang, Ping (Cerina); Le, Kevin; Malalur-Nagaraja-Rao, Smitha; Hsu, Lun-Chen; Chiao, J.-C.

    2006-01-01

    Polymers have been considered as one of the most versatile materials in making optical devices for communication and sensor applications. They provide good optical transparency to form filters, lenses and many optical components with ease of fabrication. They are scalable and compatible in dimensions with requirements in optics and can be fabricated on inorganic substrates, such as silicon and quartz. Recent polymer synthesis also made great progresses on conductive and nonlinear polymers, opening opportunities for new applications. In this paper, we discussed hybrid-material integration of polymers on silicon-based microelectromechanical system (MEMS) devices. The motivation is to combine the advantages of demonstrated silicon-based MEMS actuators and excellent optical performance of polymers. We demonstrated the idea with a polymer-based out-of-plane Fabry-Perot filter that can be self-assembled by scratch drive actuators. We utilized a fabrication foundry service, MUMPS (Multi-User MEMS Process), to demonstrate the feasibility and flexibility of integration. The polysilicon, used as the structural material for construction of 3-D framework and actuators, has high absorption in the visible and near infrared ranges. Therefore, previous efforts using a polysilicon layer as optical interfaces suffer from high losses. We applied the organic compound materials on the silicon-based framework within the optical signal propagation path to form the optical interfaces. In this paper, we have shown low losses in the optical signal processing and feasibility of building a thin-film Fabry-Perot filter. We discussed the optical filter designs, mechanical design, actuation mechanism, fabrication issues, optical measurements, and results.

  20. Patterning process and actuation in open air of micro-beam actuator based on conducting IPNs

    NASA Astrophysics Data System (ADS)

    Khaldi, Alexandre; Plesse, Cédric; Soyer, Caroline; Chevrot, Claude; Teyssié, Dominique; Vidal, Frédéric; Cattan, Eric

    2012-04-01

    We report on new method to obtain micrometric electroactive polymer actuators operating in air. High speed conducting Interpenetrating Polymer Network (IPN) microactuators are synthesized and fully characterized. The IPN architecture used in this work allows solving the interface and adhesion problems, which have been reported in the design of classical conducting polymer-based actuators. We demonstrated that it is possible to reduce the thickness of these actuators by a specific synthetic pathway. IPN host matrixes based on polyethylene oxide / polytetrahydrofurane have been shaped by hot pressing. Then, the resulting thin host matrixes (below 10 μm) are compatible with the microfabrication technologies. After interpenetration of poly(3,4-ethylenedioxythiophene) (PEDOT), these electroactive materials are micro-sized using dry etching process. Frequency responses and displacement have been characterized by scanning electronic microscopy. These conducting IPN microactuators can be considered as potential candidates in numerous low frequency applications, including micro-valves, micro-optical instrumentation and micro-robotics.

  1. Torsional Ratcheting Actuating System

    SciTech Connect

    BARNES,STEPHEN MATTHEW; MILLER,SAMUEL L.; RODGERS,M. STEVEN; BITSIE,FERNANDO

    2000-01-24

    A new type of surface micromachined ratcheting actuation system has been developed at the Microelectronics Development Laboratory at Sandia National Laboratories. The actuator uses a torsional electrostatic comb drive that is coupled to an external ring gear through a ratcheting scheme. The actuator can be operated with a single square wave, has minimal rubbing surfaces, maximizes comb finger density, and can be used for open-loop position control. The prototypes function as intended with a minimum demonstrated operating voltage of 18V. The equations of motion are developed for the torsional electrostatic comb drive. The resonant frequency, voltage vs. displacement and force delivery characteristics are predicted and compared with the fabricated device's performance.

  2. W-Coating for MEMS

    SciTech Connect

    Fleming, J.G.; Mani, S.S.; Sniegowski, J.J.

    1999-07-08

    The integration of miniaturized mechanical components has spawned a new technology known as microelectromechanical systems (MEMS). Surface micromachining, defined as the fabrication of micromechanical structures from deposited thin films, is one of the core technological processes underlying MEMS. Surface micromachined structures have a large ratio of surface area to volume which makes them particularly vulnerable to adhesion to the substrate or adjacent structures during release or in use--a problem is called stiction. Since microactuators can have surfaces in normal or sliding contact, function and wear are critical issues for reliable operation of MEMS devices. Surface modifications are needed to reduce adhesion and friction in micromechanical structures. In this paper, we will present a process used to selectively coat MEMS devices with Tungsten using a CVD (Chemical Vapor Deposition) process. We will discuss the effect of wet and vapor phase cleans along with different process variables. Endurance of the W coating is important, especially in applications where wear due to repetitive contacts with the film may occur. Further, tungsten is hard and chemically inert, Tungsten CVD is used in the integrated-circuit industry, which makes this, approach manufacturable.

  3. Microwave bonding of MEMS component

    NASA Technical Reports Server (NTRS)

    Barmatz, Martin B. (Inventor); Mai, John D. (Inventor); Jackson, Henry W. (Inventor); Budraa, Nasser K. (Inventor); Pike, William T. (Inventor)

    2005-01-01

    Bonding of MEMs materials is carried out using microwave. High microwave absorbing films are placed within a microwave cavity, and excited to cause selective heating in the skin of the material. This causes heating in one place more than another. Thereby minimizing the effects of the bonding microwave energy.

  4. MEMS AO for Planet Finding

    NASA Technical Reports Server (NTRS)

    Rao, Shanti; Wallace, J. Kent; Shao, Mike; Schmidtlin, Edouard; Levine, B. Martin; Samuele, Rocco; Lane, Benjamin; Chakrabarti, Supriya; Cook, Timothy; Hicks, Brian; Jung, Paul

    2008-01-01

    This slide presentation reviews a method for planet finding using microelectromechanical systems (MEMS) Adaptive Optics (AO). The use of a deformable mirror (DM) is described as a part of the instrument that was designed with a nulling interferometer. The strategy that is used is described in detail.

  5. MEMS reliability: coming of age

    NASA Astrophysics Data System (ADS)

    Douglass, Michael R.

    2008-02-01

    In today's high-volume semiconductor world, one could easily take reliability for granted. As the MOEMS/MEMS industry continues to establish itself as a viable alternative to conventional manufacturing in the macro world, reliability can be of high concern. Currently, there are several emerging market opportunities in which MOEMS/MEMS is gaining a foothold. Markets such as mobile media, consumer electronics, biomedical devices, and homeland security are all showing great interest in microfabricated products. At the same time, these markets are among the most demanding when it comes to reliability assurance. To be successful, each company developing a MOEMS/MEMS device must consider reliability on an equal footing with cost, performance and manufacturability. What can this maturing industry learn from the successful development of DLP technology, air bag accelerometers and inkjet printheads? This paper discusses some basic reliability principles which any MOEMS/MEMS device development must use. Examples from the commercially successful and highly reliable Digital Micromirror Device complement the discussion.

  6. Tetherless thermobiochemically actuated microgrippers

    PubMed Central

    Leong, Timothy G.; Randall, Christina L.; Benson, Bryan R.; Bassik, Noy; Stern, George M.; Gracias, David H.

    2009-01-01

    We demonstrate mass-producible, tetherless microgrippers that can be remotely triggered by temperature and chemicals under biologically relevant conditions. The microgrippers use a self-contained actuation response, obviating the need for external tethers in operation. The grippers can be actuated en masse, even while spatially separated. We used the microgrippers to perform diverse functions, such as picking up a bead on a substrate and the removal of cells from tissue embedded at the end of a capillary (an in vitro biopsy). PMID:19139411

  7. Fault tolerant linear actuator

    DOEpatents

    Tesar, Delbert

    2004-09-14

    In varying embodiments, the fault tolerant linear actuator of the present invention is a new and improved linear actuator with fault tolerance and positional control that may incorporate velocity summing, force summing, or a combination of the two. In one embodiment, the invention offers a velocity summing arrangement with a differential gear between two prime movers driving a cage, which then drives a linear spindle screw transmission. Other embodiments feature two prime movers driving separate linear spindle screw transmissions, one internal and one external, in a totally concentric and compact integrated module.

  8. Hydraulic involute cam actuator

    DOEpatents

    Love, Lonnie J.; Lind, Randall F.

    2011-11-01

    Mechanical joints are provided in which the angle between a first coupled member and a second coupled member may be varied by mechanical actuators. In some embodiments the angle may be varied around a pivot axis in one plane and in some embodiments the angle may be varied around two pivot axes in two orthogonal planes. The joints typically utilize a cam assembly having two lobes with an involute surface. Actuators are configured to push against the lobes to vary the rotation angle between the first and second coupled member.

  9. Integrated superhard and metallic coatings for MEMS : LDRD 57300 final report.

    SciTech Connect

    de Boer, Maarten Pieter; Maboudian, Roya

    2004-12-01

    Two major research areas pertinent to microelectromechanical systems (MEMS) materials and material surfaces were explored and developed in this 5-year PECASE LDRD project carried out by Professor Roya Maboudian and her collaborators at the University of California at Berkeley. In the first research area, polycrystalline silicon carbide (poly-SiC) was developed as a structural material for MEMS. This material is potentially interesting for MEMS because compared to polycrystalline silicon (polysilicon), the structural material in Sandia National Laboratories' SUMMiTV process, it may exhibit high wear resistance, high temperature operation and a high Young's modulus to density ratio. Each of these characteristics may extend the usefulness of MEMS in Sandia National Laboratories' applications. For example, using polycrystalline silicon, wear is an important issue in microengines, temperature degradation is of concern in thermal actuators and the characteristics of resonators can be extended with the same lithography technology. Two methods of depositing poly-SiC from a 1,3-disilabutane source at 650 C to 800 C by low-pressure chemical vapor deposition (LPCVD) were demonstrated. These include a blanket method in which the material is made entirely out of poly-SiC and a method to coat previously released and fabricated polysilicon MEMS. This deposition method is much simpler to use than previous methods such as high temperature LPCVD and atmospheric CVD. Other major processing issues that were surmounted in this LDRD with the poly-SiC film include etching, doping, and residual strain control. SiC is inert and as such is notoriously difficult to etch. Here, an HBr-based chemistry was demonstrated for the first time to make highly selective etching of SiC at high etch rates. Nitrogen was incorporated from an NH3 gas source, resulting in high conductivity films. Residual strain and strain gradient were shown to depend on deposition parameters, and can be made negative or

  10. Sliding-blade MEMS iris and variable optical attenuator

    NASA Astrophysics Data System (ADS)

    Syms, R. R. A.; Zou, H.; Stagg, J.; Veladi, H.

    2004-12-01

    An iris-type variable aperture fabricated using microelectromechanical systems (MEMS) technology is described. The device contains a number of shutter blades, which are each driven by a separate microactuator, and translated synchronously to create a variable polygonal aperture. The optical performance of devices with different numbers of blades is compared using simple analytic models and diffraction theory. The mechanism is simulated by finite element analysis. Four-blade devices driven by buckling mode electrothermal actuators are formed by double-sided patterning and deep reactive ion etching of bonded silicon-on-insulator and characterized experimentally. Symmetric deflections are obtained, and used to create a square pupil. Variable attenuation is demonstrated using optical fibres with thermally expanded cores.

  11. MEMS-based extreme adaptive optics for planet detection

    NASA Astrophysics Data System (ADS)

    Macintosh, Bruce; Graham, James; Oppenheimer, Ben; Poyneer, Lisa; Sivaramakrishnan, Anand; Veran, Jean-Pierre

    2006-01-01

    The next major step in the study of extrasolar planets will be the direct detection, resolved from their parent star, of a significant sample of Jupiter-like extrasolar giant planets. Such detection will open up new parts of the extrasolar planet distribution and allow spectroscopic characterization of the planets themselves. Detecting Jovian planets at 5-50 AU scale orbiting nearby stars requires adaptive optics systems and coronagraphs an order of magnitude more powerful than those available today - the realm of "Extreme" adaptive optics. We present the basic requirements and design for such a system, the Gemini Planet Imager (GPI.) GPI will require a MEMS-based deformable mirror with good surface quality, 2-4 micron stroke (operated in tandem with a conventional low-order "woofer" mirror), and a fully-functional 48-actuator-diameter aperture.

  12. MEMS tunable optical filter based on multi-ring resonator

    SciTech Connect

    Dessalegn, Hailu E-mail: tsrinu@ece.iisc.ernet.in; Srinivas, T. E-mail: tsrinu@ece.iisc.ernet.in

    2014-10-15

    We propose a novel MEMS tunable optical filter with a flat-top pass band based on multi-ring resonator in an electrostatically actuated microcantilever for communication application. The filter is basically structured on a microcantilever beam and built in optical integrated ring resonator which is placed in one end of the beam to gain maximum stress on the resonator. Thus, when a DC voltage is applied, the beam will bend, that induces a stress and strain in the ring, which brings a change in refractive index and perimeter of the rings leading to change in the output spectrum shift, providing the tenability as high as 0.68nm/μN and it is capable of tuning up to 1.7nm.

  13. Strain engineering of diamond silicon vacancy centers in MEMS cantilevers

    NASA Astrophysics Data System (ADS)

    Meesala, Srujan; Sohn, Young-Ik; Atikian, Haig; Holzgrafe, Jeffrey; Zhang, Mian; Burek, Michael; Loncar, Marko

    2016-05-01

    The silicon vacancy (SiV) center in diamond has recently attracted attention as a solid state quantum emitter due to its attractive optical properties. We fabricate diamond MEMS cantilevers, and use electrostatic actuation to apply controlled strain fields to single SiV centers implanted in these devices. The strain response of the four electronic transitions of the SiV at 737 nm is measured via cryogenic (4 K) photoluminescence excitation. We demonstrate over 300 GHz of tuning for the mean transition frequency between the ground and excited states, and over 100 GHz of tuning for the orbital splittings within the ground and excited states. The interaction Hamiltonian for strain fields is inferred, and large strain susceptibilities of the order 1 PHz/strain are measured. We discuss prospects to utilize our device to reduce phonon-induced decoherence in SiV spin qubits, and to exploit the large strain susceptibilities for hybrid quantum systems based on nanomechanical resonators.

  14. MEMS-based extreme adaptive optics for planet detection

    SciTech Connect

    Macintosh, B A; Graham, J R; Oppenheimer, B; Poyneer, L; Sivaramakrishnan, A; Veran, J

    2005-11-18

    The next major step in the study of extrasolar planets will be the direct detection, resolved from their parent star, of a significant sample of Jupiter-like extrasolar giant planets. Such detection will open up new parts of the extrasolar planet distribution and allow spectroscopic characterization of the planets themselves. Detecting Jovian planets at 5-50 AU scale orbiting nearby stars requires adaptive optics systems and coronagraphs an order of magnitude more powerful than those available today--the realm of ''Extreme'' adaptive optics. We present the basic requirements and design for such a system, the Gemini Planet Imager (GPI.) GPI will require a MEMS-based deformable mirror with good surface quality, 2-4 micron stroke (operated in tandem with a conventional low-order ''woofer'' mirror), and a fully-functional 48-actuator-diameter aperture.

  15. Vertical electrostatically 90° turning flaps for reflective MEMS display

    NASA Astrophysics Data System (ADS)

    Jutzi, Fabio; Noell, Wilfried; de Rooij, Nico F.

    2011-03-01

    A new kind of MEMS reflective display is being developed having high contrast and reflectivity, better than on printed paper. The system is based on novel vertical flaps, which can be electrostatically turned by 90° to horizontal position. After fabrication, the poly-silicon flaps are vertical to the wafer surface and on the top suspended by torsion beams. In this state the pixel is black, incoming ambient light passes by the flaps and is absorbed by an underlying absorptive layer. When the flaps are turned to horizontal position light is reflected back and the pixel gets white. A self-aligning four masks bulk microfabrication process is employed, which uses poly-silicon filling of high aspect-ratio cavities. Parylene was also employed as flap material. Thanks to auto stress-compensation the flaps are not deformed due to intrinsic stresses. Low actuation voltages down to 20V can be achieved.

  16. A 2D MEMS stage for optical applications

    NASA Astrophysics Data System (ADS)

    Ataman, Caglar; Petremand, Yves; Noell, Wilfried; Ürey, Hakan; Epitaux, Marc; de Rooij, Nico F.

    2006-04-01

    A 2D MEMS platform for a microlens scanner application is reported. The platform is fabricated on an SOI wafer with 50 μm thick device layer. Entire device is defined with a single etching step on the same layer. Through four S-shaped beams, the device is capable of producing nonlinear 2D motion from linear 1D translation of two pairs of comb actuator sets. The device has a clear aperture of 2mm by 2mm, which is hallowed from the backside for micro-optics assembly. In this paper, a numerical device model and its validation via experimental characterization results are presented. Integration of the micro-optical components with the stage is also discussed. Additionally, a new driving scheme to minimize the settling time of the device in DC operation is explored.

  17. Concepts using optical MEMS array for ladar scene projection

    NASA Astrophysics Data System (ADS)

    Smith, J. Lynn

    2003-09-01

    Scene projection for HITL testing of LADAR seekers is unique because the 3rd dimension is time delay. Advancement in AFRL for electronic delay and pulse shaping circuits, VCSEL emitters, fiber optic and associated scene generation is underway, and technology hand-off to test facilities is expected eventually. However, size and cost currently projected behooves cost mitigation through further innovation in system design, incorporating new developments, cooperation, and leveraging of dual-purpose technology. Therefore a concept is offered which greatly reduces the number (thus cost) of pulse shaping circuits and enables the projector to be installed on the mobile arm of a flight motion simulator table without fiber optic cables. The concept calls for an optical MEMS (micro-electromechanical system) steerable micro-mirror array. IFOV"s are a cluster of four micro-mirrors, each of which steers through a unique angle to a selected light source with the appropriate delay and waveform basis. An array of such sources promotes angle-to-delay mapping. Separate pulse waveform basis circuits for each scene IFOV are not required because a single set of basis functions is broadcast to all MEMS elements simultaneously. Waveform delivery to spatial filtering and collimation optics is addressed by angular selection at the MEMS array. Emphasis is on technology in existence or under development by the government, its contractors and the telecommunications industry. Values for components are first assumed as those that are easily available. Concept adequacy and upgrades are then discussed. In conclusion an opto-mechanical scan option ranks as the best light source for near-term MEMS-based projector testing of both flash and scan LADAR seekers.

  18. Conceptual hermetically sealed elbow actuator

    NASA Technical Reports Server (NTRS)

    Wuenscher, H. F.

    1968-01-01

    Electrically or hydraulically powered, hermetically sealed angular or rotary actuator deflects mechanical members over a range of plus or minus 180 degrees. The actuator design provides incremental flexures which keep the local deflection rate within elastic limits.

  19. Low-Shock Pyrotechnic Actuator

    NASA Technical Reports Server (NTRS)

    Lucy, M. H.

    1984-01-01

    Miniature 1-ampere, 1-watt pyrotechnic actuator enclosed in flexible metal bellows. Bellows confines outgassing products, and pyrotechnic shock reduction achieved by action of bellows, gas cushion within device, and minimum use of pyrotechnic material. Actuator inexpensive, compact, and lightweight.

  20. Applications of dielectric elastomer actuators

    NASA Astrophysics Data System (ADS)

    Pelrine, Ron; Sommer-Larsen, Peter; Kornbluh, Roy D.; Heydt, Richard; Kofod, Guggi; Pei, Qibing; Gravesen, Peter

    2001-07-01

    Dielectric elastomer actuators, based on the field-induced deformation of elastomeric polymers with compliant electrodes, can produce a large strain response, combined with a fast response time and high electromechanical efficiency. This unique performance, combined with other factors such as low cost, suggests many potential applications, a wide range of which are under investigation. Applications that effectively exploit the properties of dielectric elastomers include artificial muscle actuators for robots; low-cost, lightweight linear actuators; solid- state optical devices; diaphragm actuators for pumps and smart skins; acoustic actuators; and rotary motors. Issues that may ultimately determine the success or failure of the actuation technology for specific applications include the durability of the actuator, the performance of the actuator under load, operating voltage and power requirements, and electronic driving circuitry, to name a few.

  1. Modelling MEMS deformable mirrors for astronomical adaptive optics

    NASA Astrophysics Data System (ADS)

    Blain, Celia

    As of July 2012, 777 exoplanets have been discovered utilizing mainly indirect detection techniques. The direct imaging of exoplanets is the next goal for astronomers, because it will reveal the diversity of planets and planetary systems, and will give access to the exoplanet's chemical composition via spectroscopy. With this spectroscopic knowledge, astronomers will be able to know, if a planet is terrestrial and, possibly, even find evidence of life. With so much potential, this branch of astronomy has also captivated the general public attention. The direct imaging of exoplanets remains a challenging task, due to (i) the extremely high contrast between the parent star and the orbiting exoplanet and (ii) their small angular separation. For ground-based observatories, this task is made even more difficult, due to the presence of atmospheric turbulence. High Contrast Imaging (HCI) instruments have been designed to meet this challenge. HCI instruments are usually composed of a coronagraph coupled with the full onaxis corrective capability of an Extreme Adaptive Optics (ExAO) system. An efficient coronagraph separates the faint planet's light from the much brighter starlight, but the dynamic boiling speckles, created by the stellar image, make exoplanet detection impossible without the help of a wavefront correction device. The Subaru Coronagraphic Extreme Adaptive Optics (SCExAO) system is a high performance HCI instrument developed at Subaru Telescope. The wavefront control system of SCExAO consists of three wavefront sensors (WFS) coupled with a 1024- actuator Micro-Electro-Mechanical-System (MEMS) deformable mirror (DM). MEMS DMs offer a large actuator density, allowing high count DMs to be deployed in small size beams. Therefore, MEMS DMs are an attractive technology for Adaptive Optics (AO) systems and are particularly well suited for HCI instruments employing ExAO technologies. SCExAO uses coherent light modulation in the focal plane introduced by the DM, for

  2. Capacitive RF MEMS switch dielectric charging and reliability: a critical review with recommendations

    NASA Astrophysics Data System (ADS)

    van Spengen, W. M.

    2012-07-01

    This paper presents a comprehensive review of the reliability issues hampering capacitive RF MEMS switches in their development toward commercialization. Dielectric charging and its effects on device behavior are extensively addressed, as well as the application of different dielectric materials, improvements in the mechanical design and the use of advanced actuation waveforms. It is concluded that viable capacitive RF MEMS switches with a great chance of market acceptance preferably have no actuation voltage across a dielectric at all, contrary to the ‘standard’ geometry. This is substantiated by the reliability data of a number of dielectric-less MEMS switch designs. However, a dielectric can be used for the signal itself, resulting in a higher Con/Coff ratio than that one would be able to achieve in a switch without any dielectric. The other reliability issues of these devices are also covered, such as creep, RF-power-related failures and packaging reliability. This paper concludes with a recipe for a conceptual ‘ideal’ switch from a reliability point of view, based on the lessons learned.

  3. Investigation of charge accumulation in the dielectric for robust RF MEMS switches

    NASA Astrophysics Data System (ADS)

    Chen, Xuyuan; Hanke, Ulrik; San, Haisheng; Li, Gang; Zhan, Linxian

    2008-03-01

    For higher-power-handling RF MEMS switches, the design of the switch is based on fixed-fixed beam capacitive structure with electrostatic actuation. Such RF MEMS switches are perceived to be unreliable because of the stiction and screening of the beam caused by charge accumulation in the dielectric layer. The research effort for a robust RF MEMS solution has been made for more than a decade. In this paper the models for stiction and screening caused by charge accumulation have been reviewed. As the first part of this paper, the possible charging mechanisms will be described, such as, 1) the dielectric charging arises from charges distributed throughout the dielectric material, 2) the presence of charges at the dielectric interface. In order to avoid the charge accumulation, trapped charges in the dielectric layer have to quickly vanish. Relaxing mechanisms of short time must be created inside of the dielectric for quick charge recombination. The second part of this paper will report the recent effort to create relaxing mechanisms of short time by using, such as doping dielectric, nano-composite dielectrics, or multi-layer stack of dielectric. Actuation wave form dependence of the charge accumulation will be also presented.

  4. Evaluation of a Programmable Voltage-Controlled MEMS Oscillator, Type SiT3701, Over a Wide Temperature Range

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad

    2009-01-01

    Semiconductor chips based on MEMS (Micro-Electro-Mechanical Systems) technology, such as sensors, transducers, and actuators, are becoming widely used in today s electronics due to their high performance, low power consumption, tolerance to shock and vibration, and immunity to electro-static discharge. In addition, the MEMS fabrication process allows for the miniaturization of individual chips as well as the integration of various electronic circuits into one module, such as system-on-a-chip. These measures would simplify overall system design, reduce parts count and interface, improve reliability, and reduce cost; and they would meet requirements of systems destined for use in space exploration missions. In this work, the performance of a recently-developed MEMS voltage-controlled oscillator was evaluated under a wide temperature range. Operation of this new commercial-off-the-shelf (COTS) device was also assessed under thermal cycling to address some operational conditions of the space environment

  5. Integrated MEMS-based variable optical attenuator and 10Gb/s receiver

    NASA Astrophysics Data System (ADS)

    Aberson, James; Cusin, Pierre; Fettig, H.; Hickey, Ryan; Wylde, James

    2005-03-01

    MEMS devices can be successfully commercialized in favour of competing technologies only if they offer an advantage to the customer in terms of lower cost or increased functionality. There are limited markets where MEMS can be manufactured cheaper than similar technologies due to large volumes: automotive, printing technology, wireless communications, etc. However, success in the marketplace can also be realized by adding significant value to a system at minimal cost or leverging MEMS technology when other solutions simply will not work. This paper describes a thermally actuated, MEMS based, variable optical attenuator that is co-packaged with existing opto-electronic devices to develop an integrated 10Gb/s SONET/SDH receiver. The configuration of the receiver opto-electronics and relatively low voltage availability (12V max) in optical systems bar the use of LCD, EO, and electro-chromic style attenuators. The device was designed and fabricated using a silicon-on-insulator (SOI) starting material. The design and performance of the device (displacement, power consumption, reliability, physical geometry) was defined by the receiver parameters geometry. This paper will describe how these design parameters (hence final device geometry) were determined in light of both the MEMS device fabrication process and the receiver performance. Reference will be made to the design tools used and the design flow which was a joint effort between the MEMS vendor and the end customer. The SOI technology offered a robust, manufacturable solution that gave the required performance in a cost-effective process. However, the singulation of the devices required the development of a new singulation technique that allowed large volumes of silicon to be removed during fabrication yet still offer high singulation yields.

  6. Programmable Aperture with MEMS Microshutter Arrays

    NASA Technical Reports Server (NTRS)

    Moseley, Samuel; Li, Mary; Kutyrev, Alexander; Kletetschka, Gunther; Fettig, Rainer

    2011-01-01

    A microshutter array (MSA) has been developed for use as an aperture array for multi-object selections in James Webb Space Telescope (JWST) technology. Light shields, molybdenum nitride (MoN) coating on shutters, and aluminum/aluminum oxide coatings on interior walls are put on each shutter for light leak prevention, and to enhance optical contrast. Individual shutters are patterned with a torsion flexure that permits shutters to open 90 deg. with a minimized mechanical stress concentration. The shutters are actuated magnetically, latched, and addressed electrostatically. Also, micromechanical features are tailored onto individual shutters to prevent stiction. An individual shutter consists of a torsion hinge, a shutter blade, a front electrode that is coated on the shutter blade, a backside electrode that is coated on the interior walls, and a magnetic cobalt-iron coating. The magnetic coating is patterned into stripes on microshutters so that shutters can respond to an external magnetic field for the magnetic actuation. A set of column electrodes is placed on top of shutters, and a set of row electrodes on sidewalls is underneath the shutters so that they can be electrostatically latched open. A linear permanent magnet is aligned with the shutter rows and is positioned above a flipped upside-down array, and sweeps across the array in a direction parallel to shutter columns. As the magnet sweeps across the array, sequential rows of shutters are rotated from their natural horizontal orientation to a vertical open position, where they approach vertical electrodes on the sidewalls. When the electrodes are biased with a sufficient electrostatic force to overcome the mechanical restoring force of torsion bars, shutters remain latched to vertical electrodes in their open state. When the bias is removed, or is insufficient, the shutters return to their horizontal, closed positions. To release a shutter, both the electrode on the shutter and the one on the back wall where

  7. Optical MEMs transducers with enhanced efficiency and sensitivity

    NASA Astrophysics Data System (ADS)

    Chen, Xuesheng; Stratoudaki, Theodosia; Sharples, Steve D.; Clark, Matt

    2012-03-01

    We introduce a highly sensitive laser ultrasonic detection MEMs transducer and an efficient laser ultrasound generation MEMs transducer. The detection transducer consists of a series of cantilevers with the same dimensions; any two cantilevers next to each other are separated by a solid with the same width as finger's. When ultrasound is incident upon this transducer, as long as there is a vibration component perpendicular to each finger's top surface and with a frequency the same as the finger's first resonance in the ultrasound, each finger will resonate upon the ultrasound. The moving fingers and the still solid separations form an optical phase grating, and therefore the ultrasound can be readout by a detection laser remotely. Because the ultrasound amplitude is amplified many times by the transducer's resonance before detection, the sensitivity of this transducer is much higher than that of traditional transducers. The generation transducer consists of a micro-disk seated upon a micro-stem. When a suitably focused laser pulse illuminated on the center of the disk, a certain order of flapping motion of the disk is mainly actuated, while other orders are just slightly, or not excited. This flapping motion couples a very narrow bandwidth of longitudinal wave propagating along the axis of the stem and into a sample. Because all absorbed optical energy is concentrated into this narrowband ultrasound, its amplitude is much higher than that of normal thermoelastic generation. It is possible to use these MEMs generation and detection transducers to form a simple but highly efficient laser ultrasound generation and detection system in the near future.

  8. Experimental investigations of creep in gold RF-MEMS microstructures

    NASA Astrophysics Data System (ADS)

    Somà, Aurelio; De Pasquale, Giorgio; Saleem, Muhammad Mubasher

    2015-05-01

    Lifetime prediction and reliability evaluation of micro-electro-mechanical systems (MEMS) are influenced by permanent deformations caused by plastic strain induced by creep. Creep in microstructures becomes critical in those applications where permanent loads persist for long times and thermal heating induces temperature increasing respect to the ambient. Main goal of this paper is to investigate the creep mechanism in RF-MEMS microstructures by means of experiments. This is done firstly through the detection of permanent deformation of specimens and, then, by measuring the variation of electro-mechanical parameters (resonance frequency, pull-in voltage) that provide indirect evaluation of mechanical stiffness alteration from creep. To prevent the errors caused be cumulative heating of samples and dimensional tolerances, three specimens with the same nominal geometry have been tested per each combination of actuation voltage and temperature. Results demonstrated the presence of plastic deformation due to creep, combined with a component of reversible strain linked to the viscoelastic behavior of the material.

  9. Localized heating/bonding techniques in MEMS packaging

    NASA Astrophysics Data System (ADS)

    Mabesa, J. R., Jr.; Scott, A. J.; Wu, X.; Auner, G. W.

    2005-05-01

    Packaging is used to protect and enable intelligent sensor systems utilized in manned/unmanned ground vehicle systems/subsystems. Because Micro electro mechanical systems (MEMS) are used often in these sensor or actuation products, it must interact with the surrounding environment, which may be in direct conflict with the desire to isolate the electronics for improved reliability/durability performance. For some very simple devices, performance requirements may allow a high degree of isolation from the environment (e.g., stints and accelerometers). Other more complex devices (i.e. chemical and biological analysis systems, particularly in vivo systems) present extremely complex packaging requirements. Power and communications to MEMS device arrays are also extremely problematic. The following describes the research being performed at the U.S. Army Research, Development, and Engineering Command (RDECOM) Tank and Automotive Research, Development, and Engineering Center (TARDEC), in collaboration with Wayne State University, in Detroit, MI. The focus of the packaging research is limited to six main categories: a) provision for feed-through for electrical, optical, thermal, and fluidic interfaces; b) environmental management including atmosphere, hermiticity, and temperature; c) control of stress and mechanical durability; d) management of thermal properties to minimize absorption and/or emission; e) durability and structural integrity; and f) management of RF/magnetic/electrical and optical interference and/or radiation properties and exposure.

  10. Angular-Momentum-Compensating Actuator

    NASA Technical Reports Server (NTRS)

    Wiktor, Peter J.

    1988-01-01

    Reactionless actuator developed for instrument-pointing platforms on flexible spacecraft; by eliminating reactions, actuator changes aiming angle of platform without inducing vibrations in spacecraft, eliminateing vibrations in point angle of instrument platform. Actuator used on Earth in such systems as helicopter platforms for television cameras in law enforcement and news telecasts.

  11. Integration of optoelectronics and MEMS by free-space micro-optics

    SciTech Connect

    WARREN,MIAL E.; SPAHN,OLGA B.; SWEATT,WILLIAM C.; SHUL,RANDY J.; WENDT,JOEL R.; VAWTER,GREGORY A.; KRYGOWSKI,TOM W.; REYES,DAVID NMN; RODGERS,M. STEVEN; SNIEGOWSKI,JEFFRY J.

    2000-06-01

    This report represents the completion of a three-year Laboratory-Directed Research and Development (LDRD) program to investigate combining microelectromechanical systems (MEMS) with optoelectronic components as a means of realizing compact optomechanical subsystems. Some examples of possible applications are laser beam scanning, switching and routing and active focusing, spectral filtering or shattering of optical sources. The two technologies use dissimilar materials with significant compatibility problems for a common process line. This project emphasized a hybrid approach to integrating optoelectronics and MEMS. Significant progress was made in developing processing capabilities for adding optical function to MEMS components, such as metal mirror coatings and through-vias in the substrate. These processes were used to demonstrate two integration examples, a MEMS discriminator driven by laser illuminated photovoltaic cells and a MEMS shutter or chopper. Another major difficulty with direct integration is providing the optical path for the MEMS components to interact with the light. The authors explored using folded optical paths in a transparent substrate to provide the interconnection route between the components of the system. The components can be surface-mounted by flip-chip bonding to the substrate. Micro-optics can be fabricated into the substrate to reflect and refocus the light so that it can propagate from one device to another and them be directed out of the substrate into free space. The MEMS components do not require the development of transparent optics and can be completely compatible with the current 5-level polysilicon process. They report progress on a MEMS-based laser scanner using these concepts.

  12. Electromechanical flight control actuator

    NASA Technical Reports Server (NTRS)

    1979-01-01

    The feasibility of using an electromechanical actuator (EMA) as the primary flight control equipment in aerospace flight is examined. The EMA motor design is presented utilizing improved permanent magnet materials. The necessary equipment to complete a single channel EMA using the single channel power electronics breadboard is reported. The design and development of an improved rotor position sensor/tachometer is investigated.

  13. Actuators Acting without Actin.

    PubMed

    Geitmann, Anja

    2016-06-30

    Plant actuators move organs, allowing the plant to respond to environmental cues or perform other mechanical tasks. In Cardamine hursuta the dispersal of seeds is accomplished by explosive opening of the fruit. The biomechanical mechanism relies on a complex interplay between turgor regulation and cell wall mechanical properties. PMID:27368097

  14. "Mighty Worm" Piezoelectric Actuator

    NASA Technical Reports Server (NTRS)

    Bamford, Robert M.; Wada, Ben K.; Moore, Donald M.

    1994-01-01

    "Mighty Worm" piezoelectric actuator used as adjustable-length structural member, active vibrator or vibration suppressor, and acts as simple (fixed-length) structural member when inactive. Load force not applied to piezoelectric element in simple-structural-member mode. Piezoelectric element removed from load path when not in use.

  15. Thermally Actuated Hydraulic Pumps

    NASA Technical Reports Server (NTRS)

    Jones, Jack; Ross, Ronald; Chao, Yi

    2008-01-01

    Thermally actuated hydraulic pumps have been proposed for diverse applications in which direct electrical or mechanical actuation is undesirable and the relative slowness of thermal actuation can be tolerated. The proposed pumps would not contain any sliding (wearing) parts in their compressors and, hence, could have long operational lifetimes. The basic principle of a pump according to the proposal is to utilize the thermal expansion and contraction of a wax or other phase-change material in contact with a hydraulic fluid in a rigid chamber. Heating the chamber and its contents from below to above the melting temperature of the phase-change material would cause the material to expand significantly, thus causing a substantial increase in hydraulic pressure and/or a substantial displacement of hydraulic fluid out of the chamber. Similarly, cooling the chamber and its contents from above to below the melting temperature of the phase-change material would cause the material to contract significantly, thus causing a substantial decrease in hydraulic pressure and/or a substantial displacement of hydraulic fluid into the chamber. The displacement of the hydraulic fluid could be used to drive a piston. The figure illustrates a simple example of a hydraulic jack driven by a thermally actuated hydraulic pump. The pump chamber would be a cylinder containing encapsulated wax pellets and containing radial fins to facilitate transfer of heat to and from the wax. The plastic encapsulation would serve as an oil/wax barrier and the remaining interior space could be filled with hydraulic oil. A filter would retain the encapsulated wax particles in the pump chamber while allowing the hydraulic oil to flow into and out of the chamber. In one important class of potential applications, thermally actuated hydraulic pumps, exploiting vertical ocean temperature gradients for heating and cooling as needed, would be used to vary hydraulic pressures to control buoyancy in undersea research

  16. Scanning, Scanning, Everywhere.

    ERIC Educational Resources Information Center

    Ekhaml, Leticia; Myers, Brenda

    1997-01-01

    Discusses uses of scanning (process of copying or converting text, images, and objects into information that the computer can recognize and manipulate) in schools and notes possible desktop publishing projects. Describes popular scanners and ways to edit a scanned image. A sidebar gives costs and telephone numbers for nine scanners. (AEF)

  17. CAD/CAM for MEMS and BioMEMS

    NASA Astrophysics Data System (ADS)

    Hargrave, Brian; Irwin, Bryan; Parkhill, Robert; Church, Kenneth H.; Nguyen, Michael N.; Kachurin, Anatoly; Warren, William L.

    2004-07-01

    Novel devices can be relatively simple in theory and modeling, but difficult and many times unfeasible to fabricate in a traditional cleanroom environment. We have developed a CAD/CAM tool capable of integrating multiple materials in the electronic, photonic, and biological regimes for applications in both MEMS and BioMEMS devices. Some materials are known and more fully characterized, such as thick film resistors or conductors, while other materials such as biodegradable scaffolding are new but showing promise to realize heterogenous tissue engineered constructs and drug delivery devices. The tool does not discriminate, but rather places these materials in specified locations with precision volumetric control, gently, conformally, and in 3-D. This paper will describe the enabling aspect of true 3-D maskless fabrication as well as describe multiple device structures and demonstrations.

  18. PolyMUMPs MEMS device to measure mechanical stiffness of single cells in aqueous media

    NASA Astrophysics Data System (ADS)

    Warnat, S.; King, H.; Forbrigger, C.; Hubbard, T.

    2015-02-01

    A method of experimentally determining the mechanical stiffness of single cells by using differential displacement measurements in a two stage spring system is presented. The spring system consists of a known MEMS reference spring and an unknown cellular stiffness: the ratio of displacements is related to the ratio of stiffness. A polyMUMPs implementation for aqueous media is presented and displacement measurements made from optical microphotographs using a FFT based displacement method with a repeatability of ~20 nm. The approach was first validated on a MEMS two stage spring system of known stiffness. The measured stiffness ratios of control structures (i) MEMS spring systems and (ii) polystyrene microspheres were found to agree with theoretical values. Mechanical tests were then performed on Saccharomyces cerevisiae (Baker’s yeast) in aqueous media. Cells were placed (using a micropipette) inside MEMS measuring structures and compressed between two jaws using an electrostatic actuator and displacements measured. Tested cells showed stiffness values between 5.4 and 8.4 N m-1 with an uncertainty of 11%. In addition, non-viable cells were tested by exposing viable cells to methanol. The resultant mean cell stiffness dropped by factor of 3 × and an explicit discrimination between viable and non-viable cells based on mechanical stiffness was seen.

  19. Planarization techniques for vertically integrated metallic MEMS on silicon foundry circuits

    NASA Astrophysics Data System (ADS)

    Lee, J.-B.; English, J.; Ahn, C.-H.; Allen, M. G.

    1997-06-01

    Various micromachining techniques exist to realize integrated microelectromechanical systems (MEMS), which include sensors, signal processing and/or driving circuits, and/or actuators in one small die. Post-processing techniques performed on foundry-fabricated circuits (e.g., MOSIS) are attractive since such an approach eliminates the need for an in-house integrated circuit fabrication line to produce integrated MEMS. A method based on the combination of metallic (e.g., electroplating) micromachining techniques with multichip module deposited (MCM-D) processes is a possible candidate to realize vertically-stacked integrated MEMS using the post-processing of integrated circuits (post-IC) approach. In order to realize such devices, planarization of the surface of foundry-fabricated circuit chips or wafers is often required. In such planarization layers, mechanical and chemical stability, as well as adhesion between the circuit-containing substrate and the micromachined devices, should be addressed. A PI/BCB/PI sandwich interlayer system, which utilizes both advantages of DuPont polyimide PI 2611 and Dow benzocyclobutene (BCB) Cyclotene 3022 series, was developed as a planarization interlayer for vertically integrated MEMS. The PI/BCB/PI interlayer system shows an over 95% degree of planarization (DOP) as well as passes the Method 107G Thermal Shock from the military standard MIL-STD-202F. A 0960-1317/7/2/002/img7 interlayer system was also developed as an alternative to the PI/BCB/PI system.

  20. Applications of ferrofluids in Micro Electro Mechanical Systems (MEMS) and micropumps

    NASA Astrophysics Data System (ADS)

    Jain, V. K.; Pant, R. P.; Vinod Kumar, .

    2008-12-01

    The micro-pump is one of the most promising micro-flow devices. At micro-level electronically controlled pumping of any fluid by a mechanical pump is not so easy and reliable. In the realm of nano-tech materials, ferrofluids have unique properties in both liquids and solids and have potential applications for MEMS/NEMS devices. This paper presents two new types of concepts, a micro-flowmeter based on a micro-turbine made using MEMS technology and the other is a micro-pump based on ferrofluidic actuation. In our first device an optical photovoltaic sensor has also been integrated with this device, and the micro-turbine rotates with a speed of 50000 rpm. We have fabricated a ferrofluid-based glass micro-pump of size 20 × 20 × 10 mm^{3}, in which micro actuation is electrically controlled by NdFeB (N50) permanent magnets (diameter 5 × 3 mm, B_{r} = 1400 mT, coercive field H_c=840 ,kA/m) with a ferrofluid bearing. The device is able to pump the fluid at the rate of 10 μ L/actuation. Figs 3, Refs 19.

  1. Sensing and actuation of smart chiral honeycombs

    NASA Astrophysics Data System (ADS)

    Abramovitch, H.; Burgard, M.; Edery-Azulay, Lucy; Evans, K. E.; Hoffmeister, M.; Miller, W.; Scarpa, F.; Smith, C. W.; Tee, K. F.; Schönecker, A.; Seffner, L.

    2008-03-01

    A chiral honeycomb configuration is developed with embedded piezosensors and actuators for smart sandwich panel applications. The chiral honeycomb concept is made of repeating units of cylinders and plates (ligaments), featuring an in-plane negative Poisson's ratio. Rapid Prototyping vacuum-cast and FDM (Fusion Deposition Moulding) techniques are developed to embed micro fibres composites to be used for potential structural health monitoring (SHM) applications, and microwave absorption screens for electromagnetic compatibility. Finite Element models are also developed to prototype and simulate the response, sensing and actuation capability of the honeycombs for design purposes. Dynamic tests using scanning laser vibrometers and acoustic wave propagation are carried out to assess the feasibility of the concept.

  2. Dielectric Actuation of Polymers

    NASA Astrophysics Data System (ADS)

    Niu, Xiaofan

    Dielectric polymers are widely used in a plurality of applications, such as electrical insulation, dielectric capacitors, and electromechanical actuators. Dielectric polymers with large strain deformations under an electric field are named dielectric elastomers (DE), because of their relative low modulus, high elongation at break, and outstanding resilience. Dielectric elastomer actuators (DEA) are superior to traditional transducers as a muscle-like technology: large strains, high energy densities, high coupling efficiency, quiet operation, and light weight. One focus of this dissertation is on the design of DE materials with high performance and easy processing. UV radiation curing of reactive species is studied as a generic synthesis methodology to provide a platform for material scientists to customize their own DE materials. Oligomers/monomers, crosslinkers, and other additives are mixed and cured at appropriate ratios to control the stress-strain response, suppress electromechanical instability of the resulting polymers, and provide stable actuation strains larger than 100% and energy densities higher than 1 J/g. The processing is largely simplified in the new material system by removal of the prestretching step. Multilayer stack actuators with 11% linear strain are demonstrated in a procedure fully compatible with industrial production. A multifunctional DE derivative material, bistable electroactive polymer (BSEP), is invented enabling repeatable rigid-to-rigid deformation without bulky external structures. Bistable actuation allows the polymer actuator to have two distinct states that can support external load without device failure. Plasticizers are used to lower the glass transition temperature to 45 °C. Interpenetrating polymer network structure is established inside the BSEP to suppress electromechanical instability, providing a breakdown field of 194 MV/m and a stable bistable strain as large as 228% with a 97% strain fixity. The application of BSEP

  3. Miniaturized GPS/MEMS IMU integrated board

    NASA Technical Reports Server (NTRS)

    Lin, Ching-Fang (Inventor)

    2012-01-01

    This invention documents the efforts on the research and development of a miniaturized GPS/MEMS IMU integrated navigation system. A miniaturized GPS/MEMS IMU integrated navigation system is presented; Laser Dynamic Range Imager (LDRI) based alignment algorithm for space applications is discussed. Two navigation cameras are also included to measure the range and range rate which can be integrated into the GPS/MEMS IMU system to enhance the navigation solution.

  4. Bulk-titanium for MEMS switches

    NASA Astrophysics Data System (ADS)

    Ding, Changsong

    RF-MEMS switches offer great potential benefits such as high isolation, low insertion loss, low power consumption, and excellent linearity characteristics. Most MEMS switches are fabricated using surface micromachining techniques by taking advantage of the IC processing techniques. Little work has been done on bulk micromachining for fabricating MEMS switches. This work contributes to two main areas in the MEMS switch field, (1) a Sacrificial-Layer-Free (SLF) method to fabricate switches using bulk titanium MEMS (BT-MEMS) and multilayer lamination techniques, and (2) development of a novel composite contact material and integration into BT-MEMS switches for testing. This approach for fabricating MEMS switches offers advantages from five aspects to attack the fabrication and reliability issues. Four generations of Bulk-Ti MEMS (BT-MEMS) switches were developed. They were improved through developments of high aspect ratio bulk Ti etching, Titanium-On-Insulator structure, multilayer lamination, mechanical design, and a new contact material. The first generation proved the feasibility of the concept of the BT-MEMS switch. The second generation had a good contact resistance. Development of the novel Nano-Structured-Titania (NST) composite material allowed further improvement of the third generation. We used the BT-MEMS switch as a platform for testing this new, novel contact material. Due to the preferred surface properties of the NST-metal composite material such as roughness and hardness, the third generation switched above 15 billion contact cycles without adhesion failure. Contact resistance was further improved in the fourth generation switch by integrating the NST-metal composite material into the top part as bumps. Above 100 million cycles with good contact resistance values were achieved.

  5. Comparison of theoretical and experimental determination of the flexing of scratch drive actuator plates

    NASA Astrophysics Data System (ADS)

    Li, Lijie; Brown, James G.; Uttamchandani, Deepak G.

    2002-09-01

    The scratch drive actuator (SDA) is a key element in microelectromechanical System (MEMS) technology. The actuator can be designed to travel very long distance with precise step size. Various articles describe the characteristics of scratch drive actuators.3, 6, 8 The MEMS designer needs models of SDA in order to incorporate them into their Microsystems applications. The objective of our effort is to develop models for SDA when it is in the working state. In this paper, a suspended SDA plate actuated by electrostatic force is analyzed. A mathematical model is established based on electrostatic coupled mechanical theory. Two phases have been calculated because the plate will contact the bottom surface due to the electrostatic force. One phase is named non-contact mode, and another is named contact mode. From these two models, the relationship between applied voltage and contact distance has been obtained. The geometrical model of bending plate is established to determine the relationship between contact distance and step size. Therefore we can use those two results to obtain the result of step size versus applied voltage that we expect. Finally, couple-field electro-mechanical simulation has been done by commercial software IntelliSuite. We assume that the dimension of SDA plate and bushing are fixed. All the material properties are from JDSU Cronos MUMPs. A Veeco NT1000 surface profiling tool has been used to investigate the bending of SDA plate. The results of experimental and theoretical are compared.

  6. Development of Electrostatic Actuator, which enables the Stable Contact Resistance, Driven at Low Voltage

    NASA Astrophysics Data System (ADS)

    Masuda, Takahiro; Seki, Tomonori; Miyaji, Takaaki; Sato, Fumihiko

    The switches play an important role in making the multifunctional radio communication circuit and therefore, the high-performance microminiaturized high-frequency switches are urgently expected. RF-MEMS switch with mechanical switching structure is hoped to improve both high-frequency signal loss and isolation quality simultaneously and to provide better linearity on the performance and compatibility to silicon-based circuit elements. But considering the applications, such as cellular phone and wireless-LAN, lower driving voltage and smaller switch dimensions are required. In order to solve these requirements, a novel electrostatic actuator with a unique structure of movable electrodes which enables the stable contact resistance is developed for RF-MEMS switches. This actuator has slits between the movable electrodes and the restoring spring. The electrostatic actuator with a movable electrode area of 0.5mm2 was driven at low voltage of 9-11V. And no defect due to restoration shortage is observed during switching test up to 400million cycles. In this paper, the results of mechanical design of the electrostatic actuator, the simulation, the experiments, and the reliability test are described

  7. MEMS-enabled implantable drug infusion pumps for laboratory animal research, preclinical, and clinical applications

    PubMed Central

    Meng, Ellis; Hoang, Tuan

    2012-01-01

    Innovation in implantable drug delivery devices is needed for novel pharmaceutical compounds such as certain biologics, gene therapy, and other small molecules that are not suitable for administration by oral, topical, or intravenous routes. This invasive dosing scheme seeks to directly bypass physiological barriers presented by the human body, release the appropriate drug amount at the site of treatment, and maintain the drug bioavailability for the required duration of administration to achieve drug efficacy. Advances in microtechnologies have led to novel MEMS-enabled implantable drug infusion pumps with unique performance and feature sets. In vivo demonstration of micropumps for laboratory animal research and preclinical studies include acute rapid radiolabeling, short-term delivery of nanomedicine for cancer treatment, and chronic ocular drug dosing. Investigation of MEMS actuators, valves, and other microstructures for on-demand dosing control may enable next generation implantable pumps with high performance within a miniaturized form factor for clinical applications. PMID:22926321

  8. Surface micromachined MEMS tunable VCSEL at 1550 nm with > 70 nm single mode tuning

    NASA Astrophysics Data System (ADS)

    Gierl, Christian; Gründl, Tobias; Debernardi, Pierluigi; Zogal, Karolina; Davani, Hooman A.; Grasse, Christian; Böhm, Gerhard; Meissner, Peter; Küppers, Franko; Amann, Markus-Christian

    2012-03-01

    We present surface micro-machined tunable vertical-cavity surface-emitting lasers (VCSELs) operating around 1550nm with tuning ranges up to 100nm and side mode suppression ratios beyond 40 dB. The output power reaches 3.5mW at 1555 nm. The electro-thermal and the electro-statical actuation of a micro electro-mechanical system (MEMS) movable distributed Bragg reflector (DBR) membrane increases/decreases the cavity length which shifts the resonant wavelength of the cavity to higher/lower values. The wavelength is modulated with 200 Hz/120 kHz. Both tuning mechanisms can be used simultaneously within the same device. The newly developed surface micro-machining technology uses competitive dielectric materials for the MEMS, deposited with low temperature plasma enhanced chemical vapor deposition (PECVD), which is cost effective and capable for on wafer mass production.

  9. Conducting Probe Atomic Force Microscope as a Relevant Tool for Studying Some Phenomena in MEMS Switches

    NASA Astrophysics Data System (ADS)

    Peschot, A.; Vincent, M.; Poulain, C.; Mariolle, D.; Houzé, F.; Delamare, J.

    2015-12-01

    As the reliability of electrical microcontacts has proved to be the main limitation to a fast-growing production of ultraminiaturized switches, a thorough understanding of their failure mechanisms is an all-important purpose. This paper aims at showing that conducting-probe Atomic Force Microscopy (cp-AFM) is an adequate tool to actuate and study electrical contacts. By choosing relevant cantilevers and operating mode of the cp-AFM, dimensions, gap and force level representative of existing microelectromechanical switches (MEMS switches) are obtained. With two examples, the advantages of using a cp-AFM in force mode for studying physical phenomena at very low scale are highlighted. The reported investigations concern material transfer between contact parts and contact bounces. Those two undesirable phenomena induce surface damages and impinge reliability of MEMS switches. In both cases an explanatory scenario of phenomena occurring at nanoscale is proposed and preventive recommendations for improving the lifetime of such devices are suggested.

  10. MEMS device for spacecraft thermal control applications

    NASA Technical Reports Server (NTRS)

    Swanson, Theordore D. (Inventor)

    2003-01-01

    A micro-electromechanical device that comprises miniaturized mechanical louvers, referred to as Micro Electro-Mechanical Systems (MEMS) louvers are employed to achieve a thermal control function for spacecraft and instruments. The MEMS louvers are another form of a variable emittance control coating and employ micro-electromechanical technology. In a function similar to traditional, macroscopic thermal louvers, the MEMS louvers of the present invention change the emissivity of a surface. With the MEMS louvers, as with the traditional macroscopic louvers, a mechanical vane or window is opened and closed to allow an alterable radiative view to space.

  11. MEMS Stirling Cooler Development Update

    NASA Technical Reports Server (NTRS)

    Moran, Matthew E.; Wesolek, Danielle

    2003-01-01

    This presentation provides an update on the effort to build and test a prototype unit of the patented MEMS Stirling cooler concept. A micro-scale regenerator has been fabricated by Polar Thermal Technologies and is currently being integrated into a Stirling cycle simulator at Johns Hopkins University Applied Physics Laboratory. A discussion of the analysis, design, assembly, and test plans for the prototype will be presented.

  12. Characterization and modeling of electrostatically actuated polysilicon micromechanical devices

    NASA Astrophysics Data System (ADS)

    Chan, Edward Keat Leem

    Sensors, actuators, transducers, microsystems and MEMS (MicroElertroMechanical Systems) are some of the terms describing technologies that interface information processing systems with the physical world. Electrostatically actuated micromechanical devices are important building blocks in many of these technologies. Arrays of these devices are used in video projection displays, fluid pumping systems, optical communications systems, tunable lasers and microwave circuits. Well-calibrated simulation tools are essential for propelling ideas from the drawing board into production. This work characterizes a fabrication process---the widely-used polysilicon MUMPs process---to facilitate the design of electrostatically actuated micromechanical devices. The operating principles of a representative device---a capacitive microwave switch---are characterized using a wide range of electrical and optical measurements of test structures along with detailed electromechanical simulations. Consistency in the extraction of material properties from measurements of both pull-in voltage and buckling amplitude is demonstrated. Gold is identified as an area-dependent source of nonuniformity in polysilicon thicknesses and stress. Effects of stress gradients, substrate curvature, and film coverage are examined quantitatively. Using well-characterized beams as in-situ surface probes, capacitance-voltage and surface profile measurements reveal that compressible surface residue modifies the effective electrical gap when the movable electrode contacts an underlying silicon nitride layer. A compressible contact surface model used in simulations improves the fit to measurements. In addition, the electric field across the nitride causes charge to build up in the nitride, increasing the measured capacitance over time. The rate of charging corresponds to charge injection through direct tunneling. A novel actuator that can travel stably beyond one-third of the initial gap (a trademark limitation of

  13. Design & simulation of in-plane MEMS Lorentz force magnetometer

    NASA Astrophysics Data System (ADS)

    Jyoti, Aditi, Tripathi, C. C.; Gopal, Ram

    2016-03-01

    This report presents the design and simulation of a MEMS based In-plane Lorentz Force Magnetometer (I-LFM), simulated for 8 um UV-LIGA technology using FEM tool of COMSOL Multiphysics 4.3b. Designed I-LFM was simulated in the magnetic field range varied from 1 μJT to 100μJT. The proposed structure composed of a comb drive actuator, configured such that the fingers overlap with each other to generate capacitive coupling for its actuation. The magnetic field can be detected in Z-axis by this comb drive structure. The device was excited by supplying the sinusoidal current with the frequency equivalent to resonance frequency of the device at its first mode i.e. 12.047 kHz. In order to achieve the maximum mechanical output, the device was operated at the resonant frequency. Simulations based results shows a good linearity in the magnetic field range of 1 μJT to 100 μJT with a high quality factor of 130.

  14. Characterization of nonplanar motion in MEMS involving scanning laser interferometry

    NASA Astrophysics Data System (ADS)

    Lawton, Russell A.; Abraham, Margaret H.; Lawrence, Eric

    1999-08-01

    A study to evaluate three processes used for the release of standard devices produced by MCNC using the MUMPS process was undertaken by Jet Propulsion Laboratory with the collaboration of The Aerospace Corporation, and Polytec PI. The processes used were developed at various laboratories and are commonly the final step in the production of micro- electro-mechanical systems prior to packaging. It is at this stage of the process when the devices become extremely delicate and are subject to yield losses due to handling errors or the phenomenon of stiction. The effects of post processing with HF on gain boundaries and subsequent thermal processing producing native oxide growth during packaging will require further investigation.

  15. Robust Metal-Contact and Capacitive Mini-MEMS Switches

    NASA Astrophysics Data System (ADS)

    Sedaghat Pisheh, Hojr

    This thesis presents the design, fabrication and measurements of a new metal-contact RF MEMS switch with low sensitivity to stress gradients and temperature variations. The switch is based on a circular geometry with arc type springs, and results in high contact force, fast switching time, and excellent microwave performance of up to > 40 GHz. This thesis also presents the design, fabrication and measurements of a new metal-contact RF MEMS single-pole double-throw (SPDT) switch with low sensitivity to stress gradients. The switch is based on a circular geometry with arc type springs, and results in high contact force, fast switching time, and excellent microwave performance of up to > 30 GHz. To our knowledge, this is the smallest high-performance SPDT switch to-date (0.04 mm2). Furthermore, the design, fabrication and measurements of a novel metal-contact RF MEMS switch with variable spring constant and high contact and release forces are demonstrated. The spring constant of the switch dramatically increases when the applied voltage is larger than the threshold voltage (V t), defined as the voltage obtained when the tip touches a dielectric block. This design shows a total contact force and restoring force of 0.6 - 1.1 mN and a 0.5 mN, respectively, for an actuation voltage of 75-90 V. The measured switching time is < 10 μs. The switch is an excellent candidate for high performance microwave applications requiring high power handling and a large contact force. Two generations of miniature RF MEMS switched capacitors with pull-down and pull-up electrodes for increased capacitance ratio and power handling are also presented. In the first generation, a 2x2 switch array is designed with three operation states: free-state, down-state and up state (switch attached to the pull-up electrode), with capacitances of 115 fF, 370 fF and 64 fF, respectively. The pull-up electrode increases the capacitance ratio from 3.2 (standard operation with no pull-up electrode) to 5

  16. Characterizing time-dependent mechanics in metallic MEMS

    NASA Astrophysics Data System (ADS)

    Bergers, L. I. J. C.; Delhey, N. K. R.; Hoefnagels, J. P. M.; Geers, M. G. D.

    2010-06-01

    Experiments for characterization of time-dependent material properties in free-standing metallic microelectromechanical system (MEMS) pose challenges: e.g. fabrication and handling (sub)-μm sized specimens, control and measurement of sub-μN loads and sub-μm displacements over long periods and various temperatures [1]. A variety of experimental setups have been reported each having their pros and cons. One example is a micro-tensile tester with an ingenious electro-static specimen gripping system [2] aiding simple specimen design giving good results at μN and sub-μm levels, but without in-situ full-field observations. Other progressive examples assimilate the specimen, MEMS actuators and load cells on a single chip [3,4] yielding significant results at nN and nm levels with in-situ TEM/SEM observability, though not without complications: complex load actuator/sensor calibration per chip, measures to reduce fabrication failure and unfeasible cofabrication on wafers with commercial metallic MEMS. This work aims to overcome these drawbacks by developing experimental methods with high sensitivity, precision and in-situ full-field observation capabilities. Moreover, these should be applicable to simple free-standing metallic MEMS that can be co-fabricated with commercial devices. These methods will then serve in systematic studies into size-effects in time-dependent material properties. First a numeric-experimental method is developed. It characterizes bending deformation of onwafer μm-sized aluminum cantilevers. A specially designed micro-clamp is used to mechanically apply a constant precise deflection of the beam (zres <50 nm) for a prolonged period, see fig. 1. After this period, the deflection by the micro-clamp is removed. Full-field height maps with the ensuing deformation are measured over time with confocal optical profilometry (COP). This yields the tip deflection as function of time with ~3 nm precision, see fig.2. To extract material parameters

  17. Microfabricated therapeutic actuators

    SciTech Connect

    Lee, Abraham P.; Northrup, M. Allen; Ciarlo, Dino R.; Krulevitch, Peter A.; Benett, William J.

    1999-01-01

    Microfabricated therapeutic actuators are fabricated using a shape memory polymer (SMP), a polyurethane-based material that undergoes a phase transformation at a specified temperature (Tg). At a temperature above temperature Tg material is soft and can be easily reshaped into another configuration. As the temperature is lowered below temperature Tg the new shape is fixed and locked in as long as the material stays below temperature Tg. Upon reheating the material to a temperature above Tg, the material will return to its original shape. By the use of such SMP material, SMP microtubing can be used as a release actuator for the delivery of embolic coils through catheters into aneurysms, for example. The microtubing can be manufactured in various sizes and the phase change temperature Tg is determinate for an intended temperature target and intended use.

  18. Microfabricated therapeutic actuators

    DOEpatents

    Lee, A.P.; Northrup, M.A.; Ciarlo, D.R.; Krulevitch, P.A.; Benett, W.J.

    1999-06-15

    Microfabricated therapeutic actuators are fabricated using a shape memory polymer (SMP), a polyurethane-based material that undergoes a phase transformation at a specified temperature (Tg). At a temperature above temperature Tg material is soft and can be easily reshaped into another configuration. As the temperature is lowered below temperature Tg the new shape is fixed and locked in as long as the material stays below temperature Tg. Upon reheating the material to a temperature above Tg, the material will return to its original shape. By the use of such SMP material, SMP microtubing can be used as a release actuator for the delivery of embolic coils through catheters into aneurysms, for example. The microtubing can be manufactured in various sizes and the phase change temperature Tg is determinate for an intended temperature target and intended use. 8 figs.

  19. Electrical Actuation Technology Bridging

    NASA Technical Reports Server (NTRS)

    Hammond, Monica (Compiler); Sharkey, John (Compiler)

    1993-01-01

    This document contains the proceedings of the NASA Electrical Actuation Technology Bridging (ELA-TB) Workshop held in Huntsville, Alabama, September 29-October 1, 1992. The workshop was sponsored by the NASA Office of Space Systems Development and Marshall Space Flight Center (MSFC). The workshop addressed key technologies bridging the entire field of electrical actuation including systems methodology, control electronics, power source systems, reliability, maintainability, and vehicle health management with special emphasis on thrust vector control (TVC) applications on NASA launch vehicles. Speakers were drawn primarily from industry with participation from universities and government. In addition, prototype hardware demonstrations were held at the MSFC Propulsion Laboratory each afternoon. Splinter sessions held on the final day afforded the opportunity to discuss key issues and to provide overall recommendations. Presentations are included in this document.

  20. Microfabricated therapeutic actuator mechanisms

    DOEpatents

    Northrup, Milton A.; Ciarlo, Dino R.; Lee, Abraham P.; Krulevitch, Peter A.

    1997-01-01

    Electromechanical microstructures (microgrippers), either integrated circuit (IC) silicon-based or precision machined, to extend and improve the application of catheter-based interventional therapies for the repair of aneurysms in the brain or other interventional clinical therapies. These micromechanisms can be specifically applied to release platinum coils or other materials into bulging portions of the blood vessels also known as aneurysms. The "micro" size of the release mechanism is necessary since the brain vessels are the smallest in the body. Through a catheter more than one meter long, the micromechanism located at one end of the catheter can be manipulated from the other end thereof. The microgripper (micromechanism) of the invention will also find applications in non-medical areas where a remotely actuated microgripper or similar actuator would be useful or where micro-assembling is needed.

  1. Microfabricated therapeutic actuator mechanisms

    DOEpatents

    Northrup, M.A.; Ciarlo, D.R.; Lee, A.P.; Krulevitch, P.A.

    1997-07-08

    Electromechanical microstructures (microgrippers), either integrated circuit (IC) silicon-based or precision machined, to extend and improve the application of catheter-based interventional therapies for the repair of aneurysms in the brain or other interventional clinical therapies. These micromechanisms can be specifically applied to release platinum coils or other materials into bulging portions of the blood vessels also known as aneurysms. The ``micro`` size of the release mechanism is necessary since the brain vessels are the smallest in the body. Through a catheter more than one meter long, the micromechanism located at one end of the catheter can be manipulated from the other end thereof. The microgripper (micromechanism) of the invention will also find applications in non-medical areas where a remotely actuated microgripper or similar actuator would be useful or where micro-assembling is needed. 22 figs.

  2. Scissor thrust valve actuator

    DOEpatents

    DeWall, Kevin G.; Watkins, John C; Nitzel, Michael E.

    2006-08-29

    Apparatus for actuating a valve includes a support frame and at least one valve driving linkage arm, one end of which is rotatably connected to a valve stem of the valve and the other end of which is rotatably connected to a screw block. A motor connected to the frame is operatively connected to a motor driven shaft which is in threaded screw driving relationship with the screw block. The motor rotates the motor driven shaft which drives translational movement of the screw block which drives rotatable movement of the valve driving linkage arm which drives translational movement of the valve stem. The valve actuator may further include a sensory control element disposed in operative relationship with the valve stem, the sensory control element being adapted to provide control over the position of the valve stem by at least sensing the travel and/or position of the valve stem.

  3. MEMS based miniature FT-IR engine with built-in photodetector

    NASA Astrophysics Data System (ADS)

    Warashina, Yoshihisa; Suzuki, Tomofumi; Kasamori, Kohei; Okumura, Ryosuke; Matsuo, Yuki; Takemura, Mitsutaka

    2014-03-01

    A MEMS-FTIR engine has been developed as a key device for the Fourier-Transform Infrared Spectrometer, which consists of a Michelson interferometer including an electro-static actuator to control a moving mirror, an optical fiber groove for incident light and a photodetector. All these elements except for the photodetector are monolithically fabricated in Silicon using MEMS technology. The optical elements such as a beam splitter, a fixed mirror and a moving mirror are formed and aligned simultaneously with high degree of precision by Deep Reactive Ion Etching (DRIE). The vertical side walls are utilized as optical planes so that the incident light path is located in parallel with the Silicon substrate. The moving mirror is driven by an electro-static MEMS actuator. The photodetector is placed above an angled mirror, which is formed by alkaline wet etching exposing the Silicon crystal plane at the end position of light path. All the elements including the photodetector are hermetically covered by a lid of Silicon in the vacuum chamber by using a surface activate bonding technology. In order to reduce the cost, wafer level process and separation of each chip by a laser dicer after all assembly processes are introduced. The realized MEMS-FTIR is 10×17×1 mm in size and a signal noise ratio (SNR) of better than 35dB, which comes from a good verticality of less than 0.2 degree in the vertical side walls as optical planes by managing the DRIE etching conditions.

  4. Design and fabrication of a micro thermal actuator for cellular grasping

    NASA Astrophysics Data System (ADS)

    Chan, Ho-Yin; Li, Wen J.

    2004-04-01

    The development of a novel polymer-based micro robotic gripper that can be actuated in a fluidic medium is presented in this paper. Our current work is to explore new materials and designs for thermal actuators to achieve micromanipulation of live biological cells. We used parylene C to encapsulate a metal heater, resulting in effectively a tri-layered thermal actuator. Parylene C is a bio-compatible dielectric polymer that can serve as a barrier to various gases and chemicals. Therefore, it is suitable to serve as a thermal/electrical/chemical isolation material for protecting the metal heater from exposing to an aqueous environment. We have demonstrated parylene actuators (2 mm×100 μm×0.5 μm) to operate in an aqueous environment using 10 to 80 mW input power. The temperature of these actuators at full deflection was estimated to be ˜60°C, which is much lower than the typical requirement of >100°C to actuate other conventional MEMS actuators.Danio rerio follicles in fluidic medium were captured successfully using these actuators. Moreover, these actuators were found to be responsive to moderate rise in environmental temperature, and hence, we could vary the fluidic medium temperature to actuate trimorphs on a chip without any input of electrical energy, i.e., raising the fluidic temperature from 23°C to 60°C could actuate the trimorphs to grasp follicles of ˜1 mm size in diameter. At 60°C, the embryos inside the follicles were observed to be alive, i.e., they were still moving in the biological fluid isolated by the follicle membrane. The smallest follicles grasped were ˜500 μm in diameter using 800 μm×130 μm×0.6 μm actuators. The fabrication process, modeling, and optimization of the trimorph actuators are presented. Based on the successful operation of these polymer-based actuators, we are currently developing multifinger thermal microgrippers for cellular grasping and manipulation, which can potentially be hybridly integrated with circuits for

  5. Thermally actuated thermionic switch

    DOEpatents

    Barrus, D.M.; Shires, C.D.

    1982-09-30

    A thermally actuated thermionic switch which responds to an increase of temperature by changing from a high impedance to a low impedance at a predictable temperature set point. The switch has a bistable operation mode switching only on temperature increases. The thermionic material may be a metal which is liquid at the desired operation temperature and held in matrix in a graphite block reservoir, and which changes state (ionizes, for example) so as to be electrically conductive at a desired temperature.

  6. Thermally actuated thermionic switch

    DOEpatents

    Barrus, Donald M.; Shires, Charles D.

    1988-01-01

    A thermally actuated thermionic switch which responds to an increase of temperature by changing from a high impedance to a low impedance at a predictable temperature set point. The switch has a bistable operation mode switching only on temperature increases. The thermionic material may be a metal which is liquid at the desired operation temperature and held in matrix in a graphite block reservoir, and which changes state (ionizes, for example) so as to be electrically conductive at a desired temperature.

  7. Passively actuated valve

    SciTech Connect

    Modro, S. Michael; Ougouag, Abderrafi M.

    2005-09-20

    A passively actuated valve for isolating a high pressure zone from a low pressure zone and discontinuing the isolation when the pressure in the high pressure zone drops below a preset threshold. If the pressure in the high pressure zone drops below the preset threshold, the valve opens and allows flow from the high pressure zone to the low pressure zone. The valve remains open allowing pressure equalization and back-flow should a pressure inversion between the two pressure zone occur.

  8. Shape memory alloy actuator

    DOEpatents

    Varma, Venugopal K.

    2001-01-01

    An actuator for cycling between first and second positions includes a first shaped memory alloy (SMA) leg, a second SMA leg. At least one heating/cooling device is thermally connected to at least one of the legs, each heating/cooling device capable of simultaneously heating one leg while cooling the other leg. The heating/cooling devices can include thermoelectric and/or thermoionic elements.

  9. Dissolution actuated sample container

    DOEpatents

    Nance, Thomas A.; McCoy, Frank T.

    2013-03-26

    A sample collection vial and process of using a vial is provided. The sample collection vial has an opening secured by a dissolvable plug. When dissolved, liquids may enter into the interior of the collection vial passing along one or more edges of a dissolvable blocking member. As the blocking member is dissolved, a spring actuated closure is directed towards the opening of the vial which, when engaged, secures the vial contents against loss or contamination.

  10. A low-loss, single-pole, four-throw RF MEMS switch driven by a double stop comb drive

    NASA Astrophysics Data System (ADS)

    Kang, S.; Kim, H. C.; Chun, K.

    2009-03-01

    Our goal was to develop a single-pole four-throw (SP4T) radio frequency microelectromechanical system (RF MEMS) switch for band selection in a multi-band, multi-mode, front-end module of a wireless transceiver system. The SP4T RF MEMS switch was based on an arrangement of four single-pole single-throw (SPST) RF MEMS switches. The SP4T RF MEMS switch was driven by a double stop (DS) comb drive, with a lateral resistive contact, and composed of single crystalline silicon (SCS) on glass. A large contact force at a low-drive voltage was achieved by electrostatic actuation of the DS comb drive. Good RF characteristics were achieved by the large contact force and the lateral resistive Au-to-Au contact. Mechanical reliability was achieved by using SCS which has no residual stress as a structure material. The developed SP4T RF MEMS switch has a drive voltage of 15 V, an insertion loss below 0.31 dB at 6 GHz after more than one million cycles under a 10 mW signal, a return loss above 20 dB and an isolation value above 36 dB.

  11. Far-field, linewidth and thermal characteristics of a high-speed 1550-nm MEMS tunable VCSEL.

    PubMed

    Paul, Sujoy; Haidar, Mohammad Tanvir; Cesar, Julijan; Malekizandi, Mohammadreza; Kögel, Benjamin; Neumeyr, Christian; Ortsiefer, Markus; Küppers, Franko

    2016-06-13

    We report an electrically pumped 1550 nm MEMS tunable VCSEL with a continuous tuning of 101 nm at 22 °C. The top MEMS-DBR with built-in stress gradient within the dielectric layers is deposited in a low-temperature PECVD chamber on an InP-based half-VCSEL, structured by surface-micromachining and electrothermally actuated for continuous wavelength tuning. With 2.6 mA threshold current, the laser shows maximum CW output power of 3.2 mW at 1560 nm. The MEMS-VCSEL operates in single-mode with SMSR > 39 dB across the entire tuning range. At 36 °C, the tuning range reaches up to 107 nm. The divergence angle of the MEMS-VCSEL is approximately 5.6° for all tuning wavelengths. The intrinsic linewidth of an unpackaged device is 21 MHz. Quasi-error-free operation at 12.5 Gbps using a directly modulated MEMS-VCSEL is reported for a record 60 nm tuning, showing the potential of the so-called colorless source in WDM applications. PMID:27410332

  12. Cylindrical Piezoelectric Fiber Composite Actuators

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G.; Shams, Qamar A.; Fox, Robert L.

    2008-01-01

    The use of piezoelectric devices has become widespread since Pierre and Jacques Curie discovered the piezoelectric effect in 1880. Examples of current applications of piezoelectric devices include ultrasonic transducers, micro-positioning devices, buzzers, strain sensors, and clocks. The invention of such lightweight, relatively inexpensive piezoceramic-fiber-composite actuators as macro fiber composite (MFC) actuators has made it possible to obtain strains and displacements greater than those that could be generated by prior actuators based on monolithic piezoceramic sheet materials. MFC actuators are flat, flexible actuators designed for bonding to structures to apply or detect strains. Bonding multiple layers of MFC actuators together could increase force capability, but not strain or displacement capability. Cylindrical piezoelectric fiber composite (CPFC) actuators have been invented as alternatives to MFC actuators for applications in which greater forces and/or strains or displacements may be required. In essence, a CPFC actuator is an MFC or other piezoceramic fiber composite actuator fabricated in a cylindrical instead of its conventional flat shape. Cylindrical is used here in the general sense, encompassing shapes that can have circular, elliptical, rectangular or other cross-sectional shapes in the planes perpendicular to their longitudinal axes.

  13. Challenges in the Packaging of MEMS

    SciTech Connect

    Malshe, A.P.; Singh, S.B.; Eaton, W.P.; O'Neal, C.; Brown, W.D.; Miller, W.M.

    1999-03-26

    The packaging of Micro-Electro-Mechanical Systems (MEMS) is a field of great importance to anyone using or manufacturing sensors, consumer products, or military applications. Currently much work has been done in the design and fabrication of MEMS devices but insufficient research and few publications have been completed on the packaging of these devices. This is despite the fact that packaging is a very large percentage of the total cost of MEMS devices. The main difference between IC packaging and MEMS packaging is that MEMS packaging is almost always application specific and greatly affected by its environment and packaging techniques such as die handling, die attach processes, and lid sealing. Many of these aspects are directly related to the materials used in the packaging processes. MEMS devices that are functional in wafer form can be rendered inoperable after packaging. MEMS dies must be handled only from the chip sides so features on the top surface are not damaged. This eliminates most current die pick-and-place fixtures. Die attach materials are key to MEMS packaging. Using hard die attach solders can create high stresses in the MEMS devices, which can affect their operation greatly. Low-stress epoxies can be high-outgassing, which can also affect device performance. Also, a low modulus die attach can allow the die to move during ultrasonic wirebonding resulting to low wirebond strength. Another source of residual stress is the lid sealing process. Most MEMS based sensors and devices require a hermetically sealed package. This can be done by parallel seam welding the package lid, but at the cost of further induced stress on the die. Another issue of MEMS packaging is the media compatibility of the packaged device. MEMS unlike ICS often interface with their environment, which could be high pressure or corrosive. The main conclusion we can draw about MEMS packaging is that the package affects the performance and reliability of the MEMS devices. There is a

  14. Monolithic transparent 3D dielectrophoretic micro-actuator fabricated by femtosecond laser

    NASA Astrophysics Data System (ADS)

    Yang, Tao; Bellouard, Yves

    2015-10-01

    We demonstrate a three-dimensional (3D) monolithic micro-actuator fabricated by non-ablative femtosecond laser micromachining and subsequent chemical etching. The actuating principle is based on dielectrophoresis. An analytical modeling of this actuation scheme is conducted, which is capable of performance prediction, parameter optimization and instability analysis. Static and dynamic characterizations are experimentally verified. An actuation range of 30 μm is well attainable; resonances are captured with an evaluated quality factor of 40 (measured in air) and a bandwidth of 5 Hz for the primary vertical resonance of 200 Hz. A settling time of 200 ms in transient response indicates the damping properties of such actuation scheme. This actuation principle suppresses the need for electrodes on the mobile, non-conductive component and is particularly interesting for moving transparent elements. Thanks to the flexibility of the manufacturing process, it can be coupled to other functionalities within monolithic transparent micro-electro-mechanical systems (MEMS) for applications like tunable optical couplers.

  15. Telescoping cylindrical piezoelectric fiber composite actuator assemblies

    NASA Technical Reports Server (NTRS)

    Allison, Sidney G. (Inventor); Shams, Qamar A. (Inventor); Fox, Robert L. (Inventor); Fox, legal representative, Christopher L. (Inventor); Fox Chattin, legal representative, Melanie L. (Inventor)

    2010-01-01

    A telescoping actuator assembly includes a plurality of cylindrical actuators in a concentric arrangement. Each cylindrical actuator is at least one piezoelectric fiber composite actuator having a plurality of piezoelectric fibers extending parallel to one another and to the concentric arrangement's longitudinal axis. Each cylindrical actuator is coupled to concentrically-adjacent ones of the cylindrical actuators such that the plurality of cylindrical actuators can experience telescopic movement. An electrical energy source coupled to the cylindrical actuators applies actuation energy thereto to generate the telescopic movement.

  16. MEMS3DMODELERV1.0

    2001-10-30

    The MEMS 3 D Modeler is a software package that creates 3D CAD solid models from 2D layout masks and a MEMS process definition. The solid models may be generated in either the ACIS SAT or IGES format. The result is an accurate representation that may be used for visualization or FEA analysis

  17. Concept and Demonstration of Individual Probe Actuation in Two-Dimensional Parallel Atomic Force Microscope System

    NASA Astrophysics Data System (ADS)

    Akiyama, Terunobu; Aeschimann, Laure; Chantada, Laura; de Rooij, Nico. F.; Heinzelmann, Harry; Herzig, Hans P.; Manzardo, Omar; Meister, André; Polesel-Maris, Jérôme; Pugin, Raphaël; Staufer, Urs; Vettiger, Peter

    2007-09-01

    A concept of an array actuator that is used to control the tip-sample separation of cantilevers in a two-dimensional (2D) probe array scanning system is proposed in this article. The feasibility of the concept is demonstrated with a 10× 10 array actuator with 500 μm xy-pitches. The array actuator is made by slicing a bulk piezoceramic block. The obtained maximum actuation of a single probe was 2.19 μmp-p at ± 168 Vp-p. A major issue for the actuator was the insufficient strength of the frame of the probe array chip. The demonstrated array actuator is highly compatible with previously developed parallel readout modules that use either a parallel optical beam or integrated piezoresistive deflection sensing. A large-scale 2D probe array is our ultimate target.

  18. Cellular Pressure-Actuated Joint

    NASA Technical Reports Server (NTRS)

    McGuire, John R.

    2003-01-01

    A modification of a pressure-actuated joint has been proposed to improve its pressure actuation in such a manner as to reduce the potential for leakage of the pressurizing fluid. The specific joint for which the modification is proposed is a field joint in a reusable solid-fuel rocket motor (RSRM), in which the pressurizing fluid is a mixture of hot combustion gases. The proposed modification could also be applicable to other pressure-actuated joints of similar configuration.

  19. Direct drive field actuator motors

    DOEpatents

    Grahn, A.R.

    1998-03-10

    A positive-drive field actuator motor is described which includes a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately. 62 figs.

  20. Fault-tolerant rotary actuator

    DOEpatents

    Tesar, Delbert

    2006-10-17

    A fault-tolerant actuator module, in a single containment shell, containing two actuator subsystems that are either asymmetrically or symmetrically laid out is provided. Fault tolerance in the actuators of the present invention is achieved by the employment of dual sets of equal resources. Dual resources are integrated into single modules, with each having the external appearance and functionality of a single set of resources.

  1. Direct drive field actuator motors

    DOEpatents

    Grahn, Allen R.

    1998-01-01

    A positive-drive field actuator motor including a stator carrying at least one field actuator which changes in dimension responsive to application of an energy field, and at least one drive shoe movable by the dimensional changes of the field actuator to contact and move a rotor element with respect to the stator. Various embodiments of the motor are disclosed, and the rotor element may be moved linearly or arcuately.

  2. Studies on the dynamics of vacuum encapsulated 2D MEMS scanners by laser Doppler vibrometry

    NASA Astrophysics Data System (ADS)

    Janes, Joachim; Hofmann, Ulrich

    2014-03-01

    2D MEMS scanners are used for e.g. Laser projection purposes or Lidar applications. Electrostatically driven resonant torsional oscillations of both axes of the scanners lead to Lissajous trajectories for Laser beams reflected from the micro mirror. Wafer level vacuum encapsulation with tilt glass capping ensures high angular amplitudes at low driving voltages additionally preventing environmental impacts. Applying Laser Doppler Vibrometry, the effect of residual gas friction, squeezed film damping and internal friction on 2D MEMS scanners is analyzed by measuring the Q-values associated with the torsional oscillations. Vibrometry is also used to analyze the oscillatory motion of the micro mirror and the gimbal of the scanners. Excited modes of the scanner structures are identified giving rise to coupling effects influencing the scanning performance of the 2D MEMS mirrors.

  3. RF MEMS Phase Shifters and their Application in Phase Array Antennas

    NASA Technical Reports Server (NTRS)

    Scardelletti, Maximilian; Ponchak, George E.; Zaman, Afroz J.; Lee, Richard Q.

    2005-01-01

    Electronically scanned arrays are required for space based radars that are capable of tracking multiple robots, rovers, or other assets simultaneously and for beam-hopping communication systems between the various assets. ^Traditionally, these phased array antennas used GaAs Monolithic Microwave Integrated Circuit (MMIC) phase shifters, power amplifiers, and low noise amplifiers to amplify and steer the beam, but the development of RF MEMS switches over the past ten years has enabled system designers to consider replacing the GaAs MMIC phase shifters with RF Micro-Electro Mechanical System (MEMS) phase shifters. In this paper, the implication of replacing the relatively high loss GaAs MMICs with low loss MEMS phase shifters is investigated.

  4. RF MEMS Switches with SiC Microbridges for Improved Reliability

    NASA Technical Reports Server (NTRS)

    Scardelletti, Maximilian C.; Zorman, Christian A.; Oldham, Daniel R.

    2008-01-01

    Radio frequency (RF) microelectromechanical (MEMS) switches offer superior performance when compared to the traditional semiconductor devices such as PIN diodes or GaAs transistors. MEMS switches have a return loss (RL) better than -25 dB, negligible insertion loss (IL), isolation better than -30 dB, and near zero power consumption. However, RF MEMS switches have several drawbacks the most serious being long-term reliability. The ability for the switch to operate for millions or even billions of cycles is a major concern and must be addressed. MEMS switches are basically grouped in two categories, capacitive and metal-to-metal contact. The capacitive type switch consists of a movable metal bridge spanning a fixed electrode and separated by a narrow air gap and thin insulating material. The metal-to-metal contact type utilizes the same basic design but without the insulating material. After prolonged operation the metal bridges, in most of these switches, begin to sag and eventually fail to actuate. For the metal-to-metal type, the two metal layers may actually fuse together. Also if the switches are not packaged properly or protected from the environment moisture may build up and cause stiction between the top and bottom electrodes rendering them useless. Many MEMS switch designs have been developed and most illustrate fairly good RF characteristics. Nevertheless very few have demonstrated both great RF performance and ability to perform millions/billions of switching cycles. Of these, nearly all are of metal-to-metal type so as the frequency increases RF performance decreases.

  5. A MEMS AlN transducer array with flexible interconnections for use as a cochlear implant

    NASA Astrophysics Data System (ADS)

    Knisely, Katherine; Zhao, Chuming; Grosh, Karl

    2015-12-01

    A completely implantable artificial organ of Corti (CIAO) was fabricated using batch MEMS processing techniques. A silicon backbone supports five piezoelectric cantilevers, each of which is designed to have an in vivo resonance corresponding to its tonotopic location in the guinea pig ST (20-40 kHz). An attachable polymer ribbon cable extends 4cm from the probe to an electrode bay, where electrical connections to each cantilever are accessed. The actuation responses of the fabricated devices were measured using laser vibrometry confirming the fluid-loaded resonance conforming to the straight section of the first turn of the guinea pig cochlea. First generation devices have been fabricated and the actuated resonances were measured to range from 80.3-134.2kHz in air and 24.3-41.0 kHz in water.

  6. Comparison of IC and MEMS packaging reliability approaches

    NASA Technical Reports Server (NTRS)

    Ghaffarian, R.

    2000-01-01

    This paper reviews the current status of IC and MEMS packaging technology with emphasis on reliability, compares the norm for IC packaging reliability evaluation and identifies challenges for development of reliability methodologies for MEMS, and finally, proposes the use of COTS MEMS in order to start generating statistically meaningful reliability data as a vehicle for future standardization of reliability test methodology for MEMS packaging.

  7. Development of MEMS photoacoustic spectroscopy

    SciTech Connect

    Robinson, Alex Lockwood; Eichenfield, Matthew S.; Griffin, Benjamin; Harvey, Heidi Alyssa; Nielson, Gregory N.; Okandan, Murat; Langlois, Eric; Resnick, Paul James; Shaw, Michael J.; Young, Ian; Givler, Richard C.; Reinke, Charles M.

    2014-01-01

    After years in the field, many materials suffer degradation, off-gassing, and chemical changes causing build-up of measurable chemical atmospheres. Stand-alone embedded chemical sensors are typically limited in specificity, require electrical lines, and/or calibration drift makes data reliability questionable. Along with size, these "Achilles' heels" have prevented incorporation of gas sensing into sealed, hazardous locations which would highly benefit from in-situ analysis. We report on development of an all-optical, mid-IR, fiber-optic based MEMS Photoacoustic Spectroscopy solution to address these limitations. Concurrent modeling and computational simulation are used to guide hardware design and implementation.

  8. MEMS-Based Spinning Nozzle

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S. (Inventor)

    2003-01-01

    A nozzle body and assembly for delivering atomized fuel to a combustion chamber. The nozzle body is rotatably mounted onto a substrate. One or more curvilinear fuel delivery channels are in flow communication with an internal fuel distribution cavity formed in the nozzle body. Passage of pressurized fuel through the nozzle body causes the nozzle body to rotate. Components of the nozzle assembly are formed of silicon carbide having surfaces etched by deep reactive ion etching utilizing MEMS (micro-electro-mechanical systems) technology. A fuel premix chamber is carried on the substrate in flow communication with a supply passage in the nozzle body.

  9. Strain actuated aeroelastic control

    NASA Technical Reports Server (NTRS)

    Lazarus, Kenneth B.

    1992-01-01

    Viewgraphs on strain actuated aeroelastic control are presented. Topics covered include: structural and aerodynamic modeling; control law design methodology; system block diagram; adaptive wing test article; bench-top experiments; bench-top disturbance rejection: open and closed loop response; bench-top disturbance rejection: state cost versus control cost; wind tunnel experiments; wind tunnel gust alleviation: open and closed loop response at 60 mph; wind tunnel gust alleviation: state cost versus control cost at 60 mph; wind tunnel command following: open and closed loop error at 60 mph; wind tunnel flutter suppression: open loop flutter speed; and wind tunnel flutter suppression: closed loop state cost curves.

  10. Compact valve actuation mechanism

    NASA Technical Reports Server (NTRS)

    Brogdon, James William (Inventor); Gill, David Keith (Inventor)

    2000-01-01

    A valve actuation device. The device may include a free floating valve bridge movably supported within a cavity in the engine housing. The bridge may be provided with a cavity and an orifice arrangement for pumping gases entrained with lubricating fluid toward the piston stems as the bridge reciprocates back and forth. The device may also include a rocker arm that has a U-shaped cross-sectional shape for receiving at least a portion of the valve bridge, valve stem valve spring and spring retainer therein. The rocker arm may be provided with lubrication passages for directing lubrication to the point wherein it is pivotally affixed to the engine housing.

  11. Lead screw linear actuator

    NASA Technical Reports Server (NTRS)

    Perkins, Gerald S. (Inventor)

    1980-01-01

    A linear actuator which can apply high forces is described, which includes a reciprocating rod having a threaded portion engaged by a nut that is directly coupled to the rotor of an electric motor. The nut is connected to the rotor in a manner that minimizes loading on the rotor, by the use of a coupling that transmits torque to the nut but permits it to shift axially and radially with respect to the rotor. The nut has a threaded hydrostatic bearing for engaging the threaded rod portion, with an oilcarrying groove in the nut being interrupted.

  12. Piezoelectric actuated gimbal

    DOEpatents

    Tschaggeny, Charles W.; Jones, Warren F.; Bamberg, Eberhard

    2011-09-13

    A gimbal is described and which includes a fixed base member defining an axis of rotation; a second member concentrically oriented relative to the axis of rotation; a linear actuator oriented in immediate, adjoining force transmitting relation relative to the base member or to the second member, and which applies force along a linear axis which is tangential to the axis of rotation so as to cause the second member to rotate coaxially relative to the fixed base member; and an object of interest mounted to the second member such that the object of interest is selectively moved relative to the base member about the axis of rotation.

  13. Micro electromechanical systems (MEMS) for mechanical engineers

    SciTech Connect

    Lee, A. P., LLNL

    1996-11-18

    The ongoing advances in Microelectromechanical Systems (MEMS) are providing man-kind the freedom to travel to dimensional spaces never before conceivable. Advances include new fabrication processes, new materials, tailored modeling tools, new fabrication machines, systems integration, and more detailed studies of physics and surface chemistry as applied to the micro scale. In the ten years since its inauguration, MEMS technology is penetrating industries of automobile, healthcare, biotechnology, sports/entertainment, measurement systems, data storage, photonics/optics, computer, aerospace, precision instruments/robotics, and environment monitoring. It is projected that by the turn of the century, MEMS will impact every individual in the industrial world, totaling sales up to $14 billion (source: System Planning Corp.). MEMS programs in major universities have spawned up all over the United States, preparing the brain-power and expertise for the next wave of MEMS breakthroughs. It should be pointed out that although MEMS has been initiated by electrical engineering researchers through the involvement of IC fabrication techniques, today it has evolved such that it requires a totally multi-disciplinary team to develop useful devices. Mechanical engineers are especially crucial to the success of MEMS development, since 90% of the physical realm involved is mechanical. Mechanical engineers are needed for the design of MEMS, the analysis of the mechanical system, the design of testing apparatus, the implementation of analytical tools, and the packaging process. Every single aspect of mechanical engineering is being utilized in the MEMS field today, however, the impact could be more substantial if more mechanical engineers are involved in the systems level designing. In this paper, an attempt is made to create the pathways for a mechanical engineer to enter in the MEMS field. Examples of application in optics and medical devices will be used to illustrate how mechanical

  14. Robotic Arm Actuated by Electroactie Polymers

    NASA Technical Reports Server (NTRS)

    Bar-Cohen, Y.; Xue, T.; Shaninpoor, M.; Simpson, J. O.; Smith, J.

    1998-01-01

    Actuators are used for many planetary and space applications. To meet the NASA goal to reduce the actuators size, mass, cost and power consumption, electroactie polymers (EAP) are being developed to induce large bending and longitudinal actuation strains.

  15. Actuator operated microvalves

    NASA Technical Reports Server (NTRS)

    Okojie, Robert S. (Inventor)

    2008-01-01

    An actuator operated microvalve and the method of making same is disclosed and claimed. The microvalve comprises a SiC housing which includes a first lower portion and a second upper portion. The lower portion of the SiC housing includes a passageway therethrough, a microvalve seat, and a moveable SiC diaphragm. The SiC diaphragm includes a centrally located boss and radially extending corrugations which may be sinusoidally shaped. The boss of the SiC diaphragm moves and modulates in a range of positions between a closed position wherein the boss interengages said microvalve seat prohibiting communication of fluid through the passageway and a fully open position when the boss is spaced apart from the seat at its maximum permitting communication of fluid through said passageway. The actuator includes a SiC top plate affixed to the boss of the diaphragm and a first electrode and the second upper portion of the SiC housing further includes a second electrode.

  16. A study on the effect of surface topography on the actuation performance of stacked-rolled dielectric electro active polymer actuator

    NASA Astrophysics Data System (ADS)

    Sait, Usha; Muthuswamy, Sreekumar

    2016-05-01

    Dielectric electro active polymer (DEAP) is a suitable actuator material that finds wide applications in the field of robotics and medical areas. This material is highly controllable, flexible, and capable of developing large strain. The influence of geometrical behavior becomes critical when the material is used as miniaturized actuation devices in robotic applications. The present work focuses on the effect of surface topography on the performance of flat (single sheet) and stacked-rolled DEAP actuators. The non-active areas in the form of elliptical spots that affect the performance of the actuator are identified using scanning electron microscope (SEM) and energy dissipated X-ray (EDX) experiments. Performance of DEAP actuation is critically evaluated, compared, and presented with analytical and experimental results.

  17. MEMS Technology for Space Applications

    NASA Technical Reports Server (NTRS)

    vandenBerg, A.; Spiering, V. L.; Lammerink, T. S. J.; Elwenspoek, M.; Bergveld, P.

    1995-01-01

    Micro-technology enables the manufacturing of all kinds of components for miniature systems or micro-systems, such as sensors, pumps, valves, and channels. The integration of these components into a micro-electro-mechanical system (MEMS) drastically decreases the total system volume and mass. These properties, combined with the increasing need for monitoring and control of small flows in (bio)chemical experiments, makes MEMS attractive for space applications. The level of integration and applied technology depends on the product demands and the market. The ultimate integration is process integration, which results in a one-chip system. An example of process integration is a dosing system of pump, flow sensor, micromixer, and hybrid feedback electronics to regulate the flow. However, for many applications, a hybrid integration of components is sufficient and offers the advantages of design flexibility and even the exchange of components in the case of a modular set up. Currently, we are working on hybrid integration of all kinds of sensors (physical and chemical) and flow system modules towards a modular system; the micro total analysis system (micro TAS). The substrate contains electrical connections as in a printed circuit board (PCB) as well as fluid channels for a circuit channel board (CCB) which, when integrated, form a mixed circuit board (MCB).

  18. Optical MEMS at Silex Microsystems

    NASA Astrophysics Data System (ADS)

    Rimskog, Magnus; Kaelvesten, Edvard; Svedin, Niklas

    2004-01-01

    Silex Microsystems produces Silicon Optical Benches and Silicon Optical Mirrors for a variety of customers on an international market. The core of the activity is the MEMS chip itself and the related processes. By qualifying processes Silex provides the opportunity for clients to increase the degree of development in the MEMS cores of their products. The designs are customized in order to meet the specifications for a wide customer base with even wider demands. The Silicon Optical Benches can incorporate BCB layers in order to integrate RF-lines and make it possible to design for example coils of high performance. The polysilicon resistors have been qualified to be stable within 3-ppm over 6 months at elevated temperatures. The polysilicon temperature dependence makes it possible to use the resistors in order to measure temperature and excludes thermistors from the designs. Electrical feed through vias can be incorporated to enable backside connection and simplify packaging. The Silicon Optical Mirrors are produced both as large arrays of small mirrors and smaller arrays of larger mirrors depending on applications. Also for the mirrors the incorporations of electrical vias simplify design and process issues. The pads under the mirrors are connected from backside and it is possible to avoid difficult contacting down in cavities.

  19. Nondestructive optical characterization of MEMS

    NASA Astrophysics Data System (ADS)

    Pryputniewicz, Ryszard J.

    2013-10-01

    Advances in emerging technology of microelectromechanical systems (MEMS) are one of the most challenging tasks in today's experimental mechanics. More specifically, development of these miniature devices requires sophisticated design, analysis, fabrication, testing, and characterization tools that have multiphysics and multiscale capabilities, especially as MEMS are being developed for use at harsh conditions. In harsh-environment and high-performance guidance applications inertial sensors must be sensitive to low rates of rotation yet survive the high blast loads associated with the initial launch. In this multi-year study a set of tuning fork gyroscopes (TFGs) were subjected to a series of increasing g-loads (culminating at approximately 60,000 g's) with measurements of shape made after each test. High-g-testing was conducted within the large test chamber using a custom fabricated mini powder gun. A custom set of test sample packages were hermetically sealed with glass lids to allow optical inspection of components while preserving the operating (vacuum) environment. Optical and interferometric measurements have been made prior to and after each shock g-loading. The shape of the TFG test articles was measured using optoelectronic laser interferometric microscope (OELIM) methodology. Line traces were extracted from pertinent structures to clearly examine changes in the TFG. Failure of the die was observed in the form of fractures below the chip surface as well as fractures in the glass lid sealing the package.

  20. Actuated Hybrid Mirror Telescope

    NASA Technical Reports Server (NTRS)

    Hickey, Gregory; Redding, David; Lowman, Andrew; Cohen, David; Ohara, Catherine

    2005-01-01

    The figure depicts the planned Actuated Hybrid Mirror Telescope (AHMT), which is intended to demonstrate a new approach to the design and construction of wide-aperture spaceborne telescopes for astronomy and Earth science. This technology is also appropriate for Earth-based telescopes. The new approach can be broadly summarized as using advanced lightweight mirrors that can be manufactured rapidly at relatively low cost. More specifically, it is planned to use precise replicated metallic nanolaminate mirrors to obtain the required high-quality optical finishes. Lightweight, dimensionally stable silicon carbide (SiC) structures will support the nanolaminate mirrors in the required surface figures. To enable diffraction- limited telescope performance, errors in surface figures will be corrected by use of mirror-shape-control actuators that will be energized, as needed, by a wave-front-sensing and control system. The concepts of nanolaminate materials and mirrors made from nanolaminate materials were discussed in several previous NASA Tech Briefs articles. Nanolaminates constitute a relatively new class of materials that can approach theoretical limits of stiffness and strength. Nanolaminate mirrors are synthesized by magnetron sputter deposition of metallic alloys and/or compounds on optically precise master surfaces to obtain optical-quality reflector surfaces backed by thin shell structures. As an integral part of the deposition process, a layer of gold that will constitute the reflective surface layer is deposited first, eliminating the need for a subsequent and separate reflective-coating process. The crystallographic textures of the nanolaminate will be controlled to optimize the performance of the mirror. The entire deposition process for making a nanolaminate mirror takes less than 100 hours, regardless of the mirror diameter. Each nanolaminate mirror will be bonded to its lightweight SiC supporting structure. The lightweight nanolaminate mirrors and Si